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ABSTRACT 

Improving performance of wind turbines through effective control strategies to 

reduce the power generation cost is highly desired by the wind industry. The majority of 

the literature on performance of wind turbines has focused on models derived from 

principles versed in physics. Physics-based models are usually complex and not accurate 

due to the fact that wind turbines involve mechanical, electrical, and software 

components. These components interact with each other and are subjected to variable 

loads introduced by the wind as well as the rotating elements of the wind turbine.  

Recent advances in data acquisition systems allow collection of large volumes of 

wind energy data. Although the prime purpose of data collection is monitoring conditions 

of wind turbines, the collected data offers a golden opportunity to address most 

challenging issues of wind turbine systems. In this dissertation, data mining is applied to 

construct accurate models based on the turbine collected data. To solve the data-driven 

models, evolutionary computation algorithms are applied. As data-driven based models 

are non-parametric, the evolutionary computation approach makes an ideal solution tool. 

Optimizing wind turbines with different objectives is studied to accomplish different 

research goals. 

Two research directions of wind turbines performance are pursued, optimizing a 

wind turbine performance and optimizing a wind farm performance. The goal of single 

wind turbine optimization is to improve wind turbine efficiency and its life-cycle. The 

performance optimization of a wind farm is to minimize the total cost of operating a wind 

farm based on the computed turbine scheduling strategies. 

The methodology presented in the dissertation is applicable to processes besides 

wind industry. 
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ABSTRACT 

Improving performance of wind turbines through effective control strategies to 

reduce the power generation cost is highly desired by the wind industry. The majority of 

the literature on performance of wind turbines has focused on models derived from 

principles versed in physics. Physics-based models are usually complex and not accurate 

due to the fact that wind turbines involve mechanical, electrical, and software 

components. These components interact with each other and are subjected to variable 

loads introduced by the wind as well as the rotating elements of the wind turbine.  

Recent advances in data acquisition systems allow collection of large volumes of 

wind energy data. Although the prime purpose of data collection is monitoring conditions 

of wind turbines, the collected data offers a golden opportunity to address most 

challenging issues of wind turbine systems. In this dissertation, data mining is applied to 

construct accurate models based on the turbine collected data. To solve the data-driven 

models, evolutionary computation algorithms are applied. As data-driven based models 

are non-parametric, the evolutionary computation approach makes an ideal solution tool. 

Optimizing wind turbines with different objectives is studied to accomplish different 

research goals. 

Two research directions of wind turbines performance are pursued, optimizing a 

wind turbine performance and optimizing a wind farm performance. The goal of single 

wind turbine optimization is to improve wind turbine efficiency and its life-cycle. The 

performance optimization of a wind farm is to minimize the total cost of operating a wind 

farm based on the computed turbine scheduling strategies. 

The methodology presented in the dissertation is applicable to processes besides 

wind industry.
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ŷ  Predicted value of a parameter in model validation 

y Observed value of a parameter in model validation 

h Index of wind speed scenarios 

j Iteration number in the particle swarm algorithm 

l Index of swarm locations in migrated particle swarm optimization 

b Number of locations in migration procedure of migrated particle swarm 

optimization 

m Number of particles in flight procedure of migrated particle swarm optimization 
j

lx  Position of particle l at iteration j 
j

lv  Velocity of particle l at iteration j 

ˆ j
lx  The local best of particle l at iteration j 

ˆ jg  The global best of particles at iteration j 

( )j
lfit x  Fitness value of particle l at iteration j 

ˆ( )j
lfit x  Fitness value of the local best of particle l at iteration j 

ˆ( )jfit g  Fitness value of the global best 

1 2,j jr r  Random vectors generated from uniform distribution in the interval [0,1] 
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ω Inertia of the particle swarm algorithm 

c1, c2 Constants used to update particle’s velocity  
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CHAPTER 1 

INTRODUCTION 

Renewable energy has been vigorously debated and pursued in the past decade. 

The growing public awareness of the environmental concerns, limited energy supply, and 

uncertain energy prices has spearheaded this debate.  

Wind energy has experienced a remarkable expansion in the past years. The 

global cumulative capacity of wind power generation has increased 20 times in a ten year 

period and is expected to grow even faster in the future. In 2008, the U.S. Department of 

Energy announced an ambitious goal for wind energy to produce 20% of electricity by 

2030. However, the challenge for wind energy generation is to be cost competitive with 

the energy produced from the conventional sources. The cost of wind generated power is 

largely derived from the turbine installation cost and the operation and maintenance 

(O&M) cost. Therefore, reducing the cost of installation and O&M makes wind power 

more cost-attractive. In this dissertation, performance of wind turbines is studied with the 

aim of reducing the O&M cost and thus lowering the cost of wind power generation. 

To improve wind turbine performance, models of wind turbines are investigated. 

Although various approaches have been studied to model conventional power systems, 

most of them are not applicable to modeling wind turbine systems. The main reason is 

that the static and dynamic characteristics of large-scale wind turbines differ from the 

conventional power plant systems. Therefore, novel theories for modeling wind turbine 

systems are needed. 

To solve emerging problems in the rapidly expanding wind energy industry, wind 

energy research has intensified in recent years. The published literature with wind energy 

can be categorized into, design of wind turbines (Laino et al. 1993; Saranyasoontorn and 

Manuel 2004), the design and reliability of wind farms (Barthelmie et al. 2007; Mora et 

al. 2007; Leite et al. 2007), control of wind turbines (Senjyu et al. 2006; Ko et al. 2008; 

Johnson et al. 2006; Munteanu et al. 2005), the prediction of wind power (Ko et al. 2008; 
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Mutlu et al. 2009), wind energy conversion (Kusiak et al. 2009b; Kusiak et al. 2009c) 

and condition monitoring of wind turbines (Kusiak et al. 2009d; Kusiak et al. 2009e). 

Although the wind turbine efficiency topic has been studied in the literature, several 

shortcomings can be noted. The wind power generation cost can be considered from two 

perspectives, the efficiency of power generation and the O&M cost of the wind turbine. 

Therefore, simply improving the efficiency of wind power generation cannot reduce the 

power generation cost as the cost of turbine consumed mechanical components may 

increase. Another shortcoming is that improving the performance model of a wind 

turbine does not easily scale up to that of a wind farm. Numerous factors, such as 

electricity demand, wind speed, and electricity price might impact the performance of a 

wind farm. Scheduling wind farms needs to be investigated. Moreover, the majority of 

the published studies about control of a wind turbine system involve Physics-based 

models. Since such models usually involve stringent assumptions, they do not adequately 

model working systems.   

Three research goals are set for this dissertation. The first goal is to develop 

nonlinear and non-parametric models accurately capturing performance of wind turbines. 

The wind turbine performance is expressed by the amount of the generated power and the 

level of turbine vibration. Since wind turbine vibration impact performance and life-cycle 

of wind turbine components, such as a gearbox, it is considered as an indicator of 

mechanical component usage. The second goal is to optimize wind turbine performance 

based on the developed models. Unlike the previous two goals that concentrate on a 

single turbine, the third goal is to improve performance of a wind farm. 

1.1 Wind Turbine Vibration and Power Generation 

In the published literature, wind turbine vibration and power generation have been 

studied as two independent topics. The published research on wind turbine vibration has 

primarily focused on the models derived from the first principles. Leithead and Connor 
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(2000) studied dynamics of variable speed wind turbines and design of models to control 

wind turbines. Fadaeinedjad et al. (2008) investigated the impact of voltage sag on 

vibration of the wind turbine tower. They used three simulation programs, TrubSim, 

FAST and Simulink, to model wind turbines. Murtagh et al. (2008) investigated control 

wind turbine vibration by incorporating a passive control device. A passive control 

method using a tuned mass damper to mitigate vibrations of the blades and tower of a 

wind turbine was introduced. Hansen et al. (2006) discussed the estimation of aeroelastic 

damping of operational wind turbine modes based on experiments. Hansen et al. (2003) 

also presented analysis of vibrations in a three-blade wind turbine. Molinas et al. (2010) 

addressed extending the life of a gearbox by smoothing the transient generator torque to 

control vibration. Although first principles based models provided solid foundation of 

understanding the nature of wind turbine vibration, the real wind turbine vibration cannot 

be fully reflected due to the assumptions and the diverse source of wind turbine vibration 

(Wowk 1991). 

Predicting wind power is an important direction of the wind energy research since 

wind power prediction is critical to power system reliability and handling variability of 

the generated power (Bathurst et al. 2002). Long-term wind speed and power prediction 

is of interest to management of energy distribution (Barbounis et al. 2006). Short-term 

prediction of wind turbine parameters is key to anticipatory control of wind turbines 

(Senjyu et al. 2006) and on-line monitoring (Kusiak et al. 2009d, Kusiak et al. 2009e).  

Numerous approaches for predicting wind speed and power generated by wind 

turbines have been developed. Potter and Negnevitsky (2006) presented an adaptive 

neuro-fuzzy system to forecast wind speed considering both wind speed and direction. 

Boukhezzar et al. (2006) presented the estimation of wind speed based on the 

aerodynamic torque. Louka et al. (2008) applied Kalman filters as a post-processing 

method to enhance wind speed prediction. Flores et al. (2005) employed neural networks 

for wind speed prediction in time-scales can vary from 1 minute to an hour and designed 
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a control system for active power generation. El-Fouly et al. (2008) developed a linear 

time-series based models to predict both wind speed and direction. Damousis et al. 

(2004) used a fuzzy logic model trained by a genetic algorithm to predict wind speed and 

power over 0.5 to 2 hour horizons. 

Based on the predicted wind speed, wind power models are conducted for wind 

power prediction. Sideratos and Hatziargyriou (2007) presented an advanced statistical 

method for wind power forecasting 48 hours ahead based on artificial intelligent 

techniques. Bessa et al. (2009) reported the adopting entropy concepts to the training of 

neural network to build hourly based power prediction model. Kariniotakis et al. (1996) 

developed a recurrent high order neural network for building power prediction models 

based on 10-minute average data.  

Besides the power prediction, wind power models are also discussed in the power 

optimization research. Boukhezzar and Siguerdidjane (2009) presented a non-linear 

controller for optimizing the power of the DFIG (Doubly Fed Induction Generator). 

Wang and Chang (2004) investigated an intelligent power extraction algorithm for 

improving the performance of wind turbine systems. Morimoto et al. (2005) researched 

the maximization of wind-turbine-generated power by controlling the current vector of 

the interior, permanent-magnet, synchronous generator. Muljadi and Butterfield (2001) 

addressed operating a variable-speed wind turbine with pitch control to maximize power 

while minimizing the loads. Moyano et al. (2009) adopted an operation strategy to 

optimize wind power on a wind park control level. 

In the published literature, statistical, Physics-based and control theory based 

wind power models are widely discussed. However, the drawback of such models is also 

obvious. Assumptions, delay of feedback loop and delay of measuring wind speed impair 

the results of power estimation. 
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1.2 Wind Farm Scheduling Problem 

The ultimate goal of wind energy research is to save cost of operating wind farms. 

Progress on scheduling wind turbines is highly demanded by the wind industry. However, 

due to variability of electricity prices, grid demand, wind speed as well as heterogeneity 

of wind turbines, determining a sequence of activating or de-activating turbines in a wind 

farm is a challenge. 

A commercial wind farm usually involves a large number of wind turbines (e.g., 

100 or more) and each wind turbine performs uniquely even if all turbines are produced 

by the same manufacturer. Various reasons could contribute to the heterogeneity 

(difference in performance) of wind turbines. The location of a turbine, terrain, turbine-

turbine interactions, different component suppliers and maintenance regimes are example 

factors contributing to this heterogeneity. Thus, for a wind farm operator, it is necessary 

to know which turbine is less efficient so that it could be turned on or off at appropriate 

time. Power curves constructed from field data are good indicators of turbine’s actual 

performance (Manwell, et al. 2002) and therefore could be incorporated into an 

optimization model to assist operators in scheduling wind turbines. 

This topic of scheduling wind turbines is new and it differs from dispatching 

power generated by traditional power plants. One of the reasons is that fuel (the wind) is 

free and therefore the desire to keep wind turbines running makes scheduling wind 

turbines seemingly less important. Yet, as the number of wind farms is growing, 

operating them at maximum capacity is not always possible and profitable. Power 

curtailment, fluctuation of electricity price, and heterogeneity of wind turbines need to be 

considered while determining the capacity at which a wind farm should be operated. 

Classical scheduling models have usually been studied in the context of manufacturing 

applications (Ouelhadj and Petrovic, 2009). However, scheduling wind farms has not 

been investigated. 



6 
 

 
 

The published literature related to wind farm scheduling only focuses on 

determining the power generation schedule of a wind farm integrated with other power 

plants, such as coal-fired plants, hydroelectric plants, where the total grid demand is 

usually fixed or known before (Ren and Jiang, 2009; Siahkali and Vakilian, 2009). A 

wind farm is treated as a power generation unit in the scheduling. Scheduling wind 

turbines of a wind farm is ignored in the previous research. 

1.3 Computational Intelligence 

New theories and advances in computational intelligence offer alternatives to 

model energy systems and solve complex optimization problems.  

In combustion energy, Chu et al. (2003) applied a neural network approach to 

speed up the trial-and-error process of obtaining optimal operating points optimizing 

combustion process. Rusinowski et al. (2002) focused on finding an optimal travelling 

rate of the grid and an optimal height of the fuel layer. Büche et al. (2002) applied an 

evolutionary computation algorithm to find an optimal design of a burner to reduce NOx 

emissions as well as pressure fluctuation. Wang et al. (1997) applied a naïve intelligent 

control algorithm to determine the best air supply for a boiler. Cass et al. (1997) 

combined the neural network and evolutionary computation techniques to determine an 

optimal fuel/air ratio. 

In wind energy, Kusiak et al. (2009a) applied data mining and evolutionary 

computation to optimize the control of wind turbines. Li et al. (2008) introduced a hybrid 

genetic and immune algorithm to solve the optimization problem of internal electric 

connection system of large offshore wind farms. Prats et al. (2000) applied fuzzy control 

techniques to improve wind energy capture for variable speed and variable pitch wind 

turbines. Sareni et al. (2009) developed multi-objective genetic algorithm to study the 

optimal design of a small passive wind turbine generator by considering the size, power 

generation and other issues. 
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Modeling and optimization based on computational intelligence usually require 

expensive computations. Therefore, appropriate parameter selection strategies are needed 

to select more useful parameters from a large dataset to save the computational cost. 

1.4 Meta-control of Wind Turbine Performance with Data 

Mining 

Supervisory Control and Data Acquisition (SCADA) system routinely collect 

wind turbine data sensed by numerous sensors mounted on the wind turbines and store 

them to a database. The large volume of SCADA data contains rich information of wind 

turbine systems and can be utilized to analysis, modeling, optimization and diagnosis of 

wind turbine systems.  

An emerging science, data mining, which offers advantage in data analysis and 

modeling is applied to study the SCADA data. The successful applications and 

advantages of data mining can be observed from the previous literature and our research. 

Ogilvie et al. (1998) applied an association-rule algorithm to look for strong relations 

among the measured parameters. The inducted rules were intended to build an expert 

system. Lu et al. (2005) applied a data mining approach to forecast electricity market 

price spikes based on the various parameters that influence the price, which can be used 

to schedule a power production. Other successful applications of data mining in 

manufacturing, marketing, and medical informatics were reported by (Harding et al. 2006; 

Berry and Linoff 2004; Shah et al. 2006). In our previous research, the modeling 

capability of data mining has been proven in various applications such as combustion 

systems (Kusiak and Song 2008; Song and Kusiak 2010) as well as heating, ventilation, 

and air conditioning systems (Kusiak et al. 2010a,b). Therefore, in the research of single 

wind turbine system, data mining algorithms are employed to develop models precisely 

depict wind turbine performance. Next, the data driven based wind turbine models are 

integrated to construct a wind farm model for the study of scheduling a wind farm.  
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Both wind turbine control and wind farm scheduling are optimization problems. 

As data driven models are invisible and canonical optimization algorithms are 

incompatible to solve them, more advanced optimization methods, computational 

intelligence, are considered to obtain the optimal solution in this study. 

At present, there is no standard approach to evaluate wind turbine performance. In 

this dissertation, performance of wind turbine systems is described by two parts, the 

generated wind power and wind turbine vibration. Wind turbines are controlled to 

achieve to objectives, maximization of power and minimization of wind turbine vibration. 

 

 

 

 

 

 

 

 

Figure 1.1 Structure of the dissertation. 

 

Figure 1.1 shows the dissertation structure. Two major research topics are 

introduced in this dissertation. The first research topic presented in Chapters 2 – 5 focus 

on the control of a single wind turbine. To model wind turbine systems in the first 

research topic, seven data mining algorithms, Neural Network (NN), Neural Network 

Ensemble (NNE), Support Vector Machine (SVM), Classification and Regression Tree 

(CART), Boosting Tree (BT), Random Forests (RF) and k Nearest Neighbors (kNN) are 

utilized. Chapter 6 and 7 present the second research topic, control wind turbines from a 

wind farm perspective. 

Meta control of wind turbines

Single wind turbine control Wind farm scheduling

Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7
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In Chapter 2, the optimization of wind turbine performance based on an 

anticipatory control model is discussed. Both maximizing wind power generation and 

minimizing the drive-train and tower vibration are considered in the optimization. The 

drive-train and tower vibration is represented by the vibratory acceleration of drive-train 

and tower measured with accelerometers. 

Chapter 3 introduces an adaptive approach to wind turbine control. It is designed 

to achieve a balance between power optimization and smooth drive train control in 

response to the changes in wind speed and electricity demand. The smoothing of the 

drive train is accomplished by minimizing the torque ramp rate. 

In Chapter 4, a new power optimization constraint constructed based on control 

chart theory is introduced to the optimization of wind turbine power generation process. 

Two optimization objectives, maximizing wind power and minimizing the power ramp 

rate, are discussed. To prove that the framework of wind turbine control in Chapter 2 – 4 

can be extended to other applications, Chapter 5 presents the application of the 

framework in the optimization of pump systems in a wastewater processing plant. 

Chapter 6 presents a model to schedule wind turbines in a wind farm. A 

scheduling model determines activation/deactivation status of individual wind turbines to 

cope with the varying electricity prices, wind speed, and grid demand. Due to the 

complexity of the scheduling model, an enhanced particle swarm algorithm is introduced 

to compute the optimal solution. In Chapter 6, the power generation process of various 

wind turbines is simply described by power curve models. More advanced models can 

accurately depict the power generation process are needed to develop a more applicable 

wind farm scheduling model. Therefore, in Chapter 7, data mining algorithms are 

employed to develop wind power generation models for the wind farm scheduling 

problem. 
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CAPTER 2 

CONTROL OF WIND TURBINE POWER AND VIBRATION WITH A 

DATA DRIVEN APPROACH 

2.1 Introduction 

Improving performance of wind turbines is of interest to the wind energy industry 

as it provides an opportunity to reduce the cost of generating electricity. This cost is 

largely determined by the efficiency of wind turbines and maintenance of the equipment 

(U.S. Department of Energy 2008).  

This chapter investigates the optimization of wind turbine performance in based 

on an anticipatory control model (Kusiak et al. 2009a; Camacho and Bordons 1999; 

Rossiter 2003). Both maximizing wind power generation and minimizing the drive-train 

and tower vibration are considered in the optimization. The drive-train and tower 

vibration is measured with accelerometers. The task of modeling the power generation 

process and wind turbine vibration is challenging. In conventional analysis, the first 

principles and aerodynamics are frequently applied. However, assumptions made by the 

classical analysis approach limit its practical applications. In this chapter, a data-driven 

approach is utilized to model power generation and turbine vibration. The sources of 

wind turbine vibration are diverse (Wowk 1991). The focus here is on vibrations 

attributed to the control of wind turbines, e.g., control of the blade pitch and the generator 

torque.  

The performance optimization model is derived from data, and it includes 

constraints. As data-driven models are usually non-linear and non-parametric, 

conventional optimizers cannot solve them. A particle swarm optimization algorithm 

(Kennedy and Eberhart 1995; Shi and Eberhart 1998; Abido 2002) is applied here do 

solve this challenging problem. Solutions of this optimization problem are the optimal 

settings of the controllable parameters, generator torque and blade pitch angle. 
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2.2 Data Description and Processing 

In this research, data collected from supervisory control and data acquisition 

(SCADA) systems installed at a large wind farm is utilized. The sampling frequency of 

data collected over a period of one month is 0.1 Hz (this is the highest frequency 

permitted for research). Though the SCADA system collects data on over 120 

parameters, a subset of parameters is used in this research. The domain knowledge and 

the results from the previous studies are used to select most relevant parameters. Table 

2.1 demonstrates the sample data used in this research.   

Table 2.1 Sample dataset 

Time Stamp Power Wind 
Speed 

Blade Pitch 
Angle … Tower 

Acceleration 
Drive-Train 
Acceleration 

11/1/2009 12:00:30 
AM -2 2.33 83.07 … 332.30 4.28 

11/1/2009 12:00:40 
AM -2.5 2.46 83.07 … 74.75 4.81 

11/1/2009 12:00:50 
AM -2.4 2.59 83.07 … 18.12 6.25 

11/1/2009 12:01:00 
AM -2.5 2.86 83.07 … 89.14 8.46 

11/1/2009 12:01:10 
AM -2.5 2.93 83.07 … 125.79 11.68 

… … … …  … … 

 

To enhance accuracy of the data-driven models, the data is pre-processed to 

exclude data caused by sensor failures, transmission errors, and failures of various 

subsystems. These errors usually appear as the data exceeding physical constraints or 

missing values. The data quality also impacts accuracy of the models extracted by data-

driven approaches. As the accelerometers are sensitive to noise, the Daubechies wavelet 

(Daubechies 1992) is applied to de-noise and smooth the measured drive-train and tower 

acceleration data. In particular, two threshold schemes of Daub 5 wavelets with 5 levels, 
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Fix_Soft and Fix_Hard (Kobayashi 1998; Tang et al. 2000), are considered to obtain an 

acceptable threshold setting. Fix thresholding uses a fixed threshold multiplied by a small 

factor. Hard and soft thresholding could potentially produce different de-noising results. 

Hard thresholding is the usual process of setting to zero for the elements with absolute 

values lower than the threshold. Soft thresholding is an extension of hard thresholding, 

first setting to zero the elements with absolute values lower than the threshold, and then 

reducing the nonzero coefficients towards zero. The entropy type of the wavelet analysis 

can be accomplished with SURE (Stein's Unbiased Risk Estimate) (Stein 1981) which 

uses function (2.1).  

2Entropy threshold 2log ( log ( ))e n n=     (2.1) 

To increase de-noising efficiency, the best tree algorithm (Coifman and 

Wickerhauser 1992) is applied.  

The dataset from 11/1/2009 12:00:40 AM to 11/2/2009 4:09:40 AM is selected to 

perform the comparative analysis of two threshold settings. The following four metrics, 

the Mean Square Error (MSE), the Standard Deviation of Square Error (SD of SE), the 

Maximum of Square Error (Max SE), and the Minimum of Square Error (Min SE), are 

used to evaluate the two threshold settings (see (2.2) – (2.5)). 

2

1

1 ˆMSE ( )
n

i i
i

y y
n =

= −∑     (2.2) 

2 2 2

1 1

1 1 ˆ ˆSD of SE ( ( ) ( ) )
n n

i i i i
i i

y y y y
n n= =

= − − −∑ ∑    (2.3) 

2ˆMax SE max{( ) }i iy y= −    (2.4) 

2ˆMin SE min{( ) }i iy y= −     (2.5) 

Table 2.2 summarizes the comparative analysis of two threshold settings for de-

noising the drive-train acceleration. Table 2.3 illustrates the same results for de-noising 

the tower acceleration. As illustrated in both tables, the threshold setting, Fix_Hard, is 
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more suitable for de-noising the two accelerations, and therefore it is selected for further 

study. 

Table 2.2 Statistics of de-noising drive-train  
acceleration with two threshold settings 

Threshold MSE SD of SE Max SE Min SE 
Fix_Hard 16.1052 28.0168 316.0088 0 
Fix_Soft 31.6875 64.2476 786.8944 0 

 

Table 2.3 Statistics of de-noising tower acceleration  
with two threshold settings 

Threshold MSE SD of MSE Max SE Min SE 
Fix_Hard 99.1767 161.2681 1840.8441 0 
Fix_Soft 141.5024 262.0488 5098.8578 0 

 

The dataset after pre-processing is split into two parts, the training and the test 

dataset. The training dataset includes data from 11/1/2009 12:00:30 AM to 11/7/2009 

5:58:30 PM, around 10000 points. The test dataset contains about 5000 data points, from 

11/7/2009 5:59:10 PM to 11/8/2009 7:52:30 AM. 

2.3 Dynamic Modeling and Prediction for Anticipatory 

Control 

The anticipatory control of wind turbine vibration and power generation discussed 

in this chapter includes three data-driven models, a power generation model, a drive-train 

vibration model, and a tower vibration model. The power generation model describes the 

dynamic process of extracting power from the wind, while the other two models represent 

turbine vibration. Two controllable parameters, the generator torque and the blade pitch 



14 
 

 
 

angle, are utilized to control the performance of the wind turbine. The concept of 

anticipatory control falls into the category of model predictive control (MPC) (Camacho 

and Bordons 1999; Rossiter 2003). It extends the MPC scheme by including controllable 

and non-controllable parameters. It aims at generation of control settings ahead of the 

current process. 

2.3.1 Modeling Power Generation 

The dynamic process of power generation is represented by the four-tuplet (v, τ, β, 

P), where v represents the wind speed (non-controllable parameter), τ is the generator 

torque (controllable parameter), β is the blade pitch angle (controllable parameter), and P 

is the power generated by the wind turbine (response parameter). The value of the 

response parameter, P, is impacted by the non-controllable and controllable parameters 

shown in (2.6). 

( ) ( ( ), ( T), ( ), ( T), ( ), ( T))P t f v t v t t t t tτ τ β β= − − −    (2.6) 

where t is the current time, T represents the sampling time of data (10-s data), and 

f (⋅) is the function describing the wind turbine energy conversion learned by the data-

mining algorithms. 

To extract the data-driven model, six data-mining algorithms, neural network 

(Siegelmann and Sontag 1994; Liu 2001; Smith 1993), neural network ensemble (Hansen 

and Salamon 1990), support vector machine (Schölkopf et al. 1999; Steinwart and 

Christmann 2008), k nearest neighbor (Shakhnarovish et al. 2005), boosting regression 

tree (Friedman 2001; Friedman 2002) and random forest regression (Breiman 2001), are 

considered the most suitable algorithm is selected. 

Four metrics (2.7) – (2.10), the mean absolute error (MAE), standard deviation of 

absolute error (SD of AE), mean absolute percentage error (MAPE) and standard 

deviation of absolute percentage error (SD of APE), are employed to evaluate the 

performance of candidate algorithms. 
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The training and test data introduced in Section 2.2 is used in the comparative 

analysis. The test dataset is used to determine the performance and robustness of the data-

driven models. Table 2.4 presents the test results derived by the data-driven models. As 

shown in Table 2.4, models extracted by three algorithms, neural network ensemble, 

neural network and k nearest neighbor, exhibit similar performance. However, the MAPE 

(0.0096) and SD of APE (0.0155) offered by the neural network model are slightly better 

than the MAPE and SD of APE of the other two. Hence, the neural network is selected as 

a more suitable algorithm to build the power generation model. 

Table 2.4 Accuracy of power generation models  
extracted with six algorithms 

Algorithm MAE SD of AE MAPE SD of APE 
Neural Network Ensemble 4.2907 3.2428 0.0100 0.0176 

Neural Network 4.4378 3.4114 0.0096 0.0155 
Support Vector Machine 22.0804 15.8217 0.0647 0.0754 

Boosting Regression Tree 34.8634 45.6751 0.0939 0.2827 
Random Forest (Regression) 97.6282 86.4113 0.1317 0.1205 

k Nearest Neighbor 6.4009 7.1931 0.0139 0.0218 

 

Figure 2.1 and Figure 2.2 illustrate the prediction accuracy of the model 

developed by the neural network algorithm for the first 300 points from the test set. 
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Figure 2.1 is the run chart, and Figure 2.2 presents the scatter plot of the observed and the 

predicted values. 

 

 

Figure 2.1 The power corresponding to the first 300 observed and power model predicted 
points 

 

Figure 2.2 The predicted and observed value of the first 300 test points 

2.3.2 Modeling Wind Turbine Vibration 

In this research, vibrations of the drive-train are measured by the accelerometer 

installed at the bottom of a nacelle. The tower acceleration is measured by the 

accelerometer located at the connection of the nacelle and the tower. The wind turbine 
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vibrations are largely due to the air passing through the wind turbine and the forces 

originated by the control system impacting the generator torque and the blade pitch angle. 

Based on the domain knowledge and the past research, six parameters, the generator 

torque, blade pitch angle, wind speed, wind deviation, drive-train acceleration, and tower 

acceleration, are selected to model wind turbine vibration (see Table 2.5). In Table 2.5, 

the drive-train acceleration and the tower acceleration are the response parameters. The 

generator torque and the blade pitch angle are controllable parameters, while the wind 

speed and wind deviation are non-controllable parameters. 

Table 2.5 Parameter list for  
modeling wind turbine vibration 

Parameter Symbol 
Drive-train acceleration Ad 

Tower acceleration At 
Generator torque τ 
Blade pitch angle β 

Wind speed v 
Wind deviation wd 

 

Wind turbine vibration is a dynamic process. To model the drive-train 

acceleration that portrays the vibration in the drive-train system, the current and the past 

states of parameters need to be considered. In this section, the past three states of 

controllable and non-controllable parameters are included in the training and testing 

dataset mentioned in Section 2.2 to build the models of drive-train acceleration. 

Parameter selection is performed to reduce the dimensionality of the dataset and 

simplify the structure of the model. The wrapper genetic algorithm (Witten and Frank 

2005; Kohavi and John 1997) is applied for parameter selection based on the training 

dataset of Section 2.2. Table 2.6 illustrates the parameters used in the selection process 
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and the selected parameters, where, t is the current time, and T represents the time unit 

(10-s in this chapter). 

Table 2.6 List of parameters before and after parameter selection 

Pool of parameters Selected parameters 
Parameter Symbol Parameter Symbol Parameter Symbol Parameter Symbol 

Wind 
speed 

at time t  
v(t) 

Generator 
torque 

at time t  
τ(t) 

Wind 
speed 

at time t  
v(t) 

Blade 
pitch angle 
at time t – 

3T  
β(t – 3T) 

Wind 
speed 

at time t – 
T  

v(t – T) 
Generator 

torque 
at time t – 

T  
τ(t – T) 

Wind 
speed 

at time t – 
2T  

v(t – 2T)   

Wind 
speed 

at time t – 
2T  

v(t – 2T) 
Generator 

torque 
at time t – 

2T  
 τ(t – 2T) 

Wind 
speed 

at time t – 
3T  

v(t – 3T)   

Wind 
speed 

at time t – 
3T  

v(t – 3T) 
Generator 

torque 
at time t – 

3T  
τ(t – 3T)  

Wind 
deviation 
at time t – 

3T  

wd(t – 
3T)   

Wind 
deviation 
at time t  

wd(t) 
Blade 
pitch 
angle 

at time t  
β(t) 

Generator 
torque 

at time t  
τ(t)   

Wind 
deviation 
at time t – 

T  
wd(t – T) 

Blade 
pitch 
angle 

at time t – 
T  

 β(t – T) 
Generator 

torque 
at time t – 

T  
τ(t – T)   

Wind 
deviation 
at time t – 

2T  
wd(t – 2T) 

Blade 
pitch 
angle 

at time t – 
2T  

β(t – 2T) 
Generator 

torque 
at time t – 

3T  
τ(t – 3T)   

Wind 
deviation 
at time t – 

3T  
wd(t – 3T) 

Blade 
pitch 
angle 

at time t – 
3T  

β(t – 3T) 
Blade 

pitch angle 
at time t – 

T  
β(t – T)   
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The model of the drive-train acceleration is expressed in (2.11) using the selected 

parameters and the past states of the drive-train acceleration itself. 

( ) ( ( ), ( 2T), ( 3T), ( T), ( 3T), ( ), ( T),
                ( 3T), ( 3T), ( T))

d

d d

A t f v t v t v t t t t t
t w t A t

β β τ τ
τ

= − − − − −
− − −

  (2.11) 

The notation of Table 2.5 and Table 2.6 is used in model (2.11). 

Data-mining algorithms of Section 2.3.1 are used to model drive-train 

acceleration. The training and test datasets used here are the same as in Section 2.2. Table 

2.7 illustrates the test results of the drive-train acceleration models derived by the six 

data-mining algorithms. The neural-network ensemble algorithm provides lower values 

of MAPE and SD of APE than the other five algorithms, and it is selected to model the 

drive-train acceleration. 

Table 2.7 Accuracy of drive-train acceleration models  
extracted with six algorithms 

Algorithm MAE SD of AE MAPE SD of APE 
Neural Network Ensemble 2.8376 4.4902 0.0517 0.0608 

Neural Network 2.8929 4.4559 0.0569 0.0621 
Support Vector Machine 11.4550 8.0720 0.3742 0.4128 

Boosting Regression Tree 3.3508 4.9792 0.0686 0.0674 
Random Forest (Regression) 14.5029 12.6100 0.3148 0.1947 

k Nearest Neighbor 4.3069 5.6329 0.0920 0.0850 
 

Figure 2.3 presents results produced for the first 300 points by the drive-train 

acceleration model extracted by the neural network ensemble algorithm. Figure 2.4 

illustrates the observed value and predicted value of these 300 points. 
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Figure 2.3 Results for the first 300 points used to test the drive-train acceleration model 

 

Figure 2.4 The predicted and observed value of the first 300 test points 

To establish the tower acceleration model, same parameter selection procedure 

and data mining algorithm for developing the drive train acceleration model are applied. 

Table 2.8 lists the parameters selected for modeling tower acceleration. 
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Table 2.8 Selected parameters for  
modeling tower acceleration 

Parameter Symbol Parameter Symbol 
Wind speed 

at time t  v(t) Generator torque 
at time t  τ(t) 

Wind speed 
at time t – T  v(t – T) Generator torque 

at time t – 2T  τ(t – 2T) 
Wind speed 

at time t – 2T  v(t – 2T) Generator torque 
at time t – 3T  τ(t – 3T) 

Wind speed 
at time t – 3T  v(t – 3T) Blade pitch angle 

at time t – T  β(t – T) 

 

The model of the tower acceleration is expressed as (2.12). 

( ) ( ( ), ( T), ( 2T), ( 3T), ( T),
               ( ), ( 2T), ( 3T), ( T))

t

t

A t f v t v t v t v t t
t t t A t

β
τ τ τ

= − − − −
− − −

   (2.12) 

where the notation is the same as in model (2.11). 

Table 2.9 presents the testing results of the models extracted by different data-

mining algorithms. The neural network ensemble and the neural network offer the best 

performance in estimating tower acceleration. Since the MAPE for the neural network 

ensemble is slightly better than that of the neural network, the neural network ensemble is 

chosen to build the tower acceleration model. Figure 2.5 illustrates the observed and 

predicted values of the tower acceleration for the first 300 test points using the neural-

network ensemble model. The scatter plot in Figure 2.6 demonstrates the relationship 

between the predicted and observed values for the same 300 points. 
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Table 2.9 Accuracy of the tower acceleration  
models extracted with six algorithms 

Algorithm MAE SD of AE MAPE SD of APE 
Neural Network Ensemble 4.2667 8.7580 0.0637 0.1021 

Neural Network 4.3324 8.7523 0.0649 0.1000 
Support Vector Machine 54.1059 19.8097 1.3150 1.0944 

Boosting Regression Tree 7.0456 10.2048 0.1089 0.1285 
Random Forest (Regression) 12.6052 14.3985 0.2652 0.4624 

k Nearest Neighbor 12.8249 12.2709 0.2407 0.2074 

 

 

Figure 2.5 Test results of the tower acceleration model for first 300 points  

 

Figure 2.6 The predicted and observed value of the tower acceleration for first 300 test 
points 
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2.3.3 Prediction Based on Data-driven Models 

To realize anticipatory control, the values of the generated power and the wind 

turbine vibration need to be predicted a step ahead (here 10-s). Based on the dynamic 

models (2.6), (2.11), and (2.12) of Section 2.3.1 and 2.3.2, the models for one-step ahead 

predictions are formulated in (2.13) – (2.15). 

( T) ( ( T), ( ), ( T), ( ), ( T), ( ))P t f v t v t t t t tβ β τ τ+ = + + +   (2.13) 

( T) ( ( T), ( T), ( 2T), ( ), ( 2T),
                      ( T), ( ), ( 2T), ( 2T), ( ))

d

d d

A t f v t v t v t t t
t t t w t A t

β β
τ τ τ

+ = + − − −
+ − −

  (2.14) 

( T) ( ( T), ( ), ( T), ( 2T), ( ), ( T),
                     ( T), ( 2T), ( ))

t

t

A t f v t v t v t v t t t
t t A t

β τ
τ τ

+ = + − − +
− −

  (2.15) 

where the notation is the same as in Section 2.3.2. 

2.3.3.1 Modeling Wind Speed Based on the Time-series 

Method 

The values of all parameters in Eqs (2.13) – (2.15) can be measured or computed 

except the wind speed at time t + T. A model for wind speed prediction at time t + T 

needs to be developed. In this research, the time-series model (see (2.16)) for wind speed 

prediction is developed based on its past states. 

( ) ( ( T), ( 2T), ( 3T),..., ( T))v t f v t v t v t v t n= − − − −    (2.16) 

Eight past states of the wind speed are considered as candidates for inclusion in 

the model. The wrapper approach of Section 2.3.2 is applied to select the most suitable 

parameters. Among the eight past states, only the 7th state, v(t – 7T), is considered as an 

unnecessary parameter. Thus, Eq (2.16) is reformulated as (2.17). 

( ) ( ( T), ( 2T), ( 3T), ( 4T),
              ( 5T), ( 6T), ( 8T))
v t f v t v t v t v t

v t v t v t
= − − − −

− − −
   (2.17) 

To build model (2.17) from the data, six data-mining algorithms are utilized. The 

performance of these algorithms is summarized in Table 2.10. As The neural network 
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algorithm provides the lowest value of all the four metrics, MAE, SD of AE, MAPE and 

SD of APE. Hence, it is selected for modeling wind speed. 

Table 2.10 Accuracy of wind speed prediction models  
extracted with six algorithms 

Algorithm MAE SD of AE MAPE SD of APE 
Neural Network Ensemble 0.3624 0.3518 0.0448 0.0400 

Neural Network 0.3620 0.3518 0.0447 0.0399 
Support Vector Machine 0.3931 0.3516 0.0512 0.0450 

Boosting Tree 0.4367 0.3846 0.0551 0.0464 
Random Forest 1.0870 0.8108 0.1297 0.0806 

k-NN 0.4240 0.3963 0.0529 0.0464 

 

Figure 2.7 illustrates wind speed prediction results for the first 300 test points. 

 

Figure 2.7 Prediction results from the wind speed prediction model for the first 300 
points  

2.3.3.2 One-step Ahead Prediction 

A model for one-step ahead prediction of the generated power, the drive-train 

acceleration, and the tower acceleration is discussed (see Eqs (2.13) – (2.15)). The model 
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four metrics (defined in Section 2.3.1) for one-step ahead wind speed prediction. The 

value of MAPE for predicting generated power at t + T = 10-s is 0.0096 (see Table 2.11), 

which is almost identical to the accuracy of the power prediction at time t (see Table 2.4). 

The accuracy of predicting drive-train acceleration (MAPE = 0.0785) at t + T = 10-s is 

also close to that at the current time (MAPE = 0.0517). The MAPE for predicting tower 

acceleration at t + T = 10-s is higher (MAPE = 0.1054) relative to its predicted value at 

time t (MAPE = 0.0637). In general, the prediction accuracy of the three models in 10-s 

ahead prediction is better than 90%, which presents an acceptable result. Figures 2.8 – 

2.10 illustrate the first 300 results for of the three parameters, generated power, drive-

train acceleration, and tower acceleration. 

Table 2.11 Results of one-step ahead prediction 

Parameter MAE SD of AE MAPE SD of APE 
Generated power 4.5592 3.5510 0.0096 0.0142 

Drive-train acceleration 4.1247 5.7525 0.0785 0.0815 
Tower acceleration 6.5365 9.9910 0.1054 0.1425 

 

 

Figure 2.8 First 300 points of one-step ahead prediction of the generated power 
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Figure 2.9 The results of one-step ahead prediction of the drive-train acceleration for first 
300 points 

 

Figure 2.10 The results of one-step ahead prediction of the tower acceleration for the first 
300 points 
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angle for time t and t + T are τ(t)*, τ(t + T)*, β(t)* and β(t + T)*. The wind speed at time t 

+ T can be obtained from model (2.17). The power generated at time t and t + T is 

computed from (2.18) and (2.19). The optimal drive-train acceleration is expressed in 

(2.20) – (2.21) and the optimal tower acceleration is formulated in (2.22) – (2.23). 

* * *( ) ( ( ), ( T), ( ) , ( T), ( ) , ( T))P t f v t v t t t t tβ β τ τ= − − −    (2.18) 

* * * * *( T) ( ( T), ( ), ( T) , ( ) , ( T) , ( ) )P t f v t v t t t t tβ β τ τ+ = + + +   (2.19) 

* *( ) ( ( ), ( 2T), ( 3T), ( T), ( 3T), ( ) ,
                 ( T), ( 3T), ( 3T), ( T))

d

d d

A t f v t v t v t t t t
t t w t A t

β β τ
τ τ

= − − − −
− − − −

  (2.20) 

* * *

* *

( T) ( ( T), ( T), ( 2T), ( ) , ( 2T), ( T) ,

                       ( ) , ( 2T), ( 2T), ( ) )
d

d d

A t f v t v t v t t t t

t t w t A t

β β τ

τ τ

+ = + − − − +

− −
 (2.21) 

* *( ) ( ( ), ( T), ( 2T), ( 3T), ( T), ( ) ,
                 ( 2T), ( 3T), ( T))

t

t

A t f v t v t v t v t t t
t t A t

β τ
τ τ

= − − − −
− − −

  (2.22) 

* * *

* *

( T) ( ( T), ( ), ( T), ( 2T), ( ) , ( T) ,

                      ( T) , ( 2T), ( ) )
t

t

A t f v t v t v t v t t t

t t A t

β τ

τ τ

+ = + − − +

− −
  (2.23) 

where the notation is the same as in Section 2.3.2. 

To implement the anticipatory control approach, the settings at time t + T are 

computed based on the current status parameters. Once the wind turbine is operated with 

the computed control strategies, the status of the wind turbine will be sampled, and the 

sampled data will be stored in a database as the inputs for the next optimization step. This 

procedure is repeatedly implemented to realize the anticipatory control. 

2.4.2 Multi-objective Optimization Model 

To optimize the wind turbine performance, the power generated in the interval t to 

t + T can be maximized as an expression of a linear combination of P(t)* and P(t + T)* 

(Kusiak et al. 2009a). This can be transformed as minimization of the linear combination 

of |P(t)* – min{1500, 2.625v(t)3}| and |P(t + T)* – min{1500, 2.625v(t)3}| shown in 

(2.24). 
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* 3

* 3

| ( ) min{1500,2.625 ( ) } |

       (1 ) | ( T) min{1500,2.625 ( ) } |
p p

p

T w P t v t

w P t v t

= − +

− + −
  (2.24) 

where Tp is the weighted sum, the wp is the weight coefficient (between 0 and 1) and the 

min{1500, 2.625v(t)3} is the boundary of theoretical maximum power that can be 

obtained from the wind kinetic energy (Kusiak et al. 2009a). 

Like the maximization of the generated power, the minimization of drive-train 

acceleration and the tower acceleration is formulated as (2.25) and (2.26). 

* *( ) (1 ) ( T)D D d D dT w A t w A t= + − +     (2.25) 

* *( ) (1 ) ( T)T T t T tT w A t w A t= + − +     (2.26) 

where TD is the weighted sum of minimized drive-train acceleration at time t and time t + 

T, TT is the weighted sum of minimized tower acceleration at time t and time t + T, wD 

and wT are the two weights between 0 and 1. 

The objective function C for optimizing the wind turbine performance is 

expressed in (2.27) as the weighted sum of (2.25) and (2.26). 

3

1 2 3
1

( ) /D T P i
i

C w T w T w T w
=

= + + ∑     (2.27) 

where w is the weight coefficient in [0, 1]. 

To define the feasible ranges of the parameters, constraints (2.28) – (2.31), are 

defined. 

*max{0,currentSetting 40} ( )
min{100,currentSetting 40}

tτ− ≤
≤ +

    (2.28) 

*max{0,currentSetting 40} ( T)
min{100,currentSetting 40}

tτ− ≤ +
≤ +

   (2.29) 

*max{ 0.57,currentSetting 15} ( )
min{90.61,currentSetting 15}

tβ− − ≤
≤ +

   (2.30) 

*max{ 0.57,currentSetting 15} ( T)
min{90.61,currentSetting 15}

tβ− − ≤ +
≤ +

   (2.31) 
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In this study, the value of generator torque is normalized to [min = 0, max = 

100%]. In addition, the maximum rate of change of the generator torque is limited to 

40%. Therefore, the upper and lower bound for generator torque can be determined as 

min{100, CurrentSetting + 40} and max{0, CurrentSetting – 40}. To control the blade 

pitch angle, the maximum value of blade pitch angle is set to 90.61 degrees and the 

minimum value is fixed at – 0.57 degree. The two values are obtained from the maximum 

and minimum values of the blade pitch angle included in the dataset. The maximum rate 

of the blade pitch angle change is 15 degrees. Then the upper bound and lower bound of 

the blade pitch angle control can be expressed as max{– 0.57 , CurrentSetting – 15} and 

min{90.61, CurrentSetting + 15}. 

The optimization model is formulated in (2.32). 

* * * *( ) , ( ) , ( T) , ( T)

* *

* * *

min ( )

subject to
( ) ( ( ), ( 2T), ( 3T), ( T), ( 3T), ( ) , ( T),

                ( 3T), ( 3T), ( T))

( T) ( ( T), ( T), ( 2T), ( ) , ( 2T), ( T) ,

  

t t t t

d

d d

d

C

A t f v t v t v t t t t t
t w t A t

A t f v t v t v t t t t

τ β τ β

β β τ τ
τ

β β τ

+ +
⋅

= − − − − −
− − −

+ = + − − − +
* *

* *

* * *

                     ( ) , ( 2T), ( 2T), ( ) )

( ) ( ( ), ( T), ( 2T), ( 3T), ( T), ( ) ,
                 ( 2T), ( 3T), ( T))

( T) ( ( T), ( ), ( T), ( 2T), ( ) , ( T) ,

      

d d

t

t

t

t t w t A t

A t f v t v t v t v t t t
t t A t

A t f v t v t v t v t t t

τ τ

β τ
τ τ

β τ

− −

= − − − −
− − −

+ = + − − +
* *

* * *

* * * * *

                ( T) , ( 2T), ( ) )

( ) ( ( ), ( T), ( ) , ( T), ( ) , ( T))
( T) ( ( T), ( ), ( T) , ( ) , ( T) , ( ) )
( ) ( ( T), ( 2T), ( 3T), ( 4T), ( 5T),

              ( 6

tt t A t

P t f v t v t t t t t
P t f v t v t t t t t
v t f v t v t v t v t v t

v t

τ τ

β β τ τ

β β τ τ

− −

= − − −

+ = + + +
= − − − − −

−
* 3

* 3

*

*

T), ( 8T))
( ) min{1500,2.625 ( ) }

( T) min{1500,2.625 ( T) }

max{0,currentSetting 40} ( ) min{100,currentSetting 40}
max{0,currentSetting 40} ( T) min{100,currentSetting 40}
max{ 0.57,curre

a

a

v t
P t v t

P t v t

t
t

τ

τ

−

≤

+ ≤ +

− ≤ ≤ +

− ≤ + ≤ +

− *

*

ntSetting 15} ( ) min{90.61,currentSetting 15}
max{ 0.57,currentSetting 15} ( T) min{90.61,currentSetting 15}

t
t

β

β

− ≤ ≤ +

− − ≤ + ≤ +

   (2.32) 
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where C(⋅) is the objective function that transforms the multi-objective model to a single-

objective model (see (2.24) – (2.27)). The remaining notation is the same as in Section 

2.3.2. The four controllable parameters are the solutions to the optimization model. 

Solving the optimization model (2.32) is a challenge for classical optimization 

algorithms. A particle swarm optimization (PSO) algorithm (Kennedy and Eberhart 1995; 

Shi and Eberhart 1998; Abido 2002) is applied to solve this problem. 

To implement the PSO algorithm, some parameters need to be initialized, such as 

the number of particles. In this study, the number of particles is arbitrarily fixed at 10. 

The inertial parameter, ω, which controls the impact of previous velocity on the current 

velocity in the velocity function, should also be determined. Usually it is a value between 

0 and 1. In this chapter, it is set to 0.5. Besides this parameter, in the velocity function, 

there are another two constants c1 and c2, which require an assignment of values. Here, c1 

and c2, are both arbitrarily set to 2 in this study. 

2.5 Case Study and Computational Results 

In this section, the computational results of optimizing the wind turbine 

performance with the PSO algorithm are presented. Before computing the optimal 

solutions for the wind turbine control, the value of the weights used in the objective of 

model (2.32) should be determined. In Eqs (2.24) – (2.26), the weights, wP, wD and wT, 

are all assigned the value 0.5. This value indicates the equal importance of the three 

objectives, generated power, drive-train acceleration and tower acceleration at time t + T. 

Two cases of weight assignments are studied to show different wind turbine control 

preference. In Case 1, the w1 = 1 and w2 = w3 = 0. In this case, the wind turbine is 

supposed to be controlled in maximizing the generated power. In Case 2, the w1 = 0 and 

w2 = w3 = 0.5. This case translates to a circumstance whereby the preference of 

controlling the wind turbine reduces the turbine vibration. In this part, a multi-point 
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optimization is introduced. It is based on data from 11/8/2009 7:47:10 AM to 11/8/2009 

8:03:50 AM (about 16 minutes) in the dataset. 

2.5.1 Stopping Criteria of the PSO 

The number of iterations of the PSO to converge needs to be determined. Three 

instances of the dataset used in Section 2.5 are randomly selected to show the 

convergence speed of the PSO algorithm. The standardized best global fitness based on 

function (2.33) is employed to evaluate the convergence of the PSO algorithm. Figure 

2.12 illustrates the number of iterations the PSO needs to converge in Case 1 for all three 

instances. Figure 2.13 shows the similar concept for Case 2. 

1500

ˆ
ˆmax{ }

jg
g

     (2.33) 

 

Figure 2.11 Convergence of the PSO algorithm for three instances of Case 1 
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Figure 2.12 Convergence of the PSO algorithm for three instances of Case 2 

Figures 2.11 and 2.12 illustrate that the PSO converges within 50 iterations. 

However, to set a more conservative setting criterion the iteration limit of 100 is applied. 

2.5.2 Case 1 (w1 = 1 and w2 = w3 = 0) 

This section addresses the multi-point optimization result for Case 1 based on the 

data points of Section 2.5. Table 2.12 summarizes the optimization results of anticipatory 

control for these data points. Since in this case the wind turbine is controlled with the 

preference being to maximize only the generated power, the weight coefficient for 

maximizing the power generation model is set to 1, and for minimizing wind turbine 

vibration to 0. As shown in Table 2.12, the gain of maximizing power at time t + T can 

approach 37.49%. However, the drive-train acceleration and tower acceleration both 

increase. The power advantage comes from the increased generator torque. Figures 2.13 

and 2.14 illustrate the optimized control strategies at time t + T versus the observed 

control strategies.  
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Table 2.12 Summary of multi-point optimization of Case 1 

Objective Original Value (Mean) Optimized Value (Mean) Gain (Mean) 
Generated power 1089.0740 1497.3160 37.49% 

Drive-train acceleration 53.1174 65.4381 23.20% 
Tower acceleration 54.5172 85.3627 56.58% 

 

 

Figure 2.13 Optimized vs observed blade pitch angle for Case 1 

 

Figure 2.14 Optimized vs observed generator torque for Case 1 
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2.5.3 Case 2 (w1 = 0 and w2 = w3 = 0.5) 

Case 2 represents a control preference emphasizing reduction of wind turbine 

vibration rather than increasing the power output. In this case, the weight assigned to 

maximizing power is w1= 0, and the weights assigned to mitigating drive-train and tower 

acceleration are w2 = w3 = 0.5. Table 2.13 summarizes the optimization results of 

anticipatory control for Case 2. The vibration is reduced by 2.07% and 4.63% for the 

drive-train and the tower, respectively, at time t + T. The generated power is reduced by 

9.42%. Figures 2.15 and 2.16 demonstrate the optimized value and observed value of the 

blade pitch angle and generator torque at time t + T.  

Table 2.13 Summary of multi-point optimization in Case 2 

Objective Original Value (Mean) Optimized Value (Mean) Gain 
Generated power 1089.074 986.4936 -9.42% 

Drive-train acceleration 53.11743 52.01851 -2.07% 
Tower acceleration 54.51721 51.99516 -4.63% 

 

 

Figure 2.15 Optimized vs observed blade pitch angle for Case 2 
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Figure 2.16 Optimized vs observed generator torque for Case 2 

2.6 Summary 

An anticipatory control model for optimizing performance of wind turbines was 

discussed in this chapter. It was set to accomplish three goals, increasing the power 

extracted from the wind, and mitigating vibration of the drive-train system and the tower. 

By considering these goals, the power generation model, drive-train acceleration model, 

tower acceleration model and the time-series wind speed prediction model were derived 

to establish this optimization model. Data-driven approaches were applied to constrict 

these models from wind farm data. A comparative analysis was performed to assess the 

performance of data-driven models derived by different data-mining algorithms and 

select the best performing model. To solve the constructed optimization model, a particle 

swarm optimization algorithm was applied. 

Two strategies of anticipatory control were implemented, control of a wind 

turbine by emphasizing maximization of power generation and reduction of wind turbine 

vibration. Single point and multi-point optimization results were presented. As the 

generator torque and power are correlated, the increased generator torque improves the 

power generated. However, as shown in the optimization results, increasing torque led to 
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a higher acceleration of the drive-train and the tower. To reduce vibration of the drive-

train and tower, an optimization strategy resulting in reduced generator torque was 

recommended. 
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CAPTER 3 

ADAPTIVE CONTROL OF A WIND TURBINE WITH DATA MINING 

AND SWARM INTELLIGENCE 

3.1 Introduction 

In this chapter, an adaptive approach to wind turbine control is presented. It is 

designed to achieve a balance between power optimization and smooth drive train control 

in response to the changes in wind speed and electricity demand. The smoothing of the 

drive train is accomplished by minimizing the torque ramp rate rather than controlling the 

rotor speed presented in (Kusiak et al. 2009a). The former reduces extreme loads, which 

translates into a lower maintenance and operation cost. To model the turbine, a data-

driven approach is introduced. To realize the adaptive turbine control, estimates of future 

electricity demand and wind power to be produced at the same time are desired. A time-

series model extracted by a data-driven approach predicts the future wind power. A 

simulation model is used to generate the future demand due to the lack of demand data in 

this research. 

SCADA (Supervisory Control and Data Acquisition) data from turbines installed 

at a large wind farm (150 MW) has been used in this research. To develop and validate 

the models proposed in this research, 0.1 Hz (10-s) data from three randomly selected 

wind turbines are used. 

3.2 Problem Formulation 

3.2.1 Adaptive Control  

The framework of adaptive wind turbine control is illustrated in Figure 3.1. In this 

chapter, a wind turbine is optimized subject to the following two objectives: power 

maximization and minimization of the torque ramp rate. A weighted linear combination 

of the two objectives is used in the bi-objective optimization model. The values of two 
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weights are impacted by the amount (excess or deficit) of the generated power and the 

projected power demand.  
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Figure 3.1 The framework of adaptive wind turbine control 

As illustrated in Figure 3.1, three models, the wind turbine power generation 

model, the wind power prediction model and the electricity demand model, are 

established to realize the adaptive control framework. The wind power prediction model 

and the electricity demand model are utilized as references in determining values of the 

weights of the objectives. The wind turbine power generation model aims to accurately 

estimate the power generated from a wind turbine with the control settings. Establishing 

accurate models of power generation and power prediction is challenging, and in this 

chapter, it is accomplished with data-mining algorithms that have been successfully 
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applied in other domains, e.g., industry and service (Berry and Linoff 2004; Shevade et 

al. 2000).  

The energy of the wind and the electricity demand are variable, and therefore the 

weights assigned to the two corresponding objectives need to be adjusted accordingly. A 

novel optimization algorithm, the Particle Swarm Fuzzy Algorithm, is developed to 

determine the weights of the two objectives and solve the optimization model that is 

composed of data-driven models developed in this chapter. Two controllable parameters, 

blade pitch angle and generator torque, are the solution to the optimization problem, and 

they are considered the recommended settings for the control system of a wind turbine to 

manipulate wind turbines. 

To maintain good quality of data-driven models, a re-learning scheme is applied 

to the models using the continuously collected data. 

3.2.2 Wind Turbine Power Generation Model  

The power conversion of a wind turbine is represented by the 4-tuplet (υ, τ, β, y), 

where υ represents the wind speed (non-controllable parameter), τ is the generator torque 

(controllable parameter), β is the blade pitch angle (controllable parameter), and y is the 

power generated by the wind turbine (response parameter). The value of the response 

parameter, y, is impacted by the non-controllable and controllable parameters as shown in 

(3.1). 

( , , , , , )t t t T t t T t t Ty f υ υ τ τ β β− − −=    (3.1) 

where t is the current time, T represents the sampling time of data (10-s data), and f (⋅) is 

the function describing the wind turbine energy conversion process learned by the data-

mining algorithms. 



40 
 

 
 

3.2.2.1 Algorithm Selection 

To build the model (3.1), the following seven data-mining algorithms have been 

considered: Neural Network (Siegelmann and Sontag 1994; Liu 2001; Smith 1993), 

Neural Network Ensemble (Hansen and Salamon 1990), k-Nearest Neighbor 

(Shakhnarovish et al. 2005), Support Vector Machine (Schölkopf et al. 1999; Steinwart 

and Christmann 2008), Boosting Tree (Regression) (Friedman 2001; Friedman 2002), 

Classification and Regression Tree (Breiman et al. 1984), and Random Forest 

(Regression) (Breiman 2001). 

Table 3.1 describes the industrial data selected from three wind turbines to 

conduct the research discussed in this chapter. The data are partitioned into three datasets: 

training dataset, test dataset, and validation dataset. Turbine 1 provides the training and 

test datasets, and the data from Turbines 2 and 3 are used to validate the models derived 

by various data-mining algorithms. The training dataset is used to extract models by the 

data-mining algorithms. The test dataset is applied to test the accuracy of the models and 

selection of the best-performing data-mining algorithm. The validation dataset examines 

the robustness of the data-driven model established by the selected algorithm. 
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Table 3.1 Data description 

Turbine 
No. Training Dataset Test Dataset Validation Datasets 

1 

11/4/2008 4:37:20 AM to  
11/4/2008 2:37:20 PM, 

11/4/2008 4:49:30 PM to  
11/5/2008 2:49:30 AM, 
11/18/2008 3:19:50 AM 

to 
11/18/2008 1:19:50 PM, 

10803 data points 

11/18/2008 2:48:40 PM 
to 

11/19/2008 12:48:40 AM, 
12/30/2008 3:25:20 AM 

to 
12/30/2008 1:25:10 PM, 

7201 data points 

Not applicable 

2 Not applicable Not applicable 

11/18/2008 2:52:00 PM 
to 

11/19/2008 12:51:50 AM, 
12/30/2008 3:25:40 AM 

to 
12/30/2008 1:25:30 PM, 

7200 data points 

3 Not applicable Not applicable 

11/18/2008 2:53:30 PM 
to 

11/19/2008 12:53:20 AM, 
12/30/2008 3:25:50 AM 

to 
12/30/2008 1:25:40 PM, 

7200 data points 

 

The four metrics (3.2) – (3.5), the mean absolute error (MAE), the standard 

deviation of absolute error (SD of AE), the mean absolute percentage error (MAPE), and 

the standard deviation of absolute percentage error (SD of APE), are applied to evaluate 

the performance of the data-driven models. 

1

1 ˆMAE = | |
n

i i
i

y y
n =

−∑     (3.2) 

2

1 1

1 1ˆ ˆSD of AE = (| | | |)
n n

i i i i
i i

y y y y
n n= =

− − −∑ ∑   (3.3) 

1

ˆ1MAPE = (| |) 100%
n

i i

i i

y y
n y=

−
×∑    (3.4) 

2

1 1

ˆ ˆ1 1SD of APE (| | | |) 100%
n n

i i i i

i ii i

y y y y
n y n y= =

− −
= − ×∑ ∑  (3.5) 
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Comparative analysis of the test results of the models built by the data-mining 

algorithms is shown in Table 3.2. The model derived by the Neural Network algorithm 

outperforms all models in estimating the power generated by a wind turbine. The 

corresponding values of MAPE (0.02) and SD of APE (0.07) are the lowest in Table 3.2. 

Thus, the Neural Network algorithm will be used to construct the wind turbine power 

generation model. 

Table 3.2 Test results of the models derived  
by seven data-mining algorithms 

Algorithms MAE SD of AE MAPE SD of APE 
Neural Network 11.00 9.09 0.02 0.07 

Neural Network Ensemble 10.70 9.04 0.03 0.17 
k-Nearest Neighbor (k=5) 15.20 15.38 0.04 0.15 
Support Vector Machine 26.20 16.68 0.08 0.45 

Boosting Tree 30.10 45.64 0.06 0.28 
CART Regression 135.00 116.23 0.19 0.20 

Random Forest Regression 121.00 110.74 0.18 0.56 

 

Figure 3.2 illustrates the first 100 values of the observed (measured) power and 

the power predicted by the neural network model.  
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Figure 3.2 The first 100 points of test results produced by the neural network model 

3.2.2.2 Model Validation 

The validation dataset is used here to assess the robustness of the neural network 

extracted model in Section 3.2.2.1. Two validation datasets are used: Dataset 1 is 

collected from wind turbine 2, and validation dataset 2 is collected from wind turbine 3. 

The details of the two validation datasets are presented in Table 3.1. The four metrics 

(3.2) – (3.5) are used to assess the accuracy of the power model with the results presented 

in Table 3.3. The MAPE for validation dataset 1 is 0.05, and the MAPE for validation 

dataset 2 is 0.03. Although the accuracy of this model tested on two different turbines is 

lower than the accuracy reported in Table 3.2, it is still impressive considering that the 

model was built from the data generated at Turbine 1 and tested on Turbines 2 and 3.  
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Table 3.3 Prediction accuracy results produced  
by the neural network model 

Validation Datasets MAE SD of AE MAPE SD of APE 
Validation Dataset 1 (Turbine No.2) 19.74 14.08 0.05 0.53 
Validation Dataset 2 (Turbine No.3) 12.16 9.09 0.03 0.40 

 

Figure 3.3 presents the first 100 values of the observed generated power and the 

power predicted by the neural network model for validation dataset 1.  

 

 

Figure 3.3 The first 100 points of the generated power based on validation dataset 1 

Figure 3.4 illustrates the first 100 values of the observed generated power and the 

power predicted by the neural network model using validation dataset 2.    
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Figure 3.4 The first 100 points of the observed power and the power predicted by the 
neural network model  

3.2.3 Wind Power Prediction Model  

To determine wind turbine power at time t, the time-series prediction model with 

the structure presented in (3.6) is utilized.  

5 5( ,..., , ,..., )t t T t T t T t Ty f y y υ υ− − − −=     (3.6) 

where the notation is the same as in model (3.1). 

The time-series prediction model employs the past observed events to determine 

its future values. In the candidate model (3.6), the past states of the generated power itself 

and wind speed at time periods t – T to t – 5T are considered. A parameter selection 

strategy, the wrapper with a random search approach (Witten and Frank 2005; Kohavi 

and John 1997), is applied to select the most significant parameters. The parameters,  yt –T 

, yt –2T , yt –3T , yt –5T  and υt – 5T, are selected, and model (3.6) is instantiated as model (3.7). 

2 3 5 5( , , , , )t t T t T t T t T t Ty f y y y y υ− − − − −=    (3.7) 

where the notation is the same as in model (1). 
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3.2.3.1 Algorithm Selection  

The seven data-mining algorithms of Section 3.2.2.1 are applied to build power 

prediction models. The training dataset of Table 3.1 is utilized to extract models, and the 

test dataset (Table 3.1) is used to test their accuracy at time t.  

Table 3.4 presents the test results (expressed with the metrics (3.2) – (3.5)) of the 

power prediction models derived by the seven data-mining algorithms. The Neural 

Network and the Neural Network Ensemble provided results with a MAPE of 0.06. 

However, since the values of MAE, SD of AE and SD of APE of the Neural Network 

Ensemble are all smaller than those of the Neural Network, the Neural Network 

Ensemble is considered for building the power prediction model.  

Table 3.4 Test results of power prediction by data-driven models 

Algorithms MAE SD of AE MAPE SD of APE 
Neural Network 21.24 34.09 0.06 0.41 

Neural Network Ensemble 20.52 32.73 0.06 0.34 
k-Nearest Neighbor (k=17) 28.83 46.18 0.09 0.68 
Support Vector Machine 44.13 39.42 0.14 0.88 

Boosting Tree 40.55 54.99 0.09 0.46 
CART Regression 138.87 118.39 0.22 0.43 

Random Forest Regression 140.90 123.77 0.23 0.83 

 

Figure 3.5 illustrates the results for the first 100 points of power prediction by the 

Neural Network Ensemble using validation dataset 1. 
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Figure 3.5 The first 100 test points of the observed power and the power predicted by the 
neural-network ensemble 

3.2.3.2 Model Validation  

The validation dataset used in Section 3.2.2.2 is used here to assess the robustness 

of the neural-network ensemble model. Table 3.5 presents the validation results of this 

model. Compare the MAPE listed in Table 3.4 and in Table 3.5. It is obvious that this 

time-series data-driven model is feasible, and its performance is consistent in power 

prediction.  

Table 3.5 Prediction accuracy results of the power predicted  
by the neural-network ensemble 

Validation Datasets MAE SD of AE MAPE SD of APE 
Validation Dataset 1 (Turbine No.2) 13.97 22.47 0.06 0.51 
Validation Dataset 2 (Turbine No.3) 20.93 36.15 0.07 1.00 

 

Figure 3.6 shows the first 100 points of the observed power and the power 

predicted by the neural network ensemble for validation dataset 1.  
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Figure 3.6 The first 100 points of the observed power and the power predicted by the 
neural network ensemble 

Figure 3.7 illustrates the first 100 points of the observed power and the power 

predicted by the neural network ensemble for validation dataset 2. 

 

 

Figure 3.7 The first 100 validation results of power prediction for validation dataset 2 

3.2.4 Electricity Demand Simulation Model  
 

Power demand is of significance in optimizing the energy produced by a wind 

turbine. Predicting power demand belongs to another research domain and therefore is 
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not discussed in this chapter. It should be stressed, however, that the data-mining 

algorithms discussed in this chapter can be used to generate power demand models.  

Two basic demand simulation models are developed to generate daily power 

demand at 10-s intervals based on the previous literature (Swider 2007) and the daily 

electricity consumption by HVAC (Heating Ventilating and Air Conditioning) systems. It 

is known that modeling customer demand is a challenge, as it depends on factors such as 

the type of the buildings, the region size, the time of day, and so on. The two types of 

demand models used in this chapter are discussed next. 

3.2.4.1 Demand Model M1  

The demand model M1 is established to describe a pattern that simulates the 

usage of electricity in a micro-grid dominated by business offices (see Figure 3.8).  

 

 

Figure 3.8 Electricity demand pattern of model M1 

The vertical axis of Figure 3.8 represents the electricity demand and its maximum 

of 1500 kW. This arbitrary value of demand should match the generation of a single wind 

turbine. The horizontal axis represents the time measured in 10-s intervals, the same as 
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the data frequency used to develop the models in Section 3.2.2. In this model, each 

demand value is a random number generated from a normal distribution with the mean 

following the pattern (solid line) in Figure 3.8. The standard deviation is arbitrarily fixed 

at 50.  

As presented in Figure 3.8, the mean demand reflects a scenario where the mean 

electricity demand is low (200 kW) in the evening after office hours (specifically, 6:00 

PM) and in the early morning before office hours (specifically, 8:00 AM). After 8:00 

AM, the mean demand increases and reaches a maximum at 9:00 AM. Between 9:00 AM 

and 5:00 PM, the mean demand remains constant, and it begins to decline after 5:00 PM 

because the staff leaves the office. 

This demand model M1 is expressed in (3.8) – (3.9). 

2
1 1~ ( , )D N µ σ     (3.8) 

0 1

1,max 1,min 1,min 2 1,max 1
1 2

2 1 2 1

1

200                                                               if 

               if 
-

1500                                                  

t t t
D D D t D t

t t t t
t t t t
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≤ <
− −

+ ≤ <
−

= 2 3

1,max 1,min 1,max 4 1,min 3
3 4

4 3 4 3

4 5

           if 

            if 

200                                                               if 

t t t
D D D t D t

t t t t
t t t t

t t t







≤ <
 − −− + ≤ <
 − −


≤ <

  (3.9) 

where D1 presents the demand data generated from the normal distribution, µ1 is the 

mean of the normal distribution, D1,min=200, D1,max=1500, t0=0, t1=2880 (8:00 AM), 

t2=3240 (9:00 AM), t3=6120 (5:00 PM), t4=6480 (6:00 PM), t5=8640 (12:00 PM) and 

σ=50. 

In model M1, the demand data is generated from a normal distribution (3.8) and 

the mean demand computed. For the demand data generated from (3.8), two constraints 

(3.10) – (3.11) are used to prevent the value of demand becoming negative or exceeding 

the maximum capacity of the office space.  

2
1 1LB max{0, ~ ( , )}D N µ σ=     (3.10) 
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2
1,max 1 1UB min{ , ~ ( , )}D D N µ σ=    (3.11) 

Figure 3.9 shows a portion of the demand data generated from model (3.8) – (3.9) 

from 7:00 AM to 9:00 AM.  

 

 

Figure 3.9 Simulated demand data from 7:00 AM to 9:00 AM based on using demand 
model M1 

3.2.4.2 Demand Model M2  

Demand model M2 represents a pattern that is non-linear rather than trapezoidal 

(see Figure 2.10) in the time period 8:00 AM to 6:00 PM. The remaining settings are 

identical to the model in Figure 2.9.  
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Figure 3.10 Power demand model M2 

The demand model M2 is expressed in (3.12) – (3.13). 

2
2 2~ ( , )D N µ σ      (3.12) 
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 (3.13) 

where D2 represents the generated demand data, µ2 is the mean of the normal distribution, 

D2,min=200, D2,max=1500, t0=0, t1=2880 (8:00 AM), t2=4680 (1:00 PM), t3=6480 (6:00 

PM), t4=8640 (12:00 PM) and σ=50. 

Like demand model M1, two constraints (3.14) – (3.15) are introduced to prevent 

unreasonable demand values.  

2
2 2LB max{0, ~ ( , )}D N µ σ=    (3.14) 

2
2,max 2 2UB min{ , ~ ( , )}D D N µ σ=    (3.15) 

Figure 3.11 illustrates the data generated from demand model M2 between 7:00 

AM and 9:00 AM. 
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Figure 3.11 Demand data from 7:00 AM to 9:00 AM based on model M2 

3.2.5 Optimization Model  

The model considered in this chapter maximizes the power generated from a wind 

turbine and minimizes the generator torque ramp rate. Maximizing the generated power 

estimated by the model of Section 3.2.2 is equivalent to |min{1500, 32.625 tυ } – yt|. Here, 

the difference between the maximum power that could be potentially generated by a wind 

turbine and the power output from the model is minimized. Two constraints are 

considered to construct this boundary, the maximum turbine capacity of 1500 kW, and 

the maximum energy that could be extracted from the wind according to Betz’s law, 

expressed as 32.625 tυ  (Kusiak et al. 2009).  

The torque ramp rate τramp is expressed in (3.16). 

ramp t t Tτ τ τ −= −     (3.16) 
 

where τt is the generator torque at time t, τt – T is the generator torque at time t – T.  

As the scales of the two objectives differ, the generated output is scaled as 

presented in (3.17).  

3

3

| min{1500,2.625 } |
max{ }

max{| min{1500,2.625 } |}
t t

ramp
t t

y
y

υ
τ

υ
−
−

   (3.17) 

0

200

400

600

800

1000

1200

1 43 85 12
7

16
9

21
1

25
3

29
5

33
7

37
9

42
1

46
3

50
5

54
7

58
9

63
1

67
3

71
5

75
7

79
9

84
1

88
3

92
5

96
7

10
09

10
51

D
em

an
d 

(k
W

)

Time (10-s intervals)



54 
 

 
 

The bi-objective optimization model is expressed in (3.18). 

,

3

2 13
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  (3.18) 

where O is the model’s overall objective; *
tβ and *

tτ are the settings of the blade pitch 

angle and the generator torque at time t; ω1 and ω2 are the weights of the two objectives 

determined by the particle swarm fuzzy algorithm  –  PSO (discussed in Section 3.3). The 

remaining notation is the same as in (3.1) and (3.16). 

In model (3.8), two controllable parameters, βt and τt, are utilized to realize the 

adaptive control of the wind turbine. As presented in model (3.18), to control the wind 

turbine conservatively, the ranges of the two controllable parameters are expressed in 

(3.19) and (3.20). 

* *max{ 0.57, 2} min{90.61, 2}t t tβ β β− − ≤ ≤ +   (3.19) 

* *max{0, 20} min{100, 20}t t tτ τ τ− ≤ ≤ +    (3.20) 

The lower bound (-0.57) and the upper bound (90.61) for the blade pitch angle 

that cannot be exceeded are obtained from the industrial data used in this research. In 

addition, the increment (or decrement) of blade pitch angle is set in the range
* *( 2, 2)t tβ β− + . The value of the generator torque is expressed in percentage [0, 100], 

rather than N/m2. The adjustment of the generator torque is done at increments (or 

decrements) in the range * *( 20, 20)t tτ τ− + .  

3.3 The Particle Swarm Fuzzy Algorithm (PSFA) 

In this research a wind turbine is controlled adaptively according to the predicted 

power generation and the power demand. The two control strategies impact the values of 
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the weights associated with the two objective functions of model (3.18). To relate the 

control strategy with the model objectives, a particle swarm fuzzy algorithm is 

developed.  

The particle swarm fuzzy algorithm involves two phases. In the first phase, the 

weights of the two objectives are determined by a fuzzy algorithm (Mirzaeian et al. 2002) 

to ascertain the importance of two objectives (discussed in Section 3.2.5) in the 

optimization problem based on the predicted power and demand information. This 

algorithm is expressed by equations (3.21) – (3.24). 

2 3 5 5
2

( , , , , )    1

( , )   1, 2              2
t T t T t T t T t T

i
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f y y y y i
s

D N j i

υ

µ σ
− − − − − ==  = = 

   (3.21) 

max

max
threshold max

max threshold

threshold

0                           if 

( )        if 

1                            if 

i

i
i i

i

s T
s T

f s T s T
T T

s T

 ≥


− += ≤ ≤
−

 ≤

  (3.22) 

1 ( )      1, 2i iw f u i= − =      (3.23) 
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=

= =

∑
     (3.24) 

where si is the predicted power and demand from the power prediction model (3.6) and 

demand models (3.9) or (3.11), respectively; f (si) is the membership function; wi is the 

weight factor to determine the final weight; ωi is the final weight used in the objective of 

the optimization model (3.18). Tmax is the maximum wind turbine capacity (here 

1500kW) and Tthreshold is arbitrarily fixed at 200 kW and expressed in the [0, 1] interval. If 

the predicted power is less than 200 kW, then Tthreshold indicates that the wind speed is low 

and the smoothing control of the generator torque is less significant than power 

maximization. Thus, the weight assigned to the torque smoothing objective in (3.18) will 

be close to 0. If customer demand is lower than 200 kW, this implies low energy demand, 

and the weight assigned to the generated power objective in (3.18) should be small. The 
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value of Tmax indicates that the turbine’s generation capacity has been attained or the 

demand level is at maximum. If the predicted power is greater or equal to 1500 kW, the 

control should focus on minimizing the torque ramp rate to prevent the fatigue of the 

drive train and thus reduce the maintenance cost. The demand, which is greater or equal 

to 1500 kW, implies a high level energy consumption and power maximization needs to 

be emphasized.  

The second phase of the proposed algorithm involves the particle swarm 

optimization (PSO) algorithm (Kennedy and Eberhart 1995). In the PSO, each particle 

represents the candidate optimal solutions of model (3.18) and can be expressed as

( , )j j
i ix v , where j

ix is a two-dimensional vector ( , )j j j
i t tx τ β= at jth iteration, and j

iv is 

another two-dimensional vector ( , )j j j
iv v vτ β= . The vector j

ix represents the position of 

each particle at iteration j, and vector j
iv represents the velocity associated with each 

particle at iteration j. The initial value of each dimension of the particle’s position is 

generated from a uniform distribution, where j
tτ is generated from 

* *[max{0, 20},min{100, 20}]t tU τ τ− +  and j
tβ is generated from

* *[max{ 0.57, 2},min{90.61, 2}]t tU β β− − + . The initial values of the particle’s velocity are all set 

at 0 at the initialization step. The optimization procedure is presented next. 

Step 1. Determine the weights of fitness function f (⋅), which is the objective function of 

model (3.18) that takes the weights of objectives produced by the fuzzy algorithm.  

Step 2. Initialize the particle size, n, the position of each particle, j m
ix R∈ , and its 

velocity, j m
iv R∈ , where, 1, 2,...,i n= , m = 2 and j = 0. 

Step 3. Initialize the local best ˆ j
ix for each particle by ˆ j j

i ix x← , and estimate the initial 

global best ˆ jg by ˆ arg  min( ( ))j j
ig f x← , where 1, 2,...,i n= and j = 0. 

Step 4. Repeat until the stopping criterion is satisfied (j = iterations to stop in this 

research) 

For each particle 1 ≤ i ≤ n 
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Step 4.1. Create random vectors 1
j mr R∈ and 2

j mr R∈ by generating 

1 2, [0,1]j jr r U∈ for m = 1,2. 

Step 4.2. Update the velocities of particles by 

1 1 2 2ˆ ˆ( ) ( )j j j j j j j j
i i i i iv v c r x x c r g xω← + − + − and update the particle positions 

by j j j
i i ix x v← + . 

Step 4.3. Update the local best by ˆ j j
i ix x← if ˆ( ) ( )j j

i if x f x≤ . 

Step 4.4. Update the global best by ˆ j j
ig x← if ˆ( ) ( )j j

if x f g≤ . 

The above algorithm requires parameter initialization. The parameter, ω, is an 

inertial constant (Shi and Eberhart 1998). It controls the impact of the previous velocity 

on the current velocity, and usually it has a value between 0 and 1. It is fixed arbitrarily at 

0.5 in this research. Parameters c1 and c2 are two constants that reflect how much the 

movement of particles is impacted by the local and global best. Both values are arbitrarily 

fixed at 2 (Abido 2002).  

3.4 Industrial Case Study 

3.4.1 Single-point Optimization  

3.4.1.1 Description of the Data Point  

In this section the particle swarm fuzzy algorithm is demonstrated for a single 

data point that has been randomly selected from the test dataset of Table 3.1. This data 

point is partially illustrated in Table 3.6. 

Table 3.6 A data point selected to demonstrate single point optimization 

Date Time Power 
(t) 

…
… 

Generat
or 

Torque 
(t) 

Generat
or 

Torque 
(t – 1) 

Blade 
Pitch  
Angle  

(t) 

Blade 
Pitch  
Angle  
(t – 1) 

Demand
(t) 

12/30/20
08 

3:29:30 
AM 

1112.0
0 

…
… 76.90 77.59 1.07 3.49 225.72 
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The data in Table 3.6 reflects a scenario where the current power generated from 

a wind turbine is high and the simulated demand is low. The current settings of two 

controllable parameters are 76.90 for the generator torque and 1.07 for the blade pitch 

angle. The particle swarm fuzzy algorithm determines the weights of the objective 

function and the recommended control settings optimizing the two control objectives, the 

maximum power and the minimum torque ramp rate. 

3.4.1.2 Convergence of the Particle Swarm Fuzzy 

Algorithm  

In this experiment described next, convergence of the particle swarm fuzzy 

algorithm (PSFA) based on the data point of Table 3.6 is examined. Ten particles are 

created, and the stopping criterion is set to 1500 iterations. The convergence of the PSFA 

is evaluated from two perspectives. The first one is the convergence of the algorithm 

based on the fitness value. To simplify the evaluation procedure, a fitness value every 

five iterations from 5 – 100 and the fitness value at iteration 1500 are examined (see 

Figure 3.12). The horizontal axis in Figure 3.12 represents the number of iterations, and 

the vertical axis shows the standardized fitness value expressed in (3.25). 

1500

ˆ
ˆmin{ }

jg
g

     (3.25) 

according to the notation of Section 3.3. 

As shown in Figure 3.12, the rapid drop of the standardized fitness value for the 

global best indicates the quick convergence of the PSFA. In the 1500 iterations, the 

standardized fitness value drops to 1 at the 50th iteration (converges from 50th iterations) 

and constantly keeps this value in the following iteration. 
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Figure 3.12 Standardized fitness value 

The second perspective to assess the convergence of the PSFA is to compare the 

positions of the particles at the initial iteration and the iteration indicating convergence. 

The positions of the particles are described by two dimensions, generator torque and 

blade pitch angle, as shown in Figure 3.13. The squares in Figure 3.13 are the initial 

positions of the 10 particles, and the diamonds represent the positions of these particles at 

the convergence iteration (here, iteration 50).  

 

Figure 3.13 Positions of the initial iteration and the 50th iteration 
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As presented in Figure 3.13, most of the particles move from their initial positions 

towards the optimized positions in the neighborhood of the generator torque of 77.59 and 

blade pitch angle of 0.77. However, particles corresponding to the generator torque of 

about 69.96 and the blade pitch angle of about 1.68 can be noted.  

3.4.1.3 Optimization Results  

The optimization results based on this single point (Table 3.6) are illustrated in 

Table 3.7. The first column of Table 3.7 presents the recommended control strategy for 

the wind turbine. Here, the power generated is 1139.55 kW (slightly higher than original 

power output of 1112 kW shown in Table 3.6). The ramp rate of the generator torque is 

nearly zero. The two weights indicate the current control preference. Weight 1 is 0.97 and 

weight 2 is 0.03. The values of the weights indicate that the control preference focuses on 

the smoothness of the drive train rather than the maximization of the generated power.  

Table 3.7 Results of the single-point optimization by the PSFA 

Solution 
(Generator 

torque,  
Blade pitch 

angle) 

Fitness of Global 
Best 

Generated 
Power 

Generator 
Torque 

Ramp Rate 

Weight-
Torque 
Ramp 

Weight-
Power  

77.59,1.89 2.79E-05 1139.55 3.66E-06 0.97 0.03 

 

3.4.2 Multi-point Optimization  

To simulate and demonstrate the adaptive control approach of a wind turbine, the 

multi-point optimization based on selected data from the test dataset in Table 3.1 is 

introduced. This dataset reflects a scenario where the predicted power (supply) is higher 

than the demand at the beginning of the period, and then the power demand gradually 

exceeds the predicted power. It contains 300 data points from 12/30/2008 8:17:20 AM to 
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12/30/2008 9:07:10 AM. The demand data is generated from the two demand models M1 

and M2 discussed in Section 3.2.4. 

3.4.2.1 Stopping Criteria of the PSFA  

Before running the multi-point optimization, an experiment is designed to 

evaluate the stopping criterion for the PSFA. Six data points, indexed as 20, 552, 1020, 

1500, 1947 and 3155, are randomly selected from the test dataset of Table 3.1. The PSFA 

has run 1500 iterations for each point. Figure 3.14 illustrates the convergence of the 

PSFA for the six points. It is obvious that the PSFA converges quickly, most of the time 

within 60 iterations. However, to be more conservative, the number of iterations that the 

PSFA needs to run is set to 100. 

 

 

Figure 3.14 Convergence speed of six data points 

3.4.2.2 Optimization Results Based on the Demand Model 

M1  

In this section, the test dataset from 12/30/2008 8:17:20 AM to 12/30/2008 

9:07:10 AM is merged with the demand data generated from model M1. Figure 3.15 

illustrates the weight values assigned to the two objectives of model (3.18). As Figure 
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3.15 shows, weight 2 is initially lower than weight 1; however, over time weight 2 

dominates weight 1. Since, in the PSFA, weight 2 and weight 1 are associated with the 

demand and predicted power, Figure 3.14 characterizes the scenario discussed before in 

Section 3.4.2. Figure 3.16 shows the optimized generator and the original torque ramp 

rate.  

 

 

Figure 3.15 Estimated weights for two objectives 

 

Figure 3.16 Comparison of the optimized torque ramp rate and original torque ramp rate 
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The optimized power generated from a wind turbine and the original power it 

produced is illustrated in Figure 3.17. 

 

 

Figure 3.17 Comparison of the optimized and original power 

Figures 3.16 and 3.17 clearly demonstrate the change in the wind turbine control 

strategies. As initially predicted, the power generated is higher than the demand; 

therefore, the wind turbine is controlled for torque smoothness. In this case, a higher 

weight is assigned to minimizing the generator torque ramp rate. However, the direction 

of the weights gets changed over time.  

Figure 3.18 demonstrates that the original blade pitch angle remains essentially 

constant at about -0.53 degree. 
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Figure 3.18 Comparison of the optimized and original blade pitch angle 

3.4.2.3 Optimization Results Based on the Demand Model 

M2  
 

The results of the multi-point optimization by the PSFA based on the selected 

dataset from 12/30/2008 8:17:20 AM to 12/30/2008 9:07:10 AM, merged with demand 

data generated from demand model M2, are presented. Figure 3.19 illustrates the weights 

of the two objectives (3.18) in the same time period.  

 

 

Figure 3.19 Estimated weights for two objectives 
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Figure 3.20 compares the torque ramp rate computed by the PSFA and the 

original torque ramp rate.  

 

 

Figure 3.20 Comparison of the optimized and the original torque ramp rate 

In Figure 3.20, the optimized ramp rate of the generator torque remains around 

zero until time period 12/30/2008 8:53:50 AM (220 shown in Figure 3.20). However, due 

to the change of weights for two objectives after the period 12/30/2008 8:53:50 AM 

(220), the optimized generator torque ramp rate begins to increase. 

Figure 3.21 contrasts the optimized power with the original power output.  
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Figure 3.21 Comparison of the optimized and the original power 

As shown in Figure 3.21, the optimized and original power follows a similar 

pattern until time period 12/30/2008 8:53:50 AM (220). After the period 12/30/2008 

8:53:50 AM (220), a rise in optimized power is observed.   

Figure 3.22 illustrates the recommended and the original set point of the blade 

pitch angle. 

 

 

Figure 3.22 Comparison of optimized and original blade pitch angle 
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3.5 Summary 

Adaptive control of a wind turbine to maximize power generation and minimize 

the torque ramp rate was presented in this chapter. Data-mining algorithms were utilized 

to generate non-parametric models of wind turbine power generation and the wind power 

prediction model. The two models were integrated into a model with a linear combination 

of weighted objectives. The weights associated with the objectives were estimated based 

on the predicted power and demand. The demand was generated from two simulation 

models. A novel optimization approach, the particle swarm fuzzy algorithm (PSFA), was 

developed to solve the model developed in this chapter. 

Industrial data from three identical wind turbines of a large wind farm was 

utilized in this study. The data sampling frequency was 0.1 Hz. While the data from one 

turbine was used to develop and test data-driven models, the data of two other turbines 

was employed to validate these models. Comparative analysis of various data-mining 

algorithms was performed. The convergence and the stopping criterion of the PSFA were 

investigated.  

The feasibility of adaptive control of wind turbines was demonstrated. In addition 

to the two objectives applied in this chapter, additional objectives, for example, 

mitigation of wind turbine vibrations, could be considered. 
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CAPTER 4 

OPTIMIZATION OF WIND TURBINE POWER AND ITS 

VARIABILITY WITH AN ARTIFICIAL IMMUNE NETWORK 

ALGORITHM 

4.1 Introduction 

Due to variations in wind speed, wind farms exhibit different characteristics from 

conventional power plants. Two important goals are to maximize the generated power 

and to minimize its variability in order to meet the grid requirements. The variability of 

the generated wind power has become an essential issue in the management of wind-

driven energy production. 

Power ramp rate (PRR) expresses the change of power for a given time interval, 

e.g., a minute or an hour. The topic of PRR has been addressed in earlier research that has 

been published in the literature. Peterson and Brammer (1995) proposed a Lagrangian 

relaxation approach to address the thermal unit commitment problem associated with 

power systems. Kakimoto et al. (2009) discussed control of the ramp rate of a 

photovoltaic generator by using an electric double-layer capacitor. Svoboda et al. (1997) 

presented a Lagrangean relaxation approach for solving the short-term resource-

scheduling problem with ramp constraints. Zheng and Kusiak (2009) applied data-mining 

algorithms to establish the multivariate time series model for predicting power ramp rate. 

The prediction of power ramp rate results at 10-min to 60-min intervals was 

demonstrated in their research. The significance of Power ramp rates in power systems in 

the presence of wind and solar generation has been recognized in the literature (Peterson 

and Brammer 1995; Kakimoto et al. 2009; Svoboda et al. 1997; Zheng and Kusiak 2009). 

Control of power ramp rates is beneficial to the power dispatching and grid management 

(Ling et al. 1989; Goosen et al. 2003; Xuan et al. 2005). 
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The operation of wind turbines for power production is a challenging topic, and 

several researchers have investigated this topic and published their results in the 

literature. Boukhezzar and Siguerdidjane (2009) designed a non-linear controller for 

optimizing the power of the DFIG (Doubly Fed Induction Generator). Abdelli et al. 

(2007) applied a multi-objective genetic algorithm to optimize the efficiency of a small-

scale turbine. Wang and Chang (2004) investigated an intelligent power extraction 

algorithm for improving the performance of wind turbine systems. Munteanu et al. 

(2005) presented a control approach to optimize power production in low and high 

frequency scenarios. Morimoto et al. (2005) researched the maximization of wind-

turbine-generated power by controlling the current vector of the interior, permanent-

magnet, synchronous generator. Muljadi and Butterfield (2001) addressed operating a 

variable-speed wind turbine with pitch control to maximize power while minimizing the 

loads. Physics and parametric-based approaches to turbine modeling involve numerous 

assumptions that may limit their applicability. In this chapter, a model that maximizes the 

generated power and minimizes the power ramp rate is presented. Modeling the power 

generation process of a wind turbine with data-mining algorithms is an essential 

component of the overall model. The benefits of applying data mining in wind power 

modeling have been demonstrated in previous studies (Kusiak et al. 2010c; Kusiak et al. 

2010d; Kusiak et al. 2009c). In this chapter, we have also addressed the important issue 

of the constraints used in power generation modeling. In the past, Betz’ law (Kusiak et al. 

2009a) has served as the basis for forming the constraints used in power optimization. A 

constraint derived from Betz’ law is a boundary can never be achieved while regulating 

the power production of a wind turbine. Thus, a new power optimization constraint was 

studied in this research. The upper control limit of the control chart used in power 

monitoring (Kusiak et al. 2009e) was integrated with Betz’ law to produce a more 

realistic constraint for power optimization. 
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The bi-objective optimization model formulated in this research involves a linear 

combination of weighted objectives, power and power ramp rate, which are maximized 

and minimized, respectively. This optimization model was developed with data-mining 

algorithms. A known computational intelligence algorithm, the artificial immune network 

algorithm (aiNet), was used to solve the formulated model. The value of the model was 

tested with three scenarios. The first scenario involves power maximization as the only 

objective. In the second scenario, the power and PRR objectives were treated as equally 

important. The third scenario focused on PRR minimization as the only objective. The 

optimization results were compared with the actual wind turbine data to show the 

improvement of wind turbine performance. 

4.2 Modeling Power and PRRs 

The analytical model of the power generated by a wind turbine, shown as 

equation (4.1), has been studied extensively, and the results have been reported in the 

literature (Boukhezzar et al. 2006).  

2 31 ( / , )
2 pP R C R v vρπ ω β=    (4.1) 

where ρ is the air flow density, R is the rotor radius, v is the wind speed measured by an 

anemometer, Cp (ωR / v, β) is the power coefficient function of the blade pitch angle β 

and the tip speed ratio expressed as ωR / v. In the tip speed formula, ω is the rotor angular 

speed.  

In this chapter, data collected by Supervisory Control and Data Acquisition 

(SCADA) systems installed at operating 1.5 MW horizontal axis wind turbines was 

utilized. The dataset used in this research is split to two sub-sets, a training dataset and a 

test dataset. The training dataset was used to build a data-driven model, and the test 

dataset was used to validate the accuracy and robustness of the data-driven model. Table 

4.1 characterizes the training dataset and the test dataset. 
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Table 4.1 Description of training and test datasets 

Dataset Start Time Stamp End Time Stamp Number of Observations 
Training 10/23/2009 8:00 AM 10/30/2009 5:43 AM 60000 observations 

Test 10/30/2009 5:43 AM 10/31/2009 18:00 PM 12301 observations 

As shown in Table 4.1, the training dataset contains 60000 points that were 

collected from 8:00:30 A.M. on 10/23/2009 to 5:43:20 A.M. on 10/30/2009. The test 

dataset contains 12301 points that were collected from 5:43:30 A.M. on 10/30/2009 to 

6:00:00 P.M. on 10/31/2009.  

The SCADA system of the turbines considered in this research collects data on 

more than 120 parameters measured by different sensors. The domain knowledge and 

previous studies (Kusiak et al. 2010c; Kusiak et al. 2010d; Kusiak et al. 2009c; 

Boukhezzar et al. 2006) point to a subset of parameters related to the power generation. 

These parameters are listed in Table 4.2, where t is the current time and T is the sampling 

interval, which was 10 s in our study.  

Table 4.2 Parameters selected for power modeling 

Parameter Symbol Parameter Symbol 
Generated power at time t Pt Blade pitch angle at time t – T βt – T 

Generated power at time t – T Pt – T Wind speed at time t vt 
Generator torque at time t τt Wind speed at time t – T vt – T 

Generator torque at time t – T τt – T Wind deviation at time t dt 
Blade pitch angle at time t βt Wind deviation at time t – T dt – T 

 

Based on the parameters in Table 4.2, the data-driven model of power generation 

process is expressed in (4.2). 

1( , , , , , , , )t t t T t t T t t T t t TP f v v d dτ τ β β− − − −=    (4.2) 

where f (⋅) means the model extracted by data-mining algorithms discussed in the 

following. 
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Seven data-mining algorithms, Neural Network (NN) (Siegelmann and Sontag 

1994; Liu 2001; Smith 1993), Neural Network Ensemble (NNE) (Hansen and Salamon 

1990), Support Vector Machine (SVM) (Schölkopf et al. 1999; Steinwart and Christmann 

2008), Boosting Tree (BT) (Friedman 2001; Friedman 2002), Random Forest (RF) 

(Breiman 2001), k Nearest Neighbor (kNN) (Shakhnarovish et al. 2005), and 

Classification and Regression Tree (CART) (Breiman et al. 1984), were utilized to 

extract the data-driven models from the training dataset. To develop NN and NNE 

models, five activation functions, identity, logistic, hyperbolic tangent, exponential, and 

sine were utilized. To produce high-performance NN or NNE models, 20 neural networks 

were generated. For the SVM algorithm, the kernel function was used as the Radial Basis 

Function (RBF). To implement kNN, the value of k was set to 3. Two software tools, 

Statistica and Weka, were used to train data driven models on a Quad-core processor 

computer with 4 GB memory. The test dataset was used to examine the accuracy of each 

data-driven model. A comparative analysis was performed to select the best-performing 

algorithm to train the data-driven model of power generation. Four metrics, the mean 

absolute error (MAE), standard deviation of mean absolute error (SD of AE), mean 

absolute percentage error (MAPE), and the standard deviation of absolute percentage 

error (SD of APE), were used to evaluate the performance of the data-mining algorithms; 

they are formulated as (4.3) – (4.6).  

1

1 ˆMAE = | |
n

i i
i

y y
n =

−∑     (4.3) 

2

1 1

1 1ˆ ˆSDofAE = (| | | |)
n n

i i i i
i i

y y y y
n n= =

− − −∑ ∑    (4.4) 

1

ˆ1MAPE = (| |) 100%
n

i i

i i

y y
n y=

−
×∑    (4.5) 

2

1 1

ˆ ˆ1 1SDofAPE (| | | |) 100%
n n

i i i i

i ii i

y y y y
n y n y= =

− −
= − ×∑ ∑  (4.6) 
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Table 4.3 shows the test results of the models developed by the seven algorithms. 

The data-driven model (see Eq.(4.2)) developed by the NNE algorithm provided the best 

test result among the seven algorithms. (See Table 4.3) Thus, NNE algorithm was 

selected to develop the data-driven power generation model (see Eq.(4.2)). Figure 4.1 

illustrates the results provided by the NNE algorithm for the first 100 test points. 

Table 4.3 Test results of seven data-driven models 

Algorithm MAE SD of AE MAPE SD of APE 
NNE 5.2040 4.9492 0.0084 0.0194 
NN 5.6784 7.2280 0.0093 0.0293 
BT 38.6601 39.9745 0.0635 0.2236 
RF 205.5020 188.1148 0.2209 0.4707 

SVM 27.3313 17.5824 0.0509 0.0639 
CART 237.0131 190.9273 0.2347 0.1290 
kNN 12.6050 14.7446 0.0239 0.1119 

 

 

Figure 4.1 Predicted and observed power for the first 100 test points 

The power ramp rate (PRR) can be computed from equation (4.7). As the sample 

time of the data in this study is 10 s, the unit of PRR is kW/10 s. 
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t t T
t

P P
PRR

T
−−

=      (4.7) 

where PRR is the power ramp rate; notation for the other parameters can be obtained 

from Table 4.2. 

4.3 Power Generation Constraints 

Power optimization must be performed with realistic constraints. In previous 

publications (Kusiak et al. 2009a; Kusiak and Zheng 2010), Betz’ law was used to form 

unrealistic constraints. In the instance addressed in (Kusiak et al. 2009a), the boundary 

calculated by Betz’ law for power generated by a wind turbine was min{2.625v3, 1600}. 

This indicates that the wind turbine could potentially reach its maximum capacity for a 

wind speed of 10 m/s, which is not the case. 

A more effective and feasible constraint for regulating power optimization should 

be investigated. In this research, the concept of a control chart was used to develop the 

new constraint for power optimization. A power-monitoring scheme based on the concept 

of a control chart was studied in (Kusiak et al. 2009e). In (Kusiak et al. 2009e), principle 

component analysis (PCA) was used for preprocessing of 10-min data. A nonlinear 

parametric approach, integrating a logistic function and evolutionary computation, was 

applied to determine the power curve model. To build control charts, the power curve 

models were treated as centerlines, and they were used as the basis for establishing the 

upper and lower control limits. In this research, the upper control limit used to regulate 

the maximum generated power served as a constraint for power optimization. 

In this study, data-mining algorithms rather than the logistic function of (Kusiak 

et al. 2009e) were used to develop the power curve model based on higher frequency, 10-

s data. The performance of the power curve models derived by the seven data-mining 

algorithms of Section 4.2 was tested. The best performing algorithm was selected. The 

upper control limit of the control chart for monitoring generated power is expressed in 

(4.8) – (4.10). 
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2 ( ) ( / )D r rP f c mυ µ σ= + +     (4.8) 
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= −∑      (4.9) 
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ˆ[ (| | ) ] /( 1)
n

r i i t
i

y y nσ µ
=

= − − −∑     (4.10) 

where PD is the maximum power calculated based on the control chart-based boundary, c 

is the constant to control the sensitivity of the control chart, µr is the average of absolute 

residuals between predicted and observed power based on the training dataset, σr is the 

standard deviation of the absolute residuals, m is the sampling data points in the control 

chart,  f2(⋅) is the model trained by data-mining algorithms discussed in Section 4.2, ˆiy is 

the predicted value of power in the training dataset, yi is the observed power, and n is the 

total number of points in the training dataset. 

Table 4.4 illustrates the performance of seven data-mining algorithms in fitting 

the power curve. Since the NN algorithm had the best performance, it was selected to 

learn the function, f2(⋅), which represents the upper control limit of the control chart. 

Figure 4.2 shows the results of the first 100 test points in predicting power by using wind 

speed only. 

Table 4.4 Test results for data-mining algorithms  
fitting power curves 

Algorithm MAE SD of AE MAPE SD of APE 
NNE 64.1443 70.1687 0.1147 0.5630 
NN 64.0627 70.0847 0.1146 0.5606 
BT 83.7407 71.5324 0.1451 0.5923 
RF 249.0231 201.4617 0.2615 0.4235 

SVM 131.9324 94.8365 0.2203 0.5592 
CART 240.5598 204.1513 0.2461 0.4342 
kNN 65.9877 72.3457 0.1164 0.5628 
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Figure 4.2 The observed power and predicted power based on only wind speed for first 
100 test points 

Figure 4.3 demonstrates the Betz’ law boundary and the control chart-based 

boundary with the constant, c = 3. (The variable c controls the sensitivity of the control 

chart and in the statistical quality control it is usually set to 3.) In Figure 4.3, the scattered 

points represent the industrial data, the lowest curve is the power curve fitted by the NN 

algorithm, the curve in the middle represents the upper control limit of the control chart, 

and the highest curve depicts the Betz’ law boundary. Although the upper control limit 

makes a more reasonable constraint for power optimization than the Betz’ law boundary, 

it is not entirely satisfactory because it violates the theoretical maximum value of the 

generated power. This violation occurs when the wind speed is lower than a particular 

value, the cross point of Betz’ law boundary and upper control limit of the control chart. 

This cross point is not fixed, and it is impacted by the constant, c. (See (4.8).) A likely 

reason that the upper control limit violates the theoretical maximum is the use of 

erroneous wind speed data (at low wind speeds) that were included from the analysis. 

Thus, in order to construct a reasonable constraint, the upper control limit of the control 

chart and the Betz’ law boundary must be combined. 
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Figure 4.3 Betz’ law and the control chart based boundaries 

Equations for the combined boundary for power optimization are presented below 

(4.11):  

2 3

2

1 ( )                     if 
2

( ) ( / )        if 

p o
c

r r o

R C v v v
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f v c m v v

ρπ

µ σ

 ⋅ <= 
 + + >

   (4.11) 

 

where Pc is the maximum power in the combined constraint, and vo is the wind condition 

at which the control chart boundary starts to be infeasible and the function to calculate 

the constraint should switch. 

The fact that the maximum amount of power generated by the wind turbine is 

1600 kW should also be considered in the new boundary. Then, the new boundary for 

power optimization is expressed as (4.12):  

2 3
[0, ) 2 [ , )

1min{1600, ( ) ( ) [ ( ) ( / )] ( )}
2 o ot p v r r vP R C v I v f v c m I vρπ µ σ +∞≤ ⋅ + + +  (4.12) 

where I(∙) is the indicator function. 

The value of vo is variable. It is impacted by several factors, such as the change of 

the fitted power curve and the change of c in estimating the upper control limit for the 

control chart. The most effective way of computing the value of vo is based on Figure 4.2. 
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To estimate the exact value of vo, the power coefficient, Cp(∙), is assumed to be constant. 

It is obvious in (4.13) that the value of vo can be obtained when the two functions in 

(4.11), 2 30.5 ( )pR C vρπ ⋅ and 2 ( ) ( / )r rf v c mµ σ+ + , are equal. The right side of (4.13) is 

obtained by substituting rµ and ( / )rc mσ of (4.8) by (4.9) and (4.10). 

2 3 2
2

1 1

1 ˆ ˆ( ) ( ) [ | |] / ( [ (| | ) ] /( 1) / )
2

n n

p o o i i i i t
i i
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= =

⋅ = + − + − − −∑ ∑  (4.13) 

The two parts in (4.13), 
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i

c y y n mµ
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− − −∑ and
20.5 ( )pR Cρπ ⋅ , can be considered as two constants. Eq. (4.13) can be simplified and 

expressed as (4.14): 

3
1 2 2( )o oC v f v C= +     (4.14) 

where C1 is equivalent to 20.5 ( )pR Cρπ ⋅ , and C2 is 
1

ˆ[ | |] /
n

i i
i

y y n
=

−∑  +
2

1

ˆ( [ (| | ) ] /( 1) / )
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i i t
i

c y y n mµ
=

− − −∑ . 

Simultaneously, (4.14) can be further re-written as (4.15): 
3

1 2 2( )o oC v f v C− =     (4.15) 

Next, since the term, 3
1 2 ( )o oC v f v− , can be replaced as another function of vo, 

2' ( )of v , then the wind speed, vo, can be estimated based on Eq. (4.16): 
1

2 2' ( )ov f C−=      (4.16) 

The 1
2 2' ( )f C− can be specifically addressed when 2 ( )f ⋅ is parametric. 

4.4 Modeling Formulation 

In the optimization of generated power, two additional constraints must be 

considered in addition to the constraint for the maximum power. The two constraints are 

set for limiting the ranges of the generator torque and the blade pitch angle, which are 

controlled. In the industrial data, the minimum and maximum values of generator torque 

are 0 and 100, respectively. The minimum blade pitch angle is -0.57°, and the maximum 

value is 90°. Thus, the two constraints for generator torque and blade pitch angle are 

formulated in (4.17) and (4.18):  
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*max{0, 50} min{100, 50}t t tτ τ τ− ≤ ≤ +    (4.17) 

*max{ 0.57, 10} min{90.61, 10}t t tβ β β− − ≤ ≤ +   (4.18) 

where τ* means the computed generator torque for wind turbine operation, β* is the 

computed blade pitch angle, τ presents the measured generator torque and β is the 

measured blade pitch angle.  

Two objectives were considered in the optimization model. The first objective 

was to maximize the power generated by the wind turbine. The second objective was to 

minimize the absolute value of power ramp rate. Since the maximal generated power is 

1600 kW, the first objective then can be equivalently translated to minimize the value of 

difference between 1600 kW and the generated power. To optimize the two objectives 

simultaneously, a linear combination of the two objectives was utilized by assigning a 

weight to each objective. Then, the objective function of this bi-objective model can be 

expressed as (4.19):  

1 2|1600 | | |t tO w P w PRR= − +    (4.19) 

The optimization model in (4.20) includes two objectives, the generated power 

and power ramp rate (See (4.2) and (4.7).). The model also includes three constraints (See 

(4.12), (4.17), and (4.18)). 
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 (4.20) 

where c = 3, µr = 48, σr = 53, m = 1, and the term 20.5 ( )pR Cρπ ⋅ = 2.625. The values of µr 

and σr are calculated based on (4.9) and (4.10), respectively. The estimation procedure of 
20.5 ( )pR Cρπ ⋅ can be referred to [14]. 
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4.5 Artificial Immune Network Algorithm 

The optimization model (4.20) is complex. The model can be solved with a novel 

computational intelligence scheme, the artificial immune network algorithm (de Castro 

and Timmis 2002a; b). 

The concept of an artificial immune system (AIS) was inspired by the principles 

and processes of the human immune system. The theory used in AIS mimics the 

biological functions in the human immune system, and this simulation transforms to a 

new computational approach that exploits the adaptive and memory mechanisms of the 

immune system. The AIS was developed in the mid-1980s. Farmer et al. (1986) and 

Bersini et al. (1990) were the first researchers to publish their work on immune networks. 

In the following years, research related to AISs gradually expanded, and various AIS 

algorithms were developed and applied in different fields. Two versions of the clonal 

selection principle were derived by de Castro and Von Zuben (2002) and applied to 

machine learning, pattern recognition, and multi-model optimization. Timmis et al. 

(2000) presented the application of an immune network model of AIS in data analysis. 

Dasgupta (1998) developed a multi-agent decision support system by examining the 

recognition and response mechanisms of the immune system. Forrest et al. (1993) 

combined a genetic algorithm and an immune system algorithm to study the pattern 

recognition process.  

Among the various computational algorithms belong to the artificial immune 

system category, one famous algorithm, the artificial immune network algorithm (aiNet) 

(de Castro and J. Timmis 2002a; b), was selected to solve the optimization model (4.20). 

The steps of the aiNet algorithm used in this research are provided below: 

Step 1. Population initialization: Randomly generate an initial population of size N of the 

network antibodies. 

Step 2. Clonal expansion: Create a clone of size n for each antibody. The antibodies 

contained in the clone are the exact copies of their parent antibody. 
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Step 3. Local search: Search until the stopping criterion, 1i if f ζ−− ≤ , is met.  

Step 3.1. Determine the fitness of each parent antibody and normalize the fitness 

values. 

Step 3.2. Mutate each antibody of every clone based on the fitness value of the 

parent antibody. The equations for antibody mutation can be addressed 

as 1' (1/ ) exp( *) (0,1)a f Nτ τ= + − and 2' (1/ ) exp( *) (0,1)a f Nβ β= + −

where f is the average fitness value of a clone, i is the iteration index, ζ 

is the threshold to determine the convergence of local search, a is the 

constant to control the decay of the inverse exponential function, 

f*means the fitness value of the parent antibody, N (0,1) is a standard 

normal distribution, and ε determines how many parent antibodies 

could remain in each iteration. 

Step 3.3. Compare the parent antibody and the antibody that has the highest 

fitness in the clone. If the fitness value of the antibody in the clone is 

better than the parent antibody’s fitness value, replace the parent 

antibody by this antibody in the clone. 

Step 3.4. Compute the average fitness of each clone. 

Step 4. Network interactions and suppression: Compare the fitness values of the parent 

network antibodies and eliminate parent network antibodies whose fitness values 

are less than the threshold ε. 

Step 5. Diversity: Introduce a number of new randomly generated antibodies into the 

network, which is the parent antibody set. 

Step 6. Go back to Step 2 until the number of iterations has been reached.  

In the aiNet algorithm, two types of search, i.e., local search and global search, 

are illustrated to obtain the best solution for the optimization model (4.20). The local 

search identifies potential solutions around the parent antibody by clonal expansion and 

antibody mutation. It is controlled by the threshold, ζ , which is the difference between 
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the average fitness of antibodies in the clone. In the local search, once an antibody in the 

clone has a fitness value better than the fitness of the corresponding parent antibody, it 

replaces the parent antibody. The global search allows the aiNet algorithm to determine 

the best solutions among parent antibodies. The memory mechanism of the aiNet 

algorithm is handled by the network interactions and the suppression step. In the 

suppression step, the fitness values of the parent antibodies are examined, and only a 

portion of the parent antibodies survive and remain in the next iteration. 

To implement the aiNet algorithm, values of some parameters must be 

determined. In this research, ζ is set to 0.05, a1 = 2, a2 = 10, and ε is set to 1.2 times the 

global fitness value in each iteration. Besides these parameters, the ratio of the size of 

parent antibodies to the size of the clone antibodies must be determined. An experiment 

was designed to compare four ratios. Ratio 1 includes 10 parent antibodies and 10 clone 

antibodies, ratio 2 contains 10 parents and 20 clone antibodies, ratio 3 includes 10 parent 

antibodies and 30 clone antibodies, and ration 4 includes 10 parent antibodies and 40 

clone antibodies. To run this experiment, the weights of the two objectives were both as 

0.5, and one observation was selected from the industrial dataset to make the comparison. 

Table 4.5 shows partial information from the selected observation. 

Table 4.5 Information of selected observation 

Date Time Pt vt … τt dt dt – T  
10/30/2009 5:43:40 AM 1528 11.05 … 100.03 -9.8 -1.6 

 

To compare the four ratios, the aiNet algorithm was run for 1500 iterations for 

one ratio at a time. The results of the experiment are presented in Table 4.6. As shown in 

Table 4.6, ratio 3 leads to faster convergence of the algorithm than ratios 1 and 2. 

Although the convergence speeds of ratios 3 and 4 are the same, ratio 3 involved a 
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smaller clone size than ratio 4. This is indicative of the smaller computational cost of 

ratio 3. Thus, ratio 3 was selected. 

Table 4.6 Selection of the ratio of the parent size  
to clone size of antibodies 

Ratio Parent/Clone Size Convergence (No. of Iterations) 
1 10P/10C 12 
2 10P/20C 10 
3 10P/30C 9 
4 10P/40C 9 

 

Figure 4.4 demonstrates the convergence of the aiNet algorithm in solving the 

optimization problem based on the selected observation with ratio 3. In Figure 4.4, the 

vertical axis presents the standardized global fitness, and the horizontal axis shows the 

number of iterations. It can be seen that the standardized global fitness gradually drops 

from the initial iteration and then converges from the ninth iteration. 

 

 

Figure 4.4 Convergence of the aiNet algorithm 
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Table 4.7 shows the optimization results of the single observation presented in 

Table 4.5. As illustrated in Table 4.7, the gain of the generated power was 0.2%, and the 

reduction of power ramp rate was 84% (from 2.1 to 0.33). 

Table 4.7 Summary of optimization result  
for the selected observation 

Solution 
(τ*, β*) 

Original 
Power 

Computed 
Power Gain Original 

PRR 
Computed 

PRR Gain 

99.80,8.36 1528 1530.43 0.002 2.1 0.33 -0.84 

 

4.6 Industrial Case Studies 

Three industrial case studies were considered to demonstrate optimization for the 

generated power and the power ramp rate (PRR). In Case 1, the model maximizes the 

generated power only, which means w1 = 1 and w2 = 0. In Case 2, the two objectives are 

treated as being equally important, thus w1 = w2 = 0.5. In Case 3, the model minimizes 

PRR only, which means w1 = 0 and w2 = 1. To generate optimization results in the 

implementation of the continuous optimization, the values of τt – T, βt – T, and Pt – T at time 

t are equal to the values of *
tτ , *

tβ , and Pt computed at time t – T. 

To reduce the computational cost of the aiNet algorithm, the number of iterations 

N (Section 4.5) must be determined. Based on the experiment discussed in Section 4.5, 

the best ratio of parent size and clone size indicates that the aiNet can converge within 20 

iterations. To assure that the aiNet algorithm will converge, a more conservative value of 

N = 100 was selected. 

Thirty observations from the test dataset from 6:32:20 A.M. on 10/30/2009 to 

6:37:20 A.M. on 10/30/2009 (discussed in Section 4.2) are used in Section 4.6. 
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4.6.1 Case 1 Results  

In Case 1, by assigning w1 = 1 and w2 = 0, the bi-objective optimization model 

reduces to a single-objective, power optimization model. This case demonstrates that the 

power generation efficiency can be further improved with improved control of the 

generator torque and blade pitch angle. Figures 4.5 – 4.8 present the computed and 

original (measured) values of power, PRR, generator torque, and blade pitch angle, 

respectively. In the four figures, the horizontal axis represents the time in 10-s intervals, 

and the vertical axis shows the value of the parameter of interest. Figure 4.5 illustrates 

improvements in power generation. Generally, the computed power values are larger than 

the original power value. (See Figure 4.5) To achieve this power gain, the generator 

torque and the blade pitch angle must vary as indicated in Figures 4.7 and 4.8. The chart 

in Figure 4.6 indicates that the PRR increases when the wind turbine is controlled to 

optimize only the generated power. 

 

 

Figure 4.5 Computed and original value of the power in Case 1 
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Figure 4.6 Computed and original value of the PRR in Case 1 

 

Figure 4.7 Computed and original value of the generator torque in Case 1 
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Figure 4.8 Computed and original value of the blade pitch angle in Case 1 

4.6.2 Case 2 Results  

In Case 2, the optimization model with w1 = w2 = 0.5 demonstrated a scenario in 

which power maximization and PRR minimization are considered to be equally 

important. Figures 4.9– 4.12 present the computed and original (measured) values of 

power, PRR, and the corresponding settings of the generator torque and the blade pitch 

angle. For the computed settings of generator torque and blade pitch angle, the gain in the 

generated power is shown in Figure 4.9. Although the computed and original (measured) 

values of PRR cannot be easily compared visually based on Figure 4.10, the summary of 

results in Table 4.8 indicates a reduction of PRR. To achieve the wind turbine 

performance shown in Figures 4.9 and 4.10, the generator torque of wind turbine and the 

blade pitch angle must be updated, as shown in Figure 4.11 and 4.12. 
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Figure 4.9 Computed and original values of the power in Case 2 

 

Figure 4.10 Computed and original values of the PRR in Case 2 
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Figure 4.11 Computed and original values of the generator torque in Case 2 

 

Figure 4.12 Computed and original values of the blade pitch angle in Case 2 
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shows that PRR was reduced significantly. Figures 4.15 and 4.16 demonstrate the 

computed and original settings of generator torque and blade pitch angle. 

 

 

Figure 4.13 Computed and original values of the power in Case 3 

 

Figure 4.14 Computed and original values of the PRR in Case 3 
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Figure 4.15 Computed and original values of the generator torque in Case 3 

 

Figure 4.16 Computed and original value of the blade pitch angle in Case 3 
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power is about 9% and PRR was reduced by about 25%. In Case 3, the PRR value 

decreased from 107 kW/10 s to 14 kW/10 s, a significant reduction of approximately 

87%. To achieve smooth operation of the power train, the generated power was reduced 

by almost 5%. 

Table 4.8 Summary of continuous optimization 

Parameter Case 1 
(w1 = 1, w2 = 0) 

Case 2 
(w1 = 0.5, w2 = 0.5) 

Case 3 
(w1 = 0, w2 = 1) 

Computed mean power (kW) 1006.59 943.86 825.26 
Original mean power (kW) 865.37 865.37 865.37 

Power Gain (%) 16.32% 9.07% -4.63% 
Computed mean PRR (kW/10-s) 120.59 80.06 13.86 
Original mean PRR (kW/10-s) 107.07 107.07 107.07 

PRR Reduction (%) -12.63% 25.23% 87.06% 
 

 

4.7 Sensitivity Analysis in the Presence of Constraints 
 

The optimization results discussed in Section 4.6 are produced based on model 

(4.20) constrained by the power optimization boundary (see (4.12)) with the value c 

arbitrarily fixed at 3. In this section, the optimization model (4.20) with the shifting 

power optimization boundary is considered. The boundary is shifted by assigning setting 

the value of c to 4, 5, and 6. As discussed in Section 4.3, the power optimization 

boundary is composed of two parts, the Betz’ law constraint and the upper control limit 

of the control chart (see (4.12)). In this study, only the upper control limit part of the 

power optimization boundary will be shifted as the Betz’ law constraint implies the 

theoretical maximum and it cannot be moved. Figure 4.17 illustrates different power 

optimization boundaries, where, UCL1 is the power optimization boundary with c = 3. 

UCL2 to UCL4 represent the power optimization boundaries for c = 4, 5, and 6. 
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Figure 4.17  Five power optimization boundaries 

The value of parameter v0 in (4.12) change with parameter c. For example, when c 

increases to 4, v0 becomes 5.8 m/s. Table 4.9 provides the computed power and PRR 

optimization results different values of parameter c obtained for three different cases 

(same as in Section 4.6) by solving model (4.20). As shown in Table 4.9, the wind 

turbine performance improves as the value of c increases from 3 to 4 and 5. Both the 

power gain and PRR are improved. This is due to fact that the power boundary allows 

more room for optimization. However, these improvements are not monotonically 

increasing. For c = 6, the computed PRR in Case 2 is 78 kW/10-s, i.e., it is larger than the 

computed PRR (69 kW/10-s) with c = 5 in the same case (Table 4.9). This indicates the 

limit for improvement of both the power gain and the PRR. Power gain can be 

accomplished at the cost of increased PRR. 
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Table 4.9 Summary of sensitivity analysis 

Parameter Case 1 
(w1=1, w2=0) Gain Case 2 

(w1=0.5, w2=0.5) Gain Case 3 
(w1=0, w2=1) Gain 

Computed 
Power (c=4) 1023.18 0.18 984.56 0.14 870.59 0.01 
Computed 
PRR (c=4) 129.94 0.21 82.25 -0.23 19.42 -0.82 
Computed 

Power (c=5) 1075.15 0.24 1012.16 0.17 928.96 0.07 
Computed 
PRR (c=5) 113.39 0.06 69.34 -0.35 10.55 -0.90 
Computed 

Power (c=6) 1126.14 0.30 1067.01 0.23 975.29 0.13 
Computed 
PRR (c=6) 111.52 0.04 78.43 -0.27 8.81 -0.92 

 

4.8 Summary 

In this chapter, an optimization model for maximizing the generated power and 

minimizing the power ramp rate of a wind turbine was developed. The function deriving 

the power generation process of a wind turbine was identified with data-mining 

algorithms. A new constraint used to regulate the maximum generated power was 

developed based on the Betz’ law and process control. Data-mining algorithms derived 

the centerline function describing the power curve that was applied to build a control 

chart. The bi-objective function was transformed in a single objective model by assigning 

weights to the objectives. The optimization model was established by integrating the 

objective function and constraints. 

An artificial immune network algorithm was applied to solve the challenging 

optimization model. Two types of search techniques, local and global search, were 

included in the network algorithm. Local search was applied to obtain the best solution 

among the antibodies contained in the clone of each parent antibody. In the global search 

the parent antibodies were compared and the best one was selected. The convergence of 

local search was controlled by the change of average fitness of the clone. The stopping 
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criterion of the algorithm was the number of iterations. To improve performance of the 

artificial immune network algorithm, an experiment was conducted to select the best 

combination of the parent antibody and the clone antibody size. This is similar to the elite 

set concept of evolutionary computation. In this way, the artificial immune system 

algorithm was able to eliminate some dominated solutions (parent antibodies) and 

introduce new parent antibodies to the antibodies network (parent population). 

Industrial data was used to demonstrate performance of the optimization model in 

three scenarios. The model generated power and the power ramp rate (PRR) were 

compared to their measured values. The computed set point values of the generator 

torque and the blade pitch angle have increased the power and reduced the PRR. The 

model allows for considering other optimization scenarios where greater gains in one 

objective could be accomplished at the expense of the other one.  

In wind farm operated turbines, control objectives may vary due to factors such 

as, grid requirement, wind conditions, and wind turbine maintenance policies. Such 

industrial requirements can be easily accommodated by the model by dynamic 

modification of the weights attached to the control objectives.  
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CAPTER 5 

SCHEDULING A WIND FARM 

5.1 Introduction 

This chapter presents a model for scheduling wind turbines of a wind farm. A 

particle swarm optimization algorithm with a small world network structure is introduced 

for solving this model. The solution generated by the algorithm defines operational status 

of wind turbines for a scheduling horizon selected by a decision maker. Different 

operational scenarios are constructed based on time series data of electricity price, grid 

demand, and wind speed. The computational results provide insights into management of 

wind farm. 

5.2 Model for Scheduling Wind Turbines 

A model for wind turbine scheduling is developed. The model minimizes the cost 

function defined in the next section subject to various constraints.  

5.2.1 Objective Function  

Quantifying the total cost of running a wind farm is complex and wind industry 

does not have a widely accepted standard. In this study, the cost of running a wind farm 

is simply depicted as three major components: power shortage cost, wind turbine 

operations and maintenance cost, and wind turbine start-up cost. 

Power shortage occurs when the supply of power from a wind farm does not meet 

the grid demand as expressed in (5.1): 

   , ,
1

max{0, }
I

t t i t i t
i

P D P s
=

∆ = −∑     (5.1) 

In (5.1), ΔPt, is always nonnegative because power shortage only occurs when the 

grid demand is greater than the energy generated by all turbines. 
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The power shortage cost can be further categorized into the opportunity cost of 

power shortage (Definition 5.1) and the compensation cost (Definition 5.2). 

Definition 5.1. Once power shortage occurs, the opportunity cost equals the benefits of 

selling the amount equivalent to the power shortage, i.e., the product of the electricity 

price and the power shortage at a given time window. 

 The total opportunity cost of power shortage over the scheduling time horizon is 

expressed in (5.2). 

    
1

T

ps t t
t

C B P
=

= ∆∑      (5.2) 

Definition 5.2. The compensation cost is the penalty paid to compensate for the amount 

of power shortage. 

The wind farm can compensate the power shortage by activating an alternative 

power generation resource or purchasing power from other utilities. The total 

compensation is expressed in (5.3). 

    
1

T

pc t t
t

C p P
=

= ∆∑      (5.3) 

where pt is the penalty cost per power unit. 

The operations and maintenance (O&M) cost of all wind turbines in a farm is 

formulated in (5.4): 

    , ,
1 1

T I

om i t i t
t i

C cP s
= =

= ∑∑     (5.4) 

where c is the cost in generating a unit of power. 

The O&M cost is then determined as a function of the generated power and on/off 

decision variable. 

The last major component is the start-up cost of wind turbines. The start-up cost 

refers to the energy consumed by wind turbines during the start-up process. Activating a 

wind turbine requires a certain amount of electricity from the grid as stated in (5.5). 
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    , , , 1
1 1

(1 )
T I

start t i t i t i t
t i

C B K s s −
= =

= −∑∑    (5.5) 

By considering (5.2) – (5.5), the total operating cost of a wind farm is expressed 

in (5.6). 

  , , , , ,
1 1 1 1 1 1

(1 )
T T T I T I

t t t t i t i t t i t i t i t
t t t i t i

TC B P p P cP s B K s s
= = = = = =

= ∆ + ∆ + + −∑ ∑ ∑∑ ∑∑  (5.6) 

It is obvious that the first two components of the total cost are not considered 

when the grid demand is met (i.e., ΔPt = 0). However, satisfying the grid demand 

increases both the O&M and the start-up costs. To minimize TC in (5.6) it is necessary to 

turn off some wind turbines once the grid demand is met. The goal is to turn on the 

minimum number of wind turbines meeting the grid demand. 

5.2.2 Constraints  

The scheduling model built in this chapter calls for constraints. A wind turbine 

operates, if and only if, the wind speed is between the specified cut-in and cut-out wind 

speed. Therefore, the wind speed condition in (5.7) is needed. 

    ci t cov v v< <      (5.7) 

Another constraint is related to the performance of wind turbines expressed by 

power curves. A power curve describes a mapping between wind speeds and wind energy 

produced by a wind turbine. Various functions have been investigated in the literature to 

model power curves. Boukhezzar et al. (2009) developed a power-curve function to 

design a non-linear controller for optimizing the power of the DFIG (Doubly Fed 

Induction Generator). The power curve was simply expressed as a product of a constant, 

a power coefficient function, and wind speed cube. Ustüntas and Sahin (2008) 

investigated a new approach, cluster center fuzzy logic, to model the power curve of a 

wind turbine. Kusiak et al. (2009d) utilized the logistic function to model the power 

curve in and developed a wind turbine monitoring method. 
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In this study, a power curve modeled with the logistic function presented in 

Kusiak et al. (2009d) is employed (see (5.8)). 

  
4,

4,

/
2,

, 1, 1, 2, 3, 4,/
3,

1
( , ) ,  ( , , , )

1

t i

t i

v
i

i t i t i i i i i i iv
i

e
P f v

e

θ

θ

θ
θ θ θ θ θ θ θ

θ

−

−

+
= = =

+
  (5.8) 

The expression (5.8) can be transformed into (5.9) by considering the cut-in and 

cut-out wind speeds. 
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e
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−

+
= = =

+
 (5.9) 

As the generated power cannot exceed the maximum capacity of a wind turbine, 

the power generation constraint is expressed in (5.10). 

     ,i t CP P≤      (5.10) 

5.2.3 Scheduling Model Formulation  

The objective function and constraints discussed in Section 5.2.1 and 5.2.2 lead to 

the wind farm scheduling model in (5.11). 

     
,

,

Min 
subject to

{0,1}
i t C

i t

TC

P P
s

≤

∈

    (5.11) 

The solution of the model (5.11) is a schedule represented by variable si,t. 

The model expressed in (5.11) is generic. It can be extended by incorporating 

different objectives and additional constraints, such as curtailment of wind power and 

maintenance activities.  

5.3 Particle Swarm Small World Optimization Algorithm 

Solving model (5.11) is challenging as the number of decision variables si,t 

increases with the number of wind turbines and the length of scheduling horizon. For 

example, assume the scheduling horizon is 24 h, the number of binary decision variables 
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increases from 240 to 480 when the number of wind turbines increases from 10 to 20. 

Similarly, assume the number of wind turbines is 10, the number of binary decision 

variables changes from 240 to 480 if the scheduling horizon is extended from 24 h to 48 

h. A Particle Swarm Small World Optimization (PSSWO) is applied to solve model (11) 

due to its complexity. 

The PSSWO algorithm is inspired by two streams of research: Particle Swarm 

Optimization (PSO) discussed in Kennedy and Eberhart (1995) and Small World Theory 

reported in Milgram (1967). 

The development of PSO was simulated by the social behavior of bird flocks and 

fish schools. The survey paper by AlRashidi and El-Hawary (2009) addressed eight 

advantages of PSO that are summarized as follows: 

1) Ease of implementation: Less tuned parameters, simple logic operations in search and 

derivative free property. 

2) Ability of escaping local optima: The stochastic nature of the search function, low 

sensitivity to the form of an objective function, and slight dependence on population 

initialization. 

3) Compatibility: Ease of integration with other algorithms. 

The PSO algorithm has been widely applied. Park et al. (2005) applied PSO to 

solve economic dispatch problem with a non-smooth cost function. Park et al. (2008) 

improved PSO algorithm to handle more complex economic dispatch problems with non-

convex cost functions. Kusiak and Zhang (2011) developed an adaptive PSO by 

integrating fuzzy logic to optimize performance of wind turbine systems. Kusiak and Li 

(2010) applied a modified PSO algorithm to optimize a heating, ventilating and air 

conditioning system. Seo et al. (2006) studied PSO in electromagnetic applications. 

Although the original PSO algorithm has performed well in many applications, a 

drawback is that its search trajectory is uncontrollable (de Castro, 2002; Lee and Park, 

2006; Saxena and Vora, 2008). This drawback can be handled by balancing the 
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exploration and exploitation in the PSO algorithm. Numerous techniques have been 

developed to improve performance of PSO. Clerc and Kennedy (2001) studied 

convergence and the search trajectories of PSO. The ability of PSO to find an optimal 

solution was improved by controlling particle’s velocities. Liu et al. (2007) combined 

PSO with the memetic algorithm to enhance its performance. Ratnaweera et al. (2004) 

presented a study of improving PSO by controlling local search and convergence to 

global optima. To control the local search and convergence, a mutation operator and re-

initialization of particles’ velocities were added to PSO. 

In this research, PSO is integrated with the small world theory to balance the 

exploration and exploitation. Although the original small world experiment conducted by 

Milgram (1967) aimed at examining the mean length of path between two unknown 

people in a social network, the research was then extended. March (1991) applied it to 

organizational learning and discussed the myopia of learning. Watts and Strogatz (1998) 

studied the collective dynamics of small world networks based on various structures of 

networks. Fang et al. (2010) argued that the semi-isolated subgroups may help the 

balance of exploration and exploitation, and the simulation results supported the 

argument. This semi-isolated network structure then was utilized in the proposed PSSWO 

to assist the balance of exploration and exploitation in search. 

In the PSSWO algorithm discussed in this chapter, particles are organized into 

semi-isolated, equal-size groups. Each group in the swarm presents a tribe. In each tribe, 

the best position of particles is treated as the tribe’s best. 

Definition 5.3. Assume xhm presents a particle in a tribe and ˆmg presents the tribe’s best, 

the ˆmg equals to xhm, if ˆ( ) ( )hm mf x f g≤  and ( )hmf x attain minimum in the tribe. 

The network structure can vary with the level of connections between groups. 

Tribes without connections to others are isolated subgroups. The semi-isolated structure 

is a network structure that individuals in the network are highly clustered while there are 
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some connections between the groups. The network becomes a random network, if 

individuals in the network are randomly connected to others. 

Figure 1 illustrates the semi-isolated structure of PSSWO algorithm. The network 

structure is established through the communication between tribes. After each flight, a 

random size of particles in a tribe is selected to communicate with one of the other tribe’s 

bests. Definition 5.4 is concerned with the communication process. 

Definition 5.4. Assume Sm presents the set of randomly selected particles in a tribe and 

ˆqg presents another tribe’s best. If ˆ( ) ( )q hmf g f x≤ and hm mx S∈ , the local best of xhm 

will be updated by (5.12). 

     ˆ ˆ ˆ(1 )hm hm qx x gα α= + −     (5.12) 

where α ~ U[0,1] and the size of Sm is determined by the product of a random number ρ ~ 

U[0,1] and the size of tribe m. Both α and ρ impact the semi-isolated network structure. 

Assume the number of tribes in a swarm is Nt, the number of particles in each 

tribe is Np, j represents the index of iterations for implementing PSSWO algorithm and 

ψ  is the dimension of search space, then the PSSWO algorithm is expressed next (see 

also Fig. 5.1). 

Step 1. Initialize Nt tribes of particles, Np particles for each tribe, the position of each 

particle, j
hmx Rψ∈ , and the associated velocity, j

hmv Rψ∈ , where, h = 1,2,…,Np, m 

= 1,2,…,Nt and j = 0. 

Step 2. Initialize the local best ˆ j
hmx for each particle by ˆ j j

hm hmx x← in each tribe, and 

estimate the initial tribe’s best ˆ j
mg by ˆ arg  min( ( ))j j

m hmg f x← , where h = 1,2,…,Np 

and j = 0. 

Step 3. Repeat until the stopping criterion is satisfied 

For each tribe 1 ≤ m ≤ Nt and for each particle 1 ≤ h ≤ Np 

Step 3.1. Create random vectors 1
jr and 2

jr Rψ∈ where 1 2, ~ [0,1]j jr r U . 
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Step 3.2. Update the velocities of particles by 

 1 1 2 2ˆ ˆ( ) ( )j j j j j j j j
hm hm hm hm m hmv v c r x x c r g xω← + − + − and update the 

 particle positions by j j j
hm hm hmx x v← + . 

Step 3.3. Update the local best by ˆ j j
hm hmx x← if ˆ( ) ( )j j

hm hmf x f x≤ . 

Step 3.4. Update the tribe’s best by ˆ j j
m hmg x← if ˆ( ) ( )j j

hm mf x f g≤ . 

Step 3.5. Determine the value of ρ by ρ ~ U[0,1] 

Step 3.6. Communication: Assume Sm presents a set of selected particles 

 from each tribe, then ˆ ˆ ˆ(1 ) ,  j j j j
hm hm q hm mx x g x Sα α← + − ∈ if 

 ˆ( ) ( )j j
q hmf g f x≤ , q ≠ m. 

Step 3.7. Update the global best by ˆj j
b mg g← if ˆ( )j

mf g has the lowest value 

Step 4. Terminate the algorithm when the stopping criterion (number of iterations in this 

chapter) is satisfied. 

 

 
 

Figure 5.1 Structure of the PSSWO algorithm 
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To implement the PSSWO, some parameters need to be determined. Based on Shi 

and Eberhart (1998), the inertia weight ω is set to 0.5 because their experiments have 

shown that the inertia weight less than 0.8 improved convergence. The c1 and c2 are both 

set to 2 as suggested by Shi and Eberhart (1998). 

5.4 Description of Simulation Experiments 

In this section, two simulation experiments, Experiment 1 and Experiment 2, are 

conducted to investigate the wind farm scheduling model in different operating scenarios. 

5.4.1 Scheduling Model Formulation 

In this chapter, the wind turbine schedules are determined using eight scenarios 

constructed based on three parameters: wind speed, electricity price, and grid demand 

(see Table 5.1). These three parameters are categorized into two levels, high and low. 

Table 5.1 Scheduling scenarios 

Scenario No. Description 
Scenario 1 High electricity price, High grid demand, High wind speed 
Scenario 2 High electricity price, High grid demand, Low wind speed 
Scenario 3 High electricity price, Low grid demand, High wind speed 
Scenario 4 High electricity price, Low grid demand, Low wind speed 
Scenario 5 Low electricity price, High grid demand, High wind speed 
Scenario 6 Low electricity price, High grid demand, Low wind speed 
Scenario 7 Low electricity price, Low grid demand, High wind speed 
Scenario 8 Low electricity price, Low grid demand, Low wind speed 

   

In this research hourly average wind speed data of a wind farm is used. Weibull 

distribution is employed to simulate the 24 h wind speed for scheduling. Table 5.2 

presents the five combinations of scale and shape parameters of the Weibull distribution 

used to describe wind speeds in five different areas in Taiwan (Yeh and Wang, 2008). 
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Table 5.2 Scale and shape parameters  
of the Weibull distribution 

Combination Scale (λ) Shape (k) 
Combination 1 11.01 1.96 
Combination 2 10.66 1.92 
Combination 3 11.91 1.77 
Combination 4 11.09 1.61 
Combination 5 10.42 2.05 

 

In this study, the scale and shape parameters of Weibull distribution in 

Combination 4 is selected to generate wind speed data. Two sets of wind speed data are 

then generated based on Weibull distribution. Then, before categorization, two sets of 

generated wind speed data need to be examined to make sure they are significantly 

different. Categorizing two data sets that were almost identical would be meaningless. 

A t-test is utilized to determine whether two data sets are significantly different. 

Table 5.3 illustrates the mean and standard deviation of two data sets. It is obvious that 

the mean of data set 1 and mean of data set 2 are not equal (t-test also confirms this 

difference). This indicates that the two sets of data are different. Figure 5.2 shows the 

run-chart of data set 1 and data set 2. Next, based on Table 5.3, we can conclude that data 

set 1 of wind speed data presents a high wind speed condition and data set 2 describes a 

low wind speed condition. 

Table 5.3 Summary of two sets of wind speed data 

Data Set No. of Data Points Mean (m/h) St. Dev. 
Data set 1 24 10.85 6.13 
Data set 2 24 7.25 5.22 
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Figure 5.2 Two sets of wind speed data 

The website of European Energy Exchange (EEX) offers real-time European 

Electricity Index (ELIX) describes the hourly electricity price. Two sets of ELIX data are 

collected to represent different conditions of electricity price for wind farm scheduling. 

The data set 1 contains hourly ELIX data on October 29th 2010 and the data set 2 includes 

the hourly ELIX data on October 31st 2010. Table 5.4 summarizes these two data sets. 

The t-test is utilized here to evaluate the difference between the means of two data sets. 

Figure 5.3 shows the electricity price of data set 1 and 2. 

 Table 5.4 Summary of two sets of electricity price data 

Data set No. of Data Points Mean (Eur/MWh) St. Dev. 
Data set 1 24 52.8 10.1 
Data set 2 24 43.46 6.94 
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Figure 5.3 Two sets of electricity price data 

The hourly grid demand data are derived based on national grid demand data from 

the website of National Grid. The website offers data of electricity demand in United 

Kingdom (UK) at 30 min intervals. Then 30-minute demand data are transformed into to 

the hourly demand. In this chapter, the wind farm is assumed to satisfy 1/3000 of national 

grid demand. Data set 1 is the demand data on July 1st 2010 and data set 2 is the demand 

data on July 3rd 2010. Table 5.5 shows the summary of two sets. The t-test is applied to 

determine if there two demand data sets are different. 

The means of two samples are significantly different. Based on the summary in 

Table 5.5, data average demand for data set 1 is higher than that of data set 2. Figure 5.4 

depicts the two sets. 

Table 5.5 Summary of two sets of grid demand data 

Data Set No. of Data Points Mean (MW) St. Dev. 
Data set 1 24 11.28 2.13 
Data set 2 24 9.67 1.41 
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Figure 5.4 Two sets of grid demand data 

5.4.2 Experiment 1 

In Experiment 1, the schedules are developed for a wind farm based on the 8 

scenarios. The wind turbines are categorized into two groups with all turbines identical 

within each group. In this experiment, wind turbines in Group 1 are assumed to be less 

efficient than wind turbines in Group 2. Definition 5.5 expresses the condition that wind 

turbines in one group have higher efficiency than the turbines in another group. 

Definition 5.5. If a wind turbine of Group 2 generates more power than a wind turbine of 

Group 1 under any wind speed conditions, the turbine in Group 2 is assumed to have a 

better performing power curve. This definition is formularized in (5.13). 
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To ensure that a wind turbine of Group 2 has a more efficient power curve than a 

wind turbine of Group 1, a lower value of θ4,G2 than θ4,G1. Figure 5 introduces one 

example of power curves of wind turbines in Group 1 and Group 2. To construct a power 

curve, the values of vector θ  need to be provided. Kusiak et al. (2009e) applied logistic 

function to model power curves and suggested θ ={103.33, 20.53, 1190.73, 1.14}. The 

logistic function needs to be scaled to reflect the power curve of a 1.5 MW wind turbine. 
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For the power curve in Figure 5.5, θ4,G1 follows the value of 1.14 suggeated in Kusiak et 

al. (2009e). The value of θ4,G2 is arbitrarily set to 1.05. 

 

 

Figure 5.5 Power curve models in Group 1 and Group 2 

Another interesting question to investigate is the ratio of wind turbines between 

Group 1 and Group 2. In this experiment, five ratios (i.e., the number of turbines in 

Group 1 divided by the number of turbines in Group 2), Ratio 1 = (100%/0), Ratio 2 = 

(70%/30%), Ratio 3 = (50%/50%), Ratio 4 = (30%/70%), Ratio 5 = (0/100%), are used to 

conduct sensitivity analysis of the schedule for this wind farm. For simplicity, the total 

number of wind turbines in the wind farm is assumed to be 10 for. As the wind turbines 

in each group are assumed to be identical, the scheduling model in (5.11) is expressed in 

(5.14). 
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where XG1,t and XG2,t denote the number of wind turbines in each group at time t and I is 

the total number of wind turbines. 

The binary programming problem described of (5.11) is transformed into an 

integer programming model (5.14) which can be solved by the proposed PSSWO. Note 

that the number of decision variables is significantly reduced, from 240 binary variables 

to 48 variables. 

Table 5.6 presents electricity prices and two series of grid demand utilized in 

Experiment 1. Table 5.7 includes the high wind speed data and the corresponding power 

generated by a single wind turbine in Group 1 or Group 2. Table 5.8 addresses the similar 

information as Table 5.7 except that the level of wind speed in Table 5.8 is low. 
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Table 5.6 Electricity price and the grid demand data over the scheduling horizon 

Scheduli

ng 

Horizon 

1 2 3 4 5 6 7 8 9 10 11 12 

High Bt 44.9

4 

43.5

6 

40.0

6 

36.6

6 

38.0

1 

43.0

4 

49.8

5 

68.0

0 

66.1

7 

65.5

8 

65.3

7 

64.8

2 

Low Bt 43.0

2 

42.8

1 

36.5

4 

33.9

1 

31.2

7 

33.7

2 

35.1

1 

35.6

0 

40.5

8 

46.2

7 

45.4

6 

47.9

3 

High Dt 8.84 8.41 8.08 7.96 7.80 7.88 9.28 11.3

4 

12.4

3 

12.9

6 

13.1

7 

13.3

4 

Low Dt 8.62 8.08 7.74 7.57 7.28 7.17 7.84 9.01 10.3

3 

11.1

5 

11.3

6 

11.3

7 

Scheduli

ng 

Horizon 

13 14 15 16 17 18 19 20 21 22 23 24 

High Bt 62.8

0 

57.9

9 

53.9

9 

49.3

8 

48.4

3 

49.8

5 

61.7

2 

65.5

6 

53.8

1 

45.6

1 

46.7

3 

44.3

2 

Low Bt 48.4

8 

45.0

4 

41.7

4 

38.2

4 

40.0

8 

48.5

6 

56.0

6 

56.2

7 

50.7

0 

48.1

5 

50.3

5 

47.1

7 

High Dt 13.3

6 

13.3

0 

13.1

4 

13.1

6 

13.3

5 

13.2

8 

12.7

7 

12.2

7 

11.8

5 

11.7

6 

11.2

0 

9.76 

Low Dt 11.2

1 

10.8

9 

10.6

3 

10.5

1 

10.6

2 

10.8

5 

10.6

1 

10.3

0 

9.95 9.89 9.98 9.08 
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Table 5.7 High wind speed data and the generated power over the scheduling horizon 

Schedulin
g  

horizon 

1 2 3 4 5 6 7 8 9 10 11 12 

High vt 5.24 13.5
5 

11.2
2 

7.92 1.3
1 

7.08 6.1
2 

3.04 4.86 8.53 9.88 7.49 

PG1,t 0.14 1.49 1.42 0.72 0 0.46 0.2
5 

0 0.11 0.91 1.25 0.58 

PG2,t 0.20 1.50 1.47 0.94 0 0.65 0.3
7 

0 0.15 1.13 1.38 0.79 

Schedulin
g  

horizon 

13 14 15 16 17 18 19 20 21 22 23 24 

High vt 14.3
5 

23.2
2 

14.6
8 

16.4
2 

9.2
8 

25.1
0 

2.8
0 

10.0
8 

13.4
4 

11.1
4 

19.6
1 

14.1
3 

PG1,t 1.50 1.50 1.50 1.50 1.1
2 

0 0 1.29 1.49 1.41 1.50 1.50 

PG2,t 1.50 1.50 1.50 1.50 1.2
9 

0 0 1.40 1.50 1.46 1.50 1.50 

 

Table 5.8 Low wind speed data and the generated power over the scheduling horizon 

Schedulin
g  

Horizon 

1 2 3 4 5 6 7 8 9 10 11 12 

Low vt 8.1
2 

8.20 12.29 12.25 2.60 14.27 9.28 23.79 3.03 7.77 6.21 6.89 

PG1,t 0.7
8 

0.81 1.47 1.47 0 1.50 1.12 1.50 0 0.67 0.27 0.41 

PG2,t 1.0
1 

1.03 1.49 1.49 0 1.50 1.29 1.50 0 0.89 0.39 0.59 

Schedulin
g  

Horizon 

13 14 15 16 17 18 19 20 21 22 23 24 

Low vt 2.5
8 

2.98 4.34 12.73 5.65 1.12 2.33 10.99 6.00 3.38 5.22 1.91 

PG1,t 0 0 0.08 1.48 0.18 0 0 1.40 0.23 0 0.14 0 
PG2,t 0 0 0.11 1.50 0.27 0 0 1.46 0.34 0 0.20 0 
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5.4.3 Experiment 2 

The wind farm in Experiment 2, is realistic as the total number of wind turbines is 

10 and the power curve of each wind turbine is unique. To generate different power 

curves, a normal distribution with the mean 1.14 and the standard deviation 0.114 is 

utilized to produce 10 random values of θ4,i. Figure 5.6 illustrates the power curves of 10 

wind turbines, with T1 to T10 representing the wind turbine No. 1 to No. 10. 

 

 

Figure 5.6 Power curve models of wind turbines 

Solving (5.11) directly is computationally expensive since there are 240 binary 

decision variables. In addition, solving (5.11) (a binary programming formulation) with 

the proposed PSSWO is not feasible. In this study, binary string variables are transformed 

into duty-cycle based variables (Pappala et al. 2009, and Erlich (2008)) to reduce the 

model complexity as illustrated in Figure 5.7. 
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Figure 5.7 Transformation of a binary string into duty-cycle based variable 

The electricity price and grid demand data used in Experiment 2 are the same as 

in Table 5.6. Table 5.9 and 5.10 presented the high wind speed data and the 

corresponding generated power of each wind turbine of a wind farm. Table 5.11 and 5.12 

presented data similar to the ones of Table 5.9 and 5.10 for low wind speed. 

Table 5.9 High wind speed and the generated power over the first half of the scheduling 
horizon 

Scheduling  
Horizon 

1 2 3 4 5 6 7 8 9 10 11 12 

High vt 5.24 13.55 11.22 7.92 1.31 7.08 6.12 3.04 4.86 8.53 9.88 7.49 
P1,t 0.12 1.48 1.37 0.59 0 0.37 0.21 0 0.09 0.78 1.15 0.47 
P2,t 0.52 1.50 1.50 1.40 0 1.25 0.91 0 0.38 1.45 1.49 1.34 
P3,t 0.13 1.49 1.39 0.65 0 0.42 0.23 0 0.10 0.84 1.20 0.52 
P4,t 0.31 1.50 1.49 1.22 0 0.96 0.58 0 0.23 1.34 1.46 1.10 
P5,t 0.18 1.50 1.46 0.88 0 0.60 0.33 0 0.13 1.07 1.35 0.74 
P6,t 0.22 1.50 1.48 1.03 0 0.74 0.42 0 0.16 1.20 1.41 0.89 
P7,t 0.26 1.50 1.49 1.13 0 0.85 0.49 0 0.19 1.28 1.44 0.99 
P8,t 0.09 1.45 1.25 0.43 0 0.27 0.15 0 0.08 0.58 0.95 0.34 
P9,t 0.73 1.50 1.50 1.46 0 1.38 1.13 0 0.55 1.48 1.50 1.43 
P10,t 0.15 1.50 1.44 0.79 0 0.52 0.28 0 0.12 0.98 1.30 0.64 
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Table 5.10 High wind speed and the generated power over the second half of the 
scheduling horizon 

Schedulin
g  

Horizon 

13 14 15 16 17 18 19 20 21 22 23 24 

High vt 14.3
5 

23.2
2 

14.6
8 

16.4
2 

9.2
8 

25.1
0 

2.8
0 

10.0
8 

13.4
4 

11.1
4 

19.6
1 

14.1
3 

P1,t 1.49 1.50 1.50 1.50 1.0
0 

0 0 1.19 1.48 1.36 1.50 1.49 

P2,t 1.50 1.50 1.50 1.50 1.4
8 

0 0 1.50 1.50 1.50 1.50 1.50 

P3,t 1.50 1.50 1.50 1.50 1.0
6 

0 0 1.24 1.49 1.39 1.50 1.49 

P4,t 1.50 1.50 1.50 1.50 1.4
3 

0 0 1.47 1.50 1.49 1.50 1.50 

P5,t 1.50 1.50 1.50 1.50 1.2
5 

0 0 1.37 1.50 1.45 1.50 1.50 

P6,t 1.50 1.50 1.50 1.50 1.3
4 

0 0 1.43 1.50 1.48 1.50 1.50 

P7,t 1.50 1.50 1.50 1.50 1.3
9 

0 0 1.45 1.50 1.49 1.50 1.50 

P8,t 1.48 1.50 1.48 1.50 0.7
9 

0 0 1.01 1.45 1.23 1.50 1.47 

P9,t 1.50 1.50 1.50 1.50 1.5
0 

0 0 1.50 1.50 1.50 1.50 1.50 

P10,t 1.50 1.50 1.50 1.50 1.1
8 

0 0 1.33 1.50 1.43 1.50 1.50 
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Table 5.11 Low wind speed and the generated power over the first half of the scheduling 
horizon 

Schedulin
g  

Horizon 

1 2 3 4 5 6 7 8 9 10 11 12 

Low vt 8.1
2 

8.20 12.29 12.25 2.60 14.27 9.28 23.79 3.03 7.77 6.21 6.89 

P1,t 0.6
5 

0.67 1.44 1.44 0 1.49 1.00 1.50 0 0.55 0.22 0.33 

P2,t 1.4
2 

1.43 1.50 1.50 0 1.50 1.48 1.50 0 1.38 0.94 1.19 

P3,t 0.7
1 

0.74 1.46 1.46 0 1.50 1.06 1.50 0 0.60 0.24 0.37 

P4,t 1.2
7 

1.28 1.50 1.50 0 1.50 1.43 1.50 0 1.18 0.62 0.89 

P5,t 0.9
5 

0.97 1.49 1.49 0 1.50 1.25 1.50 0 0.83 0.35 0.54 

P6,t 1.1
0 

1.12 1.50 1.50 0 1.50 1.34 1.50 0 0.98 0.44 0.67 

P7,t 1.1
9 

1.21 1.50 1.50 0 1.50 1.39 1.50 0 1.09 0.52 0.77 

P8,t 0.4
7 

0.49 1.38 1.38 0 1.48 0.79 1.50 0 0.39 0.16 0.24 

P9,t 1.4
7 

1.47 1.50 1.50 0 1.50 1.50 1.50 0 1.45 1.16 1.34 

P10,t 0.8
5 

0.88 1.48 1.48 0 1.50 1.18 1.50 0 0.73 0.30 0.46 

Table 5.12 Low wind speed and the generated power over the second half of the 
scheduling horizon 

Scheduling  
Horizon 

13 14 15 16 17 18 19 20 21 22 23 24 

Low vt 2.58 2.98 4.34 12.73 5.65 1.12 2.33 10.99 6.00 3.38 5.22 1.91 
P1,t 0 0 0.07 1.46 0.15 0 0 1.34 0.19 0 0.12 0.00 
P2,t 0 0 0.24 1.50 0.70 0 0 1.50 0.85 0 0.51 0.00 
P3,t 0 0 0.07 1.47 0.17 0 0 1.37 0.21 0 0.13 0.00 
P4,t 0 0 0.15 1.50 0.42 0 0 1.49 0.54 0 0.30 0.00 
P5,t 0 0 0.09 1.49 0.24 0 0 1.45 0.30 0 0.17 0.00 
P6,t 0 0 0.11 1.50 0.30 0 0 1.47 0.38 0 0.22 0.00 
P7,t 0 0 0.13 1.50 0.35 0 0 1.48 0.45 0 0.25 0.00 
P8,t 0 0 0.06 1.41 0.12 0 0 1.21 0.14 0 0.09 0.00 
P9,t 0 0 0.34 1.50 0.93 0 0 1.50 1.08 0 0.72 0.00 
P10,t 0 0 0.09 1.49 0.20 0 0 1.42 0.26 0 0.15 0.00 
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5.5 Simulation Results 

To solve the wind farm scheduling model, the values of parameters, pt, ct and K, 

need to be determined. Parameter pt is arbitrarily set to 0.8. ct is conservatively set to 50 

Eur/MWh according to “www.wind-energy-the-facts.org”. The parameter K is set to 0.06 

MW based on the advice of wind farm managers. A more accurate model of estimating 

these three parameters need to be investigated in the future research. 

5.5.1 Simulation Results of Experiment 1 

To reduce computational cost, a stopping criterion, the number of iterations, needs 

to be determined. The convergence of the PSSWO algorithm is examined by solving 

(5.14) for Scenario 1. Figure 5.8 shows the convergence of the PSSWO algorithm 

attaining minimum at 50th iteration. However, this number of iterations (stopping 

criterion) may not hold for all scheduling scenarios. Therefore, a more conservative 

stopping criterion, 100 iterations, is adopted. 

 

 

Figure 5.8 Convergence of PSSWO algorithm in Experiment 1 

Sample simulation results of Experiment 1 are illustrated in Table 5.13, where the 

first column lists the scheduling scenarios. The index of scheduling time period is 
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addressed in the first and tenth row. The entries (separated by a comma) in Table 5.13 are 

the computed schedules at each time period. 

The PSSWO does not guarantee global optimality. To evaluate the quality of the 

solutions, a comparative analysis is performed based on a baseline schedule. In the 

baseline schedule all wind turbines are activated once the measured wind speed is 

between the cut-in and the cut-out values. Table 5.14 includes the costs of operating a 

wind farm with the baseline schedule and the computed schedules. It is obvious that the 

computed schedules outperform the baseline schedule as indicated by the increasing trend 

of the total cost gain from ratio 1 to ratio 5 is shown in Table 5.14, which indicates that 

the wind farm performs better.  

The data in Table 5.15 illustrate the total cost gain for the computed schedules for 

5 ratios. A metric, Gain, is utilized to evaluate the gain of total cost reduction. 

    100%b c

b

TC TC
Gain

TC
−

= ×     (5.15) 

As shown in Table 5.15, on average, 10% of total cost can be reduced through the 

computed schedules. The potential benefits of scheduling have been validated. 

The schedules in Table 5.13 reveal that the efficient wind turbines do not need 

always run. The reason is that wind turbines balance the power shortage cost, operations 

and maintenance cost, and start-up cost. 
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Table 5.13 Scheduling results for Ratio 2 

Scheduling  
Horizon 

1 2 3 4 5 6 7 8 9 10 11 12 

Scenario 1 7,3 4,2 6,0 7,3 0,0 7,3 7,2 0,0 7,3 7,3 7,3 7,3 
Scenario 2 7,3 5,3 4,1 4,1 0,0 2,3 5,3 7,1 0,0 7,3 7,3 7,3 
Scenario 3 7,2 3,2 4,1 7,2 0,0 5,3 7,3 0,0 7,3 7,3 7,2 7,3 
Scenario 4 7,1 6,3 4,1 4,1 0,0 2,3 5,2 5,1 0,0 7,3 7,3 7,1 
Scenario 5 7,0 4,1 5,0 6,0 0,0 7,1 7,1 0,0 7,3 7,1 7,3 7,2 
Scenario 6 7,3 6,3 2,3 2,3 0,0 2,3 6,2 6,1 0,0 7,3 7,3 7,3 
Scenario 7 7,3 3,2 4,1 6,1 0,0 5,2 7,3 0,0 7,3 7,2 6,3 7,2 
Scenario 8 7,2 6,3 4,1 3,2 0,0 2,2 4,2 5,1 0,0 7,3 7,3 7,2 
Scheduling  

Horizon 
13 14 15 16 17 18 19 20 21 22 23 24 

Scenario 1 7,2 7,2 7,2 7,1 7,3 0,0 0,0 7,3 7,1 7,1 7,0 4,2 
Scenario 2 0,0 0,0 7,1 7,2 7,3 0,0 0,0 6,3 7,3 0,0 7,3 0,0 
Scenario 3 5,2 6,1 4,3 5,2 6,3 0,0 0,0 6,2 6,1 5,2 5,1 5,1 
Scenario 4 0,0 0,0 6,1 6,1 7,2 0,0 0,0 5,2 7,3 0,0 7,2 0,0 
Scenario 5 7,2 7,1 7,1 7,1 7,3 0,0 0,0 6,3 7,1 6,2 5,2 5,1 
Scenario 6 0,0 0,0 7,0 7,2 7,3 0,0 0,0 7,2 7,3 0,0 7,3 0,0 
Scenario 7 4,3 5,2 6,1 5,2 6,3 0,0 0,0 5,3 7,0 6,1 6,1 5,1 
Scenario 8 0,0 0,0 7,0 6,1 7,3 0,0 0,0 4,3 7,3 0,0 7,1 0,0 

Table 5.14 Comparison between baseline and computed schedules 

Scenari
o 

Ratio 1 Ratio 2 Ratio 3 Ratio 4 Ratio 5 
TCb TCc TCb TCc TCb TCc TCb TCc TCb TCc 

Scenari
o 1 

19941
.02 

18415
.31 

19800
.18 

18301
.01 

19725
.12 

18149
.27 

19683
.45 

18067
.27 

19628
.1 

17906
.37 

Scenari
o 2 

23323
.15 

21957
.93 

23222
.78 

21849
.95 

23178
.92 

21760
.88 

23165
.32 

21690
.52 

23144
.91 

21529
.92 

Scenari
o 3 

17981
.29 

15445
.18 

17942
.06 

15365
.79 

17933
.6 

15372
.68 

17925
.14 

15290
.27 

17918
.49 

15095
.57 

Scenari
o 4 

20407
.74 

18515
.14 

20333
.47 

18528
.54 

20306
.97 

18370
.68 

20293
.37 

18345
.22 

20272
.97 

18049
.37 

Scenari
o 5 

17793
.48 

16272
.39 

17738
.81 

16378
.57 

17719
.79 

16200
.89 

17726
.23 

16071
.08 

17740
.89 

16002
.81 

Scenari
o 6 

20602
.82 

19193
.54 

20559
.5 

19114
.34 

20553
.15 

19122
.16 

20575
.77 

19096
.65 

20609
.69 

18939
.71 

Scenari
o 7 

16330
.9 

13763
.94 

16356
.31 

13806
.17 

16389
.61 

13780
.49 

16422
.92 

13750
.65 

16477
.13 

13597
.21 

Scenari
o 8 

18205
.75 

16293
.77 

18188
.09 

16260
.34 

18198
.36 

16156
.28 

18220
.97 

16119
.16 

18254
.9 

16018
.6 
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Table 5.15 The cost gain for Experiment 1 

Scenario Gain1 Gain2 Gain3 Gain4 Gain5 
Scenario 1 0.08 0.08 0.08 0.08 0.09 
Scenario 2 0.06 0.06 0.06 0.06 0.07 
Scenario 3 0.14 0.14 0.14 0.15 0.16 
Scenario 4 0.09 0.09 0.10 0.10 0.11 
Scenario 5 0.09 0.08 0.09 0.09 0.10 
Scenario 6 0.07 0.07 0.07 0.07 0.08 
Scenario 7 0.16 0.16 0.16 0.16 0.17 
Scenario 8 0.11 0.11 0.11 0.12 0.12 
Average 0.10 0.10 0.10 0.10 0.11 

 

5.5.2 Simulation Results of Experiment 2 

The stopping criterion of PSSWO algorithm in Experiment 2 is determined in a 

similar way. Figure 5.9 shows that the PSSWO definitely converges within 150th 

iterations. The stopping criterion of the PSSWO algorithm in Experiment 2 is 

conservatively set to 300. 

 

Figure 5.9 Convergence of the PSSWO algorithm in Experiment 2 

Table 5.16 illustrates one sample of the scheduling strategies interpreted by duty-

cycle based variables. Table 5.17 presents the baseline schedule of wind turbines under 

high and low wind speed conditions. 
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In this experiment, the comparative analysis of total costs between baseline 

schedule and computed schedules is performed. Table 5.18 discusses the gain in terms of 

cost reduction. As presented in Table 5.18, the average gain is 10%. These results reveal 

that even though the power curves of wind turbines are different, the model can produce 

appropriate schedules to minimize the total costs of running the wind farm. At the same, 

the produced schedules outperform the baseline schedule. 

Table 5.16 Wind turbine schedule in Scenario 1 of Experiment 2 

Turbine Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Turbine 1 4 -1 2 -1 9 -7 0 0 0 0 0 0 0 0 0 
Turbine 2 4 -1 2 -1 4 -4 1 -2 3 -2 0 0 0 0 0 
Turbine 3 4 -1 2 -1 9 -2 5 0 0 0 0 0 0 0 0 
Turbine 4 1 -2 1 -1 2 -1 9 -2 5 0 0 0 0 0 0 
Turbine 5 -5 2 -1 9 -2 1 -4 0 0 0 0 0 0 0 0 
Turbine 6 -5 2 -1 9 -2 5 0 0 0 0 0 0 0 0 0 
Turbine 7 4 -1 2 -1 9 -2 5 0 0 0 0 0 0 0 0 
Turbine 8 4 -1 2 -1 9 -2 5 0 0 0 0 0 0 0 0 
Turbine 9 4 -1 2 -1 9 -2 5 0 0 0 0 0 0 0 0 

Turbine 10 4 -1 2 -1 9 -2 4 -1 0 0 0 0 0 0 0 

Table 5.17 Baseline schedule 

Wind Speed  1 2 3 4 5 6 7 8 9 10 11 12 
High wind speed 4 -1 2 -1 9 -2 5 0 0 0 0 0 
Low wind speed 4 -1 3 -1 3 -2 3 -2 2 -1 1 -1 
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Table 5.18 Cost reduction for  
Experiment 2 

 TCb TCc Gain 
Scenario 1 19399.10 17756.54 0.08 
Scenario 2 22775.85 21121.55 0.07 
Scenario 3 17657.43 15042.15 0.15 
Scenario 4 19903.90 17716.81 0.11 
Scenario 5 17594.80 16045.10 0.09 
Scenario 6 20352.17 18660.32 0.08 
Scenario 7 16304.70 13582.13 0.17 
Scenario 8 17997.38 15754.51 0.12 

Average 0.11 

 

5.5.3 PSSWO versus PSO 

To assess performance of the PSSWO algorithm, a canonical PSO is implemented 

with 2000 iterations to solve the models in Scenario 1 for the two experiments. 

Performance of the two algorithms is compared in Table 5.19.  

Table 5.19 Comparison of PSO and PSSWO algorithms 

Algorithm No. of Conv.  
Iterations  
in Exp. 1 

Best Fitness 
in Exp. 1 

No. of Conv.  
Iterations 
in Exp. 2 

Best Fitness 
in Exp. 2 

PSO 37 18513.36 50 17802.54 
PSSWO 50 18415.31 150 17756.54 

As shown in Table 5.19, the PSO converges faster than the PSSWO algorithm. 

However, the PSSWO produced a better quality solution while PSO was trapped in local 

optima. The semi-isolated network structure indeed improves the performance of the 

canonical PSO. 

5.6 Summary 

A model for scheduling wind turbines was presented. The total cost of operating a 

wind farm was minimized. The optimized cost included the power shortage cost, 
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operational and maintenance cost, and start-up cost. Each schedule represents the 

operational status of wind turbines over a scheduling horizon. 

To solve the model formulated in this chapter, a PSSWO algorithm was 

developed by integrating the traditional PSO with the small world network structure. A 

swarm of particles was divided into tribes with each tribe having its own search 

trajectory. A communication mechanism was introduced to exchange information among 

the semi-isolated tribes. The goal of the communication was to balance the exploration 

and exploitation of the search process by introducing diversity. 

Two experiments were designed to analyze the optimized schedules produced by 

the models. Experiment 1 represented a simple wind farm structure with wind turbines 

having two types of power curves, efficient and less efficient. In Experiment 2, a wind 

farm contained 10 wind turbines each with a different power curve. To evaluate the 

quality of the computed schedules, a baseline schedule was used. The comparative 

analysis indicated that the cost of operating a wind farm was reduced by the computed 

schedules over the baseline schedule. Moreover, the computed schedules indicated that 

the wind turbines with more efficient power curves were not always run due to a tradeoff 

between the power shortage cost, operations and maintenance cost, and the start-up cost. 

As the gains in the cost reduction were estimated based on the actual data, the proposed 

model has a potential to be used in practice.  
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CAPTER 6 

SCHEDULING A WIND FARM WITH DATA DRIVEN STOCHASTIC 

OPTIMIZATION 

6.1 Introduction 

Environmental concerns and sustainable living call for renewable energy 

solutions. Wind energy, one of the most important renewable energy sources, has 

experienced a rapid growth in the past decade. As a new research area, wind energy has 

posed numerous research questions and power generation efficiency of wind turbines has 

been one of them. Improvement of wind turbine efficiency is generally achieved in two 

ways, wind turbine control and wind turbine condition monitoring. Boukhezzar and 

Siguerdidjane (2009) designed a non-linear controller for optimizing the power of the 

DFIG (double-fed induction generator). Wang and Chang (2004) investigated a 

maximum power extraction algorithm to improve the performance of wind turbine 

systems. Munteanu et al. (2005) designed two control loops to optimize power in low 

frequency and high frequency scenarios. Senjyu et al. (2006) studied the impact of 

limited activation of blade pitch angle on the power output. Watson et al. (2010) applied 

a wavelet method to monitor the power output of wind turbines. Besnard and Bertling 

(2010) proposed a Markov Chain based method to optimize the condition-based 

maintenance strategies for degraded components. Although the published research on 

wind turbine efficiency is valuable, it predominantly focuses on local solutions as wind 

farms usually include numerous wind turbines and improving the efficiency of wind 

turbines is not equivalent to the optimization of the entire wind farm. 

Optimization of a wind farm requires answers of two questions, the number of 

operational wind turbines and the control settings of the operational wind turbines. The 

stochastic nature of the wind, electric power demand, and the electricity price makes 

scheduling wind farm challenging. In the studies on scheduling energy systems published 
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to date a wind farm is usually considered as a single power generator in the energy 

system. Pappala et al. (2009) presented a stochastic optimization model of wind-thermal 

system. Javier et al. (2008) discussed a stochastic joint optimization of a hybrid system of 

a wind farm and pumps. Lee (2007) published a study of scheduling a number of wind 

turbines and thermal units optimizing spinning reserves of this hybrid-energy system. In 

(Pappala et al. 2009) and (Javier et al. 2008), the wind farm is considered as a single 

power generation unit. In (Lee 2007), although a number of wind turbines is considered, 

the wind power is represented by the power curve and the wind speed is assumed to be 

known. 

In the research presented in this chapter, individual wind turbines are scheduled in 

the presence of uncertain wind speed. The decisions to the number of operational wind 

turbines (on/off) and the turbine control are both considered in scheduling. In reality, 

performance of wind turbines of the same type is not identical. The heterogeneity of wind 

turbines is considered by models developed with data mining algorithms. A base model 

and a stochastic optimization model are developed for scheduling a wind farm. A novel 

computational intelligence algorithm, the migrated particle swarm optimization, is 

introduced to solve the wind farm scheduling models. 

6.2 Base Model 

In this section, a base model for scheduling a wind farm is developed. The model 

minimizes the cost of operating a wind farm over a pre-determined time horizon subject 

to equality and inequality constraints. The schedule minimizing the cost of operating a 

wind farm is described by decision and control variables defined in Definition 6.1 and 

Definition 6.2.  

Definition 6.1. The decision variable is a vector st = [s1,t, s2,t..., sI,t], si,t ∈ {0,1} and i = 1, 

2, 3, …, I, determining the operational status (on/off) of wind turbines in the wind farm at 

time window t. 
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Definition 6.2. The control variables is represented as a 2-tuple (τt, βt). In this 2-tuple, τt 

= [τ1,t, τ2,t,…, τI,t] and βt = [β1,t, β2,t,…, βI,t], τi,t, βi,t ∈ I
 and i = 1, 2, 3, …, I, are two 

vectors represent the settings of the generator torque and the blade pitch angle of wind 

turbines at time window t. 

The wind farm schedules are developed based on three types of data, the power 

commitment, the electricity price, and the wind speed. In this chapter, the power 

commitment and the electricity price are assumed to be known while considering 

uncertain wind speed. The objective function, constraints, and the model are formulated 

next. 

6.2.1 Objective Function of the Base Model  

The objective of the wind farm scheduling base model is to minimize the cost of 

operating a wind farm, TC, over a fixed time horizon. This cost includes the power 

shortage cost, operations and maintenance (O&M) cost, and the idle turbine cost. 

The power shortage occurs when the power generation capacity of a wind farm 

cannot meet the power commitment at time window t (see (6.1)). 

 , ,
1

max{0, }
I

t t i t i t
i

P D P s
=

∆ = −∑  (6.1) 

The power shortage cost is expressed as the opportunity and the compensation 

cost due to power shortage. The opportunity cost and the compensation cost are defined 

next. 

Definition 6.3. The opportunity cost reflects the potential revenue of selling the amount 

of electric power equivalent to the power shortage, i.e., the product of the electricity 

price and the electric power shortage at a given time window. 

Definition 6.4. The compensation cost is the penalty paid to compensate for the amount 

of power shortage. 
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The opportunity cost and compensation cost due to power shortage at time t are 

expressed in Eqs. (6.2) and (6.3). 

     oc t tC B P= ∆     (6.2) 

     cc t tC p P= ∆     (6.3) 

The O&M (operations and maintenance) cost includes the cost attributed to 

operations and maintenance of wind turbines is expressed in (6.4). 

     , ,
1

I

om i t i t
i

C cP s
=

= ∑     (6.4) 

The last component of the total cost is the idle turbine cost. The idle turbine cost 

describes the cost of energy consumed by idle wind turbines to support the electronics. 

The total idle turbine cost at t is formulated in (6.5). 

     , ,
1

(1 )
I

ic t i t i t
i

C B K s
=

= −∑    (6.5) 

Based on (6.2) – (6.5), the total cost of operating a wind farm over a scheduling 

time horizon T is expressed in (6.6). It involves the power shortage cost, O&M cost, and 

the idle turbine cost over T. 

  , , , ,
1 1 1 1 1 1

(1 )
T T T I T I

t t t t i t i t t i t i t
t t t i t i

TC B P p P cP s B K s
= = = = = =

= ∆ + ∆ + + −∑ ∑ ∑∑ ∑∑   (6.6) 

6.2.2 Constraints of the Base Model  

In this section the four types of constraints discussed in Section 6.2.2.1, 6.2.2.2, 

6.2.2.3, and 6.2.2.4 are introduced. 

6.2.2.1 Wind Turbine Power Generation Model 

In the base scheduling model the power generated in a wind farm at time t equals 

the sum of power generated by wind turbines at this wind farm. To accurately predict the 

generated power of each wind turbine, a wind turbine power generation model needs to 

be established. The power generation models of wind turbines are usually not identical.  
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The published research has focused on the development of a general wind power 

generation model. Kang (2007) applied a fuzzy set approach to develop a wind power 

prediction model. Bhowmik et al. (1999) designed a variable speed generation controller 

which employed a wind speed estimation-based maximum power point tracker and a 

heuristic-model-based maximum efficiency point tracker to optimize the energy captured 

for the doubly-fed wind power generator. Calderaro et al. (2008) developed a fuzzy 

clustering method integrated with a genetic algorithm to maximize the wind power 

generation. Wind power generation process models in (Kang 2007; Bhowmik et al. 1999; 

Calderaro et al. 2008) were general and the heterogeneity of wind turbines was not 

studied. The general model was suitable for the study of a single machine system. 

However, the heterogeneity of wind turbines has to be considered as the power 

generation efficiency can impact scheduling strategies. 

The Supervisory Control and Data Acquisition (SCADA) systems allow for 

continuous collection of wind turbine data. Such data can be used to model wind turbines. 

Data driven approaches for developing wind power generation models have been 

discussed in (Kusiak et al. 2009a; Kusiak and Zhang 2011; Kusiak and Zheng 2010). In 

this chapter, a Neural Network algorithm (Siegelmann and Sontag 1994; Liu 2011; Smith 

1993) is utilized to model wind turbines. 

A group of five 1.5 MW wind turbines (numbered here as 1 – 5) installed in a 

commercial wind farm has been selected for analysis. The SCADA data from 09/02/2011 

to 2/28/2011 is selected to form five datasets for developing Neural Network models. The 

sampling interval of the collected SCADA data is 10-min. The 10-min SCADA data is 

averaged to 30-min data to match the length of scheduling time window. 

Based on (Kusiak et al. 2009a), the generator torque, blade pitch angle, and wind 

speed are considered to predict the generated power in this chapter. The wind power 

generation model is formulated as (6.7). 
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    , , , ( , )ˆ ˆ( , , ) ( )
ci coi t i i t i t t tP f I υ υτ β υ υ=    (6.7) 

The indicator function I in (6.7) indicates that the wind turbine is only operated 

when wind speed is in the cut-in and cut-out region. 

To develop the power generation model, each of the five datasets is split to two 

subsets, training dataset and test dataset, by 4/5 and 1/5. The training dataset is used to 

develop a power generation model validated with the test dataset. Table 1 shows the test 

results of the power generation model of turbine No. 1 – 5. Four metrics (6.8 – 6.11), the 

mean absolute error (MAE), the standard deviation of absolute error (SD of AE), the 

mean absolute percentage error (MAPE), and the standard deviation of absolute 

percentage error (SD of APE) are applied for assessing quality of the data driven models. 

    
1

1 ˆMAE = | |
n

k k
k

y y
n =

−∑     (6.8) 

   2

1 1

1 1ˆ ˆSDofAE = (| | | |)
n n

k k k k
k k

y y y y
n n= =

− − −∑ ∑   (6.9) 

    
1

ˆ1MAPE = (| |) 100%
n

k k

k k

y y
n y=

−
×∑    (6.10) 

   2

1 1

ˆ ˆ1 1SDofAPE (| | | |) 100%
n n

k k k k

k kk k

y y y y
n y n y= =

− −
= − ×∑ ∑  (6.11) 

where n is the number of data points in test datasets, yi is the observed value, and ˆiy is the 

predicted value. 

As shown in Table 6.1, the MAPE of five data driven power generation models is 

about 5% which corresponds to the accuracy of power prediction of 95%. 
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Table 6.1 Test results of the power generation models 

Turbine No. MAE (kW) SD of AE (kW) MAPE (%) SD of APE (%) 
1 11.55 10.91 4.00 9.00 
2 9.72 8.87 4.00 8.00 
3 14.39 10.29 6.00 14.00 
4 6.85 6.17 4.00 11.00 
5 11.91 11.63 5.00 11.00 

Figure 6.1 – 6.5 show the first 100 predictions by the NN power generation 

models of wind turbines 1 – 5. 

 

Figure 6.1 Observed v.s. predicted power values of turbine 1 

 

Figure 6.2 Observed v.s. predicted power values of turbine 2 
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Figure 6.3 Observed v.s. predicted power values of turbine 3 

 

Figure 6.4 Observed v.s. predicted power values of turbine 4 
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Figure 6.5 Observed v.s. predicted power values of turbine 5 

6.2.2.2 Power Generation Constraint 

The power generated by a turbine should not exceed its maximum power 

generation capacity. According to (Kusiak et al. 2009a), these two rules can be expressed 

as a constraint in (6.11) 

    3
, ˆmin{1.5, (2.625 ) /1000}i t tP υ≤    (6.11) 

where 1.5 denotes the maximum power generation capacity (1.5 MW) and 
3ˆ2.625 /1000tυ is the power generation constraint derived from Betz’ law. 

6.2.2.3 Constraints of Decision and Control Variables 

In the base model, the decision variable is binary and the control variables are 

expressed as real numbers. The theoretical range of the generator torque is [0%, 100%] 

and the range of blade pitch angle is [-360o, 360o]. However, since not all values of the 

two control variables are reflected in the datasets, constraints need to be developed. The 

maximum and minimum of generator torque and blade pitch angle present in the datasets 

then are used to develop constraints of the control variables for each wind turbine. The 

two constraints are expressed in (6.12 – 6.14). 

    , {0,1}i ts ∈      (6.12) 
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  1, 2, 3,

4, 5,

[1.5,100.78], [1.23,100.63], [1.14,100.68],
[1.55,100.63], [1.8,100.62]

t t t

t t

τ τ τ

τ τ

∈ ∈ ∈

∈ ∈
  (6.13) 

  1, 2, 3,

4, 5,

[ 0.07,76.14], [ 0.07,76.12], [ 0.07,84.23],
[ 0.08,80.51], [0.04,359.6]

t t t

t t

β β β

β β

∈ − ∈ − ∈ −

∈ − ∈
  (6.14) 

6.2.2.4 The Wind Speed Prediction Model 

The average wind speed in the wind farm is not known. To predict the turbine 

generated power based on (6.7), the average wind speed needs to be provided. A model is 

introduced in this section to predict wind speed at time window t based on its past states. 

The wind speed data of the five wind turbines discussed in Section 6.2.2.1 is first 

averaged and then the time series of the wind speed is derived. As in Section 6.2.2.1, the 

wind speed data is split into training and test datasets for developing models. 

Eight past states of wind speed, υt – Q, υt – 2Q, …, υt – 7Q, and υt – 8Q, are considered 

to form a pool of parameters to predict wind speed at t. A parameter selection method, 

wrapper search with genetic algorithm (Witten and Frank 2005; Kohavi and John 1997), 

is applied to select the important parameters in the pool. The parameters, υt – Q, υt –2 Q, υt – 

3Q, υt – 4Q, and υt – 7Q, are considered as important based on the wrapper search with υt – Q 

being the most important amount the five parameters. The wind speed prediction model is 

formulated in (6.15). 

   Q 2Q 3Q 7Qˆ ( , , , , )t t t t tfυ υ υ υ υ− − − −= 
    (6.15) 

A Neural Network algorithm is applied to learn the model f(•) of (6.15) using a 

training dataset. The trained model is then validated by the test dataset. Table 6.2 shows 

the test accuracy of wind speed prediction model. Figure 6.6 represents prediction results 

of the first 100 points of the test dataset. 
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Table 6.2 Accuracy of the wind speed prediction model 

MAE (m/s) SD of AE (m/s) MAPE (%) SD of APE (%) 
0.38 0.51 7.00 13.00 

 

 

Figure 6.6 The first 100 observed and predicted values of the wind speed 

6.2.3 Formulation of the Base Model 

The base model of scheduling a wind farm can is presented in (6.16) by 

integrating the objective function and constraints discussed in Section 6.2.1 and 6.2.2. 
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6.3 Stochastic Optimization Model 

In this section, a single-stage stochastic optimization model is introduced. The 

uncertainty of wind speed is modeled by a set of wind speed scenarios. The stochastic 

optimization model provides a deterministic solution when the power commitment and 

the electricity price are determined. 

6.3.1 Wind Speed Scenarios 

Since the highest wind speed recorded in the world is 113 m/s (World 

Meteorological Organization, Accessed 2011), the range of wind speed can be restricted 

to [0 m/s, 113 m/s]. However, the wind turbines considered in this research are only 

operated between the cut-in speed of 4 m/s and cut-out speed of 24 m/s. Moreover, the 

generated power reaches its maximum for the wind speed between the rated wind speed 

of 12 m/s and cut-out wind speed. Eight wind speed scenarios are developed by 

discretizing the wind speed in the eight intervals (6.17). 

    1 2 3 4

5 6 7 8

(0, 4), [4,6), [6,8), [8,10),
[10,12), [12,14), [14,24), [24,113)

∂ ∈ ∂ ∈ ∂ ∈ ∂ ∈
∂ ∈ ∂ ∈ ∂ ∈ ∂ ∈

  (6.17) 

It has been observed in (6.15) that the parameter υt – Q is statistically more 

significant than that other wind speed data used to estimate the wind speed at t. 

Therefore, the assumption presented next is made. 

Assumption 6.1. Given a set of wind speed scenarios, {∂1, ∂2, ∂3,…, ∂8}, the probability 

that the wind speed value changes in the future scenario depends only on wind speed 

value in the present scenario rather than the sequence of scenarios preceding the present 

scenario. 

The Assumption 6.1 is represented in (6.18). 

  Q Q 8Q QPr( , , , ) Pr( )t h t h t h t h t h t hυ υ υ υ υ υ+ − − +∈∂ ∈∂ ∈∂ ∈∂ = ∈∂ ∈∂  (6.18) 

where h = 1, 2, 3, …, 8. 
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Then the conditional probabilities of all wind speed scenarios constitute a 

transition matrix A presented in (6.19). 

   
Q 1 1 Q 8 1

Q 1 8 Q 8 8

Pr( ), , Pr( )

A=                               , ,                  

Pr( ), , Pr( )

t t t t

t t t t

υ υ υ υ

υ υ υ υ

+ +

+ +

 ∈∂ ∈∂ ∈∂ ∈∂
 
 
 

∈∂ ∈∂ ∈∂ ∈∂  



  



   (6.19) 

The average wind speed data discussed in Section 6.2.2.4 and an additional wind 

speed dataset, 30-min wind speed data in year 2008, are integrated as a dataset for 

estimating the probability in (6.19). Eq. (6.20) is applied to calculate the probability in 

(6.19) based on this dataset. 

   QQ
Q

Pr( )
Pr( )

Pr( )
t h t h

t h

t h t h
t h t h

t h

N

N
υ υ

υ

υ υ
υ υ

υ
+ ∈∂ ∈∂+

+
∈∂

∈∂ ∈∂
∈∂ ∈∂ = =

∈∂


   (6.20) 

where h = 1, 2, 3, …, 8. 

The estimated matrix A is shown in Table 6.3. Since the wind speed above 24 m/s 

is rarely observed in the dataset, scenario 8 of wind speed is excluded in A. The wind 

speed at time t is observable and therefore the wind speed scenario at time t denoted as ′∂  

can be determined. Then, the probability of wind speed scenarios at t + Q are obtained 

from Table 6.3. 

Table 6.3 The estimated matrix A 

Pr υt+Q ∈ ∂1 υt+Q ∈ ∂2 υt+Q ∈ ∂3 υt+Q ∈ ∂4 υt+Q ∈ ∂5 υt+Q ∈ ∂6 υt+Q ∈ ∂7 
υt ∈ ∂1 0.8547 0.1220 0.0166 0.0048 0.0016 0.0003 0.0000 
υt ∈ ∂2 0.1219 0.6944 0.1669 0.0128 0.0032 0.0006 0.0003 
υt ∈ ∂3 0.0128 0.1379 0.7144 0.1247 0.0083 0.0015 0.0004 
υt ∈ ∂4 0.0061 0.0153 0.1973 0.6659 0.1089 0.0056 0.0009 
υt ∈ ∂5 0.0022 0.0062 0.0208 0.2132 0.6583 0.0929 0.0062 
υt ∈ ∂6 0.0011 0.0015 0.0114 0.0197 0.2292 0.6455 0.0917 
υt ∈ ∂7 0.0017 0.0008 0.0059 0.0093 0.0271 0.2120 0.7430 
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6.3.2 Objective Function of the Stochastic Optimization 

Model 

In the single-stage stochastic optimization model, the wind speed at present time 

is described as scenarios with conditional probability rather than an estimated value 

discussed in Section 6.2.2.4. The objective of the stochastic optimization model is to 

minimize the expected cost of operating a wind farm over a scheduling horizon. For the 

wind speed scenario at present time ∂h, h∂ ∈∂ , the objective function of the stochastic 

optimization model is formulated in (6.21). 

  Q , , , ,
1

Pr( ) ( )
h h h h

h

T

t h t oc cc om ic
t

TC C C C Cυ υ − ∂ ∂ ∂ ∂
= ∂ ∈∂

′= ∈∂ ∈∂ ⋅ + + +∑∑  (6.21) 

In (6.21), the opportunity cost, compensation cost, O&M cost, and the idle turbine 

cost in each wind speed scenario need to be estimated based on the expected power 

shortage.  

Definition 6.5. Expected power shortage in the wind speed scenario h∂ equals the 

difference between the electric power commitment and the expectation of generated 

power in the wind speed scenario h∂ and it is expressed in (6.22). 

    , ,
1

max{0, ( ) }
h

I

t t i t i t
i

P D E P s∂
=

∆ = −∑     (6.22) 

As discussed in Section 6.3.1, each wind speed scenario presents an interval of 

wind speed. Therefore, the expected generated power in wind speed scenario h∂ can be 

calculated from (6.23). 

  , , , ,( ) ( ) ( , , ) ( )
h t h t h

t h t h

i t i t t t i t i t t t tE P P f d f f dυ υ
υ υ

υ υ τ β υ υ υ∂ ∈∂ ∈∂
∈∂ ∈∂

= =∫ ∫  (6.23) 

However, since the wind power generation model in (6.23) is nonparametric, its 

integration is challenging. To calculate the expected generated power, an approximation 

method is applied. In the approximation method, the wind speed interval of each scenario 
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is divided to many sub-intervals and the mean value of wind speed in each sub-interval is 

computed. Then, the expected generated power is expressed in (6.24). 

  , , , , ,( ) ( , , ) ( ) ( , , ) Pr( )
t h S S

S ht h

i t i t i t t t t i t i tE P f f d fυ
υ

τ β υ υ υ τ β υ υ∈∂ ∂ ∂
∂ ∈∂∈∂

= ≈ ∑∫  (6.24) 

where ∂s is the sub-interval of scenario h∂ and 
S

υ∂ is the mean value of ∂s. 

6.3.3 Formulation of the Stochastic Optimization Model 

The constraints discussed in Section 6.2.2.2 and 6.2.2.3 are integrated with the 

objective function in Section 6.3.2 to form the stochastic optimization model for 

scheduling a wind farm. The decision and control variables in the stochastic optimization 

model are the same as in the base model. The stochastic optimization model is presented 

in (6.25). 
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 (6.25) 

6.4 Migrated Particle Swarm Optimization Algorithm 

Both of the base model and stochastic optimization model discussed in Section 

6.2 and 6.3 involve binary decision variables and real value control variables. Solving 

mixed-integer programming models, especially mixed-integer nonlinear programming 

problems (MINLP) is challenging. Traditional solution approaches for solving MINLP, 
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such as Outer Approximation (OA) methods (Duran and Grossmann 1986), Branch-and-

Bound (Gupta and Ravindran 1985), Extended Cutting Plane algorithm (Westerlund and 

Petersson 1995), and Generalized Bender’s Decomposition (Geoffrion 1972), have been 

discussed in the literature. The traditional solution approaches guarantee global 

optimality when convexity is observed. In addition, the traditional solution approaches 

(Duran and Grossmann 1986; Gupta and Ravindran 1985; Westerlund and Petersson 

1995; Geoffrion 1972) do not perform well for large-scale MINLPs. Lastly, an explicit 

formulation of the MINLP is required by the traditional solution approaches. 

In this chapter, the wind power generation model is derived by NN algorithm 

which is non-parametric. Since the traditional solution approaches are difficult to apply 

for solving such a model, a migrated particle swarm optimization algorithm (MPSO) is 

developed. The MPSO algorithm is inspired by the concepts of particle swarm 

optimization (PSO) (Kennedy and Eberhart 1995; Clerc and Kennedy 2002) and genetic 

algorithms (GA) (Fraser 1957). Figure 6.7 shows the structure of the migrated particle 

swarm optimization algorithm. 

 

Figure 6.7 Structure of the migrated particle swarm optimization algorithm 

A wind turbine is controlled only when its operational status is ‘on’. Observation 

6.1 describes a relationship between the decision and control variables. 
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Observation 6.1. The control variables, τ and β, impact the objective function only if the 

decision variable s is 1. If s =0, the control variables are considered to be independent to 

the objective function. 

Observation 6.1 is reflected in the MPSO algorithm in Figure 6.7. A migration 

procedure is applied to explore decisions for the operating wind turbines. Based on the 

explored decisions, the flight procedure is utilized to search the optimal settings of 

control variables. The detailed steps of the MPSO algorithm are presented next. 

The migrated particle swarm optimization algorithm 

Step 1. Initialization of swarm locations: Initialize b locations for distributing particle 

swarms with each location representing a binary part of a solution. 

Step 2. Flight procedure of particles in each location 

For each location l, 1, 2,3,...,l b=  

Step 2.1. Initialize the positions of a population of particles with population size, 

m. 

Step 2.2. Initialize the local best of each particle in the population and the global 

best. 

Step 2.3. Update the velocity of particles by 

1 1 2 2ˆ ˆ( ) ( )j j j j j j j j
l l l l lv v c r x x c r g xω← + − + − . 

Step 2.4. Update the position of particles by j j j
l l lx x v← + . 

Step 2.5. Update the local best ˆ j j
l lx x← if ˆ( ) ( )j j

l lfit x fit x≤ . 

Step 2.6. Update the global best ˆ j j
l lg x← if ˆ( ) ( )j j

lfit x fit g≤ . 

Step 2.7. Compute the fitness value 

Step 2.8. Stop the flight procedure if the stopping criterion is met. Otherwise, 

repeat Steps 2.3 – 2.7. 

Step 3. Compare the fitness value of solutions and preserve the best one as the best 

solution in the search. 
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Step 4. Migration procedure of swarms 

Step 4.1. Apply a genetic operator to develop a new set of swarm locations with 

size b by crossover and mutation of the locations in last iteration. 

Step 4.1.1. Crossover: Randomly select a single point in the string 

(binary part of the solution). Exchange the part of string 

before the selected point of one location in last iteration and 

the best location. 

Step 4.1.2. Mutation: Randomly select a single point in the string and 

mutate the value of it between 0 and 1. 

Step 4.2. Employ the flight procedure in Step 2 to search the real value part of the 

solution. 

Step 4.3. Select the best solution in this migration, update the best solution in the 

search if the best solution in this migration is better than the best 

solution in the last iteration. 

Step 4.4. Stop the algorithm if the stopping criterion is met. Otherwise, go back to 

Step.4.1. 

To implement the MPSO, the settings of some parameters need to be determined. 

The parameters, ω, c1 and c2, in the flight procedure are set to 0.5, 2, and 2 according to 

(Kennedy and Eberhart 1995). The parameters, r1 and r2, are generated from U(0,1). The 

size of swarm locations, b, is set to 5 and the size of particles, m, is set to 10. 

6.5 Case Study 

In this section, wind farm scheduling is considered using a sample of five 1.5 MW 

class wind turbines. The values of the power commitment and electricity prices in this 

case study come from the websites of the National Grid UK and European Energy 

Exchange. In this case study, T is set to 12 and Q is set to 30-min. Thus, 12 data points of 

power commitment and electricity price from 1/15/2011 9:30:00 PM to 1/16/2011 
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3:00:00 AM are selected. The power commitment data is produced by rescaling the 

demand data recorded by the National Grid UK to a level close to the generation capacity 

of a 7.5 MW wind farm. The sampling interval for the electricity price data in EEX is 1 

hour and the 30-min electricity price is derived based on the 1 hour EEX data. Table 6.4 

illustrates the wind speed data at t – Q, electric power demand data at t, and electricity 

price at t. 

Table 6.4 The data used in the case study 

Scheduling 
time window  

(30-min) 
1 2 3 4 5 6 7 8 9 10 11 12 

t – Q wind 
Speed (m/s) 6.9 7.0 6.8 6.4 6.3 5.7 5.3 4.7 4.9 4.8 4.9 5.2 

Electric power 
demand (MW) 6.0 5.8 5.6 5.4 5.3 5.4 5.3 5.2 5.0 4.9 4.8 4.8 
Electricity price 

(USD/MW) 23.4 26.4 29.3 25.1 20.8 16.7 12.6 11.1 9.56 8.3 7.1 6.8 

6.5.1 Convergence of the MPSO 

The convergence of the migration procedure and the flight procedure has been 

assessed to determine the stopping criterion for the MPSO algorithm. The time window t 

= 1 of the scheduling horizon is utilized to examine the convergence of two procedures. 

To assess the convergence of the flight procedure of MPSO, the value of all 

decision variables, si,t, is set to 1. It presents a most computationally expensive case in the 

flight procedure because the number of control variables need to be searched in the flight 

procedure is the maximum based on Observation 6.1. The stopping criterion of this most 

computationally expensive case is also applied to other cases that not all si,t is 1. The 

stopping criterion is set at 1500 iterations of the flight procedure. Figure 6.8 and 6.9 

illustrate the convergence of the flight procedure. As shown in Figure 6.8 and 6.9, the 
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flight procedure converges in 20 iterations. Thus, the stopping criterion of the flight 

procedure is set 20. 

 

Figure 6.8 Convergence of the flight procedure for the base model 

 

Figure 6.9 Convergence of the flight procedure for the stochastic optimization model 

The stopping criterion of the migration procedure is studied based on the stopping 

criterion of the flight procedure. As the number of combinations of decision variables in 

this study is 25 = 32, the number of iterations of the migration procedure is set to 100. 

Figure 6.10 and 6.11 demonstrate that convergence of the migration procedure in for the 

base and stochastic optimization models. 
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Figure 6.10 Convergence of the migration procedure for the base model 

 

Figure 6.11 Convergence of the migration procedure for the stochastic optimization 
model 

As shown in Figure 6.10 and 6.11, the migration procedure converges within 15 

iterations. Thus, the stopping criterion of migration procedure is set to 15. 

6.5.2 Solution of the Scheduling Models 

In the stochastic optimization model, each wind speed scenario is equally divided 

into 10 intervals to compute the expected generated power in (6.24). Table 6.5 illustrates 

all values of 
S
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7 discussed in Section 6.3.1 is between 14 m/s and 24 m/s. Since no evidence of wind 

speed higher than 19 m/s is recorded, the range of wind speed in scenario 7 divided into 

10 intervals is further restricted to [14 m/s, 19 m/s] as shown in Table 6.5.  

Table 6.5 Probability of wind speeds in each sub-interval 

Sce.
2 

2{ | }
S Sυ∂ ∂ ∈∂  4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5 5.7 5.9 

Pr 0.08 0.08 0.09 0.09 0.1 0.1 0.11 0.12 0.12 0.12 
Sce.

3 
3{ | }

S Sυ∂ ∂ ∈∂  6.1 6.3 6.5 6.7 6.9 7.1 7.3 7.5 7.7 7.9 
Pr 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1 0.1 0.1 

Sce.
4 

4{ | }
S Sυ∂ ∂ ∈∂  8.1 8.3 8.5 8.7 8.9 9.1 9.3 9.5 9.7 9.9 

Pr 0.13 0.13 0.12 0.12 0.10 0.09 0.09 0.08 0.07 0.07 
Sce.

5 
5{ | }

S Sυ∂ ∂ ∈∂  10.1 10.3 10.5 10.7 10.9 11.1 11.3 11.5 11.7 11.9 
Pr 0.13 0.12 0.12 0.11 0.10 0.1 0.09 0.08 0.07 0.07 

Sce.
6 

6{ | }
S Sυ∂ ∂ ∈∂  12.1 12.3 12.5 12.7 12.9 13.1 13.3 13.5 13.7 13.9 

Pr 0.15 0.13 0.12 0.10 0.10 0.1 0.09 0.08 0.07 0.07 

Sce.
7 

7{ | }
S Sυ∂ ∂ ∈∂  14.2

5 
14.7

5 
15.2

5 
15.7

5 
16.2

5 
16.7

5 
17.2

5 
17.7

5 
18.2

5 
18.7

5 
Pr 0.26 0.21 0.12 0.12 0.10 0.05 0.02 0.05 0.04 0.03 

 

The wind farm scheduling strategies generated from the base and the stochastic 

optimization model are shown in Table 6.6 and 6.7, respectively. The columns with 

headings, Solution Part 1, Solution Part 2, and Solution Part 3, in Table 6.6 and 6.7 

describe the settings of the decision variable and the two control variables, generator 

torque and blade pitch angle. As shown in Table 6.6 and 6.7, the decisions to operate a 

wind turbine suggested by the base and the stochastic optimization models are identical. 

The difference of the two solutions is mainly reflected in the settings of generator torque 

and blade pitch angle. The settings of generator torque and blade pitch angle offered by 

the base model are slightly different from the settings recommended by the stochastic 

optimization model. 
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Table 6.6 Schedules provided by the base model 

Scheduling 
Time 

Window 

Solution Part 1 
{s1, s2, s3, s4, 

s5} 
Solution Part 2 
{τ1, τ2, τ3, τ4, τ5} 

Solution Part 3 
{β1, β2, β3, β4, β5} 

1 1,1,1,1,1 53.09,53.63,70.02,61.56,81.72 75.78,52.30,16.05,5.42,97.81 
2 1,1,1,1,1 54.35,48.90,68.90,56.09,81.60 73.95,50.56,14.54,5.82,94.91 
3 1,1,1,1,1 68.03,64.26,70.50,62.42,86.63 35.25,47.69,11.07,7.61,67.51 

4 1,1,1,1,1 45.62,38.19,65.71,56.49,83.10 68.47,58.92,18.90,-
0.07,94.06 

5 1,1,1,1,1 40.07,48.70,64.59,63.10,81.55 68.41,60.91,14.17,2.38,65.55 

6 1,1,1,1,1 35.82,38.36,63.60,100.02,82.9
7 

67.22,59.77,18.43,1.29,294.7
7 

7 1,1,1,1,1 42.28,44.99,61.56,85.33,82.86 67.89,59.28,17.61,1.98,214.8
7 

8 1,1,1,1,1 35.82,38.36,63.60,100.02,83.0
0 

67.22,59.77,18.43,1.29,294.7
7 

9 1,1,1,1,1 1.50,1.23,41.03,1.55,1.80 -0.07,0.02,31.52,27.00,4.90 
10 0,1,1,1,0 0,1.49,1.14,1.55,0 0,0.06,-0.07,26.94,0 
11 0,0,1,1,0 0,0,1.14,1.55,0 0,0,-0.07,26.92,0 
12 0,0,1,1,0 0,0,1.14,1.55,0 0,0,-0.07,26.77,0 
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Table 6.7 Schedules provided by the stochastic optimization model 

Scheduling 
Time 

Window 

Solution Part 1 
{s1, s2, s3, s4, 

s5} 
Solution Part 2 
{τ1, τ2, τ3, τ4, τ5} 

Solution Part 3 
{β1, β2, β3, β4, β5} 

1 1,1,1,1,1 59.51,63.72,62.69,63.58,69.42 56.67,54.67,23.34,17.16,92.0
0 

2 1,1,1,1,1 62.97,67.71,76.06,65.44,93.76 27.38,42.74,8.83,8.81,31.81 

3 1,1,1,1,1 61.60,64.47,63.20,69.66,71.04 54.42,56.20,23.43,19.52,93.7
7 

4 1,1,1,1,1 64.15,44.78,55.01,82.95,77.95 64.68,56.27,22.12,0.52,105.5
1 

5 1,1,1,1,1 40.79,40.01,74.76,58.21,55.17 75.34,68.28,14.72,0.24,101.8
4 

6 1,1,1,1,1 40.32,45.34,61.73,84.84,82.86 68.05,59.29,17.63,1.99,212.2
1 

7 1,1,1,1,1 42.39,45.11,61.57,85.34,82.86 67.91,59.27,17.60,1.98,214.9
7 

8 1,1,1,1,1 35.82,38.36,63.60,100.02,82.9
7 

67.22,59.77,18.43,1.29,294.7
7 

9 1,1,1,1,1 1.51,1.25,53.10,1.55,1.83 -0.07,10.28,32.92,26.45,1.09 
10 0,1,1,1,0 0,1.56,1.14,1.55,0 0,0.07,-0.07,26.63,0 
11 0,0,1,1,0 0,0,1.14,1.55,0 0,0,-0.07,26.57,0 
12 0,0,1,1,0 0,0,1.14,1.55,0 0,0,-0.07,26.57,0 

 

Table 6.4, 6.6 and 6.7 offer some insights into the scheduling strategies generated 

by the two models. As shown in Table 6.4, the electric power commitment is close to the 

wind farm maximum power generation capacity at the beginning and it gradually 

decreases over time. The decisions to operate wind turbines in Table 6.6 and 6.7 show a 

similar pattern. The solutions suggest operating all wind turbines at the wind farm for 

some time and shutting down some wind turbines towards the end of the scheduling 

horizon. This strategy encourages the wind farm to generate an amount of power that 

matches the power commitment. If the power commitment is close to the maximum 

power generation capacity of the wind farm, all wind turbines are to be operated. If the 

power commitment is much lower than the wind farm maximum power generation 

capacity, operating all wind turbines is not necessary. 
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6.5.3 Solution Quality 

The quality of solutions generated by the two models is evaluated in this section. 

The solutions of the base and the stochastic optimization model are compared with the 

best schedule and the baseline schedule. A desirable solution should be better than the 

baseline schedule and be close or equal to the best schedule. The best schedule and the 

baseline schedule are defined in Definition 6.6 and 6.7. 

Definition 6.6. The best schedule is a schedule obtained by solving model (6.16) under 

perfect information (known wind speed) over a scheduling horizon. 

Definition 6.7. The baseline schedule is a schedule obtained by solving model (6.16) over 

a scheduling horizon with wind speed predicted by (6.15) and all si,t = 1 provided that the 

constraint, ˆci t coυ υ υ≤ ≤ , is met. The baseline schedule describes a schedule that all wind 

turbines will be operational if ˆci t coυ υ υ≤ ≤ . 

Table 6.8 and 6.9 present the best schedule and the baseline schedule for 

operating the wind farm. 
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Table 6.8 The best schedules 

Scheduling 
Time 

Window 

Solution Part 1 
{s1, s2, s3, s4, 

s5} 
Solution Part 2 
{τ1, τ2, τ3, τ4, τ5} 

Solution Part 3 
{β1, β2, β3, β4, β5} 

1 1,1,1,1,1 58.58,47.36,64.88,69.32,81.75 66.71,54.43,11.54,3.63,95.28 
2 1,1,1,1,1 53.00,51.21,66.08,56.08,80.71 76.14,50.63,13.55,4.41,98.47 

3 1,1,1,1,1 44.23,41.82,64.92,65.52,81.80 68.35,53.04,13.42,1.15,108.4
4 

4 1,1,1,1,1 44.36,37.24,64.67,99.53,81.24 68.45,61.34,12.26,2.34,127.0
2 

5 1,1,1,1,1 35.82,38.36,63.60,100.02,82.9
7 

67.22,59.77,18.43,1.29,294.7
7 

6 1,1,1,1,1 35.82,38.36,63.60,100.02,82.9
7 

67.22,59.77,18.43,1.29,294.7
7 

7 1,1,1,1,1 35.82,38.36,63.60,100.02,82.9
7 

67.22,59.77,18.43,1.29,294.7
7 

8 1,1,1,1,1 19.94,22.06,68.40,75.47,82.76 70.67,58.87,16.92,2.04,161.3
0 

9 1,1,1,1,1 1.52,1.23,1.14,1.56,1.81 0.03,1.02,26.39,26.14,0.31 
10 0,1,1,1,0 0,1.45,1.14,1.55,0 0,0.03,-0.07,26.71,0 
11 0,0,1,1,0 0,0,1.14,1.55,0 0,0,-0.07,26.82,0 
12 0,0,1,1,0 0,0,1.14,1.55,0 0,0,-0.07,26.63,0 
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Table 6.9 The baseline schedules 

Scheduling 
Time 

Window 

Solution Part 1 
{s1, s2, s3, s4, 

s5} 
Solution Part 2 
{τ1, τ2, τ3, τ4, τ5} 

Solution Part 3 
{β1, β2, β3, β4, β5} 

1 1,1,1,1,1 52.85,53.87,70.09,62.01,81.73 75.79,52.44,16.16,5.33,98.19 
2 1,1,1,1,1 54.35,48.90,68.90,56.09,81.60 73.95,50.56,14.54,5.82,94.91 
3 1,1,1,1,1 68.03,64.26,70.50,62.42,86.63 35.25,47.69,11.07,7.61,67.51 
4 1,1,1,1,1 43.35,44.53,64.97,65.23,83.71 66.80,58.67,19.50,0.06,98.05 
5 1,1,1,1,1 36.89,46.16,66.79,75.75,80.65 70.64,63.07,10.99,1.59,69.57 

6 1,1,1,1,1 35.82,38.36,63.60,100.02,82.9
7 

67.22,59.77,18.43,1.29,294.7
7 

7 1,1,1,1,1 42.39,45.11,61.57,85.34,82.86 67.91,59.27,17.60,1.98,214.9
7 

8 1,1,1,1,1 35.82,38.36,63.60,100.02,82.9
7 

67.22,59.77,18.43,1.29,294.7
7 

9 1,1,1,1,1 1.50,1.23,43.91,1.55,1.82 -0.06,5.55,28.30,26.65,2.05 
10 1,1,1,1,1 1.53,1.27,44.71,1.55,1.81 -0.07,0.14,25.91,28.06,0.26 
11 1,1,1,1,1 1.50,1.23,47.73,1.55,1.80 -0.07,11.51,30.46,26.78,0.22 
12 1,1,1,1,1 1.50,1.23,50.78,1.55,1.80 -0.07,6.66,26.91,26.73,0.08 

 

The base model schedule (BMS), the stochastic model schedule (SMS), the best 

schedule (BES), and the baseline schedule (BS) are compared. Table 6.10 describes total 

cost of running a wind farm according to these solutions. 
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Table 6.10 Comparative analysis of different scheduling strategies 

Scheduling 
Time Window BES BMS SMS BS 

1 198.93 198.93 199.99 198.93 
2 210.95 210.95 210.95 210.95 
3 242.03 242.03 242.03 242.03 
4 212.65 212.65 212.65 212.65 
5 207.18 207.18 207.18 207.18 
6 189.62 189.62 189.62 189.62 
7 157.80 157.8 157.8 157.8 
8 138.90 138.9 138.9 138.9 
9 120.66 120.68 120.68 120.68 
10 101.92 101.92 101.92 103.08 
11 85.40 85.4 85.4 88.26 
12 80.25 80.25 80.25 83.77 

Total 1946.29 1946.31 1947.37 1953.85 

 

The data in Table 6.10 indicates that the BES, BMS, SMS, and BS costs are 

similar because these four schedules are produced by model (6.16) and (6.25). However, 

the cost of BS is slightly higher than the cost of BES, BMS and SMS. This indicates that 

by selection of wind turbines to be operational may reduce the cost of operating a wind 

farm. Since the total costs of the four schedules in Table 6.10 are expressed in small 

numbers, it is difficult to directly determine the quality of the solutions. A solution index 

(SI) (see Definition 6.8) is proposed to evaluate the quality of the solutions generated 

from model (6.16) and (6.25).  

Definition 6.8. Given the total cost of the best schedule (BES), the baseline schedule 

(BS), and the solution (MS) obtained by solving model (6.16) or (6.25) denoted as TCBES, 

TCBS, and TCMS, respectively, the solution index SI is defined in (6.26). 

     MS BES

BS BES

TC TC
SI

TC TC
−

=
−

    (6.26) 

where TCBS > TCBES and TCMS > TCBES. 
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The value of SI between 0 and 1 indicates a good quality wind farm schedule. A 

value of SI = 0 indicates that the computed schedule based on the optimization model 

(6.16) and (6.25) is the same as the best schedule. A value of SI = 1 indicates that the 

computed schedule is similar to the baseline schedule. If SI is larger than 1, the quality of 

a schedule is considered as poor. In this study, SI = 0.0026 for BMS and the SI = 0.1429 

for SMS. The quality of both schedules is acceptable while BMS is slightly better than 

SMS. However, the SMS has an advantage over BMS. The SMS is a deterministic 

solution based on wind speed scenarios for the case when the electricity price and electric 

power commitment are known. Once the wind farm operator gets to know the electricity 

price and the electric power commitment, the SMS can be applied to run the wind farm 

based on the wind speed at t – Q. 

6.6 Summary 

A new scheduling study of a wind farm that considered uncertainty of wind speed 

over a scheduling horizon was presented in this chapter. The goal of scheduling of a wind 

farm was to minimize the total cost of operating a wind farm over the scheduling horizon. 

The total cost included the power shortage cost, operations and maintenance cost, and 

idle turbine cost. The wind farm schedule was formed based on two types of variables, 

the decision variable and control variables. The decision variable captured the operational 

status of wind turbines (the on/off status). The control variables, generator torque and 

blade pitch angle, were applied to determine the power generation of wind turbines.  

Two models, the base model and the stochastic optimization to schedule a wind 

farm were developed. In the base model, the wind speed was predicted by a data-driven 

model. In the stochastic model, the uncertainty of the wind speed was modeled with wind 

speed scenarios. The wind turbine power generation model used in the base model and 

stochastic model was implemented as a neural network. Solving the base and stochastic 
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optimization models was challenging. A migrated particle swarm optimization was 

developed to solve the two models. 

A comparative analysis was performed to evaluate the quality of schedules 

produced by the base and the stochastic optimization models. A best schedule and a 

baseline schedule were introduced as reference schedules for schedule quality evaluation. 

The cost of the base model schedule and the stochastic model schedule was close to the 

cost of the best schedule. In the future research, the proposed model will be extended by 

considering uncertainty of the electricity price and the power commitment. Additional 

constraints, such as balancing the runtime of wind turbines will be introduced. 
  



154 
 

 
 

CHAPTER 7  

CONCLUSION 

A data-mining framework for optimization of wind turbines performance was 

introduced. The framework included construction and optimization of data-driven 

models. Data-mining algorithms were applied to identify accurate wind turbine models 

from the SCADA collected data. Once the accuracy of data-driven models was validated, 

optimization algorithms were utilized to compute the optimal solutions. Since data-driven 

models are not explicit, evolutionary computation algorithms, such as evolutionary 

strategy, particle swarm optimization and artificial immune systems, were considered. 

Although the global optimal solution was not always guaranteed by evolutionary 

computation algorithms, the computed solutions improved performance of wind turbines 

and wind farms. 

Seven data mining algorithms, Neural Network, Neural Network Ensemble, 

Support Vector Machine, Boosting Tree, Random Forests, Classification and Regression 

Tree and k Nearest Neighbors, were applied to the development of data driven models. 

Modeling a single wind turbine and a wind farm were both discussed in this dissertation. 

In the single wind turbine research, data mining algorithms were utilized to model the 

performance of a single wind turbine. To study the wind farm optimization, data driven 

single wind turbine models then were integrated together to construct a wind farm model. 

This dissertation aimed to solve four main wind industry challenges. The first 

challenge was that the delay caused by the feedback loops of wind turbine control 

systems degraded the wind turbine performance. A solution to the system delay was 

offerd in the form of a model predictive control approach. The second challenge came 

from the optimization of wind turbine performance in multiple objectives. The multiple 

objectives were transformed to a single objective by linear combination in the 

optimization. The weights of objectives needed to be determined. Therefore, developing a 

scheme could automatically assign values to the weights of objectives was desired. The 
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third challenge was the boundary of wind power optimization. A more realistic power 

optimization constraint rather than Betz’s law based constraint was needed in wind 

industry. Investigation of scheduling a wind farm was the last challenge. As wind 

industry is emerging, limited research related to wind farm scheduling has been 

performed. 

An anticipatory control model for optimizing performance of wind turbines was 

developed in Chapter 2. It was set to accomplish three goals, increasing the power 

extracted from the wind, and mitigating vibration of the drive-train system and the tower. 

By considering these goals, the power generation model, drive-train acceleration model, 

tower acceleration model and the time-series wind speed prediction model were derived 

to establish this optimization model. To solve the constructed optimization model, a 

particle swarm optimization algorithm was applied. 

Chapter 3 presented the adaptive control of a wind turbine to maximize power 

generation and minimize the torque ramp rate. Data-mining algorithms were utilized to 

generate non-parametric models of wind turbine power generation and the wind power 

prediction model. An integrated model with a linear combination of weighted objectives 

was created. The weights associated with the objectives were estimated based on the 

predicted power and demand. The demand was generated from two simulation models. A 

novel optimization approach, the particle swarm fuzzy algorithm (PSFA), was developed 

to solve the model developed in this chapter. 

Although a bi-objective optimization problem was discussed to maximize the 

generated power and minimize the power ramp rate, the main contribution of Chapter 4 

was to develop a new power optimization constraint by combining Betz’ law and 

statistical quality control theory. 

In Chapter 5, a model for scheduling wind turbines was presented to study the 

minimization of the total cost of operating a wind farm. The optimized cost included the 

power shortage cost, operational and maintenance cost, and start-up cost. Each schedule 
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represents the operational status of wind turbines over a scheduling horizon. In Chapter 6, 

scheduling a wind farm in the presence of uncertain wind speed conditions was 

presented. Two scheduling models, the base model and the stochastic optimization 

model, were developed by integration of mathematical programming and data mining. A 

migrated particle swarm optimization algorithm was developed for solving the two 

scheduling models. 

In the single wind turbine study, one challenge of the future research was the 

wind speed signal sensed by anemometer mounted at the back of wind turbine nacelle. 

Due to the location of the wind speed sensor, the measured data could not describe the 

wind speed conditions at the front of wind turbine rotor. Control of wind turbines based 

on the current wind speed data impaired the performance of wind turbine. Therefore, a 

more advanced wind speed sensors, such as laser sensors, needed to be mounted on wind 

turbines to improve the wind turbine control. 

In the further research on wind farm scheduling, the wake loss effect needed to be 

considered. Since the wind speed would be decayed after passing a wind turbine, the 

wake loss effect could significantly impact the scheduling strategies of a wind farm. To 

consider the wake loss effect, the wind direction data was needed. The wind farm 

scheduling model could also be extended by considering the uncertainty of electric power 

demand and electricity prices. 
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