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ABSTRACT 

 

The rapid developments in the sensor and its related technology have made 

automation possible in many processes in diverse fields. Also sensor-based fault diagnosis 

and quality improvements have been made possible. These tasks depend highly on the 

sensor network for the accurate measurements. The two major problems that affect the 

reliability of the sensor system/network are sensor failures and sensor anomalies. The 

usage of redundant sensors offers some tolerance against these two problems. Hence the 

redundancy analysis of the sensor system is essential in order to clearly know the 

robustness of the system against these two problems. The degree of sensor redundancy 

defined in this thesis is closely tied with the fault-tolerance of the sensor network and can 

be viewed as a parameter related to the effectiveness of the sensor system design. 

In this thesis, an efficient algorithm to determine the degree of sensor redundancy 

for linear sensor systems is developed. First the redundancy structure is linked with the 

matroid structure, developed from the design matrix, using the matroid theory. The 

matroid problem equivalent to the degree of sensor redundancy is developed and the 

mathematical formulation for it is established. The solution is obtained by solving a series 

of 1-norm minimization problems. For many problems tested, the proposed algorithm is 

more efficient than other known alternatives such as basic exhaustive search and bound 

and decomposition method. 

The proposed algorithm is tested on problem instances from the literature and wide 

range of simulated problems. The results show that the algorithm determines the degree of 

redundancy more accurately when the design matrix is dense than when it is sparse. The 

algorithm provided accurate results for most problems in relatively short computation 

times.  
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CHAPTER 1 

INTRODUCTION 

 

There has been increase in the need for high quality information related to a 

process as it is not only required for effective control and evaluation of the process but 

also for fault diagnosis and in-process quality improvements. The collection of sensors 

that are used to obtain such information - measurements for a number of variables related 

to a process is called a sensor network. One type of such sensor networks called the linear 

sensor systems has been used in wide variety of applications and is the one concentrated 

in this work. The recent developments in sensor technology have enabled many processes 

in diverse fields to be automated. High reliability of sensor network is called for as they 

are used in applications where unavailability of the true measurements can jeopardize the 

safety, lead to high cost of damage/downtime, and which are hostile/ infeasible 

environments for human measurement.  

Two major problems that degrade the reliability of the sensor network are sensor 

failures and sensor anomalies. Inclusion of redundant sensors is the most common way to 

deal with these two undesired effects. Redundancy of measurements, obtained from 

redundant sensors, increases the fault-tolerance capability of sensor networks. In 

particular, the analysis of sensor redundancy structure finds how many sensor failures the 

system can tolerate. The objective of this research is to develop an efficient algorithm to 

find the degree of sensor redundancy for a linear sensor system, which is defined in the 

following subsections. 

 

1.1 Linear Sensor System 

A sensor system is called a linear sensor system if the measurements of the 

sensors can be related to the variables of interest by a linear model. Consider a process in 

which p variables have to be determined/estimated using n sensors with n > p. The 
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following linear model can be used to link the measurements of the sensors and the true 

values of the variables, 

ൌ ܡ   ۶ ܝ ൅ (1.1) ܍

where y = [y1, y2,.. yn]
T is a n-dimensional vector representing the measurements of n 

sensors, u = [u1, u2,.. up]
T  is a p-dimensional vector representing the variables that are to 

be monitored, H is an n x p design matrix (also called measurement matrix) whose 

individual element’s value depends upon the location of the sensor and its relationship 

with the variables, and e = [e1, e2,.. en]
T is a n-dimensional vector of measurement errors 

or noise in the sensor system.  

Such linear models for the sensor system have been adopted and studied in 

various fields such as manufacturing processes (Khan et. al 1998, Jin and Shi 1999, 

Apley and Shi 2001), power plant (Dorr et al. 1997), chemical processes (Ali and 

Narasimhan 1993, Madron and Veverka 1992, Bagajewicz and Sanchez, 1999), and 

electrical power systems (Mili et al. 1990). More details of these models and applications 

are provided in Section 1.3. 

 

1.2 Degree of Sensor Redundancy 

The degree of sensor redundancy of a system (δ) is equal to the maximum number 

of any sensor failures a system can withstand and still provide enough measurements to 

uniquely identify all the variables. From the above definition it is clear that upon failure 

of any subset of sensors of size less than or equal to δ, all the variables are still 

observable.  

  The degree of sensor redundancy can be obtained from the measurement matrix 

H. Each row of H corresponds to a sensor in a linear sensor system and each column 

corresponds to a variable. An element of H, Hij, i א {2 ,1, . . , n}, j א {2 ,1, . . , p}, is zero 

if the sensor corresponding to the ith row has no relation with the variable corresponding 
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the jth column. We assume r(H) = p so that all variables can be identified uniquely when 

there is no sensor failure. As mentioned earlier since each row of the design matrix H 

corresponds to a sensor, we can represent the failure of a sensor / group of sensors by 

removal of its corresponding row/rows from H. If the rank of H is reduced below p after 

removal of the rows corresponding to the failed sensors, then the variables cannot be 

determined uniquely and this condition is termed as loss of observability.  

Let d denote the number of sensor failures (irrespective of which ones) and H(-d) 

denotes the matrix after the removal of any d rows (sensors) from H. Then the degree of 

sensor redundancy can be defined formally as: 
 

 

 

Sensor Redundancy δ(H) = min {d – 1} 

                             s.t.  rank(H(-d)) < r(H) 

(1.2)

 

1.3 Literature Review 

This section reviews the literature for the applications of the linear sensor 

systems, necessities for sensor redundancy analysis, and estimation procedures developed 

for the degree of sensor redundancy.  

 
1.3.1 Linear Sensor System 

Researchers have found that many processes in various engineering domains that 

can be modeled with the linear model as shown in (1.1). Some of these were mentioned 

in section 1.1. Here we shall see about them in more details. 

Manufacturing process fault diagnosis is one of the major areas in which the 

linear sensor systems have been applied extensively. The usage of sensors here is to 

determine the fixture faults if any because such faults can produce significant 

dimensional variations in the final product obtained through a multi-stage assembly 

process. Considerable amount of work related to the development of fault diagnosis 

methods in complex multi-stage manufacturing process used the linear model. The linear 
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model (1.1) links the product quality measurements (y) with the process (fixture) faults 

(u) and H is determined from the sensor and tooling layout. Apley and Shi (2001) used 

the linear model in an auto body assembly process. The authors developed a statistical 

technique, based on principal component analysis and factor analysis, to identify any 

fixture faults if present using the information obtained from the linear sensor system. 

Zhou et al. (2003) formulated the fault-quality diagnostic model as a mixed linear model 

and developed a methodology to solve the diagnosis problem by solving its equivalent 

problem of variance component analysis. They show that the capability of diagnosis by 

the sensor system depends heavily on the design of the sensor system. Similar usage of 

linear models in assembly processes can be seen in the work of Ding et al. (2002). 

Array Signal Processing is another field where linear model (1.1) is used. The 

problem here is to determine the arrival direction of a signal and is called Direction of 

Arrival Estimation (DOA). It uses a number of sensors organized in certain patterns, or 

arrays, to detect signals from narrowband sources in the far field. The narrowband 

represents a known narrow range of frequencies within which lies the source signals to be 

detected. The measurements in the sensors y can be linked with the source signals u 

through the linear model (1.1). The matrix H is called the array response and is 

determined by the adjustments in the sensors directions while shifting towards the source 

signals. This technique has been used in several applications including in radars, sonar 

and mobile communications (Sidiropoulos et al. 2000).    

Calibration of Wireless Sensor Networks: It is a process of estimating the so 

called calibration parameters in a wireless sensors in an ad-hoc networking (Cho et al. 

2009b). An ad-hoc network does not have a fixed network topology but one that usually 

changes frequently. The knowledge of the locations of the sensors is required in most of 

the cases to understand the process under observation and to make further decisions if 

necessary. Since installing a global positioning system (GPS) one with each sensor is not 

practical owing to the high power consumption and cost associated, only a subset of 
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sensors called the anchor nodes are installed with the GPS. The locations of the 

remaining sensors called the non-anchor nodes are determined relative to the anchor 

nodes. This is achieved by first measuring the distances between the non-anchor nodes 

and the anchor nodes and then determining the location of non-anchor nodes using some 

geometric principle. The distances between two sensors can be calculated using the 

knowledge of time difference of arrival (TDOA) between the radio frequency (RF) and 

an acoustic signal. But these two signals were observed to be affected by metal and 

temperature & moisture respectively resulting in inaccurate measurements. To overcome 

this problem, first in off-line setting the original (true) inter node distances is measured 

and then for the same setting the TDOA is measured. A mathematical (linear) model, 

relating these two is then developed by determining the so called calibration parameters. 

The matrix H in (1.1) corresponds to the TDOA between all nodes, y corresponds to the 

true inter node distances and the u corresponds to the calibration parameters. To find the 

inter nodes distances (H) and hence the location of the sensors during the operation, the 

calibration parameters (u) and the true distances (y) are used.  

Optimal Design of the sensor network is another major topic in which 

considerable amount of work has been carried out by the researchers. The objectives of 

the designing process include determining the location of the placement of sensors, 

number of sensors to be used for obtaining the desired level of reliability. The general list 

of constraints could include maximum cost of installation and operation, technical 

feasibility, space limitation, lack of proper access for calibration and complexity (Ali and 

Narasimhan, 1995). The very initial works were related to identifying the subset of 

sensors required to guarantee the observability of all the desired variables using graph 

theory. Later researchers developed a number of efficient optimal designing methods for 

variety of objectives and meeting variety of constraints. Related works can be seen in 

Bagajewicz and Sanchez (1999), Khan et al. (1998), Madron and Veverka (1992). 
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 1.3.2 Redundancy Analysis 

This section reviews the literature on works related to the analysis of redundancy 

structure of the sensor system and computation procedures for the degree of sensor 

redundancy. We focus in particular the linear sensor systems.  

The traditional methods of ensuring the reliability of a sensor by preventive 

maintenance activities like off-line gauge repeatability and reproducibility calibration is 

often time consuming and expensive (Dorr et al.1997). Also the uncalled for maintenance 

as part of repetitive preventive maintenance could lead to material degradation and this 

could cause monetary wastage in cases where expensive sensors are used (Dorr et al. 

1997).  

Staroswiecki et al. (2004) considered a system in which maintenance operations 

cannot take place to restore any sensor failures and analyzed the redundancy structure of 

the system to find which subsets of sensors when failed will cause system level failure. 

System level failure corresponds to the state of the system when not all variables can be 

estimated uniquely. Their procedure to calculate the degree of sensor redundancy is 

equivalent to testing the rank of H in (1.2) after removal of d rows corresponding to the 

failed sensors beginning with the value of d = 1. This procedure is very similar to the 

basic exhaustive search explained in section 2.2. The authors also developed an algorithm 

for designing fault tolerant sensor network with the required reliability and redundancy. 

The computation time of the exhaustive search method grows exponentially with the 

number of sensors. So it is only applicable for small problems. 

Cho et al. (2004, 2007) developed a more efficient algorithm based on branch and 

decomposition to determine the degree of sensor redundancy for problems with special 

sparse and clustered structures. They used the matroid theory, a major mathematical tool 

from the area of combinatorics, to analyze the redundancy structure of the sensor network 

system. Their algorithm makes use of the sparse nature of H in some engineering 

applications. By certain decomposition technique the exhaustive search is carried out on a 
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number of smaller size matrices after satisfying certain conditions. However when H 

does not have a sparse structure the branch and decomposition algorithm is not efficient. 

More details of this algorithm are explained in section 2.2.  

Apart from the applications mentioned above the determination of the redundancy 

degree is also discussed in robust statistics (Cho et al. 2009a). Consider the linear model 

presented in (1.1). Classical method of estimating u via Least Squares depends on strict 

assumption that error term e is normally distributed. When this violated it is difficult to 

get accurate estimation for u. The accuracy also degrades when y has outliers. The main 

aim of robust statistics is to produce the estimators u that are unaffected by the above 

circumstances. Breakdown point is one of the important measures used to quantify the 

robustness of the estimator and is defined as the fraction of incorrect observation that 

could result in inaccurate estimation of u. The higher the breakdown point of an 

estimator, the more robust it is. Least Trimmed Squares is one of the methods in robust 

statistics to determine the maximum breakdown point. It involves the estimation of a 

variable called trimming parameter and the δ defined in (1.2) is used for its calculation. 

 

1.4 Thesis Outline 

In this thesis, we will develop a novel approximate algorithm to evaluate the 

degree of sensor redundancy in a linear sensor system. Our algorithm is much more 

efficient than the existing methods, especially for problems without sparse and clustered 

structures. Beyond this introduction, Chapter 2 of this thesis provides background 

information on matroid theory with standard definitions and axioms sufficient enough to 

understand our method. Chapter 3 explains the characterization of the redundancy degree 

problem as a matroid problem. The mathematical formulation for this problem and 

subsequent determination of its solution using 0-, 1- norm minimization techniques is 

then presented. The chapter then concludes with presentation of the entire proposed 

algorithm.  Chapter 4 gives details of several data sets used to test the performance of the 
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algorithm and is followed by the discussion of the results. Finally Chapter 5 provides 

conclusion and suggestions for further research.  
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CHAPTER 2 

BACKGROUND AND FOUNDATION TECHNIQUES 

      

As mentioned in the earlier chapter, we characterize our problem of determining 

the degree of sensor redundancy using the matroid structure linked with the measurement 

matrix of the sensor system. While chapter three explains in detail the exact relation 

between the degree of sensor redundancy and a concept of matroid theory called (the 

smallest) cocircuit, this chapter provides the definition of a matroid, major axioms and 

properties associated with the matroid sufficient to envisage our objective as a matroid 

problem. Second section of this chapter reviews the four existing algorithms capable of 

identifying the smallest cocircuit, which is a problem directly related to finding the 

redundancy degree of a linear sensor system. 

 

2.1 Matroid 

The term ‘matroid’ was introduced by Whitney in 1935 to describe a system with 

an abstract linear dependence relation. A matroid does not have a single unique definition 

as it can be expressed in many different but equivalent ways. It captures the generic and 

fundamental properties of independence of a large class of useful structures such as 

matrices and graphs which share some common properties (Chen 2006). A matroid M is 

generally denoted by a pair (E,\  ) where E is called the ground  set   and \  is a collection 

of independent subsets of E, and satisfies the independence augmentation axiom. This 

definition is explained with an example in the next section.  

There had been development of a large class of matroids ever since the 

introduction of two basic matroids: vectorial matroid and graphic matroid - matroids 

defined over matrix and graph respectively. Since our work consists of application of a 

matroid over the (measurement) matrix, unless noted otherwise, in this thesis we do not 

differentiate a matroid and a vectorial matroid. 
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A brief description about the graphical matroid and some applications of the 

matroid theory are provided in the subsequent sections. 

 

2.2 Vectorial Matroid 

The definition of a matroid and its axioms are explained in detail with the help of 

a vectorial matroid, but they are applicable to any other matroid. To understand the 

vectorial matroid, consider the below p x n matrix with (p=3, n=5),  

 

A   =    ൥
1 0 1 1 1
0 1 1 0 1
0 0 0 1 1

൩ 

Let us denote the columns of A from left to right by 1 through 5 and represent it 

by  E = {1, 2, 3, 4, 5}. Any subset of E is said to be linearly independent if none of its 

elements can be written as a linear combination of other elements in the same subset. For 

our example matrix A, the collection of independent sets represented by \ ’ are as 

follows, 

\   = {{Ø}, {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, 

{2, 5}, {3, 4}, {3, 5}, {4, 5}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5},       

{1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {3, 4, 5}} 

Whitney (1935) mentioned that any subset of columns of a matrix is either 

linearly independent or linearly dependent and the following two theorems must hold: 

(a) Any subset of an independent set is independent. 

(b) If Np and Np+1 are independent sets of p and p + 1 columns respectively, 

then Np together with some column of Np+1 forms an independent set of    

p+1 columns.      

Many systems other than matrices also consist of sets satisfying the above two 

conditions. Hence we can treat these two conditions as axioms and define any system 
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obeying (a) and (b) as a matroid. Let us denote the matroid defined on a matrix A by 

M(A). 

As mentioned earlier there are several equivalent ways of defining a matroid and 

one of which is presented below. In terms of independent sets: the pair (E, \  ), where E is 

a nonempty finite ground set, and \   is nonempty collection of independent subsets of E, 

is called a matroid M upon satisfying the following properties, 

i) An empty set is an independent set 

ii) Any subset of an independent set is independent 

iii) If I1 and I2 are two independent sets with I1 ك I2, then there exists an 

element e contained in I2 that is not in I1 such that I1 ׫ {e} is independent. 

The last property (iii) is called the independence augmentation axiom. 

 

2.3 Base, Circuit, Rank of a Matroid 

An independent subset is called a maximal independent set if an addition of one 

new element to it will make it a dependent set. Such a set is called as Base under matroid 

theory terminology and all of such maximal independent sets have the same number of 

elements. The rank of a matroid is defined as the cardinality of any base. For a vectorial 

matroid defined on a matrix A, the rank of the matroid is always equal to the rank of the 

matrix, denoted by r(A), which is the maximum number linearly independent rows or 

columns of A, both of which are always equal for a given matrix. Representing the 

collection of such bases by , for our example matrix, 

 = {{1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5},                        

{3, 4, 5}} 

Any set containing the base is called a spanning set. From the property (ii) 

mentioned earlier it is clear that the independent sets \   is a collection of all subsets of 

each of the bases. In terms of bases, we can also define a matroid M as a pair (E, ), 
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where E is a nonempty finite ground set, and  is nonempty collection of bases, upon 

satisfying the following properties (Nieto and Marcin 2000), 

i) No base properly contains another base 

ii) If B1 and B2 are bases and for every element e present in B1, there exists an 

element f in B2 such that (B1 – {e}) ׫ {f} is also a base. 

The bases can be viewed as a collection of subsets of E with least number of 

columns whose rank is equivalent to the rank of the matrix.  

All subsets of E not contained in independent sets (\ ) are linearly dependent and 

are called as dependent sets. For the example matrix A, the dependent sets represented by 

W  are as follows,  

W   = {{1, 2, 3}, {2, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5},        

{2, 3, 4, 5}, {1, 2, 3, 4, 5}} 

A dependent set that, after removal of any one element, becomes an independent 

set is called a minimal dependent set. In matroid terminology such a set is called circuit 

of a matroid. Since all the proper subsets of a dependent set must be independent in order 

to be a circuit, no proper subset of a circuit will be a circuit. Representing by C the 

collection of circuits, for our example matroid M(A),  

C = {{1, 2, 3}, {2, 4, 5}, {1, 3, 4, 5}} 

As we can see from the example, the number of elements in the circuits could 

vary and need not be constant as with the case of bases. Another definition of matroid can 

be given terms of circuits: The pair (E, C), where E is a nonempty finite ground set, and C 

is nonempty collection of circuits, is called a matroid upon satisfying the following 

conditions (Nieto and Marcin 2000), 

i) No circuit properly contains another circuit 

ii) If C1 and C2 are two different circuits sharing a common element c, then 

(C1 ׫ C2) will contain a circuit that does not have c. 
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The cardinality or size of the smallest circuits is called the girth (g) of the matroid 

and for the example matrix it is the size of the first two circuits, which is 3.  

 

 2.4 Dual Matroid 

Every finite matroid has a dual matroid and this dual is unique. This is generally 

denoted by M*. Similar to the original matroid, the dual matroid also has got its own 

collection of independent sets, bases, dependent sets and circuits. Even though the names 

and relationships among these terms of a dual matroid are similar to those of the original 

matroid, they do not infer the same meaning over the matrix as the terms of original 

matroid does. This can be better understood with the example matroid M(A) specified 

over A introduced earlier. 

The dual matroid also has got the same number of bases as that of the original 

matroid and are called cobases. A cobase is obtained by taking the compliment of the 

base of the original matroid, for example if b is one of the bases of M, then b* = {E – b*} 

is its corresponding cobase (and is a base of M*). The dual matroid is generally defined 

as a pair (E, *), where E is a nonempty finite ground set, and * is nonempty collection 

of cobases. From this definition it is clear that the dual of this dual matroid M* is the 

same as the original matroid M.  

 Similar to the independent sets of a matroid being a collection of all subsets of all 

of its bases, the independent sets of a dual matroid is the collection of all subsets of all its 

bases (or cobases of the original matroid). These are called coindependent sets of the 

original matroid and are represented by \ *. All the other subsets of E are called 

codependent sets and represented by W  *. For our example matrix A we can obtain the 

cobases and subsequently coindependent sets and codependent sets from the previously 

found bases of M as shown below, 

 = {{1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5},                    

{3, 4, 5}} 



 14 
 

 
 

* = {{3, 5}, {3, 4}, {2, 5}, {2, 4}, {2, 3}, {1, 5}, {1, 4}, {1, 2}} 

\ * = {{Ø}, {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, 

{3, 4}, {3, 5}} 

W * = {{1, 3}, {4, 5}, {all subsets of size 3, 4, 5}} 

Circuits of the dual matroid are called cocircuits of the original matroid. To 

understand these we shall follow the same relation defined earlier between circuits and 

dependent sets of a matroid arbitrarily without trying to find the intuitive meaning upon 

applying them on the matrix. Following the condition that circuits are the minimal 

dependent sets we get, 

 C* = {{1, 3}, {4, 5}, {1, 2, 4}, {1, 2, 5}, {2, 3, 4}, {2, 3, 5}} 

Another easier way to generate this set is to first find the smallest circuits and 

then obtain the bigger ones. These can be explained by below two steps, 

1) Circuits are the minimal dependent set: following this condition we can see that 

first two sets of W *, namely {1, 3} and {4, 5} (smallest size among the codependent 

sets) are the circuits of the dual matroid. Add them to C*. 

2) No proper subset of a circuit will be a circuit: perform the following check on 

the dependent sets of next bigger size, if present (for our example - 3). Only the 

codependent set which do not contain any of the cocircuits present in C* as one of its 

proper subset is eligible to be a circuit of the dual matroid (or new cocircuit of the 

original matroid) and is added to C*. The process is continued until we check all the 

codependent sets of present size, after which we continue with the codependents sets of 

next bigger size and so on. Logical thinking can help us set the maximum size of the 

codependent sets to check for cocircuits as (n - r + 1).  

The cardinality or size of the smallest cocircuits is called the cogirth (g*) of the 

matroid and for the example matrix it is the size of the first two cocircuits which is 2.  
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 2.5 Graphic Matroid 

Similar to the vectorial matroid, these sets can also be explained for a graphic 

matroid - matroid defined over a graph. Let us consider a undirected graph G and its 

corresponding graphic matroid M(G). The edges connecting the nodes are used to define 

different sets in graphic matroid, analogous to the columns of matrix being used in 

vectorial matroid. The rank of a graph is equal to the number of edges present in the 

spanning tree, which is the minimal number of edges that connect all vertices is a base of 

M(G). The independent sets of M(G), subsets of bases, are the forests of the graph G. A 

circuit of M(G) is a collection of edges that form cycle in the graph. The dual of the 

graphic matroid is called the cographic matroid and is denoted by M*(G). The cocircuits 

of M(G) are the cut sets of G. Since our work deals with vectorial matroid, detailed 

explanation of the graphic matroid is not presented here but can be found in Conforti and 

Rao (1987), Ryan and Lee (1992). 

 

 2.6 Applications of Matroid Theory 

Due to the matroid’s characteristic to observe the linear independence/ 

dependence properties of various structures including matrices and graphs, researchers 

have been able to find many real time, useful applications whose mathematical models 

are similar/ related to the combinatorial problems found in different kind of matroids. 

Ryan and Lee (1992) in their work have done an extensive literature study about various 

algorithms then developed and applications related to matroid theory. In the general 

applications section, the authors mention problems under the categories of job 

sequencing, minimizing reliability / cost ratio, assignment, asymmetric traveling 

salesman, capturing approximate linear dependencies in multivariate data, scene analysis 

can be solved using matroid theory. Two sections, one each, are devoted to problems in 

the areas of electrical systems and statics.  
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We can find more applications of matroid theory in network related problems 

mainly because of the graphic structure. Some other popular matroids developed, similar 

to but different than graphic matroid, are matching, transversal, fano, gammoid. The 

details of these matroids can be found in Oxley (1992). Seymour (1977) introduced so 

called max-flow min-cut matroids and established the conditions for a matroid in order to 

be of this type. Truemper(1987) later developed algorithm to determine if a given matroid 

is max-flow min-cut matroid or not. Also he developed algorithms for determining the 

maximum flow and shortest routes which up on following his proof and work leads up to 

requirement of determining the shortest circuits and cocircuits of matroids meeting some 

specific conditions.  

Cho, Chen and Ding (2004) used the matroid theory to find the degree of sensor 

redundancy in a linear sensor network. We shall see in chapter 5 that this problem can be 

solved by either finding the cogirth / girth (cardinality of the smallest cocircuit/ smallest 

circuit) of two different matroids obtained from the measurement matrix H. The next 

section presents some existing algorithms that can be used for finding the cogirth/ girth of 

a matroid. 

 

2.7 Cocircuit & Circuit Algorithms 

Later in chapter 3, we explain the relationship between sensor redundancy degree 

δ and the smallest cocircuit of a matroid constructed using the design matrix H 

introduced in (1.1). Since cocircuits of M(A) is equivalent to circuits of M*(A), finding 

circuits of the latter matroid is equally sufficient. In fact our algorithm also uses this 

technique and more details are presented in the next chapter. In this section brief 

descriptions of four existing algorithms that are capable of determining the smallest 

cocircuits / circuits are presented. For all the algorithms explained below let M be the 

matroid defined on a matrix A of p-rows and n-columns (p < n). 
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2.7.1 Exhaustive Search 

This basic search method is used to find the size of the smallest cocircuit. Let the 

sub-matrices of A formed after removal of any d columns be represented by A(-d).  

Algorithm for Exhaustive Search 

1. Let d = 1 

2. If there is any sub-matrix such that rank(A(-d)) < r(A), Cogirth of M = d, stop. 

3. d = d + 1, go to step 2.  

This method is practical only for very small matrices to have a reasonable 

computation time. A slight increase in the value of cogirth causes huge increase in the 

computation time as it would be proportional to ∑ ௗ௡ܥ
௚כ
ௗୀଵ  . We shall see its inefficiency 

in the results in chapter 4. Hence there needs to be more sophisticated and intelligent way 

for determining the cogirth.  

 

2.7.2 Circuit Enumeration 

Boros et al. (2005) developed this technique to find all the circuits of a matroid. 

They showed that all the circuits can be enumerated in incremental polynomial time. 

Before describing this algorithm we shall recap the second property (explained in   

chapter 2) a pair (E, C) must obey in order to be a matroid - If C1 and C2 are distinct 

circuits of M with a common element e א C1 ځ C2, then there exists another circuit C3  

C1 ڂ C2 \ e. This is also called as circuit axiom. The collection of circuits C is said to be 

closed only if the circuit axiom is satisfied.  

Algorithm for Circuit Enumeration 

1. Select a base B0 of M and x א E \ B0.  

2. Find the unique fundamental circuit of x in base B0 denoted by C(B0, x), such 

that x א C(B0, x) ك B0 ׫ x.  

3. Repeat step 2 for each new x א E \ B0, Denote this collection by                   

 ࣠(B0) = {C(B0, x) | x א E \ B0}. 
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4. Set C = ࣠(B0) 

5. Check if C is closed using the circuit axiom; if yes go to step 7. 

6. One new circuit (C3  C1 ڂ C2 \ e) is generated for each violation to satisfy the 

axiom. All the new circuits are added to C.  Go to step 5. 

7. Stop; C is the family of all circuits of M.  

Step 3 generates n – r (M) fundamental circuits in the base B0. Steps 5-6 in the 

above algorithm are iterative. Even though our requirement is to find the smallest 

circuits, we need to allow the algorithm to complete listing all the circuits to make sure 

we identify the smallest one accurately. Though this algorithm sometimes performs much 

better than the exhaustive search, the computation time is still high for matrices of large 

dimension and when there are large number of circuits.  

 

2.7.3 Modified Circuit Enumeration 

Chen (2006) mentioned that in step 5 of the circuit enumeration algorithm, while 

checking for closeness of C with respect to the circuit axiom, there is a waste of 

computation time in testing many pairs of circuits more than once. He offered a modified 

procedure to avoid repeated examination of a previously tested pair by systematic testing 

of the circuits in C for the violation of the circuit axiom.   

The modified procedure is as follows. First three steps of the circuit enumeration 

algorithm are performed to generate the fundamental circuits ࣠(B0). If there are less than 

two circuits in ࣠(B0) they are the only circuits and the algorithm stops. Else only first two 

circuits in ࣠(B0) are added to C. The second circuit in C is tested for circuit axiom 

against the first and if required to satisfy the circuit axiom a new circuit is added at the 

end of C and list would now has three circuits. Let us say the process of testing a circuit 

(say primary circuit denoted by θ) in C for closeness of circuit axiom against each of the 

remaining circuits present before θ in the list as a single iteration testing. This procedure 

is repeated for each circuit that has been added to C following its order of inclusion and 
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continues until there are no more circuits in C to be selected as primary circuit. This can 

be considered as one cycle. Then the next fundamental circuit (if any in ࣠(B0)) is added 

to C and the cycle repeats until all the fundamental circuits are added to C.  

The planned testing procedure of the modified algorithm checks only the untested 

pairs leading to the minimum number of tests required. The procedure is explained well 

with a detailed flowchart in Chen (2006). Though this procedure has an obvious 

advantage of systematic testing leading to comparatively smaller computation time, still 

all the circuit pairs have to be determined in order not to miss the smallest cocircuit.  

 

2.7.4 Bound and Decomposition 

This algorithm is developed by Cho et al. (2007) to find the smallest cocircuit of a 

vectorial matroid and is more efficient when the matrix, over which the vectorial matroid 

is specified, is sparse meaning many of its entries are zeros. The strengths of this 

algorithm are in its exploitation of the underlying clustered structure in the design matrix, 

and utilization of the concept termed connectivity and its properties under the matroid 

theory. Brief outline of the algorithm: can be considered to have two steps, first step 

involves reshaping of the design matrix into Bordered Block Diagonal Form (BBDF) 

using the known methods developed in past and the second step identifies the smallest 

cocircuit by performing basic exhaustive search (ES) explained in section 2.7.1 but on 

smaller dimensional matrices.  

The second step is directly related to connectivity of the matroid. In order to 

explain this we need to familiarize with another term called restriction. Let E be the 

ground set and I be the collection of independent sets and M = (E, I) be a matroid. 

Suppose there exists a set X ك E with collection of independent sets I ك X and I א I  , 

then (X, I  | X) is a matroid called the restriction of M to X (Cho et al. 2007). It is denoted 

by M | X. 
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The following explanations for disconnected matroid are obtained from Oxley 

(1992). A matroid M is called disconnected if and only if, for some proper non-empty 

subset T of E(M),  

I(M) = {I1 ׫ I2 : I1 א I(M | T), I2 א I(M | (E-T))}    

Generalizing the above condition for n matroids, if M1, M2, . . , Mn are matroids 

on disjoint ground sets E1, E2, . . , En with the respective collection of independent sets I1, 

I2, . . , In, then M(E, I) is a matroid. The individual matroids are called direct sum 

components of M. The matroid M is called the 1-sum or direct sum of the collection of 

individual matroids and is denoted by M1 ْ M2 ْ . . ْ Mn.  

The following properties are true for the disconnected matroids, 

r(M1 ْ M2 ْ . . ْ Mn) = r(M1) + r(M2) + . . r(Mn) 

C(M1 ْ M2 ْ . . ْ Mn) = C(M1) ׫ C(M2) ׫ . .  ׫ C(Mn) 

(M1 ْ M2 ْ . . ْ Mn)* = M1* ْ M2* ْ . . ْ Mn*  

C*(M1 ْ M2 ْ . . ْ Mn) = C*(M1) ׫ C*(M2) ׫ . .  ׫ C*(Mn) 

This algorithm directly makes use of the last property which states that cocircuits 

of the 1-sum matroid is union of all the cocircuits of smaller matroids. Thus finding the 

smallest cocircuit(s) of 1-sum matroid is equivalent to finding the smallest cocircuits of 

all the individual matroids and finally comparing them to choose the smallest.  

The matrix structure of such a disconnected matroid could be represented as 

following, 

ABDF = 

ۏ
ێ
ێ
ێ
ۍ
ଵۯ     

ଶۯ     
  .   
   .  
ے ௡ۯ    

ۑ
ۑ
ۑ
ې

 

where A1, A2, . . , An are sub-matrices and are called blocks. Each sub-matrix need not be 

of same size and the matrix ABDF is said to be of block diagonal form.   



 21 
 

 
 

Cho et al. (2008) mentioned that in general the design matrices in many 

engineering applications exhibiting some form of clustered structure may not be reshaped 

to the BDF form but can be reshaped to bordered block diagonal form (BBDF) as shown 

below.  

                      ABBDF =  

ۏ
ێ
ێ
ێ
ێ
ۍ
ଵۯ      ۰ଵ

ଶۯ      ۰ଶ
  .    .
   .   .
    .  .
௡ۯ      ۰௡ے

ۑ
ۑ
ۑ
ۑ
ې

 

where the sub-matrix [B1
T B2

T . . . Bn
T]T is called the border (B) of A.  

There are a number of methods to permute the matrix A into the BBDF. Cho et al. 

(2007) adopted the hypergraph partitioning tools to obtain the BBDF. Another approach 

to find this is by using the bi-partite graph (Cho et al. 2004). Readers are advised to refer 

Cho et al. (2007) for information and references of such algorithms and tools which 

basically rely on graph theory and basic graph partitioning algorithms.  

Let |B| denote the number of columns present in B and [Ai ׫ Bi] denote the matrix 

formed using the block Ai and its corresponding part Bi of the border matrix B. 

 

Algorithm for Bound and Decomposition 

1. Search for cogirth through ES until d < 2|B| - 1. If g* still not found go to step 2 

2. For i = 1, 2, . . , n, if there exists any [Ai ׫ Bi](-d) such that    

                  r ([Ai ׫ Bi])(-d)  <  r ([Ai ׫ Bi])  

       then stop, cogirth = d;  else d = d + 1, repeat step 2. 

where the value (2|B| - 1) is called as bound and the condition (d < 2|B| - 1) as bound 

condition. They prove such a condition must be satisfied in order for the procedure 

mentioned in step 2 to identify the cogirth accurately.  
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In the same work, they also presented another algorithm which can be considered 

as an extension of the above which has two modifications. First is that it uses lower 

bound value. As this reduces the number of bigger dimensional matrices (ABBDF(-d )) that 

has to be generated and tested for rank deficiency, a lower bound is desirable. The second 

modification is that instead of performing ES on each of the blocks [Ai ׫ Bi](-d) 

individually for all i = {1, 2, . . , n} for any specific value of d, a number ( j) of blocks are 

combined together and ES is then performed. When j=n, the operation of this algorithm is 

exactly similar to basic exhaustive search and when j=1, then the operation is similar to 

the first algorithm. The authors also suggest a method to find an optimal value for j for a 

given value of d for the least computation time. Let Aj denote the collection of all 

matrices generated from the union of all possible j blocks (along with their border blocks) 

from {1, 2, . . , n}. The following algorithm summarizes the modified version of bound 

and decomposition 

1. Search for cogirth through ES until d < (n / (n-1)) |B|. If g* still not found go to 

step 2 

2. Find optimal value for j 

3. If there is any sub-matrix such that r (Aj(-d)) < r (A),                                        

then Cogirth of M = d, stop; else d=d+1, go to step 5 
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CHAPTER 3 
 

PROPOSED ALGORITHM FOR FINDING SENSOR  
REDUNDANCY DEGREE 

  

This section is divided into four subsections. Section 3.1 explains that the problem 

of determining the degree of sensor redundancy is equivalent to the problem of finding 

the cogirth (size of the smallest cocircuit) of a matroid specified over the transposed 

measurement matrix H. Section 3.2 describes the transformation of the problem of 

identifying the smallest cocircuit of a matroid into another problem of identifying the 

smallest circuit (or girth) of a different matroid. Section 3.3 details the method of 

determining the girth of the matroid by solving an optimization problem which is a       

1-norm minimization problem. Section 3.4 summarizes the above mentioned steps and 

presents the final algorithm.  

 

3.1 Degree of Sensor Redundancy - Cogirth Relation 

The application of matroid theory to determine the degree of sensor redundancy 

was initially proposed by Cho et al. (2004) which used the bound and decomposition 

algorithm explained in chapter 2 previously. In order to understand the redundancy 

degree and cogirth relationship we shall first split the subsets of sensors into two groups – 

non-failure causing and failure causing subsets, and explain these two groups are the 

coindependent and codependent subsets respectively of a matroid obtained from HT. 

Then the relation between the degree of sensor redundancy and the cogirth of a matroid is 

presented. 
 
 

3.1.1 Non-Failure Causing (NFC) and Failure Causing (FC) 
Subsets of Sensors 

We shall first recap the association of degree of sensor redundancy with the rank 

of the measurement matrix explained in chapter 1. A sensor failure was represented by 

removal of its corresponding row from the measurement matrix H, whose original rank is 
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denoted by r(H). From (1.2) we know that the degree of sensor redundancy is equal to the 

size of the smallest subset of sensors or rows of H whose removal causes the rank of the 

resulting matrix reduced (i.e. r(H(-d)) < r(H)). Hence all possible subsets formed from the 

row set of H can be divided into two categories: one whose removal leads to a reduced 

matrix with rank unchanged and is called - non-failure causing subsets (NFC), and the 

other whose removal results in a reduced matrix with rank lower than r(H) and is called 

failure causing subsets (FC). From (1.2) the degree of sensor redundancy is equal to the 

size of the smallest FC subset minus one, i.e. 

 Degree of Sensor Redundancy δ(H) = | smallest FC subset | - 1 (3.1)

 

3.1.2 The relation between NFC, FC subsets and Codependent sets/  
Codependent sets of a Matroid  

In this section we explain that the two types of subsets explained above: non-

failure causing subsets and failure causing subsets are essentially the codependent sets 

and the coindependent sets respectively of the matroid M specified over HT, denoted by 

M(H T). The subsequent lemmas provide the link between the states of the system (active, 

failure) with respect to the failures of sensors corresponding to the coindependent sets (or 

NFC sets) and codependent sets (or FC sets) of M(HT).  

Lemma 1. Failure of sensors corresponding to the elements of any coindependent set of 

the matroid M does not cause failure of the system. 

Lemma 2. Failure of sensors corresponding to the elements of any codependent set of 

the matroid M does cause failure of the system. 

Proof: Let M(A) be the vectorial matroid specified over a matrix A of p rows and 

n columns with p < n. Let E and I be the ground set and independent sets of M(A) 

respectively. In chapter 2, we saw that base of the matroid is the maximal independent set 

and its rank is equal to the rank of the matrix. It implies that the rank of any sub-matrix 

formed with only the columns corresponding to the elements of any base (b) is still equal 
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to the rank of original matrix. Another equivalent way of saying this is even on removal 

of columns corresponding to those elements not present in the base b (i.e. (E / b) or the 

corresponding cobase b*) from the original matrix, the rank of the reduced matrix will 

still be equal to r(HT).  

Due to the same reason, even on removal of columns corresponding to any 

coindependent set (i*), the resulting sub-matrix formed by columns corresponding to the 

elements present in E / i* still has the rank equivalent to the rank of the full matrix. 

Conversely when the columns corresponding to a codependent set (d*) are removed, the 

rank of the reduced matrix of E / d* fall below the rank of full matrix.  

Since the measurement matrix has redundant sensors defined on rows, while the 

linear dependency structure in matroid theory is expressed with the columns of a matrix, 

we need to work on the transposed H matrix. The following two statements which 

summarize the proof will be able to support the lemma 1 and 2 respectively.  

(S1)  Since the compliment of any coindependent set is always either a base or a 

spanning set, removal of columns corresponding to a coindependent set from a matrix 

does not affect the rank of the reduced matrix.     

(S2)  Since the compliment of any codependent set is neither a base nor a 

spanning set, removal of columns corresponding to a codependent set from a matrix will 

affect the rank of the reduced matrix.                 

From lemma 2, it is easy to see that removal of columns (sensors) corresponding 

to the cocircuit, which is a minimal codependent set, causes rank reduction (condition 

equivalent to the failure of the sensor network system). Combining this result with (3.1) it 

is clear that the smallest failure causing subset is the smallest cocircuit (SCC) of M(HT) 

and, 

        Degree of Sensor Redundancy δ(H) = | SCC | - 1 (3.2)
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Now the problem of finding the degree of sensor redundancy is changed to 

identifying the smallest cocircuit of a matroid M. The basic exhaustive search method 

explained in chapter 2 is by far the only technique to determine the cocircuit of a general 

matroid. And if the matrix is sparse and clustered, bound and decomposition could be 

helpful. But as mentioned earlier, in this thesis, we transform this problem into finding 

the smallest circuit of another matroid and then develop an efficient algorithm for 

determining it. Details of these are explained in the sections henceforth. 

 

3.2 Cogirth Problem into the Girth Problem 

In order to understand the conversion of problem of determining the cocircuits 

(C*) of a matroid to the circuits (C) of another matroid, we shall first recap that the 

cocircuits of the original matroid M are the circuits of its dual matroid M*. But in order 

to find the circuits of M* we need to have a matrix representing it. The following section 

describes the method of deriving this matrix so-called standard representative matrix of 

the dual matroid. 

 
3.2.1 Dual Matroid Representation 

Consider a matroid M defined over a matrix B = (H)T of p rows and n columns 

with p < n. By performing Gauss-Jordan elimination on B, we can get the reduced row 

echelon form (rref) of B which have the following characteristics, 

 All rows containing at least a single non-zero element are above any rows 

containing all zeroes. 

 The pivot or the leading coefficient (the first non-zero number from the left) of a 

non-zero row is always strictly to the right of the leading coefficient of the row 

above it. 
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 The leading coefficient of each nonzero row is 1 and contains a zero both above 

and below it except for the first and last  row which do not have zero above and 

below respectively.  

By suitably shifting the columns in the RREF of B, it can be changed into           

 where Ir is the identity matrix of size r and r = rank(B). This matrix is called (Ir | D) = ࢙۰

the standard representative matrix of M. Since the process of Gauss-Jordon elimination 

and subsequent shifting of columns won’t affect the linear dependency in the matrix, 

M(B) = M( ࢙۰ ) = M(Ir | D). From matroid theory (Oxley 1992), the standard 

representative matrix for the dual matroid M*(B) is of the form (-DT
 | In-r) (Cho et al. 

2007). The procedure to obtain this matrix structure is presented below. 

1. Perform Gauss-Jordon elimination to obtain rref of B.  

2. If a row does not contain even a single non-zero number, eliminate that row. 

3. Check if ۷௥  structure is present in the left side of the matrix. If not shift the 

columns appropriately until the structure ۰࢙ = (۷௥ | D) is obtained. Keep track of 

the changes in the column numbers.  

4. The negative of the transposed sub-matrix D is taken and concatenated with the 

identity matrix of size (n-r) to its right, forming the matrix ۰࢙
כ   of structure           

(-DT
 | In-r). 

The above mentioned procedure is illustrated as follows using the example matrix 

A  introduced in chapter 2. 

For our example matrix A (p=3, n=5), 

RREF(A)   =    ൥
1 0 1 0 0
0 1 1 0 1
0 0 0 1 1

൩ and    let   Col (A)orig = {1, 2, 3, 4, 5} 

By switching columns 3 and 4, we can get the desired structure of (Ir | D),  
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൥    =  ࢙ۯ   
1 0 0 1 0
0 1 0 1 1
0 0 1 0 1

൩         with     Col (A)new = {1, 2, 4, 3, 5} 

 r = rank(A) = 3,  n - r = 2. Now we can get,  

           I3 = ൥
1 0 0
0 1 0
0 0 1

൩       and    D = ൥
1 0
1 1
0 1

൩ 

         -DT = ቂെ1 െ1    0
0 െ1 െ1

ቃ      and    I2 =  ቂ1 0
0 1

ቃ 

Then the standard representative matrix of M* is given by, 

࢙ۯ   
כ  =   ቂെ1 െ1    0 1 0

   0 െ1 െ1 0 1
ቃ 

   

3.3 Optimization Problems to Determine Girth of a Matroid 

In this section we first present the mathematical formulation for determining the 

girth of a matroid. The objective of this formulation is to find a solution vector with 

minimal 0-norm, in other words the sparsest solution (solution with fewest number of 

non-zero elements) of a system of underdetermined linear equations. Since this problem 

is NP-hard, alternative approaches that can provide close approximations to the sparsest 

solution are generally adopted. Solving the problem for solution with the minimal 1-

norm is one such approach and is the one used in the proposed algorithm. The details of 

these two problems, brief description of the available methods to solve these two 

problems are presented.  

 
 

3.3.1 Determining Girth by Solving 0-norm  
Minimization Problem 

By definition, a circuit of a matroid is a minimal dependent set. Hence the 

problem of finding a smallest circuit can be reframed as a problem of identifying the 

fewest number of columns that are linearly dependent. Now consider the matrix ۰࢙
 כ
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representing the dual matroid whose circuit is to be determined. The columns 

corresponding to a smallest circuit of Mሺ۰࢙
-ሻ can be identified from the indices of nonכ

zero elements of the vector x א Rn found as a solution of the following optimization 

problem, 

 ݉݅݊  ԡܠԡ଴ (3.3) 

.ݏ  ࢙۰   .ݐ
כ ܠ ൌ 0 (3.4) 

് ܠ  0  (3.5) 

where ԡܠԡ଴ ൌ ∑ ௜ݔ
଴௡

௜ୀଵ  is called the zero norm (or 0-norm) of x which equals the number 

of non-zero elements in x. Since the sparsest solution of x is equivalent to the smallest 

circuit, these two terms are used interchangeably hereafter.  

Finding such sparsest solutions while satisfying certain linear constraints is a 

widely discussed problem in recent years in signal processing community. Their problem 

is very similar to (3.3)-(3.5) and can be written as, 

 ݉݅݊  ԡܠԡ଴ (3.6)

.ݏ  ܁  .ݐ ܠ ൌ (3.7) ܜ

Their objective is to identify the signals (represented by vector x) responsible for 

producing the measurement vector ܜ with the knowledge of a matrix S containing the 

linear transformation coefficients for each of the signal. When the number of linear 

equations is lesser than the number of signals (r < n), then the system is said to be 

underdetermined while the opposite (r > n) is called overdetermined. Our problem falls 

under the first category.  

This problem is in general considered NP-hard, the main reason due to the non-

convex objective function resulting in large number of local optima (Donoho and Elad 

2006). The combinatorial increase in number of local minima with increase in the length 

of x causes the above optimization problem intractable. This makes it very difficult to 
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frame an algorithm that could provide direct solution, except for the exhaustive search 

which is impossible for even moderate length of x.  

 

3.3.2 Alternate methods to approximate minimal 0-norm solution 

The wide range of applications and fields that requires the identification of the 

sparsest solution has motivated researchers to develop alternate techniques that could 

either get the exact or close approximate solutions of minimal 0-norm. Some of the 

applications are overcomplete signal representation (Elad and Bruckstein 2002), 

compressed sensing (Donoho 2006c), imaging application: Spectroscopy, MRI (Donoho 

and Tsiag 2008), removal of impulsive noise (Chen et al. 1998).  

The alternate methods include greedy and convex programming approaches 

(Donoho and Elad 2006). Though none of the techniques are able to completely surrogate 

the 0-norm minimization problem, under some specific conditions certain methods are 

able to find the exact minimal 0-norm solutions. We use the convex programming 

approach to find the sparsest solution in our proposed algorithm. This method is 

explained in detail in this subsection after a brief description of the two greedy 

approaches.  

 

3.3.2.1 Greedy Algorithms 

This algorithm is a heuristic greedy approach to find the sparsest solution for an 

underdetermined system of linear equations. It was developed by Pati et al. (1993) as a 

modification to another algorithm called matching pursuit. Tropp and Gilbert (2007) used 

this algorithm for signal recovery in random linear measurements which is equivalent to 

finding the sparsest solution in the problem (3.6)-(3.7). The underlying idea is to 

approximate ܜ with fewest numbers of columns of S (through linear combinations) by 

greedy selection of one column per iteration that correlates best with the unexplained part 

of ܜ. 
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Refer to (3.6)-(3.7) for notations that are used in the below description of this 

algorithm. The sparse solution is developed iteratively with the help of so called active 

set which maintains the list of nonzero elements of the sparse solution. Initially the active 

set is empty and the residual 0ܚ is set equal to ܜ. During the jth iteration, one column of S 

(not present in the active set) that is strongly correlated with the residual ܚj-1 is selected. 

This is done by determining the column that has the maximum absolute value for the 

inner product with the residual ܚj-1. Its column number is added to the active set. The 

coefficients for the active set columns (and hence the sparse solution ܠj for jth iteration) 

are determined by solving for minimal 2 norm of S x – t, where coefficients of elements 

not present in the active set are made equal to 0. Denoting the contribution by the active 

set columns by ܜj = S xj, the residual is updated as ܚj = ܜ - ܜj. This completes a single 

iteration. The procedure continues with the selection of one new column that best 

correlates the residual ܚj, adding it to the active set and updating of residual until the 

number of iterations equals to the certain user specified number.  

Another greedy algorithm developed by Donoho et al. (2007) is called 

stagewiseOMP. In this method, unlike the OMP, more than one column can enter the 

active set at a given iteration. Similar to OMP, this algorithm also finds the correlations 

of each of the columns with the residual by finding the absolute values for their inner 

product. The heuristic method then adopted to find the set of columns that best correlates 

the residual, which is then added to the active set. This is done by determining the 

columns whose inner product with the residual is greater than a threshold. This process is 

called hard thresholding and the values are derived in their work. Then the vector ܜ is 

projected on the columns present in the active set and its coefficients are determined. 

Then similar to OMP, the new residual is found by subtracting the contribution from the 

active set columns. The authors recommended number of iterations is 10.  
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3.3.2.2 Convex Programming Approaches 

Another approach that could approximate the results of the problem (3.6)-(3.7) is 

by solving it with the objective function of minimizing the 1-norm of x, instead of the   

0-norm. Now the optimization problem looks as below, 

 ݉݅݊  ԡܠԡଵ (3.8)  

.ݏ  ܁  .ݐ ܠ ൌ   (3.9) ܜ

where ԡܠԡଵ is called the one norm (or 1-norm) of x and is equal to sum of absolute 

values of element of x, 

   ԡܠԡଵ ൌ |ଵݔ| ൅ |ଶݔ| ൅ . . . ൅ ௡| (3.10)ݔ|

The above optimization problem (3.8)-(3.9) is convex and is called as Basis 

Pursuit method in signal processing literature. This convex optimization problem can be 

formulated as a linear programming problem and can be solved by recognized methods 

like simplex method or interior point methods. 

The linear programming problem equivalent to 1-norm minimization problem 

(3.8)-(3.9) can be obtained by suitable transformation of its variables. This is explained 

below. The problem (3.8)-(3.9) can be rewritten as, 

 ݉݅݊ ԡܠԡଵ ൌ |ଵݔ| ൅ |ଶݔ| ൅ . . . ൅ ௡| (3.11)ݔ|

.ݏ  ܁  .ݐ ܠ ൌ (3.12) ܜ

Changing the variable ݔ௜ ൌ ௜ݔ 
ା െ ௜ݔ 

݅ ׊ ି א ሼ1, 2, … , ݊ሽ, where both ݔ௜
ାand ݔ௜

ି ≥ 0, we 

have  

|ଵݔ| ݊݅݉  ൅ |ଶݔ| ൅ . . . ൅ ௡| (3.13)ݔ|

.ݏ  .ݐ ۯ כܠ ൌ (3.14)  ܊

כܠ  ൒ 0 or ݔ௜
ା , ௜ݔ

ି ൒ 0 ׊ ݅ א ሼ1, 2, … , ݊ሽ (3.15)

where כܠ ൌ  ሾݔଵ
ା ଶݔ

ା . . ௡ݔ
ା   | ଵݔ

ି ଶݔ
ି . . ௡ݔ

ିሿଶ௡
܂ ۯ  ,   ൌ ሺ܁ | െ  .ܜ = ܊  ሻ and܁

The –S in ۯ ൌ ሺ܁ | െ  which is the ିܠ through ܠ ሻ accommodates the negative values of܁

second half of כܠ.  



 33 
 

 
 

We then consider the following linear programming problem: 

ଵݔ ݊݅݉ 
ା ൅ ଵݔ

ି ൅ ଶݔ
ା ൅ ଶݔ

ି ൅ . . . ൅ ௡ݔ
ା ൅ ௡ݔ

ି (3.16)

.ݏ  .ݐ ۯ כܠ ൌ (3.17)  ܊

כܠ  ൒ 0  (3.18)

Problem (3.16)-(3.18) is equivalent to problem (3.13)-(3.15) because in the optimal 

solution of (3.16)-(3.18) either ݔ௜
ା ൌ 0 or ݔ௜

ି ൌ 0 or both equal to 0 ׊ ݅ א ሼ1, 2, … , ݊ሽ. 

Therefore we can say that ݔ௜
ା ൅ ݔ௜

ି ൌ ௜ݔ|
ା െ ௜ݔ 

ି| ൌ  ௜| so that at the optimal solution ofݔ|

the objective function (3.16) is equivalent to (3.13). 

Equation (3.16) is equal to the sum of all the elements of כܠand can be rewritten 

as shown below, which is the linear programming form of the 1-norm minimization 

problem:  

 ݉݅݊  ૚் (3.19)  כܠ

.ݏ  .ݐ ۯ כܠ ൌ (3.20)  ܊

כܠ  ൒ 0  (3.21)

The above linear programming problem (3.19)-(3.21) can be solved using the 

general purpose LP-solvers using simplex method or interior point methods. 

Consequently, the problem has become tractable and solution is attainable in most cases.  

 
3.3.2.3 Conditions for Good Approximation of minimal 1-norm solution to sparsest 
solution 

Several researchers have worked on determining the conditions under which the 

sparsest solution (0-norm) and the minimal 1-norm solution are same for a given 

problem. The general requirement is that the 0-norm solution should be sufficiently 

sparse. Tsaig and Donoho (2006) used the Equivalence Breakdown Point (EBP) to 

quantify this sufficient sparsity in the 0-norm solution. The EBP is the number of non-

zero elements that a sparsest solution can have to guarantee it is also the minimal 1-norm 

solution. The threshold EBP depends on the size and type of the matrix. They developed 
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heuristic method to determine the upper and lower bounds and hence an approximate 

formula for EBP values for different kind of matrices. The accuracy was found to be very 

high for the matrices from certain ensembles they had considered. Such bounds for any 

matrix from any ensemble can be obtained by conducting only few experiments 

following the heuristic approach. The reported approximate EBP for matrices from 

uniform spherical ensemble is equal to 0.44 p/ log (2n/p) and for matrices from random 

sign, partial Hadamard, partial Fourier ensembles is equal to 0.65 p / log (1 + 10n/p). 

Note n and p are number of columns and rows in a matrix.   

Donoho (2006b) reported that the minimal 1-norm solution for a large 

underdetermined system of linear equations is unique and equal to the sparsest solution, 

provided the solution is sufficiently sparse. He also showed that there cannot be a 

sparsest solution with fewer than EBP non-zeros if the minimal 1-norm solution has EBP 

or greater number of non-zeroes. The above statement holds true for most of the 

problems and only a negligible fraction does not fall in this category. More information 

related to the necessary conditions for these two solutions to be equal can be found in 

Donoho (2006a, 2006b), Candes, Romberg and Tao (2005b). 

The proposed algorithm uses the above mentioned convex approximation:          

1-norm minimization in order to solve the 0-norm minimization problem defined earlier 

by (3.3)-(3.5) in order to determine the girth of the dual matroid, equivalently the cogirth 

of the original matroid. This is explained in detail with an example in the subsequent 

section. Even though this method is computationally expensive compared to the greedy 

heuristic algorithms such as OMP and StOMP, it is chosen after reviewing the literature 

of superior theoretical and empirical results supporting determination of exact sparsest 

solution in wide variety of problems. This was also noticed in our work when we used 

and compared OMP, StOMP with the minimal 1-norm approximation method on 

selected problem instances.   
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3.3.3 Cogirth by Solving 1-norm Minimization Problem 

We saw that the problem of finding cogirth can be formulated as in (3.3)-(3.5). As 

discussed in the preceding section, we will apply 1-norm approximation method to solve 

(3.3)-(3.5). Applying 1-norm approximation to the objective function in (3.3), we get the 

following optimization problem,  

 ݉݅݊  ԡܠԡଵ  (3.22)

.ݏ  ࢙۰   .ݐ
כ ܠ ൌ 0  (3.23)

് ܠ  0  (3.24)

The constraint (3.24) can be enforced by solving a series of convex optimization 

problems as follows for ݅ ൌ 1, … , ݊: 

 ݉݅݊  ԡܠԡଵ  (3.25)

.ݏ  ࢙۰   .ܜ
כ ܠ ൌ 0     ݅ ൌ 1, … , ݊ (3.26)

௜ݔ  ൌ െ1  (3.27)

where ݔ௜ denotes the ith element of the vector x. Let  ܠሺି࢏ሻ denote the vector without the 

ith element. Similarly let ሾ۰࢙
࢙ሻdenote its ith column of the matrix ۰࢏ሿሺכ

࢙and ሾ۰ ,כ
 ሻ denote࢏ሿሺିכ

the matrix without the ith column. Now the problem (3.25)-(3.27) can be re-written as, 

for ݅ ൌ 1, … , ݊: 

 ݉݅݊ ฮܠሺି࢏ሻฮ1    (3.28)

.ݏ  ࢙ሾ۰  .ݐ
ሻ࢏ሿሺିכ ሻ࢏ሺିܠ ൌ ሾ۰࢙

ሻ    (3.29)࢏ሿሺכ

 The problem is converted to n 1-norm minimization problems, where n is the 

number of columns in matrix ۰࢙
 Each .(or number of sensors used in the sensor network) כ

of these problem is a 1-norm minimization problem described by (3.8)-(3.9) with the 

vector t being replaced by the ith column of ۰࢙
 .כ

 For the optimal solution of problem i above, i = 1, . . , n, the column set 

corresponding to the non-zero elements of x (including xi) is expected to be the smallest 

circuit of M(۰࢙
 .(௜ to a nonzero value -1ݔ since we assigned) containing the ith column (כ
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By determining such sets for all values of i, the smallest circuit of M(۰࢙
כ ) can be 

determined. Then from section 3.1 and 3.2, the sensor redundancy degree can be found 

by: 

 Degree of Sensor Redundancy δ(H) = | Smallest Circuit of M(۰࢙
(3.30) 1 - | (כ

where ۰࢙
 .is the standard representative matrix of M*(HT) כ

 
We will use the example matrix 
  

࢙ۯ  
כ   =      ቂെ1 െ1 0 1 0

0 െ1 െ1 0 1
ቃ          

derived in section 3.2 to illustrate the use of 1-norm approximation to find the cogirth of 

M(A). We will use the 1-norm minimization problem (3.16)-(3.18) with i=5 by setting 

 . ହ = -1ݔ

Let       ሾ࢙ۯ
כ ሿሺି૞ሻ   =   ቂെ1 െ1 0 1

0 െ1 െ1 0
ቃ     and    ሾ࢙ۯ

כ ሿሺ૞ሻ = ቂ0
1

ቃ    

ሺିହሻܠ                  ൌ ሺݔଵ ݔଶ ݔଷ ݔସሻT 

 Problem (3.28)-(3.29) becomes  

   ݉݅݊  ฮܠሺି࢏ሻฮ1                   

.ݏ                                     ࢙ۯሾ  .ݐ
כ ሿሺି૞ሻ  ܠሺିହሻ  ൌ   ሾ࢙ۯ

כ ሿሺ૞ሻ 

Solving the problem above, the optimal solution is (0, 0, -1, 0)T. Based on the indices of 

the non-zero coefficients of x, the column set {[࢙ۯ
כ ]3, and [࢙ۯ

כ ]5} is the smallest circuit 

containing the 5th column of ࢙ۯ
כ . Similarly we can solve the corresponding 1-norm 

minimization problems corresponding to i = 1, 2, 3, 4. None of those problems generate a 

circuit smaller than {3, 5}.   

Note that even though the circuits of M* are cocircuits of M, this set {3, 5} is not 

a cocircuit of M because of the rearrangement of the columns performed to obtain ࢙ۯ
 and 

subsequently ࢙ۯ
כ , which were explained in section 3.2.1. By keeping track the column 

indices in these re-arrangements, the actual column set can be identified as {4, 5}. This 
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can also be confirmed a smallest cocircuit by checking the list of all cocircuits of M(A) 

found in the section 2.1.1. 

 

3.4 Summary of the Proposed Algorithm 

 The structure of our algorithm is shown in the Figure 1. The following algorithm 

summarizes the methodology explained in this chapter to determine the redundancy 

degree of the linear sensor system with the knowledge of the measurement matrix. In this 

algorithm, Col(yi) denotes the column set (in ۰࢙
 corresponding to the nonzero elements (כ

in yi. 

Algorithm to find the redundancy degree of a linear sensor system  

1. Let H be the Measurement matrix. Find HT. Orig_Col = column arrangement of 

HT 

2. Using the Procedure explained in section 3.2, determine the standard 

representative matrix ۰࢙
࢙New_Cols = column arrangement of ۰ .כ

 Let n = number .כ

of columns in ۰࢙
 .כ

3. For i = 1 to n, let ݔ௜ ൌ െ1 

find ܡ௜ ൌ  ሻฮ1࢏ሺିܠฮ ݊݅݉݃ݎܽ

.ݏ  ࢙ሾ۰   .ݐ
ሻ࢏ሺିܠ  ሻ࢏ሿሺିכ ൌ ሾ۰࢙

 ሻ࢏ሿሺכ

find zi = ||࢏ܡ||଴ 

4. Determine zmin = min (zi , i א {2 ,1, . . , n})  

5. j = 0. For i = 1 to n, If zi = zmin then j=j+1, smallest circuit SCj = Col(yi) 

6. Identify the corresponding smallest cocircuit SCC for each of SC found in step 5 

by matching its columns with Orig_Cols 

7. Sensor redundancy degree δ(H) = Size of SCC – 1 (or) δ(H) = zmin – 1. 
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Figure 1 Structure of the proposed algorithm 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

This chapter is divided into three sections. Section 4.1 provides the relevant 

details about the software and the computer system used. Section 4.2 shows the results 

and discusses the performance of the proposed algorithm in terms of accuracy and 

computation time on 82 problem instances that were tested upon. Also details of the 

problem instances are given. The chapter is then concluded with a brief summary of the 

results obtained and inference on the performance of the algorithm. 

 

4.1 Software and Machine details 

The algorithm was written in Matlab 7.4.0 (R2007 a) and is given in Appendix B. 

To find the minimal 1-norm solution for an underdetermined system of linear equations, 

a function named SolveBP was used. It is one of the several functions of the Matlab 

software package called SparseLab available at http://sparselab.stanford.edu/. The library 

routines are free of charge and are mainly developed to find sparse solutions to 

underdetermined system of linear equations.  

The function SolveBP intakes the parameters: the matrix ࢙۰ 
כ

ሺି௜ሻ , scalar value 

equal to the length of ܠሺି௜ሻ, and the vector ۰࢙
כ

ሺ௜ሻ (Refer (3.28)-(3.29)). After converting 

the problem into a linear programming problem as described in section 3.3.2.2, it calls 

another function called pdco which is abbreviation for Primal Dual barrier method for 

Convex Optimization problem with linear constraints. This function uses log-barrier 

method for interior point search and determines the solution.  

The computer system used to test the algorithm and analyze its performance had 

processing speed of 2.83 GHz and a RAM of 3GB. 
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4.2 Results and Discussion 

The proposed algorithm was tested on 88 problem instances (or measurement 

matrices); 82 of which are based on random matrices and the remaining 6 have special 

structures. This section is divided into two subsections, one each providing short 

description of the problem instances followed by the discussion of the performance of the 

proposed algorithm for two different kinds of matrices studied in this work. 

We also tried to confirm the findings reported in the literature that the ability of 

1-norm minimization method to find / approximate the minimal 0-norm solution is 

better than the greedy approximations such as OMP and StOMP. Function SolveOMP 

and SolveStOMP available from the SparseLab package were used for this. Unless 

otherwise mentioned, the ‘proposed algorithm’ refers to the algorithm explained in 

section 3.4 using the 1-norm minimization technique. The algorithms using the OMP or 

StOMP techniques are referred as the ‘greedy algorithms’. 

 

 4.2.1 Random Measurement Matrices 

These problem instances are called random as most of its entries are obtained 

randomly from a continuous uniform distribution over the interval [0, 100]. Appendix A 

describes in detail the method adopted in generation of these data sets. Note that the 

cocircuits of a matroid specified over the transposed measurement matrix is equivalent to 

the list of failure causing subsets of sensors. And the redundancy degree is one less than 

the size of the smallest cocircuit, namely the cogirth.  

These problem instances were simulated and can be classified based on the size of 

the measurement matrix and the cocircuits present in it. We classify these problem 

instances into four categories. Category 1 has matrices containing only one cocircuit. 

Category 2 has matrices containing cocircuits of multiple sizes but only one smallest 

cocircuit and overlaps between two cocircuits are possible. Category 3 has matrices with 

several cocircuits of varying sizes and no overlap between any two of them. And 
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category 4 is similar to category 3 except that overlap may exist between any two 

cocircuits. In each of the four categories specified above, seven different sizes of matrices 

were tested. This leads to 4 x 7 = 28 different combinations of data sets. Most of these 

combinations are tested with more than one size of the cogirth. For example, in category 

3 (see Table C.3), for the matrix of size 150 x 60, three different data sets are created 

corresponding to the cogirth values of 5, 8 and 12, respectively. More details including 

the category, size of the matrix, size of the cogirth, number of smallest cocircuits, and the 

list of cocircuits present in each matrix are shown in Appendix C. The Matlab code used 

to generate the data sets is given in Appendix B. 

Our proposed algorithm is applied for all problem instances. Greedy algorithms 

were tested and compared using the problem instances under category 3 and 4. Tables 1 

and 2 shows the performance of the proposed algorithm on the problem instances from 

category 1 and 2 respectively. It was able to identify the unique and the smallest cocircuit 

for 17 of 20 problem instances accurately in category 1 and 12 of 15 problem instances in 

category 2. The computation times mentioned in this work are generally in terms of 

seconds unless otherwise mentioned explicitly as minutes. The last column in Table 1 

shows the results based on the exhaustive search method for the category 1 problem 

instances. It can be seen that, while our proposed algorithm can converge fairly quickly 

for all problem instances, the exhaustive search method is not able to find a cocircuit 

within 12 hours for most problems.  
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Table 1. Performance of Proposed Method on the Category 1 Random Problem Instances 

 
 
* SΦ/ N -Size of the smallest cocircuit is Φ and N is the number of the smallest cocircuits  
   determined. 
 
 
 
 

No. Size 
CoGirth 

Size 
# Smallest 
Cocircuits 

# Smallest 
Cocircuits 
determined 

Computation 
Time (Sec) 

Exhaustive 
Search 
(Time) 

1 

25 x 12 

5 1 1 0.5378 4.22 

2 7 1 *S14/ 25 0.5571 66.68 

3 8 1 *S13/ 2 0.5802 146.66 

3  

70 x 30 

 

5 1 1 1.9716 140 Mins 

4 8 1 1 1.9353  

5 12 1 *S39/ 1 1.6527  

6 
150 x 

60 

7 1 1 8.03  

7 11 1 1 8.56  

8 15 1 1 6.79  

9 
220 x 

60 

7 1 1 27.85  

10 12 1 1 29.08  

11 16 1 1 28.87  

12 
325 x 

150 

7 1 1 69.73       > 12 Hrs 

13 13 1 1 71.69  

14 17 1 1 72.34  

15 
500 x 

200 

8 1 1 325.78  

16 16 1 1 323.23  

17 21 1 1 324.82  

18 
1000 x 

250 

10 1 1 96.22 Mins  

19 20 1 1 96.10 Mins  

20 30 1 1 95.50 Mins  
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Table 2. Performance on the Category 2 Random Problem Instances 

 

No Size 
CoGirth 

Size 
# Smallest 
Cocircuits 

Other 
Cocircuit Size 

(nos) 

# Smallest 
Cocircuits 

Determined 

Computation 
Time (sec) 

1 
25 x 12 

5 1 6(2) 1 0.5363 

2 7 1 8(2) *S14 / 25 0.7498 

3 
70 x 30 

7 1 8(2), 9(1) 1 1.95 

4 10 1 11(2), 12(1) *S39 / 1 2.08 

5 
150 x 60

8 1 9(2), 10(1) 1 8.99 

6 12 1 13(2), 14(1) 1 9.38 

7 
220 x 60

9 1 10(3) 1 30.87 

8 14 1 15(1), 16(2) 1 30.68 

9 325 

x 

150 

9 1 10(2), 11(1) 1 70.99 

10 14 1 15(1), 16(2) 1 69.51 

11† 17 1 18(2), 19(1) *S17† / 2 71.83 

12 500 x 

200 

12 1 13(3), 14(2) 1 318.49 

13 18 1 19(3), 20(2) 1 322.03 

14 1000 x 

250 

15 1 16(3), 17(2) 1 94.1 Mins 

15 25 1 26(3), 27(1) 1 77.05 Mins 

 
 
* SΦ/ N: Φ is the size of the smallest cocircuit and N is the number of the smallest cocircuits  
   determined. 
 
†  Both of the determined cocircuits were incorrect although the size is equal to the true size. 
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As mentioned earlier we use the problem instances in categories 3 and 4 to evaluate and 

compare the performances of the three methods – 1-norm minimization, OMP, and 

StOMP in finding the minimal 0-norm solution and consequently the cogirth (g*) and 

the redundancy degree (δ). Table 3 presents the results obtained upon using these 

methods for problem instances in category 3. Note that for certain problem instances (no. 

13 and 16) in Table 3 multiple trials were performed. Each trial had the same cocircuits 

but the data sets (individual entries) were different. This was performed after the initial 

observation of variations in the number of smallest cocircuits being determined by the 

algorithm.  

From the results in Table 3, it can be seen that out of the total 22 problem 

instances in this category of random matrices the proposed algorithm found the cogirth 

accurately for 21 of them. Meanwhile the greedy algorithms - OMP and StOMP found 

the cogirth accurately for only 15 and 20 problems respectively. This shows the superior 

performance of 1-norm minimization technique over OMP and StOMP to determine the 

sparsest solution. The comparison in terms of accuracy of cogirth is shown in Table 4.a. 

In terms of computation times both the heuristic algorithms are faster than the convex 

optimization method which is similar to the results reported in the literature.  
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Table 3. Performance on the Category 3 Random Problem Instances 

No Size 
Co 

Girth 
Size 

# Small-
est Co- 
circuits 

1-norm 
minimization OMP StOMP 

g no. found 
/ time g no. found    

/ time g no. found 
/ time

1 25 
x 
12 

5 3 3 3 / 0.5185 5 2 / 0.0508 5 2 / 0.032 

2 8 2 13* 2 / 0.5846 7* 1 / 0.0509 7* 1 / 0.03 

3 70 
x 
30 

5 4 5 4 / 1.61 5 4 / 0.2944 5 1 / 0.1576 

4 8 4 8 4 / 1.65 8 3 / 0.2914 8 1 / 0.1478 

5 
150 
x 
60 

5 4 5 4 / 7.75 5 4 / 2.123 5 3 / 1.113 

6 8 4 8 4 / 8.03 8 4 / 2.178 8 1 / 0.6265 

7 12 4 12 3 / 7.26 5* 1/ 2.12 12 1 / 0.5295 

8 
220 
x 
60 

5 7 5 7 / 25.76 5 7 / 8.127 5 4 / 4.765 

9 10 10 10 10 / 22.44 10 10+2 / 3.64 10 8 / 4.44 

10 15 4 15 4 / 25.19 15 4 / 4.25 15 1 / 1.948 

11 

325 
x 

150 

5 7 5 7 / 62.88 5 7 / 14.78 5 1 / 5.86 

12 10 9 10 9 / 59.43 10 9 / 14.37 10 2 / 5.952 

13 15 

7 15 7 / 62.41 14* 1 / 15.95 15 3 / 6.16 

7 15 3 / 49.38 6* 1 / 9.85 15 4 / 5.174 

7 15 4 / 56.38 15 4+2 / 11.01 15 4 / 4.778 

7 15 5 / 61.47 15 7 / 11.98 15 3 / 4.97 

14 

500   
x 

200 

10 7 10 7 / 288.96 10 7 / 100.47 10 4 / 18.056 

15 15 7 15 7 / 284.5 15 7 / 92.36 15 2 / 17.014 

16 20 

7 20 2 / 269.92 19* 1 / 102.08 20 3 / 17.19 

7 20 3 / 196.45 19* 1 / 103 19* 1 / 17.025 

7 20 3 / 201.39 7* 2 / 21.92 20 2 / 18.86 

17 
1000 

x 
250 

17 10 17 10 / 
80.1Min 16* 1 / 

77 Mins 17 5 / 
8.11Min 

* Cogirth determined is incorrect 

Underlined number is the number of incorrect smallest cocircuits determined 
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Another parameter that can be used to compare the accuracies of the methods is 

the number of true smallest cocircuits being found. Consider a problem instance having 

matrix (H)T with n columns and k smallest cocircuits of size g*. Let k΄ be the number of 

smallest cocircuits found by a given method. Table 5 compares the three methods in 

terms of ∑ k΄ which is the sum of all k΄ for all the problem instances. 

 
Table 4. Comparison of 1-norm, OMP, StOMP with respect to Accuracy of δ 

 1-norm OMP StOMP 

Total no. of problems tested 22 22 22 

No. of problems δ determined accurately 21 15 20 

True percentage 95.45% 68.18% 90.9% 
 

 
 

Table 5. Comparison of 1-norm, OMP, StOMP with respect to Accuracy of k΄ 

 True 1-norm OMP StOMP
∑ k΄ 135 109 79 55
 
 

From Table 5, it is clear that ∑ k΄ for our proposed method is much larger than 

that of the greedy algorithms implying it can determine comparatively larger number of 

smallest cocircuits which is desirable.  

The following discussion is only on the results of the proposed algorithm which 

uses the 1-norm minimization method. The proposed algorithm determined the g* 

accurately for all but one problem instances (no. 2). Excluding problem number 2, it also 

determined all of the smallest cocircuits for all the problems except instance numbers 7, 

13 and 16. Results from Table 1, 2, 3 indicate that when the cogirth is small (with respect 

to the size of the matrix), the algorithm can identify the cogirth and all the smallest 

cocircuits correctly. From Table 3 (especially problem no. 13, 16), we can see that when 

the cogirth becomes larger, the algorithm may be able to identify only some of the 

smallest cocircuits. At the same time when the cogirth is too large, the algorithm may fail 

to find any of the smallest cocircuits so that the cogirth determined would be incorrect. 
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For the girth problem with a random matrix, Tsaig and Donoho (2006) showed that there 

exists a so-called Equivalence Breakdown Point (EBP) such that when the girth is smaller 

than EBP, the 1-norm minimization method can always find the exact solution and hence 

the correct girth. Similarly, we conjecture that, for the cogirth problem, when the cogirth 

is smaller than a threshold l*, the 1-norm minimization method can always find the 

correct cogirth. Further, when there are multiple smallest cocircuits, there exists a 

threshold l* such that the 1-norm minimization method can find all the smallest 

cocircuits, and a threshold u*>l* such that the 1-norm minimization method can always 

find the cogirth correctly and at least one smallest cocircuits when the cogirth is smaller 

than u*. The results from all the problems we tested support this conjecture. Further study 

on this conjecture and how to find/approximate u* and l* is left for future work. 

Next we present the results from testing of problem instances belonging to the 

category 4 - cocircuits of multiple sizes with overlapping. These problems were also 

tested with the greedy algorithms and the results are shown in Table 6. As we can see 

from the table three trials were performed for each pair of matrix dimensions and cogirth 

size. All the three trails of a specific pair had measurement matrices of same dimensions 

with same set of cocircuits but different random entries.  
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Table 6. Performance on the Category 4 Random Problem Instances 

 

N
o 

Size 
Co 

Girth 
# Smallest 
Cocircuit 

Method 

Incorrect Cogirth{if any}* / 
(# Smallest Cocircuits determined)  

Computation time in Sec 

Trial 1 Trial 2 Trial 3 

1 
 

25 
x 

12 
5 3 

1-norm (3) 0.5460 (3) 0.5832 (3) 0.5991 

OMP (2) 0.05 14*/ (22) 0.053 (2) 0.05 

StOMP (2) 0.0348 (3) 0.0366 (3) 0.0346 

2 
70 
x 

30 

5 6 

1-norm (4) 1.755 (4) 1.7765 (4) 1.8981 

OMP (4) 0.2803 (4) 0.2942 (3) 0.319 

StOMP (1) 0.1346 (3) 0.1414 (3) 0.1456 

3 8 4 

1-norm (4) 1.8975 (3) 1.85 (2) 1.92 

OMP (2) 0.3552 (3) 0.337 (3) 0.35 

StOMP 39*/ (1) 0.539 (1) 0.1344 (1) 0.1396 

4 
150 

x 
60 

5 9 

1-norm (7) 7.1105 (6) 7.97 (5) 7.4271 

OMP (6) 1.55† (4) 1.771 (3) 1.83 

StOMP (7) 1.34 (2) 1.05 (3) 1.04 

5 8 7 

1-norm (6) 8.1026 (5) 8.1785 (5) 8.034 

OMP (4) 2 (4) 1.85 7* / (1) 1.77 

StOMP (3) 1.286 (1) 1.01 (2) 1.217 

6 
220 

x 
60 

8 7 

1-norm (4) 27.713 (5) 30.5 (6) 25.1 

OMP (2) 7.84 (4) 8.58 (4) 7.285 

StOMP (3) 5.214 (2) 3.0312 (3) 3.1405 

7 
325 

x 
150 

14 7 

1-norm (7) 67.31 (5) 53.64 (7) 68.37 

OMP (7) 17.08 (6) 10.15† (7) 18.16 

StOMP (2) 5.69 (3) 6.4317 173* / (1) 4.6 

8 
500 

x 
200 

10 8 

1-norm (7) 314.2 (7) 315.25 (8) 326.27 

OMP (8) 137.60 (8) 135.16 (8) 124.26 

StOMP 296*/ (1)17.17 296* / (1) 17 295* / (1) 17.55

9 
1000 

x 
250 

17 10 

1-norm (10) 82.41 Mins 

OMP (10) 40 Mins 

StOMP (4) 8.96Mins 

* Incorrect cogirth found 
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First we shall compare the performances of the three methods and then discuss the 

results of the proposed algorithm only. Each trial can be considered as an individual 

problem which would result in a total of 27 problem instances. Again in terms of 

accuracy of δ and ∑ k΄, the results were better and favorable for the proposed algorithm 

using the 1-norm minimization method over the greedy algorithms. 
 

 
 

Table 7. Comparison of 1-norm, OMP, StOMP with respect to Accuracy of δ 

 1-norm OMP StOMP 

Total no. of problems tested 25 25 25 

No. of problems δ determined accurately 25 23 20 

True percentage 100% 92% 80% 

 

 
Table 8. Comparison of 1-norm vs. OMP / StOMP with respect to Accuracy of k΄ 

 True 1-norm OMP StOMP
∑ k΄ 183 127 108 51

 

 

The following discussion is concerned with the performance of the proposed 

algorithm which uses the 1-norm minimization method. Though it determined the 

redundancy degree (cogirth) for all the problem instances exactly, the algorithm was 

unable to detect all the cocircuits uniquely for most problems. This may be because the 

cogirth could be in the range between l* and u*. But on comparing the results of similar 

problem instances from category 3 and 4 we can notice that comparatively fewer 

cocircuits were determined for the instance from category 4. By similar problem 

instances we meant instances with similar dimensions for the measurement matrix and 

cogirth. This suggests that overlapping of cocircuits has some negative effect in 

determining all of them uniquely. 
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4.2.2 Measurement Matrices with Special Structure 

 This section presents the results of the proposed algorithm on problem instances 

which have measurement matrices of certain special structure – sparse and clustered. Let 

H denote the measurement matrix of this class of problems, then its special structure 

formally called as bordered block diagonal form (BBDF) is as following,  
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where A1 - An are called blocks (sub-matrices) along the diagonal and B1 - Bn are their 

corresponding sub-matrix in the border B of the H. Problems of this nature can be found 

in multi-station assembly processes (Cho et al. 2009a, Ding et al. 2002, Kim and Ding 

2004) and wireless sensor networks (Cho at al. 2009b).  

The general form of H for these problems need not have the above structure 

explicitly. The design matrices of many engineering problems can be converted to the 

above structure by proper rearrangement of rows and columns. Cho et al. (2009a) 

developed an enhanced procedure, based on the Aykanat’s algorithm, for transforming a 

matrix to BBDF by modeling a matrix using a bipartite graph and using Even’s 

algorithm. The matrix H of one such simple problem instance found in multi-station 

assembly process reported in literature is shown in Figure 2a and its BBDF is shown in 

Figure 2b (Cho et al. 2007). 
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a.   General form of the design matrix 

 

 

 

 

 

 

 

 

 

 

                                  b.   The permuted measurement matrix of form BBDF 

Figure 2. The Design Matrix of the multi-station assembly process (Prob 1 in Table 6) 
 
Source: Cho, J.J., Chen, Y. and Ding, Y., Journal, Discrete Applied Mathematics, 2007, 
Vol. 155, pp. 2456-2470. 
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Six problem instances of this type have been tested and the results are presented 

in Table 9. In general the cocircuits are overlapping in all the problems. The table also 

provides the computation times by exhaustive search and bound and decomposition 

algorithm (explained in section 2.7), which is a method designed specifically for 

problems with clustered structures.  
 
 
 

Table 9. Performance Comparison on matrices with Special Structure 

No Size 
Original 
cogirth 

Size 

Proposed 
Algorithm 

Computation Time 

g 
found 

no. 
found 

Proposed 
Algorithm 

Exhaustive 
Search 

Bound and 
Decomposition 

1 26 x 12 5 5 10 0.57  sec 8 sec 0.1 sec 

2* 66 x 27 8 7 1 1.93  sec >120 h 6.1 Min 

3 154 x 72 5 5 38 6.51  sec >120 h 120 Min 

4* 221 x 55 14 16 7 35.25  sec >120 h 16.5 Min 

5 318 x 144 5 5 36 52.17  sec >120 h >120 h 

6* 
1009 x 

252 
16 18 1 102  Min >120 h 38.2 Min 

*  Incorrect cogirth determined by the proposed algorithm 
 
h - Hours 
 
Instance no. 1 and 2 are from multi-station assembly, no 3, 4, 5 are from sensor networks and 

no. 6 is hypothetical. 
 
 
 

 The proposed algorithm determined cogirth incorrectly for three out of six 

problem instances. As expected the exhaustive search method runs into heavy 

computation even for moderate sizes of H and g*, making it not a practical method. 

When compared to bound and decomposition algorithm, the computation time for the 

proposed algorithm is much shorter duration for four problem instances. And the bound 

and decomposition algorithm fails to converge on one problem. In general, from the six 
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problem instances considered, the overall accuracy of the proposed algorithm for 

clustered and sparse systems is not as high as compared to the problems based on random 

matrices. But it can still be considered as a worthwhile alternative method for such 

special problems with clustered structures. For example, problem No. 5 is solved 

correctly and quickly by our method, but cannot be solved by the exhaustive search or 

bound and decomposition algorithm.   

The following Table 10 summarizes the major results related to the performance 

in terms of accuracy of the proposed algorithm.  
 
 
 

Table 10.  Accuracy of the proposed algorithm 

Problem Type 
No. of problems 

tested 

No. of problems 
g* found 

accurately 
Accuracy (%) 

Random matrices with         
Non-overlapping Cocircuits 

(Category 1 and 3) 
42 38 90.47 

Random matrices with 
Overlapping Cocircuits  

(Category 2 and 4) 
40 37 92.5 

Clustered and Sparse matrices 
with overlapping cocircuits 

6 3 50 

 

 

The proposed algorithm using the 1-norm minimization finds the cogirth 

accurately for most of the random matrices with not very large cogirth. The maximum 

cogirth that can be accurately determined depends on the size of the matrix. From the 

results we speculate that overlapping cocircuits have an effect (negative) in determining 

all of the smallest cocircuits uniquely and suggest further research to analyze this cause. 

The proposed algorithm is less accurate for matrices with strong deterministic structures 
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such as a sparse and clustered structure. But it is still a worthwhile alternative even for 

these special matrices.  
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CHAPTER V 

CONCLUSION 

      

5.1 Conclusions 

The aim of the thesis is to develop an algorithm to calculate the redundancy 

degree of the linear sensor systems. This type of sensor systems has been used in variety 

of applications including manufacturing, array signal processing, and power plant. 

Redundancy in sensor system is included to overcome the troublesome of sensor failures 

and sensor malfunctions to some extent. Redundancy degree is equal to the maximum 

number of any sensor failures that a system can tolerate and hence recognized as a 

parameter for measuring the robustness of the sensor system against the complete sensor 

failures. The proposed algorithm determines the redundancy degree by working on the 

design matrix of the system with a linear model. The foundation of the algorithm rests on 

two major techniques – matroid theory and 0 and 1-norm minimization problems. First, 

using the matroid theory the redundancy structure is captured via the vectorial matroid 

(from the design matrix).  The matroid problem equivalent to the measure of redundancy 

degree is developed. Second, the mathematical formulation for solving this problem is 

found to be equivalent to a 0-norm minimization problem. After reviewing the literature 

reporting closeness between the minimal 0 and 1-norm solutions under specific 

conditions the problem is converted approximately to a 1-norm minimization problem. 

The proposed algorithm was written in Matlab. The code used a function from Sparselab 

package for determining the minimal 1-norm solution for an underdetermined system of 

linear equations. 

The proposed algorithm was tested on two types of design matrices. First type had 

sixty-one simulated instances whose design matrices are random and dense. The second 

type had six instances whose design matrices were sparse and had cluster structure. 

Superior performance in term of accuracy by the proposed algorithm (1-norm 
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minimization) over the greedy heuristic methods (OMP and StOMP) was evident from 

the results. This justifies the usage of 1-norm minimization method even though the 

computation time was higher. The accuracy of the proposed approximation method was 

convincingly high with the correct calculation of the redundancy degree for 75 of 82 

problems in this type. The largest value of redundancy degree that can be found 

accurately depends on the number of sensors used in the system. For sparse and clustered 

matrices, the computation times for the proposed algorithm are much lower than the 

exhaustive search and bound and decomposition algorithms for all but one matrix. The 

algorithm was less accurate for the problems containing matrices with sparse and 

clustered structure. It determined the correct redundancy degree for 3 of 6 problems.  

The degree of sensor redundancy can be used to check the failure tolerance 

capability of the sensor system, compare different network designs quickly, and build a 

robust system of desired reliability under the given constraints.  

 

5.2 Future Research 

There are two main areas which can be considered for the future research.  One is 

related with the conjecture offered earlier about the two thresholds l* and u*. Though this 

seems to be supported by the results obtained from the problems considered in this work, 

more research has to be done to prove the correctness of this conjecture and if proven the 

subsequent step could be approximate estimation of them. Another area for the future 

research could be the study of the performance of the proposed algorithm on design 

matrices of other types. In this thesis work only two types of design matrices - random 

and sparse & clustered structures are tested. The determination of the possible reasons for 

comparatively lower performance, in terms of accuracy of δ, of the proposed algorithm 

on the design matrices with sparse & clustered and other special structures could be 

another interesting area for the future research. 
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APPENDIX A 
 

SIMULATED DATA SETS GENERATION METHOD 

 

As mentioned earlier four different categories of problem instances are generated 

to control the problem characteristics in our testing process. The procedure adopted for 

the generation is quite similar for all of them. We first generate a matrix, which can be 

considered equivalent to the transposed measurement matrix of required size (say p x n 

with p < n) with elements coming (independently) from a uniform distribution (0,100). 

Then the predetermined list of cocircuits can be implanted in it by systematically 

modifying some elements of the matrix. This procedure is explained below. The 

cocircuits list is recorded for the analyzing the accuracy of the proposed algorithm. For 

simulated data sets used in this work the cocircuit list is presented in Appendix C. 

 

Procedure for implanting cocircuits into a matrix of r rows and n columns 

The first cocircuit in the list is selected and the following steps are repeated until 

we reach the end of the list:  

1. Let row set = (1, 2, . . , r) 

2. The ‘compliment set’ of the current cocircuit is determined 

3. One of the two options is selected randomly and executed: 

i) Option1:  

(a) A row is picked from row set randomly 

(b) Make all the elements of HT located in the selected row and the 

compliment set’s columns to “zero” 

ii) Option2:  

(a) A row (other than the first or last element) is picked randomly from 

the row set.  
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(b) Make all the elements located in the above picked row and in the 

compliment set columns to be twice the sum of the elements located 

exactly one row above and below. 

4. Next the rows (one row in option 1 and three rows in option 2) that were involved in 

the above operation is/ are removed from row set. This is done to ensure the final 

matrix has all the cocircuits implanted correctly. 

5. If all the cocircuits are inserted, Stop; else select the next cocircuit in the list and go to 

Step2. 
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APPENDIX B 

MATLAB CODE 

 

This section contains the Matlab code for the proposed algorithm and the code 

used to generate problem instances random category. The code for the proposed 

algorithm is broken into 5 functions/ Matlab files. Their names and purpose is as follows, 

B1. SolveCogirth.m                    - Main file to be executed; reads data, calls other files and 

displays results. 

B2. DualMatroidRepMatrix.m   - Generates standard representative matrix of the dual 

matroid 

B3. circuitsByL1Norm.m           - Determines the circuit of the dual matroid 

B4. cocircuitByColumnMatch   - Identifies the cocircuits of the original matroid 

B5. MatrixCreation.m                - For generating the problem instances of random category 

 

 

B1. File Name: SolveCogirth.m (Main File) 
 

clc 
clear 
  
%  Reading Data: Matrix must have no. of rows >= no. of columns 
Mat = Read Data File from Source  
 
tic                                                            % Start Timer 
Matrix = rref(transp(Mat));     
[Matrix_rows,Matrix_cols]=size(Matrix); 
 
 %  Standard Representative Matrix of the Dual Matroid and the original Columns 
[M, Actual_Cols] = DualMatroidRepMatrix(Matrix); 
  
%% Function finds the Smallest Circuits of the above matrix M     
circuits_DualMatroid = circuitsByL1Norm(M); 
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 %  Column matching to find the Smallest Cocircuits of the original Matroid 
cociruits_OrigMatroid = cocircuitByColumnMatch(circuits_DualMatroid, Actual_Cols); 
  
%  Print the Cocircuits, Size and Computation Time 
 cociruits_OrigMatroid 
[No_SmallestCocircuits, Cogirth_Size] = size(cociruits_OrigMatroid) 
Computation_Time = toc 

 

 
 

B2. File name: DualMatroidRepMatrix.m 
 

function [M, New_Cols] = DualMatroidRepMatrix(Matrix) 
  
%  DualMatroidRepMatrix : Determines the Standard Representative Matrix of the Dual 
%                                              Matroid 
% 
%  Usage 
%    [sol_Matrix, sol_actualColumns] = DualMatroidRepMatrix(M) 
%  Input  
%    Matrix           Standard Representative Matrix of the Original  
%                          Matroid 
%  Output 
%      M                 Standard Representative Matrix of the Dual  
%                          Matroid 
%    New_Cols     Vector containing the columns arrangement after  
%                          the transformation 
% 
%  The function first determines the Standard Representative Matrix of the Original  
%  Matroid by shifting the columns accordingly such that the matrix is of form  
%                    [I_(r) | D] 
%  Next the Std. Rep Matrix of the Dual Matroid is determined by transforming the  
%  matrix to form  
%                   [‐transp(D) | I_(n‐r)]  
%    where I is an identity matrix, r ‐ no. of rows, n ‐ no. of columns 
  
  
[Matrix_rows,Matrix_cols] = size(Matrix); 
  
New_Cols = 1 : Matrix_cols;        
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%  |‐‐‐‐< Rearranging columns to get matrix of form I|D >‐‐‐‐‐| 
  
I_track = 1;                          % Keep track of the columns of Identity matrix of I|D 
  
for r = 1 : Matrix_rows 
    r; 
    I_track; 
    New_Cols; 
     
    [I_track_rows, I_track_cols] = size(I_track); 
     
    if r == 1 
        I  = Matrix(r,r); 
    else 
        next_col = I_track_cols + 1; 
        for j = 1 : I_track_cols 
            I_part1(1:r,j) = Matrix(1:r,I_track(1,j)); 
        end; 
         
        I_part2 = Matrix(1:r,New_Cols(1,r)); 
        I = horzcat(I_part1, I_part2); 
    end; 
     
    if I == eye(r) 
        I_track(1,r) = r; 
    else 
        initial = r; 
        for i = initial+1 : Matrix_cols 
            [I_track_rows, I_track_cols] = size(I_track); 
             
            for j = 1 : I_track_cols 
                I_part1(:,j) = Matrix(1:r,I_track(1,j)); 
            end; 
             
            I_part2 = Matrix(1:r,i); 
             
            I = horzcat(I_part1, I_part2); 
             
            if I == eye(r) 
                I_track(1,r) = i; 
                 
                new_temp = New_Cols(1,r); 
                New_Cols(1,r) = i; 
                New_Cols(1,i) = new_temp; 
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                break; 
            end; 
        end; 
    end; 
end; 
Matrix_rank = rank(Matrix); 
  
for i = Matrix_rows : ‐1: Matrix_rank 
    if sum(Matrix(i,:)) == 0 
           Matrix(i,:) = []; 
    end; 
end; 
Matrix; 
[Matrix_rows, Matrix_cols] = size(Matrix); 
  
n = 1; 
for i = (Matrix_rows + 1) : Matrix_cols 
    part_D(:,n) = Matrix(:,New_Cols(1,i)); 
    n = n + 1; 
end; 
part_D; 
  
n = 1; 
for i = 1 : Matrix_cols 
    ID_Mat(:,n) = Matrix(:,New_Cols(1,i)); 
    n = n + 1; 
end; 
ID_Mat; 
  
%  |‐‐‐< Transform to get matrix of form [‐transp(D) | I_(n‐r)]>‐‐‐| 
  
part_I = eye(Matrix_cols ‐ Matrix_rows); 
trans_D=transp(part_D); 
  
M = horzcat(‐1*trans_D , part_I); 
New_Cols; 
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B3. File Name: circuitsByL1Norm.m 
 

function [Circuits] = circuitsByL1Norm(M) 
  
%  circuitsByL1Norm: Finds the smallest Circuits of a Dual  
%                    Matroid 
%  Usage 
%    sol = circuitsByL1Norm(M)  
%  Input 
%    M               Standard Representative Matrix of the Dual Matroid 
%  Output 
%    Circuits     Smallest Circuits of the Dual Matroid  
% 
%  Actual Problem: min ||x||_0 s.t. A*x = 0 
%  Approach: L0_Norm ‐> L1_Norm ‐> 'n' L1_Norm problems 
%  
%  Details: Problem converted into 
%            min ||x_(‐i)||_1  
%            s.t. A(‐i) * x(‐i) = A(i)  for i = 1 to n 
%       where 'n' is the number of columns in M and 'i' is the  
%  index of a single column 
%  
%  Chooses the values of i's if x(‐i) has least L0_norm ‐ from  
%  which the Circuits of the Dual Matroid is determined 
  
[M_Rows, M_Cols] = size(M); 
  
for i = 1 : M_Cols 
    b = M(:,i); 
    A_firstPart = M(:,1:i‐1); 
    A_secondPart = M(:,i+1:M_Cols); 
    A = horzcat(A_firstPart, A_secondPart); 
     
    x_i = SolveBP(A,b,(M_Cols‐1),20,0,0);   
    % Temporary x_i holds the the l1‐norm solution for when co‐eff of i‐th column = ‐1  
   
    abs_xi = abs(x_i); 
    X{i,1}(:,1) = abs_xi;        Cell 'X' hold all the 'x' values 
    l0Norm_X(i,1) = length(find(abs_xi > .001));                      
    % Number of non‐zero elements in each 'x' is recorded 
end;   
     
min_l0Norm = min(l0Norm_X);                       % Minimum size is found 
     



 64 
 

 
 

 n = 1;    
    for i = 1 : M_Cols                                           % Column number corresponding to the least 
        if l0Norm_X(i,1) == min_l0Norm            %   circuit is found and added later  
            min_l0Norm_loc(n,1) = i; 
            n = n + 1; 
        end; 
    end; 
[Circuits_Nos, i_col] = size(min_l0Norm_loc); 
  
n = 1;     
for j = 1 : Circuits_Nos 
     temp_X{j,1} = X{(min_l0Norm_loc(j,1)),1}; 
     CV(n,:) = transp(find(temp_X{j,1} > .001)); 
     n = n + 1; 
end; 
  
[CV_Rows, CV_Cols] = size(CV); 
  
%  Adjusting the column numbers of the Circuits w.r.t. to the identifying column number 
n = 1; 
for i = 1 : CV_Rows 
  for j = 1 : CV_Cols 
    if (CV(i,j) < min_l0Norm_loc(i,1)) 
            circuit(n,j) = CV(i,j); 
            
    else if (CV(i,j) >= min_l0Norm_loc(i,1))             
            circuit(n,j) = (CV(i,j) + 1); 
         end; 
    end; 
   end; 
   n = n + 1; 
end; 
 
%  Complete Circuits after adding the column that generated a solution in X with 
%  minimum l0‐norm 
circuit(:,j+1) = min_l0Norm_loc(:,1); 
  
% Remove duplicates: First sort each row, then select unique rows 
for i = 1 : Circuits_Nos 
    sorted_circuit(i,:) = sort(circuit(i,:)); 
end; 
  
Circuits = unique(sorted_circuit, 'rows'); 
[Circuits_Rows, Circuits_Cols] = size(Circuits); 
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B4. File Name: cocircuitByColumnMatch.m 

 
function [Cocircuits] = cocircuitByColumnMatch(circuits_DualMatroid, Actual_Cols) 
  
%  Matching the columns in the Circuits with New_Cols to determine the 
%  required Cocircuits of the original Matroid 
  
[Circuits_Nos, Circuits_Size] = size(circuits_DualMatroid) 
for i = 1 : Circuits_Nos 
    for j = 1 : Circuits_Size 
        CoCir(i,j) = Actual_Cols(1,circuits_DualMatroid(i,j)); 
    end 
end; 
  
for i = 1 : Circuits_Nos 
    Cocircuits(i,:) = sort(CoCir(i,:)); 
end; 
 

 
 

B5. File Name: MatrixCreation.m 
 

clc 
clear 
no_rows = {enter number of rows of H – variables in the sensor system} 
no_cols = {enter number of columns of H – sensors in the system} 
  
Mat = unifrnd(0,100,no_rows,no_cols); 
[Mat_rows, Mat_cols] = size(Mat); 
 A = 1 : Mat_cols; 
B = 1 : Mat_rows;    
  
% Replace the vector c1, c2, . . by cocircuits that are to be inserted transpose(H) 
CoCir_list{1,1} = c1;                                           
CoCir_list{2,1} = c2;                                           
CoCir_list{3,1} = c3; 
% .. 
% …. continue the list for the required number of cocircuits 
 [CoCir_list_rows, CoCir_list_cols] = size(CoCir_list) 
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for i = 1 : CoCir_list_rows 
current_cocir_size = length(CoCir_list{i,1}) 

     
 [B_rows, B_cols] = size(B) 
option = unidrnd(2)        % Equal chance given  two options of  implanting a              

% cocircuit explained in Appendix A. #of rows       
                                                     % should be greater than or equal to number of co‐

% circuits put in.  
                             

if option == 1 
pres_cir = CoCir_list{i,1}; 
compl_pres_cir = setdiff(A,pres_cir); 
row_index = unidrnd(B_cols); 
row = B(row_index) 
Mat(row,compl_pres_cir) = 0; 

      
else if option == 2 

pres_cir = CoCir_list{i,1}; 
compl_pres_cir = setdiff(A,pres_cir); 
row_index = unidrnd(B_cols‐2) + 1; 
row = B(row_index) 
Mat(row,compl_pres_cir) = 2*Mat(B(row_index+1),compl_pres_cir) +  

                                              2*Mat(B(row_index‐1),compl_pres_cir); 
row = [B(row_index‐1) row B(row_index+1)]; 

                     end;    
end; 

         
B = setdiff(B,row);     %  Banning the selected rows from future selection 

end; 
  
Mat 
csvwrite(“Path specifying the location in System to write the file +  file_name”); 
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APPENDIX C 

SIMULATED DATA SETS DETAILS 

  

Details of the data sets of four categories namely 1) unique and single cocircuit, 

2) single smallest cocircuit, 3) multiple but non-overlapping cocircuits and 4) over-

lapping cocircuits are shown in tables C1 – C4 respectively. For the problem instances in 

category 1 and 3, only the smallest cocircuits present in the matrix are shown, while for 

those in category 2 and 4 all the cocircuits are shown. The cocircuits/ coindependent sets 

that are not equivalent to the smallest size are preceded with a ‘-’ symbol. SCC stands for 

smallest cocircuits. 
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Table C1.  Category 1: Single and Unique Cocircuit Problem Instances Details 

No 
Matrix 
Size 

Co-Girth 
Size 

# SCC Cocircuits 

1 12 x 25 
5 1 [2 4 6 8 10] 
7 1 [2 4 6 8 10 12 14] 
8 1 [2 4 6 8 10 12 14] 

2 30 x 70 
5 1 [31 33 35 37 39] 
8 1 [31 33 35 37 39 41 43 45] 
12 1 [31 33 35 37 39 41 43 45 47 49 51 53] 

3 60 x 150 
7 1 [91 92 93 94 95 96 97] 
11 1 [91 92 93 94 95 96 97 99 101 103 105] 
15 1 [91 92 93 94 95 96 97 99 101 103 105 107 108 109 110] 

4 60 x 220 
7 1 [1 11 21 31 41 51 61] 
12 1 [1 11 21 31 41 51 61 71 81 91 101 111] 
16 1 [1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151] 

5 150 x 325 
7 1 [1 51 101 151 201 251 301] 
13 1 [1 51 101 151 201 251 301 303 305 307 309 311 313] 
17 1 [1 51 101 151 201 251 301 303 305 307 309 311 313 315 317 319 321] 

6 200 x 500 
8 1 [71 73 75 171 173 175 271 273] 
16 1 [71 73 75 171 173 175 271 273 275 371 373 375 471 473 475 500] 
21 1 [71 73 75 171 173 175 271 273 275 371 373 375 471 473 475 500 51 52 53 54 55] 

7 

250 
x 

1000 

10 1 [10 20 30 40 50 110 120 130 140 150] 
20 1 [10 20 30 40 50 110 120 130 140 150 310 320 330 340 350 410 420 430 440 450] 

30 1 
[10 20 30 40 50 110 120 130 140 150 310 320 330 340 350 410 420 430 440 450 610 
620 710 720 810 820 910 920 950 999] 
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Table C2.  Category2: Single Smallest Cocircuit Problem Instances Details 

No 
Matrix 

Size 
Co-

Girth 
# 

SCC 

 
Cocircuits 

 

1 
12 
x 

25 

5 1 
[2 4 6 8 10] 
-[1 3 5 7 9 11] 
-[13 15 17 19 21] 

7 1 
[2 4 6 8 10 12 14] 
-[1 2 3 4 5 6 7 8] 
-[10 11 12 13 14 15 16 17] 

2 
30 
x 

70 

7 1 

[31 33 35 37 39 41 43] 
-[1 2 3 4 5 6 7 8] 
-[1 2 3 31 33 35 37 39] 
-[51 52 53 54 55 37 39 41 43] 

10 1 

[31 33 35 37 39 41 43 45 47 49]; 
-[1 2 3 4 5 6 7 8 9 10 11] 
-[1 2 3 4 5 31 33 35 37 39 51 52] 
-[51 52 53 54 55 37 39 41 43 1 2] 

3 
60 
x 

150 

8 1 

[1 5 10 15 20 25 30 35] 
-[1 5 10 15 101 102 103 104 105] 
-[15 20 61 62 63 64 65 103 104 105] 
-[51 52 53 54 20 25 61 62 105] 

12 1 

[1 5 10 15 20 25 30 35 40 45 50 55] 
-[1 5 10 15 101 102 103 104 105 141 142 143 144] 
-[15 20 61 62 63 64 65 103 104 105 50 55 70 71] 
-[51 52 53 54 20 25 61 62 105 70 50 55 149] 

4 
60 
x 

220 
9 1 

[1 11 21 31 41 51 61 71 81] 
-[1 11 21 31 151 152 153 154 155 156] 
-[31 41 51 151 152 201 202 203 204 205] 
-[1 31 51 71 151 154 156 200 202 204 205] 
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Table C2. Continued 
 

4 
60 
x 

220 
14 1 

[1 11 21 31 41 51 61 71 81 91 101 111 121 131] 
[1 11 21 31 41 151 152 153 154 155 156 157 158 159 160] 
[31 41 51 61 151 152 153 201 202 203 204 205 206 207 159 160] 
[1 31 51 71 151 154 156 200 202 204 205 158 159 81 200 201] 

5 
150 

x 
325 

9 1 

[1 11 21 31 41 51 61 71 81] 
[1 11 21 31 151 152 153 154 155 156] 
[31 41 51 151 152 201 202 203 204 205] 
[1 31 51 71 151 154 156 200 202 204 205] 

14 1 

[1 11 21 31 41 51 61 71 81 91 101 111 121 131] 
[1 11 21 31 41 151 152 153 154 155 156 157 158 159 60] 
[31 41 51 61 151 152 153 201 202 203 204 205 206 207 159 160] 
[1 31 51 71 151 154 156 200 202 204 205 158 159 81 200 201] 

17 1 

[1 51 101 151 201 251 301 303 305 307 309 311 313 315 317 319 321] 
[1 51 101 151 315 319 141 142 143 144 145 146 147 148 149 150 161 162] 
[210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228] 
[301 303 305 307 210 211 212 213 214 144 145 148 227 228 271 272 273 51] 

6 
200 

x 
500 

12 1 

[21 22 23 24 25 26 27 28 29 30 31 32] 
[51 52 53 54 55 56 57 58 59 60 61 62 63] 
[71 72 73 74 75 22 23 24 25 26 151 152 153] 
[200 201 202 203 31 32 62 63 64 65 66 152 153 154] 
[300 301 302 303 71 72 73 74 75 64 65 66 315 316] 
[451 452 453 454 22 23 24 200 201 300 301 315 316] 

18 1 

[21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38] 
[51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69] 
[71 72 73 74 75 22 23 24 25 26 28 29 38 151 152 153 154 155 156] 
[200 201 202 203 204 205 305 31 32 33 34 62 63 64 65 66 152 153 154 155] 
[300 301 302 303 71 72 73 74 75 64 65 66 67 18 21 22 23 315 316] 
[451 452 453 454 22 23 24 31 32 33 200 201 202 300 301 302 315 316 64 65] 
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Table C2. Continued 
  

 7 

250 
x 

1000 
 

15 1 

[10 20 30 40 50 110 120 130 140 150 210 220 230 240 250] 
[10 20 30 40 50 310 320 330 340 350 410 420 430 440 450 460] 
[110 120 130 140 350 410 420 430 440 510 520 530 540 550 560 570] 
[600 610 620 630 640 650 660 670 680 690 700 710 720 730 740 750 760] 
[600 610 620 810 820 830 840 850 860 870 880 110 120 130 140 510 520] 
[10 30 110 130 210 230 710 720 800 810 900 910 920 930 350 450] 

25 1 

[10 20 30 40 50 110 120 130 140 150 310 320 330 340 350 410 420 430 440 450 610 620 710 720 810] 
[10 20 30 40 50 310 320 321 322 323 324 325 326 327 328 329 421 422 423 424 425 426 427 428 429 430]
[110 120 130 140 150 610 620 421 422 423 424 500 501 502 503 504 511 512 513 514 515 611 612 613 
614 615] 
[410 420 430 440 450 710 810 910 911 912 913 914 915 916 321 322 323 324 325 421 422 423 612 613 
614 615 616] 
[710 720 810 501 502 503 504 505 613 614 615 616 911 912 913 914 915 916 410 420 430 440 441 442 
443 444] 

 
 
 
 
Table C3.  Category3: Non-Overlapping Cocircuits Problem Instances Details 

No 
Matrix 

Size 
Co-

Girth 
# 

SCC 

 
Cocircuits 

 

1 
12 
x 

25 

5 3 
[1, 3, 5, 7, 9] 
[11, 12, 13, 14, 15] 
[2, 8, 16, 24, 25] 

8 2 
[1, 3, 5, 7, 9, 11, 13, 15] 
[17, 18, 19, 20, 21, 22, 23, 24] 
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Table C3. Continued 
 

2 
30 
x 

70 

5 4 

[1, 11, 21, 31, 41] 
[5, 15, 25, 35, 45] 
[7, 17, 27, 37, 47] 
[9, 19, 29, 39, 49] 

8 4 

[1, 11, 21, 31, 41, 51, 61, 62] 
[5, 15, 25, 35, 45, 55, 65, 66] 
[7, 17, 27, 37, 47, 57, 67, 68] 
[9, 19, 29, 39, 49, 59, 69, 70] 

3 
60 
x 

150 

5 4 

[1, 11, 21, 31, 41] 
[5, 15, 25, 35, 45] 
[7, 17, 27, 37, 47] 
[9, 19, 29, 39, 49] 

8 4 

[1 11 21 31 41 51 61 71]     
[5 15 25 35 45 55 65 75] 
[7 17 27 37 47 57 67 77]      
[9 19 29 39 49 59 69 79] 
[101 102 103 104 105 106 107 108 109 110] 
[111 112 113 114 115 116 117 118 119 120] 
[122 123 124 125 126 127 128 129 130 131 132] 

4 
60 
x 

220 
5 7 

[1 11 21 31 41]     
[5 15 25 35 45] 
[7 17 27 37 47]      
[9 19 29 39 49] 
[101 102 103 104 105]      
[111 121 131 141 151]      
[156 157 158 159 160] 
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Table C3. Continued 
 

4 
60 
x 

220 

10 10 

[1 11 21 31 41 51 61 71 81 91]     
[5 15 25 35 45 55 65 75 85 95]      
[7 17 27 37 47 57 67 77 87 97] 
[9 19 29 39 49 59 69 79 89 99]   
[101 102 103 104 105 106 107 108 109 110]      
[111 121 131 141 151 161 171 181 191 192]      
[132 133 134 135 136 137 138 139 140 142]  
[201 202 203 204 205 206 207 208 209 210]      
[193 194 195 196 197 198 199 200 112 122] 
[3 13 23 33 43 53 63 93 113 123] 

15 4 

[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15] 
[21 22 23 24 25 26 27 28 29 30 31 32 33 34 35] 
[71 75 73 74 75 76 77 78 79 80 81 82 83 84 85] 
[101 102 103 104 105 106 107 108 109 110 111 112 113 114 115] 

5 
150 

x 
325 

5 7 

[1 11 21 31 41]     
[5 15 25 35 45] 
[7 17 27 37 47]      
[9 19 29 39 49] 
[101 102 103 104 105]      
[111 121 131 141 151]      
[156 157 158 159 160] 

10 9 

[1 11 21 31 41 51 61 71 81 91]     
[5 15 25 35 45 55 65 75 85 95] 
[7 17 27 37 47 57 67 77 87 97]      
[9 19 29 39 49 59 69 79 89 99] 
[101 102 103 104 105 106 107 108 109 110] 
[111 121 131 141 151 161 171 181 191 192] 
[132 133 134 135 136 137 138 139 140 142] 
[201 202 203 204 205 206 207 208 209 210] 
[211 221 231 241 251 301 311 321 322 323] 
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Table C.3 Continued 
 

5 
150 

x 
325 

15 7 

[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15] 
[21 22 23 24 25 26 27 28 29 30 31 32 33 34 35] 
[71 72 73 74 75 76 77 78 79 80 81 82 83 84 85] 
[101 102 103 104 105 106 107 108 109 110 111 112 113 114 115] 
[221 222 223 224 225 226 227 228 229 230 231 232 233 234 235] 
[251 252 253 254 255 256 257 258 259 260 261 262 263 264 265] 
[301 302 303 304 305 306 307 308 309 310 311 312 313 314 315] 
[51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66] 
[150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166] 
[200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218] 

6 
200 

x 
500 

10 7 

[1 2 3 4 5 6 7 8 9 10] 
[21 22 23 24 25 26 27 28 29 30] 
[71 72 73 74 75 76 77 78 79 80]      
[101 102 103 104 105 106 107 108 109 110] 
[221 222 223 224 225 226 227 228 229 230]      
[251 252 253 254 255 256 257 258 259 260]      
[301 302 303 304 305 306 307 308 309 310]  

15 7 

[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15] 
[21 22 23 24 25 26 27 28 29 30 31 32 33 34 35] 
[71 72 73 74 75 76 77 78 79 80 81 82 83 84 85]      
[101 102 103 104 105 106 107 108 109 110 111 112 113 114 115] 
[221 222 223 224 225 226 227 228 229 230 231 232 233 234 235]      
[251 252 253 254 255 256 257 258 259 260 261 262 263 264 265]      
[301 302 303 304 305 306 307 308 309 310 311 312 313 314 315] 

20 7 

[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20] 
[21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40] 
[71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90]      
[101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120] 
[221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240]      
[251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270]      
[301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320] 
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Table C.3 Continued 
 

7  
250 

x 
1000 

17 10 

[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17] 
[51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67] 
[101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117] 
[151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167] 
[200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216] 
[251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267] 
[301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317] 
[351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367] 
[400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416] 
[451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467] 
-[501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518] 
-[651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668] 
-[700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718] 
-[851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868] 
-[901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919] 

 
 
 
 
Table C4.  Category4: Overlap Cocircuit Problem Instances Details 

No 
Matrix 
Size 

Co-
Girth  

# SCC 
 
Cocircuits 
 

1 
12 
x 
25 

5 4 

[1 2 3 4 5] 
[1 2 8 9 10] 
[3 4 11 12 13]   
[1 11 12 16 25]   
-[12 13 14 15 16 17] 
-[9 10 13 16 21 22] 

 



 76 
 

 
 

Table C4. Continued 
 

2 
30 
x 
70 

5 4 

[1 2 3 4 5] 
[51 52 53 54 55] 
[1 2 3 31 32] 
[31 32 33 53 54] 
[18 19 20 31 32] 
[25 26 27 54 55] 
-[25 26 27 28 29 30 31] 
-[41 42 43 51 52 27 28] 
-[36 37 38 54 55 56] 
-[41 42 1 2 9 10] 

8 4 

[1 2 3 4 5 6 7 8] 
[1 2 21 22 23 24 25 26] 
[4 5 24 25 54 55 56 57]      
[7 8 21 22 54 55 61 62] 
-[11 12 13 14 15 16 17 18 19 20]      
-[17 18 31 32 33 34 35 36 54 55]      
-[24 25 11 12 17 34 35 65 66 67] 

3 
60 
x 

150 
5 9 

[1 2 3 4 5] 
[1 2 51 52 53] 
[21 22 23 24 25] 
[23 24 25 71 72] 
[1 2 51 52 72] 
[81 82 83 101 102] 
[120 121 122 123 124] 
[101 102 121 122 141] 
[122 141 142 83 124] 
-[23 24 91 92 122 141] 
-[120 121 95 96 97 141 142] 
-[4 5 12 13 14 15] 
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Table C4. Continued 

3 
60  
x 

 150 
8 7 

[1 2 3 4 5 6 7 8]                                                                                      
[1 2 51 52 53 54 55 56] 
[21 22 23 24 25 26 27 28] 
[23 24 25 71 72 73 74 75] 
[1 2 51 52 72 5 54 73] 
[81 82 83 101 102 84 52 104] 
[120 121 122 123 124 125 23 24] 
-[101 102 121 122 141 142 98 99 100 105] 
-[122 141 142 83 124 102 105 106 107 108] 
-[23 24 91 92 122 141 95 96 124 13] 

4 
60 
x 

220 
8 7 

[1 2 3 4 5 6 7 8] 
[1 2 3 4 51 52 53 54] 
[1 6 7 53 101 102 103 104] 
[121 122 123 124 125 126 127 128] 
[4 5 52 53 102 103 125 126] 
[160 161 162 163 53 102 6 7] 
[170 171 172 173 123 124 21 22] 
-[180 181 182 31 32 21 161 162 128] 
-[190 191 170 171 180 181 200 201 220] 
-[140 141 4 5 104 161 162 200 102 110] 
-[141 142 143 144 145 146 147 148 149 150] 
-[145 147 150 152 153 154 155 156 157 1] 

5 
150 
x 

325 
14 7 

[1 2 3 4 5 6 7 8 9 10 11 12 13 14] 
[1 2 3 4 31 32 33 34 35 101 102 103 104 105] 
[5 6 7 8 51 52 53 54 55 111 112 113 114 115] 
[31 33 104 53 54 113 151 152 153 154 155 200 201 202] 
[70 71 72 73 74 75 151 152 153 154 80 81 82 83] 
[170 171 172 173 174 111 112 113 114 80 81 82 1 2] 
[300 301 302 303 304 121 122 123 73 74 75 81 13 14] 
-[300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315] 
-[145 146 147 151 152 154 155 170 171 172 315 316 51 52 53 111 112] 
-[1 2 3 4 5 80 81 82 83 84 307 308 309 310 311 320 321] 
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Table C4. Continued 

5 
150 
x 

325 
14 7 

[1 2 3 4 5 6 7 8 9 10 11 12 13 14] 
[1 2 3 4 31 32 33 34 35 101 102 103 104 105] 
[5 6 7 8 51 52 53 54 55 111 112 113 114 115] 
[31 33 104 53 54 113 151 152 153 154 155 200 201 202] 
[70 71 72 73 74 75 151 152 153 154 80 81 82 83] 
[170 171 172 173 174 111 112 113 114 80 81 82 1 2] 
[300 301 302 303 304 121 122 123 73 74 75 81 13 14] 
-[300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315] 
-[145 146 147 151 152 154 155 170 171 172 315 316 51 52 53 111 112] 
-[1 2 3 4 5 80 81 82 83 84 307 308 309 310 311 320 321] 

6 
200 
x 

500 
10 8 

[1 2 3 4 5 6 7 8 9 10] 
[51 52 53 54 55 56 57 58 59 60] 
[101 102 103 104 105 106 107 108 109 110] 
[1 2 3 56 57 58 107 108 109 131] 
[108 109 131 161 162 163 8 9 191 192] 
[191 192 251 252 253 254 255 52 53 54] 
[52 53 301 302 303 304 305 320 321 322] 
[303 304 305 8 9 10 400 401 402 403] 
-[1 2 3 4 56 57 58 59 301 302 303 304] 
-[451 452 453 454 200 201 202 105 106 107 108 109] 
-[471 472 473 190 191 192 193 4 5 6 7 8] 
-[50 51 52 53 54 450 451 452 471 472 473] 

7 
250 
x 

1000 
17 10 

[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17] 
[1 2 3 4 31 32 33 34 35 51 52 53 54 55 56 57 58] 
[1 2 3 4 151 152 153 154 202 501 502 503 504 551 552 553 554] 
[7 8 9 10 11 101 102 103 151 152 153 154 155 201 202 203 204] 
[11 12 13 14 53 54 55 56 100 101 102 103 104 105 200 201 202] 
[11 12 13 14 55 151 152 153 154 301 302 303 304 701 702 703 704] 
[16 17 31 32 33 34 55 56 57 101 102 103 300 301 302 303 304] 
[16 17 51 52 53 54 351 352 353 354 355 356 400 401 402 403 404] 
[101 102 103 104 105 351 352 353 354 355 601 602 603 604 605 651 652] 
[501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517]             
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Table C4. Continued 
 

7 
250 
x 

1000 
17 10 

-[751 752 753 754 755 756 757 758 759 760 761 762  763 764 765 766 767 768] 
-[800 801 802 803 804 11 12 13 14 151 152 153 154 301 302 303 304 515 516] 
-[400 401 402 403 404 551 552 553 554 101 102 103 104 105 701 702 703 704] 
-[351 352 353 354 6 7 8 9 10 31 32 33 34 54 55 56 57 58] 
-[751 752 753 754 755 800 801 802 803 804 505 506 507 508 509 510 101 102 103 104] 
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