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ABSTRACT

The starting rotational motion of flat, rectangular plates in quiescent flow

was studied experimentally using two-dimensional and stereoscopic particle image

velocimetry. The study examined the vortex dynamics of spanwise vorticity created

on the suction surface of plates of aspect ratio 2 and 4, which consists primarily of a

leading-edge vortex and a region of counter-rotating vorticity on the surface, directly

below the leading-edge vortex. Reynolds numbers of 4,000, 8,000, and 16,000 based

on the tip velocity and angles of attack of 25◦, 35◦, and 45◦ were investigated at five

different azimuthal locations (ψ = 90◦, 180◦, 235◦, 270◦, and 320◦). The 25% and

50% spanwise positions for the aspect ratio 4 plate and 50% spanwise position for

the aspect ratio 2 plate were studied. For the 25% and 50% spanwise location for the

aspect ratio 4 and 2 plate, respectively, the leading-edge vortex structure’s shape and

coherence evolve in time as the plate begins its initial motion. The circulation of the

leading-edge vortex was found to vary only weakly with azimuthal position in most

cases and in many cases, exhibited variations that were commensurate with the circu-

lation of the counter-rotating region beneath it. The leading-edge vortex circulation

was shown to be proportional to the theoretical bound circulation of thin airfoil the-

ory with the aspect ratio 2 plate at the 50% spanwise position being approximately

1.25 times greater than the theoretical values while the aspect ratio 4 plate generated

circulation values approximately double the theoretical values. It was apparent from

these calculations that for both aspect ratios, the ratio of measured to theoretical
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circulation values remained relatively constant for azimuthal positions greater than

180◦. This also suggests that the leading-edge vortex is, indeed, a significant source

of lift on a rotating plate.

Instantaneous distributions of spanwise vorticity show entrainment of the

counter-rotating region into the leading-edge vortex. It was therefore hypothesized

that the interactions between the leading-edge vortex and counter-rotating vorticity

are an important factor in governing the dynamics and strength of the leading-edge

vortex which may ultimately determine whether the leading-edge vortex remains at-

tached. To test the hypothesis, a transport analysis of the vorticity in the leading-

edge vortex was developed to determine the contributions of spanwise flux, tilting of

in-plane vorticity components, the shear layer, and annihilation has on the rate of

change of circulation of the leading-edge vortex in the spanwise direction. Results of

this analysis indicate that a) contrary to assumptions made in the previous studies,

after the initial transient (ψ ' 120◦), although spanwise flow on the order of the

tip velocity exists at the measurement locations, it is not necessary to regulate the

strength of the leading-edge vortex, and b) annihilation of the leading-edge vortex

from entrainment of the counter-rotating vorticity is an important factor in governing

the dynamics of the leading-edge vortex.
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CHAPTER 1
INTRODUCTION

Rotating blades and wings can be found in a broad range of natural and

engineered systems. For example, the wings of flying animals, such as birds and

insects[6, 26, 61, 62, 70, 80, 94] and recent micro-air vehicles (MAVs)[11, 49, 82],

experience rotation about a fulcrum at the shoulder or thorax during their flapping

motions. Also, wind turbine rotors, helicopter rotors, and propellers experience con-

tinuous rotation during operation. Rotating blades and wings have been shown to

achieve lift coefficients that are higher than their translating counterparts since stall

is delayed until higher angles of attack[3, 57, 98, 105, 106]. In particular, for a Na-

tional Renewable Energy Laboratory (NREL) S809 airfoil, Tangler [98] showed, as

in Figure 1.1, that the lift coefficient increased by as much as ≈ 2.5 times at some

radial positions during rotation compared to the translation case at the same effective

angle of attack. However, the fundamental mechanisms by which rotation maintains

an attached flow are not fully understood[10, 30, 56, 57]. One dominant and unique

feature frequently observed on rotating blades at high angles of attack is the forma-

tion of a quasi-steady leading-edge vortex (LEV), fed by a shear layer separating from

the leading edge, as shown in Figure 1.2. Such a vortex can enhance lift through the

suction created on the upper surface of the wing[85], and may be considered an aug-

mentation to the bound circulation described by aerodynamic theory. In this thesis,

the dynamics of the LEV on a rotating blade will be examined in detail while vary-

ing the kinematics and geometry of the blade. In particular, through measurements
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and analysis of the transport of vorticity within the LEV, it is proposed that the

frequently cited role of spanwise advection of vorticity does not necessarily play an

important role in stabilizing the LEV. Rather, this work suggests that annihilation

of the LEV due to its interaction with vorticity of opposite sign generated beneath

the LEV can account for its behavior.

1.1 Motivation

The ultimate goal of this research is to provide fundamental insights into the

physical mechanisms by which rotation influences flow attachment and aerodynamic

loads on rotating blades and wings in unsteady flows. Purely rotating wings have a

wide range of applications which include flapping flight, helicopters, and wind tur-

bines. Flapping flight contains the fundamental motion of rotation with the wing

rotating about the shoulder of the bird or insect. During this phase of the motion,

high angles of attack have been achieved yielding high lift coefficients. Rotational

effects have its unmistakable influence on helicopter and wind turbine aerodynamics,

where the wing rotates about a central rotation axis.

A particular example in which these rotational effects are important is that of a

wind turbine operating under conditions in which the rotor axis is yawed with respect

to the local wind direction. Such misalignment results in the airfoil experiencing a

time-varying effective angle of attack as it completes a rotation, which can lead to a

phenomenon called dynamic stall[52, 53] in which the blade locally exceeds its static

stall angle, and a leading-edge vortex is shed and convects over the blade and into the
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wake. This phenomenon results in highly unsteady loads which can lead to premature

failure of wind turbine structural and drive components[15, 53], and the aerodynamic

loads are difficult to predict robustly when the blade is rotating[13, 33, 98]. After

preliminary experiments were conducted on a continuously-rotating blade, it was

decided that a simpler case to be investigated for the first part of this work is a starting

rotation of a blade in a quiescent flow. Recent work by Lentink and Dickinson [57]

has demonstrated that the phenomenon of the attached LEV is robust for conditions

of starting rotations, periodic flapping, as well as continuous rotation, suggesting

that investigation of the phenomenon under any of these conditions will likely yield

insight into all of them. The following paragraphs discuss observations of the LEV

and the influence of rotation in the contexts of flapping flight and helicopter and

wind turbine aerodynamics, demonstrating widespread application for this type of

fundamental study.

1.1.1 Flapping Flight

Rotation of a blade or wing can be found on flying organisms like birds and

insects with the wing rotating about a fulcrum. Over the past 100 years, bird and

insect flight has inspired biologists and scientists to investigate the fundamental aero-

dynamic principles that allow these organisms to maneuver elegantly and efficiently.

From millennia of evolution, over a million different insect species and 10,000 birds

and bats have developed wings that enable them to fly[25]. Amongst most of these

species, flapping flight is the main mechanism that is used to generate lift and thrust.



4

Yet, flapping flight is one of the most complicated modes of locomotion[40], and a

steady aerodynamic analysis shows that there is not enough lift generated to sustain

the organism aloft[74, 86, 117, 126]. Instead, some unsteady mechanisms have been

proposed to account for the extra lift; such mechanisms include: 1) wing pitching,

2) wake capturing, 3) Weis-Fogh’s ‘clap and fling’ mechanism, and 4) delayed stall

affiliated with the attachment of a LEV[2, 31, 40, 72, 87, 96, 123, 124, 125].

The first unsteady mechanism occurs when the wing begins to pitch at the

beginning of the upstroke and ending of the downstroke. Dickinson el al [27] and

Sun and Tang [94] showed experimentally and computationally that there was a peak

in the lift coefficient during the beginning of both downstroke and upstroke. The

peaks were said to be accounted for by the quick wing pitching where the wing gen-

erates a new layer of strong vorticity over a short period time during supination[94].

Supination describes the wing in the early stages of the upstroke and ending of the

downstroke when the wing begins to experience a pitching-up motion.

Wake capturing was first presented as an unsteady mechanism by Dickinson in

1994. His investigations of a single stroke of a two-dimensional flat plate undergoing a

flapping motion indicated there was wing-wake interaction during the upstroke. The

overlap between the vortex shedding frequency and the stroke kinematics during one

stroke was shown to increase the lift production in the following stoke[25]. Further

investigations done by Mao and Hamdani [65] demonstrated for a flat plate that the

stall vortex did not shed during the rotational stage of the motion, but during the

“second” translational stage, the stall vortex and near-wake vortices would create a
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small vortex street on the upper surface of the plate. The orientation of the vortices

indicated an induced velocity in the direction of the translation, essentially increasing

the relative speed of the plate. Since the plate is now moving at a larger speed, the

lift coefficient increased providing an unsteady mechanism for lift augmentation.

One of the more prominent unsteady mechanisms explaining enhanced lift

generation is the Weis Fogh’s ‘clap and fling’ mechanism. The Weis Fogh’s ‘clap and

fling’ mechanism is well documented in the literature[59, 67, 92, 117] and was first

proposed by Weis-Fogh [117] which explains the wing to wing interactions. Examining

a frontal view of an insect in hovering flight, when the wings are at their apex, the

two wings can be approximated theoretically as touching one another; this position is

known as the ‘clap’ stage. In a theoretical two-dimensional approach, when the wings

begin to separate from each other during the ‘fling’ stage, there is a vacuum created

in between the wings. The low pressure region in between the wings causes air to

rush into the gap creating a significant bound circulation about the wings. This is in

contrast to a single “starting” wing which gradually builds bound circulation due to

the Wagner effect[112].

The fourth unsteady mechanism is associated with delayed stall of the wing

as the LEV remains attached during the upstroke and part of the downstroke. The

LEV is created when the wing starts the upstroke as described in the first unsteady

mechanism. As the wing continues into the translational motion of the upstroke, the

LEV is seen to remain attached[25, 26, 30], but midway through the downstroke, the

LEV is lifted from the surface of the wing and is eventually shed due to the negative
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spanwise flow created from the tip vortex[34, 35, 81]. It is hypothesized that the LEV

is able to remain attached from the von Kármán street created in the wake inducing

a velocity in the direction of the translation as demonstrated in Figure 1.5[25]. The

results that will be presented will be focusing on the fourth unsteady mechanism

where delayed stall occurs.

1.1.2 Helicopters

Flow phenomena on a rotating blade are also relevant to helicopter aerodynam-

ics. It is well established that helicopters experience dynamic stall during maneuvers

such as turns and pull-ups, forward flight, and in some cases, strong wind gusts[53, 44].

Figure 1.6b shows a helicopter blade moving in a forward flight, and during a single

revolution, the blade experiences an asymmetric velocity profile with the blade ad-

vancing and retreating in the flow. When the blade is advancing into the flow, the

blade experiences lower effective angles of attack due to the higher speeds, while the

retreating blade operates at higher effective angles of attack at lower speeds[53]. It is

during the retreating part of the motion when the blade starts to go through dynamic

stall by the creation of a large LEV that propagates down the chord, increasing the

lift of the airfoil. Once the LEV enters the wake, the blade’s angle of attack is too

large to sustain attach flow, causing the blade to stall. Dynamic stall can lead to hys-

teresis in the force and moment diagrams, and during deep dynamic stall the blade

could experience negative torsional damping which could cause catastrophic failure

in the blade[53]. Therefore, several models have been developed to predict the onset
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of dynamic stall [9, 16, 18, 32, 54, 55, 73]; however, there are several underlying is-

sues with these models. Theoretical and computational fluid dynamics (CFD) models

such as zonal methods[29, 97] are limited in development due to simplifications and

assumptions, but the main hindrance is these methods require a significant amount

of computational power and time to complete the analysis[84]. Semiempirical models

provide a faster method for the prediction of dynamic stall, but most of the data

used in the creation of these models are based off incompressible flow approxima-

tions for attached conditions and unsteady wind tunnel tests for the dynamic stall

conditions[55]. These idealized conditions in the data cause losses in physical realism

which limits their applications[55].

1.1.3 Wind Turbines

Another application for this type of research is in horizontal-axis wind tur-

bine aerodynamics. The National Renewable Energy Laboratory has performed some

studies in order to provide information on the three-dimensional, aerodynamic char-

acteristics of full-scale horizontal-axis wind turbines[38, 89]. Tangler [98, 99] analyzed

experimentally-measured pressure distributions on a wind turbine blade and demon-

strated higher normal force coefficients at the inboard spanwise locations, presumably

due to blade rotation. At approximately the 47% spanwise location, the normal force

coefficient drops drastically, and there is an increase in the tangential force coefficient

which is an identifiable characteristic of a stalled flow. Tangler claims the trailing-

edge vortex, which is thought to be a standing vortex over the downstream portion
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of the suction side of the blade, creates a downwash flow causing the flow to remain

attached at the inboard spanwise locations by essentially lowers the angle of attack;

however, he attributes the stall characteristics at the outboard spanwise locations

to a separation of the trailing-edge vortex signifying a more diffuse vorticity in the

downstream portion of the blade which reduces the downwash effect and increases the

angle of attack which induces stall. With the increased variations in angle of attack

along the spanwise direction, the outboard spanwise positions can enter deep stall,

characterized by two-dimensional separated flow, while the inboard positions have an

attached, three-dimensional flow. Tangler used bound circulation plots, as shown in

Figure 1.3, to explain this anomaly by using horseshoe vortex pairs for simplicity at

the inboard and outboard locations to indicate the onset of stall. The lift coefficients

are therefore affected as seen in Figure 1.4. It is anticipated that the work presented

here will help to explain the phenomena presented in Figure 1.3 and 1.4 and will

establish the experimental procedures necessary to further investigate that problem.

1.2 Thesis Objectives and Overview

In this thesis, the dynamics of spanwise vorticity on a rotating blade are in-

vestigated. The blade geometry is simplified to a flat plate to isolate certain effects

and to eliminate contributions from blade twist, camber, tapering, and leading-edge

features. Experiments were conducted to examine the effects of azimuthal position,

angle of attack, Reynolds number, aspect ratio, and spanwise location. Conventional

two-dimensional and stereoscopic particle image velocimetry were implemented to
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obtain phase-locked velocity field measurements.

Chapter 2 examines the research introduced in the literature and discusses

some of the controversies related to conditions under which the LEV should remain

attached. In Chapter 3, the experimental methods and examined parameters are

discussed. Results are discussed Chapter 4, including qualitative characterization of

the behavior of the LEV, measurements of LEV strength, and a vorticity transport

analysis in the LEV. Based on this analysis, a new mechanism of LEV stabilization

is proposed. Finally, Chapter 5 presents the conclusions and suggests future work in

this area.
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Figure 1.1: Lift coefficients at various spanwise locations for a NREL S809 airfoil in

pure rotation. The filled in circles depict the lift coefficients for the two-dimensional

wind tunnel tests which represent the translational lift coefficients.

Source: Tangler. WIND ENERGY 7, 247-260 (2004).
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Figure 1.2: Nondimensionalized vorticity plot for an aspect ratio 4 flat plate at an

angle of attack of 45◦. This vorticity plot shows an instantaneous phase-locked image

at an azimuthal position of 235◦ using conventional two-dimensional digital particle

image velocimetry. The relative flow velocity in this plane, U, is from left to right as

indicated in the figure. These results are discussed in detail in Chapter 4.
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Figure 1.3: Bound circulation plots on a NREL S809 aerofoil obtained from pressure

measurement data from the NASA Ames Unsteady Aerodynamic Experiments[38, 89].

Source: Tangler. WIND ENERGY 7, 247-260 (2004).
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Figure 1.4: Lift coefficients for a NREL S809 aerofoil derived from pressure measure-

ments at various spanwise locations along the surface of the blade.

Source: Tangler. WIND ENERGY 7, 247-260 (2004).
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Figure 1.5: A von Kármán street is created in the wake from shedding of alternating

trailing- and leading-edge vortices. a) is the start of the upstroke where the trailing-

edge vortex is about to be shed into the wake. b) shows in the downstroke of the

wing, the shed trailing-edge vortex induces a velocity in the direction of translation.

Dickinson (1994) stated that this effect could potentially account for the higher lift

values.

Source: Dickinson. J. Exp. Biol. 192, 179-206 (1994).
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Figure 1.6: A helicopter blade’s velocity profiles at varying azimuthal positions during

a) hovering flight and b) forward flight. Where µ in this case is the rotor advance

ratio (U∞ cosα/ΩR).

Source: Leishman. Principles of Helicopter Aerodynamics pg. 56 (2006).
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CHAPTER 2
LITERATURE REVIEW

Chapter 1 showed that rotating blades are found in a broad range of applica-

tions. This chapter contains a detailed discussion of the observations of flow structure

and aerodynamic performance of rotating blades with a particular emphasis on the

basic physical mechanisms governing these observations. The studies will cover ideal-

ized representations of bird and insect wings as well as basic fluid mechanics studies

isolating starting motions on simplified geometries. Flapping flight studies were con-

sidered for their emphasis on the fundamental fluids which is the same approach

examined in this thesis. Hypotheses on leading-edge vortex (LEV) attachment will

be discussed as well as the flow dynamics of the LEV.

Prior to beginning the discussion, some terminology needs to be explained to

provide an understanding of the material. The LEV has been seen taking two ma-

jor distinct flow patterns in a chordwise plane, “attached” and “shedding”. In this

particular work, when an LEV is said to be “attached,” it is in reference to seeing a

single quasi-stationary LEV on the suction surface that is concentrated towards the

leading-edge of the wing. The word “stable” is used interchangeably with “attached”

and is not meant to regard a stability analysis with bursting of the LEV or vortex

breakdown. Lastly, a “shedding” LEV refers to a LEV that is going through a shed-

ding process where multiple vortices are seen progressing in the streamwise direction

down the chord of the blade.
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2.1 Biological Studies

The first accounts of a LEV being observed on a rotating wing were described

by Weis-Fogh [117] during his development of the ‘clap and fling’ model discussed in

Section 1.1.1. From there on, several different LEV structures have been observed

by various groups[12]. Maxworthy [67, 68, 69] continued studying the Weis-Fogh

mechanism where he used particle and dye visualizations to obtain a qualitative flow

structure of the LEV along the span of the plate in the initial moments of the ‘fling’

stage, depicted in Figure 2.1. A single vortex is seen along the surface of the wing

which ultimately favorably changes the wing’s effective camber and thickness. He

claimed that the spanwise pressure gradient establishes a strong spanwise flow from

root-to-tip which removes vorticity in the LEV from the inboard spanwise location to

the outboard positions and eventually, deposits it into the tip vortex. Maxworthy [67]

stated that the vortex at the root of the wings is elevated from the surface, preventing

it from producing any useful lift at the inboard spanwise locations[12].

Unlike Maxworthy and Weis-Fogh, Luttges’ group observed a different LEV

structure on tethered dragonflies, hawkmoths, and mechanical wings[50, 63, 83, 90],

where the spiraling, conical LEV structure shown in Figure 2.1 was absent. Instead,

they claimed the LEV structure appeared to be uniform in size along the span of the

wing. Luttges claimed that there was little to no spanwise flow inside the core of the

LEV, and the flow structures were mainly two-dimensional along the length of the

wing. Srygley and Thomas [93] performed flow visualizations on Vanessa atalanta

(butterfly) where they observed a similar type of flow as Luttges’ group, and they
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claimed the flow is fundamentally different from the conical, spiraling vortices seen in

delta wings[14, 19, 122] since the size of the LEV along the span is roughly the same,

suggesting a vortex sheet rolling up uniformly and weak spanwise flow. Triantafyllou

et al [101] showed experimentally for an oscillating airfoil that the optimal Strouhal

number (St = fA/U; where f is the frequency of oscillation, A is the width of the

wake, and U is average forward velocity) to yield the maximum thrust per unit

energy is between 0.25<St<0.35 which is similar to natural fish tendencies as shown

in Table 2.1. Srygley and Thomas [93] and Taylor et al [100] advocated that since

the kinematics of wings are optimized by their Strouhal number, the spanwise flow

is not needed unlike in pure revolving cases, and the LEV grows throughout most

of the stroke without shedding because the stroke period is shorter than the time

it takes for the LEV to become unstable, which is in corroboration with other work

presented[48, 58, 103].

Ellington’s group (Ellington et al [30], Van den Berg and Ellington [21, 22],

and Willmott et al [121]) studied hawkmoth (Manduca sexta) wings where they ob-

served a different structure than both Luttges’ group and Maxworthy. Ellington’s

group claimed that the LEV was a three-dimensional structure that was increasing

in size from root-to-tip, and Ellington et al [30] said that the spanwise flow was a

necessity to maintain an attached LEV over the surface of the wing. They claimed

the attachment of the LEV is similar to flow seen over delta wings[20, 64, 71, 76, 118],

as shown in Figure 2.2, with the spanwise flow convecting vorticity down the span

of the wing, stabilizing the vortex pair on the surface of the delta wing by providing
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a sink of vorticity in the out-of-plane direction for a given spanwise position. This

allows the vorticity to be transported downstream without the vortices becoming too

large. Contrary to Maxworthy’s findings, Ellington’s group did not observe the LEV

at spanwise locations less than 25% which led them to hypothesize that the LEV de-

veloped on each of the wings and are not one coherent vortex that stretched over the

thorax of the insect. Additionally, Ellington et al [30] observed a strong root-to-tip

velocity inside the vortex core which was comparable to the tip velocity of the wing.

Ellington claims that the spanwise flow is likely generated by centrifugal acceleration

or the induced velocity field created by the spiraling vortex.

Lentink and Dickinson [56, 57] performed a nondimensionalization of the Navier-

Stokes equation in a non-inertial reference frame for a purely rotating wing at a con-

stant angular velocity to determine the effects of rotation which is shown in Equation

2.1.

Du

Dt
+

1

Ro
·Ω× (Ω× r) +

1

Ro
· 2Ω× u = −Eu ·∇p +

1

Re
·∇2u (2.1)

Where Eu is the Euler number, and the bold symbols represent a nondimen-

sional value; for example p is the nondimensional pressure. From the nondimension-

alization, they showed that the centripetal and Coriolis accelerations (Equations 2.2

and 2.3, respectively) are governed by the inverse of the Rossby number (Ro = R/c;

where R is the wingtip radius and c is the chord length).

acent =
1

Ro
·Ω× (Ω× r) (2.2)
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aCor =
1

Ro
· 2Ω× u (2.3)

For the case of translating wings, the Rossby number tends to infinity which

makes the contribution from the centripetal and Coriolis acceleration zero. How-

ever, the analysis shows that the centripetal and Coriolis accelerations could not be

neglected in a rotation case since the Rossby number will be relatively low. Their

conclusions supported the idea that spanwise flow caused the LEV to remain attached

to the wing, but it is the centripetal and Coriolis accelerations that keep the spanwise

flow on the surface of the wing by reorienting the forces in the direction of translation

as a result of the spanwise velocity created by the favorable pressure gradient from

root-to-tip along the span of wing. Others have also supported that the centripetal

and Coriolis accelerations are the reason why the spanwise flow is maintained along

the surface of the wing[6, 30, 66]. In addition to the theoretical analysis, Lentink and

Dickinson [57] performed bubble visualizations and aerodynamic force measurements

on a scaled Drosophila melanogaster (fruit fly) wing, and the results showed that the

translating wing quickly shed the LEV while at the same time producing less lift when

compared to rotating wing. The rotating wing was able to sustain an attached LEV

which is extended to a rotating wing undergoing a reciprocating motion. Figure 2.3

shows that by simply rotating the wings, the lift is significantly augmented, resulting

in lift coefficients that are approximately twice the translating wing values.

In all of these cases for a purely revolving wing, spanwise flow has been claimed

to be the dominate mechanism keeping the LEV attached along the span of the wing.
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However, Birch and Dickinson [10] performed a study on a Drosophila melanogaster

robotic wing that was rotated about a central axis. In their study, they installed

fences and baffles along the span of the wing to hinder spanwise flow, and using

digital particle image velocimetry, they observed that the LEV still remained attached

without spanwise flow. They did note though that the circulation of the LEV did

drop in most cases when fences and baffles were introduced, but in one particular

case, when a cylindrical wall was placed just on the fringe of the wingtip radius to

prevent spanwise flow from the tip vortex, the LEV’s circulation increased by 14%.

Although spanwise flow was not found inside the vortex core, a large root-to-tip

velocity was observed just behind the LEV on the downstream portion of the wing.

Therefore, since spanwise flow was hindered and an attached LEV was observed,

they hypothesized that the attached flow was maintained by the tip vortex inducing

a downwash on the LEV, ultimately pushing it against the surface of the wing. This

effect has also been noted by Shyy et al [88] on a flapping flat plate (aspect ratio

4) when the tip vortex was found to create a low pressure region near the tip of the

wing, in turn, anchoring the LEV. A physical depiction of the previously mentioned

studies can be viewed in Figure 2.4 where the described LEV pattern can be seen

from a top view perspective for Maxworthy, Luttges’ group, Ellington’s group, and

Birch and Dickinson’s observations in order from top to bottom, respectively.

Another study by Lim et al [60], using a two-dimensional elliptical wing,

showed that spanwise flow was observed in most cases, but did not promote the

attachment of the LEV. Instead, they demonstrated, using the same cross-sectional
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profile wing with a bowed out section in the direction of the oncoming flow, that it

was the variability of spanwise flow along the wing which induced vortex stretching

thus reduced the pressure in the vortex core and promoted LEV attachment. The

vortex stretching enhanced the vorticity magnitude which reduced the vortex core

pressure and maintained attachment of the LEV to the wing.

In many of these biological and biomimetic studies, spanwise flow has been

observed in flapping and purely rotating cases due to the pressure gradient created

along the span of a wing. While this suggests a plausible mechanism for maintaining

a stable LEV, other studies have shown that spanwise flow is not essential for the

maintenance of an attached LEV. In Section 4.5, a vorticity transport analysis will be

presented which shows that spanwise flow is not necessary to maintain a quasi-steady

state in the LEV and hence, also not promote its stability.

2.1.1 Geometric Variations

Several studies have been conducted on revolving modeled and real wings to

isolate the effects that geometry has on the flow physics and to try and control the

LEV strength. Altshuler et al [3] did a comparison of aerodynamic force coefficients

for various model hummingbird wings with an actual hummingbird wing. Their

investigation included examining models of varying camber, sharpness of leading-

edge, and thickness at Reynolds numbers of 5,000 and 10,000. Results showed that

a symmetrical sharp leading-edge feature was able to produce the highest lift values,

which was enhanced even more by wing cambering. Ventral beveling of the leading-
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edge produced an asymmetry in the leading-edge which at higher angles of attack

produced a bluff surface to the oncoming flow, decreasing the performance of the

wing.

Usherwood and Ellington [105, 106] studied a wide range of biological organ-

isms from hawkmoths and mayflies to quails and bumblebees. Contrary to Altshuler

et al [3], Usherwood and Ellington varied the leading-edge shape, twist, and camber

for hawkmoth wings and saw little variation in the force coefficients. Additionally,

the aspect ratio of the hawkmoth wings was varied from 4.53-15.84 and only rela-

tively minor variation in the force coefficients were measured for angles of attack less

than 50◦. Furthermore, Usherwood [104] compared racing pigeon wings to flat card

replicas and saw that the pigeon wing outperformed the flat card replica, achieving

lift coefficients of 1.64 while the flat card replica only obtained 1.44. Nevertheless,

the two models were able to generate higher lift values than what would be measured

in a translating wing study in a wind tunnel.

2.2 Basic Fluid Mechanics Research

As previously mentioned, Lentink and Dickinson [56, 57] demonstrated that

the mechanism of the LEV attachment is indeed related to rotation and showed

that a starting rotation is sufficient to study the phenomenon. Studies have been

conducted typically on rectangular flat plates in a starting motion where the plate

is placed in a quiescent tank and accelerated through a specified azimuthal angle.

Unlike the biological studies which consistently report attached LEVs, these studies
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can be broken down into two different categories based on the dynamics of LEV. The

first category will be called the “attached” LEV where a single quasi-stationary LEV

is observed on the suction surface within a specified distance from the axis of rotation.

The other category is classified as the “shedding” LEV where multiple LEVs can be

seen along the chord line as they are convected downstream.

2.2.1 Attached LEV

Devoria et al [23] studied the starting rotation of two rectangular flat plates

of aspect ratio 2 and 4 for Reynolds numbers between 4,000 and 5,600. Their dye

visualizations indicated an attached LEV in both cases with a strong spanwise flow

inside the LEV from root-to-tip. They noted that the smaller aspect ratio was able to

prevent vortex breakdown (bursting) of the LEV longer than the aspect ratio 4 plate.

A later study done by Carr et al [17] on the same mechanism using stereoscopic digital

particle image velocimetry confirmed the presence of a single LEV near the leading-

edge of the plate. Ensemble-averaged measurements at several parallel chordwise

planes validated that the LEV was connected to the TEV through the tip vortex,

creating a ‘horseshoe-like’ vortex over the upper surface of the plate, shown in Figure

2.5, which is also observed in their dye visualizations of a trapezoidal wing rotating at

an angle of attack of 90◦, simulating an idealized caudal fin[24]. For the aspect ratio

4 plate, they observed the LEV lifting from the surface of the plate at approximately

the 50% spanwise location and starting to tilt into the streamwise direction. Similar

to the dye visualizations done by Devoria et al [23], Carr et al [17] saw that the LEV
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was able to remain attached to the surface of the airfoil due to what they claimed

to be the tip vortex anchoring the LEV by inducing a downwash, supporting the

observations of Shyy et al [88]. More importantly, they observed regions of both a

root-to-tip and tip-to-root flow inside the LEV.

Ansari et al [5] also noted an attached, spiraling vortex on an aspect ratio

4 rectangular flat plate between Reynolds numbers of 500 and 15,000. The plate

was articulated in a pure rotation motion in a stationary water tank. Their particle

image velocimetry measurements show the presence of root-to-tip spanwise flow which

is on the order of 80% of the wingtip speed. They also reported that the spanwise

flow was more pronounced at lower Reynolds numbers which confirms computational

work done by Wilkins and Knowles [119]. Wilkins and Knowles [120] showed for

a thin rectangular plate low Reynolds numbers (5<Re<25) for a two-dimensional

simulation, the LEV attachment is a function of both Reynolds number and angle

of attack. Below a Reynolds number of 5 the LEV was not seen developing on the

suction surface of the plate. They showed, for a two-dimensional plate at an angle

of attack of 45◦, the critical Reynolds number before the LEV became unstable was

25. However, when applied to a three-dimensional case, the LEV was stable through

the range of Reynolds numbers investigated (120<Re<30,000). The LEV attachment

appeared to be insensitive to Reynolds number and was solely governed by the angle

of attack. They also showed that high aspect ratio plates (>10), a LEV is not able

to remain stable over the whole span.

Ozen and Rockwell [75] looked at an aspect ratio 1 rectangular plate in a qui-
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escent flow during a starting motion. Angles of attack from 30◦-75◦ were investigated

using two-dimensional particle image velocimetry, and in all cases, a single coherent

LEV was seen attached near the leading-edge of the plate. For the extremities of

angles of attack, the spanwise flow was measured to be 1.1 to 1.75 times the velocity

of the plate at the radius of gyration. The LEV is shown increasing steadily in size

and becoming more elevated off the surface with spanwise distance.

Spanwise flow is not always seen in engineering studies. For instance, De Vries

[111] studied horizontal-axis wind turbines and claimed that spanwise flow along the

blade is only minor and no large scale velocities have been seen. However, in the case

of helicopters and wind turbines, spanwise flow has been seen to influence the stall

characteristics of the blade[39].

2.2.2 Shedding LEV

Several studies have indicated that the LEV is going through a shedding phase

where multiple LEVs may be seen convecting down the chord line. Jones and Babin-

sky [45, 46] studied a flat plate with rounded edges at Re = 10,000 and 60,000. The

plate was impulsively started from rest inside a quiescent water channel. They ob-

served a shedding pattern of LEVs, shown in Figure 2.6, where more LEVs can be

seen with a higher distance traveled by the plate (x/c). They also indicated that the

three-dimensional effects are likely small since the vortex shedding patterns did not

vary much along the span. Venkata and Jones [107] showed using dye-visualizations

a series of LEVs that are created and convected along the chord line for an aspect
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ratio 2 flat plate at a Re = 5,000. They stated that the size of the LEVs was inversely

related to the acceleration rates of the plate.

Lastly, Grandlund et al [36] used a nominally two-dimensional plate of aspect

ratio 3.4 that was able to freely pivot about its leading-edge from angles of attack

of −45◦ to 45◦ in a rotating motion. Their dye-visualizations showed a pattern of

alternating LEVs and TEVs in the wake suggesting the LEV was also going through

a shedding phase. They observed little change to the pattern or flow characteristics

over the range of Reynolds numbers investigated (5,000 - 30,000)

The summary of the literature presented in this chapter demonstrates signifi-

cant controversy concerning the physics of the LEV. A clear pattern has not emerged

that would enable one to predict under what conditions the LEV will remain attached.

If the LEV does remain attached, it is not certain what role, if any, is played by span-

wise flow, since attached LEVs have been observed with and without spanwise flow.

The observations made in the present work indicate an attached, quasi-stationary

LEV at inboard locations with increasing unsteadiness further outboard. One of the

major contributions of this work is a vorticity transport analysis of the LEV which

supports the hypothesis that spanwise flow is not a primary factor governing attach-

ment of the LEV and suggests a new mechanism based on annihilation of vorticity in

the LEV.
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Table 2.1: Range of Strouhal numbers and Reynolds numbers used in nature for a

variety of biological creatures.

Genera Source Strouhal Number Reynolds Number

Dace, Trout Bainbridge (1958) 0.28-0.31 8×104

Goldfish
Dolphin Lang & Daybell (1963) 0.30 8×105

Bream Bainbridge (1963) 0.32 1×104

Bonito, Bluefish Pyatetsky (1970) 0.28-0.33 6×104

Striped mullet
Trout Webb (1971) 0.30-0.33 2×104

Jack mackerel Hunter & Zweifel (1971) 0.30-0.31 5×105

Sockeye salmon Webb (1973) 0.19-0.32 2×104

Bluefish Dubois & Ogilvyl (1978) 0.345 5×104

Cod Videler (1981) 0.25-0.35 4×104

Blacktip shark Webb & Keyes (1982) 0.254 3×105

Saithe Videler & Hess (1984) 0.12-0.24 6×105

Mackerel Videler & Hess (1984) 0.27-0.33 1×106

Rainbow trout Webb & Kostecki (1984) 0.25-0.38 2.5×104

Source: Triantafyllou et al. J. Fluid Struct. 7, 205-224 (1993).
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Figure 2.1: Maxworthy’s depiction of the LEV development in the spanwise direction.

Source: Maxworthy. Ann. Rev. Fluid Mech. 13, 329-350 (1981).
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Figure 2.2: Dye Visualizations done on a delta wing showing the spiral shaped vortices

being convected along the wing by spanwise velocity.

Source: Délery. Ann. Rev. Fluid Mech. 33, 129-154 (2001).
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Figure 2.3: Lift and drag coefficients for a) unidirectionally translating b) unidirec-

tional rotating and c) reciprocally rotating wings.

Source: Lentink & Dickinson. J. Exp. Biol. 212, 2705-2719 (2009b).
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Figure 2.4: Pictorial representation of the LEV characteristics seen in biological stud-

ies. a) Maxworthy b) Luttges’ group and Srygley and Thomas c) Ellington’s group

d) Birch and Dickinson.

Source: Bomphrey et al. J. Exp. Biol. 208, 1079-1094 (2005).
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Figure 2.5: Upper surface of the plate showing the ‘horseshoe-like’ vortex created

between the LEV, tip vortex, and trailing-edge vortex.

Source: Carr et al. 50th AIAA Aerospace Meeting (2012).
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Figure 2.6: LEV shedding seen at various spanwise locations at various travel dis-

tances of the plate.

Source: Jones & Babinsky J. Aircraft.. 47, 1013-1021 (2010).
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CHAPTER 3
EXPERIMENTAL METHODOLOGY

Velocity and Vorticity fields were acquired on two rectangular plates rotating

about a main shaft in a tank of quiescent water. Two-Dimensional Digital Particle

Image Velocimetry (2D PIV) and Stereoscopic Digital Particle Image Velocimetry

(SPIV) were implemented to quantify the velocity field and derive vorticity fields

which were used to compute the circulation of vortical structures on the upper surface

of the plates and to track the transport of vorticity along the span of the plate.

3.1 Mechanism Apparatus, Plate Geometry, and Kinematics

Experiments were conducted on two rectangular flat plates of aspect ratio (A)

2 and 4. The chord, c, for each plate measured 25.4 millimeters with a thickness of

1.02 millimeters, corresponding to approximately 4% of the chord. The edges of each

of the plates were square. Each one of the plates was coated with a gloss black spray

paint to reduce image saturation due to reflected laser light.

The plates were rotated from rest in the center of a tank with dimensions of

0.61 × 0.61 × 0.61 meters with a water depth of 0.53 meters. Figure 3.1 shows the

mechanism that was designed and constructed by the author in order to articulate

the blade in a rotational motion. Figure 3.2 shows how the plate was connected to

the main shaft by a small connector shaft with a diameter, d, of 6 millimeters. The

connector shaft had a slot cut through the center, allowing the plate to be clamped in

between. There was a small gap between the root of the plate and the main shaft of
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3.175 millimeters. The main shaft had a diameter D = 9.525 millimeters which was

driven by a 24 VDC servo motor rated at 128 oz-in continuous torque at 380 rpm.

The servo motor was driven by an ADVANCED Motion Controls model BE12A6J

amplifier. In order to track the position of the main shaft throughout its rotation,

an U.S. Digital model E2 quadrature optical rotary encoder with an index channel

was installed on the main shaft. The transistor-transistor logic (TTL) signal from

the index channel (amplified by a simple NPN transistor current amplifier) was used

to trigger DPIV and SPIV data acquisition at specific locations in the rotary motion.

All the circuitry was connected to a National Instruments model NI USB-6216 DAQ

Card which was connected to a desktop computer equipped with LabVIEW software

as shown in Figure 3.3.

LabVIEW Software was used to input a linear ramp function to the amplifier,

as shown in Figure 3.4, to accelerate the plate. This was followed by a constant

voltage corresponding to the desired rotational speed, also shown in Figure 3.4. The

actual motion of the plate can be seen in Figure 3.5, where the plate would be in

the acceleration state for approximately 45◦, and beyond ≈ 45◦, the blade will rotate

at a constant angular velocity. The angular velocity of the plate does not exactly

mimic the inputted ramp function. The noise in the velocity profile is related to the

uncertainties in the azimuthal position measured by the encoder and the measurement

timing. Figure 3.6 shows the position as a function of time measured by the encoder.

The noise in the measurement is less than the total uncertainty for the velocity

measurements during the constant velocity stage which was calculated to be ± 2◦/s.
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3.2 Digital Particle Image Velocimetry

3.2.1 Methodology

Digital Particle Image Velocimetry (DPIV) is a statistical Lagrangian method

that estimates particle displacements between two consecutive images in a fluid flow

to provide a representative velocity field in a plane[1, 79, 102]. Potters Industries

Inc.’s SPHERICEL® Hollow Glass Spheres were used to seed the flow. The particles

had a mean particle diameter of 10-11 µm with a density of 1.1 g/cc. These particle

properties corresponded to a Stokes number (Stk = (τUtip)/c; where τ is the relax-

ation time of the particles and Utip and c are the plate tip speed and chord length,

respectively.) of 8.5 × 10−4 which suggests the particles follow the streamlines very

well and since Stk <0.1, the deviation of the particle trajectories from the actual flow

displacements is <<1%[102].

A laser is usually used to illuminate a plane because of its ability to produce a

high intensity, monochromatic light sheet which reduces ‘chromatic aberrations’[79].

During data acquisition, the laser is set to pulse twice with a specified known time

interval between each pulse which describes a double frame/single exposure recording.

When the laser is fired, high speed charge coupled device (CCD) camera (or cameras),

which is in synchronization with the laser pulses, is triggered to acquire an image of

the particle illumination in the laser plane. The intensities of the each image are stored

in a 2D distribution of gray levels with the first image representing the initial “input.”

Since a plane is only sampled, the best measurements that can be acquired are in-

plane displacements between the particles in the first and second images. This is done
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by creating an array of interrogation windows over each of the images and evaluating

the movement of particle groups. A discrete cross-correlation method described by

Equation 3.1 is used to determine the displacements within sub-windows of the image

by matching the intensities between the image pairs, statistically.

R(x, y) =
K∑

i=−K

L∑
j=−L

I(i, j)I ′(i+ x, j + y) (3.1)

Where I and I ′ are the intensity values from the two images. Once the cross-

correlation field has been calculated, a Gaussian function is fit to the peak, and the

peak of the Gaussian gives the shift, allowing us to obtain the particle displacement

and sub-pixel accuracy. Lastly, since the time between the image pairs is specified, a

velocity field can be obtained from the displacements. This method can be summa-

rized graphically as shown in Figure 3.7.

From the velocity field, the out-of-plane vorticity can be calculated discretely

by taking the curl of the velocity field as shown by Equation 3.2.

ωz =
∂Uy
∂x
− ∂Ux

∂y
≈
Uyi+1

− Uyi−1

2Xg

−
Uxj+1

− Uxj−1

2Yg
(3.2)

Where i is in the x-direction while j is in the y-direction. Ux and Uy are the

velocities in the x- and y-direction, respectively, and Xg and Yg are the grid spacing

between the velocity vectors in the x- and y-direction, respectively. The out-of-plane

vorticity component will be used heavily in Chapter 4.
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3.2.2 Data Acquisition and Post-Processing

For both PIV configurations, A LaVision Inc. Flowmaster system was used

consisting of one or two Imager Pro 4.0 CCD cameras with 2048 × 2048 pixel resolu-

tion and a 14-bit dynamic range. For planar illumination, a dual-cavity, 200 mJ/pulse

Nd:YAG laser with light sheet optics was used. The image pairs were processed using

LaVision DaVis 8.6 software with the standard cross-correlation analysis discussed

in Section 3.2.1. Multiple pass window sizes of 64 × 64 and 32 × 32 with a 50%

overlap were using during the cross-correlation analysis. The outliers in the images

were removed using a median filter. Lastly, from the velocity fields, the vorticity

fields were derived using Equation 3.2 as discussed in Section 3.2.1.

3.2.3 Two-Dimensional Digital Particle Image Velocimetry Setup

Depicted in Figure 3.8 is the 2D PIV setup used to measure spanwise vorticity

on the upper surface of the plate. Reynolds numbers of 4,000, 8,000, and 16,000

based on tip velocity were tested because those Reynolds numbers are in the range

of larger insects and small birds[3, 30]. The study looked at three different angles of

attack (α) for each aspect ratio; 25◦, 35◦, and 45◦. As shown in Figure 3.2, the plate’s

angle of attack was adjusted about the 0.5c point. The plate is rotated in a clockwise

direction as shown in Figure 3.9, where the current position of the plate is when the

camera is perpendicular to the chord line which represents an azimuthal position of

0◦. This is the location where data acquisition occurs. The azimuthal position (ψ)

was measured from the data acquisition position in the direction opposite of rotation
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(counterclockwise) to the initial starting position as indicated in Figure 3.9. A total

of five different azimuthal positions (ψ) were examined; 90◦, 180◦, 235◦, 270◦, and

320◦; which are represented by the dash lines in Figure 3.8. A vertical (chordwise)

laser sheet was created at b = 25.4 millimeters from the root of the plate which

corresponded to relative spanwise positions (b/s) of 50% and 25% for the A= 2

and 4 plates, respectively. The 50% spanwise location was also investigated for the

A= 4 plate as indicated in Figure 3.10 by dashed green lines symbolizing chordwise

laser planes. Due to reflections generated by the small attachment rod connecting

the plate to the main shaft causing significant saturation of particle intensities in the

PIV images, the 25% spanwise position was not investigated for the A= 2 plate.

Unless otherwise indicated, a total of three PIV measurements were taken for each

configuration of angle of attack, aspect ratio, azimuthal position, Reynolds number,

and spanwise position. Since the experiment is conducted in quiescent water, it was

necessary to wait between experiments for the motion of the water to dissipate. The

fluid motion was characterized by the normalized root-mean-square (RMS) velocity

magnitude defined below and can be seen dissipating over time in Figure 3.11.

V ∗RMS =
1

N

N∑
i=1

√
u′

2
+ v′

2

Utip
× 100% (3.3)

Where u′ and v′ are the RMS velocities averaged over 50 realizations in the

x- and y-direction, respectively. N is the total number of vectors in the PIV field of

view. During these experiments, the ∆t was optimized for the initial readings and

was left constant throughout the range of times investigated, which could explain the
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relative flatness of V ∗RMS in the later measurements. After ≈ 250 seconds, a steady-

state is reached (limited by the random error in the PIV measurements). For that

reason, the tank was left undisturbed for 5 minutes to allow for the flow to subside

which is in agreement with the tests done by Ansari et al [5]. The five minute wait

time corresponded to average V ∗RMS of ≈ 2.5%, 1.3%, and 0.63% for the image for Re

= 4,000, 8,000, and 16,000, respectively.

3.2.4 Stereoscopic Digital Particle Image Velocimetry Setup

Two-dimensional, three-component (2D 3C) Stereoscopic Digital Particle Im-

age Velocimetry (SPIV) experiments were also conducted, and the setup is shown in

Figure 3.12. The setup is similar to the 2D PIV measurements discussed in Section

3.2.3 except two cameras were used instead of one. The cameras were oriented such

that their axes were coplanar with the chord line of the plate. Scheimpflug mounts

were implemented on the CCD cameras and prisms were installed on the side of the

tank to bring the viewing plane into focus and to minimize particle distortion in the

image. In this particular setup, only one specific case was investigated; the aspect

ratio 4 plate at the 25% spanwise location for a Reynolds number of 8,000 at an

angle of attack of 35◦. Again, represented by dash lines in Figure 3.12, five azimuthal

positions were examined; 75◦, 90◦, 120◦, 180◦, and 270◦.

A vorticity transport analysis is discussed in Section 4.5 which requires the use

of a second-order central difference scheme to evaluate a few of the terms in Equation

4.5. To complete the second-order central difference scheme, three chordwise laser
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planes, shown in Figure 3.13, are created at the 25% spanwise location for theA= 4

plate. The rails supporting the mechanism in Figure 3.12 contain small pin holes that

were manufactured using a Haas CNC machine that were separated by 1 millimeter.

These pins allowed for precise translation of the mechanism of 1 millimeter intervals

to obtain the k-1, k, and k+1 planes shown in Figure 3.13.
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Figure 3.1: Mechanism used to rotate the plate.
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Figure 3.2: A spanwise view of the plate and main shaft.
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Figure 3.3: Circuitry layout used to control the plate’s motion and to synchronize

data aquistion with the plate’s position.
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Figure 3.4: Linear ramping-up function generated using LabVIEW.
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Figure 3.5: Actual plate’s motion with the inputted linear function shown in Figure

3.4.
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Figure 3.6: Plate’s position as a function of time measured by the rotary encoder.
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Figure 3.7: [Physical representation of the cross-correlation method used to calculate

velocity fields in PIV for a double frame/single exposure recording.

Source: Raffel et al. Particle Image Velocimetry: A Practical Guide pg. 128 (2007).
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Figure 3.8: 2D PIV experimental setup used to view spanwise vorticity.
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Figure 3.9: Visualizations of the laser position and azimuthal angle definition.
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Figure 3.10: Top view of both aspect ratio plates showing the locations of chordwise

laser planes by green dashed lines. The top part of the figure shows the two relative

spanwise positions obtained for the A4 plate while the bottom portion shows the

single spanwise position acquired for the A2 plate.
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Figure 3.11: Average turbulence intensity for each Reynolds number.
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Figure 3.12: SPIV experimental setup used top calculate the vorticity transport dis-

cussed in detail in Section 4.5.
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Figure 3.13: Zoomed in at a particular spanwise location to show the three chordwise

laser planes needed to calculate derivatives in Equation 4.5.
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CHAPTER 4
RESULTS AND DISCUSSION

The dynamics of the LEV development for various azimuthal positions, angles

of attack, Reynolds numbers, spanwise locations, and aspect ratios are considered

in this chapter. Circulation measurements are used to quantify variations in the

parameters. In addition, a vorticity transport analysis was developed to investigate

the dynamics of the LEV within a small control volume on the suction surface of the

plate.

4.1 Temporal Evolution of LEV for Parameter Variations

4.1.1 Leading-Edge Features

A total of three trials were acquired for each configuration of azimuthal po-

sition, angle of attack, aspect ratio, Reynolds number, and spanwise location. Each

one of these trials yielded an instantaneous velocity field from which the instanta-

neous vorticity field could be calculated. This is done discretely using Equation 3.2.

Figures 4.1 - 4.23 show the effects of azimuthal position on the instantaneous, nondi-

mensionalized vorticity fields (ω∗z = (ωzc)/Utip) for constant angle of attack, aspect

ratio, Reynolds number, and spanwise location. Figures 4.1 - 4.13 contain the data

for the A= 4 plate at the 25% spanwise position, and Figures 4.14 - 4.23 show the

data for the aspect ratio 2 plate at the 50% spanwise position.

In each of these images (Figures 4.1 - 4.36), the plate is moving from right

to left. The image plane is defined by the vertically-oriented laser sheet, parallel
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to the plate chord and entering the field of view on the right side. Once the laser

plane impinges on the plate, a shadow is cast on the upstream (left) side of the plate.

The bottom portion of the plate and the shadow created are masked out during

the velocity field computations and are characterized in the images by a whited out

region. Blue contours represent negative (clockwise) vorticity which constitute the

LEV structure while red contours represent positive (counterclockwise) vorticity. A

shear layer is seen separating from the leading-edge of the plate and rolling up into

the LEV, essentially continuously feeding the LEV with negative vorticity. Beyond

the LEV, on the downstream portion of the plate, there is an attached boundary

layer (negative vorticity). The results indicate the presence of a single LEV along the

chord of the plate, classifying our LEV dynamics into the “attached” LEV discussed

in Section 2.2.1. An interesting characteristic in all of these images is the development

of a region of counterclockwise vorticity which is generated on the surface of the plate

from the interaction of the LEV with the plate.

In Figures 4.1 - 4.5, the LEV and positive vorticity are two distinct, coherent

structures that are concentrated towards the leeward surface of the plate. Quali-

tatively, the overall structure of the LEV and positive vorticity do not appear to

change for azimuthal positions between 90◦ and 270◦ suggesting the flow is quasi-

steady. However, at ψ = 320◦, the connection of the shear layer to the LEV is not

as well defined in the other azimuthal positions, and the positive vorticity begins to

lift off the surface of the plate. This observation could mean that the LEV’s strength

is relatively constant in the earlier stages of temporal development, but higher az-
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imuthal positions might have unsteady effects such as the positive vorticity on the

surface of the plate becoming on the same order of the LEV which may affect the

LEV structure. Also, in Figures 4.1 - 4.5, the in-plane velocity components are shown

by the vectors. All plots in Chapter 4 containing vectors show the in-plane velocity

components in an inertial reference frame. The flow is seen wrapping around the

leading-edge of the plate as it advances in the flow. As the flow moves in the down-

stream direction, it is driven downwards towards the surface of the plate. In the LEV

region, there is an increase in the in-plane velocity components. At the downstream

portion of the LEV, the in-plane velocity components are larger than the relative

freestream velocity, and there is noticeable flow reversal on the downstream portion

of the LEV near the surface of the plate. The magnitude of the flow reversal has a

larger value than the magnitude of the in-plane velocity components seen in the shear

layer. The high magnitude flow reversal is seen progressing towards the leading-edge

of the plate beneath the LEV. In the region of positive vorticity, the magnitude of

the flow reversal decreases and the direction of the velocity begins to reorient itself

downwards, towards the surface of the plate.

Figure 4.6 shows the temporal results for theA= 4 plate at the 25% spanwise

location for α = 25◦ at a Re = 8,000. At ψ = 90◦, the results are similar to the Re

= 4,000 case as shown in Figure 4.1. In contrast with the ψ = 90◦ case, the other

azimuthal positions are qualitatively different than the Re = 4,000 case. One such

difference is that the shear layer appears to be more rounded and is elevated higher

from the surface of the plate. The increased elevation allows for a larger gap between
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the LEV structure and the positive vorticity which is apparent in Figure 4.6b at an

azimuthal position of ψ = 180◦. Eventually at the subsequent azimuthal positions, the

positive vorticity is more diffuse in the region below the shear layer and LEV, but its

strength appears to be larger based on the contour levels. An important observation

at ψ = 180◦, 235◦, 270◦, and 320◦ is the positive vorticity becomes entrained into the

LEV. This process is suspected to be driven by the LEV inducing a velocity in the

direction of translation of the plate causing the positive vorticity to be swept upstream

into the shear layer which feeds the LEV structure. Evidence of this hypothesis is

perhaps most distinguishable at ψ = 235◦ and 270◦ where the top portion of the

counterclockwise vorticity is cut off by the shear layer and traces of positive vorticity

can be seen transported downstream, eventually accumulating and amalgamating in

the LEV.

The Re = 16,000 case for theA= 4 plate at α = 25◦, presented in Figure 4.7,

still shows the clockwise and counterclockwise vorticity as two organized structures

at ψ = 90◦. In this particular case, the negative vorticity appears to create an arch-

like shape over the counterclockwise vorticity where in the previous cases, the LEV

does not reattach to the plate, but is above the surface of the plate. At increasing

azimuthal positions, the LEV becomes more disorganized and entrains of the positive

vorticity into the LEV. Also, it is noticeable that the negative vorticity boundary layer

on the downstream portion of the plate for ψ = 235◦ is raised up off the surface of the

plate. This is discussed in a more detail later on in Section 4.1.2 when examining the

trailing-edge features, but is thought to be contributed to the flow wrapping around
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the trailing-edge of the plate, violating the Kutta condition.

Figure 4.8 shows an angle of attack of 35◦ at a Re = 4,000 for theA= 4 plate

at the 25% spanwise position. Again, ψ = 90◦ has an organized flow except the LEV

appears to be larger in size compared to α = 25◦ in Figures 4.1 - 4.5, which is to be

expected since the angle of attack has increased. The LEV and positive vorticity still

remain mainly separated from one another except at ψ = 235◦ where a small portion

of the counterclockwise element gets entrained into the LEV. The shape of the LEV

changes with azimuthal positions; in the earlier azimuthal positions (ψ = 90◦, 180◦,

and 235◦), the LEV is more elongated and tilted so the bottom of the LEV looks to

be parallel with the chord line of the plate, but at later azimuthal positions (ψ = 270◦

and 320◦), the shear layer becomes thinner than in earlier positions which may allow

the LEV to roll up more on itself creating the “rounder” LEVs shown in Figures 4.8d

and 4.8e.

Similar observation for the ψ = 90◦ position for the Re = 8,000 with the two

separate structures is shown in Figure 4.9a. As with the α = 25◦ at Re = 8,000,

the LEV becomes more disorganized at ψ >180◦. There is some minor entrainment

of the positive vorticity in the LEV at azimuthal positions 180◦ and 235◦ near the

uppermost point of negative vorticity, but entrainment of the positive vorticity region

is greatest at the two later azimuthal positions, ψ = 270◦ and 320◦.

The Re = 16,000 case has a similar trend to the Re = 8,000 case in Figure

4.9 except for ψ = 90◦. Figure 4.10a shows that the entrainment of positive vorticity

begins at earlier azimuthal positions for increasing Reynolds number. A possible ex-
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planation for this phenomenon is the increased rotational speed results in a transition

in the flow causing the flow to go from a laminar regime to a turbulent flow. The

turbulent flow allows for the two vorticities to mix more efficiently in the LEV region.

The Re = 4,000 case for an angle of attack of 45◦ is conceptually similar to

the other angles of attack at the same Reynolds number. However, for an α = 45◦

at ψ = 180◦, the two structures do not remain separated, but instead, mix together

with one another, clearly shown in Figure 4.11b. At ψ = 90◦ and 180◦, the shear

layer is undoubtedly flatter and as the azimuthal position increases, the projection of

the shear layer goes from being parallel to the x-axis to being oriented such that it

is pointing to the upper right-hand corner of the image. The distinct location of the

shear layer in ψ = 180◦ could cause for more of the positive vorticity to be entrained

into the LEV since it is closer to the induced velocity.

The trends for the Re = 8,000 and 16,000 for α = 45◦ appear to be similar to

what has been discussed in the other cases. All cases exhibit positive vorticity being

entrained into the LEV, and increasing azimuthal position causes the two structures

to become more disorganized.

Generally, Figures 4.14 - 4.23 show similar trends for the A= 2 plate where

the counterclockwise region becomes more entrained into the LEV with increasing

azimuthal position. One important thing to note is the Re = 4,000 cases for the

A= 2 plate do not show two explicit regions of vorticity for all azimuthal positions.

Instead, Figures 4.14 - 4.18, 4.20, and 4.22 show that the earlier azimuthal positions

are separated, but the later ones are not. Furthermore, since the Reynolds numbers
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were matched based on their tip speeds, two different rotational speeds were used

between the two aspect ratios to obtain matching Reynolds numbers. Therefore, for

theA= 2 plate at a Re = 4,000, the velocity of the plate at the imaging plane is the

same as the A= 4 plate at Re = 8,000.

In general, the aspect ratio 2 plate seems to entrain more of the positive

vorticity within the LEV at earlier azimuthal positions (ψ = 90◦ and 180◦) where

its aspect ratio 4 counterpart does not. It is not clear whether this characteristic is

attributed to aspect ratio or relative spanwise location (b/s) since only one spanwise

location on the aspect ratio 2 plate was investigated. However, two spanwise planes

were acquired for the aspect ratio 4 plate, and the results for the temporal evolution

for the 50% plane can be viewed in Figures 4.24-4.36.

Figures 4.24 - 4.28 show the A= 4 plate at the 50% spanwise location at Re

= 4,000 and α = 25◦ along with the in-plane velocity components. Now, the LEV

consumes more than half of the chord line. Only at ψ = 90◦ is the LEV seen to be a

coherent region of negative vorticity, but as the azimuthal position increases, the in-

tegrity of the structure’s shape breaks down. The rapid breakdown of the LEV could

be attributed to the tip vortex inducing a tip-to-root flow which in turn decelerates the

flow of the vortex core as described in delta wings vortex breakdowns[37, 57, 91, 110].

The shear layer is obviously larger at the 50% spanwise location which is to be ex-

pected since the velocity is higher at this radial position. The LEV looks like it

possibly could be going through a shedding phase as described in Section 2.2.2 and

shown in azimuthal positions 235◦ and 320◦ in Figures 4.26 and 4.28, respectively
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where a small blob of negative vorticity looks to be separated from the main con-

stituent.

As Reynolds number is increased, there is a significant drop in nondimension-

alized, vorticity on the surface of the plate as shown in Figures 4.29 and 4.30. The

nondimensionalized vorticity values were so low for a Re = 16,000 that the range of

the contours needed to be changed in order to view the structures. This observation

is likely contributed to enhanced mixing and annihilation of vorticity due to flow pos-

sibly transitioning from a laminar to turbulent at higher Reynolds numbers. Figure

4.29, which represents the 8,000 case for α = 25◦, shows that the flow appears to be

stalled at majority of the azimuthal positions, but the 16,000 case in Figure 4.30 has

the flow being attached in all azimuthal positions. This indicates that the integrity

of the LEV structure with distance from the axis of rotation could be a function of

Reynolds number, and the fact that the flow goes from attached to stalled and back

to attached from Re = 4,000, 8,000, and 16,000, respectively, shows that there are

different flow regimes for varying Reynolds number. To further validate these claims,

more spanwise positions will need to be obtained to see the development of the LEV

along the span of the plate.

Similar conclusions can be made for α = 35◦ and 45◦ at all Reynolds numbers.

The LEV is larger than at the 25% spanwise location, and an attached LEV is seen

over a larger portion of the chord line. There is a general trend where the earlier

azimuthal positions have a LEV, but the later ones, indicate stall flow, where chaotic

vorticity fields extend into the wake of the plate. It is noticeable that the dimen-
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sionless vorticity values are lower at the 50% spanwise location suggesting that the

strength of the LEV diminishes with distance from the rotational axis which is likely

contributed to the tip vortex decelerating the LEV core causing bursting, or the tip

vortex causing the vorticity to be turned into the streamwise direction. Qualitatively,

the flow at the 50% spanwise location for theA= 4 is highly complex making it diffi-

cult to say whether the flow is attached, shedding, or stalled. Figure 4.37 shows that

for a single azimuthal position, there can be significant variation in the flow struc-

ture between the three trials. The fact that the flow patterns are inconsistent with

azimuthal position; and in some cases, between trials; makes it difficult to quantify

the strength of the LEV, and for this reason, the 50% spanwise location for theA=

4 plate is not considered in calculating circulation.

4.1.2 Trailing-Edge Features

Some of the images, such as Figures 4.9, 4.11c, 4.11d, 4.12d, 4.12e, and 4.13e,

show the development of a trailing-edge vortex (TEV). The presence of the TEV seems

to have one of two effects on the vorticity field near the downstream portion of the

plate. The first effect is the counterclockwise vorticity shed from TEV rolls up with

the clockwise vorticity to form an amalgamated vortex as shown in Figure 4.12e. The

other observation is the negative boundary layer vorticity on the downstream portion

of the plate begins to separate from the surface of the plate and project into the wake

as shown in Figure 4.11c. The fact that the TEV is not present at all azimuthal

positions suggests it is an intermittent phenomenon.
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4.2 Parameter Variations Comparisons

Figure 4.38 shows the development of the LEV structure and the region of

positive vorticity generated on the surface of the plate with variation in Reynolds

number and angle of attack for the aspect ratio 4 plate at ψ = 90◦ at the 25%

spanwise position. In Figure 4.38, the columns represent fixed angles of attack of 25◦,

35◦, and 45◦, respectively with the rows corresponding to Reynolds numbers of 4,000,

8,000, and 16,000, respectively. At a constant Reynolds number, increasing angle of

attack causes more of the surface vorticity to be entrained into the LEV which is

shown best in the second row. For α = 25◦, increasing the Reynolds number from

4,000 to 8,000 does not appear to affect the shape of the LEV, but there are some

minor changes when the Reynolds number is increased to 16,000. At Re = 16,000, the

LEV is seen connecting to the plate just behind the downstream part of the region

of positive vorticity. α = 35◦ has roughly the same shape between Re = 4,000 and

8,000 except at Re = 8,000 the shear layer is not as pronounce at the apex of the

negative vorticity. Unlike the 25◦ angle of attack, the 35◦ angle of attack experiences

a change in the shape of the LEV when the Reynolds number is increased to 16,000.

The LEV contains portions of positive vorticity, but more importantly, the shape is

more disorganized compared to the Re = 4,000 and 8,000 cases. Additionally, the

LEV is not as elongated for a Reynolds number of 16,000. The LEV does not change

much with Reynolds number for α = 45◦. Examining how angle of attack changes

the shape of the LEV for a constant Reynolds number, it is clear that the shear layer

begins to project up to the right more with increasing angle of attack. Furthermore,
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the LEV goes from a more elongated shape at α = 25◦ and 35◦ to a rounder structure

at α = 45◦. Overall the Reynolds number only appears to have minor effects on the

structure of the LEV and entrainment of positive vorticity into the LEV.

Figure 4.39 shows the same data for theA= 2 plate at Re = 4,000 and 8,000

at the 50% spanwise position. The aspect ratio 2 plate’s location of the LEV is seen

touching back down to the plate at the back portion of the counterclockwise region

where typical results for theA= 4 plate, the LEV is elevated from the surface of the

plate. This reattachment of the LEV has been attributed to the tip vortex inducing a

downwash flow[10] which is presumably stronger forA= 2 since the relative spanwise

position is larger. Variations in Reynolds number are similar with the A= 4 plate,

showing only minor changes in the shape of the LEV. Shape does not appear to be

affected as intensely with increasing angle of attack, but it is obvious that the size

of the LEV grows with increasing α for Re = 4,000. Lastly, the Re = 8,000 case

shows that more of the positive vorticity is entrained into the LEV at higher angles

of attack.

4.3 Circulation Measurements

For each combination of angle of attack, aspect ratio, azimuthal position,

Reynolds number, and spanwise position, circulation measurements of the LEV struc-

ture were calculated (based on the spanwise component of vorticity) from the three

instantaneous 2D PIV vorticity fields. For each vorticity field, the circulation was

computed using Equation 4.1 and a user defined threshold was chosen such that the
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circulation was insensitive to changes in the threshold.

Γ =

∫
ωzdA ≈

∑
N

ωzij∆x∆y (4.1)

The average of the three circulation measurements was used in the following

discussion.

Figures 4.40 - 4.42 show the nondimensionalized circulation (Γ∗ = Γ/(cUtip))

values of the LEV for 90◦ ≤ ψ ≤ 320◦ for Re = 4,000, 8,000, and 16,000, respec-

tively. In general, there is a non-monotonic variation in Γ∗ with increasing azimuthal

position in this range. For most cases (but not all), there is an apparent drop in

circulation at an azimuthal position of approximately 230◦. Beyond ψ ≈ 230◦, the

circulation begins to rise again until the end of the azimuthal range investigated in

this study. Measurements of the circulation of the positive vorticity were done in

a similar manner, and the results showed that the counterclockwise region is ap-

proximately proportional to the LEV structure. For both aspect ratio plates, the

nondimensionalized circulation of the LEV increases for increasing Reynolds number

and angle of attack, independently. For each aspect ratio, Figures 4.43 and 4.44 show

that the LEV’s nondimensionalized circulation appears to be relatively insensitive to

changes in Reynolds number.

Figures 4.40 and 4.41 depict for a given (dimensional) radial position, the

smaller aspect ratio generated a higher nondimensionalized circulation measurement.

However, this comparison looks at two different rotational speeds since the Reynolds

numbers were based on the tip speed. If a local Reynolds number, Relocal, is defined
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by Equation 4.2, the rotational speeds used in this study formulate values of 1,000,

2,000, and 4,000, respectively.

Relocal =
cUlocal
ν

(4.2)

Using this new Reynolds number convention, the circulation can be nondimen-

sionalized based on the local speed, Γ∗∗, as shown in Equation 4.3 and can be used

to compare the results for both aspect ratios.

Γ∗∗ =
Γ

cUlocal
(4.3)

Figures 4.45 and 4.46 show the results of the new nondimensionalization com-

paring the same angular velocity for both aspect ratios. The trend of the dominant

aspect ratio has switched where the aspect ratio 2 plate generates a lower circulation

value compared to the aspect ratio 4 plate. This result is likely contributed to the

tip vortex bending ωz vorticity into the streamwise direction essentially reducing Γ∗∗

which will be more severely affected for the smaller aspect ratio since the relative

spanwise location is closer to the tip.

Thin airfoil theory predicts that the bound circulation on a translating flat

plate in inviscid, potential flow will increase linearly with increasing angle of attack

demonstrated in Equation 4.4[43].

Γth = πcUlocal sinα (4.4)

Table 4.1 shows the values obtained using Equation 4.4 and are graphed with
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the mean experimental circulation values of the LEV (Γmean) in Figures 4.47 - 4.49.

Additional plots are presented in Appendix A showing each azimuthal position for

both aspect ratios in Figures A.1 - A.10. Figure 4.47 shows theA4 plate’s experimen-

tal circulation values for the LEV at ψ = 90◦. This sample plot is a representation of

the typical plots for the A4 plate, showing the experimental data to appear linearly

increasing over the range of angles of attack investigated. For this particular case,

the experimental data is quite linear for the Re = 4,000 and 16,000 cases; however,

there is some curvature to the Re = 8,000 case which more than likely would smooth

out with more trials acquired. The linearity of the LEV circulation measurements

is directly proportional to sinα and suggests that the data presented here is of good

quality and reliability. Another important trait illustrated in Figure 4.47 is that the

LEV circulation and theoretical bound circulation have different constant relation-

ships with sinα, meaning the differences between the two become increasingly bigger

as the angle of attack increases for a fixed Reynolds number. However, the relative

circulation (Γ
′

= Γmean/Γth) is nearly constant for varying angles of attack at a con-

stant azimuthal position as shown in Tables 4.2 - 4.4. In most cases, with the changes

in azimuthal position, the relative circulation gradually increases from ψ = 90◦ to

≈ 180◦ then stays approximately constant, fluctuating around a steady-state value.

The LEV circulation measurements for theA4 plate are all well above the theoretical

bound circulation which is in agreement with previous work discussed in Chapters 1

and 2 that the LEV is a main source of lift augmentation in rotating wings.

Although the A4 plate’s LEV circulation measurements were higher than
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the theoretical bound circulation, that is not always the case for the A= 2 plate.

Figure 4.48 shows an incident where the LEV circulation actually dropped below the

bound circulation at ψ = 180◦ and α = 35◦. This event could be explained by the

range of circulation measurements over the three trials skewing Γmean. As shown in

Figure 4.50, the variability in the circulation measurements where the upper error

bar represents the highest circulation value in the three trials, and the bottom error

bar represents the lowest circulation value. The origin of the error bars corresponds

to the middle circulation value of the three trials.

Figure 4.49 represents a typical plot for a constant local Reynolds number for

the A= 2 plate. Similar comments that were made concerning the A= 4 plate can

be applied to theA= 2 plate. The experimental data is approximately linear showing

that the LEV circulation is proportional to sinα except the slopes differ between the

theoretical and experimental data for a given Reynolds number. The Re = 8,000 case

at α = 25◦ is consistently close to the theoretical bound circulation values for all of

the azimuthal positions.

The difference between the bound and LEV circulations for the A= 2 plate

can be viewed in Tables 4.5 and 4.6. The trends are similar to theA= 4 tables, but

comparatively, the A= 4 plate has a larger relative circulation value than the A=

2 plate. The larger aspect ratio plate experiences relative circulation values as much

as 2.3 times greater than the theoretical bound circulation values while the A= 2

plate is unable to exceed 1.53 times the bound circulation value. This suggests the

enhanced lift seen on rotating wings is mainly an inboard phenomenon as stated in
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previous studies[98, 99].

4.4 Rossby Number Effects

As previously shown, an attached LEV was observed for both aspect ratio

plates. It was hypothesized that one of the reasons for others to observe a shedding

LEV was due to the configuration of their setup, in particular, the Rossby number

(Ro = Rroot/c; where Rroot is the radius from the axis of rotation to the start of the

plate). In the previously discussed experiments, the Rossby number was 0.3125; a

new study was conducted to determine if Rossby number affected the dynamics of the

LEV by causing it to shed. Venkata and Jones (2012) had a Rossby number of 0.65

where they observed a shedding LEV on an A= 2 flat plate at angles of attack of

15◦ and 45◦ at the 50% spanwise location for a Re = 5,000. In that respect, a Rossby

number of 0.8125 was chosen to evaluate the claim of Rossby number affecting the

dynamics of the LEV.

Some preliminary tests were performed on both aspect ratio plates. Figure

4.51 shows the results for the A= 4 plate at a Re = 8,000 for an angle of attack

of 35◦ for the range of azimuthal positions. It is apparent that even at a higher Ro,

an attached LEV can still be observed. This suggests that something else may be

controlling the dynamics of the LEV. One such mechanism could be the acceleration

rate and distance before the plate reaches a constant angular velocity (Anya Jones,

personal communication). However, this preliminary test reveals some interesting

traits. Comparing to the Ro = 0.3125 case (Figure 4.6), the higher Rossby number
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yielded a less coherent structure at all azimuthal positions. Furthermore, the size

of LEV is larger for the Ro = 0.8125 case, which allowed it to entrain more of the

positive vorticity inside the LEV. A nice future work comparison would be to do

circulation measurements for this data at the 37.5% spanwise location for the Ro =

0.3125 case to show how the LEV’s strength is affected by Rossby number.

Similar results were seen for theA= 2 plate at the 50% spanwise location for

a Ro = 0.8125.

4.5 Vorticity Transport Analysis

It was stated in Section 4.1 that there is an interaction between the counter-

clockwise region of vorticity adjacent to the plate’s surface and LEV structure, and it

is hypothesized that this interaction could potentially cause significant annihilation

of the LEV, which may help regulate the overall strength of the LEV and prevent

it from detaching from the surface of the plate. To support this claim, SPIV was

implemented as discussed in Section 3.2.4 to determine the contribution annihilation

has of the governing physics of the problem.

The A= 4 plate at a Reynolds number of 8,000 (based on tip speed) and an

angle of attack of 35◦ for ψ = 75◦, 90◦, 120◦, 180◦, and 270◦ was the only configuration

investigated. Nevertheless, a planar, chordwise control volume, shown in Figure 4.52,

at the 25% spanwise location was used which examined the relevant sources and sinks

of vorticity through the control volume. The conservation of vorticity through the

control volume is expressed in Equation 4.5.
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dΓz
dt

= −
∫
Az

Uz
∂ωz
∂z

dAz +

∫
Az

(
ωy
∂Uz
∂y

+ ωx
∂Uz
∂x

)
dAz

+

∫
Ly

Uxωz dL− Annihilation (4.5)

This analysis only considers the transport of spanwise circulation, Γz, in par-

ticular, the circulation of the negative vorticity which was ensured by applying a

vorticity threshold as discussed in Section 4.3. An average of five trials at each of the

planes mentioned in Section 3.2.4 was used to evaluate the terms in Equation 4.5.

The term on the left side represents the rate of change of circulation of the negative

vorticity which is calculated by using a weighted central differencing scheme between

three subsequent azimuthal positions and is shown discretely in Equation 4.6.

dΓ

dt
=

1

2

(
Γ2 − Γ1

t1
+

Γ1 − Γ0

t2

)
(4.6)

A weighted central differencing scheme was needed since the spacing between

azimuthal locations was not constant. In Equation 4.6, Γ0, Γ1, and Γ2 are the “first”,

“second”, and “third” azimuthal positions used to evaluate the vorticity transport

analysis at a particular ψ (e.g. to evaluate the term at ψ = 90◦, values of Γ at ψ =

75◦, 90◦, and 120◦ were used). The t1 term is the time it takes the blade to traverse

from the “second” to the “third” position while t2 is the time it takes the blade to

rotate from the “first” to the “second” azimuthal position.

The first term on the right hand side is the rate of change of negative vorticity

due to spanwise convection of a vorticity gradient. It is this term that others claim
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to be the dominate term in transporting the flux of vorticity along the surface of the

blade essentially regulating the strength of the LEV[30, 56, 57, 95]. The convection

term was calculated discretely as shown in Equation 4.7.

∫
Az

Uz
∂ωz
∂z

dAz =
∑

Uz
∂ωz
∂z

XgYg =
∑

Uz
ωzk+1

− ωzk−1

2Zg
XgYg (4.7)

Where Uz, ωzk+1
, ωzk−1

, Zg, Xg, and Yg is the spanwise velocity, spanwise

vorticity at the k+1 plane (outboard most chordwise laser plane), spanwise vorticity

at the k-1 plane (inboard most chordwise laser plane), spacing between chordwise laser

planes, spacing between vectors generated in the PIV vector files in the streamwise

direction, and spacing between vectors created in the PIV vector files in the vertical

direction (y-direction), respectively. Recall, the k-1, k, and k+1 planes are shown in

Figure 3.13.

The second term on the right side of Equation 4.5 accounts for tilting of

streamwise and normal vorticity, ωx and ωy, into the spanwise direction. This term

is broken into two parts to calculate the contributions from the X- and Y-tilting;

each one of these parts were calculated discretely shown in Equation 4.8 and 4.9,

respectively.

∫
Az

ωx
∂Uz
∂x

dAz

=
∑(

Uzj+1
− Uzj−1

2Yg
−
Uyk+1

− Uzk−1

2Zg

)(
Uzi+1

− Uzi−1

2Xg

)
XgYg (4.8)
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∫
Az

ωy
∂Uz
∂y

dAz

=
∑(

Uxk+1
− Uxk−1

2Zg
−
Uzi+1

− Uzi−1

2Xg

)(
Uzj+1

− Uzj−1

2Yg

)
XgYg (4.9)

Where i is a shift in the vector location in the x-direction while j is a shift in

the y-direction.

The third term evaluates the flux of spanwise vorticity into the control volume

from the shear layer created at the leading-edge of the plate. Since the shear layer

is unsteady, about 20 realizations were used to obtain a representative value for the

third term. It was computed by averaging a series of vertical boundaries starting

from the bottom point of boundary 1 in Figure 4.52 until slightly past the leading-

edge to average out any non-uniformities created from instabilities associated with

shear layers. The shear layer term can be represented discretely as demonstrated in

Equation 4.10.

∫
Ly

Uxωz dL =
∑

UxωzYg (4.10)

Where Ly is boundary 1 in Figure 4.52.

The sign convection of Equation 4.5 is such that a negative annihilation value

refers to the destruction of negative vorticity in the control volume. Furthermore,

it is assumed that there is no flux of vorticity through boundaries 2 and 3 shown in

Figure 4.52. This was asserted by proper placement of the two boundaries so that the

top boundary is above the LEV region, and since the LEV in this study is stationary,
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the third boundary was applied far enough downstream to make sure there is no flux

through boundary 3. Lastly, since typically counterclockwise vorticity is seen along

the surface of the plate, it is assumed that the flux of vorticity across boundary 4

due to vorticity creation is negligible because only negative vorticity is accounted for.

Additionally, the control volume was defined to be fixed to the plate such that the

velocity at boundary 4 is zero. With the proper boundaries in place, it is assumed

that whatever is not accounted for by these four terms is the contribution annihilation

has on the LEV.

To calculate the in-plane vorticity components, ωx and ωy, as well as the deriva-

tives of velocities and spanwise vorticity, a second-order central difference scheme was

implemented using the three laser planes, discussed in Section 3.2.4, each separated

by 1 millimeter. Precision alignment pins on the mounting structure were used to ac-

curately move the apparatus to ensure the correct shift with respect to the stationary

camera and laser plane.

Figure 4.53 shows the values of each of the terms at the three azimuthal

positions where the analysis was performed. The ωx and ωy tilting terms are the

dominating terms in Equation 4.5, and they exhibit a highly symmetrical pattern

suggesting that their net effect is mainly an exchange between in-plane vorticity

with relatively small contribution to the spanwise component. This implies that the

vorticity distribution inside the LEV is highly three-dimensional. The tilting terms

appear to become relatively constant beyond ψ = 120◦.

Figure 4.54 zooms in on the azimuthal axis of Figure 4.53 to closely exam-
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ine the other terms in Equation 4.5. An unexpected result is the contribution the

convection term has in the control volume. In the azimuthal positions below 120◦,

the annihilation term and convection term are in balance with one another. As the

system approaches a steady-state at ψ ≈ 120◦, the convection and unsteady term

vanish. This is in agreement with the 2D circulations measurements that were com-

pared with the theoretical bound circulation (i.e. Table 4.3) since the Γ
′

is relatively

constant beyond ψ = 180◦. This contradicts the spanwise flow arguments presented

by Ellington’s group and others claiming that spanwise flow keeps the LEV attached

to the wing by transporting vorticity from the inboard locations outwards towards

the tip[30, 67, 68, 69, 21, 22, 121]. Instead, the results presented here are similar

to Birch and Dickinson [10] by showing that spanwise flow is not essential during

steady-state. More importantly, after the initial transient (e.g. ψ >120◦), the shear

layer and annihilation term are in balance with one another with minor variations

being the differences between the ωx and ωy tilting terms. This strongly supports the

claim that annihilation is an important factor in governing the strength of the LEV

and thus ultimately keeping it attached to the LEV.

An error analysis was conducted on each of the terms and a detailed discussion

is presented in Appendix B. The error analysis yielded uncertainties for the unsteady,

convection, ωx tilting, ωy tilting, and shear layer terms of 15.2%, 2.6%, 4.7%, 4.7%,

and 1.2%, respectively. The uncertainty for the annihilation term was determined by

adding the uncertainties of the other terms in quadrature at each azimuthal position.

The three-dimensionality of the LEV region is supported by the spanwise
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velocity measurements shown in Figures 4.55 - 4.59, which depicts how the spanwise

velocity develops with time. There exists the development of two opposing pairs

of spanwise velocities that appear inside the control volume where blue signifies a

tip-to-root flow and red is a root-to-tip flow. The spanwise velocities for both flows

grow in magnitude with increasing azimuthal angle. The appearance of two opposing

spanwise velocities inside the LEV has been shown in the literature by Carr et al [17]

using SPIV measurements done on similar aspect ratio plates. The magnitude of the

spanwise velocities are not comparable with Carr et al [17] because their results show

the earlier azimuthal positions (i.e. ψ ≤ 48◦), but their results do show an increase

in the magnitudes as azimuthal position increases, which is consist with the current

results.

To attempt to validate the spanwise velocities seen using SPIV, 2D PIV was

used by creating a spanwise laser plane (y-z ) 5 millimeters from the leading-edge to

attempt to measure the spanwise velocity along the span of the plate. The averaged,

nondimensionalized, spanwise velocity contours for the 2D experiments can be seen

in Figure 4.60, and it is apparent that the spanwise flow at the inboard spanwise

locations exceed the tip velocity. The magnitude of the spanwise flow measured using

SPIV in the core of the root-to-tip flow was on average about U∗z = 0.5 at ψ = 180◦.

The 2D data has approximately the same value, but it tends to be a little higher than

the SPIV measurements. One possible explanation for this is the 2D data might need

more trials to properly characterize the spanwise velocities because the three average

trials produce jagged contours. The tip-to-root flow is not visible in the averaged
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contours of the nondimensionalized spanwise velocity, but as shown in Figure 4.61,

the instantaneous, nondimensionalized, spanwise velocity contours indicate a tip-to

root velocity near the tip of the plate. Since the velocity of the tip-to-root flow is

very small, those contours values were not shown in Figure 4.60.

Contour plots of the convection, X-tilting, and Y-tilting inside the control

volume are shown in Figures 4.62 - 4.64. Figure 4.62 reveals that the main portion

of the control volume where convection of Γz due to a vorticity gradient occurs at

the back, lower part of the LEV which coincides with the largest root-to-tip velocity

gradients shown in Figures 4.55 - 4.59. On the other hand, Figures 4.63 and 4.64 show

the regions where the dominant exchange of ωx and ωy occur, respectively. These

results further confirm that the structure of the LEV is highly three-dimensional

since the contours do not appear to show any dominate regions of tilting.
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Table 4.1: Theoretical bound cir-

culations in mm2/s computed ac-

cording to Equation 4.4.

Reynolds Number
α 4,000 8,000 16,000

25◦ 1346 2691 5382
35◦ 1826 3652 7305
45◦ 2251 4503 9005
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Table 4.2: Relative circula-

tion (Γ
′
) values for theA=

4 plate at a Relocal = 4,000

for the azimuthal range ex-

amined.

α
ψ 25◦ 35◦ 45◦

90◦ 1.40 1.51 1.62
180◦ 1.57 1.76 2.23
235◦ 1.78 1.92 1.99
270◦ 1.83 1.82 2.06
320◦ 1.93 1.91 2.02
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Table 4.3: Relative circula-

tion (Γ
′
) values for theA=

4 plate at a Relocal = 8,000

for the azimuthal range ex-

amined.

α
ψ 25◦ 35◦ 45◦

90◦ 1.50 1.77 1.77
180◦ 1.90 1.99 2.07
235◦ 1.93 2.05 2.15
270◦ 1.91 2.04 2.09
320◦ 2.10 2.35 2.07
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Table 4.4: Relative circula-

tion (Γ
′
) values for theA=

4 plate at a Relocal = 16,000

for the azimuthal range ex-

amined.

α
ψ 25◦ 35◦ 45◦

90◦ 1.62 1.67 1.79
180◦ 1.91 1.85 2.08
235◦ 1.99 2.07 2.00
270◦ 2.17 2.17 2.13
320◦ 2.28 2.01 2.11
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Table 4.5: Relative circula-

tion (Γ
′
) values for theA=

2 plate at a Relocal = 8,000

for the azimuthal range ex-

amined.

α
ψ 25◦ 35◦ 45◦

90◦ 0.91 1.14 1.25
180◦ 1.02 1.28 1.46
235◦ 1.14 1.38 1.53
270◦ 1.15 1.35 1.50
320◦ 1.19 1.37 1.42
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Table 4.6: Relative circula-

tion (Γ
′
) values for theA=

2 plate at a Relocal = 16,000

for the azimuthal range ex-

amined.

α
ψ 25◦ 35◦ 45◦

90◦ 1.15 1.10 1.14
180◦ 1.13 0.97 1.45
235◦ 1.31 1.24 1.50
270◦ 1.28 1.50 1.49
320◦ 1.31 1.44 1.38
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Figure 4.1: Nondimensionalized, instantaneous vorticity field at ψ = 90◦ for the 25%

spanwise location on the A4 plate at an α = 25◦ and Reynolds number of 4,000.

In-plane velocity components are shown by the vectors.
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Figure 4.2: Nondimensionalized, instantaneous vorticity field at ψ = 180◦ for the

25% spanwise location on theA4 plate at an α = 25◦ and Reynolds number of 4,000.

In-plane velocity components are shown by the vectors.
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Figure 4.3: Nondimensionalized, instantaneous vorticity field at ψ = 235◦ for the

25% spanwise location on theA4 plate at an α = 25◦ and Reynolds number of 4,000.

In-plane velocity components are shown by the vectors.
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Figure 4.4: Nondimensionalized, instantaneous vorticity field at ψ = 270◦ for the

25% spanwise location on theA4 plate at an α = 25◦ and Reynolds number of 4,000.

In-plane velocity components are shown by the vectors.
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Figure 4.5: Nondimensionalized, instantaneous vorticity field at ψ = 320◦ for the

25% spanwise location on theA4 plate at an α = 25◦ and Reynolds number of 4,000.

In-plane velocity components are shown by the vectors.
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(a) (b)

(c) (d)

(e)

Figure 4.6: Temporal evolution of the nondimensionalized, instantaneous vorticity

fields at the 25% spanwise location for the A4 plate at an α = 25◦ and Reynolds

number of 8,000. a.) ψ = 90◦ b.) ψ = 180◦ c.) ψ = 235◦ d.) ψ = 270◦, and e.)

ψ = 320◦.
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(a) (b)

(c) (d)

(e)

Figure 4.7: Temporal evolution of the nondimensionalized, instantaneous vorticity

fields at the 25% spanwise location for the A4 plate at an α = 25◦ and Reynolds

number of 16,000. a.) ψ = 90◦ b.) ψ = 180◦ c.) ψ = 235◦ d.) ψ = 270◦, and e.)

ψ = 320◦.
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(a) (b)

(c) (d)

(e)

Figure 4.8: Temporal evolution of the nondimensionalized, instantaneous vorticity

fields at the 25% spanwise location for the A4 plate at an α = 35◦ and Reynolds

number of 4,000. a.) ψ = 90◦ b.) ψ = 180◦ c.) ψ = 235◦ d.) ψ = 270◦, and e.)

ψ = 320◦.
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(a) (b)

(c) (d)

(e)

Figure 4.9: Temporal evolution of the nondimensionalized, instantaneous vorticity

fields at the 25% spanwise location for the A4 plate at an α = 35◦ and Reynolds

number of 8,000. a.) ψ = 90◦ b.) ψ = 180◦ c.) ψ = 235◦ d.) ψ = 270◦, and e.)

ψ = 320◦.
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(a) (b)

(c) (d)

(e)

Figure 4.10: Temporal evolution of the nondimensionalized, instantaneous vorticity

fields at the 25% spanwise location for the A4 plate at an α = 35◦ and Reynolds

number of 16,000. a.) ψ = 90◦ b.) ψ = 180◦ c.) ψ = 235◦ d.) ψ = 270◦, and e.)

ψ = 320◦.
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(a) (b)

(c) (d)

(e)

Figure 4.11: Temporal evolution of the nondimensionalized, instantaneous vorticity

fields at the 25% spanwise location for the A4 plate at an α = 45◦ and Reynolds

number of 4,000. a.) ψ = 90◦ b.) ψ = 180◦ c.) ψ = 235◦ d.) ψ = 270◦, and e.)

ψ = 320◦.
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(a) (b)

(c) (d)

(e)

Figure 4.12: Temporal evolution of the nondimensionalized, instantaneous vorticity

fields at the 25% spanwise location for the A4 plate at an α = 45◦ and Reynolds

number of 8,000. a.) ψ = 90◦ b.) ψ = 180◦ c.) ψ = 235◦ d.) ψ = 270◦, and e.)

ψ = 320◦.
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(a) (b)

(c) (d)

(e)

Figure 4.13: Temporal evolution of the nondimensionalized, instantaneous vorticity

fields at the 25% spanwise location for the A4 plate at an α = 45◦ and Reynolds

number of 16,000. a.) ψ = 90◦ b.) ψ = 180◦ c.) ψ = 235◦ d.) ψ = 270◦, and e.)

ψ = 320◦.
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Figure 4.14: Nondimensionalized, instantaneous vorticity field at ψ = 90◦ for the

50% spanwise location on theA2 plate at an α = 25◦ and Reynolds number of 4,000.

In-plane velocity components are shown by the vectors.
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Figure 4.15: Nondimensionalized, instantaneous vorticity field at ψ = 180◦ for the

50% spanwise location on theA2 plate at an α = 25◦ and Reynolds number of 4,000.

In-plane velocity components are shown by the vectors.
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Figure 4.16: Nondimensionalized, instantaneous vorticity field at ψ = 235◦ for the

50% spanwise location on theA2 plate at an α = 25◦ and Reynolds number of 4,000.

In-plane velocity components are shown by the vectors.
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Figure 4.17: Nondimensionalized, instantaneous vorticity field at ψ = 270◦ for the

50% spanwise location on theA2 plate at an α = 25◦ and Reynolds number of 4,000.

In-plane velocity components are shown by the vectors.



103

Figure 4.18: Nondimensionalized, instantaneous vorticity field at ψ = 320◦ for the

50% spanwise location on theA2 plate at an α = 25◦ and Reynolds number of 4,000.

In-plane velocity components are shown by the vectors.
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(a) (b)

(c) (d)

(e)

Figure 4.19: Temporal evolution of the nondimensionalized, instantaneous vorticity

fields at the 50% spanwise location for the A2 plate at an α = 25◦ and Reynolds

number of 8,000. a.) ψ = 90◦ b.) ψ = 180◦ c.) ψ = 235◦ d.) ψ = 270◦, and e.)

ψ = 320◦.
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(a) (b)

(c) (d)

(e)

Figure 4.20: Temporal evolution of the nondimensionalized, instantaneous vorticity

fields at the 50% spanwise location for the A2 plate at an α = 35◦ and Reynolds

number of 4,000. a.) ψ = 90◦ b.) ψ = 180◦ c.) ψ = 235◦ d.) ψ = 270◦, and e.)

ψ = 320◦.
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(a) (b)

(c) (d)

(e)

Figure 4.21: Temporal evolution of the nondimensionalized, instantaneous vorticity

fields at the 50% spanwise location for the A2 plate at an α = 35◦ and Reynolds

number of 8,000. a.) ψ = 90◦ b.) ψ = 180◦ c.) ψ = 235◦ d.) ψ = 270◦, and e.)

ψ = 320◦.
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(a) (b)

(c) (d)

(e)

Figure 4.22: Temporal evolution of the nondimensionalized, instantaneous vorticity

fields at the 50% spanwise location for the A2 plate at an α = 45◦ and Reynolds

number of 4,000. a.) ψ = 90◦ b.) ψ = 180◦ c.) ψ = 235◦ d.) ψ = 270◦, and e.)

ψ = 320◦.
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(a) (b)

(c) (d)

(e)

Figure 4.23: Temporal evolution of the nondimensionalized, instantaneous vorticity

fields at the 50% spanwise location for the A2 plate at an α = 45◦ and Reynolds

number of 8,000. a.) ψ = 90◦ b.) ψ = 180◦ c.) ψ = 235◦ d.) ψ = 270◦, and e.)

ψ = 320◦.
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Figure 4.24: Nondimensionalized, instantaneous vorticity field at ψ = 90◦ for the

50% spanwise location on theA4 plate at an α = 25◦ and Reynolds number of 4,000.

In-plane velocity components are shown by the vectors.
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Figure 4.25: Nondimensionalized, instantaneous vorticity field at ψ = 180◦ for the

50% spanwise location on theA4 plate at an α = 25◦ and Reynolds number of 4,000.

In-plane velocity components are shown by the vectors.
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Figure 4.26: Nondimensionalized, instantaneous vorticity field at ψ = 235◦ for the

50% spanwise location on theA4 plate at an α = 25◦ and Reynolds number of 4,000.

In-plane velocity components are shown by the vectors.
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Figure 4.27: Nondimensionalized, instantaneous vorticity field at ψ = 270◦ for the

50% spanwise location on theA4 plate at an α = 25◦ and Reynolds number of 4,000.

In-plane velocity components are shown by the vectors.
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Figure 4.28: Nondimensionalized, instantaneous vorticity field at ψ = 320◦ for the

50% spanwise location on theA4 plate at an α = 25◦ and Reynolds number of 4,000.

In-plane velocity components are shown by the vectors.
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(a) (b)

(c) (d)

(e)

Figure 4.29: Temporal evolution of the nondimensionalized, instantaneous vorticity

fields at the 50% spanwise location for the A4 plate at an α = 25◦ and Reynolds

number of 8,000. a.) ψ = 90◦ b.) ψ = 180◦ c.) ψ = 235◦ d.) ψ = 270◦, and e.)

ψ = 320◦.
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(a) (b)

(c) (d)

(e)

Figure 4.30: Temporal evolution of the nondimensionalized, instantaneous vorticity

fields at the 50% spanwise location for the A4 plate at an α = 25◦ and Reynolds

number of 16,000. a.) ψ = 90◦ b.) ψ = 180◦ c.) ψ = 235◦ d.) ψ = 270◦, and e.)

ψ = 320◦.
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(a) (b)

(c) (d)

(e)

Figure 4.31: Temporal evolution of the nondimensionalized, instantaneous vorticity

fields at the 50% spanwise location for the A4 plate at an α = 35◦ and Reynolds

number of 4,000. a.) ψ = 90◦ b.) ψ = 180◦ c.) ψ = 235◦ d.) ψ = 270◦, and e.)

ψ = 320◦.
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(a) (b)

(c) (d)

(e)

Figure 4.32: Temporal evolution of the nondimensionalized, instantaneous vorticity

fields at the 50% spanwise location for the A4 plate at an α = 35◦ and Reynolds

number of 8,000. a.) ψ = 90◦ b.) ψ = 180◦ c.) ψ = 235◦ d.) ψ = 270◦, and e.)

ψ = 320◦.
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(a) (b)

(c) (d)

(e)

Figure 4.33: Temporal evolution of the nondimensionalized, instantaneous vorticity

fields at the 50% spanwise location for the A4 plate at an α = 35◦ and Reynolds

number of 16,000. a.) ψ = 90◦ b.) ψ = 180◦ c.) ψ = 235◦ d.) ψ = 270◦, and e.)

ψ = 320◦.
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(a) (b)

(c) (d)

(e)

Figure 4.34: Temporal evolution of the nondimensionalized, instantaneous vorticity

fields at the 50% spanwise location for the A4 plate at an α = 45◦ and Reynolds

number of 4,000. a.) ψ = 90◦ b.) ψ = 180◦ c.) ψ = 235◦ d.) ψ = 270◦, and e.)

ψ = 320◦.
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(a) (b)

(c) (d)

(e)

Figure 4.35: Temporal evolution of the nondimensionalized, instantaneous vorticity

fields at the 50% spanwise location for the A4 plate at an α = 45◦ and Reynolds

number of 8,000. a.) ψ = 90◦ b.) ψ = 180◦ c.) ψ = 235◦ d.) ψ = 270◦, and e.)

ψ = 320◦.
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(a) (b)

(c) (d)

(e)

Figure 4.36: Temporal evolution of the nondimensionalized, instantaneous vorticity

fields at the 50% spanwise location for the A4 plate at an α = 45◦ and Reynolds

number of 16,000. a.) ψ = 90◦ b.) ψ = 180◦ c.) ψ = 235◦ d.) ψ = 270◦, and e.)

ψ = 320◦.
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(a) (b)

(c)

Figure 4.37: Three trials of nondimensionalized, vorticity fields obtained for ψ = 270◦

at a Re = 4,000 and α = 25◦ for the A4 plate.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.38: Instantaneous nondimensionalized vorticity of the LEV structure for

the aspect ratio 4 plate at ψ = 90◦ with variations in Reynolds number and angle of

attack. The top row shows how the structure varies with angle of attack for a Reynolds

number of 4,000. The middle and bottom row hold the Reynolds number constant at

8,000 and 16,000 respectively. Each column, the angle of attack is remained constant

where the first, second, and third column have angles of attack of 25◦, 35◦, and 45◦,

respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 4.39: Instantaneous nondimensionalized vorticity of the LEV structure for

the aspect ratio 2 plate at ψ = 90◦ with variations in Reynolds number and angle

of attack. The top row shows how the structure varies with angle of attack for a

Reynolds number of 4,000. The bottom row holds the Reynolds number constant at

8,000. Each column, the angle of attack is remained constant where the first, second,

and third column have angles of attack of 25◦, 35◦, and 45◦, respectively.
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Figure 4.40: Nondimensionalized circulation measurements of the LEV for both plates

at Re = 4,000 (based on the tip velocity) for azimuthal locations between 90◦ and

320◦.
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Figure 4.41: Nondimensionalized circulation measurements of the LEV for both plates

at Re = 8,000 (based on the tip velocity) for azimuthal locations between 90◦ and

320◦.
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Figure 4.42: Nondimensionalized circulation measurements of the LEV for theA= 4

plate at Re = 16,000 (based on the tip velocity) for azimuthal locations between 90◦

and 320◦.
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Figure 4.43: TheA= 4 plate’s nondimensionalized circulation values for all conditions

investigated.
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Figure 4.44: TheA= 2 plate’s nondimensionalized circulation values for all conditions

investigated.
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Figure 4.45: Nondimensionalized circulation measurements of the LEV for both plates

at Re = 2,000 (based on the local velocity at the b = 25.4 mm spanwise location) for

varying azimuthal locations between 90◦ and 320◦.
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Figure 4.46: Nondimensionalized circulation measurements of the LEV for both plates

at Re = 4,000 (based on the local velocity at the b = 25.4 mm spanwise location) for

varying azimuthal locations between 90◦ and 320◦.



132

Figure 4.47: ψ = 90◦ dimensional theoretical bound circulation and experimental

circulation values of the LEV for the A= 4 plate.
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Figure 4.48: ψ = 180◦ dimensional theoretical bound circulation and experimental

circulation values of the LEV for the A= 2 plate.
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Figure 4.49: ψ = 270◦ dimensional theoretical bound circulation and experimental

circulation values of the LEV for the A= 2 plate.
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Figure 4.50: The range of LEV circulation values for the A= 2 plate for Relocal =

16,000 over the azimuthal range at α = 35◦.
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(a) (b)

(c) (d)

(e)

Figure 4.51: Temporal evolution of the nondimensionalized, instantaneous, vorticity

fields at the 25% spanwise location for theA4 plate for a Ro = 0.8125 at an α = 35◦

and Reynolds number of 8,000. a.) ψ = 90◦ b.) ψ = 180◦ c.) ψ = 235◦ d.) ψ = 270◦,

and e.) ψ = 320◦.
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Figure 4.52: A depiction of the control volume used in Equation 4.5.
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Figure 4.53: The rate of change of spanwise clockwise circulation for each of the terms

in Equation 4.5.
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Figure 4.54: Zoomed in results of Figure 4.53 to show a more detailed view on the

azimuthal location axis.
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Figure 4.55: Nondimensionalized spanwise velocity (U∗z = Uz/Utip) at the k plane

for ψ = 75◦ averaged over 5 trials. In-plane velocity components are shown by the

vectors.



141

Figure 4.56: Nondimensionalized spanwise velocity (U∗z = Uz/Utip) at the k plane

for ψ = 90◦ averaged over 5 trials. In-plane velocity components are shown by the

vectors.
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Figure 4.57: Nondimensionalized spanwise velocity (U∗z = Uz/Utip) at the k plane

for ψ = 120◦ averaged over 5 trials. In-plane velocity components are shown by the

vectors.
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Figure 4.58: Nondimensionalized spanwise velocity (U∗z = Uz/Utip) at the k plane

for ψ = 180◦ averaged over 5 trials. In-plane velocity components are shown by the

vectors.
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Figure 4.59: Nondimensionalized spanwise velocity (U∗z = Uz/Utip) at the k plane

for ψ = 270◦ averaged over 5 trials. In-plane velocity components are shown by the

vectors.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.60: Averaged, nondimensionalized, spanwise velocity (U∗z = Uz/Utip) for: a.)

ψ = 75◦ b.) ψ = 90◦ c.) ψ = 120◦ d.) ψ = 180◦ e.) ψ = 235◦ f.) ψ = 270◦ g.)

ψ = 320◦.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.61: Instantaneous, nondimensionalized, spanwise velocity (U∗z = Uz/Utip)

for: a.) ψ = 75◦ b.) ψ = 90◦ c.) ψ = 120◦ d.) ψ = 180◦ e.) ψ = 235◦ f.) ψ = 270◦

g.) ψ = 320◦.
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(a) (b)

(c)

Figure 4.62: Contours of vorticity transport inside the control volume due to the

convection term in Equation 4.5. a.) ψ = 90◦ b.) ψ = 120◦ and c.) ψ = 180◦.
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(a) (b)

(c)

Figure 4.63: Contours of vorticity transport inside the control volume due to the

X-tilting term in Equation 4.5. a.) ψ = 90◦ b.) ψ = 120◦ and c.) ψ = 180◦.
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(a) (b)

(c)

Figure 4.64: Contours of vorticity transport inside the control volume due to the

Y-tilting term in Equation 4.5. a.) ψ = 90◦ b.) ψ = 120◦ and c.) ψ = 180◦.
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CHAPTER 5
CONCLUSIONS AND FUTURE WORK

Chapters 1 and 2 introduced the motivation behind studying purely rotating

blades and their applications in realistic applications such as flapping flight, heli-

copters, and wind turbine aerodynamics. Previous studies indicated the presence of

a LEV which accounted for high lift coefficients and allowed for the plate to maintain

attached flow at higher angles of attack where translational cases, synonymous to

fixed wing aircraft, would be in a stall regime. Ellington et al [30] claimed in his

study that the spanwise flow inside the core of the LEV stabilized the LEV and lim-

ited its strength from becoming too large. However, Birch and Dickinson [10] showed

that hindering the spanwise flow on the surface of the blade did not cause the LEV to

become unstable. Also, some groups such as Jones and Babinsky [45], Jones et al [47],

Grandlund et al [36], and Venkata and Jones [107] have observed the LEV undergoing

a shedding while Devoria et al [23], Carr et al [17], Lentink and Dickinsion [56, 57],

Ansari et al [4], and Ozen and Rockwell [75] have seen a single LEV that remains

concentrated towards the leading-edge of the plate. An experimental investigation of

a flat plate of various aspect ratios was conducted, examining variations in angle of

attack, azimuthal position, Reynolds number, and spanwise position in a quiescent

flow with the plate moving in a starting motion. The results indicated that, at least

for the present case, annihilation of negative vorticity inside the LEV is primarily

responsible for regulating the strength of the LEV and prevents it from becoming too

large which would cause the LEV to detach. Furthermore, spanwise flow was shown
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not to be important when the plate reached a steady-state at ψ ' 120◦.

5.1 Conclusions

The nondimensional circulation of the LEV, Γ∗, increases with increasing angle

of attack, but it is relatively insensitive to Reynolds number variations. Additionally,

the 2D PIV experiments showed that with increasing azimuthal position, the LEV

begins to entrain more of positive vorticity on the suction surface of the plate. The

LEV begins to entrain more of the counterclockwise region by means of inducing a

velocity in the direction of the leading-edge such that the positive vorticity is captured

by the shear layer and redistributed into the LEV. This observation inspired the

development of a vorticity transport analysis, discussed in Chapter 4, in which the

time rate of change of the LEV circulation, convection, tilting of negative vorticity,

and shear layer contributions in a control volume were estimated, and the remainder

in the balance was associated with the annihilation between the positive vorticity and

the LEV. Inside the LEV, the transport of vorticity is dominated by the tilting of ωx

and ωy vorticity into and out of the spanwise direction which implies a highly, three-

dimensional distribution of vorticity in the LEV. SPIV measurements of the spanwise

velocity further validate this claim by showing four separate peaks in spanwise velocity

magnitude where two of them show a strong root-to-tip flow while the other two are

tip-to-root flows. 2D PIV measurements of the spanwise velocity 5 millimeters from

the leading-edge exhibit a dominant root-to-tip flow, but there is noticeable tip-to-

root velocity gradient created above the plate towards the tip of the plate.
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During the developmental stages of the LEV, the annihilation term seems to

be in balance with the convection term, but with increasing azimuthal position the

convection term becomes less important. Beyond ψ = 120◦ the plate approaches a

steady state, and it is observed that the unsteady and convection terms go to zero.

The key aspect to this analysis is the shear layer and annihilation terms are in balance

with one another with the small variations being associated with differences in the

X- and Y-tilting terms, which suggests that annihilation is the dominant factor in

regulating the strength of the LEV for ψ ' 120◦ . It is therefore proposed that

the annihilation between the positive vorticity and LEV is a new and important

mechanism to be considered in rotating wings.

5.2 Future Work

The present study only investigated a few spanwise positions along the plates.

Therefore, it would be beneficial to examine more chordwise planes to see how the

LEV develops and to examine the effects spanwise position on the circulation of the

LEV. Multiple spanwise locations will provide insight into the effects of the tip vortex

which, as mentioned in Chapter 2, was postulated by Shy et al [88] and Birch and

Dickinson [10, 88] to promote LEV attachment to some extent.

Furthermore, higher angles of attack should be looked at to determine when

the plate will eventually become stalled. This leads to several questions such as “do

larger or smaller aspect ratios experience stall sooner?” Pressure tap measurements

along the span would provide insight to the torsional stresses experience along the
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plate that may be detrimental to the plate especially at higher angles of attack when

the inboard spanwise locations tend to maintain flow attachment while outboard

locations are typically stalled.

The study presented here only examines one configuration when performing

the vorticity transport analysis. More cases need to be investigated to further support

the validity of the claim that annihilation is an important factor in governing the

strength of the LEV for the general rotating wing or blade. Also, additional spanwise

planes need to be obtained to confirm the spanwise velocities seen using chordwise

SPIV measurements. This will require further conditioning of the plate’s surface

(such as with fluorescent paint) to reduce reflections and thus obtain more detail in

these experiments.

Also, a method needs to be developed to objectively define whether the LEV

is attached or shedding throughout the span of the plate, or is some other paradigm

needed.

The next step in this research is to fully submerge the mechanism inside a water

channel which will create opportunities to look at the effects a free-stream velocity

might have on the flow. In conjunction with a free-stream velocity, the mechanism

may be yawed with respect to the free-stream and experiments may be performed to

see the effects of dynamic stall.
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APPENDIX A
PLOTS OF THEORETICAL BOUND CIRCULATION AND

EXPERIMENTAL MEASUREMENTS OF LEV CIRCULATION

This chapter contains the plots for both aspect ratio plates comparing the

experimentally measured LEV strengths with the bound circulation computed the-

oretically using thin airfoil theory using Equation 4.4. Figures A.1 - A.5 show the

A= 4 plate’s LEV circulation compared to the bound circulation over the range

of azimuthal positions investigated. As discussed in Section 4.3, the LEV strength

increases approximately linearly at all azimuthal positions. Small curvatures in the

LEV strength, such as the Re = 8,000 in Figure A.1, Re = 4,000 & 16,000 in Figure

A.2, Re = 16,000 in Figure A.3, and Re = 8,000 & 16,000 in Figure A.5, are likely

explained by the small number of trials acquired (3) which variations in the LEV

strength could slightly skew the mean. With more trials acquired for each case, the

LEV strength will likely become more linear. In all cases, the LEV circulation is

seen to be larger than its theoretical bound circulation suggesting that the LEV is a

significant source of lift augmentation. From 180◦ ≤ ψ ≤ 270◦ the circulation of the

LEV at a Re = 8,000 follows the theoretical bound circulation for Re = 16,000 over

the range of angles of attack; however, the LEV’s strength surpasses the theoretical

value at ψ = 320◦. The same can be said for the LEV’s circulation at Re = 4,000

and the bound circulation at Re = 8,000 from 180◦ ≤ ψ ≤ 320◦. From these results,

the claim can be made that the LEV is unsteady during the initial transients (i.e. ψ

<180◦), but then approaches a steady-state beyond ψ = 180◦.
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Figures A.6 - A.10 show the same comparison of LEV strength and theoretical

bound circulation values for a fixed azimuthal position except now the LEV strength is

for theA= 2 plate. Generally, the same arguments that were said about theA4 plate

can be said for the A2 plate with the LEV circulation being characterized as linear

over the angles of attack investigated except having different constants proportional to

sinα between the theoretical and experimental results for a given Reynolds number.

There is a specific occasion where the LEV actually dips below the bound circulation

value in Figure A.7 for Re = 16,000. As discussed in Section 4.3 and shown in Figure

4.50, the dip in the LEV’s strength is likely contributed to an outlier measurement

of the circulation skewing the mean LEV measurement (Γmean).
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Figure A.1: ψ = 90◦ dimensional theoretical bound circulation and experimental

circulation values of the LEV for the A= 4 plate.
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Figure A.2: ψ = 180◦ dimensional theoretical bound circulation and experimental

circulation values of the LEV for the A= 4 plate.
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Figure A.3: ψ = 235◦ dimensional theoretical bound circulation and experimental

circulation values of the LEV for the A= 4 plate.
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Figure A.4: ψ = 270◦ dimensional theoretical bound circulation and experimental

circulation values of the LEV for the A= 4 plate.
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Figure A.5: ψ = 320◦ dimensional theoretical bound circulation and experimental

circulation values of the LEV for the A= 4 plate.
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Figure A.6: ψ = 90◦ dimensional theoretical bound circulation and experimental

circulation values of the LEV for the A= 2 plate.
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Figure A.7: ψ = 180◦ dimensional theoretical bound circulation and experimental

circulation values of the LEV for the A= 2 plate.
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Figure A.8: ψ = 235◦ dimensional theoretical bound circulation and experimental

circulation values of the LEV for the A= 2 plate.
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Figure A.9: ψ = 270◦ dimensional theoretical bound circulation and experimental

circulation values of the LEV for the A= 2 plate.
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Figure A.10: ψ = 320◦ dimensional theoretical bound circulation and experimental

circulation values of the LEV for the A= 2 plate.
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APPENDIX B
VORTICITY TRANSPORT ERROR PROPAGATION

This chapter aims at providing a detailed account on the analysis of the un-

certainties of the terms in Equation 4.5. This chapter tries to give a conservative

estimate of the errors, but it is not a rigorous analysis. Simplifications and general-

izations were made to facilitate the quantifications of each uncertainty of the terms.

An uncertainty in the PIV data was assumed based on the literature and quality of

the data, and from the assumed values, a general uncertainty, designated by σ, for

each of the terms can be calculated at an individual point. In the following sections,

mention of the k-1, k, and k+1 planes are in reference to the three chordwise laser

planes shown in Figure 3.13 created to obtain the SPIV measurements.

B.1 Convection Term

From Equation 4.5, the convection term is calculated discretely as described

in Equation 4.7. Using the generalization presented in Equation 4.7, a relative error

for a single point in the analysis may be calculated and is shown by Equation B.1.

conv = Uz
ωzk+1

− ωzk−1

2Zg
XgYg (B.1)

Where Uz, ωzk+1
, ωzk−1

, Zg, Xg, and Yg is the spanwise velocity, spanwise

vorticity at the k+1 plane (outboard most chordwise laser plane), spanwise vorticity

at the k-1 plane (inboard most chordwise laser plane), spacing between chordwise laser

planes, spacing between vectors generated in the PIV vector files in the streamwise
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direction, and spacing between vectors created in the PIV vector files in the vertical

direction (y-direction), respectively.

Now, in order to successfully propagate the error from the DPIV measure-

ments, partial derivatives of the convection term need to be taken with respect to

each of the possible sources of error. The partial derivatives for each component are

shown in Equations B.2 - B.7.

∂conv

∂Uz
=
ωzk+1

− ωzk−1

2Zg
XgYg (B.2)

∂conv

∂ωzk+1

=
UzXgYg

2Zg
(B.3)

∂conv

∂ωzk−1

=
−UzXgYg

2Zg
(B.4)

∂conv

∂Xg

= UzYg
ωzk+1

− ωzk−1

2Zg
(B.5)

∂conv

∂Yg
= UzXg

ωzk+1
− ωzk−1

2Zg
(B.6)

∂conv

∂Zg
=
−UzXgYg

(
ωzk+1

− ωzk−1

)
2Z2

g

(B.7)

Adding the errors in quadrature, the general overall uncertainty for the con-

vection term is expressed in Equation B.8.
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σconv =

[(
∂conv

∂Uz
σUz

)2

+

(
∂conv

∂ωzk+1

σωzk+1

)2

+

(
∂conv

∂ωzk−1

σωzk−1

)2

+

(
∂conv

∂Xg

σXg

)2

+

(
∂conv

∂Yg
σYg

)2

+

(
∂conv

∂Zg
σZg

)2
] 1

2

(B.8)

To evaluate the convection term’s uncertainty, the uncertainties presented on

the right hand side of Equation B.8 need to be calculated. In this analysis, the

uncertainties in the vector spacing (σXg , σYg , and σZg) are assumed to be negligible.

A conservative estimate for the uncertainties in the spanwise velocity and spanwise

vorticities were calculated and are demonstrated in the subsequent equations.

The velocity vectors are calculated using PIV by first using a cross-correlation

analysis to determine a mean particle displacement within a sub-window of the do-

main between the two images and dividing by the time interval separating the image

pair[79]. The spanwise velocity, Uz, can be defined in this manner and is shown in

Equation B.9.

Uz =
∆z

M∆t
(B.9)

Where M is the magnification ratio. The total uncertainty in the spanwise

velocity can be obtained by once again taking partial derivatives of Uz with respect to

the terms that will contribute error. The cameras were calibrated with the laser plane

using a LaVision # 20 calibration plate in which the camera was focused directly on

the plate’s dots allowing the DaVis 8.0 software to fit a third-order polynomial to the

view, essentially dewarping the image. From the fit, the correlation was considered to



169

be of “excellent” quality with root-mean-square (RMS) of the fit to be less than 0.3

pixels. Since the calibration was of high quality, the uncertainty in the magnification

ratio is assumed to not be a major component of uncertainty in the spanwise velocity.

The resulting uncertainty for the spanwise velocity is given in Equation B.10.

σUZ
=

[(
∂Uz
∂∆z

σ∆z

)2

+

(
∂Uz
∂∆t

σ∆t

)2
] 1

2

(B.10)

The uncertainty in ∆t is determined by the laser timing and can be as high as

10 to 100 nanoseconds which is subject to the electrical supply conditions and optical

settings (Dr. Steve Anderson, LaVision Inc., personal communication), but since ∆t

times were on the order of hundreds (some cases thousands) of microseconds, the

uncertainty associated with ∆t is assumed to be negligible. The resulting uncertainty

used in the analysis for the spanwise velocity is:

σUz =
σ∆z

M∆t
(B.11)

Factors that influence PIV errors are large particle sizes, improper seeding

of particles, particle displacement, and out-of-plane motion[1, 41, 79]. Huang et al.

[41] proposed a representative uncertainty in the displacement determined by DPIV

analysis to be approximately 0.1 pixels. Prasad and Adrian [77] stated that the

uncertainty in the out-of-plane motion in SPIV could be 4 times as large as the in-

plane components. Obtaining accurate estimates of PIV uncertainty in situ is not

possible due to the widely-varying sources of error from vector to vector. With the

influence of these publications, advancements in technology, and the quality of the
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data obtained, the assumed uncertainties for the change in pixel position for σ∆x,

σ∆y, σ∆z were 0.1, 0.1, and 0.3 pixels, respectively.

Out-of-plane vorticity components were calculated using the central difference

scheme presented in Equation 3.2. To determine the uncertainty in the vorticity

values, the potential sources of errors were added in quadrature as demonstrated in

Equation B.12.

σωz =

[(
1

2Xg

σUyi+1

)2

+

(
−1

2Xg

σUyi−1

)2

+

(
−1

2Yg
σUxj+1

)2

+

(
1

2Yg
σUxj−1

)2
] 1

2

(B.12)

Where

σUxj+1
= σUxj−1

= σUx (B.13)

σUyi+1
= σUyi−1

= σUy (B.14)

σωzk+1
= σωzk−1

= σωz (B.15)

From the previous explanation, the uncertainties for σUx and σUy are described

by Equations B.16 and B.17, respectively.

σUx =
σ∆x

M∆t
(B.16)
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σUy =
σ∆y

M∆t
(B.17)

The simplifications yield:

σωz =

(
σ2
Uy

2X2
g

+
σ2
Ux

2Y 2
g

) 1
2

(B.18)

Plugging the assumptions and simplifications into Equation B.8, the modified

uncertainty in the convection term is displayed in Equation B.19.

σconv =

[(
ωzk+1

− ωzk−1

2Zg
XgYgσUz

)2

+ 2

(
UzXgYg

2Zg
σωz

)2
] 1

2

(B.19)

The values of the vector spacing is known. Zg is 1 millimeter which is de-

termined from the spacing between the pin holes drilled by a Haas CNC machine.

Xg and Yg were evaluated using a data file exported from LaVision and then having

a Matlab program determining the spacing between vector points. Xg and Yg were

both determined to be 0.4240 millimeters.

Figure B.1 shows contours of the spanwise velocity at the 90◦ azimuthal posi-

tion. From the figure, the “dark red” contour was used as a representative value for

the spanwise velocity which corresponded to a value of 80 mm/s.

For ωzk+1
, the 270◦ azimuthal position was used to determine a representative

value for the uncertainty analysis. In Matlab, an average of spanwise vorticity less

than -50 s−1 (the threshold used to calculate the circulation values) was computed

for the entire image to obtain -104 s−1. A similar method was used for ωzk−1
to get a

representative value of -116 s−1 except the 90◦ azimuthal position was used in order
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to have a more drastic difference resulting in a more conservative estimate of the total

uncertainty.

The last thing needed prior to calculating the actual value for the uncertainty

of the convection term is the approximate number of vectors in a control volume. A

rectangular cross-section was used as the control volume, and from the dimension of

the vector spacing, it was determined to have approximately N = 810 vectors in a

section of the control volume.

During the processing of the SPIV images, a window size of 32 × 32 was

used. This implied the magnification ratio was 0.0133 mm/pixel. Lastly, the ∆t used

between laser pulses for the data acquired was 500 microseconds. Using these values,

the uncertainties can be obtained as seen below:

σUz = 7.98
mm

s
(B.20)

σUx = σUy = 2.66
mm

s
(B.21)

σωz = 6.273
1

s
(B.22)

σconv = 64.372
mm2

s2
(B.23)

From Equation B.1, a representative convection value is evaluated to be 86.29

mm2/s2. An approximation of the relative error in the entire convection term may
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be calculated using these values. First, the convection term, expressed in Equation

4.7, can be calculated as the sum of each of the convection values at individual points

(Equation B.1) inside the control volume which is shown mathematically in Equation

B.24.

CONV =
N∑
i=1

convi (B.24)

Where CONV is the entire contribution convection has inside the LEV. From

here, the total uncertainty in CONV (δCONV ) is shown in Equation B.25.

δCONV =

[
N∑
i=1

(
∂CONV

∂convi

)2

σ2
convi

] 1
2

(B.25)

The quantity, ∂CONV/∂convi, is equal to 1 which simplifies Equation B.25

to:

δCONV =
[
Nσ2

convi

] 1
2 (B.26)

Equation B.26 allows for δCONV to be represented by the following expression.

δCONV =
√
Nσconvi (B.27)

Finally, using Equations B.24 and B.27, a ratio of the total uncertainty of the

convection term and the overall convection value can be calculated using a singular

point as a representative value. This idea is shown in Equation B.28.
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δCONV
CONV

=

√
Nσconvi
Nconvi

(B.28)

Then, using Equation B.28, the relative error for the convection term was

calculated using Equation B.29.

Relerrorconv =

∣∣∣∣ σconv

conv
√
N

∣∣∣∣× 100% (B.29)

The relative error in the convection term was ± 2.62%. This process of defining

the relative error is applied to the other terms in Sections B.2 - B.5, but is not shown

for the sake of repetition.

B.2 Unsteady Term

The unsteady contribution to the vorticity transport analysis was calculated

by using the circulation at three consecutive azimuthal positions measured at the k

plane. The entire flux analysis was performed at the “second” azimuthal position of

the three measurements. The unsteady term was calculated using a weighted central

difference scheme generalized in Equation B.30.

unsteady =
1

2

(
Γ2 − Γ1

t1
+

Γ1 − Γ0

t2

)
(B.30)

Where Γ0, Γ1, and Γ2 are the “first”, “second”, and “third” azimuthal positions

used in the analysis. The t1 term is the time it takes the blade to traverse from the

“second” to the “third” position while t2 is the time it takes the blade to rotate from

the “first” to the “second” azimuthal position.
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As with the convection term, partial derivatives were calculated to determine

the potential sources of error. Equations B.31 - B.35 show the partial derivatives.

∂unsteady

∂Γ2

=
1

2t1
(B.31)

∂unsteady

∂Γ1

=
−1

2t1
+

1

2t2
(B.32)

∂unsteady

∂Γ0

=
−1

2t2
(B.33)

∂unsteady

∂t1
=
− (Γ2 − Γ1)

2t21
(B.34)

∂unsteady

∂t2
=
− (Γ1 − Γ0)

2t22
(B.35)

Adding the errors in quadrature, the general uncertainty for the unsteady term

is expressed by Equation B.36.

σunsteady =

{[
1

2t1
σΓ2

]2

+

[(
−1

2t1
+

1

2t2

)
σΓ1

]2

+

[
−1

2t2
σΓ0

]2

+

[
− (Γ2 − Γ1)

2t21
σt1

]2

+

[
− (Γ1 − Γ0)

2t22
σt2

]2
} 1

2

(B.36)

To determine the circulation of a vortex, a Matlab code was implemented

using a vorticity threshold for a specified area. This method is described discretely

in Equation 4.1. Where the uncertainty in Γ is:
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σΓ = σωzij
∆x∆y

√
N (B.37)

Using Equations 4.1 and B.37, relative uncertainty in the circulation is pro-

portional to the relative uncertainty of the vorticity.

σΓ

Γ
=
σωzij

∆x∆y
√
N

Nωzij∆x∆y
=

σωzij

ωzij
√
N

(B.38)

The time it takes to move between azimuthal positions is given by Equations

B.39 and B.40.

t1 =
1

Ω
(ψ2 − ψ1) (B.39)

t2 =
1

Ω
(ψ1 − ψ0) (B.40)

Where Ω is the angular velocity, and the general uncertainties in these times

are given by Equations B.41 and B.42, respectively.

σt1 =

[(
∂t1
∂ψ2

σψ2

)2

+

(
∂t1
∂ψ1

σψ1

)2

+

(
∂t1
∂Ω

σΩ

)2
] 1

2

(B.41)

σt2 =

[(
∂t2
∂ψ1

σψ1

)2

+

(
∂t2
∂ψ0

σψ0

)2

+

(
∂t2
∂Ω

σΩ

)2
] 1

2

(B.42)

To perform the error analysis, the azimuthal positions of 75◦, 90◦, and 120◦

were used since this was the earliest azimuthal position investigated where it was

hypothesized that the LEV was still in development. This would allow for a more
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conservative estimate of the errors. The circulation measurements of the LEV at the

k plane for each of the three azimuthal positions were -2702.3, -3487.9, and -3651.0

mm2/s, respectively. The angular velocity was 180◦/s which yielded t1 = 0.1667

and t2 = 0.0833 seconds. With the assumptions the uncertainty associated with

the angular velocity, σΩ, was assumed to be negligible, and the maximum error in

positioning the azimuthal location was 2◦, the uncertainty in t1 and t2 were both

0.016 seconds.

A similar method used in calculating a representative vorticity value for the

convection term was used in the unsteady analysis as well for each of the azimuthal

positions at the k plane. This resulted in ωz75◦ , ωz90◦ , and ωz120◦ equaling -125, -116,

and -112 s−1, respectively.

Applying the above assumptions and values into Equation B.30 and B.36,

results in 793.8 and -5202 mm2/s2, respectively. Using Equation B.43, the relative

error in the unsteady term is ± 15.2%.

Relerrorunsteady
=

∣∣∣∣ σunsteadyunsteady

∣∣∣∣× 100% (B.43)

B.3 Y-Tilting Term

The discrete representation for the Y-tilting term is shown in Equation 4.9.

For a single vector location, the Y-tilting term can be expressed by Equation B.44.

YT ilting =

(
Uxk+1

− Uxk−1

2Zg
−
Uzi+1

− Uzi−1

2Xg

)(
Uzj+1

− Uzj−1

2Yg

)
XgYg (B.44)
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The partial derivatives of the Y-tilting term with respect to the potential

sources of errors are given in Equations B.45 - B.53.

∂YT ilting
∂Uxk+1

=
Xg

(
Uzj+1

− Uzj−1

)
4Zg

(B.45)

∂YT ilting
∂Uxk−1

=
−Xg

(
Uzj+1

− Uzj−1

)
4Zg

(B.46)

∂YT ilting
∂Uzi+1

=
−
(
Uzj+1

− Uzj−1

)
4

(B.47)

∂YT ilting
∂Uzi−1

=

(
Uzj+1

− Uzj−1

)
4

(B.48)

∂YT ilting
∂Uzj+1

=
Xg

2

(
Uxk+1

− Uxk−1

2Zg
−
Uzi+1

− Uzi−1

2Xg

)
(B.49)

∂YT ilting
∂Uzj−1

=
−Xg

2

(
Uxk+1

− Uxk−1

2Zg
−
Uzi+1

− Uzi−1

2Xg

)
(B.50)

∂YT ilting
∂Zg

=
−Xg

(
Uxk+1

− Uxk−1

) (
Uzj+1

− Uzj−1

)
4Z2

g

(B.51)

∂YT ilting
∂Xg

=

(
Uxk+1

− Uxk−1

) (
Uzj+1

− Uzj−1

)
4Zg

(B.52)

∂YT ilting
∂Yg

= 0 (B.53)
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Adding the sources of error in quadrature, the general uncertainty in the Y-

tilting term is shown in Equation B.54.

σYTilting
=

[(
∂YT ilting
∂Uxk+1

σUxk+1

)2

+

(
∂YT ilting
∂Uxk−1

σUxk−1

)2

+

(
∂YT ilting
∂Uzi+1

σUzi+1

)2

+

(
∂YT ilting
∂Uzi−1

σUzi−1

)2

+

(
∂YT ilting
∂Uzj+1

σUzj+1

)2

+

(
∂YT ilting
∂Uzj−1

σUzj−1

)2

+

(
∂YT ilting
∂Xg

σXg

)2

+

(
∂YTilting
∂Yg

σYg

)2

+

(
∂YT ilting
∂Zg

σzg

)2
] 1

2

(B.54)

Again, the following assumptions were made:

σXg ≈ σYg ≈ σZg ≈ 0 (B.55)

σUxk+1
= σUxk−1

= σUx (B.56)

σUzi+1
= σUzi−1

= σUzj+1
= σUzj−1

= σUz (B.57)

The Ux velocity contours for the 90◦ azimuthal position at the k-1 and k+1

planes are presented in Figure B.2. The top portion of the figure shows the k-1 plane

while the bottom is the k+1 plane. The red contours symbolize velocities moving

from left to right while the blue contours show velocities moving from right to left.

Comparing the k-1 and k+1 planes in the region where the Ux velocity contours switch

from red to blue, there is as much as a 0.1 m/s difference in this region. However,

it was estimated for the control volume used in the vorticity transport analysis that
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a 0.5 m/s difference between the k-1 and k+1 planes would result in a conservative

estimate of the error.

Similarly, Figure B.3 shows the Uz contours for the 270◦ azimuthal position at

the k plane. This azimuthal position was chosen because it had the most dramatic

changes in velocity gradient from red to blue. In the transition from red to blue

contours, the change in the spanwise velocity, Uz, from one vector to another can be

as high as 0.8 m/s, but 0.3 m/s was selected as a representative value for the entire

control volume.

Using these values, results in an uncertainty for the Y-tilting term, σYTilting
, to

be 89.01 mm2/s2, and a representative Y-tilting term equal to -66 mm2/s2. Equation

B.58 is used to determine the relative error for the Y-tilting term, and after plugging

in the values, the relative error is ± 4.73%.

RelerrorYTilting
=

∣∣∣∣∣ σYTilting

YT ilting
√
N

∣∣∣∣∣× 100% (B.58)

B.4 X-Tilting Term

The discrete representation of the X-tilting term is given in Equation 4.8. A

single vector location can be expressed by Equation B.59.

XT ilting =

(
Uzj+1

− Uzj−1

2Yg
−
Uyk+1

− Uzk−1

2Zg

)(
Uzi+1

− Uzi−1

2Xg

)
XgYg (B.59)

The partial derivatives of the X-tilting term with respect to the potential

sources of error are:
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∂XT ilting

∂Uzj+1

=
Uzi+1

− Uzi−1

4
(B.60)

∂XT ilting

∂Uzj−1

=
Uzi−1

− Uzi+1

4
(B.61)

∂XT ilting

∂Uyk+1

=
−Yg

(
Uzi+1

− Uzi−1

)
4Zg

(B.62)

∂XT ilting

∂Uyk−1

=
Yg
(
Uzi+1

− Uzi−1

)
4Zg

(B.63)

∂XT ilting

∂Uzi+1

=
Yg
2

(
Uzj+1

− Uzj−1

2Yg
−
Uyk+1

− Uyk−1

2Zg

)
(B.64)

∂XT ilting

∂Uzi−1

=
−Yg

2

(
Uzj+1

− Uzj−1

2Yg
−
Uyk+1

− Uyk−1

2Zg

)
(B.65)

∂XT ilting

∂Xg

= 0 (B.66)

∂XTilting

∂Yg
=
−
(
Uyk+1

− Uyk−1

) (
Uzi+1

− Uzi−1

)
4Zg

(B.67)

∂XT ilting

∂Yg
=
−Yg

(
Uyk+1

− Uyk−1

) (
Uzi+1

− Uzi−1

)
4Z2

g

(B.68)

The general uncertainty in the X-tilting is expressed in Equation B.69 assum-

ing the contributions of the errors can be added in quadrature.
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σXTilting
=

[(
∂XT ilting

∂Uzj+1

σUzj+1

)2

+

(
∂XT ilting

∂Uzj−1

σUzj−1

)2

+

(
∂XT ilting

∂Uyk+1

σUyk+1

)2

+

(
∂XT ilting

∂Uyk−1

σUyk−1

)2

+

(
∂XT ilting

∂Uzi+1

σUzi+1

)2

+

(
∂XT ilting

∂Uzi−1

σUzi−1

)2

+

(
∂XT ilting

∂Xg

σXg

)2

+

(
∂XT ilting

∂Yg
σYg

)2

+

(
∂XT ilting

∂Zg
σZg

)2
] 1

2

(B.69)

The same assumptions in Equations B.55 and B.57 were applied here along

with Equation B.70.

σUyk+1
= σUyk−1

= σUy (B.70)

It is known from the Y-tilting term analysis that σUz is approximately 30 m/s.

Using Figure B.4, there is an estimated average difference between the k-1 and k+1

planes of 50 mm/s in the control volume of the analysis. Applying the values, the

uncertainty in the X-tilting term was calculated to be 89.01 mm2/s2 while the X-

tilting term was 66 mm2/s2. Then, Equation B.71 was used to determine the relative

error for the X-tilting term which was ± 4.73%.

RelerrorXTilting
=

∣∣∣∣∣ σXTilting

XT ilting

√
N

∣∣∣∣∣× 100% (B.71)

B.5 Shear Layer Term

The shear layer term was evaluated discretely as described in Equation 4.10.

The calculation of a single vector for the shear layer term is shown in Equation B.72.
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shear = UxωzYg (B.72)

Again, taking partial derivatives:

∂shear

∂Ux
= ωzYg (B.73)

∂shear

∂ωz
= UxYg (B.74)

∂shear

∂Yg
= Uxωz (B.75)

The general uncertainty of the shear layer term is expressed in Equation B.76.

σshear =

[(
∂shear

∂Ux
σUx

)2

+

(
∂shear

∂ωz
σωz

)2

+

(
∂shear

∂Yg
σYg

)2
] 1

2

(B.76)

Figures B.5 and B.6 show that a representative Ux velocity and ωz vorticity

value over the left boundary is 100 mm/s and -100 s−1, respectively. Those values

yield an uncertainty in the shear layer term of 289.9 mm2/s2 and a value of -4240

mm2/s2 for Equation 4.10.

Finally, the relative error in the shear layer was calculated to be ± 1.24%

using Equation B.77. Ny is the number of vectors along the left boundary which was

estimated to be 30 vectors.

Relerrorshear =

∣∣∣∣∣ σshear

shear
√
Ny

∣∣∣∣∣× 100% (B.77)
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B.6 Annihilation Term

The annihilation term was solved using Equation 4.5. The uncertainty in the

annihilation term at a particular azimuthal position was determined by adding in

quadrature the uncertainties of the convection, unsteady, Y-tilting, X-tilting, and

shear layer terms:

σannihilation =
√
σ2
conv + σ2

unsteady + σ2
YTilting

+ σ2
XTilting

+ σ2
shear (B.78)

From there, the relative error in the annihilation term at a given azimuthal

position is calculated using Equation B.79.

Relerrorannihilation
=
∣∣∣ σannihilation
annihilation

∣∣∣× 100% (B.79)
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Figure B.1: Spanwise velocity for the 90◦ azimuthal position at the k plane.
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Figure B.2: Ux contours of the k-1 and k+1 planes for the 90◦ azimuthal position

which were used to determine a representative difference of Ux in the control volume

of the vorticity transport analysis.
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Figure B.3: Spanwise velocity, Uz, contours at the k plane for the 270◦ azimuthal

position.
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Figure B.4: The Uy component of the velocity at the 90◦ azimuthal position for the

k-1 and k+1 planes. The top portion of the image shows the k-1 plane while the

bottom is the k+1 plane.
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Figure B.5: Ux component of the velocity at the 90◦ azimuthal position for the k

plane.
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Figure B.6: Vorticity contours at the k plane for the 90◦ azimuthal position.
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[126] R. Żbikowski. On aerodynamic modelling of an insect-like flapping wing in
hover for micro air vehicles. Phil. Trans. R. Soc. A, 360:273–290, 2002.


	University of Iowa
	Iowa Research Online
	Spring 2012

	The dynamics of spanwise vorticity on a rotating flat plate in a starting motion
	Craig James Wojcik
	Recommended Citation


	tmp.1345059374.pdf.qGUY_

