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ABSTRACT 

The rapid growth of wind turbines in terms of turbine size, number of installations 

and rated capacity has a huge impact on its operations and maintenance costs. Monitoring 

the performance of wind turbines and early fault prediction is highly desirable.   

To date, traditional maintenance strategies such as reactive maintenance, periodic 

maintenance etc. are more prevalent in wind industry.  However, over the last couple of 

years, the research pertaining to wind turbine has been shifted towards the condition 

monitoring and maintenance.   

Condition monitoring approaches have shown their potential in wind industry by 

providing continuous monitoring of the wind turbines, and identifying fault signatures in 

the event of faults. However, most of the studies reported in literature are based on the 

simulated dataset, or in constrained experiments. In reality, the external environment 

plays an important role in governing the turbine operations. Moreover, the cost associated 

with condition monitoring cannot be justified as it often requires installations of specific 

sensors, equipment.   

Another stream of research focuses on utilizing historical turbine data for turbine 

performance assessment in real time. The cost associated with such approaches is almost 

negligible as most of the wind farms are equipped with SCADA systems which records 

turbine performance data in regular time-interval. Such approaches are called as 

performance monitoring.  

In this dissertation, the performance monitoring of wind turbines is accomplished 

using the historical wind turbine data. The information from SCADA operational data, 

and fault logs is used to construct accurate models predicting the critical wind turbine 

faults. Depending upon the nature of turbine faults, monitoring wind turbines with 

different objectives is studied to accomplish different research goals. 
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Two research directions of wind turbines performance are pursued, (1) 

identification and prediction of critical turbine faults, and (2) monitoring the performance 

of overall wind farm. The goal of predicting critical faults is to facilitate planned 

maintenance, whereas, monitoring the performance of overall wind farm provides the 

status-quo of all wind turbines installed in a wind farm. Depending on the requirement, 

the performance of overall wind farm can be assessed on a daily, weekly, or monthly 

basis.  

Solution methodologies presented in the dissertation are generic enough to be 

applicable to other industries such as wastewater treatment facilities, flood prediction, 

etc.  
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ABSTRACT 

The rapid growth of wind turbines in terms of turbine size, number of installations and 

rated capacity has a huge impact on its operations and maintenance costs. Monitoring the 

performance of wind turbines and early fault prediction is highly desirable.   

To date, traditional maintenance strategies such as reactive maintenance, periodic 

maintenance etc. are more prevalent in wind industry.  However, over the last couple of years, 

the research pertaining to wind turbine has been shifted towards the condition monitoring and 

maintenance.   

Condition monitoring approaches have shown their potential in wind industry by 

providing continuous monitoring of the wind turbines, and identifying fault signatures in the 

event of faults. However, most of the studies reported in literature are based on the simulated 

dataset, or in constrained experiments. In reality, the external environment plays an important 

role in governing the turbine operations. Moreover, the cost associated with condition monitoring 

cannot be justified as it often requires installations of specific sensors, equipment.   

Another stream of research focuses on utilizing historical turbine data for turbine 

performance assessment in real time. The cost associated with such approaches is almost 

negligible as most of the wind farms are equipped with SCADA systems which records turbine 

performance data in regular time-interval. Such approaches are called as performance 

monitoring.  

In this dissertation, the performance monitoring of wind turbines is accomplished using 

the historical wind turbine data. The information from SCADA operational data, and fault logs is 

used to construct accurate models predicting the critical wind turbine faults. Depending upon the 

nature of turbine faults, monitoring wind turbines with different objectives is studied to 

accomplish different research goals. 

Two research directions of wind turbines performance are pursued, (1) identification and 

prediction of critical turbine faults, and (2) monitoring the performance of overall wind farm. 
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The goal of predicting critical faults is to facilitate planned maintenance, whereas, monitoring 

the performance of overall wind farm provides the status-quo of all wind turbines installed in a 

wind farm. Depending on the requirement, the performance of overall wind farm can be assessed 

on a daily, weekly, or monthly basis.  

Solution methodologies presented in the dissertation are generic enough to be applicable 

to other industries such as wastewater treatment facilities, flood prediction, etc.  
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CHAPTER 1 

                                             INTRODUCTION 

Wind is regarded as one of the most potential source of renewable energy with the 

competitive advantage in terms of its availability and environmental considerations. Due 

to the improvements in the technology and availability of space, an increasing number of 

wind-turbines are being installed every year across the globe. In the last few years, wind 

energy has gained attention among large firms, researchers, and scientists, and it is 

anticipated to grow in years to come (Dimitrovski and Tomsovic, 2006). The installed 

wind energy capacity has been steadily growing in the US and Europe (Amirat et al., 

2009).  

Wind turbine industry has witnessed some shortcomings, such as drive train 

failures, spalled bearings, and fractured gears due to excessive loads. Such failures may 

lead to a catastrophic failure of the overall system and require expensive repairs (Rolf and 

Powers, 2006). The success of the energy industry can be estimated by its cost of energy. 

Cost of energy (COE) measures the cost of generating electricity from wind energy. 

Thus, COE can be used as a metric to evaluate the potential of wind turbines.   

Studies reveal the strong association between cost of energy (COE) and 

operations and maintenance (O&M). In the wind energy research community, the COE is 

calculated using the following equation (Cohen et al., 1989).   

 

(1.1) 

 

Where, COE is the cost of energy, ICC is the initial capital cost, FC is the fixed 

charge (%/year), LRC is the levelized replacement cost ($/year), AEP is the annual 

energy production, and O&M is operations and maintenance costs. Thus, in order to 

reduce the overall cost of energy, the energy production needs to be improved, whereas, 

&
ICC FC LRC

COE O M
AEP
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the operations and maintenance related costs needs to be minimized. As per the COE of 

low wind speed turbines (LWST), O&M costs can account for more than 10% of the total 

cost (Cohen et al., 1889). The O&M related costs are expected to grow with the years of 

turbine operations. The advanced supervisory control and data acquisition (SCADA) 

systems is able to resolve several operations issues by automatically starting, stopping, 

and resetting the turbines in case of small fluctuations (Vachon, 2002).  

However, maintenance cost is still a major concern. Extent of maintenance, type 

of maintenance, and component’s age are the key factors discussed in operations and 

maintenance (O&M) related research and development (R&D) communities (Ribrant and 

Bertling, 2007). The maintenance cost comprises of the cost associated with scheduled 

maintenance, and cost associated with unscheduled maintenance. In order to better 

understand the maintenance related issues, fault analysis of wind turbines is essential. 

Gearboxes and blades are the most costly and fault prone components in the turbine, and 

therefore they have drawn the focus of researchers. Other fault prone components of the 

systems are electrical system and yaw systems. A graph showing the comparison of 

percentage failure is presented in Figure 1.1 (Ribrant, 2006). Studies reveal that 

generator; turbine blades and gearbox are the critical components which contribute more 

than 85% of the maintenance cost as well as downtime of the whole wind energy 

conversion systems (WECS) (Rademakers et al., 2007).   

Additionally, with an aim to harvest more energy, several modifications in the 

turbine design has been done. Now-a-days turbine blades are about 40 meters long with 

the tower height being increased from 60 meters to 100 meters, whereas, rotor diameter 

has now increased to more than 100 meters. Modification in the tower height made the 

maintenance and inspection task difficult, whereas, modification in the rotor size made 

turbine blades more sensitive to wind speed.  
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Figure 1.1. Percentage failures of turbine components.  

 

In order to address the towering operations and maintenance requirements, the traditional 

maintenance strategies such as periodic maintenance and reactive maintenance etc. are 

being replaced with condition based monitoring and maintenance. Unlike traditional 

maintenance, condition based maintenance approaches continuously monitors the 

performance of wind turbine components with the help of sensors and equipment. Such 

approaches determine the equipment's health, and act only when maintenance is actually 

necessary. Vibration analysis (Caselitz and Giebhardt, 2005), optical strain measurements 

(Becker and Posta, 2006), and oil particle analysis (Caselitz et al., 1997) are commonly 

used in condition monitoring. In the related research, Rademakers et al., (2003) utilized a 

contamination monitoring approach to detect the presence of presence of ferro-magnetic 

debris, which is indicative of wear particles from rolling or rubbing contacts. Such 

approach can be applicable to whole wind energy conversion system (WECS). Wernicke 

et al., (2004) performed spectral analysis to analyze the periodic oscillations in nacelle. 

They applied Fast Fourier Transformation (FFT) algorithm on the measured acceleration 

time signals. Schroeder et al., (2006) developed strain monitoring approach to 
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continuously monitor the load in the wind turbine. They have used optical sensor in their 

study. Lading et al., (2002) developed an ultrasonic inspection based approach to analyze 

the depth in the turbine structure. They termed it as optical coherence thermography.  

The mentioned condition monitoring approaches provide reasonable solution and 

can be used to continuously monitor the turbine components. However, such studies are 

mostly limited to lab settings which do not truly reflect the turbine characteristics. In 

addition, condition monitoring approaches appear to be a costly option as they require 

additional sensors and equipment to be installed in wind turbine. Thus, efficient and cost 

effective monitoring of wind turbines still remains an issue.  

Making use of already recorded wind turbine performance data can be an 

alternative way for turbine performance analysis. Over the past few years, wind turbine 

research community have utilized SCADA data in (1) Design of wind turbines (Laino et 

al., 1993), (2) Control of wind turbines (Ko et al., 2008), (3) Prediction of wind power 

(Ko et al., Kusiak et al., 2009a), and (4) Wind energy conversion (Kusiak et al., 2009b, 

Kusiak et al., 2009c) etc.   

Such approaches make use of the data recorded by advanced supervisory control 

and data acquisition systems (SCADA), which most of the wind turbines are equipped 

with. Thus, monitoring the wind turbines by utilizing the operational SCADA data needs 

attention. In the present research, the historical wind turbine data is used to tune the wind 

turbines by providing time-ahead prediction of critical wind turbine faults.     

Two research goals are set for this dissertation. The first goal is to develop non-

parametric models capturing the turbine behavior in case of abnormalities. To accomplish 

the goals, both multi-class classification and multiple nonlinear regression based fault 

prediction models are constructed. Later, the overall wind farm is analyzed as a whole by 

continuously monitoring the progress of several wind turbines.  
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1.1Fault modes of wind turbines 

Wind turbines are sophisticated aerodynamic machines with complex control 

system consisting of various assemblies, sub-assemblies, and parts etc. which are likely 

to fail. Depending upon external environment, and turbine condition itself, failure can 

occur anywhere in the wind turbine (Ashley et al., 2007). However, the frequency and 

extent to which the particular failure affects the system performance varies. Gearbox 

failures are less frequent but are most costly to repair and replace, whereas, electrical 

system of the wind turbine often fails, but can be easily repaired. A description of failure 

associated with turbine components are shown in Figure 1.2  

Every year various damages in the wind turbines are reported across the globe. 

Depending upon the extent of damage, fault associated with wind turbines are 

categorized into 3 categories (Pacot et al. (2003). Category A represents the most severe 

faults which can lead to the shutdown of the turbine. To deal with these fault types 

efficient monitoring is required so that it can be identified beforehand. Category B faults 

can partially affect the WECS, whereas, category C fault arises due to over speeding and 

therefore can be controlled easily (Figure 1.3).  

 

 

 

 

 

 

 

 

 

Figure 1.2. Wind turbine components and associated faults. 
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Figure 1.3. Failure modes of a wind turbine. 

 

Alarm based monitoring approaches generate relevant alarm signals in the event of 

faults, or normal wind turbine operations. Typically, a wind turbine control system 

generates four kinds of alarm signals, i.e., (1) System update, (2) Information, (3) 

Warning, and (4) Error. The alarm signal namely system update indicates the wind 

turbine is operational, information alarm signals records the system change information 

with no-consequential effect on wind turbine performance. The alarm signals namely, 

warning indicates that certain components of wind turbine may fail in the future, 

whereas, error signal indicates the certain component is faulty.   

Qiu et al., (2011) performed Venn diagrams and decision tree based analysis with an 

aim to improve the system reliability. They claimed that using Venn diagram, 

relationship between wind turbine statuses can be clearly represented.  
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1.2. Wind Turbine Fault Detection 

Wind turbines consist of several components and subassemblies which are likely 

to fail during its course of operations. Even with the advanced SCADA systems, certain 

faults are difficult to characterize, or often the alarm is triggered when the fault is already 

occurred. Thus, fault detection is critical in identifying faults in the system in a timely 

manner.  

Signal processing units (SPU) evaluates the process parameters and classify them 

into normal operations and fault situation. In this approach fault indicators are derived 

from process measurements via limit and trend checking of the process signals. Fast 

Fourier Transformation, cepstrum analysis, envelope spectrum etc. are some common 

approaches that are utilized for signal analysis in frequency domain. Signal processing 

approaches are suitable for analyzing rotating components, i.e., turbine generators, 

gearboxes etc.   

In system identification, the measured signal is compared against the set values, 

any significant deviation from the set values indicate fault. For complex processes, where 

analytical models cannot be aptly applied, artificial intelligence based approaches found 

its scope. AI based approaches can learn the complex behavior, and therefore, any 

significant deviation in the behavior will be a fault. Benefits of the AI based fault 

detection systems include: (1) Avoidance of premature breakdown, (2) Reduction of 

maintenance costs, (3) Remote diagnosis (Caselitz et al., 2006). Thus, research utilizing 

the machine learning based approaches in fault detection is a viable option.  

In the literature, turbine components namely turbine blades, generators, and 

gearbox are widely researched. Description about them is provided below 

 

1.2.1. Turbine blades fault analysis 

Blades play an important role in the wind power generation. Wind turbine blades are 

continuously adjusted to capture the maximum power.    
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In the literature, research has been focused on various control aspects of blade 

pitch. Analysis on both real and simulated data is found in the literature. Literature 

focusing on blade pitch is divided into two parts (1) Optimization and control of blade 

pitch for maximum power gain, and (2) Analysis of blade pitch faults. Muljadi and 

Butterfield, (2000) performed simulated study on the pitching mechanism of wind turbine 

blades in turbulent wind conditions. As per their analysis, electrical power can be 

controlled at any rpm; however, the limiting factor is the rating of power converter, and 

generator. They also found out that in higher wind speed region, the rotor speed must be 

controlled to avoid rotor speed being increased beyond the control limit. Kusiak et al., 

(2011) optimized wind power and vibrations in drive train and tower by controlling the 

blade pitch angles. Ruba et al., (2009) studied the fault tolerant mechanism of wind 

turbines in simulated environment. They combined two simulations environment namely 

FLUX 2D and Simulink to analyze the effect of different windings faults. As per their 

conclusion, by increasing the number of rotor poles, separating the phases/channels, 

setting new connections between the existing windings and using a complex control 

system can improve the fault tolerance in wind turbine drive train. Ganeriwala and 

Richerdson, (2011) analyzed blade pitch on wind turbine from structural health 

monitoring perspective. They introduced both edge and surface crack in 4 feet long 

turbine blades to study its impact on wind turbine performance using frequency response 

functions (FRFs). They considered model shape, frequency, and mode as their model 

parameters to validate their testing on cracked blade.  

Normally servomotors are used to control the pitch mechanism. Overall safety of 

the mechanism can be assured by current and time measurement and difference in pitch 

angle differences. Due to non-stationary nature of the process, model based approaches 

are mostly preferred. A process based on trend analysis is used by Verbruggen, (2003), 

where the residual of the process and an estimator of output signals are used to determine 

the changing characteristics of the pitch mechanism (Figure 1.4 (a)). Another similar 



9 
 

trend analysis approach based upon model parameters is also used, whereby the related 

parameters of the model are continuously estimated and compared with the measured 

input/output values to determine any deviation in the system’s characteristics (Figure 1.4 

(b)).    

 

Figure 1.4. Trend analysis of pitch mechanism (a) residual based, (b) model 

parameters based. 

 

1.2.2. Generator fault analysis 

The generators of wind turbines consist of various sub-components which fails/degrades 

over time. Among them, generator brushes, bearings are severally affected. Klein and 

Lali, (1990) performed failure mode and effect analysis (FMEA) on wind turbine 

generators. They recommended need for safety device for various wind turbine rotating 

components including shaft over-speed, and gearbox vibration etc. They also suggested a 

need of disc brake on high speed shaft to minimize the effects of shaft failure. Numerous 

vibration based analysis is performed on generator bearings. Amirat et al., (2010) 

performed fault detection in doubly feed induction generators (DFIG) bearings using first 
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intrinsic mode function. Using their proposed method, they improved the classical 

amplitude demodulation techniques for fault detection. Casadei et al., (2006) developed a 

fault diagnostic system based upon rotor modulating signals.  

 

1.2.3 Gearbox fault analysis 

Gearboxes are one of the most sensitive and costly equipment of wind turbine with high 

downtime. Most of the early wind turbine design errors in gearboxes arise due to the 

underestimation of its operating loads. Main reason behind this is the lack of sufficient 

analysis on its design, operability and load prediction, which requires an effective 

collaboration between component manufacturers, lubricating engineers, and gear 

designers etc. The collaboration has resulted in internationally recognized design 

standards. Designers do a lot of modifications in their actual design, which can be good 

up to some extent but it cannot guarantee that the component will not fail. Literature 

survey reveals that on an average twenty percentage of the wind turbine downtime is due 

to gearbox failure and which needs more than ten days for its complete repair. . Other 

factors contributing to gearbox failures are torque overloads, wrong material type, 

damage during transportation and assembly, and misalignment of component etc.  

Ribrant, (2006) did a literature survey about the reliability of the gearboxes and 

concluded that even though the percentage failure due to the gearboxes has reduced, the 

downtime of the system has increased. His survey was based upon the data collected 

from three different countries viz. Finland, Germany, and Sweden. Out of several 

possible causes of gearbox failure, misalignment between gear and generator, in-

appropriate bearings are the most common. The process of gearbox failure is gradual 

which depends upon the equipment wear rate and therefore conditional monitoring has 

been used. Recently, Byon et al., (2009) formulated a Markov decision process to 

determine the reliability of the gearbox. They developed an operation and maintenance 



11 
 

(O&M) decision model using probabilistic cost modeling approach to quantify risks and 

uncertainties.   

Fault diagnosis in bearings is usually derived from envelope curve analysis using 

high frequency resonances to identify fault frequencies. Other methods are cepstrum 

analysis which is basically used to diagnose gearbox. Detailed analysis is reported in 

Caselitz et al., (1997), where they demonstrated a network based CMS techniques for the 

fault diagnosis of turbine gearboxes and rotor. A simulation based test was performed by 

them to determine the effectiveness of their approach. Approaches based upon 

demodulation of current signal of an induction motor which drives gearbox is widely 

used to determine the fault associated with it.  Applied both amplitude and frequency 

demodulation of induction motor current to determine the rotating shaft frequencies 

which was used as a base to identify faults in gearboxes. Being non-stationary in nature, 

the approach seems to be very interesting. Garcia et al., (2006) used an intelligent search 

technique to identify and diagnose faults in gearbox. They validated their model on the 

real WECS and developed an optimized maintenance schedule.   

 

1.3 Performance monitoring of wind farm 

Supervisory Control and Data Acquisition (SCADA) system routinely collects 

wind turbine operations data which can be used for performance monitoring purposes. 

Even with the advanced SCADA systems, wind turbine faults are often recognized too 

late to perform a planned maintenance on the system. Data mining approaches are well-

known to extract the hidden patterns in the data. With the data-mining algorithms, faults 

associated with wind turbines can be identified and predicted well ahead of their 

occurrence. In addition, the performance of wind turbines can be continuously monitored 

using the operational data such as power output, rotor speed, blade pitch angle etc.    

Over the past few years, data-mining has been successfully applied in 

manufacturing, marketing, and medical informatics (Harding et al. 2006; Berry and 
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Linoff 2004; Shah et al. 2006). In the energy sector, data-mining based algorithms were 

used to forecast electricity market price (Jhao, 2007), optimization of combustions and 

heating, ventilation, and air conditioning (HVAC) systems (Kusiak et al., 2010 a, b; Song 

and Kusiak (2010). In the wind energy itself, data-mining based approaches are used for 

(1) Optimization of wind power output 

Therefore, in the research of predicting wind turbine faults, data-mining 

algorithms are employed to identify the association among wind turbine performance 

parameters. Depending on the nature of turbine fault and available data, both 

classification and regressions models are constructed.  As the performance of data-mining 

algorithms solely depends on dataset at hand, advanced data preprocessing techniques are 

employed to develop robust fault prediction models.  

At present, there is insufficient study on wind turbine performance monitoring. In 

this dissertation, performance monitoring of wind turbines is achieved by providing 

accurate and robust data-mining based fault prediction models. Figure 1.5 illustrates the 

structure of the thesis.  In the present dissertation, three research topics are investigated. 

   

 

Wind Turbine performance 

monitoring

Alarm monitoring using 

turbine states information

Fault identification and prediction 

of Wind turbine components

Monitoring whole wind farm and 

capacity evaluation

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

 

Figure 1.5. Dissertation structure. 
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The first research topic presented in Chapters 2 – 3 concentrates on identifying 

the hidden patterns in wind turbine faults. Chapter 2 utilizes the information from the 

wind turbine fault logs, whereas, in chapter 3, the routinely recorded parameters are 

analyzed. Chapters 4-6 constitute the second research topic in which the fault prone 

components of wind turbines are investigated. Faults associated with turbine components 

namely blades, generators, and gearboxes are analyzed and prediction models are 

developed. The third research topic presented in Chapter 7 concentrates on monitoring 

the performance of wind farm.  

In Chapter 2, the status patterns in wind turbines are discussed. Wind turbine 

statuses are recorded whenever turbines changes its course of operation, i.e., operating 

normally, idling, maintenance downtime. Identifying pattern in the statuses is critical as 

sequence of statuses occurring over time may lead to component failure. Such statuses 

are event triggered and recorded as fault logs. Association rule mining algorithm is 

employed to generate the status patterns with high confidence and support. Later, data-

mining based classification models are developed to separate the status pattern class from 

a normal class.  

In Chapter 3, the fault prediction performance is improved using turbine states 

information. Unlike fault logs, the turbine states information are recorded within the 

operational data, and therefore reducing any risk of information loss while labeling the 

output data for prediction. The prediction process comprises of three phases, e.g., phase 1 

where the states of wind turbines are predicted, phase II where the turbine fault modes are 

predicted, and phase III, where unseen/unlearned faults are identified.  

In Chapter 4, faults related with wind turbine components i.e., blades and 

generators are analyzed. The fault associated with the turbine blades is blade angle 

implausibility, and blade angle asymmetry. Worn out of generator brushes is the second 

fault. Due to the nature of fault and data-limitation, the imbalance in the output class 

exists. In class imbalance problem, often the desired class (i.e. fault class) is 
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misrepresented, when compared with the other (i.e. normal class). Approaches based on 

cost sensitive classification, and instance selection is used. A heuristic is developed to 

identify the costs associated with misclassifying fault as normal, and vice-versa. Later, 

considering the NP-hard nature of instance selection problem, Genetic algorithm based 

optimization approach is employed. The results reveal the significant improvements in 

the prediction accuracy.  

In Chapter 5, generator bearing temperature of wind turbines is analyzed with an 

aim to develop early alarm signals in the event of over temperature related issues. A 

method based on anomaly detection is employed. The standardized signal error is 

analyzed and any significant deviation is identified using the control chart based 

approaches. In Chapter 6 vibration analysis is performed to identify and predict faults in 

wind turbine gearbox system. Based on the data analysis, faults in ring gear of turbine 

gearbox is identified and predicted. Analysis in both time and frequency domain is 

performed to validate the severity of identified faults. Virtual models predicting 

vibrations and jerk in ring gear is developed using the information from a single and 

multiple sensors.  

Chapter 7 proposes an effective and computationally efficient performance 

monitoring scheme to track the progress of wind farm. Three performance curves using 

wind turbine operational data namely power output, rotor speed, and blade pitch angle are 

developed. The reference curves for each of the performance curves are constructed by 

utilizing third and fourth order moment information, namely kurtosis and skewness. The 

reference curves are smoothed by detecting outliers in the data using Mahalanobis 

distance. Kurtosis and skewness of bivariate data provides a single value which can be 

easily tracked in 2-d scatter graph. Later, multivariate control chart approach is employed 

to track the progress of out of track wind turbines in time order. A case study monitoring 

the wind farm over a period of four years is presented.  
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Chapter 8 provides the overall summary of the dissertation with future research 

directions.    
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CHAPTER 2 

IDENTIFICATION OF CRITICAL STATUS PATTERNS OF WIND 

TURBINES  

                                              2.1 Introduction 

The developments in wind energy have materialized in the form of large-scale 

wind farms, wind energy cooperatives, wind turbines owned by individual investors, and 

multinational exploration of remote sites and offshore locations. Despite the increasing 

rated capacity of wind turbines, operations and maintenance (O&M) costs remain high 

due to failures of wind turbine components such as gearboxes and blades. Wind turbines 

undergo various states during its course of operations. Supervisory control and data 

acquisition (SCADA) system records the state changes in the form of status codes. A 

status has potential to become fault in the future if not properly addressed. Despite its 

potential related with wind turbine fault diagnosis, the relevant studies are limited. Chen 

et al., (2011) developed an expert system identifying the alarm pattern related with blade 

pitch status. However, the study developed by them was based on one day simulated data. 

In real world, wind turbines are surrounded by several such statues that need to be 

investigated. More specifically, the sequential occurrence of such statuses may leads to a 

fault.  

This chapter investigates various statuses that a wind turbine can undergo. The 

status information is event triggered and is recorded by SCADA system along with 

numerous wind turbine parameters. Decision rules are developed using association rule 

mining approach to identify critical status patterns in wind turbines (Agrawal and Srikant, 

1994).). Further, prediction models are constructed by merging the event triggered status 

information with time-stamped wind parameters.  
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2.2 Problem background and dataset description  

 

2.2.1 Dataset description 

The data used in this chapter is collected from the supervisory control and data 

acquisition (SCADA) system of a wind farm. A typical SCADA system records data on 

more than 100 parameters averaged over 10 min intervals (10 min data). Two different 

data types, i.e. operational data and status data are studied. The operational data include 

10 min data of parameters such as power, wind speed, rotor speed, and generator speed 

recorded. The status data include the status codes, status description, wind speed, and 

power and are recorded at the time the system undergoes a status change. In total, 12 

months of status data and 4 months of operational data is used.  

2.2.2 Problem background 

A wind turbine includes assemblies, systems, and components that may fail. A 

component failure usually develops in stages over a period of time (see Fig. 2.1). 

Changes in the values of turbine parameters are reported as status codes. For a typical 

large-scale turbine, over 400 different status codes can be generated. A status indicates a 

potentially emerging fault. The factors contributing to a fault can be internal (e.g., 

operational parameters, temperature, and vibrations) and external (e.g., extreme weather 

conditions). Depending on the severity of the problem, a status code may trigger three 

types of alarms: information, warning, and failure. 
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Figure 2.1. Component degradation curve. 

 

The status code data is grouped in four categories, category 1 through 4, with category 1 

being the most severe one (Kusiak and Li, 2011). Examples of status codes are provided 

in Figure 2.2. A category 4 status usually represents an inconsequential event during the  

 

 

Figure 2.2. Example status descriptions of four categories.   
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normal operations of a wind turbine (Figure 2.2). In the analysis performed in this 

chapter, status codes corresponding to categories 1, 2 and 3 are considered.  

The status data from 100 wind turbines has been analyzed. Figure 2.3(a) provides 

four discrete distribution functions, e.g., negative binomial, geometric, logarithmic, and 

Poisson of category 1 status data. The probability-probability plot in Figure 2.3(b) 

indicates the category 1 status closely follows the Poisson distribution. The distribution 

statistics of all four statuses are summarized in Table 2.1. The status frequency varies for 

each status category, with category 4 being the most frequent and category 1 status the 

least frequent. Accurate prediction of patterns involving category 1 statuses is most 

desirable.  

 

 

 

 

 

 

Figure 2.3. Category 1 status data for 100 turbines: (a) histogram and five probability 

density functions, (b) probability-probability (P-P) plot. 

Table 2.1. Distribution statistics of all category statuses. 

Status Category Distribution No. Data Points 

1 Poisson ( λ = 10.98) 100 

2 Poisson ( λ = 31.61) 100 

3 Poisson ( λ = 4.77) 100 

4 Poisson ( λ = 40.48) 100 
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In general, individual statuses do not provide much information regarding the 

system/component health; rather the sequence of the statuses (called here a status pattern) 

occurring over time may lead to the component failure. Thus, early prediction of status 

patterns is needed for effective condition monitoring and maintenance. 

 

2.3. Solution approach 

This section presents a new approach to fault prediction (see Figure 2.4). The status data 

from 100 turbines is used to identify frequent status patterns, whereas the data obtained 

from the 10 representative turbines is merged with the SCADA operational data to 

generate a dataset for the prediction of status patterns.   

Let S= {S1, S2… Sn} be the set of n statuses, TS= {t1, t2 ….tm} be the set of time  

 

 

Figure 2.4. Framework for the prediction of status patterns. 
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when the status are recorded. Each TS contains a subset of status from S. A status pattern 

can be defined as A B , where ,A B S , and A B  . The details of the framework of 

Figure 2.4 are presented next. 

 

2.3.1. Frequency analysis 

The aim of this step is to identify status patterns using data from 100 wind turbines. To 

accomplish this task only fault informative statuses (e.g., categories 1 through 3) are 

considered. The status data of 100 turbines are analyzed to determine patterns consisting 

of two of more statuses (see Figure 2.5). The limit on the time delay (Δ) is set to 60 

second, e.g., the statuses recorded within 60 second are considered as a possible status  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Flow chart for identification of status patterns. 
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pattern. In total 16 frequent status patterns have been identified. Figure 2.6 (a-e) provides 

the distribution of 16 status patterns across 100 wind turbines.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Frequency distribution of identified status patterns: (a) Turbine 1-20, (b) 

Turbine 21-40, (c) Turbine 41-60 (d) Turbine 61-80, (e) Turbine 81-100. 
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The identified status patterns along with their distribution statistics are summarized in 

Table 2.2. Among the identified status patterns, the rotor and turbine blade based status 

patterns are the most frequent. The histogram of all 100 turbines corresponding to the 

status patterns is shown in Figure 2.7. Status patterns closely follows a negative binomial 

distribution (n = 2, p = 0.02018). Ten most fault affected turbines e.g. 05, 17, 

22,25,46,64,70,73,84, and 87 were considered for mining with association rule 

algorithms and fault prediction. 

 

2.3.2. Association rule mining 

Association Rule Mining (ARM) is used to determine interesting relations among 

parameters in a large dataset (Agrawal and Srikant, 1994). ARM has been used in web 

usage mining (Cho et al., 2002), intrusion detection (Luo and Bridges, 2000), and 

bioinformatics (Besemann et al., 2004). In this section, frequent patterns are determined 

with the apriori algorithm (Agrawal and Srikant, 1994; Agrawal et al., 1993). The 

following metrics (see Equations 2.1-2.2) are used by the apriori algorithm to determine 

the goodness of a rule (e.g. status pattern).  

 

 

 

 

 

 

 

 

Figure 2.7. Frequency plot of all status patterns identified in 100 turbines. 
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Table 2.2. Identified status patterns. 

No. Status pattern Description 

 

Distribution 

  (Category) 

1 141(1), 142(2) 
Rotor CCU collective faults, Line CCU 

collective faults 

Neg. binomial (n = 2, 

p = 0.10072) 

2 45(2), 52(2) 
Hydraulic pump time too high, 

Gearbox oil pressure too low 
Poisson (λ = 1.09) 

3 105(2), 113(2) 
Rotor CCU fault voltage, Line CCU 

fault voltage 
Geometric (p = 0.139) 

4 63(1), 118(1) 
Safety chain, Emergency stop nacelle 

/hub 
Poisson (λ = 3.47) 

5 292(3), 296(3) 
Malfunction cabinet heaters, 

Malfunction diverter 
Geometric (p = 0.118) 

6 106(2), 114(2) 
Rotor CCU fault current, Line CCU 

fault current 

Neg. binomial (n = 4, 

p = 0.442) 

7 343(2), 344(1) 
Blade angle not plausible axis 3, Pitch 

malfunction 2 or 3 blades 
Geometric (p = 0.066) 

8 296(3), 285(3) 
Malfunction Diverter, Timeout CAN 

communication to hub 
Poison(λ = 0.5) 

9 122(2), 296(3) 
Collective fault pitch controller, 

Malfunction of diverter 
Poisson(λ = 1.23) 

10 122(2), 285(3) 
Collective fault pitch controller, 

Timeout CAN communication to hub 
Poisson(λ = 0.28) 

11 
274(1), 

275(1), 276(1) 

Pitch thyristor 1 fault, Pitch thyristor 2 

fault, Pitch thyristor 3 fault 

Geometric (p = 

0.0658) 

12 
223(2), 

342(2), 343(2) 

Blade angle not plausible axis 1, Blade 

angle not plausible axis 2, Blade angle 

not plausible axis 3 

Geometric (p = 0.067) 

13 
212(1), 

213(1), 214(1) 

Battery voltage not OK axis 1, Battery 

voltage not OK axis 2, Battery voltage 

not OK axis 3 

Poisson (λ = 0.9) 

14 
141(2), 

142(2), 208(2) 

Rotor CCU collective faults, Line CCU 

collective faults, No activity CAN-Bus 

CCU 

Poisson (λ = 1.46) 

15 

106(2), 

114(2), 

141(2), 142(2) 

Rotor CCU fault current, Line CCU 

fault current, Rotor CCU collective 

faults, Line CCU collective faults 

Poisson (λ=1.23) 

16 

106(2), 

114(2),141(2), 

142(2),  

208(2) 

Rotor CCU fault current, Line CCU 

fault current, Rotor CCU collective 

faults, Line CCU collective faults, No 

activity CAN-Bus CCU 

Poisson (λ = 1.23) 
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In expression (2.1), Supi is the support of i
th

 status pattern, FPi is the frequency of ith 

status pattern in a yearly status data, and TFP is the total status patterns found. Conf 

(A→B) in expression (2) represents the confidence of the status pattern AB consisting of 

status A and B. Confidence can also be interpreted as an estimate of probability  /P A B .  

Based on the identified status patterns, the minimum support was set equal to 10 

(which signify a status pattern appearing less than 10 times in a year is discarded). The 

support value of 10 was selected as per the average frequency of the individual status 

patterns.  Confidence threshold was set equal to 80% (signifies at least 80% of the time 

the statuses form a unique pattern). The association rule mining is performed on the data 

from 10 selected turbines and the common and frequent status patterns are selected for 

prediction at different time stamps.    

 

2.3.3. Identification of frequent status patterns 

The association rule mining algorithm is applied on the status data obtained from 10 most 

fault prone wind turbines. Using the mentioned threshold on support and confidence, 

more than 25 different rules (status patterns) were found for each turbine. The pitch 

thyristor, the pitch malfunction, and the blade pitch angle related status patterns were the 

most frequent patterns with the corresponding support greater than 100 and confidence 

equal to 100%. These status patterns are listed in Table 2.3, and are used for level 2 

predictions discussed in Section 2.4.2.  

 

 

 
 

 
100

Sup A B
Conf A B

Sup A


  



26 
 

 

Table 2.3. Frequent status pattern (support >100, and confidence =100%). 

N

No. 
Status Pattern (Category) Description 

1

1 
343(2)=>344(1) 

Blade angle not plausible axis 3=>Pitch 

malfunction 2 or 3 blades 

2

2 
274(1)=>275(1)=>276(1) 

Pitch thyristor 1 fault=> Pitch thyristor 2 

fault=> Pitch thyristor 3 fault 

3

3 
223(2)=>342(2)=>343(2) 

Blade angle not plausible axis 1=> Blade angle 

not plausible axis 2=> Blade angle not 

plausible axis 3 

*support>100 and confidence = 100% 

 

 

2.3.4. Data preprocessing 

The data collected from a wind farm contains some noise due to sensor errors and 

malfunctions. Inconsistent data, e.g., abnormal wind speed, is deleted. After filtering the 

raw data, the final dataset for 10 turbines over a period of four months (e.g., from 

1/1/2008 to 4/30/2008) was produced.  

The approach described in the previous steps is used to determine the frequent 

status patterns where status data is used. However, the status data is merged with the 

operational data (recorded at 10-min intervals) to produce time-series dataset for 

prediction. The following decision variable is used to label the output of the prediction 

dataset (see Equation 2.3).    

 

 



 


otherwisenormal,

60....,30,20,10,ifpattern, status o iittt os
i           (2.3) 

In equation (2.3), i is the index of time stamps, Ξ is a decision variable labeling 

output as status pattern in the prediction dataset at time to, if the status pattern occurs (ts) 

in between the to and next time stamp t + io, otherwise, the output label will be normal.  

The generation of the dataset is illustrated in Figure 2.8, where para 1, para 2,…, para n 
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represent the input parameters such as wind speed, power, generator speed, and so on 

which are obtained from operational data.  

Status patterns are rare compared with the normal operations of a wind turbine. Merging 

the data across 10 wind turbine increases the number of status pattern instances, however, 

it also increases the number of normal cases, resulting in a highly imbalanced dataset. 

Sampling techniques, such as cost sensitive classification (Drummond and Holte, 2000), 

under-sampling (Liu et al., 2008), and over-sampling (Liu and Ghosh, 2007), etc. are 

widely used in the literature to improve the prediction accuracy of imbalanced datasets. 

Cost sensitive classification assigns a penalty to the false prediction of a minority class in 

order to minimize misclassification errors (Drummond and Holte, 2000; Margineantu, 

2000). In under-sampling, only a subset of data from the majority class is selected for the 

analysis. Over-sampling augments the size of the dataset by generating duplicate samples 

of the minority class. 

  

 

 

 

 

 

 

 

 

 

 

Figure 2.8. Description of the dataset generation. 

 



28 
 

Due to the highly imbalanced dataset, a combination of over-sampling and under-

sampling techniques, namely, (1) spread subsamples (to reduce the size of normal 

instances) and synthetic minority oversampling technique (SMOTE). A SMOTE based 

sampling technique resamples the data by applying a synthetic oversampling technique to 

the minority class dataset (e.g., class status patterns in the present case) (Chawla et al., 

2002).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. Data sampling steps.  

 

In this chapter, initially a subsample of 3000 data points from majority class 

dataset (e.g., dataset with output label ‘normal’) is extracted and then SMOTE is 

repeatedly applied to the monitory class data (e.g., data with output label ‘status pattern’) 

until the number of instances satisfies the pre-defined limit. It was assumed that the ratio 
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of 60:40 (normal: status pattern) is sufficient for mining. Figure 2.9 illustrates the data 

sampling approach used in this research.  

 

2.3.5. Parameter selection 

For accurate predictions, the dimensionality of the dataset needs to be reduced, as 

not all the parameters are significant for the prediction. The removal of the unnecessary 

parameters improves prediction accuracy of the model and at reduced computational cost. 

Knowledge of the process is helpful in elimination of parameters that are not significant. 

The SCADA system usually records more than 100 parameters of a wind turbine. The 

recorded parameters can be grouped into three categories: (1) system related data, (2) 

control parameters, and (3) performance parameters. System related data, e.g., turbine 

number, index, time offset, is turbine specific and therefore it can be excluded from 

building a prediction model. Control parameters represent the desired values such as, set 

points of blade 1 to 3, torque set values, etc. Whereas, the performance parameters 

indicate the performance of a wind turbine necessary for prediction of status patterns. 

Usually the parameters directly collected by SCADA are used for status pattern 

predictions. In some cases they are transformed, e.g., absolute deviation might be used. 

They are referred to as derived parameters, e.g., blade 1-3 deviations (Figure 2.10).   

Further reduction in the data dimensionality can be accomplished with data analysis. 

Algorithms such as the boosting tree algorithm (Smola and Scholkopf, 2004), the 

principal component analysis (PCA) (Jollife, 1986), and the wrapper approach integrated 

with the genetic or the best-first search algorithms (Tan et al., 2006; Espinosa et al., 

2005) are widely used for parameter selection. 
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Figure 2.10. Wind turbine parameters selected for prediction of status patterns. 

 

PCA is an unsupervised learning approach for dimensionality reduction that uses 

correlation coefficients of the parameters to combine and transform them into a 

reduced dimensional space (Miranda et al., 2008). It employs a ranker-based search 

algorithm to select the principal components. In this research, PCA was applied to 

select 15 parameters. The parameters, temperature generator 1, temperature generator 

2, generator speed, and rotor speed are found be highly correlated. The six principal 

components shown in Table 2.4 explain 96.11% of the total variance; therefore, they 

are selected to build the prediction model. The dimensionality of the dataset is reduced 

from fifteen to six dimensions. The same principal components are used to reduce the 

dimensionality of all time stamped datasets.  
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Table 2.4. Eigen value of principal components determined by 

PCA. 

Principal 

component 

Eigen 

value 

Variance 

(%) 

Cumulative variance 

(%) 

PC1 8.2865 55.24 55.24 

PC2 2.03399 13.56 68.8 

PC3 1.5629 10.42 79.22 

PC4 0.99603 6.64 85.86 

PC5 0.89348 5.96 91.82 

PC6 0.64344 4.29 96.11 

 

2.3.6. Metrics for prediction accuracy 

The selection of prediction algorithms is evaluated on a test dataset. The metrics used 

in the analysis are based on the widely used confusion matrix illustrated in Figure 

2.11.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11. The confusion matrix for the performance evaluation of algorithms.  
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The metrics used to evaluate accuracy of the prediction model are listed in Equations 

(2.4)-(2.7).  

 

(2.4) 

                             
                

       (2.5) 

                                
                                (2.6) 

 

      (2.7) 

 

The algorithm producing the best results based on the weighted prediction accuracy 

(ψ) defined in (2.7) is used for further analysis, where w1, w2 and w3 are the weights 

associated with accuracy, sensitivity and specificity, respectively.  

2.3.7. Algorithm selection 

Five data-mining algorithms, bagging (Brieman, 1996), ripper (Cohen, 1996), rotation 

forest (Rodrigues et al., 2006), random forest (Brieman, 2001), and k-nearest 

neighbor (k-NN, k =10) (Aha and Kibler, 1991), are used to construct the prediction 

model. Bagging is an ensemble meta-algorithm combining different classifiers. The 

ripper algorithm reduces classification errors by incremental pruning of an inductive 

rule algorithm to predict output classes. Rotation forest uses parameter selection to 

construct a classifier using a base learner and a projection filter. Random forest 

involves numerous decision trees and can be used for both classification and 

regression. The k-NN classifies objects based on the training examples in parameter 

space, whereby, objects are classified by the majority of votes from their neighbors.   
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The performance of the five data-mining algorithms for prediction of frequent status 

patterns was examined at t + 30 time stamps using the metrics (2.4)-(2.7). The best 

performing algorithm was used to build the prediction models at all six time stamps. 

Sampling of the large imbalanced dataset resulted in 5326 instances (see Table 2.5). 

Table 2.6 summarizes the prediction accuracy of the five data-mining algorithms.  

 

Table 2.5. Dataset description for algorithm selection.  

Dataset Start Time Stamp End Time Stamp Description 

t+30_overall 1/1/2008 12:00 AM 4/30/2008 11:30 

PM 

5326 

observations 

t+30_training 1/1/2008 12:00 AM 3/21/2008 09:30 

PM 

3512 

observations 

t+30_test 3/21/2008 09:60 

PM 

4/30/2008 11:30 

PM 

1814 

observations 

 

Table 2.6. Accuracy of data-mining algorithms predicting all frequent status 

patterns at time stamp t + 30. 

Algorithm Accuracy (%) Sensitivity (%) Specificity (%) 

Bagging 93.88 94.3 93.6 

Random forest 94.88 96.8           93.4 

Ripper 88.58 88.4 88.8 

k-NN 88.31 99.2 80.2 

Rotation forest 94.32 95.5 93.5 

 

Different weight values w1, w2, and w3, in the rage (0-1), were assigned to accuracy, 

sensitivity and specificity, respectively, to identify the best performing algorithm. The 

random forest algorithm outperformed the remaining data-mining algorithms (see 

Figure 2.12) by providing the consistently best output. The weights assigned to the 

evaluation metric display the preference towards a particular output class.  

Performance of the three algorithms, bagging, rotation forest, and ripper, was found 

to be consistent for various weight values, however, less accurate; whereas the k-NN 

algorithm was found to be more sensitive to weight values. Based on the observation, 
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the random forest algorithm is selected to build the prediction model at various time 

stamps. Figure 2.13 compares the prediction output obtained by the random forest 

algorithm at time stamp t + 30 with the actual output. The dense clusters along the 

normal-normal (predicted-actual) and status pattern-status pattern (predicted-actual) 

axis depict that both normal and status pattern instances are well classified, whereas 

the sparse clusters along the normal-status pattern (predicted-actual) and the status 

pattern-normal (predicted-actual) axis indicate few misclassified cases.   

 

 

 

 

 

 

 

 

 

 

Figure 2.12. Prediction accuracy of five data-mining algorithms for different 

weight values.  
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Figure 2.13. Comparison of the output classes (actual and predicted) by the 

random forest algorithm at time period t+30.  

 

2.4. Computational results 

In this section, various experiments are considered to analyze accuracy and robustness of 

the proposed approach.  

2.4.1. Level 1 prediction 

Level 1 prediction corresponds to the prediction of all three frequent status patterns 

obtained with association rule algorithm (see Table 2.3). The random forest algorithm is 

used to build the prediction model at six time stamps. A total of six predictive models 

were built, and the results obtained are shown in Table 2.7. The results indicate that the 

algorithm is consistent in accuracy and sensitivity at all-time stamps.      
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Table 2.7. Prediction accuracy of all status patterns with the random 

forest algorithm. 

Time Stamp Accuracy (%) Sensitivity (%) Specificity (%) 

t + 10 80.4 87.1 73.4 

t + 20 80.5 83.9 77.7 

t + 30 76.6 79.1 74.5 

t + 40 79.3 85.0 73.1 

t + 50 78.6 80.5 77.1 

t + 60 76.5 77.6 75.7 

 

2.4.2. Level 2 prediction 

Level 2 prediction corresponds to the prediction of the individual status patterns. Here, 18 

prediction models were built with the random forest algorithm. Tables 2.8-2.10 

summarize prediction accuracy of the models built for different horizons. The prediction 

accuracy for the random forest algorithm is in the range of 84.36%-96.08% with accuracy 

of predicting status patterns in the range 85.4%-96.4%. Figures 2.14 illustrates the 

comparison between actual output and predicted output of one such status pattern e.g. 

274=>275=>276 predicted at time stamp t+10 and t+60. The relatively dense 

distributions of data points along the normal-normal (actual-predicted) and the status 

pattern-status pattern (actual-predicted) axis indicate that classification errors are much 

less.  

Table 2.8. Prediction accuracy of the status pattern 274=>275=>276 

with the random forest algorithm.  

Time Stamp 

[min] 

Accuracy (%) Sensitivity (%) Specificity (%) 

t + 10 95.6 96.8 94.7 

t + 20 95.3 97.1 94.0 

t + 30 94.8 96.8 93.4 

t + 40 94.1 96.3 92.4 

t + 50 96.0 97.4 95.1 

t + 60 93.7 95.0 92.9 
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Figure 2.14. The actual and the predicted status pattern 274=>275=>276: (a) t+10, (b) 

t+60. 

 

 

 

Table 2.9. Prediction accuracy of the status pattern 343=>344 with the 

random forest algorithm. 

Time Stamp 

[min] 

Accuracy (%) Sensitivity (%) Specificity (%) 

t + 10 86.1 88.2 84.2 

t + 20 86.2 89.8 83.3 

t + 30 85.2 90.1 81.0 

t + 40 85.4 86.1 85.0 

t + 50 85.5 88.6 82.8 

t + 60 84.6 85.4 84.1 

Table 2.10. Prediction accuracy of the status pattern 223=>342=>343 

with the random forest algorithm. 

Time Stamp 

[min] 

Accuracy (%) Sensitivity (%) Specificity (%) 

t + 10 86.7 88.4 85.3 

t + 20 87.5 90.5 85.1 

t + 30 86.5 90.6 83.1 

t + 40 84.3 87.8 81.4 

t + 50 86.9 89.2 85.1 

t + 60 84.6 87.8 85.7 
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2.4.3. Component performance monitoring 

The monitoring scheme uses the predicted output to generate an alarm signal. At this 

time the alarm signal can be displayed up to 60 min ahead of the adverse event. A 

voting approach using the predicted output at all six time stamps is adopted to 

develop the performance monitoring system. Let η be the frequency of prediction 

output “status pattern” at six time stamps and Єi be the possible output at time stamp 

i, (i {t + 10, t + 20, ..., t + 60 min}. Є can be predicted as normal or status pattern 

depending on the input data. If η>=3, and Єi= Єi-1 = Єi-2= status pattern, the 

monitoring system will generate any alarm signal as error. However, if 2<=η<=3 and 

Єi= Єi-1 = status pattern, the alarm signal will be warning, and for 1<=η<=2 the alarm 

signal will be information. Otherwise, if η =0, the alarm signal will be just a system 

update. Considering six time periods, there can be 64 (e.g., 2
6
) possible prediction 

outcomes. It is important to mention that displaying alarm signals requires the 

prediction output at six consecutive time stamps. For displaying signals 60 min ahead, 

data mining algorithm will be used to get output at all 6 time stamps, whereas, for 

displaying alarm signals 50 min ahead or earlier, both past output information and 

data mining algorithm based prediction will be used.  

Status patterns occurring at only one time stamp only appear to be as critical as 

their repeated sequence that might be an indication of a system or a component 

failure. In this section, analysis of the component monitoring approach is performed. 

One thousand (out of more than two thousands) cases are selected to form three 

different datasets. The distribution of the alarm signals for an example status pattern 

274=>275=>276 is shown in (Figure 2.15).  
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Figure 2.15. Distribution of alarm signals of the status pattern 274=>275=> 276. 

 

Figure 2.15 indicate that alarm signals such as error and warning are more frequent 

than the system update or information signals in all three status patterns. Similar 

distribution was found for two other status patterns. Table 2.11 illustrates component 

monitoring scheme for status pattern 274=>275=>276 on turbine 73.  Component 

monitoring scheme will use both past and future output values to generate alarm 

signal at time t.  

2.5. Summary 

A data-mining approach was applied to identify and predict status patterns of wind 

turbines. The identification of status patterns is important, as the system or 

component may not fail instantly, yet its health may gradually deteriorate. Early 

prediction of status patterns allows for predictive maintenance actions and possible 

avoidance of some faults. A prediction model was built using operational and status 

data collected at wind turbines. 
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Table 2.11. Alarm signals for status pattern 274=>275=>276 of 

turbine 73. 

Date Time Time 

Stamp 

Prediction 

Output 

Alarm 

Signal 

Time 

Interval 

considered 

1/11/2008 12:00:00 

AM 

t - 30 Status 

pattern 

  

1/11/2008 12:10:00 

AM 

t - 20 Status 

pattern 

  

1/11/2008 12:20:00 

AM 

t - 10 Normal   

1/11/2008 12:30:00 

AM 

t* Normal   

1/11/2008 12:40:00 

AM 

t + 10 Normal Warning {t - 40, t - 

30,…, t+10} 

1/11/2008 12:50:00 

AM 

t + 20 Normal Warning {t - 30, t - 20 

,..., t + 20} 

1/11/2008 1:00:00 

AM 

t + 30 Status 

pattern 

Warning {t - 20, t - 

10,..., t + 30} 

1/11/2008 3:30:00 

AM 

t + 40 Status 

pattern 

Warning {t - 10, t,…, t 

+ 40} 

1/11/2008 4:00:00 

AM 

t + 50 Status 

pattern 

Warning {t, t + 10,..., t 

+ 50} 

1/11/2008 4:30:00 

AM 

t + 60 Status 

pattern 

Error {t + 10, t + 

20,..., t + 60} 

*Time for displaying alarm signals 

 

An apriori algorithm identified frequent status patterns. The principal component 

analysis was transformed the 15 dimension datasets into 6 dimension datasets. Of the 

five data-mining algorithms tested, the random forest algorithm was selected for 

building a prediction model. A component performance monitoring scheme was 

developed to generate alarm signals based upon the outputs predicted at different time 

intervals.  
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CHAPTER 3 

ENHANCED PREDICTION PERFORMANCE OF WIND TURBINES USING 

STATES INFORMATION 

3.1 Introduction 

Chapter 2 discussed about the identification and prediction of status patterns using 

fault logs. While merging the fault log data with operation data, some information is lost.  

In this chapter, fault described in time-stamped operational data is discussed. 

Apart from fault and normal classes, other commonly occurring states of wind turbines 

are maintenance downtime, and weather downtime.  

While most of the literature related with wind turbine fault analysis is based on 

two-class classification models. Accurate prediction of all states of wind turbines is 

important in order to reduce the false alarms and miss. In this chapter, multiclass 

classification models are developed and accuracy for all four states of wind turbines is 

maximized by maximizing the overall geometric mean of individual output class. The 

four broad states of wind turbines are (1) Turbine OK, (2) Turbine off due to poor 

weather conditions, (3) Turbine off due to maintenance, and (4) Turbine off due to 

faults/abnormalities. Wind turbine SCADA systems record the event triggered fault logs 

in operational data as fault status. Obtaining fault specific information with the 

operational wind turbine data minimizes loss of information that is found while merging 

the event triggered information with the time-based operational data.  

In this chapter, enhanced monitoring of wind turbines is done through the states 

information. The fault states of wind turbines are further analyzed in phase II prediction 

by breaking down them into the specific fault.  
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Later, to test the learning ability of data-mining algorithms, some unobserved 

faults are tested. This is done to ensure that the faults showing the same behavior can be 

identified irrespective of weather, data-mining algorithms were trained on it or not.  

Figure 3.1 provides the distribution of turbine states (analyzed on a yearly wind 

turbine data). Wind turbines are in fault mode for almost 7.0% of the time, which is quiet 

significant. Thus, special attention is required to minimize the impact of the faults on 

wind turbine to improve its availability.  

The results presented in the chapter are based on the analysis of data obtained from 17 

wind turbines. The values of parameters recorded at 10-second intervals (10 s data) over 

a four-month period constitute the dataset for this research. Overall, three level prediction 

models are analyzed with an aim to predict any kind of wind turbine states, to predict 

specific and the frequent states, and to identify unseen states of the wind turbines.   

 

 

 

 

 

 

 

 

Figure 3.1. Distribution of wind turbine states.  
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3.2. Models for monitoring wind turbine states 

The framework for building prediction models is provided in Figure 3.2. An abstraction 

of turbine states is used to categorize the output data into a number of states using expert 

knowledge. Model building involves using various data mining algorithms. The models 

are then tested. The generated dataset is used to construct models for phase-I and phase-II 

predictions. The main objective of phase-I is to predict a fault of any kind, whereas, 

predictions in phase-II target specific faults. In phase-III predictions, unseen faults from 

different wind turbines are identified. Descriptions of various wind turbine states are 

provided next.   

 

 

 

Figure 3.2. Framework of the proposed approach.  

 

3.2.1 Turbine states description 

The variability of wind speed impacts the performance of wind turbines and is recorded 

as fault states. Normal operations, weather-related downtime, maintenance downtime, 

fault mode, and emergency stop are some of the many states recorded by the SCADA 

system of a wind turbine. States changes may vary from insignificant (e.g., when a 
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turbine is changing its state from idle to normal operations) to a potential fault. Table 3.1 

lists the 17 possible states of a wind turbine. State number 17 represents the fault mode of 

wind turbines and there can be more than 400 possible ways in which a wind turbine can 

be faulted. Gearbox oil over-temperature, blade angle asymmetry, pitch thyristor fault, 

and yaw runaway are some of the common fault modes of a wind turbine. In the research 

reported in this chapter, the main emphasis is to predict the fault mode of wind turbine 

ahead of actual occurrence.  

 

Table 3.1. Turbines state information.  

State 

Number 
State Description 

State 

Number 
State Description 

1 Turbine OK with no 

errors 

10 Turbine stopped locally 

2 Turbine running 

smoothly  

11 Emergency stop 

3 Turbine running up 

idling for cut in 

12 Turbine stopped due to 

curtailment 

4 Turbine in maintenance 

mode 

13 Turbine stopped by 

customer 

5 Turbine in repair mode 14 Turbine idling locally 

6 Power failure/grid 

downtime 

15 Turbine idling remotely 

7 Weather downtime 16 Wind direction 

curtailment 

8 Turbine stopped 

externally 

17* Turbine in fault mode  

9 Turbine stopped locally   

*  Primary focus  

 

3.2.2 Abstraction of turbine states 

A typical turbine may undergo a number of different states including turbine normal 

operations, run-up idling, maintenance/repair mode, fault mode, weather downtime, etc. 

The prediction of a turbine’s fault mode is of particular interest as it represents some 

potential fault in the system. Figure 3.3 shows the histogram of 17 wind turbines plotted 

over a period of four months (from 8/27/2010 to 12/4/2010). Based on the frequency of 
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fault mode, turbine 12 was considered in the analysis. In order to reduce the 

computational effort required by data-mining algorithms, the recorded states of wind 

turbines were further categorized using domain knowledge. Table 3.2 represents the 

initially recorded and categorized states of turbine 12. The initial 44 turbine states were 

categorized into four states: Turbine OK, Fault, Weather downtime, and Maintenance 

downtime. The Turbine OK category corresponds to normal functioning operations, 

including run-up idling, whereas, the Fault category corresponds to an actual or potential 

fault in the system. The Weather downtime category corresponds to turbine downtime 

due to poor weather conditions, whereas, any other downtime is considered as 

Maintenance downtime.   

 

 

Figure 3.3. Comparison of wind turbines states.   
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Table 3.2. Turbine state categories.  

Fault Mode States States Other than Fault Mode 

State description Output class 
States 

description 
Output class 

Asymmetric generator 

current 
Fault Online Turbine OK 

Axle 1 fault pitch 

controller 
Fault Run-up idling Turbine OK 

Battery charging rotor 

blade drive 
Turbine OK 

Maintenance 

mode 

Maintenance 

downtime 

Cable twisting left Turbine OK Repair mode 
Maintenance 

downtime 

Cable twisting right Turbine OK Grid downtime 
Maintenance 

downtime 

Centrifugal switch Fault 
Turbine 

curtailment 

Maintenance 

downtime 

Gearbox oil over 

temperature 
Fault 

Stopped 

externally 

Maintenance 

downtime 

Gearbox oil temperature 

too low 

Weather 

downtime 
Stopped locally 

Maintenance 

downtime 

Hydraulic pump time too 

high 
Fault 

Stopped 

remotely 

Maintenance 

downtime 

Limit switch 90°-rotor 

blade defective 

Maintenance 

downtime 

Weather 

conditions 

Weather 

downtime 

Maintenance switch pitch 
Maintenance 

downtime 
  

Maximum motor power Fault   

Pitch overrun 0° Fault   

Pitch thyristor fault Fault   

Pulse sensor rotor 

monitor defect 
Fault   

Reply generator high 

stage 
Fault   

Temperature warning 

pitch motor 
Turbine OK   

Wrong parameter check 

sum 
Turbine OK   

 

3.3. Learning strategy  

For both prediction phases, the dataset was divided into two parts, i.e., initial dataset and 

blind dataset. The data mining algorithms used two-thirds of the initial data for training, 
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and the remaining one-third was used for testing. The performance of the data mining 

algorithms on the test dataset was used for algorithm selection. The best performing 

algorithm was then used to construct prediction models on the unseen dataset. Details 

regarding the parameter selections are discussed next.  

 

3.3.1. Selection of relevant wind turbine parameters 

A Supervisory Control and Data Acquisition (SCADA) system records more than 100 

wind turbine parameters that can be broadly categorized into: (1) wind turbine 

performance parameters, (2) wind turbine control parameters, (3) wind turbine non-

controllable parameters. Parameters such as power, generator speed, and rotor speed are 

the performance parameters, whereas, blade pitch angle and generator torque are 

controllable parameters. Wind speed is the only non-controllable parameter. In the 

research reported in this chapter, a combination of turbine performance parameters, 

control parameters, and non-controllable parameters are used to predict the wind turbine 

states. To minimize the curse of dimensionality and to remove irrelevant parameters, a set 

of data-mining-based parameters selection algorithms are used. A month of data was used 

for parameter selection and algorithm learning. A stratified subset of the original data was 

used for parameter selection to make the process computationally efficient. Figure 3.4 

displays the original and stratified data. Distribution of the output class is preserved in 

stratified data to avoid bias towards any specific class. Three different data mining 

algorithms, wrapper with genetic search (WGS) (Kusiak and Verma, 2010; Kusiak and 

Zhang, 2010), wrapper with best first search (WBFS) (Tavner et al., 2006), and boosting 

tree algorithm (BTA) (Tavner and Xiang, 2005) were selected to determine relevant 

parameters for prediction of turbine states. Wrapper is a supervised learning approach 

using different search techniques to select the relevant parameters by performing 10-fold 

cross validation. Table 3.3 lists the 10 best parameters from each parameter selection 

algorithm. Parameters for nacelle revolution, blade (1-3) pitch angle, current phase C, 
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temperature hub, and generator/gearbox speed were finally selected to build the 

prediction models.  

 

Table 3.3. Selected parameters using data mining algorithms. 

No. 

WGS  WBFS BTA  

10 fold cross 

validation  

10 fold cross 

validation  

 Parameter importance  

1  Nacelle revolution 

(90)*  

Blade 3 pitch angle 

(actual) (100)*  

Blade2 pitch angle 

(actual) (100)*  

2  Blade 3 pitch angle 

(actual)(90)*  

Current phase C (80)*  Blade3 pitch angle 

(actual) (95)*  

3  Current Phase B (70)  Temperature hub 

(80)*  

Blade1 pitch angle 

(actual) (94)*  

4  Nacelle Position (70)  Temp. control box 

axis 1 (60)  

Generator/gearbox 

speed (86)*  

5  Generator/gearbox 

speed (70)*  

Voltage phase C (50)  Generator speed (85)  

6  Temperature, bearing 

B (70)  

Generator speed (50)  Rotor speed 

7  Temperature top box 

(°C) (70)  

Drive train 

acceleration (50)  

Blade2 pitch angle 

(set) 

8  Power (Actual) (60)  Temperature top box 

(50)  

Blade3 pitch angle 

(set) 

9  Tower deflection (60)  Nacelle revolution 

(40)*  

Blade1pitch angle 

(set) 

10  Wind deviation, 1 sec 

(60)  

Temperature bearing 

A (40)  

Drive train 

acceleration 

*Selected parameters 

 

3.3.2. Evaluation metric 

The evaluation of data mining algorithms is based on the prediction accuracy of each 

output class. Considering the imbalance in an output class, a weighted accuracy of each 

output class is used as criteria for selecting data mining algorithms for the prediction task. 

The evaluation of accuracy is presented in a confusion matrix (see Figure 3.5). Equation 

(3.1) defines the geometric mean (gmean) of the output class.  
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Figure 3.4. Output class distribution. 

 

Figure 3.5. Confusion matrix for multiclass classification.  
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1

n

n i

i

gmean acc



                                                                           (3.1) 

                                                                                                            

In equation 3.1, acci is the accuracy of class i, n is the total number of output class.   

 

3.3.3. Training algorithms 

Five data mining algorithms: neural network (NN), support vector machine (SVM), 

random forest algorithm (RFA), boosting tree algorithm (BTA), and general chi-square 

automatic interaction detector (CHAID) algorithm were initially selected for building 

models at t time stamp. The prediction accuracy for each class (phase I predictions) is 

provided in Table 3.4. Accuracy in the range 95%-99% is obtained by five data-mining 

algorithms.  

 

Table 3.4. Prediction of turbine states at time stamp t. 

 Output Class 
Overall 

Accuracy 

[%] 
Algorithm 

Turbine 

OK 

[%] 

Fault 

[%] 

Maintenance 

downtime 

[%] 

Weather 

downtime 

[%] 

SVM  99.06 91.04 30.40 54.48 95.81 

CHAID 99.00 89.66 35.48 67.09 96.08 

NN  99.52 93.54 62.32 84.90 97.64 

BTA  99.69 93.23 83.33 96.99 98.87 

RFA 99.88 99.67 78.41 97.99 99.45 

 

Essentially, all the algorithms performed well while predicting Turbine OK and Fault 

class, however, the output class Weather downtime and Maintenance downtime were 

predicted with relatively low accuracy. The geometric mean metric, gmean, indicates that 

when all classes are predicted with perfect accuracy its value is 1. The algorithm with the 

highest value of gmean was selected to build prediction models at different time stamps. 

From the graph in Figure 3.6 and phase-I prediction results (Table 3.4), both the boosting 

tree algorithm and the random forest algorithms outperformed the remaining three data 
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mining algorithms. However, RFA was selected to build the prediction models, as it 

possesses great generalization ability and it is almost insensitive to the size of the dataset. 

Figure 3.7 illustrates the tree complexity of the random forest algorithm as a function of 

the misclassification rate. The optimal number of trees was found to be 91. The same five 

algorithms were considered for constructing phase-II prediction models. The output class, 

Fault, from the phase-I prediction was replaced by actual fault type, resulting in overall 7 

output classes. Figure 3.8 displays the distribution of data at time stamp t. In the figure, 

pitch overrun 0
◦
 is triggered when limit switch experience a non-positive angle at least 

one of the rotor blades. Pitch thyristor 2 fault is triggered when the thyristor is not ready 

even though the grid conductor is switched on. Pitch thyristor fault indicate defective axle 

cabinet. Axle 1 fault pitch controller reports axle disturbance. Pulse sensor rotor monitor 

defect is due to no pulses to over speed monitor when the generator over speeds. Table 

3.5 displays the performance of different data mining algorithms on a t time stamped 

dataset. 

 

Figure 3.6. Performance of different data mining algorithms using gmean as criteria. 
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Figure 3.7. Misclassification rate of RFA as a function of tree size. 

 

It can be seen from Table 3.5 that most of the algorithms failed to predict minority output 

classes (a class with few instances) and thereby resulted in a gmean equal to 0. Only NN 

and RFA yielded a gmean value greater than 0 (Figure. 3.9). As anticipated, RFA 

outperforms the other data mining algorithms, providing better accuracy for each output 

class.   

 

Table 3.5. Prediction of turbine fault modes at time stamp t. 

 

 

Algorithm 

Output Class  

Overall 

Accuracy 

[%] 

A [%] B [%] C [%] D [%] E [%] F [%] G [%] 

SVM  99.16 26.82 56.73 51.14 67.12 0.00 0.00 93.08 

CHAID 98.98 0.00 97.17 100.0 08.30 30.55 0.00 93.42 

NN  99.73 87.19 93.10 99.54 97.23 54.16 37.50 98.65 

BTA  99.03 84.96 24.46 35.43 67.37 0.00 0.00 92.88 

RFA 99.64 82.70 99.29 100.0 98.93 87.83 61.90 98.83 

A: Turbine OK, B: Maintenance downtime, C: Weather downtime, D: Axle 1 fault 

pitch controller, E: Pitch overrun 0
◦
, F: Pitch thyristor 2 fault, G: Pulse sensor rotor 

monitor defect 
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Figure 3.8. Distribution of output class at time stamp t. 

 

Figure 3.9. Performance of different data mining algorithms using gmean as 

criteria (phase-II prediction).  
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3.4. Experimentation results 

3.4.1. Predicting turbine states 

In this section, the random forest algorithm (RFA) was used to build 8 prediction models 

at various time stamps, with a maximum prediction length of 5 min. The maximum tree 

size for the random forest algorithm was set to 300. The accuracy was found to be in the 

range of 81 - 99% for all output classes (Table 3.6).   

 

Table 3.6. Prediction accuracy of output class using RFA (Phase-I 

prediction).  

Time 

stamp [s] 

Output Class 
Overall 

Accuracy 

[%] 

Turbine 

OK 

[%] 

Fault 

[%] 

Maintenance 

downtime 

[%] 

Weather 

downtime 

[%] 

t 99.88 99.67 78.41 97.91 99.45 

t + 10 99.56 99.00 77.22 95.04 98.39 

t + 30 97.64 96.41 74.59 94.62 96.54 

t + 60 95.70 95.64 71.67 92.55 94.43 

t + 120 91.87 90.00 67.49 88.47 90.89 

t + 180 88.58 87.34 64.94 84.43 86.82 

t + 240 85.62 84.64 60.31 82.44 83.93 

t + 300 83.05 82.76 59.67 80.39 81.76 

 

3.4.2. Predicting turbine fault modes 

In this phase, output class Fault was replaced with the actual fault types, these being 

pitch overrun 0
◦
, pitch thyristor 2 fault, axle 1 fault pitch controller, and pulse sensor 

motor defect. Table 3.7 displays the prediction results obtained using the RFA at different 

time stamps. The accuracy of each output class was found to be in the range 68 - 100%, 

except for output class pulse sensor rotor monitor defect for which accuracy was low 

(e.g., 40.67 - 61.9%).  
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Table 3.7. Prediction accuracy of output class using RFA (phase-II prediction). 

 Time 

stamp[s] 

Output Class Overall 

accuracy 

[%] 
A [%] B[%] C [%] D[%] E [%] F[%] G[%] 

t  99.64 82.70 99.29 100.0 98.93 87.83 61.90 98.83 

t + 10  99.34 81.08 97.84 98.67 97.77 85.43 58.94 96.44 

t +30  97.15 79.26 95.23 97.13 95.52 83.29 55.03 94.09 

t + 60  95.28 76.87 92.86 95.45 93.26 80.09 51.98 91.68 

t + 120  90.10 71.58 88.41 91.90 90.23 77.67 48.83 87.82 

t + 180  87.98 68.71 85.73 86.39 86.88 74.87 46.29 84.69 

t + 240  84.45 65.32 83.66 82.55 83.34 71.45 43.91 81.53 

t + 300  82.76 62.43 81.45 80.76 79.55 68.32 40.67 78.35 

A: Turbine OK, B: Maintenance downtime, C: Weather downtime, D: Axle 1 fault pitch 

controller, E: Pitch overrun 0
◦
, F: Pitch thyristor 2 fault, G: Pulse sensor rotor monitor 

defect 

 

 

Figure 3.10 displays the gmean value of both prediction phases. Phase-I prediction had 

overall better gmean values (0.435 - 0.817) than phase-II predictions (0.242 - 0.659), 

reason being the poor accuracy of one output class, the pulse sensor rotor monitor defect. 

In the next sub-section, phase-III prediction is illustrated and unobserved faults are also 

identified.  

 

Figure 3.10. The values of gmean at various time stamps. 
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3.4.3. Identifying unseen faults 

While the results on the testing dataset indicated the effectiveness of the random forest 

algorithm, in order to validate the robustness of the proposed model, data from other 

fault-prone turbines were analyzed with the additional objective of seeing how the model 

would respond to unseen states types. Due to the inherent variability in wind turbines, 

faults in a wind turbine vary from one to another. It is interesting to observe the models’ 

responsiveness when some unseen faults are presented.  

In this sub-section, data from 3 other fault-prone wind turbines, turbine 10, 

turbine 14 and turbine 17, are analyzed. Month-long data, from 8/28/2010 till 9/28/2010, 

was available for the analysis. The models built for phase-I prediction were deployed for 

this dataset. Faults such as yaw runaway, brush wear warning, blade angle implausibility, 

reply generator high stage were studied. Figures 3.11-3.13 display the actual distribution 

of output classes for turbines 10, 14 and 17, respectively.  The number of faults varies 

from one turbine to another, however, the turbines were found to be operating normally 

with no errors most of the time. Tables 3.8 – 3.10 display the accuracy of output classes 

across turbines 10, 14 and 17, respectively. It is clear from the results that the algorithms 

are robust enough to identify unseen faults such as yaw runaway, blade angle not 

plausible axis 2, etc. The accuracy for correctly identifying unseen fault cases was found 

to be in the range of 60 - 100%, except for faults related to gearboxes (e.g., gearbox over-

temperature, gearbox oil pressure too low) which were always identified as Turbine OK. 

The reasons for this include a lack of related input parameters (e.g., gearbox temperature, 

gearbox oil pressure, etc.) in the model. The results shown in Tables 3.8 – 3.10 confirm 

that the proposed model can be used to predict most wind turbine faults.  
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Figure 3.11. Distribution of output classes (turbine 10). 

 

 

 

Figure 3.12. Distribution of output classes (turbine 14). 
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Figure 3.13. Distribution of output classes (turbine 17). 

 

 

Table 3.8. Model analysis on turbine 10. 

Actual output Anticipated 

output  

Correctly 

identified cases 

Emergency stop 

nacelle 

Fault 85.66% 

Maintenance 

downtime 

Maintenance 

downtime 

100% 

Rotor impulse 

sensor defect 

Fault 60.90% 

Weather downtime Weather 

downtime 

69.84% 

Yaw runaway Fault 99.62% 

Turbine OK Turbine OK 99.96% 
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Table 3.9. Model analysis on turbine 14. 

Actual output Anticipated 

output 

Correctly 

identified cases 

Blade angle not 

plausible axis 2 

Fault 76.92% 

Gearbox oil pressure 

too low 

Fault 0.00% 

Maintenance 

downtime 

Maintenance 

downtime 

100% 

Motor protection Fault 100% 

No activity CAN-

Bus CCU 

Fault 50.0% 

Overproduction Fault 100% 

Pitch control 

deviation axis 3 

Fault 100% 

Safety chain  Fault 100% 

Turbine OK Turbine OK 99.45% 

Weather downtime Weather 

downtime 

60.70% 

Yaw runaway Fault 87.50% 

 

 

Table 3.10. Model analysis on turbine 17. 

Actual output Anticipated 

output  

Correctly 

identified cases 

Centrifugal switch Fault 100% 

Gearbox oil over-

temperature 

Fault 0.00% 

Maintenance 

downtime 

Maintenance 

downtime 

100% 

Pitch overrun 0
0
 Fault 100% 

Power failure Weather 

downtime 

60.00% 

Turbine OK Turbine OK 99.27% 

Weather downtime Weather 

downtime 

95.54% 

Yaw runaway Fault 100% 
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3.5 Summary 

In this chapter, a methodology for predicting wind turbine states was presented. 

The proposed approach involved three key steps: turbine state abstraction, algorithm 

learning, and state prediction. In the first step, the initial wind turbine states were 

separated into classes using domain knowledge. To compensate the computational effort, 

data mining algorithms were trained using a stratified data set. The proposed model can 

be useful in isolating fault events from the normal turbine operations, also, at the same 

time the fault modes can be predicted in advance with good accuracy.  

The model developed in this chapter is robust enough to identify various unseen 

faults.    
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CHAPTER 4  

DEVELOPING PREDICTION MODELS OF FAULT PRONE COMPONENTS OF 

WIND TURBINES 

4.1 Introduction 

In chapters 2 and 3, frequent wind turbine statuses are analyzed and predicted. 

Quite often, certain components of wind turbines are most susceptible to damage than 

others. Thus, developing fault prediction models of the individual components/sub-

components is more desirable.   

In this chapter, component specific faults namely blade angle implausibility, and 

generator brush worn are investigated. In this chapter, first the mentioned faults are 

analyzed with an aim to identify the components/sub components affected by it. This is 

done by evaluating the snapshot files, which records the fault sequence. Analyzing 

snapshot files will be helpful in maintenance operations. In the literature, Chen et al., 

(2011) investigated blade pitch faults with an aim to reduce the occurrence the number of 

false alarms. Campbell and Adamson, (2003) developed an expert system identifying 

blade vibrations. They developed a rule base system based on two class classification 

model. Biegel et al., (2011) developed a simulation model  to optimize the blade pitch 

movement. In their model, they maximized power output while simultaneously 

minimizing fatigue loads. Muljadi and Butterfield, (2001) developed a simulated model 

for blade pitch control in turbulent wind conditions. In another research, Kusiak and 

Zhang, (2011) developed data driven approach to optimized the blade pitch movement  

In nutshell, research pertaining to blade pitch system is new; and most of the 

research is done in a simulated environment by generating high frequency data. 

Advanced SCADA systems generate alarms in the event of such faults; however, early 

prediction of such faults is desirable to carry out planned and effective maintenance. The 
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output obtained from the present research will serve as input of maintenance planning 

and optimization tasks.  

In general, such faults are frequent and can have downtime of 180 hours or more 

if persistent. Therefore, developing accurate prediction models is of interest.  

Due to the nature of the dataset, classification models using several data-mining 

algorithms are developed in this chapter. The output dataset consists of two classes, 

namely fault and normal. Considering the imbalance in the output data, advance data 

balancing models are developed. The imbalance in the dataset is due to presence of 

relatively higher observations of turbine being functional, as compared with the fault 

cases.  

4.2. Analyzing fault prone components of wind turbines 

In this section, faults associated with two critical components of wind turbines namely 

turbine blades, and generators are discussed. The faults associated with the turbine blades 

are termed as blade angle implausibility, and blade angle asymmetry, whereas, generator 

brush worn and bearing over temperature faults are analyzed in wind turbine generators. 

Description of the mentioned faults is provided in coming sub-sections 

 

4.2.1. Blade angle asymmetry 

The blade angle asymmetry fault is attributed to the difference in blade pitch angles. 

Turbine components, namely motor, bearing, drive gear, electronic control and gearbox, 

are directly in contact with the blades, and therefore such faults adversely impact them. 

At a high wind speed, the blade pitch control system adjusts blade angle, whereas it 

usually remains constant at the low wind speed. When a blade angle lags behind the other 

blades, a turbine shutdown occurs to adjust the blade pitch angle (see Figure 4.1). Figure 

4.1 provides blade angle asymmetry in one such turbine, where, pitch angle difference in 

blades is as high as 60°.  
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Figure 4.1. Blade angle asymmetry in a sample turbine.  

 

System unavailability due to such a fault may reach 180 h, resulting in production losses. 

 

4.2.2. Blade angle implausibility 

The blade angle implausibility fault belongs to the group of category 2 faults, and is 

attributed to the difference in the actual and desired blade pitch angles. This fault status is 

recorded when the specified difference is exceeded for more than 1 s. Turbine 

components, namely the rotor, bearings, and the gearbox, are usually impacted. To 

overcome this fault, adjustment in the blade angles is performed by driving the blade 
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angles in the same direction until the deviation becomes zero. Fig. 4.2 (a-b) illustrates the 

blade angle implausibility fault along the axes 1 - 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Blade angle implausibility in a sample turbine. 

 

Even though the impact of the blade angle faults on the turbine system is obvious, it is 

difficult to identify the components/sub-assemblies directly affected by it. Therefore, 

special consideration is required to analyze the components associated with the fault.  

In the coming section, wind turbine snapshots files are analyzed to identify the 

link between the actual fault and related components. Snapshot files are 10 s files 

recorded by the SCADA systems, whenever severe faults triggered in the turbine system.   
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4.2.3 Snapshot file analysis 

Snapshot files are automatically generated operational data files whenever some critical 

fault occurs in the turbine. Snapshot files contain data at 1 second increments for the 

period of 7 seconds preceding and 3 seconds after the fault occurrence. Wind turbine 

status data was mapped with the operational data and the statuses recorded within the past 

7 seconds and within the next 3 seconds of the mentioned faults are analyzed. Analyzing 

such files can provide more information about the fault sequence, and can be useful in 

identifying the actual faulty components. Figure 4.3-4.4 provides the frequency 

distribution of blade angle asymmetry and blade angle implausibility faults analyzed on 

27 wind turbines (1.5 MW) over a period of 3 months.  

 

Figure 4.3. Blade angle asymmetry across 27 wind turbines. 

 

Based on the distribution of faults across 27 wind turbines, turbine 5 (T5) and turbine 27 

(T27) are considered for the analysis. Tables 4.1 and 4.2 presents the statuses triggered 

due to blade angle asymmetry and blade angle implausibility faults respectively.  
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Figure 4.4. Blade angle implausibility across 27 wind turbines. 

 

The fault sequence presented in Table 4.1 indicate the faulty pitch controller 

along axis 1, which is causing blade angle asymmetry. It also indicates that the pitch is 

overrun 90° to adjust the blade angles. The fault sequence obtained in Table 4.2 indicates 

the correlation among the pitch controller and blade angle implausibility faults. It also 

indicates that fault is reset to check the pitch motor batteries as faulty pitch motor, 

defective battery can be responsible for blade angle implausibility fault. Fault is reset by 

moving all three blades to feathered position 85. Wind turbine does not produce 

electricity till the turbine blades are in feathered position.   

In next section, analysis on generator brush worn fault is performed.  

 

4.2.4. Generator brush worn fault 

The fault is attributed to the excessive wear of generator slip ring brushes, which is one 

of the most common faults occurring in wind turbines. This fault leads to unnecessary 

downtime because wind turbines are taken out of generation so that brushes can be 

replaced or cleaned. 
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Table 4.1. Statuses triggered by the blade angle asymmetry. 

Status  Category Status  Categor

y 

Programstart PLC 2 Blade angle 

asymmetry* 

2 

Manual Stop 4 Pitch control deviation 

axis 1 

2 

Undervoltage 4 Repair 4 

Emergency stop tower base / 

container 

1 Manual operation pitch 4 

Hydraulic pump time too high 2 Manual operation yaw 4 

Safety chain 1 No activity CAN-Bus 

CCU 

2 

Restart time delay 4 Receiving external power 

command 

4 

Control call 4 Pitch thyristor 1 fault 1 

Line fault voltage 4 Malfunction diverter 3 

Line fault frequency 4 Idling command at WTG 4 

Emergency stop nacelle / hub 1 Fault reset 4 

Axis 1 fault pitch controller 2 Pitch control deviation 

axis 2 

2 

Collective fault pitch controller 2 Pitch control deviation 

axis 3 

2 

Pitch overrun 90° 4 Pitch malfunction 2 or 3 

blades 

1 

Rotor CCU collective faults 2 Battery drive after grid 

fault 

? 

Line CCU collective faults 2 *Actual fault, ?unknown 

   

The turbine monitoring system, that is, the brush limit switch, reports excessive wear to 

maintenance personnel. In the absence of timely maintenance, however, the turbine needs 

to be shut down. Figure 4.5 illustrates the cause and effect diagram of “generator brush 

worn” faults. Design imperfections, turbine vibration, aerodynamic asymmetry, and 

generator over speed are considered the prime causes of “generator brush worn” faults.  

Figure 4.5 clearly illustrates that the design is the main cause of such faults; 

however, other factors such as turbine vibration and aerodynamic imbalance also need to 

be considered.  
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 Table 4.2. Statuses triggered by the blade angle implausibility. 

Status  Category Status  Category 

No errors 4 Start-up 4 

Manual stop 4 Load operation 4 

Remote stop 4 Shut down 4 

Remote start 4 Receiving external power 

command 

4 

System OK 4 Blade angle not plausible 

axis 1* 

2 

Timeout pitch controller 2 Test pre-pressure active brake 4 

Collective fault pitch 

controller 

2 Malfunction cabinet heaters 3 

Pitch overrun 90° 4 Malfunction diverter 3 

Braking time rotor blade 1 too 

high 

4 Idling command at WTG 4 

Braking time rotor blade 2 too 

high 

4 Fault reset 4 

Braking time rotor blade 3 too 

high 

4 Pitch control deviation axis 2 2 

Battery charging rotor blade 

drive 

4 Pitch control deviation axis 3 2 

Limit switch 90°-rotor blade 

defective 

2 Blade angle not plausible 

axis 2* 

2 

Pitch control deviation axis 1 2 Blade angle not plausible 

axis 3* 

2 

Tower vibration 2 Pitch malfunction 2 or 3 

blades 

1 

Successful battery test is 

needed 

1 Virtual battery test 4 

Idling position 4 *Actual fault  

 

Research in component design has resulted in brushless generators where the 

drawbacks associated with the generator brushes have been eliminated. For existing wind 

farms, however, the cost of brushless solutions cannot be justified. While the cost to 

replace or maintain a worn out carbon brush cannot be eliminated, the cost corresponding 

to the lost operation can be minimized by predicting “generator brush worn” faults in 

advance. 
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Figure 4.5. Cause and effect diagram of generator brush worn fault. 

A typical carbon brush lasts for six months under normal operation; however, the 

presence of abnormalities in the system operation can reduce the brush life to a factor of 

30% and thus demand early replacement.  

 

4.2.4.1. Fault analysis based on the SCADA status data 

The switch at the end of the brush reports the information to the SCADA system, where 

the information is stored in the form of status codes. Both status and operational 

parameters are used in this chapter. Status data is event triggered whereas, operational 

data is time triggered. Based on the data considered for this research, the delay between 

acknowledging the status code and maintenance action can be as long 168 hours; 

thereafter, the wind turbine will shut down. In the present research, data from 27 wind 
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turbines were analyzed.  The distribution of faults across 27 wind turbines is shown in 

Figure 4.6. The faultiest turbine, Turbine 14, is considered for further analysis.   

 

Figure 4.6. Generator brush worn fault across 27 wind turbines. 

 

SCADA status data from Turbine 14 indicates that the “generator brush worn” fault 

occurred more than 100 times in the month during which data was collected. To identify 

the statuses associated with “generator brush fault,” 1 second snapshot files were 

analyzed. On average, more than 30 different statuses were associated with this fault.  

Figure 4.7 shows the power curve of a turbine (here Turbine 14) affected by the brush 

fault over three consecutive days, 4/14/2010-4/16/2010. The power curve had already 

started to deteriorate, but the turbine is still operational and producing power (Figure 4.7 

(a)). The fault manifested itself for a time period resulting further deterioration in the 

power curve (Figure 4.7 (b-c)). It is also possible that other faults could be responsible 

for power curve deterioration; however, the impact of the “generator brush worn” fault 

prevailed in the two-day time period under consideration. 
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(c) 

 

Figure 4.7.  Powers curve a turbine during generator brush worn fault: (a) during 

fault emergence, (b) one day after the fault, (c) two days after the fault. 
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The analyses based on snapshot files are useful in identifying the turbine components or 

subcomponents affected during the fault. Early prediction of such faults is required to 

minimize the production loss. In next section, data-mining based prediction models are 

developed.  

4.3. Data-mining based fault prediction models 

4.3.1. Models predicting blade angle implausibility faults 

The data collected at a wind farm is noisy due to sensor errors. Inconsistent data, 

e.g., abnormal wind speed, is deleted. After filtering the raw data, the final data set for 

turbine 16 over a period of three months (i.e., from 10/9/2009 to 1/16/2010) is produced.  

The wind turbine status and data is merged for mining. The prediction task is 

performed at 13 different time stamps, with the maximum horizon of 10 min. In total, 13 

different data sets are generated for modeling the blade angle implausibility. Table 4.3 

describes the data set collected at turbine 16 and used to build prediction models for 

identifying the blade angle implausibility fault. 

The parameters recorded by the SCADA system are broadly categorized as 

controllable parameters, non-controllable parameters, and performance parameters. Blade 

pitch angle and generator torque are examples of controllable parameters. Uncontrollable 

parameters are the stochastic parameters that cannot be controlled, e.g., wind speed, wind 

deviation. Performance parameters, such as power, generator speed, and gearbox speed, 

indicate the wind turbine performance. Parameters that are derived from the original 

parameters, e.g., blade angle deviation, can be informative and therefore are included in 

the parameter list. Since the main objective of this research is to develop a predictive 

model for wind turbine blades, only parameters related to wind turbine blades are 

selected for analysis. Based on the domain knowledge, the hundred dimensional data set 

has been reduced to 53 parameters. Further reduction in dimensionality is achieved with 

three different parameter selection approaches namely subset evaluator algorithm, relief, 

and information gain.  
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Table 4.3. Turbine 16 data set description. 

No. Data Type Description 

1 Data frequency 1 s 

2 Fault Blade angle implausible axis 1, 

blade angle implausible axis 2, 

blade angle implausible axis 3 

3 Maximum fault instances 38 

4 Maximum normal 

instances 

10596 

5 Prediction time stamps 5 s, 15 s, 30 s, 1min, 2 min, 3 

min, 

4 min,…,10 min 

6 Maximum prediction 

length 

10 min 

7 Maximum input 

parameters 

53 

 

Subset evaluator algorithm evaluates the significance of a parameter subset by analyzing 

the prediction accuracy of individual parameters. Parameters that are highly correlated 

with the output and less correlated with each other are selected.  Here, the five parameters 

are considered (see Table 4.4).   Relief is an algorithm inspired by the instance-based 

learning. Given a training data S, a sample size N, and a threshold Γ, a relief algorithm 

identifies parameters that are statistically relevant to the target. The size of the nearest 

neighbor (k) is varied to identify the best subset of the parameters (Figure. 4.8). The 

maximum number of parameters to be selected is set to five. Nacelle revolution, rotor 

speed, generator speed, generator/gearbox speed, blade 1 deviation, blade 2 deviation, 

and blade 3 deviations have been determined to be the most relevant parameters. After 

removing redundant parameters, such as the generator speed and generator/gearbox 

speed, the five parameters are listed in Table 4.5.  
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Table 4.4.  Parameters selected by the subset-

evaluator-algorithm. 

No.  Parameter Name 

1 Tower deflection 

2 Nacelle revolution 

3 Blade 1 dev 

4 Blade 2 dev 

5 Blade 3 dev 

 

 

 

 

 

 

 

 

 

 

 

The significance of a parameter is determined by the information gain with respect to the 

output class. The selected parameters and their information gain are provided in Table 

4.6.  

 

Table 4.6. Information gain of the selected parameters. 

No. Parameter name Information gain 

1 Blade 1 dev 0.06 

2 Blade 3 dev 0.049 

3 Blade 2 dev 0.046 

4 Tower deflection 0.037 

5 Nacelle revolution 0.036 

 

Table 4.5. Average relevancy of best parameters. 

 No.  Parameter Average Relevancy 

1 Rotor speed* 0.15621 

2 Generator/gearbox speed 0.15575 

3 Generator speed 0.15511 

4 Blade 2 dev* 0.13457 

5 Blade 1 dev* 0.13296 

6 Blade 3 dev* 0.13284 

7 Nacelle revolution* 0.12793 

8 Torque actual value 0.08895 

9 Voltage phase B 0.08797 

10 Voltage phase C 0.08477 

11 Voltage phase A 0.07962 

* Selected parameter  
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Figure 4.8. Parameter importance at various nearest neighbors using relief parameter 

evaluator. 

 

Based on the different evaluation criteria mentioned in this section, five 

parameters, namely blade 1 dev (BD1), blade 2 dev (BD2), blade 3 dev (BD3), nacelle 

revolution (NR), rotor speed (RS) and tower deflection (TD), are selected to build the 

prediction model. The data set at time stamp t + 180 (see Table 4.7) is used to identify a 

suitable algorithm for constructing a prediction model for 13 time stamps. The 

description of data-mining algorithms considered in this chapter is provided next. 
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Table 4.7. Description of the dataset for model selection. 

Dataset Start Time 

Stamp 

End Time Stamp 

t +180 (Overall) 10/23/2009  

0:00 AM 

1/16/2010 23:57 PM 

t +180 

(Training) 

10/23/2009 

0:00AM 

12/18/2009 23:57 PM 

t +180 (Test) 12/18/2009  

0:00 AM 

1/16/2010 23:57 PM 

 

Five data-mining algorithms, bagging, neural network (NN) (Brieman, 1996), 

PART (Bauer and Kohavi, 1999), k-nearest neighbor (k-NN, k = 10) (McCormick and 

Nandi, 1997) and genetic programming (GP) (Jack et al., 2003; Koja, 1992) are selected 

for building prediction models. Two meta-classifiers, the cost-sensitive classifier and the 

adaptive boosting (AdaboostM1) classifier, are used along with the base classifiers (Aha 

and Kibler, 1991). The cost sensitive classifier makes the base classifier cost sensitive, 

whereas Adaboost classifier improves the prediction accuracy. The algorithms are briefly 

discussed next.  

The multi-layer perceptron was developed using training and validation data sets, 

and tested using a test set. The three data sets are mutually exclusive. Training terminates 

whether the prediction performance of the validation set diverges from that of the training 

set (i.e., the network becomes over trained on the training set).  

PART is a tree-based classifier which generates a partial decision tree at each iteration, 

and the best node is used for rule construction. Unlike other classifiers, such as decision 

tree or RIPPER, PART does not perform global optimization. It adopts a divide-and-

conquer strategy to build rules. Bagging is an ensemble meta-algorithm that combines 

various predictors to predict results. The k-NN classifies objects based on the training 

examples with objects being classified by the majority of vote from their neighbors.   
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Genetic programming (GP) is an algorithm inspired by biology. GPs represent 

individuals as executable programs (trees). The tree structure of GP consists of functional 

nodes and terminal nodes. Terminal nodes usually represent the system parameters’ 

value, whereas functional nodes act as operators (logical or numerical) connecting 

individual nodes. GPs have been successfully used to solve complex problems and 

produced promising results (Koja, 1991; Jack et al., 2003).  

The occurrence of blade angle implausibility faults are less, compared with when 

the turbines are functioning normally. This causes imbalance in the output class. For the 

current scenario, a class imbalance ratio is 0.0036 which is significantly higher. In order 

to get unbiased results, the output class needs to be balanced. Approaches namely under 

sampling of majority class, and oversampling of minority class are widely used in the 

literature to balance the output class. However, the approaches mentioned above suffer 

from poor generalization. In this chapter, cost sensitive learning scheme is employed for 

the data-mining algorithms mentioned earlier. Under normal learning, the cost of 

misclassifying normal class as fault and vice-versa are kept same. However, under cost 

sensitive learning, cost coefficients are usually kept higher for the minority class (usually 

the class of interest).   

The difficulty associated with the cost sensitive learning is in the selection of the 

cost matrix. When the maximum specificity is the metric of interest, the false negatives 

(cases where fault instances are classified as normal instances) are penalized. However, at 

the same time, it is important not to compromise the solution for specificity, therefore 

maximization of the true negative instances (i.e., normal instances) is done by penalizing 

the false positives (cases where normal instances are classified as fault). Related research 

in cost sensitivity learning and classification involves: (1) Nature inspired algorithms (Li 

et al., 2005), (2) instance weighting method (Ting, 2002), (3) boosting tree method (Ting 

and Zheng, 1998), and (4) hybrid methods (Turney, 1995). However, the results reported 

by the above-mentioned approaches are promising; the computational time is the concern. 
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Moreover, the cost-matrix relies on data and hand. Finding the best possible cost 

coefficients is difficult and it requires expert knowledge. However, due to the lack of 

prior information on the misclassification cost, following heuristic algorithm is 

developed.   

 

Step 1: Identify an appropriate predictor for false positives and false negatives.  

Step 2: Generate N cost coefficients (C01 or C10) for the selected predictor uniformly in 

the range (0.5-1.0) (/* 1-generated cost coefficient value will be the cost coefficient for 

other predictor */).  

Step 3: While i <= N,  

Evaluate Misclassification cost (MC), accuracy, specificity and sensitivity for i
th

 

cost coefficient using selected classifier. 

 i = i+1 

 End 

Step 4: Select the best cost coefficient value and its two immediate neighbors.  

Step 5: Evaluate MC, accuracy, specificity and sensitivity for all six possible 

combinations. Identify best cost coefficients.   

Step 6: Compare best objectives of Step 4 and Step 5.  

Step 7: If (MCstep4 < MCstep5), stop 

 Else, best cost-coefficient = cost-coefficientStep5 repeat, go to Step 4   

 

Applying cost sensitive learning on the given dataset provides the cost coefficient for 

false negative cases (C01) is 0.9, whereas 0.1 is found to be the best cost coefficient for 

false positive cases (C10). The initial set of results produced by ANN based classifier is 

shown in Fig. 4.9. Table 4.8 provides the details of the best results. The results indicate 

that the cost of misclassifying a blade angle implausibility fault is nine times higher than 
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the cost of misclassifying a normal instance. The same cost coefficients and their two 

immediate neighbor cost coefficients are used to determine the best cost coefficients for 

other selected classifiers.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.9. Comparison of accuracy measures with misclassification cost. 

 

Table 4.8. Results for cost sensitive classification. 

No.  Parameter/Objective  Value 

1 C01, C10 0.1,0.9  

2 NFP*, NFN* 03,21 

3 Accuracy  76.23% 

4 Specificity 70.00% 

5 Sensitivity 76.90% 

6 Misclassification cost 19.2 units 

*NFP = # of false positives; NFN = # of false negatives 

 

The performance of the data-mining algorithms was examined at t + 180 time stamps, 

and the best performing algorithm was used to build the prediction models at all 13 time 

stamps. Based on the results of the cost sensitive classification (Table 4.8), the cost 

coefficients for all the cases yielded best results in the C01 range of 0.1-0.0., and C02 range 
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of 0.9-0.99. Specificity signifies the accuracy in predicting normal class output, whereas, 

sensitivity signifies the accuracy in predicting fault cases. Table 4.9 reports the results 

obtained using five data-mining algorithms. The results shown in Table 4.9 indicate that 

the performance of most algorithms is similar, except PART, which yielded poor 

specificity. However, a genetic-programming (GP)-based classifier offers advantages in 

terms of solution interpretation and therefore is selected to construct the prediction model 

at all 13 stamps.  

  

 

 

 

 

 

 

 

4.3.2. Experimental results predicting blade angle implausibility 

In this section, results produced by the genetic programming (GP) algorithm are 

discussed. Various experiments are considered to ensure applicability and robustness of 

the approach. The ratio of coefficients of false negative and false positive cases was 

varied in the range 9-9.9 to facilitate cost sensitive classification. The control parameters 

of the genetic programming algorithm are varied to determine the best results. Table 4.10 

lists the parameter values used by GP, applied to build model for prediction at all 13 time 

stamps. One third of the data is used for training, and the remaining two-thirds are used 

for validation. The classification is done by building two-class classifier from multiple 

one-class classifiers. Results are shown in Table 4.11.  

 

 

Table 4.9. Accuracy of data-mining algorithms for 

prediction at time stamp t + 180. 

Algorithm 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Bagging 72.5 80.0 71.7 

PART 75.5 60.0 77.2 

ANN 76.2 76.9 70.0 

k-NN (k=10) 73.5 80.0 72.8 

Genetic 

programming 
74.7 80.5 75.3 
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Table 4.10. Description of GP parameters. 

No. GP Parameter Descritpion/Value 

1 Statistical normal pre-processor Input data is normalized with 0 mean and 1.0 

standard deviation 

2 Population size 100 

3 Validation test size 66% 

4 Max. tree depth 6 

5 No. of inputs for program 6 

6 No. of available classes 2 (fault/normal) 

7 No. of content for nodes 

(functional+terminal) 

20 (14+6) 

8 Function table [+, -, /, *, If, >, <, Pow, &, |, Max, Min, Exp, 

Log] 

9 One-class weight evaluator Confidence of the class (0 or 1) 

10 Tree population Ramped half and half 

11 Program selection Fitness proportional 

12 Size of elite program 1 

13 Crossover operator Proportional 0.9 (2 parents=>2 children) 

14 Mutation operator Proportional 0.07 (1 parent=>1 child) 

15 New program tree operator Proportional 0.03 (1parent=>1 children) 

 

A graphical representation of the results obtained is shown in Figure 4.10. It is obvious 

from Figure 4.10  that as the time stamp increases, the prediction accuracy decreases. The 

GP classifier produced accuracy in the range of 69%-87% for 13 time stamps. A 

description of tree structure in LISP (Koja, 1992) format is shown in Tables 4.12-4.13. 

The results presented in Tables 4.12-4.13 show that most GP tree structures involve less 

parameters than the originally selected five parameters. 
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The GP produced trees provide an easy-to-understand relationship between the input 

parameters that classify an output as a fault/non-fault. The classification rules are easily 

understood and can be verified for other data sets. The multiple feature selection 

algorithms reduce the data dimensionality from 53 dimensions to 6, thereby facilitating 

faster convergence of the GP programs.   

 

4.3.3. Models predicting generator brush worn faults 

The data available for the analyzing generator brush worn fault was collected by SCADA 

systems at 27 wind turbines recorded at 10 minute intervals. In addition, the SCADA 

status data was used to label the fault conditions. Four months of the data collected from 

3/1/2010 to 7/31/2010 was analyzed. Fault distribution is provided in Figure 4.6.  

 

 

 

Table 4.11. Results obtained by the GP algorithm. 

Time Stamp [s] 

Evaluation Criteria 

Accuracy (%) Sensitivity (%) Specificity (%) 

t + 5 87.4 87.5 80 

t + 15 85.1 86.3 78.2 

t + 30 83.2 85.2 77.2 

t + 60 81.3 83.2 76.6 

t + 120 75.6 77.4 75.1 

t + 180 74.7 75.3 80.5 

t + 240 76.3 76.8 71.4 

t + 300 75.6 76 70.3 

t + 360 74.5 75.2 69.8 

t + 420 73.6 74.7 68.6 

t + 480 71.3 73.4 68 

t + 540 69.8 72.5 67.2 

t + 600 68.7 71.2 66.9 
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Table 4.12. GP based tree structure for both fault and normal class (t+5 to t+180 s). 

Time 

Stamp 

[s] 

Normal Class Fault Class 

t + 5 &(If(<(Nacelle Revolution, 

Pow(Co 0.603, Nacelle 

Revolution )), +( Co 0.3, Rotor 

speed ) ), If(Co 0.574, /(Co 

0.668, Min(Rotor speed, Co 

0.358 )))) 

&( &(<(+( Blade2_dev, Co 0.138), +(Nacelle 

Revolution, Rotor speed)), >(Co 1, +(Nacelle 

Revolution, Blade2_dev))), If(<( Min(Rotor 

speed, Co 0.138), blade2_dev), Blade2_dev)) 

t + 15 &(If(<(Nacelle Revolution, 

Pow(Co 0.668, Tower 

deflection)), +(Co 0.3, Rotor 

speed)), If( Co 0.574,/(Co 

0.844, Log(Nacelle 

revolution)) ) 

&(<(Pow(Pow(Blade2_dev, blade2_dev), 

Pow(Blade2_dev, Rotor Speed ) ), Max( 

Blade1_dev, Co 0.434)), If(&(<(Co 0.939, 

blade2_dev), Co 0.909), -(Co 0.039, 

*(Blade3_dev, Rotor speed)))) 

t + 30 < (Nacelle revolution, /(Pow( 

Co 0.362, /( Blade3_dev, Co 

0.575)), +(Co 0.549, +(Nacelle 

revolution, Co 0.549)))) 

<(+(Max(+(Blade1_dev, Co 0.905), 

*(Blade1_dev, Tower Deflection)), 

+(Max(Nacelle revolution, Tower deflection 

), /( Co 0.226, Tower deflection ))), &( >( 

Exp( Nacelle revolution ), /( Rotor speed, 

Tower deflection )), Tower deflection)) 

t + 60 Exp( /( Log( *( Co 0.893, 

Nacelle revolution)), 

blade3_dev)) 

/(-(*(Rotor speed, Nacelle revolution), Rotor 

speed), Min( Nacelle revolution, Exp(Pow( 

Nacelle revolution, Rotor Speed)))) 

t + 120 >(Log( Blade3_dev ), -(-

(Nacelle revolution, Log( Rotor 

speed)), Co 0.629 ) ) 

If( >(Nacelle revolution, Rotor speed ), 

Max(Max(Blade2_dev, blade2_dev ), 

+(Nacelle revolution, Max(Blade3_dev, 

blade2_dev )))) 

t + 180 <(Blade1_dev, +( 

Min(Pow(Tower deflection, 

Nacelle revolution), Nacelle 

revolution), Rotor speed)) 

-( +( Co 0.244, Pow( Co 0.911, -( Tower 

deflection, Nacelle Revolution))), -

(/(Min(Tower deflection, Tower deflection ), 

Log( Nacelle revolution)), Max(Co 0.494, 

blade2_dev))) 

 

To label the output data, the status data containing the fault information was 

merged with the operational data. The output (Oi-1) was labeled as fault or normal at time 

i-1 based upon the logic given in Equation 4.1. 
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Table 4.13. GP based tree structure for both fault and normal class (t+240 to t+ 300 s). 

Time 

Stamp [s] 

Normal Class Fault Class 

t + 240 -(Max(Pow(Co 0.256, Blade3_dev), 

Blade1_dev), Min(Blade1_dev, Exp( 

Pow(Co 0.518, Blade1_dev)))) 

/(-(-(*(Tower deflection, Blade2_dev ), 

*( Co 0.998, Rotor Speed ) ), Nacelle 

revolution ), /( -( *( Co 0.998, Rotor 

speed ), Exp( Blade2_dev)), Exp(Exp( 

Blade2_dev)))) 

t + 300 |(<(Blade2_dev, Blade3_dev ), 

>(Tower deflection, Nacelle 

revolution)) 

>(+(/(Min(Co 0.533, blade3_dev), 

Nacelle revolution), -( Rotor speed, -( 

Co 0.043, Rotor speed) ), >(+( Nacelle 

revolution, -( Nacelle revolution, Co 

0.533)), Max(Pow(Co 0.461, Rotor 

speed), Nacelle revolution)) 

t + 360 /(Log( +(/(Blade3_dev, Rotor speed), 

+(Rotor speed, Co 0.86))), Log(+( +( 

Rotor speed, Blade2_dev), Max( 

Nacelle revolution, Co 0.435)))) 

>( >( Log( /( Co 0.299, Rotor speed ) ), 

Log( +( Rotor speed, Blade2_dev))), 

+(Log( +(Co 0.299, Blade3_dev)), -(Co 

0.805, Nacelle revolution))) 

t + 420 >(Exp(-(Blade2_dev, Blade1_dev)), 

Max(/( Nacelle revolution, Rotor 

speed), Max(/(Co 0.049, Rotor speed 

), Pow(Rotor speed, Co 0.447)))) 

|( &( If( >( Rotor Speed, blade1_dev ), 

Pow( Blade3_dev, Co 0.641 ) ), If( Co -

1.004, <( Rotor speed, Nacelle 

revolution ) ) ), <( Blade3_dev, Min( 

Log( Nacelle revolution ), Log( Rotor 

speed )))) 

t + 480 >( Min(Exp( -( Blade1_dev, Nacelle 

revolution ) ), Exp( -(Nacelle 

revolution, Blade1_dev ) ) ), Min( /( -( 

Rotor speed, Blade1_dev ), Co 1.07), 

Exp( -( blade1_dev,  Rotor speed))) 

/( Max( Exp( *( Blade2_dev, Co 0.464 ) 

), Rotor speed ), *( -( Rotor speed, Co 

0.879), /( Nacelle revolution, Co 

0.505))) 

t+ 540 -( Min( Min( /( Blade3_dev, 

Blade1_dev ), Pow(Tower deflection, 

Rotor speed)), Exp( + (Rotor speed, 

Co 0.143 )) ), *( *(Pow(Tower 

deflection, Rotor Speed), Pow(Tower 

deflection, Rotor speed)), -(/(Tower 

deflection, Nacelle revolution ), /( 

Blade3_dev, blade1_dev )) ) 

+( Co 0.617, *( /( +(Nacelle revolution, 

Co 0.617 ), +( Tower Deflection, 

Blade2_dev )), - (/(Blade3_dev, Nacelle 

revolution ), Co 1))) 

t+ 600 Pow( Pow( Rotor speed, 

+(Blade3_dev,  Rotor  speed )), 

Exp(+(Rotor speed, +( Rotor speed, 

Rotor speed)))) 

>(Max(/(Rotor speed, blade3_dev), 

If(/(Tower deflection, Rotor speed ), /( 

Co 0.329, Nacelle revolution))), Nacelle 

revolution) 
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 o f o

i-1

fault, if t i - 1 t t i , i 10, 20, 30, ...
O

  normal,otherwise

     
  
      (4.1) 

In Equation (4.1), tf  is the time at which the fault is recorded in the status data, whereas 

t+i-1o and t+i0 are the time interval in operational data. The output is labeled as fault at 

time i-1, if the fault was recorded in between current time t + i-1o and the next time stamp 

t + io, otherwise the output is normal.  

To avoid the curse of dimensionality and improve the prediction accuracy, 

irrelevant parameters were removed from the analysis. A combination of data-mining 

techniques and well-established statistic measures were used to select parameters. The 

SCADA system records more than 100 parameters to monitor the wind turbine 

performance, including fixed values. Using domain knowledge, the initial 100 

dimensional data was reduced to 50 dimensions. Selecting a prediction algorithm for 

actual testing was based upon its performance on the test data. The metrics of Equations 

(4.2) through (4.5) were used to measure performance of the algorithms.   

 

                        (4.2) 

                                                                                     

                   (4.3) 

                              (4.4) 

 

The gmean metric is also used due to class imbalance of the dataset (Wang et al., 2009).  

 

              ySpecificitySensitivitgmean        (4.5) 

 

TNPTNMTFMTFP

TNPTFP
Accuracy






TFMTFP

TFP
Senstivity




TNPTNM

TNP
ySpecificit






86 
 

In Equations (4.2)-(4.4), TFP is the total number of faults predicted, and TNP is the total 

normal cases predicted. TFM represents the total fault cased misclassified as normal, 

whereas TNP is the total normal cases misclassified as fault. The objective here is to 

maximize the gmean, while keeping the desired level of accuracy.   

Two known parameter selection approaches—namely boosting tree, and wrapper 

algorithm with genetic search—were employed to identify the best subset of parameters 

for the prediction. Boosting tree uses a gradient boosting machine approach to rank the 

parameters. Wrapper methodology for selecting features uses the learning algorithm as a 

black box to rank/score subsets of features according to their predictive power. In the 

present research, a genetic algorithm based ranking approach was used. Table 4.14 

describes the 10 parameters selected based upon the boosting tree, and wrapper 

methodology. The parameter selection approach has reduced 50 parameters to 10. 

 

Table 4.14. Parameter selected based on different data mining algorithms. 

Parameter 

Boosting Tree 

Algorithm 

Wrapper (Genetic 

Search) 

Rank/Score Rank/Score 

Nacelle revolution 1 1 

Hydraulic pressure 0.98 8 

Drive train acceleration 0.95 3 

Generator/gearbox speed 0.9 10 

Generator speed 0.89 5 

Temperature, shaft bearing 0.89 4 

Temperature, gearbox bearing 0.86 7 

Rotor speed 0.83 2 

Temperature, bearing A 0.82 9 

Temperature bearing B 0.8 6 

 

The class imbalance problem is prevalent in wind turbines where the fault cases 

are rare compared with normal cases (that is, when the turbine is fully operational). 

Considering the huge amount of data, for a typical fault (e.g., rotor imbalance, blade 
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angle asymmetry) the ratio of normal to fault instances can be as large as 1000:1. Class 

imbalance is considered one of the most critical problems in machine learning and data-

mining based applications, and has gained attention from the researchers worldwide 

(Cleofas et al., 2009; Hripscak and Wilcox, 2002; Weiss, 2004).  

Possible recommended solutions to balance the data include: (1) over-sampling of 

the minority class; (2) under-sampling of the majority class; and (3) cost sensitive 

classification. A detailed description of numerous data sampling approaches can be found 

in Bastia et al., (2004). Irrespective of their widespread applications, these solutions have 

certain limitations. For example, over sampling might create minority class data points 

very close to majority data points thereby making the classification task more 

challenging; under-sampling might cause over fitting; and the cost sensitive class 

classification requires cost information for misclassified cases. Another method of data 

sampling called data cleaning aims to remove redundant and noisy data points from the 

majority class. Common techniques include neighborhood preprocessing (Cano et al., 

2003), Tomek links (Tomek, 1976), and so on. In this chapter, Tomek links based data 

sampling approach is used to remove the majority class data-points.  In general, data from 

the majority class can be categorized into four types: noise, borderline, redundant, and 

safe. Removing noisy, borderline, and redundant data from the majority class can 

improve the prediction accuracy by making the output class more distinguishable. In this 

chapter, the Tomek links based data sampling method was used. Tomek links use 

Euclidean distance information of input data points to identify borderline and noisy data. 

For example let us assume pi and pj to be two data points that belong to the 

minority class, and assume ni to be the data point representing the majority class. The 
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distance between pi and pj is assumed to be δ(pi,pj), whereas the distance between ni and 

pi is assumed to be δ(pi,ni). The data point ni will be Tomek link to data point pi, if 

δ(pi,ni)< δ(pi,pj). All identified majority class forming the Tomek links are removed 

iteratively. The process is repeated until the Tomek links are identified. In this research, 

the logic illustrated in Figure 4.10 was used for data sampling.  

Figure 4.11 describes the application of the logic on one such dataset. For the 

particular dataset, the algorithm ran for 50 iterations and the data points from the majority 

class were removed. Comparing just the minimum distance interclass data points and 

minimum distance out of class data points made the process computationally efficient. 

Using the Tomek links, the imbalance in the dataset is reduced by 10%.  

The application of Tomek links reduces the class imbalance only up to a certain 

limit as it depends on a distance function defined for the dataset. To further reduce the 

class imbalance, genetic algorithm is employed (Goldberg, 1986). The main aim is to 

enhance the capability of data-mining classifiers by selecting a near- optimal training set. 

Obtaining an optimal training set is not possible in polynomial time as the subset 

selection problem is NP-hard in nature. The operational wind turbine data recorded by 

SCADA system mostly have normal cases (e.g., case when wind turbine is functioning 

normally); whereas, the fault occurrence are very less, even if the concerned wind turbine 

is fault prone. This imbalance in the output class makes impairs the prediction ability of 

any data mining algorithms. Traditional approach to deal with the class imbalance in the 

dataset often lack in generalization, or cause over training of the dataset. 
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Figure 4.10. Identifying Tomek links. 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. Iterative sampling of dataset t +21 using Tomek links. 

 

 Evolutionary algorithms such as genetic algorithm (GA), simulated annealing 

(SA), etc., have been successfully used in the data reduction task; also refer as feature 
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selection (Cano et al., 2003, Aha et al., 1991, Reeves and Bush, 2001). However, there 

are very few applications of evolutionary algorithms in balancing the output class. 

Description of the algorithm to obtain the near-optimal data sample is provided next.  

An overall framework of the developed approach is shown in Figure 4.12. The 

keys steps of the approach are (1) initial sample selection, (2) application of evolutionary 

algorithm in identifying the best training set, (3) Learning data-mining classifier on 

training set, and (4) Testing the learned algorithm over blind test set. Genetic algorithm 

and data-mining based classifier control the process. Genetic algorithm provides the 

feasible training subset which is evaluated by the data-mining classifier. Depending upon 

the class imbalance ratio, the population size of the algorithm was determined, which was 

kept constant throughout the evolution. Mathematically, it can be written as:   

 )_(/)_(_ classMinoritySizeclassMajoritysizeceilszPop     (4.6) 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 4.12. Overall framework of the algorithm. 
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The sampled data obtained after Tomek link application is divided into two parts 

e.g. training set and testing set. Two third (66.6%) of the data is used as training set, 

whereas, remaining one third (33.3%) is used for blind testing. The training data is 

divided into balanced subsets (equal to the population size) in which majority class 

instances are picked randomly from the original training data without replacement and all 

minority class instances are used in all training subsets (Figure 4.13). The search space 

associated with the algorithm constitutes all the subsets of training set. A binary 

representation is used where the value 1 indicates the instance at the particular location is 

included in the training subset, 0, otherwise. The binary representation is applied in 

selecting data from majority class. In case of minority class, all the instances are kept in 

all training subsets. A sample representation is shown in Figure 4.14.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.13. Approach to create balanced training subsets.  
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Figure 4.14. Chromosome representation of a solution for two class dataset. 

 

The fitness function to evaluate the performance of the selected training set is 

based upon the confusion matrix. Considering the class imbalance in the dataset, 

accuracy obtained from each class is included in while evaluating the fitness function. A 

well-known metric e.g., geometric mean (see Equation 4.5) is used as our final fitness 

function which includes the accuracy obtained from both normal and fault class. The 

value of gmean lies in between 0 and 1. Higher the value of gmean better is the selected 

training subset.  

A single point cross-over is used on selected parents, which is followed by a flip 

mutation. A constraint related with maximum number of training subset from majority 

class is imposed in order to maintain a balance in the output class. In mutation, randomly 

selected bit with value 0 is replaced with 1 and a bit with value 1 is replaced with 0. It is 

important to mention that only the bits belonging to majority class dataset is used in both 

recombination operators. Overall, the number of children equal to the size of initial 

population is generated and their fitness is evaluated against the parents’ population to 

select the best candidates for next generation. Following stopping criteria are used (1) No 

improvement in the solution for 10 consecutive generations, (2) Maximum number of 

generation (e.g., GEN_MAX 100).   

Four well-known data-mining algorithms, namely, Multilayered perceptron 

(MLP), boosting tree, k-NN (k=10), and support vector machine (SVM) were used to 

build a prediction model at the t + 21 time stamp. The best performing algorithm was 

used to perform predictions at 24 time stamps. A description of the dataset for algorithm 

selection is shown in Table 4.15. 
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Table 4.15.  Description of the dataset for model construction. 

Data Set Start Time Stamp End Time Stamp 

t + 21 (overall) 3/1/2010 12:00 AM 3/31/2010 11:20 PM 

t + 21 (train) 3/1/2010 12:00 AM 3/20/2010 09:30 PM 

t + 21 (test) 3/21/2010 09:60 PM 3/31/2010 11:20 PM 

 

Table 4.16 describes the results obtained using various data-mining algorithms. 

Compared with other data-mining algorithms, boosting tree algorithms produced the best 

accuracy for fault class and overall best gmean. It is therefore considered best to build 

prediction models at all 24 time stamps. Poor sensitivity obtained using the remaining 

data mining algorithms depicts their inability to classify the minority (fault) class 

instances, whereas the boosting tree algorithm appears to be insensitive to class 

imbalance by producing good sensitive results.  

Results on the test dataset indicated that out of 37 fault instances, the boosting 

tree algorithm was correctly able to predict 31 instances, whereas in the case of normal 

instances, 101 were correctly predicted out of 127.  

 

 

4.3.4. Experimental results predicting generator brush worn faults  

Two-thirds of the dataset was used to train the boosting tree, whereas the remaining one-third 

was used for testing. Table 4.17 describes the results of the analysis on time-series datasets. 

The results of three cases, (1) the original dataset; (2) the sampled using Tomek links; and (3) 

the sampled dataset using Tomek links and genetic algorithm, are displayed in Table 4.17. 

Table 4.16. Performance of data-mining algorithms at t + 21 time stamp. 

 Accuracy 

(%) 

Specificity 

(%) 

Sensitivity 

(%) 

Gmean 

k-NN(k=10) 80.8 82.8 61.5 0.713 

MLP 78.5 91.3 50.0 0.675 

SVM 78.7 78.7 0.00 0.000 

Boosting tree 80.4 79.5 83.7 0.815 
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Prediction accuracy on the sampled dataset using both Tomek links and genetic algorithm 

was found in the range 82.1%-97.1% for all time stamps, whereas accuracy in predicting 

fault cases was found in the range 71.4 %-95.8.0%. The significant improvement in accuracy 

indicates the effectiveness of data sampling methods.   

 

Table 4.17. Results obtained from boosting tree algorithm. 

 

Time 

Stamp [10 

min] 

Original Tomek links Tomek links + genetic 

algorithm 

Acc 

(%) 

Sen 

(%) 

Spe 

(%) 

Acc 

(%) 

Sen 

(%) 

Spe 

(%) 

Acc 

(%) 

Sen 

(%) 

Spe 

(%) 

t + 3 75.8 77.7 64.9 77.9 77.2 82.5 97.1 100 94.7 

t + 6 74.3 74.0 77.5 76.1 76.7 73.4 95.9 96.0 95.8 

t + 9 75.0 75.5 70.2 69.1 69.0 69.7 94.3 95.2 93.7 

t + 12 76.3 76.7 69.7 76.7 77.0 74.7 94.2 100 88.8 

t + 15 74.2 75.7 60.0 80.4 79.5 83.7 91.3 95 88.4 

t + 18 73.9 74.6 66.6 74.5 76.4 65.3 83.4 98.5 82.8 

t + 21 74.7 74.6 78.1 79.5 79.7 77.2 87.7 100 80.0 

t + 24 72.5 73.9 63.3 70.8 74.7 58.0 87.5 91.6 86.2 

t + 27 81.1 83.3 55.0 73.2 74.1 65.3 86.3 92.3 84.0 

t + 30 75.7 81.6 53.3 75.4 80.2 55.0 88.2 86.6 89.4 

t + 33 83.1 95.7 28.1 72.2 69.8 76.6 86.2 89.4 84.6 

t + 36 83.8 90.7 40.0 82.2 89.4 70.8 87.4 84.4 89.0 

t + 39 76.3 82.3 41.6 76.0 78.7 64.0 88.2 90.6 81.8 

t + 42 83.4 92.8 29.1 77.7 86.7 50.0 84.8 87.5 83.9 

t + 45 88.7 97.7 37.5 76.8 76.0 79.1 83.1 86.6 83.3 

t + 48 76.0 84.1 22.2 77.2 80.0 70.5 84.1 83.3 84.4 

t + 51 68.7 79.2 45.0 84.1 81.4 90.0 84.0 83.3 84.2 

t + 54 74.7 79.2 54.5 74.1 80.9 56.2 84.2 81.2 86.3 

t + 57 67.9 69.3 60.8 74.0 76.9 66.6 82.2 83.3 81.8 

t + 60 75.0 78.3 46.6 77.2 79.0 70.5 80.0 92.8 71.4 

t + 63 70.9 74.1 58.3 76.3 72.9 91.6 77.6 77.7 77.6 

t + 66 60.6 61.6 53.8 64.0 64.5 63.1 82.1 59.2 92.9 

t + 69 63.0 64.5 53.3 55.0 54.1 57.1 77.0 69.5 78.4 

t + 72 67.9 72.6 50.0 76.1 82.1 66.6 72.3 60.8 83.3 

*Acc=overall accuracy, *Sen=sensitivity (accuracy in predicting fault cases), 

*Spe=specificity (accuracy in predicting normal cases) 
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Figure 4.15 compares the performance of all three cases in terms of the gmean measure. 

The gmean obtained using Tomek links and genetic algorithm based data sampling was 

always found to be better than the other two cases. In addition, it is important to mention that 

the misclassification costs for both fault and normal class output were kept the same; that is, 

equal to 1. The reasonable amount of accuracy for all 24 time-stamps indicates that the 

boosting tree algorithm is able to learn efficiently even in the case of class imbalance.  

The results presented in this section offer early prediction of emerging faults. This allows 

operators to schedule maintenance and minimize operations and maintenance cost. In 

addition the potential of collateral and severe faults is reduced.  

 

Figure 4.15. Relative improvement in gmean score over 24 time stamps.  

 

4.4. Summary 

In this chapter, fault associated with wind turbine components namely turbine blades 

(blade angle implausibility), and generators (generator brush worn out) were investigated. 

Data balancing approaches based on Tomek links, genetic algorithms were applied to 
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make the output class balance. The prediction accuracy is greatly improved by applying 

advanced data pre-processing methods. The solution obtained by genetic programming 

and boosting tree algorithm can be easily interpreted. Analyzing fault related snapshot 

files contains important information about fault sequence and can be used in 

identification of other components/sub-components affected by the faults under 

consideration.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



97 
 

CHAPTER 5  

ANOMALY DETECTION BASED APPROACH TO ANALYZE BEARING 

OVERTEMPERATURE EVENTS 

5.1 Introduction 

Bearings are the essential part of turbine generators and gearbox. The dynamic 

and unpredictable stress cause the bearings to wear prematurely, leading to increased 

turbine maintenance costs, and could lead to sudden, expensive turbine breakdowns. 

Over-temperature is another issue impacting the performance of turbine bearings.    

The temperature monitoring systems of wind turbines issue alarms in the event of 

faults. However, such alarms are usually signaled once the damage to the component has 

already occurred. There is a need to find solutions for predicting faults ahead of time, in 

order to avoid extensive damage of turbine components. Data-mining algorithms build 

fault prediction models using data collected by the supervisory control and data 

acquisition (SCADA) systems. Such data—e.g., power output, gearbox bearing 

temperature, and generator speed—is usually acquired for over one hundred turbine 

parameters. Amplitude demodulation (Amirat et al., 2010), Fast Fourier transformation 

(Lin et al., 2002), wavelet decomposition (Cusido et al., 2008) etc. are some common 

method used in the literature to analyze bearing faults. Such approaches require vibration 

data which often not been recorded by the typical SCADA systems. Another stream of 

research pertaining with bearing failures is anomaly detection in which the normal 

bearing behavior is modeled and tested against abnormal behavior (Zaher et al., 2009, 

Schlechtington and Santos, 2011). Such anomaly detection approaches ensures fault 

prediction ahead of the time.   

In the present chapter, an approach based on anomaly detection is applied to 

identify and predict the bearing over-temperature. Various abnormal trends in the 

generator bearing temperature are analyzed.  
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5.2 Data description and analysis  

The data used in the research reported in this chapter has been collected from the 

supervisory-control and data-acquisition (SCADA) systems of a large wind farm. Here, 

high-frequency data (i.e., 10 s) from twenty-four wind turbines over a period of four 

months (Aug 2009-Dec 2009) is used to analyze bearing faults. Table 5.1 displays the 

temperature range for the turbine bearings of the generator, gearbox, and shaft. Turbines 

3 and 15 are affected by over-temperature generator bearing B and thus are considered 

for construction of data-mining prediction models. In the next section, training and 

testing strategies of the data-mining algorithms are discussed.     

 

5.2.1 Training set selection 

Modeling the normal behavior of a generator bearing requires input data with varying 

temperatures. Therefore, the data from different wind turbines is used for model 

development. The box plot in Figure 5.1 displays the generator-bearing temperature data 

from 24 wind turbines that is highly variable. To increase the number of training 

examples, data from multiple wind turbines has been used. Box plot is used to select 

training data from turbines behaving differently.  The data from turbines 2, 5-8, 13-14, 

16, 19, and 21-23 constitutes the training dataset.  

Figure 5.2 depicts of the range of the generator bearing B temperature used to 

model normal turbine behavior (i.e., behavior not affected by faults). According to 

current wind-turbine operations practices, the generator bearing B temperature exceeding 

90
◦
C requires turbine shutdown. Turbines 3 and 15 have shown some abnormal behavior 

(see Table 5.1) and therefore their data has been used for testing abnormal behavior. The 

description of training and testing dataset is provided in Table 5.2. 
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Table 5.1. Turbine bearing temperature ranges. 

Turbine 

index 

Temp. generator 

bearing A(°C) 

Temp. generator 

bearing B(°C) 

Temp. gearbox 

bearing(°C) 

Temp. shaft 

bearing(°C) 

min max min max min max min max 

1 14 66 20 87 24 70 -4 36 

2 13 74 16 77 22 71 -7 35 

3* -37 70 -37 101 -37 69 -36 36 

4 -39 46 -39 64 -39 69 -38 36 

5 -273 62 -273 73 -273 70 -273 34 

6 -38 57 -38 73 -37 68.8 -37 34 

7 -37 57 -37 69 -36 66 -36 33 

8 10 43 13 62 32 67 3 37 

9 -36 42 -39 49 -36 64 -35 36 

10 5 42 8 48 23 68 4 36 

11 6 40 15 46 26 64 0 36 

12 -273 77 -273 69 -273 64 -273 32 

13 -39 48 -40 52 -39 68 -38 35 

14 12 52 21 76 26 69 -2 32 

15* -273 54 -273 107 -273 68.2 -273 34 

16 8 48 12 64 25 67 -1 36 

17 -37 78 -37 82 -37 70 -36 36 

18 8 46 11 59 26 70 2 37 

19 -37 49 -37 80.3 -36 77 -35 37 

20 -39 44 -38 53 -38 65 -37 36 

21 8.6 80 10 86 15 69 -8 34 

22 -37 74 -37 77 -37 65 -36 34 

23 -38.5 59 -38 75 -38 69 -37 36 

24 -37 47 -37 47 -37 70 -36 36 

* Of interest 

 

Thus, the training dataset consists of the data from 11 wind turbines. In order to 

reduce the data-dimension, data from 11 turbines are averaged to construct the training 

dataset.   
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Figure 5.1. Box plot of the generator bearing B temperature of wind turbines. 

 

 
 

Figure 5.2. The generator bearing B normal temperature range. 

 

 

Table 5.2. Dataset for the anomaly detection. 

Dataset Start time stamp End time stamp Turbines considered 

Training and 

model validation 

8/1/2009 

12:00:00 AM 

12/8/2009 

11:59:50 PM 

5-8, 12-14, 16, 

19, 21-23 

Testing-normal 

behavior 

8/1/2009 

12:00:00 AM 

10/1/2009 

11:59:50 PM 

1,12 

Testing-abnormal 

behavior 

10/2/2009 

12:00:00 AM 

12/8/2009 

11:59:50 PM 

3 
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5.3 Modeling the normal bearing behavior 

 

5.3.1 Parameter selection for model construction 

To capture the normal behavior of the generator bearing, parameters impacting the 

bearing temperature are selected initially using domain knowledge (reduction from 100 to 

50 parameters) and the final selection with data-mining algorithms. Three different data-

mining algorithms—wrapper with genetic search (WGS) (Kohavi and John, 1997; 

Goldberg, 1989), wrapper with best first search (WBFS) (Sbihi, 2007), and boosting tree 

algorithm (BTA) (Kudo and Matsumoto, 2004)—have been applied to select the most 

relevant parameters for prediction of the generator bearing B temperature. The wrapper 

approach uses supervised learning to select relevant parameters by performing 10-fold 

cross validation. Table 5.3 lists the 10 most relevant parameters. In total, 18 different 

input parameters are used for the development of regression models.  

 

5.3.2 Model construction 

The model for predicting the generator bearing B temperature is presented in (5.1). 

 

                                (5.1) 

 

Where y (t) is the target generator bearing B temperature expressed as a function 

of 18 input parameters. The model (5.1) is built with four neural network (NN) 

algorithms. 
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Table 5.3. Relevant parameters selected by data-mining algorithms. 

No. 

WGS WBFS BTA 

10-fold cross 

validation 

10-fold cross 

validation 
Parameter importance 

1 
Voltage phase A,C 

(100) 

Nacelle revolution 

(100) 

Temperature, gearbox 

1.00 

2 
Current phase 

A,C(100) 

Current phase C 

(80) 

Temperature, 

generator cooling air 

0.98 

3 
Nacelle revolution 

(100) 

Temperature hub 

(80) 

Temperature, 

generator 2 0.95 

4 Torque (100) 
Temp. control box 

axis 1 (60) 

Temperature Main Box 

(°C) 0.94 

5 
Temperature 

generator 1 (100) 

Voltage phase C 

(50) 

Temperature Control 

Box Axis 1 (°C) 0.70 

6 
Temperature 

gearbox (100) 

Temperature top 

box (50) 

Temperature, generator 1 

0.64 

7 
Temperature 

ambient (100) 

Drive train 

acceleration (50) 

Temperature Control 

Box Axis 3 (°C) 0.62 

8 
Temperature 

Nacelle (100) 
Generator speed (50) State fault 0.62 

9 

Temperature 

generator cooling 

air (100) 

Blade 3 pitch angle 

(actual) (40) 

Blade 3, actual value 

0.59 

          

10 
Temperature main 

box (100) 

Temperature bearing 

A (40) 

Blade 1, actual value 

0.58 

 

To select the best performing  algorithm metrics such as the absolute error (AE) mean 

absolute error (MAE), relative error (RE), mean relative error (MRE), and R
2
 goodness of 

fit have been used (see (5.2) – (5.4)). 

     

        (5.2)

        

                          (5.3)
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 Table 5.4 presents prediction results produced by five neural networks (NNs) based on 

the training data (Rumelhart and McClelland (1986)). The training dataset is divided into 

three parts namely training, testing, and validation in the ratio 80:10:10. The algorithm 

shown in Table 5.4 were produced the best results among 100 randomly selected NNs. In 

order to obtain the best five NNs, the process is repeated five times. The NNs are 

generated by varying the no. of neurons in hidden layer, and hidden, output activation 

functions. The no. of neurons were kept in the range 5-25, whereas, activation functions 

namely tanh, exponential, identity, and logistics are used as activation functions. The 

networks structures were optimized using the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) method (Broydon, 1970; Fletcher, 1970; Goldfarb, 1970; and Shanno, 

1970). The neural network algorithm NN2 outperforms the other data-mining algorithms. 

It provides consistently best results for training, testing, and validation dataset. The 

structural details of the neural network algorithm are provided in Table 5.5.   

 

 

Table 5.4. Performance of NN on training set. 

Net. 

nam

e 

MAE MRE (%) R
2
 

A
*
 B

*
 C

*
 A

*
 B

*
 C

*
 A

*
 B

*
 C

*
 

NN

1 0.802 0.804 0.919 1.740 1.715 2.032 0.993 0.992 0.984 

NN

2 0.765 0.775 0.860 1.650 1.642 1.880 0.994 0.993 0.987 

NN

3 1.050 1.036 1.115 2.360 2.250 2.521 0.987 0.986 0.984 

NN

4 0.899 0.921 0.992 1.940 1.963 2.168 0.991 0.990 0.984 

NN

5 0.810 0.844 0.896 1.750 1.796 1.964 0.993 0.991 0.986 

*A: Training data, B: Test data, C: Validation data 
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Table 5.5. Description of neural networks. 

Net. 

Name 
Network structure Training algorithm Hidden activation Output activation 

NN1 MLP 18-16-1 BFGS 380 Tanh Identity 

NN2 MLP 18-17-1 BFGS 622 Logistic Identity 

NN3 MLP 18-5-1 BFGS 214 Logistic Exponential 

NN4 MLP 18-15-1 BFGS 370 Logistic Logistic 

NN5 MLP 18-16-1 BFGS 377 Logistic Exponential 

 

Figure 5.3 displays the run chart of actual and predicted bearing temperature of validation 

dataset. The results indicate that algorithm was able to correctly predict the normal 

bearing temperature range. Compared with the anomaly detection models developed in 

the literature ( Schlechtingen, and Santos, 2011), the prediction error was found to be the 

least in the present model. This is due to optimal NN structure over fixed number of runs. 

 

Figure 5.3. Run chart of actual and predicted bearing temperature (NN2). 

 

5.3.2.1 Residual analysis 

In this section, the best performing algorithm, i.e., NN2 is further analyzed with respect 

to error residuals. The aim here to make sure that the error residuals lies within the 

certain limit so that the false alarm during testing the abnormal behavior can be 
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minimized. In order to better observe the signal errors, the residuals are standardized 

(Equation 5.5). With 95% confidence interval, standardized residuals should lie within 

±2.00 error band.   

   

 (5.5) 

 

Where, ri is the error residual for observation i, N is the total number of observations. 

Figure 5.4 displays the standardized error residuals of the run chart shown in Figure 5.3.  

With the specified control limits on residuals, almost 6.00% of the data points were found 

out of limits. 

 

 

Figure 5.4. Standardized error residual of Figure 5.3. 

 

The NN2 algorithm is trained again after removing the data-points causing out of control 

error residuals from the whole training dataset. The training process is repeated till all the 

error signals are not found within the control limits. After three iterations, the error 

residual were found within the bounds. Almost 7% of the data points were removed in the 

process. Figure 5.5(a) displays the run chart of validation data points, and Figure 5.5 (b) 

displays the error residuals of the data-points after three iterations. The NN2 algorithm 
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used less learning iterations (i.e. BFGS 320) to get all the residuals within control. The 

improved result obtained by NN2 is provided in Table 5.6.  

 

 

 

 

 

 

 

 

 

 

                                                        (a) 

 

 

 

 

 

 

 

 

 

(b) 

 

Figure 5.5. Results obtained by NN2 after algorithm retraining (a) run chart comparison, 

(b) error residuals. 
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Table 5.6. Performance of NN2 after retraining. 

Net. 

name 

MAE MRE (%) R
2
 

Trainin

g error 

Test 

error 

Validati

on error 

Trainin

g error 

Test 

error 

Validati

on error 

Trainin

g perf. 

Test 

perf. 

Valid

ation 

perf. 

NN2 0.659 

0.66

3 0.693 1.39 

1.37

9 1.47 0.9916 0.9905 

0.990

3 

 

In the next section, analysis on the turbine normal behavior is performed. Two turbines 

namely T1 and T12 are analyzed.  

 

5.3.3 Testing normal bearing behavior 

The best performing algorithm (i.e., NN2) is selected to test the normal behavior of wind 

turbines. Two turbines, Turbine 1 and Turbine 12, have been selected for testing. Figures 

5.6 and 5.7 display the scatter plot of actual and predicted results.  

 

 

 

 

 

 

 

 

 

 

Figure 5.6. Comparison of actual and predicted values by NN2 (test turbine 1). 
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Figure 5.7. Comparison of actual and predicted values by NN2 (test turbine 12). 

 

The results shown in Figures 5.6-5.7 indicate a high correlation between actual and 

observed values. NN2 applied on T1 provides MAE 0.89°C, and MRE 1.98%. Whereas, 

in case of T12 MAE and MRE (%) were 1.22°C, 3.19% respectively. The MAE and 

MRE values are within the acceptable range for both turbines. Thus, the model accurately 

captures the normal behavior of the wind turbines.   

5.4. Analysis of experiments 

5.4.1. Analyzing bearing abnormal behavior 

In this section, results of abnormal turbine behavior are discussed. The normal behavior 

model constructed by best performing algorithm NN2 i.e., MLP 18-17-1, hidden 

activation: logistic, output activation: identity is exploited to detect abnormal behavior in 

Turbine 3. One week data i.e. from 3/12/2011-3/19/2011 is used where the generator 

bearings experience over temperature issues. Figure 5.8 display the histogram of testing 

turbines which indicates over-temperature instances.  
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Figure 5.8 Histogram of testing turbine (i.e. test turbine 3) 

 

Figure 5.9 illustrates the trend of the actual and predicted generator bearing B 

temperature of Turbine 3. The temperature at the peak points is more than 90
◦
C, which is 

above the specified upper limits for the generator bearings. Such temperature may cause 

damage to the bearing and can adversely affect operations of the wind turbine; thus, the 

ability to predict this condition ahead of the time is desirable.  

The predicted results (Figure 5.9) closely follow the measured values of the 

temperature. However, in the event of abnormal temperature the error is signaled, i.e., 

residual temperature exceeds the allowable limit. The standardized error residuals are 

provided in Figure 5.10. The error residuals at over temperature points clearly exceed the 

specified limits, and therefore alarm can be signaled.  
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Figure 5.9. Run chart of actual and predicted values (test turbine 3). 

Figure 5.10. Standardized error residuals of run chart (test turbine 3). 

 

5.4.2 Moving average filtering and improved residual analysis 

The error residuals displayed Figure 5.10 indicate the abnormal events. However, in 

order to remove the effect of noise, a low pass averaging filter is applied. For bearing 

temperature monitoring, the 10-sec data is too frequent as temperature change may not be 

so abrupt due to thermal inertia. Thus, in this chapter, an approach based on moving 

average window is applied (Kusiak et al., 2010). Figure 5.11 displays the moving average 

window, where N is the total data points, and i is the window width. A window of size 
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600 data points is arbitrarily considered.  Figure 5.12 displays the smooth residuals, 

where four over temperature events are clearly identified.  

 

 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 Error residual moving average window.  

 

 

Figure 5.12 Denoised error residual with moving average window of size 360.  

 

 

5.4.3. Computing prediction length 

The analysis shown in previous section clearly demonstrate the role of anomaly detection 

approach in identifying the over temperature issues. However, in order to avoid bearings 

undergo over temperature, predicting such cases in advance is of interest. Figure 5.12 
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indicate six events, where, the standardized error exceeds the specified error limit (i.e., 

2
°
C). It is important to mention that, the analysis presented in this chapter is targeted to 

identify and predict over temperature cases only.  

 Figure 5.13 provides the zoomed-in display of the first over temperature pattern 

found in Figure 5.12. Based on the set error limits (i.e. error residual equals 2
°
C), the 

alarm will be signaled at least 210 time steps before the actual event. In the Figure 5.12, 

each data-point is separated at 10 second interval, thereby signaling the alarm almost 35 

minutes ahead of the actual case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 Error residuals trend during first over temperature event.   

 

All five over temperature cases were analyzed in the similar fashion, resulting average 

prediction length close to 1.5 hrs.   

 

5.5. Summary 

In this chapter, a simple but effective approach to analyze the bearing over temperature is 

presented. The models developed by neural network algorithms are able to predict the 
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normal temperature trend with error less than 2%. The approach developed in this chapter 

can predict the over temperature up to 1.5 hours in advance, thereby providing decent 

time for maintenance. The models developed in this chapter are generic enough to detect 

under temperature bearing issues if required. Analysis on gearbox and shaft bearings can 

also be done in the similar fashion.   
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CHAPTER 6  

VIBRATION ANALYSIS OF WIND TURBINE GEARBOX  

 6.1 Introduction 

Gearboxes of wind turbines are fault-prone and costly to repair. Since its inception, the 

wind energy industry has experienced high gearbox failure rates (McNiff, 1990).  Proper 

monitoring of gearboxes is necessary to avoid high repair and maintenance costs, which 

over time could exceed the turbine procurement cost. Vibration is one of the condition 

indicators of wind turbine components, and vibration data are useful in minimizing the 

damage of turbine components.  

Vibration analysis of wind turbine data can be performed in frequency and time 

domains. The frequency domain may reveal intrinsic characteristics of the components 

that could be difficult to observe in the time domain. Fast Fourier analysis (FFT), wavelet 

analysis, and cepstrum analysis are commonly used in the frequency domain (Becker, 

2006; Verbruggen, 2003).  

This chapter utilizes high frequency data from a study of wind turbine gearboxes, 

performed by the National Renewable Energy Laboratory (NREL). The faults of the 

components are identified in the time domain and then validated by analysis in the 

frequency domain. The vibration of the faulty component is predicted with data mining 

algorithms.  

6.2 Data for analysis  

The data used in this research was provided by the National Renewable Energy 

Laboratory (NREL) through a consortium called as Gearbox Reliability Collaborative 

(GRC). The test turbine used in this study is stall-controlled, three-bladed with a rated 

power of 750 kW. The data was sampled at high frequency (i.e., 40 kHz), and was 

recorded for a period of 10 min under controlled testing conditions. In the research 
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reported in this chapter, the test condition with the main shaft speed of 22.09 rpm, the 

high speed shaft (HSS) speed of 1800 rpm, at 50% of the rated power is investigated. The 

data was collected over a period of 10 min.   

The gearbox under study includes three stages – the low speed stage (LSST), the 

intermediate speed stage (ISST), and the high speed stage (HSST). The LSST interfaces 

the rotor, and the HSST is connected to the generator. A schematic description of the 

gearbox is shown in Figure 6.1. Twelve accelerometers were mounted on the gearbox, 

generator, and the main bearing to collect the vibration data (Figure 6.2). Table 6.1 

provides the description of the sensors and their locations.   

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 6.1. Schematic of gearbox used in current study (Courtesy of NREL).   
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Figure 6.2. Sensor locations across the gearbox unit (Courtesy of NREL). 

 

 

 

Table 6.1. Vibration sensors used in the study. 

Sensor 

No. 
Location Unit 

AN1 Main bearing radial m/s
2
 

AN2 Main bearing axial m/s
2
 

AN3 Ring gear radial 6 o’clock m/s
2
 

AN4 Ring gear radial 12 o’clock m/s
2
 

AN5 Low speed shaft radial m/s
2
 

AN6 Intermediate speed shaft radial m/s
2
 

AN7 High speed shaft radial m/s
2
 

AN8 High speed shaft upwind bearing radial m/s
2
 

AN9 High speed shaft downwind bearing radial m/s
2
 

AN10 Carrier downwind radial m/s
2
 

AN11 Generator upwind radial m/s
2
 

AN12 Generator downwind axial m/s
2
 

AN13 Encoder on high speed shaft rpm 

AN14 Strain gauges on low speed shaft kNm 
 

6.3 Damage identification  

In this section, analysis of the vibration data is performed to identify faulty components. 

First, the jerk was calculated to determine the impact of vibration across various sensor 
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locations. ‘Jerk’ is defined as the rate of change of acceleration and indicates the 

excitement of vibration. Mathematically, jerk is approximated as shown in Equation (6.1) 

(Zhang et al., 2012). 

 

          (6.1) 

 

In equation (6.1), j


is the jerk t


is the acceleration at time index t, and T is the 

sampling interval (1/40000 sec in present case). Figure 6.3 illustrates the progression of 

the average jerk across 12 vibration sensors using 10 min of data. The initial 40 kHz data 

was averaged over 15 second intervals. The plot indicates that jerk monitored by the 

sensors AN3 and AN4 is significant relative to the other sensors. The sensors AN3 and 

AN4 are located in low speed shaft (LSS) and measure the vibration in the annulus/ring 

gear.    

 

 

 

 

 

 

 

 

 

Figure 6.3. Maximum jerk across 12 vibration sensors. 

 

The analysis demonstrated in Figure 6.3 does not provide any specific 

information; therefore, statistical analysis of the vibration waveforms is performed. 

 
t t T t t Td

j
dt t t T T
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Specifically, metrics such as the root mean square (RMS), crest factor (CF), and kurtosis 

(Ku) are computed. The details of this analysis are provided next.   

  

6.3.1 Time-domain statistical analysis 

A run chart of vibrations values over time is a common way of analysis in the 

time domain; however, due to the large volume of the data, the fine details regarding the 

faults are often not visible. Thus, to overcome this issue, various statistical quantities are 

derived by averaging the high frequency data.  Statistical quantities such as RMS, crest 

factor, clearance factor, impulse factor, shape factor, and kurtosis provide approximate 

information about faults and can be easily calculated (Patil et al., 2008). Crest factor and 

Kurtosis are less dependent on the vibration level, however, are sensitive to spikiness in 

the vibration signals, whereas, the impulse and shape factors are functions of redressed 

signal average. Details about these factors are provided next.   

Root mean square is the simplest metric for measuring defects in the time domain. 

RMS value can be used to detect unbalanced rotating elements. It is a statistical measure 

of the magnitude with varying quantity as expressed in (6.2) 

 

                 (6.2) 

 

Crest factor (CF) is a measure of changes detected in the signal pattern due to 

impulsive vibration sources, such as tooth breakage. It can be useful in detecting a few 

high peaks in the signal; the higher the magnitude of the peak and the fewer the number 

of peaks, the lower the RMS value will and the higher the peak value, denoting a higher 

crest factor. A crest factor with values between 2 and 6 represents normal operations, 

whereas a value higher than 6 represent defects in the component. The crest factor is 

calculated easily by dividing the peak level of the signal average by the standard 

deviation (RMS) of the signal average as expressed in (6.3). 
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           (6.3) 

Kurtosis is defined as the fourth statistical moment of an array of values about the 

mean. It indicates the existence of major peaks. Kurtosis values of less than 3 indicate 

that the component is in normal health condition, whereas any value greater than 3 

represents abnormality. The more the peaks in the signal, the larger the kurtosis, as 

expressed in (6.4). 

 

                                                        (6.4)

                                                                                                                                                                                                                               

 

All of these metrics are applied to the data provided by sensors AN3 and AN4 (see 

Figure 6.2 and Table 6.1). Figure 6.4(a-c) illustrates values of the RMS, CF, and kurtosis 

value for sensor AN3 and AN4. In this test case, the RMS values of AN3 and AN4 are 

increasing over time, whereas the CF increases and then decreases. The higher crest 

factor is also congruent with the high kurtosis of sensor AN4. The crest factor and 

kurtosis begin to decrease in the later portion of the recorded data as the vibration pattern 

becomes more random due to increased damage level. To provide further insights in the 

time-domain, RMS, kurtosis, crest factor, and peak value are combined (Sassi et al., 

2006) as shown in (6.5) and (6.6). 

 

                            (6.5) 

 

                                                                                                  (6.6) 

 

In equations (6.5)-(6.6), RMS0 is a constant representing the value corresponding to the 

healthy ring gear. In this research, the RMS value recorded during the startup of the 
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experiment (1
st
 min) is denoted as RMS0. Sassi et al., (2006) tested the combined metrics 

to analyze the defects in bearings and found the metrics to be more insightful than 

conventional metrics. The combined metrics, COM1, and COM2, follow the same pattern 

and found higher value of AN4. Fig. 4 (d)-(e) illustrate the values of both metrics. A 

higher value at 5
th
 min indicates that the damage in ring gear has begun and is becoming 

more severe as the time progresses.    

 

 

Figure 6. 4. Analysis of sensor AN3 and AN4 data: (a) root mean square, (b) crest 

factor, (c) kurtosis, (d) combined1 (COM1), (e) combined2 (COM2). 
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Since almost all metrics follow a similar trend for both sensors, sensor AN4 is analyzed 

in greater depth due to its high amplitude. The sensor (AN14) measures the torque at low 

speed shaft which could provide a good indication about the vibration impact in ring 

gear. Studies in the past have shown strong correlation among the torque and vibration 

(Kusiak and Zhang, 2009; Zhu et al., 2006).  

Figure 6.5 displays the torque at 1
st
, 2

nd
, 5

th
, and 10

th
 min interval. The torque 

signal indicates one peak per revolution with frequency 0.37 Hz (i.e. time 2.72 second). 

The high spikes in the torque signal indicates fault in the annulus which interfaces with 

the shaft. The analysis on the torque signal indicates the emergence of fault in annulus 

gear. In next section, analysis in the frequency domain is done to determine the severity 

of the fault. 

6.3.2. Frequency-domain analysis 

The data obtained from sensor AN4 is analyzed in the frequency domain. Specifically, 

Fast Fourier transformation (FFT) has been used to generate a frequency spectrum of the 

vibration. The frequency spectrum displays the portion of a signal's power (expressed in 

g) falling within a given frequency bin. The baseline spectra of healthy gearbox measured 

at high speed shaft is provided in Figure 6.6.  

 

 

 

 

 

 

 

 



122 
 

0 5 10 15 20 25 30 35 40 45 50 55 60
40

45

50

55

60

65

70

75

80

Time (sec)

To
rq

ue
 (k

N
M

)

0 5 10 15 20 25 30 35 40 45 50 55 60
40

45

50

55

60

65

70

75

80

Time (sec)

T
or

qu
e 

(k
N

M
)

0 5 10 15 20 25 30 35 40 45 50 55 60
45

50

55

60

65

70

75

80

Time (sec)

T
o
rq

u
e 

(k
N

M
)

     

 

 

  

 

 

 

 

 

 

 

                  (a) 

 

 

 

 

                                            

(b) 

 

  

 

 

 

 

 

(c) 

Figure 6.5. Analysis on torque signal: (a) 1
st
 min, (b) 2

nd
 

min, and (c) 4
th
 min.  
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Figure 6.6. Baseline spectrum of healthy gearbox. 

 

The Figure 6.6 indicates very low energy (<0.035 g) content at 36.45 Hz (gear mesh 

planet and ring). Figure 6.7 illustrates the frequency spectrum of high speed stage (HSS). 

With HSS at 1800 rpm, the gear mesh frequency at planet gear and annulus is 36.45 Hz. 

Since the HSS contains the spectra up to 20000 Hz, only low frequency component (i.e., 

0-100 Hz) is displayed to better illustrate the signal power. Since, the initial data was 

available in the subset of 1 min, frequency spectrum at the 1
st
 and last minute is provided 

in Figure 6.7 (a-b). Power spectrum is close to the healthy gearbox spectrum during the 

startup of the test run, however, in the last minute, the power spectrum jumps to 0.16 g 

showing mid-severe damage.  

 Figure 6.8 displays the trend of power spectrum for the overall test run, which is 

continuously increasing. This indicates the fault progression.  
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                                                                (b) 

Figure 6.7. Power spectrum of vibrations across the ring gear: (a) 1
st
 min, (b) 10

th
 

min.  

 

The approaches discussed earlier clearly indicate faulty ring gear. Thus, model 

predicting the vibration across ring gear is important. In this chapter, sensor located near 

the ring gear (i.e. AN4) is considered as output, whereas, the vibration sensed by other 

sensors is considered as input.    
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Figure 6.8. Trend of vibration amplitude across ring gear over the test run (10 min). 

 

In the next section, models predicting jerk and acceleration in the ring gear (AN4) 

are discussed.  

6.4. Models for predicting faults in ring gear 

Based on the analysis in Section 6.3 and the available data, four prediction models 

are developed. Model 1 is called the one-parameter prediction model, in which the 

acceleration values are the target output, whereas the input parameter includes the 

historical acceleration values. In model 2, data from sensors other than AN4 are used as 

input to predict the acceleration of AN4. Models 3-4 are the same as models 1-2, except 

the jerk is the target output.  

In addition, the statistical metrics (i.e., the mean, max, standard deviations, crest 

factor, kurtosis, RMS, clearance factor, impulse factor, and shape factor) are also 

included in the input parameter list to predict the target output. To reduce the dataset 

dimensionality, the initial high frequency data (i.e., 40 kHz) is converted into 10 Hz data 

(0.1 sec). The description of the dataset used in the study is provided in Table 6.2. For 

each model, first 80% data-points are used to build the model, which are then tested on 
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next 10%. Algorithm proving the best result on test dataset is used to perform prediction 

on the last 10% dataset.  

  

Table 6.2. Description of the data scenario. 

Scenario  Description Target output 

1 Single sensor model Acceleration in ring gear (AN4) 

2 Multiple sensor model Acceleration in ring gear (AN4) 

3 Single sensor model Jerk in ring gear (AN4) 

4 Multiple sensor model Jerk in ring gear (AN4) 

 

6.4.1. Parameter selection 

In this section, different parameter selection algorithms are employed to identify the 

relevant parameters for predicting vibrations in ring gear. Three algorithms (i.e., the 

boosting tree (Kudo and Matsumoto, 2004), relief attributes (k=10) (Hinton and 

Sejnowski, 1999), and subset evaluator (Sikonja and Kononenko, 1997) are selected to 

perform the analysis.  

The boosting tree algorithm generates parameter ranking based on the sum of the 

squared errors, which is computed at each split of input parameters (Kudo and 

Matsumoto, 2004). The average sum of square error is calculated for all splits. The 

parameter with the best split is assigned a value of 1, and so on. In the boosting tree 

algorithm, the relative influence of the parameters is calculated by using equation (6.7).  

 

                              (6.7) 

In equation (6.7),  TJ j

2~  is the relative importance of parameter j, i is the index of the 

tree, tv is the splitting feature associated with node t, and L is the number of terminal 

nodes in the tree. 2~
tI is the improvement of the squared error. The other two approaches, 

namely the relief and the subset evaluator, are filter-based approaches that belong to 

unsupervised learning (Hinton et al., 1999). Relief is an unsupervised learning algorithm 
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inspired by instance-based learning. Given training data, sample size, and a threshold, the 

relief algorithm assign a relevance weight to each parameter (Sikonja and Kononeko, 

1997).  

            In the research reported in this chapter, the number of nearest neighbors is set at k 

= 10. Subset evaluator is another unsupervised learning approach that uses greedy step-

wise learning to rank the input parameters (Hall, 1999). Parameters that are highly 

correlated with the output and less correlated with each other are selected. The same 

algorithms are used for analyzing all four models. 

             Tables 6.3-6.6 provide lists of the 10 best parameters obtained using the three 

parameter selection algorithms on four different scenarios. Algorithms, namely the relief 

and the subset evaluator, were employed using 10-fold cross-validation. Values of the 

average merit and standard deviations are reported in Tables 6.3-6.6. The results obtained 

from the parameter selection indicate that the actual vibration values are more important 

than the transformed statistical quantities discussed in the previous section.   

The notation AANi is used for a neural network predicting acceleration, whereas 

JANi represents the NN predicting jerk, and index i represents the sensor location. In the 

case of single parameter models (i.e., scenario 1 and 3), the (t-k) represents the historical 

value of the target output, and k is the time index.  
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Table 6.3. Selected parameters for scenario 1. 

Boosting tree Relief (k=10) Subset evaluator 

Parameter Imp Parameter 

Average 

merit Parameter 

Average 

merit 

AAN4(t-1) 1.00 AAN4 (t-1) 0.015 AAN4(t-1) 0.427 

AAN4 (t-3) 0.96 AAN4(t-3) 0.005 AAN4(t-10) 0.509 

AAN4 (t-2) 0.84 AAN4(t-2) 0.004 AAN4(t-3) 0.509 

AAN4 (t-10) 0.81 MAX_AAN4(t-2) 0.004 AAN4(t-6) 0.488 

AAN4 (t-9) 0.81 AAN4(t-5) 0.004 AAN4(t-4) 0.486 

AAN4 (t-5) 0.78 MAX_AAN4(t-1) 0.003 AAN4(t-9) 0.485 

AAN4 (t-6) 0.72 AAN4(t-6) 0.003 AAN4(t-5) 0.451 

AAN4 (t-4) 0.66 MAX_AAN4(t-6) 0.003 AAN4(t-8) 0.423 

MAX_AAN4(t-2) 0.38 AAN4(t-4) 0.003 AAN4(t-2) 0.391 

Std_AAN4(t-1) 0.33 AAN4(t-10) 0.003 AAN4(t-7) 0.361 

 

 

 

Table 6.4. Selected parameters for scenario 2. 

Boosting tree Relief (k=10) Subset evaluator 

Parameter Imp Parameter Average merit Parameter 
Average 

merit 

AAN8 1.00 AAN8 0.022±0.001 AAN8 0.62±0.003 

AAN3 0.95 AAN3 0.017±0.001 AAN3 0.71±0.003 

AAN7 0.88 AAN7 0.009±0.000 AAN11 0.7±0.002 

AAN10 0.68 AAN10 0.008±0.000 AAN1 0.68±0.002 

AAN11 0.46 AAN9 0.005±0.000 AAN2 0.65±0.002 

AAN9 0.38 Std_AAN3 0.004±0.000 AAN12 0.61±0.002 

Std_AAN6 0.32 AAN5 0.003±0.000 AAN9 0.59±0.003 

AAN1 0.27 AAN1 0.003±0.000 AAN7 0.56±0.005 

AAN6 0.25 Std_AAN6 0.003±0.000 AAN6 0.55±0.006 

AAN2 0.24 Max_AAN10 0.003±0.000 AAN5 0.52±0.004 
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Table 6.5. Selected parameters for scenario 3. 

Boosting tree Relief  (k=10) Subset evaluator 

Parameter Imp Parameter Average 

merit 

Parameter Average 

merit 

JAN4(t-1) 1 Max_JAN4(

t-1) 

0.028±0 JAN4(t-1) 0.846±0.002 

Std_JAN4(t-1) 0.98 Max_JAN4(

t-4) 

0.026±0.001 JAN4(t-4) 0.888±0.002 

Std_JAN4(t-4) 0.95 Max_JAN4(

t-5) 

0.023±0.001 Std_JAN4(t-1) 0.879±0.002 

Max_JAN4(t-

4) 

0.95 Std_JAN4(t-

1) 

0.02±0.001 JAN4(t-10) 0.883±0.002 

Max_JAN4(t-

1) 

0.92 JAN4(t-1) 0.018±0.000 RMS_JAN4(t-

8) 

0.879±0.003 

JAN4(t-4) 0.9 Max_JAN4(

t-3) 

0.015±0.000 RMS_JAN4(t-

1) 

0.88±0.002 

Std_JAN4(t-5) 0.85 Std_JAN4(t-

4) 

0.015±0.000 JAN4(t-5) 0.88±0.002 

JAN4(t-7) 0.84 JAN4(t-4) 0.013±0.000 Std_JAN4(t-4) 0.88±0.002 

Max_JAN4(t-

5) 

0.84 Std_JAN4(t-

5) 

0.013±0.000 RMS_JAN4(t-

2) 

0.876±0.004 

Std_JAN4(t-7) 0.8 Max_JAN4(

t-2) 

0.012±0.000 JAN4(t-6) 0.878±0.003 

 

 

Table 6.6. Selected parameters for scenario 4. 

Boosting tree Relief (k=10) Subset evaluator 

Parameter Importance Parameter Average 

merit 

Parameter Average 

merit 

Std_JAN10 1 Std_JAN3 0.032±0.001 Mean_JAN3 0.945±0.001 

Mean_JAN3 0.98 Max_JAN3 0.028±0.001 Std_JAN10 0.955±0.001 

Std_JAN3 0.96 Mean_JAN3 0.021±0.001 Mean_JAN1 0.955±0.001 

Mean_JAN10 0.91 Max_JAN10 0.019±0.000 Mean_JAN2 0.955±0.001 

Max_JAN10 0.91 Std_JAN10 0.012±0.000 Std_JAN1 0.953±0.001 

Max_JAN3 0.83 Mean_JAN10 0.007±0.000 Mean_JAN13 0.952±0.001 

Std_JAN2 0.77 Max_JAN8 0.007±0.000 Std_JAN2 0.948±0.002 

Std_JAN1 0.76 Mean_JAN8 0.006±0.000 Mean_JAN10 0.945±0.001 

Max_JAN1 0.69 Max_JAN9 0.006±0.000 Std_JAN3 0.953±0.001 

Std_JAN6 0.64 Std_JAN8 0.005±0.000 Std_JAN5 0.955±0.001 

Mean_JAN1 0.63 Max_JAN5 0.005±0.000 Std_JAN14 0.954±0.002 
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Using the parameter sets generated by the parameter selection algorithms, the four 

scenarios are mathematically described in equations (6.8-6.11). The left-hand side of each 

equation is the target output, whereas the right-hand side represents the input parameters. 

The input parameters include the memory parameters of the target output and the 

parameter recorded at sensor locations other than AN4. The initial dimensionality of the 

data intended for scenarios 1–4 was 60. Using the parameter selection approaches, the 

dimensionality of scenarios 1, 2, 3 and 4 was reduced to 14, 16, 18 and 18, respectively.     

 

 

 

(6.8) 

 

(6.9) 

 

 

(6.10) 

 

 

 

(6.11) 

 

The next section describes the data mining algorithms used to extract the four 

models.  

6.4.2. Algorithm and scenario selection  

The vibration data is highly non-linear; therefore, the traditional model-based approaches 

such as regression and Box-Jenkins are unsuitable for this study. In the literature, neural 

networks (NNs) are widely used to approximate the non-linear relationship between the 
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input data and output (Boydon, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). 

NNs are self-adaptive as they learn from examples (training data instances) to capture the 

complex functional relationship among the data. Thus, NNs are used for the present 

analysis, as the functional relationship among various sensors is unknown. In the present 

study, a multi-layered perceptron (MLP) with different parameter settings is optimized to 

obtain the best network for the four models (see equations (6.8–6.11). In the research 

reported in this chapter, 50 different NNs are used for training, whereas the number of 

hidden units varied between 5 and 25. Activation functions, namely Tanh, exponential, 

identity, and logistic, are analyzed for both hidden and output node. Metrics such as the 

mean absolute error (MAE), and mean relative error (MRE) (see equations (6.12-

6.13) to select the best NN).  

                     (6.12) 

Where,  

 

     (6.13) 

 

Where,  

 

6.4.2.1. Selection of NN training algorithm 

In this section, NN algorithms such as gradient descent (GD) (Moller, 1993), conjugate 

gradient (CG) (Zweiri et al., 2002), and radial basis function (RBF) (Yee and Haykin, 

2001) are analyzed to select the best algorithm to train the neural networks. The 

acceleration data (scenario 1) is used to evaluate the performance of these NN training 

algorithms. Table 6.7 presents correlation coefficients between models derived by 

different NN training algorithms. The test results shown in Table 6.7 indicate that the 

NN-BFGS has a higher correlation with the actual output than the other NN algorithms.   
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When compared with algorithms such as GD, CG, and RBF neural networks, the BFGS 

neural network was found to perform better by providing 17.39%, 12.63%, and 17.7% 

improvement in MAE, respectively. Whereas, in terms of MRE, an improvement of 

16.6%, 12.22%, and 17.00% is found. This justifies the use of BFGS as the NN algorithm 

for model construction.   

 

 

Table 6.7. Correlation coefficients of the models constructed with 

various NN training algorithms. 

  
Average 

jerk 
Actual 

BFGS-

NN 

GD-

NN 

CG-

NN 
RBF-NN 

Actual 0.420178 1 0.753 0.595 0.644 0.566 

BFGS-

NN 
0.420079 0.753 1 0.788 0.852 0.744 

GD-NN 0.418766 0.595 0.788 1 0.909 0.883 

CG-NN 0.420428 0.644 0.852 0.909 1 0.844 

RBF-NN 0.420178 0.566 0.744 0.883 0.844 1 

 

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is used to train the networks as 

it has been found superior to other training algorithms, such as back propagation (BP) 

and radial basis function (RBF) (Boydon, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 

1970). BFGS uses an approximate search scheme to improve the computational speed 

and to achieve global convergence. It involves the following four basic steps: 

1. Setting the search direction;  

2. Determining the step length along the search direction;  

3. Updating the hessian matrix; and  

4. Checking the convergence rate by some specified criteria.  

Tables 6.8-6.11 contain the test results produced by the five best neural networks. The 

100 neural networks are randomly selected by varying the number of neurons, hidden 

activation function, and output activation function. All 100 NNs were trained using 
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BFGS training method. The process is repeated 5 times and the best NNs for each run are 

selected for performance comparison on test dataset.  

The description of the parameter settings of the NNs that generated the results in Tables 

6.8-6.11 are displayed in Tables 6.12-6.15.  The NN settings displayed in Tables 6.12-

6.15 indicate that the MLP 14-5-1 with Tanh function in the hidden and output layers is 

most suitable for scenario 1. MLP 16-18-1 with Tanh as a hidden activation function and 

Logistic function as output activation is best for scenario 2. For the scenarios based on 

the jerk data, MLP 18-22-1 with Tanh and exponential as hidden and output functions, 

respectively, is best for scenario 3; whereas MLP 18-22-1 with exponential and identity 

functions as hidden and output activations is appropriate for scenario 4.  

 

Table 6.8. Performance of data mining algorithms on test set (scenario 1). 

No. 

Average 

acceleration in 

ring gear 

(observed) 

Average 

acceleration in 

ring gear 

(predicted) 

Correlation 

coefficient 
MAE 

MRE 

(%) 

NN1 0.01046 0.010402 0.6992 0.2731 52.75 

NN2 0.01046 0.010403 0.7022 0.2712 53.58 

NN3 0.01046 0.010402 0.7404 0.2551 48.81 

NN4 0.01046 0.010402 0.7530 0.2712 29.23 

NN5 0.01046 0.010419 0.775 0.2418 45.28 

 

 

Table 6.9. Performance of data mining algorithms on test set (scenario 2). 

No. 

Average 

acceleration in 

ring gear 

(observed) 

Average 

acceleration in 

ring gear 

(predicted) 

Correlation 

coefficient 
MAE 

MRE 

(%) 

NN1 0.010437 0.010402 0.8328 0.2089 37.5 

NN2 0.010437 0.010403 0.8229 0.216 41 

NN3 0.010437 0.010401 0.7754 0.2398 45 

NN4 0.010437 0.010407 0.8081 0.2223 40.5 

NN5 0.010437 0.010405 0.8186 0.2161 39 
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Table 6.10. Performance of data mining algorithms on test set (scenario 3). 

No. 

Average jerk 

in ring gear 

(observed) 

Average 

jerk in 

ring gear 

(predicted) 

Correlation 

coefficient 
MAE 

MRE 

(%) 

NN1 0.394768 0.394765 0.9532 0.0186 4.46 

NN2 0.394768 0.394766 0.9547 0.0187 4.48 

NN3 0.394768 0.394862 0.9145 0.0253 6.09 

NN4 0.394768 0.394862 0.9146 0.0253 6.09 

NN5 0.394768 0.394705 0.9725 0.0151 3.71 

 

 

Table 6.11. Performance of data mining algorithms on test set (scenario 4). 

No. 

Average jerk 

in ring gear 

(observed) 

Average 

jerk in 

ring gear 

(predicted) 

Correlation 

coefficient 
MAE 

MRE 

(%) 

NN1 0.394216 0.394214 0.9819 0.0126 3.12 

NN2 0.394216 0.394175 0.9628 0.0179 4.51 

NN3 0.394216 0.39419 0.9823 0.0126 3.14 

NN4 0.394216 0.394175 0.9628 0.0179 4.51 

NN5 0.394216 0.394216 0.9623 0.0178 4.48 

 

 

Table 6.12. Parameter settings of neural networks (scenario 1). 

No. Network code 
Hidden 

activation 
Output activation 

NN1 MLP 14-5-1 Exponential Tanh 

NN2 MLP 14-5-1 Logistic Tanh 

NN3 MLP 14-19-1 Exponential Exponential 

NN4 MLP 14-5-1 Tanh Tanh 

NN5 MLP 14-24-1 Logistic Identity 
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Table 6.13. Parameter settings of neural networks (scenario 2). 

No. Network code 
Hidden 

activation 
Output activation 

NN1 MLP 16-18-1 Tanh Logistic 

NN2 MLP 16-15-1 Logistic Tanh 

NN3 MLP 16-5-1 Exponential Exponential 

NN4 MLP 16-14-1 Exponential Identity 

NN5 MLP 16-18-1 Exponential Exponential 

 

Table 6.14. Parameter settings of neural networks (scenario 3). 

No. 
Network 

code 

Hidden 

activation 

Output 

activation 

NN1 MLP18-11-1 Exponential Identity 

NN2 MLP 18-8-1 Logistic Exponential 

NN3 MLP 18-21-1 Identity Logistic 

NN4 MLP 18-16-1 Identity Logistic 

NN5 MLP 18-22-1 Tanh Exponential 

 

Table 6.15. Parameter settings of neural networks (scenario 4). 

No. Network code 
Hidden 

activation 
Output activation 

NN1 MLP 18-22-1 Exponential Identity 

NN2 MLP 18-17-1 Identity Tanh 

NN3 MLP 18-12-1 Tanh Exponential 

NN4 MLP 18-12-1 Identity Tanh 

NN5 MLP 18-20-1 Identity Identity 

 

Figures 6.9(a-d) presents the run chart of the observed and predicted values for models 1-

4 obtained by the best NNs (the first 100 data points). It can also be observed that the NN 

in jerk models yields better results than the models based on the acceleration data. This 

indicates that jerk is more suitable for constructing prediction models at various time 

stamps. Among scenarios considering jerk as an output, scenario 4 yields a better result 

than scenario 3, indicating the importance of other sensors in predicting vibrations in ring 

gear.     
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Figure 6.9. Run chart of the test results obtained using NN based models: (a) 

scenario 1, (b) scenario 2, (c) scenario 3, and (d) scenario 4. 

 

In next section, prediction results of scenario 4 are presented.  

 

6.5. Results of experiments 

In this section, results produced by the neural network (NN) algorithm are discussed. The 

best performing NN model (MLP-18-22-1) is used to perform predictions. The model 

uses data from sensor locations AN1-AN3 and AN5-AN12 to predict the jerk at ring gear 

(measured by sensor AN4). Since, the data used in this study was recorded for short 

durations (e.g., 10 min); jerk is predicted for 15 time stamps with the data sampled at 0.1 

s intervals. The results obtained are shown in Table 6.16. The mean absolute error (MAE) 

ranges from 0.021 to 0.345, whereas the mean relative error (MRE) ranges from 5.21% to 

8.32%.   
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Table 6.16. Prediction results at 15 time stamps. 

Time 

stamp 

[0.1 s] 

Average 

jerk 

(actual) 

Average 

jerk 

(predicted) 

MAE MRE (%) 

t+0 0.4202 0.4286 0.021 5.213 

t+1 0.4202 0.4288 0.026 6.307 

t+2 0.4202 0.4288 0.028 6.676 

t+3 0.4202 0.4288 0.029 6.991 

t+4 0.4202 0.4288 0.030 7.220 

t+5 0.4202 0.4287 0.030 7.320 

t+6 0.4202 0.4286 0.031 7.461 

t+7 0.4202 0.4286 0.031 7.480 

t+8 0.4202 0.4286 0.032 7.635 

t+9 0.4202 0.4288 0.032 7.715 

t+10 0.4202 0.4288 0.033 7.931 

t+11 0.4202 0.4287 0.033 7.995 

t+12 0.4202 0.4286 0.034 8.208 

t+13 0.4202 0.4286 0.034 8.208 

t+14 0.4202 0.4286 0.034 8.283 

t+15 0.4202 0.4286 0.035 8.326 

 

Figure 6.10 displays the values of MAE and MRE for 15 time stamps. The values of 

MAE and MRE increase over time. The results shown in Figure 6.10 indicate that the 

proposed approach accurately predicts higher values of the jerk that contribute the most 

to the component failure.   

 

 Figure 6.10. The values of MAE and MRE for different time stamps. 
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6.6. Summary 

A methodology for identifying and predicting faults in the ring gear of a wind turbine 

gearbox was developed. Analysis in the time and frequency domain was performed to 

identify fault patterns in the ring gear. Jerk and acceleration data were used to generate 

models with data mining algorithms. Four different scenarios based on data from a single 

sensor (AN4) and multiple sensors (AN1-AN3 and AN5-AN12) were analyzed. Single 

sensor models assumed that only one sensor was installed, whereas multiple sensor 

models predicted vibration at selected drive train location.   

The data mining models developed with jerk data (scenario 3 and 4) provided 

better accuracy than the models generated based on the acceleration data (scenario 1 and 

2). A model developed on multiple sensor data (scenario 4) was used for jerk prediction. 

A neural network using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) learning method 

outperformed algorithms such as conjugate gradient (CG), gradient descent (GD), and 

radial basis function (RBF). The Broyden-Fletcher-Goldfarb-Shanno neural network 

(BFGS-NN) models accurately predicted jerk in a ring gear at different time intervals. 

The mean absolute error (MAE) was in the range of 0.021-0.345 m/s
3
 and mean relative 

error (MRE) in the range of 5.21%-8.32%. The analysis presented in this chapter shows 

the importance of data-mining algorithm in vibration analysis.  
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CHAPTER 7 

MONITORING WIND FARM USING TURBINE PERFORMANCE  

CURVES 

                                         7.1. Introduction 

 

SCADA records hundreds of wind turbine parameters at high frequency (10 min 

or 10 sec). Analyzing high frequency data can be computationally expensive in order to 

monitor the progress of overall wind farm.   

An efficient way is to measure the impact of internal factors is through turbine 

operations. The operational characteristics of turbines depend on parameters such as rotor 

power, torque, and pitch angle. Continuous monitoring of these parameters can be useful 

in assessing wind turbine performance. In the literature, power curve has been 

extensively used to monitor the progress of wind turbines. Kusiak et al., (2009) 

developed an advanced control chart approach to monitor the progress of wind turbines. 

In their research, they compared parametric power curve model with non-parametric data 

driven models. In another research, Yan et al., (2010) identified several stages of wind 

turbine power curves for monitoring purposes. They used inverse data transformation for 

change detection in turbine performance. Caselitz and Giebhardt (2005) developed a 

heuristic to identify the alarm limits in power curve for rotor condition monitoring. 

Harman, and Raftery, (2003) suggested the use of performance indicator namely 

availability, windiness, long-term wind speed and power performance in order to evaluate 

the overall wind farm performance.  

In this chapter, the distinctive shape of wind turbine performance curves is 

exploited to perform wind farm monitoring. Three performance curves namely power 

curve, rotor curve, and blade pitch curve are investigated. To perform such assessment, 

operational wind turbine data is needed. Supervisory control and data acquisition 

(SCADA) systems record wind turbine parameters at different time intervals. SCADA 

data may be effectively used to tune a wind farm and provide early warning of possible 

failures. In the research reported in this chapter, the historical wind turbine data is used to 
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extract reference curves. The high frequency data is transformed into a single value using 

bivariate kurtosis and skewness metric.  

7.2 Data for turbine performance curves 

The data used in this chapter has been collected from a wind farm of over 100 wind 

turbines. Three wind turbine performance curves: power curve (power vs. wind speed), 

rotor curve (rotor speed vs. wind speed), and blade pitch curve (blade pitch angle vs. 

wind speed) are constructed for wind turbine performance. The dataset analyzed in this 

chapter is divided into three parts. First, a four year historical data (August 2005 – 

August 2008) from a 22 turbines is available to extract the reference curves. The data is 

averaged over 10 min intervals (10-min data). The reference curves are validated with the 

following year (August 2009) data. To perform continuous performance monitoring, one 

month long data from 22 wind turbines collected in August 2011 is used. Table 7.1 

presents the data used in the research.  

 

Table 7.1. Task description and related data period. 

Task Data Period 

Extracting reference curves  August 2005-08 

Validating reference curves August 2009 

Monitoring wind turbines August 2011 

 

 

Description of the three turbine performance curves is provided in the next section.  

 

7.2.1. Description of turbine performance curves 

A power curve indicates power generated by a wind turbine at various wind speeds. 

Malfunctions of a wind turbine will impacts its power generation capability. A typical 

wind power curve resembles to a sigmoid function, however due to various malfunctions, 

e.g., sensors and components, the power curve acquires its own shape.  



141 
 

Rotor curve represents a mapping between rotor speed and wind speed. Failures 

of turbine components impact its shape. A typical rotor curve is a monotonically 

increasing function of the wind speed.   

Blade pitch curve shows the relationship between the turbine pitch angle and wind 

speed. Turbine’s control system adjusts the blade angle for maximum power capture. A 

malfunction of the control system and high wind speed causes a turbine to stall, i.e., blade 

pitch angle becomes 90
O
. During normal operations of a wind turbine, the pitch angle is 

set to, e.g., 0
O
, 66

O
, and 83

O
. In general, during startup of a wind turbine, the blade pitch 

is set to a high value. A negative value of the pitch angle reflects the presence of a strong 

wind.  

In the cut-in to cut-out region of the wind speed, the blade pitch settings are 

adjusted by the control system for the maximum power output. At the rated wind speed, 

the blade pitch angle is continuously adjusted to maintain the power required.  

In next section, the proposed solution methodology is discussed.  

 

7.3. Solution methodology 

The proposed solution methodology includes four phases (see Figure 7.1). The historical 

wind farm data from several wind turbines is scanned initially to select wind turbine data 

(phase 1). Due to stochastic nature of the wind and inherent variability in the individual 

turbines, the noisy raw data is processed using multivariate outlier detection approach 

(phase 2). The resulting reference curves are used as a benchmark to evaluate 

performance of individual turbines (phase 3). Skewness and kurtosis of performance 

curves are calculated for each wind turbine and compared against the corresponding 

reference curves. In phase 4 a quality control chart is used for continuous monitoring of 

wind turbines.  
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 Figure 7.1. Proposed solution methodology. 

 

All solution phases are discussed in the subsequent sections.  

 

7.3.1. Reference curve construction 

The performance of wind turbines depends on the wind speed. The data used in this 

research is obtained from a large wind farm, located in Blairsburg, Iowa. The monthly 

average distribution of wind speed at this location is investigated. Figure 7.2 provides the 

monthly distribution of wind speed. The average wind speed varies across different 

months. Constructing reference curves using the yearly performance data may not be 

ideal. Based on the distribution of the wind speed, the reference curves for individual 

months are constructed.  

 

 

 

 

 

 

 

 

 

 Figure 7.2. Average monthly wind speed distribution near the wind farm 

location (source: Iowa Energy Center). 
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Based on the completeness of data across different years, performance curves for the 

month of August are extracted from the turbine data collected on 22 turbines over a four 

year period, i.e., August 2005-August 2008. Based on the analysis, data from a single 

turbine is used. Figures 7.3(a)-(c) provide the references power curve, rotor curve, and 

blade pitch curve of the four year data.   

 

 

 

 

Figure 7.3. Performance curves for the month of August (August 2005-August 

2008).  

 



144 
 

In next section, a bivariate outlier selection approach is discussed.  

 

7.3.2. Bivariate outlier detection 

The reference curves constructed from the historical data contain outliers which need to 

be removed for clear depiction of normal turbine behavior. These outliers are largely due 

to the sensor errors and fluctuations in the turbine performance. In this chapter, a 

multivariate outlier detection approach based on Mahalanobis distance is used. The 

Mahalanobis metric expresses the distance of an instance to the centroid in the 

multidimensional space (Mahalanobis, 1936) and it is calculated based on the correlation-

covariance matrix. Therefore, Mahalanobis distance indicates whether an instance is an 

outlier with respect to the independent variable values (see Equation (7.1)). 

 

    tsxxCovxxD tstsst 
 ,

112                                  (7.1) 

 

In equation (1), 2

stD  is the Mahalanobis distance between instance s, and t, and Cov
-1

 is 

the inverse of covariance matrix.  

Due to distinct shape of performance curves, calculating Mahalanobis distance for 

an overall curve can be misleading as the centroid (usually for the wind speed between 

4.5 m/s and 7 m/s) will consider the extreme data points (points close to cut-in wind 

speed, or/and near rated wind speed) as outliers, which in fact they are not. Thus, in order 

to improve the outlier detection, the performance curve data is grouped into smaller 

clusters. The k-means clustering algorithm determines the number of clusters for each 

curve minimizing the cost function in Equation (7.2) (Inaba et al., 1994).   
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where   is the clustering cost, k is the number of clusters, Obsi is the number of data 

points in cluster i, x represents the data points, and Ci represents cluster i. The proposed 

procedure for identifying outliers in the bivariate performance curves is presented next.  

 

Procedure: Extracting smooth performance curves 

Parameters: Perf_C = {PC, RC, BPC}, optimal number of clusters (kopt), maximum 

number of data subsets (Max_fold), Mahalanobis distance threshold (δ) 

Begin 

For each x € Perf_C 

Set initial number of clusters k = 2 

Divide the dataset into Max_fold 

For f = 1:Max_fold 

Randomly select 90% subset for training and 10% for testing.  

 Initialize k centroids  

Repeat, until the centroid does not change 

Evaluate the training error using the cost function in Eq. (2) 

End for 

Output: kopt (Optimal number of clusters) 

For j = 1:kopt  

Evaluate the Mahalanobis distance (Dpq) Eq. (1) for each data pair (p, q) 

from the cluster mean 

Sort the data pairs (p, q) based on the distance (Dpq) 

Retain data pairs (p, q) with Dpq <= δ 

End for 

Output: Mahalanobis distance between all data points for kopt clusters 

Repeat 

Do until x = |Perf_C| 

End 

Output: Smooth performance curves 

 

The above procedure computes the Mahalanobis distances between the data points 

and the cluster centers (centroids). The k-means clustering algorithm applied to the 

monthly reference curves provides 14, 11, and 9 clusters for the power curve, the rotor 

curve, and the blade pitch curve, respectively. Figures 7.4(a)-(c) illustrate the clustered 

reference curves with training errors 0.039, 0.062, and 0.075 for the power curve, the 

rotor curve, and the blade pitch curve, respectively. Figures 7.5-7.7 depict the 

Mahalanobis distance of performance curves for individual clusters. The outlier data 

points can be easily identified in Figures 7.5-7.7. The aim here is to extract smooth 

reference curves, therefore a conservative approach based on the Mahalanobis distance 
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metric is used to remove the outlier data points. The threshold distance is chosen in a way 

that the data points corresponding to the high density clouds in the clusters are selected. 

Table 7.2 presents the threshold distance for each cluster.  Using the threshold distance 

indicated in Table 7.2, 10%-15% of the data points were considered as outliers and thus 

are discarded. The refined performance curves are illustrated in Figures 7.8(a)-(c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                           (b) 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

(c) 

Figure 7.4. Performance curves with clusters: (a) power curve, (b) rotor curve, 

and (c) blade pitch curve. 
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(a) 
 

 
 

(b) 
 

Figure 7.5. Mahalanobis distance (MD) of power curve based clusters: (a) Cluster 

1-10, (b) Cluster 11-14. 
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(a) 
 

 
 

(b) 

Figure 7.6. Mahalanobis distance (MD) of rotor curve based clusters: (a) Cluster 

1-9; (b) Cluster 10-11. 
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Figure 7.7. Mahalanobis distance (MD) of blade pitch curve based clusters.  

 

Table 7.2. Mahalanobis distance threshold for 

performance curve clusters. 

Cluster 

No. 

Power 

Curve 

Rotor 

Curve 

Blade Pitch 

Curve 

1 2.5 10 25 

2 2.5 2.5 5.0 

3 50 50 5.0 

4 10 5 25 

5 10 1 25 

6 5.0 25 50 

7 100 2.5 10 

8 5.0 25 2.5 

9 10 10 25 

10 5.0 10 NA 

11 5.0 25 NA 

12 5.0 NA NA 

13 10 NA NA 

14 10 NA NA 
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(c) 

Figure 7.8. Refined performance curves: (a) power curve, (b) rotor curve, and (c) 

blade pitch curve.  

 

In next section, the moment of performance curves is discussed. Scalar performance 

matrices, namely, skewness and kurtosis of bivariate data are evaluated.  
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7.3.3. Moment calculation 

The third and fourth order moments namely kurtosis and skewness are often used to 

describe the shape of the data distribution. The multivariate kurtosis and skewness can 

also be used a data compression technique providing a single value describing the shape 

of the distribution of high frequency multivariate data. More literature pertaining to 

skewness and kurtosis is related with depicting normality in multivariate analysis. Few 

practical applications of kurtosis and skewness includes (1) identifying initial component 

in independent component analysis (ICA) (Kollo, 2008), (2) identification of dynamics in 

N-dimensional market. The refined reference curves obtained in the previous section are 

used as a benchmark for continuous performance monitoring of the wind farm. 

Multivariate skewness is a univariate measure of skewness for multivariate data, where a 

value close to zero indicates elliptical symmetry. The multivariate skewness is defined in 

Equation (7.3) (Mardia, 1970; Mardia, 1974).  

 

    31

2

1
  

i j j
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n

Skew
      (7.3) 

 

Where, x is the matrix mean, Cov-
1
 is the estimated population covariance matrix.  

Similarly, multivariate kurtosis is a univariate measure of kurtosis for multivariate data. 

For p columns matrix, a value of kurtosis coefficient close to p (p+2) indicates 

approximate multinormality. Multivariate kurtosis is mathematically described in 

equation (7.4) (Mardia, 1974; Mardia, 1980).  
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In general, underperforming wind turbines will deviate from the reference curves, 

resulting in different values of kurtosis and skewness that can be tracked in 2-D graph. 

Depending on the requirements, performance monitoring can take place on a daily, 

weekly, or monthly basis. Table 7.3 compares the kurtosis and skewness of yearly and 

monthly reference curves with respect to the test data (August 2009). The kurtosis and 

skewness of reference curves constructed based on the yearly data (January 2008-

December 2008) is obtained in the similar way. The values presented in Table 7.3 

indicate that the skewness and kurtosis of monthly reference curves are much closer 
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when compared with the yearly reference curves. Thus, monthly reference curves are 

used for monitoring the wind farm.       

 

 

Table 7.3. Multivariate kurtosis and skewness of 

reference curves. 

Data 

Type 
Criteria PC RC BPC 

Yearly 
Skewness 2.25 2.11 4.17 

Kurtosis 9.34 8.41 9.12 

Monthly 
Skewness 8.24 1.75 2.38 

Kurtosis 15.13 7.89 8.35 

Test 
Skewness 10.25 1.98 3.18 

Kurtosis 17.33 8.87 8.67 

 

   

7.3.4. Monitoring wind farm 

In this section, 22 wind turbines over a period of a month (August 2011) are analyzed 

using kurtosis and skewness for three performance curves. The analysis is based on the 

10-min average data. Turbines located farthest from the reference points (see Table 7.3) 

are considered to be abnormal. Euclidean distance is used to evaluate the distance of 

individual wind turbines from the reference points. Figures 7.9-7.11 provides the 2-D 

scatter plot of the performance curves, where, each point (diamond) represents individual 

wind turbines. In addition, kurtosis and skewness of the reference curves are also 

included in the Figures 7.9-7.11. Depending on the distribution of data points across the 

performance curves, the kurtosis and skewness distribution varies. Due to the distinct 

shape of the power curves, the kurtosis and skewness values are higher and spread out, 

than those of the rotor and blade pitch curves.  
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Figure 7.9. Status of a wind farm reflected by the power curve. 
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Figure 7.10. Status of a wind farm reflected by the rotor curve. 

 

 



154 
 

1 1.5 2 2.5 3 3.5
6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

Skewness

K
u

rt
o

si
s

1

2
3

4

5

6

7

8
9

10
11

12

13

14

15

16

17

18

19

20

21

22

Overall

Ref

 

Figure 7.11. Status of a wind farm reflected by the blade pitch curve. 

 

 

In 2-D skewness-kurtosis graph, wind turbines performance can be assessed by:  (1) 

relative location of individual turbines with respect to the reference curves, and (2) 

location of individual turbines with respect to the turbine clusters. In general, turbine 

showing the same behavior will form a distinct cluster. Any abnormal turbine behavior 

can be easily visualized in a 2-D scatter graph. The possible reasons for distinct location 

of individual turbines in skewness-kurtosis plot could be: (1) underperformance due to 

system abnormalities, (2) underperformance due to different wind speeds, (3) over 

performance due to errors in wind speed measurement.  

Using the guidelines mentioned earlier in this section, power curve based 

skewness-kurtosis graph identifies turbine 10, and turbine 12 as abnormal, whereas, 

turbine 13, turbine 17, and turbine 9 behave differently in the rotor and blade pitch 

curves.  Figure 7.12 illustrates the power curve of turbine 10. The abnormal behavior of 

turbine 10 is clearly visible as the fault logs confirm the faults associated with generator 

windings. The fault log data recorded by the SCADA systems confirm the faults 

associated with generator windings. More information about turbine fault logs is provided 

in (Hyers, 2006; Kusiak and Verma, 2011).  
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Figure 7.12. Power curve of turbine showing abnormal behavior (turbine 10). 

 

Performance of wind turbines can be assessed with the 2-D kurtosis-skewness graph. 

However, the time is not depicted in the scatter plot. Therefore, to keep track of the time, 

control charts are utilized.    

 

7.4. Continuous monitoring of wind turbines 

In this section, continuous monitoring of wind turbines is performed using a quality 

control chart. The overall monitoring of the wind farm can be done on a weekly or 

monthly basis. However, for performance monitoring of wind farm in time, quality 

control charts are required. Two output metrics namely the skewness and the kurtosis are 

used. Monitoring the matrices independently can be misleading. Therefore, bivariate 

process monitoring using Hotelling’s T
2
 control chart is employed. In the literature, 

Hotelling’s T
2
 chart has been widely used to simultaneously monitor two or more output 

variables (Johnson and Vichern, 2002). Equations (7.5)-(7.7) define the T
2
 statistic.  

     XxSXxT 12
   (7.5) 

 

In equation (7.5), x is the individual observation, X  is the variables mean, and S is the 

covariance matrix inverse. Since, the subgroup size is 1, the covariance matrix is 

evaluated by pooling all observations (equation (7.6)) (Williams et al., 2006; Sullivan 

and Woodall, 1995).   
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The lower control limit (LCL) is always 0, whereas, the upper control limit (UCL) is 

calculated from Equation (7.7).  

  
pmpF

mpm

mmp
UCL 




 ,,2

11
   (7.7) 

In equation (7.7), p is the number of output variables, 
pmpF ,,
is obtained from F 

distribution. The value of α is set to 0.001. The kurtosis and the skewness can be 

monitored simultaneously; however, the Hotelling T
2
 test requires the data to be normal.  

Therefore, the initial data is normalized using the Box-Cox approach. A value λ 

varies between -5.0 to 5.0. Figure 7.13 provides the comparison of initial and transformed 

skewness data of turbine 1 obtained using box-cox approach. For λ equal -0.552, the 

transformed data resembles to a normal distribution. This process is repeated for all 

turbines.  

The transformed bivariate data of turbines is divided into two training and testing 

of control limits. Using the information presented in the power curve based kurtosis-

skewness data (see Figure 7.9), turbine 7, turbine 10, turbine 10, turbine 11, turbine 12, 

and turbine 15 are used for testing, whereas, the control limits is obtained using the data 

from remaining turbines. Figure 7.14 provides the UCL of 10.507, resulting in 12 data 

points out of control. The out-of control data points are removed and the training process 

is iterated until all data-points meet the control limits. After three training process 

iterations, all data-points were found in control, with the resulting UCL of 10.505 (Figure 

7.15).   
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Figure 7.13. The Box-Cox transformation of turbine 1 data (λ = -0.552).  

 

 

 

Figure 7.14. Control limits for training data points (iteration 1). 
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Figure 7.15. Control limits for training data points (iteration 3). 

 

Figures 7.16(a)-(e) illustrate the test data corresponding to turbines turbine 7, turbine 10, 

turbine 11, turbine 12, and turbine 15.  Using the obtained UCL values, turbine 7, turbine 

10, turbine 11 point at least one abnormal day, whereas, turbine 12, and turbine 15 were 

found to operating normally. In general, faults namely cable twisting left, faulty pitch 

controller, blade angle implausibility fault were present in turbine 12. However, the main 

reason for abnormal days is power curtailment.  The power curtailment causes generator 

to rotate half or their actual rpm as depicted in Figure 7.12. Due to a limited number of 

observations, no significant patterns in T
2
 values have been observed.  

 

7.4.1. Power curve monitoring: A case study 

The power curve of 10 wind turbines over a period of four years (Jan 2006-Dec 2009) is 

analyzed. First, the monthly reference power curve is constructed from the historical 

wind turbine data. The best power curves obtained from 10 wind turbines over a period of 

12 months are selected as candidates for reference curves. Additionally, the control limits 

corresponding to the reference power curves are established by applying Xbar and s 

chart. 
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Figure 7.16. Hotelling’s T
2 
chart for the test data: (a) turbine 7, (b) turbine 10, (c) 

turbine 11, (d) turbine 12, and (e) turbine 15.  

 

 

The mathematical description of the upper and lower control limit is given below 

(Equation 7.9-7.15)   
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The identified control limits were obtained on the historical monthly data from Jan 2006-

Dec 2008, and were tested on Jan 2009-Dec 2009. Figure 7.17 (a-b) represents the 

kurtosis and skewness values obtained from the reference power curves in year 2009. It 

can be seen that the identified control limits are well established.  

Next, the monthly skewness and kurtosis is analyzed on individual wind turbines. 

Figure 7.18 (a-b) represent the normal and abnormal month identified from the analysis. 

In the event of abnormal month (Jun 2009), the skewness and kurtosis of turbine 4 
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amplified 10 times the usual control limit. However, other turbines were also poorly 

performed in Jun 2009. 

 

 

 

(a) 

 

(b) 

Figure 7.17. Established control chart on testing data (Jan 2009-Dec 2009): (a) 

skewness, (b) kurtosis. 
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Figure 7.19 represents the power curve corresponding to the turbine 2 for January 2007 

month. The high skewness and kurtosis values are corroborated by the underperformance 

in the wind turbine. 

 

 
Figure 7.18. The performance of wind farm: (a) normal month (May 2009), (b) abnormal 

month due to curtailment (Jul 2009), (c) underperforming wind turbine due to system 

fault (Jan 2007), and (d) underperforming due to wind speed difference/faults (Sep 2009). 

 

Issues associated with blade pitch controller, cable twisting, and curtailments 

were found in the fault logs.  In order to validate the methodology developed in this 

section, the production data is analyzed for all wind turbines. Table 7.4-7.5 provides the 

details of wind farm production for May 2009 and January 2007 month. In addition to 

total energy production, the production data provides information about the wind turbine 

availability, time spent in the scheduled maintenance, and time available for production.  
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Figure 7.19. Power curve of wind turbine 2 for January 2007 month. 

 

Based on the monthly production data as mentioned in Table 7.4-7.5, metric 

namely capacity factor and effective capacity of the wind turbines are evaluated. While 

capacity factor just depends on the total production output, the effective capacity 

represents the total energy produced by the wind turbine when it was operational. The 

two metric are evaluated as. 

 

Table 7.4. Production data of 10 turbines for May 2009. 

Turbine No. 
Production 

(KWh) 

Operation 

period 

(sec) 

Turbine 

Ok (sec) 

Downtime 

(sec) 

Grid 

downtime 

(sec) 

T1 543207 2311070 2506314 106663 140 

T2 557928 2332950 2524422 3021 36 

T4 535969 2416213 2599468 36066 7046 

T3 534365 2441933 2564873 83077 350 

T5 532819 2213722 2354300 21312 131139 

T6 553524 2465115 2587407 381 0 

T7 555759 2280846 2466814 12242 36 

T8 550942 2505942 2627073 2050 36 

T9 538602 2412925 2585400 316 0 

T10 550486 2345475 2510419 9324 36 
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Table 7.5. Production data of 10 turbines for Jan 2007. 

Turbine 

No 

Production 

(KWh) 

Operation 

Period 

(sec) 

Turbine 

ok (sec) 

Downtime 

(sec) 

Grid 

Downtime 

(sec) 

T1 387656 1818895 2195860 109295 0 

T2 134298 794794 1010562 219474 5803 

T3 396054 1940468 2220398 0 0 

T4 390751 1870289 2246373 0 0 

T5 385736 1772790 2170422 108103 0 

T6 302623 1515413 2077813 64584 0 

T7 365372 1899292 2181527 28598 0 

T8 387741 1889839 2208120 0 0 

T9 375200 1821935 2171730 6005 0 

T10 320085 1474247 1784415 17962 0 

 

 

Wh)capacity(Krated/dayno.ofhoursno.ofdays

(KWh)production
CF




                           (7.16) 

(KWh)capacityrated(hr)periodOperation

(KWh)production
EC




                                    (7.17) 

 

Figure 7.20 (a-b) provides the results obtained for the data given in Table 7.4-7.5. 

Clearly, the effective capacity and capacity factor are almost similar in the case when all 

the turbines were found to be within the specified control limit (see Figure 7.18 (a)). 

Whereas, capacity factor and effective capacity for the case with one turbine faults has 

the lower value for one out of control wind turbine (i.e. turbine 2) (see Figure 7.18 (c)). 
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(a)  

 

 

(b) 

Figure 7.20. Turbine capacity evaluation: (a) May 2009, (b) Janurary 2007.  

 

The results obtained by analyzing the production data validates the applicability 

for multivariate skewness and kurtosis in performance monitoring and evalution of 

overall wind farm.  
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7.5. Summary 

A systematic approach for monitoring performance of a wind farm was presented. 

Three performance curves, the power curve, the rotor curve, and the blade pitch curves 

were used. The Mahalanobis distance was calculated to identify outliers in the 

performance curves. The bivariate performance curve data was grouped into several 

clusters for better identification of outliers.  

Using the skewness and kurtosis of bivariate data, the initial high frequency data 

was compressed to a single value. A control chart approach based on Hotelling’s control 

chart was used for continuous monitoring of the data points in time. The transformed 

kurtosis-skewness graphs are better suited for monitoring than the high frequency 

performance curves.  
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CHAPTER 8 

CONCLUSION 

This dissertation was focused on developing prediction models for wind turbine 

faults. The research conducted in this dissertation was divided into parts: (1) Monitoring 

and prediction of wind turbines faults using states information, and (2) Monitoring the 

performance of overall wind farm. Within the first part, models using the turbine fault 

logs and operational data were constructed for prediction. Prediction models in the form 

of decision tree structure, neural network structure, association rules etc. were found. 

These models were derived from the large SCADA dataset. Models were used to predict 

the future state of the system, after the accuracy of the models was validated on the 

testing instances.   

The second part of the research focused on the monitoring of overall wind farm.  

Monitoring the overall wind farm was based on the operational data only. Using data-

mining and statistical approaches, the large volume of the data was transformed into two 

dimensions for performance assessment.  

Eight data mining algorithms, neural network, neural network ensemble, support 

vector machine, boosting tree, random forests, classification and regression tree, genetic 

programming and k nearest neighbors, were applied to the development of data driven 

models. Although, 100% accurate models cannot be derived, still, data-mining algorithms 

were able to provide an acceptable accuracy of 90% or higher in most of the cases. 

Modeling a single wind turbine and a wind farm were both discussed in this 

dissertation. In the single wind turbine research, data mining algorithms were utilized to 

monitor the performance of a single wind turbine. In doing so, the fault prone 

components of wind turbines were modeled and predicted in future. To study the wind 

farm monitoring, data from several wind turbines is analyzed and a unified model was 

developed for performance assessment. While the study on single wind turbines needs 
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fault information, monitoring the overall wind farm relies only on operational data, and 

therefore can be performed online.   

This dissertation aimed to solve the monitoring and maintenance issues associated 

with wind turbines. Fault prediction approaches relying on the historical data were 

developed under the broad domain of performance monitoring.  

The prediction models developed in this dissertation are effective yet inexpensive 

and can be easily integrated in real wind energy conversion systems (WECS). As wind 

industry is emerging, rare data driven research related to wind turbine performance 

monitoring has been performed.  

An extensive study related with identification of critical status patterns of wind 

turbines was performed in Chapter 2. The aim was to identify the hidden patterns in the 

turbine statuses which could become a potential fault in the future.  A component 

performance monitoring scheme was developed to generate alarm signals based on the 

predicted output. The results obtained in chapter 3 was further improved in chapter 3 

through enhanced turbine monitoring where only operational wind turbine data was used. 

The efficacy of the models was validated on several unseen faults.  

 Chapter 4 presented detailed analysis on various fault prone components of wind 

turbines. Faults associated with wind turbine generators i.e. generator brush worn, and 

turbine blades, i.e. blade angle implausibility were analyzed. Due to nature of the faults, 

the inherited class imbalance in the dataset was resolved using advanced data-processing 

techniques. Tomek links, cost sensitive classification and genetic algorithm were 

exploited to make the dataset free from class imbalance.  The prediction output was 

generated in the form of tree structure which could be easily analyzed and validated.  

In chapter 5, another important issue of wind turbine rotating components i.e. 

bearing over temperature was resolved. Due to the nature of the process, anomaly 

detection based approaches were utilized. On an average, the presented approach was 

able to predict the bearing over-temperature 50 minutes ahead of its actual occurrence.   
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In chapter 6, much higher frequency (i.e. 42 MHz) of data was analyzed with an 

aim to identify and predict faults in wind turbine gearbox. The data was collected in a test 

environment.  The analysis based on time and frequency domains were successfully able 

to identify the faults in turbine ring gear. Models based on data from a single sensor and 

multiple sensors were exploited to perform time-ahead prediction. In Chapter 7, a 

systematic approach for monitoring the performance of overall wind farm was presented. 

Wind turbines operational parameters namely wind speed; wind power, rotor speed, and 

blade pitch angle were used as input in performance assessment. The initial high 

frequency data was represented by a single kurtosis and skewness value to depict the 

status of wind turbines in a wind farm. The proposed approach was validated by 

comparing the power curves of wind turbines. Case study monitoring the behavior of 

several wind turbines over a period of four years is presented.   

In the further research of wind farm monitoring, current work will be extended to 

validate the proposed approach with rotor and blade pitch curves. More data will be 

gathered to look for deterioration of rotor speed, and blade pitch curve. If required, 

abnormalities in the turbine rotor speed and blade pitch movement will be induced based 

on certain distribution for performance comparison. Also, the relationship between the 

underperforming wind turbines with their capacity factor will be investigated.    
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