
University of Iowa
Iowa Research Online

Theses and Dissertations

Spring 2011

MDCT-based dynamic, subject-specific lung
models via image registration for CFD-based
interrogation of regional lung function
Youbing Yin
University of Iowa

Copyright 2011 Youbing Yin

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/1112

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Mechanical Engineering Commons

Recommended Citation
Yin, Youbing. "MDCT-based dynamic, subject-specific lung models via image registration for CFD-based interrogation of regional
lung function." PhD (Doctor of Philosophy) thesis, University of Iowa, 2011.
http://ir.uiowa.edu/etd/1112.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F1112&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F1112&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F1112&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=ir.uiowa.edu%2Fetd%2F1112&utm_medium=PDF&utm_campaign=PDFCoverPages


MDCT-BASED DYNAMIC, SUBJECT-SPECIFIC LUNG MODELS VIA
IMAGE REGISTRATION FOR CFD-BASED INTERROGATION OF

REGIONAL LUNG FUNCTION

by

Youbing Yin

An Abstract

Of a thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy
degree in Mechanical Engineering in the

Graduate College of The
University of Iowa

May 2011

Thesis Supervisors: Professor Ching-Long Lin
Professor Eric A. Hoffman



1

ABSTRACT

Computational fluid dynamics (CFD) has become an attractive tool in un-

derstanding the characteristic of air flow in the human lungs. Due to inter-subject

variations, subject-specific simulations are essential for understanding structure-

function relationship, assessing lung function and improving drug delivery. How-

ever, currently the subject-specific CFD analysis remains challenging due, in large

part to, two issues: construction of realistic deforming airway geometry and im-

position of physiological boundary conditions. To address these two issues, we

develop subject-specific, dynamic lung models by utilizing two or multiple volume

multi-detector row computed tomography (MDCT) data sets and image registra-

tions in this thesis. A mass-preserving nonrigid image registration algorithm is

first proposed to match a pair of three-dimensional (3D) MDCT data sets with

large deformations. A novel similarity criterion, the sum of squared tissue volume

difference (SSTVD), is introduced to account for changes in intensity with lung

inflation. We then demonstrate the ability to develop dynamic lung models by us-

ing a pair of lung volumes to account for deformations of airway geometries and

subject-specific boundary conditions. The deformation of the airway geometry is

derived by the registration-derived displacement field and subject-specific boundary

condition is estimated from registration-predicted regional ventilation in a 3D and

one-dimensional (1D) coupled multi-scale framework. Improved dynamic lung mod-

els are then proposed from three lung data sets acquired at different inflations by

utilizing nonlinear interpolations. The improved lung models account for nonlinear

geometry motions and time-varying boundary conditions during breathing. The

capability of the proposed dynamic lung model is expected to move the CFD-based
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interrogation of lung function to the next plateau.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Computational fluid dynamics (CFD) has been extensively utilized to simulate

respiratory flows in the past two decades. A direct motivation is that a thorough

understanding of the flow characteristics in airways can help predict the local depo-

sition of therapeutic or pollutant particles. There is a growing interest to take the

lungs as an alternative route for drug delivery [25]. Additionally evidence has shown

that pollutant particle depositions in the lungs play a key role in the development

of lung diseases [49]. Since particle deposition is highly dependent on flow charac-

teristics, which, in turn, are dependent on the geometrical configuration of airways

and regional ventilation of the lungs, it is desirable to conduct subject-specific CFD

analysis.

Existing work has provided some insights into the characteristics of flow in-

side lungs and has also demonstrated the potential ability to understand structure-

function relationships in the individual (see review article [107]). However, the

subject-specific CFD analysis remains challenging due, in large part, to two issues:

(1) construction of realistic deforming airway geometry and (2) imposition of phys-

iological boundary conditions.

With regards to the first aspect, the airway geometry has been rapidly devel-

oped: from the symmetry symmetric Weibel model [120] or the asymmetric Horsfield

model ([43] used in the earliest studies into the anatomically accurate and subject-

specific airway geometries based on in-vivo volumetric imaging [11, 28, 64, 65].

Despite of such rapid development, the airway geometries in most of these studies
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have generally been assumed to be rigid structures and deformations have been

neglected. Deformations of conducting airways may be small in quiet breathing.

However, during moderate, heavy and forced breathing, conducting airways may

undergo large deformations. In addition, central airway collapse can be seen in

some lung diseases [68], which results in significant changes in cross-sections of

trachea. For example, from some patients with severe asthma we found that the

cross section of trachea could be deformed from a circle at TLC into a triangle

at FRC. Without considering the realistic deformations of airway geometries, the

interaction between wall motion and air flows is neglected, which may affect flow

patterns, particle depositions and, especially, the wall shear stress. It is known that

the flow induced wall shear stress can alter cell shape and trigger different levels of

cell signaling, which may be important in airway remodeling and abnormalities.

The second issue is how to describe a physiological boundary condition, which

is also a common issue in simulations of other physiological flows, such as blood

flows in the human arterial system [31, 98], nasal air flows [110] and so on. CFD is

to numerically solve a set of differential equations and a boundary condition must

be defined so that a unique solution to the equations can be determined. Thus,

it is important to impose a physiologically consistent boundary condition for CFD

simulation of pulmonary air flows. However, due to difficulties with measuring the

in-vivo pressure and flow inside lungs, the approach taken in earlier CFD analysis

had been to impose equal pressure or flow boundary conditions at the outlets of

peripheral airways, neglecting the highly non-uniform regional ventilation.

With advances in imaging and computing technologies, it is now possible to

address these two issues and perform subject-simulation by utilizing multi-detector
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row computed tomography (MDCT)-based data sets and image registrations.

1.2 Background

1.2.1 Lung Anatomy And Physiology

Human lungs are the essential respiratory organs. The main function is to

facilitate gas exchange between human body and the atmosphere. Human lungs

consist of left and right lungs and the two lungs are located in the chest on either

side of the heart. Each lung is surrounded by a completely closed pleural cavity.

The pleura folds back onto itself and forms a two-layered, membrane structure.

The outer pleura is attached to the chest wall. The inner pleura covers the lungs

and divides the two lungs into five lobes. The left lung has two lobes, left upper

lobe (LUL) and left lower lobe (LLL), separated by an oblique fissure. The right

lung has three lobes, right upper lobe (RUL), right middle lobe (RML) and right

lower lobe (RLL). The RUL and RML are separated by a horizontal fissure and the

RML and RLL are separated by an oblique fissure. It is well known that lobes can

slide against the chest wall and adjacent lobes [81]. Such motion may provide a

means to reduce lung parenchymal distortion and avoid regions of high local stress.

Conversely, it has previously been shown that lobar fissures fibrose and essentially

disappear in animals (sloths) which undergo very little chest wall shape changes

[40].

Gas is transported between lungs and the atmosphere through airways, which

consist of a series of branching tubes with progressively decreasing dimensions. It is

believed that such a bifurcation network connects to about 300 million alveoli, where

gas exchange between air and blood takes place. Gas inspiration and expiration

are driven by the pressure differences between the atmosphere and chest. During
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inspiration, as the diaphragm contracts, the chest volume increases and the pressure

inside it decreases, causing air to flow from the atmosphere through airways into

the alveoli. During expiration, lung passively returns to its pre-inspiratory volume

because of elasticity. Pressure inside lungs increases and forces air to flow from

the alveoli through airways out to the atmosphere. According to the volume of air

associated with different phrases of the respiratory cycle, we can then define lung

capacities/volumes as shown in Figure 1.1. Their definitions are as follows:

Tidal volume : the air volume breathed in and out during a normal breath. Typ-

ical values are around 500ml for an adult.

Residual volume (RV) : the amount of air left in the lung after a maximum

expiration.

Vital Capacity (VC) : the maximum amount of air volume that can be breathed

in after a maximum expiration. It can be directly measured by a spirometer

and is used in our lab-developed volume controller system to standardize the

lung volume during imaging.

Total lung capacity (TLC) : the amount of air left in the lungs after a maximum

inspiration. It is equivalent to 100% of VC.

Functional residual capacity (FRC) : the amount of air left in the lungs after

a normal expiration.

Beside the air flow, there exists a blood circulation inside the lungs. Blood is

pumped from the right ventricle through the pulmonary arteries and travels through

the lungs, where it releases carbon dioxide and picks up oxygen during respiration.



5

The gas exchange occurs between capillaries and alveoli. The oxygenated blood

then leaves the lungs through pulmonary veins to the left atrium.

1.2.2 MDCT Imaging

The CT scanner measures density map of the imaged object. Spiral CT was

developed to allow for volumetric image of the lung in a short time. The image

data are acquired as the scanner table is continuously moved through the scanner

while the x-ray tube rotates. Three-dimensional (3D) data are then obtained by

image reconstruction. With advances in imaging and reconstruction techniques,

MDCT scanner can use multiple detector rows to collect more slices per rotation,

thus allowing for increased z-coverage and fast acquisition speed. Currently MDCT

has emerged as a powerful tool for imaging the lung due to its high spatial res-

olution, high signal:noise ratio and high acquisition speed. It has been used to

provide anatomical and increasingly functional information of lungs. With the aid

of CT images, anatomical information, such as lungs [44], lobes [114, 117], bronchial

trees [112] and vessel trees [94], can be extracted and reconstructed in three dimen-

sions. This provides accurate measurement of lung volumes, regional lung density

as well as dimensions of airway and vascular trees [36, 39, 96]. Functional infor-

mation can also be measured with the aid of contrast imaging or post-processing

techniques. For example, regional ventilation can quantitatively be assessed with

xenon-enhanced CT (Xe-CT) [14, 29, 72, 95, 103] and regional perfusion can be

estimated with imaging with bolus contrast injection [2, 37, 122]. With regards to

image-based modeling, such information derived from MDCT imaging is valuable for

subject-specific simulations of pulmonary air flow inside human lungs. The anatom-

ical information provides realistic subject-specific geometries while the functional
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information provides physiologically meaningful boundary conditions.

Since lung volume changes as lung is breathing, it is important to standardize

imaging protocols so that subjects are scanned at similar lung volumes. Commonly,

static volumetric lung images are acquired during breath-holds at well controlled

lung volumes to minimize artifacts caused by respiratory motion. In addition, four-

dimensional (4D) dynamic imaging of lungs is also possible with respiratory gating

or retrospective gating methods. 4D CT has been used to assess the lung function

[8, 22, 32] and simulate lung tissue motion [1, 4, 26, 121, 127]. However, to our

knowledge, 4D CT has not been applied to CFD studies. In this thesis, all CT data

sets were acquired during breath-holds under scanning protocols approved by the

University of Iowa’s Institutional Review Board.

1.2.3 Regional Ventilation

Regional ventilation is used to quantify local gas exchange inside lungs. Since

it highly correlates with lung function, accurate assessment of regional ventilation

is essential for the diagnosis and evaluation of pathological conditions. Distribution

of ventilation inside lungs is affected by many factors, such as airway geometries

(diameters, branching patterns, etc), tissue mechanical properties, berating rate,

postures, and so on. Several non-invasive imaging techniques have been developed

to indirectly or directly measure regional ventilation. Nuclear medicine imaging

methods, such as positron emission tomography (PET) and single-photon emission

tomography (SPECT), provide estimation of regional ventilation by imaging spatial

and of inhaled gas or aerosol (as tracer) [35]. Magnetic resonance imaging (MRI) us-

ing hyperpolarized helium gas is a non-radioactive method of measuring ventilation
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[86, 115]. In contrast to these imaging modalities, MDCT is able to provide high-

resolution quantification of pulmonary function. With inert and non-radioactive

xenon gas as a contrast agent, MDCT yields better estimation of regional ventilation

by measuring wash-in and wash-out time rates over multiple breaths [14, 72, 103]. In

addition, ventilation has also been estimated based on changes in image intensities

observed between two MDCT images [29] or image-registration-derived deformation

[15, 32, 47, 79], where specific volume changes (normalized volume change by the

initial air volume) or Jacobian values (ratio of volumes) are used to reflect regional

ventilation.

1.2.4 MDCT-Based Quantitative Analysis

Image data acquired by CT scanners is usually displayed as a gray scale image

with intensity values denoted by reconstructed Hounsfield unit (HU). The recon-

structed HU of a non-contrast lung images can be used to estimate the amount of

air or tissue in each voxel. It is assumed that HU of lung is primarily contributed

by two components: tissue (parenchyma plus blood) and air. Any unit of lung may

be considered a linear combination of these two compartments. Thus, the fractional

air and tissue contents in a region can be estimated from HU. Let I(x) denote HU

for a voxel at x. The tissue and air fraction can be estimated as

γair(I(x)) =
HUtiss − I(x)

HUtiss − HUair

(1.1)

γtiss(I(x)) =
I(x)− HUair

HUtiss − HUair

, (1.2)

where HUair and HUtiss refer to HUs of air and tissue, respectively. HUs of imaged

air and tissue can be sampled in the center of the trachea (air) and aorta (blood).

In this work, we use-1000 for HUair and 55 for HUtiss since all CT data sets were
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from a well calibrated scanner.

Based on this technique, we can measure air and tissue volumes in a specific

region [38, 40]. There is currently considerable interest in quantifying the distribu-

tion of intensity values within CT images with the purpose of identifying disease

early and following disease progression. For example, quantification of pulmonary

fibrosis and emphysema has been based on identifying voxels inside lungs that fall

outside of an empirically derived HU threshold [39, 58, 74, 80]. In addition, by

acquiring a pair of images at different levels of inflation, we can also estimate local

air volume change if a spatial mapping between two images is given, thus providing

a way to estimate regional ventilation. Such information provides a way to describe

physiologically meaningful boundary conditions for CFD studies.

1.2.5 Image Registration

Image registration is a process of determining an optimal spatial mapping that

matches images collected at different times or using different imaging modalities.

Given a pair of images I1 and I2, referred to as the reference and the floating images,

image registration tries to determine an optimal warping function by minimizing

a dissimilarity measure, also referred to as a cost function. Since lung motion

varies from apex to base and ventral to dorsal, it is desirable to use nonrigid image

registration to capture non-uniform deformation. Once an image registration is

performed, the resulting warping function can be used to transform the floating

image into the reference image domain from an Eulerian viewpoint, obtaining the

warped image. Ideally, the warped image should be close to the image I1. A 2D

illustration of image registration is shown in Figure 1.2.

Image registration is becoming a key tool in medical image analysis as one
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seeks to link images across modalities, across time, or between lung volumes in

the use of pulmonary investigations. Registrations of lung data sets have been

extensively investigated by several groups. A representative though not exhaustive

list of such studies can be found in [7, 30, 34, 47, 97]. Of particular interest to

this work is the registration of MDCT-derived 3D lung images with applications

to subject-specific CFD studies of pulmonary gas flow. Image registration has at

least two potential applications in subject-specific lung modeling: 1) estimation of

regional ventilation, and 2) deformation of the airway geometries. With respect

to the first application, registration-derived estimates of regional ventilation can

produce physiologically consistent, subject-specific boundary conditions. For the

second application, the registration-derived mapping can be used to deform the

CFD meshes and extend studies from rigid airways to deforming airways as in

realistic breathing lungs.

1.3 Aims

The main objective of this research is to develop MDCT-based dynamic,

subject-specific lung models via image registration for CFD-based interrogation of

regional lung function. Such dynamic lung models account for realistic deforming

airway geometries and physiological boundary conditions, thus addressing the two

issues discussed above. The specific aims are listed as follows:

1. Developing a nonrigid image registration algorithm to match 3D volume-

controlled MDCT lung images acquired at different levels of inflation.

• The nonrigid registration algorithm should be capable of recovering large

deformation between images obtained at full inspiration and full or par-

tial expiration for human subjects.
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• Validation is performed to evaluate the accuracy of the registration al-

gorithm.

2. Developing an image-based lung model by accounting for realistic deforma-

tions of airway geometries

• Warping function obtained from image registration is used to adjust air-

way geometries for changes in lung volumes.

• CFD simulation in rigid airway geometry is extended to breathing lungs

with moving airway geometry.

3. Further developing the image-based lung model by accounting for physiological

boundary conditions for CFD simulation.

• Physiological boundary conditions are described based on registration-

derived regional ventilation.

• Proposed boundary condition is used for CFD simulation and is com-

pared against traditional uniform boundary conditions.

The proposed dynamic lung model overcomes the two main obstacles encoun-

tered for subject-specific simulation. Its capability will bring about new under-

standing of the structure-function relationship in pulmonary air flow.

1.4 Thesis Overview

In this thesis, we first achieve each specific aim listed in Section 1.3 by using

two volume-controlled MDCT data sets in Chapters 2, 3 and 4. With considera-

tion of radiation dose, two lung volumes are commonly acquired with one imaged

at full inspiration (TLC) and the other at end expiration (FRC, or RV). TLC can
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provide detailed information related to airway geometry while FRC or RV provides

information related to air trapping. However, only a linear interpolation is avail-

able with two lung volumes and such a linear interpolation may not be accurate to

describe the lung motion. Thus, in Chapter 5, we integrate all the components and

develop a dynamic lung model from three lung volumes. By adding an additional

lung volume, a nonlinear interpolation can be utilized to account for the nonlinear

geometry motion and time-varying boundary conditions during breathing. In addi-

tion, the framework is general and can be easily extended to the cases with more

lung volumes and also 4D CT data sets in the future.

The rest of the thesis is organized as follows. In Chapter 2, a novel mass-

preserving nonrigid image registration method is proposed to match two MDCT lung

data sets acquired during breath-holds at different lung volumes. Its performance is

evaluated using pairs of MDCT volumetric data sets acquired near TLC and FRC.

This chapter is based on

• Yin, Y., Hoffman, E. A., Lin, C.-L., 2009. Local tissue-weight-based non-

rigid registration of lung images with application to regional ventilation. In:

Proceedings of SPIE Medical Imaging. Vol. 7262. Orland, US, p. 72620C.

• Yin, Y., Hoffman, E. A., Lin, C.-L., 2009. Mass preserving nonrigid reg-

istration of CT lung images using cubic B-spline. Medical Physics 36 (9),

4213–4222.

In Chapter 3, we first improve the registration algorithm by incorporating the

landmark information at bifurcations of airway and vascular trees. By utilizing the

improved registration, we demonstrate the ability to deform the airway geometry

from a pair of two MDCT images. This chapter is based on



12

• Yin, Y., Hoffman, E. A., Ding, K., Reinhardt, J. M., Lin, C.-L., 2011. A cubic

B-spline-based hybrid registration of lung CT images for a dynamic airway

geometric model with large deformation. Physics in Medicine and Biology

56 (1), 203–218.

Chapter 4 presents a novel technique to estimate a physiological boundary

condition from two MDCT lung data sets. The derived boundary condition is then

applied for CFD simulation of pulmonary air flow and is compared against two

traditional boundary conditions (uniform velocity or uniform pressure). It is based

on

• Yin, Y., Choi, J., Hoffman, E. A., Tawhai, M. H., Lin, C.-L., 2010. Simulation

of pulmonary air flow with a subject-specific boundary condition. Journal of

Biomechanics 43 (11), 2159 – 2163.

In Chapter 5, we integrate the approaches proposed in Chapters 3 and 4, and

use three volumetric MDCT data sets to develop an image-based breathing lung

model, which accounts for nonlinear deforming airway geometry and time-varying

boundary condition during breathing

Chapter 6 summarizes this thesis and discusses some interesting topics for

future work.



13

Total 
Lung 

Capacit
y

(TLC)

Total 
Lung 

Capacit
y

(TLC)

Residual Volume 
(RV)

Functional Residual Capacity 
(FRC)

Vital Capacity
(VC)

Tidal Volume 
(TV)

Total Lung Capacity
(TLC)
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Figure 1.2: A two-dimensional (2D) illustration of nonrigid image registration. An
image with a square outer boundary and a circular inner boundary is mapped to
the one with a circular outer boundary and a square inner boundary. The centers
of objects are also shifted. It is noted that the warping function is defined in the
domain of the image I1 from a Lagrangian viewpoint while the warped image is
obtained by transforming the image I2 to the domain of image I1 from an Eulerian
viewpoint.
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CHAPTER 2

MASS PRESERVING NONRIGID REGISTRATION

2.1 Introduction

Registrations of lung data sets have been applied in establishing lung atlases

[59], segmenting lungs with pathology [97], linking four-dimensional lung data sets

[87] and tracking motion of lung tissues [15, 32, 79]. There is an important additional

motivation to register data sets acquired in one study whereby the subject is imaged

at full inspiration (total lung capacity, TLC) and at end expiration (functional

residual capacity, FRC, or residual volume, RV). TLC provides detailed information

related to airway and parenchyma structure while FRC or RV provides information

related to air trapping.

A registration algorithm usually consists of three main components: a trans-

formation model, a similarity measure, and an optimization step [19]. The trans-

formation model specifies the spatial mapping of corresponding points between two

images. The similarity measure defines how well those two images match and it pro-

vides a quantitative criterion for an optimization step to optimize the parameters

of a transformation model. Since lung motion varies from apex to base and ventral

to dorsal, it is desirable to use nonrigid image registration to capture non-uniform

deformation. However, two main issues make nonrigid registration of lung MDCT

images become challenging: (1) changes in voxel intensity due to inflation, and (2)

large deformation between the two images to be registered, such as a FRC-TLC

registration pair.

A common similarity measure used in registrations of MDCT lung images is

the sum of squared intensity differences (SSD) [15, 59–61, 79, 87, 88, 93]. The
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assumption of SSD is that corresponding points in both images have the same

intensity. The assumption is also implied in registration using optical flow, another

common method used to register lung images [24, 32, 33, 111, 127]. However, this

assumption is not valid for the MDCT lung image which voxel intensity changes due

to changes in densities associated with inflation. Although some similarity measures,

such as normalized correlation [78, 91] and mutual information (MI) [18, 100], used

for lung image registrations are insensitive to changes in voxel intensity, they are

based on global statistical models of the intensity relationships between voxels in

the two images and may not be appropriate to capture the non-uniform contraction

/ expansion of the lungs since changes in voxel intensity vary from apex to base

and ventral to dorsal. Recently, Sarrut et al. [87] proposed a priori step to take into

account changes in voxel intensity by artificially adjusting voxel intensity in one

image according to the intensity in the other. Although it is only a preprocessing

step, their results show improved registration results. This work also suggested the

importance of taking into account such intensity changes when registering MDCT

lung images.

Large deformation between two images to be registered also makes the problem

challenging since it is more difficult to ensure local invertibility of the mapping.

However, local invertibility is essential for biologically meaningful mapping and is

especially important in our cases where the resulting deformation field is further

used to deform the airway geometry for CFD simulation. One way to ensure local

invertibility is to control the positivity of Jacobian values on the whole image domain

[12, 16, 92]. Jacobian values reflect local contraction or expansion of a deformation

field. A Jacobian value of one corresponds to no expansion or contraction. It

is greater than one if there is local expansion and less than one if there is local
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contraction. It is negative if local folding of the deformation exists.

In this chapter, we propose a mass-preserving nonrigid image registration

method to align two MDCT lung data sets acquired during breath-hold at two

different lung volumes in the same scanning session or over short periods of time.

The performance of the new similarity measure is evaluated using six pairs of MDCT

volumetric data sets acquired near TLC and FRC.

2.2 Methods

Given two images If and Ir, referred to as the floating and reference images,

the goal of the registration is to determine a spatial warping function that can

match the two images. We assume that If (x) and Ir(x) are continuous functions of

intensity values at the position at the position x (x = (x, y, z)) for the floating and

reference images, respectively.

2.2.1 Transformation Model

One of the most common transformation models is cubic B-spline [54, 85, 113].

Compared with other spline-based transformation models, such as thin-plate spline

[5, 83] or elastic-body spline [20, 123], B-spline is locally controlled. Each point in

the N -dimensional space is only influenced by the corresponding ND grid consisting

of 4N control nodes. For example, a point is influenced by its 4 × 4 surrounding

control nodes in 2D and by its 4 × 4 × 4 surrounding control nodes in 3D. This

advantage makes it computationally efficient even when a large number of control

nodes are used.

Let Φ denote a nx×ny×nz uniform grid with ϕi,j,k as the displacement of the

ijkth control node. The spacings between the control grids in x, y and z directions
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are denoted by δx, δy and δz, respectively. The transformation function T (x;ϕ) is

defined in terms of control nodes as

T (x;ϕ) = x+
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)ϕi+l,j+m,k+n, (2.1)

where i = ⌊x/δx⌋ − 1, j = ⌊y/δy⌋ − 1, k = ⌊z/δz⌋ − 1, u = x/δx − (i + 1),

v = y/δy − (j + 1), and w = z/δz − (k + 1). Functions B0 through B3 are basis

functions of cubic B-spline and are defined as follows:

B0(t) =
(
−t3 + 3t2 − 3t+ 1

)
/6

B1(t) =
(
3t3 − 6t2 + 4

)
/6

B2(t) =
(
−3t3 + 3t2 + 3t+ 1

)
/6

B3(t) = t3/6, (2.2)

where 0 ≤ t < 1. These basis functions have two important mathematical proper-

ties. First, they have a limited support, which allows efficient computation of the

transformation function. Second, they are C2 continuous, which allows the ana-

lytical computation of first-order derivatives of the transformation function. The

second property ensures efficient computation and minimization of the new similar-

ity measure described below, which is based on the first-order derivatives.

Since displacements of control nodes act as parameters of the transformation

function, the ability of B-spline to capture deformations depends on the resolution

of the control grid. A coarse control grid allows for modeling global deformations,

while a fine control grid allows for modeling highly local deformations.

The basic algorithm described above may result in a noninvertible transfor-

mation, which causes parts of the image are folded upon nearby parts and further

leads to failure of CFD simulation due to changes of topology. Several algorithms
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have been proposed to ensure local invertibility of cubic-spline by controlling the

positivity of the Jacobian values [12, 16, 92], among which Choi and Lee [12] pro-

posed an easy-to-implement sufficient injective condition for both 2D and 3D cases.

According to their analysis, a transformation function is locally injective over the

entire continuous domain if the displacement of each control node is bounded by

h/K, where K is a constant and it is approximately 2.046392675 for the 2D case

and 2.479472335 for the 3D case. With this condition, a point can be deformed

at most by h/K if and only if all 4 × 4 (for 2D) or 4 × 4 × 4 (for 3D) surround-

ing control nodes are displaced by h/K. From this view, a control grid with large

spacing is required to model large global deformations for a TLC-FRC registration

pair. However, as we discussed above, a fine control grid is required to capture

the highly local deformation. To overcome the conflicting requirements of coarse

and fine control grids for global and local deformations, respectively, a multi-level

B-spline technique [57, 84] is adopted in this work.

In the multi-level B-spline algorithm, a hierarchy of control grids, Φ0,Φ1, . . . ,Φn,

is used to derive a sequence of transformations with a single level B-spline manip-

ulation defined above. The algorithm starts with the coarsest control grid Φ0. A

smooth and invertible transformation can be obtained with the displacement con-

straints. This transformation has the ability to capture the global deformation. The

local deformation is progressively handled by the subsequent transformations with

finer control grids. The final transformation is defined as a composite operation

T = Tn ◦ Tn−1 ◦ . . . ◦ T0. (2.3)

where T0, T1, . . . , Tn are the sequence of transformations.

To implement the composite operation, we introduce a warping image ϖ,
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which is a discretized version of the transformation function. The value of each

voxel is equal to the physical coordinates of the transformed point of that voxel.

Given a voxel p and its corresponding physical coordinates x0, the value at p in the

warping image is initially equal to x0 and then sequentially equal to the transformed

point of x0 after the sequence of transformations. Thus, the composite operation is

simplified as a recursive algorithm: ϖ ← Ti(ϖ).

Since the composite operation will not change the property of diffeomorphism,

we can get a final invertible transformation by imposing the sufficient injective con-

dition for each B-spline level. Namely, local invertibility for the large deformation is

guaranteed by the combination of the displacement constraints and the multi-level

B-spline technique.

2.2.2 Similarity Measure

In order to take into account changes in voxel intensity due to inflation, we

introduce the sum of squared tissue volume difference (SSTVD) as the similarity

measure. In contrast to previous similarity criteria, SSTVD is based on quantitative

MDCT analysis defined in Eq. (1.2) and aims to minimize the local tissue volume

difference within lungs between matched regions. Its definition is as follows:

E =
∑
x∈Ω

[
Vf (T (x;ϕ)) γtissf (T (x;ϕ))− Vr (x) γtissr (x)

]2
(2.4)

where Vr and Vf are total volumes of corresponding regions in the two images,

respectively. Ω denotes the overlap lung regions between the two images.

This new similarity measure is based on the assumption that the tissue (blood

plus parenchyma) volume of the lungs is preserved during respiration/static lung
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volume changes. We recognize that the tissue volume changes slightly due to pul-

monary blood volume changes with lung inflation, but this assumption we make

have proven reasonable since volume change of “tissue” is small and such changes are

much smaller than those of air (See Table 2.1 for changes in tissue and air volumes

between TLC and FRC for all six registration pairs used in this work). In addition,

the assumption used here has been successfully used in estimating regional specific

volume [29] and linking four-dimensional lung data sets [87]. Although changes

of ”tissue” volume due to blood volume changes are taken into consideration by

a correction step [32], such small change appears to be of minimal consequence to

our registration process, taking into account the considerable improvement shown

in registrations using our new method.

It is noted that T is used in Eq. (2.4) since the multi-level B-spline technique

is adopted. Given a transformation level i, T (x;ϕ) is a compound function defined

by

T (x;ϕ) = Ti (ϖ(x);ϕ) , (2.5)

where Ti (x;ϕ) is the warping function at the current level and ϖ(x) is the warping

image obtained at the previous level.

Given a warping function T (x;ϕ), If (T (x)) can be interpolated from the

floating image to further estimate tissue fraction γtissf (T (x;ϕ)) and Vf (T (x;ϕ))

can be calculated from the Jacobian value JT of the deformation as Vf = JTVr.

Thus, the final form of the new similarity measure reads

E =
∑
x∈Ω

{
Vr (x)

[
JT (x;ϕ)γtissf (T (x;ϕ))− γtissr (x)

]}2
. (2.6)

Calculation of the gradient of the cost function is necessary for its efficient
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and robust minimization. For a given transformation parameter ϕ, the gradient of

cost function is calculated by

∂E

∂ϕ
= 2

∑
x∈Ω

V 2
r (x)

[
JT (x;ϕ)γtissf (T (x;ϕ))− γtissr (x)

] ∂ζ
∂ϕ

(2.7)

with
∂ζ

∂ϕ
= γtissf (T (x;ϕ))

∂JT (x;ϕ)

∂ϕ
+

JT (x;ϕ)

HUtiss − HUair

∂If (T (x;ϕ))
∂T

∂T (x;ϕ)
∂ϕ

where ∂If/∂T is the intensity gradient of the floating image.

Jacobian value JT is defined as the determinant of derivative matrix of the

deformation. From Eq. (2.5), we can obtain

JT = det(D) = det(DT)det(Dϖ), (2.8)

with

DT =


∂Tix

∂x
∂Tix

∂y
∂Tix

∂z

∂Tiy

∂x

∂Tiy

∂y

∂Tiy

∂z

∂Tiz

∂x
∂Tiz

∂y
∂Tiz

∂z

 and Dϖ =


∂ϖx

∂x
∂ϖx

∂y
∂ϖx

∂z

∂ϖy

∂x

∂ϖy

∂y

∂ϖy

∂z

∂ϖz

∂x
∂ϖz

∂y
∂ϖz

∂z

 . (2.9)

The derivatives of ϖ at a voxel can be derived from its neighbors by using

central-difference approximation. For example, ∂ϖx/∂x = (ϖ+
x −ϖ−

x )/(2∆x), where

superscripts + and − denote the two neighbors of the current voxel in the x direction

and ∆x is the spacing of the warping image in that direction. In addition, since

the cubic B-spline transform is the tensor product of independent one-dimensional

functions, the entries of DT can be analytically calculated. For example, derivative

of its x-component with respect to x is given as

∂Tix(x;ϕ)

∂x
= 1 +

1

δx

3∑
l=0

3∑
m=0

3∑
n=0

dBl(u)

du
Bm(v)Bn(w)ϕi+l,j+m,k+n. (2.10)

The remaining derivatives have an analogous form. Computation of these
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derivatives is very similar to computing Ti itself with differences that basic functions

B0,1,2,3 are replaced by their respective derivatives, which are computed as follows:

dB0(t)/dt =
(
−t2 + 2t− 1

)
/2

dB1(t)/dt =
(
3t2 − 4t

)
/2

dB2(t)/dt =
(
−3t2 + 2t+ 1

)
/2

dB3(t)/dt = t2/2. (2.11)

The last terms to discuss are derivatives of both the transformation function

and the Jacobian value with respect to transformation parameters in Eq. (2.7):

∂T /∂ϕ and ∂J/∂ϕ. Since ϖ is not a function of ϕ at the current level, both terms

are only contributed by Ti. Eqs. (2.1), (2.9) and (2.10) show that T and JT have a

linear relationship with ϕ. Thus, it is straightforward to compute those two terms:

∂T /∂ϕ and ∂JT/∂ϕ.

2.2.3 Optimization

An efficient and robust optimization algorithm is required to minimize the cost

function by adjusting transformation parameters. A limited-memory, quasi-Newton

minimization method with bounds on the variables (L-BFGS-B) [6] is adopted con-

sidering its two advantages. First, it is well suited to handle the high dimensionality

of parameter space. Second, it allows bound constraints on the independent vari-

ables, making it easy to implement the displacement constraints for a one-to-one

mapping discussed in Sec. 2.2.1.

Multi-resolution strategy helps to improve the computational efficiency and to

avoid some local minima. In addition to hierarchical transformation models, multi-

resolution strategy is also used on images. A pair of image pyramids is built with
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sequences of gradually reduced resolution images for both the floating and reference

images. Here, we use three different levels in both the image pyramids and the hier-

archy transformation models. The whole registration is composed of six levels and

starts with the coarsest versions of both images and control grid. The images and

control grids are then alternatively refined until the finest versions. On each level,

optimization is used to minimize the cost function and the displacement constraint

is imposed to ensure a one-to-one mapping. The warping image is calculated once

the convergence criterion is reached. The warping image is then propagated to the

next finer level and is used as a starting transformation at that level. It is noted that

up-sampling of the warping image is required if the image resolution level changes.

The basic idea of the multi-resolution strategy is illustrated in Figure 2.1.

2.2.4 Summary

In summary, the whole registration procedure is illustrated in Figure 2.2.

First, an undeformed warping function is given to calculate an initial cost function

between the reference and floating images Ir and If with SSTVD. This cost function

is then minimized by adjusting displacements of control nodes of the B-spline to

get a new warping function. With the new warping function, we can obtain a new

warped image and update the cost function. This cycle repeats until the convergence

criterion is reached.

2.3 Experiments And Results

2.3.1 MDCT Image Data

Data sets from six normal human subjects were used in this study to evaluate

the performance of the proposed similarity measure. The subjects were examined
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under a protocol approved by the University of Iowa’s Institutional Review Board.

Two volumetric scans were acquired with a Siemens Sensation 64 MDCT scanner

(Forchheim, Germany) during breath-holds near FRC and TLC in the same scan-

ning session for each subject. Each volumetric data set contains 550 − 760 image

sections with a section spacing from 0.5 − 0.7mm and a reconstruction matrix of

512 × 512 pixels. In-plane pixel spatial resolution is approximately 0.6 × 0.6mm.

For each data set, automatic lung segmentation is performed using the algorithm in

[44]. Experimental studies using human MDCT lung images have shown that this

segmentation algorithm can accurately extract the lung with a root mean square

difference between the computer and human analysis of 0.8 voxels and the compu-

tational time is 2−3 minute on a PC workstation with 300Mhz [44]. Once the lung

is extracted, we can estimate the total lung volume, tissue volume and air volume,

among which total lung volume is the sum of voxel volumes in the lungs, tissue and

air volume can be estimated from HU using Eq. (1.2). Table 2.1 lists these volumes

for all data sets. We can find that changes in tissue volume between TLC and FRC

are small for all six registration pairs with an average percentage change of 3.5%.

Thus, it is reasonable to assume that the tissue volume is preserved.

2.3.2 Experimental Setup

Given a registration pair, the data set with the smaller lung volume is taken

as the floating image and the one with the larger lung volume is the reference image.

Both reference and floating images are first down-sampled by a factor of 2 in each

dimension, so 8 times less voxels, in order to reduce the computational time. The

down-sampled images are then registered in the multi-resolution framework shown

in Figure 2.1. Once the registration is done, the warped image is up-sampled so
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that it has the same size as the reference image.

In order to evaluate the new similarity measure, we perform registrations with

both SSD and SSTVD for comparison. The cost function for the SSTVD method

is evaluated by Eq. (2.4), whereas for the SSD method it is computed by

ESSD(ϕ) =
∑
x∈Ω

[Ir(x)− If (T (x))]2 . (2.12)

Lung segmentations of reference and floating images are used as masks for

both methods. The mask of the floating image is then dilated by 5 × 5 voxels

in order to improve the matching at lung boundaries. The potential influence of

the segmentation on registration results is not yet to be investigated. However, we

expect that the influence might be small by considering the accuracy of segmentation

as discussed previously and that the lung boundary has an obvious contrast with

high value of tissue volume for the body and low value inside the lung.

2.3.3 Results

Landmarks located at vessel bifurcations are used to evaluate registration

accuracy. A semi-automatic landmark annotating system [75] was used to guide

the observer to generate the corresponding landmarks in TLC and FRC images.

Each registration pair has 120 − 210 landmarks and approximately 20 − 40 are

located in each lobe. Figure 2.3 shows an example of the landmark locations.

A linear mixed model analysis was used to compare mean landmark error of

the SSTVD method with the SSD method and further with the MI method (see the

description in the last paragraph in this section). The fixed effects of the model were

method (SSTVD, SSD and MI), initial distance d0 (d0 < 20mm, 20 ≤ d0 < 40mm,

40 ≤ d0 < 60mm, d0 ≥ 60mm), and method×distance interaction, with subject
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as the random effect. To satisfy the assumption of normal distribution for the

dependent variable, the natural log transformation was applied to landmark error

to normalize the data distribution.

The test of fixed effects from the fitted model shows a significant method×distance

interaction (p-value=0.006) which indicates that the mean difference in landmark

error between methods varies with initial distance. Thus, pairwise comparison of

the SSTVD method with the SSD method and with the MI method was done at

each distance interval. The tests for these pairwise comparisons were performed

using test of mean contrast based on parameter estimates from the fitted model.

Since multiple tests were performed, the p-values for the pairwise comparisons were

adjusted using Bonferroni’s method to account for the number of tests performed

(which are 8 tests, 2 pairwise comparisons at 4 distances). The estimate of the

mean landmark error for each method computed from the fitted linear mixed model

and the mean ratio are shown in Table 2.2. Landmark error for the SSTVD method

compared to the SSD method is on average 69% + 13% smaller at initial distances

of d0 < 20mm and 74% + 11% smaller at 20 ≤ d0 < 40mm. Significantly smaller

landmark error for the SSTVD method compared to the SSD method was observed

at 40 ≤ s < 60mm and d0 ≥ 60mm, with the SSTVD method error being smaller

by 83% + 7% and 85% + 8%, respectively.

Figure 2.4 shows an example of the distribution of landmark distances along

the z-axis (from apex to base) before and after registrations using both the SSTVD

method and the SSD method. The initial landmark distance increases as landmarks

are closer to the base, see Figure 2.4(a), since the deformation of the lung is mainly

driven by the diaphragm. However, with the SSTVD method, the landmark dis-

tances decrease and all landmarks have an approximately uniform error distribution
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from apex to base in Figure 2.4(b). This means that the SSTVD method shows

good registration for both small and large deformations within the same lung in-

dependent of lung location. Also note in Figure 2.4(b) that the landmarks have a

large deviation of errors for the SSD method.

Figures 2.5 (a) and (b) show surface distance maps of the warped TLC major

vessel tree to the FRC major vessel tree for the SSTVD method and the SSD meth-

ods, respectively. The FRC major vessel tree is also shown in white for reference.

The warped TLC major vessel tree is obtained by applying the transformation to

the surface mesh of the TLC tree. Vessel trees at both TLC and FRC images are au-

tomatically extracted by using the algorithm in [94] implemented in the Pulmonary

Workstation (VIDA Diagnostics, Coralville, Iowa). The major vessel trees are then

obtained by applying morphology opening with a structure element of 3 × 3 × 3

voxels followed by a connected component process on the segmented vessel trees

to remove small branches. Figure 2.5(a) demonstrates that the surface distances

are less than 2mm for the SSTVD method. Large distances of some segments are

possibly due to the inconsistent tree structure between TLC and FRC caused by

segmentation or morphology operation steps. Examples are marked as A and B

in Figure 2.5(a), which show cases with missing segments in the FRC major trees.

In contrast with the SSTVD, the SSD method yields an obvious mis-match in sev-

eral regions, marked as C, D, and E in Figure 2.5(b). One can see that the white

unwarped segments mis-align with the color coded tree in these regions.

Figures 2.6 and 2.7 show a slice from registration pairs A and F, respectively.

These two registration pairs are chosen because one has the smallest lung volume

difference and the other has the largest (see Table 2.1) among all registration pairs

tested here. In each figure, the slice from the reference image is shown in (a), the
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corresponding slice from the warped image obtained from the SSTVD method is

shown in (b) and the corresponding slice from the warped image obtained from the

SSD method is shown in (c). Although both methods yield a good alignment of

the overall shapes of lungs, it can be seen that the SSTVD approach improves the

alignment of structures within the lungs, such as the vessels and fissures.

The proposed SSTVD similarity measure is further compared with MI using

the same statistical method described earlier for the SSTVD vs. SSD comparison.

For MI, we used a publicly available registration package elastix [50]. The optimal

parameters specified in elastix include five levels of resolution for both the images

and the transformation, a stochastic gradient descent optimization method [51]

using a decaying function of the iteration number k : ak = a/(A +K)α with user-

defined constants A = 50 and α = 0.6. a was set to 50000.0, 30000.0, 10000.0,

10000.0 and 5000.0 for the five resolutions. The statistical comparisons of landmark

errors between the SSTVD method and the MI method can be seen in Table 2.2.

Mean landmark error does not differ between the two methods at initial distances

of d0 < 20mm, 20 ≤ d0 < 40mm and 40 ≤ d0 < 60mm. At initial distances of

d0 ≥ 60mm, mean landmark error for the SSTVD method is 77%+8% smaller than

the MI method (p-value=0.0002). This is consistent with our hypothesis that the

SSTVD provides registration improvements for large deformations such as occur

when comparing TLC and FRC image data sets as done in this study.

2.4 Discussion

In this chapter, we have presented a nonrigid image registration method to

align two MDCT lung data sets acquired during breath-holds at different lung vol-

umes. Our method is of particular use when the volume differences between the two
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image sets are large as demonstrated in Table 2.2, utilizing TLC and FRC scans. In

order to take into consideration changes in voxel intensity of lungs with inflation, we

introduced the sum of squared tissue volume difference as the similarity criterion.

This new criterion aims to minimize the local tissue volume difference within the

lungs between matched regions. The local tissue volume difference is contributed

by two factors: change in regional volume due to deformation and change in the

fractional tissue content within a region due to respiration. The change in regional

volume is calculated from the Jacobian value of the deformation and the change

in the fractional tissue content is estimated from HU. A composite of multi-level

B-spline transformations is adopted and a sufficient condition is imposed to ensure a

one-to-one transformation, even for a pair of data sets with large volume differences.

To evaluate the effectiveness of the new similarity measure, we performed

registrations for six lung volumetric pairs which were acquired at near TLC and FRC

in the same scanning session. Over 100 landmarks located at vessel bifurcations were

generated for each registration pair and the results show that the SSTVD method

yields smaller average landmark errors than the SSD method. In addition, visual

inspection shows that the SSTVD approach improves the alignment of structures

within the lungs although both the SSD and SSTVD methods give a good alignment

of the overall shapes of lungs.

Recently, Gorbunova et al. [30] independently proposed a similar similarity

criterion as our SSTVD to monitor disease progression in longitudinal image stud-

ies where volume differences are smaller than those used here and, with pathology

progression, tissue densities can undergo considerable changes. Different from their

work, we seek to apply this approach to match multiple lung volumes acquired be-

tween TLC and FRC in the same scanning session or over short periods of time
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with one goal trying to apply to CFD studies with moving lung boundaries [64, 65].

The registrations are performed to match those data sets to adjust the geometry

of airways for changes in lung volumes and to estimate the boundary condition by

accounting for regional lung distensibility. In estimating the regional lung disten-

sibility from a TLC-FRC registration pair, Yin et al. [129] demonstrated that the

SSTVD method yields a much more physiologically-consistent ventilation map than

that of SSD. In this work, all data sets were from a well calibrated scanner whereby

imaged air is -1000HU and water is 0. However, the SSTVD can be extended to the

cases when the scanner is out of calibration. Imaged air and tissue can be sampled

in the center of the trachea (air) and aorta (blood). Assuming that HUs are linear

between these ends of the scale, a voxel-by-voxel shift can be achieved. This is an

important step as it is becoming well recognized that there are fairly significant

variabilities between manufacturers in regards to HUs of reconstructed air within

the thorax [38, 101].
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Table 2.1: The total lung volume (TLV), air volume (AV) and tissue volume (TV)
for all six registration pairs are estimated from HU.

Registration Volume TLC FRC Difference Percentage Change

Pair (l) (l) (l) | TLC-FRC | /TLC

TLV 5.31 2.91 2.40

A AV 4.62 2.17 2.45

TV 0.69 0.74 -0.05 7.2%

TLV 5.11 2.68 2.43

B AV 4.51 2.07 2.44

TV 0.60 0.61 -0.01 1.7%

TLV 5.94 3.40 2.54

C AV 5.23 2.67 2.56

TV 0.71 0.73 -0.02 2.8%

TLV 6.41 3.20 3.21

D AV 5.58 2.33 3.25

TV 0.83 0.87 -0.04 4.8%

TLV 7.18 3.76 3.42

E AV 6.31 2.87 3.44

TV 0.87 0.89 -0.02 2.3%

TLV 7.28 3.37 3.91

F AV 6.41 2.52 3.89

TV 0.87 0.85 0.02 2.3%

Overall 3.5%

∗: The percentage change of tissue volume is also listed for reference. The unit for
volumes is liter (l).



33

T
ab

le
2.
2:

S
ta
ti
st
ic
al

co
m
p
ar
is
on

of
la
n
d
m
ar
k
er
ro
rs

b
et
w
ee
n
th
e
S
S
T
V
D

m
et
h
o
d
,
th
e
S
S
D

m
et
h
o
d
an

d
th
e
M
I

m
et
h
o
d
fo
r
al
l
si
x
re
gi
st
ra
ti
on

p
ai
rs
.

d
0

S
S
T
V
D

S
S
D

M
I

S
S
T
V
D

v
s.

S
S
D

S
S
T
V
D

v
s.

M
I

(m
m
)

(m
m
)

(m
m
)

(m
m
)

S
S
T
V
D
/S

S
D

p
-v
al
u
e1

∗
S
S
T
V
D
/M

I
p
-v
al
u
e∗

d
0
<

20
0.
56
±

0.
04

1.
84
±
0.
76

0.
54
±
0.
07

0.
31
±

0.
13

0.
24
3

1.
04
±
0.
15

>
0.
99

20
≤

d
0
<

40
0.
76
±

0.
06

2.
90
±
1.
20

0.
70
±
0.
09

0.
26
±

0.
11

0.
15
1

1.
08
±
0.
16

>
0.
99

40
≤

d
0
<

60
0.
81
±

0.
07

4.
66
±
1.
94

0.
92
±
0.
12

0.
17
±

0.
07

0.
05
0

0.
88
±
0.
14

>
0.
99

d
0
≥

60
1.
90
±

0.
39

12
.4
7
±

6.
08

8.
11
±
2.
06

0.
15
±

0.
08

0.
02
1

0.
23
±

0.
08

0.
00
02

∗:
B
on

fe
rr
on

i
ad

ju
st
m
en
t
p
-v
al
u
e



34

64x64x64

128x128x128

256x256x256

Images

11x11x11

Transformation
Model

7x7x7

11x11x11

19x19x19

64x64x64

64x64x64

Warping Image

19x19x19

35x35x35

128x128x128

128x128x128

256x256x256

256x256x256

Up-sampling

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Up-sampling

64x64x64

128x128x128

256x256x256

Images

11x11x11

Transformation
Model

7x7x7

11x11x11

19x19x19

64x64x64

64x64x64

Warping Image

19x19x19

35x35x35

128x128x128

128x128x128

256x256x256

256x256x256

Up-sampling

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Up-sampling

Figure 2.1: Framework of the multi-resolution strategy
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Figure 2.2: A sketch of the nonrigid registration procedure.
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Figure 2.3: Locations of the landmarks (marked by spheres) at TLC (a) and FRC
(b) for the registration pair A. Surface rendering of five lobes and major vessel
branches is shown for reference.
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Figure 2.4: Distribution of landmark distance along the z-axis (from apex to base)
before (a) and after registrations (b) using the SSTVD method (filled diamond) and
the SSD method(unfilled circle) for the registration pair A. Note that all landmarks
have an approximately uniform error distribution from apex to base for the SSTVD
method while they have a large deviation of error for the SSD method in (b).
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Figure 2.5: Surface distance maps of the warped TLC major vessel tree to the FRC
major vessel tree for the SSTVD method (a) and the SSD method (b). The FRC
major vessel tree is shown in white for reference. Note that the red segments in (a)
are caused by missing segments in FRC major tree, not by mis-registration. Exam-
ples are marked as A and B. Segments with large errors in (b), marked as C,D,E,
are due to clear mis-registration, as one can easily see that the white unwarped
segments mis-align with the color coded tree.
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(a) (b)                               (c)

Figure 2.6: A slice from the registration pair A. (a) Slice from the reference im-
age. (b) Corresponding slice from the warped image with the SSTVD method.
(c) Corresponding slice from the warped image with the SSD method. Notice a
mis-alignment of vessel trees indicated by the arrow for the SSD method in (c).
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(a) (b)                               (c)

Figure 2.7: A slice from the registration pair F. (a) Slice from the reference image.
(b) Corresponding slice from the warped image with the SSTVD method. (c) Cor-
responding slice from the warped image with the SSD method. Notice the good
alignment between the lobar fissures (highlighted in lines) and between the vessel
trees for the SSTVD method in (b) while an obvious mis-alignment of the fissure
and vessels for the SSD method in (c).



41

CHAPTER 3

HYBRID IMAGE REGISTRATION FOR MOVING AIRWAY
GEOMETRY

3.1 Introduction

Currently most of CFD studies have used rigid structures of airways though

it is known that airways are compliant structures and can be deformed due to

changes in lung volumes. Several factors could affect changes in dimensions of

airway geometries, such as the mechanical properties, tethering force of the airway

to the surrounding lung parenchyma and so on. Attempts have been made to

account for deformation of airway geometry by using fluid-structure interaction

(FSI) techniques [119, 125]. For example, Xia et al. [125] recently investigated the

effects of airway-parenchymal tethering and airway wall motion on flow structure

and wall shear stress with a realistic 3D CT-based airway bifurcation between the

3rd and 4th generations. Their finding shows that wall shear stress decreases by

80% when allowing wall compliance and can further decrease by 50% when allowing

both the compliance and parenchymal tethering force. However, currently it is still

challenging to develop a valid model for FSI-based analysis due to unclear material

properties and complex airway-parenchyma interaction.

Alternatively, the registration-derived displacement field can be used to de-

form the CFD mesh for simulation of a breathing lung. Different from FSI-based

simulation, the image-based CFD with deforming airway geometries is a one-way

coupling analysis and, thus, requiring neither coupling with computational solid

mechanics nor specifying tissue mechanical properties and tethering forces.

In this chapter, we aim to develop an image-based deforming airway model for
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CFD simulations. In Chapter 2 we present a mass preserving registration method,

which has been shown to be effective at matching intensity patterns of intra-subject

data sets. However, such intensity-based registration approaches do not use anatom-

ical knowledge. As a result, it may cause mismatch of important anatomical land-

marks, such as airway bifurcations, when a registration falls into local minima.

Thus, we further incorporate the landmark information at bifurcations of airway

and vascular trees to improve the registration accuracy, especially the alignment

of the airway trees. The proposed registration is then applied to build a dynamic

airway model from a pair of lung volumetric images.

There are two main approaches to implement non-rigid registration for lung

CT images according to similarity measures: feature-based approaches and intensity-

based approaches. The feature-based approach uses corresponding anatomical fea-

tures, mostly landmarks or surfaces, to define the transformation from one lung data

set to the other [3, 9, 18, 27, 48]. In earlier landmark-based registration (LBR), sev-

eral anatomical points, such as bifurcation points of airway and/or vascular trees,

vertebra and so on, were manually selected by experts. Recent published work has

shown the possibilities to generate large numbers of corresponding landmarks (more

than 1,000) from a pair of lung CT data sets with semi-automatic tools [9, 75]. Sev-

eral landmark-based registration algorithms have been proposed based on thin-plate

spline (TPS) [45, 83] or elastic-body spline [20, 123] or moving least squares [9]. The

use of B-spline was also proposed by [56] to compute a C2 continuous and one-to-

one mapping to warp 2D points. Alternatively, intensity-based registration (IBR)

matches intensity patterns of the images by minimizing/maximizing a defined sim-

ilarity measure. A representative though not exhaustive list of such studies can be

found in [15, 22, 32, 79, 87, 91, 100, 102, 130]. Although both LBR and IBR have
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been applied in registering lung images, they each have limitations. IBR matches

intensity patterns over the whole image but does not use anatomical knowledge.

As a result, it may cause mismatch of important anatomical landmarks, such as

airway bifurcations, when a registration falls into local minima. Conversely, LBR

uses anatomical landmarks. Those landmarks, however, are usually sparsely dis-

tributed throughout the images, leading to the mismatch of regions away from the

landmarks. Thus, utilization of both anatomical landmark information and inten-

sity patterns in image registration is desirable. In recent years, hybrid landmark-

and intensity-based registration (LIBR) has been proposed to register lung images

[59, 60, 78]. In most of these LIBR methods, a TPS model, which minimizes the

bending energy of a thin plate for a smooth transformation between designated

landmarks, is used to match landmarks. However, as pointed out by [42], the TPS

transformation is a globally supported function so that it cannot accurately model

localized deformation and it has high computational complexity when a large num-

ber of landmarks are used. More importantly, for large deformations a TPS model

does not ensure local invertibility of the transformation, which is essential for bi-

ologically meaningful mapping and is especially important in our cases where the

resulting deformation field is further used to deform the airway geometry for CFD

simulation.

We propose a novel B-spline-based hybrid registration framework for lung CT

datasets and apply it to build a dynamic lung airway model. The proposed hybrid

registration is first evaluated using 2D artificial binary images and then applied

in matching inspiration/expiration 3D CT human lung dataset pairs. The CFD

simulation with moving airway geometry is then performed.
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3.2 Methods

3.2.1 Hybrid Registration

3.2.1.1 Intensity-Based Registration

IBR matches intensity patterns by using mathematical or statistical criteria,

also referred to as cost functions. The simplest cost function is the sum of squared

intensity difference (SSD), which is defined as

E =
1

Ω

∑
x∈Ω

[fF (T (x))− fR(x)]
2 , (3.1)

The gradient of the cost function defined in (3.1) with respect to parameters

of the transformation function is calculated by

∂E

∂ϕim

=
1

Ω

∑
x∈Ω

∂e

∂fF

∂fF (z)

∂z

∣∣∣∣
z=T (x)

∂T (x)

∂ϕim

, (3.2)

where ϕim denotes the mth component of the displacement vector at the ith node.

∂e/∂fF = 2 [fF (T (x))− fR(x)] and it reflects the current intensity errors between

the corresponding points. The second term ∂fF (z)/∂z is the intensity gradient of

the floating image. The last term ∂T (x)/∂ϕim is the derivative of the transformation

function with respect to its parameters.

The assumption of the SSD is that corresponding points in both images have

the same intensity. This assumption is valid for matching the binary image while is

not suitable for matching pulmonary CT images since the voxel intensity changes

within lungs due to inflation. A similarity measure SSTVD was recently proposed

as an extension of the SSD to account for such intensity changes [129, 130]. In this

work, the SSD is used for matching 2D artificial binary images while the SSTVD is

used for matching 3D pulmonary CT images.
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The SSTVD minimizes the local tissue volume differences between matched

regions. Its expression is given as

E =
1

Ω

∑
x∈Ω

[
VF (T (x)) f̃F (T (x))− VR(x)f̃R(x)

]2
, (3.3)

where VR and VF are total volumes of corresponding regions in the reference and

floating images, respectively, and VF can be calculated from the Jacobian value J as

VF = JVR. It should be noted that the Jacobian value must be positive here, which

can be ensured for the invertible transformation. In addition, f̃ is the tissue fraction

estimated from the Hounsfield unit (HU) by f̃ = [f(x)−HUair]/[HUtissue−HUair],

where HUair and HUtissue refer to the intensities of air and tissue, respectively [38].

Here, we assume that air is -1000HU and tissue is 55HU.

A limited-memory, quasi-Newton, bound constrained optimization method

(L-BFGS-B) [6] is used as the optimization method to minimize the cost function.

This optimization method has two main advantages. First, it is well suited for

optimization with high dimensionality of parameter space. Second, it allows bound

constraints on independent parameters, facilitating employment of displacement

constraints for an invertible transformation.

3.2.1.2 Landmark-Based Registration

Let P = {p} and Q = {q} be a pair of corresponding ND landmark sets

from the reference and floating images, respectively. The goal of LBR is to find a

RN → RN mapping to match the corresponding landmarks.

Given an initial configuration of the B-spline control grid ϕ0, the transformed

point p′ of a landmark point p can be calculated from Eq.( 2.1) as p′ = p+
∑
i∈Ic

ϕ0
i βi,

where Ic is a set of control nodes that can influence the point p. βi =
∏N

k=1 Bk(tk)
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is a ND tensor product of basis functions of cubic B-spline. In order to move the

point p to its corresponding point q, the displacements of control nodes must satisfy

that q = p+
∑
i∈Ic

ϕiβi. Thus, we can obtain

∆q = q− p′ =
∑
i∈Ic

∆ϕiβi, (3.4)

where ∆ϕi = ϕi − ϕ0
i and it is the desired deviation of displacement at the control

node i to transform the point p to its corresponding point q. Among all possible

solutions to Eq. (3.4), Lee et al. [56] chose the following one in the least-squared

sense

∆ϕi =
βi∆q∑
i∈Ic

β2
i

. (3.5)

For this solution, the control nodes close to point p have larger deviations than

others since βi, which depends on the distance between the control node and p,

decreases as the distance increases.

When all points in the set P are independent (in other words, when they

share no control nodes), the solution given in Eq. (3.5) can move each point in P

to its specified position in Q. However, when multiple points in P are influenced

by the same control node, the displacements of B-spline control nodes calculated

for one point may mislead other points to other positions rather than the specified

ones. Without loss of generality, we assume that Ps is a set of points in P which

share a control node i. Thus, the value of ϕi can influence movements of all points

in Ps. Given a point ps in Ps, we can calculate ∆ϕi,s by Eq. (3.5), where ∆ϕi,s is

the required displacement deviation to just move that single point to its specified

position in Q. Since different points in Ps may result in different values of ∆ϕi,s, the

final ∆ϕi can be chosen as a weighted average of all different ∆ϕi,s by minimizing
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∑
s (βi,s∆ϕi − βi,s∆ϕi,s)

2, thus obtaining

∆ϕi =

∑
s β

2
i,s∆ϕi,s∑
s β

2
i,s

. (3.6)

where the point close to the control node have larger influence than others since βi,s

decreases as the distance increases.

It is noted that the solution given by Eq. (3.6) becomes Eq. (3.5) if Ps consists

of only one point. This means that Eq. (3.6) is suitable regardless of whether the

points in P are independent. If we calculate the displacements of control nodes by

Eq. (3.6), the resulting transformation cannot be guaranteed to be invertible. In

order to get an invertible transformation, the displacements calculated by Eq. (3.6)

must be truncated to satisfy that ϕi ≤ h/K. However, this limits the maximum

displacement of each control node, leading to the problem that the above algorithm

cannot always move points in P to their specified positions in Q. This problem can

be overcome by the multi-level B-spline technique described in Section 2.2.1. The

landmark matching is first solved at a coarse control grid. An invertible transforma-

tion can be obtained with the sufficient injective condition although the transformed

points are not exactly deformed to the specified positions. The remaining deviations

can be handled by subsequent deformations with finer control grids.

The LBR approach proposed here is combined with the IBR approach in

a multi-resolution framework. The whole registration is composed of six levels

and starts with the coarsest scales of both images and control grid. The images

and control grids are then alternatively refined until the finest versions. On each

level, LBR is first performed. The resulting transformation is then used as the

starting point to guide IBR in which the transformation is refined based on matching

the intensity patterns of the images. The transformation obtained from IBR is
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then propagated to the next finer level and used as an initial transformation at

that level. In order to ensure local invertibility, the displacement constraints are

imposed during both LBR and IBR on each level. This is explicitly implemented by

truncating the displacement of each control node during LBR while it is implicitly

handled by the L-BFGS-B optimization method during IBR. The whole flow chart

of the proposed hybrid method is given in Figure 3.1.

The transformation produced by LBR is used to guide IBR, which helps the

latter to avoid some local minima. This manner is similar to other commonly used

hybrid registration approaches [45, 59, 60, 78, 82]. However, owing to the consistent

deformation models, in the current hybrid algorithm the additional overhead for the

transition from LBR to IBR is negligible and, more importantly, it is easy to ensure

the local invertibility of the transformation. In addition, the computational cost for

the current LBR is low even when matching a large number of landmarks.

3.2.2 Dynamic Lung Model

Registration-derived warping function can also be used to derive airway geom-

etry at an arbitrary phase by using an suitable interpolation technique. Currently

we assume that voxel trajectories are straight lines and the intermediate deformation

field is defined as [87]

ds(x, t) = s(t)d(x), (3.7)

where d(x) is the registration-derived displacement at the location x from the two

CT images. s(t) is a displacement coefficient and is correlated with the actual respi-

ratory breathing curve (air flow) from the subject as monitored at the mouthpiece.

We recognize that non-straight-line displacement should not be neglected [4].
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Future work is to seek a high-order interpolation technique for multiple lung volumes

to account for non-straight-line displacement.

3.3 Results

The performance of the proposed hybrid algorithm is first evaluated on 2D ar-

tificial binary images in Section 3.3.1. The algorithm is then applied to match pairs

of 3D CT lung data sets in Section 3.3.2. The SSD (Eq. (3.1)) is used for matching

2D artificial binary images with uniform intensity while the SSTVD (Eq. (3.3)) is

used for matching 3D lung CT data sets with variable intensity.

3.3.1 Experiments With 2D Binary Images

The performance of current algorithm is evaluated by two pairs of 2D binary

images. The goal is to demonstrate that the proposed LIBR algorithm has the

ability to recover the large deformations of the images. The results are compared

with those obtained by only LBR or IBR, seen in Figures 3.2 and 3.3. In addition,

TPS-LIBR, where TPS algorithm is used to match the landmarks instead of B-

spline, is also performed for comparison. Each binary image has a size of 128× 128

pixels and a spatial resolution of 1 × 1 mm. The pixel value is set to be 255 for

the object and 0 for the background. In Figures 3.2 and 3.3, column (a) shows the

floating and reference images, where the landmarks are marked and labeled with the

numbers showing the correspondence; columns (b)-(e) show the results obtained by

LBR (b), IBR (c), LIBR (d) and TPS-LIBR (e), respectively. For each approach, the

deformed image and the deformed grid are presented, where the deformed image is

obtained by transforming the floating images from an Eulerian viewpoint while the

deformed grid is obtained by deforming the regular grids from the reference image
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domain to the floating image domain from a Lagrangian viewpoint. The enlarged

views of the deformed grids are also presented to show the details in regions where

large deformations occur.

In Figures 3.2 and 3.3, the objects being mapped are two squares or circles

with the same center point and a staggered pattern of landmarks. The outer square

or circle rotates clockwise by 45o while the inner one rotates anticlockwise by 45o.

In other words, the desirable transformation should be a non-rigid rotation. First of

all, we see that no folding occurs in any deformed grids from (b)-(d), demonstrating

that the transformations are invertible for all LBR, IBR and LIBR. By contrast,

folding occurs in the TPS-LIBR deformed grid, as shown in (e). In addition, we

can see that LIBR not only yields a good alignment over the whole image, but also

avoids some local minima because of utilization of both the intensity and landmark

information. IBR yields better alignment over the whole image than LBR while

IBR fails to recover the non-rigid rotation.

The performance of the proposed LIBR algorithm is further quantified in

Table 3.1 by the landmark distance and metric value of SSD before and after regis-

trations. The landmark distance is used to measure the agreement of the landmarks

and the metric value of SSD is used as a measurement of agreement for intensity

patterns.

In Table 3.1, the initial landmark distance (before registration) is calculated

between the corresponding landmarks in the floating and reference images while

the landmark distance after registrations is calculated between the actual landmark

positions in the floating images and the registration-predicted positions. The initial

SSD (before registration) is calculated between the floating and reference images

and the SSD after registration is calculated between the deformed and reference
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images. It is clear that LIBR yields low SSD values and small landmark mismatch

errors compared with LBR and IBR. In addition, the minimum Jacobian values

(Jmin) are shown in Table 3.1 and they are positive for LBR, IBR and LIBR. The

minimum Jacobian is negative for TPS-LIBR, further demonstrating that folding

of the deformation field exists.

The results above demonstrate that the current LIBR algorithm has the abil-

ity to match both the intensity patterns and the designated landmarks. It also has

the ability to generate an invertible transformation to recover large deformation. In

addition to good performance, the computational cost is low. The total computa-

tional time on a single 3GHz processor is about 0.71 sec, shown in Table 3.1. The

advantage of low computational cost becomes more obvious when a large number

of landmarks are used. A test case was performed by using the “2D circles” case

while choosing 500 even-distributed landmarks on each circle (1000 landmarks in

total). It takes 0.95 sec for the current LIBR while 6.5 min for TPS-LIBR.

3.3.2 Experiments With 3D MDCT Lung Images

In this section, we compare the proposed hybrid method against LBR and IBR

using the same 3D MDCT lung images in Section 2.3.1. In order to evaluate different

approaches, we randomly chose half the landmarks for matching and the rest for

validation for each subject. Figure 3.4 shows an example of the landmark locations,

where segmentations of lungs, vascular and airway trees are automatically obtained

by using a segmentation software package PW2: VIDA Diagnostics (Coralville,

Iowa, USA). It is noted that the beginning point of the trachea is used for both

matching and validation. It is reasonable to assume that these beginning points at

FRC and TLC have the correspondence in these cases since they are close to the
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vocal cord and the trachea is relatively rigid in that region.

Figure 3.5 shows the landmark distance of the validation landmarks before

and after registrations with LBR, IBR and the hybrid across all registration pairs.

The hybrid yields the smallest registration errors since it combines both landmark

and intensity information. A linear mixed model with “method” as the fixed effect

and “subject” as the random effect is used to compare the average landmark errors

among the three methods. The results show that the hybrid yields a significant

improvement against both LBR (with p-value < 0.001) and IBR (with p-value =

0.002). In addition, TPS-Hybrid is used for all six subjects but the registration fails

for two subjects because negative Jacobian occurs after the landmark matching.

Statistical analysis is also performed to compare the average landmark errors by

using TPS-Hybrid and the proposed hybrid based on the other four subjects and

the differences are not statistically significant (with p-value = 0.96). This shows

that the proposed hybrid can produce accurate results as TPS-Hybrid but ensure

local invertibility for large deformation transformations.

Figure 3.6 shows the surface distance map of the registration-predicted FRC

airway tree to the original FRC airway trees for (a) LBR, (b) IBR and (c) the

hybrid. The registration-predicted FRC airway tree is obtained by applying the

transformation to the airway surface mesh at TLC. By comparing these plots, the

hybrid yields the best matching result among all three approaches. LBR can match

the airway tree at bifurcations but it yields a poor matching for the branches. IBR

can match the branches well but it causes a shift at the beginning point of the

trachea, which causes the trachea to erroneously shorten. The large distances in

the distal ends of the airways do not represent mismatches but rather differences

in the FRC vs TLC segmentations. At TLC the airways are detectible further out
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towards the peripheral lung.

3.3.3 Moving Airway Geometry

The moving airway geometry could then be derived based on Eq. (3.7). Fig-

ure 3.7 demonstrates a dynamic airway geometrical model by using the LIBR

method. The four panels shown in Figure3.7 correspond to four different time

points in a breathing curve (t = 0, t = T/6, t = T/3, and t = T/2, with T as the

period), where left and right panels correspond to the lower lung volume and higher

lung volume, respectively.

In addition, we build a dynamic lung model and apply it for CFD simulation

by using a pair of data sets acquired at 85%VC and 55%VC from a normal subject

(the same data sets used in Chapter 4). The lung volume difference between the two

data sets is about 1.5 liters. We derive the geometries, such as airways, lungs, and

lobes, at an arbitrary phase. Figure 3.8 shows the deformed airway at four different

time points (left: t = 0; middle left: t = T/6; middle right: t = T/3; right: t = T/2,

with T as the period). Similarly, we also show the deformed geometries for lungs

and 1D airway tree, see Figure 3.9. The 1D airway tree is generated by a volume

filling method [105]. The CFD simulation with the prescribed airway motions is

performed and the results are shown in Figure 3.10, where the registration-derived

deformation between the two imaged lung volumes is scaled down to a normal quiet

breathing with a tidal volume of 500 ml.

We recognize that non-straight-line displacement and the effect of hysteresis

should not be neglected [4], however, these assumptions might be appropriate since

a high-order parameterization cannot be fully utilized given only a pair of images.

In this work, we aim to demonstrate the capability to develop a dynamic lung model
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based on image registration. This idea can be extended to account for non-straight-

line displacement and hysteretic effects by using multiple lung volumes (or dynamic

lung data sets) and high-order trajectory modeling approach.

3.4 Discussion

In this chapter, we aim to develop a compliant airway model for CFD sim-

ulation. We first proposed a hybrid registration approach to further improve the

alignment of airway geometry by incorporating the airway bifurcation points into

the mass preserving registration. We then used a simple linear interpolation method

to derive airway geometry at arbitrary phases during respiration from two MDCT

volumetric images. Statistical results from 6 registration pairs show that LIBR

yields the significantly improved results compared with LBR or IBR alone. LBR

can match the airway tree at bifurcations but it yields a poor matching for the

branches. By contrast, in spite of a good match in the branches, IBR yields a

shift at the beginning point of the trachea, shortening erroneously the trachea. We

seek to apply this approach to match multiple lung volumes acquired between TLC

and FRC in the same scanning session or over short periods of time and adopt

high-order interpolation to take into consideration to improve the current dynamic

airway model for CFD simulation in future. It is believed that understanding airway

motion and wall shear stress is important in understanding lung pathophysiology be-

cause localized change in tissue stiffness (or compliance) occurs during development

and progression of lung diseases, such as emphysema and/or chronic obstructive

pulmonary disease (COPD), interstitial pulmonary fibrosis (IPF), and asthma.
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Table 3.1: Landmark distance and metric value of SSD before and after registra-
tions with four approaches: LBR, IBR, LIBR and TPS-LIBR for 2D binary image
experiments.

“2D Squares” “2D Circles”

SSDLandmark Distance Jmin Time SSDLandmark Distance Jmin Time

(mm) (s) (mm) (s)

Before Reg. 32.4 22.27±12.66 - - 0.0 27.58±9.49 - -

LBR 11.9 0.0 ±0.0 0.19 0.04 9.5 0.0 ±0.0 0.13 0.10

IBR 1.3 24.44±13.03 0.44 0.56 0.0 27.58±9.49 1 0.19

LIBR 1.4 0.74±0.48 0.34 0.51 1.7 0.68±0.44 0.19 0.71

TPS-LIBR 4.1 0.80±0.40 -0.38 0.54 22.7 0.81±0.36 -0.51 0.84

∗: The minimum Jacobian value (Jmin) and computational time for each approach
are also listed.



56

Image 
Pyramid

11x11

Hierarchy 
Transformation

Model
7x7

11x11

19x19

19x19

35x35

Start

Last Level?

End

yes

LBR with 
local invertibility

IBR with 
local invertibility

no

Level 1

Registration 
Level

Level 2

Level 3

Level 4

Level 5

Level 6

Image 
Pyramid

11x11

Hierarchy 
Transformation

Model
7x7

11x11

19x19

19x19

35x35

Start

Last Level?

End

yes

LBR with 
local invertibility

IBR with 
local invertibility

no

Level 1

Registration 
Level

Level 2

Level 3

Level 4

Level 5

Level 6

Figure 3.1: Sketch of the multi-resolution framework and flow chart of the whole
registration procedure for the hybrid registration approach. The sketch of the frame-
work is illustrated in 2D but the basic idea also works for 3D.
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Figure 3.2: “2D Squares” experiment. Column (a) shows the reference (top) and
floating (middle) images, where the landmarks are marked and labeled with the
numbers showing the correspondence; columns (b)-(e) show the results for regis-
trations with LBR, IBR, LIBR, and TPS-LIBR, respectively. The deformed image
(top), the deformed grid (middle) as well as the enlarged view of the deformed grid
(bottom) are presented for each approach.
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Figure 3.3: “2D Circles” experiment. Column (a) shows the reference (top) and
floating (middle) images, where the landmarks are marked and labeled with the
numbers showing the correspondence; columns (b)-(e) show the results for regis-
trations with LBR, IBR, LIBR, and TPS-LIBR, respectively. The deformed image
(top), the deformed grid (middle) as well as the enlarged view of the deformed grid
(bottom) are presented for each approach.
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Figure 3.4: Illustrate of landmark locations for (a) TLC and (b) FRC from one
subject. The landmarks used for matching are marked by ‘A’ and the landmarks
used for validation are marked by ‘B’. Surface rendering of airways, major vessels
and lungs is shown for reference.
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Figure 3.5: Landmark distance of the validation landmarks before and after regis-
trations with LBR, IBR and Hybrid across all registration pairs.
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Figure 3.6: Surface distance map of the registration-predicted FRC airway tree to
the original FRC airway trees for LBR (a), IBR (b) and Hybrid (c). The original
FRC airway trees are shown in white for reference.
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t=0 t=T/6 t=T/3 t=T/2

Figure 3.7: Airway geometries at four different time points from the dynamic air-
way model for a TLC-FRC image pair with the LIBR method. The lung volume
difference between the two images is 2.4 liters. From left to right: t = 0; t = T/6;
t = T/3; and t = T/2 (T is the period).
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(a) t = 0 (b) t= T/6                       (c) t = T/3                     (d) t= T/2

Figure 3.8: Airway geometries at four different time points from the dynamic airway
model for the 85%VC-55%VC image pair with the LBR method. The lung volume
difference between the two images is 1.5 liters. From left to right: t = 0; t = T/6;
t = T/3; and t = T/2 (T is the period).
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(a) t = 0 (b) t= T/6                       (c) t = T/3                     (d) t= T/2

Figure 3.9: Deformed geometries at four different time points from the dynamic
lung model for the 85%VC-55%VC image pair with the LBR method. From left to
right: t = 0; t = T/6; t = T/3; and t = T/2 (T is the period). Lobes, 3D upper
and center airways, and 1D centerline airways are shown here.
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(a) t/T = 0.15 (b) t/T = 0.5                     (c) t/T = 0.8     (d) t/T = 1.0

Figure 3.10: Velocity contour in a vertical plane at four selected time points from
the dynamic airway model for the 85%VC-55%VC image pair. The registration-
derived deformation between the two scanned lung volumes is scaled down to a
normal quiet breathing with a tidal volume of 500 ml.
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CHAPTER 4

SUBJECT-SPECIFIC BOUNDARY CONDITIONS

4.1 Introduction

CFD has been extensively used to investigate pulmonary air flow in the human

lungs from the large central bronchial airways to the acinar regions. A representa-

tive though not exhaustive list of such studies can be found in [11, 28, 53, 62, 64–

66, 71, 99, 116]. Due to the complexity of the human tracheobronchial tree, most

earlier CFD studies of pulmonary air flow used either the symmetric Weibel model

[120] or the asymmetric Horsfield model [43]. Although these studies provide some

insights into the characteristics of flow in systems of bifurcating tubes, their idealized

airway models lack subject-specific geometrical features for assessing an individual’s

response to inhaled particulates and for better tailoring a treatment plan for the

individual. With rapid advances in medical imaging and computational techniques,

3D realistic airway geometries with major branches derived from high resolution

MDCT images have recently been used in CFD studies [11, 28, 64, 65]. In addition,

one-dimensional (1D) centerline airway models generated from subject-specific lobe

configurations, such as by Tawhai et al. [105], have been used to investigate gas

mixing [106]. However, in most of these studies simple uniform boundary condi-

tions (either uniform velocity, uniform pressure, or uniform flow distribution) were

imposed at the ending airway segments, which may limit the accuracy of the results

due to the inability to take into consideration the realistic non-uniform ventila-

tion and regional lung pathology. Different approaches have also been proposed

with attempts to overcome this boundary condition problem. Nazridoust and As-

gharian [76] have studied particle depositions in a three-generation cylindrical tube
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network using non-uniform outlet boundary conditions which were derived based

upon a mathematical lung ventilation model [10]. De Backer et al. [21] specified

two different pressure values at the ends of the 3D CT-resolved left and right main

bronchi as an approximation of a subject-specific boundary condition. In addition,

3D-impedance coupled approaches, in which the impedance is estimated from a 1D

model in the frequency domain and is transformed into the time domain to define

the pressure at the specific outlet, have also been applied to air flows in the hu-

man respiratory system [17, 70]. However, currently a uniform zero pressure at the

distal end of the alveoli-tissue unit (root of 1D impedance tree) is still assumed in

these 3D-impedance coupled approaches. Recently, Tawhai et al. [108, 109] devel-

oped a soft-tissue-mechanics-based model for elastic deformation of the compressible

lung tissue, in which the local volume change of the peripheral tissue can be used

for setting a flow boundary condition for the 1D centerline airway model. And

Lin et al. [65] proposed a multi-scale CFD framework that couples a 3D MDCT-

resolved central airway tree with a 1D centerline airway tree in a physiologically

and morphometrically consistent manner: the 1D peripheral airway tree serves as

a link between 3D central airway tree and lung parenchyma. With the 1D and 3D

coupling framework, a subject-specific boundary condition can be imposed on the

3D central airways via the 1D tree using the information of regional ventilation.

Regional ventilation has been measured using imaging techniques, such as MR

[86, 115] and xenon CT [13, 14]. Currently MR is only partially quantitative because

of a limited capability for depiction of anatomic detail. MR is also costly, requiring

specialized equipment to hyperpolarize the gas that is used for imaging. Xenon CT

can predict a high resolution ventilation map but it requires the use of expensive

xenon gas and the associated hardware for controlled gas delivery. Alternatively,
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regional ventilation can be generated by registering two volumetric MDCT data

sets [15, 22, 32, 79, 129]. In contrast to MR or xenon CT, such registration-based

analysis of regional ventilation requires only two volumetric data sets of the lung at

different levels of inflation and the resulting ventilation map has a high resolution.

In this chapter, we propose a technique to estimate a subject-specific boundary

condition with two MDCT lung data sets by means of an image registration method.

The derived boundary condition is then applied for CFD simulation of pulmonary air

flow and is compared against two traditional boundary conditions (uniform velocity

or uniform pressure).

4.2 Methods

4.2.1 Method Overview

Figure 4.1 shows a flow chart of the entire process. Two CT volumetric data

sets are acquired at different levels of inflation in the same scanning session. A mass-

preserving image registration is then performed to match the two data sets to derive

a warping function, defined as a voxel-by-voxel displacement, to estimate regional

ventilation. Meanwhile, a subject-specific 1D centerline airway tree is generated

based on the image with larger lung volume using a volume filling method proposed

in [105], by using the lobes as “boundary conditions” and the skeleton of the 3D

CT-resolved central airway tree as “initial conditions”. The registration-derived

regional ventilation map is then associated with the 1D tree to estimate air flow

at the approximately 30,000 terminal branches of the tree. Terminal airway flows

are further used to produce the subject-specific boundary conditions for the 3D

CT-resolved central airway by utilizing the connectivity information between the
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3D airway and the associated downstream 1D airway branches.

4.2.2 MDCT Image Acquisition

The two 3D MDCT volumetric data sets were acquired from a normal human

subject (a 32-year old white non-Hispanic male) with a Siemens Sensation 64 MDCT

scanner (Forchheim, Germany) during breath-holds in a single scanning section.

The protocol was approved by the University of Iowa’s Institutional Review Board.

The subject lay supine and breathed through a mouthpiece during the scanning

session. One volumetric data set was acquired at 85% of vital capacity (VC), referred

to hereafter as the reference image Ir, and the other was at 55% of VC, referred

to hereafter as the floating image If . Each data set consists of 553 slices with a

spacing of 0.6 mm and a reconstruction matrix of 512 × 512 pixels. In-plane pixel

spatial resolution is 0.68 × 0.68 mm2. The two data sets were processed using a

software package Pulmonary Workstation 2 (PW2: VIDA Diagnostics, Coralville,

Iowa) to segment the lungs, lobes and central airways. The segmented airways were

further skeletonized to obtain the centerlines of individual branches.

4.2.3 Registration-Derived Regional Ventilation

The mass preserving nonrigid registration method described in Chapter 2 is

used to match the pair of volumetric MDCT data sets. Once image registration is

performed, we can calculate regional ventilation, which is referred to as the local air

volume difference in this work. The local air volume difference is jointly estimated

from changes in local air fraction along with the registration-derived local Jacobian

value and is written as
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rV(x) = Vr (x) γair (Ir(x))− Vf (T(x)) γair (If (T(x)))

= Vr (x)

[
HUtiss − Ir(x)

HUtiss − HUair

− JT (x)
HUtiss − If (T(x))

HUtiss − HUair

]
. (4.1)

The regional ventilation map describes local air volume changes between two

volumetric data sets. Thus, it can be used to provide a subject-specific boundary

conditions for the 3D central airways in a 3D and 1D coupling framework [65].

4.2.4 Subject-Specific Boundary Conditions

Region ventilation can be used to provide subject-specific boundary conditions

for the 3D central airway in the 3D and 1D coupling framework [65], in which the 1D

airway model serves as a link between 3D central airway and lung parenchyma. The

current 1D airway model is generated using the volume filling method proposed by

Tawhai et al. [105] that takes the lobes as “boundary conditions” and the skeleton

of the 3D MDCT-resolved central airway tree as “initial conditions”. The volume

filling method is a recursive algorithm that fills lobes with bifurcating trees spanning

the entire conducting airway from the ending segments of MDCT-resolved central

airways to terminal bronchioles. At first, a set of seed points, each corresponding

to a region approximately representing a cubic pulmonary acinus, is uniformly dis-

tributed in lungs with the number approximately equal to the expected number of

terminal bronchioles (30,000). The recursive algorithm starts by associating each

seed point to its nearest peripheral branch in the respective lobe. The set of as-

sociated seed points are then divided into two subsets by a plane, defined by two

nodes of the associated branch and the centroid of the set itself. Two daughter

branches are created with direction towards the centroid of the respective subset,
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and length 40% of the distance from the end of its parent branch to the centroid.

This process repeats until all peripheral branches are terminal branches that are

determined based on their lengths (less than a predefined length limit) or the num-

ber of associated seed points (equal to 1). If a branch is determined as a terminal

branch, it would no longer be associated with any seed points and the closest seed

point to its ending node is removed from the global set of seed points.

Since each terminal branch of the 1D airway model is associated with a specific

cubic region of lung, it is reasonable to assume that change of air volume within

the cube is equivalent to air flow for the corresponding terminal bronchiole. Thus,

when a branch is determined as the terminal bronchiole, we calculate the sum of

registration-predicted regional ventilation of all voxels in its associated cubic region

and impose it as the air flow for that branch. By mass conservation the air flow at

the ending segments of the MDCT-resolved 3D central airways can be determined

by summing the air flow of terminal bronchioles with the connectivity information

between the 3D airway and the associated downstream 1D airway branches.

4.2.5 CFD Simulation

Simulations of air flows using the proposed subject-specific boundary condi-

tions can then be performed. Large eddy simulation (LES) was adopted to capture

transitional and turbulent flow. The governing equations consist of the filtered

continuity equation and Navier-Stokes equations for incompressible flow:

∂ūj

∂xj

= 0, (4.2)

∂ūi

∂t
+ ūj

∂ūi

∂xj

= −1

ρ

∂p̄

∂xi

+
∂

∂xj

[
(ν + νT )

∂ūi

∂xj

]
, (4.3)

where ui, p, ρ, ν, and νT are the ith component of velocity, pressure, density,
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kinematic viscosity, and subgrid-scale eddy viscosity, respectively. The density and

the kinematic viscosity of the air are 1.2 kg/m3 and 1.7 × 10−5m2/s, respectively.

The overbar denotes resolved quantities. The eddy-viscosity subgrid-scale model

proposed by Vreman [118] was used to account for the transitional and anisotropic

flow characteristics. A fractional four-step and characteristic Galerkin method based

finite element scheme was employed in solving Eqs. (4.2) and (4.3) [63].

Once the CFD simulation was performed, particle tracking was done as a

post-processing step. Each particle’s motion was individually computed based on

Lagrangian particle tracking equation

∂upi

∂t
= FD(ui − upi) + gi(ρp − ρ)/ρp (4.4)

where i denotes the ith component direction, up is the particle velocity, u is the

fluid velocity, g is the gravitational acceleration, ρp is the particle density equal,

and ρ is the fluid air density. In this work, g is set as (0,−9.8m/s2, 0) and ρp is

set to 1, 200kg/m3. The term FD(ui − upi) is the drag force per unit mass on the

particle and the calculation of FD can be found in [77] and [55]. Equation (4.4) is

integrated to calculate the particle motion. Spherical particles are distributed at the

mouthpiece inlet and particle velocity was initialized to be equal to fluid velocity

plus a small random component. The particle diameter of 10 µ m is selected in this

study to investigate effects of boundary condition on both ventilation and deposition

of the particles, considering that its overall deposition efficiency is about 50% and

oral deposition is only about 10% as we have shown before [55]. A total of 46 LES

data sets were used for particle tracking, with each data set being 0.048s apart. At

each time step increment, the fluid velocity is interpolated between two of the LES

data sets in order to obtain an instantaneous flow field for the particle transport.
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The interpolation method used a second-order approach that utilizes fluid velocity

at each of the four node points of the tetrahedral element containing the particle.

If the shortest distance from the center of mass of the particle to the airway wall is

less than the particle radius, it is considered deposited.

4.3 Results

4.3.1 Registration Accuracy

The mass preserving image registration method has previously been tested

using six pairs of lung MDCT scans in Chapter 2. The registration accuracy in

this work is assessed visually by examining anatomic information. Figures 4.2(a)

to (c) show sagittal sections of the left lung from: (a) the reference image Ir; (b)

the warped image obtained by the registration; and (c) the floating image If at the

same axial locations, respectively. The sagittal sections are oriented such that the

diaphragm is at the bottom, the dorsal surface (nearest the scanner table) is on the

right and the ventral surface is on the left. The comparison of Figures 4.2(a) and

(b) shows good anatomic correlation between the image Ir and the warped image.

4.3.2 1D Centerline Airway Trees

With the segmentation of the lobes and the skeleton of MDCT-resolved central

airway, we can generate the 1D centerline airway trees using the volume filling

method. Figure 4.3(a) shows the surface geometries of the lobes, MDCT-resolved

upper and central airways. These surface geometries are obtained by converting

the segmentation into surface meshes with a Marching Cubes algorithm [67] and

further smoothing the meshes using a without-shrinkage smoothing technique [104].
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Figure 4.3(b) shows the generated 1D centerline airway trees. The 3D MDCT-

resolved upper and central airways with the skeleton (orange) of central airways

are also shown in Figure 4.3(b) for reference. The lobes and lobar airway trees in

both Figures 4.3(a) and (b) are shown in different colors: green for left upper lobe

(LUL), red for left lower lobe (LLL), cyan for right upper lobe (RUL), blue for right

middle lobe (RML) and purple for right lower lobe (RLL).

Once the entire 1D centerline airway tree is generated, we can calculate the

Strahler order for each branch. The Strahler ordering scheme is commonly used for

a tree and it starts at the terminal branches (order 1) and proceeds up towards the

trachea. The parent branch is one order higher than the child branch only if all child

branches are of equal order; otherwise the parent has the same order as the child

branch of the highest order. Morphometric analysis for the human bronchial tree

shows a linear relationship if the number of branch and mean length of branches at

each order are plotted on a log scale against the Strahler order. Figure 4.4 shows

these Strahler-order-based log plots of the number of branches and mean length for

our generated 1D model with regression line shown for each. It is clear that both

plots show log-scaled linear trends.

4.3.3 Regional Ventilation

Registration-derived regional ventilation was validated by comparison with

measured global values: (1) the average Jacobian value and (2) the total air volume

difference. The measured average Jacobian value is defined as the ratio of the total

lung volume of the floating image If to that of the reference image Ir, where the

total lung volumes for images Ir and If are 7.60 liter (L) and 6.09 L, respectively.

The measured total air volumes can be calculated from the total lung volume and
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the average air fraction, where the average air fraction is estimated from average

HU inside the lung with Eq. (1.2). For the images Ir and If used in this study,

the measured total air volumes are 6.72 L and 5.20 L, respectively. Thus, the

measured total air volume difference is 1.52 L between the two images. In contrast

to the measured values, the registration-derived average Jacobian value is calculated

from local Jacobian values in the lungs and the registration-derived total air volume

difference is the sum of local air volume difference of all voxels in the lungs. Table 4.1

shows the comparison between the measured values and the registration-derived

values. It is clear that the registration-derived average Jacobian value matches well

with the measured one and the registration-derived total air volume difference is

also close to the measured value with a small error of 2.6%.

4.3.4 CFD Results

The 3D MDCT-resolved upper airway and central airway tree shown in Fig-

ure 4.3 are used as computational domain for CFD simulation. An unstructured

mesh with 899,465 nodes and 4,644,447 tetrahedral elements was generated. The

whole computational domain was divided into 256 partitions and the simulation was

conducted on the Lonestar cluster at the Texas Advanced Computing Center. The

time step was set to 2.0 × 10−5s, resulting in an average Courant-Friedrichs-Lewy

(CFL) number of about 0.044. Further details of the 3D fluid solver including vali-

dation can be found in [64] and [11]. A flow rate of 0.342 L/s at the peak inspiration

was imposed at the mouthpiece inlet, resulting in a Reynolds number of 1,380 in

the trachea. The outlet boundary conditions at the ending airway segments were

set with the proposed subject-specific boundary condition (case 1), uniform veloc-

ity boundary condition (case 2) and uniform pressure boundary condition (case 3),
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respectively. The reference pressure was selected at the tracheal inlet.

In the trachea and main bronchi, no obvious differences are found for the

mean and turbulent velocity features. The strength and structure of the turbulent

laryngeal jet is similar in all three cases (not shown). However, the differences in

regional distribution of velocity and pressure become noticeable as the air flow is

bifurcated into the airways in downstream generations.

Figures 4.5(a)-(c) show comparison of distributions of outlet velocity and static

pressure for the three cases. The distributions in Figure 4.5(a) for the proposed

boundary condition are more heterogeneous than those of the uniform velocity

boundary condition in Figure 4.5(b) and the uniform pressure boundary condi-

tion in Figure 4.5(c). In particular, the proposed boundary condition predicts much

greater pressure drop at the airways in the LLL and the RLL shown in Figure 4.5(a).

In contrast, the uniform velocity boundary condition yields greater pressure drop

in the RML than others, whereas the uniform pressure boundary condition enforces

the same pressure drop in all five lobes.

Quantitative comparisons of lobar distribution of air flow are presented in

Figure 4.6. The proposed method results in larger deviation between lobes, reflect-

ing the nature of heterogeneity of ventilation in the human lung. The measured

values (the lobar difference of air content) are also shown. The lobar distributions

predicted by the proposed method match well with these measured values with an

overall relative error of 4.79%, seen from Table 4.2. The large relative error for RML

is due to the small measured value for that lobe (0.052). However, the uniform out-

let velocity and uniform outlet pressure methods yield errors of 43.42% and 27.08%,

respectively. The uniform velocity boundary condition results in over-prediction

(more than twice) of the ventilation to the RML, yielding a greater pressure drop



77

in the RML shown in Figure 4.5(b). Both uniform pressure and uniform velocity

boundary conditions under-predict the ventilation to the two lower lobes LLL and

RLL.

In addition, a snapshot of regional distribution of flow velocity and particles

is presented in Figure 4.7 for the comparison among three different boundary condi-

tions. It is observed that at the instant more particles propagate toward upper side

of RMB for the proposed BC, while they are toward the lower wall for the uniform

velocity BC. For the pressure BC case, most particles enter LMB instead of RMB.

Figure 4.8 shows the comparison of particle ventilation and deposition fractions in

five lobes. The lobar particle ventilation fraction is defined by the number of the

particles that enter each lobe over the total number of particles that enter all five

lobes. And the lobar particle deposition fraction is defined as the number of the

particles that deposit in airway branches associated with each lobe over the total

number of particles that deposit in all lobes. As shown in Figure 4.8, lobar particle

ventilation and deposition fractions follow the lobar flow rate fractions. More par-

ticles enter and deposit in the lower lobes than the upper or middle lobes. Lobar

difference of both particle ventilation and deposition are under-predicted by the

uniform velocity and the uniform pressure boundary conditions compared to the

proposed one.

4.3.5 Analysis Of Repeatability

In this chapter, subject-specific boundary conditions are described from a pair

of MDCT lung data sets acquired during breath-holds at different levels of infla-

tion. The registration-derived regional ventilation is passed to 3D central airways

via a 3D-1D airway coupling framework. In the following sections we will discuss



78

the uncertainty due to the generated 1D airway tree and the repeatability of the

registration-based assessment of regional ventilation.

4.3.5.1 Uncertainty Due To 1D Tree Structure

The generated 1D airway tree is served as the link between 3D airway outlets

and parenchyma to describe the boundary conditions at the 3D airway outlets.

We expect that the effects of the generated 1D tree structure on the 3D boundary

conditions should be subtle since the 3D boundary conditions depend on the affected

parenchyma regions, instead of the local 1D airway structures. However, in order

to quantify the uncertainty due to the 1D airway, we generated three different 1D

airway trees (Tree 1, Tree 2 and Tree 3) by adjusting the parameters and calculated

the differences of the resulting 3D outlet boundary conditions among the three

1D airway trees. The results shows that the differences are considered to be not

statistically significant between Trees 1 and 2 (with p-value = 0.9943) and Trees 1

and 3 (with p-value = 0.9898), thus demonstrating that the 3D boundary conditions

are not sensitive to 1D airway trees.

4.3.5.2 Repeatability Of Registration-Based Assess-
ment Of Regional Ventilation

In addition, fourteen human subjects were used to assess the repeatability

of registration-based assessment of regional lung function. For each subject, one

scan was acquired at TLC (90% VC) and the two repeat scans were acquired at

FRC (20% VC). Scans were performed on a multi-detector row CT (Siemens Sen-

sation 64 or Siemens Definition Flash 128: 110mAs, 120kV, pitch=1, slice thickness

= 0.72mm, slice spacing = 0.5mm and voxel size 0.62mm) during breath-holds
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using a pneumotachometer-based volume controller. The mass preserving image

registration was adopted to register the two repeat FRC scans to TLC scan (i.e.

FRC1-TLC, FRC2-TLC) and also register between two repeat FRC scans (FRC2-

FRC1). Regional ventilations were assessed by registration-derived Jacobian values

and air volume changes (AVC), respectively.

The registration results demonstrate similar Jacobian and AVC values between

FRC1-TLC and FRC2-TLC registration pairs, with a mean difference of 0.022 and

0.03, respectively (see Table 4.3). When both FRCs are registered to each other,

mean Jacobian is approximately is 1.03, and AVC is -0.04. Inter-subject variability,

demonstrated through a Bland-Altman plot, show residual clustering around zero,

with most subjects (except subject 2 and 6) within limits of agreement, see Fig-

ure 4.9. The two subjects that were outliers had poor compliance during volume

control and when removed from the cohort, decreased the standard deviation of

the results. The analysis above demonstrates the use of subject-specific image reg-

istration to obtain measurement of regional lung function following repeat breath

holds.

4.4 Conclusion

In this chapter, we described a technique to estimate subject-specific boundary

conditions using a mass preserving image registration. The registration provides an

estimation of regional ventilation from a pair of MDCT lung data sets acquired

during breath-holds at different levels of inflation in the same scanning session.

The registration-predicted regional ventilation map is then associated with a 1D

airway tree model generated by a volume filling algorithm to derive a subject-

specific boundary condition for 3D MDCT-resolved central airway tree in a 3D and



80

1D coupling framework.

In contrast to the idealized symmetric airway models, the real human airways

are asymmetric and boundary conditions most certainly play an important role in

determining the regional distributions of basic flow properties. Advantages of the

current boundary condition have been investigated by comparing the CFD results

using the proposed subject-specific boundary condition against two conventional

boundary conditions (uniform outlet velocity and uniform outlet pressure). It was

found that the proposed method resulted in physiologically reasonable regional dis-

tribution of velocity and pressure, which was not accomplished by the other two

boundary condition methods. We observed that the lobar and the regional distri-

butions of pressure and flow rates in the bronchioles were noticeably affected by

the outlet boundary conditions. Moreover, a potential advantage of the proposed

boundary condition is that, independent of variation of MDCT resolved airways

geometry, 1D airway tree structure is consistently extended to the lung periphery,

providing subject-specific boundary conditions to upstream segments. The uniform

velocity or uniform pressure condition likely leads to inconsistent results when more

or less airway branches are included.

To our knowledge, this work is the first attempt to provide realistic bound-

ary conditions for CFD simulations based upon image registration. The method

proposed here uses two volumetric images of the lungs acquired at different infla-

tion and produces boundary conditions that are specific to the subject and to their

change in regional lung volume. This method can be extended to match multiple

lung volumes acquired between TLC and FRC in the same scanning session, thus

providing a way to develop a computational lung model with realistic time-varying

boundary conditions in a breathing period. In addition, the proposed method would
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benefit from further validation of the registration-derived regional ventilation, such

as comparing with the measurements from xenon CT, or hyperpolarize 3He MR

[13, 14, 29]. The validated technique would then be applicable to studying pul-

monary airflow in subjects with lung diseases that affects ventilation distribution,

such as asthma or chronic obstructive pulmonary disease. In these cases, a next step

will be to adjust the airway model based upon additional image-based information

related to regional tissue destruction [41].
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Table 4.1: Comparison between measured and registration-derived values for aver-
age Jacobian value and total air volume difference.

Average Jacobian value Total air volume difference (liter)

Measured 0.80 1.52

Registration-derived 0.80 1.56

Error percentage (%) 0.0 2.6
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Table 4.2: Relative errors of the lobar distributions of flow rate ratio for the three
outlet boundary conditions against measured values.

Proposed (%) Uniform velocity (%) Uniform pressure (%)

LUL 3.13 38.61 39.19

LLL 0.09 28.81 16.56

RUL 3.86 18.99 1.00

RML 14.73 117.93 67.69

RLL 2.12 12.76 10.94

Overall 4.79 43.42 27.08
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Table 4.3: Mean and standard deviation of Jacobian and air volume change (AVC)
across all subjects for three registration combinations (FRC1-TLC, FRC2-TLC,
FRC2-FRC1).

Mean Standard Deviation

FRC1-TLC Jacobian 0.486 0.057

AVC 0.757 0.135

FRC2-TLC Jacobian 0.503 0.053

AVC 0.734 0.139

Difference Jacobian 0.022 0.027

AVC 0.03 0.037

FRC2-FRC1 Jacobian 1.032 0.068

AVC -0.04 0.091

∗: The differences between FRC1-TLC and FRC2-TLC are also listed.
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Image 2

Image 1

Image Registration
(Mass-Preserving)

Regional Ventilation

Lobes 3D Airway 1D Airway

1D Generation
(Volume Filling) 1D Air Flow 3D BC

Figure 4.1: A flow chart of the entire process to describe subject-specific boundary
conditions.
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(a) Image I1                   (b) Warped Image I2(T(x;φ))             (c) Image I2(a) Image I1                   (b) Warped Image I2(T(x;φ))             (c) Image I2

Figure 4.2: Visual assessment of registration accuracy. A sagittal slice of the left
lung from (a) the image Ir, (b) the warped image obtained by image registration,
and (c) the image If at the same axial locations.
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Figure 4.3: Lobar and airway geometries. (a) Surface geometries of the lobes,
MDCT-resolved upper and central airways for the image Ir. (b) 1D centerline
airway trees generated with the volume filling method. The 3D MDCT-resolved
upper airway, central airway tree and its skeleton (Orange) are also shown in (b)
for reference. Different colors are used in both (a) and (b) for each lobe and lobar
airway: green for left upper lobe (LUL), red for left lower lobe (LLL), cyan for right
upper lobe (RUL), blue for right middle lobe (RML) and purple for right lower lobe
(RLL).
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Figure 4.4: Plots of the number of branches and the mean length on log scales
against Strahler order. Regression line for each plot is also shown.
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Figure 4.5: Outlet velocity vectors (pink) and pressure contours for the three dif-
ferent outlet boundary conditions: (a) proposed; (b) uniform velocity; (c) uniform
pressure.
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Figure 4.6: Lobar distribution of flow rate ratio for the three cases with different
outlet boundary conditions.
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(a) (b) (c)

Figure 4.7: Snapshots of particle transport (black dots) with an isosurface of airflow
speed (1.7 m/s, green contour) for the three different outlet boundary conditions:
(a) proposed; (b) uniform velocity; and (c) uniform pressure.
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Figure 4.8: Lobar distribution of deposition fraction (top row) and ventilation frac-
tion (bottom row) for the three cases with different outlet boundary conditions.
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Figure 4.9: Bland-Altman plot of Jacobian and AVC between FRC1-TLC and
FRC2-TLC registration. Solid line indicates upper and lower limits of agreement
(2*S.D.).
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CHAPTER 5

BREATHING LUNG MODEL

5.1 Introduction

We have previously demonstrated the ability to deform the airway geometry

in Chapter 3 and to estimate the flow boundary condition in Chapter 4 from a pair

of images acquired at two different levels of inflation. Since a linear interpolation

is adopted in those studies, each node of the airway geometry is deformed along

a straight-line trajectory and each outlet remained a constant flow rate ratio with

time. In this chapter, we aim to integrate the approaches proposed in Chapters 3

and 4 to develop an MDCT-based dynamic, subject-specific lung model from three

MDCT data sets acquired at different levels of inflation. A cubic spline interpolation

is utilized to derive the nonlinear wall motion and time-varying boundary conditions.

Such a dynamic lung model will then be constructed for CFD simulations.

5.2 Methods

5.2.1 Method Overview

Figure 5.1 shows a flow chart of the entire process. Three MDCT volumetric

data sets are acquired at different levels of inflation in the same scanning session.

Pair-wise mass-preserving image registration is then performed to match any two

data sets to derive transform functions, defined as a voxel-by-voxel displacement.

Meanwhile, segmentations of 3D CT-resolved airway and lobes of the image with

the largest lung volume (the image I1 in the figure) are obtained and are further

used to generate a subject-specific 1D centerline airway tree using a volume filling
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method. Each terminal bronchiole of the 1D airway tree is assumed to be associ-

ated with a specific cubic region inside the lungs, representing a pulmonary acinus.

The registration-derived transform functions are then respectively used to deform

the airway geometry segmented from the largest lung volume into the domains of

other two lung volumes, establishing the correspondence of the airway geometries.

In addition, air volumes inside each “acinus” associated with a terminal bronchi-

ole in all three lung images are estimated with intensity-based air fractions along

with registration-derived Jacobian values. Interpolations are then adopted to de-

rive the moving airway geometries and time-varying changes in air flows associated

with terminal bronchioles. Subject-specific boundary conditions for the 3D CT-

resolved central airways at the instant are produced based on air flows associated

with 1D terminal bronchioles by utilizing the connectivity information between the

3D airway and the associated downstream 1D airway trees. Thus, the dynamic lung

model with the moving airway geometry and physiological boundary conditions can

be constructed for CFD simulations.

5.2.2 MDCT Image Acquisition

A normal human subject (non-smoker, white non-Hispanic, 20-year old, male)

is used in this study. Subject lay supine and breathed through a mouthpiece dur-

ing the scanning session. The lung volume was well-controlled during the scanning

session with a lab-developed volume controller system and three static volumetric

images were acquired during breath-holds at 20%, 60% and 80% of vital capacity

(VC), denoted by I1, I2 and I3, respectively. The scans were performed with the

following settings for a Siemens Sensation 64-slice MDCT scanner (Forchheim, Ger-

many): 120kV, 75mAs, 0.75 mm slice thickness, 500 mm field of view. The protocol
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was approved by the University of Iowa’s Institutional Review Board. Each data

set consists of 645-772 slices with a spacing of 0.5 mm and a reconstruction matrix

of 512 × 512 pixels. In-plane pixel spatial resolution is 0.65 × 0.65 mm2. All data

sets are processed using a software package Pulmonary Workstation 2 (PW2: VIDA

Diagnostics, Coralville, Iowa) to segment the lungs, lobes and central airways. The

segmented airways are further skeletonized to obtain the centerlines of individual

branches.

5.2.3 Image Registration

Pair-wise image registrations are performed to match any two images to de-

rive transform functions. For each registration pair, a mass-preserving registration

algorithm is adopted. This registration method uses the sum of squared local tis-

sue volume difference (SSTVD) as the dissimilarity measure to account for changes

in image intensities due to lung inflation [128–130]. The transform function is de-

scribed by a composite operation of multi-level B-splines and a sufficient condition

is imposed to ensure a one-to-one mapping even for a registration pair with large

volume difference. Parameters of the transform function are optimized by a limited-

memory, quasi-Newton minimization approach in a multi-resolution framework. In

registering two images, one image is used as the reference image and the other is the

floating image. An optimal transform function, which is defined in the domain of

the reference image, is obtained after the registration. The resulting transform func-

tion can be used to transform the floating image into the reference image domain

from an Eulerian viewpoint, obtaining the warped image. And it can also be used

to deform any meshes in the reference image into the floating image domain from

a Lagrangian viewpoint. The difference of viewpoints in transforming image and
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mesh is because an image is defined in a discrete domain while a mesh is defined in

a continuous domain. In the following sections, for simplicity we will use the words

“warped” and “deformed” to distinguish the transformed image and mesh.

With the pair-wise registration, the transform function T12 is obtained from

the registration pair I1–I2 with I1 as the reference image and I2 as the floating

image, and T23 is from the registration pair I2–I3 with I2 as the reference image

and I3 as the floating image. An composite operation of T12 and T23 is then set as

a start point for the registration pair I1–I3, which has the maximum deformation,

to obtain the transform function T13.

5.2.4 Moving Airway Geometry

Although 3D MDCT-derived airway geometries can be segmented for all three

images, they provide no correspondence information and cannot be used for inter-

polations. With image registration, we can transform the airway segmented from

the image I1 into the domains of images I2 and I3 to obtain the deformed airways at

I2 and I3 using the transform functions T12 and T13, respectively. The segmented

I1 airway, the deformed airways at I2 and I3 have the same node and connectivity

information, thus providing the correspondence information for interpolation. In

addition, the deformed airway will be compared against the airway segmented from

the corresponding image to ensure the accuracy of the mapping.

In order to perform CFD simulation with a moving geometry, intermediate

geometries have to be derived from these three base geometries by interpolation.

Since the images are statically acquired during breath-holds, the time information

has to be artificially modeled. In this work, we assume that the lung motion is cor-

related with the respiratory breathing curve. The time information for each image
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is extracted based on the normalized lung volume and also by assuming that the

image I1 corresponds to the beginning of exhalation and I3 corresponds to the be-

ginning of inspiration. Figure 5.2 shows changes in the normalized inhaled air flow

rate (negative denoted for exhalation) and lung volumes with time in one breathing

cycle. The curve starts from the beginning of exhalation. The three imaged lung

volumes are marked in the breathing curve and the corresponding time information

(t1, t2, · · · , tN) can be extracted for the following interpolations. A simple linear in-

terpolation method has been previously used to derive intermediate airway geometry

from two volumetric images with a straight-line trajectory assumption. However,

it would not be suitable for three images or more since the C1 discontinuities at

the intersections of two segments would result in high discontinuities in the pres-

sure solution. Higher order interpolations on the other hand may lead to overshoot

at the intermediate phases and also involve the solution of an additional equation

system for each vertex. To alleviate these issues we use a constrained cubic-spline

interpolation method, which combines the smooth curve characteristics of spline

interpolation and the non-overshooting behavior of linear interpolation [52]. An

additional benefit of the constrained cubic-spline interpolation is that the resulting

trajectory exactly passes all the base geometries. With the interpolation, airway

geometry at an intermediate phase is independently calculated for each vertex.

5.2.5 Time-Varying Boundary Conditions

In Chapter 4, we have shown that subject-specific boundary conditions could

be estimated for the 3D MDCT-derived central airway from a pair of lung volumes in
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a 3D and 1D coupling framework, in which the 1D airway model serves as a link be-

tween 3D central airway and lung parenchyma. Although it provides physiologically-

meaningful boundary conditions and CFD simulation shows improved results, the

outlets remain constant flow rate ratios during breathing, not sufficient to describe

the non-linear regional ventilation with time. In this chapter, we extend the ap-

proach by using three lung volumes.

The current 1D airway model is generated using the volume filling method

proposed by Tawhai et al. [105]. It takes the lobes as “boundary conditions” and

the skeleton of the 3D MDCT-resolved central airway tree as “initial conditions”.

The lobes are first filled with a group of uniformly distributed seed points, where

each seed point corresponds to a region approximately representing a pulmonary

acinus. The location of the seed points is defined at the largest lung volume (the

image I1 in this work) with the assumption that the lung is uniformly expanded. The

number of seed points is approximately equal to the expected number of terminal

bronchioles (30,000), which also determines the size of each acinus (roughly equal to

the lung volume divided by 30,000). For the subject used in this work, the total lung

volume of the image I1 is 6.08 liters and the size of each acinus is approximately

200 mm3. The algorithm then works recursively by associating the seed points with

the nearest peripheral branch in the respective lobe, calculating the center of mass

of each group of seed points, splitting each group into two using the plane defined

by the “parent” branch and the group’s center of mass, and then creating branches

that point towards the center of mass of the two-point groups. A generated branch

is declared as a terminal bronchiole if it is shorter than a user-defined limit or if it

supplies only a single seed point.

Since each terminal bronchiole of the 1D airway tree is associated with a
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specific cubic region of lung, it is reasonable to assume that change in air volume

within each cube is equivalent to air flow for the corresponding terminal bronchiole.

With the image registration, we can track the air volume within each cubic region

across the three image domains. Let Ωa denote an acinus region in the lung volume

I1. The air volumes inside Ωa at three lung data sets could then be estimated from

intensity-based air fractions along with registration-derived local Jacobian values as

follows:

airV1 =
∑
x∈Ωa

V1 (x) γair (I1(x))

airV2 =
∑
x∈Ωa

JT12(x)V1 (x) γair (I2(T12(x)))

airV3 =
∑
x∈Ωa

JT13(x)V1 (x) γair (I3(T13(x))) (5.1)

where V1 is the volume of a voxel in image I1 and γair(I) is the air fraction, a

function of the intensity value I. Jacobian values JT12 and JT13 reflect the vol-

ume contraction/expansion relative to I1 and can be calculated from T12 and T12,

respectively.

Similarly, with the constrained cubic interpolation, we can derive the air vol-

ume within the same acinus region at any intermediate steps, thus obtaining changes

in air volume associated with each terminal bronchiole. Subject-specific and time-

varying boundary conditions for the 3D CT-resolved central airways at the instant

can then be produced based on the air volume changes associated with 1D terminal

bronchioles by utilizing the connectivity information between the 3D airway and

the downstream 1D airway branches.
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5.3 Results

5.3.1 Registration Accuracy

Figure 5.3 shows the visual comparison of a sagittal section from (a) the

image I1, (b) the warped image of I2, and (c) the warped image of I3 at the same

axial location. The sagittal sections are oriented such that the diaphragm is at the

bottom, the dorsal surface (nearest the scanner table) is on the right and the ventral

surface is on the left. In addition, sections from the original images I2 and I3 at

the same axial location are also shown in (d) and (e), respectively, for reference.

All panels (a)-(e) have the same heights and widths. It is clear to see that the

warped images (b) and (c) have good anatomic correlations with (a), showing that

registrations are able to recover the deformations among the three original images.

5.3.2 Moving Airway Geometry

Figure 5.4 shows 3D airway geometries segmented from the three lung volu-

metric images: Red for I1 (80% VC), green for I2 (60% VC), and blue for I3 (20%

VC). We can see that the airway geometry deforms with changes in lung volumes,

further demonstrating the importance of performing CFD simulation with a com-

pliant airway geometry. As the lung volume decreases, the lengths of the branches

become shorter and the airways contract towards the apex, which results in smaller

airway volume.

To further demonstrate that the registration is capable of recovering the de-

formation of the airway geometries, we compare the airways directly segmented

from I2 and I3 against the airways that are deformed from I1 by using transform

functions T12 and T13, shown in Figures 5.5 and 5.6, respectively. In Figure 5.5
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(a), the airway of I2, shown in green, is superimposed over the deformed airway

at I2, shown in pink. Figures 5.5 (b) and (c) present the comparisons between the

two geometries at two selected cross-sections, where the extracted curves from the

airway of I2 are shown in green and the ones from the deformed airway are shown

as pink dots. Curves extracted from the undeformed airway geometry of I1 at those

two cross-sections are shown in red as a reference. In Figure 5.6 the airway of I3 is

shown in blue and the deformed airway at I3 is shown in orange. Similar to Fig-

ures 5.5(b) and (c), Figures 5.6(b) and (c) show the comparisons of the extracted

curves from the airway of I3 (blue) and the deformed airway (orange dot) at the two

cross-sections, respectively. The undeformed airway geometry of I1 is also shown in

red. These comparisons clearly indicate that the deformed airways obtained from

image registrations match well with the airways segmented from the images, further

proving the registration accuracy. More importantly, the deformed airways are ob-

tained by applying the transform functions onto the I1 airway; thus, they all have

the same node and connective information, establishing the correspondences among

the three domains. The I1 airway, deformed airway at I2, and deformed airway at

I3 can then used as the base geometries for interpolations.

As discussed above, the normalized lung volume is used to extract the time

information for interpolation. The lung volumes estimated from the segmented lung

masks for the three images are 6.08, 5.40 and 3.75 (liters), respectively. Based on the

breathing curve, we can extract the time information in one breathing cycle. With

both the time information and the correspondences built from image registration,

we could derive the dynamic airway geometry with changes in lung volumes.

Owing to the constrained cubic spline interpolation, trajectories of the airway



103

geometry exactly pass the base geometries and C1 continuity of each path is guar-

anteed. By contrast, a linear interpolation would lead to C1 discontinuities at the

intersections of two segments, which would result in high discontinuities in the pres-

sure solution during simulation. In addition, the dynamic model derived from the

three lung volumes here should track the lung motion more precisely by comparing

against the one derived from two lung volumes. A nonlinear interpolation can be

utilized with the three lung volumes while only a linear interpolation is available

with the two lung volumes. It is obvious that a nonlinear interpolation is more suit-

able since the lung motion is nonlinear in nature. To demonstrate the insufficiency

of a linear interpolation, we calculate the interpolated airway at 60%VC using the

linear interpolation between the two lung volumes I1 and I3 and show it (in gray)

in Figure 5.5. It is clear to see the differences between the interpolated airway at

60%VC and the undeformed airway of I2.

5.3.3 Time-Varying Boundary Conditions

Figures 5.7(a) and (b) show the generated 1D centerline airway tree from

coronal and sagittal views, respectively. The 3D MDCT-resolved central airway is

also shown for reference. In addition, Strahler-order-based log plots of number of

branches and mean length for the generated 1D model are shown in Figure 5.8. Both

plots show log-scaled linear trends, consistent with existing morphometric analysis

of the human bronchial tree.

The distributions of air volume associated with each terminal bronchiole are

shown in Figures 5.9(a)-(c) for the three imaged lung volume from a sagittal view.

The unit of air volume is mm3. In Figure 5.9(a) air volume is uniformly distributed

in the whole lung while in Figure 5.9(b) the dependent region (dorsal region) has
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less air volume than the ventral region. In Figure 5.9(c) air volume dramatically

decreases since the total lung volume decreases by 2.33 liters from I1 to I3. In addi-

tion, the gravitational oriented gradient with less air volume in the dependent region

also exists. All these observations follow well recognized physiology of ventilation in

subjects positioned in the supine body posture [73]. For I1, the lung volume is close

to total lung capacity and all alveoli inside the lungs are close to full expansion, thus

leading to uniform air volume distribution. When air is exhaled from the lungs, due

to the motion of diaphragm and the effects of gravitation, the dorsal region collapses

more than the ventral region so that less air is left in the dorsal region, forming the

ventral-dorsal gradient. These can also be used to explain the distribution of air

volume change shown in Figure 5.10. The air volume change (dAirVi) is calculated

relative to the image I1 by dAirVi = airVi−airV1 with i = (1, 2, 3) and it reflects air

flow for each terminal bronchiole. The non-uniform ventilation patterns are clearly

indicated from these results.

The air volume associated with each terminal bronchiole at any intermediate

step can then be derived from the three states by interpolation and the correspond-

ing air volume change (dAirVt) can be calculated. Thus, air flow associated with

each terminal bronchiole at an intermediate phase is obtained and can be passed

to describe flow boundary conditions for the 3D CT-resolved central airways at any

instant in the 3D-1D coupling framework. Again, owing to the high order inter-

polation, the boundary conditions vary with time. To illustrate the time-varying

air flow, Figure 5.11 presents the curves for four selected locations inside the lungs.

The locations are marked with spheres in different colors and the curves of air flows

at the four locations are plotted in the same colors as the corresponding locations.

It shows that air flow associated with terminal bronchioles changes with time, in
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a nonlinear way, and also changes with location in lungs, showing the non-uniform

pattern. At an instant, we can see that air flow is greater in the dorsal region while

smaller in the ventral region, further demonstrating the well-recognized ventral-

dorsal gradient in subjects positioned in the supine body posture [73].

5.3.4 Dynamic Lung Model

By combining the moving airway geometry and the time-varying boundary

conditions, we can obtain the dynamic lung model. The four panels shown in

Figure 5.12 correspond to four different time points in a breathing curve (a: t = 0;

b: t = T/6; c: t = T/3; d: t = T/2, with T as the period), where (a) and (d)

correspond to the lung volumes I1 and I3, respectively. The motion of the airway

geometry and the non-uniform regional ventilation are clearly indicated.

5.4 Discussion

In this chapter, we described a technique to build a dynamic lung model from

three MDCT volumetric data sets acquired at different inflation levels. Pair-wise

mass-preserving image registration was performed to match any two data sets to de-

rive transform functions. The transform functions were then used to deform the air-

way geometries to establish correspondence for interpolation. Comparisons between

the deformed airways and the targets show good agreement. In addition, air volumes

for lung parenchyma at three inflation levels were estimated with intensity-based

air fractions along with registration-derived Jacobian values. Airway geometry and

local air volume map at any intermediate phases during breathing cycles were de-

rived by utilizing a constrained cubic spline interpolation. Boundary conditions for

the 3D MDCT-resolved central airways at any instants were then produced based
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on regional air volume map in a 3D-1D coupling multi-scale framework. Compared

against two lung volumes, a nonlinear interpolation can be utilized for three lung

volumes to account for the nonlinear geometry motion and time-varying boundary

conditions during breathing. Work is ongoing to apply the dynamic lung model for

CFD simulations. Since the airway motion and regional ventilation are derived from

MDCT images, the lung model is subject-specific. With the prescribed motion of

the airway geometry, CFD simulation could be performed using the moving meshes

to study effects of wall motion on flow structures. In addition, the time-varying

boundary conditions derived from three lung volumes account for the nonlinear and

non-uniform ventilation during breathing. Investigation on the effects of non-linear

and non-uniform ventilation on flow patterns will be an interesting study.
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Figure 5.1: A flow chart of the entire process to develop the breathing lung model.
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during a breathing cycle. Locations of the imaged lung volumes are marked on the
curve.



109

(a) (b) (c)

(a) (d) (e)

Figure 5.3: Visual assessment of registration accuracy. A sagittal slice from (a) the
image I1, (b) the warped image of I2, (c) the warped image of I3, (d) the image I2,
and (e) the image I3 at the same axial locations, respectively. All panels have the
same sizes.
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Figure 5.4: 3D MDCT-derived airway geometries segmented from the three lung
volumetric images: Red for I1 (80% VC), green for I2 (60% VC), and blue for I3
(20% VC).
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Figure 5.5: Comparison between the segmented airway from I2 (60% VC) and the
airway deformed from I1 with the transform function T12: (a) whole airway from I2
(green) and the deformed airway (pink); (b) the extracted curves from the I2 (green)
and from the deformed airway (pink dot) at a cross-section in the middle of trachea;
(c) the extracted curves from the I2 (green) and from the deformed airway (pink
dot) at a cross-section after the carina. The undeformed airway geometry from
I1 at those two cross-sections are shown in red in both (b) and (c). In addition,
an interpolated airway at 60%VC using the linear interpolation between the two
lung volumes I1 and I3 is also shown in gray (surface or curves) to demonstrate the
insufficiency of the linear interpolation.
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Figure 5.6: Comparison between the segmented airway from I3 (20% VC) and the
airway deformed from I1 with the transform function T13: (a) whole airway from
I3 (blue) and the deformed airway (orange); (b) the extracted curves from the I3
(blue) and from the deformed airway (orange dot) at a cross-section in the middle of
trachea; (c) the extracted curves from the I3 (blue) and from the deformed airway
(orange dot) at a cross-section after the carina. The undeformed airway geometry
from I1 at those two cross-sections are shown in red in both (b) and (c).
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Figure 5.7: 3D MDCT-resolved airway and generated 1D centerline airway from two
views: (a) coronal and (b) sagittal. The generated airways are shown in different
colors for each lobe: red for left upper lobe (LUL), green for left lower lobe (LLL),
cyan for right upper lobe (RUL), blue for right middle lobe (RML) and pink for
right lower lobe (RLL).



114

Figure 5.8: Strahler-order-based log plots of number of branches and mean length
for the generated 1D model. Both plots show log-scaled linear trends, consistent
with existing morphometric analysis of the human bronchial tree.
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(a) (b) (c)

Figure 5.9: The distributions of air volume associated with each terminal bronchiole
for three data sets: (a) I1, (b) I2 and (c) I3. The unit is mm3.
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(a) (b) (c)

Figure 5.10: The distribution of the air volume change associated with each terminal
bronchiole for three data sets: (a) I1, (b) I2 and (c) I3. The unit is mm3. The
air volume changes are calculated relative to the image I1 and reflect the air flow
associated with each terminal bronchiole.
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Figure 5.11: Time-varying air flows associated with terminal bronchioles for four
selected locations in the lung. The locations are marked with spheres in different
colors and the curves of air flows at the four locations are plotted in the same colors
as the corresponding locations.
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(a) (b) (c) (d)

Figure 5.12: Moving airway geometry and air flow associated with terminal bron-
chioles extracted from the breathing lung model at four different time points in a
breathing cycle: (a) t=0; (b) t=T/6; (c) t=T/3; (d) t=T/2, with T as the period.
(a) and (d) correspond to the lung volume, I1, and lung volume, I3, respectively.
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CHAPTER 6

SUMMARY AND FUTURE WORK

6.1 Summary

In this thesis, we develop MDCT-based dynamic, subject-specific lung model

with realistic deforming airway geometries and physiologically meaningful boundary

conditions and apply it for CFD simulation of air flow.

6.1.1 Mass-Preserving Nonrigid Registration

We first propose a novel nonrigid image registration approach to align CT-

derived lung datasets acquired during breath-holds at different inflation levels when

the image distortion between the two volumes is large. In contrast to the sum of

squared intensity difference, a new similarity criterion, SSTVD, is introduced to take

into account changes in reconstructed HU with inflation. This new criterion aims

to minimize the local tissue volume difference within the lungs between matched

regions, thus preserving the tissue mass of the lungs if the tissue density is assumed

to be relatively constant. A composite of multilevel B-spline is adopted to deform

images and a sufficient condition is imposed to ensure a one-to-one mapping even for

a registration pair with large volume difference. Parameters of the transformation

model are optimized by a limited-memory quasi-Newton minimization approach in

a multiresolution framework. To evaluate the effectiveness of the new similarity

measure, we perform registrations for six lung volume pairs. Over 100 annotated

landmarks located at vessel bifurcations are generated using a semiautomatic sys-

tem. The results show that the SSTVD method yields smaller average landmark
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errors than the SSD method across all six registration pairs.

6.1.2 Moving Airway Geometry

We propose a new B-spline-based hybrid registration framework for pairs of

lung CT datasets with large lung volume differences by incorporating anatomic

landmark information and intensity patterns. A sequence of invertible B-splines is

composed in a multiresolution framework to ensure local invertibility of the large

deformation transformation and a physiologically meaningful similarity measure is

adopted to compensate for changes in voxel intensity due to inflation. Registrations

are performed using the proposed approach to match six pairs of 3D CT human lung

datasets. Results show that the proposed approach has the ability to match the

intensity pattern and the anatomical landmarks, and ensure local invertibility for

large deformation transformations. Statistical results also show that the proposed

hybrid approach yields significantly improved results as compared with approaches

using either landmarks or intensity alone. By using the registration-derived defor-

mation field we demonstrate the ability to develop a dynamic airway model.

6.1.3 Subject-Specific Boundary Conditions

A novel image-based technique is then presented to estimate a subject-specific

boundary condition for CFD simulation of pulmonary air flow. The information of

regional ventilation for an individual is derived by registering two CT lung datasets.

And it is then passed to the CT-resolved airways as the flow BC within a 3D-1D

couping framework, where the 1D airway model serves as a link between 3D cen-

tral airway and lung parenchyma. The CFD simulations show that the proposed
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method predicts lobar volume changes consistent with direct image-measured met-

rics, whereas the other two traditional boundary conditions (uniform velocity or

uniform pressure) yield lobar volume changes and regional pressure differences in-

consistent with observed physiology.

6.1.4 Breathing Lung Model

At last, we develop MDCT-based, subject-specific breathing lung models

from three CT volumetric datasets with different inflation levels. Pair-wise mass-

preserving image registration is performed to match any two datasets to derive

transform functions. The transform functions are then used to deform the airway

geometry and established correspondence for interpolation. Comparisons between

the deformed airways and the targets show good agreement. In addition, regional air

volumes for lung parenchyma at three inflation levels are estimated with intensity-

based air fractions along with registration-derived Jacobian values. Airway geome-

try and regional air volume change map at any intermediate phase are then derived

by a constrained cubic spline interpolation. Physiological boundary conditions for

the 3D CT-resolved central airways at any instant are then produced based on re-

gional air volumes. Compared against two lung volumes, a nonlinear interpolation

can be utilized for three lung volumes to account for the nonlinear geometry motion

and time-varying boundary conditions during breathing.

6.2 Future Work

The problems which need further investigation are discussed below.
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6.2.1 Effects Of Airway Branching Patterns

It is well recognized that there are distinct variations in the human airway

tree branching pattern. However, little is known about the role that such branching

patterns may play in airflow dynamics including effects on inhaled particle depo-

sition. With the established framework for the breathing lung model, it is now

possible to compute airflow in physical domains that are anatomically accurate and

subject specific, enabling inter-subject comparisons. Effects of airway branching

patterns, ages, and gender on regional ventilation and flow dynamics could then be

investigated.

6.2.2 Effects Of Gas Properties

The subject-specific boundary conditions are estimated based on local air

volume changes obtained from non-contrast MDCT images with different inflation

levels. Different gases, such as xenon, helium, have been used as agents for as-

sessments of regional ventilation in medical imaging and also for enhancement of

pharmaceutical drug aerosol delivery. However, those gases have different proper-

ties from air and not much is currently known about the effects of gas properties

on flow structures, regional ventilation, and particle transport.

We have previously compared MDCT and MRI-based assessment of regional

ventilation by using three normal non-smoking human subjects. For each subject,

two volume-controlled MDCT scans were acquired at FRC and TLC and a volume-

controlled HP 3He static MRI scan was acquired at TLC. A mass preserving image

registration algorithm was adopted to match both MDCT scans to estimate local air

volume change (AVC), which is jointly estimated from changes in local air fraction

along with the registration-derived Jacobian values. Registration-based ventilation
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was then compared against the distribution map of HP 3He gas. The preliminary

results have shown that the MDCT-based assessment and MRI assessment of re-

gional ventilation are qualitatively similar, as in Figures 6.1 and 6.2. However,

discrepancy can be observed in the ventral lung regions where MRI shows patches

of much greater ventilation than MDCT, possibly arising from the gas density dif-

ferences (helium 0.34 kg/m3 vs. room air 1.2 kg/m3), leading to higher ventilation

of ventral lung portions in the HP 3He MRI. These findings are consistent with pre-

vious CFD simulations of helium wash-in, which has shown the lighter gas is pushed

towards the non-dependent regions [62]. It might be desirable to further investigate

the effects of gas properties on regional ventilation. In addition, it is also be inter-

esting to study such gas effects using MDCT. Different pairs of volumetric scans

can be acquired with different gases (SF6, helium, air, respectively) and regional

ventilation maps can be estimated by image registration. The estimated regional

ventilation maps could then be used to describe boundary conditions for different

gases, providing physiologically meaningful boundary conditions to investigate gas

effects on flow structure and particle depositions.

6.2.3 Accounting For Lobar Sliding

It is well known that human lungs are separated into five lobes and lobes

can slide against the chest wall and adjacent lobes [81]. However, most registration

algorithms assume or imply a continuous and smooth deformation field, which might

introduce unphysiological artifacts near object interfaces if the adjacent objects

slip against each other. Thus, developing physiologically meaningful registration

algorithms that account for discontinuities is becoming an important issue [23, 46,

89, 90, 124, 126].
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Recently, we have proposed two approaches to account for discontinuities near

lobar fissures. The first one is to register regions of interest (lobes in our cases)

separately with segmentation masks [23]. Voxels outside of the region of interest are

not taken into consideration during registration or are set to a uniform value before

registration to form a high intensity contrast on the border. By this means this

method avoids inter-object regularization and match corresponding borders with an

implicit penalty of the high intensity contrast between object and “background”.

Once the registration is performed, lobar sliding is estimated by evaluating the

relative displacement on both sides of the fissure. Figure 6.3 shows the displacement

profile of the tangent component along a line perpendicular to the fissure surface at

three different locations (near the apex, near the lingula and near the base) for both

the whole-lung-based (square) and the lobe-based (circle) methods. It is clear to see

increasing sliding (larger discontinuity) in the more basal positions when using the

lobe-by-lobe analysis. However, these discontinuities are not apparent when using

the lung-by-lung analysis.

Although such mask-based registration method accounts for lobar sliding, it

requires a complete interface between two adjacent objects. Commonly, incomplete

lobar fissures are observed in human lungs and the degree of incompleteness ranges

from nearly complete absence to nearly complete presence of the fissure [69]. This

means that lobes might be only partially separated and, thus, mask-based regis-

tration method would be incapable of dealing with incomplete fissures. A new

registration algorithm was then proposed to deal with discontinuities near incom-

plete lobar fissures [131]. Discontinuities are accounted for by a spatially variable

diffusive regularization. In addition, a distance penalty term is incorporated with

the similarity term to explicitly match both intensity and interfaces. The new
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method is evaluated using 2D synthetic examples with complete or incomplete “fis-

sures”, and results show that it is capable of capturing discontinuity of deformation

in both normal and tangent directions, see Figure 6.4. An important next step

is to apply the proposed method to datasets with both complete and incomplete

fissures to investigate the influence of degree of fissure incompleteness on regional

lung mechanics, which will help improve the breathing lung model.
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High

Low

Subject A: female, 41 years, 2.47-liter volume change between two MDCT scans

3He MRIAVC MDCT 3He MRIAVC MDCT

Subject B: male, 57 years, 3.10-liter volume change between two MDCT scans 

Subject C: female, 41 years, 2.52-liter volume change  between two MDCT scans

Figure 6.1: Comparisons between MRI-based 3He distribution and MDCT-based
AVC map for three subjects. Two transverse sections are shown for each subject.
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Figure 6.2: Normalized mean AVC or 3He ventilation as a function of normalized
lung height (dorsal-ventral) for three subjects. There are similar but not identical
distribution patterns. 3He is consistently higher in the ventral lung regions (blue
oval), possibly due to gas properties.
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(a) Subject A with volume change = 3.2 Liters

(b) Subject B with volume change = 2.3 Liters

(c) Subject C with volume change = 2.4 Liters

Figure 6.3: Displacement profile of tangent components along a line perpendicular to
the fissure surface at three different locations (left: near apex; middle: near lingula;
and right: near base) for both the whole-lung-based (square) and the lobe-based
(circle) methods.
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“Complete Plane-Parabolic”                   “Complete Plane-Plane”                 “Incomplete Plane-Plane”

Figure 6.4: Top row shows the sketches for 2D synthetic cases. Left: Complete
Plane-Parabolic, a complete plane “fissure” is deformed into a parabolic surface;
Middle: Complete Plane-Plane, a complete plane “fissure” is deformed with changed
orientation; Right: Incomplete Plane-Plane, an incomplete plane “fissure” is de-
formed with changed orientation. A pair of adjacent points on the initial interface
(marked by filled and unfilled squares on the solid lines) is deformed into corre-
sponding points on the dashed lines. A reference line A-A is marked in red. The
bottom row shows the comparisons of x− and y-components of displacements (u, v)
between predicted results and exact solutions along A-A from left to right for the
three cases, respectively. It can be seen that overall the proposed approach could
recover the true deformation field for all the three cases. Discontinuities of both
normal (u) and tangent (v) components of displacements for cases with complete
or incomplete “fissures” are captured and are consistent with the ground truth.
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