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ABSTRACT 

 

 Mathematical modeling of human running is a challenging problem from 

analytical and computational points of view. Purpose of the present research is to develop 

and study formulations and computational procedures for simulation of natural human 

running. The human skeletal structure is modeled as a mechanical system that includes 

link lengths, mass moments of inertia, joint torques, and external forces. The model has 

55 degrees of freedom, 49 for revolute joints and 6 for global translation and rotation. 

Denavit-Hartenberg method is used for kinematics analysis and recursive Lagrangian 

formulation is used for the equations of motion. The dynamic stability is achieved by 

satisfying the zero moment point (ZMP) condition during the ground contact phase. B-

spline interpolation is used for discretization of the joint angle profiles. The joint torque 

square, impulse at the foot strike, and yawing moment are included in the performance 

measure. A minimal set of constraints is imposed in the formulation of the problem to 

simulate natural running motion. Normal running with arm fixed, slow jog along curves, 

and running with upper body motion are formulated. Simulation results are obtained for 

various cases and discussed. The cases are running with different foot locations, running 

with backpack, and running with different running speeds. Also, extreme cases are 

performed. Each case gives reasonable cause and effect results. Furthermore, sparsity of 

the formulation is studied. The results obtained with the formulation are validated with 

the experimental data. The proposed formulation is robust and can predict natural motion 

of human running. 
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ABSTRACT 

 

 Mathematical modeling of human running is a challenging problem from 

analytical and computational points of view. Purpose of the present research is to develop 

and study formulations and computational procedures for simulation of natural human 

running. The human skeletal structure is modeled as a mechanical system that includes 

link lengths, mass moments of inertia, joint torques, and external forces. The model has 

55 degrees of freedom, 49 for revolute joints and 6 for global translation and rotation. 

Denavit-Hartenberg method is used for kinematics analysis and recursive Lagrangian 

formulation is used for the equations of motion. The dynamic stability is achieved by 

satisfying the zero moment point (ZMP) condition during the ground contact phase. B-

spline interpolation is used for discretization of the joint angle profiles. The joint torque 

square, impulse at the foot strike, and yawing moment are included in the performance 

measure. A minimal set of constraints is imposed in the formulation of the problem to 

simulate natural running motion. Normal running with arm fixed, slow jog along curves, 

and running with upper body motion are formulated. Simulation results are obtained for 

various cases and discussed. The cases are running with different foot locations, running 

with backpack, and running with different running speeds. Also, extreme cases are 

performed. Each case gives reasonable cause and effect results. Furthermore, sparsity of 

the formulation is studied. The results obtained with the formulation are validated with 

the experimental data. The proposed formulation is robust and can predict natural motion 

of human running. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Motivation 

 Major motivation of this research is to study the human running problem with 

digital human models. A digital human is a human-like character in the physics-based 

world. Therefore, a digital human can perform different tasks such as walking, running, 

and stair climbing in the virtual environment. Nowadays, people want to have an 

interface for design of any product that is related to human factors. A virtual prototype 

may decrease development costs or reduce any risk that exists in the real-world 

environment. Therefore, digital human dynamics simulation is a new frontier and a hot 

area of research at the present time.  

 In many multi-body dynamics commercial codes, the numerical integration solver 

has been used to solve equations of motion for a physical system (forward dynamics). 

However, this method does not have the capability to predict how a human moves. 

Therefore, we somehow need to solve the equations of motion in a way that predicts how 

humans move. Moreover, the kinetics and physiological parameters need to be monitored 

in addition to the kinematical parameters because the user needs to monitor all forces, 

such as joint torques. Therefore, we introduce the method of predictive dynamics. It is a 

new method that can predict the human motion that satisfies the dynamics equations of 

motion. It is an optimization-based approach with physics-based constraints. One does 

not have to integrate the dynamics equations of motion.  



2 

 

 

 There has been some research on human running motion and the running of 

robots, but there has not been much work on the simulation of human running. Some 

running simulation work in the robotics area or computer animation area is available in 

the literature. Hodgins (1996) simulated 3D digital human motion of running, but it was 

done for animation purpose. Therefore, 3D stability or joint torque limits of a human 

were not considered because animators are more interested in high-level behavior and are 

not interested in kinetics of the model. Looking at the robotics area, we observe that two 

robots are available: the Honda ASIMO and the Sony QRIO. However, they have fewer 

degrees of freedom than a human and the anthropometric data of the mechanical models 

are not close to that of a human. It is concluded that a full body 3D dynamics simulation 

of human running is not available in the literature. Thus, this topic (optimization-based 

dynamic prediction of 3D human running) of the thesis is quite new in the sense of 

dynamics and digital human models. 

 

1.2. Research Objectives 

1.2.1. Description of the Research Problem 

 The main objective of this study is the prediction of 3D human running motion. 

Therefore, the research focuses on the following: 

 The joint angle and joint torque profiles will be calculated for the full body model. 

 Recursive Lagrangian equations of motion with external forces will be derived and 

used. 

 Dynamic stability for the running problem—zero moment point—will be investigated. 

 Ground reaction forces will be determined. 
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 Methods to include impact in the model at foot strike will be investigated. 

 Optimization method for sparse problems will be investigated. 

 Various constraints and performance measures for natural human running, such as for 

the upper-body motion, will be investigated. 

 Simulations will be validated using the running determinants. 

 

1.2.2. How are the Research Objectives to be accomplished? 

 The basic hypothesis of solving the running problem is to formulate it as an 

optimization problem. An algorithm based on the sequential quadratic programming 

approach is used to solve the nonlinear optimization problem. The digital human is 

modeled as a mechanical system that includes link lengths, mass moments of inertia, joint 

torques, and external forces. Denavit-Hartenberg method is used for kinematics analysis 

of open loop chains. In this approach, a degree of freedom characterizes relative rotation 

of two body segments that are assumed to be connected by revolute joints. The recursive 

Lagrangian formulation is used for the equations of motion which can be derived using 

the energy methods. For efficiency of calculations, we have to consider the number of 

additions and multiplications of the transformation matrices since the optimization 

method can take several iterations to converge. From this point of view, recursive 

Lagrangian formulation is quite efficient. To verify the recursive equation of motion, 

commercial general-purpose multi-body dynamics software is used. B-spline 

interpolation is used for time discretization and the control points for the joint angle 

profiles are treated as design variables. Also, the running motion is assumed to be 

completely periodic. For the performance measure in the optimization problem, the 
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dynamic effort that is represented as the integral of the sum of the squares of all the joint 

torques is minimized. A minimal set of constraints is imposed in the formulation of the 

problem to simulate natural running motion. The dynamic stability is achieved by 

satisfying the zero moment point (ZMP) constraint in the support phase. The impulse at 

the foot strike is included in the performance measure; therefore, the problem is treated as 

a multi-objective optimization problem. Load carrying, such as a backpack or hand load, 

and the motion for different running speeds are simulated as case studies. 

 

1.3. Literature Review 

 Very few researchers have worked on mathematical modeling of digital human 

running simulation. Therefore, there is scarcity of literature that is directly related to 

digital human running simulation. However, we can review papers in several areas that 

give us some ideas about the running problem. These areas are sports, biomechanics, 

robotics, and computer graphics animation.  

 

1.3.1. General Description and Review of Human Running 

 There are several review papers related to the biomechanics of human running 

(Cavanagh, 1990; Dillman, 1975; Alexander, 1984; Ounpuu, 1994; Novacheck, 1998). 

Generally, they describe the terminology of running, the kinematics results, the kinetics 

results, and the ground reaction forces. Cavanagh (1990) provided a very good reference 

not only for historical perspective, but also for the study of human running. Dillman 

(1975) provided a general summary of the biomechanics of human running from the view 

point of sports activities. Kinematical factors of human running were described such as 
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stride length, running velocity, and stride rate (stride frequency; the number of strides per 

second). He also explained the relationship between anthropometric factors and stride 

length. Alexander (1984) explained walking and running in terms of energy costs, force 

patterns, and elastic mechanics. The paper explained that the locomotion was adapted to 

minimize energy costs. He further explained the change from walking to running in terms 

of cheaper consumption of gait energy. For example, walkers used less energy than 

runners did when their speed was less than 2.3 m/sec and vice versa when their speed was 

more than 2.3 m/sec. Ounpuu (1994) described the terminology, kinematics, and kinetics 

of human walking and running. The general terminology of gait, such as gait cycle, step 

length, and stride length, was defined. Joint kinematics, joint kinetics, and ground 

reaction force of human walking and running were also summarized. Novacheck (1998) 

reviewed the biomechanics of human running. He discussed gait cycle, EMG, kinematics, 

kinetics, and potential and kinetic energy of running. It was noted that 80% of distance 

runners were rear foot strikers and the rest of them were mid foot strikers. He also 

distinguished distance running and sprinting at the point of the change from hindfoot to 

forefoot initial contact. He explained that for distance running the body moves at a more 

controlled rate in relation to the energy demand. On the contrary, during sprinting the 

body moves as rapidly as possible through the entire race.  

 

1.3.2. Step Length and Time Duration 

 Step length and time duration, such as stance time or flight time, are important to 

formulate the problem. In biomechanics, sports and clinical areas, there are many papers 

that discuss or measure step length and time duration of human running. This is also 
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discussed in the computer graphics area because they want to animate the human running 

motion. Högberg (1952) measured stride length, stride frequency, flight period, and 

maximum distance between the feet during running. He used two subjects who were 

well-trained runners. He used a treadmill to perform the experiments and measured stride 

length and stride frequency at different speeds. He also measured flight period and foot 

contact at different speeds. Dillman (1975) discussed about stride length, stride frequency 

and running velocity. He noted that the better runners (or more skilled runners) had a 

greater length of stride than the poor runners (or less skilled runners). He also noted that 

better runners have a lower stride frequency than poor runners. Cavanagh and Kram 

(1990) performed experiments to study the relationship between stride length in distance 

running and running velocity, the relationship between stride length and anthropometric 

variables, and the effects of added mass on stride length. From the experimental results, 

they obtained an equation for stride length with respect to running velocity and the 

equation for stride length with respect to running velocity and leg length. Bruderlin and 

Calvert (1996) introduced a high-level motion control system for human running 

animation. In their paper, they gave equations for step length, which is a function of 

running speed, the height of the runner, and the runner’s skill. The flight time is also 

formulated as a function of step frequency. The step frequency is a function of step length 

and running speed.  

 

1.3.3. Kinematics and Kinetics of Human Running 

 In the biomechanics area, experiments have been performed and the joint angle 

profiles and joint torque profiles of human running have been measured. These 
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kinematics and kinetics results of running play an important role in the validation of 

digital human simulation. Milliron and Cavanagh (1990) synthesized the data available in 

the literature for the lower extremity for planar motion (sagittal plane) and showed how 

such data can be extended to obtain insights for mechanics of running. They also 

performed their own experiments for lower extremity kinematics for a small group of 

subjects running on a treadmill to present a coherent set of new data. Simpson and Bates 

(1990) experimented with the effect of running speed on joint moments in the support 

phase using the motion captured method. They calculated lower extremity joint moments 

using the data from motion capture and the ground reaction force from force plate. Then, 

the effects of running speed on joint moments were investigated. Four skilled runners 

tried eight trials at four target speeds (3.06, 3.57, 4.09, 4.60 m/s). Experimental setup was 

a force platform and a set of high-speed movie cameras. A side view of the right leg 

support phase on the platform was filmed. From the side view movie, they digitized 17 

anatomical landmarks for the kinematics data. A Newtonian model was used for the 

calculation of joint moments of the support leg. In review papers, Ounpuu (1994) and 

Novacheck (1998) reviewed and summarized the joint angles and joint torques during 

human running. 

 

1.3.4. Ground Reaction Forces 

 Cavanagh and Lafortune (1980) studied ground reaction forces in distance 

running for 17 subjects. From the experiments, they classified the pattern of center of 

pressure on the foot. The results showed that the rear-foot striker and the mid-foot striker 

had different mean center of pressure locations. They also obtained all the x-, y-, and z-
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directional force components in the Cartesian coordinates. Munro et al. (1987) examined 

ground reaction forces for twenty male subjects. Running speeds ranged from 2.5 to 5.5 

m/s. They classified foot strike type, and seventeen of them were rear-foot strikers. They 

also measured the stance time. Then, they obtained antero-posterior, vertical, and medial-

lateral ground reaction forces. Williams and Cavanagh (1987) compared distance running 

mechanics, running economy, and performance. One result of their research was the 

vertical component of the ground reaction force as a function of time. Miller (1990) 

discussed general issues in ground reaction forces. In the review paper, Ounpuu (1994) 

and Novacheck (1998) summarized ground reaction forces in graphs. 

 

1.3.5. Optimization-based Motion Prediction 

 There is a great deal of research in different areas using the optimization 

technique. Research in the areas of biomechanics, robotics, and computer graphics is 

discussed in this section. Even though some of the research is not directly related to the 

simulation of human running, it gives us some helpful information such as what kind of 

objective function was used, how the constraints were applied, what assumptions were 

made, and so on. Witkin and Kass (1988) developed a new method for creating character 

animation. This was the first optimization-based physical motion prediction method. 

They used SQP optimization to simulate Pixar animation Luxo Jr. – a four links table 

lamp. The objective function was to minimize the multiplication of the force and joint 

angle velocity. The force term was modeled by the character’s muscle. For the equations 

of motion, a Lagrangian formulation was used. They used only kinetic energy for the 

Lagrangian formulation, so the gravitational force was not involved. As constraints, they 
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specified initial and final poses and constrained the force of contact with the floor on 

landing. Roussel et al. (1998) simulated planar four-degree–of-freedom biped walking 

robots with an optimization approach. The formulation included both the double support 

phase and the single support phase. The objective function was the joint torques, which 

quantifies the injected energy into the robot. The interesting thing in the formulation was 

that they had an impulse term in the objective function to handle the impact issue. 

Therefore, the objective function was the combination of joint torques and impulse. This 

idea is used to handle the impact issue in the present study as well. Lo et al. (2002) 

simulated human motion-planning problem with a quasi-Newton nonlinear programming 

technique. The problem addressed was controlling a simulated human figure (from 6 to 

12 degrees of freedom) to perform given tasks such as leg lifting, weight lifting, and 

chin-ups. The recursive Newton-Euler dynamics formula was used for equations of 

motion. For explicit analytical gradients of dynamics, they used a matrix exponential 

formulation and Lie algebra. Cubic B-spline was used for function approximation. 

Fujimoto (2004) presented a method to generate the trajectory of a biped running robot. 

Basically, he used an optimization technique to minimize energy consumption during 

running. The simulation was performed with a five-link planar biped robot. The 

performance measure for optimization was the multiplication of joint torque and joint 

angle velocity. The problem was stated as symmetric and periodic running motion. In the 

formulation, there were two phases: the support phase and the flight phase. 
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1.3.6. Robotics and Biped Robots 

 Many researchers have worked on the locomotion of biped robots. Of course, 

there are certain differences between robotics and digital human simulation, such as 

number of degrees of freedom and the anthropometric data. However, there are many 

similarities in terms of dynamics because both are locomotion problems. Therefore, we 

review the studies of biped robots in this section. Honda has been developing humanoid 

robots since 1986, and their robot Advanced Step in Innovative Mobility (ASIMO) is the 

most advanced running robot to date. Hirai et al. (1998) have published their work which 

gives some idea about how to impose dynamics constraints such as zero moment point 

(ZMP). However, their running technology is not completely known at the present time. 

Currently, ASIMO has 34 degrees of freedom and can run at 6 km/h in a straight line and 

5 km/h in a circular path of radius 2.5 m. SONY has developed a small bipedal 

entertainment robot QRIO (Nagasaka et al., 2004). Even though it is small (58 cm, 7 kg) 

and its degrees of freedom are thirty eight, it performs with good stability in its walking 

and running motion. The key constraints they have used are ZMP and conservation of 

angular momentum. Therefore, the ZMP is applied in the stance phase of QRIO and the 

conservation of angular momentum is applied in the flight phase. As other work in the 

robotics area, Nagasaki et al. (2003) generated the running pattern by using the angular 

momentum and the control theory. Park and Kwon (2003) developed a biped robot’s 

running motion by using the impedance control. Hybrid Zero Dynamics (HZD) was 

presented by Westervelt and Grizzle (2003). The robot has quite a natural motion with 

that method, but it does not have 3D stability. Kajita et al. (2007) generated the running 

motion and applied it to a humanoid robot. First, they generated running motion for a 
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simple inverted pendulum. Then, they transformed the running motion into a running 

pattern for a humanoid robot, HRP-2LR. The robot performed 0.16 m/s running with a 

flight phase (0.06 second) and a support phase (0.3 second). Shin and Park (2008) 

proposed a method to generate the running trajectory of a biped robot. The trajectory was 

generated based on an inverted pendulum, and constant ground reaction force was 

proposed with ZMP. Results were shown by a 7-DOF biped robot simulation. Hodgins 

(1996) published a paper about the control of a simulated three-dimensional model of a 

human running for animation. She modeled 17 segments of the rigid body as a 

mechanical structure. The equations of motion were used in this digital human running 

simulation. She used robotics control theory for human animation and used commercial 

dynamics software to solve the problem. Then, the locomotion control algorithms that 

allowed the model to run were developed. Since the purpose of the simulation was the 

animation of digital human running, it did not have any 3D stability issue.  

 

1.3.7. Kinematics, Dynamics, and Stability 

 Denavit and Hartenberg (1955) present kinematic symbolic notation for lower-

pair mechanisms based on matrices, which is called the Denavit-Hartenberg method. This 

provides a powerful and reliable analytical procedure for the analysis of kinematics as 

well as computational implementation. Uicker (1965) derived the standard formulation 

for a general linkage problem. He set up the Lagrangian-based dynamics by using 4×4 

matrices. Since this formulation has the order O(n4), where n is the number of degrees of 

freedom, it is not efficient in terms of computational time. Hollerbach (1980) proposed 

the recursive Lagrangian formulation of manipulator dynamics based on matrix algebra. 
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This is the formulation with the order O(n), so the calculation time is significantly 

decreased compared to the calculation time of the formulation from Uicker. The recursive 

Lagrangian formulation is not more efficient than the Newton-Euler formulation. 

However, this dynamic formulation has both convenience and efficiency. Vukobratović 

and Borovac (2004) explained the concept and notion of zero moment point (ZMP), and 

Sardain and Bessonnet (2004) compared center of pressure (COP) and zero moment point 

(ZMP).  

 

1.3.8. Upper-Body Motion 

 Kim et al. (2005) studied yawing moment cancelation and ZMP compensation for 

the humanoid robot (HanSaRam) to avoid the possible slipping on the ground caused by 

the yawing moment. So, they postulated that the upper-body motion of the robot should 

compensate for the yawing moment. Collins et al. (2009) studied arm swing motion in 

human walking. Their hypothesis was that the reduction of ground reaction moment may 

explain the physiological benefit of arm swinging. From the experimental measurements 

of humans, they observed the arm swinging motion most affected by the vertical ground 

reaction moment.  

 

1.4. Scope of the Dissertation 

 In Chapter 2, a kinematic model of the human body based on the Denavit-

Hartenberg (DH) method is discussed, and recursive formulas for kinematic analysis and 

analytical gradients are provided. Analytical gradients help in efficient solution of the 

nonlinear optimization problem. In Chapter 3, dynamics equilibrium based on a recursive 
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Lagrange dynamics formulation is discussed. The recursive Lagrange dynamics 

formulation is derived from kinetic energy and potential energy with external force, and 

its analytical gradients are also derived. In Chapter 4, dynamic stability is discussed. The 

zero moment point (ZMP) method is used for dynamic stability of human running. The 

zero moment point (ZMP) formula and rate of angular momentum are derived in 

recursive form, and analytical gradients are also derived for optimization. In Chapter 5, 

function approximation for time discretization is discussed. The B-spline method is used 

for function approximation, and the basis function, clamped B-spline curves, and 

properties of B-spline are studied. Also, other function approximations are discussed and 

compared to B-spline. In Chapter 6, the concept of predictive dynamics is presented. The 

basic notion and formulation of predictive dynamics is defined, and numerical examples 

are solved to provide some insight for predictive dynamics. The numerical examples are 

solved for a simple pendulum with external sinusoidal torque. In Chapter 7, the 

formulation of a running problem is discussed. The model of running is described, and 

the formulation of the impact in running is discussed. Then, design variables, 

performance measures, and constraints are discussed, and the gradients for constraints are 

presented. In Chapter 8, the results of various simulations are provided. In Chapter 9, the 

formulation and results of a slow jog along curvilinear paths are presented. In Chapter 10, 

upper-body motion is studied and a modified performance measure is presented for 

upper-body yawing motion. In Chapter 11, the sparsity of the formulation is analyzed and 

discussed. In Chapter 12, conclusions and future research are discussed. 
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CHAPTER 2 

KINEMATIC MODEL OF THE HUMAN BODY 

 

 Digital human is modeled as a mechanical system that includes link lengths, mass 

moments of inertia, joint torques, and external forces. The entire model has 55 degrees of 

freedom—6 degrees of freedom for global translation and rotation, and 49 degrees of 

freedom for the body. A degree of freedom in this case characterizes a jointed pair in the 

kinematics sense, where various segments of the body are assumed to be connected by 

revolute joints. The Denavit-Hartenberg (DH) method is applied for the kinematics 

analysis.  

 

2.1. Denavit-Hartenberg Method 

 Denavit and Hartenberg (1955) proposed a matrix transformation method to 

describe the translational and rotational relationship systematically between adjacent 

links in articulated chains. This matrix transformation representation is called the DH 

method. The transformation matrix is a 4×4 homogeneous matrix. This method represents 

each link coordinate system in terms of the previous link coordinate system. Any local 

coordinate system (including the end-effector of the manipulator or serial chain) can be 

expressed in global reference frame by the DH method. So, basically, the method 

represents a vector in one coordinate frame in terms of another coordinate frame. This 

method has its base in the field of robotics, but it can be used for modeling human 

kinematics as well.  

 Consider an articulated chain depicted in Figure 2.1. 
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Figure 2.1 Articulated chain 

 

Any point of interest in the ith frame ix can be transferred to the global reference frame 0r: 

  0 0 i
ir T r  (2.1) 

where ir is a 4×1 vector in terms of the ith reference frame and 0Ti is a 4×4 homogeneous 

transformation matrix from the ith reference frame to the global reference frame. The 

format of the vector ir is  

  

1

x

yi

z

r

r

r

 
 
 
 
 
 

r  (2.2) 

where rx, ry, and rz represent any point of interest in the ith frame in terms of the Cartesian 

coordinates.  

 Here the transformation of a vector to the global reference frame is simply the 

multiplication of transformation matrices, which is given as: 
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  0 0 1 1 1
1 2

1

i
i n

i i n
n

 



 T T T T T  (2.3) 

The transformation matrix of this vector is a 4×4 matrix that includes 4 DH parameters, 

which are described in Figure 2.2.  

 

 

Figure 2.2 DH parameters 

 

According to the DH method, the four DH parameters in Figure 2.2 are defined as 

follows:  

1) i  is the joint angle between the  axis and the  axis about the  axis 

according to the right-hand rule. 

2) id  is the distance between the origin of the i1th coordinate frame and the 

intersection of the  axis with the  axis along the axis. 

3) ia  is the distance between the intersection of the  axis with the  axis and the 
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origin of the ith frame along the  axis. Or, the shortest distance between the  

and  axes. 

4) i  is the angle between the  axis and the  axis about the  axis according to 

the right-hand rule. 

Then, the transformation matrix 1i
i

 T  is composed in the following sequence of 

transformations: 

  1 ( ) ( ) ( ) ( )i
i z i z i x i x id a  T R Trans Trans R  (2.4) 

where Rz and Rx represent rotation about the z and x axes, respectively, and Transz and 

Transx represent translations along the z and x axes, respectively. In other words, 

Equation 2.4 represents the following: 

1) first, the i1th frame is rotated by angle θ about the z axis; 

2) second, the rotated frame is translated by distance d along the z axis; 

3) third, the translated frame is translated again by distance a along the x axis; and 

4) fourth, the translated frame is rotated by angle  about the x axis. 

This allows us to establish the home configuration, which is the starting configuration of 

the mechanical linkage; a suitable home configuration must be established in order to use 

the DH transformation method. In summary, to use the DH method, the coordinates 

system must satisfy the following two conditions:  

1) The axis  is perpendicular to the axis . 

2) The axis  must intersect the axis . 

The DH transformation matrix from the ith frame to the i1th frame is then given as: 



18 
 

  1

cos cos sin sin sin cos

sin cos cos sin cos sin

0 sin cos

0 0 0 1

i i i i i i i

i i i i i i ii
i

i i i

a

a

d

     
     

 


 
  
 
 
 

T  (2.5) 

In the case of a rotational joint, the joint parameters id , ia , and i  are constant (which 

means they are fixed). Only i  is treated as a rotational degree of freedom, iq . In a 

mechanical model, iq  is the vector of generalized coordinates, and each transformation 

matrix has one degree of freedom.  

 Note that the local coordinate system is located at the end of the link in this DH 

representation. For example, consider that there is a one-degree-of-freedom manipulator 

as shown in Figure 2.3 and the global reference frame is x0, y0, z0 (z axis is perpendicular 

to the paper). Then the local reference frame x1, y1, z1, is located at the end of the linkage, 

according to the DH method.  

 

 

Figure 2.3 Local reference frame in DH method 
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2.2. Kinematic Modeling of the Digital Human 

 The digital human is modeled as a mechanical system that includes link lengths 

and mass moments of inertia. Figure 2.4 depicts the modeling of a human using a series 

of rigid links connected by joints; the light blue circles represent kinematic joints.  

 

 

Figure 2.4 Digital human modeling using a series of rigid links connected by joints 

 

 The body segments are assumed to be connected by rotational (revolute) joints. 

For instance, consider the right knee joint of a human, shown in Figure 2.5. The knee 

joint is composed of ligaments and tendons between two segments, which are the femur 

and the tibia. Since the knee is bent in one direction, it is assumed to be a one-degree-of-

freedom revolute joint as shown in Figure 2.6. 
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Figure 2.5 Right knee joint (Gray’s anatomy) 

 

 

Figure 2.6 Knee joint modeling using revolute joint 
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 A more complicated joint can be modeled in the same manner. Figure 2.7 depicts 

human hip joint anatomy and its mechanical model.  

 

    

 

Figure 2.7 Left hip joint anatomy (Gray’s anatomy) and its mechanical model 
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Since the hip joint can rotate in any direction, it is assumed to be a universal joint, which 

has three degrees of freedom. Similarly, the shoulder and spine joints are also treated as 

universal joints. The knee and toe joints are assumed to be one-degree-of-freedom 

rotational (revolute) joints. The elbow, wrist, and ankle joints are to be two-degree-of-

freedom rotational joints. The entire Santos joint description is displayed in Figure 2.8. 

 

 

Figure 2.8 Santos kinematic joints description 

 

2.3. DH Structure for the Digital Human 

2.3.1. Global Degree of Freedom and Branches in Local Body Frame 

 In general, human locomotion means the body moves around. In other words, the 

global degree of freedom exists with respect to an inertial reference frame in the 

mathematical sense. The global degrees of freedom are composed of three translational 

(prismatic) joints and three rotational (revolute) joints. Figure 2.9 depicts how the global 
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degrees of freedom are set up in the DH method. The degree of freedom is given in the z-

direction in both the translational joint and the rotational joint. The last degree of freedom 

(third global rotation, GR3) must satisfy the DH condition discussed in the previous 

section to any local body frame. Table 2.1 presents the DH table for the global degrees of 

freedom.  

 

 

Figure 2.9 Global degree of freedom description 
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Table 2.1 DH table for global degrees of freedom 

DOF Joint type θ d a  

Prismatic / 2  0 0 / 2  

Prismatic / 2  0 0 / 2  

Prismatic / 2  L19+L20 0 / 2  

Rotational / 2  0 0 / 2  

Rotational / 2  0 0 / 2  

Rotational (to right leg branch) / 2  0 L17 / 2  

Rotational (to left leg branch) / 2  0 L22 / 2  

Rotational (to spine branch) / 2  L18 0 / 2  
* L17, L18, L19, L20 and L22 are defined in Figure 2.11 

 

 There are six branches in the body frame. The first branch is the right leg, the 

second is the left leg, and the third is the spine. In the spine branch, there are three child 

branches—the right arm branch, left arm branch, and neck branch (Figure 2.10). Each 

branch has a starting local frame that differs from its parent branch. Therefore, the DH 

table should have different values for the parent branch and its child branches. This 

branch concept causes some difficulty when the gradients for equations of motion are 

programmed; this is discussed in the dynamics section. 
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Figure 2.10 Branch description in body frame 

 

2.3.2. DH Table for Local Body Frame 

 The current digital human model Santos has 49 degrees of freedom for the local 

body frame according to the DH method. The 6 global degrees of freedom bring the total 

to 55 degrees of freedom. A full-body digital human model is described in Figure 2.11 

and Tables 2.2-2.4.  
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Figure 2.11 Local coordinate system of Santos based on DH method 
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Table 2.2 Link length of Santos (cm) 

L1 5.6267 L15 4.4081 

L2 5.44274 L16 17.0596 

L3 5.99962 L17 8.5142 

L4 17.3856 L18 9.0000 

L5 1.70799 L19 38.2615 

L6 15.057 L20 39.4626 

L7 25.8638 L21 9.0165 

L8 24.7374 L22 8.5142 

L9 16.5099 L23 9.0000 

L10 1.70799 L24 38.2615 

L11 14.175 L25 39.4625 

L12 25.9194 L26 9.0165 

L13 24.7482 L27 6.0000 

L14 17.1041 L28 6.0000 
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Table 2.3 DH table for upper body 

DOF θ d a  Segment 
Q1 / 2  0 0 / 2  

spine 

Q2 / 2  0 0 / 2  
Q3 / 2  L1 0 / 2  
Q4 / 2  0 0 / 2  
Q5 / 2  0 0 / 2  
Q6 / 2  L2 0 / 2  
Q7 / 2  0 0 / 2  
Q8 / 2  0 0 / 2  
Q9 / 2  L3 0 / 2  
Q10 / 2  0 0 / 2  
Q11 / 2  0 0 / 2  
Q12(to right arm) / 2  L4 L5 / 2  
Q12(to left arm) / 2  L4 L10 / 2  
Q12(to head) / 2  L4+L15 0 / 2  
Q13 0 0 0 / 2  

right arm 

Q14 0 0 L6 / 2  
Q15 0 0 0 / 2  
Q16 / 2  0 0 / 2  
Q17 / 2  L7 0 / 2  
Q18 0 0 0 / 2  
Q19 0 L8 0 / 2  
Q20 / 2  0 0 / 2  
Q21 0 0 L9 0 
Q22 0 0 0 / 2  

left arm 

Q23 0 0 L11 / 2  
Q24 0 0 0 / 2  
Q25 / 2  0 0 / 2  
Q26 / 2  L12 0 / 2  
Q27 0 0 0 / 2  
Q28 0 L13 0 / 2  
Q29 / 2  0 0 / 2  
Q30 0 0 L14 0 
Q31 / 2  0 0 / 2  

head 
Q32 / 2  0 0 / 2  
Q33 / 2  L16 0 / 2  
Q34 / 2  0 0 / 2  
Q35 0 0 0 0 
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Table 2.4 DH table for lower body 

DOF θ d a  Segment 
Q36 / 2  0 0 / 2  

right leg 

Q37 / 2  0 0 / 2  
Q38 0 L19 0 / 2  
Q39 / 2  0 L20 0 
Q40 0 0 0 / 2  
Q41 0 L21 0 / 2  
Q42 / 2  0 L27 0 
Q43 / 2  0 0 / 2  

left leg 

Q44 / 2  0 0 / 2  
Q45 0 L24 0 / 2  
Q46 / 2  0 L25 0 
Q47 0 0 0 / 2  
Q48 0 L26 0 / 2  
Q49 / 2  0 L28 0 

 

 

2.4. Kinematic Analysis of the Human Body 

 The kinematics analysis in the recursive form leads to a simpler form for the 

transformation matrix iA . The time derivatives of the transformation matrix iA  can be 

obtained in the recursive form as well: 

 1i i iA =A T   (2.6.a) 

 1 1
i

i i i i i i
i

q
q 





T

B =A =B T A    (2.6.b) 
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1 1 1 12

2 i i i
i i i i i i i i i i

i i i

q q q
q q q   

  
  

  
T T T

C =B =C T B A A     (2.6.c) 

where iq  is the joint angle and iT  is the link transformation matrix. The derivatives of the 

transformation matrices with respect to joint angles, joint angle velocities and joint angle 

accelerations are 
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CHAPTER 3 

DYNAMIC EQUILIBRIUM 

 

 Dynamic equations of motion are important constraints in the optimization-based 

predictive dynamics problem of human running. The problem involves a large number of 

calculations because there are many matrix multiplications and additions during the 

solution process. Also, the optimization process can take many iterations. These issues 

are discussed in this section.  

 Denavit and Hartenberg (1955) developed a method referred as DH method for 

kinematics of manipulators. Uicker (1965) derived the standard formulation for 

manipulator dynamics based on Lagrangian dynamics using 44 DH matrix 

transformations. However, that formulation takes order n4 calculations. In 1979, Waters 

noticed that a simpler formulation can be derived that takes order n2 calculations. After 

that, Hollerbach (1980) derived a recursive formulation from the Waters formula that 

takes order n calculations. Since we are solving an optimization problem, the numbers of 

multiplications and additions that need to be taken into consideration are significant. 

Therefore we adopt Hollerbach’s (1980) approach in the present work and extend it to 

include external forces and torques on the links. 

 

3.1. Lagrange’s Equation and Lagrangian Dynamics Formulation 

 The Lagrange’s equation is given as 

  i
i i

d L L
Q

dt q q

  
    

, (3.1) 
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where the Lagrangian L K V   (kinetic energy – potential energy), iq  is the 

generalized coordinate vector (joint angles), and iQ  is the generalized force vector (joint 

torque). Using Equation (3.1), Uicker (1965) derived the following equation for dynamics 

of a manipulator using the DH method: 

2

1 1 1

j

T Tj j jn
j j j jT j

i j k j k l j j
j i k k li k i k l i

tr q tr q q m
q q q q q q


   

           
                       

  
AA A A A

J J g r   , (3.2) 

where  

i  : Joint torque of the link expressed in the ith reference frame 

jA  : DH transformation matrix from the jth reference frame to the global reference frame 

jJ  : Inertia matrix for the jth link 

jm  : Mass of the link expressed in the jth reference frame 

g  : Gravity vector 

j
jr  : Center of mass of the link expressed in the jth reference frame 

As noted before, the order of calculations for the formulation of Equation (3.2) is n4. 

Waters (1979) developed (also based on Lagrange’s equation) a simpler form for the 

governing equations, as follows: 

  
n

ji T T i ji
i j j j j j j

j i i i

tr m
q q




  
      


AA
T J A g T r , (3.3) 

where i
jT  is the DH transformation matrix from the jth reference frame to the ith 

reference frame. The order of calculations for this formulation is n2. 

 



33 

 

 

3.2. Recursive Lagrangian Dynamics Formulation 

 The order of calculations in Equation (3.3) can be reduced to n by transcribing the 

equation to a recursive form (Hollerbach, 1980). Even though the original formulation 

does not include external forces, we can re-derive it using the Lagrange’s equation to 

include external forces.  

 

3.2.1. Lagrangian Formulation with DH Transformations 

 

   

  Figure 3.1 Articulated chain 

 

 From Figure 3.1, let * * * * 1
Ti

i i i ix y z   r  be a vector to some particle of the ith 

link expressed in the ith reference frame.  The vector to the particle 0
ir  in the global 

reference frame is 

  0 *i
i i ir A r . (3.4) 
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Then, the velocity for the particle is 

  0 *i
i i ir A r , (3.5) 

where Ai is a DH transformation matrix from the ith  reference frame to the global 

reference frame. The kinetic energy for the particle is 

  
 

 

0 0

* *

1

2
1

    .
2





r r

A r r A

 

 

T
i i i

i i T T
i i i i

dK tr dm

tr dm

 (3.6) 

Since the inertia matrix is  

  * *i i T
i i i dm J r r , (3.7) 

the kinetic energy for the ith linkage is given as 

   1

2
T

i i i iK tr A J A  . (3.8) 

Therefore, the total kinetic energy is given as 

   
1 1

1

2

n n
T

j i i i
j i

K K tr
 

   A J A  , (3.9) 

where n is the number of local reference frames. 

 The potential energy for the system is given as  

  
1 1

n n
T j T k

j j j k j f jk
j j

V m 
 

   g A r f A r , (3.10) 

where the variables are defined as follows: 

 jm  is the mass of the link expressed in the jth reference frame 

 g  is the gravity vector 

 j
jr  is the center of mass of the link expressed in the jth reference frame 
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 kf  is an external force defined in the global reference frame and acting on the link 

expressed in the kth reference frame 

 k
fr is the location of external force acting on the link expressed in the kth 

reference frame 

 jk  is the Kronecker delta 

From Lagrange’s equation in Equation (3.1), the first term of the right-hand side is 

  
n

j T
j j

j ii i

L
tr

q q

 
     


A
J A




 
 (3.11a) 

  
n

j jT T
j j j j

j ii i i

d L d
tr

dt q q dt q

    
             


A A
J A J A

 
 

  
. (3.11b) 

Then, the second term of the right-hand side becomes 

  

.
  

  
 

  

    
           
  

A A A
J A g r f r




i i i

n n n
j j jT T j T k

j j j j k f jk
j i j i j ii i i

L K V

q q q

tr m
q q q

 (3.12) 

The following relationships can be shown: 

  j j

i iq q

 


 

A A


 (3.13a) 

  j j

i i

d

q dt q

  
     

A A 


 (3.13b) 

  i
j i jA A T , (3.13c) 

where i
jT  is the DH transformation matrix from the jth reference frame to the ith 

reference frame. 
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 Therefore, Equation (3.1) becomes 

  
n n n

i T T i j T i ki i i
i j j j j j j k j f jk

j i j i j ii i i

Q tr m
q q q


  

   
      
  A A A

T J A g T r f T r . (3.14) 

Now, the generalized force can be decomposed into non-conservative force ( i ) and 

conservative force ( i ), such as 

  i i iQ     . (3.15) 

Then, Equation (3.14) can be rewritten as 

  
n n n

i T T i j T i ki i i
i j j j j j j k j f jk i

j i j i j ii i i

tr m
q q q

  
  

   
       

  A A A
T J A g T r f T r  . (3.16) 

Since the generalized coordinates iq  represent joint angle, i  is the summation of 

moments applied to the link expressed in the ith reference frame. Let iG be the summation 

of moments defined in the global reference frame and apply it to the link expressed in the 

ith reference frame. iG  is defined in the global reference frame, and i  is defined in the 

local reference frame. Thus, iG  has to be transferred into the local reference frame. 

Recall that the only rotational degree of freedom is allowed along the z-axis in the 

mechanical system, according to the DH method. Therefore, we have the following 

relationship between i  and iG : 

  1 0i i i  G A z , (3.17) 

where 0z  is  0 0 1 0
T

. The term 1 0iA z  means that the local reference frame, which 

corresponds to the degrees of freedom ( 0z ), is represented in the global reference frame. 

Then, the moment value along that local axis ( 0z ) can be obtained by the inner product of 
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iG  and 1 0iA z  as in Equation (3.17). Finally, Equation (3.16) is rewritten as 

1 0

n n n
i T T i j T i ki i i

i j j j j j j k j f jk i i
j i j i j ii i i

tr m r
q q q

  
  

   
       

  A A A
T J A g T r f T G A z . (3.18) 

 

3.2.2. Recursive Lagrangian Formulation 

 The first term of Equation (3.18) can be represented as 

  1

1
1

1

1 1.



 




 

 



 

 

 







D T J A

TJ A T J A

J A T T J A

J A T D



 

 



n
i T

i j j j
j i

n
i T i T

i i i j j j
j i

n
T i i T

i i i j j j
j i

T i
i i i i

 (3.19) 

The second term of Equation (3.18) can be represented as 

  1

1
1

1

1 1.



 




 

 



 

 

 







E T r

T r T r

r T T r

r T E

n
i j

i j j j
j i

n
i i i j

i i i j j j
j i

n
i i i j

i i i j j j
j i

i i
i i i i

m

m m

m m

m

 (3.20) 

The third term of Equation (3.18) can be represented as 
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  1

1
1

1

1 1.



 

 





 




 

 



 

 

 







F T r

T r T r

r T T r

r T F

n
i k

i j f jk
j i

n
i k i k

i f ik j f jk
j i

n
k i i k

f ik i j f jk
j i

k i
f ik i i

 (3.21) 

The last term of Equation (3.18) can be represented as 

  1i k ik i  G h G , (3.22) 

where kh  is an external moment vector defined in the global reference frame and acting 

on the link expressed in the kth reference frame. 

Therefore, Equation (3.18) becomes  

  1 0
T T Ti i i

i i i k i i i
i i i

tr
q q q

 

   
       

A A A
D g E f F G A z  (3.23) 

in recursive form, where 1 1 1 1n+ n+ n+ n+   D E F G 0 . 

 

3.2.3. Sensitivity Analysis 

 The sensitivity analysis should be carefully derived for the optimization process. 

The sensitivities of Equation (3.23) are 

2 2 2
1

0 )

)

T T Ti i i i i i
i i k i i

i k i k i k i k k

i

k

T Ti i i i i i
k

i k i k i k

tr k i
q q q q q q q q q

q

tr k i
q q q q q q




       

               
 

                   

A A D A A A
D g E f F G z (

=

A D A E A F
g f                               (

(3.24a) 



39 

 

 

  i i i

k i k

tr
q q q

    
    

A D
=

 
 (3.24b) 

  i i i

k i k

tr
q q q

    
    

A D
=

 
. (3.24c) 

where  

  
1

1

i
i i

i
i iq q





 


 
A T

A  (3.24d) 

  

1 2 1
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i i
i i i
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k i k i
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k i

q q q q

q q
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k i
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T T T
A A

 (3.24e) 
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  1 1
1 1

1
1
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i i
k k k

i i
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k i

k i
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 (3.24j) 

  
T
i

kq





G

0  (3.24k) 

 

3.2.4. Inertia Matrix 

 The inertia iJ  for Equation (3.7) is 

  

*2 * * * * *

* * *2 * * *

* *

* * * * *2 *

* * *

i i i i i i

i i i i i ii i T
i i i

i i i i i i

i i i

x dm x y dm x z dm x dm

x y dm y dm y z dm y dm
dm

x z dm y z dm z dm z dm

x dm y dm z dm dm

 
 
 
  
 
 
 
 

   
   


   
   

J r r . (3.25) 

By using inertia tensor , , , , ,xx yy zz xy yz xzI I I I I I , Equation (3.25) can be rewritten as 
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2

2

2

xx yy zz
xy xz i i

xx yy zz
xy yz i i

i

xx yy zz
xz yz i i

i i i i i i i

I I I
I I m x

I I I
I I m y

I I I
I I m z

m x m y m z m

   
 
 

  
 
 

  
 
 
 

J , (3.26) 

where  1
Ti

i i i ix y zr  is the center of mass vector of the link that is expressed in 

the ith reference frame.  

 

3.3. Computational Consideration 

 The number of multiplications and additions for each formulation are summarized 

in Table 3.1. The order of calculations for the three formulations noted previously can be 

observed in the table. For a system with small degrees of freedom, the total 

computational time with the three formulations may not be too different. However, for a 

model with a large number of degrees of freedom (such as the Santos model’s 55 degrees 

of freedom), the number of calculations can be significantly different. This can have a 

significant impact on the efficiency of the entire optimization process. It is clear that the 

recursive formulation is the most suitable for digital human modeling, and it is used for 

the running problem.  
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Table 3.1 Number of multiplication and additions (n: number of transformation matrices) 

Method Multiplications Additions 

Uicker (1965) 
32 1/2 n4+86 5/12 n3

+171 1/4 n2 + 5 1/3 n -128 

25 n4 + 66 1/3 n3 +129 1/2 n2 

+42 1/3 n -96 

Waters (1979) 106 1/2 n2 + 620 1/2 n – 512 82 n2 + 514 n – 384 

Hollerbach (1980) 830 n - 592 675 n - 464 

 

 

Table 3.2 Number of multiplications and additions for n=55 

Method Multiplications Additions Total 

Uicker (1965) 312293722 240195803 552489525 

Waters (1979) 355778 275936 631714 

Hollerbach (1980) 45058 36661 81719 

 

 

3.4. Pendulum Example with Recursive Lagrange EOM Module 

 The equations of motion were verified by the forward dynamics process using a 

commercial general-purpose multi-body dynamics software code (ADAMS). The simple 

pendulum problem was solved for this process.  
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  Figure 3.2 Simple pendulum 

 

 Figure 3.2 depicts the simple pendulum model in which mass is 0.5 kg, length is 

0.4 m, and it is assumed to be a slender bar. The equation of motion is given as 

  cos
2

l
Iq mg q   . (3.27) 

The initial position is q = 0, the joint torque is τ = 0, and the ADAMS results are shown 

in Figure3.3. 
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 Figure 3.3 Joint angle, angular velocity, and angular acceleration of simple pendulum 

 

 To verify EOM module, first, the joint angel, joint angle velocity, and joint angle 

acceleration is obtained by ADAMS (Figure 3.3). These obtained data - joint angle, joint 

angle velocity, and joint angle acceleration is imposed to EOM module. Then, the joint 

torque from EOM module is checked (inverse dynamics). The joint torque is indeed 

obtained as zero, thus verifying the current EOM module. As same manner, it is verified 

for the case of external joint torque ( ≠ 0).  
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CHAPTER 4 

DYNAMIC STABILITY 

 

 Much research has been done in the area of biped robots. Dynamic stability is an 

important consideration in the gait problem. There are many concepts related to stability, 

such as center of pressure, foot rotation index, and zero moment point (ZMP). Zero 

moment point is the key constraint, or most popular technique, for handling the stability 

of the biped robot. In 1968 and 1969, Vukobratović presented this concept for synthesis 

of biped gait. Waseda University in Japan has applied this technique to their walking 

robot, WL-10RD. It was the first practical demonstration of ZMP. The ZMP concept is 

more than thirty years old, and many researchers have applied it to their biped robots; an 

example is the Honda’s ASIMO robot.  

 

4.1. Zero Moment Point 

 An important consideration for the running problem is the dynamic stability of the 

motion. The most common constraint for achieving stability for biped gait analysis is the 

ZMP constraint in the support phase. Zero moment point can be derived by using the 

following steps (Sardin and Bessonnet, 2004). 
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  Figure 4.1 Description of ZMP 

 

 In Figure 4.1, point D is the ZMP, which needs to be determined; m is the total 

mass of the body; g  is the gravitational acceleration; G is the center of mass of the body; 

Gr  is the acceleration of G; and GH  is the rate of angular momentum about G. The 

resultant force due to inertia and gravity forces at point D is written as 

  IGF
D Gm m F g r . (4.1) 

The resultant moment about the ZMP by inertia, gravity, and external force (IGF) is 

given as 

  IGF IGF
D DG D G  M r F H  (4.2a) 

  IGF
D DG DG G Gm m    M r g r r H . (4.2b) 

The resultant moment about the fixed point O is 

  IGF IGF
O OG D G  M r F H  (4.3a) 

  IGF
O OG OG G Gm m    M r g r r H . (4.3b) 

Since  

  DG OG OD r r r , (4.4) 

IGF
DF

G

D

gm

Gm r

GH  

z 

x

y 

 

O 

n

ground 
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Equation (4.2b) can be written as 

  IGF IGF IGF
D O OD D  M M r F . (4.5) 

Note the condition to determine ZMP is that the tipping moment by the IGF measured at 

D should be zero. Therefore, we have 

  

( )

( ) ( )

IGF IGF IGF
D O OD D

IGF IGF IGF
O D OD OD D

     

     


n M n M n r F

n M n F r n r F

0

 (4.6) 

where n is a unit vector that is normal to ground plane. Since 

  0OD n r , (4.7) 

ZMP location is obtained from Equation (4.6) as follows: 

  
IGF
O

OD IGF
D





n M

r
n F

. (4.8) 

 Summation of the inertia forces acting on each segment gives the resulting inertia 

forces acting on the center of mass of the body ( GH  and i Gim r ). Therefore, the resultant 

reaction force by the inertial and gravitational forces that are acting on the body can be 

calculated as 

  ( )
n

IGF
D i i Gi

i

m m F g r , (4.9) 

where n is the number of body segments and Gir  is the acceleration of the ith body 

segment’s center of mass. The resultant moment IGF
OM  can be calculated in a similar way 

using Equations (4.3a) and (4.9): 

   
n

IGF
O OGi i i Gi G

i

m m     M r g r H , (4.10) 

where OGir  is the location vector of the ith body segment’s center of mass in the global 



48 

  

reference frame and GH  is the rate of angular momentum about the center of mass of the 

body—point G in Figure 4.1. Let the components of GH  be 

  
Gx

G Gy

Gz

H

H

H

 
   
  

H


 


. (4.11) 

The vector n  (unit normal vector) can be expressed as its components, xn , yn , zn : 

  
2 2 2

1
x

y

x y z
z

n

n
n n n n

 
       

n . (4.12) 

Then the ZMP from Equations (4.8), (4.9) and (4.10) is 

  
zmp

OD zmp

zmp

x

y

z

 
   
  

x  (4.13a) 

( )

( )

n

i i i y i y i i z i i y i i z Gz y Gy z
i

zmp n

i i x i y y i z
i

m y x n gx n z x n x y n x z n H n H n
x

m x n y n gn z n

        


   





   

  
 (4.13b) 

 ( )

( )

n

i i x i x i i i x i i z i i z z i Gz x Gx z
i

zmp n

i i x i y y i z
i

m y n x gn x x y n z y n y z n gn z H n H n
y

m x n y n gn z n

      


   





   

  
 (4.13c) 

( )

( )

n

i i i x i y i i y i i x i i y Gy x Gx y
i

zmp n

i i x i y y i z
i

m x z n gz n y z n z x n z y n H n H n
z

m x n y n gn z n

        


   





    

  
 (4.13d) 

If the x-z plane is considered as the ground as shown in Figure 4.1, the normal vector n is 

 0 1 0
T . Then, the ZMP can be calculated as 
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n
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i
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z

m y g

   


 





 


 (4.14a) 

  
 ( )

( )

n

i i i i i i Gz
i

zmp n

i i
i

m y g x m x y H
x

m y g

   


 





 


. (4.14b) 

 

4.2. Rate of Angular Momentum in ZMP 

 The classical method to find the rate of angular momentum GH  at G is 

  ( ( ) )
n

G i i i i i i
i

  H R J ω J ω ω  , (4.15) 

where the variables are defined as follows: 

 iR  is the rotation matrix from the ith link frame to the global reference frame 

 iJ  is the mass moment of the inertia matrix of the ith link about its center of mass 

 iω  is the angular velocity vector of the ith link. 

Since iω  is an absolute value, Equation (4.15) is very difficult to implement in the 

Denavit-Hartenberg method. The reason is that the generalized coordinate (joint angles) 

iq  and angular velocities iq  in the Denavit-Hartenberg method are relative values (and 

local). For example, to transfer the relative values to the absolute values, those values 

have to be written in global coordinate system. Otherwise, there is no way to calculate the 

absolute value. Once they are transferred to absolute values, they must be rewritten in 

local form because the mass moment of inertia is in local form. Even though there is a 

way to calculate the mass moment of inertia in terms of the global reference frame, it 
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takes too much calculation time because the mass moment of inertia is no longer in data 

form and must be calculated with the integral formula at every time segment.  

 

4.2.1. Generalized Momentum 

 To overcome the foregoing difficulty, we can use the generalized momentum. The 

components of the rate of angular momentum can be obtained by taking derivative of the 

generalized momentum with respect to time. The generalized momentum ip  is defined as 

  i
i

L
p

q



 

, (4.16) 

where L  is the Lagrangian and iq  is the generalized coordinate. Note that the notation of 

angular momentum ip  is usually used in Lagrangian mechanics, and the notation of 

angular momentum H  is usually used in Newtonian mechanics. If the generalized 

coordinate iq  is a linear displacement, ip  is the linear momentum. If the generalized 

coordinate iq  is an angular displacement, ip  is the angular momentum (Greenwood, 

1977). The derivative of the Lagrangian L  with respect to iq  has already been derived in 

Chapter 3:  

  
n

j T
j j

j ii i

L
tr

q q

 
     


A
J A




 
. (4.17) 

 

4.2.2. Rate of Angular Momentum in Recursive Form 

 The rate of angular momentum is the derivative of Equation (4.17) with respect to 

time, which can be obtained as 
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. (4.18) 

The following relationship can be shown:  

  j j

i iq q

 


 

A A


 (4.19a) 
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q dt q

  
     

A A 


 (4.19b) 

  i
j i jA A T  (4.19c) 

  i i
j i j i j A A T A T   . (4.19d) 

Then, Equation (4.18) can be rewritten as 
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q q q





 

   
          

   
      

     
          





 

A A
J A J A

A A A
T J A T J A T J A

A A A
T J A T J A T J A


 



  

  
n

T

j i

 
 
 



(4.20) 

The first term of Equation (4.20) can be represented as 
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 (4.21) 

The second term of Equation (4.20) can be represented as 
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 (4.22) 

The third term of Equation (4.20) can be represented as 
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 (4.23) 

Therefore, Equation (4.20) becomes  

  

' "

" '( )

i i i
i i i i

i i i

i i
i i i

i i

p tr tr tr
q q q

tr
q q

       
              

  
     

A A A
D D D

A A
D D D





 (4.24) 

in recursive form, where ' "
1 1 1n+ n n   D D D 0 . 

 

4.2.3. Sensitivity of Rate of Angular Momentum 

 The analytical sensitivity analysis should be carefully derived for the optimization 

process. The sensitivity of Equation (4.21) is 
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The sensitivity of Equation (4.22) is 
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The sensitivity of Equation (4.23) is 
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where 
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Finally, the sensitivity of Equation (4.24) is 
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CHAPTER 5 

FUNCTION APPROXIMATION 

 

5.1. Introduction 

 Discretization of time domain is an important part of the formulation since we are 

solving a dynamic response optimization problem. Therefore, understanding function 

approximation is a necessary step before formulating the problem. There are many 

function approximation methods, such as the spline interpolation function approximation, 

the Hermite function approximation, and the least square function approximation. Each 

method has its own merits and demerits. For example, spline functions have proved very 

useful with data fitting problems and curve fitting, and Lagrange and Hermite functions 

are more useful for analytical approximations in solving integral and differential 

equations, respectively (Atkinson, 1988). The B-spline function approximation has been 

chosen for the predictive dynamics problem for certain reasons that will be explained in 

later sections.  

 The B-spline (or basis spline) function approximation is the linear combination of 

the B-spline basis functions. The curves pass through the data points in the spline 

interpolation functions. However, the B-spline curves do not pass through the control 

points. The joint angle profiles of the human model are interpolated using these control 

points. In the optimization process, the control points have the role of design variables. In 

terms of differentiability, 2C  functions are desirable for optimization. Therefore, the 

cubic B-spline basis functions are adopted for the joint angle profile approximation.  
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5.2. B-spline Approximation 

 Given control points 0q̂ , 1q̂ , 2q̂ ,..., ˆnq  and a knot vector 0 1 2{ , , , , }mt t t tt  , 

which are non-decreasing real numbers, the B-spline approximation is defined as 

  ,
0

ˆ( ) ( )
n

i i p
i

q t q N t


   (5.1) 

where ˆiq  represents given control points ( 0q̂ , 1q̂ , 2q̂ ,..., ˆnq ), and , ( )i pN t  represents the ith 

B-spline basis function of degree p. B-spline function approximation has the following 

important properties. Some more details are presented in later sections. 

• The B-spline curve is a piecewise curve. Each component is a composite curve of 

degree p. 

• The following equation must be satisfied: 

  1m n p    (5.2) 

where m + 1 is the number of knots, n + 1 is the number of control points, and p is 

degree. 

• The clamped B-spline curve passes through the two end control points 0q̂  and ˆnq . 

• B-spline curves are p kC   continuous at a knot that has multiplicity k. 

• When the position of the ith control point is changed, it only affects the curve on 

interval 1i i pt t t    . 

• Bezier curves are special cases of B-spline curves. 
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5.3. B-spline Basis Function 

 The basis function , ( )i pN t  is given as 

  1
, , 1 1, 1

1 1

( ) ( ) ( )i pi
i p i p i p

i p i i p i

t tt t
N t N t N t

t t t t
 

  
   


 

 
 (5.3) 

where 

 1
,0

1   ( )
( )

0   otherwise
i i

i

t t t
N t  

 


. 

Equation (5.3) is usually referred to as the Cox–der Boor recursion formula. The 

following diagram (Figure 5.1) helps in understanding of this recursion formula:  

 

 

  Figure 5.1 Diagram of Cox–der Boor recursion formula 
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From Figure 5.1, it is clear that ,0 ( )iN t  and 1,0 ( )iN t  are required to compute ,1( )iN t . Also, 

,1( )iN t  and 1,1( )iN t  are required to compute ,2 ( )iN t . In a similar way, , 1( )i pN t  and 

1, 1( )i pN t   are required for the basis function of degree p – , ( )i pN t . For example, let us 

assume we have a knot vector t = {0, 1, 2, 3}. We can write the 0 degree basis functions 

0,0 ( )N t , 1,0 ( )N t , and 2,0 ( )N t  quite easily. Then we have the basis function of degree of 1, 

as follows: 

  0 2
0,1 0,0 1,0

1 0 2 1

( ) ( ) ( )
t t t t

N t N t N t
t t t t

 
 

 
 (5.4a) 

  31
1,1 1,0 2,0

2 1 3 2

( ) ( ) ( )
t tt t

N t N t N t
t t t t


 

 
. (5.4b) 

Since 0 0t  , 1 1t   and 2 2t  , Equation (5.4a) becomes 

  0,1 0,0 1,0( ) ( ) (2 ) ( )N t tN t t N t   , (5.5a) 

and Equation (5.4b) becomes 

  1,1 1,0 2,0( ) ( 1) ( ) (3 ) ( )N t t N t t N t    . (5.5b) 

0,0 ( )N t  is non-zero on 0 1t   and 1,0 ( )N t  is non-zero on 1 2t  . Therefore, 0,1( )N t  is 

as shown in Figure 5.2. 

 

   

  Figure 5.2 Basis function, 0,1( )N t  
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In the same way, 1,1( )N t  is as shown in Figure 5.3. 

 

   

  Figure 5.3 Basis function, 0,1( )N t and 1,1( )N t  

 

Similarly, the B-spline basis functions of degree 2 with knot vector 

1 2 3 4{ , , , , }i i i i it t t t t   t  are 

  3
,2 ,1 1,1

2 3 1

( ) ( ) ( )i i
i i i

i i i i

t t t t
N t N t N t

t t t t



  

 
 

 
 (5.6) 

The blue line is ,2 ( )iN t , and the red line is 1,2 ( )iN t  in Figure 5.4.  

 

   

  Figure 5.4 Basis function, ,2 ( )iN t  and 1,2 ( )iN t  

 

Finally, the B-spline basis function of degree 3 (cubic B-spline basis function) with knot 

vector 1 2 3 4{ , , , , }i i i i it t t t t   t  is 
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 (5.7) 

and its shape is shown in Figure 5.5.  

 

   

  Figure 5.5 Basis function, ,3 ( )iN t  

 

B-spline basis functions have the following properties: 

• , ( )i pN t  is a polynomial in t with degree p. 

• , ( )i pN t  is a combined curve by degree p polynomials (e.g., Equations (5.5a) and 

(5.5b)) 

• , ( )i pN t  is non-negative for all i, p, and t.  

• , ( )i pN t  is a non-zero polynomial on 1i i pt t t    . 

• , ( )i pN t  is p kC   at a knot that has multiplicity k. 

• On 1i it t t   , the sum of all degree p basis functions is 1. 

 

5.4. Open B-spline Curves vs. Clamped B-spline Curves 

 If there is not any particular structure in a knot vector, the curves will not pass the 

first and last control points. These kinds of B-spline curves are called open B-spline 

curves. If the B-spline curves touch the first and last control points, they are called 
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clamped B-spline curves. Usually, we want clamped B-spline curves. To generate 

clamped B-spline curves, the first knot and the last knot must be of multiplicity p+1.  

 

5.5. Continuity Property 

 The B-spline approximation function ( )q t  is p kC   continuous at a knot of 

multiplicity k. For example, consider the following clamped knot vector (Figure 5.6). 

 

 

  Figure 5.6 Clamped knot vector 

 

In Figure 5.6, 5t  is a double knot and 8t  is a triple knot. Therefore, the above knot vector 

has the following continuity at each knot position: 

• The ( )q t  is 3C  continuous at any point that is not a knot. 

• The ( )q t  is 2C  continuous at 4t , 7t , and 11t . 

• The ( )q t  is 1C  continuous at 5t  (and 6t ). 

• The ( )q t  is 0C  continuous at 8t  (and 9t , 10t ). 

For these reasons, cubic B-spline approximations are used for the current running 

problem formulation. The second derivative of joint angle profiles is joint angle 

acceleration. Therefore, the continuity condition is needed in 2C . Once there are non-

repeated increasing knots, cubic B-spline curves have at least 2C  continuity at any point. 

The degree more than three ( 3p  ) might be considered. However, the B-spline curves 
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tend to move closer to the control polyline (the linear line connecting control points) as 

the degree decreases. Therefore, degree three (cubic; 3p  ) is the best choice in terms of 

differentiability and controllability. 

 

5.6. Cubic B-spline Approximation 

 Since the dynamics formulation needs 2C  continuity, we should focus on the 

cubic B-spline function approximation with a degree of three. Consider the knot span 

(time interval) on 1i it t t   , which is depicted as a red line in Figure 5.7. For the cubic 

B-spline functions, there are four B-spline basis functions (the blue lines in Figure 5.7) 

that contribute to the function approximation.  

 

 

  Figure 5.7 Cubic B-spline basis functions 

 

 Using Equation (5.2), the basis function are obtained as 
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 (5.8c) 
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  (5.8d) 

Note that 3it   and 4it   do not appear in the cubic B-spline basis functions, Equations 

(5.8a-5.8d), for this interval. Note that the number of knots and the number of control 

points should satisfy the consistency condition in Equation (5.2). Therefore, even though 

only six knots appear in Equations (5.8a-5.8d), the number of knots m in Equation (5.2) is 

eight (4+3+1), including 3it   and 4it  . Expanding Equation (5.1) with cubic B-spline 

basis functions in 1i it t t   , the function approximation for the running problem 

formulation becomes  

  3 3,3 2 2,3 1 1,3 ,3ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) 3i i i i i i i iq t q N t q N t q N t q N t i                   (5.9) 

For clamped B-spline curves, knots at the beginning and end must satisfy multiplicity of 

1p ; it is four for the cubic B-splines. Therefore, the knots in Equation (5.9) should be 

  0 1 2 3t t t t    (5.10a) 

  4 5 6 7t t t t   . (5.11b) 

Again, 0t and 7t  do not appear in the cubic B-spline basis functions.  

 

5.7. Why B-spline? Comparison to Other Function Approximations 

 There might be a question as to why the B-spline curves are chosen as function 

approximation instead of other popular function approximation methods such as spline 
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interpolation or least square approximation. In this section, these other popular 

approximation methods are described briefly, and then the reason for selecting the B-

spline function approximation is explained. 

 

5.7.1. Cubic Spline Interpolation 

 Let s(x) be a spline function with knot points x0<x1<x2<...<xn. The spline function 

that interpolates y0, y1,..., yn, is s(xi) = yi for i = 0, 1, 2,..., n. On an interval [xi, xi+1], 

s(x)=pi(x), where pi(x) is a cubic polynomial in x. A cubic polynomial is given as 

3 2( )i i i i ip x a x b x c x d    . For each interval, four unknown coefficients exist, and so to 

define s(x), there are 4n parameters. Interpolation conditions are  

  ( )           0,1,..., 1i i ip x y i n    (5.12a) 

  1 1( )           0,1,..., 1i i ip x y i n    . (5.12b) 

The continuity of the first derivative is 

  1 '( ) '( )          1, 2,..., 1i i i ip x p x i n    . (5.12c) 

The continuity of the second derivative is 

  1 ''( ) ''( )          1, 2,..., 1i i i ip x p x i n    . (5.12d) 

Therefore, the number of coefficients is 4n, and the number of equations is 4n – 2. For 

the extra two equations, the following equations are used in each case.  

 Natural spline:  0"( ) "( ) 0ns x s x   (5.13a) 

 Clamped spline: 0 0'( ) ',      '( ) 'n ns x y s x y   (5.13b) 

 Periodic spline: 0 0'( ) '( ), "( ) "( )n ns x s x s x s x   (5.13c) 

Let "( )i iM s x  and 1i i ih x x  . Then, we have 
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3 3
1 1 1

1 1
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 (5.14) 

For the natural spline, the condition is 0"( ) "( ) 0ns x s x  , so 0 0nM M  . Therefore, 

we have a linear system of equations for Mi: 

1 02 1
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1 0

1 3 2 2 11 1 2 2

2 12
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h h

M
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h h



    

 

                                                    




 

. (5.15) 

To solve Equation (5.15), inverse of the coefficient matrix is needed. Equation (5.15) will 

be different for different tasks that use different knot sequences. For these reasons, the 

cubic spline interpolation function approximation is not proper for the predictive 

dynamics problem.  

 

5.7.2. Least Squares Approximation 

 Let f be a given function and g be an approximating function. Then, the measure 

of error is given by 

  
1/ 2

2( )( ( ) ( ))
b

w a
f g w x f x g x dx       (5.16) 

where w(x) is a given positive weight function. Using the inner product, Equation (5.16) 

becomes 
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   ,
ww

f g f g f g    . (5.17) 

Therefore, minimizing Equation (5.16) is same as minimizing the term  ,
w

f g f g  . 

Given f, and 1, 2, ..., n, we need to find c1, ..., cn, where 

  1 1 2 2( ) ( ) ( ) ( )n nf x c x c x c x       (5.18) 

in the least square sense. That means to minimize  ,
w

f g f g   overall, 

  1 1 2 2( ) ( ) ( ) ( )n ng x c x c x c x      . (5.19) 

To get the minimizer, take the derivatives of  ,
w

f g f g   with respect to c1, c2, ..., cn 

and set them to zero. 

   , 0
w

k

f g f g
c

     
 (5.20) 

Then, the solution can be obtained as 

  
1 1

( , )
( ) ( )

( , )

n n
i w

i i i
i i i i w

f
f x c x

 
  

   . (5.21) 

The coefficients ci depend on the given value f. Since the analytical solution for 

derivatives with respect to time is necessary, this is not appropriate for the predictive 

dynamics approach. 
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CHAPTER 6 

PREDICTIVE DYNAMICS 

 

 The term predictive dynamics is coined to characterize the prediction of human 

motion in a physics-based world. Forward dynamics and inverse dynamics are used to 

solve the mechanical problems in general. In this case, either information about force or 

information about displacement, velocity, and acceleration is known. However, limited 

information is available in a bio-system such as human motion; this means both 

information about force and information about displacement, velocity, and acceleration 

are unknown in most cases. For example, joint angle profiles and joint torque profiles are 

unknown, and only a few boundary conditions and state responses are known. Therefore, 

predictive dynamics is introduced to solve such a problem.  

 

6.1. The Predictive Dynamics Notion 

 Let a dynamics problem with the boundary Γ over the time domain Ω have the 

Lagrangian function L K V   (kinetic energy – potential energy). Then, the governing 

equation for the dynamics system is given in Lagrange’s equation form as: 

  
d L L

dt

  
    

Q
q q

 (6.1) 

where q is the generalized coordinate vector, and Q is the generalized force vector. In 

general, the right side turns out to be a function of q , q , q . Forward dynamics integrates 

the governing equation, which is in the form of a differential algebraic equation (DAE) 

with the boundary condition Γ over the time domain Ω. So displacement, velocity, and 
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acceleration, q , q , q , are obtained for given force Q. Inverse dynamics calculates force 

Q from given displacement, velocity, and acceleration, q , q , q , using the governing 

equation. However, predictive dynamics handles the case in which both Q and q , q , q  

are unknown. Table 6.1 summarizes these concepts.  

 

Table 6.1 Forward, inverse and predictive dynamics concepts 

 Known Unknown 

Forward dynamics Q q , q , q  

Inverse dynamics q , q , q  Q 

Predictive dynamics Some available information 

such as Γ, Ω 

q , q , q , and Q 

 

 

In general, a bio-system such as a human has many degrees of freedom, and both Q and 

q , q , q  are unknown. Therefore, either forward dynamics or inverse dynamics cannot 

be applied to solve the given dynamics problem for a bio-system. However, predictive 

dynamics can be used to handle such a problem since it determines both unknown Q and 

unknown q , q , q .  

 

6.2. Formulation of Predictive Dynamics 

 The predictive dynamics method is based on a novel optimization-based approach 

in a physics environment (physics-based optimization). Even though it handles such a 

complicated dynamics problem with large degrees of freedom, certain difficulties need to 
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be overcome. Since it is an optimization-based approach, a performance measure must be 

formulated. However, this performance measure is unknown for the bio-system. 

Therefore, it is inevitable to try to observe several performance measures. Fortunately, 

literature gives us some appropriate performance measures for general human motion, 

such as the dynamics effort that is based on energy consumption. It is also necessary to 

use feasible constant performance measure. This performance measure leads to a feasible 

solution that satisfies all the constraints of the problem. In practice, it helps not only to 

test the feasibility of constraints but also to build a good starting point for optimization 

with a real performance measure. Formulation of constraints is another difficulty. In 

general, there is little information to use as constraints in human motion. Some conditions 

may be imposed as constraints based on assumptions, and some may be obtained from 

motion capture data or earlier research for a specific task. Constraints are usually divided 

into two kinds: time-dependent constraints and time-independent constraints. Time-

dependent constraints must be satisfied over the time domain Ω. Time-independent 

constraints must be satisfied only at a specific time.  

 

6.3. Numerical Examples 

 The motion of a non-linear simple pendulum with external joint torque is 

investigated with predictive dynamics. The predictive dynamics is run with different 

boundary conditions and state response constraints. Then, the results are compared to 

results from forward dynamics. The forward dynamics is performed using the 

commercial software ADAMS Runge-Kutta solver. A simple pendulum pivots at the 

point O as shown in Figure 6.1. The pendulum is assumed as a rigid slender bar and the 
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hinge is frictionless.  

 

   

Figure 6.1 Simple pendulum 

 

m is the mass of the pendulum, l is the link of the pendulum, q is joint angle, g is gravity 

acceleration, and τ is external torque.  

 

6.3.1. Equation of Motion 

 The equations for the coordinates x and y are 

  cos
2

l
x q  (6.2a) 

  sin
2

l
y q  (6.2b) 

Therefore, 

  sin
2

l
x q q    (6.2c) 
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  cos
2

l
y q q   (6.2d) 

Note that q is positive in the counter clockwise direction. The kinetic energy of the 

pendulum is  

  

 2 2 2

2 2
2 2 2 2 2

2 2 2

1 1

2 2

1 1
sin cos

2 2 2 2

1 1

8 2

G

G

G

K m x y J q

l l
m q q q q J q

ml q J q

  

          
     

 

  

  

 

 (6.3) 

where, JG is the mass moment of inertia about the center of mass. The potential energy of 

the pendulum is  

  
 

cos cos
2 20

sin sin
2 2

sin
2

T

l l
q q

V m m g
l l

q q

l
mg q

   
   

       
   
      



g
 (6.4) 

The Lagrangian function is  

  2 2 21 1
sin

8 2 2G

l
L K V ml q J q mg q       (6.5) 

With Equation (6.1), we can write 

  2

2

1
cos

4 2

1
cos

4 2

G

G

d L L

dt q q

d l
ml q J q mg q

dt

l
ml q J q mg q


  

    
         
   

  



 

 

 (6.6) 

Since JG is ml2/12, the mass moment of inertia of a rigid slender bar with mass m and 

length l about point O is 
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  21

3OJ ml  (6.7) 

Therefore, the equation of motion of the simple pendulum in Figure 6.1 is 

 

  cos
2O

l
J q mg q    (6.8) 

 

6.3.2. Forward Dynamics 

 For numerical calculation, the geometrical and physical parameters of the simple 

pendulum are m = 0.5 kg, l = 0.4 m, and JO = 0.0267 kgm2. Equation (6.8) is a second-

order differential equation, so it needs to be converted to a first-order differential 

equation–differential algebraic equation (DAE) form (Haug, 1989). The state variable 

vector u is defined as: 

  1

2

u q

u q

   
    

  
u


 (6.9) 

Then, Equation (6.8) is rewritten as a first-order differential equation: 

  1

2

1
cos

2O

q
u q

l
mg qu q

J


 
                     

u


 


 

 (6.10) 

The initial conditions for forward dynamics are given as 

  (0) 0q   (6.11a) 

  (0) 0q  . (6.11b) 

The time step for numerical integration is set to 10-3. The ADAMS results of the forward 

dynamics of Equation (6.10) with given initial condition are shown in Figures 6.2-6.3. 

Figure 6.2 is the case without any external force, τ = 0. Figure 6.3 is the case with applied 
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external force, which is 

  0.1sin 5t  . (6.12) 

These ADAMS results are double-checked by MATLAB ODE solver, ode45 (Figure 6.4). 

 

 

Figure 6.2 ADAMS results for the case without external torque 
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Figure 6.3 ADAMS results for the case with applied external torque 

 

 

Figure 6.4 Matlab results for the case without external torque 

 

Now we can use the results such as joint angle and joint angular velocity as the 
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information for predictive dynamics simulation. It could be the boundary conditions 

and/or state response constraints.  

 

6.3.3. Performance Measure and Constraints for Predictive Dynamics 

 The joint angle profile q is set as a design variable. Let the time domain of 

simulation be [0, ]t T . The performance measures that are to be studied in each case are 

listed in Equations (6.13a-d).  

1) Minimize dynamic effort (torque square): 

  Minimize: 2
1 0

T
f dt   (6.13a) 

2) Minimize maximum torque: 

  Minimize: 2
[0, ]

max
t T

f 


  (6.13b) 

3) Minimize total time: 

  Minimize: 3f T  (6.13c) 

4) Feasible performance measure: 

  Minimize: 4 0f   (6.13d) 

Constraints for which information is to be taken from forward dynamics are listed as 

follows. 

 Time-dependent constraints: 

  cos
2O

l
I q mg q     (Embedded) 

  lower upperq q q   

  lower upper     



78 

 Time-independent constraints: 

  ( )specific specificq t q  

  ( )specific specificq t q   

The boundary conditions are included in the time independent constraints. Therefore, 

specific points could be initial and final points. Also, mid-points, which are somewhere in 

the profiles from the forward dynamics data, could be the specific points. 

 

6.3.4. Results 

Case 1: Simple Swing with Only Boundary Conditions without Applied Torque 

 The first case is a simple down swing without applied torque (τ = 0). The 

pendulum does not have any oscillation motion at all in this case, and only the boundary 

conditions are given. The total simulation time is set to be T = 0.406. The formulation of 

optimization is 

Minimize: 1,..., 4if i    

Subject to: cos
2O

l
I q mg q     (embedded) 

  q     

  10 10    

  (0) 0q   

  ( ) 2.37q T    

  (0) 0q   

  ( ) 7.13q T    

The results of predictive dynamics are depicted in Figures (6.5-6.8) 
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Figure 6.5 Joint angle profiles for Case 1 

 

 

Figure 6.6 Angular velocity profiles for Case 1 
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Figure 6.7 Angular acceleration profiles for Case 1 

 

 

Figure 6.8 Joint torque profiles for Case 1 
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Case 2: Simple Swing with Only Boundary Conditions with Applied Torque 

 The second case is a simple down swing without oscillation with applied torque. 

Only the boundary conditions are given in this case. The total simulation time is set to be 

T = 0.43. The applied external torque is 

  0.1sin 5t    

The formulation of optimization is 

Minimize: 1,..., 4if i    

Subject to: cos
2O

l
I q mg q     (Embedded) 

  q     

  10 10    

  (0) 0q   

  ( ) 2.40q T    

  (0) 0q   

  ( ) 5.86q T    

The results of predictive dynamics are depicted in Figures (6.9-6.11) 
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Figure 6.9 Joint angle profiles for Case 2 

 

 

Figure 6.10 Angular velocity profiles for Case 2 
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Figure 6.11 Joint torque profiles for Case 2 
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  (0) 0q   

  ( ) 2.85q T   

The results of predictive dynamics are depicted in Figures (6.12-6.14) 

 

 

Figure 6.12 Joint angle profiles for Case 3 
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Figure 6.13 Angular velocity profiles for Case 3 

 

 

Figure 6.14 Joint torque profiles for Case 3 
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Case 4: Oscillation Swing with Boundary Conditions and One Mid-constraint 

 The fourth case is an oscillation swing with boundary conditions and one mid-

constraint, and external torque is applied. The mid-constraint is applied at t = 0.76. The 

total simulation time is also set to be T = 1.79. The applied external torque is 

  0.1sin 5t    

The formulation of optimization is 

Minimize: 1,..., 4if i    

Subject to: cos
2O

l
I q mg q     (Embedded) 

  q     

  10 10    

  (0) 0q   

  (0.76) 2.44q    

  ( ) 2.40q T    

  (0) 0q   

  ( ) 2.85q T   

The results of predictive dynamics are depicted in Figures (6.15-6.17) 
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Figure 6.15 Joint angle profiles for Case 4 

 

 

Figure 6.16 Angular velocity profiles for Case 4 
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Figure 6.17 Joint torque profiles for Case 4 
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  (0.76) 2.44q    

  (1.21) 0.493q    

  ( ) 2.40q T    

  (0) 0q   

  ( ) 2.85q T   

The results of predictive dynamics are depicted in Figures (6.18-6.20) 

 

 

Figure 6.18 Joint angle profiles for Case 5 
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Figure 6.19 Angular velocity profiles for Case 5 

 

 

Figure 6.20 Joint torque profiles for Case 5 
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6.3.5. Discussion 

 Case 1 and Case 2 show that joint angle profiles, joint angle velocity profiles, and 

joint torque profiles are well predicted. However, the oscillation case in Case 3 shows 

that more information has to be provided to predict the motion correctly, Case 4 and Case 

5 show how the predicted motions are improved by imposing mid-constraints. It is 

obvious that Case 5 has a better-predicted solution than Case 4 because of the number of 

mid-constraint imposed.  

 As far as the performance measure are concerned, the results show that 

minimizing total time and using feasible performance measure could not predict the 

motion well, but that minimizing torque square and minimizing maximum torque could 

predict the motion well. In terms of joint torque prediction, only minimizing torque 

square predicts it correctly. In fact, the torque square is proportional to the mechanical 

energy. In conclusion, the results show that minimal energy consumption is the best 

performance measure for predictive dynamics.  



92 

CHAPTER 7 

FORMULATION OF RUNNING PROBLEM 

 

 The problem is to determine the joint angle profiles that minimize an energy cost 

function. It is assumed that the running motion is completely periodic and that there are 

two phases, support and flight. To solve this optimization problem, a skeletal model of 

the human and the running speed are needed as input. Through the optimization process, 

the joint angle profiles, joint torque profiles, and contact force profiles are obtained as 

output, as shown in Figure 7.1.  

 

   

  Figure 7.1 Input and output of running problem 

 

7.1. General Description of Human Running 

 The word “run” is defined as “to go faster than a walk; specifically: to go steadily 

by springing steps so that both feet leave the ground for an instant in each step” 

(Merriam-Webster dictionary Online). Therefore, running is basically separated from 

walking in terms of whether or not both feet are off the ground during a gait cycle. The 

mechanism of running motion is very complicated. The entire body is involved while 

running; many muscles get activated during the running motion. Moreover, every human 

being runs in a slightly different way. Both the upper-body motion and the lower-body 
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motion differ, and running speeds vary. However, there are some common features in the 

running motion.  

 The lower-body motion of running is usually described in two or three phases 

(sometimes it is described in more than three phases, depending on the researcher or 

literature). In biomechanics, it is usually divided into three phases: support, drive, and 

recovery. The support phase is the phase when a foot is touching the ground and 

supporting the body against the force of gravity. The drive phase is the phase when the 

leg drives the body so that it maintains forward motion. The leg is extended at the knee 

and hip, and then the foot pushes backward in this phase. The recovery phase is the phase 

in between the drive phase and the support phase. Therefore, it is from the time when the 

toe is no longer contacting the ground to the time when the other foot is contacting the 

ground. In robotics, running is usually described in two phases: support and flight. As 

described earlier, biomechanics considers only one foot motion, but in robotics, both foot 

motions are considered. Therefore, the support phase means that a foot is contacting the 

ground, and the flight phase means that both feet are off the ground. 

 In general, stride refers to the period from the initial foot contact to the next 

contact of the same foot, and step refers to the period from the initial foot contact to the 

next contact of the other foot. However, this definition sometimes differs from field to 

field. 

 

7.2. Model of Running 

 The running model for the formulation is composed of two phases—the support 

phase and the flight phase (Figure 7.2). 
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  Figure 7.2 Human running (photo by Edward Muybridge) 

 

The support phase is divided into three segments—foot strike, mid-support, and toe off. 

The terms mid-support and toe off have been adopted from the literature (Williams and 

Cavanagh, 1987). Figure 7.3 depicts these three segments of the support phase in detail.  

 

 

  Figure 7.3 Model of running phase 

 

7.2.1. Literature Summary of Lower Extremity Motion at Support Phase 

 Foot strike phase is the initial stage for the support phase. In the case of distance 

running, 80% of runners strike rear foot first, and the rest are mid foot strikers 

(Novacheck, 1998). Usually, when the running speed increases, initial contact is changed 
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from rear foot to forefoot (Novacheck, 1998). The angle of shank with the vertical is 

from 5.5 deg to 8.2 deg at this stage with the knee behind the ankle (Williams and 

Cavanagh, 1987). In mid-support phase, the entire foot area is the support region. As the 

speed increases, the maximum angle q (Figure 7.4) of the swing leg between shank and 

thigh becomes larger. As the running speed decreases, this angle between shank and thigh 

becomes smaller. The maximum angle q (Figure 7.4) of the swing leg (dashed line) is 

about 103.9 deg and the maximum angle of the support leg (solid line leg in Figure 7.4) is 

about 40.6 deg at 3.4 m/s—neutral angle at stance is 16 deg- (Milliron and Cavanagh, 

1990). 

 

q

 

  Figure 7.4 Leg motion at mid-support phase 

 

7.2.2. Difficulties of the Running Problem 

 It is difficult to predict a completely natural running motion of human because: 

1) No wobbling masses (soft tissues) effect is modeled (rigid body assumption), and 

mass moment of inertia is approximated. 

2) We do not include muscle models. 
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3) Coupling of joint angles and joint torques are neglected. 

4) High-velocity motion makes the dynamic motion very sensitive to variation of 

parameters (for example, mass moment of inertia); the faster it moves the harder it 

is to get natural motion for the assumed mechanical structure. 

 

7.2.3. Foot Model 

 The current foot model is depicted in Figures 7.5 and 7.6. Red balls indicate the 

ankle joint and toe joint.  

 

   

  Figure 7.5 Description of foot model – side view 
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  Figure 7.6 Description of foot model – top view 

 

7.2.4. Description of Foot Support Region in Each Phase 

 Figures 7.7, 7.8 and 7.9 depict that foot support region in the support phase. The 

support region will be used in the dynamic stability constraint (ZMP constraint) and 

ground penetration constraint in later sections. The black dashed area is the support 

region in current formulation. According to the literature, 80% of runners strike rear foot 

first (Novacheck, 1998). Therefore, it is formulated that the rear foot is the contact area at 

foot strike phase. Entire foot is support region in mid-support phase and forefoot is the 

support region in the toe off phase. In the flight phase, there is no constraint on the foot. 

The only criterion is the conservation of angular momentum, and it is embedded in the 

equations of motion. 
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  Figure 7.7 Foot strike phase and foot support region 

 

 

  Figure 7.8 Mid-support phase and foot support region 
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  Figure 7.9 Toe off phase and foot support region 

 

7.2.5. Step Length 

 The step length sl has been formulated as a function of running speed and body 

height in the computer graphics literature (Bruderlin and Calvert, 1996), as 

  
_

0.1394 (0.00465 )
1.8

body height
sl level v  

; m
 (7.1) 

where the variables are defined as follows: 

 v is running speed in m/min, 

level is the level of expertise in running (0.001 as poor  level  0.001 as skilled) 

 body_height is the height of the human body (in meters). 

This formula is applied up to 400 m/min (24 km/h, 6.6667 m/s). If the running speed (v) 

increases further, the step length (sl) is kept constant at that for the running speed of 400 

m/min (Bruderlin and Calvert, 1996). Table 7.1 shows the step length in terms of the 

running speed when the body_height is 1.5934 m and the level is 0.001. 
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Table 7.1 Running speed vs. step length (body_height = 1.5934 m, level = 0.001) 

Running Speed (m/s) Step Length (meter) 

2.5 0.9367 

3.0 1.0962 

3.5 1.2557 

4.0 1.4152 

4.5 1.5746 

5.0 1.7341 

5.5 1.8936 

6.0 2.0531 

6.5 2.2125 

 

 

7.2.6. Step Time and Flight Time 

7.2.6.1. Step Time 

 Once step length is obtained, step time is easily calculated from the running speed 

as: 

  /stept sl V  (7.2) 

where tstep is the time for one step, sl is step length (meter), and V is running speed (m/s). 

7.2.6.2. Flight Time 

 The flight time has been formulated in the computer graphics area, as a function 

of the running frequency (Bruderlin and Calvert, 1996). The flight time tflight (sec) is 

given as 
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3 3 5 2
20.675 10 (0.15 10 ) 0.542 10   

(0 180 / min)

flightt level sf sf

sf steps

         

 
 (7.3a) 

3 2 6 3
28.925 (0.131 ) 0.623 10 0.979 10   

(180 320 / min)

flightt level sf sf sf

sf steps

        

 
 (7.3b) 

where sf is step frequency (steps/min, sf = v / sl ) and level2 is the level of expertise in 

running (0.0001 as poor  level2  0.0001 as skilled). 

 The approximated flight time also can be obtained by support time from 

experimental data (Munro et al, 1987). The flight time is nothing but step time minus the 

support time: 

  flight step supportt t t   (7.4) 

where tsupport is the time for the support phase. Table 7.2 shows support time and flight 

time with respect to the running speed. 
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Table 7.2 Time durations in one step (level2 = 0.0001) 

Running 

speed(m/s) 

Step time 

(sec) 

Support time 

(sec) 

Flight time 

(sec) 

Support time in 

gait cycle 

2.5 0.3747 0.2764 0.0982 73.7% 

3.0 0.3654 0.2610 0.1043 71.4% 

3.5 0.3587 0.2496 0.1090 69.5% 

4.0 0.3538 0.2409 0.1128 68.1% 

4.5 0.3499 0.2341 0.1158 66.9% 

5.0 0.3468 0.2285 0.1182 65.8% 

5.5 0.3442 0.2239 0.1203 65.0% 

6.0 0.3421 0.2200 0.1221 64.3% 

6.5 0.3403 0.2167 0.1236 63.6% 

 

 

The time is distributed uniformly for foot strike phase, mid-support phase, and toe off 

phase. There is no data from literature for this time distribution. Therefore, it is selected 

by numerical experimentation. 

 

7.3. Formulation of Ground Reaction Force 

 Assume that the ground reaction force is acting at the zero moment point (ZMP) 

D in Figure 7.10.  
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Figure 7.10 Inertia, gravity and resultant force in locomotion 

 

The resultant force due to gravity and inertia at the foot support is 

  D Gm m  F r g
 (7.5) 

If the normal vector is n= [0,1,0]T, the gravity vector is g=[0,-g,0]T. The center of 

pressure and zero moment point coincide (Sardain and Bessonnet, 2004). Then, the 

ground reaction force is written as: 

  D D R F  (7.6a) 

Therefore,  

  D Gm m R r g
 (7.6b) 

The general equations of motion of human body is  

  G gm  r F F
 (7.7a)

 

where F is generalized force and Fg is the gravity force 

  g mF g  (7.7b)
 

Thus, from Eqs. (7.6b), (7.7a) and (7.7b), we get 

DR

G

D

mg  

 

Gm r

GH  

z 

x

y 

 

O 

n

ground 
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  DF R  (7.7c) 

Note that the generalized force F is same as the global force due to generalized 

coordinate (translational q0, q1, q2) in the recursive Lagrange dynamics formula. From 

Equation (7.7c), we can use generalized force F as passive force in our algorithm so that 

it is treated as ground reaction force (Xiang, 2008). The algorithm consists of two parts. 

First part is the simulation without ground reaction force. Once the global force is 

acquired, it is applied to the second simulation part as an external force.  

 

7.4. Formulation of the Impact in Running 

7.4.1. Impact Formulation: Basic Idea 

 Impact at foot strike has been treated in the robotics area by using the angular 

momentum. For example, Roussel and Goswami (1998) calculated impulse by using the 

angular momentum as: 

  ( )( )  I J q q q   (7.8) 

where q is the joint angle vector, q  is the joint angle velocity vector just before the foot 

contact, q  is the joint angle velocity vector just after the foot contact, J(q) is the inertia 

matrix, and I is impulse. Then, they included this impulse in the cost function for the 

optimization formulation of the biped robot walking problem: 

  
0

T T Tf dt  τ τ I I  (7.9) 

where τ is the joint torque vector, and I is the impulse at the foot strike phase. Therefore, 

the impulse at foot strike is minimized while satisfying the impulse and angular 

momentum equations.  
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7.4.2. Impact Formulation: Difficulty 

 Using angular momentum to calculate impulse (Roussel and Goswami’s method) 

is appropriate, but there is one difficulty in using that method. The usual formulation for 

calculating angular momentum and impulse is  

  0
0 ( )i i i i i i

i

d
m

dt
  H r r TJ  (7.10a) 

  0 0
  I H H  (7.10b) 

where the variables are defined as follows: 

 ir  is the center of mass of the i-th link  

 0
iT  is the transformation matrix from the i-th link to the origin of the inertial 

reference frame 

 iJ  is the inertia matrix for the i-th link  

 i  is the joint angular velocity 

 I is impulse 

 OH  is the angular momentum about point O 

 O
H  is the angular momentum just before impact 

 O
H  is the angular momentum just after impact 

However, there is difficulty in using Equations (7.10a) and (7.10b). The fact is that the 

angular velocity i  is an absolute value (and global). In the current formulation with the 

Denavit-Hartenberg method, angular velocity i (or iq ) has been defined as a relative 

and local value. Therefore, the absolute angular velocity i  as well as the global angular 
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velocity have to be calculated in order to use Equations (7.10a) and (7.10b). This gives 

difficulties in implementation of the formulation.  

 

7.4.3. Impact Formulation: Linear Impulse 

 It turns out that there is another way to calculate the impact during the foot 

contact that does not use velocities of the individual segments of the body. If the ground 

reaction forces are known then the concept of linear impulse can be used to formulate the 

impact phenomena. The Newton’s second law states that the force acting on a particle is 

equal to the rate of change of the linear momentum, i.e.,  

  
d

m
dt

 v
F . (7.11) 

Integrating the equation with respect to time gives 

  
2

1
2 1

t

t
dt m m  F v v . (7.12) 

The term on the left is called linear impulse. The average with respect to time of the total 

force acting on an object from 1t  to 2t  is 

  2

1
2 1

1

( )

t

average t
dt

t t


 F F . (7.13) 

So, with Equation (7.12), we can write 

  2 1 2 1( ) averaget t m m  F v v . (7.14) 

The impulsive force is defined as a force of relatively large magnitude that acts over a 

small interval of time. Determining the actual history of such a force is often impractical, 

but its average value can be estimated (Bedford and Fowler, 2002). Therefore, the 

impulse at foot strike Istrk can be approximated as: 
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  strk averaget  I F . (7.15) 

The ground reaction force is the resultant external force in the current mechanical model. 

Therefore, impulse in terms of ground reaction force (resultant external force) is 

  strk D t I R , (7.16) 

where D is the zero moment point.  

 

7.5. Optimization Formulation 

7.5.1. Design Variables 

 The design variables are the joint angle profiles q(t) parameterized using B-spline 

approximation. As depicted in Figure 7.11, the number of control points in the current 

formulation is 5 for each joint angle. Since the number of degrees of freedom for the 

mechanical system is 55, the total number of design variables is 55×5 = 275.  

 

 

  Figure 7.11 Joint angle profiles parameterized in the B-spline 

 

The time is distributed uniformly in the support phase between the foot strike, mid-
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support, and toe off phases. 

 

7.5.2. Performance Measure 

 The first performance measure which is proportional to the mechanical energy is  

  
0

T Tf dt   τ τ , (7.17a) 

 where τ contains the weighted joint torques as 

  i i iw    (7.17b) 

where iw  is the weight coefficients. This mechanical energy is a reasonable criterion to 

minimize as discussed previously (Roussel et al., 1998). The impulse can be calculated 

from Equation (7.16) once the ground reaction forces have been calculated. Then, we can 

incorporate the impulse into the performance measure to minimize it. Therefore, the 

second performance measure is 

  T
I strk strkf  I I . (7.17c) 

Thus, the final performance measure for running formulation is 

  I If w f w f   , (7.17d) 

where w  and Iw  are the weighting parameters for the two objectives. 

 

7.5.3. Constraints 

 Most constraints are motivated by the digital human walking formulation (Xiang 

et al., 2007), listed as follows: 

1) Joint angle limits  

2) Joint torque limits  
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3) Ground penetration constraint 

4) Foot location constraint - ground contact points  

5) Initial posture constraint of foot location - initial rear heel position 

6) No slip constraint (zero velocity at foot strike) 

7) ZMP constraint during support phase 

8) Symmetry condition (step formulation) or continuity condition (stride formulation) 

 

7.6. Description of Constraints 

7.6.1. Joint Angle Limits 

 Joint angle limits for the body are determined based on work by Norkin and 

White (2003): 

  ( )          (0 )lower uppert t T   q q q  (7.18) 

Some joint angle limits are re-defined by trial and error for better simulation results (task-

specific joint angle limits). Some degrees of freedom do not participate significantly in 

the running motion. Therefore, those degrees of freedom are frozen to avoid redundancy 

and to facilitate natural motion. The frozen degrees of freedom are the neck bend joint, 

clavicle joint, elbow joint, wrist joint, shoulder joint, and spine twist of the second, third, 

and fourth spine joints. Thus, 33 active degrees of freedom are used for the running 

simulation. Joint angle limits for each degree of freedom are listed in Table 7.3.  
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Table 7.3 Joint angle limits (degrees) 

DOF Lower Upper Motion Direction 

Q01 -2.0024 2.0368 Spine joint1 tilt 

Q02 1.0027 12.0 Spine joint1 bend 

Q03 -15.0177 15.0521 Spine joint1 twist 

Q04 -2.0024 2.0425 Spine joint2 tilt 

Q05 1.0027 12.0 Spine joint2 bend 

Q06 -1.0 1.0 Spine joint2 twist 

Q07 -2.0024 2.0368 Spine joint3 tilt 

Q08 1.0027 15.0 Spine joint3 bend 

Q09 -1.0 1.0 Spine joint3 twist 

Q10 -2.0024 2.0368 Spine joint4 tilt 

Q11 1.0027 15.0 Spine joint4 bend 

Q12 -1.0 1.0 Spine joint4 twist 

Q13 -0.0573 0.0573 Right clavicle 

Q14 -0.0573 0.0573 Right clavicle 

Q15 -0.5730 0.5730 Right shoulder abduction/adduction 

Q16 -1.0 1.0 Right shoulder extension/flexion 

Q17 -6.5 -5.5 Right shoulder internal rotation/external rotation 

Q18 -91.0 -89.9427 Right elbow flexion/extension 

Q19 -0.5730 0.5730 Right elbow internal rotation/external rotation 

Q20 -0.5730 0.5730 Right wrist radial dev./ulnar dev.  

Q21 -0.5730 0.5730 Right wrist extension/flexion 

Q22 -0.0573 0.0573 Left clavicle 

Q23 -0.0573 0.0573 Left clavicle 

Q24 -0.5730 0.5730 Left shoulder abduction/adduction 

Q25 -1.0 1.0 Left shoulder extension/flexion 
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Table 7.3 Continued 

Q26 -6.5 -5.5 Left shoulder internal rotation/external rotation 

Q27 -91.0 -89.9427 Left elbow flexion/extension 

Q28 -0.5730 0.5730 Left elbow internal rotation/external rotation 

Q29 -0.5730 0.5730 Left wrist radial dev./ulnar dev. 

Q30 -0.5730 0.5730 Left wrist extension/flexion 

Q31 -2.0 2.0 Neck joint1 lateral flex-left/lateral flex-right 

Q32 -5.0 5.0 Neck joint1 saggital-extension/saggital-flexion 

Q33 -5.0 5.0 Neck joint1 transverse-right/transverse-left 

Q34 -2.0 2.0 Neck joint2 lateral flex-left/lateral flex-right 

Q35 -1.0 1.0 Neck joint2 saggital-extension/saggital-flexion 

Q36 -20.0 10.0 Right hip abduction/adduction 

Q37 -90.0 90.0 Right hip flexion/extension 

Q38 -20.0 20.0 Right hip external rotation/internal rotation 

Q39 10. 135.0 Right knee extension/flexion 

Q40 -20.1175 54.4721 Right ankle dorsiflexion/plantar flexion 

Q41 -10.0 10.0 Right ankle eversion/inversion 

Q42 -70.8319 0.0229 Right midfoot dorsiflexion/plantar flexion 

Q43 -20.0 10.0 Left hip abduction/adduction 

Q44 -90.0 90.0 Left hip hip flexion/extension 

Q45 -20.0 20.0 Left hip external rotation/internal rotation 

Q46 10.0 135.0 Left knee extension/flexion 

Q47 -20.1175 54.4721 Left ankle dorsiflexion/plantar flexion 

Q48 -10.0 10.0 Left ankle eversion/inversion 

Q49 -70.8319 0.0229 Left midfoot dorsiflexion/plantar flexion 
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7.6.2. Joint Torque Limits 

  ( )          (0 )lower uppert t T   τ τ τ  (7.19) 

References for each joint torque limit are listed in Table 7.4 and joint torque limits for 

each degree of freedom are listed in Table 7.5.  

 

Table 7.4 References for joint torque limits 

Joint References 

Neck Seng KY, Lee Peter VS, and Lam PM. (2002) 

Torso Kumar S (1996); Ho CW, Chen LC, Hsu HH, Chiang SL, Li MH, Jiang 

SH, and Tsai KC (2005); Huang QM and, Thorstensson A (2000); Kumar 

S, Narayan Y, Garand D (2003) 

Shoulder Mayer F, Horstmann T, Röcker K, Heitkamp HC, Dickhuth HH. (1994) 

Wrist Delp S, Grierson A, and Buchanan T (1996); Marley R and Thomson M 

(2000); O'Sullivan L and Gallwey T (2005); Forthomme B, Croisier J, 

Foidart-Dessalle M, and Crielaard J (2002) 

Hip Cahalan TD, Johnson ME, Liu S, and Chao EY. (1989) 

Ankle Kaminski TW, Perrin DH, and Gansneder BM. (1999) 
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Table 7.5 Joint torque limits (N m) 

DOF Lower Upper Motion Direction 

Q01 -150 150 Spine joint1 tilt 

Q02 -300 300 Spine joint1 bend 

Q03 -150 150 Spine joint1 twist 

Q04 -40.0 40.0 Spine joint2 tilt 

Q05 -300.0 300.0 Spine joint2 bend 

Q06 -40.0 40.0 Spine joint2 twist 

Q07 -30.0 30.0 Spine joint3 tilt 

Q08 -300.0 300.0 Spine joint3 bend 

Q09 -30.0 30.0 Spine joint3 twist 

Q10 -20.0 20.0 Spine joint4 tilt 

Q11 -200.0 200.0 Spine joint4 bend 

Q12 -20.0 20.0 Spine joint4 twist 

Q13 -50.0 50.0 Right clavicle 

Q14 -50.0 50.0 Right clavicle 

Q15 -47.0 66.0 Right shoulder abduction/adduction 

Q16 -92.0 63.0 Right shoulder extension/flexion 

Q17 -27.0 43.0 Right shoulder internal rotation/external rotation 

Q18 -58.7 60.3 Right elbow flexion/extension 

Q19 -12.0 15.0 Right elbow internal rotation/external rotation 

Q20 -11.0 9.1 Right wrist radial dev./ulnar dev.  

Q21 -6.0 12.2 Right wrist extension/flexion 

Q22 -50.0 50.0 Left clavicle 

Q23 -55.0 50.0 Left clavicle 

Q24 -47.0 66.0 Left shoulder abduction/adduction 

Q25 -92.0 63.0 Left shoulder extension/flexion 
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Table 7.5 Continued 

Q26 -27.0 43.0 Left shoulder internal rotation/external rotation 

Q27 -58.7 60.3 Left elbow flexion/extension 

Q28 -12.0 15.0 Left elbow internal rotation/external rotation 

Q29 -11.0 9.1 Left wrist radial dev./ulnar dev. 

Q30 -6.0 12.2 Left wrist extension/flexion 

Q31 -27.0 27.2 Neck joint1 lateral flex-left/lateral flex-right 

Q32 -45.0 23.0 Neck joint1 saggital-extension/saggital-flexion 

Q33 -11.0 10.0 Neck joint1 transverse-right/transverse-left 

Q34 -30.0 30.0 Neck joint2 lateral flex-left/lateral flex-right 

Q35 -30.0 30.0 Neck joint2 saggital-extension/saggital-flexion 

Q36 -120.0 129.0 Right hip abduction/adduction 

Q37 -167.0 204.0 Right hip flexion/extension 

Q38 -67.0 85.0 Right hip external rotation/internal rotation 

Q39 -259.1 103.2 Right knee extension/flexion 

Q40 -37.7 85.3 Right ankle dorsiflexion/plantar flexion 

Q41 -30.1 30.1 Right ankle eversion/inversion 

Q42 -72.0 70.0 Right midfoot dorsiflexion/plantar flexion 

Q43 -120.0 129.0 Left hip abduction/adduction 

Q44 -167.0 204.0 Left hip hip flexion/extension 

Q45 -67.0 85.0 Left hip external rotation/internal rotation 

Q46 -259.1 103.2 Left knee extension/flexion 

Q47 -37.7 85.3 Left ankle dorsiflexion/plantar flexion 

Q48 -30.1 30.1 Left ankle eversion/inversion 

Q49 -70.0 70.0 Left midfoot dorsiflexion/plantar flexion 
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7.6.3. Foot Location of Ground Contact Point 

 Since the step length can be calculated from the running speed, the location of the 

foot contact points can be specified. 

  ( ) , ( )i it i contact r r  (7.20) 

where ir  is the specified foot location. The specified foot location is calculated from the 

step length formula. Figure 7.12 depicts the key points for the foot location constraint. 

Also the foot location is 0.01 m away from the center line of the running direction (gap in 

Figures 7.13, 7.14, and 7.15). This distance has been optimized by trial and error. In the 

flight phase, this constraint is not applied.  

 

   

  Figure 7.12 Key points for the foot location constraint 

 

 pt16: left toe center pt5: right toe center 

 pt15: left ball center pt4: right ball center 

 pt24: left heel center pt23: right heel center 
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7.6.3.1. At foot strike instant 

 

  

  Figure 7.13 Points for the foot location constraint at foot strike instant 

 

 The green points (heel center, ball center) are constrained by the foot location 

constraint into the specified location ir : 

  ( ) , ( )i it i contact r r  (7.21) 

7.6.3.2. At mid-support instant 

 

   

  Figure 7.14 Points for the foot location constraint at mid-support instant 

 

 All three points (heel center, ball center, toe center) are constrained by the foot 

location constraint at this instant. 

  ( ) , ( )i it i contact r r  (7.22) 
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7.6.3.3. At toe off instant 

 

   

  Figure 7.15 Points for the foot location constraint at toe off instant 

 

 The green points (ball center, toe center) are constrained by the foot location 

constraint into the specified location ir : 

  ( ) , ( )i it i contact r r  (7.23) 

 

7.6.4. Ground Penetration 

 While the foot is contacting the ground, the height of the foot from the ground is 

zero. While the foot is not contacting the ground, the foot should be above the ground. 

Then, the height of the foot from the ground is greater than zero. 

  
3

( ) 0, ( )

( ) , ( )

10

i

i

y t i contact

y t i contact


 
  

 

       

 (7.24) 

where i refers to the contact point in the set of contact points. In the current formulation, 

6 points are used on each foot for the ground penetration constraints (Figure 7.16; the 

numbers are the assigned point numbers). 
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  Figure 7.16 Six points of foot for ground penetration constraint 

 

 pt22: left toe lateral pt10: right toe lateral 

 pt20: left ball lateral pt8: right ball lateral 

 pt18: left heel lateral pt6: right heel lateral 

 pt21: left toe medial pt11: right toe medial 

 pt19: left ball medial pt9: right ball medial 

 pt17: left heel medial pt7: right heel medial 

7.6.4.1. At foot strike instant 

 

  
Running direction

z

x
y

 

  Figure 7.17 Points for ground penetration constraint at foot strike instant 

 

 The green points (heel lateral, heel medial, ball lateral, ball medial) are in contact 
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on the ground: 

  ( ) 0iy t 
 

(7.25a) 

The red points (toe lateral, toe medial) are not in contact on the ground: 

  

3( ) , 10iy t    
 

(7.25b) 

7.6.4.2. At mid-support instant 

 

   

  Figure 7.18 Points for ground penetration constraint at mid-support instant 

 

 All points are in contact with the ground in this phase (Figure 7.18): 

  ( ) 0iy t 
 

(7.26) 

7.6.4.3. At toe off instant 

 

   

  Figure 7.19 Points for ground penetration constraint at toe off phase 

 

 The green points (ball lateral, ball medial, toe lateral, toe medial) are in contact on 
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the ground (Figure 7.19): 

  ( ) 0iy t 
 

(7.27a) 

The red points (heel lateral, heel medial) are not in contact on the ground: 

  3( ) , 10iy t      (7.27b) 

7.6.4.4. In flight phase 

 All points are off the ground in flight phase: 

  3( ) , 10iy t      (7.28) 

 

7.6.5. Initial Posture Constraint - Initial Rear Heel Position 

 To avoid redundancy at t = 0, the initial posture constraint is imposed. As an 

initial posture constraint, the rear foot heel position is controlled at the foot strike phase. 

And only the z-directional (running direction) position is constrained by an inequality 

constraint at only the foot strike phase: 

  
1

2RFH shankz sl L   (7.29) 

where RFHz  is the point of the rear foot heel (z-direction in the inertial reference frame), 

sl  is step length, and shankL  is the length of the shank. Figure 7.20 depicts the position 

RFHz  at the foot strike of the opposite foot. 

 



121 

  

 

  Figure 7.20 Description of initial rear heel position 

 

7.6.6. No Slip Constraint 

 The velocity of the contacting points at the foot landing instant is set to be zero 

(soft impact). Therefore, the following constraints are imposed: 

  ( ) 0 ( )i t i contact r  (7.30) 

 

  
Running direction

z

x
y

 

  Figure 7.21 Points for no slip constraint 

 

The green points (heel lateral, heel medial, ball lateral, ball medial) are the points where 

the no slip constraint is imposed. 
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7.6.7. Zero Moment Point Constraint 

7.6.7.1. Zero moment point (ZMP) 

 To implement the ZMP constraint in the current formulation, we consider the x-z 

plane as the ground in Figure 7.10. In other words, the normal vector n is  0 1 0
T . 

Again, we can simplify the ZMP calculation from Equation (4.8) in this case as: 

  
( )

( )

n

i i i i i i ix
i

zmp n

i i
i

m y g z m z y H
z

m y g

   


 





 


 (7.31a) 

  
( )

( )

n

i i i i i i iz
i

zmp n

i i
i

m y g x m x y H
x

m y g

   


 





 


 (7.31b) 

Here, the ZMP is simply a point where the moments about the x and z-axes due to inertia, 

gravity, and external force (IGF) are zero. Then, the ZMP constraint is 

  FSR,   FSRzmp zmpz x  , (7.31c) 

where FSR is the foot support region. The foot support region is described in Figure 7.22 

for the foot strike instant, in Figure 7.23 for the mid-support instant, and in Figure 7.24 

for the toe off instant. 

 

   

  Figure 7.22 Foot support region at foot strike phase 
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  Figure 7.23 Foot support region at mid-support phase 

 

   

  Figure 7.24 Foot support region at toe off phase 

 

7.6.7.2. ZMP constraint 

 Let the polygon in Figure 7.25 be the foot support region. 1p , 2p , 3p , and 4p  are 

the vertices of the polygon. The point D is the ZMP. Let the vectors from each point 1p , 

2p , 3p , 4p  to the zero moment point D be 1d , 2d , 3d ,and 4d , respectively. Also let the 

polygon line vectors be 1L , 2L , 3L ,and 4L  as shown in Figure 7.25. Take the cross 

product of this line vector with the vector to the zero moment point D: 

  1 1 1 n L d  (7.32a) 

  2 2 2 n L d  (7.32b) 

  3 3 3 n L d  (7.32c) 

  4 4 4 n L d . (7.32d) 
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If the signs of 1n , 2n , 3n ,and 4n  are all positive, the zero moment point D is in the 

polygon. The normal in Figure 7.25 has been defined as the positive y direction in the 

current coordinate configuration of the formulation. Therefore, all positive signs of 1n ,

2n , 3n ,and 4n  indicate that the zero moment point D stays in the foot support region.  

 

 

  Figure 7.25 ZMP Constraint 

 

7.6.8. Symmetry Constraint - Step Formulation 

 This constraint is applied according to the assumption that the running motion is 

symmetric and periodic.  
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  Figure 7.26 Global coordinates for symmetry condition 

 

To have symmetric motion, the joint angles of the left (or right) arm and leg at the initial 

posture (t = 0) must be the same as the joint angle of the right (or left) arm and leg at the 

final position posture (t = T). Therefore, the symmetry condition constraint for the arm 

and leg is 

  (0) ( )left right Tx x . (7.33a) 

  (0) ( )right left Tx x  (7.33b)
 

where (0)leftx  represents the control points of the left arm and leg at t = 0, ( )right Tx  

represents the control points of the right arm and leg at t = T, (0)rightx  represents the 

control points of the right arm and leg at t = 0, and ( )left Tx  represents the control points 

of the arm and leg at t = T. For the spine, head, and rotational global DOF, they must be 

the same values for the x-axis, but the opposite sign for the y-axis and z-axis. Thus, the 

symmetry condition constraints for the spine, head, and rotational global DOF are as 

follows: 

  (0) ( )x x Tx x  (7.33c) 

 

z 

x

y 

 

O 
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  (0) ( )y y T x x  (7.33d) 

  (0) ( )z z T x x  (7.33e) 

where (0)xx  represents the control points of the spine, head, and rotational global DOF 

about the x-axis at t = 0; ( )x Tx  represents the control points of the spine, head, and 

rotational global DOF about the x-axis at t = T; (0)yx  represents the control points of the 

spine, head, and rotational global DOF about the y-axis at t = 0; ( )y Tx  represents the 

control points of the spine, head, and rotational global DOF about the y-axis at t = T; 

(0)zx  represents the control points of the spine, head, and rotational global DOF about 

the z-axis at t = 0; and ( )z Tx  represents the control points of the spine, head, and 

rotational global DOF about the z-axis at t = T. For the translational global DOF, DOF 

about the z-axis is excluded. However, DOF about the x-axis and y-axis have symmetry 

condition as: 

  
(0) ( )x x T x x   (7.34a) 

  (0) ( )y y Tx x   (7.34b) 

Here, the control points can be used directly instead of joint angles because of the 

property of clamped B-spline curves.  

 

7.6.9. Continuity Constraint - Stride Formulation 

 One stride formulation consists of two optimization problems: right leg swinging 

and left leg swinging with the continuity condition constraints (no symmetry constraint). 

We have two optimization problems because we cannot have impact (sudden change of 

the joint angles velocity field) at the foot strike instant in one optimization of one stride 
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because of the B-spline property. Figure 7.27 depicts the one stride formulation and the 

continuity constraint. 

 

 

  Figure 7.27 One stride formulation and continuity constraint 

 

The continuity constraints are  

  1 2( ) (0)st ndT x x  (7.35a) 

  1 2(0) ( )st nd Tx x , (7.35b) 

where 1stx  represents the control points of the first optimization problem and 2ndx  

represents the control points of the second optimization problem. Here, the translational 

global DOF about the z-axis is excluded in Equation (7.35b). Again, the control points 

are used directly instead of joint angles because of the property of clamped B-spline.  

 

7.7. Gradient Evaluation for Constraints and Performance Measure 

 The analytical gradient of constraints should be evaluated for the optimization 

process. The gradient of the constraint with respect to the design variables is  
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where C is a constraint,  1 2, , ,
T

mx x xx   represents the design variables (control 

points), and m is the number of design variables. Since C is the function of the 

generalized coordinates, the mapping process from the generalized coordinates to the 

control points (design variables) is needed. Thus, using the chain rule, we have 
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 (7.37a) 

where 1q , 2q ,..., nq  are generalized coordinates, and n is the number of degrees of 

freedom. In matrix form, we have 
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  (7.37b) 

Equations (7.37a) and (7.37b) can be rewritten as 

  j j j

k j k j k j k

q q qC C C C

x q x q x q x

     
  

      

 
 

 (7.38) 

 The terms /j kq x  , /j kq x  , and /j kq x   can be obtained from Equation 

(5.1) , and the terms / jC q  , / jC q   , and / jC q   are evaluated for each constraint 

discussed in the previous section. Most constraints need the chain rule process in 

Equation (7.37a). However, the symmetry condition constraint (or continuity constraint) 

does not need this process because the symmetry condition constraint is only needed at 

the beginning of the B-spline curve and at the end of the B-spline curve—it is a time 

independent constraint. Since the clamped B-spline has been adopted, the spline curve 

passes through the control point exactly at the beginning and the end. 

 In similar way, the analytical gradient for performance measure can be obtained. 

The gradient of torque for dynamics effort is 
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From Equation (7.16), gradient of the impulse is 
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 (7.39b) 

The terms / , / , and /  are already evaluated in Equations (3.24a-3.24c). 

From Equation (7.7c), we know that RD is same as global force F. Therefore, / , 

/ , and /  also can be obtained from Equations (3.24a-3.24c); 
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CHAPTER 8 

RUNNING SIMULATION RESULTS 

 

 A sequential quadratic programming (SQP) algorithm is adopted to solve the 

problem and commercial software SNOPT (NPOPT solver) is used (Gill, Murray, and 

Saunders, 2002). The number of control points in the current formulation is 5 for each 

joint angle. Since the number of degrees of freedom for the mechanical system is 55, the 

total number of design variables is 55×5 = 275. The number of constraints is 1,046. The 

running speed is an input parameter and the step length is determined using the formula 

described in chapter 7. A feasible solution without dynamic effort performance measure 

is obtained first. In this process, home configuration of DH table is used as the starting 

point for optimization which means all generalized coordinates values are equal to zero, q 

= 0. Once we get a feasible solution, it is used as the starting point for optimization with 

performance measure from Equation (7.17d). One of the optimal solutions is used as 

default starting point for various case studies such as different running speed, backpack 

load, and the restriction on the range of motion due to body armor. The level in Equation 

(7.1) is set to 0.001 and level2 in Equations (7.3a and 7.3b) is set to 0.0001 as a skilled 

runner. The weight values in performance measure are set to 1.0 for the torque square 

term and 0.5 for the impulse term. ∆t in Equation (7.16) is set to 10% of support time. 

These values are determined by numerical experimentation.   

 Figure 8.1 is a snapshot of posture for 3.0 m/s running with 37.04N weapon. The 

step length for the given running speed is 1.096 m. Pentium 3.20GHz CPU is used to 

obtain optimal solution. The number of iterations for the feasible point is 25 and the CPU 
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time is 3,063 seconds. The number of iterations for the optimal point is 28 and the CPU 

time is 290 seconds. The starting point and optimum point are listed in the Appendix. The 

joint angle limits for head, arm, and spine are reduced to avoid redundancy and to carry 

the weapon. Symmetry condition constraint (step formulation) is imposed. The number of 

active constraints is 169. Active constraints and their Lagrange multipliers are also listed 

in the Appendix. The performance measure value is 12,168. The results show natural 

human running motion. Major contributions to the natural running motion are realistic 

joint torque constraints, the rate of angular momentum in the ZMP constraint, and the 

impulse term in the performance measure.  

 

 

 

  Figure 8.1 Running snapshot (3.0 m/s) 
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8.1. Joint Torque Profiles 

 As described in Chapter 2, there are parent branch and child branches in current 

mechanical structure. The joint torque at the branch node which connects parent branch 

and child branches is calculated separately in terms of each child branch. Therefore, to 

impose joint torque limits, it is necessary to have a module to combine the joint torques 

which calculates the resultant torque. And also, the index of joint torque must be in same 

sequence with the corresponding DOF. Figure 8.2 shows the knee joint torque profiles of 

the simulation in one gait cycle with experiment results from literature (Novacheck, 

1998). Although the match is not perfect, the general trend is reasonable. 

 

 

  Figure 8.2 Knee joint torque profiles 

 

8.2. Ground Reaction Force 

 Figure 8.3 shows that the vertical ground reaction force (corresponding to the 

global y-axis) results with 3.0 m/s running speed and 1.0962 m step length. The results 
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show that the shape of ground reaction force curve with the impact formulation is closer 

to the shape of the experimental data from the literatures (Õunpuu, 1994) compared to the 

simulation results without the impact formulation.  

 

 

  Figure 8.3 Vertical ground reaction force 

 

 

  Figure 8.4 Forward ground reaction force 
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  Figure 8.5 Lateral ground reaction force 

 

In Figure 8.3, the simulation value is smaller than experiment value. Possible reason is 

that impulsive force at toe off phase is not modeled in the current formulation. Figure 8.4 

shows the forward ground reaction force (corresponding to the global z-axis) and Figure 

8.5 shows the lateral ground reaction force (corresponding to the global x-axis) 

respectively. The forward ground reaction force is acting in negative z-direction at foot 

strike phase and positive z-direction at toe off phase. In lateral ground force case, it is 

acting in positive x-direction at foot strike phase and negative x-direction at toe off phase. 

 

8.3. Cause and Effect Case Study 

8.3.1. Backpack Load 

 Figure 8.6 is the result of running without backpack. Only external load is weapon 

carried in hands (37.04 N). Figure 8.7 is the result of running with backpack (500 N) in 
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addition to the weapon in hands. We can see that the upper body leans more toward 

running direction when backpack is carried.  

 

 

  Figure 8.6 Running without backpack 

 

  

  Figure 8.7 Running with backpack 

 

Figure 8.8 is the comparison of the knee joint torque between the case without backpack 

and with backpack. We can see that when the backpack is loaded, the more torque is 

produced at support phase. Figure 8.9 shows the vertical ground reaction forces 

comparison between the case without backpack and with backpack. It is observed that 

when the backpack is loaded the more ground reaction force is acting at foot strike phase 



137 

  

compared to the mid-support and toe off phases. Figure 8.10 shows the forward ground 

reaction force comparison and Figure 8.11 shows the lateral ground reaction force 

comparison respectively.  

 

 

  Figure 8.8 Knee joint torque comparison 

 

 

  Figure 8.9 Vertical ground reaction force comparison 
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  Figure 8.10 Forward ground reaction force comparison 

 

 

  Figure 8.11 Lateral ground reaction force comparison 

 

The forward ground reaction force slightly larger ground reaction force when the 

backpack is loaded. 
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8.3.2. Range of Motion – Armor Effect 

 Figure 8.12 depicts the armor at the back of thigh and shank. SantosTM have a 

capability to determine the range of motion for the given armor. Using that capability, we 

have new joint angle limits at knee joint which is reduced from 135º to only 71º. The 

weight of single armor is 3.19N, so the total weight of armor is 3.19×4 = 12.76N.  

 

 

  Figure 8.12 Armor attached at legs 

 

Figure 8.13 shows the results of running without armor and Figure 8.14 shows the results 

of running with armor. It is obvious that the knee flexion with armor is smaller than that 

without armor.  
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  Figure 8.13 Running without armor 

 

 

  Figure 8.14 Running with armor 

 

Figure 8.15 shows the comparison of joint angle profiles without armor and with armor. 

In the armor case, we can see that the joint angle limit constraint is active at 71º. And also, 

joint torque profile comparison is shown in Figure 8.16. It shows that the support leg 

produces more torque to help the swinging leg which is restricted by 71º. Figure 8.17 is 

the vertical ground reaction force results with and without armor. It shows that the 

impulse of with armor case is less minimized at the foot strike phase than without armor 

case due to the restriction of knee joint angle. Figure 8.18 shows the forward ground 

reaction force comparison and Figure 8.19 shows the lateral ground reaction force 
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comparison respectively. 

 

 

  Figure 8.15 Knee joint angles with and without armor 

 

 

  Figure 8.16 Knee joint torque with and without armor 
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  Figure 8.17 Vertical ground reaction force with and without armor 

 

 

  Figure 8.18 Forward ground reaction force with and without armor 
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  Figure 8.19 Lateral ground reaction force with and without armor 

 

8.3.3. Different Running Speed 

 Figure 8.20 shows joint torques with different running speeds, 3.0 m/s, 3.5 m/s, 

and 4.0 m/s respectively. We can see that the joint torque gets larger when the running 

speed increases. Figure 8.21 shows the vertical ground reaction force for different 

running speeds. The results show that the ground reaction force becomes a little larger 

when the running speed is increased. Figure 8.22 is the results of forward ground reaction 

force for different running speeds. It shows also that the ground reaction force becomes a 

little larger when the running speed is increased. Figure 8.23 is the results of lateral 

ground reaction force for different running speeds.   
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  Figure 8.20 Knee joint torque in different running speed 

 

 

  Figure 8.21 Vertical ground reaction force in different running speed 
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  Figure 8.22 Forward ground reaction force in different running speed 

 

 

  Figure 8.23 Lateral ground reaction force in different running speed 
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number of design variables is 275. The frozen degrees of freedom are the neck bend joint, 

clavicle joint, elbow joint, wrist joint, shoulder joint, and spine twist of the second, third, 

and fourth spine joints. The number of constraints is 1,046. The commercial software 

SNOPT is used to solve the nonlinear optimization problem of running. As mentioned in 

Chapter 7, we assumed that the mechanical structure of digital human is rigid body. 

Therefore, there is no wobbling mass effect. And also, mass moment of inertia of various 

segments is approximated. To obtain natural running motion, some parameters such as 

weight values in the performance measure are decided from numerical experiments. The 

numerical experiment was performed in many different cases and the results were 

compared. For example, one weight value is simulated in different running speeds and 

compared to the results from other weight values. 

 The joint torque profiles and ground reaction forces are presented as simulation 

results. As cause and effect case study, the backpack loading case, the range of motion 

restriction case and different running speed case are presented. Each case provides the 

joint torque profile comparison and ground reaction forces comparison. The summary of 

the results is given in Tables 8.1 and 8.2. In Table 8.1, FS stands for foot strike phase and 

TO stands for toe off phase. As already discussed before, we can easily see that the joint 

torque increases when the running speed increases or the backpack is loaded. The ground 

reaction force also increases when the running speed increases or the backpack is loaded. 

Table 8.2 shows the objective function values, the number of iterations, the number of 

active constraints, and the CPU time. Other performance quantities such as metabolic 

energy can be calculated once optimal solution is obtained. Table 8.3 shows the active 

constraints in each case. 
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Table 8.1 Summary of results – joint torque and ground reaction force  

Cases 
Peak value of knee 

joint torque (Nm) 

Peak value of ground reaction force (N/9.8/kg) 

Vertical Forward (FS / TO) Lateral 

3.0 m/s -135.7226 1.3499 -0.5556 / 0.4875 0.1738 

3.5 m/s -180.5822 1.4301 -0.5607 / 0.5775 0.1912 

4.0 m/s -198.9258 1.4380 -0.6509 / 0.5712 0.2708 

Backpack -259.3351 1.9192 -0.6098 / 0.4998 0.1271 

Armor -198.4213 1.2976 -0.5626 / 0.4649 0.1207 

 

 

Table 8.2 Summary of results – optimization summary 

Cases 
Performance 

measure value 

Number of 

iterations 

Number of active 

constraints 

CPU time 

(sec) 

3.0 m/s 12,168 28 169 290 

3.5 m/s 12,619 41 201 356 

4.0 m/s 17,859 131 124 4,128 

Backpack 14,801 57 157 427 

Armor 14,494 34 204 460 
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Table 8.3 Summary of results – active constraints 

Case Active constraints 

3.0 m/s ground penetration, no slip, foot contact, symmetry conditions, joint angle 

limits (spine, clavicle, shoulder, elbow, wrist, knee, ankle), joint torque 

limits (ankle) 

3.5 m/s ground penetration, no slip, foot contact, ZMP, symmetry conditions, joint 

angle limits (spine, clavicle, shoulder, elbow, wrist, neck, hip, knee, toe) 

4.0 m/s ground penetration, no slip, foot contact, ZMP, symmetry conditions, joint 

angle limits (spine, clavicle, shoulder, elbow, wrist) 

Backpack ground penetration, no slip, foot contact, ZMP, symmetry conditions, joint 

angle limits (spine, clavicle, shoulder, elbow, wrist, hip, knee, ankle), joint 

torque limits (knee) 

Armor ground penetration, no slip, foot contact, ZMP, symmetry conditions, joint 

angle limits (spine, clavicle, shoulder, elbow, wrist, neck, knee, ankle, toe) 

 

 

 The results show that the presented formulation for digital human running is quite 

robust in terms of both kinematics and dynamics. The analytical gradients in the 

formulation also play significant role for the accuracy in terms of the optimization 

solution. Realistic joint torque constraints, the rate of angular momentum in the ZMP 

constraint, and the impact formulation are major contributions to the natural running 

motion. 
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CHAPTER 9 

SLOW JOG ALONG CURVILINEAR PATHS 

 

9.1. Problem Description 

 The formulation of running in Chapter 7 is for a straight path, there is an 

assumption that the motion is symmetric. However, slow jog along a curve is not a 

symmetric motion since the motion for the right and left parts of the body is not the same. 

Figure 9.1 depicts the running path of a slow jog along a circular path. The blue dot is a 

marker and the red curve is the circular path around the marker. Since it is a non-

symmetric running motion, the right step and left step should be formulated and 

simulated separately (stride formulation).  

 

 

  Figure 9.1 Circular path around marker 
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9.2. Formulation 

9.2.1. Design Variables 

 The design variables are the joint angle profiles q  parameterized using B-spline 

approximation. 

  :DV q  (9.1) 

The number of control points is 5 for each joint angle, and the number of degrees of 

freedom is 55. Therefore, the total number of design variables is 275.  

 

9.2.2. Performance Measure 

 The same performance measure as in the normal running formulation is used: 

  I If w f w f    (9.2a) 

where 

  
0

 
t Tf dt τ τ  (9.2b) 

  TI strk strkf I I  (9.2c) 

 is joint torque, Istrk is the impulse at foot strike, and  and  are the weighting 

parameters for the two objectives.  

 

9.2.3. Constraints 

 The constraints for jog along the curves are as follows: 

1) Joint angle limits 

2) Joint torque limits 
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3) Ground penetration 

4) Foot contact location constraint along the path 

5) No slip constraint 

6) ZMP during support phase 

7) Initial foot location 

8) Continuity condition constraint 

9) Body rotation constraint  

Most of the constraints are the same as for the normal running formulation in Chapter 7, 

except the foot location constraint along the path, the continuity condition constraint, and 

the body rotation constraint. The body rotation constraint enforces the condition where 

the global orientation of the body is the same as the tangential direction of the jogging 

path. This way, the human body is facing in the direction it is moving. Also, the neck 

joint, clavicle joint, shoulder joint, elbow joint, and spine tilt of the second, third, and 

fourth spine joint are frozen just as for the normal running formulation.  

 

9.2.4. Continuity Condition 

 Figure 9.2 depicts the continuity constraint. This constraint is imposed at the 

beginning of each optimization so that the last posture of the previous optimization and 

the starting posture of the current optimization are matched.  Thus, the continuity 

constraint is 
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  Figure 9.2 Continuity condition constraint 

 

  1 2( ) (0)st ndT x x  (9.3) 

where 1stx  represents the control points of the first optimization problem and 2ndx  

represents the control points of the second optimization problem.  

 

9.2.5. Foot Contact Location along the Path 

 For the problem of slow jog along curves, the foot contact locations depend on the 

running path. To impose a foot contact location constraint, we constrain three points at 

the foot – heel, mid foot, and toe – just as for the normal running formulation (Figure 9.3).  

 

   

  Figure 9.3 Key points for the foot location constraint 
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 pt16: left toe center pt5: right toe center 

 pt15: left ball center pt4: right ball center 

 pt24: left heel center pt23: right heel center 

To calculate the contacting location of these points, we need the step length and 

orientation of the foot. This orientation must be expressed in the inertial reference frame. 

Once we have the step length and the orientation of the foot, we can calculate the location 

of the three contact points – heel, mid foot, and toe. 

 Figure 9.4 depicts the foot location along the path. The blue box describes the foot 

on the ground. x-z is the inertial reference frame, and x1-z1 is the local reference frame for 

the foot. rp is the vector from the origin of the inertial reference frame to the foot point p, 

which will be controlled in the local reference frame. r1 is the vector from the origin of 

the inertial reference frame to the origin of the local reference frame. r1p is the vector 

from the origin of the local reference frame to the foot point p in the local reference 

frame. What we need is rp since the foot location constraint is applied in the inertial 

reference frame.  
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  Figure 9.4 Foot location along the path 

 

The vector r1 is determined by the step length and running curve:  

  1 Lr  (9.4) 

where L is step length. The angle θ, which is same as the orientation of the contacting 

foot, can be calculated from the marker position. 

  
12sin

2

L

R
     

   (9.5) 

Then the vector of point p can be written as: 

  1 1 1p p r r A r  (9.6) 

where A1 is the rotation matrix of the local reference frame.  

Or, 

  
1 1

1 1

2 sin( / 2)cos( / 2) cos sin

2 sin( / 2)sin( / 2) sin cos
p p

p
p p

R z x

R z x

   
   

  
    

r  (9.7) 
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The point p is defined as heel, midpoint, and toe in the current formulation. 

 

9.3. Results 

 The problem has been solved using the stride formulation. Therefore, there are 

two optimization processes – right step and left step. Once the solution has been obtained, 

the motion is repeated along the running path. Figure 9.5 is a snapshot of postures for a 

2.35 m/s slow jog around maker. Step length is 0.889 m. The number of constraints is 

994. The feasible point from normal running in Chapter 8 was used as the starting point 

for optimization. The number of iterations for the optimal point is 16, and the CPU time 

is 244 seconds for the first step – the right step. For the second step – the left step – the 

number of iterations is 25 and the CPU time is 923 seconds. The performance measure 

value is 3,736 for the first step and 3,023 for the second step. The weight values for 

impact formulation are set to 1.0 for the torque square term and 0.5 for the impulse term. 

As mentioned in Chapter 8, these values are determined by numerical experimentation. 

 

 

 

 

 



156 

  

 

 

  Figure 9.5 Slow jog along curve snapshot 

 

Figures 9.6-9.8 show the results of the ground reaction forces.  

 

 

Figure 9.6 Vertical ground reaction force 
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Figure 9.7 Forward ground reaction force 

 

 

Figure 9.8 Lateral ground reaction force 

 

 Results show that the trends of the vertical and forward ground reaction forces of 

a slow jog along a curve are similar to the normal running case. However, the lateral 

ground reaction force is quite different. Most of the ground reaction force for a jog along 

a curve is in a positive area. This shows that the lateral ground reaction force is produced 

to turn the body in the direction of the motion.  
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9.4. Discussion 

 In this chapter, the problem of a slow jog along curved paths has been formulated. 

It is a non-symmetric running motion, so the stride formulation has been used. Jogging 

path is defined as a circular curve around the marker with a given radius. Most of the 

constraints are the same as for the normal running case. The body rotation constraint, 

continuity constraint, and foot location constraint are added for the slow jog formulation. 

The body rotation constraint is imposed so that the body faces the jogging direction. The 

continuity constraint is imposed between the first step optimization and the second step 

optimization. The foot contacting location is calculated from the step length, and the foot 

orientation along the path. The ground reaction forces show reasonable trends for the 

turning motion.  
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CHAPTER 10 

STUDY OF UPPER BODY MOTION 

 

10.1. Motivation 

 Upper-body motion is very important and difficult to predict for the running 

problem. First of all, the physics behind upper-body motion is not yet completely 

understood. Second, upper-body motion varies depending on input parameters such as 

running speed or backpack weight. For these reasons, it is very difficult to formulate the 

upper-body motion for running simulation. However, there is literature that can guide us 

on how to formulate upper-body motion. Kim et al. (2005) studied yawing moment 

cancelation and ZMP compensation for the humanoid robot (HanSaRam) to avoid the 

possible slipping on the ground caused by the yawing moment. So, they postulated that 

the upper-body motion of the robot should compensate for the yawing moment at the foot. 

This idea of compensation between yawing moment and upper-body motion is used in 

the current one-step running formulation.  

 

10.2. Formulation with Upper-Body Motion 

10.2.1. Design Variables 

 The design variables are the joint angle profiles q  parameterized using B-spline 

approximation. 

  :DV q  (10.1) 

The number of control points is 5 for each joint angle and the number of degrees of 

freedom is 55. Therefore, the total number of design variables is 275.  
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10.2.2. Performance Measure 

 The performance measure can be modified to predict the upper-body motion. The 

idea is that the upper-body motion should compensate for the ground reaction moment 

during the running motion. In other words, if we minimize the ground reaction moment 

about the vertical axis, we can predict the upper-body motion that compensates for the 

ground reaction moment.  

 The modified performance measure for upper-body motion is  

  I I Y Yf w f w f w f     (10.2a) 

where  

  T

0

T
f dt   τ τ  (10.2b) 

  T
I strk strkf  I I  (10.2c) 

  2

0

T

Y yGRFf M dt   (10.2d) 

wτ, wI, wY are the weight values, Istrk is the impulse at foot strike, and MyGRF is the ground 

reaction moment about the y-axis (vertical axis).  

 

10.2.3. Constraints 

 The constraints for the upper-body motion formulation are as follows: 

1) Joint angle limits  

2) Joint torque limits  

3) Ground penetration constraint 

4) Foot location constraint - ground contact points  
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5) Initial posture constraint of foot location - initial rear heel position 

6) No slip constraint  

7) ZMP constraint during support phase 

8) Arm-leg coupling constraint 

9) Symmetry condition  

The constraints for upper-body motion formulation are the same as for the normal 

running formulation in Chapter 7 except arm-leg coupling constraint. However, the 

ranges of the task-specific joint angle limits are different. Some of the degrees of freedom 

were frozen in the previous formulation. In this chapter, the ranges of the joint angle 

limits of the spine, shoulder, and elbow are relaxed for the upper-body motion 

formulation. Therefore, 44 active degrees of freedom are used for this formulation. 

Modified task-specific joint angle limits are listed in Table 10.1.  
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Table 10.1 Modified task-specific joint angle limits (degrees) 

DOF 
Without upper-body 

formulation 
With upper-body 

formulation Motion direction 

Lower Upper Lower Upper 

Q06 -1.0 1.0 -15.0 15.0 

Spine  

Joint2 twist 

Q09 -1.0 1.0 -15.0 15.0 Joint3 twist 

Q12 -1.0 1.0 -15.0 15.0 Joint4 twist 

Q15 -0.5730 0.5730 -10.0 -0.5730 
Right  

shoulder 

Abduction/adduction 

Q16 -1.0 1.0 -30.0 30.0 Extension/flexion 

Q17 -6.5 -5.5 -6.5 6.5 Internal/external rotation 

Q18 -91.0 -89.9427 -120.0 -89.9427 Right elbow Flexion/extension 

Q24 -0.5730 0.5730 -10.0 -0.5730 
Left 

shoulder 

Abduction/adduction 

Q25 -1.0 1.0 -30.0 30.0 Extension/flexion 

Q26 -6.5 -5.5 -6.5 6.5 Internal/external rotation 

Q27 -91.0 -89.9427 -120.0 -89.9427 Left elbow Flexion/extension 

 

 

 Arm-leg coupling constraint: It is considered that the arm swing motion helps 

running motion in terms of efficiency and comfortableness. In general, the left arm 

moves forward while the right leg moves forward, and the left arm moves backward 

while the right leg moves backward. Therefore, we constrain these arm-leg coupling 

directions in the sagittal plane (z-y plane) for upper-body motion. Figure 10.1 depicts the 

arm-leg coupling motion. r1 is the vector from left shoulder joint to left elbow joint, r2 is 

the vector from right hip joint to right knee joint, and nz is the unit vector along z-

direction.  
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  Figure 10.1 Arm-leg coupling motion 

 

Then, the arm-leg coupling constraint is 

  · · 0 (10.3) 

Note that the arm-leg coupling constraint has no relationship to obtain the swing angles 

of arm motion. It constrains only the swing direction of arm and the optimization process 

determines the swing angles. 

 

10.3. Results 

10.3.1. Comparison of Formulations 

 The total number of constraints is 1,060. Figures 10.2 and 10.3 are snapshots of 

the simulation for 3.0 m/s running with upper-body motion formulation. Step length is 

1.096 m. Intel Core Duo 3.16 GHz CPU is used to obtain optimal solution. The number 

of iterations for obtaining the feasible point is 21 and the CPU time is 417 seconds. The 

number of iterations for the optimal point is 500, and the CPU time is 297 seconds.  
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Figure 10.2 Snapshot with upper-body motion formulation 

 

 

Figure 10.3 Snapshot with upper-body motion formulation – top view 
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Figure 10.4 Snapshot without upper-body motion formulation 

 

 

Figure 10.5 Snapshot without upper-body motion formulation – top view 

 

The weight values in the performance measure are set to 1.0 for the torque square term, 
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0.5 for the impulse term, and 1.0×105 for the yawing moment term. As mentioned in 

Chapter 8, these values are determined by numerical experimentation. The performance 

measure value is 11,079. In Figure 10.3, the shoulder is rotating in the opposite direction 

of the legs or lower body. The active constraints are joint angle limits (spine, elbow and 

toe), joint torque limits (ankle), ground penetration, no slip, ZMP, foot location, arm-leg 

coupling and symmetry condition constraints. 

 Figures 10.4 and 10.5 are snapshots of the simulation from without upper-body 

motion formulation. In this case, the performance measure is the dynamics effort and 

impulse without yawing moment term which is the same as used in Chapter 8. The arm-

leg coupling constraint is not included. However, the task-specific joint angle limits in 

Table 10.1 are used in this case. The active constraints are joint angle limits (elbow), 

ground penetration, no slip, foot location, and symmetry condition constraints. From the 

results, we can see that the right arm moves forward while the right leg moves forward, 

and the left arm moves backward while the left leg moves backward. Then, left right arm 

moves forward while the left leg also moves forward, and the right arm moves backward 

while the right leg also moves backward. This is opposite of what the natural motion 

should be. Therefore, the upper-body motion is not natural without the upper-body 

motion formulation.  

 Figures 10.6 and 10.7 show the knee joint angle profiles, the vertical ground 

reaction force results, and their comparisons with the results from without upper-body 

motion formulation (Figures 10.4 and 10.5). The trends of the results are similar to each 

other.  
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Figure 10.6 Knee joint torque profiles 

 

 

Figure 10.7 Vertical ground reaction force 

 

Table 10.2 shows the comparison of the number of active degrees of freedom, the number 

of iterations, the performance measure values, the components values of the performance 

measure, the number of active constraints, peak value of knee joint torque, and peak 
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value of ground reaction forces.  

 

Table 10.2 Comparison of results 

Case 

With upper-body 

motion 

formulation 

Without upper-

body motion 

formulation 

Normal running 

with weapon 

Active DOF 44 44 33 

Number of iteration 500 162 28 

Performance measure 11,079 12,391 12,168 

Joint Torque part (fτ) 8742 10,059 9,930 

Impulse part (fI) 4672 4,664 4,475 

Yawing moment part (fY) 4×10-6 125.80 67.57 

Active constraints 146 121 169 

Peak of knee torque (Nm) -134.3013 -120.693656 -135.7226 

Peak of 

GRF 

(N) 

Vertical 891.06 864.17 1041.78 

Forward (FS/TO) -289.89 / 372.23 -420.46 / 313.13 -428.78 / 376.22 

Lateral 74.14 140.46 134.13 

 

 

Note that the yawing moment part of the performance measure in upper-body motion 

formulation is almost zero, implying that the ground reaction moment about the y-axis 

(vertical axis) is almost zero. In the other cases there is a large ground reaction moment 

about the y-axis. 
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10.3.2. Cause and Effect Case Study – Foot Locations 

 In this section, we study the effect of foot location from the center line of running, 

and determine if the foot location has an effect on natural running motion. Then, we can 

use the good results from this study in the later studies.  

 

 

Figure 10.8 Foot locations in running 
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Figure 10.8 depicts the different foot location cases for the running formulation. Df in 

Figure 10.8 (a) is the distance between the centerlines of foot and running direction. 

Figure 10.8 (b) is the case that the foot is located on the center line of running direction 

(Df = 0.0m). Figures 10.9 and 10.10 are snapshots of running at 3.7 m/s with Df as 0.06m 

and 0.0m, respectively.  

 

 

Figure 10.9 Snapshot of running at Df = 0.06m 

 

 

Figure 10.10 Snapshot of running at Df = 0.0m 
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Figure 10.11 is snapshot of the results where Df as 0.085m in Figure 10.8 (a).  

 

 

Figure 10.11 Snapshot of running at Df = 0.085m 

 

 As an extreme case, Df of 0.35m is specified. The optimization algorithm reports 

an infeasible problem with this constraint. The violated constraints are ZMP, foot 

location, and joint torque limits. For joint torque limit constraints, spine joint, right and 

left hip joints are violated. However, when the joint torque limits are relaxed to double of 

their normal values for all joints, optimal solution is found. Then, the active constraints 

are joint angle limits (right and left ankle), ground penetration, no slip, ZMP, foot 

location, arm-leg coupling, and symmetry condition constraints. Figure 10.12 is snapshot 

of the results. We can observe that the upper body is leaning toward to the next step for 

the stability in this case.  
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Figure 10.12 Snapshot of running at Df = 0.35m 

 

 We can observe that the motion in Figure 10.9 is quite natural. Also, we can note 

that the hip is rotating too much when Df as 0.0m in Figure 10.10. And the leg swings 

outward where Df as 0.085m in Figure 10.11. Therefore, we can use Df as 0.06m for later 

studies. Table 10.3 contains summary of results in this cause and effect case study – the 

foot locations. 
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Table 10.3 Summary of results – foot locations case study (running speed = 3.7 m/s) 

Case Df = 0.06m Df = 0.0m Df = 0.085m Df = 0.35m 

Number of iteration 24 201 359 85 

Performance measure 15,921 19,466 15,624 45,662 

Active constraints 191 189 207 144 

Peak knee torque (Nm) -200.10 -189.45 -192.70 -253.62 

Peak  

GRF 

(N) 

Vertical 944.41 974.18 880.11 1163.61 

Forward 

(FS/TO) 

-475.24 / 

349.73 

-382.55 / 

352.98 

-422.25 / 

304.18 

-100.52 / 

887.73 

Lateral 208.77 208.91 174.32 -759.90 

 

 

10.3.3. Cause and Effect Case Study – Backpack Load 

 Figure 10.13 is snapshot of running without backpack. Figure 10.14 is snapshot of 

running with backpack (500N). The running speed is 3.0 m/s. We can observe that the 

upper body leans more toward running direction when backpack is carried.  
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Figure 10.13 Snapshot of running without backpack 

 

 

Figure 10.14 Snapshot of running with backpack (500N) 

 

 Figure 10.15 is a comparison of the knee joint torques for the cases without 

backpack and with backpack. We can see that when the backpack is loaded, the larger 

actuation torque is needed at the knee in the support phase.  

 



175 

  

 

Figure 10.15 Knee joint torque comparison 

 

 

Figure 10.16 Vertical ground reaction force comparison 

 

Figure 10.16 shows the vertical ground reaction force comparison for the cases without 

backpack and with backpack. We can see that larger ground reaction force acts at the foot 

strike compared to the mid-support and toe off phases.  
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 As an extreme case, when 600N backpack is loaded, the optimization algorithm 

reports infeasible problem. The violated constraints are fourth spine joint torque limit, 

right and left knee joint torque limits. The active constraints are joint angle limits (knee, 

ankle, spine tilt), ground penetration, no slip, ZMP, foot location, arm-leg coupling and 

symmetry condition. However, when the joint torque limits are relaxed to double of their 

normal values for all joints, optimal solution is found. Table 10.4 shows the comparison 

of results in the cause and effect case study – the backpack load. In most cases, active 

constraints are the ground penetration, no slip, foot contact, ZMP, joint angle limits 

(spine, wrist, elbow, clavicle,), joint torque limits (ankle), arm-leg coupling, and 

symmetry conditions.  

 

Table 10.4 Summary of results - backpack load case study (running speed = 3.0 m/s) 

Case No backpack 500N backpack 600N backpack 

Number of iteration 500 478 352 

Performance measure 11,079 15,324 15,492 

Active constraints 146 177 195 

Peak knee torque (Nm) -134.3013 -231.1568 -351.8215 

Peak 

GRF 

(N) 

Vertical 891.06 1539.56 1619.18 

Forward 

(FS/TO) 
-289.89 / 372.23 -572.77 / 222.90 -449.65 / 348.80 

Lateral 74.14 -135.51 -230.29 
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10.3.4. Cause and Effect Case Study – Running Speed 

 Figure 10.17 shows the knee joint torques with different running speeds, 3.0 m/s, 

3.5 m/s, and 4.0 m/s respectively. From the figure, we can observe that the peak value of 

joint torque gets larger when the running speed increases.  

 

 

Figure 10.17 Knee joint torque in different running speed 

 

Figure 10.18 shows the vertical ground reaction force for different running speeds. Also, 

it is observed that the peak value of ground reaction force gets larger when the running 

speed increases. 
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Figure 10.18 Vertical ground reaction force in different running speed 

 

 Common active constraints for all the cases are the ground penetration, no slip, 

foot contact, ZMP, arm-leg coupling, and symmetry conditions. For 3.0 m/s, spine, elbow, 

and toe joint angle limit constraints and the ankle torque limit constraint are active. For 

3.5 m/s, spine, elbow, shoulder, hip joint, knee, and toe joint angle limit constraints and 

the knee joint torque limit constraint are active. For 4.0 m/s, spine, elbow, shoulder, hip 

joint, knee, and toe joint angle limit constraints and the hip and knee joint torque limit 

constraints are active.Table 10.5 shows the summary of results in the cause and effect 

case study – the running speed.  
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Table 10.5 Summary of results – running speed case study 

Case 3.0 m/s 3.5 m/s 4.0 m/s 

Number of iteration 500 324 354 

Performance measure 11,079 13,665 20,713 

Active constraints 146 191 189 

Peak knee torque (Nm) -134.30 -161.39 -240.30 

Peak  

GRF 

(N) 

Vertical 891.06 967.12 1007.02 

Forward 

(FS/TO) 
-289.89 / 372.23 -470.87 / 369.99 -361.41 / 383.39 

Lateral 74.14 162.03 243.43 

 

 

Figure 10.19 shows the performance measure values for different running speeds. We can 

observe that the performance measure value gradually increases when the running speed 

increases. 
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Figure 10.19 Performance measure values in different running speed 

 

 As an extreme case, when running speed is 3.0 m/s, the joint torque limits are 

reduced to half of their normal values for all joints. Then, the optimization algorithm 

reports infeasible problem. The violated constraints are foot location, no slip, ZMP, and 

joint torque limits. For joint torque limit constraints, spine, right and left hip, left ankle, 

right knee joint torque limits are violated. However, when the joint torque limits are 

reduced by just one fourth of their normal values, the optimization algorithm could find 

optimal solution.  

 

10.4. Validation 
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running speeds. These results are normalized for the running cycle. The running speed of 

simulation is 3.0 m/s. Figure 10.20 shows the validation results. 

 In Figure 10.20, the blue dotted curves are 95% confident region of the statistical 

means, the black curves are mean value of experimental data, and the red curves are the 

simulation results. Pelvic displacement is the displacement of lateral pelvic movement. In 

general, the trend of red curves (simulation) follows the experimental results.  

 

Figure 10.20 Validation – six determinants 
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10.5. Discussion 

 In this chapter, the upper-body motion has been investigated. A performance 

measure and arm-leg coupling constraint have been proposed to predict upper-body 

motion for running. The ground reaction motion is minimized in the performance 

measure so that we can predict the upper-body motion that compensates for the ground 

reaction moment. Also, task-specific joint angle limits are changed. In the previous 

chapter, 22 degrees of freedom were frozen and 33 active degrees of freedom were used 

for the running simulation. In this chapter, 44 active degrees of freedom are used. With 

the upper-body motion formulation, simulation results for running motion have improved 

and have become more natural. The upper-body motion has been improved. Results show 

that the shoulder is rotating in the opposite direction from the lower-body movement. 

Also, the right arm moves backward while the right leg moves forward, and the left arm 

moves forward while the left leg moves backward. However, the formulation for the 

upper-body motion still needs to be improved because the yawing motion is smaller than 

what is typical for a human. Possible reasons for the small yawing motion are 

approximated mass moment of inertia properties.  
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CHAPTER 11 

STUDY OF SPARSITY OF THE FORMULATION 

 

11.1. Motivation 

 The purpose of this chapter is to study how the sparsity of the Jacobian matrix of 

the current formulation affects the calculation time of the optimization process. If the 

Jacobian is very sparse, we may have the opportunity to reduce the calculation time. As 

mentioned in Chapter 8, we have used the NPOPT optimization solver, which is for dense 

optimization problems, for all the problems. There are a couple of other solvers in 

SNOPT that take advantage of the sparsity structure of the problem. The SNOPT B 

interface has the capability to handle the sparsity, so we can analyze effect of the sparsity 

using the SNOPT B solver.  

 

11.2. Sparsity of the Formulation 

11.2.1. SNOPT B Interface 

 SNOPT B (also known as SNOPT) has the capability for sparsity, but there are 

some limitations in its use. The constraints must be ordered in a specific way. Therefore, 

it is difficult to add or delete constraints. Also, indexing of the arrays is complex and 

therefore error prone. The solver was originally developed in Fortran, so even though we 

are using library files that have been converted from Fortran to C interface, the Fortran 

style for indexing of arrays must be used. For example, the indices of the array itself start 

at zero (as in C interface), but the coordinates of the elements or contents of the indicator 

start at one (as in Fortran).  
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 In SNOPT B, only non-zero values in Jacobian are stored as a column vector. So, 

we need a separate generalized module that indicates the non-zero values in the Jacobian 

of the current formulation. Figure 11.1 depicts the algorithms that show the differences 

between NPOPT solver and SNOPT B solver.  

 

 

Figure 11.1 Algorithms for NPOPT solver and SNOPT B solver 

 

Subroutines for the objective function, constraint functions, and non-zero indicator (red 

highlighted part) are modeled and implemented to study the sparsity of the formulation 

with SNOPT B interface.  
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11.2.2. Formulation 

 The running formulation to study sparsity structure of the problem is defined as 

follows: 

11.2.2.1. Design variables 

 The design variables are the joint angle profiles q  parameterized using B-spline 

approximation.  

  :DV q  (11.1) 

The number of control points is 5 for each joint angle and the number of degrees of 

freedom is 55. Therefore, the total number of design variables is 275. 

11.2.2.2. Performance measure 

 The dynamic effort is used for the performance measure: 

  
0

T Tf dt  τ τ  (11.2) 

11.2.2.3. Constraints 

 All constraints are treated as non-linear constraints in the previous formulation. 

However, the joint angle limit constraints are separated as linear constraints in the 

SNOPT B interface to improve the efficiency of optimization. The order of constraints is 

important because non-linear constraints must come first in SNOPT B. Table 11.1 shows 

the list of constraints. Constraints on the joint torques are not included in this study. 
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Table 11.1 List of constraints in SNOPT B interface 

Order of constraints In SNOPT B 

1. Ground penetration 

Treated as non-linear constraints 
2. No slip constraints 

3. ZMP constraints 

4. Foot contacting position 

5. Joint angle limit constraints Treated as linear constraints 

 

 

 The sparsity in the formulation only exists in the joint angle limit constraints. The 

reason is that DH transformation matrices are involved in the non-linear constraints and 

they contain sinusoidal functions. Therefore, it is almost impossible to indicate non-zero 

value location in the subroutine for non-zero indicator. Thus, in the formulation, linear 

constraints (385) are treated as sparse and non-linear constraints (161) are treated as 

dense. 

 

11.3. Results and Discussion 

 The SNOPT B solver and NPOPT solver are used for the normal running problem 

with the same conditions – running speed, performance measure, constraints, and starting 

points for optimization. Table 11.2 shows CPU time with the SNOPT B and NPOPT 

solvers. It is seen that that the calculation time is not improved when the SNOPT B solver 

is used. Table 11.3 shows that sparsity of the formulation is 69%. 
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Table 11.2 CPU times with SNOPT B and NPOPT solvers 

Solver CPU time 

SNOPT B 286.33 seconds 

NPOPT 222.62 seconds 

 

 

Table 11.3 Number of non-zero entries in the Jacobian 

The number of constraints 546 

The number of element in Jacobian 150150 

The number of non-zero element in Jacobian 46200 (31% of total) 

 

 

 If the torque limit constraints are included, the sparsity will be 41%. In general, it 

is believed that 90% sparsity can improve calculation time. The results show that the 

sparsity of the formulation with SNOPT B does not improve the calculation time. 

Furthermore, it becomes quite tedious to modify the model, i.e., add and delete 

constraints. Therefore, it is not beneficial to use the sparsity of the formulation with 

SNOPT B for the current optimization formulation of the problem.  
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CHAPTER 12 

CONCLUSIONS AND FUTURE RESEARCH 

 

12.1. Conclusions 

 The optimization-based dynamic prediction of 3D human running motion has 

been studied in this dissertation. The predictive dynamics method is used to formulate the 

running problem. An algorithm based on the sequential quadratic programming approach 

is used to solve the nonlinear optimization problem. And analytical gradients for the 

optimization process are calculated. Denavit-Hartenberg method is used for kinematics 

analysis. The recursive Lagrangian formulation is used for the equations of motion which 

is derived using the energy methods. B-spline interpolation is used for time discretization. 

The control points for the joint angle profiles are treated as design variables. The 

dynamic effort is used as the performance measure. A minimal set of constraints is 

imposed in the formulation of the problem to simulate natural running motion. Zero 

moment point (ZMP) constraint is used for the dynamic stability in the support phase. 

The impulse at the foot strike is included in the performance measure. The joint angle 

profiles, joint torque profiles are calculated for the full body human model. The ground 

reaction force is determined. Several cause and effect cases are studied such as backpack 

loading, range of motion restriction by armor component, and different running speed. In 

addition to straight running motion, slow jog along curves has been simulated. Also, the 

formulation for upper-body yawing motion has been proposed.  

 In conclusion, the proposed formulation can predict 3D human running motion. It 

can predict not only the displacement field such as joint angles but also the force field 
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such as joint torques and ground reaction forces. The results obtained with the 

formulation are validated with the experimental data. Furthermore, it is found that the 

current formulation is robust and gives natural motion of human running. 

 

12.2. Future Research 

 In future research, a shoe model with multi-body dynamics, wobbling masses 

effects, and a musculoskeletal model can be studied.  

 

12.2.1. Shoe Model with Multi-Body Dynamics 

 A shoe model is not included in the current running formulation; it is a bare foot 

of rigid body. However, humans almost always run with shoes, and the running motion 

will be affected by the shoes. Rigid shoes, soft shoes, heavy shoes, and light shoes would 

give different results in running because the shoes will tend to mitigate the impact effect 

during foot strike. To incorporate a shoe model, a multi-body dynamics approach 

combined with predictive dynamics could be used. In this case, the spring-damper system 

will be modeled as a shoe. Then, the external force due to this spring damper system can 

be applied to the predictive dynamics model. 

 

12.2.2. Wobbling Masses Effects and Musculoskeletal Model 

 We have used a rigid body assumption in the running formulation, and there is no 

muscle and tissue model. However, wobbling masses (muscles and tissues) effects are 

significant in human running. It affects not only kinematics results but also dynamics 

results. Therefore, a wobbling masses model should be included somehow in the future. 
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Also, a musculoskeletal model should be developed as a real human model for running so 

that muscle forces can be obtained instead of joint torques. Finally, a more accurate 

anthropometric data should be developed for better and more natural results in the 

running simulation. 
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APPENDIX 

OPTIMIZATION DATA FOR 3 m/s NORMAL RUNNING  

WITHOUT UPPER BODY MOTION 

 

Table A.1 Starting control points 

GT1 0.84997003562164 
1.10505412775351 
1.37614025787281 
1.89523918824184 
2.03231221436286 

GT2 0.00248269965752 
-0.02516060478073 
0.02611604661562 
-0.01832313795649 
-0.00348269965752 

GT3 0.01415504226172 
0.05225195792225 
0.09278364238798 
-0.00547480591221 
0.01499449996798 

GR1 -0.04090408915706 
-0.27994365560652 
0.20693633439651 
-0.08885394148351 
0.03990408915706 

GR2 0.01745329222222 
-0.01438840266169 
0.16285503887013 
0.03455440229962 
0.01745329222222 

GR3 -0.13603393060447 
0.09779866275732 
0.05584745896381 
0.26098820650552 
0.13503393060447 
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Table A.1 Continued 

Q01 0.02779463380737 
0.03629046001669 
0.05317403719813 
-0.02426437609294 
-0.02879463380709 

Q02 0.02405830736763 
0.04715079487682 
0.02385141070336 
0.01257947307967 
0.02505830736779 

Q03 0.04146602031833 
-0.25546273328432 
-0.02742594246914 
-0.20230631585966 
-0.04246602031833 

Q04 -0.00980251494296 
0.12849225999707 
-0.18868380544847 
0.08322451428133 
0.00880251494295 

Q05 0.01750041611122 
0.01750396941386 
0.01779623083139 
0.01745408485722 
0.01750041611104 

Q06 0.00389351834580 
0.05233670943638 
-0.07192656435848 
0.02123569479412 
-0.00489351834551 

Q07 -0.00882760589799 
0.12705829872377 
-0.18618803110858 
0.08095252121885 
0.00782760589799 
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Table A.1 Continued 

Q08 0.01750041611122 
0.01775575295685 
0.01865027848653 
0.01731850910349 
0.01750041611122 

Q09 0.01634106401306 
0.03642889597462 
-0.04014333197458 
-0.00656895704748 
-0.01734106401285 

Q10 0.03392527712166 
0.03068616168927 
0.06142246027132 
-0.03671383413772 
-0.03492527712173 

Q11 0.02016552716011 
0.05822614139738 
0.11186740215980 
0.00062693232618 
0.02116552716019 

Q12 0.01645329222222 
-0.00254992007598 
0.05043896948810 
-0.02773020908886 
-0.01745329222204 

Q13 0.00073422142605 
-0.00396546834093 
0.00565058209340 
-0.00256845286738 
0.00012126451915 

Q14 -0.00100007364433 
-0.00117679636369 
0.00410317894825 
-0.00171056857412 
-0.00100007364433 
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Table A.1 Continued 

Q15 0.00321605435117 
-0.03654969024377 
0.05374399415754 
-0.02361051797274 
-0.00218447154719 

Q16 -0.01745329222216 
0.01330097624474 
0.02735844701899 
0.00799012837539 
-0.01296715422291 

Q17 -0.10601903031049 
-0.11698374734004 
-0.11793325249362 
-0.08875711565113 
-0.10342823820177 

Q18 -1.57317968467760 
-1.60155229379731 
-1.57177715519754 
-1.59558462286753 
-1.57834102446559 

Q19 -0.00960188277943 
-0.02444874916919 
0.04881625856357 
-0.02216842224814 
-0.00373829758518 

Q20 -0.00240125533922 
0.03456947822747 
-0.04825614868724 
0.01827467485562 
0.01000073644333 

Q21 -0.00155119474744 
0.01729483410089 
0.00957276261733 
-0.01239223017500 
-0.01000073644333 
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Table A.1 Continued 

Q22 -0.00087873548085 
0.00403396349680 
-0.00560177933762 
0.00249603651076 
0.00000985226555 

Q23 -0.00100007364434 
0.00023692648510 
-0.00146055596251 
-0.00086049731997 
-0.00100007364432 

Q24 -0.00318447154719 
0.03652426707438 
-0.05371686486100 
0.02358867302212 
0.00222076694648 

Q25 -0.01196715422290 
-0.05080533145098 
0.08292313462048 
-0.03326173000546 
-0.01674615722953 

Q26 -0.10242823820177 
-0.12959211819850 
-0.08214997578584 
-0.10115936984698 
-0.10701903031049 

Q27 -1.57934102446559 
-1.54739968931642 
-1.62645761648575 
-1.55894654385785 
-1.57417968467760 

Q28 -0.00473829758518 
0.02940658633441 
-0.02513030858040 
-0.00205068786279 
-0.01000073644333 
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Table A.1 Continued 

Q29 0.00900073644333 
-0.00644763963393 
0.03542629977265 
-0.02135299135060 
-0.00140125533922 

Q30 -0.00971165108556 
-0.00535279603834 
0.03188540971329 
-0.01074347437201 
-0.00055119474744 

Q31 -0.00512092518627 
0.06665664197016 
0.00398837433402 
0.04272596648734 
0.00412092518627 

Q32 -0.08688684625306 
-0.08272839129289 
-0.08602879519123 
-0.08817043224582 
-0.08588684625331 

Q33 0.08726646111111 
0.07917043473994 
-0.01889435365353 
-0.09067027786344 
-0.08626646111118 

Q34 -0.00267409080677 
-0.10936405349131 
0.15613650707763 
-0.05381876857577 
0.00367409080677 

Q35 -0.00459819607796 
0.03758723056670 
-0.00658780922306 
-0.02635784374672 
-0.00359819607796 
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Table A.1 Continued 

Q36 -0.09964932974848 
0.26141790522039 
-0.78369537363484 
0.03383685433375 
-0.06011989356094 

Q37 0.40742890955931 
0.21826187620772 
-1.57040445642095 
-0.39519856191948 
-0.42692556572569 

Q38 0.16545332637954 
-0.15881906177663 
-0.46263215760096 
-0.27001069135906 
-0.14345508511251 

Q39 1.10927999914858 
1.66587605237633 
3.18698551122149 
-0.25261622355293 
0.17553292222222 

Q40 -0.20502270814461 
0.50175694481330 
-0.84368161355552 
1.02043490614325 
0.59986574233778 

Q41 -0.03956013761686 
-0.14534103527674 
0.07679735572825 
-0.03666231285970 
-0.04285445006652 

Q42 -0.48611918715936 
-2.15452204640424 
1.38606034198253 
-0.86705047225004 
-0.57838171074149 
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Table A.1 Continued 

Q43 -0.06111989356094 
-0.23552850633948 
0.29985201374256 
-0.29302573064080 
-0.09864932974841 

Q44 -0.42792556572569 
-0.48676465376848 
0.34943939997859 
0.50824366342699 
0.40642890955931 

Q45 -0.14445508511251 
0.09049426460520 
0.10333032107753 
0.34110595332373 
0.16645332637955 

Q46 0.17453292222222 
0.96974954054482 
-0.63013258779589 
0.81053001408902 
1.11027999914866 

Q47 0.59886574233778 
-0.18227376661255 
0.70868301179415 
-0.58455194949263 
-0.20402270814462 

Q48 -0.04248365125991 
-0.05406582509847 
-0.01254422443112 
0.01844322521394 
-0.03856013761685 

Q49 -0.57938171074149 
-0.04336507268005 
-1.11505553399342 
0.41329600114029 
-0.48511918715936 
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Table A.2 Optimum control points 

GT1 0.89538780050841 
1.13152618709349 
1.38893609636305 
1.86083683064535 
1.98813480780975 

GT2 -0.00976331011939 
-0.04479366427848 
0.03576995025107 
-0.01005655605143 
0.00876331011939 

GT3 -0.00631839005266 
0.01567300711992 
0.05413065581941 
-0.01738401075654 
-0.00558512142460 

GR1 -0.14272531280230 
-0.39084122306135 
0.28585760304941 
0.01008180582490 
0.14372531280230 

GR2 0.01745329222222 
-0.03350741778841 
0.20091277764065 
0.04485104231311 
0.01745329222222 

GR3 -0.14146225070588 
0.07068807542924 
0.08696234884286 
0.25473967392424 
0.14046225070588 

Q01 0.05218180108066 
-0.19459002357053 
0.03257167950421 
-0.18610156965393 
-0.05318180108076 
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Table A.2 Continued 

Q02 0.01750041611122 
0.01775421090483 
0.01761294515803 
0.01742834583720 
0.01760763679475 

Q03 0.06297176830462 
-0.06362026851431 
-0.07290134304350 
-0.13209407898452 
-0.06397176830456 

Q04 0.05734154794640 
0.32694612839502 
-0.21608298319729 
0.08678751699642 
-0.05834154794569 

Q05 0.01750041611096 
0.02050496009343 
0.01844458849774 
0.01683995251320 
0.01850041611091 

Q06 0.01645329222244 
0.02627744025446 
-0.02965212463635 
-0.01212073413652 
-0.01745329222244 

Q07 0.03151339620673 
0.44636396680906 
-0.23168083202578 
0.19091031249398 
-0.03251339620674 

Q08 0.01776217092438 
0.02156457934715 
0.01864659493204 
0.01667208801277 
0.01876217092449 
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Table A.2 Continued 

Q09 0.01156128056179 
-0.01757263348797 
0.01743462216583 
-0.02629140496493 
-0.01056128056176 

Q10 0.01724995264636 
-0.08938598089600 
0.07403000083437 
-0.07571193369943 
-0.01824995264640 

Q11 0.03625980631416 
0.08915823904690 
0.02523424711799 
0.00873340262044 
0.03725980631445 

Q12 0.01673967049056 
-0.01012210182482 
0.05855742366240 
-0.03024633395984 
-0.01573967049056 

Q13 0.00091103633109 
-0.00407524685492 
0.00568477640108 
-0.00257344823284 
0.00012221680274 

Q14 -0.00100007364424 
0.00012972025887 
0.00291778410183 
-0.00202001792245 
-0.00018763437118 

Q15 0.00321839292068 
-0.03655103260166 
0.05374405023368 
-0.02361018915746 
-0.00218513978677 
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Table A.2 Continued 

Q16 -0.01714369622087 
0.01516569554389 
0.02797579603647 
-0.00035887473655 
-0.01745329222222 

Q17 -0.11074282738309 
-0.08549306102488 
-0.14761144825775 
-0.08459941457216 
-0.10291497504657 

Q18 -1.57587204801162 
-1.61226026447457 
-1.53137670362639 
-1.60058094704015 
-1.58088589022197 

Q19 -0.00189733263878 
-0.03329221612178 
0.05245597128565 
-0.02316789116383 
-0.00272608632603 

Q20 -0.00306599330376 
0.03571915890796 
-0.05104912147682 
0.02094915233731 
0.00676653166953 

Q21 0.00392868587817 
0.01265737763051 
0.01488263005415 
-0.01477635571841 
-0.00855105828794 

Q22 -0.00087778319726 
0.00404927774126 
-0.00565909962204 
0.00255332582411 
-0.00008896366891 
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Table A.2 Continued 

Q23 -0.00100007364433 
0.00232375025189 
0.00058127275599 
-0.00136900180572 
-0.00080328346504 

Q24 -0.00318513978680 
0.03652506348836 
-0.05371837345467 
0.02359006674870 
0.00221839292074 

Q25 -0.01645329222222 
-0.04812089342519 
0.08242019303865 
-0.03349842879474 
-0.01614369622087 

Q26 -0.10191497504661 
-0.13585041322866 
-0.06049869206767 
-0.12338148764466 
-0.10974282738310 

Q27 -1.58188589022189 
-1.54538853025853 
-1.62850849255382 
-1.55732102521562 
-1.57687204801161 

Q28 -0.00372608632603 
0.03415809138804 
-0.04406086820359 
0.01396497239877 
-0.00289733263878 

Q29 0.00576653166937 
-0.02065179512690 
0.04866541762684 
-0.02299293825563 
-0.00206599330371 
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Table A.2 Continued 

Q30 -0.00955105828794 
0.00193103424109 
0.02306006428906 
-0.00172341894097 
0.00301927807128 

Q31 -0.02969430808868 
-0.03329476785321 
-0.03038988145438 
0.02671296676198 
0.02869430808849 

Q32 -0.08381693526199 
-0.07604776466440 
-0.08972608822292 
-0.08704296703706 
-0.08281693526199 

Q33 0.08581391253817 
0.06268965232758 
-0.03798499720602 
-0.09730806948948 
-0.08481391253817 

Q34 0.00768207463849 
-0.12252323520200 
0.17705607530711 
-0.07674999386868 
-0.00668207463864 

Q35 -0.00811662500546 
0.00942525347229 
-0.02399070211080 
-0.01660488410062 
-0.00711662500546 

Q36 0.03407355288516 
0.50522341192108 
-0.73095698096426 
-0.08289438885459 
-0.18573731516069 
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Table A.2 Continued 

Q37 0.61121128371901 
0.45291790365286 
-1.60761311404865 
-0.39299518791835 
-0.44953326154569 

Q38 0.19170901494200 
-0.17289335662749 
-0.29425633528547 
-0.24335947334807 
-0.11916743911679 

Q39 0.80122868550153 
1.41925819671311 
3.11414820696360 
-0.27074410283914 
0.20507540377296 

Q40 -0.32145370593117 
0.14993969980615 
-0.51388859131094 
1.13795210477267 
0.61654724050478 

Q41 -0.01974111426238 
-0.06590321774779 
0.02781842421357 
-0.00085754634061 
-0.00596138051892 

Q42 -0.72457694806582 
-2.04936727336890 
0.70500372896559 
-0.99888167931527 
-0.62694313203832 

Q43 -0.18673731516071 
-0.37765214703018 
0.43156797573884 
-0.21857989283478 
0.03507355288510 
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Table A.2 Continued 

Q44 -0.45053326154569 
-0.55545336701177 
0.18984154628230 
0.69540354845520 
0.61021128371903 

Q45 -0.12016743911679 
0.11039573604230 
0.08005693306543 
0.38907600108657 
0.19270901494200 

Q46 0.20407540377296 
1.08781937589440 
-0.34515790117474 
0.46940093185719 
0.80222868550134 

Q47 0.61554724050478 
-0.35285525297743 
0.97836030157116 
-0.57423829218258 
-0.32045370593117 

Q48 -0.00496138051892 
-0.01436075557965 
-0.05424538458800 
0.00615803522153 
-0.01874111426238 

Q49 -0.62594313203832 
0.06472071020561 
-1.36064306292761 
-0.01027094358668 
-0.72357694806582 
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Table A.3 Active constraints 

Active constraint Time (s) Lagr multiplier 

Joint limit global_rotate_x 0 9.7824E-03 

Joint limit spine_1_2 0 2.2812E-03 

Joint limit spine_2_2 0 2.0250E-03 

Joint limit right_clavicle_2 0 2.1842E-04 

Joint limit left_clavicle_2 0 1.0340E-03 

Joint limit spine_3_1 0.0792 -3.1286E-03 

Joint limit right_clavicle_1 0.0792 1.7424E-03 

Joint limit right_shoulder_1 0.0792 1.5412E-03 

Joint limit right_elbow_1 0.0792 6.3154E-04 

Joint limit right_elbow_2 0.0792 1.4363E-04 

Joint limit right_wrist_1 0.0792 -2.2833E-04 

Joint limit right_wrist_2 0.0792 -2.2276E-05 

Joint limit left_clavicle_1 0.0792 -2.3620E-03 

Joint limit left_shoulder_1 0.0792 -1.4652E-03 

Joint limit left_shoulder_2 0.0792 1.3197E-03 

Joint limit left_shoulder_3 0.0792 8.3414E-04 

Joint limit left_elbow_1 0.0792 -1.6342E-03 

Joint limit left_elbow_2 0.0792 -1.1947E-04 

Joint limit head_2_1 0.0792 4.6168E-04 

Joint limit right_clavicle_2 0.1583 -2.3792E-04 
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Table A.3 Continued 

Joint limit right_shoulder_2 0.1583 -1.7350E-03 

Joint limit left_clavicle_2 0.1583 -4.5130E-04 

Joint limit left_wrist_2 0.1583 -6.9214E-05 

Joint limit right_clavicle_1 0.2375 -2.6581E-03 

Joint limit right_shoulder_1 0.2375 -1.8904E-03 

Joint limit right_elbow_2 0.2375 -1.8131E-04 

Joint limit right_wrist_1 0.2375 1.1809E-04 

Joint limit left_clavicle_1 0.2375 8.0753E-04 

Joint limit left_shoulder_1 0.2375 9.3232E-04 

Joint limit left_elbow_1 0.2375 4.8875E-04 

Joint limit left_wrist_2 0.2375 -4.1186E-05 

Joint limit left_knee 0.2375 3.5847E-03 

Joint limit spine_1_2 0.2802 3.1036E-03 

Joint limit spine_2_2 0.2802 4.4268E-03 

Joint limit spine_3_2 0.2802 4.3339E-03 

Joint limit spine_3_2 0.2802 5.7777E-03 

Joint limit head_1_2 0.2802 9.8041E-04 

Joint limit spine_1_2 0.3228 6.7603E-03 

Joint limit spine_2_2 0.3228 3.0499E-03 

Joint limit spine_3_2 0.3228 2.1281E-03 

Joint limit spine_3_3 0.3228 2.7685E-03 
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Table A.3 Continued 

Joint limit spine_4_3 0.3228 1.4323E-03 

Joint limit right clavicle_1 0.3228 2.9841E-03 

Joint limit right clavicle_2 0.3228 8.4929E-04 

Joint limit right shoulder_1 0.3228 1.8377E-03 

Joint limit right shoulder_3 0.3228 -8.2682E-04 

Joint limit right_elbow_1 0.3228 1.2073E-03 

Joint limit right_elbow_2 0.3228 1.7394E-04 

Joint limit right_wrist_1 0.3228 -1.9130E-05 

Joint limit right_wrist_2 0.3228 8.3437E-05 

Joint limit left_clavicle_1 0.3228 -1.3365E-03 

Joint limit left_clavicle_2 0.3228 6.0432E-04 

Joint limit left_shoulder_1 0.3228 -1.5554E-03 

Joint limit left_shoulder_3 0.3228 4.9127E-04 

Joint limit left_elbow_1 0.3228 -8.5494E-04 

Joint limit left_wrist_1 0.3228 2.9739E-04 

Joint limit head_1_3 0.3228 7.7371E-05 

Joint limit left_ankle_1 0.3228 1.6640E-03 

Joint limit global_rotate_x 0.3654 2.3989E-03 

Joint limit spine_2_3 0.3654 1.1680E-03 

Joint limit right_shoulder_2 0.3654 2.5954E-03 

Ground penetration 0 -3.1974E-02 
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Table A.3 Continued 

Ground penetration 0.0792 -3.5833E-03 

Ground penetration 0.0792 5.0929E-02 

Ground penetration 0.0792 -1.7611E-02 

Ground penetration 0.1583 2.0897E-02 

Ground penetration 0.3654 -4.6264E-03 

Ground penetration 0.3654 -1.7257E-02 

No slip constraint 0 -2.0903E-02 

No slip constraint 0 -1.4112E-02 

No slip constraint 0.0792 -5.1721E-05 

No slip constraint 0.0792 -2.8788E-02 

No slip constraint 0.1583 -3.4695E-02 

No slip constraint 0.3654 -1.9707E-02 

No slip constraint 0.3654 9.9564E-15 

Foot location 0.0792 -3.7259E-01 

Foot location 0.3654 -1.1364E-02 

Initial rear heel position 0 -3.7856E-02 

Torque limit left_ankle_1 0.1583 -4.1415E-05 

Symm q global_trans_x 0 1.0076E-03 

Symm q global_rotate_z 0 -5.0680E-04 

Symm q global_rotate_y 0 1.5378E-02 

Symm q spine_1_1 0 6.0983E-03 
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Table A.3 Continued 

Symm q spine_1_2 0 -3.1469E-03 

Symm q spine_1_3 0 5.5009E-04 

Symm q spine_2_1 0 6.4966E-04 

Symm q spine_2_2 0 3.2699E-03 

Symm q spine_2_3 0 1.2387E-04 

Symm q spine_3_1 0 1.0953E-03 

Symm q spine_3_2 0 8.7787E-04 

Symm q spine_3_3 0 1.1207E-02 

Symm q spine_4_1 0 4.3543E-04 

Symm q spine_4_2 0 5.2742E-03 

Symm q right_clavicle_1 0 -3.9946E-04 

Symm q right_clavicle_2 0 -2.0285E-04 

Symm q right_shoulder_1 0 4.0611E-03 

Symm q right_shoulder_3 0 1.1830E-02 

Symm q right_elbow_1 0 2.4317E-03 

Symm q right_wrist_1 0 5.0117E-03 

Symm q right_wrist_2 0 3.4483E-03 

Symm q left_clavicle_2 0 -4.4704E-03 

Symm q left_shoulder_1 0 1.1893E-03 

Symm q left_shoulder_2 0 1.2475E-03 

Symm q left_shoulder_3 0 -1.3449E-03 
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Table A.3 Continued 

Symm q left_elbow_1 0 -1.0464E-03 

Symm q left_wrist_1 0 -1.0449E-03 

Symm q head_1_1 0 3.3266E-04 

Symm q head_1_2 0 -6.6836E-04 

Symm q head_1_3 0 -5.6923E-05 

Symm q head_2_1 0 1.5212E-04 

Symm q right_hip_1 0 1.8021E-03 

Symm q right_hip_3 0 1.0628E-03 

Symm q right_knee 0 -1.0659E-04 

Symm q right_ankle_1 0 -8.3438E-04 

Symm q right_ankle_2 0 1.2332E-03 

Symm q right_toe 0 7.1506E-05 

Symm q left_hip_1 0 1.9970E-05 

Symm q left_hip_2 0 6.4310E-05 

Symm q left_hip_3 0 1.8560E-04 

Symm q left_knee 0 3.8131E-04 

Symm q left_ankle_1 0 -5.5286E-04 

Symm q left_ankle_2 0 -1.4251E-04 

Symm q left_toe 0 3.1911E-04 

Symm v global_trans_y 0 -4.3310E-03 

Symm v global_rotate_z 0 -5.3951E-04 
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Table A.3 Continued 

Symm v global_rotate_x 0 3.6748E-03 

Symm v global_rotate_y 0 5.0364E-04 

Symm v spine_1_1 0 -1.5847E-04 

Symm v spine_1_2 0 1.2321E-03 

Symm v spine_1_3 0 -4.4475E-05 

Symm v spine_2_1 0 2.7693E-04 

Symm v spine_2_2 0 -2.7258E-05 

Symm v spine_2_3 0 -4.4886E-07 

Symm v spine_3_1 0 1.0670E-05 

Symm v spine_3_2 0 -5.8049E-06 

Symm v spine_4_3 0 1.0338E-04 

Symm v right_clavicle_2 0 1.9852E-05 

Symm v right_shoulder_1 0 -7.9663E-05 

Symm v right_shoulder_2 0 1.6681E-03 

Symm v right_shoulder_3 0 6.8531E-04 

Symm v right_elbow_1 0 -1.1558E-05 

Symm v right_elbow_2 0 1.6889E-03 

Symm v right_wrist_1 0 2.1134E-04 

Symm v right_wrist_2 0 7.6615E-05 

Symm v left_clavicle_1 0 1.4803E-03 

Symm v left_clavicle_2 0 -2.9351E-04 
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Table A.3 Continued 

Symm v left_shoulder_2 0 1.3170E-03 

Symm v left_shoulder_3 0 -1.8952E-04 

Symm v left_elbow_1 0 9.8427E-05 

Symm v left_elbow_2 0 -1.2531E-05 

Symm v left_wrist_1 0 2.4691E-05 

Symm v left_wrist_2 0 -8.9922E-05 

Symm v head_1_2 0 1.0674E-04 

Symm v head_1_3 0 4.3029E-06 

Symm v head_2_1 0 3.4824E-05 

Symm v head_2_2 0 1.0672E-06 

Symm v right_hip_1 0 1.2068E-04 

Symm v right_hip_2 0 9.7770E-05 

Symm v right_hip_3 0 4.2799E-05 

Symm v right_knee 0 -8.3998E-05 

Symm v right_ankle_1 0 -6.2447E-05 

Symm v right_ankle_2 0 1.2426E-04 

Symm v right_toe 0 2.9802E-06 

Symm v left_hip_1 0 2.9183E-05 

Symm v left_hip_2 0 9.9260E-06 

Symm v left_knee 0 4.1759E-04 

Symm v left_ankle_1 0 -3.7906E-05 
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Table A.3 Continued 

Symm v left_ankle_2 0 1.8023E-05 

Symm v left_toe 0 3.0074E-04 
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