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ABSTRACT

Identifying the elastic properties of heterogeneous materials has long been a

very challenging problem both theoretically and experimentally. When it comes to

biological tissues, this task is even more difficult since biological tissues generally

exhibit substantial anisotropic behavior. Moreover, identification is often required to

be performed in the service condition of living human tissues and organs, i.e., in vivo.

Presently, a method capable of performing such tasks is lacking.

The primary goal of this study is to fill this gap by developing a novel exper-

imental method, termed as pointwise identification method (PWIM), for delineating

the elastic properties in nonlinear heterogeneous membranes. Fundamentally, the

method hinges on a unique feature of membrane equilibrium problems, that is, wall

stress can be determined from equilibrium consideration alone (static determinacy).

Thanks to the static determinacy, membrane wall stress can be computed numerically

by using finite element inverse elastostatics method (FEIEM), and depends minimally

on the constitutive model.

In PWIM, an inflation test is conducted for the target membrane with a series

of tracking markers, and a series of deformed configurations are recorded by using

appropriate motion tracking techniques. Subsequently, the pointwise stress distri-

bution in each deformed configuration can be acquired independently by applying

FEIEM, whereas the corresponding strain distribution can be determined from the

deformation relative to the reference configuration which contains implicitly the elas-

tic properties of the material. Consequently, the elastic properties at every material
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point can be extracted by fitting an appropriate constitutive model to the pointwise

stress-strain data pairs.

In this work, we have validated the method for nonlinear isotropic and anisotropic

materials through numerical simulations on a patient-specific cerebral aneurysm model,

developed an experimental system and validated the method experimentally by con-

ducting an inflation test on a rubber balloon, and conducted a test on a rabbit urinary

bladder. The situation of the global stress-free configuration being unknown was con-

sidered numerically by employing a concept of local stress-free configuration. In this

regard, the method holds the promise of identifying in vivo the elastic properties of

membrane-like living organs, e.g., cerebral aneurysms, using medical images upon the

availability of powerful image registration techniques.
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be performed in the service condition of living human tissues and organs, i.e., in vivo.
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point can be extracted by fitting an appropriate constitutive model to the pointwise

stress-strain data pairs.

In this work, we have validated the method for nonlinear isotropic and anisotropic

materials through numerical simulations on a patient-specific cerebral aneurysm model,

developed an experimental system and validated the method experimentally by con-

ducting an inflation test on a rubber balloon, and conducted a test on a rabbit urinary

bladder. The situation of the global stress-free configuration being unknown was con-

sidered numerically by employing a concept of local stress-free configuration. In this

regard, the method holds the promise of identifying in vivo the elastic properties of

membrane-like living organs, e.g., cerebral aneurysms, using medical images upon the

availability of powerful image registration techniques.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

In the last several decades, biomechanics has received much attention and

enormous research effort. An important branch of biomechanics is to derive constitu-

tive models for biological tissues from experimental observation, and further use these

models to predict the mechanical behavior in different situations. Toward this goal,

an indispensable step is the identification of constitutive model parameters for certain

tissues. Briefly, such an identification process takes as input the experimentally ob-

served material response and conduct numerical computations using varying elastic

parameters until the discrepancy between the modeled and experimental responses

reaches its local minimum. The elastic parameters rendering such a minimum are

considered to be the optimum parameters which reflect the realistic elastic behavior

of the material.

Various approaches for identifying the elastic properties of the materials have

been developed. Prominent examples include controlled specimen testing, optimization-

based identification methods (also known as finite element updating methods), and

axisymmetric membrane inflation tests. These methods have their respective advan-

tages and limitations. Controlled specimen testing works directly on stress and strain

data, and is versatile for a variety of constitutive behaviors (elastic, viscoelastic, and

plastic), but is destructive. The directness allows for separately observing the material

response and then selecting appropriate constitutive models, and subsequently iden-
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tifying elastic parameters of the constitutive models. However, the destructiveness

prevents it from being the basis for in vivo testing for living tissues.

Optimization-based material identification methods work by coupling model

analysis (e.g., by finite element method (FEM)) with parameter regression. The

searching of the optimum elastic parameters is driven by the nonlinear regression

algorithm based on an objective function which is usually the squared difference

between the modeled responses by numerical simulations and the experimentally ob-

served responses. In contrast to specimen testing, optimization-based identification

methods are indirect. However, a noteworthy attribute of this type of methods is

that they can be rendered non-destructive. These methods have been widely adopted

in biomechanical applications [126, 127, 77].

Another type of material identification methods are axisymmetric inflation

tests for thin membranes. In axisymmetric membranes, the principal directions of

stress and strain are aligned with the meridian and circumferential directions. The

principal stretches can be measured from the profiles of the deforming membrane.

Moreover, the principal stresses depend only on the deformed shape, independent of

the material in question, and can be expressed as analytical functions of the trans-

mural pressure and principal curvatures which can be measured from experiments.

By fitting the functions to the experimental data of principal stresses and stretches,

the elastic parameters can be identified for specific constitutive models. Axisymmet-

ric membrane inflation tests are direct and non-destructive, however, they are not

applicable to membranes of general shape as the definition implies.
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It should be noted that none of the aforementioned methods can delineate the

elastic property distribution of heterogeneous materials effectively and accurately.

The latest development on biaxial test has pushed the size of specimen to the order

of a few squared millimeters [122], however, the specimen is still at a finite size. The

optimization-based methods can only provide average properties in the test region. It

is practically impossible to obtain the distribution of heterogeneous elastic properties.

Therefore, in order to characterize accurately the elastic properties of heterogeneous

materials, more effective methods are in demand.

1.2 Objective of the study

The objective of this study is to develop a novel experimental method which

can delineate the distributive elastic properties in nonlinear, anisotropic, and het-

erogeneous membrane structures and apply it to thin-walled biological tissues. The

ultimate goal is to extract accurate information on the regional material property of

diseased human tissues or organs, and to aid disease diagnosis.

Thanks to the static determinacy of a pressurized membrane in equilibrium,

membrane wall stress is independent of material property. If we can obtain the

pointwise distribution of stress and strain in a series of deformed configurations of

a membrane, the elastic property distribution of the membrane can be acquired by

identifying the constitutive parameters point by point. Based on this thinking, we

set further to generalize the membrane inflation test and make it applicable to mem-

brane structures of arbitrary shape. We term this method as pointwise identification

method (PWIM). Towards this goal, we will first seek a method that can be used to
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determine the wall stress distribution in a deformed configuration without knowing

the realistic material property. Then, we will devise a method to obtain the strain

distribution in multiple deformed configurations relative to a reference configuration.

Finally, a nonlinear regression algorithm will be chosen to conduct elastic parameter

identification using the pointwise stress-strain data.

To build up the theoretical ground for the pointwise identification method,

we will first revisit the membrane equilibrium and examine the static determinacy of

membrane wall stress. Then, we will introduce the finite element inverse elastostat-

ics method (FEIEM) which serves the purpose of determining the stress distribution

without knowing the actual material property in question. After constructing the

basic procedure of the pointwise identification method, we will validate the method.

Firstly, numerical experiments will be used, in which an inflation experiment is sim-

ulated by forward finite element analysis on a cerebral aneurysm sac model of prede-

fined elastic property distribution. Since we know the actual elastic property which

we presumably assigned to the membrane, we are able to compare the identified one

with it to evaluate if the method is valid and effective. Secondly, we will conduct

physical experiments on a rubber balloon which is legitimate to be modeled as a

membrane, and use the proposed method to identify its elastic property. The iden-

tified elastic parameters will be input into a forward finite element analysis to check

if they can be used to predict a deformed configuration. This process serves as the

validation since we do not know the actual values of the constitutive parameters, and

there are not data from other experiments to compare with.
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Another major objective is to validate the method for anisotropic materials

since the ultimate application of the method is to identify the elastic properties in

biological tissues which are generally anisotropic. Due to the extensive effort required

to reconstruct the microstructure of biological tissues, the current validation will be

limited to numerical experiments. The fiber orientation and material heterogeneity of

a cerebral aneurysm model will be predefined to exhibit certain pattern. An inflation

process will be simulated followed by elastic parameter identification using PWIM.

A very important issue in characterizing anisotropic materials is whether the fiber

orientation can be identified from biaxial stress-strain data. We will address that

in this work. In addition, the feasibility of in vivo identification will be tested by

assuming the stress-free configuration is unknown and conducting elastic parameter

identification with the aid of local stress-free configuration concept.

In order to demonstrate the feasibility of whole-organ elastic property identi-

fication, an inflation test on a rabbit urinary bladder will be conducted. Its elastic

property distribution will be identified by making certain assumptions on the fiber

orientation. Again, due to the limited experimental capability, validation will be

conducted systematically in the future.

1.3 Organization of the thesis

The thesis is organized as follows. Chapter 2 gives an overview of the chal-

lenges in characterizing biological tissues and the existing methods for elastic property

identification, including specimen testing, optimization-based methods and axisym-

metric inflation tests, and their respective advantages and drawbacks as well. A brief
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review about mechanics of soft tissues is also given in this chapter.

Chapter 3 introduces the theoretical basis of the pointwise identification method.

First, the fundamental membrane theory is presented, including kinematics, consti-

tutive theory and equilibrium equation. The equilibrium equation entails the static

determinacy of membrane stress which is the basis of the pointwise identification

method. Subsequently, the concept of local stress-free configuration and the formu-

lation for isotropic and anisotropic materials are presented. With this concept, the

elastic property can still be identified even if the global stress-free configuration is not

available, which forms the theoretical basis for in vivo elastic property identification.

Next, the finite element inverse elastostatics method (FEIEM) and the formulation

for membranes are introduced. This method is essentially the cornerstone of the

pointwise identification method. Finally, the formulation of transforming the stress

tensor to be under convected basis is presented. This is an important step in elastic

parameter identification.

Chapter 4 describes the procedure of the pointwise identification method which

involves three steps, i.e., strain data acquisition, stress data acquisition and constitu-

tive regression. The advantages and limitations of the method is also discussed.

Chapter 5 presents the validation of the method for isotropic material using

a numerical experiment on a cerebral aneurysm of predefined homogeneous material

property. Stress sensitivity analysis in inverse stress computation is conducted by

varying drastically the elastic parameters in FEIEM, and a boundary-effect-free region

is determined. The elastic parameters of a constitutive model different than the
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assumed one are identified. The distribution of the identified parameters is compared

with the assumed homogeneity to evaluate the effectiveness of the method. The same

procedure is followed for the situation of the global stress-free configuration being

unknown.

Chapter 6 introduces the experimental system designed for PWIM and presents

experimental validation using a finite inflation test on a rubber balloon. The rubber

balloon is inflated to a series of pressure levels, and the stress-strain data in the de-

formed configurations are obtained. By observing the stress-strain relation, we choose

Ogden’s strain-energy function to model the rubber material, and the elastic param-

eters in the boundary-effect-free region are identified. Material isotropy is verified by

testing a universal relation for isotropic materials. The predictive capability of the

model and its identified parameters is tested using a configuration which is not used

in the identification.

Chapter 7 presents the validation of the method for anisotropic materials using

a numerical experiment on a cerebral aneurysm of heterogeneous material property.

The procedure is the same as the isotropic case presented in Chapter 5 except that

the material anisotropy is assumed. The two families of collagen fibers are assumed

to be perpendicular to each other, which renders material orthotropy. The elastic

parameters of the anisotropic model are identified under the conditions of known fiber

orientation, unknown fiber orientation and unknown global stress-free configuration,

respectively. The respective identification error is evaluated.

Chapter 8 describes the anisotropic elastic property identification for a rabbit
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urinary bladder. We assume the two families of collagen fibers are distributed along

the meridian and circumferential directions of the bladder surface, respectively. The

strain-energy function proposed by Holzapfel’s group is utilized to model the elastic

behavior of the bladder wall. The stress distribution in deformed bladder is computed

by FEIEM using an isotropic neo-Hookean model.

Chapter 9 presents sensitivity analysis for membrane stress with respect to

material property using Direct Differential Method (DDM) for forward and inverse

finite element analyses. Low sensitivity of wall stress with respect to material property

in inverse analysis reveals again the static determinacy of membrane equilibrium. In

order to describe the membrane surface more accurately, 9-node quadratic elements

are also used to compute the sensitivity.

Conclusions and future work are presented in Chapter 10.
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CHAPTER 2
BACKGROUND

2.1 Challenges in characterizing soft tissues

Thanks to the fast development of powerful numerical methods, such as finite

element method, computational fluid mechanics, etc., stress analysis has become a

very helpful tool in modeling the mechanical behavior of biological tissues and organs.

Nevertheless, there are still quite a number of challenges that researchers are facing

due to the intrinsic characteristics of biological tissues. In this section, we will review

the challenges pertinent to the work of this thesis.

When conducting stress analysis, three pieces of information must be available,

i.e., the stress-free configuration, a constitutive law which is represented with respect

to the stress-free configuration, and the specific value of the parameters in the consti-

tutive law. For engineering materials, numerous elastic constitutive models have been

proposed by experimenting the material and observing the load-deformation relation.

These models are either phenomenological which are based on the macroscopic be-

havior of the materials regardless of their complex microstructure, or structural which

take into account the microstructure and the different properties of the constituent

materials. A constitutive model is expected to describe the properties of certain type

or class of materials. The value of the model parameters for different materials can be

identified by fitting the model to certain experimental data if any material is of inter-

est. This problem is an inverse problem, which is usually termed as elastic property

identification or material parameter identification.
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However, for biological tissues, elastic property identification is not a trivial

task. There are several reasons. Firstly, the mechanical properties of biological tis-

sues are generally nonlinear, anisotropic and heterogeneous over finite strains. Due to

material anisotropy, the elastic responses are different along different directions, and

shear stress generally exists. Therefore, an experimental protocol which can measure

biaxial loads (including both extension and shear) is needed. However, this require-

ment is quite stringent for experimentalists. Material heterogeneity is extremely hard

to characterize because stress field cannot be measured for most structures (exclud-

ing statically determinate structures) without knowing the actual material property.

Secondly, the global stress-free configuration of biological tissue is not easy or even

impossible to obtain physically, e.g., residually stressed tissues. Thirdly, elastic prop-

erty identification is often required to be conducted non-destructively, in vivo, and

subject-specifically.

Biological tissues have very complex microstructures. Take blood vessels as

an example. The vessel wall is composed of three consecutive layers from the inner

to the outer surfaces, i.e., the intima, media and adventitia. Their microstructures

are distinct from each other, which present heterogeneous material property. In ad-

dition, along the axial and circumferential directions, the material property may be

very different due to microstructural difference, growth, and remodeling. A sharp

characterization of pointwise property requires one know the stress-strain data at the

point of interest. Nowadays, some full-field measurement techniques are available

to measure the strain field, e.g., digital image correlation and speckle interferometry
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method. But there is no general method to measure the pointwise stress.

More often than not, one assumes that the stress-free configuration is the con-

figuration where external load is absent. However, this is not true for some material

bodies, e.g., biological tissues and organs. In the body of a living creature, the organs

and tissues are always under physiological pressure, and the load-free configuration

is never reached. Even though the load is eliminated after the organs and tissues are

taken out of the body, residual stress still exists, e.g., in the heart and arteries. The

source of residual stress is believed to be non-uniform growth, resorption and remod-

eling [38, 130, 131], and the driving force of residual stresses in the heart and arteries

is to minimize the peak stresses experienced by these tissues in vivo [40, 84, 22]. The

stress-free configuration of such residually stressed bodies cannot be obtained unless

the residual stress is relieved completely, generally by a destructive manner, e.g. by

cutting the material body into separate pieces. There has been extensive effort in

modeling residually stressed bodies. Two major routes have received considerable

attentions. One is to derive constitutive equations which include the effect of residual

stress and the material properties in the stress-free configuration [57, 72, 58]. The

mechanical response in an arbitrary deformed configuration can then be computed

from these constitutive equations and the deformation gradient out of the residu-

ally stressed configuration. This method is not practically feasible if the constitutive

equation is complex. The other one is to identify the material properties and the

characteristic (typically topological) parameters of the stress-free configuration from

a series of loaded configurations and, then use these parameters to predict other
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deformed configurations [162, 139, 138, 106, 137, 180].

A second example is a membrane structure that collapses when external load

(transmural pressure) is removed. Therefore, for a membrane structure, there is no

unique stress free configuration which is attainable from physical experiments. In this

work, we are going to introduce a local stress-free configuration at a material point

on a membrane which is parameterized by a Rimannian metric tensor, and then

identify the elastic property and the components of the metric tensor simultaneously

from pointwise stress-strain data in multiple deformed configurations. It is worth

mentioning that this concept can be applied to residually stressed bodies, which is

not the objective of this work because membranes sustain no residual stress.

2.2 Existing material identification methods

Identification of elastic properties is an inverse problem which takes certain

experimentally measured mechanical responses as reference, subsequently applies cer-

tain mechanical laws and finally output the parameters of the laws. Since this subject

is involved in almost all the physical problems, e.g. plasticity, viscoelasticity, etc., it

is impossible and unnecessary to include all the aspects in this review. Here, only the

identification methods for elastic properties from purely mechanical tests are touched

upon. In what follows, the existing material identification methods and relevant

works, in particular for the identification of biological tissues, are introduced, and

their advantages and limitations are discussed.
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2.2.1 Specimen testing

The most well-known and straightforward method for material identification

is controlled specimen testing. Briefly, a specimen with certain geometry is prepared

by cutting from a large piece of material or directly molding with the material. Then

the specimen is mounted onto a specialized test device and loaded. The load and

deformation of a small central region distanced enough from the ends of the specimen

are recorded, from which one can derive the stress-strain history during the deforma-

tion. By observing the trend of the stress-strain curve, an appropriate constitutive

model may be chosen and the realistic elastic parameters for the tested material may

then be identified by fitting the discrete experimental data with the model.

In specimen testing, boundary loads are carefully applied so that the stress

and strain in the central region of the specimen remain approximately uniform during

the entire course of loading. Due to the homogeneity, the stress can be computed from

the applied boundary traction without knowing the material constitutive equation in

question. However, the implication of assuming homogeneous stress and strain in the

test region is that the identified elastic parameters are the averaged parameters over

the region. If the material is intrinsically homogeneous or nearly so in the macro

sense, or only averaged material properties are sought, specimen testing is considered

to be valid and effective. By design, specimen testing is a direct method where the

analytical load-deformation or stress-strain relation is contained in the experimental

data. The constitutive relation can be directly observed from the experimental data,

and hence the elastic parameters can be identified directly by utilizing regression
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algorithms.

The most common specimen testing methods include uniaxial extension, biax-

ial extension, and such. Although uniaxial extension tests are widely used in material

science, e.g., in determining the elastic property of polymer materials or metals, the

load protocol is not sufficient in characterizing the multi-dimensional behavior of nat-

ural biological tissues and tissue-derived soft biomaterials in physiological conditions.

The essential reason for this is that the “experimental paths” of uniaxial extension

tests with respect to the in-plane strain components do not cover the physiological

domain of biological tissues [59]. Since uniaxial extension provides experimental data

only for a small domain in the strain space, fitting of multi-dimensional constitutive

models to the data may lead to ill-conditioned equations, slow convergence rates,

and non-unique solutions. In other words, different sets of constitutive parameters

may provide equally good representations of uniaxial data, but predict very different

material response for physiological loading conditions [59].

To overcome such difficulties, one frequently employs multi-axial extension

tests which simulate the physiological condition more accurately. For incompressible

thin biological tissues, planar biaxial testing allows for a two-dimensional stress state

that is sufficient in characterizing the elastomechanical behaviors. The original de-

velopment of biaxial extension testing was initiated by Treloar [153] and Rivlin and

Saunders [114] in coping with rubber elasticity problems. Treloar [153] pioneered

techniques to apply two independently variable strains in two perpendicular direc-

tions with simultaneous measurement of stresses [121]. However, in Treloar’s device
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the axial stretch ratios λ1 and λ2 cannot be controlled separately. This experimental

limitation did not facilitate precise determination of the form of W and its deriva-

tives, ∂W/∂I1 and ∂W/∂I2. In 1951, Rivlin developed a modified biaxial device that

allowed for applying biaxial loads to rubber sheets and more precise experimental

control. Using this device, Rivlin developed an integrated theoretical-experimental

methodology in which the form of W could be derived and evaluated directly from

multi-axial experimental data [121].

The earliest investigations into developing and utilizing biaxial testing to iden-

tify the elastic properties of biological tissue were initiated by Lanir and Fung in

1774 [80, 81] as they studied the elastic properties of rabbit skin. The ensuing in-

vestigations into the elastic property characterization of a much broader range of

soft tissues, including arterial walls, heart valves, pericardium, myocardium, abdom-

inal aortic aneurysms, cerebral aneurysms, cornea, etc., appear to be prosperous and

endless.

Although specimen testing has been extensively relied upon in elastic property

identification in both material science and biomedical engineering due to its simplicity

and directness, a primary limitation is the destructiveness. This may confine its

applicability in certain situations where the testing process cannot be controlled by

the tester. For example, a reliable identification of the elastic properties of biological

tissues usually desires the testing be conducted in their living status, or at least in the

intact state. In this regard, it is not reasonable to cut a piece of tissue. Moreover, if

the material is highly heterogeneous and the distribution of the material heterogeneity
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needs to be sought, specimen testing is not effective.

2.2.2 Optimization-based identification methods

As mentioned above, in some situations, the experimental condition cannot be

controlled, or non-destructiveness is required when the material needs to be charac-

terized in its service condition. In such cases, specimen testing is not applicable. One

can employ an alternative, optimization-based identification methods, to conduct elas-

tic property identification. Briefly, optimization-based identification methods couple

a forward numerical method (e.g., finite element method (FEM)) with a nonlinear

regression algorithm. The searching of the realistic elastic parameters is driven by

the nonlinear regression algorithm based on an objective function which is usually the

squared difference between the modeled responses by the forward numerical simula-

tion and the experimentally observed response. In the literature, optimization-based

identification methods are often termed inverse finite element methods due to the

common usage of finite element methods as the numerical simulation tool. Here,

we prefer not to use this name in order for avoiding unnecessary confusion between

this method and the finite element inverse elastostatics methods among unfamiliar

readers.

These methods are based on an indirect approach; that is, the constitutive

law is not contained directly in the experimental data, but implied in the modeling.

In other words, the explicit relationship between the stress and strain is not derived

directly form the experimental data, but estimated from the predicted model response.

To supplement the data which contain the constitutive relation, a forward numerical
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simulation needs to be performed using the actual loading condition and an assumed

constitutive model. The best-fit parameters are obtained by progressively minimizing

the difference between the model prediction (of, say, displacements at some positions)

and the physical measurement.

Due to the fact of coupling numerical field solution and constitutive regression,

the field problem needs to be solved over and over again as the regression iteration

proceeds, until the optimal parameters are found. Therefore, both aspects being

usually computationally expensive, extensive computation effort is needed, especially

for complex problems. Moreover, the complex coupling makes it difficult to pinpoint

the source if some errors occur during the identification. Most importantly, in these

methods, one usually assumes the material is homogeneous over the whole domain.

Or alternatively, one needs to identify multiple sets of parameters simultaneously

at multiple points if material heterogeneity needs to be characterized. This may

increase the computational effect enormously, and even worse, a unique combination

of parameters may not be determined.

The optimization-based methods were originally proposed by Kavanagh and

Clough [74], and further developed by Iding et al. [69] and Kyriacou et al. [79].

Kyriacou et al. [79] utilized this method to characterize the material parameter of neo-

Hookean rubber membranes using axisymmetric and nonaxisymmetric finite inflation

experiments.

Considering the aforementioned difficulties in dealing with heterogeneous ma-

terial properties encountered by optimization-based identification methods, Seshaiyer
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and Humphrey [127] proposed a sub-domain inverse finite element method which is an

adaptation of general optimization-based identification methods using FEM toward

a sub-domain of the whole domain, typically composed of several interconnected fi-

nite elements. With this method, the material is assumed to be homogeneous within

a small region, and so are the stress and strain. This sub-domain approach avoids

difficulties in measuring all the boundary conditions for the entire domain, and much

smaller forward FE analysis is needed. Thus it is computationally much more ef-

fective than the global counterpart. Most importantly, the region in which material

homogeneity is assumed is reduced significantly. This allows one to characterize het-

erogeneous material more accurately. However, what this method provides is still a

local average of the elastic properties. It also inherits afore-mentioned other limita-

tions of the methods.

In summary, for both specimen testing and optimization-based identification

methods, a primary limitation is the premise of global or local material homogeneity.

The reason for this is the lack of an effective experimental method for determining

pointwise stress-strain data in a heterogeneous material body under load.

2.2.3 Axisymmetric membrane inflation tests

A number of researchers have investigated the problem of axisymmetric mem-

brane inflation, and employed it to identify the elastic properties of rubber-like mate-

rials and biological soft tissues. The method is designed for axisymmetric membranes

because the principal directions of stress and strain are aligned with the meridian

and circumferential directions, and thus the principal stretches are easy to measure.
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Figure 2.1: Deformed and undeformed meridian arc of an axisymmetric membrane.

Moreover, the principal stresses depend only on the deformed shape, independent

of the material in question, and can be expressed as analytical functions of inter-

nal pressure and principal curvatures which can be measured from experiments. To

name a few works, there have been Treloar [151], Adkins and Rivlin [2], Green and

Adkins [48], Klingbeil and Shield [76], Hart-Smith and Crisp [53], Foster [37], Yang

and Feng [176], Schmidt and Carley [123], Wineman et al. [173], Vaughan [164] and

Hsu [62, 61].

Since the current work spins from the inflation test, it is worthwhile revis-

iting the axisymmetric membrane inflation problem. Here we follow Klingbeil and
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Shield [76]. Figure 2.1 illustrates the undeformed and deformed profiles of an ax-

isymmetric membrane. Its geometry can be described by polar coordinates. In a

coordinate plane of constant θ, let (ρ, η) be a point of the undeformed membrane.

The point is displaced to a new position (r, z) in the same coordinate plane. The

undeformed profile is represented by the relation η = η(ρ). The objective of the

problem is to seek the deformed profile in terms of r(ρ) and z(ρ) under a given load

condition.

For the geometry of the surface after deformation, we have

dr

ds
= cos θ,

dz

ds
= − sin θ, (2.1)

with the principal curvatures κ1 and κ2 being given by

κ1 =
dθ

ds
,

κ2 =
sin θ

r
.

(2.2)

The subscripts (1,2) used here and in the following to denote directions of meridian

and circumferential respectively. Implied by Equations (2.1) to (2.2) is the familiar

relation

κ1 =
d

dr
(rκ2) . (2.3)

Due to axisymmetry, the only non-zero components of stress resultant t and

deformation gradient F, relative to the meridian and circumferential directions, are

the principal components. The principal stretch ratios in the meridian and circum-
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ferential directions are here denoted by λ1 and λ2, respectively, and are defined by

λ1 =
ds

dξ
,

λ2 =
r

ρ
,

(2.4)

where dξ and ds are the infinitesimal undeformed and deformed meridian arc lengths.

The third principal stretch ratio λ3, for directions normal to the deformed membrane

surface, is related to λ1 and λ2 through the incompressibility condition

λ1λ2λ3 = 1. (2.5)

For membranes undergoing only quasi-static normal pressure p, the governing

differential equations are

d

dr
(rt1) = t2,

κ1t1 + κ2t2 = p

(2.6)

where t1 and t2 are principal stress resultants.

It remains to relate the principal stress resultants t1 and t2 to the principal

stretch ratios λ1 and λ2. For an incompressible isotropic material these relations are

t1 =
2H

λ1λ2

(
λ2

1 −
1

λ2
1λ

2
2

)(
∂W

∂I1

+ λ2
2

∂W

∂I2

)
,

t2 =
2H

λ1λ2

(
λ2

2 −
1

λ2
1λ

2
2

)(
∂W

∂I1

+ λ2
1

∂W

∂I2

)
,

(2.7)
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where W = W (I1, I2) is the strain energy function for the material,

I1 = λ2
1 + λ2

2 +
1

λ2
1λ

2
2

,

I2 =
1

λ2
1

+
1

λ2
2

+ λ2
1λ

2
2

(2.8)

are respectively the first and second strain invariants, and H is the thickness of the

undeformed membrane.

Treloar [151] was the first one to compute the principal strains over an ax-

isymmetric rubber membrane. He used a moving microscope to record the motion of

several points aligned on the diameter of the membrane, and compute the principal

strains using analytical formula. Adkins and Rivlin [2] employed the Mooney form

(Equation (6.4)) and a Taylor’s series approach to compute the deformed profiles of

a pressurized, clamped, initially flat, circular rubber sheet, and compared them with

the experimental profiles measured by Treloar [151]. Agreement was found to be

good at low inflation degrees whereas less so at higher inflation degrees (extension

ratio greater than 4). It suggested the limited validity of the Mooney form of W in

representing the behavior of pure gum rubber vulcanizates at intermediate and high

extensions [76]. It was shown in [2] that the solutions for high values of λ become

extremely sensitive to the higher derivatives of the strain energy function W (I1, I2)

with respect to its arguments I1 and I2. Hence, for a pure gum rubber material, the

inflated diaphragm problem, in conjunction with the available experimental results

and a numerical technique to solve the inflation problem, offers an indirect means for

further investigations on the nature of W at high extensions and, moreover, provides
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a stringent test for those forms of the strain-energy function already existing in the

literature [76].

Considering the limited validity of the Mooney form, Klingbeil and Shield [76]

used the validity of another form of the strain-energy function in terms of principal

stretch ratios proposed by Carmichael and Holdaway [15] to model pure gum vulcan-

izates. They found that good fit to Treloar’s experimental data could not be reached

if using the material parameters obtained by Carmichael and Holdaway. Hence they

adjusted the parameters and reached very agreement between the computational and

experimental results.

Rivlin and Saunders [114] first showed that specific forms of response functions

for nonlinear, incompressible, hyperelastic, isotropic solids can be determined directly

from axisymmetric membrane inflation test.

The work by Hsu et al. [62] was the first investigation into the possibility of

determining the response functions of an axisymmetric membrane directly from the

experimental data of an inflation test. They performed a numerical experiment of

inflation test for a circular clamped flat membrane using a constitutive model (STZC

material) originally developed for red cell membranes by Skalak et al. [132], of which

the strain energy function is

w =
c1

8

(
I2
1 + 2I1 − 2I2 + ΓI2

2

)
(2.9)

where w is the 2D strain energy function, Γ = c2/c1, c1 and c2 are material parameters,



24

I1 = 2 (E11 + E22), and I2 = 4E11E22 + 2 (E11 + E22), E11 and E22 are Green strain

tensor components.

The two response functions are defined by

w11 =
∂w

∂E11

=
λ2

λ1

t1, w22 =
∂w

∂E22

=
λ1

λ2

t2. (2.10)

Sampling “measured” data at three locations where the dimensionless reference radial

coordinate ρ = 0, 0.5, 1, i.e. the pole, half of the radius, the base, respectively, they

were able to determine the dependence of the response functions w11 and w22 with

respect to the strain components E11 and E22 for three different load protocols, i.e.

equibiaxial, proportional and strip biaxial stretching tests.

Membrane inflation tests provide rich multiaxial experimental protocols, which

allow one to investigate different mechanical behaviors [173, 62]. However, these tests

are only applicable to axisymmetric membranes as designed. A secondary limitation

of membrane inflation tests is the inability to separately control the two principal

strains or stresses, i.e. varying one and maintaining another. This confines the

possibility of observing the individual roles of principal strains or principal strain

invariants [62]. Moreover, if the material is heterogeneous, an initially axisymmetric

membrane may not remain so during inflation (it remains so only if the material

property is also axisymmetric). For this reason, the method is limited to only a

subclass of heterogeneous materials.

A key mechanical property that the inflation test exploits is the static deter-
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minacy of the membrane equilibrium problem. In the inflation test, the meridian and

circumferential stresses are determined from the knowledge of the deformed geome-

try and transmural pressure, according to the Laplace equation. This is in parallel

to specimen test where the stress is also computed directly from equilibrium. We

should note that the property of static determinacy is not limited to axisymmetric

membranes; in fact any pressurized sac-like thin wall structure has this property.

2.3 Mechanics of soft tissues

In the last several decades, the studies in biological tissues have received exten-

sive attention. Due to the ability to deform in a large deformation and the complex

structures, the nonlinear elastic behaviors of soft tissues are especially important.

To model tissues, an indispensable step is to develop constitutive models, and then

to identify their elastic properties, i.e., the elastic parameters in certain models. At-

tributing to the significance in human lives, the investigations into the heart, arteries,

aneurysms, lungs, and corneas have been extremely active. In the following, the me-

chanics of arteries will be focused upon.

The development of constitutive models for arterial walls has been based on

phenomenological or structural approaches. A phenomenological model describes the

artery in a macroscopic sense, regardless its microstructure. Whereas, a structural

model is proposed by taking into account certain microstructural features of arterial

walls. For a complete review of constitutive models for arterial walls, readers are

referred to [64]. Phenomenological models include polynomial form [160], logarithmic

form [146], and exponential form [39, 21, 28].
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The strain-energy function proposed by Delfino describes the arterial walls as

an isotropic material, and it has the form

W =
a

b

{
exp

[
b

2
(I1 − 3)

]
− 1

}
(2.11)

where W is the strain-energy per undeformed volume, I1 is the trace of the right

Cauchy-Green deformation tensor C, and a and b are positive material constants.

The strain-energy functions used most broadly for arterial walls are Fung-type

models, which characterize arterial walls as anisotropic materials, and they have the

form

W =
1

2
c [exp (Q)− 1] (2.12)

where c ≥ 0 is a material constant, and Q = Q(EAB) is a quadratic function of the

components of the Green-Lagrange strain tensor E = 1
2
(C− 1). Here A or B can be

either of R, Θ and Z, which stand for the radial, circumferential, and longitudinal

directions of the artery, respectively.

The model was proposed originally by Fung et al. [39] for a two-dimensional

case where Q has the form

Q = b1E
2
ΘΘ + b2E

2
ZZ + 2b4EΘΘEZZ (2.13)

Based on the experiments in [39], Chuong and Fung [21] generalized the two-dimensional

model to three-dimensional case, where they assumed that the principal directions of
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the stress tensor coincide with the radial, circumferential, and longitudinal directions

of the artery in the reference configuration, and the shear stresses vanish. In this

case, Q is expressed by

Q = b1E
2
ΘΘ + b2E

2
ZZ + b3E

2
RR + 2b4EΘΘEZZ + 2b5EZZERR + 2b6ERREΘΘ. (2.14)

The most general strain-energy function of Fung’s type was formulated by Humphrey [64],

where three more terms representing the effect of shear stresses were added to the

expression of Q, i.e.,

Q = b1E
2
ΘΘ + b2E

2
ZZ + b3E

2
RR + 2b4EΘΘEZZ + 2b5EZZERR+

2b6ERREΘΘ + b7E
2
ΘZ + b8E

2
RZ + b9E

2
RΘ.

(2.15)

Microscopically, arterial wall is composed of three layers, the intima, the me-

dia, and the adventitia from the inner surface to the outer surface. The intima consists

of a single thin layer of endothelial cells. The media is the middle layer of the artery

and consists of a complex three-dimensional network of smooth muscle cells, elastin

and collagen fibrils. The orientation of and close interconnection between the elastin

and collagen fibrils, elastic laminae, and smooth muscle cells together constitute a

continuous fibrous helix [124, 140]. This structural arrangement gives the media high

strength, resilience and the ability to resist loads in both longitudinal and circum-

ferential directions. The adventitia is the outermost layer of the artery and consists

mainly of fibroblasts and fibrocytes, histological ground substance and thick bundles
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of collagen fibrils forming a fibrous tissue. The wavy collagen fibrils are arranged in

helical structures and serve to reinforce the wall. They contribute significantly to the

stability and strength of the arterial wall [60]. As the deformation increases under

internal blood pressure, more and more wavy collagen fibers are recruited to bear

load, and the stiffness of the adventitia increases accordingly. However, when only

passive behavior of the arteries is of interest, the intima is usually neglected due to

its thinness, and low stiffness compared to the media and the adventitia.

Aside from phenomenological models, which do not incorporate the histological

structures of the arterial walls, e.g., the collagen fiber content and direction, several

researchers have developed some structural models while considering the histological

information. Holzapfel et al. [60] proposed a strain-energy function to model the

multi-layered structure of the arterial walls based the histological information. The

model is based on the theory of the mechanics of fiber-reinforced composites [136]

and embodies the symmetries of a cylindrically orthotropic material. They modeled

the media and the adventitia as composite materials reinforced by two families of

collagen fibers which are arranged in symmetrical spirals, and suggested an additive

decomposition of the isochoric strain-energy function W into a part Wiso associated

with the isotropic behavior of the non-collagenous matrix material and another one

Waniso associated with the anisotropic behavior of the collagen fiber network, that is

W (C, a01, a02) = Wiso (C) + Waniso (C, a01, a02) , (2.16)
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where C is the right Cauchy-Green deformation tensor , a01 and a02 characterize the

directions of the two families of collagen fibers.

Specifically, they propose the forms of Wiso and Waniso as

Wiso (I1) =
c

2
(I1 − 3) ,

Waniso (I4, I6) =
k1

2k2

∑
i=4,6

{
exp

[
k2 (Ii − 1)2]− 1

}
.

(2.17)

Here c ≥ 0 and k1 ≥ 0 are stress-like material constants, k2 ≥ 0 is a dimensionless

constant, Ii (i = 1, 4, 6) are the strain invariants defined by

I1 (C) = trC, I4 (C, a01) = C : A1, I6 (C, a02) = C : A2 (2.18)

where Ai, (i = 1, 2), are defined as the tensor products a0i ⊗ a0i.

The ensuing development of structural models for arterial walls has been con-

tributed by Zulliger et al. [181, 182], Driessen et al. [31].
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CHAPTER 3
THEORETICAL FRAMEWORK

3.1 Elements of membrane theory

3.1.1 Kinematics

A membrane is a thin material body of which the thickness is much smaller

than the other dimensions. Due to thinness, a membrane has negligible resistance

to bending and transverse shear. Thus, it is modeled as a deformable surface that

sustains loads by virtue of surface tension. There are numerous ways to present the

membrane equations, but we found the tensorially covariant forms based on convected

coordinates to be the most convenient for our exposition. In this representation,

the surface is parameterized by surface coordinates ξα (α = 1, 2) in which a pair of

coordinates P = (ξ1, ξ2) is regarded as the same material point during the deformation

(Figure 3.1). We denoted by x = x(P ) the position vector of the material point P in

a deformed configuration C ∈ R3. The tangent vectors of the coordinate curves

gα =
∂x

∂ξα
(3.1)

form the basis of the surface tangent space at x(P ). An infinitesimal line element is

given by dx = gαdξα, and its length is determined from the first fundamental form

ds2 = dx · dx = gαβdξαdξβ, gαβ = gα · gβ. (3.2)
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Figure 3.1: Schematic illustration of the kinematic map and base vectors.

The summation convention applies to repeated indices. The coefficients gαβ constitute

the components of the surface metric tensors. The contravariant surface base vectors

{gα, α = 1, 2} are defined by the relation gα·gβ = δα
β , gα·n = 0 where n is the outward

unit normal vector of the surface. The dot product gα · gβ gives the components gαβ

of a tensor which is inverse to the metric tensor, i.e. gαβgβγ = δα
γ . The kinematic

variables depend on the configuration in which they are characterized. The position

vector, surface basis, contravariant basis, the components of the metric tensor, and

the inverse metric tensor on the stress-free reference configuration C0 ∈ R3 (if such

a configuration can be identified) are denoted by X(P ), Gα, Gα, Gαβ, and Gαβ,

respectively.

The surface deformation gradient, which maps the surface tangent vectors at
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X(P ) in C0 to the tangent vectors at x(P ) in C , is

F = gα ⊗Gα. (3.3)

The tensor F, regarded as a linear operator in 3D space, is singular. However, it can

be understood as a nonsingular linear operator on vectors lying in the tangent plane

at X(P ). In this sense, the inverse deformation gradient F−1 is

F−1 = Gα ⊗ gα. (3.4)

The Cauchy-Green deformation tensor associated with F is the surface tensor at X(P )

given by

C = FTF = gαβG
α ⊗Gβ. (3.5)

The Lagrangian strain tensor is then defined as

E =
1

2
(C− I) (3.6)

where I is the unit second-order tensor.

3.1.2 Constitutive theory

The constitutive equation of a hyperelastic membrane is described by a strain

energy function (energy density per unit undeformed reference area). The specific

form of the energy function can be established in several ways. If the 3D strain energy
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function of the material is known, the surface energy can be deduced by reduction.

Alternatively, one can directly postulate a strain energy that depends on the surface

deformation gradient [49, 135], and characterize the function form by experiments

or some other means. In this work, the second approach is followed. Starting from

the assumption w = w(F), the invariant requirement under superposed rigid body

motion further requires that F enter the energy function through C.

If the membrane is isotropic, the material isotropy renders

w = w(I1, I2), (3.7)

where I1 = trC and I2 = detC are the two principal invariants of tensor C. In

our work, it proves to be convenient to express the invariants in tensorially invariant

forms:

I1 = gαβGαβ, I2 =
g

G
, (3.8)

where g and G are the determinants of the matrices [gαβ] and [Gαβ], respectively.

The fundamental kinetic variable in the membrane theory is the stress resul-

tant (i.e., tension)

t =

∫ h
2

−h
2

σ dh = tαβgα ⊗ gβ, tαβ = tβα ≈ hσαβ, (3.9)

where σαβ are the components of Cauchy stress tensor, and h is the current thickness

of the membrane. Properly invariant stress function can be derived with the aid of



34

the referential resultant

T = F−1(Jt)F−T , J =

√
g

G
(3.10)

which corresponds to the 2nd Piola-Kirchhoff stress S in the 3D theory. Since

F−1gα = Gα, as evidenced by (3.4), it is clear that T = JtαβGα ⊗ Gβ. Namely,

the components T αβ differ from tαβ only by the area factor J . The standard argu-

ment involving the balance of mechanical power concludes that

T = 2
∂w

∂C
= 2

∂w

∂gαβ

Gα ⊗Gβ. (3.11)

It follows that, in components,

Tαβ = Jtαβ = 2
∂w

∂gαβ

. (3.12)

For an isotropic membrane we have

J tαβ = 2
∂w

∂I1

Gαβ + 2I2
∂w

∂I2

gαβ. (3.13)

If the membrane is anisotropic, say reinforced by two families of fibers whose

directions are respectively N1 and N2 in the reference configuration, the strain energy

function is

w = w(I1, I2, I4, I6), (3.14)
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where the first and second strain invariants, I1 and I2, are given by Equation (3.8),

I4 and I6 are the fourth and sixth principal invariants which represent the squared

stretches of the material line elements along the fiber directions N1 and N2, respec-

tively. To derive the explicit form of I4 and I6 in the curvilinear coordinate system,

we first define two structure tensors as A1 = N1 ⊗N1 and A2 = N2 ⊗N2. In the

reference configuration, N1 and N2 can be writen as N1 = Nα
1 Gα and N2 = Nα

2 Gα,

respectively. It follows that the invariants I4 and I6 are given by

I4 = C : A1 =
Nα

1 gαβNβ
1

N δ
1GδγN

γ
1

, I6 = C : A2 =
Nα

2 gαβNβ
2

N δ
2GδγN

γ
2

. (3.15)

In this covariant setting, the fiber vectors in a current configuration are given by

n1 = Nα
1 gα and n2 = Nα

2 gα, namely, the components remain the same. Thus, the

fiber directions are known if their components in a configuration are specified.

Expanding Equation (3.12) for the strain energy function (3.14) gives the stress

resultant components

J

2
tαβ =

∂w

∂I1

Gαβ +
∂w

∂I2

gαβ+

(
N δ

1GδγN
γ
1

)−1
I4

∂w

∂I4

Nα
1 Nβ

1 +
(
N δ

2GδγN
γ
2

)−1
I6

∂w

∂I6

Nα
2 Nβ

2

(3.16)

where α, β, δ, γ = 1, 2, and repeating index implies summation. For the sake of

simplicity, we will use the term “stress” to represent the membrane stress resultant

or tension in the remainder of the thesis unless otherwise stated.

In the convected system, the principal invariants of the stress tensor can be
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computed by

J1 = tr (t) = tαβgαβ, J2 = det (t) = det (tαγ) det (gγβ) . (3.17)

Note that these expressions are invariant under the change of surface coordinates.

3.1.3 Equilibrium equation

The static equilibrium of a membrane is governed by the balance equation [99,

48]

1√
g

(√
gtαβgα

)
,β

+ b = 0, (3.18)

where g = det (gαβ), b is the external force per unit current area. In the traditionally

forward sense, the equilibrium equation gives rise to a nonlinear differential equation

for the forward deformation.

3.2 Local stress-free configuration

Thin membranes typically collapse when unloaded. They can have multiple

stress-free configurations which may not attain a smooth convex shape. To develop

a theoretical framework suitable for elastic property identification, it is imperative

to have a constitutive description that permits a stressed configuration to be used

as the reference configuration. This can be achieved by using the notion of local

stress-free configuration, which associates each infinitesimal material element with a

stress-free configuration that can be reached independently of the surrounding ma-

terial. The stress-free state of the material body is a virtual configuration composed



37

Local stress-free
configurations

C

K
−1

C0

x

E1

E2

F

FK

X

E3

Figure 3.2: Schematic illustration of the kinematic map and the local stress-free
configuration.

of the union of the local configurations. The energy function at each material point

is characterized with respect to the local stress-free state, whereas the deformation

is measured relative to the chosen reference configuration. In this manner, the local

stress-free configuration will enter the constitutive law as model parameters. In what

follows, we will show that it can be effectively represented by a Riemannian metric

tensor endowed to the stress-free configuration. The essential idea of local configu-

ration was initially contained in [156] and further expanded in [100]. This idea has

been adapted, in different forms, to describe material inhomogeneity [33, 34], finite

plasticity [94, 95, 86, 85], tissue growth [116, 145], residual stress [72, 58], and initial

strain [106].

With reference to Figure 3.2, let K−1 be the local deformation that elastically
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releases the stress in an infinitesimal surface element at point P and brings the ma-

terial element to a local stress-free configuration. The map K−1 is defined relative

to a reference configuration which is not necessarily stress-free. With a slight abuse

of notation, this reference configuration is still denoted by C0, and the associated

kinematic variables are denoted by capital letters. The local map K−1, regarded as a

linear transformation on the tangent vectors at X(P ) ∈ C0, can be determined if its

action on two linearly independent tangent vectors are known. If (G1dξ1,G2dξ2) are

the images of the line elements (G1dξ1,G2dξ2), respectively, we can write K−1 as

K−1 = Gα ⊗Gα. (3.19)

It should be noted that the tensor K−1 is not the gradient of a global mapping.

Moreover, since the local configuration is stress-free, any arbitrary re-orientation re-

mains stress-free and thus, the local configuration K−1 is determined to within a left

rotation.

Under the local relaxation the line element dX = Gαdξα is mapped into

K−1dX = G1dξ1 + G2dξ2. The relaxed length is given by

dS2
0 = (K−1dX) · (K−1dX) = dX · (K−TK−1)dX. (3.20)

We can interpret the tensor

G := K−TK−1 = GαβG
α ⊗Gβ, Gαβ = Gα ·Gβ (3.21)
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as a Riemannian metric tensor on C0 that describes the unstressed geometry of ma-

terial elements. The metric tensor is a local property of the reference configuration;

it varies from point to point. The rotation indeterminacy of the local configuration,

which presents in K−1, is eliminated in the metric representation.

During a normal deformation C0 7→ C , the tensor to be used in the constitutive

equation is FK where F is the regular deformation gradient relative to the reference

configuration C0. For isotropic material, starting from w = w(FK), the invariant

requirement renders

w = w(KTFTFK). (3.22)

The rotational indeterminacy implies w = w(QKTFTFKQT ) for any rotation tensor

Q. This condition dictates that the energy function depend on the principal invariants

I1 and I2 of the tensor (KTFTFK). A straight-forward computation shows

I1 = tr (KTFTFK) = gαβGαβ,

I2 = det(KTFTFK) =
g

G
, G = det[Gαβ].

(3.23)

Now, we consider the case when the material is anisotropic, say reinforced by

two families of fibers. The fiber directions are denoted as N1 and N2, respectively, in

the reference configuration. The corresponding structure tensors are A1 = N1 ⊗N1

and A2 = N2 ⊗ N2. The fiber directions in the local stress-free configuration are

denoted as N 1 and N 2, which, in the current covariant setting, are given as N 1 =

Nα
1 Gα and N 2 = Nα

2 Gα, respectively. Again, the components remain the same across
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different configurations. Denoting the structure tensors in the stress-free configuration

as A1 = N 1⊗N 1 and A2 = N 2⊗N 2, it follows that the components of Ai are the

same as those of Ai, (i = 1, 2).

Then, the strain energy depends on not only the deformation gradient from

the local stress-free configuration to the current configuration, but the fiber directions

through the structure tensors as w = w (FK,A1,A2). The strain energy function is

then dependent on the principal invariants I4 and I6 as well. Referred to the local

stress-free configuration, I4 and I6 are given by

I4 =
(
KTFTFK

)
: A1 =

Nα
1 gαβNβ

1

N δ
1GδγN

γ
1

,

I6 =
(
KTFTFK

)
: A2 =

Nα
2 gαβNβ

2

N δ
2GδγN

γ
2

.

(3.24)

It is now clear that the local configuration enters the constitutive equation

through the components of the metric tensor G. This representation is useful for

parameter identification. In the case where a global stress-free configuration cannot

be attained experimentally, the components Gαβ become unknown model parameters

which may be identified from experiments. The metric tensor so obtained may not

satisfy the geometric compatibility condition even if a globally compatible stress-free

configuration exists.

3.3 Finite element inverse elastostatics

In the analysis of finitely deforming elastic bodies, there is a family of problems

in which a deformed configuration and the corresponding applied loads are given while
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the initial configuration or the stress in the deformed state is to be determined [179].

These problems can be tackled from two avenues, one is using duality principles in

finite elasticity, the other is using the standard equilibrium equations.

Adkins [1] first established the duality for the particular case of an incom-

pressible, transversely isotropic material in finite plane strain superposed on uniform

extension, and he deduced inverse solutions from equilibrium solutions for the same

material. Later, Shield [129] showed that for an elastically homogeneous material

and zero body force the two sets of equilibrium equations can be written in forms

which are identical if initial and final coordinates are interchanged and if the strain

energy W0 per unit volume of the undeformed body is interchanged with the strain

energy W per unit volume of the deformed body. This dual property of the elastic

equations implied that given an equilibrium deformation with zero body force for

one material, the inverse deformation (with initial and final coordinates interchanged

in the description of the original deformation) is an equilibrium state for a second

material, with strain energy related to the strain energy of the first material [129].

Later, Carlson and Shield [14] showed that the results of [129] can be more eas-

ily obtained if one makes use of a variational principle characterizing the equilibrium

states, and, moreover, that the results hold for elastic materials of any grade. Suc-

ceeding contributions toward this subject were made by Hill [55, 56], Ogden [104, 103],

and Chadwick [17].

Yamada [175], and Govindjee and Mihalic [45, 46] proposed the idea of solving

the inverse problem using the standard equilibrium equation. This approach hinges on
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the fact that the stress in an elastic body depends on the deformation gradient, which

is a relative measure that involves two configurations. If one configuration is given, the

deformation gradient can always be parameterized in terms of the other (unknown)

configuration. Consequently, the equilibrium equation, traditionally thought of as a

differential equation for the forward deformation, can be expressed in terms of inverse

deformation for solving the undeformed configuration in the case of inverse problems.

Govindjee named this approach the inverse elastostatics method.

The finite element implementation of inverse elastostatics was introduced by

Yamada [175], Govindjee and Mihalic [45] for compressible materials and Govindjee

and Mihalic [46] for quasi-incompressible materials. In [45], the authors showed the

finite element formulation of the inverse problem entails only minor modifications

to the corresponding element for forward problems. Later in [46], they formulated

the problem for nearly incompressible materials using a displacement-pressure mixed

formulation combined with a penalty method to enforce the quasi-incompressible

constraint without locking.

Lu et al. [88] applied finite element inverse elastostatics to compute the stress

in a deformed abdominal aortic aneurysm (AAA), which was reconstructed from com-

puted tomography (CT) images, using solid elements and population mean material

parameters. In a later paper [87], they extended finite element inverse elastostatics

to anisotropic hyperelastic solids. Later, Lu et al. [89, 179] developed inverse formu-

lations for membrane and geometrically exact stress resultant shell models, aiming at

particular biomechanical problems of seeking in vivo stress in deformed thin-walled
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biological structures, e.g. cerebral aneurysms. In [89], the authors utilized the in-

verse membrane element to delineate the stress distribution in a cerebral aneurysm.

In light of the static determinacy of stress, they were able to determine the wall ten-

sion (stress resultant) without knowing the realistic elastic properties of the cerebral

aneurysm and detailed wall thickness information. This work inspired the method in

this thesis.

3.4 Inverse elastostatics formulation for membranes

The inverse elastostatics method is a family of methods for solving finite strain

elasticity problems in which a deformed configuration and the corresponding loads

are given, while the undeformed configuration and the stress in the deformed state are

sought. The inverse method employed in this study addresses the following problem:

given a deformed configuration of a pressurized membrane and the corresponding

pressure, find the stress in the deformed configuration that satisfies the equilibrium

equation

1√
g

(√
gtαβgα

)
,β

+ pn = 0, (3.25)

and appropriate boundary conditions. In the equilibrium equation, g = det (gαβ), p

is the pressure and n is the outer unit normal vector of the surface.

The membrane equilibrium problem has a remarkable property, that is, the

wall stress depends on the load and the deformed geometry (static determinacy). For

a fully convex membrane with known deformed geometry, Equation (3.25) furnishes

three partial differential equations that suffice to determine the three components
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of the stress tensor in a Neumann boundary value problem. In other words, the

wall stress in this case is completely independent of material models. For a deep

membrane, even if clamped boundary or other displacement boundary conditions

present, the influence of material behavior exists only in a thin boundary layer [118,

174].

In the inverse approach, the weak form is formulated directly on the given

deformed configuration, hence, the method is expected to sharply capture this static

determinacy in pressurized deep membranes. In [89], the stress in the deformed

state is determined by means of finding an inverse motion under an assumed elastic-

ity model. The stress free configuration so obtained corresponds to a kinematically

compatible configuration which can be brought back to the given deformed config-

uration upon the application of the given load. It has been demonstrated that, for

a clamped deep membrane, the wall stress in regions sufficiently distanced from the

clamp boundary is practically independent of the material models chosen to perform

the computation. Thus, the “static stress” can be effectively predicted despite the

introduction of elasticity models and the ignorance of actual elasticity parameters.

The inverse finite element formulation for membrane problems was presented

in [89]. Briefly, the finite element formulation starts with the standard weak form,

F :=

∫

Ω

tαβgα · δx,βda−
∫

∂Ωt

t̄ · δxds−
∫

Ω

pn · δxda = 0, (3.26)

where Ω is the current surface, ∂Ωt is the boundary upon which the traction t̄ is
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applied, and δx is any kinematically admissible variation to the current configuration.

In the finite element space the configurations and the variation are approximated by

x =
Nel∑
I=1

NIx
I , X =

Nel∑
I=1

NIX
I , δx =

Nel∑
I=1

NIδx
I . (3.27)

Here, the superscript I indicates the nodal number, Nel is the total number of nodes

in the element, and NI is the shape function for the I th node.

Introducing the matrix forms of stress and strain variables, we may write the

finite element equation as
∫

Ω

BT tda− f ext = 0. (3.28)

Here B = [B1,B2, ...,BNel] is the assembled strain-displacement matrix in which

BI =




NI,1g
T
1

NI,2g
T
2

NI,1g
T
2 + NI,2g

T
1




3×3

, (3.29)

and f ext is the external nodal force vector. For a membrane undergoing only normal

pressure, f ext takes the form

f ext =

∫

Ω

NT pnda (3.30)

where N = [N1I, N2I, ..., NNelI], I being the identity matrix.

In the inverse setting, the constitutive equation (3.11) is regarded as a function

of the referential metric tensor Gαβ, which in turn depends on the reference configura-
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tion via the relation Gαβ = ∂X
∂ξα · ∂X

∂ξβ . The FEM system therefore gives rise to a set of

nonlinear algebraic equations for the nodal values of X. In our implementation, these

nonlinear equations are solved iteratively using the Newton-Raphson procedure.

Several remarks on the inverse membrane method are in order:

1. In the context of parameter identification, the inverse method replaces the

Laplace equation as the stress solver to provide a “static” stress solution in-

dependently of the material model to be characterized. The ability to compute

the static stress in general convex structures, albeit approximately, is the corner-

stone of the methodology. It substantially expands the scope of early inflation

tests.

2. The inverse method, however, has several limitations. The method does not

apply to membranes that have flat or concave regions. If a membrane has a

flat or nearly flat surface area, the ensuing finite element system becomes ill-

conditioned or even singular, reflecting the fact that a flat membrane cannot

sustain a transverse load. If the surface is concave, equilibrium requirement may

render compressive wall stress which should be ruled out by stability consid-

eration. Therefore, the inverse method is not a general method for membrane

problems. Rather, it should be applied with close discretion of the user.

3. The inverse solution may not converge if the material model is not chosen prop-

erly. For example, if the material is too compliant, the ensuing reference config-

uration may revert the original surface curvature thus causing numerical diffi-
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culty. Nevertheless, our experience indicated that stiffer material models often

lead to converged solution. Once the solution converges, the stress depends

minimally on the material parameters.

3.5 Transforming stress tensor to convected bases

If stress tensor components are to be used to construct the objective function

in the constitutive regression, they need to be represented under convected basis.

Similarly, the metric tensors also need to be described under convected basis. This

can be done using the same transformation rule, or alternatively one can directly

compute the metric tensors from the convected base vectors. In the following, the

construction of convected base vectors and the transformation of stress tensor and

metric tensors are discussed.

Let’s define the coordinate systems involved in the analysis. First, the covari-

ant and contravariant bases vectors of the reference configurations are denoted as Gα

and Gα, respectively. For the sake of simplicity, G1 and G2 are set to be orthonormal

at every Gauss point. Hence the covariant metric tensor is an identity tensor, i.e.

Gαβ = Gα ·Gβ = δαβ (3.31)

where δαβ is the Kronecker delta. It follows from GαβGβγ = δγ
α that the contravariant

metric tensor Gαβ = δαβ.

Second, in the inverse computation the stress t is computed at each Gauss
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point in a local orthonormal coordinate system ḡα, which leads to

ḡαβ = ḡα · ḡβ = δαβ, ḡαβ = δαβ (3.32)

where ḡαβ and ḡαβ are respectively the covariant and contravariant metric tensors

under basis ḡα.

It follows that the stress tensor components are the physical components which

we denote as t11, t22, t12 = t21. The principal stresses can be directly computed by

t1 =
t11 + t22

2
+

√
(t11 − t22)

2 + 4t212

2
,

t2 =
t11 + t22

2
−

√
(t11 − t22)

2 + 4t212

2
.

(3.33)

Either principal stresses t1 and t2 or stress invariants J1 and J2 in Equation (3.17)

could be used to construct the objective functions for the regression algorithms used

in the constitutive regression process.

Third, the covariant convected base vectors gα emanating from the local or-

thonormal basis Gα are computed from

gα = FGα (3.34)

where F is the deformation gradient from the reference configuration to the deformed

configuration. In finite element computation, the deformation gradient is computed

with the aid of the isoparametric mapping, as will be described in §4.1.1. The con-
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Table 3.1: Base vectors and metric tensors in different coordinate systems.

Referential Non-convected Convected

Configuration Reference Current Current

Base vectors Gα, Gα ḡα, ḡα gα, gα

Metric tensors Gαβ = δαβ, Gαβ = δαβ ḡαβ = δαβ, ḡαβ = δαβ gαβ, gαβ

travariant convected base vectors gα is related to the referential contravariant base

vectors Gα by

gα = F−TGα. (3.35)

The aforementioned various types of base vectors are summarized in Table 3.1 for

clarity. For illustration, refer to Figure 3.1.

The underlying motivation of constructing convected basis for each deformed

configuration is to represent the covariant and contravariant metric tensors and stress

tensor under convected basis, which are required in constitutive regression if stress

components are used to construct the objective function.

Write the stress tensor t in terms of the non-convected base vectors ḡα and

the convected ones gα by

tαβgα ⊗ gβ = t̄αβḡα ⊗ ḡβ. (3.36)

Taking the dot product of both side of Equation (3.36) with gα ⊗ gβ, and letting
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Qβ
α = gβ · ḡα, we obtain

tαβ = Qα
δ t̄δγQβ

γ . (3.37)

The transformation of the contravariant metric tensors follows the the rule as

the stress tensor shown in Equation (3.37), i.e.

gαβ = Qα
δ ḡδγQβ

γ , (3.38)

where gαβ are the contravariant metric tensor components under convected basis,

and ḡαβ are the contravariant metric tensor components under non-convected basis.

It follows from Equation (3.38) and gαβgβγ = δγ
α that the transformation rule for the

covariant metric tensors is

gαβ =
(
Qδ

α

)−1
ḡδγ

(
Qγ

β

)−1
. (3.39)



51

CHAPTER 4
POINTWISE IDENTIFICATION METHOD

As presented in §3.4, the pointwise stress distribution in a deformed membrane

can be determined solely from the deformed shape of the membrane and the internal

pressure using the finite element inverse elastostatics methods (FEIEM). Imagine

that a finite inflation experiment for a membrane structure can provide multiple

deformed configurations, among which the deformation or strain can be recorded as

well, one is able to obtain pointwise stress-strain data pairs by applying FEIEM to

each deformed configuration. Obviously, the stress-strain data at multiple points in

the membrane allows one to examine the elastic behavior of the material, and select an

appropriate constitutive model based on such observation, just like specimen testing

does. Naturally, one is able to identify the elastic parameters of the selected model

by fitting it to the stress-strain data. In this chapter, the general methodology of

the proposed pointwise identification methods (PWIM) is described, and it will be

validated through numerical experiments and membrane inflation test in the following

chapters.

4.1 Method

In PWIM, a membrane structure in its entirety will be mounted to a test

stand and inflated to several pressure levels. A mesh will be drawn on the surface

or a subregion of interest. The positions of the nodes in each deformed configuration

will be recorded by a motion acquisition system to establish a deforming mesh that

corresponds through all the deformed states. Stress and strain distributions in each
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configuration will be computed independently. The analysis consists of the following

steps which are also summarized in Figure 7.1:

1. Computing the stress in each configuration individually using FEIEM. The

stress components and the orthonormal base vectors are recorded for each de-

formed configuration. These base vectors are not convected basis and will be

made convected after the relative deformation gradients among them are deter-

mined.

2. Performing sensitivity analysis to identify the region where the stress is insen-

sitive to material models. This region should be distanced enough (at least

several layers of elements) from the essential boundary conditions.

3. Computing the kinematic variables gαβ, gαβ, gα and gα in each configuration.

If the global stress free configuration is known, compute Gαβ and Gαβ from

the reference geometry, and then compute the strain invariants I1 and I2. If

the fiber directions are known, the invariants I4 and I6 for anisotropic material

are computed accordingly. These strain invariants will be input into the stress

function to compute the modeled stress.

4. Describing the stress tensors from Step 1 under the convected bases obtained

in Step 3 by applying the linear transformation presented in §3.5.

5. Examining the stress-strain property and selecting appropriate constitutive

models.
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Figure 4.1: Flowchart of PWIM.

6. Obtaining the best-fit model parameters at each Gauss point by fitting nonlin-

early the pointwise stress-strain data with the model.

7. Obtaining the distribution of the identified model parameters over the interested

domain, and examining the material heterogeneity.

The three core steps of PWIM, i.e., strain acquisition, stress acquisition, and

elastic parameter identification, are illustrated in Algorithms 4.1, 4.2 and 4.3. More
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details will be provided in the ensuing sections.

Data: The undeformed and N deformed configurations (FE meshes) of the membrane

Result: Convected base vectors in the undeformed and deformed configurations

begin

for i = 1 ≤ N do

Conduct finite element interpolation to Ci

Output Gα, (i)gα at every Gauss point

end

end

Algorithm 4.1: Strain acquisition for the deformed configurations.

4.1.1 Strain acquisition

Based on the measured nodal positions in the reference and deformed configu-

rations, the position vectors of a point inside the meshed region can be approximated

via the finite element interpolation

X =
Nel∑
I=1

NI(ξ
1, ξ2)XI , x =

Nel∑
I=1

NI(ξ
1, ξ2)xI . (4.1)

Here, the superscript I indicates the nodal number, Nel is the total number of nodes

in the element, and NI is the shape function for the I th node. The natural coordinates

(ξ1, ξ2) serve as the (element-wise) convected surface coordinates. The displacement
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field is u = x − X . It follows that the covariant base vectors of the reference and

current configuration are computed respectively as

Gα =
∂X

∂ξα
=

Nel∑
I=1

∂NI

∂ξα
XI , gα =

∂x

∂ξα
=

Nel∑
I=1

∂NI

∂ξα
xI . (4.2)

Data: N deformed configurations (FE meshes) of the membrane

Result: Stress components and non-convected basis in the deformed configurations

begin

for i = 1 ≤ N do

Apply FEIEM to Ci

Output (i)t̄αβ, (i)ḡα at every Gauss point

end

end

Algorithm 4.2: Stress acquisition for the deformed configurations.

The components of the covariant metric tensors on the reference and current

surface, respectively, are given by

Gαβ = Gα ·Gβ, gαβ = gα · gβ. (4.3)

Other geometric entities such as the contravariant base vectors (gα, Gα) and the con-
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travariant metric tensor components (gαβ, Gαβ) are computed in the standard manner

(cf. §3.1.1). Subsequently, the deformation gradient F and the right Cauchy-Green

deformation tensor C are computed at every Gauss point according to Equations

(3.3) and (3.5), respectively. In our implementation, a local orthonormal basis was

constructed at every Gauss point in the reference configuration, rendering Gαβ = δαβ

and Gαβ = δαβ. The components of C with respect to this basis are the physical

components.

Data: Pointwise stress-strain data in the N deformed configurations

Result: Pointwise distribution of the elastic parameters

begin

for i = 1 ≤ Ng (Number of Gauss points) do

for j = 1 ≤ N do

Read stress data and non-convected basis: (j)t̄αβ, (j)ḡα for Cj

Read convected basis: Gα, (j)gα for Cj

Transform stress tensor to be under convected basis: (j)tαβ

end

Call regression algorithm (SNOPT) to identify elastic parameters

end

Obtain the distribution of elastic parameters

end

Algorithm 4.3: Pointwise elastic property identification.
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The principal stretches λ1 and λ2 of the membrane are defined as the eigen-

values of the right stretch tensor U, which is related to the right Cauchy-Green

deformation tensor C through C = U2. Thus, the square stretches λ2
1 and λ2

2 are the

eigenvalues of C, which are given, in terms of the physical components of C, by

λ2
1 =

g11 + g22

2
+

√
(g11 − g22)

2 + 4g2
12

2
,

λ2
2 =

g11 + g22

2
−

√
(g11 − g22)

2 + 4g2
12

2
.

(4.4)

It follows that the 2D membrane strain invariants are then expressed by

I1 = trC = g11 + g22 = λ2
1 + λ2

2,

I2 = detC =
1

2

[
(trC)2 − tr

(
C2

)]
= g11g22 − g2

12 = λ2
1λ

2
2.

(4.5)

Different constitutive models may use different arguments. For example, Rivlin’s

approach uses strain invariants as the independent variables in the strain-energy func-

tion, whereas Ogden’s model uses principal stretches as the independent variables. In

this work, both types of constitutive models were used.

It should be noted that the constructed base vectors (i)gα (i = 1, 2, ..., n) in the

n deformed configurations are convected bases. In other words, they share the same

inverse mapping Gα in the reference configuration. In the next section, the stress ten-

sors computed from FEIEM in the deformed configurations will be represented under

these convected bases. This process is essential in identifying the elastic parameters

in the constitutive model. More details will be given in the following section.
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4.1.2 Stress acquisition

Take the multiple deformed configurations as input, the stress resultants (ten-

sion) can be determined by using FEIEM. As mentioned above, the stress distribution

is independent of material property in the region distanced enough from the boundary.

This fact allows us to use an arbitrary constitutive model during stress computation.

In this work, a neo-Hookean type hyperelastic strain-energy function is employed,

which will be presented later.

In the current setting of FEIEM, a local orthonormal basis is chosen which

renders the computed Cauchy stress to be the physical stress in a deformed config-

uration. For the purpose of elastic parameter identification, the strains in different

deformed configurations are required to be measured relative to a common reference

configuration. This has been done in the last section. We have constructed the refer-

ential base vectors Gα in the reference configuration C0, and the current base vectors

(i)gα in the ith deformed configuration Ci. These base vectors are convected basis,

and they are related through

(i)gα =
(i)
(0)FGα, (j)gα =

(j)
(0)FGα (4.6)

and

(j)gα =
(j)
(i)F

(i)gα (4.7)

where
(i)
(0)F and

(j)
(0)F are the deformation gradient from the reference configuration C0

to the ith and jth deformed configurations (Ci and Cj), respectively, and
(j)
(i)F is the
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deformation gradient from Ci to Cj.

The referential and current covariant metric tensor components are computed

according to Gαβ = Gα ·Gβ and (i)gαβ = (i)gα · (i)gα, respectively. They are directly

input into the functional form of stress derived from the strain energy function to

compute the stress induced by the deformation, i.e.,

(i)t
αβ

= tαβ
(
Gδγ,

(i)gαβ

)
. (4.8)

It turns out that the computed stress tensors in two different deformed configurations

Ci and Cj are described under convected base vectors, i.e.,

(i)t = (i)t
αβ(i)gα ⊗ (i)gβ, (j)t = (j)t

αβ(j)gα ⊗ (j)gβ. (4.9)

The underlying requirement is that the corresponding referential stress tensors

are described under the same basis Gα. To clarify that, we further write down the

referential counterparts of (i)t and (j)t as

(i)T = (i)T
αβ

Gα ⊗Gβ, (j)T = (j)T
αβ

Gα ⊗Gβ. (4.10)

The relations between the referential and current stress tensors are

(i)t =
1

J

[
(i)
(0)F

] [
(i)T

] [
(i)
(0)F

T
]
, (j)t =

1

J

[
(j)
(0)F

] [
(j)T

] [
(j)
(0)F

T
]
, (4.11)
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which are the push-forward operation.

Since we need to match the computed stress with the experimental stress

(components or invariants), the experimental stress tensor must be described under

the same convected base vectors. However, when we acquire stress data for each

deformed configuration using FEIEM, the selection of the base vectors is arbitrary.

In addition, the deformed configurations are coped with independently. Obviously,

the base vectors in each deformed configuration do not form a convected basis. Since

we already had a set of convected bases from the deforming mesh, all we need to do

is to describe the stress tensors under these bases. By following §3.5, the convected

components of the stress can be computed through a linear transformation.

4.1.3 Constitutive regression

As soon as the data of stress and strain are obtained, and an appropriate

constitutive model is selected based on the stress-strain relation, we can identify the

constitutive constants, i.e. the elastic property using regression algorithms. A regres-

sion algorithm requires the user provide an objective function which represents the

discrepancy between the numerically modeled and experimentally measured material

responses, and needs to be minimized during the regression process. In this work,

in order to realize the pointwise feature of the method, we utilized pointwise defined

stress to construct the objective function. However, there is a great flexibility to

construct such an objective function. For example, one can use stress components,

stress invariants, and principal stresses to construct the objective function. Since we

used different stress measures to construct the objective function in the numerical ex-
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periments and actual experiment, we will present in detail the constitutive regression

process in respective chapters.

4.2 Discussion

Inspired by the property of stress static-determinacy in pressurized convex

membranes, we devised a new method for pointwise delineating the elastic property

of membrane structures. The key feature of the method is the utility of finite element

inverse elastostatics methods (FEIEM) for the numerical solution of wall stress. For

convex membranes, FEIEM enable us to determine the wall tension using an assumed

material model without a priori knowledge of the actual elastic properties. Thus,

the stress and strain data are acquired independently without being coupled by the

constitutive law. However, the elastic properties are contained implicitly in the strain

data, and they can be extracted by fitting the stress-strain data with appropriate

constitutive models.

Unlike the traditional specimen tests which rely on controlled homogeneous

deformations, the present method does not require the uniformity of stress and strain

in the allowable protocol. Instead, the actual stress and strain generated during an

finite inflation motion of a membrane are employed to characterize the distributive

properties. To the best knowledge of the authors, this paradigm of parameter iden-

tification has not been fully explored in the literature. In this study, we will verify

numerically and experimentally that the method can effectively delineate the point-

wise distribution of the elastic properties in nonlinear membranes. The true value of

the method, of course, lies in the capability of delineating the heterogeneous property
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distribution. So far, there are no effective experimental methods that can sharply

characterize heterogeneous materials.

4.2.1 Features, speculations

It is instructive to compare the method with other methods for characterizing

thin materials, such as the specimen tests [80, 81, 121, 144] and the optimization-

based identification methods [74, 79, 69, 66], and axisymmetric membrane inflation

test [114, 173, 62, 61].

In the specimen tests, material samples are subjected to load protocols de-

signed to create in the specimen central region an approximately uniform stress state

which can then be determined from force equilibrium alone. The experiments es-

sentially create controlled motions that replicate tractable boundary value problems

which can be solved without invoking material models. from stress-strain data. In

this regard, the current method retains the spirits of static stress computation, and

yet carries it to a family of more complicated problems.

In contrast to the optimization-based approaches such as the inverse finite

element methods [74, 79, 69, 66], the present method decouples the stress solution and

the parameter regression. This not only renders a simpler computation structure, but

also leads to, at least in theory, the capability of sharply delineating the distributive

properties in heterogeneous membranes. As in the specimen test, the independent

acquisition of stress and strain gives us the advantage of examining the stress-strain

properties prior to parameter regression. This feature is valuable to the determination

of proper constitutive models for the material. For example, one can examine the co-
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axial condition between stress and strain to evaluate whether or not the material

should be modeled as isotropic (if the material is isotropic, the response satisfies the

universal relation SC = CS, see e.g. [9]). The availability of stress-strain protocols to

support such a test puts the method to an advantageous position over optimization-

based methods.

Another noteworthy feature of the method is its non-destructiveness. Due to

the elimination of edge force measurement, the membrane does not need to be cut into

pieces. The structure in its entirety is tested. This experimental approach provides

a framework for designing non-invasive identification methods for thin biological tis-

sues. When augmented with a suitable method for deformation data acquisition, the

method may even lead to a non-invasive approach for extracting the in vivo elastic

properties of thin living organs.

Owing to the application of fixed displacement boundary condition and the

utility of unrealistic elasticity parameters in FEIEM, there is inevitably a thin bound-

ary layer where the inverse stress solution is not accurate. The boundary layer should

be avoided in parameter regression. The same issue exists for the specimen test iden-

tification methods albeit in a different manner. The boundary effect in the biaxial

testing of planar tissues was studied experimentally by Waldman et al. [166, 167] and

computationally by Sun et al. [144]. They demonstrated that the gripping methods,

e.g. suturing and clamping, or even the number of suture attachments have significant

influence over the stress field near the sample edges and even the central region of

the sample. This may lead to inaccurate characterization of the material properties.
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The current method has the advantage of being suture-free. Boundary effect may be

alleviated by using a larger mesh area, or by employing finer mesh near the boundary.

4.2.2 Accuracy issues and solutions

The accuracy of the method depends critically on the quality of stress and

strain data. The former, in turn, is highly sensitive to the surface curvature and thus

may be strongly influenced by the inaccurate characterization of the surface geometry.

If a reconstructed surface has spurious local undulations, it may be necessary to

smooth the surface prior to stress computation. Since the strain is computed from

the nodal positions via interpolation, its quality is also affected by the aforementioned

error. However, the influence on strain accuracy is much minor.

The issue of accuracy can be addressed from several avenues. The first possi-

bility is to use accurate surface data acquisition techniques such as laser scan. Com-

mercial laser scanners can reconstruct solid surfaces to within sub-micron accuracy.

The scanners often output triangulated surface or CAD models that can be readily

meshed. Secondly, within the present setting one may increase the mesh density by

drawing more nodes on the surface. A finer mesh will capture the surface curvature

better and produce more accurate stress results. As a by-product, it will also help

sharpen the boundary layer identification. Alternatively, one may use high-order el-

ements or other intrinsically smooth approximation methods such as the mesh-free

methods [11, 83] or the isogeometric method [63]. These methods are more accurate

in geometric description, which in turn render more accurate stress solution.
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4.2.3 Limitations

While the method presents a significant advance in thin tissue property identi-

fication, it has some inevitable limitations. Firstly, grounded on the static-determinacy

of membrane stress, the application is limited to membrane structures. Moreover, the

membrane structures must have convex shape in deformed states. An investigation

toward the extension to thin-walled shell structures of arbitrary surface characteris-

tics is undertaken in Lu’s group. We believe that, in certain situations, the method

can be used to identify the in-plane elastic properties of thin-shell structures. Sec-

ondly, like the axisymmetric membrane inflation test, one does not have a complete

control over the deformation of the membrane to get a desired deformation protocols,

e.g., varying a principal stretch while maintaining another. Therefore the individual

role of the principal stretches cannot be fully explored. In this regard, the protocols

belong to a somewhat restricted subspace in the response surface. The identified

material parameters may not accurately reproduce other type of response such as

uniaxial tension. Nevertheless, for biological organs the elastic properties identified

by this method may contain enough information about the material behavior in its ac-

tual function, because the identification is conducted using deformations that closely

mimic its mechanical motion in the service environment.

4.2.4 Future of in vivo identification for biological tissues

Since the acquisition of stress and strain data is based solely on the deformed

geometries in different deformed configurations of a membrane structure, the current

method allows for nondestructive identification when combined with optic-based or
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image-based 3-D geometry reconstruction techniques. In addition, as will be presented

in Chapter 5 and 7, this method is capable of identifying elastic properties without

the knowledge of the stress-free configuration. Therefore, this method holds the

promise of application into in vivo identification of the elastic properties in thin-

walled biological tissues and organs.

However, due to the non-invasive requirements of in vivo identification, it is

infeasible to use physical markers to track the deformation. Therefore, a non-invasive

deformation measuring method using medical images is needed. Rabbit et al. [109],

Weiss et al. [169], Veress et al. [165] and Weiss et al. [170] utilized a deformable

image registration method termed Hyperelastic Warping to measure the strain in

various tissues, e.g. distal femur using X-ray computed tomographic (CT) images

[109], intervertebral disc using MR images [169], coronary arteries using intravascular

ultrasound (IVUS images) [165], , and left ventricle using MRI images [170]. Sonka et

al. [134] reported an automatic nonrigid segmentation method that allows for motion

tracking of an aorta from 4D MR images.

Tagged MR images have been employed to directly acquire displacement data

of the heart, which can be used to calculate strain [178, 7, 6, 97]. However, current

MR tagging techniques are not adequate to measure aortic wall displacements and

strain accurately [29]. Pelc et al. [107] and Draney et al. [30] described a method to

quantity vessel wall motion and strain using velocity data acquired with cine phase

contrast MRI (PC-MRI). Draney et al. [29] further investigated the capability of the

method in quantifying vessel train using in vivo images. Nevertheless, their studies
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were concerned with 2-D deformation. These approaches are promising in tracking the

motion of thin aneurysm wall, although they are yet mature enough. To the author’s

best knowledge, there has been no report on tracking the motion of cerebral aneurysm

wall using medical images. Upon the availability of advanced image segmentation and

registration techniques capable of tracking the wall motion of cerebral aneurysms, in

vivo identification of elastic properties may be feasible by utilizing PWIM.
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CHAPTER 5
NUMERICAL EXPERIMENTS: ISOTROPIC MATERIAL

5.1 Method

In order to validate the pointwise identification method for isotropic material,

a numerical experiment was conducted for a cerebral aneurysm model of homogeneous

material. Specifically, the procedure of the numerical experiments consists of

1. Constructing a finite element model for a cerebral aneurysm along with assumed

elastic properties including material homogeneity and the values of the elastic

parameters, and specific loading and boundary conditions;

2. Generating a series of deformed configurations of a cerebral aneurysm by con-

ducting forward FE analysis using different physiological pressure values;

3. Computing the stress distribution in each deformed configuration by applying

FEIEM, and using unrealistic elastic property;

4. Computing necessary kinetic variables and strain measures of each deformed

configuration with respect to a chosen reference configuration, which is not

necessarily stress-free;

5. Identifying the elastic parameters using a regression algorithm, and reconstruct-

ing a distribution of the parameter values over the interested region;

6. Comparing the distribution of the identified elastic parameters to that of the

originally assumed one.
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(a) (b)

Figure 5.1: Undeformed geometry and finite element mesh of the membrane sac: (a)
Perspective view; (b) Bottom view.

5.1.1 Material model and forward analysis

The membrane structure of the cerebral aneurysm shown in Figure 5.1 was con-

sidered. The mesh was originally constructed from the images of a cerebral aneurysm

sac which is convex but does not have any particular geometric symmetries. We

assume that the wall was described by the strain energy function

wA =
µ1

2
(I1 − 2 log J − 2) +

µ2

4
(I1 − 2)2 , (5.1)

where µ1 and µ2 are effective elastic parameters. Without the second term, the energy

function corresponds to the classical neo-Hookean material, which is known to suffer

a limit-point instability during inflation motions [65]. The second term is introduced

as a remedy to stabilize the deformation.
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The elastic parameters were set to be

µ1 = 0.06521739 N/mm, µ2 = 0.1521739 N/mm. (5.2)

This model is referred to as Model A in the sequel. The parameters µ1 and µ2 are

the multiplication of the 3D elasticity constants with the wall thickness. Parameters

like these are referred to as effective elasticity constants. To simulated the clamped

boundary constraint typically used in experiments, we assumed that the base of the

sac is fixed. Eleven deformed configurations were computed by applying pressures

ranging from 60 to 110 mmHg at an interval of 5 mmHg. This was conducted using

the (forward) nonlinear membrane finite element in FEAP, a nonlinear finite element

program originally developed at the University of California, Berkeley [147]. The

maximum surface stretch, which occurs at 110 mmHg pressure, is about 110%.

5.1.2 Stress-strain data acquisition

Subsequently, we took these generated deformed configurations as input, and

applied PWIM to identify the elasticity parameters. The stress distribution in each

configuration was computed by the inverse finite element method using a material

model which has the same energy function as Model A but 10 times elevated mate-

rial constants. We also computed the stress using 100 times elevated parameters to

assess the sensitivity of stress to material parameters. The strain distribution was

determined by finite element interpolation as described in §4.1.1. If the global stress-

free reference configuration was given, the quantities Gα etc. and subsequently the
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deformation tensor C and its invariants I1 and I2 were computed accordingly.

5.1.3 Constitutive regression

As seen from equation (3.13), the surface tension components are functions

of the components of the reference and the current metric tensors, and the elasticity

parameters appearing in the constitutive law. As described above, at every integration

point we can obtain the stresses in each of deformed configurations and at least the

convected components gαβ of the current metric tensor. Choosing an appropriate

constitutive model, we can express the model stress as functions of the metric tensors

and elasticity constants. We denoted the model stress in the i-th configuration by

(i)tαβ = tαβ(µ, (i)gδγ, Gδγ), (5.3)

where µ stands for the set of elastic parameters. Let (i)t̂αβ be the “experimental”

stress components obtained from the inverse analysis. A logical objective or cost

function which represents the difference between the modeled and observed responses

is

Φ =
N∑

i=1

(
(i)tαβ − (i)t̂αβ

)
(i)gαγ

(i)gβδ

(
(i)tδγ − (i)t̂

δγ
)

, (5.4)

where, N is the total number of deformed states. In tensor notation, Φ =
∑N

i=1 ‖ (i)t−
(i)t̂‖2. If the global stress-free configuration is given, Φ is a function of the material

parameters only. Otherwise, Φ depends also on the local metric tensor components

Gαβ, which will be included in the identification. This amounts to adding three

additional model parameters to the optimization problem at every regression point.
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Since G is a metric tensor, it is natural to impose the positiveness requirement. In

this case, the regression problem can be described as

minimize Φ (µ, Gαβ)

subject to G11 > 0, G22 > 0, G11G22 −G2
12 > 0,

and l ≤ (µ, Gαβ) ≤ u.

(5.5)

Here, l and u are the lower and upper bounds of the regression variables µ and Gαβ.

The parameter identification was performed by a gradient-based, sequential quadratic

programming (SQP) algorithm, SNOPT [43]. As long as the constitutive model is

selected, we can compute the analytical gradients of the objective function Φ with

respect to the regression variables.

In order to validate the capability of the method, we fit the obtained stress-

strain data to two different constitutive models, one is the same model as was used

in the process of generating the deformed configurations (Model A), and the other is

a distinct model (Model B) which exhibits a similar mechanical behavior to that of

Model A. Model B has the energy function

wB = ν1 {exp [(I1 − 2 log J − 2)]− 1}+
ν2

4
(I1 − 2)2 , (5.6)

here ν1 and ν2 are effective elastic parameters. In the neighborhood of (I1, I2) =

(2, 1), the two energy functions obviously have similar characteristics. We performed

parameter identification under the assumptions of knowing the reference configuration
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and without knowing the reference configuration. The stress functions of both models

and the stress gradients required by the optimization algorithm are presented in the

following section.

5.1.4 Stress gradients

When using gradient based optimization algorithms, one often needs to pro-

vide the analytical gradients of the objective function with respect to the regression

variables. The following two subsections present the analytical gradients of the ten-

sion tensor components with respect to the material parameters and the metric tensor

components of the stress-free configuration, for Model A and Model B, respectively.

5.1.4.1 Model A

The convected components of the tension tensor are derived as

tαβ =
1

J

{
[µ1 + µ2 (I1 − 2)] Gαβ − µ1g

αβ
}

. (5.7)

In Equation (5.7), we replace Gαβ with Gαβ if the stress-free configuration is unknown,

for the sake of consistency with the notation in §3.2.

The stress gradients are defined as the partial derivatives of the tension tensor

components tαβ with respect to the regression variables. The stress gradients with

respect to the elasticity parameters, µ1 and µ2, are repectively

∂tαβ

∂µ1

= I
−1/2
2

(
Gαβ − gαβ

)
, (5.8)
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∂tαβ

∂µ2

= I
−1/2
2 (I1 − 2) Gαβ. (5.9)

If the stress-free configuration is unknown, the stress gradients with respect

to the contravariant reference metric tensor components Gαβ are

∂tαβ

∂G11
= −1

2
I
−3/2
2 gG22

(
γGαβ − µ1g

αβ
)

+ I
−1/2
2

(
γ
∂Gαβ

∂G11
+ µ2g11G

αβ

)
, (5.10)

∂tαβ

∂G22
= −1

2
I
−3/2
2 gG11

(
γGαβ − µ1g

αβ
)

+ I
−1/2
2

(
γ
∂Gαβ

∂G22
+ µ2g22G

αβ

)
, (5.11)

∂tαβ

∂G12
= I

−3/2
2 gG12

(
γGαβ − µ1g

αβ
)

+ I
−1/2
2

(
γ
∂Gαβ

∂G12
+ 2µ2g12G

αβ

)
, (5.12)

where, γ = µ1 + µ2 (I1 − 2), and g = det (gαβ).

5.1.4.2 Model B

The convected tension components of this model are

tαβ =
1

J

[
2ν1 exp [(I1 − 2 log J − 2)]

(
Gαβ − gαβ

)
+ ν2 (I1 − 2) Gαβ

]
. (5.13)

Likewise, Gαβ will be replaced by Gαβ if the stress-free configuration is unknown.

The stress gradients with respect to the elasticity parameters are given by

∂tαβ

∂ν1

= 2I
−1/2
2 ξ

(
Gαβ − gαβ

)
, (5.14)

∂tαβ

∂ν2

= I
−1/2
2 (I1 − 2) Gαβ. (5.15)
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The stress gradients with respect to the unknown contravariant metric tensor

components of the stress-free configuration are

∂tαβ

∂G11
=− 1

2
I
−3/2
2 gG22

[
(2ν1ξ + ν2η) Gαβ − 2ν1ξg

αβ
]

+ I
−1/2
2

[
2ν1ξ

(
g11 − I−1

2 gG22
)] (

Gαβ − gαβ
)

+ I
−1/2
2

[
ν2g11G

αβ + (2ν1ξ + ν2η)
∂Gαβ

∂G11

]
,

(5.16)

∂tαβ

∂G22
=− 1

2
I
−3/2
2 gG11

[
(2ν1ξ + ν2η) Gαβ − 2ν1ξg

αβ
]

+ I
−1/2
2

[
2ν1ξ

(
g22 − I−1

2 gG11
)] (

Gαβ − gαβ
)

+ I
−1/2
2

[
ν2g22G

αβ + (2ν1ξ + ν2η)
∂Gαβ

∂G22

]
,

(5.17)

∂tαβ

∂G12
=I

−3/2
2 gG12

[
(2ν1ξ + ν2η) Gαβ − 2ν1ξg

αβ
]

+ I
−1/2
2

[
4ν1ξ

(
g12 + I−1

2 gG12
)] (

Gαβ − gαβ
)

+ I
−1/2
2

[
2ν2g12G

αβ + (2ν1ξ + ν2η)
∂Gαβ

∂G12

]
,

(5.18)

where ξ = eI1−2 log J−2, η = I1 − 2.

5.2 Results

5.2.1 Material insensitivity of membrane stress

The distribution of the principal stress resultants in the deformed configura-

tion under the highest pressure (p = 110 mmHg) is shown in Figure 5.2. Figure 5.3

shows the relative difference (in percentage) of principal stress resultants under dras-

tic changes in elasticity parameters of Model A. The upper and lower rows show the

percentage difference in tension due to the increase of both material parameters µ1
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(a) (b)

Figure 5.2: The distribution of principal stress resultants in the membrane sac: (a)
t1; (b) t2.

and µ2 by 10 times and 100 times, respectively. Conservatively speaking, the change

of the principal stresses is less than 0.15% in the region two layers of elements above

the clamped base. In the region near the boundary, the change of principal stresses

is relatively large. However, it is below 1%. This analysis allows us to identify the

boundary-effect-free regions where parameter identification is to likely yield reliable

results. Later, the sac region excluding five layers of elements from the base is desig-

nated as the identification zone. The stress values computed from 10 times elevated

parameters were used in the parameter regression.

5.2.2 Identified elastic parameters

Figure 5.4 shows the distribution of the identified elasticity parameters (µ1

and µ2) of Model A under the condition that the global stress free-configuration is

known. In this case, the original mesh is taken to be the reference configuration C0,
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(a) (b)

(c) (d)

Figure 5.3: The percentage difference of principal stress resultants under the change
of elasticity parameters. Upper row: Increasing both parameters µ1 and µ2 by 10
times: (a) t1, (b) t2; Lower row: Increasing both parameters µ1 and µ2 by 100 times:
(c) t1, (d) t2.
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(a) (b)

Figure 5.4: Identified elasticity parameters of Model A knowing the reference metric:
(a) µ1, (b) µ2.

and the referential quantities Gαβ etc. are computed from this given geometry. In

the dome region six layers away from the boundary which is shown in Figure 5.4, the

identified parameters µ1 ranges from 0.06119 N/mm to 0.07010 N/mm, and µ2 shows

a narrower range of 0.14986 N/mm to 0.15410 N/mm. Since the stress is computed by

FEIEM using a model different from that in the forward computation (10 times of the

true elasticity parameters), and hence the acquired stress is not identical to the true

stress, the identified parameters are expected to deviate from their true values. The

distribution of the identification error (in percentage relative to the true parameters)

by knowing the reference metrics are illustrated in Figure 5.5. As the figures show,

the identification error falls below 8% and 2% for µ1 and µ2, respectively.

Figure 5.6 illustrates the distribution of the identified elasticity parameters

of Model A without the assumption of known stress-free configuration. Figure 5.7
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(a) (b)

Figure 5.5: Absolute values of the relative error (in percentage) between identified
elasticity parameters and true parameters of Model A knowing the reference metric:
(a) µ1, (b) µ2.

shows the identification error. In the dome region seven layers of elements away from

the boundary, the identified parameters µ1 ranges from 0.05720 N/mm to 0.07872

N/mm, and µ2 presents a narrower range of 0.14647 N/mm to 0.15563 N/mm. The

percentage error of the identified parameters falls below 15% and 3% for µ1 and µ2,

respectively. It is evident that, in both cases the constant µ2, which is the leading

parameter in this model, is recovered to within a very small error. The identification

of constant µ1 is less accurate, but is still within an acceptable range.

Figure 5.8 shows the distribution of the identified elasticity parameters of

Model B, with the assumption of the stress-free configuration being given. The dis-

tribution of the parameters shows an approximate uniformity in the region six layers

of elements away from the boundary. The ranges of the identified parameters are

0.03052 N/mm ≤ ν1 ≤ 0.03492 N/mm, and 0.14981 N/mm ≤ ν2 ≤ 0.15407 N/mm.
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(a) (b)

Figure 5.6: Identified elasticity parameters of Model A without knowing the reference
metric: (a) µ1, (b) µ2.

(a) (b)

Figure 5.7: Absolute values of the relative error (in percentage) between identified
elasticity parameters and true parameters of Model A without knowing the reference
metric: (a) µ1, (b) µ2.



81

(a) (b)

Figure 5.8: Identified elasticity parameters of Model B knowing the reference metric:
(a) ν1, (b) ν2.

Figure 5.9 shows the distribution of the identified elasticity parameters of Model B,

without assuming that the stress-free configuration is given. The distribution of the

parameters is approximately uniform in the region seven layers of elements above

the boundary. The ranges of the identified parameters are 0.02778 N/mm ≤ ν1 ≤

0.04037 N/mm, and 0.14524 N/mm ≤ ν2 ≤ 0.15555 N/mm. It is expected that the

identified parameters span wider ranges for the case of stress-free configuration being

unknown due to the increase of the number of the regression variables.

It is also informative to conduct a statistical analysis in the boundary-effect-

free region to examine how well the homogeneity has been identified. Table 5.1 and

Table 5.2 list the means and standard deviations of the identified elasticity param-

eters for both models over the aforementioned boundary-effect-free regions for both

knowing and without knowing the local stress-free configurations. For both models,
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(a) (b)

Figure 5.9: Identified elasticity parameters of Model B without knowing the reference
metric: (a) ν1, (b) ν2.

adding the local reference metric tensor components as three more regression vari-

ables generally renders larger standard deviations of identified elasticity parameters.

However, the standard deviations of these data, especially those of µ2, are very small.

Hence, we conclude quantitatively that the homogeneity is satisfactorily recovered.

Figure 5.10 illustrates the comparison between the tension invariants modeled

by Model B and the “experimental” tension invariants at a point where a relatively

large principal stretch (λ1 = 1.076) occurs. The good match between these two curves

suggests that Model B fits well the stress-strain data generated by Model A. It also

provides an ad hoc justification for our choice of Model B.
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Figure 5.10: Comparison between the “experimental” tension invariants and the pre-
dictions of Model B : (a) J1, (b) J2.
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Table 5.1: The means and standard deviations of identified
elasticity parameters of Model A and Model B knowing the
reference metric tensor.

Model A Model B
µ1 µ2 ν1 ν2

Mean (N/mm) 0.06516 0.15208 0.03239 0.15206
SD (N/mm) 0.00113 0.00061 0.00057 0.00061

Table 5.2: The means and standard deviations of identi-
fied elasticity parameters of Model A and Model B without
knowing the reference metric tensor.

Model A Model B
µ1 µ2 ν1 ν2

Mean (N/mm) 0.06484 0.15218 0.03132 0.15257
SD (N/mm) 0.00328 0.00143 0.00200 0.00168
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CHAPTER 6
EXPERIMENTAL VALIDATION: RUBBER BALLOON TEST

6.1 Review of rubber elasticity

Rubber-like materials are characterized by high extensibility and reversibil-

ity after deformation. The behavior of rubber materials is usually described to be

isotropic hyperelastic. Mathematically, the strain energy function W can be formu-

lated in terms of either the principal invariants of the strain or the principal stretches.

The effort of seeking a specific form of W in terms of strain invariants or principal

stretches has been based on statistical theory of the long-chain molecule and phe-

nomenological approach. Since we do not intend to give a complete review on the

subject of rubber elasticity, we only review some works which are relevant to this

study.

The most elementary form of W in the context of Gaussian statistical theory

of the cross-linked network is

W =
1

2
G

(
λ2

1 + λ2
2 + λ2

3 − 3
)
, (6.1)

where λ1, λ2 and λ3 are the principal stretch ratios, and G is a constant given by

G = NkT, (6.2)

in which N is the number of network chains per unit volume, k is the Boltzmann con-

stant, and T is the absolute temperature. G is equivalent to the shear modulus [154].



86

Based on Gaussian statistics and molecular network theory, Treloar [149, 150]

derived the form of W

W = C1(I1 − 3), (6.3)

where C1 is a material constant, and I1 is the first principal invariant of the right

Cauchy-green deformation tensor. This form is the famous neo-Hookean form. It is

only a first order approximation of rubber behavior, and provides a good correlation

with the experimental data in a small deformation range.

Alongside statistical-molecular theories, numerous purely phenomenological

models have emerged which describe the mechanical properties of rubber-like materi-

als from a macroscopic point of view, without concerning the structural or molecular

interpretation. Mooney [96] is the first investigator who studied phenomenological

models for rubber-like materials. By assuming homogeneity, material isotropy before

and after extension or compression, isometric deformation (incompressibility), negli-

gible hysteresis and shear being proportional to traction in simple shear, he deduced

the well-known Mooney-Rivlin constitutive equation

W = C1 (I1 − 3) + C2 (I2 − 3) (6.4)

where C1 and C2 are material constants, I1 and I2 are the two strain invariants which
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defined by

I1 = trC = λ2
1 + λ2

2 + λ2
3,

I2 =
1

2

(
(trC)2 − trC2

)
= λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1.

(6.5)

Here, C is the right Cauchy-Green deformation tensor. If incompressibility condition

is enforced, which is reasonable for most rubber-like materials and biological tissues,

I3 = detC = λ2
1λ

2
2λ

2
3 = 1. Therefore, λ2

3 = λ−2
1 λ−2

2 , and Equation (6.5) may be

expressed as

I1 = λ2
1 + λ2

2 + λ−2
1 λ−2

2 ,

I2 = λ−2
1 + λ−2

2 + λ2
1λ

2
2.

(6.6)

Functional form (6.4) can be written as

W =
G

4

3∑
i=1

(
λi − 1

λi

)2

+
H

4

3∑
i=1

(
λ2

i −
1

λ2
i

)
(6.7)

if one make the substitution

C1 =
G + H

4
, C2 =

G−H

4
. (6.8)

Here, G is the modulus of rigidity, H is the modulus characterizing asymmetry of

reciprocal deformations.

Rivlin [112] showed that the strain-energy function W for an incompressible
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isotropic elastic material must be expressible as a function of two strain invariants I1

and I2 (I3 = 1), which in turn is an even-powered function of the principal stretch

ratios, λ1, λ2 (λ3 = (λ1λ2)
−1). A general form can be represented by

W =
∑

Cij (I1 − 3)i (I2 − 3)j (6.9)

where Cij are material constants. In the case of i = 1 and j = 0, Equation (6.9)

reduces to

W = C1 (I1 − 3) (6.10)

which is equivalent to the strain energy function derived by Treloar [149, 150] based

on Gaussian statistics and molecular network theory, i.e. Equation (6.3). When

i = j = 1, Equation (6.9) reduces to the Mooney form (6.4), also called Mooney-

Rivlin strain energy function.

Rivlin also pointed out that the form of W can be derived directly from the

experimental data of certain types of simple experiments, e.g. biaxial extension test.

However, the accuracy of this derivation is limited by the accuracy with which the

experiments are carried out. Rivlin and Saunders [114] conducted controlled strain

invariant tests (i.e., varying one invariant while maintaining another) and found out

that ∂W/∂I1 is independent of I1 and I2, whereas ∂W/∂I2 is independent of I1 but

decreases with increase of I2. From that, they concluded that appropriate strain-
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energy functions should take the form

W = C (I1 − 3) + f (I2 − 3) , (6.11)

where C is a constant.

Rivlin and Sawyers [115] proposed a specific form of W , namely,

W = C1 (I1 − 3) + C2 (I2 − 3) + C3 (I2 − 3)2 , (6.12)

where C1 and C2 are positive constants and C3 is a negative constant, for specific

ranges of I1 (5 to 11) and I2 (5 to 30). It should be noted that form (6.12) is not

valid for lower values of I1 and I2.

Gent and Thomas [41] proposed the strain energy function form

W = C1 (I1 − 3) + C2 log

(
1

3
I2

)
(6.13)

which, for a suitable choice of the material constants C1 and C2 describes the behavior

of rubber-like materials over a much broader range of deformation than the Mooney

form does.

Obata et al. [101] attempted to extend Rivlin’s constitutive equation in order

to quantify the effect of crosslinking on the shape of the response functions. They
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arrived at new response functions,

∂W

∂I1

= C1 +
C2

(I1 − 3)2 −
C3 (I2 − 3)

(I1 − 3)2.5

∂W

∂I2

= C4 +
C5

(I2 − 3)
− 2C3

3 (I1 − 3)1.5

(6.14)

where C1 to C5 are material constants.

Departing from the Rivlin’s approach of describing the strain-energy function

in terms of principal invariants, Valanis and Landel [161] postulated that the strain

energy function, for incompressible isotropic materials, should be a separable sym-

metric function of the principal stretch ratios, instead of the strain invariants, i.e.

W = w (λ1) + w (λ2) + w (λ3) (6.15)

where the function w (λi) by symmetry is the same for each stretch ratio. This form

of W was proved to be valid over a large deformation range (0.2 ≤ λi ≤ 3.5). Using

this postulate and unpublished data by Becker and Landel, and other there sources of

experimental data by Rivlin and Saunders [114], Treloar [152] and Blatz and Ko [12],

they proposed an analytical form of the function W over a more limited range of

stretch ratio (0.6 ≤ λ ≤ 2.5),

W = 2µ
3∑

i=1

λi (log λi − 1) (6.16)

where µ is the shear modulus.
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Based on Valanis-Landel hypothesis, Ogden [102] proposed a special form of

W as

W =
∑

i

µi

αi

(λαi
1 + λαi

2 + λαi
3 − 3) (6.17)

where µi and αi are material parameters. αi may take any non-zero real value.

The summation on i extends over as many terms as are necessary to characterize a

particular material [50]. It was shown that Ogden’s strain energy function provides

a good agreement with Treloar’s data.

Table 6.1 summarizes the phenomenological constitutive relations of rubber-

like materials.

6.2 Method

6.2.1 Finite inflation test for a rubber balloon

The experimental system designed for inflation tests consists of a gas cylinder

with compressed nitrogen gas, a U-tube manometer, a Nikon D80 digital SLR cam-

era, and a close-range photogrammetry software, PhotoModeler (EOS Systems Inc.).

Figure 6.1 illustrates schematically the experimental system.

A finite element mesh which constitutes 12×12 four-node elements was drawn

by hand using a fine marker pen on the belly region of the balloon surface. Compressed

nitrogen gas was used to inflate the balloon. Before testing, the rubber balloon

underwent cyclical inflation-deflation (preconditioning) for 10 times to eliminate the

Mullin’s effect. Subsequently, the balloon was inflated to a relative large size of

approximately 200% stretch. After several seconds waiting for the balloon to reach
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Table 6.1: Summary of phenomenological constitutive relations of rubber-like
materials.

Author Constitutive Equation Data

Mooney [96] (1940) W = C1 (I1 − 3) + C2 (I2 − 3) Gerke [42]

Rivlin & W = C (I1 − 3) + f (I2 − 3) Rivlin &
Saunders [114] (1951) Saunders [114]

Gent & W = C1 (I1 − 3) + C2 ln
(

I2
3

)
Gent &

Thomas [41] (1958) Thomas [41]

Hart-Smith [52] (1966) ∂W
∂I1

= Gexp
[
k1 (I1 − 3)2] Treloar [152],

Rivlin &
∂W
∂I2

= Gk2

I2
Saunders [114]

Alexander [3] (1968) W = C1

∫
ek(I1−3)2dI1+ Alexander [3]

C2 ln
(

(I2−3)+γ
γ

)
+ C3 (I2 − 3)

Rivlin & W = C1 (I1 − 3) + C2 (I2 − 3) + Rivlin &

Sawyers [115] (1976) C3 (I2 − 3)2 Saunders [114]

Valanis & W = 2µ
∑3

i=1 λi (log λi − 1) Becker &
Landel [161] Landel

Ogden [102] (1972) W =
∑3

i=1
µi

αi
(λαi

1 + λαi
2 + λαi

3 − 3) Treloar [152]
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Figure 6.1: Schematic illustration of the experimental system.

its stable status, the balloon was deflated in several decrements. At each state, the

air pressure inside the balloon was measured using a manometer. In the meantime,

four photos were taken from different perspectives using a Nikon D80 digital SLR

camera which was calibrated prior to the test. Since the balloon generally collapses

when the net internal pressure is zero, the configuration under a very small pressure

(0.0001 N/mm2), but still in convex shape, was taken as the approximate stress-free

configuration. Fourteen configurations, including the stress-free configuration and

thirteen deformed configurations, were recorded.
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6.2.2 Photogrammetric surface reconstruction

Photogrammetry encompasses methods of image interpretation in order to

derive the shape and location of an object from one or more photographs of that

object [91]. A primary purpose of photogrammetric measurement is the three dimen-

sional reconstruction of an object in digital form. Photogrammetry works as follows.

First, the camera needs to be calibrated, which allows the photogrammetry program

to know the detailed description of the camera, including the focal length, imaging

scale, image center and lens distortion. Second, the user takes enough photographs

of the object from different perspectives, which can sufficiently characterize its 3D

structure. Third, the photographs are imported into the program, and point refer-

encing is then performed to let the program know the corresponding positions in each

2D image space of a point in the 3D space. Finally, the 3D position of all the selected

points are computed using mathematical transformation. If applied to a deforming

membrane with enough tracking markers on its surface, which sufficiently character-

ize the geometry feature of membrane, photogrammetry can be used to record the

3D positions of the tracking markers in different deformed states. By identifying a

reference configuration, one can obtain the displacements of the tracking markers,

and hence compute the strains using interpolation.

Taking the photos as input, we used a close-range photogrammetry program,

PhotoModeler 6 (EOS Systems Inc.), to reconstruct the 3D surface geometry of the

meshed region in each configuration. In the process of 3D geometry reconstruction, an

important step is the determination of the point-to-point correspondence between the
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tracking points in different photographs. Due to the difficulty in corresponding the

nodes across different photographs automatically, we determined the point-to-point

correspondence by manually picking the points using mouse.

6.2.3 Computation of stress

Taking the reconstructed finite element mesh of each deformed configuration,

we computed individually the wall tension using FEIEM described in §3.4. We em-

ployed the strain energy function, Equation (5.1), i.e.

w =
ν1

2
(I1 − 2 log J − 2) +

ν2

4
(I1 − 2)2 . (6.18)

and assumed unrealistic values of the elasticity parameters, ν1 = ν2 = 100 N/mm

which rendered a very small deformation, For the sake of quick convergence. The

reason that we use different notation ν1 and ν2 from those in Equation (5.1) for the

elastic parameters is to distinguish from the notation in Ogden’s model, which are

µi.

Clamped boundary conditions were applied on the four edges of the mesh.

As discussed in [89, 180], clamped boundary (or other types of displacement con-

straints) compromises the stress static determinacy. However, for sufficiently curved

membranes the influence exists in a thin boundary layer [118, 174], and the thickness

of which depends inversely on the surface curvature. Outside the boundary layer,

the stress is asymptotic to the static solution. We hypothesize that the boundary

layer can be identified numerically by examining the change of stress induced by the
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variation of the material parameters. The region in which the stress remains approxi-

mately invariant under relatively large change of material parameters is defined as the

boundary-effect-free region. Later, the parameter identification will be carried out in

the boundary-effect-free region only. This procedure is important to the experiment

design, as we need a practical method to eliminate the influence of boundary effect.

In the inverse stress analysis the stress t is computed at each Gauss point

in a local orthonormal coordinate system, and thus the outputs are the physical

components which we denoted as t11, t22, t12 = t21. The principal stresses, which will

be used in parameter regression, can be directly computed according to

t1 =
t11 + t22

2
+

√
(t11 − t22)

2 + 4t212

2
,

t2 =
t11 + t22

2
−

√
(t11 − t22)

2 + 4t212

2
.

(6.19)

6.2.4 Computation of strain

Based on the measured nodal positions in the reference and deformed config-

urations, we approximated the position vectors of a point inside the meshed region

via the finite element interpolation (cf. Equation (4.1)). Following the formulation in

§4.1.1, the base vectors (Gα, Gα, gα, and gα) and metric tensor components (Gαβ,

Gαβ, gαβ, and gαβ) in the undeformed and deformed configurations were computed.

Finally, the principal stretch ratios λ1 and λ2 at each Gauss point were computed

according to Equation (4.4).
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6.2.5 Isotropy test

For materials in some symmetry classes, the stress function should satisfy

certain universal relations [54, 9, 10, 108, 113]. For experimentalists, the univer-

sal relations are important in determining whether a material belongs to a certain

symmetry class. For isotropic elastic materials, the relation

SC = CS (6.20)

holds, which implies that the second Piola-Kirchhoff stress tensor S commutes with

the right Cauchy-Green deformation tensor C in every possible motion. Giving the

linear relation between S and referential tension T, it is clear that T must satisfy

TC = CT. (6.21)

This is the universal relation for isotropic membranes.

Utilizing the acquired tension-strain data, we may examine whether TC = CT

holds. Due to the experimental error, TC−CT will not be exactly zero even if the

material is truly isotropic. We employ the commutator e = TC−CT as an indicator

for isotropy. Due to the symmetry of T and C, the components e11 = e22 = 0, and the

only possible non-zero component is e12. We introduce the function ε = 2|e12|
‖TC−CT‖×100

as a measure of co-axiality. If ε is close to zero for a wide range of stress-strain

protocols, we may say the universal relation is satisfied. Obviously, the test alone

cannot conclude material isotropy, especially if only limited stress-strain protocols
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are tested. However, if the universal relation is found to hold true for a rich family

of stress-strain protocols, then there is a strong justification to model the material as

isotropic.

6.2.6 Elastic parameter identification

The mechanics of rubber elasticity has been investigated extensively in the last

several decades, and various constitutive models have been developed. Among the

well-known hyperelastic descriptors, there are mainly two types of energy functions,

one in terms of the strain invariants [112, 47] and the other in principal stretches

[152, 161, 102, 105]. Attributing to the limited extensibility of the molecule chain

network, the stress-stretch curve shows a characteristic sigmoid shape [155]. Our

experimental stress-stretch data displayed the same characteristic as that by Treloar

[152]. It has been well-accepted that the Ogden’s energy function [102], which contains

non-integer powers of the principal stretches, can model the sigmoid shape well within

the typical range of experimental stretches. Based on this consideration, we selected

the Ogden model to fit our experimental data.

The Ogden model describes the strain-energy function in terms of the principal

stretches λr (r = 1, 2, 3), in the following form

W =
∑

i

Mi

αi

(λαi
1 + λαi

2 + λαi
3 − 3) . (6.22)

Here, W is the strain energy per unit reference volume, Mi and αi are elastic pa-

rameters. The exponents αi may take any non-zero real value. The summation on
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i extends over as many terms as are necessary to characterize a particular material

[50]. For membranes, the strain energy per unit reference area is w = HW , where H

is the reference membrane thickness. Hence, the 2D form of (6.22) is

w =
∑

i

HMi

αi

(λαi
1 + λαi

2 + λαi
3 − 3) . (6.23)

We introduce the effective elasticity parameters, µi = HMi, and rewrite (6.23) as

w =
∑

i

µi

αi

(λαi
1 + λαi

2 + λαi
3 − 3) . (6.24)

The incompressibility condition, λ1λ2λ3 = 1, gives rise to λ3 = (λ1λ2)
−1. Considering

λ1 and λ2 two independent deformation parameters, we may rewrite function (6.24)

as

ŵ (λ1, λ2) =
∑

i

µi

αi

(
λαi

1 + λαi
2 + λ−αi

1 λ−αi
2 − 3

)
. (6.25)

It follows that under the plane stress assumption (t3 = 0) the principal values of the

tension tensor are given by

t1 =
1

λ2

∂ŵ

∂λ1

, t2 =
1

λ1

∂ŵ

∂λ2

. (6.26)
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Expanding equation (6.26), we obtain

t1 =
∑

i

µi

(
λαi−1

1 λ−1
2 − (λ1λ2)

−αi−1) ,

t2 =
∑

i

µi

(
λαi−1

2 λ−1
1 − (λ1λ2)

−αi−1) .

(6.27)

It was shown by Ogden [102] that the energy function (6.24) fits well the data of a

particular rubber material by Treloar [152] if three terms are included. Following this

observation, we chose the three-term Ogden model in this work.

The objective function is constructed as

Φ =
N∑

i=1

w1

(
(i)t1 − (i)t̂1

)2
+ w2

(
(i)t2 − (i)t̂2

)2
(6.28)

where, N is the number of deformed states recruited into the regression, (i)tα and (i)t̂α

(α = 1, 2) are the model predicted and experimental principal tensions (computed

from the inverse method) in the ith configuration, w1 and w2 are the weight param-

eters, the values of which are determined by numerical experiments. To achieve the

reported results, we chose w1 = 1.0 and w2 = 1.5. Since an approximate global stress-

free configuration was obtained, Φ is a function of the unknown elasticity parameters

only. The parameter identification problem can be described as

minimize Φ (µ, α)

subject to l ≤ (µ, α) ≤ u.

(6.29)

Here, (µ, α) = (µ1, µ2, µ3, α1, α2, α3) is the vector of elasticity parameters, l and u
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are the vectors of lower and upper bounds of (µ,α).

A practical difficulty in material parameters identification is that multiple sets

of parameters may render equally good fits to a given set of stress-strain data due

to the presence of local minima or experimental error or regression error [143]. The

problem aggravates for highly nonlinear models, as a small perturbation in the ex-

perimental data may result in a large variation in the ensuing parameters. This issue

has a nontrivial implication in membrane identifications. While the 3D energy func-

tion parameters are intrinsic properties of the material, the effective properties in

the membrane energy function, such as µi in Equation (6.24), are not. Their values

depend on the wall thickness, and thus may vary with the thickness even if the under-

lying material is intrinsically homogeneous. Due to the numerical non-uniqueness in

fitting, a variation in the wall thickness may result in a spurious heterogeneity in the

identified intrinsic parameters. To cope with this difficulty, we adopted the following

strategy. We first performed regression at a selected point where the response was

relatively smooth and determined the parameters αi and µi. Then, based on the con-

sideration that the balloon is approximately homogeneous, we applied the values of αi

to all other points and identified the remaining effective parameters µi. Although the

parameters so obtained are unlikely the global minimizer of the objective function,

the (assumed) intrinsic homogeneity is enforced. The regression was performed by a

gradient-based, sequential quadratic programming (SQP) algorithm, SNOPT [43].
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6.2.7 Predictive capability

The usefulness of the identified elastic parameters can be evaluated by exam-

ining how well the model derived from a set of experiments can predict the system

behavior in a different physical setting [68]. We conducted a forward finite element

analysis using the identified model to predict a deformed configuration which was not

used in the parameter identification. The FEM predictions were compared to the

measured deformation. In the forward analysis we followed the finite element for-

mulation of the Ogden model for membrane problems presented by Gruttmann and

Taylor [50], and implemented the element in the nonlinear finite element program

FEAP [147].

The forward finite element analysis was conducted for the boundary-effect-free

region where the parameter identification was carried out. The identified parameters

αi and the averages of the identified parameters µi over the region were input as

the model parameters. The displacements of the boundary nodes were prescribed

according to the recorded nodal positions. The difference between the predicted

position x and measured position x̂ was quantified node-wise with the error measure

e = ‖x−x̂‖
L

, where L is a characteristic length taken to be 10 cm.

6.3 Results

6.3.1 Reconstructed surfaces and stress results

Table 6.2 lists the thirteen deformed configurations and their corresponding

pressure values. The largest stretch being around 2.1 occurred in the configuration 13

(the highest pressure). The initial size of a randomly selected element in the stress-
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Table 6.2: The identities and corresponding pressure values of the de-
formed configurations.

Configuration ID 1 2 3 4 5
Pressure (N/mm2) 0.00089 0.00134 0.00153 0.00161 0.00167
Configuration ID 6 7 8 9 10
Pressure (N/mm2) 0.00173 0.00179 0.00184 0.00190 0.00198
Configuration ID 11 12 13
Pressure (N/mm2) 0.00208 0.0022 0.00238

free configuration is about 5.3 × 5.3 mm2, whereas in the deformed configuration

13, its size is around 10.6 × 10.6 mm2. Figure 6.2 shows a typical photo used in

the process of 3D geometry reconstruction. The 3D reconstruction was performed

successfully. Take the central node (node 85) as an example, the coordinates and

precisions in the X, Y , and Z directions are X : 65.05 ± 0.029 mm, Y : 51.46 ±

0.053 mm, and Z : 161.07 ± 0.089 mm, respectively. The confidence interval is

0.68. Figure 6.3 shows the reconstructed mesh for the deformed configurations. Two

deformed configurations which were close to other ones are not shown. Qualitatively,

the convexity and smoothness of membrane surfaces have been recovered.

Figure 6.4 shows the finite element mesh and the principal tensions in the

13th state (the highest pressure). It should be noted that the stress solution ob-

tained through the inverse method is largely affected by the geometric features of the

surface, e.g. smoothness and curvature. Due to the unavoidable existence of exper-

imental error, the reconstructed membrane surface may have some unphysical local

undulations depending on the accuracy of the motion tracking devices. In that case,

the stress solution may not converge, or has stress concentrations here and there.
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Figure 6.2: A photo of the rubber balloon used in the process of 3-D geometry
reconstruction.

Figure 6.3: Reconstructed meshes of the deformed configurations.
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(a) (b)

Figure 6.4: Distribution of principal tensions in deformed configuration 13: (a) t1,
(b) t2.

In order to reduce this artifact, it is imperative that certain surface smoothing pro-

cesses be conducted prior to stress computation. In this work, we were able to obtain

good quality surface meshes from 3D reconstruction without modification for all the

configurations.

6.3.2 Stress sensitivity to material model

Figure 6.5 shows the relative difference (in percentage) of the principal tensions

under drastic changes in elasticity parameters of the neo-Hookean model. We took

the parameters ν1 = ν2 = 100 N/mm as the reference values. After varying the two

parameters in different ways, we computed the principal tensions using the inverse

method, and compared them with those computed from the reference parameters. In

Figure 6.5, the upper row shows the percentage difference in principal stresses when

both parameters were magnified 10 times, i.e. ν1 = ν2 = 1000 N/mm. The percentage

differences in the region three layers of elements distanced from the boundary were
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(a) (b)

(c) (d)

Figure 6.5: The percentage difference of principal tensions under the change of elas-
ticity parameters. Upper row: Increasing both parameters µ1 and µ2 to 10 times: (a)
t1, (b) t2; Lower row: Keeping µ1 unchanged and increasing µ2 to 5 times: (c) t1, (d)
t2.

below 0.05%. Increasing both parameters by 100 times produces a similar difference

margin, and we do not report here. In the lower row, ν1 was kept unchanged, while ν2

was increased to 5 times, i.e. ν1 = 100 N/mm and ν2 = 500 N/mm. The percentage

differences in the region three layers of elements distanced from the boundary were

below 2.8%. The case where ν1 was increased to 5 times while ν2 remained unchanged

was also considered and a similar margin of difference was observed.
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Throughout all the tests, it appears that the tension solution was affected min-

imally by proportional variations of the elastic parameters. Changing two parameters

unproportionally, however, rendered a relatively larger variation in the tension solu-

tion. Nevertheless, the difference was within an acceptable range in the region three

layers of elements distanced from the boundary. This region was identified as the

boundary-effect-free region where the parameter identification was performed later.

6.3.3 Isotropy test

Figure 6.6(a) and (b) show the distribution of the co-axiality indicator ε in

the lowest and highest pressure states (configurations 1 and 13), respectively. In

the boundary-effect-free region defined above, the value of ε was less than 0.58% and

1.07% for the configurations 1 and 13, respectively. The values in other states fall into

these limits. Allowing for the experimental error, we conclude that the co-axiality

condition between the stress and strain tensors was met. Therefore, the rubber may

be modeled as isotropic material.

6.3.4 Elastic parameter identification

As introduced in §6.2.6, the parameter identification was accomplished in two

steps. First, the regression was performed at a selected Gauss point and all parameters

were identified. Second, the identified αi values were applied to the entire region, and

the remaining parameters µi were identified at all remaining Gauss points. The

identified values of αi and µi at the selected point are listed in Table 6.3.

The global regression was performed using the states in Table 1 excluding the
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(a) (b)

Figure 6.6: The distribution of the co-axiality indicator ε in selected configurations:
(a) Configuration 1; (b) Configuration 13. Both figures were scaled to fit the canvas
for clarity.

Table 6.3: The identified parameters αi and µi for
the Ogden model at a selected point.

i αi µi (N/mm)
1 2.87181 0.05827
2 -1.80776 0.01940
3 -5.76831 -8.477×10−5
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11th state (p = 0.00208 N/mm2), which was reserved for a forward verification. The

distributions of the identified parameters µi in the whole region are shown in Figure

6.7 for the boundary-effect-free region. The ranges, means, and standard deviations

of these three parameters are listed in Table 6.4. Since the standard deviations for

all the parameters are relatively small, we may conclude that the material is at least

nominally homogeneous.

(a) (b)

(c)

Figure 6.7: Identified elasticity parameters of the Ogden model: (a) µ1, (b) µ2, (c)
µ3.



110

Table 6.4: Ranges, means, and standard deviations of the identified elasticity
parameters.

µ1 µ2 µ3

Minimum (N/mm) 0.05470 0.01473 -9.454 ×10−5

Maximum (N/mm) 0.06453 0.02320 -6.221 ×10−5

Mean (N/mm) 0.05986 0.01966 -8.154 ×10−5

SD (N/mm) 0.00239 0.00171 6.923 ×10−6

Figure 6.8: Distribution of the ratio of µ1 to µ2.

The intrinsical homogeneity of the material can be checked by inspecting the

ratios µ1

µ2
, µ1

µ3
, and µ3

µ2
, which factor out the wall thickness. Since µ3 is several orders

of magnitude smaller than µ1 and µ2, we only examine the ratio of µ1 to µ2. The

distribution of this ratio is illustrated in Figure 6.3.4. Qualitatively seen from the

figure, the ratio is approximately uniform over the region. The mean is 3.0309 N/mm,

and the standard deviation is 0.1720 N/mm. The result suggests that the material is

intrinsically homogeneous.

Figure 6.9 illustrates the comparison between the identified model’s tension-

stretch curves and the experimental data, at the point where the initial identification

of all the six parameters took place. The good match between the model-predictions
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and experimental data indicates that the material’s response were modeled success-

fully by the Ogden model, at least within the stretch range considered in the experi-

ment.

6.3.5 Predictive capability

The 11th configuration (p = 0.00208 N/mm2), which has been excluded from

parameter identification, was recruited for a forward verification. Figure 6.10 shows

the comparison between the finite element predicted configuration using the identi-

fied mean elastic parameters and the experimentally measured configuration. In the

left plot, the thick black mesh is the finite element prediction, and the thin gray

mesh is the experimental result. The finite element analysis was performed for the

boundary-effect-free region where the elastic parameter identification was conducted.

Displacement boundary condition corresponding to the measured nodal positions were

applied along the boundary edges. The right plot shows the distribution of the rel-

ative error between the predicted and measured nodal positions. As shown in the

plots, the computed configuration coincides very well with the experimentally mea-

sured one. The position error e = ‖x−x̂‖
L

is less than 0.2% throughout the region.

6.4 Discussion

In principle, multiple experiments should be conducted for a population of ob-

jects and the results need to be averaged when one characterizes the elastic properties

of a specific material due to inevitable experimental error and specimen-to-specimen
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Figure 6.9: Comparison between the experimental and the modeled tension curves:
(a) t1; (b) t2.
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(a) (b)

Figure 6.10: Comparison between the deformed configuration computed from finite
element method using the identified elastic parameters and the experimentally mea-
sured configuration. (a) Thin gray mesh: experimental (whole domain); Thick black
mesh: finite element modeled (boundary-effect-free region); (b) Distribution of the

position error e = ‖x−x̂‖
L

.

variance. In our experiment, we only conducted a single test. The reason for this

is three-fold. First, our objective here is to test the validity and effectiveness of the

method in identifying the elastic properties of a specific object instead of obtaining

the realistic elastic parameters for specific materials, so there is no need to evaluate

it for other objects. Later in application, if one needs to identify the population

mean elastic parameters for specific materials or soft tissues, multiple specimen will

be considered. Second, the data processing is tedious although the experiment itself

is not complicated. During the 3D reconstruction using photogrammetry software,

the point-to-point reference among multiple (more than three) needs to be made by

hand due to lack of automation. Third, the obtained stress-strain curves at inter-

ested regions for the single specimen used are relatively smooth, and it is reasonable

to conclude the data are reliable enough.
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CHAPTER 7
NUMERICAL EXPERIMENTS: CEREBRAL ANEURYSMS

7.1 Introduction

Cerebral aneurysms are focal dilatations of the intracranial arterial wall that

usually develop in or near the circle of Willis. Non-complicated cerebral aneurysms are

typically thin-walled. Their diameters range from a few to a few tens of millimeters

while the wall thicknesses range from tens to hundreds of micrometers [126, 67].

In their service environment, these lesions are best described as elastic membranes

subjected to transmural pressure and hemodynamic shear stress. While the long term

growth and remodeling is likely modulated by the lumen shear stress, the sudden bleed

or rupture is believed to be caused by the pressure induced wall stress. Rupture likely

occurs at the spot where the wall stress exceeds the wall strength. Historically, the size

has been used as an indicator for evaluating rupture risk [25, 73, 157, 171, 35]; recently

it is believed that shape may provide a more reliable prediction [158, 159, 110].

Due to its significance in predicting the rupture risk of aneurysms, the deter-

mination of the wall stress distribution has become an active research subject. Many

works have been reported to determine wall stress distribution in aneurysms of hypo-

thetical shape, e.g. cylinder and sphere. These include Stringfellow et al. [142], Inzoli

et al. [70], Mower et al. [98], Elger et al. [32]. However, every single cerebral aneurysm

has its own size, geometry, wall thickness, elastic property, and extension strength.

Therefore, the value of the maximum wall stress and the location where it occurs is

different from patient to patient, and so is the rupture risk of the aneurysm. Accord-
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ingly, ideal evaluation of rupture risk would be to determine the wall stress under in

vivo blood flow condition with patient-specific geometry, wall thickness and elastic

properties, and then check if the maximum wall stress will exceed the wall strength

soon. Current imaging segmentation techniques allow for in vivo reconstruction of the

three-dimensional geometry of cerebral aneurysms [92, 16], although patient specific

aneurysm wall thickness is still an unsolved problem.

Towards the direction of in vivo stress analysis for patient-specific aneurysms,

some representative studies have emerged. Raghavan et al. [111] developed a method

to noninvasively estimating the in vivo wall stress distribution in patient-specific ab-

dominal aorta aneurysms (AAAs), utilizing 3D reconstruction with medical images

and finite element method. Isaksen et al. [71] performed finite element isogeometric

analysis to determine wall tension in cerebral aneurysms using fluid-structure interac-

tion. For stress analysis using forward or direct finite element method like Raghavan

et al. [111] and Isaksen et al. [71], however, detailed information on the material

properties and wall thickness are needed. Unfortunately, the heterogeneous material

property and wall thickness are very difficult to characterize and hence, one often has

to adopt population-averaged material properties retrieved from uniaxial or biaxial

specimen testing or in vitro inflation experiments on ruptured aneurysms, and an

estimation or a population-average of the wall thickness. It is not hard to imagine

that such analyses could give rise to unrealistic stress estimation in the aneurysm

wall, which may in turn yield unreliable estimation of rupture risk.

More often than not, the geometries of aneurysms used in determining the wall
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stress distribution are stressed configurations due to the fact that the stress-free con-

figuration is never reached in vivo. The outcome of this factor is that an initial stress

is added to the computed stress, rendering an overestimation of the realistic stress

values. Therefore, the determination of the stress-free configuration of aneurysms is

very important. Lu et al. [88] proposed an inverse approach to determine the stress-

free configuration of an abdominal aortic aneurysm, and subsequently obtained the

wall stress distribution. Their approach is based on a finite element inverse elastostat-

ics formulation, which takes as input a deformed configuration and seeks a stress-free

configuration. However, the sought stress-free configuration is not necessarily realistic

unless the realistic elastic parameters are input to the inverse finite element analysis.

In [88], population mean elastic parameters were used which were identified from ex

vivo experiments. Therefore, the so obtained stress-free configuration was considered

the realistic one.

Pursuing the same goal while taking a different path, Lu et al. [89] proposed

a method to determine the in vivo wall stress distribution in a cerebral aneurysm by

utilizing finite element inverse elastostatics method for membrane structures without

a priori knowledge of the realistic stress-free configuration and elastic properties.

Their method hinges on the statically determinate feature of membrane equilibrium

problem, i.e. the stress can be determined from the balance equation alone. This work

is the cornerstone of the pointwise identification method that this thesis is proposing.

Regardless the capability of the aforementioned methods in identifying the

stress distribution of cerebral aneurysms, the detailed information on the wall ma-
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terial property still is of great interest. However, delineating the elastic property

of aneurysm tissue, in particular, experimental determination of the material pa-

rameters, presents some significant challenges. The lesion wall typically consists of

multiple layers of type I and III collagen fibers with varying orientations that form

two-dimensional networks [13, 93]. Variation in microstructure and remodeling his-

tory gives rise to spatially varying stiffness and symmetry characteristics. At the

continuum level, aneurysm tissue is typically characterized as nonlinear, anisotropic,

and heterogeneous over finite strain. Among these characteristics, heterogeneity per-

haps poses the most difficulty to experiments.

Despite the critical importance of constitutive parameters to understanding

aneurysm mechanical behavior, reports on cerebral aneurysm wall property have been

scarce. Earlier studies focused mainly on global property (e.g., pressure-volume re-

lation) [125], or uniaxial and biaxial stress behavior of exercised strips and sheets

[141, 148]. Hsu et al. [62, 61] studied the pressure-deformation behavior of two

intracranial cerebral aneurysms harvested as a whole from cadavers, and reported

multiaxial deformations at multiple locations under varying pressures. In recent

years, several studies have been conducted to characterize the heterogeneous ma-

terial property in cerebral aneurysms. Humphrey’s group [126, 128] developed the

inverse finite element method, and applied it to delineate the regional properties

in a harvested aneurysm, and obtained best-fit material parameters in a Fung-type

strain-energy function for a cerebral aneurysm sac. Their work remains to this date

the the most complete report on the heterogeneous properties in cerebral aneurysms.
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Recently, Kroon and Holzapfel [77] reported an inverse finite element identification

of anisotropic heterogeneous elastic properties in idealized cerebral aneurysms. In

this chapter, we will validate the method for anisotropic material using the cerebral

aneurysm model. The validation procedure is the same as that of the isotropic case

considered in Chapter 5 except that the material model is anisotropic and the mate-

rial is assumed to have a certain pattern of heterogeneity. We chose the constitutive

model proposed by Holzapfel et al. [60] which is a structural model suitable for

fiberous biological tissues.

Basically, a virtual (numerical) test is conducted to demonstrate and evaluate

the utility of PWIM in cerebral aneurysms. The procedure is illustrated in Figure 7.1.

Forward finite element analysis is applied first to a cerebral aneurysm sac of known

material property and geometry to generate a series of deformed states. The FE

model of the aneurysm sac is shown in Figure 7.2 including the initial configuration

and a deformed configuration under the highest pressure (p=110 mmHg). Clamped

boundary condition is applied at the neck of the aneurysm, to mimic a common

setting in experiment. The assumed distribution of heterogeneous elastic property

of the aneurysm wall will be referred to as the “realistic distribution” of the elastic

properties. Taking the realistic distribution as input, we simulate an inflation motion

by performing a series of quasistatic finite element analyses for the aneurysm sac. The

obtained deformed configurations and assumed reference configuration are considered

as “virtual” experimentally observed configurations. Subsequently, we set the elastic

properties (may include fiber orientation information) of the aneurysm to be unknown
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Figure 7.1: Schematic of the validation procedure.

and use the virtual experimental data to identify the elastic parameters of the selected

model. After applying the pointwise identification method for each Gauss point, a

distribution of identified elastic properties is obtained for the cerebral aneurysm sac.

This distribution will be referred to as the “identified distribution” of the elastic

properties. The next step is to compare the identified distribution to the realistic

distribution. If the difference between these two distributions is small enough, we can

conclude that the method is valid and effective.
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Figure 7.2: The initial configuration (shaded) a deformed configuration under a pres-
sure of 110 mmHg (mesh) of the cerebral aneurysm sac.

7.2 Method

7.2.1 Material model

Cerebral aneurysm wall consists of primarily 7-8 layers of type I and III col-

lagen fibers with varying orientations that form two-dimensional networks [13]. At

the continuum level, the tissue is typically described by a single strain energy func-

tion that taking into account collectively the properties of the constituents and mi-

crostructure. Following [78], we assume that the cerebral aneurysm wall is composed

of random elastin network, reinforced by two families of orthogonal collagen fibers.

The first family of fibers are further assumed to be parallel to the basal (x− y) plane

and tangent to the aneurysm surface at every point. The second family is pointwise

perpendicular to the first one. The material property of the cerebral aneurysm is

assumed to be heterogeneous; the elastic stiffness decreases linearly with respect to

the height from the neck (cf. Figure 7.3). The reference wall thickness is set to be

uniform and takes the value of H = 0.1 mm.
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Figure 7.3: Realistic (assumed) distribution of the elastic parameter k1.

We use an anisotropic structural strain energy function proposed by Holzapfel

et al. [60] to model the anisotropic elastic behavior of the cerebral aneurysm sac. The

strain energy function takes the form

w = k1 (I1 − 2 log J − 2) +
∑
i=4,6

ki

a

{
exp

[
a (Ii − 1)2]− 1

}
, (7.1)

where ki (i = 1, 4, 6) are effective elastic stiffness parameters, which are the product

of 3D elasticity constants and the wall thickness, having the dimension of force per

unit length, and a is a dimensionless parameter. Here k4 and k6 characterize the

stiffness in the fiber directions (or the preferred directions), i.e. the horizontal N1

and the meridional N2 directions. To the authors’ knowledge, there is no established

evidence on which direction exhibits stiffer behavior. In this study, we assume the

collagen fibers along N1 are two times stiffer than those along N2.

In Equation (7.1), I1, I4, I6, and J =
√

I2 are the strain invariants, which

are given by Equations (3.8) and (3.15). Due to the assumption that the two fiber
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directions in the reference configuration are orthogonal, I4 and I6 satisfy the relation

I1 = I4 + I6. The components of the membrane stress is derived as

tαβ =
2

J
k1

(
Gαβ − gαβ

)

+
4

J
k4 exp

[
a (I4 − 1)2] (I4 − 1)

(
N δ

1GδγN
γ
1

)−1
Nα

1 Nβ
1

+
4

J
k6 exp

[
a (I6 − 1)2] (I6 − 1)

(
N δ

2GδγN
γ
2

)−1
Nα

2 Nβ
2

(7.2)

where α, β, δ, γ = 1, 2, and repeating index implies summation.

The linearly varying stiffness of the aneurysm wall material is represented by

the varying effective elasticity parameter, ki (i = 1, 4, 6), according to

ki = kfundus
i +

kneck
i − kfundus

i

Zneck
i − Zfundus

i

(Z − Zfundus
i ) (7.3)

where Z is the “Z” coordinate of any point on the sac, Zfundus and Zneck are the

“Z” coordinates at the fundus and neck, respectively. Similarly, ki are the elastic

parameters at point “Z”, kfundus
i and kneck

i are respectively the elasticity parameters

at the fundus and neck, and they take the value of

kfundus
1 = 0.01875 N/mm, kneck

1 = 0.05626 N/mm,

kfundus
4 = 0.03513 N/mm, kneck

4 = 0.10538 N/mm,

kfundus
6 = 0.01171 N/mm, kneck

6 = 0.03513 N/mm.

(7.4)

The value of the parameter a = 0.7112 is assumed to be identical across the whole

sac.
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Due to the scarcity of published values of the elastic parameters of model (7.1)

specific to cerebral aneurysms, we refer to the identified parameters from experiments

for arteries by Holzapfel et al. [60] while choosing the values of these parameters. The

value of a is the same as the reported value for arterial adventitia. The stiffnesses in

the two preferred directions are not differentiated in [60]. We scaled proportionally

the reported values of k1 and k4 in [60], and presume the value of k6 based on the

assumption that the stiffness along N1 is two times higher than that along N2, i.e.

k4 = 3k6. It is worth pointing out that these parameters are chosen to generate

a reasonable deformation while taking advantage of the most reliable experimental

results in the literature. In the deformation range considered in the current study,

the stress-strain relation is insensitive to the parameter a (see the analysis in §7.2.5).

Thus, it is difficult to identify a using the stress-strain data. As a first step, we assign

the actual value of a and identify the elastic parameters k1, k4, k6, and possibly the

fiber orientations. Figure 7.3 shows the realistic (assumed) distribution of k1. The

realistic distribution of k4 and k6 has the same pattern and is not shown here.

7.2.2 Forward analysis

Eleven deformed configurations were generated by applying pressures ranging

from 60 to 110 mmHg at an interval of 5 mmHg. To simulate the clamped boundary

constraint typically used in experiments, we assumed that the neck of the sac is fixed.

The simulation of the inflation motion was conducted using the forward nonlinear

membrane finite element in FEAP, a nonlinear finite element program originally de-

veloped at the University of California, Berkeley [147]. The largest principal surface
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Circumferential

Figure 7.4: The distribution of fiber directions at the fundus.

stretch, λ1 = 1.12, occurs on the configuration under the highest pressure (p=110

mmHg).

Because we assume the first family of collagen fibers lies parallel to the basal

plane, the fibers near the fundus form closed loops with extremely small radius of

curvature which presents great reinforcing effect (cf. Figure 7.4). It turns out that the

deformed surface near the fundus is almost flat, which gives difficulties in determining

the stress in there by inverse analysis. Therefore, the stress determination would be

inaccurate not only at the region near the clamped boundary, but the region near the

fundus. It is worth noting that such phenomena arises from our assumption on the

fiber direction distribution. In reality, this assumption may not be completely valid

for cerebral aneurysms, especially near the fundus. Therefore, the inaccurate stress

determination near the fundus reported here will unlikely be present.
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7.2.3 Computation of stress

Following the inflation simulation of the cerebral aneurysm sac, we took each

of the obtained deformed configurations as input, and applied the inverse method

to compute the wall stress distribution. Cauchy stress was obtained at each Gauss

point of the finite element mesh. An isotropic neo-Hookean constitutive model along

with arbitrarily chosen model parameters were used to compute the wall stress. The

neo-Hookean strain energy function takes the form

w =
ν1

2
(I1 − 2 log J − 2) +

ν2

4
(I1 − 2)2 . (7.5)

Similar to the elastic parameters ki of the Holzapfel model, the parameters ν1 and

ν2 here are also effective elastic parameters which are multiplications of 3D elasticity

constants with the wall thickness. ν1 = ν2 = 5.0 N/mm were used in the inverse

FE analysis. The computed stress distributions were compared to the actual stress

distribution computed from the forward FE analyses to evaluate the insensitivity of

the stress with respect to the selected constitutive models and their elastic parameters.

7.2.4 Computation of strain

In theory, if the stress-free configuration is known, from the nodal coordinates

in the reference and deformed configurations, strain distributions in each deformed

configuration can be computed with the aid of the finite element interpolation. How-

ever, in the current covariant setting, the base vectors (Gα and gα) of the stress-free

configuration and deformed configurations are computed first, from which the corre-
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sponding metric tensors (Gαβ and gαβ) are computed accordingly. If the fiber direc-

tions N1 and N2 are also known, these metric tensors in the stress-free and deformed

configurations will be input directly to the stress function to compute the modeled

stress, which will be compared to the experimental stress data in the parameter re-

gression process.

If the stress-free configuration is assumed to be unknown to mimic the in vivo

setting, we need to identify the elastic parameters together with the unknown metric

tensor components. In this case, linear transformation of the metric tensors in the

deformed configurations must be conducted. Here, at each Gauss point, we first

transform the metric tensor in the deformed configuration under the lowest pressure

to an identity tensor, and apply the same transformation rule to the metric tensors of

the remaining deformed configurations. Under such transformations, the base vectors

of these metric tensors remain convected. The basic formulation was presented in §3.5.

7.2.5 Elastic parameters identification

As shown in Equation (7.2), the stress components are functions of the ref-

erence and current metric tensors, the fiber directions, and the elastic parameters

appearing in the constitutive law. As described above, at each Gauss point we can

obtain the stress components tαβ and the convected components gαβ of the current

metric tensor in each of deformed configurations. If the stress-free configuration is

known, the reference metric tensor components Gαβ are also known. Accordingly, the

strain invariants I1, I2, I4, and I6 can be computed by Equations (3.8) and (3.15).
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We denote the modeled stress in the i-th configuration by

(i)tαβ = tαβ(a, k1, k4, k6,
(i)gδγ , Gδγ, N

δ
1 , N δ

2 ) (7.6)

Let (i)t̂αβ be the “experimental” stress components obtained from the inverse analysis.

The objective function is defined pointwise, as

Φ =
N∑

i=1

(
(i)tαβ − (i)t̂αβ

)
(i)gαγ

(i)gβδ

(
(i)tδγ − (i)t̂

δγ
)

(7.7)

where, N is the total number of deformed states. In tensor notation, Φ =
∑N

i=1 ‖ (i)t−
(i)t̂‖2. If the global stress-free configuration is known, Φ is a function of the elastic

parameters only.

Alternatively, as long as the modeled and experimental stress are described in

the same convected coordinate system, one may construct the cost function as

Ψ =
N∑

i=1

w1

(
(i)t11 − (i)t̂11

)
+ w2

(
(i)t22 − (i)t̂22

)
+ w3

(
(i)t12 − (i)t̂12

)
(7.8)

where wi (i = 1, ..., 3) are weight parameters. One can judiciously choose different

weight parameters by observing different ratios among the stress components. In the

current study, the two cost functions were both used, but not at the same time. More

details will be discussed in §7.3.

As mentioned briefly in §7.2.1, the stress is insensitive to the elastic parameter

a at a = 0.7112. To see this, we expand the exponential terms in the Holzapfel’s
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strain energy function into a Taylor series to give

w = k1 (I1 − 2 log J − 2) +
∑
i=4,6

ki

[
(Ii − 1)2 +

a

2
(Ii − 1)4 + ...

]
. (7.9)

At a point where the maximum deformation occurs (λ1 = 1.12), the quadratic term

(Ii − 1)2 = 5.93 × 10−2, whereas the quartic term a
2
(Ii − 1)4 = 7.03 × 10−4 which is

about two orders of magnitude smaller than the leading term. Therefore, the strain

energy and stress are very insensitive to the perturbation of a, which makes it difficult

to identify a, especially when experimental error exists. Based on this fact, we take

“a” as a known parameter and exclude it from regression.

First, we focus on an in vitro setting in which a slightly inflated configuration

is taken as a reference configuration and thus Gαβ are known. The situation of the

stress-free configuration being unknown will be taken into account later. If the fiber

directions are also known, the regression problem can be described as

minimize Φ (k1, k4, k6) or Ψ (k1, k4, k6)

subject to l ≤ [k1, k4, k6]
T ≤ u.

(7.10)

Here, l and u are the lower and upper bounds of the vector of regression variables

[k1, k4, k6]
T .

If the fiber directions are not known, one more regression variable enters the

identification process. In the current set-up, N1
1 = N1 · G1 and N2

1 = N1 · G2

are the components of the first fiber direction N1 with respect to base vectors G1
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and G2, respectively. Since two fiber directions are orthogonal in the stress-free

configuration, the components (N1
2 and N2

2 ) for the second fiber direction N2 are

determined explicitly. Therefore, the identification of the fiber directions can be

realized by identifying only one fiber direction, say N1.

From Equation (3.15)a, we know that I4 depends only on the ratio between

N1
1 and N2

1 , and thus so for I6. In the parameter regression process, we first set N1
1

to be 1, and identify N2
1 . If the realistic value of N1

1 is comparable to 1, N2
1 can be

identified successfully. However, If the realistic value of N1
1 is close to 0 and that of

N2
1 is close to ±1, the ratio |N2

1 /N1
1 | À 1. If this happens, we set N2

1 to be 1 and

identify N1
1 .

If the stress-free configuration is not available which is true for thin membrane

structures and biological tissues in the living body, as we did for isotropic material in

Chapter 5, we are going to define an imaginary or virtual local stress-free configuration

at a material point and parameterize it using a Rimannian metric tensor which is

symmetric. The three independent components of the metric tensor will be treated as

three model parameters when using the constitutive equation, and they are identified

together with the elastic parameters in the parameter regression process. In order to

have a broader deformation range, we added four more deformed configurations. The

current number of deformed configurations is 15, and the pressure is ranging from 50

to 120 mmHg at an interval of 5 mmHg. Another assumption we made is that the two

families of collagen fibers are orthogonal in the stress-free configuration although the

stress-free configuration itself is unknown. There are totally six parameters which will
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be identified, i.e., the three elastic parameters, k1, k4 and k6, and the three unknown

metric tensor components, G11, G22 and G12, of the local stress-free configuration at

each Gauss point. Hence, the parameter identification problem becomes a regression

process as

minimize Φ (k1, k4, k6,G11, G22,G12)

subject to G11 > 0, G22 > 0, G11G22 −G2
12 > 0,

and l ≤ (k1, k4, k6,G11,G22,G12) ≤ u.

(7.11)

where l and u are the lower and upper bounds of the regression variables ki and Gαβ.

The parameter identification was performed by a gradient-based, sequential

quadratic programming (SQP) algorithm, SNOPT [43].

7.3 Results

7.3.1 Wall stress is insensitive to the material property

Before identifying the elastic parameters, we need to verify that the wall stress

obtained from inverse analysis is truly insensitive to the material property. The prin-

cipal stresses in a deformed configuration (p = 110 mmHg) computed from forward

FEA with the anisotropic Holzapfel model are denoted as tfor
i , (i = 1, 2). The princi-

pal stresses in the same deformed configuration computed from inverse FEA with the

isotropic neo-Hookean model are denoted as tinv
i , which are shown in Figure 7.5. We

use a quantity ei =
∣∣∣ tinv

i −tfor
i

tfor
i

∣∣∣× 100%, (i = 1, 2) to evaluate the percentage difference

between tinv
i and tfor

i . Figure 7.6 shows the distribution of ei. As can be seen from the

figures, in the most part of the sac (excluding the near-boundary region, the fundus
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(a) (b)

Figure 7.5: Distribution of the principal stresses on the deformed configuration under
the highest pressure (110 mmHg): (a) t1, (b) t2.

region, and a narrow stripe along the meridional direction (displayed in light blue)),

e1 and e2 are less than 1%. Within the stripe, they are in the order of 2%. We will

see later that in this region the strain is also relatively small (λ1 ≈ 1.07), and this

region turns out to be where the parameter identification is relatively inaccurate. The

distribution of the first principal stretch is shown in Figure 7.7. The distribution of

ei induced by increasing ν1 and ν2 more shows no significant change. The fact that

stress is insensitive to the material property has been revealed again. This fact is

especially valuable in that it allows one to arbitrarily choose a constitutive model

and use it to compute membrane stress before suitable constitutive models can be

determined. Therefore, the obtained wall stress data can be used to represent the

realistic stress data for the purpose of elastic parameter identification.
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(a) (b)

Figure 7.6: The absolute percentage difference between the principal stresses com-
puted from inverse and forward FEA: (a) Error(t1), (b) Error(t2).

Figure 7.7: Distribution of the first principal stretch.
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7.3.2 Distribution of the identified elastic parameters

7.3.2.1 Pointwise identification when the fiber orientation is known

Parameter identification was conducted for all the Gauss points in the whole

sac using the cost function Φ (cf. Equation (7.7)). We compared the identified pa-

rameters to the exact parameters and extracted the elements where the identification

error of k4 exceeded 3%. Subsequently, we repeated the parameter identification using

the cost function Ψ (cf. Equation (7.8)) for the Gauss points in the selected elements.

The weights wi were chosen according to the ratios among the experimental stress

components, i.e. |t̂11/t̂22| and |t̂11/t̂12|, so as to fairly consider the influence of all the

stress component on the objective function value by scaling them to a similar order.

The results showed improvement in most points. After identification, we projected

the parameters at Gauss points to the nodes using a least-square algorithm for a more

convenient demonstration using Tecplot 360 (Tecplot, Inc.).

Figure 7.8 shows the distribution of the identified parameters ki. Qualitatively

judged from the figure, the linear dependence of the identified ki on the height was

recovered. The identification errors between the identified parameters and the realistic

ones were computed at each nodal point according to Error(ki) =
∣∣∣
(
ki − k̃i

)
/k̃i

∣∣∣ ×

100%, (i = 1, 4, 6), where ki and k̃i are identified and realistic elastic parameters,

respectively. Figure 7.9 shows the distribution of the identification error Error(ki).

The identification error is less than 8%, 3% and 5% for k1, k4 and k6, respectively, in

the bulk region of the aneurysm sac. Consistently with the regions where the stress

computation is not accurate, the identification is less accurate at the boundary area
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(a) (b) (c)

Figure 7.8: Distribution of the identified elastic parameters from pointwise identifi-
cation by assuming the fiber directions are known: (a) k1, (b) k4, (c) k6.

Table 7.1: Means, minimums and maximums of the
identification errors of the pointwise identification by
assuming the fiber orientation is known.

Error(k1) Error(k4) Error(k6)
Mean (%) 6.41 3.50 4.08
Min (%) 1.45× 10−4 8.66× 10−5 7.17× 10−4

Max (%) 124.1 78.81 78.81

and the fundus. In addition, the identification is less accurate in the region where

the stretch is relatively low (λ1 < 1.08), i.e., the neck region and the meridional

stripe illustrated in the contour plot of the first principal stretch (Figure 7.7). Figure

7.9 shows the distribution of the identification error of ki, Error(ki). Generally,

relatively bigger error occurs where the deformation is relatively smaller. The means,

minimums and maximums of the identification errors over the whole sac are listed in

Table 7.1. The maximum error occurs near the boundary, and large error only occurs

at scattered spots. The mean errors for the three parameters are 6.41%, 3.50% and

4.08%, respectively.
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(a) (b) (c)

Figure 7.9: Distribution of the identification errors of the elastic parameters from
pointwise identification by assuming the fiber directions are known: (a) Error(k1),
(b) Error(k4), (c) Error (k6).

7.3.2.2 Pointwise identification when the fiber orientation is unknown

When assuming the fiber orientation is unknown except that the material

is orthotropic, the elastic parameters ki were identified along with N1
1 (or N2

1 ) by

using the objective function Φ. Figure 7.10 shows the distribution of the identified

parameters ki. From a qualitative point of view, the regional variation of the elastic

parameters was successfully identified. Quantitatively, the absolute identification

errors for k1, k4 and k6 were respectively less than 5%, 2% and 2% in the bulk region

of the aneurysm sac. The means, minimums and maximums of the identification errors

over the whole sac are listed in Table 7.2. The mean errors for the three parameters

are 10.35%, 4.15% and 4.15%, respectively. Compare to the case of known fiber

directions, the mean errors for all the parameters are larger although the elevation

is not significant. This is understandable since there is one more parameter in the

regression.
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(a) (b) (c)

Figure 7.10: Distribution of identified elastic parameters from pointwise identification
by assuming the fiber directions are unknown: (a) k1, (b) k4, (c) k6.

Table 7.2: Means, minimums and maximums of the
identification errors of the pointwise identification by
assuming the fiber orientation is unknown.

Error(k1) Error(k4) Error(k6)
Mean (%) 10.35 4.15 4.15
Min (%) 2.08× 10−3 5.20× 10−5 7.79× 10−5

Max (%) 122.9 63.04 63.04

7.3.2.3 Region-wise identification when the fiber orientation is known

The proposed pointwise method can be modified to render a region-wise iden-

tification. By region-wise, we mean assuming the material property is homogeneous

within a region of specific size, and let the cost function include the stress-strain data

at all the Gauss points in that region. The logic is keen to that of the subdomain

inverse finite element method although the implementation is entirely different. Fig-

ure 7.11 shows the distribution of the identified elastic parameters by region-wise

identification. The small region was chosen to be each element. The identification

was conducted by using the cost function Φ alone, but including all the Gauss points
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(a) (b) (c)

Figure 7.11: Distribution of identified elastic parameters from “region-wise” identifi-
cation by assuming the fiber directions are known: (a) k1, (b) k4, (c) k6.

Table 7.3: Means, minimums and maximums of the
identification errors of the region-wise identification by
assuming the fiber orientation is known.

Error(k1) Error(k4) Error(k6)
Mean (%) 10.83 4.52 8.31
Min (%) 2.39× 10−4 1.51× 10−5 1.11× 10−3

Max (%) 100.0 81.05 90.49

within each element. The identification accuracy is almost identical to that of the

pointwise scheme when using the single objective function Φ because the element size

is very small. The identification error is quite small in most part of the sac. The

identification error of k1, k4 and k6 is below 4.0%, 2.5% and 4.0%, respectively, in

most part of the sac. As the results show, the element-wise identification still can

characterize the material heterogeneity relatively accurately as long as the specified

homogeneous regions are small enough. The maximums, minimums, and means of

the identification errors over the whole sac are listed in Table 7.3. The mean errors

for the three parameters are 10.83%, 4.52% and 8.31%, respectively.
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(a) (b) (c)

Figure 7.12: Distribution of the identified elastic parameters by assuming the stress-
free configuration is unknown: (a) k1, (b) k4, (c) k6.

7.3.2.4 Pointwise identification assuming the stress-free configuration is

unknown

Figure 7.12 shows the distribution of the identified parameters ki. Qualita-

tively judged from the figure, the dependence of the identified parameters on the

height from the aneurysm neck was recovered, except for the region where the stress

determination was not accurate enough, i.e., near the clamped boundary and at the

fundus. Figure 7.13 shows the identification error Error(ki). The identification error

is less than 15%, 5% and 9% for k1, k4 and k6, respectively, in the bulk region of

the aneurysm sac which is in blue in Figure 7.13. Due to the addition of three more

parameters into the regression process, the identification error turns out to be larger

which is understandable. However, the identification error is still acceptable.

7.4 Discussion

In this chapter, we showed through numerical experiments that the pointwise

identification method is also applicable to anisotropic material. We demonstrated the
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(a) (b) (c)

Figure 7.13: Distribution of the identified error by assuming the stress-free configu-
ration is unknown: (a) Error(k1), (b) Error(k4), (c) Error(k6).

feasibility of identifying the local fiber directions from stress-strain data. In theory,

characterizing material anisotropy involves two tasks: (1) Identifying the symme-

try group (e.g., isotropy, transversely isotropy, orthotropy, etc.), and (2) Identifying

the structural information (e.g., the fiber directions) associated with the material

anisotropy. The former dictates the mathematical representation of permissible func-

tion forms that contain the desired material symmetry. While the simulation sug-

gested a possible approach for identifying the latter under the assumption of known

symmetry group (which is implied in the assumed constitutive equation), it remains

unclear as to whether in real applications the symmetry group can be determined

from stress-strain data alone. For certain classes of materials, the elastic stress and

deformation should obey certain universal relations involving no material property

information. By examining if corresponding universal relations hold true, one may

determine the type of material symmetry. The universal relations for isotropic ma-

terials were treated in [54, 172, 9, 10, 108, 113], and those for transversely isotropic

materials were investigated in [108, 113, 8, 120, 119].
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In Chapter 6, we used a universal relation (CS = SC) for isotropic materials

to determine if the tested rubber is isotropic so as to choose appropriate constitutive

models. It is understood that any class of hyperelastic materials possessing anisotropic

properties more complicated than those of transversely isotropy obeys no universal

relations [133]. However, Soldatos [133] showed that certain types of orthotropic

hyperelastic materials still obey certain universal relations. For these orthotropic

materials, universal relations can be used for symmetry characterization. For other

types of anisotropic materials, whether universal relations exist remains unknown.

Under such circumstances, a possible solution is to utilize appropriate techniques to

determine fiber orientation, e.g. Polarized Light Microscopy [93], small angle light

scattering [51] and depth-resolved SHG polarimetry [177], and construct structural

models that incorporate the experimentally determined fiber information.

Low strain can have an adverse effect on parameter identification. As the

results showed, the elastic parameter identification was more accurate in the high-

strain region (λ1 ≥ 1.08) than in the low-strain region (λ1 < 1.08). The strain

range used in this study ( 10%) has already exceeded the physiological strain typical

of cerebral aneurysms (2–5%). The influence of strain range is not unexpected. The

reason is that the realistic parameters in the constitutive model are supposed to model

the elastic behavior of the material in any deformation range. However, due to the

inevitable experimental error in determining the membrane surface geometry and the

position of tracking markers and the induced error in determining the realistic stress

and strain distribution, certain values of the elastic parameters may render a local
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minimum of the objective function at a small-strain point, which may not predict the

elastic response in high-strain range at that point. This fact highlights the limitation

that the elastic behavior is not fully represented at the points where the deformation is

relatively small. Nevertheless, it is worth-noting that the elastic properties identified

as such may still fulfill a good predictive model for physiological motions since they

are characterized from the realistic deformation undergone in service. Moreover, the

conclusion about the feasibility of the method should remain valid if the strain values

used in the study are uniformly lowered.

To a lesser degree of importance, the simulation embodied a number of assump-

tions that may not be realistic. First, we assume that the horizontal fibers are stiffer

than the meridional fibers. So far, there is yet no reliable evidence on how the collagen

fibers orient and which direction is stiffer than the other as the aneurysms initiate

and develop. Existing studies presented conflicting arguments. Without bias toward

either of the existing hypotheses, we assume in the current study that the fiber in the

circumferential direction is stiffer, just for demonstrative purpose. Later application

of the proposed method to physical experiments on realistic cerebral aneurysms may

be able to shed some light on the further verification of these hypotheses. It should be

noted that the assumptions on fiber direction and stiffness difference have no effect on

the demonstrated capability. Secondly, the identified stiffness parameters k1, k4 and

k6 in the model are effective parameters which are the products of the intrinsic 3-D

elasticity parameters and the wall thickness. If the intrinsic 3-D elasticity parameters

need to be determined, one must obtain the wall thickness. In summary, although
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this study is limited to numerical experiment, it clearly highlighted the features of

PWIM and demonstrated its feasibility of identifying the distribution of anisotropic

heterogeneous elastic properties in cerebral aneurysm wall.
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CHAPTER 8
EXPERIMENTS: RABBIT URINARY BLADDER

8.1 Introduction

The urinary bladder is a distensible sac-like organ that collects urine excreted

by the kidneys prior to disposal by urination. When urine inside the bladder reaches

a certain level, the fluid pressure stimulates nervous signals that relax the external

sphincter to allow for the urinary flow. The ability of the bladder to accommodate

increasing amounts of urine while maintaining a low intravesical pressure is related

to the resilience or elasticity of the bladder and is functionally defined as compliance

[18].

Type I collagen is the most common structural protein found in the body and is

the most abundant collagen in the bladder. Type III collagen, which often colocalizes

with type I [36], is also widely distributed throughout the bladder wall [18]. Healthy

and normal bladder wall is very compliant. Under some pathological conditions,

e.g., spinal cord injury [44], the compliance of the bladder wall will decrease, which

affects its deforming ability significantly. The decrease in compliance is believed to

be caused by thickening of the bladder wall due to smooth muscle cell hypertrophy

and increased connective tissue deposition [18]. Knowledge of the elastic property is

of critical importance in understanding the bladder function and in reconstruction

surgical planning.

The mechanical property characterization of urinary bladders has focused on

quasi-static uniaxial tests [26, 168, 5, 4], biaxial tests [44], in situ studies [4, 117,
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24, 82] and uniaxial viscoelasticity studies [23, 163, 27]. In order to provide accurate

description of the mechanical properties of urinary bladders, whole organ characteri-

zation is highly demanded, which is rare for the time being.

8.2 Method

8.2.1 Materials and experiment

We conducted an organ-level in vitro inflation experiment on a rabbit urinary

bladder. 81 (9 by 9) points were drawn on the bladder surface using tissue marking

dye (Cancer Diagnostics, Inc.). These points will act as landmarks at which the

displacements will be recorded during the inflation. The bladder was inflated by a

nitrogen gas tank to nine pressure levels, the one of which under the lowest pressure

(slightly inflated) was chosen as the approximately stress-free configuration. The

markers also served as the nodes of a finite element mesh composed of 64 (8 by 8)

quadrilateral elements. The spatial position of the tracking markers in each deformed

states was recorded by using the optical motion capture system that was described

in Chapter 6. Subsequently, the stress distribution in each deformed configuration

was determined through finite element inverse elastostatics methods by using a neo-

Hookean model (cf. Equantion (7.5)). The model parameters were set to be ν1=ν2=5

N/mm. The base vectors of the stress-free and deformed configurations were then

computed according to Equation (4.2), from which the reference and current metric

tensors could be computed accordingly. One of the deformed configurations of the

inflated bladder is shown in Figure 8.1.
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8.2.2 Material model

We assumed that the urinary bladder wall is composed of a random elastin

network, reinforced by two families of orthogonal collagen fibers. Microscopically,

we assumed the two families of collagen fibers are aligned with the longitudinal

and circumferential directions of the bladder, respectively, in the undeformed states.

An anisotropic structural strain energy function (cf. Equation (7.1)) proposed by

Holzapfel et al. [60] was used to model the elastic behavior of the urinary bladder

wall.

8.3 Results

First, we identified the elastic parameters k1, k4, k6 and a at all the Gauss

points in the whole domain and, we found that, at most points, the parameter k1

characterizing the isotropic behavior was identified to be zero. Thus, we set k1 to

be zero for the whole domain. We also assumed that the value of a is identical over

the whole urinary bladder and chose the identified value of a (a=44.98) at a point

(in the central region of the mesh) where the stress-strain curve is quite smooth. We

then identified parameters k4 and k6 in the central region where the stress solution

from inverse elastostatic method is insensitive to the material property, i.e., the four

elements in the middle of the mesh. Figure 8.2 shows the distribution of the identified

parameters k4 and k6 in the whole reconstructed mesh. Due to the prescribed bound-

ary condition on the four edges, the computed stress from inverse elastostatic method

is relatively inaccurate, in the two layers of elements from the boundary, compared

to the actual stress. Therefore, larger errors generally are induced for the identified
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Figure 8.1: A photo of the inflated rabbit urinary bladder used in the process of 3-D
geometry reconstruction.

elastic parameters. We show the identification results in the whole mesh for just a

demonstrative purpose. Practically, the boundary effect can be reduced by providing

finer mesh or refining the elements near the boundary, say the out-most two layers of

elements. Comparison between the model prediction from the identified parameters

and the experimental data at a point in the middle of the mesh is illustrated in Figure

8.3. As the figure shows, the Holzapfel model fits well the experimental data.
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(a) (b)

Figure 8.2: Distribution of the identified elastic parameters of the rabbit urinary
bladder: (a) k4, (b) k6.
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CHAPTER 9
MATERIAL SENSITIVITY ANALYSIS

Structural design sensitivity is a measure of the change in structural responses

(displacements, stress, etc.) induced by the change in the system design variables or

parameters (e.g., material properties, geometrical parameters, etc.). The sensitivity

of a structural system to variations of its parameters is one of the most important

aspects necessary for a proper understanding of system performance [75]. It has been

very useful in reliability analysis and design optimization. In this chapter, we will

use it as a tool to study how the variation of material property affect the wall stress

in membranes.

Parameter sensitivity information can be computed with various methods of

which two most important ones are finite difference method (FDM) and direct dif-

ferential method (DDM). In FDM, the parameter sensitivity is approximated using

forward finite difference or central finite difference method by perturbing particular

parameter (e.g. material or constitutive parameter) and computing the perturbation

of the performance measures (e.g. displacement and stress). In DDM, the parameter

sensitivity is computed by differentiating the continuum or discretized state equation

directly. Readers are referred to references [75, 19, 20] for more information about

parameter sensitivity analysis. In the following, continuum DDM is introduced.
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9.1 Mathematical formulation

For a general forward or direct boundary value problem, we start from the

standard weak form

∫

Ω0

1

2
S · δCdV =

∫

Ω0

ρ0b · δudV +

∫

Γ

t · δudΓ (9.1)

where, S is the second Piola-Kirchhoff stress tensor, and C is the right Cauchy-Green

deformation tensor, b is the body force, t is the boundary traction, Ω0 is the reference

domain, and Γ is the traction boundary.

Differentiating both sides of Equation (9.1) with respect to the design variable

θ (say material parameters), we obtain

∫

Ω0





1

2
δC ·

[
∂S

∂C
·C,θ

]

︸ ︷︷ ︸
(1)

+
1

2
S · (δFTF,θ +F,Tθ δF

)
︸ ︷︷ ︸

(2)

+
1

2
S,θ ·δC

︸ ︷︷ ︸
(3)





dV = 0 (9.2)

since

∂δC

∂θ
=

∂δ
(
FTF

)

∂θ
=

∂
(
δFTF + FT δF

)

∂θ
= δFTF,θ +F,Tθ δF (9.3)

where (·),θ denotes the partial derivative of the quantity (·) with respect to θ.

Recall that

δF = (5δu)F, (9.4)



150

and denote

5(s) δu =
1

2

(
5δu + (5δu)T

)
, (9.5)

where 5(s)δu is the symmetric part of δu. It follows from Equations (9.4) and (9.5)

that term (1) in Equation (9.2) may be rewritten as

1

2
δC ·

[
∂S

∂C
·C,θ

]
=

1

2
FT

(
25(S) δu

)
F · 1

2
D · FT

(
25(S) u,θ

)
F

= 5(S)δu · FFDFTFT 5(S) u,θ

= 5(S)δu · JC5(S) u,θ .

(9.6)

Here J is the volume change ratio, D is the material tangent tensor

D =
∂S

∂E
= 2

∂S

∂C
(9.7)

where E is the Green-Lagrange strain tensor, and C is the spatial tangent tensor,

which relates to D through

C =
1

J
FFDFTFT . (9.8)

Also, we can rewrite the term (2) of the integrant in Equation (9.2) as

1

2
S · (δFTF,θ +F,Tθ δF ) =

1

2
S · [FT (5δu)T 5 u,θ F + FT (5u,θ )T 5 δuF]

= τ · (5δu)T 5 u,θ

= 5δu · (1 £ τ )5 u,θ

= 5δu · (1 £ Jσ)5 u,θ

(9.9)
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where, τ is the Kirchhoff stress tensor and is related to the Cauchy stress tensor and

the second Piola-Kirchhoff stress tensors through

τ = Jσ = FTSF. (9.10)

Following the rule of tensor contraction

A · (BC) =
(
ACT

) ·B =
(
BTA

) ·C (9.11)

where A, B and C are any second order tensors, we obtain

S,θ ·δC = S,θ ·
(
δFTF + FT δF

)

= S,θ ·
(
δFTF

)
+ S,θ ·

(
FT δF

)

= (δFS,θ ) · F + (FS,θ ) · δF.

(9.12)

Substituting Equation (9.4) to Equation (9.12) yields

S,θ ·δC = (5δu)FS,θ ·F + (FS,θ ) · (5δu)F

= 2 (5δu) · (FS,θ FT
)

= 2 (5δu) · τ ,θ

= 2 (5δu) · Jσ,θ ,

(9.13)

where, τ ,θ = Jσ,θ = FTS,θ F. It follows that term (3) of the integrant in Equation
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(9.2) can be rewritten as

1

2
S,θ ·δC = (5δu) · τ ,θ = (5δu) · Jσ,θ . (9.14)

Consequently, Equation (9.2) turns into

∫

Ω

5δu · [C+ 1 £ τ ]5 u,θ dv +

∫

Ω

5δu · τ ,θ dv = 0. (9.15)

which is the first order sensitivity equation.

Notice that Equation (9.15) is a linear equation after the nonlinear state prob-

lem is converged at the current load step. In addition, the stiffness matrix for sensitiv-

ity equation is the same as that of the state problem. Hence, after the state problem

is converged, we can compute the new internal resistance force which is represented

by the second integral in Equation (9.15), and solve a linear equation to obtain the

sensitivity of nodal displacements with respect to the material parameters. After

obtaining the displacement sensitivity, we can conduct post-processing to obtain the

sensitivity of the Cauchy stress with respect to the material parameters by using

dS

dθ
=

∂S

∂θ
+

∂S

∂F

∂F

∂θ
, (9.16)

where ∂S
∂θ

denotes the explicit dependence of the stress tensor on the material pa-

rameters, and ∂S
∂F

∂F
∂θ

denotes the implicit dependence of the stress on the material

parameters due to the deformation gradient.
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In the current study, we are only concerned with membrane structures. There-

fore, the sensitivity of membrane stress resultant or tension with respect to the ma-

terial parameter is computed. In component form, the stress sensitivity is

dtαβ

dθ
=

∂tαβ

∂θ
+

∂tαβ

∂gγδ

∂gγδ

∂θ
, (9.17)

where gαβ are the components of the current metric tensor which depends on the

forward deformation.

In inverse elastostatics problems, the sensitivity equation can be derived by

differentiating with respect to the material parameters the weak form constructed

on the current configuration. The formulation is similar except that the geometric

stiffness is absent because the the strain-displacement matrix B in linearizing the weak

form depends on the current configuration which is fixed in the inverse formulation.

Thus, the term 1 £ τ in Equation (9.15) vanishes.

After the sensitivity of inverse displacement with respect to the material pa-

rameters is obtained, the stress sensitivity can be computed by

dtαβ

dθ
=

∂tαβ

∂θ
+

∂tαβ

∂Gγδ

∂Gγδ

∂θ
, (9.18)

which is slightly different from Equation (9.18) in that the implicit dependence of the

stress is through Gαβ, the metric tensor components in the stress-free configuration.
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9.2 Numerical example

In this numerical example, we will conduct continuum sensitivity analysis for

the membrane stress with respect to the material property of the cerebral aneurysm

model introduced in Chapter 5. The strain-energy function of neo-Hookean type (cf.

Equation (5.1)) will be used to demonstrate the material sensitivity of membrane

stress. The neo-Hookean strain energy function is

w =
µ1

2
(I1 − 2 log J − 2) +

µ2

4
(I1 − 2)2 , (9.19)

where the elastic parameters µ1 and µ2 are set to be

µ1 = 0.06521739 N/mm, µ2 = 0.1521739N/mm. (9.20)

Differentiating the strain energy function w with respect to the current covariant

metric tensor gαβ and pushing forward to the current configuration yields the Cauchy

stress

tαβ =
∂w

∂gαβ

=
1

J

{
[µ1 + µ2 (I1 − 2)] Gαβ − µ1g

αβ
}

. (9.21)

Multiplying the area change ratio J to the above equation gives the Kirchhoff stress

tensor components

ταβ = [µ1 + µ2 (I1 − 2)] Gαβ − µ1g
αβ. (9.22)

Since the virtual force τ ,θ (θ stands for the elastic parameters µ1 or µ2 in here) need

be constructed for the purpose of computing the sensitivity of nodal displacement
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with respect to the elastic parameters µ1 or µ2, we subsequently differentiate the

Kirchhoff stress components ταβ with respect to the two parameters as

∂ταβ

∂µ1

= Gαβ − gαβ,

∂ταβ

∂µ2

= (I1 − 2) Gαβ.

(9.23)

The sensitivities of membrane stress with respect to the elastic parameters in

the strain-energy function of neo-Hookean type (cf. Equation (5.1)) were computed

for the cerebral aneurysm model described in Chapter 5 by using direct differenti-

ation method (DDM). Two scenarios were considered. The first one was a forward

analysis, and the second one was an inverse analysis. In the forward analysis, the

stress-free configuration was known and the sensitivity of the membrane stress with

respect to the elastic parameters was computed. Given a stress-free configuration

and its pressure loading and clamped boundary conditions, one can obtain a different

deformed configuration if the material property is changed, which produces different

stress in the deformed configuration. Therefore, the sensitivity of stress is non-trivial.

However, in the inverse analysis, the deformed configuration and its pressure loading

and displacement boundary conditions are known. Due to the static determinacy of

the membrane stress, the stress is insensitive to the variation of the material property.

Or in other words, the stress sensitivity should be close to zero.

For both scenarios, the transmural pressure was set to be 110 mmHg. The

DDM results are validated through central finite difference method and forward finite

difference method using the same finite element model. For the two finite difference
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methods, we chose the same step size, i.e., 1% of elastic parameters. In inverse sen-

sitivity analysis, linear and quadratic membrane elements were used for comparison.

9.3 Results

9.3.1 Linear elements

Figure 9.1 and Figure 9.2 show the distribution of the sensitivity of the stress

components with respect to elastic parameters µ1 and µ2, respectively, computed by

DDM for the foward analysis. As can be seen from the figures, the sensitivity of

membrane stress is non-uniform over the sac, and it is dependent on the geometry of

the reference geometry. If the curvature in a region is relatively small, or in another

word, the surface is flatter, the membrane is more prone to deformation. Hence, the

stress is more dependent on the material property of this region.

Figure 9.3 and Figure 9.4 show the distribution of the sensitivity of the stress

components with respect to elastic parameters µ1 and µ2, respectively, computed by

DDM for the inverse analysis. As can be seen from the figures, the stress sensitivity

is almost uniformly small in the region distanced from the clamped boundary. Near

the boundary, the sensitivity is relatively larger due to the boundary effect. Table

9.1 and 9.2 list the statistical quantities of the stress sensitivity with respect to the

elastic parameters µ1 and µ2, respectively, by using linear triangular elements. The

mean sensitivity is in the order of 10−3.



157

(a) (b) (c)

Figure 9.1: Sensitivity of the stress components with respect to elastic parameter µ1

in forward analysis: (a) t11, (b) t22, (c)t12.

(a) (b) (c)

Figure 9.2: Sensitivity of the stress components with respect to elastic parameter µ2

in forward analysis: (a) t11, (b) t22, (c)t12.

(a) (b) (c)

Figure 9.3: Sensitivity of the stress components with respect to elastic parameter µ1

in inverse analysis: (a) t11, (b) t22, (c)t12.
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(a) (b) (c)

Figure 9.4: Sensitivity of the stress components with respect to elastic parameter µ2

in inverse analysis: (a) t11, (b) t22, (c)t12.

Table 9.1: Means, minimums and maximums of
the stress sensitivity with respect to µ1 using lin-
ear elements.

t11 t22 t12

Mean 1.04× 10−2 8.36× 10−3 3.52× 10−3

Min 1.91× 10−5 2.76× 10−6 2.14× 10−6

Max 1.03× 10−1 6.82× 10−2 4.19× 10−2

Table 9.2: Means, minimums and maximums of
the stress sensitivity with respect to µ2 using lin-
ear elements.

t11 t22 t12

Mean 5.92× 10−3 4.84× 10−3 1.82× 10−3

Min 6.16× 10−6 6.96× 10−6 1.60× 10−7

Max 5.32× 10−2 2.94× 10−2 2.37× 10−2
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Table 9.3: Means, minimums and maximums of
the stress sensitivity with respect to µ1 using
quadratic elements.

t11 t22 t12

Mean 5.34× 10−4 3.83× 10−4 2.69× 10−4

Min 0 0 0
Max 2.06× 10−2 1.59× 10−2 6.96× 10−3

Table 9.4: Means, minimums and maximums of
the stress sensitivity with respect to µ2 using
quadratic elements.

t11 t22 t12

Mean 2.40× 10−4 1.75× 10−4 7.47× 10−5

Min 0 0 0
Max 9.23× 10−3 7.00× 10−3 2.40× 10−3

9.3.2 Quadratic elements

Due to the curved surface of the aneurysm model, linear elements may not

describe the geometry of the surface accurately enough. Therefore, we used quadratic

nine-node membrane elements to compute the stress sensitivity again. Table 9.3 and

9.4 list the statistical quantities of the stress sensitivity with respect to the elastic

parameters µ1 and µ2, respectively, by using nine-node elements.

As we expected, the computed sensitivity is closer to zero. The mean sensitiv-

ity is in the order of 10−4. Dr. Lu’s group is investigating into utilizing NURBS finite

element method to conduct stress analysis for curved surfaces and solids. The recent

work can be found in [90]. NURBS can provide more accurate description of the curves

and surfaces than linear and quadratic traditional finite elements do. Therefore, it is
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reasonable to expect that the stress sensitivity computed using NURBS finite element

will capitalize the material insensitivity of membrane stress more accurately.
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CHAPTER 10
CONCLUSIONS

10.1 Summary of major findings

The presented work is motivated by the big challenge in delineating the distri-

bution of elastic properties in heterogeneous materials and the demand in accurately

characterizing the mechanical behaviors of normal and diseased human tissues and

organs in vivo. The objective in this study is to develop a pointwise method which

can delineate the heterogeneous elastic properties in membrane structures and explore

the possibility in the application of the method to thin biological tissues and organs.

The extension of the method into in vivo identification is also attempted. The major

contributions of this study are listed below.

• Developed a pointwise method for identifying the elastic properties in hetero-

geneous nonlinear membranes. This method provides an un-reprecedented ca-

pability to delineate pointwise the heterogeneous anisotropic properties in thin

membranes. Static determinacy in curved membranes is long known; in this

work, this property was for the first time systematically utilized to characterize

material properties.

• Designed an inflation experiment for membranes of general shape, and con-

ducted experimental validation for the method using an inflation test on a

rubber balloon. Inflation tests reported in the literature were implemented

exclusively for axisymmetric membranes. In the applications reported in the

literature, the objects of interest were normally approximated as axisymmstric
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even though not so. The experiment designed in this work is the first one which

treats the geometry as it is without any approximation. The experimental work

not only validated the concept of PWIM, but also opened a pathway for design-

ing new experimental systems for organ level tests. Moreover, the experiments

suggested a systematic way to identify isotropic versus anisotropic responses

without making a prior assumption about material symmetry.

• Conducted numerical validation for an anisotropic cerebral aneurysm model

with specific distribution of collagen fibers. The validation not only proved

that the proposed method can be applied to identify the elastic parameters for

anisotropic materials if fiber orientation is known, but also showed the feasibility

of identifying fiber orientation for some types of material symmetry.

• Conducted an inflation experiment on a rabbit urinary bladder and identified

its distributive elastic properties using PWIM. The work is rather preliminary

at this stage, and there are a number of issues yet to be addressed. However,

the test was the first attempt ever to delineate the distributive elastic properties

of urinary bladders using whole bladder experiments.

• Introduced the concept of local stress-free configuration for membranes and

applied to elastic property identification for the first time. The availability

of pointwise stress-strain data offers us an opportunity to parameterize the

local stress-free configuration at a material point of a membrane, and treat

it as model parameters in elastic parameter identification. This practice will
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enhance greatly the possibility of in vivo elastic property identification solely

from medical images. This idea was realized numerically for both isotropic and

anisotropic materials in this study.

10.2 Future work

The pointwise identification method presented in this work is a novel method.

Both its advantages and limitations will open opportunities for future development

and applications.

Like most experimental methods which require measurement and data collec-

tion, the current method has the issue of accuracy in data acquisition. Since the

membrane stress in dependent of the membrane surface geometry and transmural

pressure, the accuracy of the surface geometry description is crucial to the accuracy

of stress computation. In the rubber balloon test of this work, the finite element mesh

drawn on the balloon surface could not be considered fine enough to capture the sur-

face geometry accurately. In order to improve the accuracy of stress computation, one

may use a finer mesh or higher order elements to describe the surface, which needs

more extensive effort. Another option is to conduct 3-D reconstruction using more

advanced techniques, e.g., 3-D Laser Scanning. In addition, the accuracy of strain

measurement is dependent of how accurate the displacement of the tracking markers

or FE nodes can be measured. In this work, when performing 3-D reconstruction us-

ing photogrammetry, the point-to-point correspondence was determined by manually

picking the points on the images, which might introduced some amount of human

error. In order to reduce human input to the process, an automatic procedure is
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needed.

The experiments conducted on rubber balloon and rabbit urinary bladder

showed that the proposed method is effective in whole organ identification. Whole

organ identification can be done in vitro or ex vivo for various biological tissues and

organs, e.g., skins, cornea, etc.. However, in order for accurate identification of the

elastic parameters for tissues of significant anisotropic mechanical behavior, informa-

tion on fiber orientation is needed, although this work showed that fiber direction

can also be identified if certain material symmetry type (e.g., transverse isotropy or

orthotropy) is legitimate to assume. Nevertheless, the actual microstructure is very

complex in biological tissues, therefore any assumption may bring certain level of

inaccuracy in the final results of elastic parameter identification. Research in com-

bining the proposed method and fiber orientation reconstruction will be valuable in

identifying the elastic properties in anisotropic biological tissues and organs.

The extension of this work is to apply the proposed method to identify the

distributive elastic properties in diseased human tissues and organs. An ideal appli-

cation would be in cerebral aneurysms. However, the feasibility depends heavily on

the advancement of image segmentation and registration techniques in deformation

tracking for thin biological structures. Research has been very active in deformation

tracking for the heart and arteries from medical images. However, it is relatively

more difficult to track the deformation of thin organs, e.g., cerebral aneurysms. One

reason is that the thinness of the aneurysm wall requires very high resolution of the

imaging techniques. Provided with mature deformation tracking methods for thin
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biological structures, exploration toward in vivo elastic property identification from

medical images will be valuable to biomedical engineering and medical science.

Often times, the evolution of the elastic properties in diseased tissues is more

important than those at a particular moment. By retrospecting the time history of the

material property, one may be able to predict what probably is going to happen next.

Take for example human cerebral aneurysms. By applying the proposed method

to identify (in vivo) the elastic properties, e.g., the effective wall stiffness, of the

aneurysm at multiple instances, a database of the elastic property evolution may be

established. Although we cannot prevent the initialization of an aneurysm, we may

predict the future evolution of its wall material property from its time history using

appropriate models. This may help the doctor to evaluate the rupture risk of the

aneurysm and decide whether to leave it alone or conduct treatment.

There is a need to investigate the viscoelastic properties of thin soft tissues

since most biological soft tissues exhibit viscoelastic response. The proposed method

can be applied to this situation with slight modification. By conducting a creep test on

an inflated thin tissue while keeping the transmural pressure constant, and recording

continuously the deformed configurations, the time-history of pointwise stress-strain

relation can be obtained, from which the distribution of viscoelastic properties can

be identified.
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