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ABSTRACT

Bubbly flows around ships have been studied for years, mostly in relation with

ship acoustic signatures. Bubbles are generated at the bow and shoulder breaking

waves, at the hull/free surface contact line, the propeller and the highly turbulent

stern flow. These bubbles are further transported downstream by the flow forming

a two-phase mixture in the wake that can be kilometers long. The presence of

bubbles in the wake of a ship significantly affects the acoustic response of the

medium and can be detected by measuring acoustic attenuation and backscattering

making a ship vulnerable to detection. Additionally, the bubbly wake shows at

the surface as a characteristic signature of white water, and given the length of the

bubbly wake, it makes a ship visible from satellites. Therefore, the bubbly wake

can be used to detect and identify surface ships.

Bubbly flows do not scale to model scale experiments, and experiments on

full scale ships are scarce mostly due to difficult access areas and the high speeds

involved. It is therefore of interest to simulate the bubbly flow around ships to

provide information difficult, if not impossible, to obtain with experiments.

This work presents the development of a code for the simulation of polydis-

persed bubbly flows with a focus on ship hydrodynamics. The mathematical model

implemented is based on a two-fluid formulation coupled with a Boltzmann-like

transport equation describing the bubbly phase. The tool developed attempts to

include most of the relevant physics of the problem to represent better the condi-

tions of real scenarios. The resulting code allows the simulation of polydispersed

bubbly flows in situations including free surface and air entrainment, high void

fraction levels and moving control surfaces and propulsors. The code is two-way

coupled, with a strong coupling between the two phases and between the bubble

sizes.

The complexity of the problems tackled in this research required the develop-
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ment of novel numerical methods solving issues never identified before or simply

neglected. These methods play an essential role in the accuracy, robustness and

efficiency of the code and include: a two-phase projection method that not only

couples pressure and velocity but also implicitly couples void fraction, a time split-

ting marching scheme to solve separately coupling in space and in bubble sizes, and

a stable numerical method to integrate the strong coupling introduced by collision

forces.

The implemented code is applied to the simulation of the bubbly flow around

a full scale ship using the latest available models and computational techniques.

A study is performed on the influence of several mechanisms on the predicted

bubbly wake and comparisons with available experimental data are presented.

The influence of breakup in the boundary layer is analyzed in detail as well. In

addition, this work identifies several modeling and implementations issues and

attempts to provide a path for future studies.

To illustrate the flexibility and robustness of the code, a final demonstration

case is presented that includes rotating propellers. The computation is performed

at full scale, with the fully appended geometry of the vessel and includes incoming

waves, oceanic background and rectified diffusion models. Many of these features

are unique to this computation and make it the first of its kind.
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CHAPTER 1
INTRODUCTION

1.1 Background

Two-phase flows are a particular branch of fluid mechanics involving fluid com-

posites. Fluid composites are composites that can be made to flow and are often

referred as multicomponent fluids (Drew and Passman, 1999). Multicomponent

fluids occur very commonly in both nature and technology. Examples of multi-

component fluids in nature include clouds, which are a visible mass of droplets

or frozen ice crystals, blood in vertebrates composed of blood cells suspended

in a liquid called blood plasma and groundwater flow in which water and air

flow through the soil. Examples in technology include steam generation in power

plants, chemical processes involving mixing, emulsifying and catalysis and oil, gas

and water mixtures found in oil wells, among many others.

The mathematical modeling and numerical solution of multiphase flows finds

its utility in a wide variety of applications. Numerical simulations have proven the

ability to provide detailed information that would be difficult if not impossible to

obtain with experiments. Many times a numerical model can provide information

in less time and with fewer costs. The numerical solution of multiphase flows finds

applications in nuclear engineering (Lahey Jr. et al., 1993; Lahey Jr. and Drew, 2001;

Politano et al., 2003; Krepper et al., 2005) where the prediction of bubbly flows in

pipes is of interest, in bubble columns (Chen et al., 2005b; Darmana et al., 2005;

Zhang et al., 2006) and vertical driven flows (Jakobsen et al., 1997) for the chemical

industry, in porous media (Chao-Yang and Beckermann, 1993), in the prediction

of Total Dissolved Gas (TDG) in hydropower dams (Politano et al., 2009), in spray

atomization for combustors (Apte et al., 2003a; Laurent et al., 2004) and in fluidized

beds (Huilin et al., 2003)
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1.2 Bubbly Flow Around Ships

Bubbly flows around ships have been studied for years, mostly in relation with

ship acoustic signatures. The presence of bubbles in the far-field wake can be de-

termined by acoustic attenuation and backscattering thus making ships detectable

by acoustic means (Borowski et al., 2008). In addition, the bubbly wake behind

a ship can simply be seen at the sea surface as a characteristic signature of white

water. This white signature can be used to detect and track ships from satellites.

Several experimental works exist on the acoustic characterization of bubbly

wakes (see Trevorrow et al., 1994; Dumbrell, 1997). Acoustic attenuation and

backscattering not only allows to acoustically characterize a bubbly wake but also

to determine some hydrodynamic characteristics like void fraction and bubble size

distribution (see Terrill et al., 2001). However, these kind of measurements are only

possible in the far wake of a ship where reflections of acoustic signals on the ship

hull are eliminated and where low void fractions make the application of acoustic

techniques feasible. Specially difficult is the determination and characterization

of the bubbly field in the near-field of a ship where void fractions are high and

the presence of the hull makes difficult the use of these methods. In addition

these experiments must be performed in full scale since two-phase phenomena do

not scale to model scale experiments properly and air entrainment and turbulence

are not nearly as high as in full scale. Performing experiments at full scale is a

challenging task due to the high velocities involved and difficult access to the areas

of interest.

It is for these reasons that while acoustic studies exist in the far wake, studies of

the two-phase hydrodynamics in the near field are scarce. Recent developments in

this area include the work by Terril and Fu (2008), where an array of conductivity

probes was used to measure void fractions at the stern of the Athena II R/V, the

work by Jeon et al. (2008) where defocussing DPIV (DDPIV) was used and the
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work by Johansen et al. (2010) where optical probes were used to characterize the

entrainment sources at the bow, stern and masker also of Athena II R/V.

It is due to this scenario, that the information that could be gained from CFD

simulations of the bubbly flow around ships is of considerably importance. The

use of CFD in the prediction of the bubbly wake behind a ship has already been

used in the past in order to provide of void fraction and size distribution to acoustic

dynamics codes (see Culver and Trujillo, 2007). Still, further research is necessary

in order to improve the modeling of bubbly flows around ships.

A point of considerable importance is bubble generation and entrainment. Bub-

bles are generated at the ship’s bow and shoulder waves, the hull/free surface

contact line, the propeller and the highly turbulent stern flow. Several strategies

were proposed in the past to model the entrainment of bubbles, from the manual

specification by an experienced modeler (Carrica et al., 1998) to the most recent

sub-grid scale models (Ma et al., 2010b). Entrainment modeling is an area that still

requires additional research and it is currently one of the weakest points in the

simulation of two-phase ship flows.

More recently, bubble-induced drag reduction has attracted increasing interest.

Experiments in ships and flat plates reveal drag reductions ranging from 4% to

22% (see Latorre et al., 2003; Sanders et al., 2006; Murai et al., 2007; Elbing et al.,

2008). CFD simulations include the works by Kunz et al. (2001) and Xu et al. (2002).

Drag reduction in ships would have a major environmental impact considering that

international maritime transport carries over 80 per cent of the volume of world

trade (UNCTAD, 2009) and that the US Navy consumes roughly on average 4.0

million gallons of fuel per day (Lengyel, 2007).
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1.3 Computational Ship Hydrodynamics

CFD has been increasingly used for the simulation of ship flows. One of the most

challenging features of this kind of problems is the representation and tracking of

the free surface. Surface-tracking methods were probably one of the first numerical

discretization techniques used to tackle this problem. In surface-tracking methods

the computational grid is fitted to the free surface and follows its motions. Ex-

amples of early applications using this technique include resistance computations

(Wilson et al., 2001; Burg et al., 2002), forward speed diffraction (Wilson and Stern,

1998; Rhee and Stern, 2001) and pitch and heave in regular waves (Weymouth

et al., 2005). Unfortunately, as the deformation of the free surface increases the

grid quality deteriorates and eventually computations break down. The next gen-

eration of codes for free surface flows around surface-piercing bodies solved this

problem with the use of surface-capturing methods. Surface capturing methods

include volume of fluid (VOF) (Hirt and Nichols, 1981), front tracking (Unverdi

and Tryggvason, 1992) and the level set method (Osher and Sethian, 1988). In

CFDShip-Iowa V4.5, the code used for this thesis, the single phase level set method

developed by Carrica et al. (2007b) is implemented. Nowadays, the capabilities

of the CFD codes used for ship flows have increased considerably and successful

applications include large amplitude motions (Carrica et al., 2008), self-propulsion

with discretized propellers (Lübke, 2005; Carrica et al., 2010a; Castro et al., 2011),

maneuvering with movable controlled appendages (Pankajakshan et al., 2002; Car-

rica and Stern, 2008) and very large scale computations (Yang et al., 2008; Carrica

et al., 2010b).

1.4 Models and Numerical Methods for Two-Phase
Flows

The mathematical models and numerical methods used for the simulation of

two-phase flows varies according to the application at hand, the required level of
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fidelity and the available computational resources (Lahey Jr., 2005). When dealing

with a dispersed phase, like the case of bubbles in a main liquid phase or the case of

droplets or solid particles in a gaseous phase, several approximations can be made

and several models and numerical methods arise.

A first broad categorization is between Eulerian/Lagrangian and

Eulerian/Eulerian descriptions. In an Eulerian/Lagrangian framework, the main

continuous phase is treated in the usual Eulerian framework used in fluid mechan-

ics while the dispersed phase bubbles or particles are tracked individually in a

Lagrangian fashion. This method has been used in the simulation of spray atom-

ization in combustors by Apte et al. (2003a), in sedimentation columns by Patankar

and Joseph (2001) and in the prediction of microbubble drag reduction by Xu et al.

(2002). In Apte et al. (2003a) breakup of droplets is incorporated in their Lagrangian

framework using a stochastic model. Collision effects are more difficult to include

and are computationally intensive since a collision detection problem between all

particles must be addressed. Techniques from gas dynamics simulations have been

adapted to this end by Schmidt and Rutland (2000). In the context of bubbly flows,

the work by Zhang and Ahmadi (2005) presents a Lagrangian method for slurry re-

actors where coalescence is included. Since in the Lagrangian description particles

are modeled from first principles, this modeling strategy allows to add complex

physics such as shape and orientation in flows with rigid fibers as in Marchioli et al.

(2010), agglomeration in gas-particle flows as in Sommerfeld (2010) or bubble size

dynamics to include the effect of rectified diffusion as in Hsiao and Chahine (2005).

The main drawback of Eulerian/Lagrangian descriptions is the need to interpolate

and average particle concentrations and forces used to couple with the main Eu-

lerian phase. A large number of particles per computational cell of the Eulerian

phase are needed in order to attain good statistics and obtain smooth forces and

concentrations suitable to be used in the Eulerian fluid phase equations. On the
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other hand, the knowledge of each individual particle trajectory in the system may

result to be an over-detailed description for many engineering applications where

very often only mean quantities and maybe other statistics are enough to describe

the problem.

In the Eulerian/Eulerian approach, the detailed description of each particle

position and velocity is replaced with the solution of a set of conservation equations

basically describing the mean probability of finding a dispersed phase particle at

a certain point in space and time. In this regard, the Eulerian/Eulerian description

offers a very convenient framework since mean quantities and, depending on the

model, size distributions or other statistics, are a direct result of the computation

and is not necessary to perform several simulations to perform statistics. The name

of the method comes from the fact that, as well as for the main continuous phase,

the sets of equations describing the statistics of the system are written in an Eulerian

framework.

Either the Eulerian/Eulerian or Eulerian/Lagrangian descriptions can be mono

or polydispersed. In the Lagrangian framework polydispersed systems are easily

treated by just considering different particles classes that may have not only differ-

ent sizes but also density, temperature, etc. In an the Eulerian/Eulerian framework

there is a wide variety of models and levels of simplification that span from single

sized particle systems to the more general polydispersed systems. In the Alge-

braic Slip Mixture Model (ASMM) (Manninen and Taivassalo, 1996; Sanyal et al.,

1999) conservation of mass and momentum are postulated for a mixture phase with

mean properties such as density and viscosity dependent on the concentration of

the different phases. A mean slip velocity of the dispersed phase with respect to the

main continuous phase is solved algebraically from a simplified dispersed phase

momentum equation. In the original ASMM model, bubble size is not predicted

but is imposed as a an external parameter based on the modeler experience and/or
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available experimental data. In Sanyal et al. (1999) this model is applied to the

simulation of cylindrical bubble column reactors. The ASMM model is applied to

the prediction of Total Dissolved Gas (TDG) in hydropower dams by Politano et al.

(2009). However, in the work by Politano et al. (2009), a transport equation for

the number density of bubbles is added to the model in order to account for the

change in bubble size as gas is dissolved into the water. Therefore, in Politano et al.

(2009) only one bubble class is solved for but this is allowed to change its size as

the computation evolves. The concept of a mixture phase in the ASMM model is

also applied in other areas of engineering and appears in other similar models. As

an example, the work by Chao-Yang and Beckermann (1993) presents a mixture

model for gas flow and heat transfer in porous media.

While in the ASMM model one set of equations is solved for a mixture phase,

another popular approach found in the literature is to solve a set of equations for

the continuous and dispersed phase separately. Therefore, conservation of mass

and momentum are stated for each phase. A model of this kind for monodispersed

flows around ships is presented in Paterson et al. (1996) and in Carrica et al.

(1998), who used a variable bubble size approach to account for dissolution. The

monodispersed model for ship flows is useful when studying the interaction of

small background oceanic bubbles with the hull of a ship as in Carrica et al. (1998)

since in this case breakup and coalescence can be neglected and the use of one

single dispersed phase velocity is a reasonable approximation.

The mixture and monodispersed models discussed so far neglect the effect of

breakup and coalescence. In flows with strong turbulence fluctuations and high

void fraction the effect of breakup and coalescence can no longer be neglected and

a model that accounts for these effects must be used. The most general and popular

way of describing polydispersed bubbly flows in the literature is using a number

density distribution function that provides at every point in the domain and in time
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the number density of bubbles and its size distribution. Other quantities such as

void fraction, total number density, mean diameters and moments of the size distri-

bution can be computed with the knowledge of this number density distribution. A

conservation equation for the number density distribution that includes transport,

breakup, coalescence and dissolution (and maybe other effects) can be written. This

equation basically states a balance between production and destruction of bubbles

of a given size at a given location and time. This conservation equation is referred

as the Boltzmann Equation in the nuclear engineering field (Lahey Jr. et al., 1992;

Guido-Lavalle et al., 1994) in analogy with the Boltzmann transport equation for

neutrons and is known as the Population Balance Equation by the chemical engi-

neering community (Singh and Ramkrishna, 1977; Jakobsen et al., 2005). From the

general Boltzmann transport equation several models can be derived by typically

taking moments of this equation and applying simplifying assumptions that allow

to close the integral terms involving breakup and coalescence. As the simplest ex-

ample, the monodispersed model presented in Carrica et al. (1998) can be derived

by integrating the Boltzmann equation over all bubble sizes. A more complex

model is presented by Wu et al. (1998) who derive an interfacial area transport

equation including the effects of breakup and coalescence. An interesting feature

of this model is that it only solves one transport equation for a mean interfacial area

and still is able to include the effect of breakup and coalescence. In this regard, this

model is as computationally intensive as an ASMM or monodispersed model but

it includes breakup and coalescence to yield some information on bubble size.

Several numerical methods can be applied to solve the full Boltzmann equation.

These methods basically differ from each other in the level of approximation used

for the number density distribution function, ranging from methods that assume a

given functional form of the size distribution to methods where the number den-

sity distribution can be completely arbitrary. As the numerical method is more
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general, in terms of allowing more arbitrary size distributions, it becomes more

computationally intensive as well. Therefore, the choice of a numerical method

for a particular application is a trade-off between how precise the mathematical

description needs to be and the computational cost involved to solve it. In the work

by Kamp et al. (2001) a log-normal distribution is assumed for the bubble size dis-

tribution. This distribution is described in terms of two of its moments for which

conservations equations are derived by taking moments of the general Boltzmann

equation. Kamp et al. (2001) apply their model to the simulation of microgravity

bubbly pipe flows. In the work by Lehr et al. (2002) on bubble breakup and co-

alescence in bubble columns, bubbles are modeled in two groups; small and large

bubbles. The bubble size distribution is assumed to be a log-normal distribution

for the small bubbles and to decay with an exponential tail for large bubbles. Then,

and starting from the general Boltzmann equation, they derive a set of conservation

equations for the average bubble volume and void fraction for these two groups

yielding a system of four equations with four unknowns. Breakup and coalescence

are included in their model. Another popular method used to solve the Boltzmann

equation is the method of moments for which several versions are available. In

the standard Method Of Moments (MOM) (Hulburt and Katz, 1964) the size dis-

tribution is determined through its moments. Conservation equations for these

moments are obtained by formally taking the moments of the full Boltzmann equa-

tion. A main disadvantage of this early method of moments is that breakup and

coalescence kernels need to have an easily tractable functional form in order to

close the resulting integrals. This closure problem can be overcome by the Quadra-

ture Method Of Moments (QMOM) which uses a quadrature approximation for the

size distribution to obtain transport equations for the moments of the distribution.

This method was originally proposed by McGraw (1997) in the context of aerosol

dynamics and applied to bubbly flows in stirred reactors by Petitti et al. (2010).
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A recent development on this field is the Direct Quadrature Method Of Moments

(DQMOM) by Marchisio and Fox (2005) that distinguishes itself from QMOM by

solving transport equations for the weights and abscissas of the quadrature rule di-

rectly instead of solving transport equations for the moments. DQMOM is applied

to the bubbly flow in a stirred reactor in Buffo et al. (2010).

In this thesis, the multigroup approach presented in Carrica et al. (1999) is

used. In this method, no assumption is made regarding the functional form of

the number density distribution making the method applicable to a wide range of

flow conditions. In the multigroup approach the size coordinate is discretized in

groups within which the number density, bubble velocities, etc. are assumed to be

constant. Therefore, each group is represented by a single bubble size for which

conservation of number of bubbles and momentum are solved. The so called

multigroup approach by Carrica et al. (1999) is named differently by other authors.

In Chen et al. (2005b) bubble groups are referred as bubble classes and essentially

the same multigroup methodology is given the name of fixed pivot method in Kumar

and Ramkrishna (1996). In this work, the multigroup terminology is kept even

when the discretization approach used follows the fixed pivot method by Kumar

and Ramkrishna (1996).

This same approach is applied in Politano et al. (2003) for bubbly flows in

vertical pipes and in Wang et al. (2005a) for bubble columns. The advantage of

this method is that it provides detailed information for any arbitrarily shaped

size distribution though it is clearly more computationally intensive than any of

the methods mentioned before. Another numerical method very similar to the

multigroup approach is the Multiple Size Group method (MUSIG) (see Frank et al.,

2008, model implemented in ANSYS CFX). The MUSIG method can be seen as a

particular case of the multigroup method used in this thesis. In the MUSIG method

several sizes are grouped together and it is assumed that they have the same phase
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velocity in order to reduce the number of momentum equations solved for the

dispersed phase. Frank et al. (2008) applies the MUSIG method to the simulation

of bubbly flows in vertical pipes in the context of nuclear power technology.

1.5 Contribution of this Thesis

This thesis makes two main contributions. First, the development of a new

generation of two-phase flow code with a focus on ship hydrodynamics. Second,

the modeling of the two-phase polydispersed bubbly flow around a real ship

applying the latest available models and computational techniques. Not of less

importance, this thesis identifies issues that need further study and modeling, and

attempts to provide a path for future studies tackling the two-phase polydispersed

bubbly flow around ships.

In the first main contribution, a two-phase code is developed as an extension of

the single phase version of CFDShip-Iowa V4.5 (Huang et al., 2007, 2008, 2010) and

is now available for use since release r009. CFDShip-Iowa V4.5 is a mature CFD

code developed at the University of Iowa’s Institute of Hydraulic Research (IIHR)

and is capable of handling complex computations involving free surface flows

(Carrica et al., 2007b), 6DOF large amplitude motions (Carrica et al., 2007a), fluid

structure interaction (Paik et al., 2009) and fully discretized propellers (Castro et al.,

2011; Carrica et al., 2010a). The development of the new two-phase capability into

CFDShip-Iowa V4.5 pursues a final product that is accurate but at the same time

both robust and efficient, in order to be able to perform computations involving the

same level of complexity than those performed with the single phase version. The

final objective is the development of a tool that, using state of the art models and

numerical methods, would allow to perform simulations that include most of the

relevant physics of the problem to add realism and represent better the conditions

found in real world scenarios. Some of the main features of the tool developed in

this thesis are
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1. Capability to simulate polydispersed bubbly flows, i.e. the simulation of bub-

bly flows containing a continuous distribution in bubble sizes.

2. Two-way coupled. The dispersed bubbly phase is affected by the continuous

liquid phase and vice versa, the bubbly phase affects the liquid phase.

3. Simulation of bubbly two-phase flows with free surface and air entrainment

by wave breaking, spilling, etc.

4. Problems involving moving boundaries: 6DOF motions, control surfaces and

propulsors.

5. Ability to handle high void fraction flows without loosing mass in either the

continuous or dispersed phase.

6. Strong coupling between the continuous and dispersed phases. Robust and

efficient.

7. Strong coupling between bubble sizes (coupled by breakup, coalescence, dis-

solution, etc.) guaranteeing mass conservation of the dispersed phase.

8. Carefully designed numerical methods minimize the number of floating point

operations involved in order to reduce computational cost.

To the knowledge of the author, there are no other codes available to date that

can perform the same type of computations involving free surface polydispersed

bubbly flows, two-way coupled phases and on moving meshes that the two-phase

version of CFDShip-Iowa V4.5 is capable of. It is for this reason that many of the

above features required the development of novel numerical methods that solve

issues never identified before or were sometimes neglected in the past. Original

developments of this work include: a two-phase projection method for pressure-

velocity coupling that implicitly treats void fraction changes with pressure (Section
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4.4), a time splitting marching method for the Boltzmann transport equation that

allows to apply different numerical methods for each of the different terms involved

(Section 4.2), a very stable and robust algorithm that allows to handle dispersive

forces that depend on the gradient of the number density (Section 4.8), a near wall

integration of the number density suitable for overset codes that avoids an uncon-

trolled accumulation of gas in the small cells near the wall discretizing the bound-

ary layer (Section 4.6.1) and a method to compute bubble radius that implicitly

incorporates the surface tension induced pressure (Section 3.1.5). This work also

implements state of the art numerical methods already available in the literature.

Examples are the use of TVD schemes for the transport of number densities (Section

4.6) and the fixed pivot method (Section 2.3) for a mass conservative integration of

the intergroup transfer terms. This thesis also identifies some of the issues found

when using the fixed pivot method. This method is considered a standard in the

literature but implementation details are not given. It is pointed out in this work

that this method guarantees mass conservation of the dispersed phase only if the

method is fully implicit. The implicit integration of the full Boltzmann equation is

a very computational demanding task if not impossible for many applications. As

a result, this work develops the time splitting marching scheme presented in Sec-

tion 4.2. In addition, an in-depth analysis of the fixed pivot method is performed

(Section 2.3) and modifications are proposed for the discretization of the smaller

and larger bubble sizes that guarantees mass conservation. This analysis is original

to this thesis and nowhere found in the literature.

In the second main contribution of this thesis, a study on the bubbly flow around

the research vessel Athena is presented in Chapter 6. This computation is a new

contribution by itself since it includes a polydispersed bubbly flow model, two-way

coupled, with free surface, at full scale Reynolds number, with incoming waves and

with a fully appended geometry. Athena R/V is chosen for these simulations since
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today, this is probably the ship with the most comprehensive characterization of its

bubbly field. In this study, the relative importance of the different intergroup trans-

fer mechanisms involved is assessed. This is done by selectively enabling/disabling

different terms in the Boltzmann equation and comparing the simulation results.

In addition, the evolution of the bubbly field is followed along fluid streamlines in

order to understand the source of different bubble sizes at the wake of the Athena.

Finally, the computed results are compared against available experimental data.

A final computation of Athena is performed and this includes: fully appended

geometry, discretized rotating propeller, free surface, full scale Reynolds number,

breakup, coalescence and dissolution, incoming waves, oceanic background and

bubble growth by rectified diffusion. This last computation is performed mostly as

a demonstration of the simulation capability developed throughout this research.

This research also contributes in the revision of some modeling aspects and

proposes a collision-like model for packing at high void fractions (Section 3.1.4), a

turbulent shear stress breakup model (Section 3.3.2), a coalescence model for sea

water (Section 3.2) and a model for bubble growth by rectified diffusion in the

propeller based on lookup tables from Hsiao and Chahine (2005) (Section 3.10).

The main purpose of these models is to point out sometimes neglected physics and

models that need to be improved. The packing force model proposed in Section

3.1.4 clearly needs a more in depth research and more importantly, validation with

experiments. Still, it points out the importance of a model of this nature in order

to avoid the unphysical accumulation of air bubbles specially occurring at solid

boundaries and the numerical issues associated with it. The model for coalescence

in sea water proposed in Section 3.2 highlights the dependence of the coalescence

efficiency with bubble radius experimentally observed in electrolyte solutions.

Even when the model does not include the effect of other contaminants found in

real sea water, it shows that the modeling of coalescence in sea water needs further
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research. The breakup by velocity shear model proposed in Section 3.3.2 attempts

to include the effect of unresolved turbulent shear. Later on, in Section 6.4.2.2, this

model helps to asses the importance of breakup induced by shear in the boundary

layer and from this study issues and possible modeling strategies are discussed.

The model for bubble growth by rectified diffusion proposed in Section 3.10 is in its

infancy, mainly because rectified diffusion modeling is in its infancy. However, the

proposed model illustrates how new physics can be incorporated into the Eulerian

framework of the Boltzmann transport equation.

Intergroup transfer by breakup and coalescence is validated in Chapter 5. This

chapter also contributes with a convergence analysis (Section 5.2) with the num-

ber of bubble groups, a study on the dependence of the solution with the initial

conditions in fresh water (Section 5.3) and in salt water (Section 5.7) and a detailed

analysis of intergroup transfer budget and time scales.
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CHAPTER 2
MATHEMATICAL DESCRIPTION OF

POLYDISPERSED FLOWS

The term polydispersed refers to a multiphase system in which a dispersed phase

(composed by separate individual units) is immersed in a main component termed

continuous (in the sense that two points belonging to this component may be con-

nected by a line entirely contained inside it). Moreover, the term dispersed usually

denotes the fact that the total volume of dispersed phase per unit of total volume

is small, an assumption often used in the formulation of models for polydispersed

flows. However, this is not always the case and corrections accounting for this fact

may apply. The suffix poly refers to the fact that the individual units composing

the dispersed phase may have different sizes. The term polydispersed applies not

only to bubbly flows but also to particles in a fluid (gas or liquid), drops in a gas

(or even another liquid), etc. In bubbly flows the liquid phase is the continuous

phase and the bubbly phase is the dispersed phase. In this work, subscripts c are used

to denote the continuous phase variables and subscripts d are used to denote the

dispersed phase variables.

In many works found in the literature an Eulerian/Lagrangian approach is

used to describe polydispersed flows. In these methods the continuous phase is

described in an Eulerian framework while the individual units conforming the

dispersed phase are tracked independently in a Lagrangian fashion (see Xu et al.,

2002; Apte et al., 2003a). However, the application of this method is not feasible

for the simulation of typical bubbly flows found in engineering where a large

number of bubbles makes their individual tracking not possible with the available

computing power. Besides, the knowledge on each individual bubble trajectory

in the system may result to be an over-detailed description for many engineering

purposes where very often much less information is considered to be satisfactory.

As an alternative to describing each bubble individually, the system can be
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characterized by its statistics. This approach is used in Eulerian/Eulerian formula-

tions where both the continuous and dispersed phase are described in an Eulerian

framework. In the statistical description of polydispersed flows a number den-

sity distribution f (r, ξ, t) is used to describe the dispersed phase. This function is

defined such that, the mean number of dispersed units (bubbles, drops, particles,

etc) per unit volume located at position r and at time t with internal variables ξ in

the range (ξ; ξ + dξ) is f (r, ξ, t) dξ. The internal variables contained in the vector

ξ are those relevant for a particular application. For instance, in particulate flows

the internal variables may be chosen to be the particle diameter D and the particle

velocityu such that the mean number of particles per unit volume with diameter in

the range (D; D+dD) and velocities in the velocity volume d3u is f (r,D,u, t) dD d3u.

In the work by Carrica et al. (1999) on polydispersed bubbly flows, it is assumed

that all the relevant internal variables of the problem can be computed in some way

from the bubble mass and therefore the possible set of internal variables reduces to

the bubble mass m only. This simplification assumes that all bubbles with the same

volume v(m) (which, knowing the gas density, can be computed from the bubble

mass) have exactly the same mean diameter D, mean velocity ud and interfacial

area ai. This approximation is particularly reasonable when bubbles are small and

thus close to spherical (due to surface tension). In this case of spherical bubbles the

relation between the bubble volume and the other internal variables is

D =
( 6
π

)1/3

v(m, p)1/3 (2.1)

ai = (36π)1/3 v(m, p)1/3 (2.2)

ud = ud(m) (2.3)

where the bubble volume is a function not only of the bubble mass but also of the

local pressure since this determines the dispersed phase density. For non-spherical
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bubbles the above expressions may be taken as the definition of a characteristic

diameter, interfacial area and velocity for a bubble of mass m.

Under these conditions, the bubbly phase is characterized by a number density

distribution f (m, r, t) such that the mean number of bubbles per unit volume with

masses within dm of mass m is f (m, r, t) dm. Hence, in the international system

of units (SI), f (m, r, t) has units of m−3 Kg. The use of the mass m as the inde-

pendent variable is advantageous for the simulation of flows around ships since

this quantity is preserved under pressure changes, such as the large variations of

hydrostatic pressure with depth. Therefore, while the size distribution does not

change with pressure when expressed as a function of the bubble mass m, it does

change when written in terms of the bubble diameter or volume (or any other ge-

ometrical measure). This simplifies the evolution equation for the number density

since no additional terms accounting for the change in bubble size with gas density

changes are needed (the derivation of these additional terms is shown in Morel

et al. (2010)).

The bubble volume can be used instead of the bubble mass as the internal

variable describing bubble size. However, the use of bubble mass or volume

is equivalent only when the gas phase is assumed to be incompressible. As an

example, Chen et al. (2005a) use the bubble volume instead of the bubble mass in

their simulations of bubble columns.

Other quantities important in the context of two-phase flows can be obtained

by taking different moments of the number density distribution:

Bubble number density, i.e. the total number of bubbles per unit volume

N(r, t) =

∞∫
0

dm f (m, r, t) (2.4)
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Mass density, i.e. the mass of gas per unit volume

εm =

∞∫
0

dm m f (m) (2.5)

Gas volume fraction, or simply void fraction i.e. the volume of gas per unit of total

volume

αd(r, t) =

∞∫
0

dm
m

ρd(m, r, t)
f (m, r, t) (2.6)

where ρd(m, r, t) is the dispersed phase density at the location of interest. Note

that the dispersed phase density is a function of location since it can change due

to variations in pressure. In addition, it is also dependent on the bubble size m

since for small bubbles the pressure inside them is affected by surface tension. The

integrand in Eq. (2.6) is a useful quantity to show bubble size distributions and it

will be referred as the void fraction distribution

αm(m, r, t) =
m

ρd(m, r, t)
f (m, r, t) (2.7)

Details in the bubble size distribution difficult to appreciate with the number den-

sity distribution become more evident when looking at the void fraction distribu-

tion. Notice that while the area under f (m, r, t) is the number density N(r, t), the

area under αm(m, r, t) is the total gas void fraction αd(r, t).

2.1 The Boltzmann Equation

The evolution equation for the number density f (m, r, t) is developed inspired

on the Boltzmann theory for dispersed gases by making the analogy of bubbles in

a fluid with molecules in a gas. The Boltzmann equation was first established by

Ludwig Boltzmann (1844-1906) in 1872 to describe the state of a dilute gas. The

Boltzmann equation has been successfully applied not only to the description of
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dispersed gases as originally conceived by Boltzmann, but also, with the appro-

priate extensions, to the study of neutron transport in nuclear reactors (Beckurts

and Wirtz, 1964), crystal nucleation and growth (Singh and Ramkrishna, 1977),

aerosol dynamics (McGraw, 1997), and radiative transport in planetary and stellar

atmospheres (Collins II, 2003).

Even when the analogy between bubbles and gas molecules is quite crude, in the

context of polydispersed bubbly flows, the Boltzmann equation essentially is a bal-

ance of bubble destruction and production due to breakup and coalescence inside

a differential volume around a particular location in space (effects as bubble en-

trainment, dissolution and others are also considered). In addition to breakup and

coalescence, bubbles can get in or out this volume by means of convective fluxes.

This conservation equation was given the name of Population Balance Equation by

the chemical engineering community (see for instance Chen et al., 2005a; Frank

et al., 2005). In nuclear engineering this equation is called the Boltzmann transport

equation in analogy with the Boltzmann equation for neutrons (see Guido-Lavalle

et al., 1994; Lahey Jr. et al., 1992).

Historically, a Boltzmann-like equation was first applied in the context of crystal

growth by Hulburt and Katz (1964) and later on by Singh and Ramkrishna (1977).

In the context of bubbly flows these ideas were first applied by Achard (1978),

Navarro-Valenti et al. (1991), Lahey Jr. et al. (1992), Guido-Lavalle et al. (1994) and

Carrica et al. (1999).

The conservation equation for the number density distribution, i.e. the Boltz-

mann transport equation, can be written as (Guido-Lavalle et al., 1994)

∂ f (m, r, t)
∂t

+ ∇ ·
(
ud(m, r, t) f (m, r, t)

)
+
∂
∂m

(
ṁ f (m, r, t)

)
=

β(m, r, t) + χ(m, r, t) + S(m, r, t) (2.8)
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where β is the net source due to breakup, χ is the net source due to coalescence

and S is a production term that in the simulation of ships is used to model the

entrainment of bubbles due to wave breaking and spilling. The third term on the

left hand side of Eq. (2.8) models the change in bubble mass due to dissolution and

ṁ is the rate at which gas is transfered from one single bubble to the surrounding

water. Dissolution is an important process in the prediction of the bubbly wake

behind a ship specially for small bubble sizes for which the ratio of interfacial area

to volume is high. In addition, the surface tension induced pressure, higher for

small bubbles, enhances the gas transfer from the bubbles into the surrounding

water. The mass dissolution rate ṁ in Eq. (2.8) can either be positive or negative

being then possible for a bubble to increase or decrease in size as air is exchanged.

The breakup source can be split into two contributions

β(m, r, t) = β+(m, r, t) − β−(m, r, t) (2.9)

β+(m, r, t) =

∞∫
m

dm′ h(m,m′)b(m′) f (m′, r, t) (2.10)

β−(m, r, t) = b(m) f (m, r, t) (2.11)

where β+ is the birth term due to the breakup of larger bubbles than m into bubbles

of size m and β− is the death term due to breakup of bubbles in size m. b(m) is the

kernel for breakup and gives the rate of bubble destruction due to breakup for

bubbles of size m. The units of b(m) are of 1/s. Bubbles of size m′ break into smaller

bubbles with a size distribution h(m,m′), the daughter bubble size distribution

which has units of 1/Kg. Both, the breakup kernel b(m) and the daughter bubble

size distribution h(m,m′), are also functions of time and position since they depend

on local flow conditions such as velocity gradients, turbulent dissipation, etc.,

even when this is not explicitly shown in Eqs. (2.9)-(2.11). The spatial and time

dependences will be omitted for brevity from now on whenever doing so does not



22

cause confusion.

If n bubble fragments are produced per breakup event then the daughter bubble

size distribution is normalized as (see Appendix A.1)

m′∫
0

dm h(m,m′) = n (2.12)

Coalescence sources can also be split into births and deaths as

χ(m) = χ+(m) − χ−(m) (2.13)

then for births

χ+(m) =
1
2

m∫
0

dm′Q(m −m′,m′) f (m −m′) f (m′) (2.14)

and for deaths

χ−(m) = f (m)

∞∫
0

dm′Q(m,m′) f (m′) (2.15)

χ+ represents the birth rate of bubbles within size m due to the coalescence between

smaller bubbles with masses m′ and m − m′ and χ− represents the death term due

to the coalescence of bubbles of size m with bubbles of any other size. Q(m,m′) is

the coalescence kernel and it has units of m3/s.

In the mathematical description of a polydispersed flow given by the Boltzmann

equation, the breakup and coalescence kernels b(m), h(m,m′) and Q(m,m′) are

assumed to be given. The mathematical model itself does not provide closure

relations for them and modeling is required. The modeling of these kernels is a

challenging task that typically involves results from in depth theoretical analyses
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and the careful design of experiments. The modeling of these kernels is discussed

in Chapter 3.

2.2 Multigroup Approach

Equation (2.8) must be solved for every bubble size m. This can be accomplished

using a multigroup approach where the basic idea is that bubble sizes between

mg−1/2 and mg+1/2 can be represented by a single size mg containing all bubbles in

this range. This is sketched in Fig. 2.1

Figure 2.1: Multigroup approach. Bubbles in the interval (mg−1/2; mg+1/2) are repre-
sented with a single size mg containing all bubbles in this range.

Then the range of bubble masses of interest is discretized into G groups ranging

from a minimum bubble size m1 to a maximum bubble size mG. The half groups

masses are defined as mg+1/2 = (mg+1 + mg)/2 and the two boundaries are defined

as m1/2 = 0 and mG+1/2 = ∞. Interval sizes at every group are computed as

∆mg = mg+1/2 −mg−1/2.

Integration of Eq. (2.8) between mg−1/2 and mg+1/2 results in

∂Ng

∂t
+ ∇ ·

(
ug Ng

)
+ Fg+1/2 − Fg−1/2 = βg + χg + Sg (2.16)
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where the g-group number density number is defined as

Ng(r, t) =

mg+1/2∫
mg−1/2

dm f (m, r, t) (2.17)

And the g-group velocity is defined such that the flux of bubbles in the continuous

and discrete versions are consistent

ug(r, t)Ng(r, t) =

mg+1/2∫
mg−1/2

dmud(m, r, t) f (m, r, t) (2.18)

βg, χg and Sg are the breakup, coalescence and source terms in group g respec-

tively and are defined analogously to Ng

βg(r, t) =

mg+1/2∫
mg−1/2

dm β(m, r, t) (2.19)

χg(r, t) =

mg+1/2∫
mg−1/2

dmχ(m, r, t) (2.20)

Sg(r, t) =

mg+1/2∫
mg−1/2

dm S(m, r, t) (2.21)

Fg(r, t) = ṁg f (mg) (2.22)

Since ṁ is the rate at which a single bubble of mass m exchanges mass by dissolution

with the surrounding fluid and f (m) dm is the number of bubbles per unit volume

with mass m and within dm, then ṁ f (m) dm = F(m) dm is the rate of mass exchange

between bubbles of mass m within dm and the surrounding fluid. If only gas

dissolution is considered in Eq. (2.8), this equation is nothing but a one-dimensional

convection equation for the number density in the m space with a velocity ṁ.

In analogy with this one dimensional convection equation Fg = F(mg) is called
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dissolution flux.

In the multigroup approach, the number density distribution is assumed to

be a piecewise constant function in the bubble mass m. Therefore, if γg(m) is a

function defined to be one in (mg−1/2; mg+1/2) an zero elsewhere, the number density

distribution is approximated by

f (m, r, t) =

G∑
g=1

fg(r, t)γg(m) (2.23)

With this approximation, the discrete number density distribution fg is deter-

mined in terms of the group-g number density Ng from its definition in Eq. (2.17)

fg =
Ng

∆mg
(2.24)

Using the discrete approximation for the number density in Eq. (2.23), Eqs. (2.4)

to (2.6) reduce to

N(r, t) =

G∑
g=1

Ng(r, t) (2.25)

εm(r, t) =

G∑
g=1

mg Ng(r, t) (2.26)

αd(r, t) =

G∑
g=1

αg =

G∑
g=1

mg

ρd(mg, r, t)
Ng(r, t) (2.27)

where the group-g void fraction is defined as

αg(r, t) = =
mg

ρd(mg, r, t)
Ng(r, t) (2.28)

It should be pointed out that Eqs. 2.25 and 2.26 follow, without any other

approximation involved, directly from replacing the discrete number density in



26

Eq. (2.23) in the respective definitions in Eqs. 2.4 and 2.5. On the other hand, Eq.

(2.27) is obtained by replacing Eq. (2.23) into the void fraction definition in Eq. (2.6)

and using the midpoint rule on each of the discrete intervals (mg−1/2; mg+1/2).

From its definition in Eq. (2.18), the group-g velocity is the mean dispersed

phase velocity weighted with the number density distribution. An approximation

for the group-g dispersed phase velocity is found by using the discrete number

density distribution from Eq. (2.23) into Eq. (2.18), and applying the midpoint

integration rule

ug(r, t) = ud(mg, r, t) (2.29)

i.e. the group-g velocity is approximated by the dispersed phase velocity for

bubbles of mass mg. Finally, the void fraction distribution defined in Eq. (2.7) is

computed using the discrete number density distribution fg in Eq. (2.24) and the

group-g void fraction definition in Eq. (2.28)

αm(mg) =
mg

ρd(mg)
f (mg) =

mg

ρd(mg)
Ng

∆mg
=

αg

∆mg
(2.30)

In order to solve for the number densities Ng from Eq. (2.16) it is necessary to

compute the group velocities ug and to find an appropriate approximation for the

intergroup transfer terms given by Eqs. (2.19)-(2.22). While this chapter deals with

the numerical integration of the intergroup transfer terms, the mathematical model

used to obtain the group velocities ug is presented in Section 3.1.1 and the strategy

to solve it numerically is presented in Section 4.5. The convective transport of Ng

is discussed in Section 4.6.

2.3 Intergroup Transfer Discretization

In this section the numerical method used to discretize the intergroup transfer

mechanisms in Eq. (2.16) is presented. The numerical strategy used to solve the full
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Boltzmann equation coupled in both space and bubble size is described in Chapter

4. In that chapter a time-splitting strategy is presented which allows to solve

intergroup transfer for every individual point in the domain independently of the

bubble transport in space. In this regard intergroup transfer is solved as if every

point was a separate homogeneous media problem with the local hydrodynamic

conditions. It is for this reason that this section only deals with intergroup transfer

and bubble transport is not considered without any loss of generality. If bubble

transport and sources are not considered, then Eq. (2.8) reduces to

∂ f (m, t)
∂t

+
∂
∂m

(
ṁ f (m, t)

)
=

∞∫
m

dm′ h(m,m′)b(m′) f (m′, t) − b(m) f (m, t)

+
1
2

m∫
0

dm′Q(m −m′,m′) f (m −m′) f (m′) − f (m)

∞∫
0

dm′Q(m,m′) f (m′)

(2.31)

By construction, the Boltzmann Eq. (2.31) has the property that the intergroup

transfer mechanisms of breakup and coalescence preserve mass (see Appendix

A.2). This is consistent with the physical intuition that tells as that mass is preserved

whenever a breakup or coalescence event occurs. On the other hand, dissolution

preserves the total number of bubbles but not mass since gas is transfered between

bubbles and the surrounding liquid. It is worth to mention also that Eq. (2.31) is an

integro-differential equation. Then the evolution of a certain group will be strongly

coupled to the number density in all the other groups. In addition, coalescence

terms are very nonlinear since they involve the product of two number densities.

This makes Eq. (2.31) very sensitive to numerical inaccuracies that ultimately, cause

unphysical mass losses. It is desirable then to develop a numerical integration

scheme that preserves mass. This requirement does not guarantee the accuracy of
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the numerical method by itself but in practice it leads to a robust implementation

that shows to provide accurate results.

In what follows, the fixed pivot method developed by Kumar and Ramkrishna

(1996) is presented. Their method guarantees conservation of mass at every time

step. From Kumar and Ramkrishna (1996) it is not clear what should be done

with the first and last groups and if mass conservation is possible or not for them.

It is shown in this work that for these groups at the boundaries there are two

possibilities: either to conserve mass or number of bubbles. Preference is given to

mass conservation.

2.3.1 Breakup

As done for its continuous counterpart β(m) in Eq. (2.9), βg can also be split in

two contributions

βg = β+
g − β

−

g (2.32)

Using the approximation from Eq. (2.23) into Eq. (2.19), β−g is computed as

β−g (r, t) =

mg+1/2∫
mg−1/2

dm β−(m, r, t)

=

mg+1/2∫
mg−1/2

dm b(m, r, t) f (m, r, t)

=
Ng(r, t)

∆mg

mg+1/2∫
mg−1/2

dm b(m, r, t)

= Ng(r, t) b̄g(r, t)

(2.33)

where the fact that f (m) is constant in (mg−1/2; mg+1/2) is used to take it outside the
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integral. In the last equality in Eq. (2.33) the mean breakup kernel is defined as

b̄g(r, t) =
1

∆mg

mg+1/2∫
mg−1/2

dm b(m, r, t) (2.34)

This can be approximated using a midpoint integral rule as b̄g(r, t) = b(mg, r, t).

Using this approximation, the breakup deaths are computed as

β−g (r, t) = bg(r, t) Ng(r, t) (2.35)

where bg = b(mg). The evaluation of β+ is somewhat more complex. The situation is

illustrated in Fig. 2.2 where a bubble with mass mg′ breaks into two fragments with

sizes m and m′′. The ideal situation (not sketched in the figure) would be one in

which these fragments have masses mg and mg′′ belonging to the mass stencil and

this stencil to be such that mg′′ = mg + mg′′ . In this case mass would be conserved

exactly. For instance, this is the case if bubble masses are equally spaced. However,

this situation is rare since in most applications, a non-uniform spacing is used in

order to selectively refine the size discretization where needed. Therefore, as shown

in Fig. 2.2, the bubble size m typically falls lets say somewhere inside an interval

(mg−1; mg) and bubble with size m′′ falls somewhere inside an interval (mg′′−1; mg′′)

(but not exactly at a given size mg in the discretization).

Consider the fragment with mass m. The solution proposed by Kumar and

Ramkrishna (1996) is to assign a fraction of this fragment to group g − 1 and

another fraction to group g such that the total mass is still m. Then if a+(m,mg−1) is

the fraction assigned to group g − 1 and a−(m,mg) is the fraction assigned to group
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Figure 2.2: Breakup in the multigroup approach.

g, these have to satisfy the requirements

a+(m,mg−1) + a−(m,mg) = 1 Number conservation

mg−1 a+(m,mg−1) + mg a−(m,mg) = m Mass conservation
(2.36)

From Eq. (2.36) fractions a− and a+ can be solved

a−(m,mg) =


m −mg−1

mg −mg−1
m ∈ (mg−1; mg)

0 Otherwise

a+(m,mg) =


mg+1 −m
mg+1 −mg

m ∈ (mg; mg+1)

0 Otherwise

Then Λ(m,mg) = a−(m,mg) + a+(m,mg) is a hat shaped function centered at mg, see

Fig. 2.2. Breakup events that contribute to births in group g are computed using

these fractions as

β+
g (m) = β+(m) a−(m,mg) + β+(m) a+(m,mg) = β+(m) Λ(m,mg) (2.37)
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hence β+
g (m) is computed by smoothing out the births on (mg−1; mg+1) given by

the original continuous β(m). The effect of this smoothing will be to diffuse the

size distribution in the variable m but this error will decrease as the discretization

in m is refined. Moreover, this numerical diffusion can safely be neglected when

compared to the usual uncertainties found in the breakup kernels. β+(m) can be

computed in terms of Ng using the approximation in Eq. (2.23)

β+(m) =



G∑
g′=g

h̄(m,mg′)b̄g′Ng′ m ∈ (mg−1; mg)

G∑
g′=g+1

h̄(m,mg′)b̄g′Ng′ m ∈ (mg; mg+1)

(2.38)

where the mean breakup rate is already defined in Eq. (2.34) and the mean

daughter bubble size distribution is computed weighting it with the breakup rate

as

h̄(m,mg′) =

mg′+1/2∫
mg′−1/2

dm′ b(m′) h(m,m′)

mg′+1/2∫
mg′−1/2

dm′ b(m′)

(2.39)

As previously done with the mean breakup rate b̄g, the mean daughter bubble

size distribution can be approximated using the midpoint rule to compute the

integrals in Eq. (2.39) as

h̄(m,mg′) ≈
∆mg′ b(mg′) h(m,mg′)

∆mg′ b(mg′)
= h(m,mg′) (2.40)

Using these midpoint rule approximations to compute the mean breakup rate

and daughter bubble size distribution, the breakup births source in Eq. (2.38) is
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computed as

β+(m) =



G∑
g′=g

h(m,mg′)bg′Ng′ m ∈ (mg−1; mg)

G∑
g′=g+1

h(m,mg′)bg′Ng′ m ∈ (mg; mg+1)

(2.41)

Note that due to the weighting applied on β+(m) in Eq. (2.37), the contribution

to births in group g is now expanded over the interval (mg−1; mg+1). Hence the total

number of births in group g is found by using Eq. (2.19) modified to account for

this to

β+
g =

mg+1∫
mg−1

dm β+
g (m) (2.42)

with this, births in group g are computed as

β+
g =

G∑
g′=g

bg′Ng′

mg∫
mg−1

dm a−(m,mg)h(m,mg′) +

G∑
g′=g+1

bg′Ng′

mg+1∫
mg

dm a+(m,mg)h(m,mg′)

(2.43)

Equation (2.43) can be rewritten by defining the discrete daughter bubble size

distribution hg,g′

hg,g′ =

mg∫
mg−1

dm a−(m,mg)h(m,mg′)

︸                          ︷︷                          ︸
hI

g,g′

+

mg+1∫
mg

dm a+(m,mg)h(m,mg′)

︸                          ︷︷                          ︸
hII

g,g′

(2.44)

where the integral hII
g,g′ is set to be zero when g = g′ since this term is not present in

the original Eq. (2.43). With this definition the births source is

β+
g =

G∑
g′=g

hg,g′bg′Ng′ (2.45)
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Hence, if only breakup is considered, the discrete Boltzmann equation reads

∂Ng

∂t
=

G∑
g′=g

hg,g′bg′Ng′ − bg Ng (2.46)

Equation (2.46) can be written in matricial form by defining

B+
g,g′ = hg,g′bg′ B = B+

− B−

B−g,g′ = bgδg,g′ Ng = Ng

(2.47)

then
∂N
∂t

= B+
·N − B− ·N = B ·N (2.48)

where B+ is an upper triangular matrix, B− is diagonal and thus B is upper triangular

as well.

2.3.1.1 Conservation of mass and number of bubbles

Conservation of mass and number of bubbles can be analyzed for the discrete

Boltzmann equation from Eq. (2.46). Equation (2.46) can be expanded in matricial

form as

∂
∂t



N1

N2

N3

...

NG



=



h11b1N1 + h12b2N2 + h13b3N3 + . . . + h1GbGNG

0 + h22b2N2 + h23b3N3 + . . . + h2GbGNG

0 + 0 + h33b3N3 + . . . + h3GbGNG

... +
... +

...
. . .

...

0 + 0 + 0 + . . . + hGGbGNG



−



b1 N1

b2 N2

b3 N3

...

bG NG



(2.49)
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The equation for the total number of bubbles is obtained by summing over g in Eq.

(2.46) or equivalently, by summing over the columns of Eq. (2.49). The result is

∂N
∂t

=
∂
∂t

G∑
g=1

Ng =

G∑
g=1

bg Ng

g∑
g′=1

hg′,g −

G∑
g=1

bg Ng (2.50)

The summation on hg,g′ is nothing but the discrete version of Eq. (2.12). To satisfy

the number of bubbles balance it must be required that

g∑
g′=1

hg′g = n (2.51)

which simplifies Eq. (2.50) to

∂N
∂t

= (n − 1)
G∑

g=1

bg Ng (2.52)

which is the discrete counterpart of Eq. (A.24). The last summation in Eq. (2.52)

is the total number of breakup events per unit of time (and per unit of volume).

Then, this equation tells that if two bubbles are formed per breakup event (n = 2),

one bubble is added to the system every time the breakup of a bubble occurs.

Similarly, the equation for total mass is obtained by first multiplying Eq. (2.46)

by mg and then summing over g. The result is

∂εm

∂t
=
∂
∂t

G∑
g=1

mg Ng =

G∑
g=1

bg Ng

g∑
g′=1

mg′ hg′,g −

G∑
g=1

bg mg Ng (2.53)

Since mass is preserved under breakup events (see Appendix A.2), Eq. (2.53) must

reduce to
∂εm

∂t
= 0 (2.54)
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this is the case only if
g∑

g′=1

mg′hg′,g = mg (2.55)

which is the equivalent of the continuous counterpart in Eq. (A.2).

The discrete daughter bubble size distribution properties in Eqs. (2.51) and

(2.55) can be shown to be valid for hg,g′ computed according to Eq. (2.44). The

proof consists in realizing that when performing the summations in Eqs. (2.51) and

(2.55) the neighboring terms involving hI
g′,g and hII

g′−1,g defined in Eq. (2.44) can be

combined to form the contribution to the integrals in Eqs. (A.1) and (A.2) on the

interval (mg; mg+1). However, this proof can be performed only for interior groups

and not for the boundary groups at g = 1 and g = G.

Let’s consider now the case for which g = 1 in Eqs. (2.51) and (2.55). From Eq.

(2.51) it is found that h11 = n while from Eq. (2.55) h11 = 1. This inconsistency is

due to the fact that when g = 1 there is no hII
0,1 to be combined with hI

1,1. The same

is true for any other g since hII
0,g is not defined. This inconsistency means that either

mass or number of bubbles (or both) is not conserved at g = 1.

This problem is not present when g = G since for this case the summation in

Eq. (2.43) only goes over g′ = G and for the first term only. Hence there is no hII
G,g

that needs to be combined with a hI
G+1,g.

2.3.1.2 Boundary conditions

The discussion above about the non-conservation due to the discretization at

g = 1 clearly shows that the fix pivot discretization by Kumar and Ramkrishna

(1996) cannot preserve mass and number of bubbles simultaneously. The solution

in this work is to give preference to mass conservation, i.e. to ensure that Eq. (2.55)

is satisfied. With this Eq. (2.54) is satisfied exactly but Eq. (2.52) is not. However it

can be shown that the error in Eq. (2.52) is O(m1).

In order to satisfy mass conservation it is necessary determine how to compute
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hI
1,g′ such that the discrete flux of mass due to particles born on (0; m1) equals to its

continuous evaluation. Then it is required that

m1 hI
1g′ bg′Ng′

︸         ︷︷         ︸
Actual discrete mass flux

= bg′Ng′

m1∫
0

dm m h(m,mg′)

︸                         ︷︷                         ︸
Continuous evaluation of h(m,m′)

(2.56)

Then hI
1g′ can be obtained from Eq. (2.56) as

hI
1g′ =

1
m1

m1∫
0

dm m h(m,mg′) (2.57)

Actually this same result can be obtained by expanding Eq. (2.44). This shows

that the method by Kumar and Ramkrishna (1996) naturally preserves mass in the

breakup discretization as well. In particular, if g′ = 1, then h11 = 1.

2.3.2 Coalescence

The coalescence deaths source can be computed from its definition in Eq. (2.15)

using the discrete approximation of f (m) in Eq. (2.23) and using the midpoint rule

to compute each of the integrals on the intervals (mg−1/2; mg+1/2). The result is

χ−(m) = f (m)
G∑

g′=1

Ng′ Q(m,mg′) (2.58)

and χ−g is obtained by integrating this approximation for χ−(m) on (mg−1/2; mg+1/2)

χ−g =

mg+1/2∫
mg−1/2

dmχ−(m) = Ng

G∑
g′=1

Ng′ Qgg′ (2.59)

with Qgg′ = Q(mg,mg′) and once again the midpoint integration rule is used to

integrate the coalescence kernel Q(m,m′) on m.
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The discretization of coalescence births has a problem similar to the one found

for breakup as illustrated in Fig. 2.3. If two bubbles of sizes mg′ and mg′′ coalesce to

form a larger bubble of size m = mg′ + mg′′ , typically this size is not represented by

any of the other group sizes mg. An exception to this is the case in which a uniformly

spaced grid in the mass coordinate is used. However, the mass coordinate is

typically discretized with a non-uniform spacing in order to selectively refine the

size discretization where needed.

Figure 2.3: Coalescence in the multigroup approach.

Once more the solution is to use weights a+ and a− to find the contribution to

births in a group g from neighboring births in (mg−1; mg+1). Then

χ+
g =

mg∫
mg−1

dm a−(m,mg)χ+(m)

︸                      ︷︷                      ︸
TI

+

mg+1∫
mg

dm a+(m,mg)χ+(m)

︸                      ︷︷                      ︸
TII

(2.60)

χ+(m) can be evaluated using the discrete approximation in Eq. (2.23) on f (m′) in

Eq. (2.14) and using a midpoint rule to perform the resulting integrals on intervals
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(mg−1/2; mg+1/2). The result is

χ+(m) =
1
2

mg′<m∑
g′=1

f (m −mg′) Ng′ Q(m −mg′ , mg′) (2.61)

Now, the integration in Eq. (2.60) is carried out in two terms. In the first term,

m belongs to the interval (mg−1; mg) and then the upper limit in Eq. (2.61) is g′ < g.

Similarly, for the second term in Eq. (2.60), the upper limit in Eq. (2.61) is g′ < g + 1.

Then for the first term

TI =

mg∫
mg−1

dm a−(m,mg)χ+(m)

=
1
2

g′<g∑
g′=1

Ng′

mg∫
mg−1

dm a−(m,mg) f (m −mg′) Q(m −mg′ , mg′)

=
1
2

g′<g∑
g′=1

Ng′
∑

g′′
mg−1<mc<mg

a−(mc,mg) Ng′′ Qg′′g′ (2.62)

where mc = mg′ + mg′′ . Similarly for the second term

TII =

mg+1∫
mg

dm a+(m,mg)χ+(m) =
1
2

g′<g+1∑
g′=1

Ng′
∑

g′′
mg<mc<mg+1

a+(mc,mg) Ng′′ Qg′′g′ (2.63)

The final result for χ+
g is

χ+
g =

1
2

g′≤g∑
g′=1

G∑
g′′=1

mg−1<mc<mg+1

ηg(mc) Qg′′g′ Ng′′ Ng′ (2.64)
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with ηg(m) defined as

ηg(m) =


mg+1 −m
mg+1 −mg

m ∈ (mg; mg+1)

m −mg−1

mg −mg−1
m ∈ (mg−1; mg)

(2.65)

Since g′′ in Eq. (2.64) runs over all groups, interactions between g′ and g′′ are

counted twice and hence the factor 1/2. In order to save operations, i.e. computa-

tional work, the summation in Eq. (2.64) can modified in order to be carried only

over pairs of sizes. This is possible since the kernel Q(m,m′) is symmetric. Then

Eq. (2.64) is rewritten as

χ+
g =

g∑
g′=1

g∑
g′′=g′

Cg
g′g′′ Ng′ Ng′′ (2.66)

with Cg
g′g′′ defined as

Cg
g′g′′ =


(
1 − 1

2δg′g′′
)
ηg(mc) Qg′′g′ mg−1 ≤ m ≤ mg+1, g′ ≤ g′′

0 otherwise
(2.67)

the factor
(
1 − 1

2δg′g′′
)

is necessary in Cg
g′g′′ since the factor 1/2 is still present in Eq.

(2.64) when g′ = g′′

As with breakup, coalescence sources can be recast in matricial form defining

the matrices

C+
gg′(N) =

g∑
g′′=g′

Cg
g′g′′ Ng′′

C−gg′(N) = δgg′

G∑
g′′=1

Qgg′′ Ng′′

C(N) = C+(N) − C−(N)

(2.68)
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and then if only coalescence is considered the discrete Boltzmann equation reduces

to
∂N
∂t

= C+(N) ·N − C−(N) ·N = C(N) ·N (2.69)

Note that C+ and therefore C are lower diagonal matrices. Note also that in

contrast to the breakup matrices defined in Eq. (2.47) the coalescence matrices are

functions of the number density vector N and then the solution of the Boltzmann

equation becomes non-linear in N even if the breakup and coalescence kernels do

not depend on N.

2.3.2.1 Boundary conditions

Similarly as with breakup where special care had to be taken for the first group,

special care must be taken for the last group in the discretization of the coalescence

terms. This is due to the fact that there exist coalescence events that result in

a bubble size larger than the maximum size in group G. For instance, consider

the case of small bubbles colliding onto a large bubble that belongs to group G,

the group of bubbles with the largest size. This increases the mass of this bubble

but it still remains in group G since this group includes all bubbles in (mG−1/2; ∞).

However, in the multigroup approximation, all bubbles in this group have mG only.

Hence, mass is lost since the mass of this new bubble is larger than the mass of the

group to which it is assigned.

The only way to remedy this situation is to modify the number of bubbles

assigned to group G such that mass is preserved. Once more this does not preserve

the number of bubbles, but it is assumed that this bubble size is at the end of the size

distribution where boundary condition effects do not affect the rest of the solution.

Consider then the coalescence event between bubbles with masses in groups g′

and g′′. The rate at which mass is lost from these groups can be computed from
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the respective contribution in Eq. (2.59)

ṁg′ = −mg′ Qg′g′′Ng′Ng′′

ṁg′′ = −mg′′ Qg′g′′Ng′Ng′′ (2.70)

Then the total mass lost due to this coalescence event is

ṁg′+g′′ = −mc Qg′g′′Ng′Ng′′ (2.71)

where mc = mg′ + mg′′ . It is assumed that mc > mG and then bubble births due to

this coalescence event are assigned to group G. Consider now the rate at which

mass is transfered to group G due to this coalescence. According to Eqs. (2.66) and

(2.67) this contribution is

ṁG = +mG

(
1 − 1

2δg′g′′
)
ηG(mc) Qg′g′′Ng′Ng′′ (2.72)

In order for mass to be conserved it must be satisfied that ṁG = −ṁg′+g′′ . Then it is

found that

ηG(m) =
m

mG
for m > mG (2.73)

this expression is found to hold even for g′ = g′′. Note that since m > mG then

ηG > 1 therefore having this factor the desired effect of assigning more bubbles to

group G in order to preserve mass.

2.3.3 Dissolution

For dissolution it is necessary to find an approximation for the fluxes Fg−1/2

and Fg+1/2 in Eq. (2.16). The approach adopted here is the same as the one taken

in Carrica et al. (1999): an upwind scheme where the dissolution mass rate ṁ

convects the number density distribution f (m) along its space coordinate m. An
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upwind convection scheme is the natural choice since the Boltzmann equation is

hyperbolic in the mass dissolution term.

Thus fluxes are computed according to

Fg+1/2 = ṁg+1/2 fg+1/2

Fg−1/2 = ṁg−1/2 fg−1/2 (2.74)

where fg+1/2 and fg−1/2 are computed using a first order upwind approximation

fg+1/2 =
Ng+1/2

mg+1 −mg

fg−1/2 =
Ng−1/2

mg −mg−1

Ng+1/2 =

 Ng ṁg+1/2 > 0

Ng+1 ṁg+1/2 < 0

Ng−1/2 =

 Ng−1 ṁg−1/2 > 0

Ng ṁg−1/2 < 0

(2.75)

A higher order approximation can be obtained by using high order TVD

schemes to compute these fluxes. TVD schemes provide high order convection

schemes and at the same time they avoid under and over shoots in the solution

that could result in a non-physical negative number density distribution. It should

be kept in mind, however, that most likely the physical models used for breakup,

coalescence and dissolution in the Boltzmann equation introduce an uncertainty in

the solution that does not justify the use of higher order schemes to reduce the nu-

merical discretization error. Therefore, a first order approximation is considered to

be accurate enough. Then, if only dissolution is considered, the discrete Boltzmann

equation reads
∂Ng

∂t
+ ag,g−1Ng−1 + ag,gNg + ag,g+1Ng+1 = 0 (2.76)
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with discrete coefficients ag,g′ computed according to

ag,g−1 = −
ṁg−1/2

mg −mg−1
H(ṁg−1/2)

ag,g =
ṁg+1/2

mg+1 −mg
H(ṁg+1/2) −

ṁg−1/2

mg −mg−1

[
1 −H(ṁg−1/2)

]
ag,g+1 =

ṁg+1/2

mg+1 −mg

[
1 −H(ṁg+1/2)

] (2.77)

where H(x) is the Heaviside function. Similarly as with breakup and coalescence

the discrete dissolution terms can also be written in matricial form by defining the

dissolution matrix

D =



a1,1 a1,2 0 0 . . . 0

a2,1 a2,2 a2,3 0 . . . 0

0 a3,2 a3,3 a3,4 . . . 0

0 0 a4,3 a4,4 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . aG,G


(2.78)

Then if only dissolution is considered the discrete version of the Boltzmann equa-

tion is
∂N
∂t

+ D ·N = 0 (2.79)

where the dissolution matrix D is tridiagonal.

2.3.3.1 Boundary conditions

For dissolution the cases g = 1 and g = G have to be considered separately. Lets

consider the dissolution of one single bubble from its original size to its complete

disappearance. Then according to Eq. (2.31) this bubble continuously goes across

all masses until it reaches zero mass as it would happen with a real bubble. In

contrast, in the discrete version of the Boltzmann equation the smallest a bubble

can be is m1. Lets consider this case first i.e. when g = 1. For this case Fg−1/2 actually
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is the flux at m = 0 and hence Fg−1/2 = F0 = 0 (since ṁ = 0 for a zero-sized bubble).

For this case, and considering only dissolution, the discrete Boltzman equation

reduces to
∂N1

∂t
+ F1+1/2 = 0 (2.80)

Hence bubbles can be transfered from N2 to N1 due to dissolution of bubbles of

size N2 or vice versa if bubbles in group g = 1 are growing in size. But Eq. (2.80)

does not consider the case of bubbles of mass m1 dissolving into water. This is a

consequence of approximating all bubbles contained in the interval (0; m1+1/2) with

a single size m1. Therefore Eq. (2.80) must be modified to account for this.

The total mass of air per unit volume contained in bubbles of size N1 is m1N1.

This bubbles are dissolved into water at a rate ṁ1N1. Then if only this process is

considered the mass of air contained in the first group changes in time according

to
∂(m1N1)
∂t

= ṁ1N1 (2.81)

or equivalently, since m1 does not change in time, the number of bubbles contained

in the first group change according to

∂N1

∂t
=

ṁ1

m1
N1 (2.82)

This is the new term that must be added to Eq. (2.80). With these considerations

Eq. (2.76) is modified to

∂Ng

∂t
+ ag,g−1Ng−1 + ag,gNg + ag,g+1Ng+1 =

ṁ1

m1
N1 [1 −H(ṁ1)] δ1,g (2.83)

The Heaviside function is necessary since this additional term only accounts for

dissolution of bubbles of mass m1 when ṁ1 < 0. When ṁ1 > 0 bubbles grow

into bubbles of mass m2 and this is already accounted for by F1+1/2. The matrix
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coefficients when g = 1 in Eq. (2.77) are then modified to

ag,g−1 = 0 Dummy since g − 1 = 0

ag,g =
ṁg+1/2

mg+1 −mg
H(ṁg+1/2) −

ṁ1

m1
[1 −H(ṁ1)] Since F1−1/2 = 0

ag,g+1 =
ṁg+1/2

mg+1 −mg

[
1 −H(ṁg+1/2)

]
Same as an inner group

(2.84)

When g = G the upper limit of this group is mG+1/2 = ∞. Since physical size

distributions will go to zero as the bubble size goes to infinity, or actually a finite

large bubble size, FG+1/2 = F∞ = 0. Then the coefficients in Eq. (2.77) are

ag,g−1 = −
ṁg−1/2

mg −mg−1
H(ṁg−1/2) Same as an inner group

ag,g = −
ṁg−1/2

mg −mg−1

[
1 −H(ṁg−1/2)

]
Since F∞ = 0

ag,g+1 = 0 Dummy

(2.85)

2.3.4 Full System of Equations

The final system of equations considering together breakup, coalescence and

dissolution reads

∂N
∂t

+ D ·N = B+
·N − B− ·N + C+(N) ·N − C−(N) ·N (2.86)

where the breakup matrices are defined in Eq. (2.47), the coalescence matrices in

Eq. (2.68) and the dissolution matrix in Eq. (2.78). Modifications to the coefficients

appearing in these matrices due to boundary conditions can be found for breakup

in Eq. (2.57) for g = 1, for coalescence in Eq. (2.73) for g = G and for dissolution in

Eq. (2.84) for g = 1 and in Eq. (2.85) for g = G .

Matrices B− and C− that account for breakup and coalescence deaths respec-

tively are diagonal. The births breakup matrix B+ is upper diagonal while the
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births coalescence matrix C+ is lower diagonal. The dissolution matrix is tridi-

agonal. Therefore in general the system of equations in Eq. (2.86) will lead to a

dense matrix. In addition the reader should recall the nonlinear dependence of

the coalescence matrix on the solution vector N even when the coalescence kernels

might not depend on it. In real life problems typical kernels will depend on the

solution vector N most likely having a functional dependence on the dispersed

phase void fraction αd. Therefore all the the matrices in Eq. (2.86) generally depend

on the solution vector N, though the strongest non-linearity is due to coalescence

interactions.

2.4 Derived Quantities

This section summarizes the derived quantities that can be obtained once the

number density distribution is known and a few new ones are introduced. These

quantities are used in the analysis of the simulations performed in Chapters 5 and

6. In addition, discrete versions are presented as well. These quantities can be

obtained as a post-processing step after the solution is obtained.

2.4.1 Integral Quantities

Total number density and void fraction are computed as in Eqs. 2.4 and 2.6

respectively. For number density

N(r, t) =

∞∫
0

dm f (m, r, t) (2.4)

and for void fraction

αd(r, t) =

∞∫
0

dm
m

ρd(m, r, t)
f (m, r, t) (2.6)
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The discrete counterpart to these were presented in Eqs. 2.25 and 2.27

N(r, t) =

G∑
g=1

Ng(r, t) (2.25)

αd(r, t) =

G∑
g=1

αg =

G∑
g=1

mg

ρd(mg, r, t)
Ng(r, t) (2.27)

More generally, the p-th moment of the number density distribution is defined

as

Qp(r, t) =

∞∫
0

dm D(m)p f (m, r, t) (2.87)

From this, a series of mean diameters (or sizes in the case of non-spherical

bubbles) that prove to be useful when analyzing polydisperse bubbly flows are

defined as (from Brennen, 2005)

dpq =

(
Qp

Qq

) 1
p−q

(2.88)

with p > q. Common examples are the mean diameter d10 and the mass mean

diameter d30. In some bubble reactors where the interfacial area is important, the

surface area mean diameter d20 may prove to be a more representative quantity.

Another popular choice is the Sauter mean diameter d32 which is a measure of the

ratio of the bubble volume to the bubble surface area.

The discrete approximation of the p-th moment is

Qp(r, t) =

G∑
g=1

Dp
g Ng(r, t) (2.89)

This approximation is then used in Eq. (2.88) to compute diameters dpq.
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2.4.2 Size Distributions

In addition to the number density distribution f (m), size distributions can be

presented in the form of a void fraction distribution as introduced in Eq. (2.7)

αm(m) =
m

ρd(m, r, t)
f (m, r, t) (2.7)

In the continuum, size distributions can be recast in terms of another variable

by means of a change of variables. For instance, the size distribution in radius is

obtained as, with m = ρd 4/3πR3

f (R) = f (m)
∣∣∣∣∣dm
dR

∣∣∣∣∣ = 3
m
R

f (m) (2.90)

Note that the above transformation is valid also for non-spherical bubbles as

long as, as commented at the beginning of this chapter, the bubble radius is taken

as a representative characteristic radius for bubbles of mass m.

If the size distribution in diameter is desired it can be obtained from the size

distribution in radius as

f (D) = f (R)
∣∣∣∣∣dR
dD

∣∣∣∣∣ =
1
2

f (R) (2.91)

These changes of variables ensure that the integral of the number density dis-

tribution performed on any of these variables (either m, R or D) is always the total

number density N(r, t). The same changes of variables performed in Eqs. 2.90 and

2.91 on the number density distribution can be applied to any distribution and in

particular to the void fraction distribution in Eq. (2.7).

When computing size distributions from the discrete number density Ng in-

stead, the following approximations can be used (which assume a constant f (m) in
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(mg−1/2; mg+1/2) in accordance with the approximation in Eq. (2.23))

f (mg) =
Ng

∆mg
αm(mg) =

αg

∆mg

f (Rg) =
Ng

∆Rg
αR(Rg) =

αg

∆Rg

(2.92)

An alternative to obtain f (R) for instance, would be to compute first f (m) as in

Eq. (2.92) and then use the transformation given by Eq. (2.90). These two approx-

imations for f (R) are different but they should converge to a unique result as the

discretization in sizes is refined.

The last group of the multigroup discretization, i.e. the one with g = G, contains,

in theory, all bubble sizes between mG−1/2 (or RG−1/2) and∞. This would mean that

the interval size ∆mG (or ∆RG) is infinity and according to Eq. (2.92) the estimated

size distribution at g = G would be zero even with a non-zero number density

NG. In order to come up with a finite approximation of the size distribution

at g = G reflecting the corresponding non-zero number density, a second order

extrapolation is used to compute the G-th interval size. Therefore this is estimated

as ∆mG = 2∆mG−1 − ∆mG−2 (or ∆RG = 2∆RG−1 − ∆RG−2).

It is important to note that while the interval sizes ∆mg are fixed given an initial

size discretization, the interval sizes ∆Rg generally change in time and space since

variations in pressure change the radius of the bubbles.

2.4.3 Intergroup Transfer Budget

In addition to the prediction of void fraction and size distributions, the modeling

of polydispersed flows in the computer allows the modeler to carry a detailed

analysis of the individual contributions to the Boltzmann equation made by the

different multigroup transfer mechanisms (breakup, coalescence and dissolution

in this work). This analysis is given the name of intergroup transfer budget analysis

in this work in analogy to the energy budget for turbulent flows. In the budget
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analysis the different source terms appearing in the Boltzmann equation are plotted

together as a function of the bubble size. This section describes how these terms

are obtained from the discrete solution.

Breakup and coalescence sources β(m) andχ(m) in Eq. (2.8) are size distributions

as well, giving the rate of change due to breakup and coalescence respectively for

bubble sizes within dm of size m. These are computed with the same approxima-

tions in Eq. (2.92) used for the number density and void fraction distributions. For

the sake of completeness the expressions used to compute them are given below

β+(mg) =
β+

g

∆mg
β−(mg) =

β−g
∆mg

χ+(mg) =
χ+

g

∆mg
χ−(mg) =

χ−g
∆mg

(2.93)

with similar expressions to compute them in terms of the bubble radius R.

Another quantity of interest for the budget analysis is the dissolution rate.

If only dissolution is considered and the bubble mass is a function of time m(t)

instead of an independent variable, the number density distribution f (m) changes

according to
d f (m(t), t)

dt
=

ṁ(m(t))
m(t)

f (m(t), t) (2.94)

this is the equivalent to a Lagrangian formulation in continuum mechanics since

f (m, t) is describing the number density of an initial population of bubbles as its

mass changes with time. However, this population of bubbles remains the same

as the original, meaning that the same bubbles are tracked as their mass changes

with time. The Eulerian equivalent to Eq. (2.94) is, from Eq. (2.31), given by

∂ f (m, t)
∂t

+
∂
∂m

(
ṁ f (m, t)

)
= 0 (2.95)

where instead of following a given population of bubbles during its lifetime f (m, t)
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describes the number density of the bubbles that at time t are going through mass

m.

From the right hand side of the Lagrangian form in Eq. (2.94) the dissolution rate

density is defined as

Ṙd(m) = −
ṁ
m

f (m) (2.96)

and gives the dissolution rate per unit of volume for bubbles within dm of size m.

The minus sign is added in order to define Ṙd(m) as positive when bubbles dissolve

into the surrounding water and as negative when gas dissolved in the water goes

into the bubbles. From the Eulerian form in Eq. (2.31) the dissolution source is

D(m) = −
∂
∂m

(
ṁ f (m, t)

)
(2.97)

and gives the rate of change of the number density due to dissolution. The physical

meanings encoded in the dissolution rate density Ṙd(mg) and in the dissolution source

D(m) are substantially different but confusion may arise given that they both give a

dissolution rate. An example may help to clarify. Consider a case with a flat number

density distribution, i.e. f (m) is constant for all sizes (or at least within a range of

bubble sizes). If, in addition, the bubble dissolution rate ṁ is constant as well, then

the dissolution source in Eq. (2.97) is zero. This does not mean that bubbles are

not dissolving and, in fact, they are. This is reflected by the dissolution rate density

Ṙd(m) which is different from zero. The reason why the dissolution source is zero

is because as bubbles of size m dissolve out of this size, larger bubbles dissolve into

size m at the same rate (considering ṁ < 0 for instance). It is for this reason that the

dissolution rate density Ṙd(m) is preferred when performing the budget analysis.

However, if the different components of the budget are going to be added in order

to find the total rate of change, the term that must be considered is the dissolution

sourceD(m) in Eq. (2.31)
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The discrete version to Eq. (2.96) is simply obtained by using the discrete ap-

proximation to f (m)

Ṙd(mg) = −
ṁ(mg)

mg
f (mg) = −

ṁ(mg)
mg

Ng

∆mg
(2.98)

2.4.4 Intergroup Transfer Frequencies

The budget analysis is a very powerful tool providing plenty of information on

the relative importance of the several mechanisms controlling the final distribution

in bubble sizes. However, a small or zero breakup source does not necessarily

mean that breakup for that size is small or zero as well. Consider the source for

breakup deaths β−(m). This is simply computed as the product of the breakup

kernel with the number density distribution as reflected in Eq. (2.11). Therefore,

this source can become zero either because breakup is zero or either because the

population of bubbles at that size is zero. The second situation is quite common.

Given that large bubbles are easily breakable by turbulence the breakup rate b(m)

is large. However, this large breakup causes large bubbles to quickly breakup into

smaller ones and the number density becomes negligible at large sizes. Therefore

the breakup source β−(m) becomes negligible as well. Still, breakup is strong at

large sizes.

In order to have a quantity that would reflect the strength of the different inter-

group transfer mechanisms independently of the number density, the intergroup

transfer frequencies are introduced. For breakup, the breakup frequency ωb(m)

is simply given by the breakup rate b(m). According to equation Eq. (2.11) this

could be defined as ωb(m) = β−(m)/ f (m) = b(m) and then the breakup frequency

is the number of breakup events per unit of time per bubble. Coalescence and

dissolution frequencies can be defined analogously, i.e. the number of events per

unit of time per bubble. Inspired on this idea, intergroup transfer frequencies for
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each mechanism are defined as

ωb(m) =
β−(m)
f (m)

= b(m) (2.99)

ωc(m) =
χ−(m)
f (m)

=

∞∫
0

dm′Q(m,m′) f (m′) (2.100)

ωd(m) =
Ṙd(m)
f (m)

= −
ṁg

mg
(2.101)

While the breakup and dissolution frequencies are almost independent of the

size distribution, the coalescence frequency strongly depends on it. The discrete

version of Eqs. (2.99)-(2.101) are

ωb(mg) = bg =
β−g
Ng

(2.102)

ωc(mg) =
χ−g
Ng

=

G∑
g′=1

Ng′ Qgg′ (2.103)

ωd(mg) =
Ṙd(mg)
f (mg)

= −
ṁg

mg
(2.104)

where it should be noted that the dissolution frequency ωd(m) could become nega-

tive if gas dissolved in the water goes into the bubbles. However, dissolution into

the water is the typical situation.
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CHAPTER 3
POLYDISPERSED BUBBLY FLOW MODEL

The Boltzmann equation introduced in Chapter 2 together with the multigroup

approach allows to compute the number density distribution at every point in

space and time, provided that the group-g velocity ug is available. In order to

formulate a closed model for polydisperse flows a new set of equations must be

provided to compute these velocities. In addition, the effect of the dispersed phase

on the continuous phase must be considered.

This new set of equations is provided by the so called two-fluid model. In the

two-fluid model the instantaneous local equations of motion for the liquid and gas

phases are averaged to obtain conservation laws for the average hydrodynamics

conditions of the fluid. This approach is similar to the one used to obtain the

standard RANS equations in turbulence modeling. The two-fluid model equations

can be obtained by several averaging procedures. In the pioneer work by Ishii

(1975), the two-fluid equations are obtained by time-averaging the equations of

motion. In Drew (1983) similar equations are obtained by using the concept of a

phase field function first introduced in Drew (1971). The two-fluid formulation

presented in this work is based on the more recent developments made by Drew

and Lahey Jr. (1979); Drew (1983); Lahey Jr. et al. (1992); Drew and Passman (1999)

and later on applied to the prediction of polydispersed bubbly flows around ships

by Carrica et al. (1999) and Moraga et al. (2008).

In addition, this chapter presents the models used for: turbulence; breakup,

coalescence and dissolution; air entrainment; oceanic background; rectified diffu-

sion in the propeller. Together, these models close the mathematical description

for polydispersed bubbly flows presented in this work.
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3.1 Two Fluid Model

In the two-fluid model the presence of either the continuous or dispersed phase

at a certain point in space and time is described statistically. The equations of motion

for each phase are obtained by ensemble averaging the Navier-Stokes equations

conditioned to be either in the continuous or dispersed phase. The result of this

averaging process is (see Drew and Passman, 1999)

∂αkρkuk

∂t
+ ∇ · (αkρkuk ⊗ uk) = ∇ · (αkTk) +Mk − αkρk g k̂ + um

kiΓk (3.1)

∂αkρk

∂t
+ ∇ · (αkρkuk) = Γk (3.2)

where the subindex k = c or k = g denotes the continuous phase or the gas group

g respectively. αk is the phase k void fraction, ρk is the phase density, uk is the

velocity of the phase k and Tk is the stress tensor of the phase k which already

considers the additional mixing due to turbulence. Mk in Eq. (3.1) is the result

from averaging the interfacial forces acting on the interface separating the two

phases. In the conservation of mass Eq. (3.2) Γk is a source term that considers the

mass transfer between phases (e.g., dissolution). Similarly, the source term um
kiΓk in

Eq. (3.1) considers the transfer of momentum between the phases due to this mass

transfer. The term −αkρk g k̂ in Eq. (3.1) is the gravitational force acting in the −z

direction.

The stress tensor can be decomposed as

Tk = −pkI + 2µe f f ,k∇
suk (3.3)

where pk is the phase k pressure and µe f f ,k is an effective viscosity that models

the additional mixing due to turbulent fluctuations. I is the identity matrix and

∇
s
· = (∇ · + ∇† · )/2 is the symmetric gradient operator.
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Since at all times any point in space is occupied by one of these phases the void

fractions satisfy

αd =

G∑
g=1

αg

αc + αd = 1

(3.4)

where αd is the dispersed phase void fraction already defined in Eq. (2.6) and αg is

the group void fraction defined in Eq. (2.28).

3.1.1 Dispersed Phase

In the Bolzmann equation, Eq. (2.8), the dispersed phase is transported by the

dispersed phase velocity ud(m) which is a function of the bubble mass m. In the

discrete multigroup version of this equation, Eq. (2.16),the group velocity ug plays

this rol. Therefore, in order for the model to be complete, a set of equations for

the group velocities ug must be formulated. These equations are the momentum

conservation equations provided by the two-fluid model in Eq. (3.2) when k = g.

For the gas phase it can be assumed that inertia and shear stresses are negligible.

The inertia of the bubbles is neglected given that the density of the surrounding

liquid is much larger than that of gas, ρd � ρc. Moreover, the inertia of the gas is

negligible in comparison to the effort that takes to accelerate the fluid surrounding

the bubble. This effect is considered by an additional virtual mass force to be

discussed later. Shear stresses in the dispersed phase are neglected given that

bubbles are separate units and shear between them can only be transfered through

the fluid. An additional viscous shear inside the bubbles is caused by recirculations

inside them but this effect is confined inside the bubbles and does not contribute

to the momentum balance between bubbles. In addition, it is assumed that the

gas phase pressure can be approximated by the liquid pressure, i.e. pg ≈ pc for all
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groups. With these assumptions Eq. (3.1) for group g simplifies to

0 = −∇
(
αgpc

)
+Mg − αgρg g k̂ (3.5)

In Drew and Passman (1999, §15.3.4), it is shown that concentration gradients

contribute with an additional force proportional to the gradient of the continuous

phase void fraction. Hence the momentum transfer term becomes

Mg = pg∇αg + M̃g ≈ pc∇αg + M̃g (3.6)

where M̃g is the interfacial force evaluated without accounting for a gradient in

the void fraction and the approximation pg ≈ pc was used in the last equality. It is

usual practice to compute the interfacial force as a linear superposition of separate

contributions. Hence this can be written as

M̃g = MVM
g +MD

g +MTD
g +M L

g +MP
g (3.7)

where these contributions are respectively the virtual mass, drag, turbulent dis-

persion, lift and packing. Other contributions like the Basset (Basset, 1888) and

wall lubrication forces (Moraga et al., 2006; Lucas et al., 2007) are less important

and therefore neglected in this work. The packing force accounts for the additional

momentum transfer due to collisions between bubbles and is typically ignored by

other researchers. This force plays a fundamental roll in wall bounded flows where

bubbles tend to accumulate as they rise onto a wall. The models used to compute

each of these contributions are described in Section 3.1.4.

Equation (3.5) can be rearranged by using Eq. (3.6)

− αg∇pc + M̃g − αgρg g k̂ = 0 (3.8)
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Additionally, it is common practice to subtract the piezometric pressure when

dealing with free surface flows. The piezometric pressure p̂c is defined as

pc = p̂c − ρc g z (3.9)

and introducing this definition into Eq. (3.8) the final version of the gas momentum

equation is obtained

− αg∇p̂c + M̃g + αgρc g
(
1 −

ρg

ρc

)
k̂ = 0 (3.10)

The gravitational term in Eq. (3.10) is no more than the buoyant force per unit

volume minus the weight per unit volume and since ρg � ρc this term will provide

a net positive buoyant force on the bubbly phase.

3.1.2 Jump Conditions

Transfer of mass and momentum at the gas/liquid interface must satisfy mass

and momentum conservation as well. This requirement is given by the jump

conditions. When these jump conditions are ensemble averaged a new set of

conditions suitable for a two-fluid model are obtained (Drew and Passman, 1999,

§11.3). These are

Γc +

G∑
g=1

Γg = 0 (3.11)

Mc + um
ciΓc +

G∑
g=1

(
Mg + um

giΓg

)
= m (3.12)

Equation Eq. (3.11) states the conservation of mass when there is mass transfer

between phases. Similarly, Eq. (3.12) states the conservation of momentum, where

m is the surface tension source.



59

3.1.3 Continuous Phase

In this work, bubbly flows are assumed to be adiabatic and isothermal, with

no phase change. Therefore, the only mechanism of mass transfer considered is

due to the dissolution of the air contained in the bubbles into the surrounding

water. In this case the mass transfer rates Γg are very small and thus, according

to Eq. (3.11), Γc is small as well. This mass transfer rate can then be neglected in

the mass conservation equation Eq. (3.2) for the continuous phase. Then the mass

conservation equation for the continuous phase is simplified as

∂αcρc

∂t
+ ∇ · (αcρcuc) = 0 (3.13)

If the surface tension source, together with the momentum transfer due to mass

transfer, are neglected in Eq. (3.12), the interfacial force for the continuous phase

can then be computed in term of the interfacial forces acting on the dispersed phase

as

Mc = −

G∑
g=1

Mg (3.14)

and usingMg from Eq. (3.6)Mc is

Mc = −pc∇αd −

G∑
g=1

M̃g (3.15)

The summation in this last equation can be simplified by using the group-g
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momentum equation in Eq. (3.8)

G∑
g=1

M̃g =

G∑
g=1

(
αg∇pc + αgρg g k̂

)
= ∇pc

G∑
g=1

αg + g k̂
G∑

g=1

αgρg

≈ αd∇pc + ρd g k̂
G∑

g=1

αg

= αd∇pc + αdρd g k̂

(3.16)

The approximation in the second to last line in Eq. (3.16) is that the group-g density

equals the gas density at the given pressure, i.e. ρg ≈ ρd. This is not true for small

bubbles where surface tension causes the pressure and gas density inside them to

increase but, since the contribution of small bubbles to the total void fraction is

small, this is a reasonable approximation for the momentum balance. With this

assumption Eq. (3.15) becomes

Mc = −pc∇αd −

G∑
g=1

M̃g = −∇
(
αdpc

)
− αdρd g k̂ (3.17)

This last expression can be used in Eq. (3.1) to combine the interfacial force term

with the continuous phase stresses term. Then, using the definition for Tc in Eq.

(3.3) and the condition αc + αd = 1, the momentum equation is rearranged as

∂αcρcuc

∂t
+ ∇ · (αcρcuc ⊗ uc) = ∇ · (αcTc) − ∇

(
αdpc

)
− αdρd g k̂ − αcρc g k̂

= −∇(αc pc) + ∇ ·
(
2αcµeff,c∇

suc
)
− ∇

(
αdpc

)
− αdρd g k̂ − (1 − αd)ρc g k̂

= −∇pc + ∇ ·
(
2αcµeff,c∇

suc
)

+ αdρc g
(
1 −

ρd

ρc

)
k̂ − ρc g k̂ (3.18)

Finally, the gravitational term can be eliminated by using instead the piezometric
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pressure defined in Eq. (3.9)

∂αcρcuc

∂t
+ ∇ · (αcρcuc ⊗ uc) = −∇p̂c + ∇ ·

(
2αcµeff,c∇

suc
)

+ αdρc g
(
1 −

ρd

ρc

)
k̂ (3.19)

The last term in Eq. (3.19) accounts for the buoyant force exerted by the bubbles

on the liquid.

3.1.4 Interfacial Forces

As mentioned before the net interfacial force is typically assumed to be the

linear superposition of individual contributions

M̃g = MVM
g +MD

g +MTD
g +M L

g +MP
g (3.20)

where the individual terms are the virtual mass, drag, turbulent dispersion, lift and

packing respectively.

3.1.4.1 Drag

The momentum transfer due to drag is estimated using the expression for the

drag force around a sphere

MD
g = −αgρcCD

3
8
‖ur,g‖

Rg
ur,g (3.21)

where ur,g is the relative velocity defined as ur,g = ug − uc. The drag coefficient

is that given by Tomiyama (1998) with a void fraction correction based on the

work by Ishii and Zuber (1979) to include the effect of interaction between bubbles.

For deformed bubbles in contaminated water the drag force may be expressed as

(Moraga et al., 2008)

CD =
1
αc

max
[

24
Reg

(1 + 0.168 Re0.75
g ),

8
3

Eog

Eog + 4

]
(3.22)
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where the bubble Reynolds number Reg is based on the bubble relative velocity

ur,g and the bubble diameter Dg, i.e. Reg = ‖ur,g‖Dg/νc. The Eötvös number Eog is

defined as

Eog =
g(ρc − ρd)D2

g

σ
(3.23)

where σ is the surface tension. The Eötvös number can be thought as the ratio of

the buoyancy force and the surface tension force. Surface tension tends to keep

the spherical shape of a bubble, while a higher buoyancy force causes a higher

terminal velocity that departs a bubble from its spherical shape. Therefore, the

Eötvös number can also be considered a measure of bubble deformation. This

correction for bubble deformation is very significant for large bubble sizes.

Note that even when the expression for the drag force given by Eq. (3.21)

resembles that for a spherical bubble, this is still valid for non-spherical bubbles

due to the corrections added to the drag coefficient, that is made to be a function

not only of the bubble Reynolds number but also of the Eötvös number. The bubble

radius used for the computation of the Reynolds number is the equivalent radius

of a sphere with the same volume than that of the bubble being considered.

Rg(r, t) =

(
3

4π
mg

ρg(r, t)

)1/3

(3.24)

where ρg = ρd(mg, r, t) is the dispersed phase density inside the bubble and is a

function of space and time since compressibility effects due to local pressure are

considered by using an ideal gas law of the form

ρg(r, t) = ρd,0
pg(r, t)

p0
(3.25)

where p0 is a reference pressure, typically taken to be the atmospheric pressure, and

ρd,0 is the dispersed phase density at this pressure. The pressure pg in Eq. (3.25) is
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the pressure inside a bubble of mass mg and is computed using the Young-Laplace

equation taking into account the contribution to pressure due to surface tension

pg(r, t) = p0 + p̂c(r, t) − ρc g z +
2σ

Rg(r, t)
(3.26)

The contribution to pressure due to surface tension can be significant for small

bubbles. Note that the pressure in Eq. (3.26) depends on the bubble radius which

in turn depends on the pressure through Eq. (3.24). This justifies the use of the

g-group subscript in Eqs. (3.24), (3.25) and (3.26) on the density ρg and pressure

pg inside a bubble of mass mg. Therefore the bubble radius is not explicitly found

from Eq. (3.24), but from solving a system of equations formed by Eqs. (3.24) to

(3.26). This system of equations is solved in Section 3.1.5.

3.1.4.2 Virtual mass

The virtual mass force accounts for the acceleration of the fluid surrounding the

bubble and it can be modeled as (Drew and Passman, 1999)

MVM
g = αgρcCVM

[ (
∂uc

∂t
+ uc · ∇uc

)
−

(
∂ug

∂t
+ ug · ∇ug

) ]
(3.27)

where the virtual mass coefficient CVM is taken to be 1/2, the theoretical value for

dilute potential flow of spherical bubbles.

3.1.4.3 Lift

The lift force is modeled as

M L
g = −αgρcCLur,g × (∇ × uc) (3.28)

this force is computed by ensemble averaging the lift force analytically obtained by

solving the potential flow around a sphere submerged in a shear flow (Drew and
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Lahey Jr., 1987, 1990). The analytical lift coefficient obtained with this model is CL =

1/2 but experimentally it is found to vary for different experimental configurations.

The value CL = 0.1 is found for the upflow of spherical particles in a pipe (Lahey Jr.

et al., 1993) and was used in previous simulations of ship flows (see Carrica et al.,

1999; Moraga et al., 2008).

In Tomiyama et al. (2002) a correlation for the lift coefficient dependent on the

bubble size is given as

CL =


min

[
0.288 tanh(0.121Reg), f (Eoh,g)

]
for Eoh,g < 4

f (Eoh,g) for 4 ≤ Eoh,g < 10.7

−029 for Eoh,g > 10.7

(3.29)

where

f (Eoh,g) = 0.00105 Eo3
h,g − 0.0159 Eo2

h,g − 0.0204 Eoh,g + 0.474 (3.30)

where the Eötvös number is based on the maximum bubble horizontal dimension,

Eoh,g = g(ρc − ρd)D2
h,g/σ. The ratio between the radius of an equivalent sphere with

the same bubble mass to the maximum horizontal dimension is evaluated from the

empirical correlation given by Wellek et al. (1966)

(
2 Rg

Dh,g

)3

=
1

1 + 0.163 Eo0.757
h,g

(3.31)

The correlation given by Tomiyama et al. (2002) predicts a change in the sign of CL

at Dg = 5.8 mm in the air-water system. The popular value of CL = 0.1 is attained

for bubbles of about 2.6 mm. In Legendre and Magnaudet (1998) the lift force on

a bubble is studied numerically and the limiting value CL = 1/2 is obtained for

high Reynolds numbers. Their prediction show a strong dependence of CL on the

bubble Reynolds number for low Reynolds numbers. In this work CL = 0.1 is taken
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in pursuit of simplicity and since this has been the commonly used value for ship

flows. The lift coefficient given by Tomiyama et al. (2002) should be considered in

future improvements to the model.

3.1.4.4 Turbulent dispersion

The turbulent dispersion is modeled in many works as an extra forcing term in

the gas momentum equation (Carrica et al., 1999; Drew, 2001; Moraga et al., 2008;

Lopez de Bertodano et al., 2004). For instance, Carrica et al. (1998) proposed to

model the turbulent dispersion force as

MTD
g = −ρcαg

3
8

CD‖ur,g‖

Rg

νt

Scb

∇Ng

Ng
(3.32)

where νt is a turbulent viscosity obtained from a suitable turbulence model (two-

phase turbulence modeling is discussed in Section 3.6) and Scb is the Schmidt

number taken to be Scb = 1.0. This model is developed based on the idea that small

bubbles should behave as fluid tracers. An approximation for the group velocity

ug can be found by only considering drag and turbulent dispersion in Eq. (3.10)

and then taking the limit to small bubble radius. This leads to the result

ug = Vt g −
νt

Scb

∇Ng

Ng
(3.33)

whereVt g is the bubble terminal velocity. This velocity approximation is introduced

into Eq. (2.16) for the number density transport and rearranged as

∂Ng

∂t
+ ∇ ·

(
Vt,g Ng

)
= ∇ ·

(
νt

Scb
∇Ng

)
+ βg + χg + Sg (3.34)

Thus the model proposed by Carrica et al. (1998) predicts the right trend of small

particles behaving as fluid tracers (Moraga et al., 2003). However, it was found in

the present work (see Appendix B), that for bubble Reynolds Reg > 10 the above
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model does not have a unique solution. This was found to be responsible of

numerical instabilities specially in highly turbulent regions as the boundary layer

and the ship wake.

It is for this reason that in this work turbulent dispersion is not modeled as

an extra momentum term in the dispersed phase momentum equations but as a

diffusion in the number density transport equation. Based on these considerations

Eq. (2.16) is modified to

∂Ng

∂t
+ ∇ ·

(
ug Ng

)
+ Fg+1/2 − Fg−1/2 = ∇ ·

(
νt

Scb
∇Ng

)
+ βg + χg + Sg (3.35)

where the Schmidt number is taken to be Scb = 1 and the interfacial force for

turbulent dispersion is set toMTD
g = 0.

3.1.4.5 Packing

In the mathematical description of polydispersed bubbly flows presented so

far there is nothing preventing the void fraction from becoming larger than 100%.

This poses a serious problem in wall bounded flows where void fraction builds up

due to the accumulation of bubbles rising up towards the walls. In the real world

this situation is far more complex than just the accumulation problem itself. In

a turbulent boundary layer for instance, when bubbles start accumulating near a

wall, the collision rate increases since a larger fraction of the volume is occupied

by bubbles, they may coalescence due to this increased collision rate, and given

the large turbulent fluctuations in the boundary layer they may breakup as well.

To complete the picture, the situation can become even more complex as bubbles

may actually form sheets of air underneath this wall that unsteadily break up into

bubbles and recombine again to form new sheets or pockets of air.

Probably the first action to solve this problem would be to limit the void fraction

to a given maximum value. This approach should be avoided since mass is lost in
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the process and once the maximum void fraction is reached the solution is frozen

at this void fraction unless something sweeps bubbles away from their location.

A better approach than a hard imposed limit is to modify the gas velocity such

that bubbles are taken away from a region of large void fraction. In this way the

transport equation for the number density is not modified and mass is naturally

preserved.

In Lucas et al. (2007) an extra force term is added based on the idea that bubbles

deform elastically when they approach a wall. This model attempts to resolve a

single elastic collision event with a wall and results in a very localized force. In

vertical pipe flows it is customary to add a wall lubrication force in order to explain

the formation of a void fraction peak close to the wall of the pipe (Antal et al.,

1991). However, these are examples of models aiming to account for the collision

and sometimes bouncing off of bubbles on a rigid boundary while in this work the

interest is on a model that accounts for interaction between bubbles themselves by

collision. In this regard, in the work by Kunz et al. (2007) it is assumed that bubbles

that do not coalesce rebound and thus contribute to forces by collision. In the works

by Gidaspow (1994) and Apte et al. (2003b) for particle flows, the repulsive force

due to collisions between particles results from an effective collision pressure.

The models proposed by Kunz et al. (2007), Gidaspow (1994) and Apte et al.

(2003b) all have in common that the repulsive force between bubbles is proportional

to the gradient of the number density

Mg ∝ −∇Ng (3.36)

where the minus sign indicates that bubbles move in the direction of lower number

density since they are repelled by collisions with other bubbles. In this regard the

collision model is similar to the turbulent dispersion force in Eq. (3.32) and therefore
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is a dispersion type model. The functional dependence in Eq. (3.36) typically leads

to numerical instabilities, given that any noise in the number density is amplified

by the gradient operation and it feeds back with the resulting gas velocity in the

number density transport equation.

The model by Kunz et al. (2007) is probably the first one addressing the dis-

persion of bubbles caused by collisions at high void fractions. However the model

incorporates new adjustable constants that were found to be highly dependent on

the particular problem. On the other hand, even when the models proposed for

particle flows could be adapted to bubbly flows, these models cannot be applied

directly as they are because the underlying physics are completely different.

Even after the aforementioned efforts, the accumulation of bubbles in a tur-

bulent boundary layer is still an open problem to solve. To the knowledge of the

author there is no experimental data on the subject nor any well accepted modeling

strategy. Given this lack of experimental data, the objective in this work is simply

to provide of a model based on physical grounds that would prevent an excessive

accumulation of bubbles along wall boundaries but still at least conserve mass.

Following the developments made for particle flows, the packing force is mod-

eled as (Gidaspow, 1994; Apte et al., 2003b)

MP
g = −αg∇σP(αd) (3.37)

where σP models a collision pressure resulting from the collision between bubbles.

A model of this nature, as in the work by Kunz et al. (2007), assumes that bubbles

do not form sheets of air but remain as individual bubbles. For particle flows the

collision pressure typically takes the form σP(αd) ∝ (αpkg − αd)−n, where αpkg is a

close packing void fraction and n is a positive exponent controlling the strength

of the functional dependence of σP with void fraction. This functional form for σP
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makes the packing force to increase as the void fraction approaches the packing

void fraction αpkg. With this model the maximum void fraction allowed is αpkg.

However, such a strong functional dependence together with a singular point at

αpkg leads to numerical instabilities that are typically solved by iterating on heavily

relaxed equations, an intensive computational approach not applicable for the

solution of large scale problems.

In order to avoid numerical instabilities the expression for σP(αd) should be as

smooth as possible, and without singular points. In this work an expression for

the collision pressure is proposed based on the idea sketched in Fig. 3.1a.

(a) Idealized void fraction profile when bub-
bles accumulate against a wall.

(b) Bubbly layer thickness increase as more
bubbles arrive.

Figure 3.1: Accumulation of bubbles on a solid boundary and the bubble packing
model.

In this figure the pull of gravity acts along the y axis. At y = 0 there is a wall

and an initial mass of bubbles rises against it. After an initial transient bubbles

accumulate at the wall with the assumed void fraction profile shown in Fig. 3.1a.

Under this condition it is assumed that bubbles have zero velocity in the direction

normal to the wall (and then a steady state can be reached in the normal direction
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to the wall but still bubbles can be transported in the direction tangential to it).

Therefore, the momentum balance in the y direction according to Eq. (3.10) reduces

to

ρc g =
∂σ(αd)
∂y

= β(αd)
∂αd

∂y
(3.38)

β(αd) =
dσ
dαd

(3.39)

From this expression the gradient of the collision pressure can be obtained provided

that the gradient of the void fraction profile is known (and vice versa)

β(αd) =
ρc g

∂αd/∂y
(3.40)

The void fraction profile depicted in Fig. 3.1a exhibits two zones with different

but constant void fraction gradients in each zone. In Zone 1 the profile is practically

flat, corresponding to the layer where bubbles are closed packed. Zone 2 is a

transition zone from the closed packing void fraction to zero void fraction. With

this simplified profile Eq. (3.40) implies that function β(αd) is constant in each zone

with a large value in Zone 1 and a smaller value in Zone 2.

For a perfectly flat profile, i.e. one where ∂α/∂y = 0, the function β(αd) must

approach infinity according to Eq. (3.40). However, a finite (still large) gradient

is required when solving the model numerically. In order to have a finite β(αd) a

non-zero but small gradient is allowed. Figure 3.1b sketches how the bubbly layer

thickness would increase from thickness δ1 to δ2 as more bubbles reach the wall

with the proposed model. Since the void fraction gradient in Zone 1 is close to

zero, the bubbly layer thickness must increase in order to hold more bubbles as

they approach the wall. In the model proposed in this section the function β(αd) is

set to be constant in each zone and thus, according to Eq. (3.38) the void fraction
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gradient is fixed by the model inside each zone. Therefore, the bubbly layer grows

with the same slope in both zones as depicted in Fig. 3.1b. Only the bubbly layer

thickness changes. Given that the void fraction gradient in Zone 1 is not zero, but

a small number, there is an increase of void fraction ∆αd in Zone 1. However, this

increase in void fraction is negligible given the small void fraction gradient in Zone

1.

If α1 is the maximum void fraction at the wall, the void fraction at the transition

to Zone 2 is assumed to be α2 = rα1 ≈ α1 with the ratio r a number close to one. If

the transition from Zone 1 to 2 is assumed to be at y = δw, the void fraction gradient

inside Zone 1 is
∂αd

∂y
=
α1 − α2

δw
=
α1(1 − r)
δw

(3.41)

In Zone 2 void fraction is assumed to go to zero in a thickness δw/3. Then inside

this zone the gradient is
∂αd

∂y
=

α2

δw/3
≈

α1

δw/3
(3.42)

Therefore the collision pressure gradient is a step discontinuous function of the

form

β(αd) =


β1 =

ρc g δw

α1(1 − r)
y < δw

β2 =
ρc g δw

3α1
y > δw

(3.43)

For the simulations run in this thesis the coefficients of the model are set to

δw = 1.0 cm, α1 = 0.3 and r = 0.99. With this, the void fraction profile is practically

flat if the void fraction is slightly larger than the assumed packing void fraction

α1 = 0.3. Therefore r is not a physical parameter of the model but rather an artifact

to have an almost zero gradient profile without incurring into numerical instabil-

ities. In addition, parameters α1 and δw are combined into one single parameter,

the transition thickness gradient α1/δw. This gradient could be determined from

experiments.
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As noted before, any discontinuities in the model for β(αd), or equivalently

σ(αd), would result in numerical instabilities. To avoid this, the function β(αd) is

replaced by a smother version

β(αd) = β1 +
1
2

{
tanh

[
γ(αd − α1)

]
+ 1

}
(β1 − β2) (3.44)

where the new dimensionless parameter γ controlling the smoothness of the transi-

tion is set to γ = 20.0, the largest number with which the model is found to be stable.

The numerical method used to integrate this model is key to avoid instabilities.

The approach developed for this thesis is described in Section 4.8.

Assuming that the packing pressure model is a good representation of the un-

derlying physics, still the proposed functional form in Eq. (3.44) is very simple

depending only on the total void fraction. Moreover, the packing void fraction α1

and the transition gradient α1/δw are assumed to be constant for all flow conditions.

In the context of turbulent boundary layers, it would be to expect that these two

parameters depend on the local turbulent intensity or mixing. As the intensity of

turbulent fluctuations increase bubbles cannot stay as closed packed as in a station-

ary flow. In addition, it would be to expect that the additional turbulent mixing

would diffuse the transition zone (Zone 2 in Fig. 3.1a) and widen its thickness.

Turbulent mixing is characterized by the turbulent viscosity νt (turbulence model-

ing is treated in Section 3.6) and thus a functional dependence of the packing void

fraction and the transition gradient with it seems to be reasonable.

Another effect not considered in this very simplistic model, is that there is

not a single packing void fraction in polydisperse flows. A closed packing void

fraction can be obtained for different arrangements of hard spheres of the same size.

However, in polydisperse bubbly flows, small bubbles can fill in the interstitial

spaces left between larger bubbles. This situation is depicted in Fig. 3.2. Therefore,
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a better model for the packing pressure might introduce a functional dependence

with the size distribution f (m) and, since void fraction can be obtained from f (m),

this model would replace the void fraction dependence with the number density

f (m). In other words, the simple dependence on an integral parameter (in this case

the void fraction αd) might need to be replaced by a more complex functional form

on the full number density distribution.

Figure 3.2: Packing of bubbles in a polydisperse bubbly flow. The example shows
a polydisperse mixture with only three bubble sizes (shown on the right). Smaller
bubbles take the interstitial spaces left by the larger ones.

The above discussion highlights weaknesses in the modeling of bubble packing

and the possible functional dependences expected to be seen in a real flow situation.

Clearly more research is needed in this matter, and experiments on bubbly turbulent

layers are key for the better understanding of the problem and the development of

more realistic models.

3.1.5 Bubble Radius

As explained before when introducing the drag force, the radius of a bubble

with a mass m depends on the local pressure and also on the pressure induced by

surface tension inside the bubble. This led to the system of Eqs. (3.24) to (3.26) here
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summarized again for completeness

Rg =

(
3

4π
mg

ρg

)1/3

(3.24)

ρg = ρd,0
pg

p0
(3.25)

pg = p0 + p̂ − ρc g z +
2σ
Rg

(3.26)

Notice then that according to Eq. (3.26) the pressure pg is a function of the bubble

radius Rg computed according to Eq. (3.24) which in turn depends on the pressure

through the gas density computed according to Eq. (3.25). Therefore, to compute

the bubble radius, this system of equations must be solved simultaneously for the

variables Rg, ρg and pg.

The density ρg in Eq. (3.24) can be put in terms of the bubble radius using Eqs.

(3.25) and (3.26). This results in one single equation for Rg, and further algebraic

manipulation leads to a third order degree polynomial on Rg

R3
g p0 + 2 σR2

g −
3

4π
mg = 0 (3.45)

with solution

Rg

R0g
= ∆ − S̃p +

S̃2
p

∆
(3.46)

∆ =
1

21/3

[
1 − 2S̃3

p +
√

1 − 4S̃3
p

]1/3

(3.47)

S̃p =
2
3
σ/R0g

p0
(3.48)

where R0g is the solution to this equation when σ = 0. The root of the polynomial

in Eq. (3.45) is always real even when the squared root in Eq. (3.47) may become

imaginary, as is the case for very small bubbles. The dimensionless parameter S̃p

is a measure of the importance of surface tension in computing the bubble radius.
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For S̃p � 1, as it would happen for large bubbles, the effect of surface tension can

be neglected. The squared root in Eq. (3.47) becomes imaginary at S̃p > S̃p crit =

(1/4)1/3 = 0.62996 and thus Eqs. (3.46)-(3.48) have to be implemented with complex

arithmetic. This may result in an expensive implementation considering that this

operation is performed over every spatial grid point in the domain. To save

computational work, three cases are considered. If S̃p < S̃p crit then real arithmetic

may be used. And if additionally S̃p < 0.5 the computation of Rg can be simplified

by expanding it on S̃p as
Rg

R0g
= 1 − S̃p + S̃2

p −
2
3

S̃3
p (3.49)

which is within 1.6% of the exact expression. Finally, the full expression for Rg in

complex arithmetic is used for S̃p > S̃p crit.

The effect of this computation on the overall model comes into play when

computing the bubble Reynolds number in Eq. (3.22), when computing intergroup

transfer rates in Sections 3.2 through 3.4, and when computing the group-g or total

void fraction in Eq. (2.27).

3.2 Coalescence Modeling

Bubble coalescence is a complex phenomenon where two or more bubbles merge

to form a larger one. This process depends on the velocity field of the continuous

phase, whether this is turbulent or not, and on the presence of impurities in the

water and its chemical composition. A usual simplification is to consider only

binary interactions, i.e. the coalescence between two bubbles. Coalescence can be

described as a three steps process. First a collision between two bubbles must take

place. This collision brings the two bubbles close to each other trapping a thin film

of liquid between them. The second step is the thinning of this liquid film during

which the bubbles must be in contact long enough to allow the liquid film between

them to drain (Marrucci, 1969). Finally, film rupture occurs resulting in coalescence.



76

The above description suggests that the rate of coalescence is intimately related to

the collision rate, the number of bubble collisions per unit of time (and volume).

Whether a collision results in coalescence or not is given by the coalescence efficiency,

the probability of coalescence once collision has occurred.

In analogy with particle collisions in a gas, the collision rate is estimated as

Rcoll(m,m′) = T(m,m′) f (m) f (m′) dm dm′ (3.50)

where T(m,m′) is a kernel that allows to compute the collision rate per unit volume

Rcoll(m,m′) between bubbles within dm of size m with bubbles within dm′ of size

m′. Not all collisions result in bubble coalescence. The fraction of collisions that

result in an actual coalescence is given by the coalescence efficiency and therefore the

coalescence rate is computed as the product of the collision rate with the coalescence

efficiency C(m,m′)

Rcoal(m,m′) = Rcoll(m,m′) C(m,m′) (3.51)

As suggested by its two arguments, the coalescence efficiency C(m,m′) is a function

of the two participating bubble sizes. Alternatively, the rate of coalescence in Eq.

(3.51) can be written as

Rcoal(m,m′) = Q(m,m′) f (m) f (m′) dm dm′ (3.52)

where the coalescence kernel already introduced in Eqs. (2.14) and (2.15) is defined

as the product of the collision kernel with the coalescence efficiency

Q(m,m′) = T(m,m′) C(m,m′) (3.53)

and allows to compute the rate of coalescence per unit volume between bubbles

within dm of size m with bubbles within dm′ of size m′.
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The collision between two bubbles is caused by a non-zero relative velocity

between them. In analogy with the RANS models for turbulence, the velocity

of the bubbles, as well as the relative velocity between them, can be split into a

mean velocity contribution, which is resolved by the computational grid, and into

a turbulent fluctuation contribution, which is estimated from a suitable turbulence

model. In addition, gradients in the velocity field may cause bubbles in a high ve-

locity region to overtake bubbles in a slower velocity region (see Prince and Blanch,

1990a; Williams and Loyalka, 1991). This last mechanism was not implemented at

the time this thesis was written but should be considered as a future improvement

to the model since high velocity gradients may be encountered in some regions of

the flow as it occurs along boundary layers.

Two coalescence models are implemented in this work: the model of Prince

and Blanch (1990a) and the model of Lehr et al. (2002). The model of Prince and

Blanch (1990a) has been used extensively in the past in a multitude of applications

due to its general formulation and is widely accepted in the two-phase community.

Similar models can be found in the works by Luo and Svendsen (1996b) and Wang

et al. (2005a). Some of these models would include additional effects particular

to specific applications. As an example, in Fu and Ishii (2003), a wake entrainment

model is formulated for slug flows where bubbles can be accelerated into the strong

wake behind a sphere cap shape bubble. Even though the model of Prince and

Blanch (1990a) is preferred in this work due to its generality, the model by Lehr et al.

(2002) is implemented as well to perform a validation of the multigroup transfer

solver in Chapter 5 against computations originally performed by the authors of

the model in their work.

3.2.1 Model of Prince and Blanch

This model was originally proposed in Prince and Blanch (1990a). The model

considers that collisions may occur due to turbulent fluctuations, different bubble
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velocities, and laminar shear. In this work only the contributions to the collision rate

by turbulent fluctuations and different bubble velocities are considered. Collisions

caused by velocity gradients should be taken into account in future improvements

to the model. The model used in this work slightly differs from the one originally

proposed in Prince and Blanch (1990a). Differences are highlighted accordingly

throughout the presentation of the model.

The contribution to the collision rate caused by a difference in bubble velocities

is estimated with the kernel proposed by Friedlander (1977)

Tu(m,m′) = πur(m,m′) (Rm + Rm′)
2 (3.54)

where Rm is the bubble radius for a bubble of mass m, ur(m,m′) is the relative velocity

between bubbles of sizes m and m′ and π (Rm + Rm′)
2 is the geometrical cross section

of the collision. This model has extensively been used in the past by other authors

(see Carrica et al., 1999; Wang et al., 2006; Frank et al., 2008). In Carrica et al. (1999)

the additional contribution to relative velocities caused by velocity gradients in the

dispersed phase is considered using the model by Williams and Loyalka (1991). If

these velocity gradients are neglected a first order approximation for the relative

velocity can be used, i.e. ur(m,m′) = ‖ud(m) − ud(m′)‖.

Collision due to the relative random motion induced by turbulent fluctuations

is modeled as

Tt(m,m′) = 1.41 (Rm + Rm′)
2 ε1/3

(
R2/3

m + R2/3
m′

)1/2
(3.55)

where ε is the local turbulent dissipation rate. In Prince and Blanch (1990a) the total

collision rate is assumed to be the algebraic addition of the individual contributions

in Eqs. (3.54) and (3.55). In addition, when the void fraction approaches a maximum

compactness αcr, the collision rate should become infinity since bubbles are more

closely packed as void fraction increases. A correction for high void fractions of



79

the form Y(α) = αcr/(αcr − αd) is suggested by Ferziger and Kaper (1972) for dense

gases and is used by Carrica et al. (1999) for bubbly flows1.

Then the total collision kernel is computed as

T(m,m′) =
αcr

αcr − αd
(Tu + Tt) (3.56)

where αcr = 1 is used in this work since even when a close packing void fraction can

be used for spherical bubbles, in a polydispersed flow smaller bubbles can occupy

the interstitial spaces left between larger bubbles (see discussion on Section 3.1.4

about bubble packing).

In the model proposed by Prince and Blanch (1990a) the coalescence efficiency

is estimated as

C(m,m′) = e−tm,m′/τm,m′ (3.57)

where tm,m′ is the coalescence time, the time required to drain out the liquid film

separating two bubbles. τm,m′ is the contact time, which estimates for how long

bubbles will be in the proximity of each other and depends on the bubble sizes

and on the local hydrodynamic conditions. This is estimated as in Carrica et al.

(1999) where in addition to a turbulent characteristic time as in the original work

by Prince and Blanch (1990a) a characteristic time based on the relative velocity

between bubbles and their sizes is considered. In Carrica et al. (1999) the turbulent

characteristic time is estimated as2

τt
m,m′ =

(Rm′ + Rm′)2/3

ε1/3 (3.58)

and defining a characteristic time computed with the relative velocity between

1The correction for compactness is not used in the original Prince and Blanch (1990a) model
2In Prince and Blanch (1990a) the equivalent radius from Chesters and Hofman (1982) is used as

the characteristic length instead
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bubbles as

τu
m,m′ =

2(Rm + Rm′)
ur(m,m′)

(3.59)

Carrica et al. (1999) estimate the contact time as

τm,m′ =

(
1
τt

m,m′
+

1
τu

m,m′

)−1

=
2(Rm + Rm′)5/3

ur(m,m′)(Rm + Rm′)2/3 + 2(Rm + Rm′)ε1/3 (3.60)

Prince and Blanch (1990a) estimate the coalescence time as

tm,m′ = Cs

R3
m,m′ρc

16σ

1/2

ln
(

h0

h f

)
(3.61)

This time is obtained from the solution of a simplified Navier-Stokes equation

describing the thinning process of the liquid film between two bubbles (see Oolman

and Blanch, 1986). This equation is then integrated between an initial thickness h0

and a critical film thickness where rupture occurs h f . These are estimated to be

h0 = 10−4 m (Kirkpatrick and Lockett, 1974) and h f = 10−7 m (Thomas, 1981). For

polydispersed bubbly flows, the equivalent radius Rm,m′ as introduced by Chesters

and Hofman (1982) is used in Eq. (3.61). This is defined as

Rm,m′ = 2
( 1
Rm

+
1

Rm′

)−1

(3.62)

If the two bubble radii are the same then the equivalent radius reduces to the radius

of the bubbles i.e. Rm,m′ = Rm = Rm′ . Equation (3.61) can even be used to compute

the burst time of a bubble hitting a free surface. For this case the equivalent radius

is two times the bubble radius since the free surface is considered to have infinite

radius.

The constant Cs in Eq. (3.61) was introduced by Carrica et al. (1999) to take into

account the effect of dissolved salt in sea water which strongly inhibits coalescence

by increasing the coalescence time. Differences between fresh and sea water are
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discussed in Section 3.5 together with modeling strategies.

3.2.2 Model of Lehr et al.

In the work by Lehr et al. (2002) experiments are performed to determine

under what conditions the collision between two bubbles results in coalescence

or bouncing. Their experiments show that bubbles approaching with a relative

velocity higher than a critical value bounce off while if their relative velocity is

smaller than this critical value they coalesce. For distilled water and air they

obtained for the critical relative velocity ucrit = 0.08 m/s.

Collisions are considered that arise either from turbulent fluctuations or from

different bubble velocities. Both situations are considered in a characteristic velocity

u′ computed as

u′(m,m′) = max
(
1.782 ε1/3

√
R2/3

m + R2/3
m′ , ‖um − um′‖

)
(3.63)

Considering a cross sectional area π(Rm + Rm′)2 for the collision frequency (as in

Eq. (3.54)) and the characteristic velocity u′ they propose

Q(m,m′) = π(Rm + Rm′)2 min(u′,ucrit) exp

−
α1/3

Max

α1/3
d

− 1

2 (3.64)

where the last term was developed to reflect the limited range of the turbulent

fluctuations and αMax = 0.6 is the maximum packing density of the bubbles.

3.3 Breakup Modeling

The breakup of fluid particles in turbulent dispersions, and in particular air

bubbles in water, is influenced by the continuous phase hydrodynamics and in-

terfacial interactions. Typically, breakup is described as the competition between

external stresses or forces from the continuous phase attempting to destroy the

fluid particle and the stabilizing surface tension and viscous stresses inside the
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fluid particle stabilizing its shape. Therefore breakup is modeled to be a func-

tion of the continuous phase hydrodynamic conditions and of the fluid particle

characteristics such as size, surface tension, etc. Several breakup mechanisms are

reported in the literature: Turbulence induced breakup, shear induced breakup,

and tip-streaming to mention the most popular. A good review on this subject is

given by Liao and Lucas (2009).

Tip-streaming of bubbles considers the separation of very small bubbles from

the tips of a parent bubble that is immersed in a shear flow. Tip-streaming is

observed in the experiments separately performed by Grace (1982), De Bruijn

(1991, 1993),Elemans et al. (1993) and Janssen et al. (1994) but it is described only

qualitatively and not enough information is provided to construct a model based

on their results. In Fu and Ishii (2003) a model for tip-streaming is provided for

slug bubbles in pipes. The breakup regime described in Fu and Ishii (2003) is very

particular to slug flows in pipes and their model is not directly applicable to ship

flows.

Since not enough information for the development of a breakup model by tip-

streaming is available, in this work only two breakup mechanisms are considered:

turbulence induced breakup and shear induced breakup.

3.3.1 Turbulence Induced Breakup

Turbulence induced breakup is probably the most studied of the aforementioned

mechanisms and several works on the subject are found in the literature (see for

instance Prince and Blanch, 1990a; Luo and Svendsen, 1996a; Martı́nez-Bazán et al.,

1999a,b; Lehr et al., 2002).

Being two of the latest models found in the literature, this work implements the

models of Luo and Svendsen (1996a) and Lehr et al. (2002). The model of Luo and

Svendsen (1996a) is probably the first model with no adjustable parameters and set

the theoretical foundations still used today on the formulation of newer models.
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Their model not only provides the breakup rate kernel but also the daughter bubble

size distribution. However, besides its theoretical importance, recent studies reveal

that the Luo and Svendsen (1996a) model significantly under predicts the rate of

breakup. In the work by Wang et al. (2005a) the Luo and Svendsen (1996a) model is

compared against other popular models available in the literature showing that the

predicted breakup rate is always below estimations made with other models. In

Chen et al. (2004, 2005b) this model is used for the simulation of bubble columns but

the breakup rate is multiplied by a factor of ten in order to match their experimental

results.

The more recent model proposed by Lehr et al. (2002) seems to correct for this

under prediction and comparisons against experiments performed by the same

authors of the model (reported in Lehr et al., 2002) and separately by Wang et al.

(2005a) show favorable results at least for bubble columns. Figure 3.3 compares

breakup rates predicted with the models of Luo and Svendsen (1996a) and Lehr

et al. (2002) for a turbulence dissipation of ε = 1 m2/s3. As shown in this figure, the

Luo and Svendsen (1996a) breakup rate is always well bellow the Lehr et al. (2002)

breakup rate. The same trend is observed at different turbulent dissipation rates.

In addition, Fig. 3.3 shows that no breakup occurs below certain bubble size

(which is different for each model). This bubble size is the maximum stable diameter

DMax and for bubbles smaller than this size the stabilizing effect of surface tension

is stronger than the turbulent fluctuations trying to break them and breakup does

not occur. The maximum stable bubble diameter can be estimated from the relation

given by Hinze (1955)

DMax = C
σ3/5

ε2/5ρ3/5
c

(3.65)

In his experimental work with drops Hinze finds C = 0.725.

The maximum stable bubble diameter for the models of Luo and Svendsen

(1996a) and Lehr et al. (2002) can be estimated by solving for the bubble diameter
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Figure 3.3: Breakup rates predicted by Luo and Svendsen (1996a) and Lehr et al.
(2002) models. ε = 1 m2/s3.

DMax at which the breakup rate attains a small rate b1. Therefore, the maximum

stable bubble diameter is obtained from solving b(DMax, ε) = b1, which implicitly

defines DMax as a function of the turbulent dissipation ε. Figure 3.4 shows DMax

as a function of ε for the air-water system for the breakup models of Luo and

Svendsen (1996a) and Lehr et al. (2002) together with Hinze’s estimation. DMax

in this figure is solved for a breakup rate b1 = 0.1 s−1. Figure 3.4 shows that the

maximum stable bubble diameter predicted with Lehr et al. (2002) model closely

follows the power law in Hinze’s equation while the estimation made with Luo

and Svendsen (1996a) model shows a power law behavior but with a significantly

different exponent. Not only the power law trend predicted by Lehr et al. (2002)

model is similar to that in Hinze’s equation but also the order of magnitude of the

predicted diameter is surprisingly close. The agreement of the Lehr et al. (2002)

model with Hinze’s correlation serves as indirect validation to the model and gives

a stronger reliability to its predictions. The model of Luo and Svendsen (1996a),

however, not only predicts a lower breakup rate, but Fig. 3.4 reveals that the
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Figure 3.4: Maximum stable bubble diameter estimated from the models of Luo
and Svendsen (1996a) and Lehr et al. (2002). Hinze’s correlation is shown as well.

model predicts a larger DMax as well. Some particular points may highlight the

differences better: at a turbulent dissipation of ε = 10000 m2/s3 the model of Lehr

et al. (2002) yields a maximum stable diameter DMax = 47 µm while the model

of Luo and Svendsen (1996a) yields DMax = 453 µm and at ε = 1 m2/s3 Lehr et al.

(2002) model gives DMax = 2.6 mm while for the model of Luo and Svendsen (1996a)

DMax = 4.5 mm.

The models of Luo and Svendsen (1996a) and Lehr et al. (2002) exhibit differ-

ences on the predicted daughter bubble size distributions as well. These are shown

in Fig. 3.5 as a function of the volumetric fraction fv for several parent bubble

sizes. The volumetric fraction fv is defined as the ratio of the daughter bubble

volume to the parent bubble volume and given that breakup preserves the total

mass, daughter bubble size distributions are symmetric around fv = 0.5.

The first observation to make is that while the Luo and Svendsen (1996a) model

predicts a U shaped size distribution, the model by Lehr et al. (2002) predicts an M
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(a) Model of Luo and Svendsen (b) Model of Lehr et al.

Figure 3.5: Predicted daughter bubble size distributions for ε = 1 m2/s3.

shaped size distribution. Two more main differences are observed. For the Luo and

Svendsen (1996a) model the daughter bubble size distribution peaks at fv = 0 (not

shown with the scaling in Fig. 3.5 but the distribution reaches a finite value at fv = 0

and fv = 1) while the Lehr et al. (2002) distribution goes to zero for fv = 0 (or fv = 1).

Physically, the energy required to tear a bubble from a given parent size increases

as the daughter bubble becomes smaller due to fact that surface tension energy

increases with larger curvatures. Therefore the trend should be a size distribution

that goes to zero at fv = 0 (or fv = 1) as predicted by Lehr et al. (2002) model.

The second difference is that the peak at small sizes exhibited by the Luo

and Svendsen (1996a) daughter bubble size distribution, becomes even higher for

smaller parent bubbles. In other words, the U shaped size distribution becomes

taller at fv = 0 (or fv = 1) and the bottom of this U goes lower. Therefore, the model

of Luo and Svendsen (1996a) predicts that for smaller parent bubbles tearing off

even smaller bubbles results to be an easier task. This trend is unphysical since

tearing off smaller bubbles would require a larger amount of energy due to the

increase in the surface tension energy. On the other hand, the model by Lehr et al.
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(2002) transitions from an M shaped size distribution for large parent bubbles to a

∩ (cap) shaped size distribution for small parent bubbles. Therefore, for the Lehr

et al. (2002) model, an equal-sized fracture is more energetically favorable than

an uneven breakup when the parent bubble is small. This seems to be the right

physical trend since tearing off a small bubble from an already small bubble would

require a large amount of energy.

In Wang et al. (2003) a similar model to those proposed by Luo and Svendsen

(1996a) and Lehr et al. (2002) is formulated. This model predicts breakup rates

that are in close agreement with the predicted rates by Lehr et al. (2002) model.

In addition, similar trends are predicted by both Lehr et al. (2002) and Wang et al.

(2003) models for the daughter bubble size distribution. However, the Lehr et al.

(2002) model offers of a closed mathematical expression for both breakup rate and

daughter bubble size distribution facilitating its implementation in a computer

code. Being that Lehr et al. (2002) model offers similar prediction capabilities than

Wang et al. (2003) model and is of easier implementation, the model by Wang et al.

(2003) was not implemented in this work. However, future research on breakup

kernels may require the implementation of this and other models as well.

3.3.1.1 Model of Luo and Svendsen

In this model bubbles can breakup if the turbulent eddies from the continuous

phase are energetic enough to counteract the stabilizing surface tension forces. This

model provides not only the breakup frequency but also the daughter bubble size

distribution.

In this model the breakup frequency is computed as

b(m) = 0.29
(
ε

R2
m

)1/3

αc

1∫
0

dχ

1∫
ξmin

dξ
(1 + ξ)2

ξ11/3 e−χc(χ,ξ) (3.66)
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where χc(χ, ξ) is the critical dimensionless energy for breakup, computed as

χc(χ, ξ) =
1.89 Z(χ) σ

ρc ε2/3 R5/3
m ξ11/3

Z(χ) = χ2/3 + (1 − χ)2/3
− 1

(3.67)

The lower limit in Eq. (3.66) is ξmin = λmin/Dm and λmin is taken to be the minimum

size of the eddies in the inertial subrange of isotropic turbulence, λis. This is related

to the microscale by λis/λd ≈ 11.4 − 31.4. The value 11.4 is adopted in this work.

The microscale is estimated as

λd = 12.56
ν3/4

ε1/4 (3.68)

The daughter bubble size distribution is also provided by Luo and Svendsen

(1996a)

h(m,m′) =

2
1∫

ξmin

dξ (1 + ξ)2 ξ−11/3 e−χc(χ,ξ)

m′
1∫

0
dχ

1∫
ξmin

dξ (1 + ξ)2 ξ−11/3 e−χc(χ,ξ)

(3.69)

3.3.1.2 Model of Lehr et al.

The model by Lehr et al. (2002) follows a similar derivation to that proposed by

Luo and Svendsen (1996a). It adds a capillary constraint to avoid the unphysical

breakup of very small bubbles and assumes that interfacial and inertial forces

balance each other. Their model can be written in terms of a dimensionless bubble

diameter defined as

D∗ = D ε2/5
(ρc

σ

)3/5

(3.70)

and a time scale

T =

(
σ
ρc

)2/5 1
ε3/5 (3.71)
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With these definitions, the breakup frequency is

b(m) =
0.5 D∗m

5/3

T
exp

(
−

√
2

D∗m3

)
(3.72)

and the daughter bubble size distribution

h(m,m′) =
1

m′
√
π

exp
(
−

9
4

[
ln(22/5D∗m)

]){
1 + erf

[
3
2 ln(21/15D∗m′)

]} (3.73)

3.3.2 Viscous Shear Breakup

Compared to the turbulent fluctuation breakup, the influence of viscous shear,

shearing-off and surface instability in a turbulent flow are usually neglected and

the corresponding theory and modeling are rare in literature.

Experimental studies include those by Grace (1982), De Bruijn (1991, 1993),Ele-

mans et al. (1993), Janssen et al. (1994) and Müller-Fischer et al. (2008). In all of these

studies two dimensionless parameters are defined: the viscosity ratio λ = µd/µc

and the dimensionless shear stress or capillary number Ca = µcγ̇R/σ, where γ̇ is the

shear rate. It is found that if the critical capillary number exceeds a critical value

Cacrit, breakup occurs. This critical capillary number is a function of the viscosity

ratio only. For the air water system at 20 ◦C the viscosity ratio is λ = 0.0183 and the

critical capillary number is found to be Cacrit ≈ 1.3 (Grace, 1982).

Several modes of breakup are found in the presence of shear. In Janssen et al.

(1994), it is reported that for shear rates that are near critical, breakup occurs in two

equisized fragments and a few much smaller satellite droplets. This is consistent

with the observations in the studies made by Grace (1982) and by Elemans et al.

(1993). Well above the critical shear stress droplets are elongated into a long

cylindrical fluid thread which subsequently breaks into a series of fragments. The

work by Grace (1982) is probably the most complete, providing the bubble burst
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time, number of fragments and some daughter bubble size distributions.

Near the critical shear stress, when the bubble breaks in two equisized fragments

and a few satellite bubbles, there is not enough experimental data reporting the

size of these satellite bubbles. Besides, right after the critical capillary number is

exceeded, bubbles elongate and break into bubbles of nearly equal sizes. Therefore,

in this work the modeling will be simplified by assuming that breakup occurs into

n equal sized bubbles. The number n of bubbles per breakup is obtained from the

data reported by Grace (1982). The experimental data by Grace (1982) is fit for the

viscosity ratio in the air water system

n = 10−1.39x2+3.88x+1.14

x = log10

( Ca
Cacrit

)
(3.74)

This fit is valid in the range Ca/Cacrit ∈ (1, 30).

With this model the bubble size distribution for shear breakup is written as

h(m,m′) = nδ
(
m −

m′

n

)
(3.75)

As proposed in Lo and Zhang (2009), the breakup frequency can be thought as

inversely proportional to the burst time

b(m) =
cvs

tb
(3.76)

where the viscous shear constant is taken to be cvs = 1.0 in this work due to the

lack of information to estimate its value. The burst time tb can be obtained from

the work by Grace (1982). Here the burst time is reported as the reduced burst time
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t∗ = tb σ/(Dµc). The fit to these data for the air water system viscosity ratio is

t∗ =
tbσ
Dµc

= 10−0.61x+1.12

x = log10

( Ca
Cacrit

)
(3.77)

this fit being also only valid in the range Ca/Cacrit ∈ (1, 30).

All that remains in order to have a complete model is to specify how to compute

the shear rate γ̇ necessary to compute the capillary number Ca. In Carrica et al.

(1999) this is directly computed by taking the norm of the velocity gradient. In

Lo and Zhang (2009) it is pointed out that a different approach must be taken for

turbulent flows and they propose to use the Kolmogorov shear rate

γ̇ =

√
ε
νc

(3.78)

This shear rate is related to the velocity gradients at the Kolmogorov scale. How-

ever, the Kolmogorov scale may be smaller than the bubble size and the velocity

gradients that should be considered are those in the scale range of the bubble size.

The proposal in this work is to estimate a velocity gradient relevant to the bubble

size scale.

From the turbulence model used in a RANS, code the turbulent kinetic energy

k and the rate of dissipation ε or the rate of dissipation per unit turbulent kinetic

energy ω are available. From these the following scales can be derived

u0 =

√
2
3

k (3.79)

`0 = Cµ
k3/2

ε
=

k1/2

ω
(3.80)

τ0 =
`0

u0
(3.81)
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According to Pope (2000, §6.1.2) given an eddy size ` in the inertial subrange the

characteristic velocity and time scales of that eddy can be formed by ε and `

u(`) = u0

(
`
`0

)1/3

(3.82)

τ(`) = τ0

(
`
`0

)2/3

(3.83)

Then the characteristic turbulent shear rate corresponding to the bubble length

scale ` = D is estimated as

γ̇t(D) =
u(D)

D
=

u0

`0

(
`0

D

)2/3

(3.84)

In regions of resolved velocity gradients it could happen that the explicitly com-

puted velocity gradient γ̇u = ‖∇u‖ is larger than the modeled turbulent shear γ̇t(D).

To accommodate both of these situations the maximum of the two shears is taken

γ̇ = max(γ̇t(D); γ̇u) (3.85)

Finally, it must be observed that a bubble will breakup only if it resides long

enough in the considered vortex of length scale D. Hence bubbles will be allowed

to breakup only if tb < τ(D).

3.4 Dissolution

The gas inside a bubble can diffuse and dissolve into the surrounding liquid.

The mass transfer between the gas in the bubble and the surrounding liquid can

be treated as a problem of forced convection around a sphere. The rate of mass

transfer can then be written as

ṁ = 2πShκRm (C∞ − C0) (3.86)
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where κ is the diffusivity of air in water and Sh is the Sherwood number3 which

is the ratio of the mass transfer coefficient to the diffusive mass transfer coeffi-

cient. C∞ and C0 are the air concentrations far from and at the bubble’s surface

respectively. The Sherwood number is typically computed with correlations de-

pending on the Reynolds number Re and the Schmidt number Sc. The correla-

tion given by Whitaker (1972) has been verified over a wide range of Reynolds

(3.5 < Re < 7.6 × 104) and Schmidt numbers (0.71 < Sc < 380)

Sh = 2 +
(
0.4 Re1/2 + 0.06 Re2/3

)
Sc0.4 (3.87)

For Reynolds numbers Re < 3.5 the correlation given by Levich (1962) for high

Schmidt numbers can be used

Sh = 2 + 0.997 Pe1/3
M (3.88)

Where PeM = Re Sc is the mass Peclet number and the limiting value of Sh = 2

corresponding to pure diffusion was added to the original expression given by

Levich (1962) in order to include the case of very small Peclet numbers as it happens

for small bubbles with almost zero terminal velocity. Concentrations are estimated

using Henry’s law. At the bubble surface, the total pressure inside the bubble is

used

C0 = H
(
p̂c − ρc g z + patm +

2σ
Rm

)
(3.89)

where H is the Henry constant. Far from the bubble’s surface it is assumed that the

concentration is that of equilibrium at the atmospheric pressure i.e.

C∞ = H patm (3.90)

3also called the mass transfer Nusselt number
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3.5 Modeling Considerations for Sea Water

In the present study it is of interest to understand and quantify how the different

thermophysical properties of sea water affect the mechanisms of breakup and

coalescence, in order to apply the necessary corrections.

Sea water composition is reported in Dickson and Goyet (1992, §5). On average,

sea water in the world’s oceans has a salinity of about S = 35 (35 g/L or 580 mM4).

This is about 35 grams per liter of dissolved salts, predominantly sodium chloride.

Sodium chloride in water forms an electrolyte solution i.e. it dissolves into its

component ions Na+ and Cl−. It has been found that inorganic electrolytes have no

significant effect on bubble breakup (see Walter and Blanch, 1986). The negligible

effect of electrolytes on bubble breakup is attributed to the small effect they have

on surface tension. At 20 ◦C surface tension increases only by less than 1% when

changing salinity from S = 0 to S = 30 (Sharqawy et al., 2010). Therefore it can

be assumed that breakup in sea water can be approximated with the models for

distilled water. However, a shift toward smaller bubble sizes has been observed

in experimental facilities when switching from fresh to salt water. Given the

negligible effect inorganic salts have on surface tension this shift to smaller sizes

is attributed to a lower coalescence rate. In support of this experiments show a

sharp transition in the coalescence efficiency when a critical salt concentration ct

is reached for a broad variety of electrolyte solutions (see Craig et al., 1993; Tsang

et al., 2004; Christenson et al., 2008). This decrease in efficiency is explained by an

abrupt increase in the coalescence time once the critical concentration is reached

(see Marrucci, 1969; Prince and Blanch, 1990b). Based on these observations Carrica

et al. (1999) introduced the constant Cs = 103 in Eq. (3.61) to account for the increase

in the coalescence time. Given the lack of experimental evidence, Carrica et al.

(1999) fix the value of the constant Cs to an arbitrarily large number just to account

4mM stands for millimolar, a unit of concentration. For table salt 100 mM ≈ 6.04 g/L
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for the almost complete inhibition of coalescence observed in sea water. In addition,

this assumes that the coalescence time increases by the same factor for all bubble

sizes and it shows no dependence on salt concentration.

Prince and Blanch (1990b) propose a model for the transition concentration ct.

In their model, the inhibition of coalescence is attributed to Marangoni stresses and

hence the parameter ∂σ/∂c, the surface tension gradient with salt concentration,

comes into play. They derive the following expression for the transition concentra-

tion

ct = 1.18ν
(Bσ

R

)1/2

R̃gT
(
∂σ
∂c

)−2

(3.91)

where B is the retarded van der Waals coefficient, σ the surface tension, R the bubble

radius, R̃g the universal constant of gases and T is the fluid temperature. Their

result compares favorably well with experimental data.

According to Eq. (3.91), the model by Prince and Blanch (1990a) predicts a

dependence of the critical concentration with bubble radius that scales as ct ∼ R−1/2.

Experimental results from Tsang et al. (2004) show a stronger dependence that scales

as ct ∼ R−1.2. Based on these experimental results Chan and Tsang (2005) formulate

a new model for the critical concentration which shows a scaling of the form

ct ∼ R−1. Even though there is a significant difference in the reported exponents for

the scaling of the critical salt concentration, all these studies show the same trend:

the critical salt concentration decreases as the bubble radius increases and it does

it with a power law of the form ct ∼ R−n with 0.5 . n . 1.2. Although all of these

results are equally valid, here the theoretically derived result by Prince and Blanch

(1990a) is used. There is no particular reason to chose from the model by Prince

and Blanch (1990b) or Chan and Tsang (2005) since more research on this subject

is necessary to confirm one model or the other. The objective at this stage is to

include an approximation for the bubble size dependence of the coalescence time.

If temperature and salt concentration are assumed fixed Eq. (3.91) can be rewrit-
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ten as

ct(R) = ct0

(R0

R

)1/2

(3.92)

where ct0 is the transition concentration at the reference radius R0. From Prince

and Blanch (1990b) reference values can be taken as ct0 = 175 mM for R0 = 1.8 mm.

Similar values are reported in Christenson et al. (2008). The model proposed here

then consists in making the constant Cs in Eq. (3.61) to be a function of the bubble

radius through the use of Eq. (3.92)

Cs(Rm,m′) =


1 S < ct(Rm,m′)

1000 S > ct(Rm,m′)
(3.93)

where the equivalent radius Rm,m′ defined in Eq. (3.62) is used instead. The above

expression leads to an abrupt transition in the coalescence time with salt concen-

tration and even though this is observed in the experimental works of Craig et al.

(1993), Tsang et al. (2004) and Christenson et al. (2008) the transition observed in

these experiments is somewhat smoother. A smoother functional form in Eq. (3.93)

could be chosen but for the sake of simplicity a step function is used instead.

The expression in Eq. (3.93) is equivalent to

Cs(Rm,m′) =


1 Rm,m′ < Rt

1000 Rm,m′ > Rt

(3.94)

where Rt is the transition radius computed from ct(Rt) = S in Eq. (3.92) resulting in

Rt = 0.16 mm. Therefore, according to this model, coalescence is strongly inhibited

only between bubbles with an equivalent radius larger than the transitional radius

Rt and bubbles smaller than Rt are left to coalesce as they would in fresh water.

Moreover, given that the equivalent radius Rm,m′ defined in Eq. (3.62) is used,
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coalescence between a bubble with radius R much smaller than a larger one with

radius R′ is not inhibited whenever R . Rt/2 (the limit R′ → ∞ is taken in Eq.

(3.62)).

3.6 Turbulence Modeling

Several turbulence models have been proposed for the modeling of two-phase

flows. Two-equation turbulence models for two-phase flows have been developed

in the past as an extension to the k-ε model. This approach is taken in the works

by Elghobashi and Abou-Arab (1983), Lahey Jr. et al. (1993), Lopez de Bertodano

et al. (1994), Lahey Jr. and Drew (2001) and Troshko and Hassan (2001a) where

small variations exist between them mainly in how the effect of the bubble induced

turbulence is taken into account. The presence of bubbles in a main liquid phase

can either suppress or produce turbulent kinetic energy depending on the relation

of bubble size to turbulent scales. In Kataoka et al. (1993) a turbulence model

is developed in order to account for these effects. How the presence of bubbles

modifies the logarithmic law of the wall is studied in Troshko and Hassan (2001b).

In this work a two-phase k-ω blended model is implemented. In the k-ω model

of turbulence originally developed by Wilcox (1988) the two parameters describing

the local turbulent field are the turbulent kinetic energy k and the rate of dissipation

per unit turbulent kinetic energy ω. In the k-ω blended model developed by

Menter (1994) the k-ω model of Wilcox (1988) is used near walls and the k-ε model

elsewhere.

A k-ω model counterpart to a two-phase k-ε model can be found by following

the procedure in Menter (1994) where the equation for ω is obtained by the formal

substitution ε = β∗ωk into the equation for ε.

The resulting two-phase k-ω blended model , first presented in Moraga et al.
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(2008), reads

αc
Dk
Dt

= αcTRe
c : ∇uc + ∇ · [αc(νc + σkνt)∇k] − αc β

∗ω k (3.95)

αc
Dω
Dt

= αcγ
ω
k

TRe
c : ∇uc + ∇ · [αc(νc + σωνt)∇ω] − αc βω

2

+ 2αc(1 − F1)
σω2

ω
∇ω · ∇k (3.96)

where TRe
c is the Reynolds stress tensor computed as TRe

c = 2 νt ∇
suc. The turbulent

viscosity is modeled as the superposition of two effects. The first one is the shear

induced turbulence modeled by the k-ω turbulent viscosity

νSI = Cµ
k2

ε
(3.97)

and the second effect is the bubble induced turbulence here predicted using the

multigroup version of the model proposed by Sato et al. (1981a,b)

νBI = 1.2
G∑

g=1

Rgαg‖ur,g‖ (3.98)

Hence, the turbulent viscosity is modeled by

νt = νSI + νBI (3.99)

The model coefficients used in the above model of turbulence are assumed to

be the same as in the original single phase version.

The model proposed by Kataoka et al. (1993), which is claimed to reproduce

not only the bubble induced turbulence but also turbulence suppression, should

be considered as a future improvement to the model presented here.
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3.7 Free Surface Tracking: Single Phase Level Set

For problems involving a free surface as it is the case for the flow around a ship,

a mathematical description and numerical method must be provided to describe

the position of the free surface. In this work the two-phase model for polydispersed

bubbly flows is implemented in the code CFDShip-Iowa V4.5 (see Chapter 4 for

details). In CFDShip-Iowa V4.5 the position of the free surface is described by a

single-phase level set method as presented in Carrica et al. (2007b). In contrast

to the standard level set, the single-phase level set is concerned with the solution

of the flow field in the denser field only (water for ship applications). Some of

its advantages are that the interface remains sharp, computations are performed

within a fluid with uniform properties and minor computations are required in the

lighter phase (air). A brief description of this method is given in this section in

order to complete the presentation of the full mathematical model used to describe

polydispersed bubbly flows with free surface and to introduce the level set function

used later on in the model. However, the reader is referred to Carrica et al. (2007b)

for further details.

In the level set method the location of the free surface given by the zero level set

of a function φ(r) known as the level set function. At any given spatial location r

the function φ(r) provides the minimum distance to the free surface. This distance

is arbitrarily made to be positive in the water side and negative in the air side. Since

the free surface is a material interface, the level set function follows the equation

∂φ

∂t
+ uc · ∇φ = 0 (3.100)

The level set transport given by Eq. (3.100) generally does not preserve the

signed distance function property of the level set function. Therefore, the level set

function needs to be reinitialized periodically, typically after each time step. One of
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the attractive features of the level set method is that given that the level set function

is a signed distance function, the normal to the free surface can be computed as

n̂ = −∇φ (3.101)

3.8 Entrainment Modeling

The entrainment of air through the free surface is of great interest for ship

hydrodynamics due to its implications for stealth capabilities, drag reduction and

cavitation on the propellers. It is also important on the design of spillways and other

civil hydraulics structures. Air entrainment is characterized by a large amount of

bubbles being formed and for a highly turbulent and unstable air/water interface

where a wide range of length scales span from surface tension and turbulence

dominated scales (in the order of micrometers) to the macroscopic scale of the

problem (several meters for ship applications). These factors make prohibitive the

use of DNS-like approaches to simulate this phenomenon and therefore, a model

for air entrainment that does not require the resolution of all these small scale

features is needed.

In ship flows, entrainment of air into the liquid phase is observed at the break-

ing/spilling waves at the bow, at the contact line between the free surface and the

hull of the ship and at the highly aerated and turbulent stern. In the past, the loca-

tion and strength of the entrainment was set by the user (Carrica et al., 1998). This

required certain level of experience from the modeler. Recently, with the advent

of the so called sub-grid scale models (Moraga et al., 2008; Ma et al., 2010a) input

from an experienced user is avoided by attempting to automatically predict the

strength, location and size distribution of the entrainment source.

In the model developed by Moraga et al. (2008) air entrainment is predicted

at locations where the component of the velocity normal to the surface is higher
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than a certain threshold value related to the terminal velocity of the bubbles. This

model was found to provide reasonable qualitative agreement with the observed

entrainment locations in cases of ships moving through calm water (see Moraga

et al., 2008). In this work this model was tested in cases with incoming heading

waves and it was observed that an unphysical prediction of the entrainment loca-

tions resulted as the normal velocity is non-zero and specially high at the crest and

trough of the wave.

In the recent work by Ma et al. (2010a,b), a new model is developed based on

the idea that air is entrained at locations where the resolved velocity field creates

suction flow pulling bubbles down into the water. This model can essentially

be applied to either steady or unsteady situations like those in ship flows with

incoming waves and is therefore implemented in this work.

In early modeling of entrainment when the free surface was defined as one of

the boundaries of the computational domain, the entrainment was imposed as a

flux boundary condition on this boundary (see Carrica et al., 1998). Later on, with

the advent of the level set method, this approach was replaced by the use of a

volumetric source instead (see Moraga et al., 2008). This is the volumetric source

S(m, r, t) in Eq. (2.8).

In this work the entrainment source is separated in the form

S(m, r, t) = S0 Dent(m) E(r, t) Λ(αd) (3.102)

where E(r, t) is a function that detects the entrainment spatial locations and relative

strength, Dent(m) is the entrainment size distribution, S0 is an adjustable constant

that controls the overall entrainment strength and Λ(αd) is a function that limits the

entrainment of air at locations with high void fraction.

In the model developed by Ma et al. (2010a,b, 2011) the function E(r, t) is
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computed as

E(r, t) =


∂un

∂n̂
k

gφent v̄ent
for

∂un

∂n̂
> 0, φ < φent

0 otherwise
(3.103)

where g is the acceleration of gravity, v̄ent is the mean entrained bubble volume

computed from the number density distribution f (R) as

v̄ent =
1
N

∞∫
0

dR
4
3
πR3 f (R) (3.104)

and φent is an entrainment depth over which the source will be active. The distance

to the surface is given by the level set function φ defined in Section 3.7. ∂un/∂n̂ is

the derivative in the direction normal to the free surface of the normal component

of the continuous phase velocity. The normal component of the continuous phase

velocity is computed as un = uc · n̂ and thus

∂un

∂n̂
= ∇un · n̂ = ∇ (uc · n̂) · n̂ (3.105)

where n̂ is the normal to the free surface computed according to Eq. (3.101).

There is no model available for the size distribution Dent(m) and in this work

is obtained from the experimental data taken by Johansen et al. (2010). The group

entrainment source is obtained according to Eq. (2.21) as

Sg(r, t) =

mg+1/2∫
mg−1/2

dm S(m, r, t) = S0 Dent
g E(r, t) Λ(αd) (3.106)

and the group size distribution is obtained from the experimental number density
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distribution provided by Johansen et al. (2010) as

Dent
g =

1
N

mg+1/2∫
mg−1/2

dm f (m) (3.107)

The source strength S0 is an adjustable parameter of the model, set such that the

void fraction levels in the simulation resemble those found in the experiments. The

parameter φent in Eq. (3.103) is set such that when the volumetric source is active,

it does in a region a few nodes thick (around 5 nodes should suffice).

This work adds a functional dependence of the entrainment source with void

fraction encapsulated in the term Λ(αd). The role of this term is to avoid an un-

physical entrainment of bubbles in regions with large void fractions. This term

is modeled assuming that the air entrainment rate should be proportional to the

available volume fraction of water. Since this fraction is given by αc a first approx-

imation is to make Λ(αd) proportional to αc or Λ(αd) = αc = 1 − αd. A term like

this would easily allow the model to reach 100% void fractions while in reality air

entrainment should probably stop, for instance, at a closed packing void fraction.

Since there is not a unique close packing void fraction for polydispersed flows (see

discussion about packing in Section 3.1.4) and no further experimental information

is available, this work assumes a packing void fraction of αcrit = 0.3. The model is

then written as

Λ(αd) = max
(
0,
αc − (1 − αcrit)

αcrit

)
(3.108)

With this model for Λ(αd) there is no air entrainment at void fractions larger than

30% and it linearly increases to its maximum value at αd = 0. However, special care

must be taken with this term since void fraction could still reach unphysical values

in only one time step of the numerical procedure if the functional dependence with

αd is not treated implicitly. Details on the numerical algorithm used to integrate
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this term are given in Section 4.7.

3.9 Oceanic Background

The previous section describes a model for the entrainment of bubbles due to

wave breaking. In addition to this source, bubbles may already be present in the

ocean. One important source of bubbles in the ocean is the entrainment of air due

to wind-induced breaking waves. To include this oceanic background of bubbles

the model presented in this work uses the experimental data of Melville et al.

(1995) to impose their measured background as an inlet boundary condition for the

simulation of ships. Moreover, this same background is used as an initial condition

for those computations involving an oceanic background. The measurements by

Melville et al. (1995) were taken in the North Atlantic between Wood Hole and

Bermuda for 12.7 m/s average wind speeds. Their results show a void fraction that

fits well a z−n power law with n between 2.5 and 3. In this work the void fraction

background is computed from the following fit

α(z) =



1.0 × 10−4 z < 0.5 m

1.8 × 10−5

(0.1 + z)3(1 − 0.098 z)
0.5 m < z < 7.5 m

1.54 × 10−7 z > 7.5 m

(3.109)

Since Melville et al. (1995) only provide void fraction for 0.5 m < z < 7.5 m, this

is assumed to be constant outside this range. Void fractions for z < 0.5 m and

z > 7.5 m continuously extend the previous fit.

In addition to the void fraction profile with depth, Melville et al. (1995) provide

bubble size distribution measurements taken at a depth of 0.5 m off the entrance

to Buzzards Bay, Massachusetts, in winds of 8 m/s and significant wave heights of

0.5 m. Since their data only spans the range 70 µm < R < 500 µm, it is assumed that
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there are no background bubbles with R > 500 µm and that the size distribution

linearly goes to zero for R < 70 µm. The following fit is used

f bkg(R) =


3.05 × 107 R R < 70 µm

4.0 × 1015 R−3.4 70 µm < R < 500 µm

0 R > 500 µm

(3.110)

furthermore, the above size distribution is assumed to be constant with depth.

It must be noted that this model does not consider the entrainment of bubbles

through the free surface due to wave-induced breaking and therefore background

bubbles continuously disappear as they are allowed to escape through the free

surface and dissolve as they move to the end of the computational domain.

Since the size distribution is assumed to be constant with depth, the oceanic

background number density distribution is a function of the bubble radius R and

depth φ that can be separated as

f (R, φ) = N(φ) Dbkg(R) (3.111)

where N(φ) is the total number density as defined in Eq. (2.4) and the level set

functionφ is used as a measure of depth. Dbkg(R) is the normalized size distribution

computed from the fit in Eq. (3.110) as

Dbkg(R) =
f bkg(R)

∞∫
0

dR f bkg(R)
(3.112)

Void fraction can be computed from the number density distribution in Eq.
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(3.111) to obtain the relation between N(φ) and the void fraction α(φ) in Eq. (3.109)

α(φ) =

∞∫
0

dR v(R) f bkg(R) = N(φ)

∞∫
0

dR v(R) Dbkg(R) = N(φ) v̄bkg (3.113)

v̄bkg =

∞∫
0

dR v(R) Dbkg(R) (3.114)

where v̄bkg is the oceanic background mean bubble volume. From the above equa-

tion N(φ) is computed as

N(φ) =
α(φ)
v̄bkg

(3.115)

With this, the background number density distribution is completely defined

with Equations (3.111), (3.112) and (3.115).

Both, the inlet boundary condition and the initial condition, are imposed in

terms of the group number densities Ng. These are simply computed as

Ng(φ) =

Rg+1/2∫
Rg−1/2

dR f (R, φ) = N(φ) Dbkg
g (3.116)

Dbkg
g =

Rg+1/2∫
Rg−1/2

dR Dbkg(R) (3.117)

3.10 Bubble Growth by Rectified Diffusion

One of the potential sources of bubbles in the wake of a ship is the release of

air caused by the propellers. The water flowing around a ship contains not only

bubbles entrained by wave breaking at the free surface but also microscopic size

bubbles already present in the ocean’s water (see the previous section on oceanic

background).

As described in Section 3.4, the air dissolved in the water may transfer from
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(causing bubble dissolution) or into (causing bubble growth) a bubble depending

on the local pressure (controlling the concentration of air at the air/water interface

through Henry’s law) and equilibrium concentration away from the bubble. This

process is dominated by diffusion and may be enhanced by convective mass trans-

fer. The situation described in Section 3.4 is for steady or quasi-steady bubble sizes.

When bubbles encounter the ship’s propeller, they may undergo violent pressure

changes that induce explosive growth, collapse and non-linear oscillations with

periods in the order of 10 µsec − 200 µsec (see Hsiao and Chahine, 2005). The

non-linear nature of the process causes highly asymmetric oscillations in size and

concentration profiles ultimately responsible for the cumulative transfer of gas into

the bubbles. This mechanism of mass transfer into the bubbles is known as recti-

fied diffusion and is considerably more effective than the simple mass transfer by

diffusion introduced in Section 3.4. Under these conditions the assumption of a

quasi-steady bubble size implied in Section 3.4 is no longer valid. Moreover, the

time steps required to resolve such high frequency oscillations are not practical in

real CFD applications and modeling is needed.

As an early attempt to provide of a modeling strategy this work uses results

from simulations performed by Raju et al. (2009) in order to develop a model of

rectified diffusion that can be embedded into and Eulerian framework and solved

with the time steps of a practical CFD computation.

In Raju et al. (2009) the modification of an incoming bubble nuclei popula-

tion due to the presence of a rotating propeller is modeled using a combined

Eulerian-Lagrangian approach: fluid equations are solved in an Eulerian frame-

work while bubbles are tracked in a Lagrangian fashion. In their Lagrangian model

the Rayleigh-Plesset equations describing the bubble dynamics are solved coupled

together with a gas diffusion model. For their study they consider the five-bladed,

controllable pitch DTMB propeller model P5168 with a design advance ratio of
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J = 1.27 and a diameter of 0.403 m. In their study a uniform field of incoming

bubbles of a given radius are placed upstream the propeller and are left to evolve

as they go through the propeller. Then, the bubble size distribution is obtained at

a plane 0.9 diameters downstream the propeller plane. Since in their model bub-

bles do not interact with each other in any way, they are able to construct transfer

tables providing the bubble size distribution downstream the propeller for input

bubbles of a given radius. The normalized (the integral over all sizes is one) size

distribution for the monodispersed bubbly flow of bubbles with mass m′ upstream

the propeller can be written in terms of the Dirac delta function as

Pups(m) = δ(m −m′) (3.118)

After these bubbles go through the propeller some of them remain with the same

size while a fraction frd(m′) grows to bubble sizes m with a probability P̃(m,m′).

Therefore, the normalized size distribution downstream the propeller can be writ-

ten as

Pdwn(m) =
(
1 − frd(m)

)
δ(m −m′) + P̃(m,m′) (3.119)

Since P̃(m,m′)dm is the probability of bubbles with mass m′ to grow into a

bubble within dm of mass m, the integral over m is the rectified fraction frd(m′)

∞∫
m

dm P̃(m,m′) = frd(m′) (3.120)

This is consistent with Eq. (3.119) where
∫
∞

0
dm Pdwn(m) = 1.

The size distribution P̃(m,m′) can be used as a transfer function or kernel to

compute the fraction of bubbles growing from a size m′ to a size m. The model

presented in this work applies the transformation given by P̃(m,m′) inside a model

disk with the dimensions of the propeller. In order to have a smooth transition
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between the upstream and downstream planes of this propeller disk the transfor-

mation is applied in the time it takes the local fluid to go through it. In this manner,

if δp is the propeller disk thickness and Up is the magnitude of the local velocity,

the time it takes a bubble to cross the propeller disk is τp = δp/Up. As with bubble

breakup and coalescence, source terms describing the birth and death of bubbles

for a given size can be written and added to the right hand size of the Boltzmann

equation in Eq. (2.8). Bubbles can be born by rectified diffusion as smaller bubbles

grow to this size. This is described by a birth term expressed as

R
+(m) =

1
τp

m∫
0

dm′ f (m′) P̃(m,m′) (3.121)

Similarly, bubbles can be removed from a given size as they gain mass. The

fraction of bubbles growing from size m to any other size is frd(m) and thus deaths

are given by

R
−(m) =

f (m)
τp

frd(m) (3.122)

It should be noted that given that gas is transfered from the liquid phase into

the bubbles the process changes the total mass contained in the bubbly phase.

However, the total number of bubbles is preserved. It can be shown that the above

model preserves the number of bubbles.

3.10.1 Discrete Form

The discrete form of the source terms in Eqs. (3.121) and (3.122) is obtained

by using the discrete form of the number density distribution in Eq. (2.23) and
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performing the integration on the interval (mg−1/2; mg+1/2) around mg. The result is

R
+
g =

1
τp

g∑
g′=1

P̃g,g′ Ng′ (3.123)

R
−

g =
Ng

τp
frd,g (3.124)

where it was defined

P̃g,g′ =

mg+1/2∫
mg−1/2

dm P̃(m,mg′) (3.125)

frd,g = frd(mg) (3.126)

The contribution from group g into itself is moved from Eq. (3.123) into Eq.

(3.124) rewriting the rectified diffusion sources as

R
+
g =

1
τp

g−1∑
g′=1

Tg,g′ Ng′ (3.127)

R
−

g =
Ng

τp
(1 − Tg,g) (3.128)

where the discrete transfer function Tg,g′ is defined as

Tg,g′ =


P̃g,g′ for g , g′

1 − frd,g + P̃g,g for g = g′
(3.129)

and thus Tg,g′ represents the probability of a bubble with size in group g′ growing

to a size in group g. For g = g′ it gives the probability to stay in the same group. For

instance, large bubbles are not as susceptible to rectified diffusion as small bubbles

are, and the transfer function becomes Tg,g′ = δg,g′ , the Kronecker delta.

From Raju et al. (2009) the transfer function Tg,g′ is obtained for several loading
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conditions and cavitation numbers. Loading is expressed by the advance coeffi-

cient defined as J = U∞/n Dp with U∞ the incoming velocity into the propeller, n

the propeller rotational speed in RPS and Dp the diameter of the propeller. The cav-

itation number is defined as Ca = (p− pv)/(1/2ρcU2
∞

) where pv is the vapor pressure

and p is the hydrostatic pressure at the center of the propeller. Raju et al. (2009)

actually provide the discrete transfer function Tg,g′ discretizing the input sizes g′

in nine groups and the resulting groups g in twenty-five groups. For the model

presented here the discretization in g′ and g must be the same. In the computations

performed for Athena in Chapter 6 fifteen groups are used with bubbles sizes sum-

marized in Table 6.3. The data provided by Raju et al. (2009) is then interpolated to

obtain a 15 × 15 transfer function Tg,g′ . Figure 3.6 shows the transfer function used

for Athena’s computations. Two curves for two different incoming bubble sizes

Figure 3.6: Discrete transfer function obtained for fifteen groups from simulations
performed by Raju et al. (2009)

are shown. These curves exhibit two domes: the first dome is located around the
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original bubble size while the second one is centered at 400 µm for Rg′ = 23.5 µm

and at 700 µm for Rg′ = 130.4 µm making evident the growth in bubble size.

3.10.2 Limitations and Known Problems of the
Model

Several limitations in the model can be identified at this very early stage of its

development:

1. The model by Hsiao and Chahine (2005) does not solve for breakup or coales-

cence which can be significant near the propeller blades. Moreover, bubbles

can breakup/coalesce as they go through the propeller in the model just pre-

sented. This is by no means a way to include this coupling but rather a

simplification under the assumption that rectified diffusion dominates inside

the disk.

2. The transfer function is assumed to be uniform inside the propeller disk i.e.

it contains no spatial dependence. In reality, several factors contribute to the

spatial dependence in T(R,R′): the incoming velocity field into the propeller

is non uniform since it is located inside the ship’s boundary layer. This locally

changes the effective advance coefficient of the propeller. Another factor is

that hydrostatic pressure makes the local cavitation number to change with

depth.

3. Even if these factors are included in the model, the particular geometry of

interest must be used to obtain the transfer function T(R,R′).

As pointed out in assertion 3, the geometry of Athena’s propeller must be

used if this transfer function is to be used for Athena’s computations. However,

simulations of the type presented in Raju et al. (2009) only include the DTMB P5168

propeller and computations are not available for Athena’s propeller. Nevertheless,
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the results from Raju et al. (2009) are used to construct a transfer function for

Athena’s computations in order to illustrate the modeling strategy.

3.11 Dimensionless Equations

This section summarizes the complete system of equations comprising the full

polydispersed model for bubbly flows. The equations are nondimensionalized

using a characteristic length scale L0 and velocity scale U0. For ship applications

these are frequently chosen as the ship’s length and cruise velocity. The mass

of the bubbles is adimensionalized using the characteristic length L0 and the gas

density at standard conditions for temperature and pressure (STP) ρd,0. Therefore,

dimensionless variables are defined as

u∗c =
uc

U0
k∗ =

k
U2

0

ρ∗d =
ρd

ρc

p∗c =
pc

ρcU2
0

ε∗ =
ε

U3
0/L0

R∗ =
R
L0

N∗g =
Ng

1/L3
0

ω∗ =
ω

U0/L0
m∗ =

m
ρd,0 L3

0

= ρ∗d
4
3
πR∗3

u∗g =
ug

U0
ν∗t =

νt

U0 L0
r∗ =

r

L0
, t∗ =

t
L0/U0

(3.130)

The corresponding dimensionless equations then are

Continuous Phase Momentum Equation

From Eq. (3.19)

∂αcu
∗

c

∂t∗
+ ∇∗·(αcu

∗

c ⊗ u
∗

c) = −∇∗p̂∗c + ∇∗·
[
2αc

( 1
Re

+ ν∗t

)
∇

s∗u∗c

]
+
αd

Fr2

(
1 − πρρ∗d

)
k̂ (3.131)

where, as with its single phase counterpart, Re is the Reynolds number. The Froude

number Fr results from imposing the boundary condition for the pressure at the
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free surface (p(φ = 0) = patm). Reynolds and Froude numbers are defined as

Re =
U0 L0

ν
, Fr =

U0√
g L0

(3.132)

The new parameter in this equation is the ratio between the densities of the two

phases

πρ =
ρd,0

ρc
(3.133)

and ρ∗d = ρd/ρd,0 is the dimensionless dispersed phase density. With the fluid at

rest and at STP ρ∗d = 1. The asterisk superscript on top of the nabla operators in Eq.

(3.131) is used to denote the fact that they operate on the dimensionless coordinates

r∗.

Continuous Phase Continuity Equation

From Eq. (3.13)
∂αc

∂t∗
+ ∇∗·(αcu

∗

c) = 0 (3.134)

Group−g Number Density Equation

From Eq. (3.34)

∂N∗g
∂t∗

+ ∇∗·
(
u∗g N∗g

)
+ F∗g+1/2 − F∗g−1/2 = ∇∗·

(
ν∗t

Scb
∇
∗N∗g

)
+ β∗g + χ∗g + S∗g (3.135)

Group−g Dispersed Phase Momentum Equation

From the dispersed phase momentum Eq. (3.10) and the interfacial forces in

Eqs. (3.21), (3.27), (3.28) and (3.37)

CVM

[(
∂u∗g
∂t∗

+
(
u∗g ·∇

∗
)
u∗g

)
−

(
∂u∗c
∂t∗

+
(
u∗c ·∇

∗
)
u∗c

)]
+ Ĉ∗D,g ‖u

∗

r,g‖u
∗

r,g =

− ∇
∗p̂∗c +

(
1 − πρρ∗d

) k̂
Fr2 − CL u

∗

r,g × ∇
∗
× u∗c − ∇

∗σ∗P

(3.136)
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where ĈD,g is defined as

ĈD,g =
3
8

CD(Reg)
Rg

(3.137)

and its dimensionless form is

Ĉ∗D,g =
3
8

CD(Reg)
R∗g

(3.138)

The bubble Reynolds number Reg is computed in terms of the dimensionless vari-

ables as

Reg =
‖ur,g‖ Dg

νc
= Re ‖u∗r,g‖ D∗g (3.139)

Turbulence Model Equations

From Eqs. (3.95) and (3.96)

αc
Dk∗

Dt∗
= 2αcν

∗

t∇
s∗u∗c : ∇s∗u∗c + ∇∗·

(
αc

Pek
∇
∗k∗

)
− αc β

∗ω∗ k∗ (3.140)

αc
Dω∗

Dt∗
= 2αcγ

ω∗

k∗
ν∗t∇

s∗u∗c : ∇s∗u∗c + ∇∗·
(
αc

Peω
∇
∗ω∗

)
− αc βω

∗2

+ 2αc(1 − F1)
σω2

ω∗
∇
∗ω∗ · ∇∗k∗ (3.141)

where the Péclet numbers are defined as

Pek =
U0 L0

νc + σkνt
=

1
1/Re + σkν∗t

, Peω =
U0 L0

νc + σωνt
=

1
1/Re + σων∗t

(3.142)

and it should be recalled from Eq. (3.95) that β∗ is a numerical constant of the

model and not a dimensionless variable. Both β and β∗ are two different numerical

constants and do not have units even before the adimensionalization process.

In addition to the already introduced Reynolds Re, Froude Fr and density ratio

πρ numbers, other dimensionless numbers arise from the two-phase model. In

those expressions involving surface tension the adimensionalization results in a

new parameter, the Weber number WeL. For instance, the dimensionless counter-
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part of Eq. (3.26) is

p∗g =
pg

ρc U2
0

= Eu + p̂∗c −
z∗

Fr2 +
2

R∗g WeL
(3.143)

In addition, this example shows that in expressions involving the reference pressure

(taken to be the atmospheric pressure patm for most simulations) a new dimension-

less number appears, the Euler number Eu. These two dimensionless numbers are

defined as

WeL =
ρcU2

0 L0

σ
, Eu =

patm

ρcU2
0

(3.144)

The Weber number can be thought as a measure of the relative importance of the

fluid’s inertia compared to its surface tension. The Euler number can be thought

as a measure of the relative importance of the stagnation pressure compared to the

atmospheric or reference pressure.

The model for dissolution of air in water, Section 3.4, introduces two new

dimensionless numbers. These are the Schmidt number Sc and the dimensionless

equilibrium concentration C∗
∞

defined as

Sc =
νc

κ
, C∗

∞
=

C∞
ρd,0
≡ H∗ =

H patm

ρd,0
(3.145)

Note that the dimensionless dissolved gas concentration at equilibrium and the

dimensionless Henry constant are two equivalent dimensionless numbers.

Table 3.1 summarizes the dimensionless numbers of the polydispersed bubbly

flow model.

From this point on, and for the sake of simplicity, the asterisk subscript will be

omitted from dimensionless equations unless otherwise specified.
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Table 3.1: Dimensionless numbers of the polydispersed bub-
bly flow model

Parameter Definition

Reynolds number Re =
U0 L0

ν

Froude number Fr =
U0√
g L0

Density ratio πρ =
ρd,0

ρc

Weber number WeL =
ρcU2

0 L0

σ

Euler number Eu =
patm

ρcU2
0

Schmidt number Sc =
νc

κ

Dimensionless equilibrium concentration C∗
∞

=
C∞
ρd,0
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CHAPTER 4
NUMERICAL METHODS AND IMPLEMENTATION

Chapters 2 and 3 describe the full mathematical model for polydispersed bubbly

flows. In addition, the multigroup approach used to discretize the Boltzmann

equation in the bubble size coordinate is introduced in Section 2.2.

This chapter describes the implementation details and numerical methods used

to incorporate this model into the code CFDShip-Iowa V4.5. CFDShip-Iowa V4.5

is a computational fluid dynamics (CFD) software developed at The University of

Iowa’s Institute of Hydraulic Research (IIHR). The program solves the incompress-

ible Reynolds Averaged Navier-Stokes (RANS) equations and allows to handle free

surface flows using a single phase level set method. More details are given in the

next section.

Many of the numerical methods presented in this chapter are developed to

solve particular problems found when dealing with the full model for polydis-

persed bubbly flows, and constitute original contributions of this PhD thesis. One

of the original goals of this PhD thesis is the implementation of the full model pre-

sented throughout Chapters 2 and 3 into CFDShip-Iowa V4.5. CFDShip-Iowa V4.5

has been applied successfully to many complex ship hydrodynamics problems of

interest as those including large amplitude ship motions and self-propulsion with

discretized propellers. The challenge for this PhD thesis is to incorporate the full

polydispersed model into CFDShip-Iowa V4.5 without affecting its robustness and

to provide a two-phase version of the code that can run the same complex situations

that the single phase version can run.

The time splitting approach presented in Section 4.2 is proposed to efficiently

and accurately solve the coupling in space and bubble sizes of the Boltzmann equa-

tion. The projection method proposed in Section 4.4 solves the strong coupling

between pressure and void fraction given that for ship flows the change in gas den-
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sity with pressure is considered. Section 4.6 presents the numerical schemes used

to transport number densities and the near wall integration approach proposed

to avoid the build up of void fraction in the first computational cells discretizing

the boundary layer. Taking advantage of the time splitting approach, Section 4.7

presents an iterative method to integrate the non-linear dependence of the air en-

trainment source with void fraction. Finally, Section 4.8 presents a stable iterative

method used to integrate forces in the group-g momentum equations that depend

on the gradient of the number density. All the above numerical methods/schemes

are original contributions of this PhD thesis.

4.1 CFDShip-Iowa V4.5

CFDShip-Iowa V4.5 uses multiblock structured body-fitted grids with overset

gridding capability to model complex geometries and perform local refinement

where needed. CFDShip-Iowa V4.5 solves the URANS/DES equations in the liq-

uid phase with free surface using a single-phase level set approach (Carrica et al.,

2007b). Turbulence modeling is performed with a blended k-ω model (Menter,

1994) and it has DES capabilities as well (Xing et al., 2007). Wall functions are im-

plemented for full scale simulations (Bhushan et al., 2009; Castro et al., 2011). The

multi-block dynamic overset grid capability allows to perform computations with

large amplitude motions in objects with six degrees of freedom (6DOF) (Carrica

et al., 2007a, 2010a). Overset interpolation coefficients are obtained with SUG-

GAR (Noack, 2005). The governing equations are discretized using a control vol-

ume/finite differences approach and time marching is performed with a second

order backward difference formula (BDF2). The convection terms are discretized

using a 2nd or hybrid 2nd/4th order upwind or TVD schemes (Ismail et al., 2010).

Either Projection (Bell et al., 1991) or PISO (Issa, 1986) are used for pressure-velocity

coupling and PETSc (Balay et al., 2009, 2008, 1997) is used to solve the resulting

pressure Poisson equation. CFDShip-Iowa V4.5 has also been successfully used
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in problems involving fluid structure interaction (Paik et al., 2009), ship exhaust

plumes (Huang et al., 2010), broaching (Carrica et al., 2008) and self propulsion

with discretized propellers (Carrica et al., 2010a; Castro et al., 2011). Scalability in

large scale computations is assessed in (Carrica et al., 2010b).

In this chapter, only details related to the solution of the multiphase problem

are discussed. The reader interested in any of the CFDShip-Iowa V4.5 particulars

is referred to the citations mentioned above.

4.2 Time Splitting

4.2.1 The Problem

In the multigroup approach presented in Section 2.2, the number density dis-

tribution f (m, r, t) is represented by its discrete counterparts, the group-g number

densities Ng. These are solved from the multigroup Boltzmann equation for each

group shown in Eq. (2.16). This set of equations is not only coupled in space

due to transport, but also in bubble size through the intergroup transfer terms.

As described in Section 2.3.4, the discretization of these terms typically leads to

a system of equations where every group is coupled with all the other groups.

Therefore, if the spatial domain is discretized in Nnod computational nodes and

G groups are used to discretize the bubble sizes, the resolution of the Boltzmann

equation requires to solve a system with G×Nnod unknowns, provided the group-g

velocities and continuous phase variables are given. Actually, the full model re-

quires to solve for seven variables in the continuous phase (uc = (uc, vc,wc), pc, φ,

kc, ωc) and 4 × G variables in the dispersed phase (G × (ug = (ug, vg,wg),Ng)). To

exemplify the situation, consider the simulation of the bubbly flow around Athena

with discretized propeller presented in Chapter 6. In this case Nnod = 25 × 106 and

G = 15 adding up to a total of 1.68 billion of unknowns. Given the very large size

of the problem it is not even imaginable to conceive a numerical scheme where

all these variables are solved simultaneously. However, there are clear natural
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divisions of the problem that can be made: the continuous phase variables can be

solved separately using the last available void fraction, the group-g velocities can

be solved using the last available void fraction and number densities and finally

the Boltzmann transport equation can be solved using the last available group-g

velocities and continuous phase variables. If needed, iterations can be performed

on this strategy to attain the convergence of the overall system. In this way, the

problem is reduced to solve separately the continuous phase momentum and mass

conservation equations (Section 4.4), the group-g momentum equations (Section

4.5) and finally the Boltzmann equation. As previously mentioned, the resolution

of the Boltzmann equation by itself involves G × Nnod equations (G × Ng). In the

case of the Athena vessel treated in Chapter 6 this involves 375 million unknowns.

The discrete version of the Boltzmann equation obtained using the multigroup

approach is given in Eq. (2.16). This is rewritten here using the intergroup transfer

matrices derived in Section 2.3 and summarized in Section 2.3.4

∂Ng

∂t
+∇ ·

(
ug Ng

)
+ ag,g−1Ng−1 + ag,gNg + ag,g+1Ng+1 =

G∑
g′=g

B+
g,g′Ng′ − B−g,gNg +

g∑
g′=1

C+
g,g′Ng′ − C−g,gNg + Sg ∀ g = 1 . . .G (4.1)

A possible iterative scheme to solve this system of equations is to solve Eq. (4.1)

consecutively for each group sending the unknowns from previous iterations to

the right hand side. Therefore, if k is the iteration number, the g-th group is solved

from

∂Nk
g

∂t
+ ∇ ·

(
ug Nk

g

)
+

(
B−g,g + C−g,g + ag,g

)
Nk

g = −ag,g−1Nk−1
g−1 − ag,g+1Nk−1

g+1

+

G∑
g′=g

B+
g,g′N

k−1
g′ +

g∑
g′=1

C+
g,g′N

k−1
g′ + Sk

g ∀ g = 1 . . .G (4.2)

Once an appropriate discretization scheme for the temporal derivative and
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convection term in Eq. (4.2) (these are described in Section 4.6) are used, each

group-g equation becomes a linear system of equations with Nnod unknowns where

the matrix of the system is formed by all those terms to the left of the equal sign in

Eq. (4.2) and the right hand side of the system is formed by all those terms to the

right of the equal sign in Eq. (4.2). This strategy is sketched in Fig. 4.1.

Figure 4.1: Iterative scheme solving each group-g number density in sequence.

A major disadvantage of this approach is the high computational cost involved.

From the flow chart in Fig. 4.1 it is clear that the matrix of the system and the

intergroup transfer matrices need to be computed at every iteration. Intergroup

transfer typically requires a few iterations to converge and the number of iterations

may increase at particular points in the domain, specially those with high void

fractions and high turbulence levels. On the other hand, a poor convergence of
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the intergroup transfer terms severely affects the conservation of mass and number

of bubbles. The reason for this is that in the fixed pivot method from Kumar and

Ramkrishna (1996) the conservation of mass and number of bubbles is guaranteed

by computing births and deaths (in either breakup or coalescence) using the same

time instance of the number density Ng. When using the scheme in Fig. 4.1 deaths

are computed with densities at iteration k while births are computed explicitly with

densities at iteration k − 1. It was observed that small differences in densities

at iterations k and k − 1 severely affect the conservation of mass and number

of bubbles. It could be argued that this problem can easily be solved by using

iteration k − 1 for both, births and deaths. However, this approach is explicit by

nature and it becomes unstable very easily. The number of iterations required to

reach convergence together with the fact that the matrix of the system must be

computed with each iteration, makes prohibitive the application of this scheme to

the solution of the problems presented in this work.

Another disadvantage of the iterative scheme depicted in Fig. 4.1 is that it

tries to solve at once several different couplings taking place in the equations:

transport (Section 4.6), intergroup transfer (this section), packing (Section 4.8) and

entrainment (Section 4.7). These couplings are very different in nature, with dif-

ferent spatial and temporal dynamics, and thus require very different strategies

to successfully solve them. It is for the above reasons that, in addition to its high

computational cost, the strategy sketched in Fig. 4.1 is very prone to numerical in-

stabilities and to the divergence of the system of equations. It is therefore necessary

to device another strategy.

4.2.2 The Proposed Solution

To solve the system of equations resulting from the discretization of the Boltz-

mann equation, this work proposes to split the underlying physics involved in

time. This is, while physically bubbles transport as they breakup, coalesce and dis-
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solve all in one single continuous time process, the strategy proposed here is to split

these processes in time. Therefore, bubbles first change their size distribution by

intergroup transfer to an intermediate stage, and from there, they are transported to

the next time step. This strategy is sketched in Fig. 4.2 where also the entrainment

source is split in time. Then, bubbles are entrained and the solution evolves from

time instance tn to an intermediate stage t∗. From there, they breakup, coalesce and

dissolve to stage t∗∗ and finally, bubbles are transported to time instance tn+1. All

processes occur in one single time step δt = tn+1 − tn. Note that the intermediate

time stages t∗ and t∗∗ are fictitious and they do not really fall on the time line in Fig.

4.2.

Figure 4.2: Time splitting strategy for the numerical resolution of the Boltzmann
equation.

Given an arbitrary field f , the following approximation is used for time deriva-

tives inside CFDShip-Iowa V4.5 to advance the solution from tn to tn+1

∂ f
∂t

∣∣∣∣∣
t=tn+1

=
1
δt

(
wn+1 f n+1 + wn f n + wn−1 f n−1

)
(4.3)

where the weight coefficients wn+1, wn and wn−1 determine the time marching

scheme, one of Implicit Euler (IE, for which wn+1 = 1, wn = −1 and wn−1 = 0)

or second order backward difference formula (BDF2, for which wn+1 = 3/2, wn =

−2 and wn−1 = 1/2). The order in which time splitting is performed cannot be
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arbitrary. As shown in Fig. 4.2, bubble transport is the last stage of the time

splitting procedure. The reason for this is that when using a BDF2 scheme, the

intermediate solution at tn must be computed consistently with the rest of the

scheme to attain a second order time marching scheme. Otherwise, not only that

the scheme is not second order in time, but also, the discrete marching method is

inconsistent with the original continuous equations (in the sense that they do not

converge to the continuous solution of the system as δt → 0). To attain a time

marching scheme that is second order in time, the solution at stage tn is computed

as

N∗∗,ng = −
1

wn

[
N∗∗g − (1 + wn) Nn

g

]
(4.4)

this pseudo time instance is used in Eq. (4.3) as the solution at tn.

Using the approximation in Eq. (4.3) for the time derivative in the transport

stage and an IE for the entrainment and intergroup transfer stages, the time splitting

strategy reduces to Procedure 4.1.

To show the consistency of the overall scheme, the equations in Procedure 4.1

for each stage are added together. The result of this operation is

1
δt

(
wn+1Nn+1

g + wnNn
g + wn−1Nn−1

g

)
+∇ · (un+1

g Nn+1
g ) = ∇ ·

(
Dn+1

g ∇Nn+1
g

)
+ S∗g + G∗∗g (4.5)

and therefore the overall scheme is second order accurate in time when S∗g and

G∗∗g are both zero, and it is first order accurate in the entrainment and intergroup

transfer sources since these are evaluated at stages t∗ and t∗∗ respectively, and not

at the time instance tn+1. A second order accuracy in time in the transport stage

is desired since first order accurate time marching schemes introduce additional

phase errors and therefore spurious numerical dispersion. For the IE scheme (with

wn+1 = 1, wn = −1 and wn−1 = 0) the intermediate stage reduces to N∗∗,ng = N∗∗g and

therefore to the result from the previous stage. For the BDF2 scheme (with wn+1 =



126

Procedure 4.1 Time splitting of the Boltzmann equation.

for inod = 1 to Nnod do

Solve N∗g from:
1
δt

(N∗ −Nn) = S(α∗d)

end for

for inod = 1 to Nnod do

Solve N∗∗g from:
1
δt

(N∗∗ −N∗) = G(N∗∗)

With G(N∗∗) = (B + C(N∗∗)) ·N∗∗ −D ·N∗∗

This is Eq. (2.86).

end for

for g = 1 to G do

Solve Nn+1
g from:

1
δt

(
wn+1Nn+1

g + wnN∗∗,ng + wn−1Nn−1
g

)
+ ∇ · (un+1

g Nn+1
g ) = ∇ ·

(
Dn+1

g ∇Nn+1
g

)
Or, using Eq. (4.4),

1
δt

(
wn+1Nn+1

g −N∗∗g + (1 + wn) Nn
g + wn−1Nn−1

g

)
+ ∇ · (un+1

g Nn+1
g ) = ∇ ·

(
Dn+1

g ∇Nn+1
g

)
This is Eq. (4.63) with no intergroup transfer or sources.

end for

3/2, wn = −2 and wn−1 = 1/2) the intermediate stage reduces to N∗∗,ng = 1/2(N∗∗g +Nn
g)

and therefore the algebraic mean between N∗∗g and Nn
g must be used in order to

attain second order accuracy in time.

One main advantage of the time splitting procedure is that different couplings

can be solved separately at each stage. In the entrainment stage the nonlinear

dependence of the entrainment source with void fraction (Λ(αd) in Eq. (3.102))

is solved. The intergroup transfer stage solves the coupling between sizes due

to breakup, coalescence and dissolution. The transport stage solves the spatial

coupling due to bubble transport by convection and due to turbulent dispersion
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and packing. Therefore, in this time splitting strategy the problem is split in three

parts where Nnod entrainment problems are solved (Section 4.7), Nnod intergroup

transfer problems are solved each involving a G ×G nonlinear system coupling, at

each location, the G group sizes and finally, G transport problems are solved each

involving an Nnod matrix system coupling each Ng in space (Sections 4.8 and 4.6).

4.2.3 Guaranteeing Mass Conservation

An additional advantage of the time splitting procedure is that, when solving

the intergroup transfer pseudo-time step, the intergroup transfer coefficients for all

groups at that location are available. This allows, if needed, to make corrections

to these coefficients to ensure mass conservation of the dispersed phase. This is

the case with the breakup terms in the discrete Boltzmann equation. The condition

for the discrete daughter bubble size distribution hg,g′ in Eq. (2.55) holds only if the

integrations in Eq. (2.44) are performed exactly. However, these integrations are

performed numerically using a midpoint rule to save computational time (since

the midpoint rule only requires one evaluation of the integrand) and Eq. (2.44)

does not hold any more due to the truncation error in the numerical integration.

Therefore, mass is not preserved any longer. To fix this problem, and since all the

coefficients hg,g′ are available in the local intergroup solver, the discrete daughter

bubble size distribution is renormalized to make it satisfy Eq. (2.55). Then, if the

approximate daughter bubble size distribution h̃g,g′ is defined as (i.e. by using the

midpoint rule in Eq. (2.44))

h̃g,g′ = a−(mg−1/2,mg)h(mg−1/2,mg′) (mg −mg−1)

+ a+(mg+1/2,mg)h(mg+1/2,mg′) (mg+1 −mg)

=
1
2

h(mg−1/2,mg′) (mg −mg−1) +
1
2

h(mg+1/2,mg′) (mg+1 −mg)

(4.6)
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where the last equality holds due to the fact that a−(mg−1/2,mg) = a+(mg+1/2,mg) =

1/2, the discrete daughter size distribution is computed as

hgg′ = mg′
h̃gg′

g′∑
k=1

mkh̃kg′

(4.7)

and therefore Eq. (2.55) holds and mass is preserved exactly.

4.2.4 Solving the Intergroup Transfer System

After an implicit Euler time marching scheme is used in Eq. (2.86), finding the

solution at time tn+1 reduces to find the solution to the non-linear matrix system

given by

M(Nn+1) ·Nn+1 = R

M(N) =
1
δt
I + D − B − C(N)

R =
N∗∗

δt

(4.8)

This system is solved by applying a succession of backward and forward substi-

tution stages. The matrix of the system M is updated after every backward and

forward substitution stage inside a Picard iteration loop. This is shown in Proce-

dure 4.2. After the backward and forward substitution stages, a convergence test

is performed (against a predefined tolerance ε). If convergence is not reached the

iteration ends at the maximum number of iterations MaxIters. This procedure is

inspired by the fact that if only breakup (coalescence) is considered, the matrix M

is upper (lower) triangular and it can be solved with only one backward (forward)

substitution stage. Experience shows that, when considering breakup, coalescence

and dissolution together, this procedure typically converges in about two iterations

(using a convergence tolerance of ε = 10−6), making it highly efficient.
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Procedure 4.2 Solving the non-linear multigroup transfer system.

While:
Recompute M = M(Nn+1,k−1)
for g = G to 1 do

Nn+1,k
g =

1
Mg,g

Rg −

G∑
g′=g+1

M(Nn+1,k−1)g,g′Nn+1,k
g′


end for
Recompute M = M(Nn+1,k)
for g = 1 to G do

Nn+1,k+1
g =

1
Mg,g

Rg −

g−1∑
g′=1

M(Nn+1,k)g,g′Nn+1,k+1
g′


end for

Compute error: Ek+1 = max
g=1...G

Nn+1,k+1
g −Nn+1,k

g

Nn+1,k+1
g


if Ek+1 < ε⇒ leave while
k← k + 2

until k < MaxIters

4.2.5 Full Dispersed Phase Solver

To finalize this section, Fig. 4.3 shows the flow chart of the dispersed phase

solver implemented. This flow chart also shows how the dispersed phase momen-

tum solver is integrated. Gas momentum equations are solved before the Boltz-

mann solver and involve the resolution of G matrix systems of Nnod unknowns each

coupling velocities in space (Section 4.5). In addition, this schematic also shows

that intergroup transfer by rectified diffusion is solved in a separate stage of the

time splitting procedure.

4.3 Global Coupling Strategy

The time-splitting strategy presented in the previous section allows to solve

the Boltzmann equation in space and separately in bubble sizes. In this way,
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Figure 4.3: Dispersed phase solver. Time splitting allows to solve for each physics
in a succession of separate steps.

numerical methods specific to each coupling (space and size) can be used and an

excessive number of non-linear iterations can be avoided. It was also mentioned

in the previous section that the solution of the continuous phase momentum and

mass conservation equations can naturally be separated from the dispersed phase

solution and coupled together inside a Picard iteration loop. The full coupling

strategy used in CFDShip-Iowa V4.5 is shown in Fig. 4.4.

This is a modification to the procedure described in Huang et al. (2008) for the

single-phase solver to include the dispersed bubbly phase. In CFDShip-Iowa V4.5,

the fluid equations are solved at each time step inside a non-linear Picard iteration

loop. The non-linear iterations loop runs with index n in Fig. 4.4. Inside this loop,

each solver is called in sequence: the k-ω turbulence model equations are solved

first, followed by the level set solver and finally the momentum and mass equations

are solved together using a projection method (see Section 4.4). Additional calls

to the 6DOF motions solver (Carrica et al., 2007a, 2010a) and SUGGAR (Noack,

2005) are performed to treat cases with predicted (and/or imposed) motions. The

dispersed phase solver is included in this strategy as an additional block in this
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Figure 4.4: CFDShip-Iowa V4.5 flow chart showing how the multiphase capability
is added to the main solver.

sequence of solvers’ calls, as shown in Fig. 4.4. Since the dispersed phase solver is a

very computationally intensive block in the overall multiphase solver, the number

of times this is called inside the non-linear iteration loop is limited to N2p. Typically,
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N2p = 1 is more than enough for most ship applications. However, the total void

fraction αd is computed in each non-linear iteration since pressure and void fraction

are implicitly coupled in the projection block. The two-phase projection method

shown in Fig. 4.4 is one of the contributions of this thesis and is described in Section

4.4. In the dispersed phase solver shown in Fig. 4.4 (shown separately in Fig. 4.3),

the gas momentum equations for each group are solved first in sequence. After

that, in a sequence of time-splitting stages (Section 4.2), entrainment (Section 4.7),

rectified diffusion, transport (Section 4.6) and intergroup transfer (Section 4.2) are

solved. The transport solver requires an additional iterative loop solving for the

non-linear coupling introduced by the packing force introduced in Section 3.1.4.

The iterative procedure used in the transport solver is included in Fig. 4.4 and is

discussed in detail in Section 4.8.

The remainder of this chapter covers each of the separate blocks conforming

the full polydispersed solver for bubbly flows.

4.4 Pressure-Velocity Coupling

The single phase version of CFDShip-Iowa V4.5 provides two pressure-velocity

coupling schemes: PISO (Issa, 1986) and projection (Bell et al., 1991). In this work

the projection method by Bell et al. (1991) is extended to two phase flows. Two

schemes were developed and are referred as Scheme I and Scheme II. Scheme I was

originally developed first and it is found to be unstable under certain conditions.

Scheme II improves Scheme I by implicitly treating the existing coupling between

pressure and void fraction (since the dispersed phase is compressible).

The next two sections derive these schemes in detail and a last section shows

an example case where Scheme I is unstable while Scheme II is not.
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4.4.1 Scheme I

Conservation of mass and momentum for the continuous phase in Equations

(3.131) and (3.134) can be rewritten as

∂αcuc

∂t
+ ∇p̂c = V (uc, αc) (4.9)

V (uc, αc) = − ∇ · (αcuc ⊗ uc)

+ ∇ ·
[
2αc

( 1
Re

+ νt

)
∇

suc

]
+
αd

Fr2

(
1 − πρρd

)
k̂

(4.10)

∂αc

∂t
+ ∇ · (αcuc) = 0 (4.11)

First a velocity u∗c1 that does not satisfy the continuity equation is solved with

an implicit time stepping scheme from Eq. (4.9)

1
δt

(wnα
n
cu
∗

c + wn−1α
n−1
c un−1

c + wn−2α
n−2
c un−2

c ) + ∇p̂n−1
c = V (u∗c, α

n
c ) (4.12)

As described in Section 4.3 transport and intergroup transfer on the dispersed

phase are solved before the continuous phase computations take place. Therefore,

the void fraction at the current time step αn
c in Eq. (4.12) is already available for use.

The time derivative in Eq. (4.9) is discretized using the scheme in Eq. (4.3) where

the weights wn, wn−1 and wn−2 determine the time stepping scheme, one of Implicit

Euler (IE, for which wn = 1, wn−1 = −1 and wn−2 = 0) or second order backward

difference formula (BDF2, for which wn = 3/2, wn−1 = −2 and wn−2 = 1/2). In

contrast to its approximation the desired velocity un
c at the time step n satisfies Eq.

(4.12) but with pressure p̂n
c instead of p̂n−1

c . The idea behind the projection method

is to solve for velocity and pressure separately and then apply a correction to the

velocity such that it satisfies mass conservation. This is accomplished by replacing

1The asterisk on the predicted velocity u∗c should not be confused with the asterisk used on the
dimensionless equations in Section 3.11
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un
c in V (un

c , αc) with u∗c on the momentum equation for un
c

1
δt

(wnα
n
cu

n
c + wn−1α

n−1
c un−1

c + wn−2α
n−2
c un−2

c ) + ∇p̂n
c = V (u∗c, αc) (4.13)

V (u∗c, αc) in Eq. (4.13) can be eliminated by using Eq. (4.12)

wn

δt
αn

cu
n
c + ∇p̂n

c = V (u∗c, αc) −
1
δt

(wn−1α
n−1
c un−1

c + wn−2α
n−2
c un−2

c ) = û (4.14)

û = ∇p̂n−1
c +

wn

δt
αn

cu
∗

c (4.15)

An equation for pressure is obtained by taking the divergence at both sides of Eq.

(4.14) and using the mass conservation in Eq. (4.11). The result is

∇
2p̂n

c = ∇ · û +
wn

δt
∂αc

∂t

∣∣∣∣∣
t=tn

(4.16)

where the partial derivative of the continuous phase void fraction with respect to

time is approximated with a first order backward difference formula and an ALE2

term is included in order to account for cases with moving meshes

∂αc

∂t

∣∣∣∣∣
t=tn

=
αn

c − α
n−1
c

δt
−w · ∇αn

c (4.17)

where w is the mesh velocity.

Once the pressure p̂n
c is solved the velocity un

c can explicitly be updated from

Eq. (4.15) as

un
c =

δt
wn αn

c
(û − ∇p̂n

c ) (4.18)

In summary, the two-phase version of the projection method reads as

• Solve for a predicted velocity u∗c using Eq. (4.12)

2ALE stands for Arbitrary Lagrangian Eulerian formulation.
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• Compute ûwith Eq. (4.15)

• Solve for the pressure p̂n
c from Eq. (4.16)

• Explicitly compute un
c , Eq. (4.18)

Scheme I shows to be stable for many practical cases. However, when the

solution is highly unsteady the above scheme may fail. The key observation is to

notice that even when the continuous phase is incompressible, the two-fluid model

allows for the propagation of void fraction waves due to the compressibility of the

dispersed phase (see Eq. (3.25)). The compressibility of the dispersed phase allows

for changes in bubble size with pressure and thus in void fraction. These changes in

void fraction are coupled to the continuous phase through the continuity equation

Eq. (4.11). Therefore, the instability of Scheme I is due to the fact that these void

fraction changes are essentially driven by pressure and they are fed back to the

pressure by explicitly computing the time derivative of the void fraction on the

right hand side of the pressure Poisson equation Eq. (4.16). In the following section

a new scheme is developed where the void fraction time derivative in Eq. (4.16) is

treated implicitly in order to solve this stability problem.

4.4.2 Scheme II

As described above, the instability of Scheme I is due to the explicit treatment

of the functional dependence of the void fraction with pressure. Therefore, in

Scheme II this problem is solved by implicitly coupling pressure with void fraction

when solving the pressure Poisson equation. The result is a projection scheme for

two-phase flows that not only couples velocity and pressure but also void fraction

implicitly.

Having identified the functional dependence of void fraction with pressure, the

key is to write its temporal derivative in terms of the pressure’s time derivative

and substitute it into Eq. (4.16).
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If surface tension tension is neglected in Eq. (2.6), void fraction can be rewritten

in terms of the mass density εm defined in Eq. (2.5) as

αd(r, t) =

∞∫
0

dm
m

ρd(m, r, t)
f (m, r, t) ≈

1
ρd(r, t)

∞∫
0

dm m f (m, r, t) =
εm

ρd
(4.19)

εm(r, t) =

∞∫
0

dm m f (m, r, t) (2.5)

Equation (4.19) shows that there will be two contributions to the time derivative

of the void fraction. The first one is caused by changes in εm which are directly

related to the number density distribution f (m). Therefore, as the number density

distribution is transported and changes due to intergroup transfer mechanisms the

void fraction changes accordingly. The second contribution is the one responsible

for the instability of Scheme I. This comes from the functional dependence of the

gas density with total pressure as shown in Eq. (3.25). Neglecting surface tension

in Eqs. (3.25) and (3.26) gas density and total pressure are computed as

ρd(r, t) = ρd,0
pc(r, t)

p0
(4.20)

pc(r, t) = p0 + p̂c(r, t) − ρc g z (4.21)

Taking the temporal derivative of the void fraction in Eq. (4.19) this is recast in

terms of the temporal derivatives of the mass density εm and the gas density ρd as

∂αd

∂t
=

1
ρd

∂εm

∂t
−
εm

ρ2
d

∂ρd

∂t
=

1
ρd

∂εm

∂t
−
αd

ρd

∂ρd

∂t
(4.22)

while the temporal derivative of the gas density can be recast in terms of the
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temporal derivative of the piezometric pressure from Eqs. (4.20) and (4.21) as

∂ρd

∂t
=
ρd

pc

∂p̂c

∂t
(4.23)

Finally, the substitution of the gas density temporal derivative from Eq. (4.23)

into Eq. (4.22) leads to the desired result

∂αd

∂t
= γ − β

∂p̂c

∂t
(4.24)

with

β =
αd

pc
(4.25)

γ =
1
ρd

∂εm

∂t
(4.26)

Note that β and γ are not constants but functions of space and time.

The void fraction time derivative in Eq. (4.16) can now be recast into a pressure

time derivative using Eq. (4.24) and by noticing that ∂αc/∂t = −∂αd/∂t. This leads to a

new version of the pressure Poisson equation for two-phase flows where now the

time derivative of the pressure is involved

β̃
∂p̂c

∂t

∣∣∣∣∣
t=tn

− ∇
2p̂n

c = S (4.27)

where

β̃ =
wn

δt
αn

d

pn−1
c

(4.28)

S = −∇ · û +
wn

δtρd

∂εm

∂t

∣∣∣∣∣
t=tn

(4.29)

The new temporal dependence in Eq. (4.27) is a result of the wave like nature
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of the two-fluid model when the dispersed phase is compressible even when the

continuous phase is not. In general, for the applications at hand and the time steps

involved, void fraction waves are not resolved. However, if the numerical scheme

does not offer a strong enough coupling to handle these waves it may become

unstable as it occurs with Scheme I.

Equation (4.27) is solved in time by discretizing the pressure time derivative

using a first order Euler scheme and by recalling that for problems involving

moving meshes an ALE term must be added when computing time derivatives

β̃
p̂n

c

δt
− ∇

2p̂n
c = β̃

p̂n−1
c

δt
+ β̃w · ∇p̂n−1

c + S (4.30)

S = −∇ · û +
wn

δtρd

(
εn

m − ε
n−1
m

δt
−w · ∇εn

m

)
(4.31)

Comparing with Eq. (4.16) the void fraction time derivative on the right hand

side is now replaced by a mass density time derivative and the strong dependence of

the void fraction with pressure is implicitly treated in the pressure time derivative.

When discretizing Eq. (4.30) in space, the time derivative term adds a positive

contribution to the diagonal elements of the matrix of the system and makes these

equations more diagonally dominant and thus more stable. Since β̃ > 0, this new

term basically opposes to changes in pressure therefore stabilizing the system.

The full system of equations for the two-fluid model makes all variables to

be coupled together with each other and therefore the mass density, as any other

variable in the system, depends on the total pressure. However, mass density lacks

the strong dependence with pressure present in the void fraction. The difference

is that pressure is directly involved in the computation of the total void fraction

when computing bubble volumes. Therefore, the explicit computation of the time

derivative of the mass density on the right hand side of Eq. (4.30) does not introduce

numerical instabilities as it occurs when computing the time derivative of the void
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fraction on the right side of equation Eq. (4.16).

In summary, the new implicit two-phase projection method involves the fol-

lowing steps:

• Solve for a predicted velocity u∗c using Eq. (4.12)

• Compute ûwith Eq. (4.15)

• Solve for the pressure p̂n
c from Eq. (4.30)

• Explicitly compute un
c , Eq. (4.18)

Note that the only difference with Scheme I is in the pressure Poisson equation

now involving the pressure time derivative. All other steps remain unchanged.

4.4.3 Example Case:
Self-Propelled Athena with Heading Waves

This section presents an example case in which Scheme I fails while Scheme

II is stable. In this example the bubbly flow around the self-propelled Athena is

computed. For the particulars of the ship and details in the case setup the reader is

referred to Chapter 6. In this section only a few details about the computation are

given for the sake of completeness. The computations of the self-propelled Athena

are performed on a mesh with 25 million grid points and is composed of 36 overset

blocks, see Fig. 6.3. The time step is set to δt = 3.3 × 10−4 to accurately resolve the

time scales introduced by the propeller. The case is assumed to have a symmetry

along the half-plane of the ship and hence only half of the geometry is modeled.

The grid system includes the fully appended Athena plus the rotating discretized

propeller. The Reynolds and Froude numbers are Re = 2.53 × 108 and Fr = 0.252

respectively. The simulation includes incoming waves of wave length λ = 35.2 m.

Fifteen groups are used to discretize the Boltzmann equation in bubbles sizes with

radii spanning from 10 µm to 4 mm on a logarithmically spaced stencil.
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Figure 4.5 shows the results from these computations using the projection

Schemes presented in this section. On top, Fig. 4.5a, the simulation results us-

(a) Scheme I

(b) Scheme II

Figure 4.5: Self-propelled Athena with heading waves.

ing Scheme I are shown. In this computation a non-physical wave is formed at the

wake of the Athena. In this region the void fraction is larger than in the rest of the

domain and Scheme I decouples pressure from void fraction. The computed pres-
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sures have a very strong impact on the free surface elevations and these manifest

as the very large and unphysical waves traveling downstream seen in Fig. 4.5a.

Figure 4.5b shows the computational results obtained using Scheme II. The

spurious waves observed when using Scheme I are completely eliminated. It

should be noticed that the void fraction scale in Fig. 4.5b is for larger void fractions

than that in Fig. 4.5a. The reason for this is that the latest version of the code allows

to handle much larger void fractions and the void fraction at the stern is matched

with experimental data in the simulation run with Scheme II. In addition, the case

shown in Fig. 4.5b is run with an oceanic background of bubbles (see Section 3.9)

making the computation even a harder test for coupling Scheme II. This is why the

free surface in Fig. 4.5b has a green color, corresponding to a void fraction of about

10−4 at the free surface.

4.5 Dispersed Phase Momentum Equation

The dispersed phase momentum equation is in general drag dominated, mean-

ing that the most relevant interfacial momentum term is the drag force. Moreover,

for ship applications, simulations are carried out with the ship immersed on a large

enough background in order to impose incoming and outgoing flow boundary

conditions. On a large region of this background the flow is nearly inviscid and

the pressure field is close to hydrostatic. Inside this region, the gas relative ve-

locity departs very little from the bubble terminal velocity and the gas velocity is

simply the algebraic composition of this terminal velocity and the liquid velocity.

Even when the group relative velocity may practically remain fixed to the terminal

velocity for that group size, changes in the continuous phase velocity with time

imply a change in the total gas velocity which is ug = uc + ur,g. Therefore, when

solving Eq. (3.136) a few iterations are required to attain convergence even in sim-

ple cases where the relative velocity does not change in time. For this reason, the

gas momentum equations are written in terms of the relative velocity ur,g instead.
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Doing so, the convergence to the solution of these equations is improved and the

computational cost is reduced. Another advantage of solving the gas momentum

equations in terms of the relative velocity is that, on solid boundaries, it is more

natural to impose boundary conditions to the relative velocity ur,g than to the total

gas velocity ug. The adequate boundary conditions on a solid boundary for the gas

relative velocity are

ur,n = ur · n̂ = 0

∂ur,t

∂n̂
= 0

(4.32)

where n̂ is the normal to the solid boundary. Hence, the normal component of the

relative velocity, ur,n, is zero and the gradient of the tangential relative velocity, ur,t,

in the direction normal to the wall, is zero as well. The first condition imposes the

physical requirement that bubbles cannot go through solid boundaries. Since the

fluid velocity at a solid boundary is the wall velocityuw, this condition is equivalent

to

ug,n = ug · n̂ = uw · n̂ (4.33)

The second boundary condition in Eq. (4.32) allows bubbles to have a non-zero slip

velocity at the wall and is easily implemented when solving for the relative velocity

ur. If the total gas velocityug is solved instead the above boundary condition would

be
∂ug,t

∂n̂
=
∂uc,t

∂n̂
(4.34)

requiring this to compute the continuous phase velocity gradient at the wall and

thus making the implementation more difficult.

It is for the aforementioned reasons that the disperse phase momentum equation

in Eq. (3.136) is written in terms of the relative velocity. Making the formal change

of variables ug = uc + ur,g in Eq. (3.136) the equation for the relative velocity is
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obtained as

CVM

(
∂ur,g

∂t
+

(
ug · ∇

)
ur,g

)
+ ĈD,g ‖ur,g‖ur,g = −∇p̂c + g

(
1 −

ρg

ρc

)
k̂

− CVM

(
ur,g · ∇

)
uc − CL ur,g × ∇ × uc − ∇σP

(4.35)

where ĈD,g is defined as

ĈD,g =
3
8

CD(Reg)
Rg

(4.36)

The resulting equation contains a convection term of the relative velocity ur,g

with the total gas velocity ug. Since, as mentioned above, this equation is drag

dominated, a first order upwind scheme for the discretization of this convection

term is considered to be accurate enough. For the same reason, an implicit Euler

scheme is considered to be accurate enough to discretize the temporal derivative.

In addition, the use of these first order schemes contributes to the robustness of the

gas momentum solver. Equation 4.35 is written such that all the terms on the left

hand side are assembled in a matrix and the terms on the right hand side are treated

as sources. The spatial gradients on the right hand side of Eq. (4.35) are discretized

using central differences. Equation (4.35) is highly non-linear due to the convection

and drag terms coupling the components of the group-g velocity vector. A Picard

iteration procedure is used to solve the non-linear system of equations resulting

from the discretization of Eq. (4.35).

4.6 Number Density Transport

One of the time splitting stages is the transport of the group-g number densities

according to the equation

∂Ng

∂t
+ ∇ ·

(
ug Ng

)
= ∇ ·

(
Dg∇Ng

)
(4.37)

To avoid an excessive numerical diffusion of the computed solution, high or-
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der convection schemes must be used to discretize the number density transport

equation. However, classic high order linear schemes may introduce spurious os-

cillations (wiggles) at some locations in the domain and the solution may become

negative. This poses a serious problem given that, since the group-g number den-

sity represents the number of bubbles per unit volume for a given group size, this

quantity must remain positive throughout the computation. To avoid this problem,

TVD (Total Variation Diminishing) convection schemes are used to transport the

number densities. TVD schemes do not ensure the positiveness of the number

densities in the general three-dimensional case, but they have proven to perform

very well in this regard. To preserve the positiveness of the solution, TVD schemes

introduce a non-linear dependence of the discretization coefficients with the com-

puted solution. Therefore, even when the number density transport equation is

linear in the convection term, its discretization using a TVD scheme leads to a

non-linear system of equations. This forces to compute the matrix of the system in

each non-linear iteration making its resolution more computationally demanding

than when using linear schemes. This problem is treated in Section 4.8. The im-

plementation of TVD schemes on non-orthogonal grids for CFDShip-Iowa V4.5 is

discussed in Ismail et al. (2010). The temporal discretization the number density

transport equations follows Eq. (4.3), allowing to selectively choose using either

and implicit Euler (first order) or second order backward difference time stepping

scheme.

4.6.1 Near Wall Integration

In simulations involving solid boundaries, grids are refined in the direction

normal to the wall in order to accurately resolve the boundary layer velocity gra-

dients occurring there. As an example, in the simulations of Athena presented in

Chapter 6, even when wall functions are being used, grid spacing near the wall is

about 94 µm. This length is very small when compared to the 47 m in length of
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the ship. In wall bounded flows, bubbles tend to accumulate on the walls as they

rise against them. The packing force presented in Section 3.1.4 attempts to account

for this effect. However, since the volume of the cells close to a wall is so small,

these cells may fill up with gas in only one single iteration of the number density

transport solver. Then, the void fraction reaches levels larger than 100% causing

the divergence of the multiphase solver. The original idea to solve this problem

is to merge cells in the direction normal to the wall in order to end up with a

larger volume cell that takes longer to be filled up with gas. Still, the equations for

the continuous phase are solved in the original mesh. The implementation of this

method in an overset code like CFDShip-Iowa V4.5 where one of the overset blocks

might overlap on top of one of these enlarged elements becomes quite difficult.

In addition, the number of cells to be merged may vary along a boundary layer

as the refinement changes and this brings additional problems in the implementa-

tion since the stencil then changes as well. To solve this problem, a more suitable

method for overset codes is devised that mimics the original idea of merging cells in

the direction normal to the wall. The method consists in adding a large diffusivity

in the region close to the wall into the diffusion term in Eq. (4.37). This diffusivity,

however, must be anisotropic to only act in the direction normal to the wall. In this

way, the number density is automatically averaged in the direction normal to the

wall and since there is no diffusion in the tangential direction it has no effect on the

tangential transport. Therefore, the diffusion coefficient in Eq. (4.37) is composed of

three contributions in this work: the turbulent dispersion diffusivity νt/Scb (Section

3.1.4, Eq. (3.35)), the packing diffusivity DP
g (Section 4.8) and the wall integration

diffusivity DW. An anisotropic diffusion in the direction normal to the wall can be

described mathematically by using a diffusivity tensor DW instead of a single scalar

diffusivity DW. Given the outgoing normal to the solid boundary n̂s, this tensor is
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written as DW
i, j = DW n̂s,i n̂s, j. Then flux caused by this diffusivity is

FW
g,i = DW

i, j

∂Ng

∂x j
= DW n̂s,i

∂Ng

∂n̂
(4.38)

where the Einstein summation convention is used. In vectorial notation this is

FW
g = DW n̂s

∂Ng

∂n̂
(4.39)

and therefore this flux is in the direction of the normal to the wall only and is

proportional to the gradient of the number density in the direction normal to the

wall. This is the desired effect. If δw is the desired wall integration distance and

dw is the actual distance to the wall, the diffusivity DW is set to a large number

for dw < δw and to zero for dw > δw. An almost zero number density gradient

can be attained by using a sufficiently large diffusivity DW. It should be noticed

that since the diffusive term in Eq. (4.37) is conservative, the number of bubbles is

automatically preserved under this wall integration procedure.

In CFDShip-Iowa V4.5 the governing equations are transformed from the phys-

ical domain in Cartesian coordinates (x, y, z) into the computational domain in

non-orthogonal curvilinear coordinates (ξ, η, ζ) (Thompson et al., 1985). A partial

transformation is used in which only the independent variables are transformed

while the velocity vectors are left in the original Cartesian coordinates. In the

computational domain the computational cells are cubic with sides of unit length.

The generalized transformation is fully characterized by its metric, represented by

the geometric coefficients b j
i and the Jacobian of the transformation J. These are
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defined in Thompson et al. (1985) as

bi
l = εl,m,n

∂xm

∂ξ j

∂xn

∂ξk
, with i, j, k running cyclically (4.40)

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣
xξ xη xζ

yξ yη yζ

zξ zη zζ

∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.41)

where once again the summation convection is used.

After the transformation to the general curvilinear coordinates (ξ, η, ζ) the dif-

fusion term (with an isotropic diffusivity DW to simplify the presentation) in Eq.

(4.37) is written as

∇ ·

(
DW
∇Ng

)
=

1
J
∂
∂ξi

(
DW ei, j ∂Ng

∂ξ j

)
, with ei, j =

bi
k b j

k

J
(4.42)

and therefore the contravariant diffusion flux in the ξi direction is

F̆W
g,i = DW ei, j ∂Ng

∂ξ j
(4.43)

It should be kept in mind that the final objective of the normal wall diffusion

is to average the number density in the direction normal to the wall, not to have a

real normal diffusion. Therefore, and without any loss of generality, assuming that

the wall is normal to the ξi direction, the contravariant flux in Eq. (4.43) is replaced

by

F̆W
g,i = DW ei,i ∂Ng

∂ξi
(4.44)

where the summation convection is not used. In this way the diffusive flux only

acts exactly in the direction normal to the wall and convection in the tangential
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direction is not affected. As commented before, the wall integration diffusivity

is non-zero only inside a layer of thickness δw close to the wall. In addition, it

should be noticed that since diffusive fluxes are the same but with different signs

for contiguous cells, the method is naturally conservative. For the simulations of

Athena presented in Chapter 6 the wall integration thickness is set to be δw = 1.0 cm.

This is a very small thickness when compared to Athena’s length L0 = 47 m.

4.7 Air Entrainment Source Integration

The entrainment source must be integrated in time with care since, locally,

it may reach high peaks in which, if treated explicitly, the dispersed phase void

fraction may become higher than the critical void fraction αcrit in Eq. (3.108) or even

higher than 100%.

In the time splitting strategy discussed in Section 4.2, the non-linear dependence

of the entrainment source with void fraction can be solved locally for every point

in the computational domain by considering the discrete transport equation for Ng

when only the entrainment source is included. This equation is

∂Ng

∂t
= Sg(r, t) = S0 Dent

g E(r, t) Λ(αd) (4.45)

An approximate time evolution equation for the void fractionαd can be obtained

by multiplying on both sides of Eq. (4.45) by the group-g bubble volume vg and
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summing over all groups. The result is

G∑
g=1

vg
∂Ng

∂t
≈

∂
G∑

g=1
vg Ng

∂t
=
∂αd

∂t
=

G∑
g=1

vg Sg

=

G∑
g=1

vg S0 Dent
g E(r, t) Λ(αd)

= S0 E(r, t) Λ(αd)
G∑

g=1

vg Dent
g

= S0 E(r, t) Λ(αd)v̄ent

(4.46)

where the mean entrained bubble volume v̄ent is defined in Eq. (3.104). The ap-

proximation made in Eq. (4.46) is that changes in vg with time can be neglected.

Typically vg changes with variations in pressure. To simplify notation, Eq. (4.46) is

rewritten as
∂αd

∂t
= S̃(r, t) Λ(αd) (4.47)

with

S̃(r, t) = S0 v̄ent E(r, t) (4.48)

Consider the situation depicted in Fig. 4.6. In this figure the solid line represents

Figure 4.6: Entrainment source integration from tn to tn+1.
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the solution to Eq. (4.47) if this is solved exactly. Since the functional dependence

in Λ(αd) makes the entrainment source to decrease to zero as the void fraction

approaches αcrit, the void fraction approaches αcrit asymptotically and it never

passes it. The dashed line is tangent to the solid curve at t = tn and represents the

solution that would be obtained with an explicit Euler scheme. The situation in

Fig. 4.6 is the one that the method in this chapter tries to avoid: void fraction going

beyond αcrit (or even beyond 100%) due to an explicit treatment of the entrainment

source dependence with void fraction.

Equation 4.47 can be solved with an implicit Euler scheme using any iterative

scheme. In this work, the non-linear coupling in Eq. (4.47) is solved using a sub-

time stepping approach. The idea is sketched in Fig. 4.6. This method simply

uses a time step δts smaller than the time step δt used for the complete simulation.

In this section, a method devised to compute an appropriate sub-time step δts is

described. Figure 4.6 shows several variations (∆’s) in void fraction. ∆1 is the void

fraction change that is obtained using and explicit Euler scheme. This is

∆1 = δt S̃ Λ(αn
d) (4.49)

∆2 is the maximum variation that void fraction can undergo in the current time

step

∆2 = αcrit − α
n
d (4.50)

Finally, ∆1s is a desired maximum variation in void fraction in one sub-time step of

duration δts.

In the method presented in this work, the desired variation in void fraction ∆1s

is set to be a fraction of the maximum possible variation ∆2. Then

∆1s =
∆2

n1
(4.51)
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where n1 is a fixed parameter of the integration method. A smaller n1 results in

a more accurate integration but more expensive computationally since more sub-

time steps are needed. In this work this is set to be n1 = 10. On the other hand, the

desired variation at time t = tn can be computed as

∆1s = δts S̃ Λ(αn
d) (4.52)

where the sub-time step δts is a fraction of the time step δt, i.e. δts = δt/ns. Equations

(4.51) and (4.52) can be made to be equal to find

∆2

n1
=
δt
ns

S̃ Λ(αn
d) =

∆1

ns
(4.53)

from where the number of sub-time steps is obtained as

ns = n1
∆1

∆2
(4.54)

In a computer implementation, the number of sub-time steps ns is cast to an

integer. In regions of low entrainment, it may occur that this number is zero since

no sub-time steps are required to accurately integrate the entrainment source and

the time step δt is enough. To avoid having ns = 0 Eq. (4.54) is changed to

ns = n1
∆1

∆2
+ 1 (4.55)

where the final result stored in ns is cast to an integer.

Once the number of sub-time steps ns is found, Eq. (4.45) is integrated using an

explicit Euler scheme with a time step δts and updating the void fraction at each

sub-time step. This procedure is carried out for every point in the computational

domain separately. Procedure 4.3 below summarizes the method
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Procedure 4.3 Integration of the entrainment source.

for inod = 1 to Nnod do

Compute ns and δts, Eq. (4.55)

for is = 1 to ns do

Nn+is/ns
g = Nn+(is−1)/ns

g + δts S0 Dent
g E(r, tn+1) Λ(αn+(is−1)/ns

d )

Nn+(is−1)/ns
g = Nn+is/ns

g

Compute void fraction αn+is/ns
d

end for

end for

4.8 Treatment of Forces with Number Density
Gradients

Some of the interfacial forces in the two-fluid model are proportional to the

spatial gradient of the group-g number density or to the gradient of the dispersed

phase void fraction. For instance, if the model of Carrica et al. (1999) in Eq. (3.32)

is used for the turbulent dispersion force, this is

MTD
g = −ρcαg

3
8

CD‖ur,g‖

Rg

νt

Scb

∇Ng

Ng
(3.32)

Another example is the packing force in Eq. (3.37) which can be written as

MP
g = −αg∇σP(αd) = −αg β(αd)∇αd, with β(αd) =

dσ
dαd

(4.56)

Since these forces depend on the number density, ideally, number density and

gas velocity must be solved together inside an iterative loop until convergence is

attained. However, it is found that even when iterations are performed, the number

density decouples from the gas velocity and eventually the system diverges. The
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reason for this instability is that small perturbations in the number density are

significantly amplified by the gradient operation. These amplified perturbations

are introduced into the gas momentum equations through the interfacial forces

resulting in a transport velocity containing some level of perturbation as well.

When this velocity is fed back into the transport equation for the number density,

these perturbations amplify even further. This feedback continues until the final

divergence of the system. In this section a numerical method that avoids this

decoupling of the number density from the gas velocity is devised.

Using Eq. (2.27) and neglecting the gradient of the bubble volume, the packing

force can be written as

MP
g = −β

G∑
g=1

vg∇Ng, vg =
mg

ρg(r, t)
(4.57)

This force can be bundled together with the turbulent dispersion force in one

single gradient term by defining an effective diffusivity Dg as

MG
g = MTD

g +MP
g = −ĈD,g

∥∥∥ur,g

∥∥∥ Dg
∇Ng

Ng
− β

∑
g′,g

Vg′∇Ng′ (4.58)

Dg =
νt

Scb
+ DP

g (4.59)

DP
g =

βαg

ĈD,g

∥∥∥ur,g

∥∥∥ (4.60)

The key of the method proposed in this section is to realize that, by looking at

Eq. (4.58), perturbations in the group-g velocity are introduced by perturbations

in the number density gradient through the term −Dg∇Ng/Ng. Note that this term

has units of velocity. With this idea in mind, a new pseudo velocity is defined by

subtracting this term from the resulting group-g velocity. This velocity is defined
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for each group as

u0,g = ug + Dg
∇Ng

Ng
(4.61)

Consider the more general case in which turbulent dispersion is modeled as an

additional interfacial force in the group-g momentum equation. In this case the

transport equation for Ng is purely convective

∂Ng

∂t
+ ∇ ·

(
ug Ng

)
= 0 (4.62)

Using the pseudo velocity defined in Eq. (4.61) into Eq. (4.62) the following

equation results
∂Ng

∂t
+ ∇ ·

(
u0,g Ng

)
= ∇ ·

(
Dg∇Ng

)
(4.63)

In this way the unstabilizing gradient term in the interfacial force is introduced

into a very stabilizing diffusion term for the number density equation. The algo-

rithm, referred herein as pseudo transport velocity scheme (STV), can be summarized

as follows

• Solve for ug from the original momentum equation in Eq. (4.35).

• Compute the pseudo velocity u0,g from Eq. (4.61).

• Compute the total diffusivity Dg from Eq. (4.59).

• Solve for the number density Ng using the modified transport equation in Eq.

(4.63).

Picard iterations may be applied over this procedure to attain convergence. It

is very important to notice that the mathematical model is not changed, only the

way in which the equations are solved is changed. Also notice that the group-g

momentum equation remains the same.
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4.8.1 1D Test Case

In order to test the new scheme a problem in which bubbles are transported

towards a wall and let accumulate was solved. This is a 1D problem that can be

enunciated as follows

∂α
∂t

+
∂
∂x

(uα) = 0

CD u = g −
dσ
dx
, CD = 1, g = 1

α = 0, at x = 0

∂α
∂x

= 0, at x = 1

u = 0, at x = 0

α = 0.2, at t = 0

The collision pressure used in this example is

σ(α) =
αc

αc − α
(4.64)

with αc = 0.74.

To differentiate it from the STV scheme proposed in this section, the approach

of solving the group-g velocity and using it directly to transport the corresponding

number density is referred as classic transport scheme (CT).

Then, given an initially uniform distribution of bubbles, these are convected in

the direction of increasing x until they find a wall at x = 1. There are no bubbles

coming into the domain at x = 0 since the dispersed phase velocity and the void

fraction are set to be zero as boundary conditions. The initial population of bubbles

is transported to the right and ultimately accumulates at the wall. This problem

is solved with a simple first order upwind scheme in space and an implicit Euler

scheme in time, which is enough for the purposes of testing the new numerical
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scheme. The problem was then solved with the CT and STV schemes.

Figure 4.7 shows the computed solution when using the classic scheme for

several temporal instances. It is observed that the computed solution is not smooth

and becomes unstable in an early stage before accumulation at the wall. The time

step used is δt = 5 × 10−4 and the mesh size is h = 0.01 resulting in a Courant

number of C = 0.05. Figure 4.8 shows the solution when computed with the STV

(a) t = 0.05 (b) t = 0.10

(c) t = 0.15 (d) t = 0.20

Figure 4.7: Time evolution of the solution computed with the CT scheme
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scheme. This solution is smooth for all times and reaches the steady state without

any instability. The time step used is δt = 0.01 and the mesh size is h = 0.001

resulting in a Courant number of C = 10. The reader should notice the large

(a) t = 0.25 (b) t = 0.50

(c) t = 0.75 (d) t = 1.00

Figure 4.8: Time evolution of the solution computed with the STV scheme

difference in Courant numbers for the two cases. Even when the Courant number

is as small as 0.05 the CT scheme is unstable while the STV scheme allows for very

large Courant numbers without showing any instability.
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4.8.2 Implementation in CFDShip-Iowa V4.5

Since the packing force couples both, the group-g velocity and the group-g

number density, for all groups, the corresponding gas momentum and number

density transport equations should be solved inside an iterative procedure until

convergence is reached. This procedure would require not only to iterate in the

number density transport equations but also in the gas momentum equations

simultaneously and for all groups. The computational cost for such an approach is

prohibitive for the applications presented in this thesis and an alternative iterative

scheme must be devised. To lower the computational cost the number of floating

point operations needs to be reduced. However, the final coupling must be strong

enough to ensure the system of equations stability. The method presented in this

work proposes to compute the group-g velocities only once. However, the packing

diffusivity DP
g is iterated inside the number density transport solver to ensure the

stabilizing effect it has in the STV scheme on the packing force. The group-g

momentum equations have a slower dynamics and as long as the number density

profiles are smooth and well converged, they do not offer additional difficulties.

The transport solver implemented in CFDShip-Iowa V4.5 is sketched in Fig.

4.9. According to Eq. (4.60), DP
g depends on the dispersed phase void fraction αd

trough the functional form in β(αd), on the group-g void fraction αg and on the

product ĈD,g

∥∥∥ur,g

∥∥∥. This last product remains constant once the group-g velocities

are computed. Therefore, this is computed first in Fig. 4.9 before the transport

solver starts iterating (loop on iNg). Since the group-g velocity ug is kept constant

inside the transport solver main loop, the group-g pseudo velocity u0,g must be

computed outside the iteration loop as well in order to use a consistent number

density gradient in Eq. (4.61) with the one used to compute the original velocity

ug. Therefore, in Fig. 4.9, the pseudo velocity u0,g is computed outside the main

iteration loop. Updating the pseudo velocity inside the iteration loop leads to an
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Figure 4.9: Iterative scheme for the number density transport as implemented in
CFDShip-Iowa V4.5.

unstable scheme. Inside the iteration loop the matrix of the system is computed

as two separate components: the transport term (discretized by TVD) and the

diffusive term. The diffusive part of the matrix is assembled every time since DP
g

is updated as the computation evolves. The transport component of the matrix is

non-linear since TVD schemes are used. However, it was found that the number of

times the TVD matrix is computed can be limited to reduce the computational cost

without appreciably affecting the TVD transport scheme properties. Actually, in

all computations performed in Chapter 6 NTVD = 1 and no differences were noted

in comparison with fully iterated matrices. This is due to the fact that for the small

time steps used in the computations the solution at tn is a good approximation to



160

compute the TVD matrix at tn+1. The maximum number of TVD matrix evaluations

NTVD might need to be changed for larger time steps. Finally, once the matrix is

assembled, an ADI-like iteration for all three spatial directions is performed. The

iteration continues until convergence is attained.
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CHAPTER 5
POLYDISPERSED MODEL VALIDATION

One of the main objectives of this chapter is to perform a validation of the

implemented polydispersed model for bubbly flows. In addition, the problems

solved in this section provide of some insight that help to understand the physics

involved in polydispersed bubbly flows. Not only size distributions are studied

but also budget analyses are performed as well, to help understand how breakup

and coalescence balance each other. The study is complemented with the analysis

of breakup and coalescence frequencies (introduced in Eqs. (2.99) and (2.100)).

Overall, this study tells about the numbers involved, orders of magnitude, and

provides an excellent exercise for the modeler looking to get familiar with the

physics of the problem.

The full model for polydispersed bubbly flows, presented throughout Chapters

2, 3 and 4, basically has two fundamental components: A Boltzmann equation

solver that solves for the number density distribution function f (m, r, t) and a

modified CFD solver for the continuous phase that accounts for the presence of a

dispersed phase, the bubbles. This chapter validates the Boltzmann solver.

The validation is twofold. It validates not only the physics introduced by the

breakup and coalescence kernels presented in Sections 3.2 and 3.3 but also the cor-

rect implementation of the multigroup solver. Comparisons are performed not only

against experimental data but also against computations previously performed by

other authors. In addition to this validation, this chapter presents a comparative

study of the breakup and coalescence models presented in Sections 3.2 and 3.3.

The results from this comparison are later on used to decide what kernels to use in

future simulations. Finally, it is shown that for salt water the solution depends on

the initial conditions, a problem not observed in simulations for fresh water.
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5.1 Study Case

The ideal physical situation that would allow to perform this validation would

be that of a box with an homogeneous and steady turbulent field that perfectly

mixes a given initial population of bubbles and with zero mean velocities. Given

that the bubbles are kept under continuous motion and mixing by this turbulent

field, they eventually distribute uniformly across the box and the number density

distribution results to be independent of the spatial coordinates. If this initial

population of bubbles is left to evolve in this turbulent field for long enough

eventually breakup and coalescence reach a steady state in which the number

density distribution does not change in time.

In order to simulate this ideal box is not necessary to solve for the continuous

phase since it is known a priory that the continuous phase velocity is zero. If

for this ideal experiment turbulent dissipation is available then the equations of

the turbulence model do not need to be solved either since turbulence dissipation

can be specified as a constant parameter. Then, the only equation that needs to be

solved is the Boltzmann equation but only in the bubble size since the homogeneity

of the problem eliminates the spatial dependence of the solution.

Therefore, this problem is fully specified by providing: the components of the

two-phase mixture, the turbulence dissipation ε, which for this problem fully spec-

ifies the turbulent field1, and the initial number density distribution. By specifying

the initial number density distribution, the void fraction is automatically specified

as well.

Such ideal experimental conditions do not exist in practice though certain exper-

imental configurations can provide of a close enough approximation. One of these

configurations is a stirred reactor. A stirred reactor consists of a vessel containing

1This is not entirely true since a second parameter needs to be specified in order to describe a
homogeneous turbulent field with a two-equation model. Why the current models for breakup and
coalescence do not need the specification of this second parameter is discussed in Section 6.4.3.
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a main fluid continuously agitated by a rotating turbine. Bubbles are introduced

into the vessel by means of some sort of sparger. Depending on the relative size

between the turbine diameter and the vessel cross section some areas of the reac-

tor can be considered homogeneous and in local equilibrium. Configurations of

this type are used in the experiments by Alves et al. (2002), Hu et al. (2005) and

Laakkonen et al. (2005) to cite just a few.

Another popular configuration is the bubble column. In a bubble column

bubbles are introduced at the bottom of a column containing a main fluid with

the aid of a sparger. There are no active elements as it is the case with stirred

reactors but the buoyant action of the bubbles cause the circulation of the main

fluid. An additional forced circulation of the main fluid may be induced with

the aid of an external pump. Bubble columns are used in the experiments by

Grienberger (1992),Wang et al. (2001) and Colella et al. (1999) to mention some

examples. The flow in a bubble column is typically inhomogeneous. However, if

the turbulent mixing is strong enough, homogeneity could be assumed along the

column’s cross section. In addition, equilibrium between breakup and coalescence

could be attained at a certain height of the bubble column after the bubbles traveled

a certain distance upwards. This situation is clearly illustrated in the experimental

data by Wang et al. (2001). Under these conditions, the experiment approximates

the bubbly flow in the steady homogeneous box.

In this work the experimental data by Grienberger (1992) is used to validate the

polydispersed model presented in this thesis. This work is chosen not only because

it provides a good data set for validation, but also because other authors (see Lehr

et al., 2002; Wang et al., 2005a; Bayraktar et al., 2011) have used this experimental

work to validate their own models and implementations. Therefore, in this thesis

comparisons are made not only against the experimental data by Grienberger (1992)

but also against the numerical results reported in Lehr et al. (2002) and Wang
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et al. (2005a). Comparisons against the numerical results presented in Bayraktar

et al. (2011) are not performed since this work became available on-line after the

validation in this thesis was performed.

In the work by Lehr et al. (2002), new breakup and coalescence models are

proposed and the experimental data set from Grienberger (1992) is used to validate

them. These models were already introduced in Sections 3.3.1.1 and 3.2.2. As in this

thesis, the Boltzmann equation is used to describe the polydispersed bubbly flow

but, instead of using a multigroup approach to discretize it, a different numerical

approximation is proposed in which a lognormal size distribution is assumed for

small bubbles and an exponential tail is assumed for large bubbles. In their work

the dissipation rate is estimated as the ratio of the energy introduced by the buoyant

gas and the mass of the liquid phase in the bubble column

ε =
jggρc(1 − αd)
ρc(1 − αd)

= jgg (5.1)

where jg denotes the superficial gas velocity which is a quantity available from the

experiments and g is the acceleration of gravity.

Similarly, in Wang et al. (2005a) the authors compare several models for breakup

and coalescence including the models by Lehr et al. (2002) and Luo and Svendsen

(1996a) and their own (Wang et al., 2003, 2005b) against the experimental data

from Grienberger (1992). Wang et al. use, as in this thesis, the fixed pivot method

developed by Kumar and Ramkrishna (1996) to solve the Boltzmann equation in

the bubble sizes. The turbulence dissipation rate used in their work was obtained

from a CFD simulation of the bubble column and size distributions are reported

for the values of dissipation and void fraction computed at radial positions r/R = 0

and r/R = 0.5 with R the bubble column radius. In this work the data at r/R = 0

is used for comparison since their simulations provide almost indistinguishable
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profiles at these two locations.

Table 5.1 summarizes the values of turbulence dissipation and void fraction for

the cases considered. There are two experimental conditions, cases A and B. In

addition, different estimations for ε and αd are considered by Lehr et al. and by

Wang et al., resulting in a total of four set of simulations.

Table 5.1: Values of turbulence dissi-
pation and void fraction for the four
validation cases

ε [m2/s3] αd [−]

Lehr Case A 0.785 0.2
Case B 0.196 0.08

Wang Case A 1.35 0.33
Case B 0.232 0.095

It should be mentioned that dissolution is not included in any of the simulations

presented in this chapter and thus the original mass prescribed with the initial

condition is conserved. This fact was verified to be true in all of the simulations

performed.

5.2 Convergence Study

In order to assess the number of groups to be used in the comparisons against

the available experimental data and simulations from other authors, a convergence

study is first performed. Moreover, this convergence study gives a first approxi-

mation on the number of groups to be used in polydispersed simulations.

The convergence study is performed on case B using the parameters used by

Lehr et al. i.e. ε = 0.196 and αd = 0.08. Both breakup and coalescence models from
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Lehr et al. (2002) are used. The minimum and maximum bubble sizes adopted are

R1 = 0.05 mm and RG = 12.0 mm, respectively. Simulations are run with 11, 21, 41

and 61 group sizes uniformly discretizing the radius coordinate. The reader should

recall from Section 2.2 that in this work the Boltzmann equation is discretized in the

bubble mass. Therefore, while the discretization is uniform in the bubble radius,

it is not in the bubble mass. The time step used in the simulations is δt = 0.01 sec.

The convergence of the time marching scheme was not studied since a steady state

solution was pursued. However, the time step is chosen to accurately resolve the

evolution with time of the Sauter diameter and total number density. At time t = 0

a monodispersed size distribution with bubbles of radius R = 6.025 mm is imposed

(this is Ng = αd/mg for g = G/2 + 1 and zero everywhere else).

Figure 5.1 shows the size distributions obtained using different grid sizes. Size

Figure 5.1: Size distribution convergence with the number of groups

distributions are shown as the number density distribution f (R) normalized with
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the total number density N. Therefore the area under the curves in Fig. 5.1 is

one. As the number of groups used in the simulation is increased the solution

approaches the continuous solution of the problem. Solutions computed with 40

and 60 groups practically lie on top of each other and are almost indistinguishable

in Fig. 5.1.

The Sauter diameter d32 (defined in Eq. (2.88)) and the total number density are

shown in Fig. 5.2. They both reach a steady state condition after t ≈ 3 sec. Sauter

diameters are d32 = 6.118 mm and d32 = 6.128 mm at G = 41 and G = 61 respectively

differing only in 0.16%. Number densities are N = 1.021 × 106 and N = 1.018 × 106

at G = 41 and G = 61 respectively differing in 0.28%.

(a) Sauter diamter d32. (b) Total number density.

Figure 5.2: Sauter diameter and number density convergence with the number of
groups.

Given the small difference in the solutions computed with 41 and 61 groups the

computations presented in the rest of this chapter are performed with G = 41.
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5.3 Dependence with the Initial Conditions

Since comparisons with the available data in the literature are performed for

the final steady state, it is of interest to assess the existence of a unique solution

or at least show with an example that this is the case. Then, case B with the

parameters used by Lehr et al. (2002) is run, this time with a fixed number of

groups G = 41 and variable initial conditions. Once again, the initial condition

consists of a monodispersed distribution of bubbles. According to Fig. 3.4 the

maximum stable bubble diameter for this turbulence dissipation (ε = 0.196 m2/s3)

is around DMax ≈ 5 mm. In order to have three different initial transients, one

where bubbles initially mainly coalesce, one where they initially mainly breakup

and another one close to equilibrium, the initial monodispersed distributions are

centered at D0 = 2.14 mm, D0 = 6.025 mm and D0 = 12.0 mm, i.e. below, close to

and above DMax, respectively.

The time evolution of the Sauter mean diameter d32 and the total number density

N are shown in Fig. 5.3. In all cases the Sauter diameter evolves to an equilibrium

Sauter diameter of d32 = 6.11 mm and the number density goes to N = 1.02 ×

106 m−3. However, the time evolution for d32 and N changes according to the initial

condition. For an initial distribution of large bubbles breakup dominates the initial

transient and the size distribution shifts towards smaller sizes making the Sauter

diameter d32 to decrease. Conversely, for an initial distribution of small bubbles,

coalescence dominates the initial transient and the distribution shifts towards larger

sizes making d32 to increase. Note that the dynamics is slower for the case initially

controlled by coalescence indicating that at this void fraction coalescence is weaker

than breakup.

For the total number density the situation is analogous but it is inverted. For

an initial distribution of large bubbles N starts increasing as bubbles breakup and

generate more but smaller bubbles. On the contrary with an initial distribution of
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(a) Sauter diamter d32. (b) Total number density.

Figure 5.3: Sauter mean diameter and number density dependence with the initial
condition.

small bubbles N starts decreasing as bubbles are lost when they coalesce to form

larger bubbles. In either case the total mass of air and the total void fraction do not

change with time.

5.4 Comparison with Previous Works

Figure 5.4 compares the computations performed for this thesis with the nu-

merical results from Lehr et al. (2002) and from Wang et al. (2005a). In all cases a

steady state was reached where breakup and coalescence balance each other. Also

shown in Fig. 5.4 is the experimental data from Grienberger (1992). These compu-

tations were performed with the exact same models for breakup and coalescence

presented by Lehr et al. (2002). In Wang et al. (2005a) several models are tested but

the results used here are those where Wang et al. (2005a) use the models by Lehr

et al. (2002) for both breakup and coalescence. In this regard, all the computations

are consistent.

While the experimental data for case A has a peak at about D ≈ 2.0 mm, case
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(a) Case A. (b) Case B.

Figure 5.4: Comparison against the experimental results from Grienberger (1992)
and previously performed computations by Lehr et al. (2002) and by Wang et al.
(2005a).

B peaks around D ≈ 3.0 mm. The reason for this is that the stronger turbulence in

case A can split smaller bubbles. Even when the void fraction is higher for case

A, and this would increase the rate of coalescence, breakup is still strong enough

to shift the size distribution towards smaller sizes. Also, case B exhibits a wider

distribution than case A.

These trends are well predicted by all the simulation results shown in Fig.

5.4, including the simulations results from this thesis. It is important not only to

compare against the experimental data from Grienberger (1992) by also against the

simulation results by Lehr et al. (2002) and Wang et al. (2005a). For both, case A and

case B, Wang et al. (2005a) use a higher estimated value of the turbulence dissipation

ε. This causes the size distribution in case A to shift toward smaller sizes, a trend

that the computation from this thesis is able to reproduce. More interestingly for

case B, Wang et al. (2005a) use not only a higher turbulence dissipation but also a

higher void fraction. This causes the size distribution to shift towards larger sizes
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instead even when the turbulence is stronger, showing that for case B coalescence

plays a more important role than it does for case A. This trend is well captured by

the computations performed in this work.

Even though the agreement with the computations performed by Lehr et al.

(2002) is satisfactory, a perfect matching is not expected since Lehr et al. (2002) uses

a completely different numerical discretization scheme to solve the Boltzmann

equation. On the other hand, a perfect matching with the computations performed

by Wang et al. (2005a) is not expected either since in their discretization in bubbles

sizes they only use G = 30 groups distributed logarithmically while in this work

there are G = 41 groups distributed uniformly.

5.5 Prince and Blanch Coalescence Kernel

In the model for coalescence presented by Lehr et al. (2002) the coalescence

efficiency is a function that depends only on the local void fraction (see Eq. (3.64)).

The model presented by Prince and Blanch (1990a) is more general in this regard

since it considers the turbulent time scales (τm,m′ in Eq. (3.57)) versus the time it

takes for the liquid film between the two bubbles to drain out (tm,m′ in Eq. (3.57)). It

is then of interest to compare this two models and to study how Prince and Blanch

(1990a) model performs for the cases being considered in this chapter.

The comparison is made for case A using the parameters estimated by Lehr

et al. (see Table 5.1). Then two simulations are performed. Both of them use the

breakup model by Lehr et al. (2002). In one the coalescence model by Lehr et al.

(2002) is used. The simulation results for this case are already shown and validated

in Fig. 5.4a. In the second simulation the coalescence model by Prince and Blanch

(1990a) is used.

In the figures that follow different curves have a legend of the form A + B

where A refers to the breakup model and B refers to the coalescence model. The

abbreviations used are as follows: L for Lehr et al., PB for Prince and Blanch and
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LS for Luo and Svendsen.

Figure 5.5 compares the size distributions obtained using the coalescence mod-

els by Lehr et al. (2002) and Prince and Blanch (1990a), together with the compu-

tational results by Lehr et al. (2002) and the experimental data from Grienberger

(1992). Prince and Blanch (1990a) model predicts a size distribution slightly shifted

to larger sizes in comparison with the size distribution obtained with Lehr et al.

(2002) model. This seems to indicate that the model by Prince and Blanch (1990a)

predicts a somewhat larger coalescence rate. However the difference is small and

the solution obtained using Prince and Blanch (1990a) model can be considered to

be as accurate as the one predicted with Lehr et al. (2002) model.

Figure 5.5: Size distributions obtained using the coalescence models by Lehr et al.
(2002) and Prince and Blanch (1990a). The breakup model by Lehr et al. (2002) is
used in both cases.

Breakup rates are shown in Fig. 5.6. Both, deaths and births are shown. As

with the size distributions, the differences using either model are small. It should

be noted that birth rates almost double death rates since two bubbles are generated

per breakup event. More accurately, the area under the births curve exactly doubles
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the area under the deaths curve.

Figure 5.6: Breakup rates obtained with Lehr et al. (2002) and Prince and Blanch
(1990a) coalescence models.

Coalescence rates are shown in Fig. 5.7. Once again deaths and births are

shown. For the model by Prince and Blanch (1990a) rates are split in turbulent and

relative velocity contributions χt and χu, respectively, as in Eq. (3.56).

The turbulence induced coalescence is shown to be the dominant contribution

though the relative velocities contribution has the same order of magnitude and

could not be neglected. Both contributions must be considered. Since two bubbles

are lost to form only one bubble on each coalescence event, the area under the

deaths curve is exactly twice the area under the births curve. This is the reason

why deaths almost double births in magnitude.

Figure 5.8 shows the predicted Sauter diameters. The predicted Sauter diame-

ters are d32 = 4.778 mm for the model by Lehr et al. (2002) and d32 = 4.79 mm for

the model by Prince and Blanch (1990a) differing only in 0.25 %.
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(a) Deaths. (b) Births.

Figure 5.7: Coalescence rates obtained with Lehr et al. (2002) and Prince and Blanch
(1990a) coalescence models.

Figure 5.8: Sauter diameter. Predictions using the coalescence models of Lehr et al.
(2002) and Prince and Blanch (1990a).

Breakup and coalescence frequencies as defined by Eqs. (2.99) and (2.100) are

shown in Fig. 5.9. Recall that from Eq. (2.99) the breakup frequency is nothing but

the breakup rate. Figure 5.9 shows that the model by Prince and Blanch (1990a)
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predicts a higher value of the coalescence frequency than the model by Lehr et al.

(2002). This explains the slight shift towards larger sizes of the size distribution

predicted with the model by Prince and Blanch (1990a).

Figure 5.9: Breakup and coalescence frequencies obtained with Lehr et al. (2002)
and Prince and Blanch (1990a) coalescence models.

It is shown with these comparisons that the coalescence model by Prince and

Blanch (1990a) performs as well as the model by Lehr et al. (2002) for the case

presented. The model by Prince and Blanch (1990a) is preferred in this work since

it is more general than the model by Lehr et al. (2002) and also because is more

widely accepted and used in the literature. Therefore, the Prince and Blanch (1990a)

coalescence model is used for the simulation of the bubbly flow around the research

vessel Athena in Chapter 6.

5.6 Luo and Svendsen Breakup Kernel

This section compares the predictions obtained with two different breakup

models: the model by Luo and Svendsen (1996a) and the model by Lehr et al. (2002).
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Similarly as it was done in the comparison of coalescence models in the previous

section, the two breakup models are compared on case A with the turbulence

dissipation estimated by Lehr et al. (2002). Two predictions are obtained, one with

the breakup model by Lehr et al. (2002) and the other one with the breakup model

by Luo and Svendsen (1996a). In both cases the coalescence model by Lehr et al.

(2002) is used.

Figure 5.10 shows the size distribution obtained with both models together

with the computed results by Lehr et al. (2002) and the experimental data from

Grienberger (1992). The difference between the predicted results is quite evident.

The model by Luo and Svendsen (1996a) predicts much larger bubbles sizes than

the model by Lehr et al. (2002).

Figure 5.10: Size distributions obtained using the breakup models of Lehr et al.
(2002) and Luo and Svendsen (1996a).

Given the large disparity in the size distributions the predicted Sauter diameters

are significantly different as well. As mentioned before the model by Lehr et al.

(2002) gives d32 = 4.778 mm. The model by Luo and Svendsen (1996a) predicts a
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much larger Sauter diameter, d32 = 8.21 mm. This large disparity can also be seen

in Fig. 5.11.

Figure 5.11: Sauter diameters obtained using the breakup models of Lehr et al.
(2002) and Luo and Svendsen (1996a).

The reason for such a large disparity in the predictions was mentioned before

in Section 3.3.1 and is illustrated in Fig. 3.3. The model by Luo and Svendsen

(1996a) predicts a much lower breakup rate than the model by Lehr et al. (2002).

This fact was previously observed by other authors. In Chen et al. (2004, 2005b)

the model by Luo and Svendsen (1996a) is used in their simulations but they need

to multiply the breakup kernel by a factor of ten in order to match their results

with experimental measurements. In Wang et al. (2005a) several breakup models

are evaluated and it is pointed out that the model by Luo and Svendsen (1996a)

underestimates breakup rates. The reader is referred to Section 3.3.1 for a more in

depth discussion about this.

Breakup and coalescence rates are shown in Fig. 5.12. In Fig. 5.12a the breakup
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(a) Breakup. (b) Coalescence.

Figure 5.12: Breakup and coalescence rates obtained using the breakup models of
Lehr et al. (2002) and Luo and Svendsen (1996a).

rates predicted with Luo and Svendsen (1996a) model are multiplied by a factor of

ten in order to show them on the same scale with the breakup rates predicted with

Lehr et al. (2002) model. Note that after scaling by a factor of ten, the breakup rates

predicted with the models of Luo and Svendsen (1996a) and Lehr et al. (2002) are

similar, in agreement with the observation made by Chen et al. (2004, 2005b).

Fig. 5.12 shows that breakup deaths are zero for bubbles sizes D . 5 mm and

that this transition is quite sharp. This explains the abrupt change of slope in the

predicted size distribution in Fig. 5.10 with Luo and Svendsen (1996a) model.

Coalescence rates are shown in Fig. 5.12b. Coalescence rates are also multiplied

by a factor of ten for the predictions using Luo and Svendsen (1996a) model. This

seems to contradict the results from Section 5.5 where it was shown that coalescence

rates predicted with Lehr et al. (2002) and Prince and Blanch (1990a) models are

very similar. The reason for the lower coalescence rates in Fig. 5.12b is that in

steady state coalescence rates balance breakup rates and since these are ten time

smaller so are the coalescence rates.
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Finally, Fig. 5.13 shows the breakup and coalescence frequencies. The dif-

Figure 5.13: Breakup and coalescence frequencies obtained with the breakup mod-
els of Lehr et al. (2002) and Luo and Svendsen (1996a).

ferences between breakup models are clear: Luo and Svendsen (1996a) model

predicts rates almost ten times smaller than Lehr et al. (2002) model and it has a

sharp transition to zero at D ≈ 5 mm while Lehr et al. (2002) model goes to zero

smoothly. Coalescence rates do not match even when the Lehr et al. (2002) model

for coalescence is used in both cases. As explained above the reason for this is that

coalescence rates balance breakup rates in the steady state. In addition, the coa-

lescence frequency is a function of the number density distribution and, from Fig.

5.10, the predicted size distributions are substantially different for both models.

5.7 Salt Water

In Section 5.3 it was shown than the steady state solution does not depend on

the initial condition. The main reason for this is that for fresh water coalescence is

possible at all sizes. With breakup, however, bubbles smaller than the maximum
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stable diameter DMax do not break, see Fig. 3.4 and the accompanying discussion.

Therefore, if there is an excess of bubbles smaller than DMax that breaks the balance

between breakup births and coalescence, these bubbles coalesce forming larger

bubbles. If there is an excess of large bubbles, larger than DMax, then breakup takes

them to smaller sizes. Eventually breakup and coalescence balance each other for

all sizes.

For salt water the situation is different. Coalescence is highly inhibited in

salt water. Lets consider a case in which coalescence can be neglected. In this

case a bubble originally smaller than DMax stays at this size since no breakup or

coalescence occur. Therefore, for this case, the steady state solution depends on

the initial condition since any size distribution below DMax remains unchanged. If

the modification to the Prince and Blanch (1990a) coalescence model presented in

Section 3.5 is used to model coalescence in salt water, then coalescence is highly

inhibited only for sizes larger than a transitional diameter Dt while for sizes smaller

than Dt bubbles coalesce as they would in fresh water.

Lets consider once again case A in Table 5.1 with the parameters used by Lehr

et al. (2002). For this case ε = 0.785 and from Fig. 3.5 the maximum stable diameter

is DMax ≈ 2.9 mm. From Section 3.5 the transitional diameter is Dt ≈ 0.32 mm for the

salt concentrations in sea water. This means that any size distribution of bubbles

that is originally located between the transitional diameter Dt and the maximum

stable diameter DMax remains unaltered since no breakup or coalescence occur in

that region (or at least coalescence can be neglected).

To exemplify this situation, case A with the parameters used by Lehr et al. (2002)

is simulated. The breakup model by Lehr et al. (2002) and the coalescence model

by Prince and Blanch (1990a) with the modifications for salt water presented in

Section 3.5 are used. The solution is started from a monodispersed size distribution

centered at three different diameters. A diameter D0 = 7.54 × 10−2 mm, below Dt,
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a diameter D0 = 0.775 mm, between Dt and DMax and a diameter D0 = 12.0 mm

above DMax.

The computed Sauter diameters with these three initial conditions are shown

in Fig. 5.14. As expected from the above explanation when Dt < D0 < DMax there

Figure 5.14: Sauter diameter obtained for salt water when the solution is initialized
with different initial conditions.

is no breakup or coalescence and the size distribution remains the same. Thus the

Sauter diameter is constant in time.

When the initial condition is located below Dt coalescence takes place until all

bubbles smaller than Dt coalesce giving rise to bubbles larger than Dt. This can be

seen in Fig. 5.15 where the time evolution of the size distribution for this case is

shown. This is why d32 initially increases in Fig. 5.14.

Finally, when D0 > DMax, bubbles breakup up until no bubbles larger than DMax

are present. This can be observed in the size distribution time evolution shown in

Fig. 5.16, and in Fig. 5.14, where d32 decreases with time.
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Figure 5.15: Size distribution time evolution in salt water when the initial condition
is a monodispersed size distribution centered at D0 = 7.542 × 10−2 mm.

Figure 5.16: Size distribution time evolution in salt water when the initial condition
is a monodispersed size distribution centered at D0 = 12.0 mm.
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CHAPTER 6
ATHENA R/V

The US Navy research vessel Athena II R/V is a decommissioned PG-84 Asheville-

class patrol gunboat transformed into a high-speed research vessel in 1976. The

waterline length of the Athena is L = 47 m, and propelled by a gas turbine it can

reach maximum speeds of 18 m/s (35 knots). The Athena II R/V is fitted with a

skeg, starboard and port roll stabilizers and a compound masker system to entrain

bubbles and reduce the ship’s radiated noise. The masker is a ring fitted around

the hull at approximately x/L = 0.45. A 3D view of its geometry not including the

propellers can be seen in Fig. 6.1.

Figure 6.1: Athena II R/V geometry. Propellers are omitted.

This chapter presents the results from three set of simulations. In Section 6.4

a single phase computation (i.e. the bubbly field is not simulated) of the self-

propelled Athena R/V is presented. The results from this simulation are used

to analyze the turbulent field and velocity profiles in the boundary layer which

in turn, are responsible for the breakup of bubbles in the boundary layer. The
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analysis of the computed solution allows to assess the importance of breakup

in the boundary layer and serves to identify some modeling deficiencies. The

remaining two simulations model the polydispersed bubbly flow around Athena.

In Section 6.5.1, a first set of simulations is carried out using a body force model for

the propellers in order to save in computational cost. In these simulations, different

intergroup transfer mechanisms are selectively enabled/disabled in order to asses

their relative importance. In Section 6.5.2, a third and last simulation performed for

this thesis includes the rotating propellers and Athena is in self-propelled condition

i.e. , the resulting thrust from the propellers (which is a result from the computation)

balances the ship’s resistance. This last computation is mainly used to assess the

code robustness and efficiency and as a test for the new developed two-phase

capability.

All simulations presented in this thesis are performed in full scale. The author

would like to stress the importance of performing these simulations in full scale

in order to have a more realistic prediction of the turbulent field around the ship

which, in turn, directly affects the intergroup transfer mechanisms and turbulent

mixing or dispersion. It was customary in the past to perform these simulations

with the liquid phase in model scale and to scale turbulent quantities to full scale

in the dispersed phase equations (see Carrica et al., 1998, 1999; Moraga et al., 2008).

Recently added capabilities to CFDShip-Iowa V4.5 allow to perform simulations in

full scale (Bhushan et al., 2009; Castro et al., 2011) and with discretized propellers

(Carrica et al., 2010a; Castro et al., 2011).

6.1 Summary of Experiments

To the knowledge of the author, the only experimental campaigns to date where

near field two-phase measurements were carried out on the full scale Athena II R/V

are the ones by Terril and Fu (2008) (see also Terril et al., 2005), Jeon et al. (2008)

and Johansen et al. (2010).
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In the experiment performed by Terril and Fu (2008) an array of twelve con-

ductivity probes is used to measure void fraction at the stern of Athena II R/V.

Measurements were performed during the May 2004 campaign at different depths

and lateral positions for speeds ranging from 1 to 6.6 m/s (2 to 12.8 knots). These

measurements revealed the presence of a sharp decrease on the gas volume fraction

with depth, separating the recirculating region above the transom corner with the

boundary layer developed by the hull. Optical sizing measurements performed

with a shadowgraph technique below the hull line at the transom, in regions of

low gas volume fraction, resulted in a peak in the number density distribution for

bubbles at around 15 µm in radius.

In the measurements performed by Jeon et al. (2008), a defocussing DPIV

(DDPIV) is used. The experiment took place during the same May 2004 cam-

paign at two locations: nearby St. Charles Bay and the Gulf of Mexico with higher

salinity water. Measurements were taken at two locations, one near the port pro-

peller and the other near the centerline. Data was taken at night since the camera

used cannot distinguish between bubbles illuminated by sun light or by laser. Void

faction and size distributions are reported. Their experiments reveal higher void

fractions when measuring in St. Charles Bay which has lower salinity waters.

Bubble sizes were found to be generally larger in the bay. This is expected since

coalescence is inhibited as salt concentration increases.

The experimental campaign by Johansen et al. (2010) took place in the week of

April 20 to 24, 2009. The measurements were performed using double tipped opti-

cal local phase-detection sapphire probes. Measurements were taken downstream

of the bow breaking wave, the aerator masker and in the highly ventilated transom

stern flow, for velocities ranging from 3.1 to 6.2 m/s (6 to 12 knots). Probes made

from polished 375 µm and 390 µm sapphire rods by RBI in Meylan, France are used.

In addition the authors manufactured a smaller probe from a 125 µm sapphire fiber.
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A double dome shape size distribution is found at the stern at depths below 0.5 m

with peaks at bubble radius of 80 µm and 800 µm.

6.2 Geometry and Grids

The computations of Athena presented in this work are performed on the fully

appended geometry including: skeg, masker, stabilizers, struts and propeller shafts

and rudders. Symmetry along the y-axis allows to model half of the geometry and

save computational work. The full system of grids, not including the propellers,

is shown in Fig. 6.2 and consists of 21 blocks. This grid system is used in the

Figure 6.2: Mesh system used in the computation of the Athena II R/V.

computations of Athena where the propeller is modeled with a body force using

the Hough and Ordway (1964) load distribution. Refinement blocks are located at

the bow and masker to resolve in fine detail the breaking waves that occur there.



187

Three levels of refinement are used at the bow, with a total of 6.3 millions of nodes.

At the masker, three levels of refinement are used as well, with a total of 2.9 millions

of nodes. A high level of refinement is used in these zones to test the sub-grid air

entrainment model by Ma et al. (2010a). Being this a sub-grid scale model, a high

level of resolution is needed to capture plunging waves as required by the model.

Additional refinement blocks are also located at the stern. The complete mesh

system is formed by a total of 19.15 million grid points.

The mesh system used in the computations of the self-propelled Athena with

discretized propeller is shown in Fig. 6.3. This mesh system is the same used for

Figure 6.3: Mesh system used in the computation of the self propelled Athena.

the computations of Athena with body force model to which the propeller mesh
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system is added. The particulars of this system are summarized in Table 6.1. The

Table 6.1: Grid system for the self-propelled computations of Athena

Grid Points Processors Rotates with propeller

Bare hull 998,448 18 No
Bow refinement 1 1,363,096 24 No
Bow refinement 2 2,701,851 48 No
Bow refinement 3 2,253,411 40 No
Rudder body 341,138 6 No
Rudder cap 114,840 2 No
Skeg 229,653 4 No
Stabilizer body 232,050 4 No
Stabilizer cap 115,412 2 No
Shaft collar 114,660 2 No
Shaft 337,155 6 No
Shaft cap 115,425 2 No

Propeller background 453,951 8 No
Hub 336,960 6 No
Propeller blade tip 4 × 337, 881 4 × 6 Yes
Propeller blade. Pressure side. 4 × 112, 896 4 × 2 Yes
Propeller blade. Suction side. 4 × 112, 896 4 × 2 Yes
Propeller refinement 894,596 16 No

Strut port 115,169 2 No
Strut starboard 115,169 2 No
Masker 229,878 4 No
Masker refinement 1 910,616 16 No
Masker refinement 2 1,804,971 32 No
Stern refinement 4,001,500 72 No
Free surface ref. 1,608,750 42 No
Background 994,653 18 No

Total 22,638,044 416

full system, including the discretized propeller, contains a total of 22.64 million

nodes, in 35 blocks, distributed among 416 processors. In addition, the overset

solver, SUGGAR (Noack, 2005), is run with 4 processes spanning 32 processors
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(due to memory requirements). In total, the computation uses 448 processors. The

additional mesh system of the propeller is shown between horizontal lines in Table

6.1. The mesh system for Athena without the discretized propeller is exactly the

same presented in Table 6.1 but without the mesh system for the propeller. More-

over, given that motions are not computed in the computation without propeller,

every block in the system is distributed in half of the processors shown in Table

6.1. Therefore, the computation not including the propeller is distributed among

174 processors and the overset solver is not called at runtime (overset information

is computed as a pre-processing step).

6.3 Conditions Used in the Simulations

The conditions for the simulations are set to match those of the experiments

performed by Johansen et al. (2010), i.e. the simulations are performed in full

scale. It is important to perform the simulations in full scale in order to have

a more realistic prediction of the turbulent field since this finally determines the

breakup and coalescence rates. Moreover, the correct prediction of the turbulent

field reproduces the turbulent mixing of bubbles (or turbulent dispersion) more

accurately. From the conditions of the experiment, the ship cruise velocity is set to

U0 = 5.4 m/s. From Johansen et al. (2010) it is known that the ship encountered small

amplitude heading waves with a wavelength λ = 35.2 m. Therefore, incoming

waves are imposed at the inlet of the domain to match the wave length observed

in the experiments. The periodic encounter of the ship with the waves induces a

periodic wave breaking at the bow which in turn produces a periodic entrainment of

bubbles. Since this was observed in the experiment, the incoming waves boundary

condition seeks to match the experimental observations. Using the above cruise

velocity and Athena’s length as the reference velocity and length scales respectively,

the Froude and Reynolds numbers are Fr = 0.252 and Re = 2.53× 108, respectively.
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6.4 Breakup in Athena’s Boundary Layer

This section presents a study on the magnitude of the turbulent quantities in

the boundary layer of Athena R/V and on the potential for breakup and generation

of small bubbles in the boundary layer. The study is performed on a single phase

solution, i.e. no bubbles are present, since it is assumed that the turbulent field does

not suffer significant changes in the presence of bubbles. A single phase solution

is computed for the fully appended Athena with discretized propeller and with

the conditions described in Section 6.3 and the mesh system presented in Section

6.2. Velocity profiles and turbulence dissipation profiles are analyzed in order

to determine the potential for breakup by shear and turbulence, respectively, in

the boundary layer. Velocity and turbulence dissipation are a direct result from

computations performed with CFDShip-Iowa V4.5 which, as described in Section

4.1, uses a k-ω blended turbulence model.

In fluid flows around complex geometries such as the hull of a ship, the bound-

ary layer can vary significantly from point to point on the ship’s surface. In order

to carry out an ordered analysis of this boundary layer, it is desirable to find a

small set of parameters describing the processes involved such that, analyzing a

few cases with these parameters spanning their range of possible values, would

cover most of the flow conditions around the hull.

One of the most relevant quantities in boundary layer flows is the boundary

layer thickness. The thickness of the boundary layer is directly related with the

velocity gradients in it: the thinner boundary layer the higher the velocity gradients

are. Similarly, a direct relation exists between velocity gradients and the wall shear

stress: a higher velocity gradient implies a higher wall shear stress. This is the

reason why, in boundary layer theory, the wall shear stress τw plays an essential

role and is used to form dimensionless groups describing the problem. A velocity

scale is formed as uτ =
√
τw/ρ and a length scale is formed as δτ = ν/uτ, where ρ
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and ν are, respectively, the density and kinematic viscosity of the fluid. Using these

velocity and length scales the variables of the problem can be non-dimensionalized

as

y+ =
y
δτ

=
uτy
ν

(6.1)

u+ =
u
uτ

(6.2)

ε+ =
ε

u3
τ/δτ

=
νε

u4
τ

(6.3)

where y is used to denote the distance normal to the wall and u (at least in this sec-

tion) is the velocity component tangent to the wall. These non-dimensionalizations

are of paramount importance since they allow to collapse different boundary layer

profiles that may have different velocities and thicknesses into one single universal

profile. Of particular importance is the logarithmic law of wall

u+ =
1
κ

ln y+ + B (6.4)

where κ = 0.41 is the Kármán constant and B ≈ 5.1 for smooth surfaces.

Note that the boundary layer length scale δτ is inversely proportional to the

wall shear stress τw and thus, the higher the wall shear stress, the thinner the

boundary layer characteristic length. In addition, the velocity gradient at the wall

is du/dy = τw/µ, with µ the fluid’s dynamic viscosity. Therefore, a higher wall

shear stress is an indicative of higher velocity shears in the boundary layer.

The above discussion highlights the importance of the wall shear stress τw as a

parameter used to identify the boundary layer strength and thickness. Therefore,

this parameter is chosen to be used as a metric to characterize the boundary layer

strength at different locations along the hull of Athena.
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6.4.1 Frictional Resistance and Wall Shear Stress

This section quickly shows the existing relation between the frictional resistance

coefficient C f (to be defined in what follows) and a mean wall shear stress. The

frictional resistance coefficient C f is standard when reporting frictional resistance

for ships and reference values for Athena can be found in the literature. A direct

relation between frictional resistance and mean wall shear allows to compute a

reference wall shear stress from validated values of frictional resistance. Wall shear

stresses at different locations along the hull can then be compared against this mean

value to classify them as stronger or weaker boundary layers.

From computations performed with CFDShip-Iowa V4.5 the frictional resis-

tance coefficient C f is obtained. This is defined as

C f =
F f ,x

1/2 ρ U2
0 S0

(6.5)

where F f ,x is the frictional drag force and the subscript x is used since the drag force

is assumed to act in the x-coordinate direction. U0 is a reference velocity taken to be

the ship’s cruise speed and S0 is the hull’s wetted area when the ship is at rest. The

frictional force is computed as the surface integral of the wall shear stress along the

hull

F f ,x =

∫
∂Ω

d2r τw,x (6.6)

where τw,x is the x component of the wall shear stress and ∂Ω denotes the ship’s

surface. Equation (6.6) can be written in terms of a mean wall shear τ̄w as

F f ,x = S0τ̄w (6.7)

where τ̄w was defined as

τ̄w =
1
S0

∫
∂Ω

d2r τw,x (6.8)
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With these definitions, the frictional resistance coefficient can be written as

C f = 2
τ̄w

ρU2
0

= 2τ̄∗w (6.9)

where the asterisk on τ̄w, as in Section 3.11, is used to denote the dimensionless wall

shear stress. Then, the frictional resistance coefficient is twice the dimensionless

mean wall shear stress. The asterisk is omitted from now and the wall shear τw is

understood to be dimensionless unless explicitly stated otherwise.

In order to analyze Athena’s boundary layer, a single phase computation is

carried out and wall shear stresses along the hull are computed and analyzed.

The computation is performed for the fully appended Athena at fixed sinkage and

trim with discretized propeller. Reynolds and Froude numbers are computed at

full scale based on Athena’s length L0 = 47 m and cruise speed of U0 = 5.4 m/s

resulting in Re = 2.53 × 108 and Fr = 0.252. Since the computation is carried out

at full scale, wall functions are used and the walls are assumed to be smooth. The

predicted frictional resistance is C f = 1.825 × 10−3. This result is in agreement

with the computations reported by Bhushan et al. (2009) and with the ITTC 1957

frictional line1. Then, from Eq. (6.9), the expected wall shear values along the hull

would be around τ̄w = 9 × 10−4.

Figure 6.4 shows Athena’s hull colored with the magnitude of the wall shear

stress. The gaps on the hull are are a rendering artifact due to the use of overset

grids. This figure shows that the shear stress along the hull spans values that

go from 5.0 × 10−4, about half of τ̄w, to 2.0 × 10−2, about twenty times τ̄w. Wall

shear stresses are higher at appendages like the stabilizers and rudders since a new

boundary layer starts to develop at the leading edge. Wall shear is significantly

higher on the propeller blades since these move at a much higher velocity than the

ship with respect to the surrounding water. Low shear is observed at the stern of

1C f = 0.075/(log10(Re) − 2)2
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the ship where the boundary layer is the thickest and in separation zones on the

rudder and struts.

Figure 6.4: Athena’s hull colored with wall shear stress. Dimensionless.

6.4.2 Boundary Layer Profiles

Four locations along Athena’s hull were selected to study breakup in the bound-

ary layer. Based on the above discussions, these locations were selected in order

to span the range of wall shear stresses shown in Fig. 6.4. In this way, the selected

boundary layers have different thicknesses and span different ranges of veloc-

ity gradients and turbulent dissipations. From these locations a line is extended

outwards normal to the hull and solution variables are extracted to perform the

analysis. Figure 6.5 shows the four selected locations with spheres in magenta

along with the extracted lines normal to the wall shown in black.

Table 6.2 summarizes wall shear stresses at these locations. Wall shear stresses

at locations 1 and 2 are very close to the mean wall shear stress τ̄w and thus these

locations are thought to represent the mean boundary layer flow along the hull.
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Figure 6.5: Sample boundary layer locations on Athena’s hull.

Location 3 is positioned on the stabilizer. Here the wall shear stress increases since

a new boundary layer starts to develop from the leading edge of the stabilizer. At

this location the shear stress is twice the mean wall shear stress. At location 4, on a

propeller blade, the wall shear stress is about eight times the mean wall shear stress.

This is due to the high rotational velocity of the propeller blades. At this location,

since the propeller is rotating, the wall velocity is subtracted before performing

the analysis on the velocity profile. In addition, Table 6.2 also summarizes the

distances to the first node from the wall, y1, and y+. For these four locations, y+ is

well inside the range of validity for wall functions to work properly. It is important

to observe that the wall spacing at the propeller blades is significantly smaller to

attain a proper value of y+ that allows the use of wall functions. Locations with

τw < τ̄w, like at stern with a wide boundary layer, are not analyzed since breakup

at these locations is not as strong.

Profiles of velocity u+ and turbulence dissipation ε+ are shown in Fig. 6.6. As

expected, the velocity follows the universal logarithmic law of the wall for y+ . 500.

The dimensionless turbulence dissipation ε+ obeys a universal law as well. This
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Table 6.2: Wall shear stresses (dimension-
less) at the selected locations along with
y+ and distance to the first computational
node from the wall y1.

Location τw [-] y+ [-] y1 [µm]

1 9.21 × 10−4 30.58 186.6
2 1.00 × 10−3 24.00 140.3
3 2.00 × 10−3 33.93 140.4
4 8.13 × 10−3 22.88 47.0

law is of the form ε ∼ y+−1, (see Wilcox, 2006).

(a) Velocity. (b) Turbulence dissipation.

Figure 6.6: Boundary layer profiles

6.4.2.1 Turbulence dissipation profiles and breakup by turbulence

Turbulence dissipation, this time with units, is shown in Fig. 6.7. Even though

the non-dimensionalization in Fig. 6.6b makes all curves to fall into one single

curve, Fig. 6.7 shows that these profiles are substantially different from each other.
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(a) Location 1. τw = 9.21 × 10−4 (b) Location 2. τw = 1.00 × 10−3

(c) Location 3. τw = 2.00 × 10−3 (d) Location 4. τw = 8.13 × 10−3

Figure 6.7: Turbulence dissipation profiles at the four selected locations.

In all locations ε ∼ y−1 inside the log layer though the reader should be aware of

the different scaling used in the axes. Turbulence dissipation at locations 1 and 2

are similar as expected since the wall shear stresses at these locations are similar.

Still, wall stress at location 2 is higher and thus the slightly higher dissipation and

thiner boundary layer. As the wall shear stress increases turbulence dissipation

increases and boundary layer thickness decreases. At location 3, with a wall shear

about twice the mean shear, dissipation reaches values higher than 100 m2/s3 while

at locations 1 and 2 dissipation is always below this number. At location 4, on one
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of the propeller blades, turbulence dissipation reaches even higher values, up to

above 5000 m2/s3.

In order to have an idea of what these turbulence levels mean, the reader is

referred back to Fig. 3.4 in Section 3.3.1, where the maximum stable diameter is

shown as a function of turbulence dissipation. Some of the values predicted with

the model by Lehr et al. (2002) are: at ε = 1 m2/s3, D = 2.6 mm at ε = 100 m2/s3,

D = 330 µm and at ε = 5000 m2/s3, D = 63 µm. This shows that in most of the

boundary layer around the hull the breakup of bubbles with a diameter below

300 µm does not occur. Another observation is that breakup in the boundary layer

of the propeller blades is a good candidate for the generation of small bubbles.

At this point, the following observation should be made. Let us take location

2 as an example and lets say a bubble with R = 3 mm is on the wall and thus its

center is located at y = 3 mm. At its center, and from Fig. 6.7b, ε = 5 m2/s3, on its

side opposite to the wall, ε = 2.5 m2/s3 and next to the wall, dissipation reaches ε ≈

100 m2/s3. Therefore, this bubble is exposed to a highly inhomogeneous turbulent

field. Not only inhomogeneous but also highly anisotropic. The models presented

in Section 3.3 for bubble breakup by turbulence assume both homogeneity and

isotropy of the turbulent field. No models that correct for this situation are known

to the author; in this work the models for breakup in Section 3.3 are assumed to be

applicable.

6.4.2.2 Velocity gradient profiles and breakup by shear

Figure 6.8 shows velocity gradients at the four selected boundary layer locations.

These velocity gradients are the resolved velocity gradients obtained by taking the

gradient of the velocity vector. As expected, higher velocity gradients are attained

at locations with a higher wall shear stress.
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Figure 6.8: Velocity gradients in the boundary layer.

The capillary number introduced in Section 3.3.2 is computed as

Ca =
µcγ̇R
σ

(6.10)

and then, given a fixed resolved shear rate γ̇u = du/dy the capillary number

increases linearly with the bubble radius. Thus, larger bubbles are easier to break

than small ones.

The modeled part of the velocity gradient, as presented in Section 3.3.2, depends

on the local level of turbulence and on the relevant turbulent length scale which is

taken to be the bubble diameter. The estimate for the turbulent shear in Eq. (3.84)

can be rewritten in terms of the bubble diameter and turbulence dissipation only

as

γ̇t =
u(D)

D
=

(2/3)1/2

C1/3
µ

ε1/3

D2/3 = 1.822
ε1/3

D2/3 (6.11)

and using the definition for the capillary number in Eq. (6.10) the turbulent contri-
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bution to the capillary number is

Cat = 1.148
µc

σ
(εR)1/3 (6.12)

which for a fixed dissipation increases with R1/3.

Figure 6.9 shows the capillary number as a function of the bubble radius com-

puted with both, the resolved and modeled shears.

(a) Capillary number computed with a given re-
solved velocity gradient.

(b) Capillary number computed with the mod-
eled shear given a turbulence dissipation.

Figure 6.9: Capillary number as a function of bubble radius

The values used for du/dy and ε are taken to represent the range of values in

Figures 6.8 and 6.7 respectively. According to the experimental data taken by Grace

(1982), the critical shear for the air water system would be Cacrit ≈ 1.3. A lower

value of about Cacrit ≈ 0.5 is reported for tip streaming by the same author though

no experiments are available for sea water (nor for fresh water) that would allow

to develop a complete model. According to the proposed estimate for the modeled

turbulent shear it can be concluded from Fig. 6.9b, that turbulent shear does not
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induce the breakup of bubbles even for the high dissipation rates observed at the

boundary layer of the propeller blades. The author would like to point out that the

proposed estimate for turbulent shear in Eq. (6.11) is by no means assumed to be

accurate but rather an estimation of the order of magnitude. Still, Fig. 6.9b shows

that even if this estimate is multiplied by a factor of ten, turbulent shear would

not be strong enough to induce breakup of bubbles in the boundary layer. On the

other hand, Fig. 6.9a shows that breakup by resolved shear is possible but only

with velocity gradients as high as du/dy ≈ 105 s−1. These gradients are observed

at the propeller blades in Fig. 6.8 for location 4. However, a velocity gradient of

du/dy ≈ 105 s−1 is reached at location 4 at a distance of y = 30 µm, while from

Fig. 6.9a a bubble can be split by this gradient if it is of about 1 mm in radius or

larger. Therefore, even if a bubble is right next to the wall this large gradient strong

enough to break it would only act in about 1.5% of the bubble’s diameter. It is not

clear to the author whether this situation would induce the breakup of a bubble or

not and even if this is the case, there is no experimental data on a similar situation

that would give any support to the model.

Another way to show the same information contained in Fig. 6.9, is to compute

the capillary number as a function of the distance to the wall for several bubble

radii. This is shown in Figures 6.10a and 6.10b for locations 1 and 4 respectively.

If location 1 is taken to represent the mean boundary layer flow on Athena’s

hull, then it is concluded from Fig. 6.10a that shear will not induce bubble breakup

in most of Athena’s boundary layer. Figure 6.10b shows that the high shear rate

at the boundary layer of a propeller blade would be powerful enough to break a

large bubble with D = 5 mm but once again, this high shear would only act in a

portion of the bubble that represents only 2% of its diameter.
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(a) Location 1 (b) Location 4

Figure 6.10: Capillary number in the boundary layer for different bubble diameters.

6.4.3 Breakup Modeling Issues in the Boundary
Layer

The above exposition leads to the conclusion that breakup by shear at the

boundary layer of Athena, and according to the proposed models, most likely does

not occur. It should be noted, however, that the estimates in the above discussion

are based on experimental data where only breakup by pure viscous shear occurs.

The situation in a turbulent boundary layer (and generally in any shear driven

turbulent field) is far more complex than this and Fig. 6.11 attempts to illustrate

the idea.

In this figure a bubble is exposed to a shear rate γ̇ for which the capillary num-

ber Ca is below the critical value to induce bubble breakup. Under this condition,

the bubble affinely deforms to a steady state shape (provided the shear is imposed

for long enough) and the amount of deformation depends on the magnitude of the

shear stress (Elemans et al., 1993). Once the bubble has become highly extended,

small distortions (known as Rayleigh distortions), start to develop along the de-

formed bubble and, depending on the viscosity ratio, one distortion wavelength
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Figure 6.11: Nonlinear coupling of shear induced deformations with turbulent
fluctuations on the breakup of bubbles.

turns out to be dominant and ultimately causes the bubble breakup (Elemans et al.,

1993). These distortions are depicted in the last stage in Fig. 6.11. In a boundary

layer, these distortions may couple with the induced fluctuations by turbulence.

This highly non-linear interaction between shear and turbulence could eventually

induce the breakup of bubbles even when the separate effects could not be strong

enough to induce it. In addition, it is uncertain if these Rayleigh distortions could

eventually resonate with any of the length scales of the turbulent fluctuations. Not

only the interaction between these two effects set a challenge for the modeling of

breakup in the boundary layer, but also the highly inhomogeneous and anisotropic

turbulent field with boundary layer thicknesses in the order of the bubble diameters

present in the bubbly field.

Another issue in the modeling of breakup in the boundary layer is related with

the turbulent scales present. A characteristic turbulent length can be estimated

from the modeled values of turbulent kinetic energy k and turbulence dissipation ε

as `0 = Cµk3/2/ε (this is Eq. (3.80)). This scale is characteristic of the largest eddies in

the turbulent energy spectrum and typically falls right before the energy spectrum

decay with Kolmogorov’s 5/3 law (see §6.5.3 in Pope (2000) where this length,
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called L in the reference, is used in a model spectrum to characterize the largest

scales). The characteristic length `0 is computed at the four selected boundary layer

locations and is shown in Fig. 6.12.

Figure 6.12: Turbulent length scale `0 in the boundary layer.

As expected, since `0 is a characteristic length of the largest eddies, `0 < y inside

the log layer and `0 ∝ y in agreement with the boundary layer theory. From Fig.

6.12, for y = 1 mm for instance, `0 ≈ 0.2 mm. This would mean that a bubble

with a diameter of D = 2 mm laying on the wall would be exposed to a turbulent

field containing a continuum of eddy sizes ranging from the Kolmogorov scale to

a length of about `0 ≈ 0.2 mm. Therefore, the bubble size in this case is larger

than the maximum eddy size in the surrounding turbulent field. This situation

is not considered in modern turbulence induced breakup models, which typically

assume that bubbles are immersed in a turbulent field containing all eddy sizes

between the Kolmogorov scale and eddy sizes larger than the bubble diameter. This

assumption is made in the works by Lehr et al. (2002) and by Luo and Svendsen

(1996a) where the breakup kernel is computed from the frequencies of arriving
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eddies ω(D, λ), with λ the eddy size, and the probability that collision leads to

breakup P(λ,D,D′). The total breakup kernel is then obtained by integrating the

contributions from different eddy sizes over all sizes from a minimum eddy size

λmin (which is different for each model and the reader is referred to the original

references for the details) to the bubble diameter D

b(D) h(D′,D) =

D∫
λmin

dλω(D, λ) P(λ,D,D′) (6.13)

In order to correct for the fact that the full spectrum of eddy sizes is composed

by eddies smaller than the bubble size diameter, these models should be modified

to

b(D) h(D′,D) =

min(D,`0)∫
λmin

dλω(D, λ) P(λ,D,D′) (6.14)

and therefore the modified model would predict a lower breakup rate for the same

turbulence dissipation, if no other effects like the non-linear coupling between

shear and turbulence are considered. Still, the above proposal does not include

a correction for the highly inhomogeneous turbulence in the boundary layer. It

should be noted that for the above mentioned models the turbulent field is com-

pletely defined by specifying the turbulence dissipation ε while typically at least

two parameters are needed to describe an homogeneous turbulent field (as done

in two-equations turbulence models). With the proposed modification, since `0 de-

pends on both the dissipation and the turbulent kinetic energy, the breakup kernels

would then become dependent of two parameters, k and ε.

The above discussion identifies a series of weaknesses in the model of breakup

inside a boundary layer. To the knowledge of the author, there is no work, either

theoretical or experimental, studying the plausible non-linear interaction between

shear and turbulence that might lead to additional breakup in the boundary layer.
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Corrections accounting for cases where turbulence scales are smaller than the bub-

ble size or for the large inhomogeneity of the turbulence field are not found in the

literature either.

6.5 Bubbly Flow Around Athena

This section presents two different set of simulations. In the first set the propeller

is modeled using a body force model while in the second set the propeller is fully

discretized by the grid system. Since no motions are computed for the first case, and

therefore is less computationally intensive, this case is used to test the influence of

different intergroup transfer terms by selectively enabling/disabling them in a series

of different simulations. The second case includes the prediction of the propeller

rotational speed needed to attain the self-propulsion point and is therefore highly

computationally intensive due to the additional work necessary to compute new

overset interpolations at each time step and in addition it uses a smaller time step

to resolve the propeller dynamics.

However, for both the body force and discretized propeller models, the main

parameters defining these simulations are the same and differences are highlighted

accordingly in the respective sections. Conditions are set as commented in Section

6.3 according to the conditions of the experiment carried out by Johansen et al.

(2010), with a cruise speed of U0 = 5.4 m/s resulting in Reynolds and Froude

numbers Re = 2.53 × 108 and Fr = 0.252, respectively. Incoming waves with wave

length λ = 35.2 m and amplitude a = 5 cm are imposed as a boundary condition at

the inlet of the computational domain. The addition of the bubbly phase introduces

the new dimensionless numbers summarized in Table 3.1. Taking the air density

at STP ρd,0 = 1.204 Kgr/m3, the water density ρc = 1024.93 Kgr/m3 (from Sharqawy

et al. (2010), at a salinity S = 35 g/L and temperature T = 20 ◦C)2, the surface tension

2For fresh water at the same temperature ρc = 998.207 Kgr/m3 being a 2.64% lower than that for
sea water.
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σ = 73.5 mN/m, the atmospheric pressure patm = 101.325 kPa, the diffusivity of air

in water κ = 2 × 109 m2/s and the Henry constant H = 2.38 × 10−4 g/Nm, the

additional dimensionless numbers for the two-phase computation are: the density

ratio πρ = 1.17 × 10−3, the Weber number WeL = 1.91 × 107, the Euler number

Eu = 3.39, the Schmidt number Sc = 500.0 and the dimensionless equilibrium

concentration C∗
∞

= 0.02.

The discretization in bubble sizes is set to span the complete range observed

in the experiment. The size distribution measured at the bow of the Athena by

Johansen et al. (2010) is used as the size distribution for the entrainment model.

The measured number density distribution reported by Johansen et al. (2010) is

first fitted to a power law of the form f (R) = b Ra, with R the bubble radius and

the exponent a = −2.35. The maximum reported bubble radius is R = 2.5 mm and

therefore the entrainment bubble size distribution is assumed to be zero for larger

radii. Measurements by Terril and Fu (2008) report a number density distribution

that peaks at about R ≈ 15 µm. Then the entrainment size distribution is assumed

to linearly go to zero for smaller bubbles and therefore it also exhibits a peak at

R = 15 µm.

The range of interest, defined for bubbles with radius between 10 µm and 4 mm,

is then discretized in 15 group sizes uniformly distributed on a logarithmic scale.

These are summarized in Table 6.3 along with the group-g size distribution Dent
g

and the dimensionless radius and bubble mass. The group-g entrainment size

distribution is computed as described in Section 3.8.

The entrainment depth in Eq. (3.103) is set to φent = 10 cm to ensure that the

region near the free surface where the model activates is well resolved by the grid.

The near wall integration distance introduced in Section 4.6.1 is set to δw = 1 cm.

According to the results from Chapter 5, the model of Lehr et al. (2002) is used

for the prediction of turbulence induced breakup and the model of Prince and
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Table 6.3: Bubble size discretization in groups and entrainment
size distribution.

Group Radius [µm] Radius [−] mg [-] Dent
g

1 10.00 2.13 × 10−7 4.03 × 10−20 3.13 × 10−1

2 15.34 3.26 × 10−7 1.46 × 10−19 2.90 × 10−1

3 23.54 5.01 × 10−7 5.26 × 10−19 1.75 × 10−1

4 36.11 7.68 × 10−7 1.90 × 10−18 9.80 × 10−2

5 55.39 1.18 × 10−6 6.86 × 10−18 5.50 × 10−2

6 84.98 1.81 × 10−6 2.48 × 10−17 3.09 × 10−2

7 130.37 2.77 × 10−6 8.94 × 10−17 1.73 × 10−2

8 200.00 4.26 × 10−6 3.23 × 10−16 9.72 × 10−3

9 306.83 6.53 × 10−6 1.17 × 10−15 5.45 × 10−3

10 470.71 1.00 × 10−5 4.21 × 10−15 3.06 × 10−3

11 722.13 1.54 × 10−5 1.52 × 10−14 1.72 × 10−3

12 1107.84 2.36 × 10−5 5.49 × 10−14 9.64 × 10−4

13 1699.55 3.62 × 10−5 1.98 × 10−13 5.41 × 10−4

14 2607.35 5.55 × 10−5 7.15 × 10−13 9.38 × 10−5

15 4000.00 8.51 × 10−5 2.58 × 10−12 0.00

Blanch (1990a) (implemented as presented in Section 3.2, including both turbulent

fluctuations and relative velocity terms) for the estimation of bubble coalescence.

The modification for coalescence modeling in sea water proposed in Section 3.5 is

used as well.

The RANS equations of motion for the fluid are solved together with the two-

phase k-ω blended model for turbulence presented in Section 3.6.

6.5.1 Effect of different intergroup transfer
mechanisms

This section presents the set of simulations performed on Athena’s full geometry

including all appendages as presented in Section 6.2 but where the propeller is not

included as part of the geometry but rather its effects are considered using a body

force model. The propeller model uses the well known load distribution of Hough

and Ordway (1964) with zero loading at the root and the tip. The ship is fixed at
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even keel condition and thus is not allowed to move. Given these conditions, there

are no motions that need to be predicted as part of the computation for this case.

Therefore, the overset information is computed only once as a preprocessing step

and it does not need to be updated during the computation. The time step used is

rather large given that the turbulence model averages out the smallest scales and

is set to δt = 0.005 and thus 200 time steps are needed per ship length (with units

δt = 43.52 ms). Since no motions (and then overset information) are computed and

the time step is rather large, it is feasible to run this case several times with slightly

different conditions and perform comparisons. First, the entrainment strength S0

(see Section 3.8) is calibrated to adjust the amount of void fraction at the stern with

the available experimental results and several runs are needed. The procedure to

adjust this constant is iterative, and S0 is estimated for each new run considering

a linear relation between the constant and the void fraction level at the stern. The

relation between void fraction levels and S0 is not linear since the entrainment

depends on the void fraction. However, this estimation allows to converge to a

value of S0 after a few iterations (each iteration consisting of a new run of the

complete case). Applying this procedure the entrainment constant is found to be

S0 = 0.9 for the full model including intergroup transfer and is kept unchanged for

all the simulations presented herein.

Once the entrainment strength S0 that adjusts the void fraction at the stern is

found, five additional cases are run completing a total of six different cases. In

the first five cases the effect of the different intergroup transfer mechanisms on

the overall solution is investigated by selectively enabling/disabling them. The

different cases run and the labels used to identify them (in parenthesis) from now

on are: with no intergroup transfer (None), with breakup only (B), with coalescence

only (C), with breakup and coalescence (BC) and with breakup, coalescence and

dissolution (BCD). A final case (Full) includes all intergroup transfer mechanisms
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(as with BCD) and adds the oceanic background model from Section 3.9 and the

bubble growth by rectified diffusion in the propeller from Section 3.10.

For the given conditions, Froude number specifically, the solution exhibits a

wet transom and vortices are shed at the stern coupled with an unsteady motion

of the free surface. Moreover, the solution exhibits additional oscillations due to

the imposed incoming waves. To analyze the computed bubbly flow, the solution

is averaged over four wave encounter periods. For the imposed wave length the

encounter period is Te = 0.316 and over four encounter periods Athena travels

1.264 ship lengths. Therefore, in what follows, all the results are presented in terms

of mean quantities.

6.5.1.1 Three-dimensional solution

Before analyzing the solution at specific spatial locations, the overall three-

dimensional two-phase solution is inspected. Figure 6.13 shows the free surface

colored with contours of total void fraction αd. In this, and in all figures in this

chapter where void fraction contours are shown, colors are distributed on a log-

arithmic scale given the wide range of values the void fraction can take owing

to the fact that bubbles sizes span a wide range of scales as well. The bow and

stern experimental locations where measurements were taken by Johansen et al.

(2010) are shown in this figure as well. At these locations, Johansen et al. (2010)

measured void fraction and bubble size distribution at several depths. To be more

precise, the bow experimental location is at (x; y) = (0.284; 0.0779) and the stern

experimental location is at (x; y) = (1.0106; 0.021). The main entrainment locations

are also shown in Fig. 6.13. These are at the bow and masker breaking waves and

at the highly aerated stern and shoulder waves. Colors in this figure show void

fractions as high as 20%. However, some areas in the domain, specifically close

to the transom corner at the stern and at the entrainment locations during some

transients, the void fraction can be as high as 30% or even more. This illustrates
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Figure 6.13: Free surface colored with total void fraction αd for the BCD case. The
bow and stern experimental locations from Johansen et al. (2010) are shown.

the robustness of the code at high void fractions in unsteady computations. While

Fig. 6.13 shows mean void fraction, the actual solution is unsteady and the ship

encounters incoming waves as it moves. These incoming waves cause the entrain-

ment at the bow to be periodic with a period equal to the encounter period Te. The

unsteady breaking at the bow generates a periodic shedding of bubbles from this

location that are further transported downstream.

The evolution and shape of the bubbly wake behind Athena is better appreciated

in Fig. 6.14, where slices colored with void fraction are shown. Bubbles are

entrained at the bow breaking wave and along the contact line. Depending on

the size of these bubbles, some of them are pulled down the hull and transported

downstream. In addition to the slices, Fig. 6.14 shows Athena’s hull colored with

void fraction from where the amount of gas around the hull can be appreciated.

A depleted wake is observed downstream the stabilizers which is formed as the

stabilizers act as an obstruction to the free flow of bubbles and it is reinforced by

strong horse shoe vortices at their base. The last four slices before the stern of the

ship show that as the boundary layer widens towards the stern, the bubbly wake
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Figure 6.14: Slices colored with total void fraction showing the evolution of the
bubbly phase around and behind Athena. Hull is colored with void fraction as
well.

widens along with it. In addition, some of these bubbles are pushed down by

vortices shed from the shaft mountings and later on sucked by the propeller inflow

(the reader should recall that the action of the propellers in these simulations is

considered with a body force model). At the stern, the void fraction is high near

the free surface where air is entrained and a characteristic finger of bubbles is left

behind the propellers wake.

Figure 6.15 shows the computed solution for the Full case which includes the

oceanic background and rectified diffusion models. Free surface colored with void

fraction is shown in Fig. 6.15a. The main difference observed with Fig. 6.13 is

that, with the oceanic background, the void fraction is around αd = 10−4 at the free

surface while it is zero for the case with no background. Figure 6.15b shows slices

colored with void fraction for this case. The coloring used for the void fraction in

this figure is the same used in Fig. 6.14. Figure 6.14 shows that, on some areas of the

hull, the deeper ones, the void fraction drops bellow 2× 10−7 and these are colored

in dark blue. This clearly shows how deep bubbles are pulled down the hull. In
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(a) Free surface colored with void fraction. (b) Slices and hull colored with void fraction.

Figure 6.15: Full case including oceanic background and rectified diffusion model.

Fig. 6.15b, these blue areas in Fig. 6.14 now are colored with other contour levels

corresponding to higher void fraction levels. This extra void fraction is introduced

by the imposed oceanic background.

Far to the sides of the ship slices show a layer of bubbles near the free surface

corresponding to the oceanic background. The void fraction at the wake of the pro-

pellers is higher than in Fig. 6.14 due to growth by rectified diffusion of the bubbles

going through the propellers. The rectified diffusion model does not change the

number of bubbles that go through the propeller but, given that these bubbles grow

in size, the void fraction increases. While the wake behind the propellers in Fig.

6.14 exhibits a finger shape, the bubbly wake behind the propellers in Fig. 6.15b

exhibits a well defined circular shape covering the full area of the propellers. The

difference is caused by the additional background of bubbles coming into the pro-

pellers which are affected by rectified diffusion as well. However, the contribution

by bubbles from the boundary layer is stronger, and the finger is still noticeable

inside the propeller wake. Moreover, the finger in Fig. 6.14 is stronger in Fig. 6.15b

due to the growth of these bubbles by rectified diffusion.
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6.5.1.2 Void Fraction Profiles

The resulting void fraction profiles with depth are shown in Fig. 6.16. This

figure includes the experimental results from Johansen et al. (2010) (IIHR results)

and from Terril and Fu (2008). Johansen et al. (2010) reports measurements taken

with the ship going with and against the waves and these are labeled accordingly in

Fig. 6.16. The same figure is shown with the void fraction in linear and logarithmic

scale to highlight different features of the profile. This figure shows the results

from three cases: None, BCD and Full. Full is not shown in Fig. 6.16a since it

practically falls on top of the other two curves making the plot difficult to read. In

addition, these figures include a vertical line indicating the position of the bottom

of the transom. Both, the experiments and the simulations, see Fig. 6.16a, exhibit a

(a) Linear scale in void fraction. (b) Logarithmic scale in void fraction.

Figure 6.16: Void fraction profile with depth at the stern experimental location.

void fraction profile with a maximum at the free surface and with a clear transition

to low void fraction at the bottom of the transom. In the void fraction profile

reported by Terril and Fu (2008) no filtering was applied to account for the fact

that the free surface may cross their probe and thus they report a void fraction that
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includes bubbles and also the fraction of the time their probe is in air. On the other

hand, Johansen et al. (2010) do apply a filtering to account for void fraction in the

two-phase mixture only. This is why the void fraction reported by Terril and Fu

(2008) is higher than the one reported by Johansen et al. (2010). In this regard, since

the void fraction predicted by the model is only due to bubbles, the measurements

performed by Johansen et al. (2010) are more comparable with the results from

the simulations. It should be noted that even when the void fraction level at the

stern is adjusted by changing the value of the entrainment strength S0, the shape of

the profile and the sharp transition at the bottom of the stern are predicted by the

model. Figure 6.16b highlights the differences between the predicted results with

and without intergroup transfer and with the Full case. The predicted void fraction

is noticeably higher when intergroup transfer is active for depths below 0.6 m. This

difference is caused by an increased number of small bubbles created in breakup

events. Figure 6.16b also shows the Full case including oceanic background and

rectified diffusion at the propeller. Void fraction is higher for the Full case deep

below the free surface due to the additional background bubbles. In addition, the

void fraction increases at the depth of the propeller since bubbles going through

the propeller grow in size by rectified diffusion and thus void fraction increases the

expense of the air initially dissolved in the water. Figure 6.16b shows that the void

fraction in the experiments is higher than the one predicted by the simulations at

depths below the bottom of the stern. The reasons for this difference are unknown

to the author though some possibilities are, but not limited to: inaccuracy of the

entrainment model, underprediction of breakup in the boundary layer and oceanic

background modeling. In addition, the uncertainty of these measurements should

be reported as a result of the experiments. Experimental data acquisition at these

depths is not easy due to the high speeds involved and the difficult to access area

close to the propeller wake. Additional experimental work is needed to obtain a
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more reliable experimental data set.

To better appreciate the difference in the predicted void fraction at the stern

when enabling/disabling different models, Fig. 6.17 shows the void fraction profile

for the B, C and BC cases normalized with the void fraction predicted without

including any intergroup transfer mechanism.

Figure 6.17: Void fraction profile with depth at the stern experimental location.

For depths below 0.5 m the predicted void fraction profiles are very similar

and the quotient is close to one. At deeper depths the predicted void fraction

profiles start to differ from each other. Figure 6.17 shows that void fraction is the

highest when only breakup is active and that conversely, it is the lowest when

only coalescence is considered alone. This is due to the fact that, even when the

entrainment source is the same, breakup splits large bubbles into smaller bubbles

that stay in the water longer. Terminal velocity is higher for large bubbles and

therefore reach the free surface faster and escape from the domain. Conversely,

coalescence generates larger bubbles from the coalescence of small bubbles and

these larger bubbles, by the same buoyancy effect, leave the domain faster. The
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difference is more noticeably at depths below the transom bottom since above the

transom bottom the bubbly flows is mainly controlled by the entrainment source.

Bellow the transom bottom the bubbly flow is conformed mostly by bubbles pulled

down the hull from the entrainment regions and transported downstream. A

difference can be observed as well between cases B and BC. In agreement with the

above discussion, case BC predicts a lower void fraction than case B indicating

that bubbles coalesce to form larger bubbles and leave the domain through the free

surface.

Predicted void fraction at the experimental bow location is shown in Fig. 6.18

with and without intergroup transfer included. This figure compares the computed

results with the measurements from Johansen et al. (2010). Ideally, the entrainment

source strength S0 would be adjusted to match the void fraction at this location and

then the void fraction level at the stern would not need to be adjusted but it would

be predicted. However, matching the void fraction at the bow would require such

a large entrainment strength that void fraction would saturate at the packing void

fraction αcrit (introduced for the entrainment model in Eq. (3.108)) in most of the

rest of the domain. Is for this reason that the source strength is adjusted to match

the void fraction at the stern instead.

This is a deficiency of the entrainment model and, as observed in Fig. 6.18,

matching the void fraction at the stern largely underpredicts the void fraction at

the bow. Due to the magnitude of this mismatch the predicted and measured void

fractions are shown on two different scales off by a factor of 200.

6.5.1.3 Size Distribution

Figures 6.19, 6.23, 6.25, 6.27, 6.29 and 6.31 show the void fraction distribution

αR(R) (defined in Eq. (2.7) in terms of the mass variable, see Section 2.4.2 for details

on the transformation of variables) at the stern experimental location as a function

of depth. These distributions are normalized with the total void fraction αd at
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Figure 6.18: Void fraction profile with depth at the bow experimental location.

the particular depth such that the area under these curves is one. These figures

show the size distribution predicted when activating/enabling different intergroup

transfer terms. The analysis of these figures helps to understand the effect of

separate contributions in the Boltzmann equation. In these figures the entrainment

size distribution is shown in solid line with open circles as a reference. Recall that

this entrainment size distribution is the result from the measurements at the bow

location performed by Johansen et al. (2010). In addition, the reader should keep

in mind that the bottom of the transom is located at a depth of 0.55 m, see Fig. 6.16.

Figure 6.19 shows the result when no intergroup transfer is used. However,

the dispersed phase velocity is still a function of the bubble size. For depths

above the transom bottom, φ . 0.5, the size distribution is strongly determined

by the entrainment size distribution due to the strong turbulent mixing at the

stern. The size distribution continuously changes as the depth approaches the

transom bottom, slowly shifting to smaller bubble sizes. In this region there are

two competing effects: larger bubbles tend to escape the domain faster due to

their higher terminal velocity, while turbulent mixing at the stern attempts to

redistribute the entrained bubbles to deeper depths. The first effect makes the size
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Figure 6.19: Size distribution at the stern. No intergroup transfer (None).

distribution to shift towards small bubble sizes, while the second effect attempts

to maintain a well mixed bubbly flow with the entrained size distribution. Below

the transom bottom, at depths between 0.6 and 0.7 m, the size distribution suffers

a sudden change in shape since the flow also suffers a sudden transition from

the highly mixed stern flow above the transom bottom to the boundary layer

wake flow below the transom bottom. Therefore, at depths deeper than 0.6 m,

the bubbly flow mainly comprises those bubbles transported within the boundary

layer flow. These bubbles are entrained at some point through the free surface, are

pulled down the hull and eventually get caught in the boundary layer flow and

are transported downstream. Since large bubbles have a higher terminal velocity,

it is more difficult to pull them down under the hull and therefore the majority

of bubbles in the boundary layer flow are small bubbles. This is why the size

distribution at the stern shifts to small sizes at depths within the boundary layer

wake.

In order to support this idea of small bubbles caught under the hull and trans-

ported by the boundary layer flow, the solution is analyzed along a series of selected

flow streamlines shown in Fig. 6.20. These streamlines follow the flow upstream
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from experimental locations located at different depths and are computed with the

mean continuous phase velocity. Four streamlines are computed and they cut the

experimental location at different depths: Streamline 1 at 0.507 m, Streamline 2 at

0.545 m, Streamline 3 at 0.64 m and Streamline 4 at 0.74 m. Figure 6.20a shows a

close up at the stern and Fig. 6.20b shows an overall view of Athena’s bottom where

the full trajectory of the streamlines from bow to stern can be seen. In addition,

Fig. 6.20 also shows Athena’s hull and mean free surface colored with total void

fraction.

(a) Selected streamlines going through the exper-
imental location (shown in a dark gray stick).

(b) Selected streamlines. Expanded view.

Figure 6.20: Streamlines following the flow upstream from the experimental loca-
tion.

Total void fraction along Streamline 1 (the one closest to the hull) is shown in

Fig. 6.21 for each different case. The location along the streamline is measured by

the dimensionless x coordinate, with x = 0.0 at the bow and x = 1.0 at the stern

of the ship. This figure shows that the amount of bubbles underneath the hull, i.e.
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the void fraction, increases considerably when adding breakup to the case with no

intergroup transfer. The reason for this increase in void fraction is that breakup

generates small bubbles by splitting the large bubbles entrained at the free surface.

While these large bubbles would quickly escape from the domain given their high

terminal velocity, smaller bubbles are more easily sucked down the hull and mixed

by the turbulent boundary layer. These bubbles therefore contribute to the larger

void fraction observed in Fig. 6.21.

Figure 6.21: Total void fraction along Streamline 1 (the closest one to the hull) for
each different case.

When coalescence is added to the case with breakup, i.e. the case labeled BC, the

void fraction along Streamline 1 decreases slightly. This decrease is explained by

the fact that the coalescence of small bubbles generates larger bubbles that leave the

domain faster given their higher terminal velocity. When coalescence is activated

only, the predicted void fraction along Streamline 1 is close to the one predicted

with no intergroup transfer. Differences between these two do not seem to follow

any particular explanation. Besides, these streamlines follow fluid particles, not
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bubbles, and they could cross with the trajectories of bubbles of different sizes. This

effect of fluid trajectories crossing with bubble trajectories could cause changes in

the void fraction along a streamline that are difficult to explain without looking at

the full three-dimensional solution.

Void fraction size distribution is extracted along each streamline and this is

shown, normalized with the total void fraction, in Fig. 6.22 for the case with no

intergroup transfer. In this figure each row shows the void fraction distribution on

a different streamline, from Streamline 1 to 4, at different x locations (x = 0 at the

bow, x = 1 at the stern and the experimental location is at x = 1.0106). The size

distribution at x = 1.01 (at almost the experimental location) is highlighted with a

thicker solid black line. The depth at the experimental location where the streamline

goes through is shown with a label and an arrow pointing to the corresponding

size distribution (the highlighted one). Streamline 1 is the one closest to the hull

(it is at about 1 cm from the wall) and the one closest to the free surface. As the

streamlines get away from the hull, they end at a deeper experimental location at

the stern.

Figure 6.22 shows that for all streamlines, for x < 1.0, the size distribution

continuously shifts to small sizes from the entrainment size distribution at the

stern. This shift to small sizes is caused by the difference in terminal velocities

for each size that effectively filters large bubbles as they escape the domain. The

hull geometry is another factor that filters the size distribution as well since it

represents an obstruction to the free flow of the bubbles. Size distributions for

Streamlines 3 and 4 are only shown for x > 0.3 and x > 0.5, respectively, since void

fraction before those locations is lower than 10−10. For streamlines 1 and 2, when

they reach the stern flow (x > 1.0), the size distribution changes abruptly to a size

distribution close to the entrainment size distribution due to the strong mixing at

the stern. For Streamline 4, below the transom bottom when it reaches the stern,
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Figure 6.22: Size distribution along streamlines (None).
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the size distribution remains the same as in the boundary layer flow. This verifies

the hypothesis that these small bubbles at the stern come from below the hull of

the ship transported by the boundary layer flow. Streamline 3 is at an intermediate

depth where both flows, boundary layer flow and stern flow, meet and mix the two

different contributions to the bubbly flow.

In what follows, the same analysis performed for the case with no intergroup

transfer is carried out for the remaining cases: B, C, BC, BCD, and Full. Size distri-

bution at the stern is analyzed together with size distribution along the streamlines

to determine if the size distribution at the stern is influenced by bubbles coming

from below the hull.

6.5.1.4 Size Distribution. Breakup Only

Figure 6.23 shows the size distribution at the stern experimental location when

only breakup is enabled. This figure shows that above the bottom of the transom,

φ . 0.6 m, the large bubbles present in Fig. 6.19 are split to smaller bubbles and a

new characteristic peak centered at about 700µm is formed. At a depth of 0.65 m the

size distribution starts changing in shape and a new peak, not observed in the case

with no intergroup transfer, forms centered around 150 µm. This peak becomes

more evident at greater depths than 0.7 m, what would suggest again that these

bubbles are generated in the boundary layer and then transported downstream.

Figure 6.24 shows the void fraction size distribution along the streamlines in

Fig. 6.20. Recall that in these figures, for Streamlines 1 and 2, the size distribution

is extracted from x = 0 and thus these streamlines go from an entrainment location

(or close to it) to the stern of the ship. Therefore, it is clear from Streamlines 1 and

2 (the first two rows in Fig. 6.24), that the peak covering the range of sizes between

100 µm and 200 µm is formed in the first quarter of the ship’s length by the breakup

of large entrained bubbles.
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Figure 6.23: Size distribution at the stern. Breakup only (B).

6.5.1.5 Size Distribution. Coalescence Only

Computed void fraction distributions at the stern for the case considering coa-

lescence only are shown in Fig. 6.25. The computed size distributions are similar to

those shown in Fig. 6.19 not considering intergroup transfer but some differences

are observed. As with the previous cases, the size distribution for depths below

0.65 m is strongly dominated by the entrainment of bubbles and mixing at the stern

and therefore the size distribution is close to the entrainment size distribution.

However, and comparing with the case with no intergroup transfer shown in Fig.

6.19, the size distribution tail for sizes smaller than ∼100 µm decays faster.

The reader should recall that the coalescence model for coalescence in salt

water presented in Section 3.2.1, strongly inhibits the coalescence between bubbles

with an equivalent radius Rm,m′ (defined in Eq. (3.62)) smaller than a transitional

radius Rt. Coalescence between bubbles with Rm,m′ < Rt is not inhibited at all but

assumed to be as in fresh water. For the salt concentrations found in sea water

the transitional radius is estimated at Rt ∼ 160 µm. This explains the faster drop

in the size distribution at smaller sizes than Rt = 160 µm. Moreover, a new peak,
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Figure 6.24: Size distribution along streamlines (B).
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Figure 6.25: Size distribution at the stern. Coalescence only (C).

although not very marked, is formed at bubble sizes around 300 µm. This peak is

the result of the coalescence of small bubbles into larger ones.

At depths deeper than 0.7 m the predicted size distributions shown in Figs.

6.19 (None) and 6.19 (C) are very similar, suggesting that the effect of coalescence

at these depths is not very strong. This is consistent with the fact that, below

the transom bottom, the void fraction suddenly drops to low levels and therefore

the collision rate drops as well (recall that the collision rate is proportional to the

product of two number densities and thus it drops with the void fraction squared).

The void fraction size distribution along streamlines are shown in Fig. 6.26.

The results are similar to the ones obtained with no intergroup transfer, shown in

Fig. 6.22: before reaching the stern flow, x < 1.0, the size distribution continuously

shifts towards small sizes in the range R . 200 µm. For the case with coalescence,

however, before reaching the flow at the stern, x < 1.0, streamlines 1, 2 and 3

exhibit a lower peak of bubbles with R . 200 µm, indicating the occurrence of

coalescence. Nonetheless, at depths below 0.7 m, the size distribution a the stern

does not show this peak of bubbles with R . 200 µm since the void fraction of
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Figure 6.26: Size distribution along streamlines (C).
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this contribution is negligible when compared to the entrained void fraction at

the stern. Therefore, the fast decaying tail for small sizes and the peak at around

∼300 µm observed at the stern does not come from below the hull but it is formed

at the stern where coalescence is important due to the high void fraction. The

results along Streamline 4 are very similar, if not indistinguishable, from the results

computed with no intergroup transfer. This is expected given that at the low void

fractions along Streamline 4 the coalescence is negligible.

6.5.1.6 Size Distribution. Breakup and Coalescence

So far, the individual effects of buoyancy, breakup and coalescence were ana-

lyzed independently. Figure 6.27 shows the void fraction distribution at the stern

when both breakup and coalescence are active. These results are very similar to

Figure 6.27: Size distribution at the stern. Breakup and coalescence (BC).

the ones computed with breakup only (shown in Fig. 6.23) indicating that the

effect of breakup on the solution is more important. However, when comparing

Figs. 6.27 and 6.23 the effect of coalescence on the solution can be observed. A
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fast decaying tail for bubbles smaller than Rt, not observed when only breakup is

active, is noticeably now at depths below 0.6 m. At depths deeper than 0.7 m the

effect of coalescence is not as important as it is above the transom bottom. Still, the

effect of coalescence becomes noticeable in a lower bubble population for bubbles

of radii R < Rt when comparing with the results for breakup only in Fig. 6.23. At

φ = 0.65 m the case with breakup only exhibits a peak at 200 µm and the case with

coalescence only exhibits a peak at 300 µm, but the combined effect of breakup and

coalescence seems to sharpen the peak at 200 µm since smaller bubbles coalesce to

this size. However, since the contribution by breakup dominates at 300 µm, the

coalescence peak in Fig. 6.25 at this radius is not longer observed.

Size distributions for this case along the streamlines are shown in Fig. 6.28.

The same observations made for the size distribution at the stern apply for the size

distribution along the streamlines: by comparing with the results using breakup

only in Fig. 6.24, breakup is observed to be the dominant effect and the effect of

coalescence is observed on the lower tail for bubbles with radius R < Rt. Once

again the peak at around 200 µm is observed to be formed along the boundary

layer while the peak observed at the stern for bubbles around 700 µm is formed at

the stern, not in the boundary layer, by the breakup of entrained bubbles.

6.5.1.7 Size Distribution. Breakup, Coalescence and Dissolution

The effect of dissolution on the computed size distribution at the stern is exam-

ined by comparing the solutions with no dissolution shown in Fig. 6.27 and with

dissolution shown in Fig. 6.29. The effect of dissolution is observed to decrease

the amount of bubbles for radii lower than 100 µm. Its effect on larger bubbles is

negligible since the surface area to volume ratio is small.

Streamlines in Fig. 6.30 show the same trend observed at the stern: dissolution

lowers the population of bubbles smaller than 100 µm.



231

Figure 6.28: Size distribution along streamlines (BC).
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Figure 6.29: Size distribution at the stern. Breakup, coalescence and dissolution
(BCD).

6.5.1.8 Size Distribution. Full case

For the Full case all intergroup transfer mechanisms are active and in addition it

includes the oceanic background measured by Melville et al. (1995) and presented

in Section 3.9, and the rectified diffusion model presented in Section 3.10 based on

the work by Raju et al. (2009). The size distribution at the stern for the Full case is

shown in Fig. 6.31. In this figure, in addition to the entrainment size distribution

drawn in solid line with open circles, the oceanic background size distribution

is drawn in solid line with solid circles. Given that the void fraction at greater

depths in this case is higher due to the oceanic background and rectified diffusion

models, two additional plots show size distribution for depths from 1.0 m to 3.0 m.

The effect of the oceanic background on the solution is evident and it practically

determines the size distribution in regions where previously, with no background,

the void fraction is small (compared with the void fraction levels introduced by

the background). These regions are from 0.7 m to 1.1 m, between the transom

bottom and the propeller wake, and from 2.1 m and deeper for the flow below

the propeller wake. At depths of less than 0.6 m the size distribution is similar
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Figure 6.30: Size distribution along streamlines (BCD).
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Figure 6.31: Size distribution at the stern. Full case (Full).

to the one computed with the BCD model: entrainment dominates this region,

breakup splits very large entrained bubbles and coalescence is responsible for a

fast decaying tail at small sizes. The propeller wake is observed at depths between

1.2 m and 2.0 m. This is characterized by bubbles around 700 µm in radius. As

shown in Fig. 3.6, and as predicted by the model, bubbles with radius around

130 µm preferentially grow to bubbles with a radius around 700 µm. Bubbles

around 130 µm are introduced by the oceanic background and therefore the peak

at 700 µm.

Figure 6.32 shows size distribution along the streamlines for the Full case. For
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Figure 6.32: Size distribution along streamlines (Full).
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Streamline 1 the size distribution starts close to the entrainment distribution at the

bow and continuously shifts towards a size distribution similar to the background

distribution which contains smaller bubbles. For the other three streamlines the

void fraction distribution changes to a size distribution very similar to the back-

ground distribution in a shorter distance given that the contribution by entrained

bubbles is smaller at those depths.

6.5.1.9 Comparison with Experimental Results

In the experimental results from Johansen et al. (2010), size distributions are

reported in terms of ten group-g void fractions (as defined in Eq. (2.28)). The

groups defined by Johansen et al. (2010) are summarized in Table 6.4.

Table 6.4: Groups defined by Johansen
et al. (2010) used to report bubble size
distribution at the stern.

Group Rg [µm]

1 31.25
2 80.86
3 128.35
4 203.75
5 323.43
6 513.41
7 814.98
8 1293.70
9 2053.62

10 3009.92

In order to compare the predicted size distributions with the results from the

experiments, the computed void fraction distribution αR(R) is integrated on each

group-g interval as defined in Table 6.4. Figure 6.33 compares the predicted size
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distribution at the stern of Athena with the measurements by Johansen et al. (2010).

Predicted results are shown in black lines while the experimental results from

(a) BCD.

(b) Full.

Figure 6.33: Group-g void fraction (with groups as defined in Johansen et al. (2010))
predicted by BCD and Full models compared against measurements.

Johansen et al. (2010) are shown in gray lines. In addition, the size distribution

reported by Terril and Fu (2008) is shown in solid lines with circles. To be consistent,

the size distribution from Terril and Fu (2008) is integrated over each group-g

interval defined in Table 6.4.

Two cases are shown: Fig. 6.33a shows the predicted results with the BCD
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model while Fig. 6.33b shows the results obtained with the Full model including

oceanic background and rectified diffusion. For the depths shown in these figures

bubble growth by rectified diffusion does not play any role. The experimental

results pf Johansen et al. (2010) exhibit two characteristic peaks. The first peak

starts centered at about R ∼ 2000µm and it moves down to about R ∼ 800µm for

depths deeper than 0.6 m. The second peak is for much smaller bubbles of about

R ∼ 80µm. Near the free surface, for depths lower than 0.6 m, the predicted results

show a peak that starts centered at R ∼ 1000 µm at 0.1 m and it moves down

to R ∼ 800µm for depths deeper than 0.3 m. Even when the experimental and

predicted peaks are not located at the same radii, they do correspond with each

other. While the experimental size distribution of Johansen et al. (2010) exhibits a

peak for bubbles with R ∼ 2000 µm and this peak persists up to depths of about

0.3 m, the simulation predicts instead a peak at R ∼ 1000 µm and it quickly shifts to

800 µm at 0.3 m. In other words: the simulation predicts a peak but its position in

radius is underpredicted and, the shift to smaller sizes at deeper locations observed

in the experiment is predicted as well but it occurs earlier. One reason for this

difference could be the break model overestimating the breakup rate and therefore

breaking bubbles earlier in depth. Another reason could be that the turbulence

modeling at the free surface underestimates the turbulence intensity and mixing

and therefore the entrained bubbles do not reach deeper locations. The modeling

of turbulence near the free surface is of utmost importance not only to predict

the proper mixing but also because breakup and coalescence rates are mostly

determined by the turbulent field. Moreover, turbulent intensity at the free surface

is one of the parameters determining the intensity of the entrainment source and

therefore the amount of entrained air. Predictions using the BCD and Full models

are practically indistinguishable from each other at depths lower than 0.5 m, closer

to the surface. Below the transom bottom the BCD model predicts a new peak
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located at 200 µm. This peak is produced by the breakup of bubbles as they are

pulled down underneath the hull as revealed by the comparison between the BCD

model and the model with no intergroup transfer. However, the correspondence

between this peak and the the one at 80µm in the experimental results of Johansen

et al. (2010) is more difficult to establish. When adding the oceanic background, the

size distribution at depths deeper than 0.65 m is mostly determined by the oceanic

background bubbles. Still, the peak at 80µm, or a closer one, is not predicted by the

model. This mismatch could be caused by different reasons: turbulence prediction

close to the free surface, entrainment modeling, breakup and coalescence modeling,

especially inside the boundary layer, that could lead to the formation of small

bubbles by breakup in the boundary layer, etc.

The results reported by Terril and Fu (2008) are for a different location and ship

speed. These are at 58′′ starboard of the centerline (i.e. y = 0.0313, dimensionless)

for 6 knots and at 0.92 m from the calm water line (this corresponds to a depth

of 0.645 m with the water elevation at the experimental location of Johansen et al.

(2010)). The experimental size distribution reported by Terril and Fu (2008) exhibits

a flat tail for bubbles larger than R ≈ 120 µm suggesting that this tail could be

background noise. It is for this reason, that in Fig. 6.33 the results by Terril and

Fu (2008) are reported as they are, with solid circles, and by removing the constant

tail for sizes larger than R ≈ 120 µm, with open circles. The raw results, without

removing the tail, surprisingly exhibit a peak for bubbles with radius at 200 µm,

as predicted by the simulations. However, if the tail in the experimental results

from Terril and Fu (2008) is removed, the 200 µm peak disappears. In any case,

the experimental results from Terril and Fu (2008) show a population of very small

bubbles, below 10 µm, not shown in the predicted results. This population at very

small bubble sizes is also observed in the experimental results from Johansen et al.

(2010).
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6.5.1.10 Intergroup Transfer Budget and Time Scales

The polydispersed model for bubbly flows used in this work provides a wealth

of information, well beyond the bubble size distribution and void fraction. For

instance, the intergroup transfer budget (introduced in Section 2.4.3 and previously

used in Chapter 5) can be analyzed to help understand the importance of each

intergroup transfer mechanism in the solution. In what follows, the budget and

time scales are analyzed for the BCD case.

Budget at the stern experimental location for different depths is shown in Fig.

6.34. The line style used for each term is defined in the legend in Fig. 6.34a.

Recall that each of these terms represents the number of events per second per

unit of volume for a given contribution. The reader should keep in mind that the

absolute value of these contributions also depends on the number number density

of bubbles at that location. For instance, the number of events per second for any

contribution is zero if the number density is zero.

The contribution of coalescence is higher than the one by breakup in Fig. 6.34a.

As the void fraction decreases with depth and so does the collision frequency, the

contribution by coalescence becomes less important and the number of breakup

events eventually exceeds those by coalescence in Fig. 6.34d. It should be pointed

out that in Figs. 6.34a and 6.34c the line for breakup deaths breaks at a given

size. The reason is that this size is the maximum stable diameter at this depth

and breakup does not occur for smaller bubbles. On the other hand, bubble births

are continuous for all sizes. At 0.7 m breakup is not shown since at this depth

turbulence is not strong enough to induce breakup. The reader could be confused

at first by the fact that coalescence events are much higher than breakup events at

0.1 m and 0.3 m when it was previously stated that the peak around 700 µm bubbles

appearing in Fig. 6.29 is formed by the breakup of entrained bubbles. However,

according to Fig. 6.34, coalescence deaths and births are practically equal at large
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(a) At 0.1 m (b) At 0.3 m

(c) At 0.5 m (d) At 0.7 m

Figure 6.34: Ingergroup transfer budget at the stern experimental location for
different depths.

sizes and thus they almost cancel out. On the other hand, for large sizes, breakup

deaths are higher than births and therefore large bubbles mainly split into smaller

ones explaining the peak observed in Fig. 6.29. Still, even when coalescence births

and deaths events cancel out, the reader may still be confused by the large number

of coalescence events per second (comparing with the number of breakup events).

This is explained by the fact that the coalescence model for salt water (presented in

Section 3.5) allows the coalescence between bubbles with an equivalent radius Rm,m′
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(defined by Eq. (3.62)) smaller than a transitional radius Rt which for ocean water

is estimated to be 160 µm. Consider the collision event between a bubble of radius

R′ and a much smaller bubble of radius R, i.e. R� R′. For this case Rm,m′ ≈ R/2 and

therefore coalescence is not inhibited if R < 2 Rt. Then, and according to this model,

coalescence between large bubbles is strongly inhibited but it is still possible for a

large bubble to coalesce with a small bubble. At the high void fraction at the stern,

the coalescence rate for small bubbles is high and so is the coalescence rate between

large and small bubbles. This is why, in Fig. 6.34, coalescence is high at large bubble

sizes, because these bubbles are coalescing with small bubbles. Now, when a large

bubble coalesces with a small bubble a slightly larger bubble is created and this

bubble contributes to the coalescence births term. However, since the large bubble

lost and the new generated bubble are almost equal size, the newly born bubble

contributes to a size nearly identical to the original large bubble size. This explains

why coalescence deaths and births practically balance each other for sizes greater

than Rt. Also shown in Fig. 6.34 is the dissolution rate density Ṙd defined in Eq.

(2.96). As expected, dissolution is important at small sizes and becomes dominant

at greater depths where coalescence and breakup are negligible.

Intergroup transfer frequencies as defined in Section 2.4.4 are shown in Fig. 6.35.

The reader should recall that these frequencies provide the mean number of events

per second per bubble. Then, according to Figs. 6.35a and 6.35a, coalescence is the

dominant effect at 0.1 m and 0.3 m. However, as previously discussed with the

budget analysis, the coalescence rate for large bubbles is high since they coalesce

with small bubbles which are allowed to coalesce according to the model for sea

water. Since this coalescence events practically do not change the size of large

bubbles, the effect of these coalescence events on the size distribution for large

bubbles is negligible. Since the void fraction decreases with depth, the breakup

eventually becomes more important as shown in Fig. 6.35c. At greater depths, as
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(a) At 0.1 m (b) At 0.3 m

(c) At 0.5 m (d) At 0.7 m

Figure 6.35: Ingergroup transfer frequencies at the stern experimental location for
different depths.

in Fig. 6.35d, dissolution is the dominant effect.

It should be noticed from Fig. 6.35 the wide range of frequencies, time scales,

introduced by the polydispersed model. Breakup introduces time scales in the

order of 10 ms and coalescence can introduce time scales as short as 1 ms. On

the other hand, the time scales introduced by dissolution are much larger, on the

order of 2 min for 100 µm bubbles and on the order of 2.5 s for 10 µm bubbles.
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These time scales should probably be compared against the time step used in the

simulations. For Athena with body force propeller the time step is δt = 43.52 ms

and for Athena with discretized propeller δt = 2.87 ms. Therefore, the time step

used for Athena with body force propeller would not even be enough to capture

the dynamics introduced by breakup. This is where the power of the time splitting

strategy comes in, allowing to implicitly integrate intergroup transfer in time. For

Athena with discretized propeller, the time step is smaller and closer to the time

scales involved. Still, the integration of the intergroup transfer terms would be

very difficult to perform accurately, i.e. implicitly, if the time splitting strategy was

not used.

6.5.2 Self-propelled Athena with discretized
propeller

This section presents a final computation of the bubbly flow around Athena

where the rotating propellers are added to the previous static geometry. The ob-

jective of this computation is to test the new capability implemented in a scenario

where, in addition to the already complex features of the fixed two-phase computa-

tion, includes the rotating surfaces of the propeller and meshes move to accordingly.

The inclusion of the discretized propellers and incoming waves to the simulation

adds realism and hence it simulates better the experimental conditions. Initially,

a single phase run is carried out to find Athena’s self propulsion point. Athena

possesses controllable pitch propellers, i.e. the propeller pitch can be adjusted to

make changes in the advance velocity. The specific pitch of the propellers set at the

moment the measurements by Johansen et al. (2010) were taken is not know but

only the ship’s velocity U0. In order to perform a self-propelled computation com-

parable to experiments, the pitch of the propellers is set to p/D = 1.11, matching

the one used by Crook (1981) who reports propeller’s RPM as a function of cruise

speed. With the geometry of the propeller fixed, a self-propelled computation is
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performed to attain the cruise speed reported in the experiment by Johansen et al.

(2010), U0 = 5.4 m/s (10.5 Knots). The procedure detailed in Carrica et al. (2010a) is

used to find the self-propulsion point. This procedure uses a PI speed controller3 to

automatically adjust the propeller rotational speed and attain a predefined cruise

speed. The single phase computation is performed using a DES model for tur-

bulence where the k-ω blended turbulence model is active near the walls and it

switches to an LES model away from the walls (Travin et al., 2004; Xing et al., 2007).

The simulation time step is set to δt = 3.3 × 10−4 (2.87 ms) to resolve the propeller

dynamics.

Figure 6.36 compares the computed self propulsion point with the experimen-

tal data from Crook (1981). The data by Crook (1981) is extrapolated to the ship

speed used in the simulation to compare against the predicted RPM and a remark-

ably good agreement is found. The predicted rotational speed is 192.4 RPM and

therefore 110.6 time steps are needed to complete one revolution of the propeller.

This predicted propeller rotational speed is used to fix the propeller RPM’s for the

two-phase computation.

Iso-surfaces of the second invariant of the rate of strain tensor Q = 10000 are

shown in Fig. 6.37. The iso-surfaces and ship hull are colored with piezometric

pressure. The DES model of turbulence is able to resolve the very rich vortical

structure at the stern and the tip vortices shed from the propeller’s blades. The tip

vortices travel downstream the propeller, interact with the rudder, and eventually

disappear at the end of the propeller refinement where the mesh coarsens its spatial

resolution.

It was found in previous runs that the DES model underpredicts the turbulence

dissipation εwhen comparing with results obtained with the k-ωmodel. This prob-

lem was investigated with simulations of homogeneous and isotropic turbulence

3PI stands for Proportional Integral.
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Figure 6.36: Comparison of the predicted self propulsion point with experimental
data from Crook (1981).

performed in a box with periodic boundary conditions. The results revealed that

a considerable portion of the mechanical energy contained in the large coherent

structures resolved by the grid are numerically dissipated instead of being trans-

fered to the modeled part of the turbulent kinetic energy. This excessive numerical

dissipation of energy causes the modeled turbulence to be less intensive and the

turbulence dissipation is underpredicted. This is topic of ongoing research.

To have a more accurate estimation of the dissipation rates so important for the

prediction of breakup and coalescence rates, or at lest to avoid the extra numerical

dissipation, the two-phase computation is performed using RANS with the k-ω

blended model of turbulence instead of DES. The single phase computation is

extended for two more ship lengths using the k-ω blended model to have a well

developed single phase solution.

The two-phase computation is restarted from the last available single phase
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Figure 6.37: Isosurfaces of Q = 10000 colored with contours of piezometric pressure.

computation. This simulation attempts to replicate better the conditions of the

experiments and its main features are:

• Fully appended geometry.

• Discretized rotating propeller. Self-propulsion point is predicted. Grids move

along with the geometry of the propeller.

• Full scale computation for both continuous and dispersed phase. Wall func-

tions used.

• Complete polydispersed model includes breakup, coalescence and dissolu-

tion models.



248

• Incoming waves with the wavelength observed in the experiments by Jo-

hansen et al. (2010).

• Oceanic background model (Section 3.9) based on measurements by Melville

et al. (1995).

• Rectified diffusion model (Section 3.10) based on transfer tables provided by

Raju et al. (2009).

• The grid system, including the propeller, contains 22.6 million grid points.

• The full model solves for 1.68 billion of unknowns per time step.

• 6060 time steps are needed to run two ship lengths and it takes 5 days on a

Cray XE6 supercomputer using 448 processors.

The number of processors used in the two-phase computation is doubled (with

respect to the number of processor used in the single phase run) to decrease the

running time. The load is distributed among 416 processors and 4 processes are

used for the overset solver though 32 processors are requested for the overset

solver to allocate a full computational shared-memory node per overset solver

instance since each of these requires a significant amount of memory. In total, the

computation uses 448 processors and is run on a Cray XE6 supercomputer.

The computation takes a total of 72 seconds per time step. Of these, 29.5 seconds

are spent by the multiphase solver (i.e. 41.0% of the total time). In the multiphase

solver, 18.3% of this time is spent by the momentum solver, 48.5% by the number

density transport solver, and 30.9% by the intergroup transfer solver.

Due to the fact that the propeller rotates during the computation, and then the

geometry changes with time, instantaneous results are presented instead of mean

quantities as done with the case with a body force model. An additional difference

with the case using a body force model is that the rectified diffusion model is
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activated only in regions with a second invariant of the rate of strain tensor greater

than a certain threshold. Then, the rectified diffusion model is activated inside

the propeller disk only if Q > 4000. This restriction is used to replicate the results

from the simulations performed by Raju et al. (2009) that show that the bubbles

grown by rectified diffusion at the propeller tips are trapped by the tip vortices.

The threshold used is arbitrarily set for the purpose of demonstration.

Figure 6.38: Free surface colored with instantaneous void fraction on starboard and
with surface elevation on port.

Figure 6.38 shows the computed free surface colored with void fraction on the

starboard side and with elevation on the port side. Contour levels for elevation are

made to saturate to highlight the incoming waves. The void fraction levels shown

in this figure are as high as 20% but, as with the case with the body force model, the

void fraction can be as high as 30% or more in some regions of the domain during

some transients. This illustrates once again the robustness of the code in this more
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complex computation. The shoulder waves at the stern exhibit short scale ripples

not observed in the case with the body force model. These short length ripples have

a time scale that is not resolved in the computations of Athena with no discretized

propeller due to the larger time step used.

Slices colored with void fraction are shown in Fig. 6.39 and show the evolution

of the bubbly wake around and behind the ship. The predicted void fraction

Figure 6.39: Slices and hull colored with instantaneous void fraction.

levels on the hull are very similar to the ones predicted for Athena with body

force model. This is expected since the solution remains practically unchanged

near the hull upstream the propellers. As before, the bubbly wake transported

with the boundary layer flow underneath the ship is pulled down by vortices shed

from the shaft and attracted by the propeller suction. As bubbles go through the

propeller they grow in size by rectified diffusion, but in this model they are only

allowed to grow in regions with Q > 4000. There are no corrections accounting for
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the fact that, for this model with discretized propeller, the effective volume where

rectified diffusion is active is smaller than in the case with the body force propeller

model, where the rectified diffusion model is active all inside the propeller disk.

Therefore, the void fraction downstream the propeller is not as high as it is for

Athena with body force model. In other words, the volumetric source for rectified

diffusion remains the same but it is active inside a smaller volume. This effect is not

important for the demonstration purposes of this case, but it should be considered

in the future.

The computations using a discretized propeller provide very detailed flow

structures behind the propeller. These structures are very strong and mix the

bubbly flow very efficiently. Comparing the slices in Fig. 6.15 for Athena with

body force model and in Fig. 6.39 for Athena with discretized propeller, it can

be observed that the wake far behind the ship stays deep at the propeller’s depth

longer in the case with discretized propeller, while in the case with the body force

model the wake is observed to rise up towards the free surface.

In Fig. 6.40 the very strong vortices shed from the tip of the propeller blades

are shown with an iso-surface of Q = 4000 colored with void fraction. The hull is

colored with void fraction as well. The shape of the bubbly wake around the ship

is visualized using a translucent iso-surface of αd = 10−3. The same depleted wake

behind the stabilizers observed for Athena with body force propellers is predicted

for this case as well. The contours on the hull and the iso-surface of void fraction

exhibit a wavy pattern along the hull which is induced by the periodic entrainment

of bubbles driven by the incoming waves. Figure 6.40 shows vortices shed from

the base of the struts which carry void fraction with them. In addition, the strong

horse shoe vortices at the base of the rudders attract a large amount of bubbles as

well and the iso-surface of void fraction wraps around them.

Figure 6.41 shows the void fraction and depth as a function of time at (x; y; z) =
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Figure 6.40: Iso-surface of αd = 10−3 and iso-surface of Q = 4000 and hull both
colored with void fraction.

(a) Void fraction. (b) Surface elevation

Figure 6.41: Void fraction and surface elevation at the bow monitor.

(0.284; 0.0779; −0.004), the bow experimental location shown in Fig. 6.13, for

one wave encounter period. Due to the continuous arrival of waves, the wave

breaking at the bow is unsteady with the period of arrival, or encounter period.
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This unsteady breaking at the bow drives the periodic entrainment of bubbles

which are transported downstream and cause the void fraction peak in Fig. 6.41.

Depth at this location changes periodically as expected due to the incoming waves.

Figure 6.42: Monitors upstream and downstream the propeller used to analyze
the solution. In addition, the iso-surface of αd = 10−3 and hull colored with void
fraction are shown.

To illustrate the effect of the rectified diffusion model on the results, the solution

is analyzed on two monitor points located upstream and downstream the propeller.

These locations are upstream at (x; y; z) = (0.939; 0.0368; −0.0265) and downstream

at (x; y; z) = (0.965; 0.0368; −0.0265), both shown in Fig. 6.42.

The void fraction as a function of time for one encounter period is shown in Fig.

6.43 for the location upstream the propeller and in Fig. 6.44 for the downstream

location. Upstream the propeller, the void fraction exhibits fluctuations which

are mainly induced by the continuous vortex shedding coming from the shaft.
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Figure 6.43: Void fraction at location upstream the propeller.

(a) Time evolution during one wave length
period.

(b) Smaller time window where the period of
one blade passage can be appreciated.

Figure 6.44: Void fraction at the location downstream the propeller.

Downstream the propeller, as shown in Fig. 6.44a, the void fraction shows high

frequency fluctuations that if analyzed in the shorter time window in Fig. 6.44b are

found to have the period of one blade passage. In addition, these figures show the

significant increase in void fraction due to the growth of the bubbles at expense of

the air dissolved in the water.
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CHAPTER 7
SUMMARY, CONCLUSIONS AND FUTURE WORK

In this thesis a mathematical model for the modeling of polydisperse bubbly

flows with a focus on ship hydrodynamics is implemented in CFDShip-Iowa V4.5.

The model is based on a two-fluid formulation coupled with a Boltzmann transport

equation describing the polydispersed bubbly phase. The numerical implemen-

tation of the model used in this work is two-way coupled, i.e. the bubbly phase

solution depends on the surrounding continuous phase and, conversely, it modifies

the continuous phase solution as well1. The mathematical model and numerical

methods are reviewed and analyzed in depth. This Ph.D. thesis contributes with

the development of novel numerical methods for the accurate, robust and efficient

numerical solution of the governing equations. The implemented model is applied

to the computation of the polydispersed bubbly flow around a real full scale ship

using the latest available models and computational techniques. In addition, this

thesis contributes with the identification of modeling and numerical implementa-

tion issues that can be improved and need further study.

7.1 Main Conclusions

The main conclusions of this research are:

Physical models:

• The model of Luo and Svendsen (1996a) underpredicts the breakup rate and

some physical inconsistencies are observed in the modeled daughter bubble

size distribution.

• The Lehr et al. (2002) model predicts a maximum stable bubble diameter

which is in agreement with the well accepted Hinze’s correlation. The Luo

1Many implementations found in the literature use a one-way coupling approximation, i.e. the
dispersed bubbly phase does not have any affect on the surrounding fluid. Therefore, the continuous
phase is decoupled from the dispersed phase and can be computed separately.
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and Svendsen (1996a) model does not agree well with Hinze’s correlation.

• A model to estimate shear induced by turbulence is proposed in Section 3.3.2.

This is used in the estimation of breakup by shear.

• Breakup by shear in Athena’s boundary layer is studied in Section 6.4. The

model predicts almost no breakup by shear. However, this phenomenon is

expected to be important in the generation of small bubbles observed at the

wake of a ship and therefore further research on this topic is needed.

• Section 3.5 attempts to provide a model to correct for the presence of dissolved

salt in ocean water. However, ocean water contains many other impurities

and the proposed model may be an oversimplification. More experimental

work on this topic is indispensable for the development of new models.

Numerical methods:

• The fixed pivot method of Kumar and Ramkrishna (1996) is analyzed in

detail in Chapter 2 and appropriate boundary conditions are developed which

ensure conservation of mass of the dispersed phase.

• The novel two-phase projection method developed for this thesis in Section

4.4 implicitly solves the coupling between pressure and void fraction that

otherwise would lead to the divergence of the solution.

• The time splitting procedure presented in Section 4.2 allows to accurately and

efficiently integrate the Boltzmann equations in both space and bubble sizes.

The problems presented in this work would have been impossible to solve

without this method.

• TVD convection schemes minimize wiggles in the solution of the number

density transport that could lead to unphysical negative results.
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• Disperesed phase velocity may decouple from number density when disper-

sive forces are included in the model. Section 4.8 presents a numerical method

that successfully solves this problem.

Bubbly flow around Athena:

• Model implementation and performance is assessed with the simulation of

a real full scale ship. The model includes fully appended geometry, rotating

propellers (and therefore moving meshes are used), incoming waves, full

polydispersed model, oceanic background and rectified diffusion. Many of

these features are unique to this computation making it the first of its kind.

• Main entrainment locations are predicted at the bow and masker breaking

waves, at the highly aerated stern flow and at the stern shoulder waves.

• When calibrating the entrainment model to match with experiments the void

fraction profile with depth at the stern, the void fraction at the bow is under-

predicted by at least two orders of magnitude. This problem illustrates the

need for more accurate models of air entrainment.

• A finger of bubbles in the wake behind Athena is predicted. These bubbles

are entrained upstream and pulled down the hull from the surface and further

transported downstream. Vortex shedding from the propellers’ shafts pulls

them down even deeper where the suction flow of the propellers traps and

accelerates them into the wake of the ship.

• The void fraction around the hull increases significantly when the breakup

model is enabled. This is caused by the breakup of large entrained bubbles

that otherwise would escape faster given their higher terminal velocity.

• Size distribution measured at the stern by Johansen et al. (2010) exhibits two

main peaks for large bubbles at about 2000µm and for small bubbles at 80µm.
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The model predicts a peak of large bubbles at 1000 µm and a peak of small

bubbles at 200 µm.

• The 1000 µm peak from the model is caused by the breakup of large entrained

bubbles.

• The larger bubbles observed in the experimental results from Johansen et al.

(2010) are mixed deeper underneath the free surface indicating a possible

underprediction of the modeled turbulent mixing near the free surface.

• The 80 µm bubbles observed in the experimental results from Johansen et al.

(2010) appear at depths below the transom bottom suggesting that these

bubbles are transported with flow coming from the boundary layer. Similarly

for the 200 µm bubbles predicted by the model. No solid explanation for the

mismatch of these peaks was found. However, possible causes are discussed.

• The size distribution reported by Terril and Fu (2008) exhibits a peak for

bubble radii of 200 µm in agreement with the simulation results. However,

this peak disappears if suspicious data is removed from their results.

• Analysis of the solution along fluid streamlines underneath the ship reveal

that the predicted 200 µm bubbles by the model are generated by the breakup

of bubbles as they are transported along the hull.

7.2 Limitations of the Model

One of the contributions of this thesis, and not of less importance, is the iden-

tification of issues that need further research. This section is a summary of these

issues and, if possible, proposes possible solution strategies and guidelines that

attempt to provide a path for future research tackling these problems.
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Entrainment model. The simulations performed for Athena in Chapter 6 show

that the calibration of the entrainment strength S0 in Eq. (3.102) with the void

fraction at one location, does not necessarily predict the right void fraction at

another entrainment location. For Athena, the entrainment strength is calibrated

with the experimental data available at the stern but the void fraction at the bow

location is underpredicted by at least two orders of magnitude.

Another drawback of the entrainment model used in this work is that the en-

trainment size distribution must be provided by the user. A fully predictive model

would not only predict the amount of air entrained but also the bubble size distri-

bution.

Breakup in the boundary layer. The current models for breakup and coa-

lescence assume that bubbles are immersed in an homogeneous turbulent field,

or more precisely, that a nearly homogeneous turbulent field across the size of a

bubbles is a reasonably valid assumption. However, as discussed in Section 6.4,

the turbulent flow in the boundary layer is highly inhomogeneous and bubbles in

it are exposed to large variations if velocity and turbulence across their diameter.

The assumption of a nearly homogeneous turbulent field is not longer valid and

the breakup models (as well as the coalescence models) need to be revised.

The study on Athena’s boundary layer presented in Section 6.4 reveals that

breakup by shear (either resolved or modeled shear as presented in Section 3.3.2)

is not strong enough to induce the breakup of bubbles in the boundary layer. This

result is surprising since breakup in the boundary layer is expected be one of the

main contributors to the population of small bubbles observed at the wake of a

ship. However, breakup by turbulence and by shear are considered separately

while in a turbulent boundary layer these contributions act simultaneously. The

non-linear interaction between these effects has not been studied in the literature
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and further research on the topic is needed. Section 6.4.3 presents a more in-depth

discussion about this problem.

Another issue found in the boundary layer is that, close to a wall, turbulence

length scales can be smaller than the size of the bubbles themselves. It is typically

assumed in the available breakup models that the breakup of bubbles immersed

in a turbulent field is caused by the interaction with turbulent eddies with sizes

ranging from the Kolmogorov length scale2 to the size of the bubble. This assump-

tion is not longer valid if the turbulent length scales are smaller than the bubble

diameter and therefore it needs to be revised.

Near wall integration. This problem is intimately related with the problem of

breakup and coalescence modeling in the boundary layer. As explained in Section

4.6.1, the dispersed phase equations are averaged out in the direction normal to

the wall within the first cells discretizing the boundary layer. This integration near

the wall is performed by merging cells in the direction normal to the wall such

that the resulting cell size is in the order of the maximum bubble size in the model.

Such merging prevents from an excessive and uncontrolled accumulation of void

fraction in the first cells of the boundary layer. However, this integration averages

out the rapidly changing velocity and turbulence profiles along the boundary layer.

New models for breakup and coalescence in the boundary layer that account for

this averaging are needed. These models most likely will resemble a wall function

like model.

Coalescence in sea water. The coalescence of bubbles in sea water is a very

important phenomena to be included in models for polydispersed bubbly flows

but it is, however, an almost uninvestigated subject. The model proposed in Sec-

2Actually, the smallest eddy size containing enough energy to break a bubble of a given size is
given by the so called capillary condition (Lehr et al., 2002)
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tion 3.5 provides some fundamental ideas on the subject but clearly more work is

needed, both theoretical and experimental. This model is based on observations

made on coalescence in electrolytes. However, modeling sea water as a simple

electrolyte solution may be a crude approximation due to the fact that sea water

contains, in addition to dissolved salt, dirt, suspended particles and even living

microorganisms.

Dissolution in sea water. Dissolved salt and impurities in the water may af-

fect the rate at which the air inside a bubble dissolves in the surrounding water.

These impurities may stick to the bubble’s surface forming a hard shell that effec-

tively blocks the passage of gas from inside the bubble into the water outside it.

In addition, the model presented in this thesis assumes that the concentration of

air dissolved in the water is that of equilibrium at the atmospheric pressure. A

further improvement to this model would be to include a transport equation for

the concentration of dissolved gas.

Bubble growth by rectified diffusion. Numerical simulations by Hsiao and

Chahine (2005); Raju et al. (2009) show that the bubble size distribution can signifi-

cantly change as bubbles go across a propeller. This change in the size distribution

is attributed to the phenomenon of rectified diffusion. It is of interest then to in-

clude this effect in the Eulerian framework presented in this thesis. Section 3.10

proposes a model for rectified diffusion suitable for an Eulerian framework that

uses transfer functions. These transfer functions, however, need to be provided for

the particular geometry and conditions of the propeller. The simulations presented

in this thesis use the data provided by Raju et al. (2009) for the DTMB propeller

P5168 as a demonstration only but tables for Athena’s propeller must be generated

for different loading conditions to perform consistent computations.
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Oceanic background. The oceanic background model introduced in Section 3.9

is based on the experimental data taken by Melville et al. (1995). However, void

fraction and bubble size distribution profiles with depth depend on the sea state

and the data provided by Melville et al. (1995) covers only one case. It would be

desirable then to have, either a theoretical model that predicts void fraction and

size distribution with depth or, a comprehensive data set for different sea state

conditions, or a combination of both.

7.3 Future Work

Future work that would help to extend the two-phase capability implemented

in CFDShip-Iowa V4.5 is directly related with the limitations summarized in the

previous section. This work can be categorized according to the amount of work

and development required.

7.3.1 Short-term improvements

These include the implementation of models already available in the literature

and that can easily be added into the current structure of the code. Examples are:

• Implementation of the correlation by Tomiyama et al. (2002) for the lift coef-

ficient.

• Newer correlations for virtual mass, drag and other coefficients that would

include additional effects such as high void fraction.

• Disperse phase velocity gradients in the collision kernel for coalescence as in

Carrica et al. (1999).
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7.3.2 Medium-term improvements

These include the implementation of models already available in the litera-

ture but require a deeper understanding of the overall structure of the code and

programming skills. These would include:

• Implementation of the two-phase turbulence model proposed by Kataoka

et al. (1993), which claims to model both turbulence generation and suppres-

sion by the presence of the bubbly phase.

• Cavitation modeling. Simple models are available in the literature but their

implementation is challenging since the code needs to handle very large void

fraction levels.

• File handling and post-processing tools. The large amount of output data

generated by a polydispersed bubbly flow simulation requires special tools

for its efficient analysis. This work contributes with a new binary format (raw

format in CFDShip-Iowa V4.5) and an Add-On for Tecplot, Inc. that allows

to easily import the solution for visualization. Additional tools to directly

extract already post-processed size distributions and intergroup budget on

iso-surfaces and at selected monitor locations would greatly accelerate the

post-processing step and enhance the user productivity.

• Algebraic solver for the dispersed phase momentum. The dispersed phase

momentum could be solved algebraically if the virtual mass term is neglected.

An algebraic system of equations does not couple different spatial locations

and therefore converges faster to the solution. It is of interest, however, to

consider the virtual mass term but still solve an easier algebraic equation

for every point. This could be achieved, for instance, with an quasi-algebraic

solver that could use a previous solution to compute the virtual mass term.
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7.3.3 Long-term improvements

Improvements to the code in the long term would include the implementation

of models that currently are in an early stage of development and therefore require

an important amount of additional work before their implementation in the code.

Additional work could, and should include, not only theoretical and computational

developments but also full experimental campaigns as in both laboratory and full

scale environments.

Enhancement and development of numerical algorithms would most likely fall

in this category as well.

A list of long-term plans include:

• Development of new entrainment models. The modeling of air entrainment

is a very challenging problem by itself and it deserves especial attention.

The development of new entrainment models must combine theoretical and

experimental studies. The ideal entrainment model would predict not only

air entrainment rates but also size distribution of the entrained bubbles and

penetration depth based on the local resolved velocities and turbulence levels.

The model should be as much grid independent as possible.

• Modeling of turbulence near the free surface. Most CFD codes do not mod-

ify the turbulence models near the free surface. CFDShip-Iowa V4.5 uses

a zero gradient boundary condition at the free surface but the equations of

turbulence do not include any modification to account for the free surface.

Turbulence modeling and air entrainment are two phenomena treated inde-

pendently of each other in the past. New approaches should consider the

study of these two phenomena simultaneously since turbulence fluctuations

drive entrainment and the entrained two-phase mixture modifies the turbu-

lent field.
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• Rectified diffusion. Bubbles growing by rectified diffusion undergo high

frequency oscillations impossible to resolve with the time steps used in CFD

simulations and therefore the phenomena requires modeling. The model pre-

sented in Section 3.10 is one possible solution to the problem but it requires

the preparation of transfer function specific for a given propeller and loading

conditions. A more general approach could use the information from a sim-

ulation with discretized propeller to solve a mean Rayleigh-Plesset equation

or similar to predict a mean rectified diffusion rate. The derivation of such

an equation is non-trivial and would require the closing of some of the terms

in the original Rayleigh-Plesset equation.

• Breakup (coalescence) in the boundary layer. The large gradients present

in the boundary layer and the scales involved require the revision of the

models used for breakup and coalescence (these problems are discussed in

detail in Section 6.4.3). In addition, the wall integration introduced in Section

4.6.1 averages out these gradients in a thin layer close to a wall. Therefore,

new breakup (and coalescence) models that provide a mean rate of breakup

(coalescence) in this layer and that consider the large gradients involved

need to be developed. In addition, these models must be able to include the

combined effect of breakup induced by shear and turbulence. This coupling

has not been studied in the past and it is of interest since it has the potential

for the generation of the small bubbles observed in the wake of a ship.

• Coalescence in sea water. It is well known in the literature that coalescence in

sea water is strongly inhibited by the dissolved salt contained in it. However,

quantitative studies are scarce and no reliable models are available. This

subject needs to be studied with experiments performed in real sea water

since the impurities and microorganisms contained in it may also affect the
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coalescence rates. Reliable metrics to characterize the chemistry of the water

should be developed to propose models accounting for water with different

chemical characteristics.

• Numerical dissipation in DES models. Simulations performed with CFDShip-

Iowa V4.5 revealed a large underprediction of turbulence dissipation when

using a DES model of turbulence. Additional work on homogeneous and

isotropic turbulence in a box revealed a large numerical dissipation of me-

chanical energy as the cause of this problem. Further work is needed to arrive

to a practical solution of the problem.

• Improvement of the transport solver efficiency. The transport solver for the

group-g number densities is currently the most time consuming stage of the

two-phase code. However, most of the bubbly flow around a ship is confined

in the very near field and a numerical method that takes advantage of this

to reduce computational work in zones with low void fraction levels could

eventually be developed.

• Transport equation for the concentration of dissolved gas in water. The bubble

dissolution model from Section 3.4 uses an homogeneous concentration of

dissolved gas in water which is assumed to be that of equilibrium at the

atmospheric pressure. This assumption is only valid at low void fraction

levels and for low gas dissolution rates. Spatial and temporal variations on

the concentration of dissolved gas can be considered by solving an additional

transport equation for this quantity. This approach is used in Politano et al.

(2009) for the modeling of TDG.

• Salt concentration, temperature and stratification. Water stratification con-

sists in the formation of layers of water with different densities. These layers

are normally arranged with the least dense layer sitting above the denser
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ones. Density variations may be caused, for instance, by variations in salinity

or in temperature. The effect of stratification is of interest in the prediction of

the bubbly wake shape and size distribution behind a ship. Local salt con-

centration affects coalescence rates (assuming a reliable correction with salt

concentration is available) and variations in both salinity and temperature

change water density. Therefore, transport equations for both salinity and

temperature would allow to account for these effects and stratification due to

variations in water density.

In addition to code development and improvement, future work is also required

in the following areas:

• Convergence study with grid resolution, especially to asses entrainment mod-

eling dependence with grid resolution.

• Convergence study on the number of groups used to discretize the bubble

size distribution.

• Assessment of two-phase turbulence models for bubbly flows. RANS and

DES models, turbulence generation and suppression. Two-phase models

should consider the relative magnitude of bubble sizes compared against

eddy sizes as in the work by Kataoka et al. (1993).
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APPENDIX A
MASS AND NUMBER CONSERVATION

A.1 Properties of the Breakup and Coalescence
Kernels

Some of the properties that the intergroup transfer kernels must satisfy are

physical requirements. For instance, the coalescence kernel must be symmetric i.e.

Q(m,m′) = Q(m′,m) since the probability of having coalescence between a bubble

of size m with another of size m′ is clearly the same as the probability of coalescence

between a bubble of size m′ with another of size m. Now, is this also a requirement

of the evolution equations for f (m)? is this the only requirement? What about the

breakup kernel?

In this section it will be shown that the following properties are required in

order to satisfy mass conservation and bubble balance

∫ m′

0
dm h(m,m′) = n (A.1)∫ m′

0
dm m h(m,m′) = m′ (A.2)

Q(m,m′) = Q(m′,m) (A.3)

where n is the number of daughter bubble generated in one breakup event. Note

also that Eq. (A.1) allows more than two daughter bubble per breakup event as

long as the resulting size distribution is always the same on every single breakup

event. Note also that the daughter bubble size distribution does not need to be

symmetric i.e. h(m,m′) = h(m′ − m,m′) is not a required property either for mass

or number conservation. As an example of this the daughter size distribution

describing the breakup of a bubble in n equalsized fragments is analyzed in what

follows. However, the symmetry of the daughter size distribution is a physical

requirement that binary breakups must satisfy since the mass of the original bubble
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is the combined mass of the two daughter bubble.

A.2 Proof of Mass Conservation

If only intergroup transfer due to breakup and coalescence is considered in Eq.

(2.8) the number density equation reduces to

∂ f (m)
∂t

= β+(m) − β−(m) + χ+(m) − χ−(m) (A.4)

with breakup sources computed according to Eqs. (2.10)-(2.11) and coalescence

sources computed as in Eqs. (2.14)-(2.15)

β+(m) =

∫
∞

m
dm′ h(m,m′)b(m′) f (m′) (A.5)

β−(m) = b(m) f (m) (A.6)

χ+(m) =
1
2

∫ m

0
dm′ Q(m −m′,m′) f (m −m′) f (m′) (A.7)

χ−(m) = f (m)
∫
∞

0
dm′ Q(m,m′) f (m′) (A.8)

The mass of gas per unit volume, also called bubble mass density, is computed as

εm =

∫
∞

0
dm m f (m) (A.9)

Since no convection or external sources are present in Eq. (A.4) the bubble mass

density should be conserved. This will be shown to be a property naturally derived

from Eq. (A.4). When deriving the discrete version of this equation it will be

desirable to retain this property and hence this derivation will provide to be an

useful exercise.

The conservation of mass equation can be obtained by multiplying Eq. (A.4) by
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m and then integrating over all sizes

dεm

dt
=

d
dt

∫
∞

0
dm m f (m) =

∫
∞

0
dm m

∂ f (m)
∂t

=∫
∞

0
dm m β+(m) −

∫
∞

0
dm m β−(m) +

∫
∞

0
dm mχ+(m) −

∫
∞

0
dm mχ−(m)

(A.10)

In what follows it will be shown that for both, breakup and coalescence, births and

deaths cancel out exactly.

A.2.1 Breakup

The generation of bubbles by births in Eq. (A.10) can manipulated by changing

the order of integration

∫
∞

0
dm m β+(m) =

∫
∞

0
dm m

∫
∞

m
dm′ h(m,m′)b(m′) f (m′) =∫

∞

0
dm′

∫ m′

0
dm m h(m,m′)b(m′) f (m′) =∫

∞

0
dm′ b(m′) f (m′)

∫ m′

0
dm m h(m,m′) (A.11)

The inner integral over the daughter size distribution can be computed by consid-

ering two general cases.

Binary breakup

For binary breakup the daughter size distribution satisfies

∫ m′

0
dm h(m,m′) = 2 (A.12)

h(m,m′) = h(m′ −m,m′) (A.13)
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and with these two properties it can easily be verified that

∫ m′

0
dm m h(m,m′) = m′ (A.14)

Breakup in n equal sized bubbles

In this case the daughter size distribution can be written as

h(m,m′) = nδ
(
m −

m′

n

)
(A.15)

Then it follows that

∫ m′

0
dm h(m,m′) = n (A.16)∫ m′

0
dm m h(m,m′) = m′ (A.17)

In either case the general properties to be satisfied by the daughter size dis-

tribution are that its zero-th order moment should equal the number of bubbles

generated per breakup, as in Eqs. (A.12) and (A.16), and that its first order moment

must equal the mass of the source bubble, as in Eqs. (A.13) and (A.17).

With this Eq. (A.11) is reduced to

∫
∞

0
dm m β+(m) =

∫
∞

0
dm′ b(m′) f (m′)m′ (A.18)

which exactly cancels out the breakup deaths.

Remark Note that the daughter size distribution does not need to be symmetrical

when more than one bubble are generated per breakup.



272

A.2.2 Coalescence

The coalescence births term in Eq. (A.10) can be manipulated by first changing

the order of integration

∫
∞

0
dm mχ+(m) =

1
2

∫
∞

0
dm m

∫ m

0
dm′ Q(m −m′,m′) f (m −m′) f (m′)

=
1
2

∫
∞

0
dm′

∫
∞

m′
dm m Q(m −m′,m′) f (m −m′) f (m′) (A.19)

then the change of variables m′′ = m −m′ is made for the inner integral

∫
∞

0
dm mχ+(m) =

1
2

∫
∞

0
dm′

∫
∞

m′
dm m Q(m −m′,m′) f (m −m′) f (m′)

=
1
2

∫
∞

0
dm′

∫
∞

0
dm′′ (m′′ + m′) Q(m′′,m′) f (m′′) f (m′)

=

∫
∞

0
dm′

∫
∞

0
dm′′m′Q(m′′,m′) f (m′′) f (m′) (A.20)

the last identity is obtained by distributing the addition in parenthesis and by

noticing that the integration over these two integrands is the same due to the

symmetry of the kernel Q(m,m′).

This last term exactly cancels out the coalescence deaths.

A.3 Total Number of Bubbles Balance

The total number of bubbles per unit volume is computed as

N =

∫
∞

0
dm f (m) (A.21)

It is not possible to show that the total number of bubbles is conserved as it was

done with the total mass. Consider coalescence, every time two bubbles coalesce,

only one bubble is left. Hence, one bubble is lost per coalescence event. Similarly,

if n bubbles are generated on a breakup event and considering that the original
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bubble is lost, n − 1 bubbles are generated per breakup event. This result can be

derived from Eq. (A.4) in a similar way as mass conservation was derived.

The number of bubbles total balance is obtained by integrating Eq. (A.4) over

all bubble sizes

dN
dt

=
d
dt

∫
∞

0
dm f (m) =

∫
∞

0
dm

∂ f (m)
∂t

=∫
∞

0
dm β+(m) −

∫
∞

0
dm β−(m) +

∫
∞

0
dmχ+(m) −

∫
∞

0
dmχ−(m) (A.22)

as with mass conservation the birth terms will be manipulated in order to resemble

the death terms.

A.3.1 Breakup

As with births in the mass balance equation births in the number of bubbles

balance is manipulated by changing the order of integration

∫
∞

0
dm β+(m) =

∫
∞

0
dm

∫
∞

m
dm′ h(m,m′)b(m′) f (m′)

=

∫
∞

0
dm′

∫ m′

0
dm h(m,m′)b(m′) f (m′)

=

∫
∞

0
dm′ b(m′) f (m′)

∫ m′

0
dm h(m,m′)︸              ︷︷              ︸

n

= n
∫
∞

0
dm′ b(m′) f (m′) (A.23)

the last integral in Eq. (A.23) exactly equals the total deaths rate. Hence

∫
∞

0
dm β+(m) −

∫
∞

0
dm β−(m) = (n − 1)

∫
∞

0
dm′ b(m′) f (m′) (A.24)

and a total of n − 1 bubbles are gained per breakup event.
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A.3.2 Coalescence

As with the birth term in the mass equation the birth term in the number of

bubbles balance is manipulated by first changing the order of integration

∫
∞

0
dmχ+(m) =

1
2

∫
∞

0
dm

∫ m

0
dm′ Q(m −m′,m′) f (m −m′) f (m′)

=
1
2

∫
∞

0
dm′

∫
∞

m′
dm Q(m −m′,m′) f (m −m′) f (m′) (A.25)

and then the change of variables m′′ = m −m′ is performed

∫
∞

0
dmχ+(m) =

1
2

∫
∞

0
dm′

∫
∞

0
dm′′Q(m′′,m′) f (m′′) f (m′) (A.26)

this is exactly half of the total deaths by coalescence. Then

∫
∞

0
dmχ+(m) −

∫
∞

0
dmχ−(m) = −

1
2

∫
∞

0
dm

∫
∞

0
dm′Q(m,m′) f (m) f (m′) (A.27)

note that since the kernel Q(m,m′) is symmetric the above integral is counting the

number of coalescence events twice and it can be written as

∫
∞

0
dmχ+(m) −

∫
∞

0
dmχ−(m) = −

∫
∞

0
dm

∫ m

0
dm′Q(m,m′) f (m) f (m′) (A.28)

Hence, one bubble is lost per coalescence event, as expected.
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APPENDIX B
TURBULENT DISPERSION

A popular approach used by the two-phase community to model the dispersion

of the bubbly field by turbulent fluctuations is to use an extra interfacial momentum

term MTD
g in Eq. (3.20). The model proposed by Carrica et al. (1998) for the

interfacial force MTD
g is well accepted since in the limit for small bubble sizes

it predicts that bubbles behave as fluid tracers, as physically expected (see the

discussion in Section 3.1.4 on turbulent dispersion). In this model the interfacial

force is modeled as

MTD
g = −ρcαg

3
8

CD‖ur,g‖

Rg

νt

Scb

∇Ng

Ng
(3.32)

As discussed in Section 4.8, this kind of force proportional to the gradient of the

number density generates numerical instabilities that may lead to the divergence

of the solution. A numerical algorithm that solves this problem is presented in

Section 4.8. With this numerical problem solved, the model given by Eq. (3.32)

is used and it is observed that, in regions with strong turbulence fluctuations like

in a boundary layer or the wake behind a ship the solution is discontinuous. It

is important to remark that this problem is not caused by the decoupling of the

dispersed phase velocity and number density as discussed in Section 4.8, but it is

a new problem caused by the physical model.

The problem is found to be the existence of multiple solutions for the gas mo-

mentum equations when the model in Eq. (3.32) is used. The rest of this appendix

discusses the problem in detail.
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B.1 Simple cases with analytical solution

Taking into account only the buoyancy, drag and turbulent dispersion forces,

the gas momentum equation in Eq. (3.136) reduces to

ĈD ‖ur‖ur = −

(
1 − ρd/ρc

)
Fr2 k̂ − ĈD‖ur‖

νt

Scb

∇N
N

(B.1)

with, ĈD =
3
8

CD(Re)
R

where the group-g subscripts are omitted since only one bubble size is considered.

This equation is non-dimensionalized using a characteristic velocity U0 and a

characteristic length L0. For the problem of bubbles rising in a fluid, the character-

istic velocity used is the terminal velocity of the bubbles vt and the characteristic

length the bubble diameter D. Then, the Reynolds number is Ret = vt D/ν and the

Froude number is Fr = vt/
√

g D = Ret ν/
√

g D3 . This selection of characteristic

scales leads to

Re = Ret‖ur‖

ñ =
1
vt

νt

Scb

∇N
N

ĈD =
3
4

CD

where the dimensionless turbulence induced velocity ñ is defined and the last

relation comes from the fact that with this non-dimensionalization R = 1/2. Multi-

plying Eq. (B.1) by Ret and considering the z direction only it simplifies to

ĈD Re u = (1 − ρd/ρc)
Ret

Fr2 − ĈD Re ñ (B.2)

where the Reynolds number Re is defined with the actual bubble velocity u.

In Section 3.1.4 the drag coefficient is modeled as (ignoring the Eötvös number
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dependence)

CD(Re) =
24
Re

(1 + 0.168Re0.75) (B.3)

Unfortunately, with this model, the above equation can only be solved numer-

ically. To help understand how this equation behaves, different simplifications for

the drag coefficient are used. These are summarized below

• Constant CD(Re) = CD.

• Stokes’ drag. CD(Re) =
24
Re

.

• Oseen’s drag. CD(Re) =
24
Re

(1 +
3

16
Re).

The solution to Eq. (B.2) using these models are

Constant CD

u =


−

ñ
2

+

√
ñ2

4
+ 1 if u > 0

−
ñ
2
±

√
ñ2

4
− 1 if u < 0

(B.4)

Stokes’ CD

u = 1 − ñ (B.5)

Oseen’s CD

u =


−(18 + Bñ) +

√
(18 + Bñ)2 + 4B(A − 18ñ)

2B
if u > 0

−(Bñ − 18) ±
√

(Bñ − 18)2 − 4B(A − 18ñ)
2B

if u < 0

(B.6)

A = 18 +
27
8

Ret

B =
27
8

Ret

The solution obtained using Oseen’s drag coefficient is the only one that exhibits

a dependence with the Reynolds number. The Stokes and constant CD solutions
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are the limiting cases for Ret → 0 and Ret → ∞ respectively. These two are shown

in Figure B.2 together with Oseen’s case.

The most important and alarming feature of these solutions is that they show

that, eventually, there could coexist more than one possible solution to the same

problem. This is shown to happen for Ret ? 4.0.

The solution obtained with the Stoke’s drag coefficient can be recast to have

units as

ur = ut − ĈD‖ut‖
νt

Scb
∇N
N

(B.7)

showing that in the limiting case for which Ret goes to zero, the terminal and

turbulence induced velocity can in fact be linearly added.

These solutions also show that in the limiting case for which ñ → ±∞ (zero

gravity or large turbulent fluctuations for instance), the motion of the gas phase is

fully diffusive, u = −ñ.

Figure B.1 shows the numerical solution obtained using the drag coefficient in

Eq. (B.3). This is shown to be in good agreement the predicted behavior by the

analytical solutions.

Figure B.1: Numerical solution using the drag coefficient in Eq. (B.3)
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Figure B.2: Analytical cases. The solution obtained with Oseen’s model is the only
one dependent on the Reynolds number. The Stokes and Constant CD solutions are
limiting cases to Oseen’s solution.
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