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ABSTRACT 

The objectives of this study are (1) to develop an accurate and efficient fatigue 

analysis procedure that can be used in reliability analysis and reliability-based design 

optimization (RBDO) of composite wind turbine blades; (2) to develop a wind load 

uncertainty model that provides realistic uncertain wind load for the reliability analysis 

and the RBDO process; and (3) to obtain an optimal composite wind turbine blade that 

satisfies target reliability for durability under the uncertain wind load. The current 

research effort involves: (1) developing an aerodynamic analysis method that can 

effectively calculate detailed wind pressure on the blade surface for stress analysis; (2) 

developing a fatigue failure criterion that can cope with non-proportional multi-axial 

stress states in composite wind turbine blades; (3) developing a wind load uncertainty 

model that represents realistic uncertain wind load for fatigue reliability of wind turbine 

systems; (4) applying the wind load uncertainty model into a composite wind turbine 

blade and obtaining an RBDO optimum design that satisfies a target probability of failure 

for a lifespan of 20 years under wind load uncertainty.  

In blade fatigue analysis, resultant aerodynamic forces are usually applied at the 

aerodynamic centers of the airfoils of a blade to calculate stress/strain. However, in 

reality the wind pressures are applied on the blade surface. A wind turbine blade is often 

treated as a typical beam-like structure for which fatigue life calculations are limited in 

the edge-wise and/or flap-wise direction(s). Using the beam-like structure, existing 

fatigue analysis methods for composite wind turbine blades cannot cope with the non-

proportional multi-axial stress states that are endured by wind turbine blades during 

operation. Therefore, it is desirable to develop a fatigue analysis procedure that utilizes 

detailed wind pressures as wind loads and considers non-proportional multi-axial stress 

states in fatigue damage calculation. In this study, a 10-minute wind field realization, 

determined by a 10-minute mean wind speed V10 and a 10-minute turbulence intensity I10, 

is first simulated using Veers’ method. The simulated wind field is used for aerodynamic 
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analysis. An aerodynamic analysis method, which could efficiently generate detailed 

quasi-physical blade surface pressures, has been developed. The generated pressures are 

then applied on a high-fidelity 3-D finite element blade model for stress and fatigue 

analysis. The fatigue damage calculation considers the non-proportional multi-axial 

complex stress states. A detailed fatigue damage contour, which indicates the fatigue 

failure locally, can be obtained using the developed fatigue analysis procedure. As the 

10-minute fatigue analysis procedure is deterministic in this study, the calculated 10-

minute fatigue damage is determined by V10 and I10. It is necessary to clarify that the 

rotational speed of the wind turbine blade is assumed to be constant (12.1 rpm) and the 

pitch angle is fixed to be 0 degree for different wind conditions, since the rotational speed 

control and pitch angle control have not been considered in this study.  

For predicting the fatigue life of a wind turbine, a fixed Weibull distribution is 

widely used to determine the percentage of time the wind turbine experiences different 

mean wind speeds during its life-cycle. Meanwhile, fixed turbulence intensities are often 

used based on the designed wind turbine types. These simplifications, i.e., fixed Weibull 

distribution and fixed turbulence intensities, ignore the realistic uncertain wind load when 

designing a reliable wind turbine system. In the real world, both the mean wind speed and 

turbulence intensity vary constantly over one year, and their annual distributions are 

different at different locations and in different years. Thus, it is necessary to develop a 

wind load uncertainty model that can provide a realistic uncertain wind load for 

designing reliable wind turbine systems. In this study, 249 groups of measured wind data, 

collected at different locations and in different years, are used to develop a dynamic wind 

load uncertainty model. The dynamic wind load uncertainty model consists of annual 

wind load variation and wind load variation in a large spatiotemporal range, i.e., at 

different locations and in different years. The annual wind load variation is represented 

by the joint probability density function of V10 and I10. The wind load variation in a large 

spatiotemporal range is represented by the probability density functions of five 
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parameters, C, k, a, b, and τ, which determine the joint probability density function of V10 

and I10.  

In order to obtain the RBDO optimum design efficiently, a deterministic design 

optimization (DDO) procedure of a composite wind turbine blade has been first carried 

out using averaged percentage of time (probability) for each wind condition. A wind 

condition is specified by two terms: 10-minute mean wind speed and 10-minute 

turbulence intensity. In this research, a probability table, which consists of averaged 

probabilities corresponding to different wind conditions, is referred as a mean wind load. 

The mean wind load is generated using the dynamic wind load uncertainty model. During 

the DDO process, the laminate thickness design variables are tailored to minimize the 

total cost of composite materials while satisfying the target fatigue lifespan of 20 years. It 

is found that, under the mean wind load condition, the fatigue life of the initial design is 

only 0.0004 year. After the DDO process, even though the cost at the DDO optimum 

design is increased by 31.5% compared to that at the initial design, the predicted fatigue 

life at the DDO optimum design is significantly increased to 19.9995 years. Reliability 

analyses of the initial design and the DDO optimum design have been carried out using 

the wind load uncertainty model and Monte Carlo simulation. The reliability analysis 

results show that the DDO procedure reduces the probability of failure from 100% at the 

initial design to 49.9% at the DDO optimum design considering only wind load 

uncertainty. In order to satisfy the target 2.275% probability of failure, it is necessary to 

further improve the fatigue reliability of the composite wind turbine blade by RBDO.  

Reliability-based design optimization of the composite wind turbine blade has 

been carried out starting at the DDO optimum design. Fatigue hotspots for RBDO are 

identified among the laminate section points, which are selected from the DDO optimum 

design. Local surrogate models for 10-minute fatigue damage have been created at the 

selected hotspots. Using the local surrogate models, both the wind load uncertainty and 

manufacturing variability has been included in the RBDO process. It is found that the 
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probability of failure is 50.06% at the RBDO initial design (DDO optimum design) 

considering both wind load uncertainty and manufacturing variability. During the RBDO 

process, the normalized laminate thickness design variables are tailored to minimize the 

total cost of composite materials while satisfying the target 2.275% probability of failure. 

The obtained RBDO optimum design reduces the probability of failure from 50.06% at 

the DDO optimum design to 2.28%, while increasing the cost by 3.01%.  
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PUBLIC ABSTRACT 

This research aims to design fatigue-reliable and cost-effective composite wind 

turbine blades to reduce the cost of wind energy. In order to achieve this goal, several 

challenges have been taken on, including development of an accurate fatigue analysis 

procedure, development of a realistic wind load uncertainty model, and development of 

an optimum blade design that minimizes cost and satisfies the reliability requirement 

under uncertain wind load. 

The fatigue analysis procedure developed in this research calculates the detailed 

10-minute fatigue damage of a composite wind turbine blade under a wind condition that 

is specified by two terms: 10-minute mean wind speed and 10-minute turbulence 

intensity. The former is an average wind speed, and the latter represents wind speed 

fluctuation over a period of 10 minutes. 

To calculate fatigue damage in the long term, a joint distribution of the 10-minute 

mean wind speed and the 10-minute turbulence intensity is used to account for the 

variable wind load over one year. Furthermore, a wind load uncertainty model is 

developed to account for annual wind load variation and wind load variation during 

different years and at different locations.  

Using the wind load uncertainty model, a reliability analysis method considering 

wind load certainty is developed. In order to design a blade for a 20-year fatigue life, a 

deterministic design optimization procedure without considering wind load uncertainty is 

first developed. Reliability-based design optimization is then implemented to further 

reduce the probability of fatigue failure considering wind load uncertainty. Finally, the 

optimum blade design is obtained.    
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CHAPTER 1 

INTRODUCTION 

This study presents new methods in reliability-based design optimization (RBDO) 

of composite wind turbine blades for fatigue life under wind load uncertainty. First, a 10-

minute fatigue analysis procedure, which includes wind field simulation, aerodynamic 

analysis, stress analysis using finite element analysis (FEA), and fatigue damage 

evaluation based on fatigue test data, is developed. In the 10-minute fatigue analysis 

procedure, the simulated wind field is determined by a 10-minute mean wind speed and a 

10-minute turbulence intensity. The simulated wind field is used in the aerodynamic 

analysis, which efficiently calculates wind pressure on a wind turbine blade surface for 

FEA. Through FEA, the wind pressure results in non-proportional multi-axial complex 

stress states in the wind turbine blade, which has been considered in the 10-minute 

fatigue analysis. The result of the 10-minute fatigue analysis, the 10-minute fatigue 

damage, is a deterministic function of the 10-minute mean wind speed and the 10-minute 

turbulence intensity. In order to investigate the reliability analysis and RBDO of 

composite wind turbine blades for a designed lifespan, e.g., 20 years, it is necessary to 

consider an uncertain wind load. Thus, a dynamic wind load uncertainty model is 

developed to take account of annual wind load variation and wind load variation in a 

large spatiotemporal range, i.e., in different years and at different locations. Based on the 

developed wind load uncertainty model, a mean wind load is generated and applied in the 

deterministic design optimization (DDO) of a composite wind turbine blade. Assuming 

the mean wind load continues for 20 years, the DDO optimum design satisfies the 

constraint of the 20-year fatigue lifespan. However, the reliability analysis results of the 

DDO optimum design under the wind load uncertainty show that the probability of 

fatigue failure is around 50%, which does not satisfy the target reliability requirement. 

Thus, starting at the DDO optimum design, RBDO of the composite wind turbine blade is 
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then carried out to design a cost-effective wind turbine blade, which satisfies the target 

reliability requirement. 

In Section 1.1, the background and motivation of this study are presented. Section 

1.2 provides the objectives of the proposed research, and Section 1.3 describes the 

organization of this thesis. 

1.1 Background and Motivation 

1.1.1 Reliability-Based Design Optimization 

Reliability-based design optimization has been well developed to obtain reliable 

and cost-effective designs of many engineering problems under various uncertainties. 

One of the applications is RBDO of fatigue-sensitive structures for which engineers 

would like to evaluate an accurate fatigue lifespan. By applying RBDO to the fatigue-

sensitive structures, their design could then be fine-tuned to reduce needless costs while 

satisfying the target reliability of fatigue performance. Therefore, as an expensive 

component in large wind turbine systems, designing fatigue-reliable wind turbine blades 

is one of the most necessary tasks in wind energy business. A cost-effective design of the 

blades reduces the initial investment, while a fatigue-reliable design saves maintenance 

cost of the wind turbine systems. Hence, RBDO can achieve both the reduction of initial 

investment and maintenance cost. 

Reliability-based design optimization is an optimization method based on 

reliability analysis. In each design iteration, RBDO requires reliability analysis of 

performance measures. Reliability analysis methods can be classified into two groups: (1) 

sensitivity-based methods and (2) sampling-based methods. The representative 

sensitivity-based methods include the first-order reliability method (FORM) (Hasofer and 

Lind, 1974; Tu et al., 1999; Haldar and Mahadevan, 2000; Tu et al., 2001), the second-

order reliability method (SORM) (Hohenbichler and Rackwitz, 1988; Breitung, 1984), 

and the dimension reduction method (DRM) (Rahman and Wei, 2006; Lee et al., 2010). 
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The FORM and SORM approximate a performance measure at the most probable point 

(MPP) using first- and second-order Taylor series expansion, respectively, and the DRM 

approximates a multi-dimensional performance function with a sum of lower-

dimensional functions to calculate the probability of failure. In order to find the MPP, the 

sensitivity (gradient) of performance function needs to be calculated. However, for many 

engineering applications, e.g., fatigue of wind turbine blades, accurate sensitivities of 

performance functions are not available. Therefore, in such applications, the sensitivity-

based methods, which require the sensitivities of performance functions to find the MPP, 

cannot be directly used. On the other hand, the sampling-based methods do not require 

the sensitivity of performance function to calculate the probability of failure. Instead, the 

sampling-based methods directly calculate the probability of failure using Monte Carlo 

simulation (MCS). However, the sampling-based methods could be computationally 

inefficient because the MCS may require thousands of analyses of a performance 

function.   

According to the reliability analysis methods, RBDO can be performed using 

sensitivity-based reliability analysis and sampling-based reliability analysis. Common 

sensitivity-based RBDO methods incorporate probabilistic constraints that can be 

evaluated using (1) the reliability index approach (RIA) and (2) the performance measure 

approach (PMA). The MPP in the RIA represents the probability of failure at the current 

design, while the MPP in the PMA represents the target probability of failure (Tu et al., 

1999). Both sensitivity-based RBDO methods require the design sensitivity of a 

probabilistic constraint at the MPP. The design sensitivities of probabilistic constraints 

require the sensitivity of the corresponding performance functions. Thus, the 

disadvantage of sensitivity-based reliability analysis methods, i.e., requiring sensitivity of 

performance function, still exists in the sensitivity-based RBDO methods. In order to 

handle complicated engineering problems, e.g., fatigue reliability of composite wind 

turbine blades, sampling-based RBDO methods are more appropriate because they do not 



 

 

4 

 

require sensitivity of performance measure. Moreover, the design sensitivity of 

probabilistic constraints has been developed for sampling-based RBDO without requiring 

sensitivity of performance measure (Lee et al., 2011a; Lee et al., 2011b). Due to the 

expense of MCS, which is used to estimate the probability of failure in sampling-based 

RBDO, surrogate models are often used to reduce computational cost. A challenge when 

using sampling-based RBDO in this study is developing an accurate surrogate model to 

replace complicated, nonlinear, and implicit fatigue damage analysis. 

1.1.2 Fatigue Analysis of Composite Wind Turbine Blades 

As the rated power of horizontal axis wind turbines (HAWT) increases into multi-

MW-size, both the initial investment and future maintenance cost of wind turbines 

increase significantly. Thus, it is of critical importance to design a reliable and cost-

effective blade, which is a key component of the wind turbine system, to sustain its 

mission for a lifespan of 20 years. Therefore, RBDO of modern composite wind turbine 

blades against fatigue failure becomes one of the challenging topics in wind energy 

nowadays. However, appropriate RBDO cannot be performed if it is not accompanied 

with an accurate fatigue analysis method for composite wind turbine blades. 

Fatigue analysis of composite wind turbine blades basically includes fatigue load 

calculation, blade stress/strain analysis, and composite fatigue analysis. The actual loads 

applied on a wind turbine consist of gravitational load; aerodynamic loads; inertia loads, 

including centrifugal and gyroscopic effects; and operational loads due to braking, 

yawing, blade pitch control, etc. Among these loads, the aerodynamic loads have a 

significant influence on fatigue of the wind turbine blade because it is the aerodynamic 

loads that drive the wind turbine to function over the entire lifespan. 

The current approaches for wind turbine aerodynamics include the simple blade 

element momentum (BEM) method, intermediate complex theories such as the vortex 

and panel methods, and the computational fluid dynamics (CFD) method (Hansen et al., 



 

 

5 

 

2006; Li et al., 2012; Li et al., 2015). The BEM method is currently a very common tool 

to achieve rapid simulations for the standard sets of calculations; thus, it is widely used in 

both academia and industry (Moriarty and Hansen, 2005). Grujicic et al. calculated the 

wind pressure by a 2-D aerodynamic analysis code, which solves the flow equations over 

an airfoil by implementing the boundary integral method, and directly applied the 

calculated wind pressure in the quasi-static structural analysis of a finite element (FE) 

blade model (Grujicic et al., 2010). However, the wind pressure calculated by Grujicic et 

al. did not consider the rotational effect of the wind turbine rotor. Griffith and Ashwill 

first calculated resultant aerodynamic forces at the aerodynamic centers using NREL’s 

FAST (Jonkman and Buhl, 2005) and then applied the aerodynamic forces to nodes near 

aerodynamic centers in the FE model (Griffith and Ashwill, 2011). This strategy easily 

connects the aerodynamic forces and FE model; however, it is not clear how best to 

transform loads from the aerodynamic centers to the structure of a 3-D blade. The CFD 

could calculate the detailed wind pressure along the blade surface. However, 

computational time for CFD is a significant hurdle that prevents CFD from being used in 

stochastic design calculations. In this study, an aerodynamic analysis method, which 

could efficiently generate detailed quasi-physical blade surface pressures, has been 

developed. 

For blade stress/strain analysis, a composite wind turbine blade is often treated as 

a typical beam-like structure (Griffith and Ashwill, 2011; Ronold et al., 1999; Ronold 

and Christensen, 2001; Kong et al., 2005; Kong et al., 2006). From simple beam theory, 

explicit equations have been applied to calculate the stress/strain of wind turbine blades 

as a function of wind loads. For example, Fossum et al. calculated the normal strain as a 

function of flapwise and edgewise bending moments and axial force (Fossum et al., 

2013). Winterstein and Veers described fatigue stress in terms of the root mean square 

(RMS) of the instantaneous stress, which was assumed to be an exponential function of 

wind speed (Winterstein and Veers, 2000). Ronold et al. calculated the stress range at the 
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root as a ratio between moment range and section modulus, while the moment range was 

calculated as a function of 10-minute mean wind speed and other parameters (Ronold et 

al., 1999; Ronold et al., 2001). Instead of predicting the fatigue life directly, Kong et al. 

(Kong et al., 2005; Kong et al., 2006) evaluated whether or not the fatigue life 

requirement was satisfied by comparing the calculated maximum stress and the allowable 

fatigue stress using Spera’s empirical equation (Spera, 1998). Experimentally measured 

wind loads have also been used in the blade structural analysis (Ragan and Manuel, 2007; 

Veers and Winterstein, 1997). One S-N curve was applied to calculate fatigue life in the 

edge-wise and flap-wise directions of the blade (Griffith and Ashwill, 2011). Even 

though the computational time of the above methods is small, there are three 

shortcomings: 

(1) The fatigue damage/life may not be investigated at a specific location on the wind 

turbine blade. The detailed fatigue damage/life contour of the blade may not be 

obtainable. 

(2) It needs to obtain stress/moment measurements to validate or generate the 

functional forms, or to fit a regression model. Thus, it is not appropriate for the 

early stages of blade design, since those measured data are usually not available. 

(3) Only limited S-N curves were used to calculate the allowable number of fatigue 

loads. Thus, the multi-axial complex stress states of the blade under complex 

loading conditions may not be considered in the fatigue analysis. 

In contrast, a full 3-D FE model could provide detailed fatigue analysis and 

indicate the fatigue failure at a specific location on the wind turbine blade. With the ever-

increasing computational capability, full-scale blade modeling for stress/strain analysis 

has become a trend in the design, manufacture, and evaluation of wind turbine blades 

(Veers et al., 2003). Previous research has emphasized the necessity for improved and 

detailed fatigue life modeling for reliable and optimal blade design (OPTIMAT 

BLADES, 2006; Mishnaevsky et al., 2012). 
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Using the obtained stress/strain of wind turbine blades, the composite fatigue 

analysis is carried out to evaluate the fatigue damage. Due to the complex and variable 

loading conditions, composite wind turbine blades bear non-proportional multi-axial 

complex stress states of variable amplitude and mean. Multi-axial fatigue failure criteria 

have been developed to take multi-axial fatigue into account for composite materials 

(Hashin and Rotem, 1973; Fujii and Lin, 1995; Philippidis and Vassilopoulos, 2002; 

Philippidis and Vassilopoulos, 2004; Vassilopoulos and Keller, 2011; Sun et al., 2012; 

Puck et al., 2002; Wei and Forte, 2010). However, most of the existing methods in the 

literature concentrate mainly on the introduction and validation of fatigue failure criteria 

suitable for constant-amplitude multi-axial proportional stress fields without addressing 

the problem of life prediction under irregular load spectra. In addition, limited 

experimental data and design guidelines addressing the complex stress state effect on the 

fatigue behavior of composite materials are available for non-proportional multi-axial 

loading. Harris stated that although there were techniques to cope with non-proportional 

multi-axial fatigue in metallic materials, no such theoretical or experimental studies were 

available for anisotropic composite materials (Harris, 2003). Liu and Mahadevan 

proposed a unified multi-axial fatigue damage model for isotropic and anisotropic 

materials and validated the model under proportional multi-axial stress within composite 

laminates (Liu and Mahadevan, 2007). In the absence of techniques that could solve non-

proportional multi-axial complex stress efficiently, composite wind turbine blades are 

treated by state-of-the-art design codes (e.g., IEC, 2005; Germanischer Lloyd, 2010), as a 

typical beam-like structure in which fatigue life calculations are limited in considering 

the normal stress component in the beam axis direction (Griffith and Ashwill, 2011; 

Ronold et al., 1999; Jonkman and Buhl, 2005; Ronold and Christensen, 2001; Fossum et 

al., 2013; Vassilopoulos, 2010). However, the transverse and shear stresses in the wind 

turbine blade should be considered because their great influence on fatigue damage/life 
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has been demonstrated in off-axis loading of glass fiber composites, which have 

proportional stress components (Philippidis and Vassilopoulos, 2002). 

1.1.3 Wind Load Uncertainty 

It is difficult to accurately predict reliability for the fatigue damage/life of 

composite wind turbine blades due to various uncertainties from material properties, the 

manufacturing process, and external loads. Among those uncertainties, wind load 

uncertainty is the most significant source of uncertainty affecting the fatigue reliability of 

wind turbine blades. Hence, a better understanding of the wind load uncertainty could 

facilitate the design of wind turbine blades that are more reliable than those designed 

without correctly considering the wind load uncertainty.  

In order to consider the wind load uncertainty, partial safety factors have been 

introduced in wind turbine standards (IEC, 2005; Germanischer Lloyd, 2010). 

Researchers applied the partial safety factors on wind load for design of wind turbine 

blades (Ronold et al., 1999; Ronold and Christensen, 2001; Kong et al., 2005; Kong et 

al., 2006). Although using the partial safety factors to account for the wind load 

uncertainty is convenient, the spatial and temporal wind load variation cannot be 

represented accurately. Another disadvantage of using the partial safety is that the 

produced design may be too conservative if unnecessary large safety factors are used. 

A number of studies have also applied probabilistic models for mean wind speed 

to characterize the annual wind load variation (Ronold et al., 1999; Ronold and 

Christensen, 2001; Shokrieh and Rafiee; 2006; Griffith and Ashwill, 2011; Manwell et 

al., 2009; Burton et al., 2001; Manuel et al., 2001; Messac et al., 2011; Carta et al., 

2009). One of the most widely used models is the two-parameter Weibull distribution, 

which is based on annual wind speed data. This distribution has been used to determine 

the percentage of time that the wind turbine experiences different mean wind speeds 

during its life cycle. Using this time percentage, the wind load and corresponding fatigue 
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damage can then be calculated for each mean wind speed. By accumulating the fatigue 

damage for each mean speed, the total damage and the fatigue life can be calculated 

based on the damage rules. However, by applying a fixed Weibull distribution, only 

deterministic fatigue life can be obtained because the assumed Weibull distribution is 

constant in different years. The fixed Weibull distribution based either on wind turbine 

standards (IEC, 2005; Germanischer Lloyd, 2010) or measured wind data over one year 

at a specific location cannot truly render the wind load uncertainty over a larger 

spatiotemporal range, for instance at different locations and in different years. 

Besides the mean wind speed, the fluctuations in the wind speed about the short-

term mean naturally have a major impact on the design loadings, as they are the source of 

extreme gust loads and a large part of the blade fatigue loading (Burton et al.,2011; 

Manwell et al., 2009). However, very few turbulence intensities are used in reliability 

analysis of wind turbines. Only three deterministic turbulence intensity levels are used to 

classify different wind turbine designs in the International Electrotechnical Commission 

(IEC) standard (IEC, 2005). Noda and Flay applied a single turbulence intensity when 

simulating the wind turbine blade fatigue damage in a typical New Zealand site, by which 

different sites are classified as either low- or high-intensity turbulence sites (Noda and 

Flay, 1999). In reality, the turbulence intensity should follow a certain distribution at a 

specific site. For example, Ronold et al. assumed the turbulence intensity followed a 

lognormal distribution (Ronold et al., 1999). Consequently, in order to facilitate the 

fatigue design of a wind turbine blade surviving under realistic uncertain wind load, both 

variations of wind speed and turbulence intensity have to be involved. Hu et al. identified 

the distribution of 10-minute turbulence intensity to be a log-logistic distribution and 

applied both the distributions of 10-minute mean wind speed and 10-minute turbulence 

intensity in reliability analysis of wind turbine blades for fatigue life (Hu et al., 2012a).  

As the wind load varies over a large spatiotemporal range, the wind turbines are 

expected to survive the uncertain wind load at different locations and in different years. 
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However, this level of wind load uncertainty has not been found in existing research or 

wind energy standards (IEC, 2005; Germanischer Lloyd, 2010). Fixed distribution for 

mean wind speed is still widely applied for fatigue life prediction, which assumes that the 

same mean wind speed distribution continues for the entire lifespan.  

In summary, the RBDO of composite wind turbine blades under wind load 

uncertainty should (1) accurately calculate fatigue damage under a wide range of wind 

conditions so that the following reliability analysis and RBDO procedure can be 

confidently carried out using the fatigue analysis procedure, (2) include a wind load 

uncertainty model that considers realistic uncertain wind load for fatigue reliability 

analysis and RBDO, (3) efficiently carry out reliability analysis under wind load 

uncertainty to estimate the probability of fatigue failure for a given design, and (4) use 

the advanced RBDO method to develop a composite wind turbine blade design that 

satisfies the target reliability requirement and minimizes the cost. 

1.2 Objectives of the Proposed Study 

The first objective of this study is to propose the fatigue analysis procedure, 

which includes wind fields simulation, aerodynamic analysis, stress analysis by finite 

element analysis (FEA), and fatigue damage evaluation based on tested fatigue data. 

Using the proposed fatigue analysis procedure, a 10-minute fatigue damage is determined 

by a 10-minute mean wind speed and 10-minute turbulence intensity. In this procedure, 

two key aspects have been specifically studied. One is efficiently generating quasi-

physical blade surface pressures for subsequent stress and fatigue analysis. The other is 

considering non-proportional multi-axial complex stress states when calculating 10-

minute fatigue damage. 

The second objective of this study is to propose a wind load uncertainty model 

that represents realistic uncertain wind load for fatigue reliability of wind turbines. There 

are 249 groups of wind data used for developing the wind load uncertainty model. The 
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proposed wind load uncertainty model considers annual wind load variation and wind 

load variation in a large spatiotemporal range. The annual wind load variation is 

represented by the joint probability density function (PDF) of 10-minute mean wind 

speed and 10-minute turbulence intensity. To accurately generate this joint PDF, the 

marginal PDF types and copula types for 10-minute mean wind speed, 10-minute 

turbulence intensity, and 10-minute standard deviation of wind speed are studied based 

on measured wind data. The wind load variation in a large spatiotemporal range is 

represented by the PDFs of five random parameters C, k, a, b, and τ, which determine the 

joint PDF of 10-minute mean wind speed and 10-minute turbulence intensity. The 

proposed wind load uncertainty model can be used for reliability analysis and RBDO of 

wind turbine components, e.g., blade, rotor hub, gears, bearings, etc.  

The third objective is to design an optimal composite wind turbine blade that 

satisfies target reliability for durability under the uncertain wind load. The proposed wind 

load uncertainty model is first used to generate a mean wind load for a DDO procedure of 

the blade model. The purpose of DDO is to obtain a DDO optimum design, which may 

provide a good initial design to RBDO, so that less computational effort would be 

required in the following RBDO procedure. Reliability analyses of the initial design and 

the DDO optimum design are then carried out under wind load uncertainty. The 

reliability analysis results show that the probability of fatigue failure is reduced from 

100% at the initial design to 49.9% at the DDO optimum design considering only wind 

load uncertainty. In order to satisfy the target reliability requirement, the RBDO of the 

blade starting at the DDO optimum design is studied using the Iowa Reliability-Based 

Design Optimization (I-RBDO) code.  

1.3 Organization of Thesis 

Chapter 2 proposes a fatigue analysis procedure that calculates a 10-minute 

fatigue damage determined by a 10-minute mean wind speed and a 10-minute turbulence 
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intensity. The fatigue analysis procedure is used as a deterministic fatigue damage 

calculation procedure in DDO, reliability analysis, and RBDO. 

Chapter 3 proposes a wind load uncertainty model, which has been developed 

based on measured wind data. The wind load uncertainty model consists of the annual 

wind load variation and the wind load variation in a large spatiotemporal range, for 

example, in different years and at different locations. The wind load uncertainty model is 

used to generate a mean wind load for DDO and provide uncertain wind load for 

reliability analysis and RBDO. 

Chapter 4 presents a DDO procedure to optimize the cost of composite materials 

used in composite wind turbine blades. For DDO, the mean wind load is generated based 

on the wind load uncertainty model. The DDO of a composite wind turbine blade is 

carried out. A DDO optimum design satisfying a lifespan constraint of 20 years is 

obtained under the assumption that the mean wind load continues for 20 years.  

Chapter 5 presents a reliability analysis method for a given blade design under 

wind load uncertainty. The reliability analysis uses MCS to account for the wind load 

uncertainty. The reliability analyses of the initial design and the DDO optimum design 

obtained in Chapter 4 have been carried out.  

Chapter 6 describes the detailed procedure of RBDO of composite wind turbine 

blades considering wind load uncertainty and manufacturing variability. The RBDO 

procedure starts at the DDO optimum design and applies local surrogate models of 10-

minute fatigue damage at each iteration and line search. An RBDO optimum design has 

been obtained to satisfy the target reliability requirement and minimize the cost. 

Chapter 7 provides the conclusions of this study and recommendations for future 

research. 
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CHAPTER 2 

FATIGUE ANALYSIS OF COMPOSITE WIND TURBINE BLADES 

This chapter presents a fatigue analysis procedure that includes wind field 

simulation, aerodynamic analysis, stress analysis by finite element analysis (FEA), and 

fatigue damage evaluation based on tested fatigue data. In Section 2.1, the wind field 

simulation method is explained. An approach to calculate aerodynamic wind pressure for 

FEA is introduced in Section 2.2. Section 2.3 presents fatigue damage calculation of large 

composite wind turbine blades considering non-proportional multi-axial complex stress 

states. A high-fidelity finite element (FE) blade model is used in the fatigue analysis 

procedure. 

2.1 Wind Field Simulation 

State-of-the-art assessment of the fatigue damage of wind turbines concentrates 

on load cycles that are found within simulated or measured 10-minute period (Griffith 

and Ashwill, 2011; Burton et al., 2011; Manwell and Mcgown, 2009, Grujicic et al., 

2010; Ragan and Manuel, 2007; Veers and Winterstein, 1997; Hu et al., 2012a; Moriarty 

et al., 2004; Hu et al., 2013a; Söker and Kensche, 2004). In this Chapter, a 10-minute 

period is also considered as a basic time period for fatigue analysis. A 10-minute wind 

field is first generated based on 10-minute mean wind speed V10 and 10-minute 

turbulence intensity I10. The 10-minute turbulence intensity is a measure of the turbulent 

severity of wind speed in 10 minutes. It is defined as the ratio of the standard deviation of 

wind speed to the mean of wind speed, determined from measured data of wind speed in 

10 minutes (IEC 61400-1, 2005; Burton et al., 2011; Manwell et al., 2009) as 

10
10

10

I
V
Σ

=                                                                 (2.1) 

where Σ10 is the standard deviation of wind speed in 10 minutes. 
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The proposed fatigue analysis procedure utilizes Veers’ method (Veers, 1988) to 

simulate a 3-D wind field with a prescribed power spectral density (PSD) function and a 

coherence function. In this study, the PSD function is a function of both V10 and I10, and 

the coherence function is a function of V10. Veers’ method is based on a general random 

process simulation method developed by Shinozuka and Jan (Shinozuka and Jan, 1972). 

The basic approach of this method is to simulate wind speed time series at discrete points 

in a plane perpendicular to the mean wind direction and to propagate the time series in 

the mean wind direction at the mean wind speed. The basic algorithm is briefly given 

below (Veers, 1988; Hansen, 2008; Burton et al., 2011).  

The spectral properties of the wind speed fluctuations can be described by a 

spectral matrix S. If the number of points in space is NP, S is an NP × NP matrix. The 

diagonal terms Sjj in S represent the PSD at point j, j = 1, 2, …, NP. The off-diagonal 

terms in spectral matrix S can be defined in terms of the PSDs and the coherence 

function, Cohjk, by  

( ) ( ) ( ) ( ), ,jk m jk m jk jk jj m kk mS f Coh f r U S f S f= ∆                            (2.2) 

where fm is the center frequency of each discrete frequency band, m = 1, 2, …, M / 2, and 

M is number of discrete time moments in the simulated time series. The coherence, Cohjk, 

is a function of frequency, fm, distance between points j and k, Δrjk, and mean wind speed 

at points j and k, Ujk . In this case, the spectral matrix S can be written as the product of a 

lower triangular matrix H (NP × NP matrix) and the transpose of its complex conjugate 

H*. 

( ) ( ) ( )*T
m m mf f f=S H H                                                (2.3) 

Because S is real, H must also be real, and H=H*. The nonzero entries in H 

matrix can be computed through the following recursive formulae. 
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                                   (2.4) 

The complex Fourier coefficients v (NP × 1 vector) are calculated by multiplying 

the weight matrix H with a white-noise vector X (NP × NP matrix). Each entry of v is 

calculated as 

( ) ( ) ( ) ( )
1 1

km

j j
i

j m jk m kk m jk m
k k

v f H f X f H f e θ

= =

= =∑ ∑                            (2.5) 

where j = 1, 2, …, NP. The real and imaginary components of vj(fm) are calculated as 

( ) ( ) ( )

( ) ( ) ( )
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                                       (2.6) 

which can be transformed to an amplitude Ampj(fm) and a phase Φj(fm) by 

( ) ( ) ( )

( )
( )
( )

2 2
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j m j m j m

j m
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  Φ =
  

                        (2.7) 

Finally, the time histories at the point j can be computed as 

( ) ( ) ( )
/2

1
2 cos 2

M

j j m m j m
m

U t U Amp f f t fπ
=

 = + −Φ ∑                          (2.8) 

where each discrete frequency is defined as fm = m / T. T is the total simulation time, and 

m varies between 1 and M / 2, where M is the number of discrete time moments in the 
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simulated time series. The simulated wind field realizations in this study are generated by 

TurbSim (Jonkman, 2009a). 

In conclusion, the simulated wind field realization is determined by a specific 

PSD function and a coherence function, which are functions of 10-minute mean wind 

speed V10 and 10-minute turbulence intensity I10. Thus, essentially, the simulated wind 

field by the Veers’ method is determined by V10 and I10. Commonly used spectral models 

and spatial coherence models are list in Table 2.1 and Table 2.2, respectively (IEC 

61400-1, 2005; Jonkman, 2009a). Table 2.1 provides explanation of symbols used in the 

IEC Kaimal Model, which has been applied in the wind field simulation in this study. For 

explanation of symbols used in other spectral models, please refer to the references (IEC 

61400-1, 2005; Jonkman, 2009a). The coherence function for the IEC spectral model in 

TurbSim is selected as the coherence function in this study. 
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Table 2.1 Commonly Used Spectral Models 

IEC Kaimal 
Model 

( )
( )
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where f is the cyclic frequency; σK is the wind speed standard 
deviation in K direction; u, v, and w are wind speed in 
longitudinal, transverse, and vertical directions, respectively; 
𝑢𝑢�ℎ𝑢𝑢𝑢𝑢is the mean wind speed at hub height. Lk is an integral scale 
parameter, which is determined by 
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where the turbulence scale parameter, ΛU = 0.7·min(60 m, hub 
height). The relationships between the standard deviations are 
defined to be  
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The standard deviation in longitudinal direction is calculated as 
10 10u V Iσ = ⋅  
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Table 2.2 Commonly Used Spatial Coherence Models 

Coherence 
for IEC 
Spectral 
Models 

The coherence function for the u-component of the IEC spectral 
models is defined as 

2 2

, exp 0.12i j
hub c

fr rCoh a
u L

     = − +        

 

where f is frequency; r is the distance between points i and j; a is the 
coherence decrement; 𝑢𝑢�ℎ𝑢𝑢𝑢𝑢is the mean wind speed at hub height; Lc 
is a coherence scale parameter. For IEC 61400-1 3rd Ed., a and Lc 
are defined as  
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TurbSim defines the coherence for the v and w components as 
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2.2 Aerodynamic Wind Load Calculation 

The simulated 10-minute wind field realization is used for the aerodynamic wind 

load calculation. The aerodynamic code AeroDyn (Moriarty and Hansen, 2005) includes 

the Beddoes-Leishman dynamic stall model (Leishman and Beddoes, 1989), Prandtl’s tip 

loss and Glauert correction (Glauert, 1935), and hub loss on empirically determined 

sectional force coefficients. Moreover, it employs the classic blade element momentum 

(BEM) theory and the generalized dynamic wake model to calculate the effect of the 

wake on the turbine rotor aerodynamics. However, since the input force coefficients to 

AeroDyn are empirically based, it can only provide the resultant aerodynamic forces and 

moments at each aerodynamic center of discrete blade sections, not the pressure 

distribution on the blade surface. When these concentrated forces and moments are 
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applied to a detailed stress analysis by finite element analysis (FEA) (e.g., Hu et al., 

2013b), two problems could potentially occur. One is that the effect of pressure on the 

blade surface is ignored. The other is that, when using concentrated forces in FEA, local 

stress concentration will occur. On the other hand, XFOIL (Drela and Youngren, 2001) 

can calculate the pressure distribution on the airfoil using a potential flow solver. 

However, XFOIL is not expected to be accurate in the prediction of stall because of the 

presence of separated, unsteady, and 3-D flows in rotating coordinate systems (Giovanni 

et al., 2011).  

In order to take advantage of the two existing well-known codes (AeroDyn and 

XFOIL) while overcoming their drawbacks for the present application, the original wind 

pressure distribution obtained from XFOIL can be modified to match the aerodynamic 

coefficients calculated from AeroDyn. It is assumed that this will not accurately replicate 

the true pressure distribution on the wing since the XFOIL solution does not take into 

account effects such as dynamic stall and blade rotation. It is expected that the fatigue 

analysis will not be sensitive to the specific local pressure distribution and that this 

method will allow the AeroDyn-predicted force coefficients to be determined using a 

quasi-physical pressure distribution. As discussed for future work by Bottasso et al. 

(Bottasso et al., 2014), reconstructing the chord-wise pressure distribution using assumed 

shapes from experimental measurements or from numerical models such as XFOIL is a 

more realistic way of representing aerodynamic loads. Due to the complexity of 

involving the aero-elastic effect in the current modified wind pressure, the blade is un-

deformed when calculating the aerodynamic wind load for fatigue analysis within 

AeroDyn. The modified wind pressure involving the aero-elastic effect would be 

included in future work. 

The pressure coefficient distribution on the circumference of the airfoil is 

assumed to be modified as  
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( ) ( ) ( )* 2
p 0 1 2 pC x c c x c x C x= + +                                                (2.9) 

where x is the coordinate point along the chord length (see Figure 2.2(a)), Cp(x) is the 

original pressure distribution obtained from XFOIL, and c0, c1, and c2 are the three 

coefficients to be determined by matching the lift, drag, and moment coefficients, 

respectively, to the values computed by AeroDyn. The lift, drag, and moment coefficients 

are calculated by directly integrating the surface pressure coefficients computed using 

XFOIL, respectively, as 
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where 𝑥𝑥� = 𝑥𝑥cos𝛼𝛼 + 𝑦𝑦sin𝛼𝛼, 𝑦𝑦� = 𝑦𝑦cos𝛼𝛼 − 𝑥𝑥sin𝛼𝛼, n is the number of discrete airfoil panels 

determined by XFOIL, (xref, yref) defines the aerodynamic center of the normalized airfoil, 

and Cpi is the original pressure coefficient at ith discrete panel. Substituting the modified 

pressure coefficient from Eq. (2.9) into Eqs. (2.10) - (2.12), the modified lift, drag, and 

moment coefficients can be expressed, respectively, as  
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where 𝐶𝐶𝑝𝑝𝑖𝑖∗  is the modified pressure coefficient at the ith discrete panel. 

Equations (2.13) to (2.15) can be simplified as the following matrix equation: 

*

*

*

l1 l2 l3 0 l

d1 d2 d3 1 d

m1 m2 m3 2 m

K K K c C
K K K c C
K K K c C

    
     =     
         

                                        (2.16) 

where the linear coefficients Kij (i = l, d, m indicating lift, drag, and moment, 

respectively; j = 1, 2, 3) are functions of angle of attack α, original pressure coefficient 

obtained from XFOIL Cpi, and coordinates of points on the airfoil (x, y). The explicit 

forms of Kij are derived as 
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( ) ( )
n
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i
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By equating the modified lift, drag, and moment coefficients with the corresponding 

coefficients calculated from the AeroDyn analysis, coefficients c0, c1, and c2 can be 

calculated. Consequently, the modified blade surface pressure distribution can be 

obtained by substituting c0, c1, and c2 into Eq. (2.9). The above calculation procedure has 

to be repeated for all the blade sections and at each angle of attack experienced by each 

blade section in the AeroDyn simulation.  

As a case study, the 5-MW NREL reference wind turbine blade (Jonkman et al., 

2009b) is used to carry out the above surface pressure modification incorporating both 

AeroDyn and XFOIL. Figure 2.1 shows the relationships between aerodynamic 

coefficients and angle of attack at blade section 12, which is indicated in Figure 2.3(a). 

The asterisks that are directly obtained from the AeroDyn analysis show that the 

aerodynamic coefficients are not deterministic functions of angle of attack but are 

scattered, as shown in Figure 2.1. Because fatigue analysis cannot afford the 

computational time for each individual realization, this study does not consider the 

variation of aerodynamic force coefficients at one angle of attack. Instead, a fifth-order 

polynomial regression model is used to fit the coefficient data obtained from AeroDyn in 

a least-square sense. The polynomial regression model (crosses in Figure 2.1) is 

overlapped by aerodynamic coefficients integrated from modified wind pressure (circles 

in in Figure 2.1). The coincidence between the polynomial model from AeroDyn data and 

the integrated result from the modified pressure verifies that the modified pressure can 

produce the same aerodynamic force coefficients as those obtained from AeroDyn. 
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(a) Lift coefficient and angle of attack 

Figure 2.1 Relationship between Aerodynamic Coefficients and Angle of Attack at Blade 
Section 12 
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(b) Drag coefficient and angle of attack 

 
 

(c) Moment coefficient and angle of attack 

Figure 2.1 Relationship between Aerodynamic Coefficients and Angle of Attack at 
Blade Section 12 (Continued) 
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In total, 283 groups of modified wind pressure coefficients corresponding to 17 

blade sections have been obtained. A comparison of the original and modified wind 

pressure coefficient distribution at blade section 12, which is under a 4 degree angle of 

attack, is shown in Figure 2.2. Figure 2.2(a) shows the normalized airfoil NACA64-A17 

section used in blade section 12. In Figure 2.2(b), the dash-dotted line and solid line show 

the original wind pressure coefficient distribution on the upper curve and the lower curve 

of the airfoil, respectively. The original wind pressure distribution was directly calculated 

from XFOIL. The circled line in Figure 2.2(b) represents the modified wind pressure 

coefficient distribution. As shown in Figure 2.2(b), the basic form of the pressure 

distribution is retained. However, there is a clear difference near the leading edge of the 

suction side of the airfoil. It is worth noting that the difference between the original and 

modified pressure distribution may vary at different locations, at other angles of attack, 

and for other airfoils. 
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(a) Airfoil NACA64-A17 used at blade section 12 

 
 

(b) Comparison of original and modified wind pressure coefficient distribution at 
blade section 12, which is under a 4 degree angle of attack 

Figure 2.2 Airfoil NACA64-A17 Used at Blade Section 12 and Wind Pressure 
Comparison  
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(a) Blade geometry 

 
 

(b) Blade mesh 

 
 

(c) Modified wind pressure coefficients applied on outer surface of the blade 

Figure 2.3 Current Wind Turbine Blade Model 
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2.3 Fatigue Damage Evaluation 

2.3.1 Parametric Blade Modeling 

A composite blade considered in this study is similar to the 5-MW NREL 

reference wind turbine composite blade (Jonkman et al., 2009b). The aerodynamic 

properties, e.g., airfoil type, chord length, and twist angle, are the same, but the material 

properties and laminate schedules are different from those of the NREL blade. At the 

same time, the materials distribution is such that mass distribution in a span-wise 

direction is similar to the NREL blade. A refined blade geometry model (Figure 2.3(a)) 

was generated in Pro/E (Pro/ENGINEER, 2009) by connecting 34 airfoils, which smooth 

the transition from section to section and reduce the stress concentration. The blade is 

composed of seven parts, which are the root, forward shear web, aft shear web, leading 

edge, spar cap, trailing edge, and tip (see Figure 2.3(a)). The forward shear web, aft shear 

web, leading edge, and trailing edge consist of sandwich panels, in which composite 

laminates are laid at both the top and bottom surfaces and a foam core is laid in the 

middle. Other parts are made of composite laminates. The meshed model (Figure 2.3(b)) 

generated by HyperMesh (HyperWorks, 2012) was imported into Abaqus 

(ABAQUS/CAE, 2011), which implements layered shell elements for FEA. For 

aerodynamic wind load application, the blade is divided into 17 sections in the spanwise 

direction. Each section possesses the same aerodynamic property as the 5-MW NREL 

blade model. Thus, the modified wind pressure coefficient distributions obtained in the 

studied case in Section 2.2 can be applied at the outer surface of each blade section 

(Figure 2.3(c)).  

Table 2.3 lists the elastic properties, ultimate strength, and density data for the 

materials used in the blade. Composite materials QQ1 and P2B are selected from the 

SNL/MSU/DOE Composite Material Fatigue Database (Mandell and Smaborsky, 2014). 

QQ1 is a glass-fiber-reinforced epoxy laminate that consists of Vantico TDT 177-155 
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Epoxy Resin, Saertex U14EU920-00940-T1300-100000 0’s, and VU-90079-00830-

01270-000000 45’s fabrics (Mandell and Smaborsky, 2014). P2B is a carbon/glass-

hybrid-fiber-reinforced epoxy laminate that consists of Newport carbon NB307-D1-34-

600 G300 prepreg 0° and glass NB307-D1-7781-497A for ±45° (Mandell and 

Smaborsky, 2014). CorecellTM M-Foam M200 (Corecell M-Foam, URL: 

http://www.gurit.com/gurit-corecell-m.aspx) is selected as the core material in the 

sandwich panels. The QQ1, P2B, and foam core are treated as homogeneous and 

orthotropic layers when constructing the laminate schedule, as explained below. 

 

Table 2.3 Material Properties of Composite Materials and Foam Core 

Material property QQ1 P2B Foam 
Longitudinal Young’s modulus E1 (GPa) 33.1 101 0.334 
Transversal Young’s modulus E2 (GPa) 17.1 8.86 0.334 

Poisson’s ratio 𝜈𝜈12 0.27 0.22 0.33 
Shear modulus G12 (GPa) 6.29 6.37 0.098 
Shear strength S (MPa) 141 137 2.95 

Longitudinal tensile strength XT (MPa) 843 1546 4.29 
Longitudinal compressive strength XC (MPa) 687 1047 4.40 

Transversal tensile strength YT (MPa) 149 80 4.29 
Transversal compressive strength YC (MPa) 274 240 4.40 

Density ρ (kg/m3) 1919 1570 200 
 

 

The laminate schedule for each panel was developed by referring to available 

blade models (Griffith and Ashwill, 2011; Jonkman et al., 2009b). The objective is to 

generate a blade model that has a mass distribution similar to that of the 5-MW NREL 

reference wind turbine blade in the span-wise direction. Table 2.4 provides the detailed 
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laminate schedule, which includes material types, layer thicknesses, and layer 

orientations. The thickness of each QQ1 layer is assumed to be 4 mm, while the thickness 

of each P2B layer is assumed to be 2.5 mm. The isotropic foam layer has a thickness of 

36 mm and is placed in the middle of the sandwich panels. The distributed blade sectional 

mass and each part’s mass information are given in Table 2.5. A comparison of the mass 

distribution between the blade model and the 5-MW NREL reference blade (Jonkman et 

al., 2009b) is shown in Figure 2.4. It can be seen that the masses per unit length of the 

root and aerodynamic blade sections are very close to those of the 5-MW NREL 

reference blade model. The parametric blade model can easily tailor the laminate 

thickness design variables, which will be used in DDO (Chapter 4) and RBDO (Chapter 

6).  
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Table 2.4 Laminate Schedule for the Blade Model 

Section ID Blade 
Span 

Root Forward Shear Web Aft Shear Web Tip 
QQ1 QQ1/Foam/QQ1 QQ1/Foam/QQ1 QQ1 

T (mm) O (°) T (mm) O (°) T (mm) O (°) T (mm) O (°) 
1 0.022 28 [±45/+45/−45������]S 8/36/8 [02]/0/[02] 8/36/8 [02]/0/[02]   
2 0.067   8/36/8 [02]/0/[02] 8/36/8 [02]/0/[02]   
3 0.111   8/36/8 [02]/0/[02] 8/36/8 [02]/0/[02]   
4 0.167   8/36/8 [02]/0/[02] 8/36/8 [02]/0/[02]   
5 0.233   8/36/8 [02]/0/[02] 8/36/8 [02]/0/[02]   
6 0.300   8/36/8 [02]/0/[02] 8/36/8 [02]/0/[02]   
7 0.367   8/36/8 [02]/0/[02] 8/36/8 [02]/0/[02]   
8 0.433   8/36/8 [02]/0/[02] 8/36/8 [02]/0/[02]   
9 0.500   8/36/8 [02]/0/[02] 8/36/8 [02]/0/[02]   
10 0.567   8/36/8 [02]/0/[02] 8/36/8 [02]/0/[02]   
11 0.633   8/36/8 [02]/0/[02] 8/36/8 [02]/0/[02]   
12 0.700   8/36/8 [02]/0/[02] 8/36/8 [02]/0/[02]   
13 0.767   8/36/8 [02]/0/[02] 8/36/8 [02]/0/[02]   
14 0.833     8/36/8 [02]/0/[02]   
15 0.889     8/36/8 [02]/0/[02]   
16 0.933     8/36/8 [02]/0/[02] 8 [±45] 
17 0.978       8 [±45] 
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Table 2.4 Laminate Schedule for the Blade Model (Continued) 

Section 
ID 

Blade 
Span 

Leading Edge Panels Trailing Edge Panels Spar Cap Panels 
QQ1/Foam/QQ1 QQ1/Foam/QQ1 P2B 

T (mm) O (°) T (mm) O (°) T (mm) O (°) 
1 0.022       
2 0.067 8/36/8 [±45]/0/[∓45]  8/36/8 [±45]/0/[∓45]  15 [±45/−45]S 
3 0.111 8/36/8 [±45]/0/[∓45] 8/36/8 [±45]/0/[∓45]  15 [±45/−45]S 
4 0.167 12/36/12 [±45/45]/0/[45/∓45] 8/36/8 [±45]/0/[∓45]  25 [(±45)2/45]S 
5 0.233 8/36/8 [±45]/0/[∓45] 8/36/8 [±45]/0/[∓45]  25 [(±45)2/45]S 
6 0.300 4/36/4 [45]/0/[−45] 4/36/4 [45]/0/[−45] 25 [(±45)2/45]S 
7 0.367 4/36/4 [45]/0/[−45] 4/36/4 [45]/0/[−45] 25 [(±45)2/45]S 
8 0.433 4/36/4 [45]/0/[−45] 4/36/4 [45]/0/[−45] 25 [(±45)2/45]S 
9 0.500 4/36/4 [45]/0/[−45] 4/36/4 [45]/0/[−45] 25 [(±45)2/45]S 
10 0.567 4/36/4 [45]/0/[−45] 4/36/4 [45]/0/[−45] 20 [±45]2S 
11 0.633 4/36/4 [45]/0/[−45] 4/36/4 [45]/0/[−45] 15 [±45/45]S 
12 0.700 4/36/4 [45]/0/[−45] 4/36/4 [45]/0/[−45] 10 [±45]S 
13 0.767 4/36/4 [45]/0/[−45] 4/36/4 [45]/0/[−45] 10 [±45]S 
14 0.833   4/36/4 [45]/0/[−45] 10 [±45]S 
15 0.889   4/36/4 [45]/0/[−45] 10 [±45]S 
16 0.933       
17 0.978       

Note: Blade Span - Normalized distance from center of each section to root boundary, T - Thickness of layers, O - Orientation of 
layers. Orientation angles are measured positive counterclockwise relative to the default shell local directions, which are projected 
from the global rectangular Cartesian coordinate system of the blade. 
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Table 2.5 Distributed Blade Mass 

Section ID Section Width (m) Section Mass (ton) BMassDen (kg/m) Part Name Part Mass (ton)  
1 2.7333 2.0380 745.6291 Root 1.5246 
2 2.7333 1.6483 603.0344 Forward Shear Web 2.1122 
3 2.7333 1.5611 571.1488 Aft Shear Web 2.4529 
4 4.1000 2.4718 602.8756 Tip 0.2230 
5 4.1000 2.0328 495.7976 Leading Edge Panels 2.4673 
6 4.1000 1.4220 346.8200 Trailing Edge Panels 5.7002 
7 4.1000 1.2988 316.7907 Spar Cap Panels 4.0180 
8 4.1000 1.1972 292.0105 Total Mass (ton) 18.4981 
9 4.1000 1.0975 267.6793   
10 4.1000 0.9171 223.6918   
11 4.1000 0.7514 183.2579   
12 4.1000 0.5874 143.2674   
13 4.1000 0.5221 127.3410   
14 4.1000 0.4365 106.4681   
15 2.7333 0.2622 95.9165   
16 2.7333 0.1950 71.3273   
17 2.7333 0.0590 21.5856   

Note: BMassDen - blade mass density. 
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Figure 2.4 Comparison of Blade Mass Distribution 

 

2.3.2 Stress Calculation 

For stress calculation, the modified wind pressure coefficient distributions 

(Section 2.2) are selected as wind load cases based on the mean angles of attack of blade 

sections. For example, if the mean angle of attack of blade section 12 under a wind 

condition, i.e., V10 and I10, is 3.6 degrees and the closest angle of attack with available 

modified wind pressure coefficient distribution is 4 degrees (Figure 2.2(b)), then the 

modified wind pressure coefficient distribution for the 4 degree angle is selected for 

blade section 12 as a wind load case. The selected wind load cases are then applied on the 

outer surface of 17 blade sections (Figure 2.3(c)). In addition to the wind load, gravity 

load and centrifugal load are included in FEA using Abaqus. The rotational speed, which 

is assumed to be constant (12.1 rpm) for different wind conditions, is used to calculate 

the centrifugal load. Shell elements S4 and S3R are used to calculate plane stress 

components. Six degrees of freedom of the root boundary are fixed in FEA. Matlab 
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(MATLAB, 2012) scripts are developed to extract the resulting stress components, and 

the full stress time series are calculated as 

( ) ( ) ( ) ( )
17

, , ,
1

ij k ij Wk ij G ij C
k

t P t t tσ σ σ σ
=

= + +∑                                      (2.26) 

where σij(t) denotes superposed time series of a stress component, Pk(t) is the dynamic 

wind pressure history calculated by AeroDyn at blade section k, σij,Wk is the stress 

components for wind load at blade section k, σij,G(t) is the stress history due to the gravity 

load, and σij,C(t) is the stress history due to the centrifugal load. All stress results are in 

the principal material coordinates.  

In this study, the stress distributions as well as fatigue damage have been studied 

at section points, which indicate specific locations through laminate thickness. Thus 

multiple section points are associated with one finite element (FE) node (see Figure 

2.5(b)). A combination of node ID and section point ID, named node-section point, is 

used to identify the stress, fatigue, and probability of failure at specific location of the 

blade. For example, node 2797-section point 1 indicates the first section point associated 

with the node 2797 as shown in Figure 2.5.  

It is found that the stress is piece-wise linearly varied through laminate thickness, 

which is consistent with the classical laminate theory of composite materials. Extreme 

stresses occur at either the top or bottom section points of layers with the same 

orientation. As an example, a randomly selected node 2797 at the root, which has 7 layers 

with a stacking sequence of [±45/+45/−45������]S (see Table 2.4), is shown in Figure 2.5. 

Three section points are uniformly distributed in each layer. Longitudinal stress 

component σ11 through laminate thickness at node 2797 under a load case is illustrated. 

As shown in Figure 2.5(c), the maximum σ11 occurs at section point 1, which is the 

bottom section point of the +45° layers, and the minimum σ11 occurs at section point 18, 

which is the top section point of the −45° layers.  
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(a) Node 2797 on the blade root 

 
 

(b) Section points of node 2797 

 
 

(c) σ11 of section points of node 2797 

Figure 2.5 Demonstration of Stress Analysis through Laminate Thickness 
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2.3.3 Non-proportional Multi-axial Fatigue Damage 

Calculation 

The stress time series obtained in Section 2.3.2 reveal that the blade bears non-

proportional multi-axial complex stress states of variable amplitude and mean. The 

differentiation between proportional and non-proportional cyclic loadings is described by 

Nussbaumer et al. (Nussbaumer et al., 2011). The non-proportional stresses usually result 

from the action of at least two loadings that vary non-proportionally with time in a 

different manner. The non-proportionality of stresses in wind turbine blades is due to the 

fact that the wind load, gravity load, and centrifugal load vary non-proportionally with 

time. As an illustration, stress histories of longitudinal normal stress σ11, transverse 

normal stress σ22, and shear stress σ12 of node 2797-section point 1 (Figure 2.5) are 

provided in Figure 2.6. The ratio between any two of the three stress components in 

Figure 2.6 is not constant with time. 

 

 

Figure 2.6 Time Series of Stress Components at Node 2797-Section Point 1 
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In order to rationally count cycles for current non-proportional multi-axial 

complex stress states, the time moments for the stress reversal, i.e., peak or valley, for 

each of the stress components, are recorded first. Then the stress states (σ11, σ22, σ12) at 

the recorded time moments are selected for cycle counting. Since the rainflow cycle 

counting breaks the cycle sequence, it could not count cycles for non-proportional stress 

time series. In order to have cycle-by-cycle fatigue analyses, a range-mean counting 

method (ASTM, 2005) is applied to count all the half cycles. The stress path from one 

stress state to the immediately following stress state is defined as one half cycle. 

According to the Tsai-Hill criterion (Jones, 1999), a multi-axial fatigue damage index 

caused in a half cycle under a stress level (σ11
i , σ22

i , σ12
i ) is computed as (Liu and 

Mahadevan, 2005) 

( ) ( ) ( )2 2 2
1 1 1 10.5i

i ii i i
11 2211 22 12

D
N NN N N

= + + +                                   (2.27) 

where N11
i ,N22

i , and N12
i  are the number of allowable cycles under pure stress components 

σ11
i , σ22

i , and σ12
i , respectively. The coefficient 0.5 indicates the half cycle.  

2.3.4 Probabilistic S-N Curves and Constant Life Diagrams 

In this study, the number of allowable cycles Nij is calculated based on the S-N 

curve. The S-N curve equation is expressed as  

1/ ijka
ij ij ijs Nσ −=                                                             (2.28) 

where Nij is the number of cycles to failure, and sij and kij are fatigue strength coefficients 

corresponding to a stress ratio R. The stress ratio R equals the ratio of the minimum 

cyclic stress to the maximum cyclic stress. The fatigue strength coefficients used to 

construct S-N curves and constant life diagrams (CLDs) are statistically treated to 

represent a 95% survival probability with a confidence level of 95% (ASTM, 2004). The 

95% lower bound of S-N curve and CLD is used for the fatigue analysis. The 
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probabilistic S-N curve of P2B material in the longitudinal direction under stress ratio R 

= 10 is illustrated in Figure 2.7.  

 

 

Figure 2.7 Probabilistic S-N Curves of P2B in Longitudinal Direction under R=10 

 

The S-N curves under arbitrary stress ratio are calculated by using CLD 

(Vassilopoulos and Keller, 2011). In order to derive S-N curves for each stress 

component, three CLDs corresponding to three stress components are necessary. Fatigue 

test data for QQ1 and P2B materials, including stress amplitudes and numbers of cycles 

tested in longitudinal and transverse directions (Mandell and Samborsky, 2014), are used 

to generate the S-N curves corresponding to tested stress ratios 10, −2, −1, −0.5, 0.1, 0.5, 

and 0.7. By utilizing the generated S-N curves, piecewise linear CLDs of QQ1 and P2B 

are constructed. Figure 2.8 shows CLDs, corresponding to 102, 103, 104, 105, 106, 107, 

and 108 allowable numbers of stress cycles, for QQ1 and P2B materials in both the 
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longitudinal and transverse directions. As the allowable numbers of stress cycles 

increase, the corresponding stress mean and amplitude decrease. It is also worth noting 

that the 95% lower bound results in more conservative fatigue resistance, and the fatigue 

resistance of P2B is larger than that of QQ1 in the longitudinal direction, but smaller in 

the transverse direction. For both P2B and QQ1, the fatigue resistance in the longitudinal 

direction is much larger than that in the transverse direction.  
 

 
 

(a) Probabilistic constant life diagrams of QQ1 in longitudinal direction 

Figure 2.8 Probabilistic Constant Life Diagrams of QQ1 and P2B in Longitudinal and 
Transverse directions 
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(b) Probabilistic constant life diagrams of QQ1 in transverse direction 

Figure 2.8 Probabilistic Constant Life Diagrams of QQ1 and P2B in Longitudinal and 
Transverse Directions (Continued) 
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(c) Probabilistic constant life diagrams of P2B in longitudinal direction 

Figure 2.8 Probabilistic Constant Life Diagrams of QQ1 and P2B in Longitudinal and 
Transverse Directions (Continued) 

 



 

 

43 

 

 
 

(d) Probabilistic constant life diagrams of P2B in transverse direction 

Figure 2.8 Probabilistic Constant Life Diagrams of QQ1 and P2B in Longitudinal and 
Transverse Directions (Continued) 

 

In order to account for the fatigue effect due to shear stress, CLD in the shear 

direction is necessary. However, fatigue test data for QQ1 and P2B in the shear direction 

are not available in the literature. To overcome a lack of test data for shear fatigue 

strength of composite materials, Philippidis and Vassilopoulos showed that shear fatigue 

strength values, which are calculated as 1/2.2 of the fatigue strength of a flat coupon cut 

off-axis at 45° and loaded uniaxially, adequately fit most of the experimental data 

(Philippidis and Vassilopoulos, 2002). Liu and Mahadevan considered the average value 

of the S-N curve slopes corresponding to the longitudinal and transverse directions tests 

as the slope of the S-N shear fatigue curve (Liu and Mahadevan, 2005). In this study, the 

shear fatigue strength is approximated by dividing the average fatigue strength in the 
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longitudinal and transverse directions by a constant. The constant is calculated based on 

static strength in three directions as shown in Table 2.3. In order to calculate this 

constant, two ratios are calculated first: the first ratio between the average of static tensile 

strength in the longitudinal and transverse directions and the static shear strength, and the 

second ratio between the average of static compressive strength in the longitudinal and 

transverse directions and the static shear strength. Then the average of these two ratios is 

used as the constant for constructing CLD for shear stress. The calculated constants for 

QQ1 and P2B are 3.4628 and 5.3157, respectively. The purpose of the shear strength 

approximation is to guarantee that the shear stress mean is equal to the static shear 

strength when the stress amplitude is zero in CLD. The calculated CLD of QQ1 and P2B 

in the shear direction is shown in Figure 2.9.  
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(a) Probabilistic constant life diagrams of QQ1 in shear direction 

Figure 2.9 Probabilistic Constant Life Diagrams of QQ1 and P2B in Shear Direction 
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(b) Probabilistic constant life diagrams of P2B in shear direction 

Figure 2.9 Probabilistic Constant Life Diagrams of QQ1 and P2B in Shear Direction 
(Continued) 

 

2.3.5 Fatigue Damage Accumulation 

The next step in the fatigue analysis is estimation of the fatigue damage 

accumulation, which is inherently nonlinear under variable-amplitude non-proportional 

multi-axial loading. The nonlinear damage accumulation methods for composite 

materials available in the literature (e.g., Gamstedt and Sjögren, 2002; Van Paepegem 

and Degrieck, 2002; Found and Quaresimin, 2003) are based on the experimental studies 

of specific laminated composite specimens under simple uniaxial loading conditions. 

Moreover, the applicability of these methods to different composite material systems and 

multi-axial loading conditions has not been established yet. At the same time, the most 

widely used method to predict fatigue damage of wind turbine blades assumes linear 
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damage accumulation (IEC 61400-1, 2005; Germanischer Lloyd, 2010). Fossum et al. 

assumed that Miner’s sum gives close predictions when constant life diagrams tailored to 

fatigue experimental data are used (Fossum et al., 2013). The fatigue damage in 10-

minute simulation is accumulated using Miner’s rule and Eq. (2.27) as 

( ) ( ) ( )2 2 2
1 1

1 1 1 10.5
n n

i
10 i ii i ii i 11 2211 22 12

D D
N NN N N= =

= = + + +∑ ∑                       (2.29) 

where n is the total number of half cycles. This damage accumulation model is used in 

the present work.  

The developed fatigue analysis procedure for composite wind turbine blades is 

summarized in Figure 2.10. In this study, the 10-minute fatigue damage D10 is essentially 

determined by a 10-minute mean wind speed V10 and a 10-minute turbulence intensity I10, 

as shown in Figure 2.10. A 10-minute wind field is first generated based on V10 and I10. 

Using the 10-minute wind field, the aerodynamic wind load in 10 minutes is calculated. 

Applying the aerodynamic wind load, the 10-minute fatigue damage is calculated for 

each node-section point on the blade FE model. 
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Figure 2.10 Ten-minute Fatigue Analysis Procedure 

 

This chapter provides a 10-minute fatigue analysis procedure using a 10-minute 

mean wind speed V10 and a 10-minute turbulence intensity I10. In reality, both the V10 and 

I10 are varying over a long time period, e.g., one year. Thus, the wind load is uncertain 

due to the varied V10 and I10. In order to study the fatigue reliability of wind turbine 

blades in designed lifespan, the uncertain wind load has to be properly taken into account. 

Chapter 3 will address the issue of the wind load uncertainty. 

 



 

 

49 

 

CHAPTER 3 

DYNAMIC WIND LOAD UNCERTAINTY MODEL 

A dynamic wind load uncertainty model has been developed based on measured 

wind data. The wind load uncertainty model involves both the annual wind load variation 

and the wind load variation in a large spatiotemporal range, for example, in different 

years and at different locations. The annual wind load variation is represented by the joint 

probability density function (PDF) of 10-minute mean wind speed V10 and 10-minute 

turbulence intensity I10. The wind load variation in a large spatiotemporal range is 

represented by the distributions of five marginal distribution and correlation parameters 

C, k, a, b, and τ, which determine the joint PDF of V10 and I10 as described in this chapter. 

The basic structure of the developed wind load uncertainty model is simply shown in 

Figure 3.1. The outline of this chapter is as follows. Section 3.1 presents the annual wind 

load variation by using the joint PDF of V10 and I10. Section 3.2 provides the wind load 

variation in a large spatiotemporal range by using the PDFs of C, k, a, b, and τ. 

Discussion of a study case using the developed wind load uncertainty model is given in 

Section 3.3. 
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Figure 3.1 Developed Wind Load Uncertainty Model 

 

3.1 Annual Wind Load Variation 

In this study, the annual wind load variation means that the wind load under 

different wind conditions, which are determined by V10 and I10, is varying due to the 

frequency of occurrence of the individual wind conditions in one year and at one 

location. The variable wind load is often represented by the variation of 10-minute mean 

wind speed, V10, in the state-of-the-art wind energy standards (IEC 61400-1, 2005; 

Germanischer Lloyd, 2010). In this study, another factor, 10-minute turbulence intensity, 

I10, which also affects fatigue damage during 10 minutes, is considered. Thus, the annual 

wind load variation is represented by the joint PDF of V10 and I10. In addition, it is found 

that there is a correlation between V10 and I10. In order to properly consider this 

correlation in the joint PDF of V10 and I10, the 10-minute standard deviation Σ10 of wind 
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speed is used. This section will first provide the marginal distributions of the three 

random parameters for wind speed, i.e., V10, I10, and Σ10. The correlation between these 

parameters is then studied by using copula (Noh et al., 2009; Noh et al., 2010; Lee et al., 

2011b). The joint distribution of V10 and I10 is derived using the copula for V10 and Σ10 

and marginal distributions of V10 and Σ10. 

3.1.1 Marginal Distributions of Random Parameters for 

Wind Speed 

The distribution of 10-minute mean wind speed V10 has been widely applied in 

fatigue analysis of wind turbines, while 10-minute turbulence intensity I10 is treated as a 

deterministic value based on wind energy standards (IEC 61400-1, 2005; Germanischer 

Lloyd, 2010) and its distribution has been seldom studied. As explained in Chapter 2, the 

10-minute turbulence intensity I10 is calculated as a ratio between 10-minute standard 

deviation of wind speed Σ10 and 10-minute mean wind speed V10. In order to properly 

derive the joint distribution of V10 and I10, the marginal distribution of V10, I10, and Σ10 are 

first studied. 

The probability distributions of V10, I10, and Σ10 are obtained using measured wind 

speed data. Before using the data, the wind speed data is first transformed to the same 

hub height from different measured heights, since the wind speed is inherently different 

at different heights. The hub height wind speed is calculated by a normal wind profile 

model (IEC 61400-1, 2005; Germanischer Lloyd, 2010) using the measured wind speed 

at other heights as 

( )/
z

hub
hub

VV
z z α=                                                        (3.1) 

where z is the measured height above the ground, zhub is the hub height, and Vz is the 

measured wind speed at the height z. The power law exponent α is assumed to be 0.2 

according to the standards (IEC 61400-1, 2005; Germanischer Lloyd, 2010). The 
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following distribution-identifying procedure is based on adjusted wind data at a hub 

height of 90 m. 

The probability distributions of V10, I10, and Σ10 are fitted using seven different 

positive-valued distribution types, Gamma, Weibull, log-logistic, lognormal, Nakagami, 

Rayleigh, and Rician, provided in Matlab (MATLAB, 2012). The maximum likelihood 

estimation (MLE) is implemented to find parameters for fitting the candidate 

distributions (Hoog et al., 2005). The likelihood function L(θ) and its natural logarithm 

l(θ) are, respectively, given by 

( ) ( )
1

;
n

i
i

L f x
=

=∏θ θ                                                      (3.2) 

( ) ( )
1

ln ;
n

i
i

l f x
=

=∑θ θ                                                   (3.3) 

where f(xi;θ) is the PDF value of a candidate distribution calculated at data xi given the 

vector of distribution parameter θ. For each group of wind data, the distribution type 

corresponding to the largest log-likelihood value is viewed as the best fit distribution. 

In total, 249 groups of measured wind data, which have been collected over 

different years and at different locations, are used in this study. These raw wind data are 

accessible online from Anemometer Loan Programs (Wind Data from Anemometer Loan 

Programs, URL: http://apps2.eere.energy.gov/wind/windexchange/anemometerloans/), 

UMass Wind Energy Center (Wind Data from the UMass Wind Energy Center, URL: 

http://www.umass.edu/windenergy/resourcedata), and the IAWind and Iowa EPSCoR 

data download site (Wind Data from IAWind and Iowa EPSCoR Data Download Site, 

URL: https://epscor2.cgrer.uiowa.edu/html/download.html). As an example, the 

distribution fit for V10 is illustrated by using one group of wind data from IAWind and 

Iowa EPSCoR data. The wind data was measured by an anemometer at 100 m in 

Quimby, Iowa. The measured time ranges from 4/6/2007 to 4/7/2009. The raw wind data 
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records the 10-minute mean wind speed and 10-minute standard deviation of wind speed. 

The 90 m hub height wind speed is calculated by Eq. (3.1) using the measured wind 

speed at 100 m. The distribution fit of V10 is shown in Figure 3.2. The values of the log-

likelihood functions of the seven distribution candidates are shown in Table 3.1. 

 

 

Figure 3.2 Distribution Fit of V10 
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Table 3.1 Log-likelihood of the Candidate Distribution Types for V10 

Distribution Type Log-likelihood 

Gamma −275722 

Weibull −273161 

Log-logistic −279939 

Lognormal −284159 

Nakagami −273244 

Rayleigh −274070 

Rician −273179 

 

 

As shown in Table 3.1, the Weibull distribution fit for V10 has the largest log-

likelihood function value among the seven candidate distribution types. Thus the Weibull 

distribution is selected for the annual V10 distribution, which is consistent with the fact 

that the Weibull distribution has been widely accepted for representing the annual mean 

wind speed distribution. Similarly, using the MLE, the best marginal distribution types of 

I10 and Σ10 have been identified as a log-logistic distribution type and a Gamma 

distribution type, respectively. In fact, among 249 groups of wind data, there are 46, 163, 

and 120 groups of wind data best fit by the Weibull distribution for V10, the log-logistic 

distribution for I10, and the Gamma distribution for Σ10, respectively. Thus, the annual 

distribution types for V10, I10, and Σ10 are selected to be Weibull, log-logistic, and 

Gamma, respectively. The PDF of the Weibull distribution of V10 is given by 

( )
1

; , exp
k k

10 10
V10 10

v vkf v C k
C C C

−     = −    
     

                                      (3.4) 

where v10 is a realization of V10, and C and k are the scale parameter and shape 

parameter, respectively. The PDF of the log-logistic distribution of I10 is given by 
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( ) 2
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10
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i

f i
ii
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δγ δ

γδ
δ

− 
 
 =

 −  +     

                                    (3.5) 

where i10 is a realization of I10, and γ and δ are the log-location parameter and log-scale 

parameter, respectively. ln i10 is the natural logarithm of i10. The PDF of the Gamma 

distribution of Σ10 is given by 

( ) ( )
11; , expa 10

Σ10 10 10af a b
b a b

σσ σ −  = − Γ  
                          (3.6) 

where σ10 is a realization of Σ10, and a and b are the shape parameter and scale parameter, 

respectively. Γ(a) is the gamma function of a. 

So far, the marginal distribution types of the random parameters V10, I10, and Σ10 

have been identified as the Weibull distribution, log-logistic distribution, and Gamma 

distribution, respectively. The Weibull distribution of V10 characterizes the 10-minute 

mean wind speed variation during the year, while the log-logistic distribution of I10 and 

the Gamma distribution of Σ10 represent the variation of fluctuation in wind speed in 10 

minutes. It is useful to think of the wind as consisting of a mean wind speed with 

turbulent fluctuations superimposed. The mean wind speed and turbulence intensity are 

often used to represent the wind load strength/level by wind turbine design standards 

(IEC 61400-1, 2005; Germanischer Lloyd, 2010). In this study, V10 and I10 

deterministically determine the 10-minute fatigue damage with the developed fatigue 

damage analysis procedure in Chapter 2. However, it is found that using V10 and Σ10 

could better represent the correlated joint PDF of V10 and I10. The correlation between V10 

and I10 and the correlation between V10 and Σ10 will be discussed in the next section. 
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3.1.2 Correlation between Random Parameters for Wind 

Speed 

In order to calculate the probability of a certain wind condition, i.e., V10 and I10, in 

one year, the joint PDF of V10 and I10 is necessary. If the random variables V10 and I10 are 

assumed to be independent, the joint PDF of V10 and I10 can be simply calculated as 

VI V 10 I 10f f f= ⋅                                                 (3.7) 

where fVI0 and fI10 are the marginal PDFs of V10 and I10, respectively. However, the scatter 

plots of (V10, I10) and (V10, Σ10) in Figure 3.3 clearly show that there are correlations 

among these three random parameters. The wind data in Figure 3.3 was measured at 

Thompson Island, Boston Harbor, Massachusetts. The measured time ranges from 

01/01/2008 to 12/31/2008. The measured data is obtained from the UMass Wind Energy 

Center (URL: http://www.umass.edu/windenergy/resourcedata). 

For bivariate correlated input random variables X = {Xi, Xj}T, the joint PDF of X 

can be expressed using copula as (Noh et al., 2009; Noh et al., 2010; Lee et al., 2011b) 

( ) ( ) ( ) ( )
( ) ( ) ( )

2

,

, ;
; ; ;

              , ; ; ;

i j

i j

X i i X j j

uv X i i X j j

C u v
f f x f x

u v
C u v f x f x

θ
µ µ

θ µ µ

∂
=

∂ ∂
=

X x μ
                     (3.8) 

where C is the copula function; fXi and fXj are the marginal PDFs for Xi and Xj, 

respectively; u=FXi(xi;μi) and v=FXj(xj;μj) are marginal CDFs for Xi and Xj, respectively; 

and θ is the correlation coefficient between Xi and Xj. The partial derivative of the copula 

function with respect to u and v is called the copula density function and is written as 

( ) ( ) ( )
2

,

, ;
, ; , ;uv

C u v
c u v C u v

u v
θ

θ θ
∂

≡ =
∂ ∂

                                   (3.9) 
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(a) Scatter plot of one group of measured V10 and I10 

 
 

(b) Scatter plot of one group of measured V10 and Σ10 

Figure 3.3 Scatter Plot of Measured (V10, I10) and (V10, Σ10) 
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In order to include the correlation between V10 and I10, two methods have been 

studied. One method is directly identifying the copula of V10 and I10. Then the joint PDF 

of V10 and I10 is calculated as 

( ) ( ) ( ) ( ), ; , , , , , ; ; , ; ,VI 10 10 VI VI 10 10 VI V 10 10 I 10 10f v i C k c v i f v C k f iγ δ θ θ γ δ=           (3.10) 

where cVI is the copula density function of V10 and I10, and θVI is the correlation 

coefficient between V10 and I10 for the copula. The other method is to first identify the 

joint PDF of V10 and Σ10 and then calculate the joint PDF of V10 and I10 using the joint 

PDF of V10 and Σ10.  

Before identifying copula types, Monte Carlo simulation (MCS) samples of V10 

and I10 have been generated according to a joint PDF of V10 and I10 and a joint PDF of V10 

and Σ10, respectively. The copula type for V10 and I10 and the copula type for V10 and Σ10 

are assumed to be Gaussian. The parameters for marginal distribution and the correlation 

coefficient are calculated by MLE, which uses the data for Figure 3.3. For the latter 

approach, the MCS samples of V10 and Σ10 are first generated based on their joint PDF. 

Then the I10 values are calculated by I10 = Σ10 / V10 using the MCS samples of V10 and 

Σ10. The scatter plots of MCS samples of V10 and I10, using the two methods, are shown in 

Figure 3.4. 
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(a) MCS samples of V10 and I10 using a Gaussian copula between V10 and I10 

 
 

(b) MCS samples of V10 and I10 using a Gaussian copula between V10 and Σ10 

Figure 3.4 Scatter Plot of MCS Samples of V10 and I10 
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It can be seen that the scatter plot of MCS samples using the joint PDF of V10 and 

Σ10 (Figure 3.4(b)) is closer to that of measured V10 and I10 (Figure 3.3(a)) than that using 

the joint PDF of V10 and I10 (Figure 3.4(a)). The reason might be that extra mathematical 

correlation between V10 and I10 is inherently included from the relation I10 = Σ10 / V10. In 

contrast, the V10 and Σ 10 data are directly obtained from the measured wind data. To 

exclude the mathematical correlation in the joint PDF, it is better to derive the joint PDF 

of V10 and Σ10 and then transfer them to V10 and I10. This derivation is shown in the 

following. 

For brevity, the marginal distribution parameters and copula parameter are 

omitted in the following derivation. Using the copula density function, the joint PDF of 

V10 and I10 and the joint PDF of V10 and Σ10 are expressed, respectively, as 

( ) ( ) ( ) ( )10 10, ,VI 10 10 VI 10 10 V 10 I 10f v i c v i f v f i=                      (3.11) 

( ) ( ) ( ) ( ), ,VΣ 10 10 VΣ 10 10 V 10 10 Σ10 10f v c v f v fσ σ σ=                    (3.12) 

where v10, i10, and σ10 are realizations of random variables V10, I10, and Σ10, respectively. 

Using Eqs. (3.11) and (3.12), the conditional distributions of I10 and Σ10, given that V10 

equals a realization v10, can be calculated, respectively, as 

( ) ( )
( ) ( ) ( )|

,
| ,VI 10 10

I V 10 10 VI 10 10 I 10 10
V 10 10

f v i
f i v c v i f i

f v
= =                      (3.13) 

( ) ( )
( ) ( ) ( )|

,
| ,VΣ 10 10

Σ V 10 10 VΣ 10 10 Σ10 10
V 10 10

f v
f v c v f

f v
σ

σ σ σ= =                 (3.14) 

Given V10 = v10, the function I10 = Σ10 / v10 defines a one-to-one transformation with 

Jacobian J=|(∂Σ10)/(∂I10 )|=v10. Thus, the conditional distribution of I10 given V10 = v10 can 

also be expressed as 

( ) ( ) ( )| | || | |I V 10 10 Σ V 10 10 Σ V 10 10 10f i v f v J f v vσ σ= =              (3.15) 

From Eqs. (3.13) to (3.15), we have 
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( ) ( ) ( ) ( ) ( ) ( ), , ,VI 10 10 I 10 10 VΣ 10 10 Σ10 10 10 VΣ 10 10 10 Σ10 10 10 10c v i f i c v f v c v v i f v i vσ σ= = ⋅ ⋅    (3.16) 

Substituting Eq. (3.16) into Eq. (3.11), we have the joint PDF of V10 and I10 as 

( ) ( ) ( ) ( ), ,VI 10 10 VΣ 10 10 10 V 10 10 Σ10 10 10 10f v i c v v i f v f v i v= ⋅ ⋅           (3.17) 

In Section 3.1.1, the marginal distribution types for V10 and Σ10 are found to be 

Weibull and Gamma, respectively. Therefore, type of copula density function cVΣ is the 

only unknown term in Eq. (3.17). In order to select the best copula type for cVΣ, the best 

copula type among eight candidate copula types has been identified for all 249 groups of 

wind data. The number of best fit copula for each copula type is shown in Table 3.2. 

 

Table 3.2 Number of Best Fit Copula Type for V10 and Σ10 

Copula Type Number of Best Copula 
Clayton 0 
AMH 0 

Gumbel 147 
Frank 18 
A12 1 
A14 6 
FGM 0 

Gaussian 77 
Independent 0 

 

 

As shown in Table 3.2, the copula type corresponding to the largest number of 

best fit copula type for V10 and Σ10 is Gumbel. Thus, the Gumbel copula is selected to 

account for the correlation between V10 and Σ10. The Gumbel copula function and copula 

density function are shown, respectively, as (Noh et al., 2010), 
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( ) ( )1/, ; expVΣC u v w θθ = −                                          (3.18) 

( )
( ) ( ) ( ) ( )1 1 1/ 1/ 2 1/ln ln 1 exp

, ;VΣ

u v w w w
c u v

uv

θ θ θ θ θθ
θ

− − −− − + − −
=              (3.19) 

where u and v are marginal CDFs of V10 and Σ10, respectively. The parameter w is 

calculated as 

( ) ( )ln lnw u vθ θ= − + −                                          (3.20) 

Copula parameter θ can be calculated from Kendall’s tau τ as (Noh et al., 2010) 

( )1/ 1θ τ= −                                                    (3.21) 

With the marginal distribution parameters and the Kendall’s tau τ, the joint PDF of 

V10 and I10 in Eq. (3.17) can be represented as 

( ) ( ) ( ) ( ), ; , , , , , ; ; , ; ,VI 10 10 VΣ 10 10 10 V 10 10 Σ10 10 10 10f v i C k a b c v v i f v C k f v i a b vτ τ= ⋅ ⋅    (3.22) 

where C and k are the scale parameter and shape parameter, respectively, for the Weibull 

distribution; a and b are the shape parameter and scale parameter, respectively, for the 

Gamma distribution; and the PDFs of the Weibull distribution and the Gamma 

distribution are shown in Eqs. (3.4) and (3.6), respectively. The Kendall’s tau τ 

determines the correlation parameter θ as shown in Eq. (3.21).  

Applying the derived joint PDF of V10 and I10, the one-year fatigue damage can be 

calculated as  

( ) ( ) ( )

( ) ( ) ( ) ( )

, , , , , 52560 , ; , , , , , , d d

        52560 , ; ; , ; , , , d d

upp upp

low low

upp upp

low low

V I

1year VI 10 10 10 10 10 10 10V I

V I

VΣ 10 10 10 V 10 10 Σ10 10 10 10 10 10 10 10 10V I

D C k a b f v i C k a b D v i v i

c v v i f v C k f v i a b v D v i v i

τ τ

τ

=

= ⋅ ⋅

∫ ∫

∫ ∫

d d

d

(3.23) 

where d is design vector of laminate thickness; C and k are the scale parameter and shape 

parameter for the Weibull distribution, respectively; a and b are the shape parameter and 

scale parameter for the Gamma distribution, respectively; τ is the Kendall’s tau for V10 

and Σ10; cVΣ is the Gumbel copula for V10 and Σ10; fV10 and fΣ10 are the Weibull PDF and 
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Gamma PDF of V10 and Σ10, respectively; Vlow and Vupp are the lower  and upper bounds 

of V10, respectively; and Ilow and Iupp are the lower and upper bounds of I10, respectively. 

D10 is the 10-minute fatigue damage. The fatigue analysis procedure for calculating D10 is 

explained in Chapter 2 in detail. 

3.2 Wind Load Variation in a Large Spatiotemporal Range 

Section 3.1 provides a joint PDF of V10 and I10 to account for the wind load 

variation during one year at a specific location. However, the wind load is also varying 

year-to-year for a specific location. In addition, the wind load could be different at 

different locations for various reasons, e.g., the non-uniformity of the earth’s surface, or 

the thermal effect due to differences in altitude. Even though the variation of wind load in 

a large spatiotemporal range seems unpredictable, the distributions and correlation type 

of the random wind parameters, V10, I10, and Σ10, are assumed to be the same. For 

example, researchers often use a Weibull distribution to represent the mean wind speed 

distribution, disregarding when or where their fatigue research has been done (Burton et 

al., 2011; Germanischer Lloyd, 2010; Griffith and Ashwill, 2011; IEC 61400-1, 2005; 

Manwell et al., 2009; Ronold et al., 1999; Shokrieh and Rafiee, 2006). In this study, the 

wind load variation in a large spatiotemporal range is represented by the distributions of 

the marginal distribution and correlation parameters, i.e., C, k, a, b, and τ, which 

determine the joint PDF of V10 and I10 in Eq. (3.22).  

Using the 249 groups of wind data measured from different years and at different 

locations, 249 sets of (C, k, a, b, τ) values have been calculated. Then marginal 

distribution types of C, k, a, b, and τ can be identified using the same MLE method as 

explained in Section 3.1.1. The log-likelihood function values for each candidate 

marginal distribution type are shown in Table 3.3. 
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Table 3.3 Log-likelihood of Candidate Distribution Types for C, k, a, b, and τ 

Log-likelihood C k a b τ 
Normal −460.133 −11.273 −387.513 254.044 159.332 

Lognormal −453.771 −15.152 −363.056 241.609 104.754 
Nakagami −456.276 −11.859 −375.722 253.001 143.410 
Rayleigh −609.626 −276.748 −433.955 182.445 64.433 
Rician −459.954 −11.276 −385.881 254.192 158.377 

Gamma −453.967 −13.002 −368.133 248.462 127.085 
Weibull −475.839 −21.236 −389.089 257.120 169.065 

Birnbaum-Sauuders −454.220 −15.504 −362.710 241.967 100.490 
Exponential −768.942 −444.336 −571.864 39.0837 −82.406 

Extreme Value −506.790 −32.078 −438.082 245.713 182.775 
Generalized Extreme Value −453.698 −11.529 −360.704 256.163 179.529 

Inverse Gaussian −454.232 −15.521 −362.563 241.583 99.271 
Log-logistic −448.182 −12.170 −367.678 236.993 129.781 

Logistic −452.829 −12.667 −385.336 245.866 164.481 

 

 

As shown in Table 3.3, the largest log-likelihood values for C, k, a, b, and τ 

correspond to log-logistic distribution, normal distribution, generalized extreme value 

distribution, Weibull distribution, and extreme value distribution, respectively. After 

calculating the distribution parameters using MLE, the specific PDFs of random 

parameters C, k, a, b, and τ can be obtained. The best fit distributions for C, k, a, b, and τ 

are shown in Figure 3.5. The PDFs of C, k, a, b, and τ are listed in Table 3.4.  
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(a) Log-logistic distribution fit for C data 

 

 
 

(b) Normal distribution fit for k data 

Figure 3.5 Best Fit Distributions for C, k, a, b, τ 
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(c) Generalized extreme value distribution fit for a data 

 

 
 

(d) Weibull distribution fit for b data 

Figure 3.5 Best Fit Distributions for C, k, a, b, τ (Continued) 
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(e) Extreme value distribution fit for τ data 

Figure 3.5 Best Fit Distributions for C, k, a, b, τ (Continued) 
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Table 3.4 Identified PDFs of C, k, a, b, τ Using 249 Groups of Wind Data 

Parameter Distribution Type PDF 

C Log-logistic ( )

( )

( )
2

ln 2.0701
exp

0.1024

ln 2.0701
0.1024 1 exp

0.1024

C

x

f x
x

x

− 
 
 =

 − 
+  

   

 

k Normal ( ) ( )22.19131 exp
0.12820.2532 2k

x
f x

π

 − −
=  

  
 

a Generalized Extreme Value ( ) ( )
( )

15.3746

14.3746

0.7429 0.0827
1.1888

exp 0.7429 0.0827
a

x
f x

x

−

−

+
=

 + 
 

b Weibull ( )
3.1254 4.12544.1254 exp

0.3470 0.3470 0.3470b
x xf x

    = −    
     

 

τ Extreme Value ( ) 1 0.5696 0.56960.0986 exp exp exp
0.0986 0.0986

x xf xτ
− −  −    = −        
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3.3 Case Study and Discussion 

The composite wind turbine blade model developed in Chapter 2 is used as a case 

study to demonstrate the influence of wind load uncertainty on blade fatigue life 

prediction. In this example, the annual wind load variation is represented by the joint 

PDF of V10 and I10, which is determined by parameters (C, k, a, b, τ) as shown in Eq. 

(3.22). The one-year fatigue damage is calculated using Eq. (3.23). In order to illustrate 

the effect of wind load variation in a large spatiotemporal range, two sets of (C, k, a, b, τ) 

are randomly selected from the 249 sets, which are based on measured wind data. The 

two sets of (C, k, a, b, τ) are C = 6.5856, k = 2.5178, a =3.1570, b = 0.4123, τ = 0.6826, 

and C = 4.2878, k = 1.9156, a = 3.7330, b = 0.3834, τ = 0.7272, respectively. The 

corresponding joint PDFs of V10 and I10 are called joint PDF 1 and joint PDF 2 and are 

shown in Figure 3.6. The lower bound and upper bound of V10 are 3 m/s and 25 m/s, 

respectively. The lower bound and upper bound of I10 are 0.02 and 1, respectively. The 

10-minute fatigue analyses are run over the range of V10 between 3 m/s and 25 m/s in 2 

m/s increments, and the range of I10 between 0.02 and 1 in 0.02 increments. 

As can be seen in Figure 3.6 (b), the most probable wind condition, which has the 

largest probability equal to 0.0453 using joint PDF 1, is located at V10 = 7 m/s, I10 = 0.22. 

Figure 3.6 (d) show that the most probable wind condition, which has the largest 

probability equal to 0.0359 using joint PDF 2, is located at V10 = 3 m/s, I10 = 0.36. 

Because the cut-in wind speed, i.e., the lower bound of V10, is equal to 3 m/s, the wind 

load corresponding to V10 smaller than 3 m/s is assumed to contribute no fatigue damage. 

The maximum fatigue damage of section points through laminate thickness is used to 

represent the damage for the corresponding finite element (FE) node. The one-year 

fatigue damage contours corresponding to joint PDFs 1 and 2 are shown in Figure 3.7. 
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(a) Stereoscopic view of joint PDF 1 

 
 

(b) Top view of joint PDF 1 

Figure 3.6 Two Joint PDFs Used in Fatigue Damage Calculation 
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(c) Stereoscopic view of joint PDF 2 

 
 

(d) Top view of joint PDF 2 

Figure 3.6 Two Joint PDFs Used in Fatigue Damage Calculation (Continued) 
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(a) Fatigue contour using joint PDF 1                       (b) Fatigue contour using joint PDF 2 

Figure 3.7 One-year Fatigue Damage Contours Generated by Using Two Joint PDFs 

 

It can be seen that the distributions of the fatigue-critical areas for the cases of 

joint PDFs 1 and 2 are similar, but accumulated fatigue damages are different. The 

maximum one-year fatigue damage for the case of joint PDF 1 is 14.5840, and the 

maximum one-year fatigue damage for the case of joint PDF 2 is 2.7411. The calculated 

maximum one-year fatigue damage using joint PDF 1 is 5.32 times larger than that using 

joint PDF 2. This finding confirms that the wind load variation plays a critical role in 
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blade fatigue analysis. It also attests that, due to the variable wind load in the large 

spatiotemporal range, varied wind load distributions corresponding to the realistic 

measured wind data must be considered in the reliability analysis of wind turbines.  

The developed wind load uncertainty model will be used to create a mean wind 

load for deterministic design optimization (DDO) in Chapter 4 and provide uncertain 

wind load for reliability analysis and reliability-based design optimization (RBDO) in 

Chapter 5 and Chapter 6, respectively. 
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CHAPTER 4 

DETERMINISTIC DESIGN OPTIMIZATION OF COMPOSITE WIND 

TURBINE BLADES UNDER MEAN WIND LOAD 

In this chapter, a deterministic design optimization (DDO) procedure for 

composite wind turbine blades is explained. The purpose of DDO is to obtain a DDO 

optimum design, which usually provides a good initial design to reliability-based design 

optimization (RBDO), so that less computational effort will be required in the following 

RBDO procedure. Because DDO does not involve wind load uncertainty, one 

representative wind load is considered in DDO. The mean wind load of the wind load 

uncertainty model is first obtained as the representative wind load in Section 4.1. The 

DDO of the composite wind turbine blade under the mean wind load is presented in 

Section 4.2. The DDO results and discussion are given in Section 4.3.  

4.1 Mean Wind Load Generation 

4.1.1 Wind Load Probability Table 

As explained in Chapter 3, the one-year fatigue damage is determined by the 

design vector d and random parameters C, k, a, b, and τ. However, the theoretical 

equation to calculate the one-year fatigue damage, as shown in Eq. (3.23), cannot be 

explicitly expressed as a function of d, C, k, a, b, and τ, due to the complexity of the joint 

PDF and 10-minute fatigue damage calculation. Thus, in real damage calculation, the 

double integration in Eq. (3.23) is numerically calculated using the Riemann integral as 

( ) ( ) ( ), ,

1 1
, , , , , 52560 , ; , , , , , ,

m n
i j i j i j i j

1year VI 10 10 10 10 10
i j

D C k a b P v i C k a b D v iτ τ
= =

≈ ∑∑d d        (4.1) 

where the probability of V10 and I10 being in a small cell can be calculated as 

( ) ( ), , ; , , , , , ; , , , ,i j i j i j
VI 10 10 VI 10 10 10 10P v i C k a b f v i C k a b v iτ τ= ∆ ∆                     (4.2) 
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Here, ∆v10 and ∆i10 are the intervals discretizing ranges of V10 and I10, respectively. In this 

study, the ranges of V10 and I10 are evenly discretized. The numbers of selected V10 and I10 

are m and n, respectively. v10
i  is the value of V10 at the center of ith interval in the V10 

direction. Therefore, v10
i =v10

1 +(i-1)Δv10. Similarly, i10
 j  is the value of I10 at the center of the 

jth interval in the I10 direction. Hence, i10
 j =i10

1 +(j-1)Δi10. fVI is the joint probability density 

function (PDF) of V10 and I10. 

In this study, a large range of V10 and I10 has been considered to examine the 

fatigue damage considering all probable wind conditions. Moriarty et al. applied the cut-

in wind speed and the cut-out wind speed as the lower bound and upper bound 

respectively, of 10-minute segments in one-year fatigue simulation, and the calculated 

fatigue load cycles agreed well with those obtained by a long-term extrapolation method 

in their work (Moriarty et al., 2004). The turbines were assumed to operate 100% of the 

time between cut-in and cut-out wind speed with 100% availability (Moriarty et al., 

2004). Even though the unsteadiness when wind speed is larger than cut-out wind speed 

can cause large fluctuating loads, the probability of occurrence of such extreme wind 

conditions is very small, which makes little fatigue contribution in long term. The 

damage due to extreme wind condition may be better addressed by wind turbine extreme 

analysis, which is beyond the scope of this study. In this study, the lower bound and 

upper bound of V10 are set to be the cut-in wind speed of 3 m/s and cut-out wind speed of 

25 m/s, respectively (Jonkman et al., 2009b). The lower bound and upper bound of I10 are 

set to be 0.02 and 1, respectively. The 10-minute fatigue analyses are run over the range 

of V10 between 3 m/s and 25 m/s in 2 m/s increments, and the range of I10 between 0.02 

and 1 in 0.02 increments. Therefore, the number of V10 and I10 are 12 and 50, respectively 

(i.e., m = 12 and n = 50 in Eq. (4.1)). There are 600 different wind conditions in total. All 

the wind conditions are listed in Table 4.1. 
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Table 4.1 Selected 600 Wind Conditions 

               I10       

V10 (m/s) 

0.02 0.04 0.06 0.08 …. 0.94 0.96 0.98 1 

3 3,0.02 3,0.04 3,0.06 3,0.08 …. 3,0.94 3,0.96 3,0.98 3,1 

5 5,0.02 5,0.04 5,0.06 5,0.08 …. 5,0.94 5,0.96 5,0.98 5,1 

7 7,0.02 7,0.04 7,0.06 7,0.08 …. 7,0.94 7,0.96 7,0.98 7,1 

9 9,0.02 9,0.04 9,0.06 9,0.08 …. 9,0.94 9,0.96 9,0.98 9,1 

11 11,0.02 11,0.04 11,0.06 11,0.08 …. 11,0.94 11,0.96 11,0.98 11,1 

13 13,0.02 13,0.04 13,0.06 13,0.08 …. 13,0.94 13,0.96 13,0.98 13,1 

15 15,0.02 15,0.04 15,0.06 15,0.08 …. 15,0.94 15,0.96 15,0.98 15,1 

17 17,0.02 17,0.04 17,0.06 17,0.08 …. 17,0.94 17,0.96 17,0.98 17,1 

19 19,0.02 19,0.04 19,0.06 19,0.08 …. 19,0.94 19,0.96 19,0.98 19,1 

21 21,0.02 21,0.04 21,0.06 21,0.08 …. 21,0.94 21,0.96 21,0.98 21,1 

23 23,0.02 23,0.04 23,0.06 23,0.08 …. 23,0.94 23,0.96 23,0.98 23,1 

25 25,0.02 25,0.04 25,0.06 25,0.08 …. 25,0.94 25,0.96 25,0.98 25,1 
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At each wind condition, a wind load probability PVI
 i,j is calculated using Eq. (4.2), 

and a 10-minute fatigue damage D10
 i,j is calculated using the developed fatigue analysis 

procedure in Chapter 2. In this way, a 12-by-50 wind load probability table and a 12-by-

50 10-minute fatigue damage table can be constructed. For brevity, the wind load 

probability table and the 10-minute fatigue damage table are symbolically shown in Table 

4.2 and Table 4.3, respectively.  

 

Table 4.2 Wind Load Probability Table 

   I10  

V10 
𝑖𝑖10
1  𝑖𝑖10

2  ⋯ 𝑖𝑖10
50 

𝑣𝑣10
1  𝑃𝑃𝑉𝑉𝑉𝑉

1,1 𝑃𝑃𝑉𝑉𝑉𝑉
1,2 ⋯ 𝑃𝑃𝑉𝑉𝑉𝑉

1,50 

𝑣𝑣10
2  𝑃𝑃𝑉𝑉𝑉𝑉

2,1 𝑃𝑃𝑉𝑉𝑉𝑉
2,2 ⋯ 𝑃𝑃𝑉𝑉𝑉𝑉

2,50 

⋮ ⋮ ⋮ ⋱ ⋮ 

𝑣𝑣10
12 𝑃𝑃𝑉𝑉𝑉𝑉

12,1 𝑃𝑃𝑉𝑉𝑉𝑉
12,2 ⋯ 𝑃𝑃𝑉𝑉𝑉𝑉

12,50 

 

Table 4.3 Ten-minute Fatigue Damage Table 

   I10  

V10 
𝑖𝑖10
1  𝑖𝑖10

2  ⋯ 𝑖𝑖10
50 

𝑣𝑣10
1  𝐷𝐷𝑉𝑉𝑉𝑉

1,1 𝐷𝐷𝑉𝑉𝑉𝑉
1,2 ⋯ 𝐷𝐷𝑉𝑉𝑉𝑉

1,50 

𝑣𝑣10
2  𝐷𝐷𝑉𝑉𝑉𝑉

2,1 𝐷𝐷𝑉𝑉𝑉𝑉
2,2 ⋯ 𝐷𝐷𝑉𝑉𝑉𝑉

2,50 

⋮ ⋮ ⋮ ⋱ ⋮ 

𝑣𝑣10
12 𝐷𝐷𝑉𝑉𝑉𝑉

12,1 𝐷𝐷𝑉𝑉𝑉𝑉
12,2 ⋯ 𝐷𝐷𝑉𝑉𝑉𝑉

12,50 
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To facilitate understanding the two types of tables, a typical wind load probability 

table and a typical 10-minute fatigue damage table are illustrated by 3-D bar charts in 

Figure 4.1 and Figure 4.2, respectively. In Figure 4.1, the C, k, a, b, τ used to generate the 

illustrated wind load probability table are C = 6.5856, k = 2.5178, a =3.1570, b = 0.4123, 

τ = 0.6826. Figure 4.2 uses 10-minute fatigue damages calculated at a node-section point 

randomly selected from the blade model developed in Chapter 2. As shown in Figure 4.1, 

the large probabilities are concentrated at mild wind conditions, e.g., V10 < 11 m/s, I10 < 

0.3. For extreme wind conditions, the probabilities are much smaller than those 

corresponding to mild wind load conditions. The reason these extreme wind conditions 

are also considered is that the 10-minute fatigue damages under extreme wind conditions 

are often much larger than those under mild wind conditions. As shown in Figure 4.2, the 

10-minute fatigue damage increases exponentially as V10 and I10 increase. Hence, it is 

necessary to include all the wind conditions when calculating the one-year fatigue 

damage. A 3-D bar chart of the multiplication of the wind load probability table (Figure 

4.1) and the 10-minute fatigue damage table (Figure 4.2) is shown in Figure 4.3. As 

shown in Figure 4.3, in this case the distribution of the multiplication is more close to that 

of the wind load probability table. The large multiplication values are clustered at the 

mild wind conditions. The reason is that the magnitude of probability at the extreme wind 

conditions is much smaller than that at the mild wind conditions. For example, PVI 

=0.0453 when V10 = 7 m/s, I10 = 0.22, while PVI =2.27E−36 when V10 = 17 m/s, I10 = 1 in 

Figure 4.1. Even though the D10 is relatively large at the extreme wind conditions, the 

multiplication of the probability and the D10 is smaller at the extreme wind conditions 

than that at the mild wind conditions in this case.  
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Figure 4.1 A 3-D Bar Chart of a Wind Load Probability Table 

 

 

Figure 4.2 A 3-D Bar Chart of a 10-minute Fatigue Damage Table 
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Figure 4.3 A 3-D Bar Chart of the Multiplication of a Wind Load Probability Table and a 
10-minute Fatigue Damage Table 

 

4.1.2 Mean Wind Load Probability Table 

In order to provide a mean wind load for DDO, a mean wind load probability 

table is generated using the Monte Carlo simulation (MCS) method. The main procedure 

to calculate the mean wind load probability table is listed below. 

(1) Generate one million MCS sample sets of (C, k, a, b, τ) based on the identified 

distributions in Table 3.4. Assume C, k, a, b, and τ are independent. 

(2) Create one million joint PDFs of V10 and I10 based on the MCS samples of (C, k, 

a, b, τ). The joint PDF of V10 and I10 is shown in Eq. (3.22). 

(3) Create a wind load probability table based on each joint PDF of V10 and I10. The 

probability value PVI
 i,j in each cell (corresponding to each combination of v10

i  and 

i10
 j ) in the probability table is calculated using Eq. (4.2). Thus, one million wind 

load probability tables can be created using one million joint PDFs of V10 and I10.  
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(4) Calculate an average value 𝑃𝑃�VI
 i,j of one million probability values corresponding to 

the same wind condition v10
i  and i10

 j . Then use the average value as the probability 

value in the cell of the mean wind load probability table. Similarly, the mean 

probability values corresponding to other wind conditions can be obtained. 

Finally, the mean wind load probability table using one million MCS samples of 

(C, k, a, b, τ) is obtained.  

The generated mean wind load probability table is schematically shown in Figure 

4.4. As shown in Figure 4.4, the largest probability value 0.0218 corresponds to V10 = 7 

m/s and I10 = 0.1. Each cell in the mean wind load probability table contains an averaged 

probability of one wind load considering the wind load variation in a large spatiotemporal 

range. 

 

 

Figure 4.4 3-D Bar Chart of the Mean Wind Load Probability Table 
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4.2 Deterministic Design Optimization under Mean Wind 

Load 

Using the mean wind load probability table generated in Section 4.1, the 

composite wind turbine blade developed in Section 2.3.1 has been utilized as an initial 

design for the DDO procedure. The objective function is the total cost of composite 

materials used in the blade. Design variables are laminate thicknesses of the blade, and 

there are 12 design variables. Twenty-year fatigue damages, under the assumption that 

the mean wind load in Section 4.1 will continue for 20 years, of selected hotspots are 

used for the optimization constraints. The DDO procedure tailors laminate thickness 

design variables to minimize the cost while satisfying a 20-year fatigue lifespan under a 

mean wind load condition. 

4.2.1 Design Variables 

As shown in Figure 4.5, the blade is composed of seven parts: the root, forward 

shear web, aft shear web, leading edge, spar cap, trailing edge, and tip. In the developed 

parametric blade model, each part consists of one/multiple panel(s). For example, the root 

has only one panel while the forward shear web has 13 panels. The blade is made of 71 

panels in total. Each panel is composed of composite laminates, e.g., QQ1 and P2B. 

There is a foam core layer in the middle of the panels of the forward shear web, aft shear 

web, leading edge, and trailing edge. The numbers of layers in the outer shell of the 

blade, i.e., root, leading edge, trailing edge, spar cap and tip, have referred to the laminate 

schedule of the Sandia’s l00-m blade model (Griffith and Ashwill, 2011). The detail 

laminate schedule of the blade is given in Table 2.4. The number of laminate layers in 

each panel is summarized in Table 4.4. The hierarchical relationship for the blade, parts, 

panels, and laminates is shown in Figure 4.6. 
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Figure 4.5 Seven Parts of the Composite Wind Turbine Blade 
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Table 4.4 Composite Material Type Used in Each Part and Number of Laminate Layers in Each Panel at the Initial Design 

Part Name Composite Materials Number of Laminate Layers 

Root QQ1 7                

Forward Shear Web QQ1 4 4 4 4 4 4 4 4 4 4 4 4 4    

Aft Shear Web QQ1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

Tip QQ1 2                

Leading Edge QQ1 4 4 6 4 2 2 2 2 2 2 2 2     

Trailing Edge QQ1 4 4 4 4 2 2 2 2 2 2 2 2 2 2   

Spar Cap P2B 6 6 10 10 10 10 10 10 8 6 4 4 4 4   

Panel Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
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Figure 4.6 Hierarchical Relationship in the Parametric Composite Blade Model 

 

The design variables control the thicknesses of the composite laminates. The 

thicknesses of laminates in the same panel are assumed to be identical. In order to reduce 

the number of design variables, one design variable is linked to one or multiple panels. 

For example, design variable 1 is linked to the root panel; design variable 2 is linked to 

the panels 1 to 5 in the forward shear web. The detailed linkage between design variables 

and linked panels is shown in Table 4.5. The initial value, lower and upper bounds of 

design variables, and corresponding composite materials are also listed in Table 4.5. It is 

noted that a design variable is not the total thickness of corresponding panels. It is the 

thickness of one composite laminate. For example, when design variable d1 is 4 mm, the 

thickness of root panel 1 is 28 mm because there are seven laminate layers, as shown in 

Table 4.4.  
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Table 4.5 Initial Value, Lower and Upper Bounds of Design Variables, Linked Panels, and Composite Materials  

Design Variables 
Initial Value 

(mm) 

Lower Bound 

(mm) 

Upper Bound 

(mm) 
Linked Panel Composite Material 

d1 4 2 8 Root Panel 1 QQ1 

d2 4 2 16 Forward Shear Panels 1-5 QQ1 

d3 4 2 16 Forward Shear Panels 6-9 QQ1 

d4 4 2 16 Forward Shear Panels 10-13 QQ1 

d5 4 2 16 Aft Shear Web Panels 1-4 QQ1 

d6 4 2 16 Aft Shear Web Panels 5-8 QQ1 

d7 4 2 16 Aft Shear Web Panels 9-12 QQ1 

d8 4 2 16 Aft Shear Web Panels 13-16 QQ1 

d9 4 2 8 Tip Panel 1 QQ1 

d10 4 2 8 Leading Edge Panels 1-12 QQ1 

d11 4 2 8 Trailing Edge Panels 1-14 QQ1 

d12 2.5 1.5 4.5 Spar Cap Panels 1-14 P2B 
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4.2.2 Objective Function 

The objective function in DDO is the total cost of the composite materials used in 

the blade model. As the thickness of the laminate changes, the mass of composite 

materials changes proportionally. Consequently, the cost is a function of laminate 

thickness, i.e., design variables. According to TPI Composites (2003), the material cost of 

QQ1, which belongs to E-glass composite material, is $4.18/kg. The material cost of 

P2B, which is carbon/E-glass hybrid-fiber-reinforced composite material, is taken to be 

$11.70/kg. 

If the initial mass of panel(s) linked to the ith design variable is 𝑚𝑚𝑖𝑖
0 (unit: ton) and 

the initial design is 𝑑𝑑𝑖𝑖0 (unit: mm), then the mass of panel(s) at a new design 𝑑𝑑𝑖𝑖 can be 

calculated as 

0
0
i

i i
i

dm m
d

=                                                  (4.3) 

where i = 1, 2, …, 12. Assuming the material cost is proportional to the mass, the cost 

(unit: dollar) of composite materials used in the blade can be calculated as 

11
0 0 12

120 0
12

 4.18 1000 11.70 1000i
i

i i

d dMaterial Cost m m
d d

= × × + × ×∑                (4.4) 

In this study, Matlab’s Sequential Quadratic Programming (SQP) algorithm 

(Matlab, 2012) is used for DDO. The magnitude of composite material cost is at a level 

of 10,000, while the constraints are normalized at a level of 1. In the nonlinear 

constrained optimization process, the level difference between the objective function and 

the constraints might cause the problem that the optimization process is dominated by the 

objective function, such that the optimization process mainly considers the objective 

function while ignoring the constraints. Thus, the optimization iteration may not 

converge well. In order to avoid this problem, the composite material cost in Eq. (4.4) is 

normalized by its initial value. The final objective function for DDO becomes  
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( )
11

0 0 012
120 0

12

4.18 1000 11.70 1000i
i

i i

d dC m m Cost
d d

 
= × × + × × 
 

∑d                (4.5) 

where the design vector d = [d1, d2,…, d12]; mi
0 is the initial mass of panel(s) linked to the 

ith design variable; d i0is the initial ith design variable; and Cost0 is the initial composite 

material cost, which is $95,494 in this study. 

4.2.3 Fatigue Constraints 

The constraints for DDO are to satisfy the 20-year fatigue lifespan. In other 

words, the 20-year fatigue damages for all node-section points in the blade model should 

be smaller than 1. A demonstration of node-section points is shown in Figure 2.5 in 

Section 2.3.2. Under the assumption that the mean wind load condition continues for 20 

years, the 20-year fatigue damage is calculated as 

( ) ( ) ( )
12 50

, ,
20 1052560 20 , , ,i j i j i j i j

year VI 10 10 10 10
i j

D P v i D v i= × ×∑∑d d             (4.6) 

where 52560 indicates the number of 10-minute periods in one year; 20 indicates that the 

designed lifespan is 20 years, and 𝑃𝑃�𝑉𝑉𝑉𝑉
𝑖𝑖,𝑗𝑗(𝑣𝑣10

𝑖𝑖 , 𝑖𝑖10
𝑗𝑗 ) is the mean probability value 

corresponding to the wind condition V10 = 𝑣𝑣10
𝑖𝑖  and I10 = 𝑖𝑖10

𝑗𝑗 . The mean probability value is 

obtained from the mean wind load probability table (Figure 4.4) in Section 4.1.  

The fatigue hotspots are the node-section points where fatigue is considered as the 

DDO constraints. A node-section point, which combines nodal ID and section point ID, 

identifies the specific location at the blade FE model. The selection of fatigue hotspots is 

a challenging issue due to the complexity of the blade model. The blade FE model 

consists of 3,422 nodes, and each node corresponds to multiple section points through 

laminate thickness. The number of section points corresponding to each FE node depends 

on the number of laminate layers in a panel. In total, there are 60,954 node-section points 

in the blade FE model. It is quite demanding computationally to check the fatigue 

damages of all the node-section points during the DDO procedure due to the 
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computational burden. In addition, the fatigue-critical node-section points may vary in 

each DDO iteration due to design change. For example, new fatigue-critical node-section 

points may come out because the associated laminate thickness becomes small in a 

design iteration. Thus, the fatigue hotspots need to be wisely selected in order to save 

computational time and to make sure that all node-section points satisfy the 20-year 

fatigue life constraints at the DDO optimum design. 

The main steps for selecting hotspots in DDO are listed below. 

(1) Calculate 20-year fatigue damages of all node-section points of the blade at the 

initial design. 

(2) For each panel, find the node-section point that has the largest fatigue damage in 

the panel. These node-section points with largest fatigue damages are the initial 

hotspots in DDO. 

(3) Include the 20-year fatigue damages of the initial hotspots into DDO constraints. 

(4) Launch the DDO procedure. 

(5) After five iterations, stop the DDO procedure. Check all the node-section points at 

the latest design. If there are new hotspots, add their fatigue damages to the 

constraint and go to step 4. If the DDO procedure converges under five iterations, 

go to step 6. 

(6) Check the 20-year fatigue damages of all the node-section points. If there is no 

new hotspot, DDO is converged. If there are new hotspots, add their fatigue 

damages to the constraints and go to step 4. 

In conclusion, the DDO of the blade for fatigue under the mean wind load can be 

formulated as 
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( ) ( ) ( )

11
0 0 012

120 0
12

12 50
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10

minimize  4.18 1000 11.70 1000

subject to 52560 20 , , , 1 0,  1, 2,...,

                 ,      

i
i
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= × × − < =

≤ ≤ ∈

∑

∑∑

d

d d

d d d d 

(4.7) 

where d is the 12-dimensional design variable vector for laminate thicknesses; dL and dU 

are the lower bound and upper bound for the design variable vector, respectively; Gk is 

the k-th constraint function; and NC is the number of constraints.  

4.3 DDO Results and Discussion 

The whole DDO procedure consists of seven sets of the five iterations, which is 

called the “intermediate process” hereafter. In the beginning of DDO, 69 node-section 

points are selected as hotspots at the initial design. Because some selected node-section 

points are shared by adjacent panels, the number of hotspots at the initial design is 

smaller than the total number of panels, i.e., 71. As the DDO procedure goes on, the 

number of hotspots increases as new hotspots are added in each intermediate process. 

Finally, 120 node-section points are selected as hotspots for DDO constraints. The DDO 

procedure is converged at the first iteration of the eighth intermediate process, because 

the design change is less than the tolerance 1E−3 and the relative maximum constraint 

violation is also less than the tolerance 1E−3. Table 4.6 compares the design variables, 

objective function, and fatigue life of the blade at the initial design and the DDO 

optimum design. The histories of the cost function and fatigue life are plotted in Figure 

4.7. Here, the fatigue life (unit: year) of the blade is calculated as 

max
20

20Fatigue Life
yearD

=                                                  (4.8) 

where D20year
max  is the maximum 20-year fatigue damage among all node-section points in 

the blade model. 
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As shown in Table 4.6, the fatigue life of the initial design is only 0.0004 year, 

which obviously does not satisfy the target fatigue lifespan of 20 years. After the DDO 

procedure, the cost is increased by 31.53% and the fatigue life of the blade model is 

significantly increased to satisfy the 20-year fatigue lifespan. That is, the fatigue life of 

the DDO optimum design is about 49,999 times longer than that of the initial design. 

 

Table 4.6 Design Variables, Cost, and Fatigue Life at Initial Design and at DDO 
Optimum Design 

 Initial Design DDO Optimum Design 

d1 (mm) 4 3.99 

d2 (mm) 4 3.50 

d3 (mm) 4 4.45 

d4 (mm) 4 6.51 

d5 (mm) 4 2.00 

d6 (mm) 4 2.00 

d7 (mm) 4 7.06 

d8 (mm) 4 4.40 

d9 (mm) 4 2.00 

d10 (mm) 4 4.73 

d11 (mm) 4 5.31 

d12 (mm) 2.5 3.85 

Cost 1 1.3153 

Fatigue Life (year) 0.0004 19.9995 
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Figure 4.7 Histories of Cost and Fatigue Life in DDO 

 

As shown in Figure 4.7, there is a drop at the 10th iteration in the fatigue life 

history. The drop occurred because new fatigue hotspots were identified after 10 

iterations. Among the new hotspots, one hotspot has significantly large fatigue damage 

compared to the others. After incorporating this new hotspot, the fatigue life was reduced 

while the cost remained the same. After 35 iterations, the DDO procedure was converged 

and no violated hotspots were found. The number of active or violated constraints are 

reduced from fifteen at the initial design to six at the DDO optimum design. Figure 4.8 

shows the nodal location of hotspots corresponding to active or violated constraints at the 

initial design and the DDO optimum design. It is shown that the hotspots are moved from 

rear part at the initial design to the root at the DDO optimum design because many more 

materials are applied at the rear part of the DDO optimum design. For example, as shown 

in Table 4.6, the rear part of the forward shear web controlled by design variable d4 and 
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the rear part of the aft shear web controlled by design variable d7 are increased by 62.8% 

and 76.5%, respectively, which significantly increases the fatigue strength in the rear part 

of the blade. The six hotspots at the DDO optimum design will be used for constraints in 

RBDO in Chapter 6.  

 

 
(a) At the initial design 

 
(b) At the DDO optimum design 

Figure 4.8 Nodal Location of Hotspots Corresponding to Active/Violated Constraints at 
the Initial Design and the DDO Optimum Design 

 

Table 4.6 shows that the design variables d4 and d7 have relatively large values at 

the DDO optimum design. In order to generate a reasonable thickness of composite 

laminates for manufacturing purposes, the number of laminate layers in the panels 

corresponding to d4 and d7 has been adjusted so that the thicknesses of these two design 

variables at the DDO optimum design are reduced. The total thickness of each panel has 

remained the same after increasing the number of laminate layers. In addition, the 20-

year fatigue damages of all node-section points of the adjusted blade model has been 

checked again. No violated node-section point has been found in the adjusted blade 

model. In fact, for the hotspots corresponding to active constraints at the DDO optimum 
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design, the adjusted blade model produces the same fatigue damage as the original model 

because d4 and d7 correspond to uniaxial laminate layers. Thus, the fatigue life of the 

adjusted model is the same as the original model at the DDO optimum design. The final 

adjusted model at the DDO optimum design and number of laminate layers are shown in 

Table 4.7 and Table 4.8, respectively. 

 

Table 4.7 Design Variables, Cost, and Fatigue Life of the Adjusted Model at DDO 
Optimum Design 

d1 (mm) 3.99 

d2 (mm) 3.50 

d3 (mm) 4.45 

d4 (mm) 4.34 

d5 (mm) 2.00 

d6 (mm) 2.00 

d7 (mm) 3.53 

d8 (mm) 4.40 

d9 (mm) 2.00 

d10 (mm) 4.73 

d11 (mm) 5.31 

d12 (mm) 3.85 

Cost 1.3153 

Fatigue Life (year) 19.9995 
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Table 4.8 Number of Laminate Layers of the Adjusted Model at DDO Optimum Design 

Part Name Number of Laminate Layers in Each Panel 

Root 7                

Forward Shear Web 4 4 4 4 4 4 4 4 4 6 6 6 6    

Aft Shear Web 4 4 4 4 4 4 4 4 8 8 8 8 4 4 4 4 

Tip 2                

Leading Edge 4 4 6 4 2 2 2 2 2 2 2 2     

Trailing Edge 4 4 4 4 2 2 2 2 2 2 2 2 2 2   

Spar Cap 6 6 10 10 10 10 10 10 8 6 4 4 4 4   

Panel Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
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CHAPTER 5 

RELIABILITY ANALYSIS OF COMPOSITE WIND TURBINE 

BLADES UNDER WIND LOAD UNCERTAINTY 

This chapter describes the reliability analysis method for composite wind turbine 

blades under wind load uncertainty. In Section 5.1, the Monte Carlo simulation (MCS) 

method to simulate uncertain wind load using the developed dynamic wind load 

uncertainty model is explained. The reliability analysis method using MCS can estimate 

the probability that a wind turbine could survive 20 years of target lifespan. The 

reliability analyses at the initial design and the deterministic optimal design have been 

carried out in Section 5.2. Results and discussion are provided in Section 5.3. The overall 

procedure to carry out reliability analysis for a given design under wind load uncertainty 

is shown in Figure 5.1. 

 

Figure 5.1 Flowchart of Reliability Analysis of Wind Turbine Blade at a Design under 
Wind Load Uncertainty 
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5.1 Reliability Analysis Using Monte Carlo Simulation 

As given in Eq. (4.1), the one-year fatigue damage is calculated using Riemann 

integration as 

( ) ( ) ( )
12 50

, ,

1 1
, , , , , 52560 , ; , , , , , ,i j i j i j i j

1year VI 10 10 10 10 10
i j

D C k a b P v i C k a b D v iτ τ
= =

≈ ∑∑d d        (5.1) 

where PVI
 i,j and DVI

 i,j are the probability and the 10-minute fatigue damage, respectively, 

corresponding to a wind condition (v10
i , i10

 j ). The PVI
 i,j, DVI

 i,j, and corresponding wind 

condition are obtained from a wind load probability table, a 10-minute fatigue damage 

table, and a wind condition table, respectively. The details of constructing the three tables 

are given in Section 4.1. 

In this study, the wind load condition table includes 600 wind load conditions and 

does not change, as shown in Table 4.1. Thus, the one-year fatigue damage calculation 

depends only on the wind load probability table and the 10-minute fatigue damage table. 

Furthermore, the wind load probability table is determined by (C, k, a, b, τ), and the 10-

minute fatigue damage table is determined only by design d. Therefore, for a given 

design d, the one-year fatigue damage is a function of (C, k, a, b, τ) only. Finally, 

considering the wind load variation in a 20-year range, 20-year fatigue damage at a given 

design d can be calculated as 

( ) ( )

( ) ( )

20

20 1
1

20 12 50
, ,

1 1 1

; , , , , , , , , ,

               52560 , ; , , , , , ,

t t t t t t
year year

t

i j i j t t t t t i j i j
VI 10 10 10 10 10

t i j

D D C k a b

P v i C k a b D v i

τ

τ

=

= = =

=

=

∑

∑∑∑

d C k a b τ d

d
            (5.2) 

where random vectors C, k, a, b, and τ contain 20 sets of (C, k, a, b, τ) as C = [C1, C2,…, 

C20], k = [k1, k2,…, k20], a = [a1, a2,…, a20], b = [b1, b2,…, b20], and τ = [τ1, τ 2,…, τ 20]. 

Hence, there are 100 random parameters in Eq. (5.2). In this study, the random vectors 

are assumed to be independent. The 20 random parameters in one random vector are also 
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assumed to be independent, which means last year’s wind load is independent from this 

year’s. 

In Eq. (5.2), the 20-year fatigue damage D20year is also random because the 

random vectors C, k, a, b, and τ are random. Consequently, a fatigue failure (D20year > 1) 

in 20 years can be measured with its probability. The probability of fatigue failure cannot 

be calculated using a sensitivity-based reliability method such as the first-order reliability 

method (FORM) or the second-order reliability method (SORM) because the sensitivity 

(gradient) of D20year is not available due to its implicit feature. In this study, the 

probability of fatigue failure is calculated using a sampling-based reliability method that 

uses MCS. Using Eq. (5.2) and MCS, the probability of fatigue failure is calculated as 

( ) ( )( )
( )

( )

( ) ( )
20

20

, 1

Fatigue Life  20 years ; 1
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i

i
I

NMCS Ω
=

 ≅  ∑ x

                           (5.3) 

where X =[C, k, a, b, τ], and x(i) is the ith realization of X. It is worth noting that the 

realization x(i) is randomly generated based on the PDFs of (C, k, a, b, τ) in Table 3.4. 

Each realization includes 20 sets of (C, k, a, b, τ). NMCS is the number of realizations for 

MCS. ΩF is the failure domain such that D20year(d; X) > 1, and 𝐼𝐼Ω𝐹𝐹(⋅) is an indicator 

function defined as 

( )
1,         for 
0,        otherwiseF

FIΩ
∈Ω

= 


x
x .                             (5.4) 

Though the reliability analysis calculation is straightforward, there are two points 

that need to be noted. One is that the uncertainty of design variables (laminate 

thicknesses) due to manufacturing has not been considered in this chapter. The design 

variable uncertainty will be discussed in Chapter 6. The other is that each MCS 
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realization, which includes 20 sets of (C, k, a, b, τ), represents the wind load variation in 

20 years. 

5.2 Reliability Analysis Examples  

The reliability analyses of fatigue in a wind turbine blade at the initial design and 

the optimal design obtained from the deterministic design optimization (DDO) in Chapter 

4 have been carried out in this section. Note that the number of laminate layers of the 

DDO optimum design was adjusted for manufacturing purposes in Section 4.3, and the 

adjusted blade model produces the same fatigue damage at selected hotspots compared to 

the original model. Thus, the probabilities of failure corresponding to the adjusted blade 

and the original blade are the same. For simplicity, the original blade model at the DDO 

optimum design is used for the reliability analysis because this model has the same 

laminate schedule as the initial design. The initial design and DDO optimum design are 

shown in Table 5.1. 
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Table 5.1 Initial Design and DDO Optimum Design 

 DDO Initial Design DDO Optimum Design 

d1 (mm) 4 3.99 

d2 (mm) 4 3.50 

d3 (mm) 4 4.45 

d4 (mm) 4 6.51 

d5 (mm) 4 2.00 

d6 (mm) 4 2.00 

d7 (mm) 4 7.06 

d8 (mm) 4 4.40 

d9 (mm) 4 2.00 

d10 (mm) 4 4.73 

d11 (mm) 4 5.31 

d12 (mm) 2.5 3.85 

 

 

In this example, the reliability analyses are carried out for all the 60,954 node-

section points, not only for the selected hotspots. 50,000 realizations of C, k, a, b, and τ 

have been generated for reliability analysis. As explained earlier, each realization is 20 

sets of (C, k, a, b, τ). Then, 50,000 20-year fatigue damages have been calculated using 

Eq. (5.2) at each node-section point. The probability of fatigue life smaller than 20 years 

is then calculated by Eq. (5.3). The largest probability of failure among node-section 

points associated with one finite element (FE) node is selected as the probability of 

failure for that FE node. The reliability analysis results and discussion are provided in the 

following section. It is noted that all the 10-minute fatigue damage tables for 60,954 

node-section points have already been obtained in the DDO procedure in Chapter 4. In 

this example, the probability tables for 50,000 realizations are generated, and the 
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generation requires only small computational cost. Therefore, the reliability analysis 

considering only wind load uncertainty is computationally affordable. 

5.3 Reliability Analysis Results and Discussion 

The reliability analysis has been carried out on the Linux machine (Dell 

PowerEdge R720 single server, 8 quad-core Xeon E5-2690 CPUs-32 cores, 2.9 GHz, 256 

GB of RAM). Ten cores were used in parallel. Given the 10-minute fatigue damage 

tables of all 60,954 node-section points, the computational time for reliability analyses is 

about 7 hours. It is worth noting that the computational time for generating the 10-minute 

fatigue damage tables of all the node-section points using the same machine is about 14 

hours. Thus, the total computational time would be about 21 hours for a given blade 

design using the machine. 

The probability of fatigue failure contours of the initial design and the DDO 

optimum design are shown in Figure 5.2. As shown in Figure 5.2(a), the probability of 

failure of the initial design is 100%, especially at the rear parts of the aft shear web, 

forward shear web, and spar cap. The reason for the high probability of failure may be 

that the initial design of these parts is too small, as these parts often endure much larger 

aerodynamic wind loads than the root part. After the DDO procedure, the design 

variables d4, d7, and d12, which are associated with the rear parts of the aft shear web, 

forward shear web, and spar cap, respectively, are increased by 62.8%, 76.5%, and 54%, 

respectively. The maximum probability of failure of the DDO optimum design is reduced 

to 49.9%, which occurs at the leading edge. Other areas with high probability of failure 

are isolated on the root of the blade as shown in Figure 5.2(b).  

The significant reduction of the probability of fatigue failure from 100% at the 

initial design to 49.9% at the DDO optimum design indicates that the DDO procedure 

indeed reduces the probability of failure. However, the probability of failure of the DDO 

optimum design is still up to 49.9%, which obviously does not satisfy the target reliability 
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requirement. Thus, the reliability-based design optimization (RBDO) is necessary to 

further improve the fatigue reliability of the wind turbine blade. 
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(a) Initial design 

 
 

(b) DDO optimum design 

Figure 5.2 Probability of Failure Contour of the Initial Design and the DDO Optimum 
Design 
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CHAPTER 6 

RELIABILITY-BASED DESIGN OPTIMIZATION OF COMPOSITE 

WIND TURBINE BLADES UNDER WIND LOAD UNCERTAINTY 

This chapter describes reliability-based design optimization (RBDO) of composite 

wind turbine blades under wind load uncertainty. A sampling-based RBDO method is 

used for the current problem because the design sensitivity of fatigue performance is 

complicated, nonlinear, and implicit. The fundamental ideas of the sampling-based 

RBDO are reviewed in Section 6.1. The RBDO problem of the composite wind turbine 

blade is explained in Section 6.2. The RBDO results and discussion are provided in 

Section 6.3.  

6.1 Sampling-Based RBDO 

6.1.1 Reliability Analysis 

Reliability analysis is a procedure to calculate the probability of failure of a 

performance measure. The probability of failure, denoted by PF, can be calculated using a 

multi-dimensional integral as (Madsen et al., 1986) 

( ) ( )
( ) 0

0F G
P P G f d

>
≡ > =   ∫ XX

X x x                                (6.1) 

where P[•] represents a probability measure, X = [X1, X2,…, XN]T is an N-dimensional 

vector of input random variables Xi, G(X) is a performance measure function such that 

G(X) > 0 is defined as failure, and fX(x) is a joint probability density function (PDF) of the 

input random variables. For real engineering problems, it is very difficult to evaluate Eq. 

(6.1) analytically, because the type of joint PDF is usually not Gaussian (multivariate 

normal distribution), and the performance measure G(X) is nonlinear and implicit. To solve 

this kind of problem, there are two approaches: sensitivity-based reliability analysis and 

sampling-based reliability analysis. The sensitivity-based reliability analysis needs to 
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transform the random variable vector X, which follows a non-Gaussian PDF, into 

independent standard normal space (U-space) and approximate the nonlinear performance 

measure by Taylor series expansion in the U-space. The Taylor series expansion requires 

the sensitivity (gradient) of the performance measure G(X), while the fatigue performance 

measure is a complicated, nonlinear, and implicit function. Thus, it is not suitable to use 

the sensitivity-based reliability analysis method for the fatigue reliability analysis of 

composite wind turbine blades. In contrast, the sampling-based reliability analysis does not 

require the sensitivity of the performance measure. Instead, it directly uses the Monte Carlo 

simulation (MCS) method, which applies samples drawn from the input joint PDF fX(x). 

Thus, sampling-based reliability analysis is used for the reliability analysis method of 

composite wind turbine blades. The sampling-based reliability analysis is explained in 

Section 6.1.2. 

6.1.2 Sampling-Based Reliability Analysis 

The sampling-based reliability analysis calculates the probability of failure in Eq. 

(6.1) by applying the MCS method as (Lee et al., 2011a; Lee et al., 2011b) 
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                               (6.2) 

where x(i) is the ith realization of X (ith MCS sample), NMCS is the number of MCS 

samples, ΩF is the failure domain such that G(X) > 0, and IΩF(⋅) is an indicator function 

defined as 

( )
1,     for 
0,     otherwiseF

FIΩ
∈Ω

≡ 


x
x                                             (6.3) 

Although sampling-based reliability analysis does not require the sensitivity of the 

performance measure, the accuracy of the calculated probability of failure depends on the 

number of MCS samples NMCS. To calculate an accurate probability of failure, a large 
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number of MCS samples are required. Based on the 95% confidence interval of the 

estimated probability of failure, the percentage error can be defined as (Haldar and 

Mahadevan, 2000) 

( )1
% 200%

Tar
F

Tar
F

P
NMCS P

ε
−

= ×
×

                                            (6.4) 

where NMCS is the number of MCS samples and P𝐹𝐹Taris the target probability of failure. 

Equation (6.4) shows that NMCS should be increased to maintain the accuracy as the 

target probability of failure reduces. Because real engineering problems may involve 

expensive computational time, a large number of MCS samples could be unaffordable. In 

order to solve the computational issue, surrogate models are often used for sampling-

based reliability analysis, as well as sampling-based RBDO. Sampling-based RBDO is 

explained in Section 6.1.3. 

6.1.3 Sampling-Based RBDO 

The general formulation of an RBDO problem can be expressed as 

( )
minimize      Cost( )

subject to      0 ,  1,...,

                     ,     and 
j

Tar
j F

L U NDV N

P G P j NC > ≤ = 
≤ ≤ ∈ ∈

d

X

d d d d X 

                          (6.5) 

where X is the N-dimensional random variable vector, d is the NDV-dimensional random 

design variable vector, Gj is the jth constraint function, P[Gj(X) >0] is the probability of 

failure of the jth constraint, P𝐹𝐹𝑗𝑗
Taris the target probability of failure of the jth constraint, 

and NC is the number of constraints. The different dimensionalities of the design variable 

vector d and X is due to the fact that X contains random parameters, such as C, k, a, b, 

and τ, in addition to the random design variables. It is noted that a random design variable 

di is the mean μj of the corresponding random variable Xj. Also, standard deviation σj of 

Xj is linearly changing as random design variable di changes in this study.   
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In sampling-based RBDO, the probability of failure used in a probabilistic 

constraint is directly calculated using Eq. (6.2). The design sensitivity of the probabilistic 

constraint is derived using the score function and the MCS method (Lee et al., 2011a; 

Lee et al., 2011b). The design sensitivity is calculated during estimation of the 

probability of failure using the same MCS samples and constraint function evaluations. 

Thus, no extra MCS samples are required for calculating the design sensitivity. 

Before derivation of the design sensitivity, the following four regularity 

conditions should be satisfied (Rubinstein and Shapiro, 1993; Rahman, 2009). 

(1) The joint PDF fX(x;μ,σ) is continuous. 

(2) The mean 𝜇𝜇𝑖𝑖 ∈ 𝑀𝑀𝑖𝑖 ⊂ ℝ, i = 1, …, N, where Mi is an open interval on ℝ. 

(3) The partial derivative 𝜕𝜕𝑓𝑓𝐗𝐗(𝐱𝐱;𝛍𝛍,𝛔𝛔) 𝜕𝜕𝜇𝜇𝑖𝑖⁄  exists and is finite for all x and 𝜇𝜇𝑖𝑖. In 

addition, 𝑃𝑃𝐹𝐹(𝛍𝛍) is a differentiable function of μ. 

(4) There exists a Lebesgue integrable dominating function r(x) for all μ such that 
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∂

X x μ σ
x x                                               (6.6) 

where h(x) is a general function and can be 𝐼𝐼Ω𝐹𝐹(𝐱𝐱). 

With the four conditions satisfied, taking the partial derivative of Eq. (6.2) with 

respect to 𝑑𝑑𝑖𝑖 yields (Lee et al., 2011a; Lee et al., 2011b) 
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                             (6.7) 

The partial derivative of the log function of the joint PDF in Eq. (6.7) with respect to 𝑑𝑑𝑖𝑖 is 

called the first-order score function for 𝑑𝑑𝑖𝑖 and is denoted as 
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∂

≡
∂

X x μ σ
x μ σ                                        (6.8) 

As shown in Eq. (6.7), the design sensitivity using the first-order score function 

does not depend on the sensitivity of the constraint function G(X). Instead, it can be 

analytically obtained using the score function in Eq. (6.8). The reason is well illustrated 

in Figure 6.1. As shown in Figure 6.1, the horizontal axis is the random vector, and the 

vertical axis represents the jth constraint Gj(X). The failure region of the constraint is set 

as Gj(X) > 0, and the gray area in Figure 6.1 represents the probability of failure. When 

the random design variable d changes in the optimization process, the constraint function 

Gj(X) holds its position, whereas the joint PDF fX(x; μ, σ) moves along with the random 

design variable. Consequently, the gray area, i.e., the probability of failure, changes as 

the random design variable changes. The rate of the probability of failure change is the 

same as the rate of the gray area change, which depends on the shape (slope) of the PDF 

on the limit state. The shape (slope) of the PDF on the limit state is related to the score 

function. This is the reason that the design sensitivity of the probabilistic constraint with 

respect to random design variable is related to the score function, not the sensitivity of the 

constraint function in Eq. (6.7).  
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Figure 6.1 Design Sensitivity for Sampling-Based RBDO 

 

In this study, the random design variables and random parameters are assumed to 

be independent. For statistically independent random variables, the first-order score 

function for di in Eq. (6.8) can be expressed with the marginal PDF as 𝑓𝑓𝑋𝑋𝑗𝑗(𝑥𝑥𝑗𝑗; 𝜇𝜇𝑗𝑗 ,𝜎𝜎𝑗𝑗) as 

( ) ( ) ( ) ( ) ( )1 ln ; , ln ; ,ln ; ,
; , j j
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f x f xf
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d

µ σ µ σσ
µ µ σ

∂ ∂∂∂
≡ = +

∂ ∂ ∂ ∂
X x μ σ

x μ σ (6.9) 

where the random design variable di corresponds to the random variable Xj. If the random 

variables are statistically correlated, the score function needs to consider the correction 

between random variables. Noh et al. used copula to consider the correlation between 

two random variables in RBDO problems (Noh et al., 2009; Noh et al., 2010), and Lee et 

al. derived the first-order score function of mean μj for both independent and correlated 

random variables (Lee et al., 2011b). Cho et al. developed the first-order score functions 

for fixed coefficient of variation (CoV) problems for both independent and correlated 

random variables (Cho et al., 2015).  
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6.2 RBDO of the Composite Wind Turbine Blade 

This section explains the details of RBDO of the composite wind turbine blade, 

including random design variables, objective function, probabilistic constraints, and 

RBDO formulation. Sampling-based RBDO developed in the I-RBDO software is used to 

carry out the RBDO process starting from the DDO optimum design. Both the wind load 

uncertainty and manufacturing variability are considered in the RBDO process. The 

dynamic wind load uncertainty model provides uncertain wind load, while the 

manufacturing variability is represented by distributions of input random variables 

corresponding to random design variables. In order to release the computational burden 

and reduce the design of experiment (DoE) samples, local surrogate models of 10-minute 

fatigue damages are implemented during the RBDO process. 

6.2.1 Random Design Variables 

In RBDO, the uncertainty of composite laminate thickness due to the 

manufacturing process has been considered. Three assumptions are made for uncertainty 

of laminate thickness due to the manufacturing variability, as explained below. 

(1) The variability of laminate thickness is assumed to follow normal distribution. 

(2) The coefficient of variation (CoV) of the laminate thickness is assumed to be the 

same at different designs. Therefore, standard deviation of the laminate thickness 

changes linearly as design (thickness) changes. The CoV of the two composite 

materials used in the blade, QQ1 and P2B, are referred from the SNL/MSU/DOE 

Composite Material Fatigue Database (Mandell and Smaborsky, 2014). 

(3) The randomness of laminate thickness in seven parts of the blade is assumed to be 

independent. Thus the laminate thicknesses in seven parts are represented by 

seven independent random variables, respectively. 

The current RBDO process starts from the DDO optimum design obtained in 

Chapter 4. Based on the third assumption above, seven random design variables are used 
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in RBDO. As we consider the manufacturing variability, the laminate thickness becomes 

random. In order to bridge the seven RBDO random design variables and the twelve 

random thickness variables, a random variable transformation is used as explained below.  

Let Ti, i = 1, 2, …, 12, be random variables corresponding to the twelve design 

variables di used in DDO. Using the first assumption above, Ti follows normal 

distribution N(𝜇𝜇𝑇𝑇𝑖𝑖 ,𝜎𝜎𝑇𝑇𝑖𝑖), where 𝜇𝜇𝑇𝑇𝑖𝑖 and 𝜎𝜎𝑇𝑇𝑖𝑖 are the mean and standard deviation of Ti, 

respectively. The relationship between 𝜇𝜇𝑇𝑇𝑖𝑖 and 𝜎𝜎𝑇𝑇𝑖𝑖 can be expressed as 

i i iT T Tcσ µ=                                                (6.10) 

where 𝑐𝑐𝑇𝑇𝑖𝑖 is the CoV of Ti. Based on the material type (see material type for each design 

variable in Table 4.5) and by referring SNL/MSU/DOE Composite Material Fatigue 

Database (Mandell and Smaborsky, 2014), it is obtained that 𝑐𝑐𝑇𝑇𝑖𝑖 = cQQ1 = 0.0323 for i = 

1, 2, …, 11, and 𝑐𝑐𝑇𝑇12 = cP2B = 0.0203, where cQQ1 and cP2B are CoV for QQ1 and P2B, 

respectively.  

Let Xj, j = 1, 2, …, 7 be independent random variables used in RBDO. Xj follows 

normal distribution N(𝜇𝜇𝑋𝑋𝑗𝑗 ,𝜎𝜎𝑋𝑋𝑗𝑗), where 𝜇𝜇𝑋𝑋𝑗𝑗 and 𝜎𝜎𝑋𝑋𝑗𝑗 are the mean and standard deviation of 

Xj, respectively. In order to reduce the number of random design variables from twelve to 

seven, multiple laminate thickness random variables in the same part are linked to one 

RBDO random variable Xj. For example, because T2, T3, and T4 are representing laminate 

thicknesses in forward shear web, these three laminate thickness random variables are 

linked to one RBDO random variable X2. Using the DDO optimum design di, i = 1, 2, …, 

12 (Table 4.7), the transformation between laminate thickness random variables Ti and 

RBDO random design variables Xj is expressed as 

2
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Because the relationship between Ti and Xj is linear, the CoV of Xj, 𝑐𝑐𝑋𝑋𝑗𝑗, is equal to 

the corresponding CoV of Ti. Thus, 𝑐𝑐𝑋𝑋𝑗𝑗 = cQQ1 = 0.0323 for j = 1, 2, …, 6, and 𝑐𝑐𝑋𝑋7 = cP2B 

= 0.0203. Using the above random variable transformation (Eq. (6.11)), two results are 

produced, as explained below. 

(1) At different RBDO designs, the CoV is constant for the RBDO design variable Xj, 

j = 1, 2, …, 7. 

(2) At different RBDO designs, the ratio of laminate thicknesses T2, T3, and T4 will be 

the same as the ratio of design variables d2, d3, and d4 of the DDO optimum 

design. Similarly, at different RBDO designs, the ratio of laminate thicknesses T5, 

T6, T7, and T8 will be the same as the ratio of design variables d5, d6, d7, and d8 of 

the DDO optimum design, etc. 

In summary, the properties of random design variables for RBDO are listed in 

Table 6.1, where μL, μO, μU are the normalized lower bound, mean, and upper bound of 

the random design variables in RBDO, respectively. μi, i = 1, 2, …, 7, are RBDO design 

variables, each of which is the mean of random design variables Xi. The symbol μ is used 

to represent the design in RBDO, in order to distinguish the design variable d used in 

DDO.  
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Table 6.1 Properties of Random Design Variables  

Random Design Variable Distribution μL μO μU CoV Corresponding Part Composite Material 

μ1 Normal 0.5010 1 2.0039 0.0323 Root QQ1 

μ2 Normal 0.5707 1 1.7988 0.0323 Forward Shear Web QQ1 

μ3 Normal 1.0000 1 1.8184 0.0323 Aft Shear Web QQ1 

μ4 Normal 1.0000 1 4.0000 0.0323 Tip QQ1 

μ5 Normal 0.4230 1 1.6919 0.0323 Leading Edge QQ1 

μ6 Normal 0.3764 1 1.5057 0.0323 Trailing Edge QQ1 

μ7 Normal 0.3898 1 1.1695 0.0203 Spar Cap P2B 
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6.2.2 Objective Function 

Similar to the DDO process, the normalized total cost of composite materials that 

are used in the blade is set as the objective function, which is expressed as 

( )
6

0 0 7
70 0

7

4.18 1000 11.70 1000 DDOi
i

i i

C M M Costµ µ
µ µ

 
= × × + × × 
 

∑μ           (6.12) 

where 𝑀𝑀𝑖𝑖
0 (unit: ton) is the mass of the ith part at the RBDO initial design, i.e., the DDO 

optimum design; 𝜇𝜇𝑖𝑖0is the normalized RBDO initial design corresponding to the ith part; 

μi is the current design corresponding to the ith part; i = 1, 2, …, 7; and CostDDO is the 

RBDO initial cost, i.e., the cost of the DDO optimum design, which is $125,605 obtained 

in DDO. According to TPI Composites (2003), the material costs of QQ1 and P2B are 

$4.18/kg and $11.70/kg, respectively. It is worth noting that the cost of the carbon/glass-

hybrid-fiber-reinforced laminate P2B is 2.8 times more expensive than that of QQ1, 

which is a glass-fiber-reinforced laminate. The objective function in Eq. (6.12) is 

minimized in the RBDO process. 

6.2.3 Probabilistic Constraints 

The probabilistic constraint is the probability of fatigue failure (fatigue life 

smaller than 20 years) at a selected hotspot being smaller than a target probability of 

failure 𝑃𝑃𝐹𝐹𝑡𝑡𝑇𝑇𝑇𝑇=2.275%. The hotspots for RBDO are the node-section points where 

probability of fatigue failure is considered as the RBDO constraints. In this study, the 

event that fatigue life is smaller than 20 years is equivalent to that the 20-year fatigue 

damage is larger than 1. Thus, the 20-year fatigue damage is calculated first. Considering 

the manufacturing variability and wind load uncertainty, the 20-year fatigue damage can 

be calculated as 
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where X is a random thickness vector; random vectors C, k, a, b, and τ contain 20 sets of 

(C, k, a, b, τ) as C = [C1, C2,…, C20], k = [k1, k2,…, k20], a = [a1, a2,…, a20], b = [b1, 

b2,…, b20], and τ = [τ1, τ2,…, τ20]. The realizations of random vectors can be randomly 

drawn from the obtained PDFs of C, k, a, b, and τ in Section 3.2. 

In this study, the probability of fatigue failure is calculated using a sampling-

based reliability analysis introduced in Section 6.1.2. Using Eq. (6.13) and MCS, the 

probability of fatigue failure is calculated as 
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where Y =[X, C, k, a, b, τ], and y(i) is the ith realization of Y. It is worth noting that the 

realization y(i) is randomly generated based on the PDF of a random thickness vector X 

and the PDFs of random parameters (C, k, a, b, τ) in the dynamic wind load uncertainty 

model. The mean of the random thickness vector X is the random design vector μ in 

RBDO. Each realization y(i) includes 20 sets of (C, k, a, b, τ), which represent the wind 

load variation in 20 years. NMCS is the number of realizations for MCS. ΩF is the failure 

domain such that D20year(Y) > 1, and 𝐼𝐼𝛺𝛺𝐹𝐹 is an indicator function defined as 

( )
1,         for 
0,        otherwiseF

FIΩ
∈Ω

= 


y
y                               (6.15) 

By using Eq. (6.13) and Eq. (6.14), the probabilistic constraints can be expressed 

as 

( )( ) tar
20 1 2.275%,       1,...,

j

j
year FP D P j NC> ≤ = =Y                (6.16) 
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where NC is the number of probabilistic constraints. 

In order to accurately carry out RBDO with affordable computational time, two 

issues need to be addressed. The first issue is that the hotspots for RBDO probabilistic 

constraints need to be carefully selected. By using enough hotspots, the RBDO optimum 

design obtained in the future could guarantee that all the node-section points in the blade 

model satisfy the 2.275% target probability of failure requirement. However, too many 

hotspots increase the computational cost. The second issue is that the 20-year fatigue 

damage in Eq. (6.13) needs to be accurately and efficiently calculated, so that the 

probability of failure calculation in Eq. (6.14) will be accurate and efficient.  

The method to select hotspots for RBDO is first explained. Three criteria are 

developed to select hotspots as listed below. 

(1) Select the six node-section points, which correspond to the six active constraints 

at the DDO optimum design, as hotspots for RBDO. 

(2) For each part, select a node-section point, which has the maximum one-year 

fatigue damage among all node-section points inside the part, as a hotspot for 

RBDO. The one-year fatigue damage is calculated by using the mean wind load 

(see Section 4.1). 

(3) For each part, select a node-section point, which has the maximum one-year 

fatigue damage among all node-section points inside and adjacent to the part, as a 

hotspot for RBDO. 

In order to better understand criteria 2 and 3 above, a demonstration about how to 

select hotspots based on criteria 2 and 3 is schematically shown in Figure 6.2. As shown 

in Figure 6.2, inside part A there are 20 node-section points, which are embraced by the 

box with the red-dashed boundary. Another five node-section points, which are inside 

part B, are adjacent to part A. For part A, if the node-section point a has the maximum 

one-year fatigue damage among the 20 node-section points inside part A, the node-

section point a is selected as one hotspot based on criterion 2. By using criterion 3, if the 
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node-section point b has the maximum one-year fatigue damage among all the 25 node-

section points embraced by the box with the blue-dashed boundary, the node-section 

point b is also selected as a hotspot. However, if the one-year fatigue damage of the node-

section point b is smaller than that of the node-section point a, the node-section point b is 

not selected as a hotspot. Essentially, the reason that criterion 3 is included is because the 

design change in one part will not only affect the fatigue damage of node-section points 

inside the part but will also affect the fatigue damage of node-section points adjacent to 

the part.  

 

 

Figure 6.2 Demonstration of Hotspot Selection 

 

In summary, nine hotspots are selected at the RBDO initial design. 

Information about the nine hotspots is provided in Table 6.2. The “Yes” in Table 

6.2 indicates that the node-section point in the same row is selected because of the 
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criterion in the corresponding column. For example, six node-section points, 

which correspond to active constraints (one-year fatigue damage = 0.05) at the 

DDO optimum design, are selected based on criterion 1. Additional three node-

section points are selected based on criteria 2 and 3. For example, node 61 - 

section point 15, which has the maximum fatigue damage in the root, is selected 

based on criterion 2. It is noted that some node-section points are selected by two 

or three criteria. The one-year fatigue damage calculated for identifying hotspots 

uses the mean wind load and does not consider the manufacturing variability. The 

nodal locations of the nine hotspots at the RBDO initial design are shown in 

Figure 6.3.  

Similar to the hotspot selection during the DDO process in Section 4.2.3, the 

hotspots for RBDO are re-checked every four RBDO iterations. If new hotspots based on 

the three criteria are found, the newfound hotspots are included for RBDO constraints. If 

no new hotspot is found, the RBDO iteration is continued using the previously found 

hotspots. 

 

 

Figure 6.3 Nodal Locations of the Nine Hotspots at the RBDO initial Design 
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Table 6.2 Information about the Nine Hotspots Selected at RBDO Initial Design  

RBDO 

Constraint 

Nodal 

ID 

Section 

Point ID 
Belonging Part Adjacent Part 

One-year 

Fatigue Damage  

Criterion 

1 

Criterion 

2 

Criterion 

3 

1 61 15 Aft Shear Web Root 3.3182E−04  Yes  

2 1074 9 Trailing Edge 
Aft Shear Web 

& Spar Cap 
3.1771E−03   Yes 

3 1099 9 Spar Cap  4.9965E−02 Yes Yes  

4 1167 3 Tip  8.7192E−08  Yes Yes 

5 1582 9 Leading Edge  5.0001E−02 Yes Yes Yes 

6 1988 15 Leading Edge  4.9990E−02 Yes   

7 2297 1 Forward Shear Web Spar Cap 4.9991E−02 Yes Yes Yes 

8 2644 1 Trailing Edge Root 4.9996E−02 Yes Yes Yes 

9 2887 1 Root  4.9968E−02 Yes Yes  
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The second issue that the 20-year fatigue damage needs to be accurately 

and efficiently calculated is well addressed by using local surrogate models of 10-

minute fatigue damages. As shown in Eq. (6.13), the 20-year fatigue damage 

D20year(X, C, k, a, b, τ) is a function of 107 random variables, including seven 

random design variables plus 100 random parameters of (C, k, a, b, τ). With the 

large amount of dimensionality, it is extremely difficult to directly create an 

accurate surrogate model of the 20-year fatigue damage due to the high 

nonlinearity. In contrast, the 10-minute fatigue damage D10(X, v10, i10), which is a 

function of seven random thickness variables at given wind condition (v10, i10), is 

mildly nonlinear. However, it requires 12×50 = 600 surrogate models of 10-

minute fatigue damage to calculate 20-year fatigue damage at one hotspot.  

Two types of surrogate models have been created to investigate the 

efficiency and accuracy of 20-year fatigue damage calculation. One type is the 

surrogate model of one-year fatigue damage which is a function of seven random 

design variables and five random parameters of (C, k, a, b, τ). The other type is 

the surrogate model of the 10-minute fatigue damage which is a function of seven 

random design variables. The former type applies Dynamic Kriging method 

(Zhao et al., 2011) with 1350 DoE samples to generate nine one-year fatigue 

damage surrogate models corresponding to nine hotspots on a local window. For 

the latter type, the Universal Kriging method (Zhao et al., 2011) with 150 DoE 

samples is used to generate 12×50×No. of hotspots D10 surrogate models on the 

same local window. The size of the local window is 3 sigma, i.e., the lower bound 

of the local window is the mean of design minus 3 times the standard deviation, 

and the upper bound of the local window is the mean of design plus 3 times the 

standard deviation. The computational times for the former type and the latter 

type are 63 hours and 26 hours, respectively, using the same Linux server (72 GB 

of RAM, 12 cores, 2.9 GHz Intel CPU).  
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The accuracy of the two types of surrogate models at the RBDO initial design is 

checked by calculating the normalized root mean square error (NRMSE) of 20-year 

fatigue damage using 1000 testing samples. The steps to check accuracy of surrogate 

models of 10-minute fatigue damages are briefly listed below. 

(1) Uniformly generate 1000 testing samples of xi, i = 1, 2, …, 1000, in the local 

window using Latinized Centroidal Voronoi Tessellation (LCVT) method 

(Basudhar et al., 2012; Saka et al., 2007). 

(2) Calculate the 10-minute fatigue damage tables at the 1000 testing samples by 

using the 10-minute fatigue analysis procedure developed in Chapter 2. Calculate 

the approximated 10-minute fatigue damages at the 1000 testing samples by using 

the 10-minute fatigue damage surrogate models. Details about how to create a 10-

minute fatigue damage table are provided in Section 4.1.1. 

(3)  Randomly generate 1000 sets of 20 (C, k, a, b, τ) based on the PDFs of (C, k, a, 

b, τ), which are provided at the end of Section 3.2. Using the 1000 sets of 20 (C, 

k, a, b, τ) , create 1000 × 20 wind load probability tables. Details about how to 

create a wind load probability table are provided in Section 4.1.1. Note that every 

20 wind load probability tables are used for one testing sample to calculate one 

20-year fatigue damage. 

(4) Calculate the 20-year fatigue damages 𝐷𝐷20𝑦𝑦𝑦𝑦𝑇𝑇𝑇𝑇𝑖𝑖 , i = 1, 2, …, 1000, by using the 

10-minute fatigue damage tables and the wind load probability tables. Calculate 

the approximated 20-year fatigue damages 𝐷𝐷�20𝑦𝑦𝑦𝑦𝑇𝑇𝑇𝑇𝑖𝑖 , i = 1, 2, …, 1000, by using 

the approximated 10-mintue fatigue damage tables and the wind load probability 

tables. 

(5) Calculate the NRMSE of 20-year fatigue damage with the following equation, 
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where max(D20year) is the maximum of 20-year fatigue damages 𝐷𝐷20𝑦𝑦𝑦𝑦𝑇𝑇𝑇𝑇𝑖𝑖 , and 

min(D20year) is the minimum of 20-year fatigue damages 𝐷𝐷20𝑦𝑦𝑦𝑦𝑇𝑇𝑇𝑇𝑖𝑖 , i = 1, 2,   …, 

1000.  

For checking accuracy of surrogate model of one-year fatigue damage, the same 

1000 testing samples and 1000 sets of 20 (C, k, a, b, τ) are used to first approximate 

20,000 one-year fatigue damages using the surrogate model of one-year fatigue damage 

of one hotspot. Every 20 approximated one-year fatigue damages are summed to 

calculate one approximated 20-year fatigue damage. For example, approximated one-year 

fatigue damages 1 - 20 are used to calculate one approximated 20-year fatigue damage; 

approximated one-year fatigue damage 21 - 40 are used to calculate the next 

approximated 20-year fatigue damage. Likewise, 1000 approximated 20-year fatigue 

damage are obtained. The obtained 1000 approximated 20-year fatigue damage and the 

previously obtained 1000 20-year fatigue damages based the fatigue analysis procedure 

are used in Eq. (6.17) to calculate the NRMSE of 20-year fatigue damage. It is noting that 

the same 20 sets of (C, k, a, b, τ) are used to approximate a 20-year fatigue damage at one 

testing sample for two types of surrogate models.  

Table 6.3 provides the calculated NRMSE of 20-year fatigue damage for the nine 

probabilistic constraints, which correspond to the nine hotspots listed in Table 6.2. As 

shown in Table 6.3, the NRMSE of 20-year fatigue damage using 10-minute fatigue 

damage surrogate model is smaller than that using one-year fatigue damage surrogate 

model for each hotspot, which indicates that using a larger number of surrogate models 

with smaller dimension could create more accurate 20-year fatigue damage results. 

Moreover, it only used 150 DoE samples to generate the 10-minute fatigue damage 

surrogate models, while the one-year fatigue damage surrogate models used 1350 DoE 
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samples. The maximum NRMSE using 10-minute fatigue damage surrogate model is 

equal to 5.792E−4 corresponding to the probabilistic constraint 3. Since the maximum 

NRMSE is smaller than 1E−3, the created 10-minute fatigue damage surrogate models 

are accurate for RBDO.  

In order to require a small number of design of experiment (DoE) samples and 

accurately calculate 20-year fatigue damage, the approach for a large number of surrogate 

models with small dimension, i.e., surrogate models of 10-minute fatigue damage D10, is 

used. As the RBDO iteration proceeds, new sets of D10 local surrogate models are 

created. The accuracy of the new sets of D10 surrogate models will not be checked in 

order to save computation time. However, the accuracy of D10 surrogate models will be 

checked at the final RBDO optimum design using the same method.  
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Table 6.3 NRMSE of 20-year Fatigue Damage of the Nine Hotspots at the RBDO Initial 
Design  

Probabilistic 

Constraint 

Nodal 

ID 

Section 

Point ID 

NRMSE of 20-year Fatigue Damage 

One-year Fatigue 

Damage Surrogate 

Model 

Ten-minute Fatigue 

Damage Surrogate 

Model 

1 61 15 1.860E-02 5.532E−4 

2 1074 9 2.231E-02 1.050E−5 

3 1099 9 4.119E-01 5.792E−4 

4 1167 3 2.248E-02 3.492E−5 

5 1582 9 1.577E-02 4.200E−4 

6 1988 15 1.330E-02 2.186E−4 

7 2297 1 2.638E-02 4.411E−5 

8 2644 1 1.137E-02 1.755E−4 

9 2887 1 9.452E-03 2.052E−4 

 

 

6.2.4 RBDO Formulation 

The RBDO problem can be formulated as 

( )( ) tar
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          (6.18) 

where Y is the 107-dimensional random vector including seven random thickness 

variables and 20 sets of (C, k, a, b, τ); μ is the 7-dimensional random design variable 
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vector; C(μ) is the normalized cost as shown in Eq. (6.12); and 𝐷𝐷20𝑦𝑦𝑦𝑦𝑇𝑇𝑇𝑇
𝑗𝑗  is the 20-year 

fatigue damage for the jth probabilistic constraint 𝑃𝑃(𝐷𝐷20𝑦𝑦𝑦𝑦𝑇𝑇𝑇𝑇
𝑗𝑗 (𝐘𝐘) > 1) ≤ 𝑃𝑃𝐹𝐹𝑗𝑗

𝑡𝑡𝑇𝑇𝑇𝑇. 

As explained in Section 6.2.1, the coefficient of variation (CoV) of a random 

thickness variable is constant in the RBDO process. In this study, RBDO with constant 

CoV of random variable, which has been developed by Cho et al. (2015), is applied to 

solve the RBDO problem. A flowchart of the RBDO process is shown in Figure 6.4. The 

basic steps to carry out the RBDO process including hotspot selection and surrogate 

model creation are listed below. 

(1) Calculate the one-year fatigue damage of all node-section points of the blade at 

the RBDO initial design. 

(2) Select the hotspots based on the three criteria in Section 6.2.3. 

(3) Create (12×50×No. of hotspots) surrogate models of 10-minute fatigue damage 

with respect to seven design variables in the local window. The local surrogate 

models of 10-minute fatigue damage are used to calculate 20-year fatigue damage 

as shown in Eq. (6.13). 

(4) Launch the RBDO procedure. 

(5) For a new iteration and line search, create the local surrogate models of 10-minute 

fatigue damage at selected hotspots. 

(6) After four design iterations, check hotspots in the design. If there are new 

hotspots, add their probability of fatigue failure to the probabilistic constraints and 

go to step 4. If the RBDO procedure converges under four iterations, go to step 7. 

(7) Check the hotspots of the converged design. If there is no new hotspot, RBDO 

optimum design is obtained. If there are new hotspots, add their probability of 

fatigue failure to the constraints and go to step 4.  
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Figure 6.4 Flowchart of the RBDO Process 
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6.3 RBDO Results and Discussion 

The RBDO process has been carried out on the Linux machine (Dell PowerEdge 

R720 single server, 8 quad-core Xeon E5-2690 CPUs-32 cores, 2.9 GHz, 256 GB of 

RAM). Fifteen cores were used in parallel. The entire RBDO process has twelve design 

iterations, twelve line searches, and four episodes of hotspot checking. Each design 

iteration or line search requires one set of local surrogate models and one reliability 

analysis. Thus, 25 sets of local surrogate models have been generated, including one set 

for the RBDO initial design. Accordingly, there are 25 reliability analyses for the RBDO 

initial design and designs at twelve iterations and twelve line searches. It takes about 

sixteen hours to generate one set of local surrogate model models and three hours for one 

reliability analysis. The computational time is about fifteen hours for checking hotspots at 

one design. The total computational time for the entire RBDO process is about 535 hours 

(22.3 days).  

At the RBDO initial design, nine hotspots are identified as explained in Section 

6.2.3. Since each RBDO constraint requires 600 local surrogate models of 10-minute 

fatigue damage, 5400 local D10 surrogate models are created at each RBDO iteration. 

There are 150 DoE samples are used to create one set of local D10 surrogate models. 

Existing DoE samples which are inside the new local window are applied to create local 

D10 surrogate models in the new local window. At the fourth RBDO iteration, a new 

hotspot has been found according to criteria 2 and 3 for hotspot selection. The new 

hotspot, which is node 2657 - section point 15, has the largest one-year fatigue damage 

among all node-section points inside and adjacent to the trailing edge part. All the 

previous selected nine hotspots are remained for design constraints. Thus there are ten 

hotspots after the fourth RBDO iteration. The nodal locations of the ten hotspots are 

shown in Figure 6.5. The wisely selected ten hotspots can well represent the fatigue 

critical areas in the blade model, so that the RBDO procedure does not require too many 

hotspots, which would cause computational burden. At the eighth and twelfth RBDO 
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iteration designs, hotspots are re-checked again but no new hotspots are found. The 

whole RBDO procedure is converged at the end of the twelfth iteration because the 

maximum relative change of random design variables, 7.35E−4, is less than its 

convergence criterion, 1E−3, and the relative maximum constraint violation, 3.01E−4, is 

less than its convergence criterion 1E−3. There are 1151 DoE samples are used in total. 

 

 

Figure 6.5 Nodal Locations of the Ten Hotspots after Fourth RBDO Iteration 

 

The accuracy of local surrogate models of the RBDO optimum design is checked 

using another 1000 testing samples. Similar to checking the accuracy of local surrogate 

models at the RBDO initial design, the normalized root mean square error (NRMSE) of 

20-year fatigue damage using the 1000 testing samples has been calculated and is 

provided in Table 6.4. As shown in Table 6.4, the maximum NRMSE is 8.264E−4, which 

is smaller than 1E−3. Thus, the created surrogate models are accurate surrogate models 

for reliability analysis at the RBDO optimum design.  
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Table 6.4 NRMSE of 20-year Fatigue Damage of the Ten Hotspots at the RBDO 
Optimum Design  

Probabilistic 

Constraint 
Nodal ID Section Point ID NRMSE 

1 61 15 8.054E−4 

2 1074 9 1.867E−5 

3 1099 9 5.540E−4 

4 1167 3 1.344E−5 

5 1582 9 3.618E−4 

6 1988 15 2.115E−4 

7 2297 1 9.362E−5 

8 2644 1 2.318E−4 

9 2657 15 8.264E−4 

10 2887 1 1.525E−4 

 

 

Table 6.5 provides detailed histories of random design variables, normalized cost 

(objective function), true cost, mass, and the maximum probability of failure. As shown 

in Table 6.5, the maximum probability of fatigue failure has been reduced from 50.06% 

at the RBDO initial design to 2.28% at the RBDO optimum design, while the cost is only 

increased by 3.01%. In spite of the little cost increase, the mass of the RBDO optimum 

design is increased by 10.95% compared to that of the RBDO initial design. The reason 

for the large increase in mass is that more cheap but heavy composite material, QQ1, is 

applied at the RBDO optimum design than at the RBDO initial design. Meanwhile, the 

more expensive composite material, which is P2B corresponding to the random design 
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variable μ7, at the RBDO optimum design is used 13.33% less than at the RBDO initial 

design. The hotspots are checked at four designs, which correspond to iterations 0, 4, 8, 

and 12 highlighted in bold in Table 6.5. 

The histories of normalized cost and the maximum probability of failure are 

plotted in Figure 6.6. As shown in Figure 6.6, during the first three iterations, the cost 

was increased while the probability of failure was significantly reduced. The reason is 

that a significant amount of composite materials QQ1, which are controlled by the 

random design variables μ1 - μ6, were added in the blade in order to increase the fatigue 

resistance of the blade model. There is a peak at the fourth iteration of the history of the 

probability of failure. The reason is that a new hotspot was identified at the fourth 

iteration, and it has a larger probability of failure than do the existing hotspots. Between 

the fourth iteration and eighth iteration, both the cost and the maximum probability of 

failure were reduced, which shows that by tuning the seven random design variables, the 

RBDO process could find a more cost-effective and reliable design. The RBDO process 

converged at the twelfth iteration. 
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Table 6.5 RBDO Histories of Random Design Variables, Normalized Cost, True Cost, Mass, and the Maximum Probability of Failure  

Iteration 

Random Design Variables 
Normalized 

Cost 

True Cost 

($) 

Mass 

(ton) 

Maximum 

Probability of 

Failure (%) 
μ1 μ2 μ3 μ4 μ5 μ6 μ7 

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 125605.49 21.8050 50.06 

1 1.0644 1.1397 1.0414 1.0000 1.0455 1.0288 1.0163 1.0316 129576.55 22.5735 12.78 

2 1.0933 1.3309 1.1619 1.0000 1.0498 1.0410 0.9986 1.0424 130935.77 23.0962 5.86 

3 1.1060 1.4853 1.3095 1.0205 1.0485 1.0455 0.9650 1.0407 130721.00 23.4183 3.29 

4 1.1162 1.5568 1.4252 1.0645 1.0566 1.0472 0.9508 1.0440 131130.63 23.6742 22.22 

5 1.1175 1.5434 1.4483 1.0783 1.0601 1.0718 0.9399 1.0430 131011.32 23.7669 7.75 

6 1.1195 1.5430 1.5127 1.1182 1.0644 1.0862 0.9252 1.0410 130750.47 23.8683 3.67 
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Table 6.5 RBDO Histories of Random Design Variables, Normalized Cost, True Cost, Mass, and the Maximum Probability of 
Failure (Continued) 

Iteration 

Random Design Variables 
Normalize

d Cost 

True Cost 

($) 

Mass 

(ton) 

Maximum 

Probability of 

Failure (%) 
μ1 μ2 μ3 μ4 μ5 μ6 μ7 

7 1.1231 1.5462 1.7120 1.2414 1.0770 1.1130 0.8850 1.0344 129926.80 24.1181 2.93 

8 1.1305 1.5827 1.8184 1.3069 1.1027 1.1067 0.8588 1.0280 129127.31 24.2184 2.51 

9 1.1296 1.5885 1.8184 1.3001 1.0986 1.0977 0.8620 1.0281 129139.96 24.1862 2.40 

10 1.1313 1.5850 1.8184 1.3021 1.1035 1.0931 0.8650 1.0293 129284.61 24.1869 2.31 

11 1.1328 1.5741 1.8184 1.2983 1.1124 1.0914 0.8662 1.0298 129346.03 24.1883 2.30 

12 1.1333 1.5708 1.8184 1.2990 1.1148 1.0913 0.8667 1.0301 129384.14 24.1917 2.28 
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Figure 6.6 Histories of Normalized Cost and the Maximum Probability of Failure 

 

Table 6.6 provides the history of probability of failure of each probabilistic 

constraint. The maximum probability of failure at each iteration is highlighted in bold. As 

shown in Table 6.6, the probabilistic constraint with the maximum probability of failure 

is changing as the design iteration proceeds, which indicates the most probable fatigue 

failure location is changing as the design changes. The probabilistic constraint 9 has no 

results of probability of failure at iterations 0, 1, 2, and 3 because the corresponding 

hotspot node 2657 - section point 15 (see Table 6.4) was not identified until checking the 

hotspots at the fourth design iteration. The largest probability of failure at the RBDO 
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optimum design occurs at the probabilistic constraint 3, which corresponds to the hotspot 

node 1099 - section point 9. In order to distinguish the probabilities of failure at the last 

iteration, three decimal places are used for the probabilities of failure at the last iteration. 

Table 6.7 compares the laminate thickness, true cost, mass, and probability of 

failure of three designs: the initial design, the DDO optimum design, and the RBDO 

optimum design. In order to compare the laminate thickness, all three designs apply the 

same laminate schedule, which is provided in Table 2.4. As shown in Table 6.7, at the 

RBDO optimum design, the laminate thicknesses t4, t7, and t8 corresponding to forward 

shear panels 10-13, aft shear web panels 9-12, and aft shear web panels 13-16, 

respectively, are significantly increased by 155.75%, 221%, and 100%, respectively, 

compared to those at the initial design. Along the direction from root to tip, the blade 

becomes thinner and thinner, which makes the two shear webs inside the blade shell 

decrease the height significantly close to the blade tip. Thus, a much thicker rear part of 

the two shear webs is necessary in order to keep the shear webs stiff, which makes the 

blade more fatigue reliable. This explains why the laminate thicknesses t4, t7, and t8 are 

significantly increased. Table 6.7 also shows that the laminate thicknesses, for example t5 

and t6, are decreased from the initial design to the DDO optimum design, but increased 

from the DDO optimum design to the RBDO optimum design, in order to satisfy the 

target 2.275% probability of failure requirement. The laminate thickness in spar cap, 

which is made of expensive composite material P2B, is decreased by 13.51% from the 

DDO optimum design to the RBDO optimum design in order to minimize the cost. 
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Table 6.6 History of Probability of Failure of Each Probabilistic Constraint 

Probability of 

Failure (%) 

Probabilistic Constraints 

1 2 3 4 5 6 7 8 9 10 

Iterations 

0 0 0.36 5.18 0 50.06 49.10 18.75 49.37  48.74 

1 0 0.22 3.05 0 1.52 12.78 7.97 12.47  12.38 

2 0 0.17 2.55 0 0.02 5.86 4.02 4.76  4.91 

3 0 0.18 2.52 0 0.00 3.29 2.81 2.80  2.99 

4 0 0.15 2.19 0 0.00 2.39 2.22 2.40 22.22 2.41 

5 0 0.16 2.25 0 0.01 2.30 2.27 0.56 7.75 2.42 

6 0 0.16 2.26 0 0.02 2.29 2.27 0.21 3.67 2.45 

7 0 0.14 2.25 0 1.62 2.37 2.25 0.03 0.66 2.93 

8 0 0.15 2.51 0 2.39 0.52 2.30 0.02 0.81 2.28 

9 0 0.15 2.40 0 2.39 0.66 2.24 0.05 1.58 2.37 

10 0 0.15 2.31 0 2.30 0.53 2.23 0.07 2.15 2.29 

11 0 0.15 2.30 0 2.25 0.34 2.27 0.08 2.27 2.28 

12 0 0.144 2.281 0 2.262 0.304 2.279 0.076 2.265 2.277 
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Table 6.7 Comparison of the Initial Design, the DDO Optimum Design, and the RBDO 
Optimum Design 

Laminate 

Thickness 

(mm) 

Corresponding Panel  
Initial 

Design 

DDO 

Optimum 

Design 

RBDO 

Optimum 

Design 

t1 Root 4 3.99 4.52 

t2 Forward Shear Panels 1-5 4 3.50 5.50 

t3 Forward Shear Panels 6-9 4 4.45 6.99 

t4 Forward Shear Panels 10-13 4 6.51 10.23 

t5 Aft Shear Web Panels 1-4 4 2.00 3.64 

t6 Aft Shear Web Panels 5-8 4 2.00 3.64 

t7 Aft Shear Web Panels 9-12 4 7.06 12.84 

t8 Aft Shear Web Panels 13-16 4 4.40 8.00 

t9 Tip 4 2.00 2.60 

t10 Leading Edge 4 4.73 5.27 

t11 Trailing Edge 4 5.31 5.80 

t12 Spar Cap  2.5 3.85 3.33 

True Cost ($) 95494.42 125605.49 129384.14 

Mass (ton) 18.4981 21.8048 24.1918 

Probability of Failure (%) 100 50.06 2.28 

 

 

The mass distributions of the initial design, the DDO optimum design, and the 

RBDO optimum design have been studied. Table 6.8 compares the mass of each part in 
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the blade model. As shown in Table 6.8, the DDO procedure significantly increases the 

mass of the trailing edge and the spar cap by 24.31% and 53.91%, respectively, in order 

to satisfy the 20-year fatigue life constraint. The RBDO procedure significantly increases 

the mass of the forward shear web and the aft shear web by 46.38% and 62.20%, 

respectively, while the mass of the spar cap is reduced by 13.33% through the RBDO 

procedure. This finding indicates that the two shear webs play important role in fatigue 

reliability of the blade. By enhancing the two shear webs, the thickness of the spar cap, 

which is made of expensive composite material P2B, can be reduced in order to decrease 

the total cost. The total mass of the DDO optimum design and the RBDO are increased 

by 17.88% and 30.78%, respectively, comparing that of the initial design. The reasons of 

the significant increment of the total mass may be that: 

(1) The composite material QQ1 is too heavy to be used in the blade model;  

(2) The defined laminate schedule in the blade model may not be an optimal laminate 

schedule; 

(3) The assumed constant life diagram (CLD) in shear direction may be too 

conservative comparing to the true CLD in shear direction; 

(4) The objective function of both DDO and RBDO only considers the total cost of 

composite materials. The optimization procedure tends to apply more heavy but 

cheap material QQ1, instead of light but expensive material P2B, in order to 

minimize the cost.   

The total mass is an important factor when designing wind turbine blades. It is not 

only related to the material cost, but also affect the blade transportation, energy 

generation, and blade control. For designing a cost-effective, reliable, and light wind 

turbine blade, optimization problem could use a multi-objective function including both 

the mass and the cost, and subject to probabilistic constraints. This work may be carried 

out in the future. 
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Table 6.9 compares section mass in the spanwise direction of the initial design, 

the DDO optimum design, and the RBDO optimum design. Figure 6.7 clearly shows the 

distributed section mass in the spanwise direction of the above three design, as well as the 

5-MW NREL reference wind turbine blade (Jonkman et al., 2009b). The larger section 

mass of the DDO optimum design and the RBDO optimum design comparing that of the 

5-MW NREL reference wind turbine blade could also be because of the above four 

points. 

 

Table 6.8 Comparison of Part Mass of the Initial Design, the DDO Optimum Design, and 
the RBDO Optimum Design 

Part Name 

Part Mass (ton) 

Initial Design 
DDO Optimum 

Design 

RBDO Optimum 

Design 

Root 1.5246 1.5217 1.7245 

Forward Shear Web 2.1122 2.1400 3.1326 

Aft Shear Web 2.4529 1.9422 3.1503 

Tip 0.2230 0.1115 0.1448 

Leading Edge 2.4673 2.8191 3.0814 

Trailing Edge 5.7002 7.0862 7.5984 

Spar Cap 4.0180 6.1840 5.3598 

Total Mass (ton) 18.4981 21.8048 24.1918 
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Table 6.9 Comparison of Blade Section Mass of the Initial Design, the DDO Optimum Design, and the RBDO Optimum Design 

Section 
ID 

Section 
Width 

(m) 

Blade 
Span 

Section Mass (ton) Section Mass Density (kg/m) 
Initial 
Design 

DDO Optimum 
Design 

RBDO Optimum 
Design 

Initial 
Design 

DDO Optimum 
Design 

RBDO Optimum 
Design 

1 2.7333 0.022 2.0380 1.9013 2.2922 745.6291 695.6097 838.6171 
2 2.7333 0.067 1.6483 1.7733 2.0501 603.0344 648.7656 750.0545 
3 2.7333 0.111 1.5611 1.7082 1.9556 571.1488 624.9563 715.4619 
4 4.1000 0.167 2.4718 2.8557 3.1502 602.8756 696.5107 768.3363 
5 4.1000 0.233 2.0328 2.4036 2.6069 495.7976 586.2532 635.8205 
6 4.1000 0.300 1.4220 1.7081 1.8367 346.8200 416.6032 447.9715 
7 4.1000 0.367 1.2988 1.5844 1.6791 316.7907 386.4347 409.5285 
8 4.1000 0.433 1.1972 1.4790 1.5480 292.0105 360.7259 377.5529 
9 4.1000 0.500 1.0975 1.4973 1.6432 267.6793 365.1954 400.7856 
10 4.1000 0.567 0.9171 1.2806 1.4239 223.6918 312.3376 347.2886 
11 4.1000 0.633 0.7514 1.0430 1.1696 183.2579 254.4022 285.2758 
12 4.1000 0.700 0.5874 0.8082 0.9190 143.2674 197.1119 224.1487 
13 4.1000 0.767 0.5221 0.6889 0.7494 127.3410 168.0162 182.7750 
14 4.1000 0.833 0.4365 0.5793 0.6043 106.4681 141.2854 147.3954 
15 2.7333 0.889 0.2622 0.3490 0.3628 95.9165 127.6862 132.7236 
16 2.7333 0.933 0.1950 0.1155 0.1626 71.3273 42.2498 59.4857 
17 2.7333 0.978 0.0590 0.0295 0.0383 21.5856 10.7928 14.0193 
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Figure 6.7 Comparison of Sectional Mass Distribution 

 

One question about the obtained RBDO optimum design is that are all the node-

section points at the RBDO optimum design satisfying the target reliability requirement 

when considering both wind load uncertainty and manufacturing variability? The 

difficulty to solve this question is that it is very computationally expensive to carry out 

reliability analysis for all node-section points considering both wind load uncertainty and 

manufacturing variability. On the other side, it is affordable to check the probability of 

failure only considering wind load uncertainty and to calculate one-year fatigue damage 

under the mean wind load for all node-section pints, as explained in Chapter 5 and 

Chapter 4, respectively. Moreover, by studying the results of the probability of failure 

considering only wind load uncertainty and the results of the one-year fatigue damage 

under the mean wind load, it is possible to see if there are any missing node-section 
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points which may violate the target reliability requirement when considering both wind 

load uncertainty and manufacturing variability. Details are explained as follows. 

Both the probability of failure considering only wind load uncertainty and the 

one-year fatigue damage under the mean wind load for all node-section points at the 

RBDO optimum design have been calculated. Table 6.10 provides the probability of 

failure PFwind considering only wind load uncertainty, the probability of failure 

PFwind+manu. considering both wind load uncertainty and manufacturing variability 

(surrogate models for 10-minute fatigue damage are used), and the one-year fatigue 

damage under the mean wind load at the selected ten hotspots. In order to study the 

fatigue effect due to different load types, i.e., wind load, gravity load, and centrifugal 

load, the one-year fatigue damage due to wind load, gravity load, and centrifugal load is 

also calculated. In Table 6.10, the D1year-wind, D1year-gravity, and D1year-centrifugal indicate that 

only aerodynamic wind load, gravity load, and centrifugal load, respectively, is applied 

when calculating 10-minute fatigue damage. The D1year in Table 6.10 indicates that all 

three kinds of load are applied when calculating 10-minute fatigue damage. For each 

case, the mean wind load probability table is used to calculate the one-year fatigue 

damage. Some interesting findings extracted from Table 6.10 are listed below. 

(1) The probability of failure considering both wind load uncertainty and 

manufacturing variability is either larger than or equal to the probability of failure 

considering only wind load uncertainty. The larger probability of failure 

considering both wind load uncertainty and manufacturing variability is due to 

that the manufacturing variability introduces design uncertainty, which increases 

the probability of failure. The equal probability of failure occurs at two hotspots, 

node 61 - section point 15 and at node 1167 - section point 3, which have 0 

probability of failure due to very small fatigue damage as indicated in Table 6.10. 

For these two hotspots, the RBDO optimum design is in a very safe region and the 
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introduction of manufacturing variability does not increase the probability of 

failure at all. 

(2) The node-section points, for which the wind load dominates the overall fatigue 

damage, have probability of failure considering both wind load uncertainty and 

manufacturing variability close to that considering only wind load uncertainty. 

For example, the wind load dominates the fatigue damage at node 1074 - section 

point 9 as shown in Table 6.10. The PFwind+manu is close to PFwind at this hotspot. 

The reason of the closed probability of failure is that the introduction of 

manufacturing variability has non-significant influence on the probability of 

failure calculation since the wind load dominates the overall fatigue damage. This 

finding also holds true for node 1099 - section point 9 and node 2297 - section 

point 1 as shown in Table 6.10. 

(3) The node-section points, for which the gravity load dominates the overall fatigue 

damage, may have much larger probability of failure considering both wind load 

uncertainty and manufacturing variability than that considering only wind load 

uncertainty. The reason is that manufacturing variability is directly related to the 

gravity load uncertainty. By introducing the manufacturing variability for gravity 

load dominated node-section points, the probability of failure may increase 

significantly due to the gravity load uncertainty. For example, the gravity load 

dominated hotspots, node 1582 - section point 9, node 2657 - section point 15, 

and node 2881- section point 1 in Table 6.10, have much larger PFwind+manu than 

PFwind.  

Among the probabilities of failure of all node-section points considering only 

wind load uncertainty, the largest probability of failure is 2.19% and occurs at node 2297 

- section point 1. Thus, there is no node-section point at the RBDO optimum design 

violating the target probability of failure if only wind load uncertainty is considered. It is 

also found that node 1582 - section point 9, node 2657 - section point 15, node 2644 - 
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section point 1, and node 1988 - section point 15 are top 4 gravity load dominated node-

section points among all node-section points by ordering one-year fatigue damage. These 

four node-section points have already been selected as hotspots. In addition, another four 

node-section points are selected at the RBDO optimum design to calculate the probability 

of failure considering both wind load uncertainty and manufacturing variability. The four 

node-section points are not close to any selected hotspots. The one-year fatigue damages 

corresponding to the four node-section points are among the top 50 large one-year fatigue 

damages of all node-section points. In order to calculate the probability of failure, the 

surrogate models for 10-minute fatigue damages of the four node-section points are 

generated first. Then, the probability of failure considering both wind load uncertainty 

and manufacturing variability are calculated using the surrogate models. The probability 

of failure and one-year fatigue damage of the additional four node-section points are 

shown in Table 6.11. As shown in Table 6.11, all of the additional tested four node-

section points satisfy the target 2.275% probability of failure considering both wind load 

uncertainty and manufacturing variability. 

In summary, all of the node-section points at the RBDO optimum design 

satisfying the target reliability requirement when considering both wind load uncertainty 

and manufacturing variability. 
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Table 6.10 Probability of Failure and One-Year Fatigue Damage of the Ten Hotspots at the RBDO Optimum Design  

Probabilistic 

Constraint 

Nodal 

ID 

Section 

Point ID 
PFwind (%) PFwind+manu. (%) D1year D1year-wind D1year-gravity D1year-centrifugal 

1 61 15 0 0 1.5069E−04 8.1900E−09 1.2625E−06 0 

2 1074 9 0.142 0.144 1.7648E−03 1.7060E−03 6.2187E−14 0 

3 1099 9 2.030 2.281 2.2703E−02 2.0688E−02 7.9918E−32 0 

4 1167 3 0 0 2.8135E−09 2.8780E−09 2.5181E−18 0 

5 1582 9 0.032 2.262 4.2083E−02 3.3417E−06 3.8250E−04 0 

6 1988 15 0 0.304 3.2140E−02 1.1997E−08 8.4981E−04 0 

7 2297 1 2.190 2.279 9.2256E−03 1.0096E−02 3.6445E−14 0 

8 2644 1 0 0.076 3.2918E−02 3.4867E−13 1.9853E−03 0 

9 2657 15 0.010 2.265 3.6132E−02 7.2627E−10 3.1032E−04 0 

10 2887 1 0 2.277 2.9686E−02 2.2233E−09 1.0124E−03 0 
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Table 6.11 Probability of Failure and One-Year Fatigue Damage of the Four Selected Node-Section Points at the RBDO Optimum 
Design  

Nodal ID Section Point ID PFwind (%) PFwind+manu. (%) D1year D1year-wind D1year-gravity D1year-centrifugal 

1572 9 0 0.0005 1.7646E−02 1.2086E−05 1.2990E−04 0 

1961 12 0 0.0055 2.5300E−02 2.3344E−08 1.2439E−03 0 

2527 3 0 0 2.7234E−02 5.6960E−11 2.4691E−04 0 

2872 1 0 0.0045 1.7703E−02 3.1586E−10 1.4755E−04 0 
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CHAPTER 7 

CONCLUSIONS AND FUTURE RECOMMENDATIONS 

In this chapter, the conclusions of the thesis and future recommendations are 

presented. Section 7.1 presents conclusions about the fatigue analysis procedure for 

composite wind turbine blades, the dynamic wind load uncertainty model, the 

deterministic design optimization (DDO) procedure, reliability analysis, and the 

reliability-based design optimization (RBDO) procedure. Future recommendations are 

provided in Section 7.2 

7.1 Conclusions 

A fatigue analysis procedure for composite wind turbine blades, including wind 

field simulation, aerodynamic analysis, detailed stress analysis, and fatigue damage 

evaluation, is proposed in this thesis. The wind field simulation applies the Veers’ 

method to simulate 10-minute wind field realizations based on a 10-minute mean wind 

speed V10 and a 10-minute turbulence intensity I10. Using the simulated wind field 

realization, an aerodynamic analysis method is proposed to efficiently generate quasi-

physical blade surface pressures for subsequent stress and fatigue analysis. The proposed 

aerodynamic analysis method is based on the computationally efficient aerodynamic 

analysis of airfoil and the wind turbine blade. In addition to the wind load, gravity load 

and centrifugal load are included in the detailed stress analysis of a composite wind 

turbine blade. A fatigue failure criterion is proposed to deal with non-proportional multi-

axial stress states in which more than one stress component is operative and stress 

components are out of phase with each other. Finally, 10-minute fatigue damages at blade 

node-section points are calculated using the proposed fatigue failure criterion. Previous 

works considered the mean wind speed in fatigue damage calculation. In this study, 

atmospheric turbulence is also taken into account by I10 as well as V10. This study also 

provides a detailed composite laminate schedule and fatigue constant life diagrams for 
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the realistic composite wind turbine blade model, which has been used in DDO, 

reliability analysis, and RBDO.  

A dynamic wind load uncertainty model has been developed using 249 groups of 

measured wind data. The wind load uncertainty model involves both the annual wind 

load variation and the wind load variation in a large spatiotemporal range. The annual 

wind load variation is represented by the joint probability density function (PDF) of V10 

and I10. In order to properly represent the joint PDF of V10 and I10, the marginal 

distributions and copula types (correlation) for V10 and 10-minute standard deviation of 

wind speed Σ10 have been studied. Based on the 249 groups of measured wind data, the 

best fit marginal distribution types of V10 and Σ10 are identified to be Weibull distribution 

and Gamma distribution, respectively. The best copula type for V10 and Σ10 is also 

identified as Gumbel. The joint PDF of V10 and I10 is derived from the joint PDF of V10 

and Σ10. The wind load variation in a large spatiotemporal range is represented by the 

PDFs of five parameters C, k, a, b, and τ, which determine the joint PDF of V10 and I10. 

Using the 249 sets of (C, k, a, b, τ), the best fit PDFs of C, k, a, b, and τ are identified to 

be log-logistic distribution, normal distribution, generalized extreme value distribution, 

Weibull distribution, and extreme value distribution, respectively. Using two different 

sets of (C, k, a, b, τ), a case study has been carried out to predict the fatigue damage of 

the developed composite wind turbine blade. The case study results show that the 

calculated maximum one-year fatigue damage using one set of (C, k, a, b, τ) is 5.32 times 

larger than that when the other set is used. This finding confirms that the wind load 

variation in the lifespan of wind turbine blades plays a critical role in blade fatigue 

analysis and that the uncertain wind load must be considered in the fatigue reliability 

analysis of wind turbines. 

Using the dynamic wind load uncertainty model, a mean wind load is generated to 

use for the DDO of the composite wind turbine blade. In order to generate the mean wind 

load, a wind condition table, which consists of 600 combinations of V10 and I10, is 
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constructed. The selected 600 combinations of V10 and I10 cover a wide range of wind 

conditions. For each wind condition, a mean probability using the developed wind load 

uncertainty model and Monte Carlo simulation (MCS) is calculated. Consequently, a 

mean wind load probability table, which represents the mean wind load, is created. 

Applying the mean wind load, 20-year fatigue damages at blade node-section points are 

calculated for DDO constraints. By fine-tuning the laminate thickness design variables, a 

DDO optimum design was successfully obtained through the DDO procedure. At the 

DDO optimum design, the fatigue life of the blade model is increased 49,999 times over 

that of the initial design, while the cost is 31.53% larger than that of the initial design. 

The reliability analysis method of the composite wind turbine blade under wind 

load uncertainty is then proposed using the sampling-based reliability analysis method. 

The MCS method simulates uncertain wind load using the proposed wind load 

uncertainty model. The reliability analysis estimates the probability that a wind turbine 

could survive 20 years of target lifespan. The reliability analyses of the initial design and 

the DDO optimum design are taken as examples. The reliability analysis has been carried 

out for all 60,954 node-section points of the blade. Thus the probability of failure of each 

node-section point is obtained. Detailed probability of failure contours have been 

obtained for both the initial design and the DDO optimum design. Using the probability 

of failure contour, the largest probability of failure can be located. The reliability analysis 

results show that the probability of failure considering only wind load uncertainty is 

reduced from 100% at the initial design to 49.9% at the DDO optimum design, which 

indicates that the DDO procedure indeed reduces the probability of failure. However, the 

high probability of failure (49.9%) at the DDO optimum design also indicates that RBDO 

is necessary to further improve the fatigue reliability of the composite wind turbine blade. 

Finally, the RBDO procedure for composite wind turbine blades considering both 

wind load uncertainty and manufacturing variability is developed. The wind load 

uncertainty model could provide realistic uncertain wind load through the designed 20-
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year lifespan. The fundamental theories of sampling-based RBDO with fixed coefficient 

of variation (CoV) are reviewed. The twelve random thickness variables are linked to 

seven random design variables by using the DDO optimum design result. The RBDO 

objective function is normalized cost based on true cost at the DDO optimum design. 

Three criteria for identifying hotspots are created. The probabilistic constraints are 

probability of fatigue failure at the selected hotspots. During the RBDO iterations, local 

surrogate models of 10-minute fatigue damages are created to calculate 20-year fatigue 

damage efficiently and accurately. Using the surrogate models, probability of fatigue 

failure is calculated considering both wind load uncertainty and manufacturing 

variability. The obtained RBDO optimum design reduces the maximum probability of 

failure from 50.06% at the RBDO initial design to 2.28% at the RBDO optimum design. 

This research demonstrates that applying RBDO methods to wind turbine blades could 

provide reliable and yet economical designs considering wind load uncertainty. The 

developed wind load uncertainty, the reliability analysis method, and the RBDO methods 

could be applicable to other wind turbine components, such as rotor hub, gears, and 

bearings. 

7.2 Future Recommendations 

Three areas are recommended to be improved in fatigue analysis procedure in the 

future. Firstly, consider the aero-elastic effect when calculating detailed wind pressure 

load. In the proposed fatigue analysis procedure, the aerodynamic wind pressure is 

generated based on the computationally efficient aerodynamic analysis of airfoil and the 

wind turbine blade. The blade is un-deformed when calculating the aerodynamic wind 

load for fatigue analysis within AeroDyn. Thus, the aero-elastic effect has not been 

considered in fatigue reliability analysis. For future research, new methods/procedures 

may be developed to consider the aero-elastic effect of the blade and calculate detailed 

wind pressure for finite element analysis. Secondly, address the non-deterministic 
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relationship between section load coefficient (Cl, Cd, Cm) and effective angle of attack. 

Due to that the current fatigue analysis procedure cannot afford the computational time 

for each individual realization, a fifth-order polynomial regression model is used. 

However, as found in this study, the aerodynamic coefficients are not deterministic 

functions of angle of attack. This non-deterministic relationship could generate varied 

wind pressure at the same angle of attack, which makes the fatigue analysis more 

complex and affect the reliability of the blade. Thirdly, introduce a turbine control model 

to fatigue analysis. In current fatigue analysis, the rotational speed is assumed to be 

constant for different wind conditions. In reality, the control system keeps the rotational 

speed, as well as the power out, within a certain range. In addition, the blade pitch control 

is one of the most important factors affecting aerodynamic loads over the range of wind 

conditions considered. The computational time issue of involving these improvements 

needs to be well addressed before carrying out reliability analysis and RBDO. One 

potential method may be using high-performance computing (HPC) to carry out parallel 

computation.  

Recommendations for the wind load uncertainty model are also provided. The 

proposed wind load uncertainty model utilizes 249 groups of measured wind data. If 

more wind data is available, the developed dynamic wind load uncertainty model could 

generate more realistic uncertainty wind load for reliability analysis and RBDO. At the 

current state, due to lack of wind data over 20 years, the random variables of C, k, a, b, 

and τ are assumed to be independent. In other words, the wind load variation over years is 

assumed to be independent. In reality, the wind load distribution in one year at a location 

is probably close to the wind load distribution in the following years at the same location. 

That means there is a correlation between the wind loads in years. In the future, the 

correlation among random variables of C, k, a, b, and τ may be studied. For example, by 

adding the correlation into the wind load uncertainty model, the correlation between wind 

loads generated from sequential years may be considered. 
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