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ABSTRACT 

The objective of this study is to develop an accurate surrogate modeling method 

for construction of the surrogate model to represent the performance measures of the 

compute-intensive simulation model in reliability-based design optimization (RBDO). In 

addition, an assessment method for the confidence level of the surrogate model and a 

conservative surrogate model to account the uncertainty of the prediction on the untested 

design domain when the number of samples are limited, are developed and integrated into 

the RBDO process to ensure the confidence of satisfying the probabilistic constraints at 

the optimal design. The effort involves: (1) developing a new surrogate modeling method 

that can outperform the existing surrogate modeling methods in terms of accuracy for 

reliability analysis in RBDO; (2) developing a sampling method that efficiently and 

effectively inserts samples into the design domain for accurate surrogate modeling; (3) 

generating a surrogate model to approximate the probabilistic constraint and the 

sensitivity of the probabilistic constraint with respect to the design variables in most-

probable-point-based RBDO; (4) using the sampling method with the surrogate model to 

approximate the performance function in sampling-based RBDO; (5) generating a 

conservative surrogate model to conservatively approximate the performance function in 

sampling-based RBDO and assure the obtained optimum satisfy the probabilistic 

constraints. 

In applying RBDO to a large-scale complex engineering application, the surrogate 

model is commonly used to represent the compute-intensive simulation model of the 

performance function. However, the accuracy of the surrogate model is still challenging 

for highly nonlinear and large dimension applications. In this work, a new method, the 
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Dynamic Kriging (DKG) method is proposed to construct the surrogate model accurately. 

In this DKG method, a generalized pattern search algorithm is used to find the accurate 

optimum for the correlation parameter, and the optimal mean structure is set using the 

basis functions that are selected by a genetic algorithm from the candidate basis functions 

based on a new accuracy criterion. Plus, a sequential sampling strategy based on the 

confidence interval of the surrogate model from the DKG method, is proposed. By 

combining the sampling method with the DKG method, the efficiency and accuracy can 

be rapidly achieved.  

Using the accurate surrogate model, the most-probable-point (MPP)-based RBDO 

and the sampling-based RBDO can be carried out. In applying the surrogate models to 

MPP-based RBDO and sampling-based RBDO, several efficiency strategies, which 

include: (1) using local window for surrogate modeling; (2) adaptive window size for 

different design candidates; (3) reusing samples in the local window; (4) using violated 

constraints for surrogate model accuracy check; (3) adaptive initial point for correlation 

parameter estimation, are proposed. 

To assure the accuracy of the surrogate model when the number of samples is 

limited, and to assure the obtained optimum design can satisfy the probabilistic 

constraints, a conservative surrogate model, using the weighted Kriging variance, is 

developed, and implemented for sampling-based RBDO. 
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CHAPTER I  

INTRODUCTION 

This study presents new methods in reliability-based design optimization (RBDO) 

using the surrogate model with associated confidence level. First, a new dynamic Kriging 

(DKG) surrogate modeling method, which accurately represents the true unknown 

performance function by using the pattern search for correlation parameter estimation and 

a genetic algorithm for basis functions selection in the Kriging method, is proposed. 

Second, based on the proposed surrogate modeling method, a confidence interval of the 

surrogate model is obtained and used to develop a sequential sampling method. Third, the 

sequential-sampling-based dynamic Kriging method is applied to both the most probable 

point based RBDO and sampling-based RBDO to achieve the RBDO optimum design. 

Fourth, to ensure the efficiency of the sampling-based RBDO using surrogate model, a 

parallel processing method is applied by using the high performance computing system 

(HPC) for surrogate modeling and the Monte Carlo simulation for reliability analysis. In 

the end, an assessment method for the confidence of the surrogate model is developed in 

RBDO to ensure the confidence level of the obtained optimum design in the presence of 

the uncertainty from the surrogate modeling. 

Section 1.1 presents background and motivation of the proposed research; Section 

1.2 provides objectives of the proposed research; and Section 1.3 describes the thesis 

organization. 
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1.1 Background and Motivation 

1.1.1 Reliability-Based Design Optimization 

Reliability-based design optimization (RBDO) has been widely used recently for 

design of engineering applications. To achieve the optimal design that satisfies the target 

reliability of performance function, the optimization algorithm and reliability analysis are 

implemented. In recent years, there have been various attempts to develop enhanced 

reliability analysis methods to accurately compute the probability of failure of a 

performance function.  

The most common reliability analysis methods are (1) analytical methods and (2) 

simulation or sampling methods. The analytical methods have two different branches. 

One branch includes the Most-Probable-Point (MPP)-based method, which includes the 

first-order reliability method (FORM) [Haldar and Mahadevan, 2000; Hasofer and Lind, 

1974; Tu and Choi, 1999; Tu et al., 2001], the second-order reliability method (SORM) 

[Hohenbichler and Rackwitz, 1986; Breitung, 1984], and the MPP-based dimension 

reduction method (DRM) [Rahman and Wei, 2006; Lee et al., 2008]. The other branch 

includes the probability density function (PDF) approximation method [Rosenblueth, 

1975; Huang and Du, 2006; Youn et al., 2008]. Among the MPP-based methods, FORM 

and SORM first use first or second order Taylor series expansion to approximate the 

performance function at the MPP, respectively; and then calculate the probability of 

failure using the approximated performance function, respectively. The MPP-based DRM 

approximates the multi-dimensional performance function by using the sum of lower 

dimensional functions and then calculates the probability of failure. The PDF 

approximation method evaluates the PDF of the performance function by assuming a 
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general output distribution type and then, using the approximated PDF, evaluates the 

probability of failure of the performance function.  

RBDO using MPP-based reliability analysis is a gradient-based design 

optimization, which requires the sensitivity of the probabilistic constraint at MPP with 

respect to the design variable, which is the mean value of input random variable. Many 

works have been conducted to study the sensitivities of the probabilistic constraints 

[Haldar and Mahadevan, 2000; Tu and Choi, 1999; Ditlevsen and Madsen, 1996; Hou, 

2004; Gumbert et al., 2003; Hohenbichler and Rackwitz, 1986; Rahman and Wei, 2007]. 

The sensitivity using the Reliability Index Approach (RIA) for the FORM-based RBDO 

[Haldar and Mahadevan, 2000; Tu and Choi, 1999; Ditlevsen and Madsen, 1996; Hou, 

2004; Gumbert et al., 2003; Hohenbichler and Rackwitz, 1986] and the DRM-based 

RBDO [Rahman and Wei, 2007] is derived in detail. Also, the sensitivity using the 

Performance Measure Approaches (PMA) for the DRM-based RBDO [Tu and Choi, 

2001; Youn et al., 2005; Lee et al., 2009] is derived in detail. However, in most complex 

engineering applications, the sensitivity of the probabilistic constraints is unavailable or 

extremely difficult to obtain. In such cases, surrogate model is commonly used to 

approximate the performance function and the sensitivity of the performance function 

with respect to the design variable by evaluating the constraint function at limited number 

of sample points. 

The simulation or sampling methods for reliability analysis usually use Monte 

Carlo simulation (MCS) for the evaluation of the probabilistic constraints. In such cases, 

MCS generates a large number of samples, e.g., one million, and evaluates the constraint 

at these MCS samples to check if the constraint is violated or not. In the end, the 
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probability of failure is obtained as the number of samples at which the constraint is 

violated divided by the total number of MCS samples. For the sensitivity analysis, score 

function [Rahman, 2009; Lee et al, 2010] is used to analytically calculate the sensitivity 

of the probabilistic constraint based on the MCS result.  

RBDO using the sampling method for reliability analysis can avoid the 

approximation made in FORM/SORM/DRM for the probabilistic constraints and the 

system reliability can be directly calculated accurately. However, the directly use of this 

approach is prohibited in complex engineering applications as MCS requires a very large 

number of samples for reliability analysis.  In such cases, an accurate surrogate model 

would be desirable to represent the performance function. With the accurate surrogate 

model, probability of failure and the sensitivity calculation are obtained by carrying out 

MCS based on the prediction from the surrogate model instead of evaluating the 

performance function directly. 

1.1.2 Surrogate Modeling Methods 

Surrogate modeling techniques have been developed over several decades in use 

of simulation based design optimization. The polynomial response surface method [Box 

and Wilson, 1951] is commonly considered as the origin of surrogate modeling methods, 

which uses a set of polynomials to represent the true response by minimizing the mean 

squared error (MSE). Kriging method [Matheron, 1963; Sacks et al., 1989; Cressie, 1993; 

Martin and Simpson, 2005; Joseph, 2008], which uses the random field to handle the 

residue, has become popular due to its flexibility and accuracy for highly nonlinear 

problems. Multivariate adaptive regression splines (MARS) [Friedman and Silverman, 

1989; Friedman, 1991], is a linear model with a forward stepwise algorithm to select 
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model terms followed by a backward procedure to prune the model.  Artificial neural 

networks (ANNs) [Lippmann, 1987; Haykin, 1999; White, 1989 Barron et al. 1992; 

Ripley, 1993], which are represented by a diagram of nodes in various layers with 

weighted connections between nodes in different layers, have been very popular for 

modeling a variety of physical relationships.  Radial basis functions (RBF) method 

[Powell, 1987; Meckesheimer et al., 2001], uses a linear combination of basis functions 

to represent the response.  Support vector regression (SVR) [Cortes and Vapnik, 1995] 

extends the RBF and specifies a margin as the acceptance for errors in the samples 

without affecting the prediction of the surrogate model.  

Among the existing methods, Kriging method is one of the most popular methods 

due to its flexibility for highly nonlinear problems. However, during the practical use of 

the Kriging method, two problems have been discovered. The first problem is that the 

existing optimization methods used to find the optimal correlation parameter do not 

provide the global optimum. Usually this correlation parameter is obtained by applying 

the maximum likelihood estimator (MLE). The commonly used DACE toolbox for 

Kriging method [Lophaven, 2002] uses the modified Hooke and Jeeves (H-J) algorithm 

to find the optimum solution. Martin [Martin, 2009] uses Levenberg-Marquardt (L-M) 

method with using the scoring method to efficiently and accurately calculate the Hessian 

matrix for optimization. Forrester et al [Forrester et al, 2009] instead use the genetic 

algorithm which is a gradient-free method to find the optimum. All these methods have 

their own advantages and disadvantages. The modified H-J method is efficient but unable 

to provide the true optimum. The L-M method is a gradient-based method. Although it is 

efficient, it can only find a local optimum, and thus the obtained optimum is affected by 
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the initial search point. Moreover, due to the large flat region and multiple local minima 

of the objective function, the L-M method often stops prematurely before converging to a 

true optimum. The GA method is supposed to be able to find the global optimum, but it is 

less efficient, and the obtained optimum varies due to the randomness within a genetic 

algorithm.  

In this research, a generalized pattern search algorithm is used to find the optimal 

correlation parameter for the Kriging method accurately and efficiently based on the 

maximum likelihood estimator (MLE). The second problem is that neither the ordinary 

Kriging (OKG) nor the universal Kriging (UKG) can adaptively fit the mean structure of 

the Kriging model for highly nonlinear functions; and fails to characterize the local 

nonlinearity of the true function in different design areas. It is shown that different basis 

functions may yield different surrogate models with the same sample profile. This is 

especially the case when a local window is used to generate the surrogate model in the 

design optimization process. That is, different basis functions may need to be used at on 

different local windows. Therefore, a new method that optimally selects basis functions 

to represent the mean structure based on current samples within the local window is 

desirable.  

One method of adjusting the mean structure was proposed by Joseph et al. [Joseph 

et al., 2008] by using a Bayesian framework to identify the mean structure for the Kriging 

method. They use a Bayesian forward variable selection, which can be trapped into a 

local optimum and prevents itself from finding a global optimal subset of the basis 

functions. In this study, a new method is proposed to find the pseudo-global optimal basis 
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functions by applying a genetic algorithm (GA) for the selection procedure by 

minimizing the process variance in Kriging model. 

Another crucial issue in surrogate modeling is sampling strategy. The one-step 

sampling method, i.e. Latin hypercube sampling method (LHS) [Stein, 1987; Goel et al., 

2008] has been widely used in surrogate modeling. This method tries to occupy the entire 

design domain most evenly and gain as much information about the true model as it can. 

However, it is not a problem-adaptive method, which means that it always gives us a 

similar sample profile that occupies the entire domain evenly regardless of the 

distribution of the nonlinearity of the true response. This could be a critical problem if the 

distribution of the nonlinear area is aggregating in a particular region of the domain.  

Another sampling technique, importance sampling [Dey et al., 1998], samples around the 

limit state area and predicts the response accurately around the limit state. This 

importance sampling method also only gives a good local surrogate model around the 

limit state area and usually does not represent the true model accurately enough in other 

areas of the domain. Wang [Wang, 2003] used a sequential sampling strategy to achieve 

optimal design and Xiong et al. [Xiong etl al., 2008] used an objective-oriented 

sequential sampling method to insert sample in a sequential manner. In this study, it is 

proposed to use a sequential sampling strategy integrated with the proposed DKG 

method. By coupling the sampling method with the DKG method, the efficiency and 

accuracy can be rapidly achieved.  

When the surrogate model is not accurate enough, new samples are sequentially 

inserted to improve the prediction accuracy. However, inserting a very large number of 

new samples sequentially may not be desirable when the samples are from the physical 
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experiments or when the computational resource for simulation is limited. Therefore, the 

improvement of the surrogate model cannot be obtained from the increase of the sample 

numbers. When applying the surrogate model for reliability-based design optimization 

when the number of samples is small, to assure the obtained optimum design will satisfy 

the probabilistic constraints, a conservative surrogate model is needed. Picheny [Picheny, 

2009] used both safety margin and safety factor approaches to construct the conservative 

surrogate model and concluded that, when the Kriging method is used, both methods 

provide similar performance in terms of the conservativeness and the accuracy.  Hertog et 

al. [Hertog et al., 2006] and Luna and Young [Luna and Young, 2003] used the 

bootstrapping method to estimate the Kriging prediction interval to construct the 

conservative surrogate model. The bootstrapping variance is larger than the traditional 

Kriging prediction variance by considering the uncertainty from the correlation parameter 

in the Kriging method.  However, the bootstrapping procedure is time-consuming and is 

not applicable for high-dimensional problems.   

Viana et al. [Viana et al, 2010] used cross-validation to estimate the safety margin 

for the conservative surrogate model.  While the cross-validation error is widely used to 

estimate the prediction error, this constant safety margin approach does not distinguish 

the prediction error at different sample locations and often obtains an over-conservative 

surrogate model where the samples are aggregated around and under-conservative 

surrogate model where the samples are sparse.  

In this study, a weighted Kriging variance is proposed to construct a more 

accurate conservative surrogate model based the sample locations.  To evaluate the 

importance from each sample and determine the weight for it, an accuracy measure of the 



9 
 

surrogate model is needed first. The corrected Akaike information criterion (AICc) is 

used to assess the accuracy changes in the surrogate model during the cross-validation 

process, and an importance function value is assigned to each sample according to the 

relative changes in AICc of the surrogate model and the weight is also assigned to each 

sample according to the importance function values. Then a weighted Kriging variance is 

calculated based on the weight values for each sample. By applying this weighted 

Kriging variance, one can construct the conservative surrogate model for dynamic 

Kriging and use it for sampling-based RBDO to assure the obtained optimum design can 

satisfy the probabilistic constraint. 

1.2 Objectives of the Proposed Study 

The first objective of this study is to propose the DKG surrogate modeling 

method that improves the traditional Kriging method by using the pattern search for 

correlation parameter estimation and genetic algorithm for selection of basis functions. 

To show advantages of the proposed method, comparison studies will be carried out. For 

the comparison study, popular existing surrogate modeling methods, such as polynomial 

response surface, radial basis function, support vector regression, universal Kriging and 

blind Kriging, are used to compare with the proposed DKG method. 

The second objective of this study is to propose a sequential sampling method that 

is inherently derived from the proposed DKG method. This sequential sampling 

efficiently locates the position in the design domain where it has the least prediction 

confidence and insert new sample respectively. To demonstrate the efficiency of the 

proposed sampling method, a comparison study will be carried out. For the comparison 

study, one-step sampling method, i.e. Latin hypercube sampling method, is compared 
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with the sequential sampling method to see if the sequential sampling method can 

provide a better sample profile to generate an accurate surrogate model. 

The third objective of this study is to apply the proposed sequential-sampling 

based dynamic Kriging method to both MPP-based RBDO in which both the 

performance function value and the sensitivity of the performance function are 

approximated from the surrogate models; and the sampling-based RBDO in which the 

surrogate model is used to represent the performance function only. The comparison 

study will be carried out to see if the RBDO optimum design obtained by using the 

surrogate model is accurate or not compared with the optimum design obtained by using 

the analytical probabilistic constraints. Then, to ensure the practical use of using the 

surrogate model for both MPP-based RBDO and sampling-based RBDO for large-scale 

complex engineering applications, a high performance computing improvement is 

developed by parallelizing the surrogate modeling the MCS calculation for multiple 

constraints. 

The last objective of the study is to propose conservative surrogate model that can 

take into account the uncertainty of the surrogate model due to limited number of samples 

in the RBDO framework. To see the effect on the accuracy of the RBDO optimum 

design, the obtained RBDO optimum using the conservative surrogate model is verified 

for the probabilistic constraints. A statistical study is also carried out to show if the 

conservative surrogate model performs robustly regardless of the sample profile.  
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1.3 Organization of Thesis 

Chapter 2 presents fundamental concepts for the reliability analysis and 

reliability-based design optimization, which are helpful to better understand the proposed 

methods.  

Chapter 3 presents the popular existing surrogate modeling methods and then 

proposes the new dynamic Kriging method. The new dynamic Kriging method is 

compared with the other five existing surrogate modeling methods through three 

numerical examples. 

Chapter 4 presents the sequential sampling method derived from the DKG method 

using the bandwidth of the prediction interval of the surrogate model. The sequential 

sampling method is compared with the Latin hypercube sampling method by using two 

numerical examples.  

Chapter 5 presents application of sequential sampling based DKG (SS-DKG) 

method to MPP-based RBDO. The way of using SS-DKG to approximate the 

performance function value and its sensitivity are described. Three strategies, which are 

using local window for surrogate modeling, using neighboring region of the point of 

interest for accuracy check, and adaptive window size depending on the movement of the 

design change, are proposed later to improve both the accuracy and the efficiency of 

surrogate modeling. Two numerical examples, which are 2-D mathematical example and 

12-D engineering example, are used to demonstrate the accuracy of using SS-DKG for 

MPP-based RBDO. 

Chapter 6 presents application of the SS-DKG method to sampling-based RBDO. 

The way of using SS-DKG to represent the performance function in sampling-based 
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RBDO and the stochastic sensitivity analysis using the surrogate model are described in 

detail. Three strategies, which are (1) adaptively reusing existing samples, (2) using 

violated constraints for surrogate model generation, and (3) adaptively using optimal 

correlation parameter value obtained from previous design iteration, are proposed. The 

same two numerical examples, which are 2-D mathematical example and 12-D 

engineering example, are used to demonstrate the accuracy of using SS-DKG for 

sampling-based RBDO. 

Chapter 7 proposes the parallelization of RBDO using the surrogate model for 

high performance computing in large-scale engineering application. The concept and 

toolbox of parallel computing is introduced. Then, three parts of parallelization, which 

are parallelization of the genetic algorithm in DKG, parallelization of surrogate models 

for multiple constraints, and parallelization of MCS prediction using the surrogate model, 

are explained in detail. Finally, a numerical example is used to demonstrate the 

improvement on the efficiency after applying parallelization for RBDO using surrogate 

model. 

Chapter 8 proposes the conservative surrogate model for sampling-based RBDO. 

To construct a desirable conservative surrogate model that does not change the optimum 

region of the true response and adaptively identifies the uncertainty from the surrogate 

model when the number of samples is small, a weighted Kriging variance that uses the 

relative changes in AICc of the Kriging model to quantify the importance of each sample 

point and assign the weight to each sample point, is proposed. Numerical example is 

carried out to compare the optimum design obtained by using the conservative surrogate 

model with the weighted Kriging variance and the conservative surrogate model with the 
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constant safety margin method. The result shows that the proposed method can 

adaptively construct the conservative surrogate model and assure the obtained RBDO 

optimum satisfy the probabilistic constraints.  

Chapter 9 provides conclusions from the study carried out and proposes additional 

study on the efficiency of the surrogate model in RBDO for future research.  

 



14 
 

 

 

CHAPTER II 

FUNDAMENTAL CONCEPTS IN DESIGN UNDER UNCERTAINTY 

2.1 Introduction 

This chapter presents review of fundamental concepts in design under uncertainty. 

Section 2.2 and 2.3 discuss the basic idea of reliability analysis and inverse reliability 

analysis which are necessary for RBDO that will be explained in Section 2.4. Section 2.5 

discuss the recently developed RBDO method that uses the Monte Carlo Simulation to 

calculate the stochastic sensitivity analysis and therefore does not require any 

approximation in calculating the probability of failure for the performance function.  

2.2 Reliability Analysis 

A reliability analysis entails calculation of probability of failure, denoted by FP , 

which is defined using a multi-dimensional integral [Madsen et al., 1986] 

 
( ) 0

[ ( ) 0] ( )F G
P P G f d

>
≡ > = ∫ XX

X x x  (2.1) 

where T
1 2={ ,  , ,  }NX X XX   is an N-dimensional random vector, ( )G X  is the 

performance function such that ( ) 0G >X  is defined as failure, and ( )fX x  is a joint 

probability density function (PDF) of the random input variable X . In most practical 

engineering applications, the exact evaluation of Eq. (2.1) is very difficult or often 

impossible to obtain since ( )fX x  is generally non-Gaussian and ( )G X  is highly 

nonlinear. To handle the non-Gaussian ( ),fX x  a transformation from the original 

-spaceX  into the independent standard normal -spaceU  is introduced. In addition, ( )G X  

is approximated using the first-order Taylor series expansion in the First Order Reliability 
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Method (FORM) or the second-order Taylor series expansion in the Second Order 

Reliability Method (SORM) if ( )G X  is highly nonlinear. 

2.2.1 Transformation 

Consider an N-dimensional random vector X  with a joint cumulative distribution 

function (CDF) ( )FX x . Let :T →X U  denote a transformation from -spaceX  to 

-spaceU  that is defined by Rosenblatt transformation [Rosenblatt, 1952]    as  
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where ( )1 2 1, , ,
iX i iF x x x x −  is the conditional CDF given by 
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and ( )Φ •  is the standard normal CDF given by   

 21 1( ) exp
22

u
u dξ ξ

π −∞

 Φ = − 
 ∫  (2.4) 

The inverse transformation can be obtained from Eq. (2.2) as  
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 (2.5) 

If the N-dimensional random vector X is independent, that is, the joint PDF is 

given by 
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1 21 2( ) ( ) ( ) ( )

NX X X Nf f x f x f x= × × ×X x   (2.6) 

where ( )
iX if x  are the marginal PDFs, then Rosenblatt transformation and the inverse 

transformation are simplified as  

 ( ) ( )1 1  and  
i ii X i i X iu F x x F u− − = Φ = Φ     (2.7) 

where ( )
iX iF x  are the marginal CDFs. In this study, the input random variables are 

assumed to be independent for the simplicity of calculation and the study with dependent 

input random variables will be the future research topic. Table 2.1 shows five 

representative distributions and their transformations assuming random variables are 

independent. 

Table 2.1 Probability Distribution and Its Transformation between X and -spaceU  

 Parameters PDF Transformation 

Normal 
meanµ =  
standard deviationσ =  

20.5[ ]1( )
2

x

f x e
µ

σ

πσ

−
−

=  X Uµ σ= +  

Log-
normal 

2 2ln[1 ( ) ]σσ
µ

= + , 

2ln( ) 0.5µ µ σ= −  

2ln0.5[ ]1( )
2

x

f x e
x

µ
σ

π σ

−
−

=  exp( )X Uµ σ= +  

Weibull 

1(1 )v
k

µ = Γ + ,  

2 2 22 1[ (1 ) (1v
k k

σ = Γ + −Γ +

 

( )1( ) ( )
kx

k vk xf x e
ν ν

−−=  
1

[ ln( ( ))]kX v U= − Φ −  

Gumbel 
0.577µ ν
α

= + ,
6
πσ
α
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xx ef x e

α να να
− −− − −=  

1 ln[ ln( ( ))]X Uν
α
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2
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−
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2.2.2 First Order Reliability Method (FORM) 

To calculate the probability of failure of the performance function ( )G x  using 

FORM and SORM, it is necessary to find the most probable point (MPP), which is 

defined as the point *u  on the limit state function ( ( ) 0g =u ) closest to the origin in the 

standard normal -spaceU  as shown in Fig. 2.1. In this study, the performance function in 

U-space is defined as ( ) ( ( )) ( )g G G≡ =u x u x  using the Rosenblatt transformation. Hence, 

MPP can be found by solving the following optimization problem to 

 
minimize     
subject to     g( ) 0=

u
u

 (2.8)                                                      

After finding MPP, the distance from MPP to the origin is commonly called the 

Hasofer-Lind reliability index (Hasofer and Lind, 1974) and denoted by HLβ , that is, 

*
HLβ = u . Using the reliability index HLβ , FORM can approximate the probability of 

failure using a linear approximation of the performance function as  

 FORM
HL( )FP β≅ Φ −  (2.9)      

  2.2.3 Second Order Reliability Method (SORM) 

The MPP obtained by solving Eq. (2.8) is also used for the probability of failure 

calculation using SORM. Using a quadratic approximation of the performance function in 

-spaceU  and the rotational transformation from -spaceU  to -spaceV , the probability of 

failure can be obtained using SORM as (Breitung, 1984; Hohenbichler and Rackwitz, 

1988; Rahman and Wei, 2006) 
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, H  is the Hessian matrix evaluated at the MPP 

in X-space, R  is the rotation matrix such that =u Rv , and ( )φ •  is the PDF of a standard 

Gaussian random variable. 

 

Figure 2. 1 MPP and Reliability Index HLβ  in -spaceU  [Wei, 2006] 

2.3 Inverse Reliability Analysis 

The reliability analysis presented in Section 2.2 is called the reliability index 

approach (RIA) (Tu and Choi, 1999) since it finds the reliability index HLβ  using Eq. 

(2.8). The advantage of RIA is that the probability of failure for the performance function 

can be calculated at a given design, for example, using Eqs. (2.9) and (2.10).  
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However, it is well known that the inverse reliability analysis in the performance 

measure approach (PMA) (Tu and Choi, 1999; Tu et al., 2001; Choi et al., 2001; Youn et 

al., 2003) is much more robust and efficient than the reliability analysis in RIA. PMA 

does not calculate the probability of failure directly. Instead, PMA judges whether or not 

a given design satisfies the probabilistic constraint for a given target probability of failure 

Tar
FP . Using FORM, the target reliability index tβ  can be calculated as 1 Tar

t ( )FPβ −= −Φ  

using Eq. (2.9), and then the feasibility of the given design can be checked by solving the 

following optimization problem to  

 
t

maximize    g( )
subject to    β=

u
u

 (2.11)                                                       

Since Eq. (2.11) is the inverse problem of Eq. (2.8), this is called the inverse 

reliability analysis. The optimum point of Eq. (2.11) is also called the MPP and denoted 

by *u . If the constraint function value at the MPP, *( ),g u  is less than zero ( ( ) 0G <X  is 

defined as safe), then the probabilistic constraint is satisfied for the given target reliability 

tβ  and target probability of failure. The inverse reliability analysis using SORM is much 

more difficult and has not been developed yet. Moreover, it requires the second order 

sensitivity. We can compare the difference between the reliability analysis and inverse 

reliability analysis graphically using Fig. 2.2. 

To find the MPP using the inverse reliability analysis with the given target 

reliability index tβ , several methods have been developed including the mean value 

(MV) method, advanced mean value (AMV) method [Wu et al., 1990; Wu, 1994], hybrid 

mean value (HMV) method [Youn et al., 2003], and enhanced hybrid mean value 

(HMV+) method [Youn et al., 2005a].  
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Figure 2. 2 Difference Between Reliability Analysis and Inverse Reliability Analysis 

The MV method linearly approximates the performance function using the 

function and gradient information at the mean value in -spaceU  as 

 
1

( ) ( ) ( )
i

N

i U
i i

gg g U
U

µ
=

∂
≅ + −

∂∑
U

U
U=μ

U μ  (2.12) 

Then, MPP of the inverse reliability analysis using MV can be obtained as  

 *
MV t ( )β= Uu α μ  (2.13) 

where ( )Uα μ  is the normalized gradient vector evaluated at the mean value and written 

as 

 
( )( )
( )

U

U

g
g

∇
≡

∇
U

U
U

μα μ
μ

 (2.14) 

where  T

1

{ , , }U
NU U

∂ ∂
∇ =

∂ ∂
 . This MV method is a crude method to find MPP of the 

inverse reliability analysis.  
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However, since it does not require further function evaluation and sensitivity 

analysis, MPP by MV method can be a good approximation to judge which constraint is 

active or not when a constraint function is far from the design point.  

The MPP obtained by the MV method can be considered as the first iteration of 

the AMV method. AMV uses the gradient at MPP obtained by the MV method to find the 

next MPP candidate and the iteration will continue to perform until the approximate MPP 

converges to the correct MPP. Hence, the AMV method can be formulated as 

 (1) * ( 1) ( )
AMV MV AMV t AMV, ( )k kβ+= =u u u α u  (2.15) 

This AMV method is known as an efficient method when the constraint function is 

convex. A constraint function is defined as convex around the MPP if FORM-based 

reliability analysis underestimates the probability of failure and vice versa for concave. 

For example, the constraint function in Fig. 2.2 is concave around the MPP since FORM-

based reliability analysis overestimates the probability of failure.  

To resolve the weakness of AMV for a concave function, the HMV method uses 

AMV method when a constraint function is convex and the conjugate mean value (CMV) 

(Youn et al., 2003) method when a constraint function is concave. HMV+ method uses an 

interpolation between two previous MPP candidate points if the constraint function is 

concave instead of using the CMV method. 

2.4 Most Probable Point (MPP) Based RBDO 

2.4.1 MPP-Based RBDO Using FORM 

In general, the RBDO model can be formulated to  
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 Tar

minimize      Cost( )
subject to     [ ( ) 0] , 1, ,

, R and R
ii F

L U ndv nrv

P G P i nc> ≤ =

≤ ≤ ∈ ∈

d
X

d d d d X

  (2.16) 

where T{ }id= =d μ(X)  is the design vector; T{ }iX=X  is the random vector; and nc , 

ndv  and nrv  are the number of probabilistic constraints, design variables, and random 

variables, respectively. Using the inverse reliability analysis, the ith probabilistic 

constraint can be rewritten as  

 Tar *[ ( ) 0] 0 ( ) 0
ii F iP G P G> − ≤ ⇒ ≤X x  (2.17) 

where *( )iG x  is the thi  probabilistic constraint evaluated at the MPP *x  in -spaceX .  

Using FORM, Eq. (2.16) can be reformulated to  

 Tar

minimize      Cost( )
subject to     [ ( ) 0] ( ), 1, ,

, R and R
i ii F t

L U ndv nrv

P G P i ncβ> ≤ = Φ − =

≤ ≤ ∈ ∈

d
X

d d d d X

  (2.18) 

where 
it

β  is the target reliability index for the ith constraint and the probabilistic 

constraint can be changed into  

 *
FORM[ ( ) 0] ( ) 0 ( ) 0

ii t iP G Gβ> −Φ − ≤ ⇒ ≤X x  (2.19) 

where *
FORMx  is the FORM-based MPP which can be obtained by solving Eq. (2.11) and 

transformation 1( )T − =* *u x  in Eq. (2.7). For the simplicity, *x  means the FORM-based 

MPP hereafter.  

To solve the formulation in Eq. (2.18), it is required to calculate the sensitivity of 

the probabilistic constraint in Eq. (2.19) with respect to a design parameter ( )i id Xµ= . 

The sensitivity of the probabilistic constraint with respect to the design parameter is 

written using the chain rule as  
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and Eq. (2.20) can be further simplified as (Gumbert et al., 2003; Hou, 2004) 

 
* * *

T*( )G G G
= = =

∂ ∂ ∂ ∂ = = ∂ ∂ ∂ ∂ x x x x x x

x x
d d x x

 (2.21) 

2.4.2 MPP-Based RBDO Using Dimension Reduction 

Method (DRM) 

The dimension reduction method [Xu and Rahman, 2004a; Xu and Rahman, 

2004b] is a newly developed technique to approximate the multi-dimensional integration 

of a performance function using a function with reduced dimension. There are several 

DRMs depending on the level of dimension reduction: (1) univariate dimension 

reduction, which is an additive decomposition of N-dimensional performance function 

into one-dimensional functions; (2) bivariate dimension reduction, which is an additive 

decomposition of N-dimensional performance function into at most two-dimensional 

functions; (3) multivariate dimension reduction, which is an additive decomposition of N-

dimensional performance function into at most S-dimensional functions, where S N≤ .  

In the univariate DRM, which is most commonly used, an N-dimensional 

performance function ( )G X  can be additively decomposed into one-dimensional 

functions at the MPP of the random vector X  as 

 * * * * *
1 1 1

1

ˆ( ) ( ) ( , , , , , , ) ( 1) ( )
N

i i i N
i

G G G x x X x x N G− +
=

≅ ≡ − −∑X X x   (2.22) 
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where * * * T
1 2={ ,  , ,  }Nx x x*x   is the FORM-based MPP of the performance function ( )G X  

obtained from Eq. (2.11) and N  is the number of random variables. For example, if 

1 2( ) ( , )G G X X=X  with 2N = , then the univariate additive decomposition of ( )G X  is 

 * * * *
1 2 1 2 1 2

ˆ( ) ( ) ( , ) ( , ) ( , )G G G X x G x X G x x≅ ≡ + −X X  (2.23) 

This MPP-based univariate DRM is used for more accurate reliability analysis than 

FORM later in this work for comparison study purpose. 

2.5 Sampling-Based RBDO 

In the MPP-based RBDO, the probability of failure of the performance function 

is approximated by FORM, SORM or DRM. For highly nonlinear problems, this 

approximation may not be accurate enough and lead to inaccurate probability calculation. 

Therefore, Lee et al., [Lee et al., 2010] proposed another sampling-based RBDO, which 

uses the score function by Monte Carlo Simulation to calculate the probability of failure 

and the sensitivity of the probabilistic constraint in RBDO. 

 2.5.1 Reliability and Statistical Moments 

In this sampling-based RBDO, the reliability analysis, for both the component 

and the system level, involves calculation of the probability of failure, denoted by PF, 

which is defined using a multi-dimensional integral  

 ( ) [ ] ( ) ( ; ) ( )
N F FF FP P I f d E IΩ Ω ≡ ∈Ω = =  ∫ XR

ψ X x x ψ x X  (2.24) 

where  ψ  is a vector of distribution parameters, which usually includes the mean (µ) 

and/or standard deviation (σ) of the random input { }T
1, , NX X=X   , [ ]P •  represents a 

probability measure, FΩ  is the failure set, ( ; )fX x ψ  is a joint probability density function 
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(PDF) of X, and [ ]E •   represents the expectation operator. The failure set is defined as   

{ }: ( ) 0F iGΩ ≡ >x x for component reliability analysis of the ith constraint function Gi(x),  

{ }1
: ( ) 0NC

F ii
G

=
Ω ≡ >x x



 and { }1
: ( ) 0NC

F ii
G

=
Ω ≡ >x x



 for series system and parallel 

system reliability analysis of NC performance functions, respectively. ( )
F

IΩ x   in Eq. 

(2.24) is called an indicator function and defined as 

 
1,

( )
0,F

FI
otherwiseΩ

∈Ω
≡ 


x
x  (2.25) 

In this work, since the mean of X, { }T
1, , Nµ µ=μ  , is used as a design vector, the vector 

of distribution parameters ψ is simply replaced with µ for the derivation of the 

sensitivity. 

In a fashion similar to Eq. (2.24), the qth statistical moment of a performance 

function H(x) is defined as 

 ( ) [ ( )] ( ) ( ; )
N

q q
qm E H H f d≡ = ∫ XR
μ X x x μ x  (2.26) 

Thus, Eqs. (2.24) and (2.26) can be written in a generalized form as 

 ( ) [ ( )] ( ) ( ; )
N

h E g g f d≡ = ∫ XR
μ X x x μ x  (2.27) 

which is called a probabilistic response. In Eq. (2.27), ( )h μ  and g(x) represent ( )FP μ   

and ( )
F

IΩ x , respectively, for reliability analysis. 

2.5.2 Stochastic Sensitivity Analysis 

The sensitivity of the probabilistic response ( )h μ  with respect to iµ  is considered 

in this section. For the derivation of the sensitivity, the following four assumptions, 

which are known as the regularity conditions, are required. 
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 The joint PDF  ( ; )fX x μ  is continuous. 

 The mean  , 1, , ,i i i Nµ ∈Μ ⊂ =R   where Mi is an open interval on R . 

 The partial derivative ( ; )

i

f
µ

∂
∂

X x μ   exists and is finite for all x and iµ . In addition,   

( )h μ is a differentiable function of µ. 

 There exists a Lebesgue integrable dominating function r(x) such that  

 ( ; )( ) ( )
i

fg r
µ

∂
≤

∂
X x μx x  (2.28) 

for all µ. 

With the four assumptions satisfied, taking the partial derivative of Eq. (2.27) 

with respect to iµ  yields    

 ( ) ( ) ( ; )
N

i i

h g f d
µ µ

∂ ∂
=

∂ ∂ ∫ XR

μ x x μ x  (2.29) 

and the differential and integral operators can be interchanged due to assumption 4 and 

the Lebesgue dominated convergence theorem, giving 

 

( ; )( ) ( )

ln ( ; )( ) ( ; )

ln ( ; )( )

N

N

i i

i

i

fh g d

fg f d

fE g

µ µ

µ

µ

∂∂
=

∂ ∂
∂

=
∂

 ∂
=  ∂ 

∫

∫

X
R

X
XR

X

x μμ x x

x μx x μ x

x μx

 (2.30) 

since g(x) is not a function of iµ . The partial derivative of the log function of the joint 

PDF in Eq. (2.30) with respect to iµ  is known as the first-order score function for iµ  and 

is denoted as 



27 
 

 

 

 (1) ln ( ; )( ; ) .
i

i

fsµ µ
∂

≡
∂

X x μx μ  (2.31) 

Therefore, it is required to know the first-order score function to derive the 

sensitivity of the probabilistic response, which is either the reliability or the statistical 

moments. The derivation of the first-order score function for independent and correlated 

random variables will be shown in the subsequent section. 

2.5.3 Formulation of Sampling-Based RBDO 

The mathematical formulation of a general RBDO problem is expressed as 

 Tar

L U

minimize      Cost( )
subject to     [ ( ) 0] , 1, ,

, R and R
ii F

ndv nrv

P G P i NC> ≤ =

≤ ≤ ∈ ∈

d
X

d d d d X



 (2.32) 

where T{ }id= =d μ(X)   is the design vector, which is the mean value of the N-

dimensional random vector T
1 2={ ,  , ,  }NX X XX  ; Tar

iFP  is the target probability of failure 

for the ith constraint; and NC, ndv, and nrv are the number of probabilistic constraints, 

design variables, and random variables, respectively.   

Then, by applying MCS to the constraint function ( )iG X , the probabilistic 

constraints in Eq. (2.32) can be approximated as 

 ( ) Tar

1

1[ ( ) 0] ( )
i F i

K
k

F i F
k

P P G I P
K Ω

=

≡ > ≅ ≤∑X x  (2.33) 

where K is the MCS sample size, ( )kx   is the kth realization of X, and the failure set FΩ

for the constraint is defined as { }: ( ) 0F iGΩ ≡ >x x . Sensitivity of the probabilistic 

constraint in Eq. (2.32) is obtained using the score function as 
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 ( ) (1) ( )

1

1 ( ) ( ; )i

F i

K
F k k

ki

P
I s

K µµ Ω
=

∂
≅

∂ ∑ x x μ  (2.34) 

where (1) ( )( ; )
i

ksµ x μ   is obtained using Eq. (2.31). 

As shown in Eq. (2.34), the sensitivity calculation using the score function and 

MCS does not require the sensitivity of the constraint function, which is known to be 

extremely difficult to obtain in a large-scale engineering application. Furthermore, the 

computation of the sensitivity using the score function does not include any 

approximation except the statistical noise due to MCS, which can be avoided using a 

sufficiently large MCS sample size. In addition, this sensitivity analysis does not require 

the transformation from the original design space to the standard normal space, which 

usually makes the performance function become highly nonlinear, especially when the 

random input follows non-Gaussian marginal distribution and is correlated. Therefore, 

the sensitivity analysis using the score function and MCS is very accurate and 

computationally efficient for engineering applications with correlated random input. 



29 
 

 

 

CHAPTER III  

SURROGATE MODELING METHODS 

3.1 Introduction 

Surrogate modeling has been widely used in engineering to approximate the 

compute-intensive simulation model for design purpose. Over the last several decades, 

researchers have developed a number of methods for surrogate model generation. Each of 

these methods has its own advantage and disadvantage with respect to a number of 

issues, such as the accuracy, efficiency and ease of use. This chapter first reviews the 

most popular existing methods of surrogate modeling and later proposes a new surrogate 

modeling method that improves the accuracy of Kriging method. In the last, three 

numerical examples are used to compare the accuracy between the proposed method and 

other existing methods. 

3.2 Existing Surrogate Modeling Methods 

3.2.1 Polynomial Response Surface Method 

The classic polynomial response surface (PRS) method is the original and the 

most widely used form of surrogate model in engineering design. According to the most 

popular texts [Box and Draper, 1987], a polynomial response surface of order p of a 

function ( )y x  of dimension 1k = with samples { }(1) (2) ( ), ,..., nx x x and 

(1) (2) ( )( , ,..., ),ny y y=y  can be written as  

 2
0 1 2

0

ˆ( ) ...
p

p i
p i

i
y x a a x a x a x a x

=

= + + + + =∑  (3.1) 
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The coefficients 0 1( , ,..., )T
pa a a=a are estimated by the least squares solutions of =Φa y  

where Φ is the Vandermonde matrix 

 

( ) ( )
( ) ( )

( ) ( )

2(1) (1) (1)

2(2) (2) (2)

2( ) ( ) ( )

1 ...

1 ...

... ... ... ... ...

1 ...

p

p

pn n n

x x x

x x x

x x x

 
 
 
 =
 
 
 
 

Φ  (3.2) 

and y is the vector of response at the samples.  The least square solution, which is 

equivalent to the maximum likelihood estimate of a  is thus 

 ( ) 1T T−
=a Φ Φ Φ y  (3.3) 

The highest order m is usually obtained by minimizing 

 2

1p
MSE

n p
σ =

− −
 (3.4) 

where ( ) ( ) 2

1

ˆ( ( ) ( ))
n

i i

i
MSE y x y x

=

= −∑ is the so called mean squared error (MSE).  

3.2.2 Radial Basis Function Method 

Radial basis functions (RBF) [Broomhead and Loewe, 1988] use a weighted sum 

of simple functions to approximate the true response. In RBF, consider n samples 

{ }(1) (2) ( ), ,..., nx x x  with n response (1) (2) ( )( , ,..., ),ny y y=y  where .m∈x   The 

approximation of the response is under the form as 

  ( )

1

ˆ( ) ( )
cn

T i
i

i
y wψ

=

= = −∑x w ψ x c  (3.5) 



31 
 

 

 

where ( )ic denotes the ith of cn  basis function center and ψ  is an cn vector containing the 

values of the basis function ( )ψ ⋅  evaluated at the L2 norm of ( )i−x c . Indeed, RBF is 

recognized as a single-layer neural network with radial coordinate neurons, featuring an 

input x , hidden units ( ) ,ψ ⋅  weights w , linear output transfer functions and output ˆ( ).y x

The basis function can take simple forms as: linear ( )r rψ = , cubic 3( )r rψ =  and thin 

plate spline 2( ) lnr r rψ = . Moreover, more complex parametric forms  are also 

applicable, such as: Gaussian 
2 2/2( ) rr e σψ −= , multi-quadric 2 2 1/2( ) ( )r rψ σ= +  and 

inverse multi-quadric 2 2 1/2( ) ( )r rψ σ −= + . With the basis function setup, the weight w  is 

obtained by solving the linear equations, as 

 T =w ψ y  (3.6) 

where ψ  is the so-called Gram matrix and it is defined as ( ) ( )( )i j
ij ψ= −ψ x x . 

3.2.3 Support Vector Regression Method 

Support vector regression (SVR) origins from support vector machines (SVM) in 

AT&T Bell laboratories. The key attribute of SVR is that it allows us to specify or 

calculate a margin (ε ) within which we are willing to accept errors in the sample data 

without affecting the surrogate prediction. In SVR, consider n samples { }(1) (2) ( ), ,..., nx x x  

with n response (1) (2) ( )( , ,..., ),ny y y=y  where m∈x R . The prediction of the response is 

defined as  

 ˆ( ) ,y µ= +x w x  (3.7) 
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where ,⋅ ⋅ denotes the dot product, µ is a constant and w is the weight needs to be 

determined. To produce a prediction which generalizes well, it is desirable to find a 

function with at most ε deviation from y and at the same time minimize the model 

complexity 2w . Therefore, the problem becomes 

 
2

( ) ( )

1minimize :
2

s.t. ,i iyε µ ε− ≤ − − ≤

w

w x
 (3.8) 

The assumption behind the constraints is that it demands that a function ˆ( )y x

exists which approximates all ( )iy with precision ε± . Such a solution may not actually 

exist and it is also likely that better predictions will be obtained if we allow for the 

possibility of outliers. This is achieved by introducing slack variables, ξ + for 

( ) ( )ˆ( ) ( )i iy y ε− >x x  and ξ −  for ( ) ( )ˆ( ) ( )i iy y ε− >x x . Thus, the problem becomes 

 

2 ( ) ( )

1

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 1minimize : ( )
2

, ,

s.t. , ,

, 0

n
i i

i

i i i

i i i

i i

C
n

y

y

ξ ξ

µ ε ξ

µ ε ξ

ξ ξ

+ −

=

+

−

+ −

+ +

 − − ≤ +
 + − ≤ +


≥

∑w

w x

w x
 (3.9) 

The constrained problem of Eq. (3.9) is solved by introducing the Lagrange 

multipliers, ( )iη+ , ( )iη− , ( )iα + and ( )iα −  to give the Lagrangian, 

 

2 ( ) ( ) ( ) ( ) ( ) ( )

1 1

( ) ( ) ( ) ( )

1

( ) ( ) ( ) ( )

1

1 1 ( ) ( )
2

( , )

( , )

n n
i i i i i i

i i
n

i i i i

i
n

i i i i

i

L C
n

a y

a y

ξ ξ η ξ η ξ

ε ξ µ

ε ξ µ

+ − + + − −

= =

+ +

=

− −

=

= + + − +

− + − + +

− + + − −

∑ ∑

∑

∑

w

w x

w x

 (3.10) 
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By solving 0, 0, 0, 0L L L L
µ ξ ξ+ −

∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂w
, we obtain 

 ( ) ( ) ( )

1
( )

n
i i i

i
α α+ −

=

= −∑w x  (3.11) 

and therefore the prediction is 

 ( ) ( ) ( )

1
( ) ( ) ,

n
i i i

i
y µ α α+ −

=

= + −∑x x x  (3.12) 

In the above procedure, the ,⋅ ⋅  can be replaced by a generalized kernel function

( , )i jψ x x , and popular choice for ψ  are: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2( ) ( )
( ) ( )

2

( , ) ( , ) (linear)
( , ) ( , ) ( degree homegeneous polynomial)
( , ) ( , )          (  degree inhomegeneous polynomial)

( , ) exp    

i j i j

i j i j d

i j i j d

i j
i j

d
c d

ψ

ψ

ψ

ψ
σ

=

=

= +

 − − =
 
 

x x x x
x x x x
x x x x

x x
x x   (Gaussian)

 (3.13) 

3.2.4 Universal Kriging Method 

The Kriging method has gained large interest for constructing the surrogate model 

in recent years.  In the Kriging method, the outcomes are considered as a realization of a 

stochastic process. Consider n samples ( )(1) (2) ( ), ,...,
Tn=x x x x  with n response 

(1) (2) ( )( , ,..., ) ,n Ty y y=y  where .m∈x R In the Kriging method, the response at the samples 

consists of a summation of two parts as  

 y = Fβ +e  (3.14) 

The first part of the right-hand side of Eq. (3.14), Fβ, is the mean structure of the 

response, where ( )=[ ( )], 1,..., , 1,...,i
kf i n k K= =F x  is an n×K design matrix, and  fk(x) 
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represent user-defined basis functions, which are usually in a simple polynomial form, 

such as 21, , ,... .x x  In Eq. (3.14), T
1 2[ , ,..., ]Kβ β β=β are the regression coefficients from 

the generalized least square regression method. The second part of the right-hand side of 

Eq. (3.14), (1) (2) ( ) T[ ( ), ( ),..., ( )]ne e e=e x x x , is a realization of the stochastic process ( )e x  

that is assumed to have zero mean and covariance structure 

( ) ( ) 2 ( ) ( )[ ( ) ( )] ( ) ( , , )i j i jE e e Rσ=x x θ θ x x , where 2( )σ θ  is the process variance, θ is the 

process parameter that has to be estimated by applying the maximum likelihood estimator 

(MLE), and ( ) ( )( , , )i jR θ x x is the correlation function of the stochastic process. Usually in 

engineering problems the correlation function is set to Gaussian form, expressed as 

 ( ) ( ) ( ) ( ) 2

1
( , , ) exp( ( ) )

m
i j i j

k k k
k

R θ
=

= ∏ − −θ x x x x  (3.15) 

where ( )1 2, ,..., mθ θ θ=θ  and ( )i
kx is the kth dimension of variable ( )ix . The optimal choice 

of θ  is defined as the maximum likelihood estimator (MLE), which is the maximizer of 

the likelihood function, expressed as  

 1/ 2min ( ) | ( ) | ( )nψ σ=θ R θ θ  (3.16) 

where R is the symmetric correlation matrix with i-jth component 

( ) ( )( ) ( , , ), , 1,...,i j
ijR R i j n= =θ x x  and 2 T 11( ) ( ) ( )

n
σ −= − −θ Y Fβ R Y Fβ . 

Under the general decomposition of Eq. (3.14) and the obtained θ from Eq. 

(3.16), the objective is to predict the noise-free unbiased response at a new point of 

interest x. In the Kriging method, this prediction of response is written as a linear 

predictor as 

 Tŷ =(x) w y  (3.17) 
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where T
1 2[ ( ), ( ),..., ( )]nw w w=w x x x denotes the n×1 weight vector for prediction at x. 

Using Eq. (3.17), the unbiased prediction condition ˆ[ ( )] [ ( )]E y E y=x x  is expressed as 

 

T

T

T T T T

T T T

ˆ[ ] [ ]

[ ( ) ( ( ))]

[ ( ) ( ) ]

[( ) ]

E y y E y
E e
E e
E

− = −

= + − +

= − + −

= − =

(x) (x) w y (x)
w Fβ e fβ x
w e x F w f β
F w f β 0

 (3.18) 

where 1 2[ ( ), ( ),..., ( )].Kf f f=f x x x  Therefore, the unbiased condition is ensured by 

imposing the constraint T T=F w f on the prediction weights for each point of interest.  

Under this constraint, w is obtained as 

 -1( )= −w R r Fλ  (3.19) 

by solving the Lagrangian first-order necessary conditions of minimizing the mean 

squared error (MSE) of prediction, where (1) ( ) T[ ( , , ),..., ( , , )]nR R=r θ x x θ x x is the 

correlation vector between the prediction location x0 and all n samples ( )ix , i=1,…,n. 

Hence the prediction is expressed as  

 
T T -1

T T 1

ˆ( ) ( )

( )

y
−

= = −

= + −

x w y r Fλ R y
f β r R y Fβ

 (3.20) 

Under the assumption of the Gaussian process, the α-level prediction interval of response 

is written as 

 1 /2 1 /2ˆ ˆ( ) ( ) ( ) ( ) ( )y Z y y Zα ασ σ− −− ≤ ≤ +x x x x x  (3.21) 

where 1 /2Z α−  is the α-level quantile of standard normal distribution and 2 ( )σ x  is the 

predicted variance at x. Therefore, the bandwidth of the prediction interval at a point of 

interest x is 

 1 /2( ) 2 ( )d Z α σ−=x x  (3.22) 
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3.2.5 Blind Kriging Method 

Blind Kriging (BKG) is a method by which the basis functions in Kriging model 

are identified through a Bayesian forward variable selection procedure proposed by 

Joseph et al [Joseph et al, 2008]. In BKG, the candidate basis functions are set to be 

linear, quadratic, linear-by-linear, linear-by-quadratic, quadratic-by-linear and quadratic-

by-quadratic functions. The linear and quadratic functions are defined using orthogonal 

polynomial functions, expressed as 

 
,

2
,

3 2( 0.5)
2
1 6( 0.5) 2
2

lin j j

quad j j

x x and

x x

= −

 = − − 

 (3.23) 

for j = 1,2,…,m. To find the most important candidates, we need to find the maximum of 

the vector 

 T 1 ˆ( )k k
−= −Λ DU R y F β  (3.24) 

where D is a ( ) ( )2 22 1 2 1m m+ × +  diagonal matrix. 

 ,1 ,1 ,2 , 1 ,(1, , , ,..., )lin quad lin quad m quad mdiag r r r r r−=D  (3.25) 

and 

 
,

,

3 3 (1)
3 4 (0.5) 2 (1)

3 4 (0.5) (1)
3 4 (0.5) 2 (1)

j
lin j

j j

j j
quad j

j j

R
r and

R R
R R

r
R R

−
=

+ +

− +
=

+ +

 (3.26) 

2( ) exp( )j jR r rθ= − and jθ is the jth value of the correlation parameterθ  and kF is a n k×

matrix containing the k basis functions which have been determined. U is an 2(2 1)n m× +
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matrix whose first column is 1, with subsequent columns given by the interactions of the 

sample data: 

(1) (1) (1) (1) (1)
,1 1 ,1 1 ,2 2 , 1 1 ,

( ) ( ) ( ) ( ) ( )
,1 1 ,1 1 ,2 2 , 1 1 ,

1 ( ) ( ) ( ) ... ( ) ( )
. . . . .
. . . . .
1 ( ) ( ) ( ) ... ( ) ( )

lin quad lin quad m m quad m m

n n n n n
lin quad lin quad m quad m m

x x x x x x x x x x

x x x x x x x x x x

− −

−

 
 
 =  
  
 

U  (3.27) 

 ( ) ( )11 1ˆ T T
k k k k

−− −=β F R F F R y  (3.28) 

where R is the covariance matrix. In BKG, the correlation parameter θ is estimated as per 

ordinary Kriging. Then theΛ is calculated from Eq. (3.24) using 0 1=F and 0ˆ µ̂=μ from 

ordinary Kriging. Next set k = 1 and choose the basis function corresponding to the 

maximum value of Λ . Then we again computer Λ  and now kF is an ( 1)n k× +  matrix 

whose first column is 1 and mth column is the column of U corresponding to the index of 

the maximum value of Λ . Then the BKG correlation parameter θ is estimated by 

maximizing the concentrated ln-likelihood 

 2 1ˆln( ) ln( ) ln( )
2 2k
nL σ≈ − − R  (3.29) 

Therefore, the BKG prediction at any new point x is 

 1ˆ ˆˆ( ) ( ) ( )T T
k k ky x −= + −x f β r R y F β  (3.30) 

where ( )xf is the selected basis function vector and (1) (1)( , , ),..., ( , , )R R =  r θ x x θ x x is 

the correlation between x and the sample points. 

Predictions are then used to calculate a cross-validation error and the above 

process iterated to reduce this error up to 22t m= times. Joseph et al. stop iterating when 

the cross-validation error begins to rise consistently and the t basis functions 
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corresponding to the smallest error. They also arguably note that it is not necessary to 

estimate θ  at every step, just the first and the last. 

3.3 Dynamic Kriging Method (DKG) 

3.3.1 Using Pattern Search Method for Correlation 

Coefficient Estimation 

As discussed in Section 1.1.2, the first critical issue that affects the accuracy of 

the surrogate model generated by Kriging method is the optimization method used to 

estimate the correlation parameter θ as shown in Eq. (3.16).  To show how the optimal θ 

affects the final accuracy of the Kriging prediction in Eq. (3.20), consider one simple 

revised example based on Forrester’s work1 [Forrester et al., 2009]. In this example, the 

true function is expressed as 

 2(6 2) sin(12 4) 10 [0,1]y x x x= − − + ∈  (3.31) 

and five evenly distributed samples along the x-axis are used to generate the Kriging 

prediction. Then, the accuracy of the Kriging prediction is tested using different θ, and 

the relative root mean square error (rRMSE) is used as the accuracy measurement. In 

particular, the rRMSE is defined as 

 
2

1

ˆ( ) ( )1
( )

NTS
i i

i i

y x y xrRMSE
NTS y x=

 −
=  

 
∑  (3.32) 

where NTS is the number of testing points, and ˆ( )iy x and ( )iy x  are the Kriging prediction 

and the true response at testing point ix , respectively. In this example, NTS is 100 and all 

the testing points are evenly distributed along the x-axis. As shown in Fig. 3.1(a), the 

rRMSE value changes significantly as θ changes.  As θ increases from 2.7345 to 10, the 
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rRMSE decreases from its maximum (0.21544) to the minimum (0.12981), whereas in 

Fig. 3.1(b), the ( )ψ θ   function value only changes from 0.080374 to −0.20981. This 

behavior shows that it is very important to accurately solve the minimization problem of 

Eq. (3.16) and find the true optimal θ to generate an accurate Kriging prediction. 

Therefore, to accurately solve Eq. (3.16), it is proposed to use the generalized 

pattern search (GPS) method. The reason for using the GPS method is that the ( )ψ θ  

function in Eq. (3.16) usually has a highly nonlinear region near the origin and a large flat 

region elsewhere as shown in Fig. 3.1(b). What is more, the ( )ψ θ  usually contains 

multiple local minima for high-dimension problems. For such a minimization problem, a 

gradient-based optimization algorithm often prematurely converges to a local minimum if 

the initial θ value is close to the origin; or prematurely stops in the large flat region if the 

initial θ value is close to the upper bound of the θ domain. Among all the non-gradient-

based optimization algorithms, the GA is considered time-consuming and unreliable for 

such a continuous optimization problem, whereas the GPS method is not affected by the 

initial search point and accurately converges to the optimal θ. The global convergence of 

the GPS method has been proven by Lewis and Torczon [Lewis and Torczon, 1999]. It is 

worth mentioning that since the ( )ψ θ  is always highly nonlinear near the origin and 

large flat elsewhere, the initial search point is set to be the lower bound of the θ domain 

for the optimization method to converge quickly.  

In the GPS method, a pattern is a set of vectors { iv } that the pattern search 

algorithm uses to determine which points to search at each iteration. The set { iv } is 

defined by the number of independent variables in the objective function ( )ψ θ , and the 

positive basis set. 
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(a) Plot of rRMSE for Kriging Prediction Using Different θ 

 

(b) Plot of ( )ψ θ  in Kriging Model Using Different θ 

Figure 3. 1 The Effect of Different θ for the Accuracy of Kriging Prediction 
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Two commonly used positive basis sets in pattern search algorithms are the maximal 

basis, with 2m vectors, and the minimal basis, with m +1 vectors. 

The collections of vectors that form the pattern are fixed-direction vectors. For 

example, if there are three independent variables in the optimization problem, the default 

for a 2m positive basis consists of the following pattern vectors:  

 1 2 3

4 5 6

[1 0 0] [0 1 0] [0 0 1]
[ 1 0 0] [0 1 0] [0 0 1]

= = =
= − = − = −

v v v
v v v

 (3.33) 

An m+1 positive basis consist of the following default pattern vector: 

 1 2 3 4[1 0 0] [0 1 0] [0 0 1] [ 1 1 1]= = = = − − −v v v v  (3.34) 

At each step, the pattern search method searches a set of points, called a mesh, for a point 

that improves the objective function ( )ψ θ . The pattern search method forms the mesh in 

the following way: 

 Generating a set of vectors { }id by multiplying each pattern vector iv by a scalar 

Δ. Δ is called the mesh size. 

 Adding the { }id  to the current point – the point with the best objective function 

value found at the previous step. 

Then pattern search algorithm will polls the points in the current mesh by 

computing their objective function values. Then it compares the mesh point with the 

smallest objective function value to the current point. If that mesh point has a smaller 

value than the current point, the poll is successful. After polling, the algorithm changes 

the value of the mesh size Δ. It multiplies Δ by 2 after a successful poll and by 0.5 after 

an unsuccessful poll. The pattern search continues on until any one of the convergence 
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criteria, which are the change of mesh size, change of best objective function value and 

number of iteration, is achieved. 

To more clearly demonstrate the challenge in this minimization problem and how 

the pattern search works, an illustrative example, which is Branin-Hoo problem 

 
2 2

1 2 2 1 1 12

1 2

5.1 5 1( , ) ( 6) 10(1 )cos( ) 10
4 8

[ 5,10], [0,15]

f x x x x x x

x x
π π π

= − + − + − +

∈ − ∈
 (3.35) 

is used. With 20 Latin hypercube samples generated, the sample profile and the true 

function contour are first shown in Fig. 3.2(a).  The associated ( )ψ θ  plot can be viewed 

in Fig. 3.2(b) and it can be seen that ( )ψ θ  has a sharp corner region near the origin and 

long flat region in the rest of the feasible domain. The initial search point is set to be the 

center of the feasible domain.  

As shown in Table. 3.1, the four optimization methods that are discussed in the 

introduction give four different optimum points for θ. Among all four methods, the 

generalized pattern search method finds the best optimum point which is indeed the 

global optimum after verification. To verify the effect of accurate θ estimation on the 

accuracy of the Kriging surrogate model, 100×100 testing points are used to calculate the 

rRMSE of the surrogate model. Using the best optimum θ found by the pattern search 

method, the associated rRMSE from the Kriging model becomes the smallest among four 

methods. This result indeed shows that using the generalized pattern search method can 

achieve the best optimum for θ, and the best Kriging model for surrogate modeling 

thereafter.  
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(a) Contour of True Function and Samples 

 

(b) Plot of ( )ψ θ and Different Optimum Results 

Figure 3. 2 Branin-Hoo Example 
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Table 3. 1 Comparison between Four Optimization Methods 

 H-J L-M GA GPS 
Optimal θopt (1.7679, 0.2628) (0.7897, 0.0108) (0.7158, 0.0088) (0.7168, 0.0087) 

opt( )ψ θ  0.1169 0.0763 0.0758 0.0750 
rRMSE 1.9223 0.1072 0.0825 0.0755 

 

To demonstrate performance of the GPS for finding a better optimum of the   

( )ψ θ function compared with the other three optimization methods in a general way, a 

statistical study is conducted using the Branin-Hoo example again. In this statistical 

study, 100 randomly generated sets of 20-LHS samples are used. For each sample set, the 

ordinary Kriging is applied to generate the prediction. The four optimization methods 

discussed above are applied to solve Eq. (3.16), and the ( )ψ θ  function values at the 

optimum of θ are ranked from the smallest to the largest order. After the 100 trials, the 

frequency of the rank for four methods is shown in Table 3.2, where it shows that the 

GPS found the best optimal θ 92 times out of 100. Even though it is hard to claim that 

one optimization algorithm performance is better than the others all the time, to solve this 

particular bounded constrained problem of Eq. (3.16), it is clearly shown that the GPS 

method can obtain the best results in finding the accurate optimal θ, while the L-M 

method and the GA method have comparable performance thereafter. 

To show the accuracy of the Kriging models based on different optimal θ values 

from four optimization methods, 100×100 grid testing points are evaluated to calculate 

the rRMSE values and the rank of rRMSE values associated with each optimization 

method from the smallest to the largest is shown in Table 3.3. It shows that the Kriging 

model using the GPS method achieves a better accuracy than the other three methods. It 
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is noted that that the difference among the four methods in Table 3.3 is not as significant 

as the one in Table 3.2. 

Table 3. 2 Frequency of Rank of ( )ψ θ Function Value at Optimum θ 

 H-J L-M GA GPS 

1st 0 4 4 92 
2nd 0 71 24 5 
3rd 2 23 72 3 
4th 98 2 0 0 

Table 3. 3 Frequency of Rank of rRMSE Values by Different Optimization Methods 

 H-J L-M GA GPS 

1st 0 30 31 39 
2nd 3 43 14 40 
3rd 13 22 48 17 
4th 84 5 7 4 
 

As the dimension of the design variables increases, the difference of using four 

optimization methods to solve Eq. (3.16) is becoming more significant. Consider a 12-D 

mathematical example, express as 

 
12

2 2 2
1

2
, 10( 1) (2 ) 10i i i i

i
xy x i x x −

=

− ≤= − + − ≤∑  (3.36) 

This function is called Dixon-Price function. With 60 samples generated using 

Latin hypercube sampling method, the ordinary Kriging prediction using four different 

optimization methods for finding optimal θ is generated. Table 3.4 shows the optimal θ 

obtained using four different optimization methods and the associated objective function 
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values and the rRMSE values. The GPS method finds the best optimal θ with the smallest   

value and generates the most accurate Kriging prediction. 

Table 3. 4 Comparison between Four Optimization Methods 

 H-J L-M GA GPS 

Optimal θopt 

0.0100 
0.0100 
0.0133 
0.0100 
0.0157 
0.0100 
0.0115 
0.0100 
0.0170 
0.0124 
0.0234 
0.0189 

0.0197 
0.0100 
0.2439 
0.0100 
0.2727 
0.0100 
0.1024 
0.0100 
0.1275 
0.0100 
0.1583 
1.1422 

0.0306 
0.0185 
0.4174 
0.0275 
0.1990 
0.0950 
0.1316 
0.1988 
0.1524 
0.1859 
0.3100 
0.9055 

0.0100 
0.0100 
0.0555 
0.0100 
0.0688 
0.0100 
0.0687 
0.0306 
0.0795 
0.1122 
0.1308 
0.1680 

opt( )ψ θ  1.1193 0.7067 0.8201 0.6719 
rRMSE 0.2443 0.1552 0.2095 0.1234 

 

Like the previous example, to exclude the effect from the sample position and 

show the general performance of four optimization methods, 100 randomly generated sets 

of 60-LHS samples are used. The four optimizations are applied to find the optimal θ 

values to generate Kriging prediction. The rRMSE values are calculated based on a fixed 

set of 1000-LHS samples. Table 3.5 shows that the GPS method finds the best optimal θ 

value in 83 times; and the L-M method finds the best optimal θ in 17 times. The GA 

method and H-J method fails to find the best optimal θ value. At the same time, the 

associated rRMSE values are ranked as well, as shown in Table 3.6. The Kriging model 

with the GPS method generates the most accurate surrogate model in 80 times; followed 
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by the one with the L-M method of 18 times. Tables 3.5 and 3.6 indeed show that the 

GPS method outperforms other three optimization methods for this high dimension 

problem. 

Table 3. 5 Frequency of Rank of ( )ψ θ Function Value at Optimum θ 

 H-J L-M GA GPS 

1st 0 17 0 83 

2nd 12 16 55 17 

3rd 37 23 40 0 
4th 51 44 5 0 

Table 3. 6 Frequency of Rank of rRMSE Values by Different Optimization Methods 

 H-J L-M GA GPS 

1st 0 18 2 80 
2nd 16 55 12 17 
3rd 61 20 16 3 
4th 70 7 70 0 

3.3.2 Effect of Using Different Basis Function for Kriging 

Method 

For the UKG method, the basis function fk(x) in F which is used in Eq. (3.14) is 

fixed during the entire surrogate modeling process, and it usually takes up to the second 

order polynomial. However, it is obvious that higher-order terms can predict nonlinear 

mean structure, which may vary for different problems. Hence, in general, for highly 

nonlinear cases, fixed-order basis functions may not be suitable to describe the 

nonlinearity of the mean structure. On the other hand, Martin and Simpson [Martin and 
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Simpson, 2005] pointed out that, in some cases, the accuracy of the surrogate model may 

not be enhanced by using higher-order terms. That is, the surrogate model may become 

even worse when some particular higher-order terms are used.  

The impact of selection of basis functions can be shown using the following 

illustrative example, 

 

1
3

1 2

1 2 1 2

( 5) 10
10( , ) , [0,10]

100

xex x
f x x x x

− + + +
= ∈  (3.37) 

 

where the true function plot is shown in Fig. 3.3(a). 

The Kriging method with different basis functions is applied to this problem using 

the 14 samples obtained from LHS as shown in Fig. 3.3, and the rRMSE values that are 

calculated from 100×100 grid testing points are compared. Table 3.7 shows that the 

rRMSE value decreases from 0th-order to 1st-order polynomials but it increases from 1st-

order to 3rd-order polynomials, which implies that increasing order does not improve the 

accuracy of the surrogate model. Moreover, if unnecessary basis functions are excluded 

to obtain the customized-order Kriging, the Kriging prediction becomes more accurate. 

Table 3. 7 rRMSE of Kriging Methods with Different Basis Functions 

Kriging Methods Basis Functions rRMSE 

OKG 1 0.1343 
1st-order UKG 1, x1, x2 0.0819 
2nd-order UKG 1, x1, x1, x1x2, x1

2, x2
2 0.1137 

3rd-order UKG 1, x1, x2, x1x2, x1
2, x2

2, x1
2x2, x1x2

2, x1
3, x2

3 0.1671 
Customized-order Kriging 1, x1, x1

2, x1
3, x2 0.0810 
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(a). The True Function Surface 

 

(b). 14 Samples 

Figure 3. 3 The 2-D Example for Basis Function Selection 
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3.3.3 Using Genetic Algorithm (GA) for Basis Function 

Selection 

Based on the effect of the basis function shown in Section 3.3.2, the problem is 

how to find the optimal subset of the basis functions such that the Kriging prediction 

would have the best accuracy. The objective is to find a subset of the basis functions such 

that the obtained Kriging prediction can have the smallest rRMSE value. However, since 

the rRMSE value is not available unless the true function is explicitly known, it is 

proposed to use the Kriging process variance 2σ as the estimator of the accuracy for the 

Kriging prediction in this paper. Therefore, the formulation for this problem becomes 

 2 T 1

Find a subset of the basis functions 
1to minimize = ( ) ( )  
n

σ −− −y Fβ R y Fβ
 (3.38) 

It is noted that different types of the candidate of basis functions, such as Hermit 

polynomials, trigonometric functions, and exponential functions, have been tested in this 

study, and it is found that the simple polynomial forms perform efficiently and effectively 

without losing accuracy. Thus, in this paper, all the candidate basis functions are assumed 

to be polynomials and in the form of their multiplications 1 2
1 2 ... ,mpp p

mx x x  where m is the 

number of design variables, [0, ]ip P∈  is an integer power of xi, 
1

m

i
i

p P
=

≤∑ , and P is the 

highest order of the mean structure in the Kriging model.  The total number of possible 

candidate basis functions is P
m PC + . Therefore, the full set f becomes 

 2 2 1
1 2 1 1 2 1 1 1 2 1

[1, , ,..., , ,..., , ,..., ,..., , ,..., ] P
m P

P P P
m m m m m C

x x x x x x x x x x x x x
+

−
− ×

=f  (3.39) 

In Eq. (3.39), one constraint needs to be satisfied first. That is, the total number of 

possible candidate basis functions cannot be larger than the number of samples to 



51 
 

 

 

generate the Kriging prediction. Therefore, by finding the largest P such that 

1,P
m PC n+ ≤ − the highest order P is determined. The reason for using 1n −  instead of n is 

that it is known that when the number of basis functions equals the number of samples, it 

could causes an over-fitting problem in the Kriging prediction. Therefore, to make the 

Kriging method work robustly, it is recommended to use 1n −  instead of n to find the 

highest order P. After P is determined according to the number of samples, Eq. (3.38) 

becomes a classic variable selection problem, expressed as 

 2 T 1

Find the subset of
1to minimize = ( ) ( )
n

σ −− −

f

y Fβ R y Fβ
 (3.40) 

It is obvious that the global optimal subset of these candidate basis functions can 

be guaranteed only by applying the exhaustive algorithm (EHA), which evaluates all 

possible 2
P
m PC +  subsets of the basis functions. Consequently, the computational expense of 

EHA increases rapidly and becomes unaffordable when P
m PC +  is large. Therefore, an 

alternative method to solve Eq. (3.38) needs to be applied such that the Kriging 

prediction based on this alternative optimal subset  is accurate enough and close to the 

result obtained using the true optimal subset with less computational expense. 

As discussed in previous section, many research works have been carried out for 

the variable selection problems. In an area related to Kriging modeling, the Blind Kriging 

method uses a Bayesian forward variable selection to find the significant coefficients in β 

by using the cross-validation error as the objective function. In this Blind Kriging 

framework, the forward selection scheme can make the optimization process prematurely 

converge to a local optimal selection.   
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In this study, the genetic algorithm (GA) is applied to find the optimal selection 

for basis functions. A main concern of using the GA method is the number of iterations 

and convergence time. This is true for using the GA to solve a continuous problem. 

However, in this particular basis function selection problem there are several reasons that 

the GA method can be efficient and attractive. The main reason is that the GA intends to 

find the global optimum instead of the local optimum, which leads to a more accurate 

Kriging prediction compared with the result using a forward selection scheme. The 

second reason is that it is a discrete minimization problem in Eq. (3.40) with limited 

P
m PC +  possible basis functions. Unlike the encoding or decoding computation for the 

solution in a continuous problem, the selection of the basis function itself can be directly 

expressed in genetic form, where 1 means selected and 0 means non-selected. The third 

reason is that, with selection of complementary (i.e. opposite) subsets for the initial 

generation, the GA can converge quickly. The fourth reason is that to restrict the total 

computational time, one can set the maximum number of iterations and modify the 

highest order of P for the GA method for complex engineering application and yet 

obtains a satisfactory result. Efficiency strategies for how to apply the GA method for 

solving Eq. (3.40) are discussed in detail in the following sections. 

Step. 1. Initial Generation. The GA procedure starts with an initial generation, 

called the 0th-generation. In this paper, the 0th-generation includes both the single basis 

functions solutions and almost-full basis function solutions. The P
m PC + single basis 

function solutions are defined as [1,0,0,…,0], [0,1,0,0,…,0],…,[0,0,…,0,1], which 

indicate that the single basis function will be considered first. Another P
m PC + almost-full 

basis function solutions are defined as [0,1,1,…,1],[1,0,1,…,1],…,[1,1,…,1,0], which are 
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complementary to the single basis function solutions, will also be considered first. Other 

than these solutions, the full basis function solution of each order (from 0th order to Pth 

order) will also be included, which will add P+1 solutions into the initial generation. All 

together, there are 2 1P
m PC P+ + +  solutions in the 0th-generation. It is worth mentioning 

that the single basis function solutions and almost-full basis function solutions are used to 

avoid reaching the local optimum for basis selection. Based on numerous examples tested 

during this study, if the GA starts only at one side, either single basis function solutions 

or almost-full basis function solutions, it is found that there is a very good chance that it 

will converge to a local optimum and fail to find the global optimum. 

Step. 2. Convergence Criteria. As discussed earlier, the convergence criterion of 

the GA needs to be carefully set to have the GA converge efficiently. In this work, the 

convergence conditions are chosen as 

 

( )

2 2 2 2
1 2 1

2 2
1 2

(a) Number of Stalled Iteration 2

( ) 1% and 1%

(c) Maximum Number of Iteration =

k k k k

k k

P
n P

b σ σ σ σ
σ σ
− − −

− −

+

=

− −
≤ ≤  (3.41) 

Condition (a) means the GA stops if the process variances σ2 in any two consecutive 

iterations are the same. Condition (b) means the GA stops if the absolute relative change 

of σ2 between two consecutive iterations is less than 1%. Condition (c) means the GA 

stops if the maximum number of iteration reaches the number of the candidate basis 

functions. The total stopping criterion is that the GA stops if any of these three conditions 

is satisfied. After testing a number of different problems, it is found that condition (a) is 

the most frequent, which indeed indicates the GA stops very quickly.  



54 
 

 

 

Step. 3. Additional Efficiency Strategy in Basis Function Selection. When 

evaluating the process variance σ2 using different subsets, the optimization problem for θ 

search needs to be solved every time, which results in a significant computational time if 

the GPS method is used. With a number of testing problems, it is found that the optimal θ 

does not significantly affect the result of the basis function selection. Therefore, in this 

paper, the θ search in evaluating each subset during the GA process is removed; instead, 

the ordinary Kriging model is generated first and the obtained optimal θ by the GPS 

method is used during the GA process for basis function selection. Only after the optimal 

subset of the basis functions is found by the GA method and used to generate the final 

Kriging prediction, Eq. (3.16) is solved again by using the GPS method to find the 

optimal θ. Therefore, the GPS method is used twice in the dynamic Kriging process. 

3.3.4 Performance and Robustness of GA-Based Basis 

Function Selection 

In this section, the GA-based optimal subset fGA is compared to the global optimal 

subset fEHA obtained from the exhaustive algorithm (EHA) for a small-scale problem to 

demonstrate the accuracy and the robustness of the GA-based selection method. The 

Branin-Hoo testing problem with the same 20 LHS samples used by Forrester and Keane 

is used here. The EHA is first applied to find the true global optimal subset fEHA. Since 

the total number of samples is 20, the highest possible order P is found to be 4. 

Therefore, the total number of possible candidate basis functions is 4
4 2 15C + = .  

 The fEHA is obtained by running the EHA procedure, which evaluates the σ2 

values for all 215 possible subsets, and the fEHA is found to be 

2 3 2 2 3 4 4
2 1 2 2 1 1 2 1 2 2 1 2[1, , , , , , , , , ]x x x x x x x x x x x x  with the rRMSE of 0.04 based on 100×100 grid 
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testing points. When the GA-based basis selection is applied, the fGA is 

2 2
1 2 1 2 1 2[1, , , , , ]x x x x x x  with the rRMSE of 0.07. The rRMSE obtained by the Blind Kriging 

method is 0.19, which is not as good as the result of the GA-based basis selection. Figure 

4a shows that the optimization process using the GA method, which converges after 4 

iterations. The contours of the Kriging prediction based on three different basis selection 

methods are shown in Figs. 4b – 4d. For computational efficiency, in the GA-based basis 

selection, only 4 (2 4) 136P
m PC +× + =  subsets have been evaluated, whereas in the EHA-

based selection process, all 215=32768 subsets have to be evaluated to find fEHA. Thus, the 

GA-based selection requires only about 136/32768=0.42% of the computational time 

spent by the EHA to find a solution for this problem. Specifically, the clock time spent on 

the GA-based selection is 604 ms, whereas the clock time spent on the EHA-based 

selection is 152370 ms, and the clock time spent on the Blind Kriging is 374 ms on the 

Intel P8700 CPU computer.   

To verify whether the GA-based selection algorithm is robust, the robustness 

study is carried out as follows. First, a performance is defined as  

 GA iNumber of <Performance= 100%
Number of All Possible Solutions

rRMSE rRMSE
×  (3.42) 

where rRMSEi is calculated using the Kriging prediction with the ith  subset out of 

the total  subsets during the EHA selection process. The performance in Eq. (3.42) 

indicates the percentile of the better accuracy of the subset of the basis functions obtained 

by the GA method among all possible subsets. Since the sample position has an influence 

on the result, ten consecutive trials with different sample sets from LHS are carried out to 

see if the GA-based selection method is robust. 
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     (a) The GA Optimization History                     (b) GA-based Prediction (rRMSE=0.07) 

 

      (c) EHA Prediction (rRMSE=0.04)             (d) Blind Kriging Prediction (rRMSE=0.19) 

Figure 3. 4 Contours Using Different Basis Function Selections 

In Fig. 3.5, the solid line is the rRMSE values obtained by using the GA method 

for basis selection, the dashed line is the rRMSE values obtained by the optimal basis 

selection using the EHA method, and the dotted line is the performance as defined in Eq. 

(3.42) for each trial. It shows that the GA-based selection process can find a very good 
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subset of basis functions, which is better than about 97% of other subsets in the EHA 

process, while only using 0.5% of the computational time used by the EHA method. 

 

Figure 3. 5 Comparison between GA and EHA Selections 

With the optimal fGA obtained using the GA method by solving Eq. (3.40) and the 

optimal θ obtained using the GPS method by solving Eq. (3.16), the dynamic Kriging 

(DKG) method is formed and compared with other existing surrogate modeling methods 

in the following sections. 

3.3.5 Confidence Level of Dynamic Kriging (DKG) 

With the optimum θ found by pattern search method and the optimum basis 

function selection GAΩ found by GA, we finalize the proposed DKG method. The 

prediction from DKG can be constructed in the same procedure shown in Section 3.2.4. 

Therefore, the prediction at any point x is expressed as  
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 T -1
,ˆ( ) ( ( ) ( ) ( , )) ( ) |

GAGA GAy Ω= − Ω Ω θx r θ F λ θ R θ Y  (3.43) 

Again, the α-level prediction interval of response is written as 

 1 /2 1 /2 ,ˆ ˆ( ) ( ) ( ) ( ) ( ) |
GA

y Z y y Zα ασ σ− − Ω− ≤ ≤ + θx x x x x  (3.44) 

Equation (3.44) shows that the confidence level of the prediction from dynamic Kriging 

method, which is a statistical quantification saying that 

 { }1 /2 1 /2 ,ˆ ˆProb ( ) ( ) ( ) ( ) ( ) | 1
GA

y Z y y Zα ασ σ α− − Ω− ≤ ≤ + = −θx x x x x  (3.45) 

3.4 Comparison Study 

To compare the performance of the DKG method against other surrogate 

modeling methods, we selected the four most widely used surrogate modeling methods 

[Forrester and Keane, 2009], which are the UKG method, the polynomial response 

surface (PRS) method, the radial basis function (RBF) method, and the blind Kriging 

method (BKG). To make a fair comparison, we first need to specify how these methods 

are optimally used in this study. 

For the UKG method, the mean structure is set to be second-order polynomials.  

For the PRS method, the response y is considered as the linear combination of regression 

basis functions. The predicted response is expressed as  

 0 ...
1 , 1 , ,..., 1

... ...

P

m m m

i i ij i j ij k i j k
i i j i j k

y a a x a x x a x x x
= = =

= + + + +∑ ∑ ∑


 (3.46) 

where the P is the highest order. In this comparison study, P is decided by minimizing the 

cross-validation error. For the RBF method, the response y is considered as a linear 

combination of basis functions, expressed as 
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 T

1
( )

n

i i
i

y wψ
=

= = −∑w ψ x c  (3.47) 

where ci is the center of the ith basis function. In this paper, 
2 2/2( ) rr e σψ −= is used. The σ 

value is also determined by minimizing the cross-validation error. For the SVR method, 

the response y is expressed as 

 
1

( , )
n

i i
i

y wµ ψ
=

= +∑ x x  (3.48) 

In this study, the kernel function is 
2 2/2( , ) i

i e σψ − −= x xx x . The σ value is determined by 

minimizing the cross validation error.  

The SURROGATES toolbox [Viana et al, 2009] is used to conduct the first four 

methods with the modification of using cross validation to find the best value of the 

parameter for each method. For the blind Kriging method, the SUMO toolbox [Gorissen 

et al. 2009] which is referred by the authors of blind Kriging [Joseph et al. 2008] is used.  

The comparison procedure is carried out as follows. First, n samples are generated 

by the LHS method.  Secondly, five surrogate models are generated based on the given 

samples. After constructing the surrogate models from six methods, the function values 

from the surrogate model at S evenly distributed testing points are predicted and the 

rRMSE values are calculated as the error measurement. Then, a rank is determined for 

these five methods in terms of the accuracy of the generated surrogate model based on 

the MSE values from each method. To eliminate the influence of the sample profile, the 

comparison is conducted for 50 trials, and the frequency of being identified as the best 

surrogate model is counted to find the method that performs the best. 

For comparison of these methods, one important issue that needs to be pointed out 

is “at what level of accuracy these surrogate models should be compared?”  That is, 
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comparing performance of surrogate modeling methods when none of the surrogate 

model achieved an appropriate level of accuracy for the purpose of applications is 

meaningless. Therefore, one first needs to set the level of accuracy at which the surrogate 

model will be used for the comparison study. In this study, the coefficient of 

determination (R2) is used as the normalized accuracy measurement to check if the 

surrogate model is acceptable or not. The surrogate model is defined as accurate when 

median of the R2 value is larger than 0.99 for 50 trials. The rank of the performance of 

each surrogate modeling method is compared at the sample size when at least one method 

can generate a surrogate model with R2 larger than 0.99. 

3. 5 Numerical Examples for Surrogate Modeling 

3.5.1 2-D Branin-Hoo Example 

The first problem tested is the Branin-Hoo problem, which is expressed in Eq. 

(3.35). In this problem the true function is a combination of polynomial and cosine 

function. Therefore it is not in favor any of the five methods and can be viewed as an 

unbiased problem for all five methods. As shown in Table 3.8, the comparison started 

with 16-sample case and the DKG method again achieved the acceptable surrogate model 

in first place at 18-sample case where the DKG method has been identified as the best for 

44 times, as shown in Table 3.9. The mean values of the rRMSE for five methods are 

shown in Table 3.10. 

3.5.2 12-D M1A1 Tank Roadarm Example 

The second problem used for comparison study is an engineering application of 

an M1A1 tracked vehicle roadarm problem. 
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Table 3. 8 R2 Median History (Branin-Hoo, 50 trials) 

Sample Size UKG RBF PRS BKG DKG 

16 0.784 0.586 0.961 0.901 0.975 
17 0.839 0.612 0.967 0.928 0.989 
18 0.857 0.731 0.970 0.979 0.992 
19 0.872 0.789 0.952 0.982 0.996 
20 0.911 0.805 0.975 0.993 0.999 

Table 3. 9 Frequency of Rank of Five Methods (Branin-Hoo, 18 pts, 50 trials) 

Rank UKG RBF PRS BKG DKG 

1st 0 0 0 7 43 
2nd 15 8 0 23 4 
3rd 18 14 2 14 2 
4th 16 20 8 5 1 
5th 1 8 40 1 0 

Table 3. 10 Mean rRMSE Values for Each Method (Branin-Hoo, 18 pts, 50 trials) 

 UKG RBF PRS BKG DKG 

Mean rRMSE 2.8321 4.5357 6.3349 1.7615 0.6810 
 

The roadarm is modeled using 1572 eight-node isoparametric finite elements 

(SOLID45) and four beam elements (BEAM44) of Ansys, as shown in Fig. 3.7, and is 

made of S4340 steel with Young’s modulus E=3.0×107 psi and Poisson’s ratio ν=0.3. 

The durability analysis of the roadarm is carried out using the Durability and Reliability 

Analysis Workspace (DRAW) [DRAW Manual, 1999] to obtain the fatigue life. The 

fatigue lives at the 13 critical nodes shown in Fig. 3.7 are chosen as the design constraints.  
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In Fig. 3.8, the shape design variables consist of four cross-sectional shapes of the 

roadarm where the widths (x1-direction) of the cross-sectional shapes are defined as 

design variables d1, d3, d5, and d7 at intersections 1, 2, 3, and 4, respectively, and the 

heights (x3-direction) of the cross-sectional shapes are defined as design variables d2, d4, 

d6, and d8. 

 

Figure 3. 6 Finite Element Model of Roadarm 

 

Figure 3. 7 Fatigue Life Contour and Critical Nodes of Roadarm 
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Figure 3. 8 Shape Design Variables of Roadarm 

Since the finite element analysis and fatigue analysis are time-consuming, the 

surrogate model is needed when carrying out design optimization. For comparison of the 

DKG and other metamodeling methods, the normalized fatigue life at the first critical 

node is used as the response, and the surrogate model is to be generated for 

 ( )( ) 1 ,
t

LG
L

= −
dd  (3.49) 

where ( )L d  is the crack initiation fatigue life at the first critical node, and Lt is the crack 

initiation target fatigue life, which is 5 years for this example. The domain for generating 

the surrogate model is defined as a hyper-sphere with a radius of  05%× d  where   0 =d  

[1.750 3.250 1.750 3.170 1.756 3.038 1.752 2.908]. The same 50-trial statistical study as 

conducted in the previous example is carried out. In each trial, 50 LHS samples within 

the hyper-sphere are randomly generated. The surrogate models are generated by each of 
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the five metamodeling methods. 2000 LHS samples are first evaluated using the finite 

element analysis and used to calculate the rRMSE value for each surrogate model.  

After 50 trials, the rank of the rRMSE values of the surrogate models using 

different metamodeling methods is calculated and shown in Table 3.11. Again, the DKG 

method performs the best in 28 times for generating the most accurate surrogate model, 

followed by the blind Kriging method. Table 3.12 shows the mean rRMSE values for 

each of the surrogate modeling methods where the rRMSE from the DKG method is 

smallest and followed by the blind Kriging method.  

It is noted that the fatigue life response for the roadarm problem is mildly 

nonlinear. After checking the selected optimal subset of the basis functions from both the 

dynamic Kriging method and blind Kriging method, it is found that the optimal subsets 

from two methods are almost the same for this example due to the mild nonlinearity. The 

main difference in prediction accuracy comes from the optimal θ values when the two 

methods use different optimization methods to solve Eq. (3.16). 

3.6 Deterministic Design Optimization Using Dynamic 

Kriging Method 

In simulation-based design optimization, surrogate models are widely used to 

efficiently approximate the compute-intense physical responses. In this section, a detailed 

practical use of the DKG method for design optimization is discussed.  After the 

explanation of several efficiency strategies of how to use the DKG method, an 

engineering design optimization problem is used to demonstrate the overall performance 

of the DKG method for the simulation-based design optimization. 
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Table 3. 11 Frequency of Rank of Five Methods (Roadarm, 50 pts, 50 trials) 

Rank UKG RBF PRS BKG DKG 

1st 0 0 0 22 28 

2nd 6 1 0 21 22 

3rd 38 2 4 6 0 

4th 6 11 32 1 0 

5th 0 36 14 0 0 

Table 3. 12 Mean rRMSE Values for Each Method (Roadarm, 50 pts, 50 trials) 

 UKG RBF PRS BKG DKG 

Mean rRMSE 1.4461 3.1603 2.2046 0.6518 0.5845 

3.6.1 Local Window for Surrogate Modeling  

Since the DKG method selects the best basis functions subset according to the 

nonlinearity of the response, it is better to generate the surrogate model on a local 

window than to generate a global surrogate model on the entire design domain. When the 

candidate design point moves at each iteration, the sample set within the local window 

changes; therefore the DKG method will choose different basis functions subset 

according to the local nonlinearity of the response to generate the most accurate surrogate 

model locally. This local window concept is visualized in Fig. 3.19. The hypersphere 

used to define the local window is expressed as 

 ( )2 2

1

m

i i
i

x d R
=

− ≤∑  (3.50) 

where 1 2[ , ,..., ]md d d=d is the current design point and R is the radius, respectively. In 

this paper, the R value is set as 5% × d . 
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Figure 3. 9 Local Window for Surrogate Model 

To see how the DKG method works effectively in the local window, consider a 2-

D highly nonlinear polynomial function expressed as 

2 3
1 2 1 2

4
1 2 1 2

( ) 1 (0.9063 0.4226 6) (0.9063 0.4226 6)

0.6 (0.9063 0.4226 6) ( 0.4226 0.9063 )

G X X X X
X X X X

= − + + − + + −

− × + − − − +

X
 (3.51) 

and generate surrogate models for Eq. (3.51) at three different design points (d1, d2, d3) 

using the DKG method within each local window. The location of three design points and 

local windows at each point are shown in Fig 3.10. 

Nine initial samples are randomly generated within each local window, and basis 

functions up to the second-order polynomial function are used for the DKG method. 

After applying the DKG method at each local window, {x1, x2, x1x2}, {1, x1, x2, x1
2, x2

2}, 

and {1, x1, x2, x1x2, x1
2} are selected as the best basis functions at local windows at d1, d2, 

and d3, respectively, to accurately describe the true function. 
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Figure 3. 10 Contour of True Response at Different Local Windows 

The fact that different basis function sets are selected at different design points 

means that one basis function set cannot best describe the local nonlinearity of the true 

function since the local nonlinearity changes as the design point moves. Furthermore, the 

fact that all six possible basis terms are not selected shows that it is not necessarily good 

to use all available terms for the generation of surrogate models; this indeed shows the 

effectiveness of the DKG method. 

3.6.2 Sampling Strategy 

After deciding the local window for the surrogate model generation, Nr initial 

samples are generated on the local window using the Latin Centroidal Voronoi 

Tessellations (LCVT) for evenly distributed samples, and then surrogate models are 

generated on the local window. The minimum number of the initial samples is decided by 

( )P
m P+ . For example, for an 8-D example with up to second-order polynomial basis 
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functions, the minimum number of Nr will be ( )2
8 2 45+ = . However, for high-dimensional 

problems, the minimum number of initial samples may not be sufficient to generate 

accurate surrogate models; more samples may need depending on the accuracy of the 

surrogate model. The accuracy of the surrogate model generated with the initial samples 

Nr can be estimated using   

 
( )( )

( )( )
ˆ

, for 1 ~ and 1 ~
i

j

mean MSE
i Nr j n

Var y
η = = =

x

x
 (3.52) 

where ( ( ))jVar y x  is the variance of n true responses at the sample points and is used to 

normalize the accuracy measure, Nr is the total number of testing points generated using 

LCVT, and  ˆMSE is the predicted mean square error (MSE) from the DKG model. The 

physical meaning of the accuracy measure in Eq. (3.52) is related to the prediction 

variance of the Kriging model. Hence, the smaller the prediction variance is, the more 

accurate the surrogate model is. If the accuracy of a surrogate model is satisfactory, 

which is defined as 1%η ≤  in this study, the surrogate model can be used for 

optimization. However, if the accuracy does not satisfy the target, more samples are 

sequentially inserted within the local window until the surrogate model satisfies the target 

accuracy condition. The new inserting point newx is chosen as the one that has the largest 

ˆMSE value among the testing points in the local window. For a typical design 

optimization problem, multiple constraints are usually involved.  In this case, the 

accuracy measure in Eq. (3.52) needs to be modified to reflect the effect of multiple 

surrogate models. In this study, the maximum value of accuracy measures for each 
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surrogate model is used as the overall accuracy measure for multiple surrogate models, 

and thus the accuracy measure is given by 

 
( )( )

( )( )max

ˆ
max , for 1 ~ , 1 ~ , 1 ~

k i

k j

mean MSE
i Nr j n k nc

Var y
η

  = = = = 
  

x

x
 (3.53) 

where ( )k jy x   and  ˆ
kMSE  are the variance of n true responses and the MSE for the kth 

surrogate model, and nc is the number of surrogate models. Correspondingly, the new 

inserting point newx is chosen as the point that has the largest ˆMSE  among all constraints, 

expressed as ( ){ }ˆarg max , for 1 ~ , 1 ~ , 1 ~
i

k iMSE i Nr j n k nc= = =
x

x . 

3.6.3 Adaptive Initial Point for Pattern Search and Basis 

Function Selection 

When applying the DKG method to a complex engineering design optimization 

problem, the number of variables used for surrogate modeling is usually large. In such 

cases, the pattern search algorithm to find the optimal correlation parameter θ and the 

genetic algorithm to find the optimal basis function subset may become computationally 

expensive. It is known that the computational efficiency of the pattern search algorithm 

and the genetic algorithm is strongly affected by the initial search point. If the initial 

search starts from the neighboring area of the true optimum, it can find the optimum θ 

within a remarkably shorter time than if it starts from a point far away from the optimum. 

Moreover, along the optimization history, if the design movement is small, which means 

that the current design is near the optimum design, the surrogate model generated at the 

current design will be very similar to the one generated at the previous design. This 
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means that two optimum θ will be close. Therefore, we can adaptively use the optimal θ 

obtained in the previous iteration as the initial point for the pattern search of the current 

iteration instead of using arbitrary initial point. Similarly, the optimal basis function 

subset opt
1k−f  found in the previous iteration will be included in the initial generation in GA 

for the current iteration. This will save computational time for the DKG method in 

particular when the current design is in the neighborhood of the optimum design. The 

overall flowchart of using the DKG method for the design optimization is shown in Fig. 

3.11.  

 

Figure 3. 11 Flowchart of Design Optimization Using The DKG Method 
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3.6.4 Numerical Example 

This section uses the M1A1 tracked vehicle roadarm problem to carry out the 

design optimization using the DKG method with the efficiency strategies discussed in 

previous sections. The finite element model, the critical points, and the design variables 

definition are the same as shown in Figs. 3.6-8. Table 3.13 shows the initial design and 

the design domain for each variable.   

Table 3. 13 Design Variables and Design Domain 

Design 
Variables 

Lower Bound 
Ld  

Initial Design 
od  

Upper Bound 
Ud  

d1 1.350 1.750 2.150 
d2 2.650 3.250 3.750 
d3 1.350 1.750 2.150 
d4 2.570 3.170 3.670 
d5 1.356 1.756 2.156 
d6 2.438 3.038 3.538 
d7 1.352 1.752 2.152 
d8 2.508 2.908 3.408 

 

The design optimization for the M1A1 tracked vehicle roadarm is formulated to  

 
( )

( )
L U 8

minimize      Cost

subject to     0, 1, ,13

,
jG j< =

≤ ≤ ∈

d

d

d d d d R

  (3.54) 

where 
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( )

( ) ( )

( )

Cost : Weight of Roadarm

1 , 1 ~ 13

: Crack Initiation Fatigue Life,
: Crack Initiation Target Fatigue Life (=5 years)

j
t

t

L
G j

L
L
L

= − =

d

d
d

d
 (3.55) 

The constraint value ( )jG d  and the sensitivity of ( )jG d  with respect to the 

design variables are predicted by ( )ˆ
jG d  and ( )ˆ /j iG d∂ ∂d  where ( )ˆ

jG d  is the prediction 

generated by the DKG method. The sequential quadratic programming algorithm (SQP) 

is used to solve the optimization problem of Eq. (3.54). At each iteration, 15 samples are 

used as the initial samples in the local window and new samples are sequentially inserted 

if the accuracy of the surrogate model is not achieved. After 11 iterations, the 

optimization process converged to the optimum design, using 146 samples altogether. To 

verify the accuracy of the optimum result, the sensitivity-based design optimization is 

carried out too. 

In the sensitivity-based design optimization, the sensitivity information 

/ , 1 ~ 13 1 ~ 8i jG d i and j∂ ∂ = = is available through the design sensitivity analysis 

method and used to solve Eq. (3.54); therefore no surrogate model is needed in this 

procedure. Table 3.14 shows the comparison results for the two approaches. The 

optimum design obtained using the surrogate-based design optimization is almost 

identical with the optimum design obtained using the sensitivity-based one except the 

small difference in d3 and d6. The sensitivity-based design optimization requires 11 

function and 11 sensitivity evaluations. One sensitivity evaluation includes sensitivity 

calculations for all design variables, so it requires 8 sensitivity calculations in this 
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example, whereas the sampling-based design optimization requires a total of 146 samples 

for the surrogate model generation using the DKG method. 

Table 3. 14 Comparison between Sensitivity-based and Surrogate-based Optimum 

Design Variable Initial Sensitivity-Based Surrogate-Based 

d1 1.750 1.653 1.653 
d2 3.250 2.650 2.650 
d3 1.750 1.922 1.911 
d4 3.170 2.570 2.570 
d5 1.756 1.478 1.478 
d6 3.038 3.287 3.297 
d7 1.752 1.630 1.630 
d8 2.908 2.508 2.508 

# of F.E.  11+11×8 146 

Iteration  11 11 

Active Constraints  1,3,5,8,12 1,3,5,8,12 

Cost 515.09 466.80 466.93 

In Fig. 3.12, the average computational time to generate each surrogate model is 

shown as the solid line with squares. The average computational time to generate each 

surrogate model without applying the efficiency strategy is also shown as the solid line 

with stars. It is shown that with applying the efficiency strategy, the average 

computational time is reduced from 4 seconds to 1 second. What is more, the most 

reduction occurs at the second iteration due to the improvement of the initial theta point 

and basis function selection. 
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Figure 3. 12 Mean Value of Time Spent for the DKG Method 
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CHAPTER IV  

DESIGN OF EXPERIMENT 

4.1 Introduction 

The design of experiment (DoE) is the one of the key issue for the success of the 

surrogate modeling. Over the last decades, researchers developed number of sampling 

techniques to meet different purpose in surrogate modeling for accuracy and efficiency 

issue. Based on their underlying principles, current DoE approaches can be roughly 

categorized into two groups: one-stage sampling and sequential sampling. 

Comprehensive reviews of DoE approaches can be found in the literatures [Queipo et al., 

2005; Simpson et al., 2002; Wang and Shan, 2007].  

One-stage sampling approaches generate all sample points at one time to 

maximize the observed information. Typical one-stage sampling approaches include 

orthogonal array design [Hedayat et al., 1999; Owen, 1992], maximum entropy design 

[Shewry and Wynn, 1987; Currin et al., 1991], minmax and maxmin distance design 

[Johnson et al., 1990], Lain hypercube design [Sacks et al., 1989], Latin Centroidal 

Voronoi Tessellation [Burkardt et al., 2002] and the D-optimal design [Goel et al., 2008]. 

Having one form or another, these one-stage sampling approaches occupy the design 

domain uniformly and do not account the region of nonlinearity of the true response, 

which makes it hard to use these sampling methods to effectively occupy the highly 

nonlinear region and achieve accuracy rapidly. 

The sequential sampling approaches, on the other hand, sample points into the 

design space successively. The locations of the new samples are identified based on those 

of existing samples and the infill criteria. Several infill criteria are developed and applied 
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into surrogate modeling based design optimization. Typical sequential sampling 

approaches include statistical lower bound [Lin et al., 2004], probability of improvement 

and expected improvement [McKay et al., 1979],  

4. 2 Sequential Sampling Method Using DKG 

To conduct the DKG method for generating a surrogate model, one crucial 

problem is the design of experiment (DoE). As shown in the previous section, the 

performance of the DKG method improves as the number of samples increases. However, 

it is hard to tell how many samples are enough in the beginning. Moreover, traditional 

LHS, grid sampling and Latin Centroidal Voronoi Tessellation (LCVT) are occupying the 

design domain uniformly and do not account the region of nonlinearity of the true 

response which makes hard to use these sampling methods to effectively occupy the 

highly nonlinear region and achieve accuracy rapidly. Therefore, a technique that can 

identify the highly nonlinear region and how many samples should be used to obtain an 

accurate surrogate model is needed. In this study, a sequential sampling technique is 

developed using the bandwidth of the prediction interval determined by Eq. (3.22). This 

sampling technique is integrated with the DKG method to find the region where the 

surrogate model has the least prediction confidence, which means that the region is 

highly nonlinear. This sampling technique is conducted in a sequential manner. Thus, it 

can tell whether or not the existing samples are enough by verifying the accuracy of the 

surrogate model.  

Consider n existing samples, where the DKG method is conducted first. The 

sampling insertion criterion IC(x) for finding the next sample position is defined as 

 ( ) ( )IC d=x x  (4.1) 
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where ( )d x  is the prediction interval bandwidth by the DKG method from Eq. (3.22) at 

any given point x. The next sample point newx  is identified by 

 arg{max( ( ))}IC
∈x D

x  (4.2) 

where D is the design domain. By enforcing newx  to be the solution of Eq. (4.2), the 

“weakest point” in the domain is identified where we have the least confidence in the 

prediction.  

To demonstrate the process of this sequential sampling method, first consider a 1-

D problem expressed as 

 5 4 3 2( ) 0.5 1.5 2.5 0.53 1.3 2.0y x x x x x x= − − + + +  (4.3) 

where x ∈  [−1, 1]. The sequential sampling method is initiated with three evenly 

distributed samples as shown in Fig. 4.1(a). In the figures, the solid line, the solid-dash 

line, and the two dashed lines are the true response given by Eq. (4.3), the predicted 

surrogate model by Eq. (3.21), and the 95% prediction interval by Eq. (3.22), respectively. 

The star is the identified next insertion point within the domain. 

Figures 4.1(a) ~ (d) show that the bandwidth of the prediction interval decreases 

fast and the surrogate model from Kriging converges to the true response rapidly. A 

region where there is a large discrepancy between the true model and the surrogate model 

is correctly identified during the iterations by applying the IC criterion.   

To assess the accuracy of the surrogate model, an error definition is given by the 

average of relative error within the domain as 

 
1

( )1
ˆ( )

S
i

i i

dErr
S y=

= ∑ x
x

 (4.4) 
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    (a) Initial Stage: 3 Samples                           (b) After 1 More Sample Inserted 

  

       (c) After 3 More Samples Inserted               (d) After 5 More Samples Inserted 

Figure 4. 1 Surrogate Model Using Sequential Sampling Method 

where ( )d x  is the prediction interval bandwidth from Eq. (3.22), ˆ( )y x  is the predicted 

value by the DKG method at any given point x, and S is the number of checking points 

over the entire domain, which takes a larger number, 104 in this study. With this accuracy 

definition of the surrogate model, the decision of how many samples are needed to 
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generate an accurate surrogate model can be made. The sequential sampling process will 

be continued until it meets the accuracy tolerance Tol, given as 

 1k k

k

Err ErrRErr Tol
Err
− −

= <  (4.5) 

where kErr  is the error at the kth iteration and RErr is the relative error. Overall, the 

entire process of conducting this sequential-sampling-based DKG (SS-DKG) method is 

shown in Fig. 4.2.  

 

Figure 4. 2 Entire Process of Sequential-Sampling-Based DKG for Surrogate Modeling 
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4. 3 Comparison of Sequential Sampling and Latin 

Hypercube Sampling 

An error convergence comparison study is carried out between sequential 

sampling, grid sampling and Latin hypercube sampling for a complex 2-D example. The 

2-D function is 

 

2 3
1 2 1 2

4
1 2 1 2

1 2

( ) 1 (0.9063 0.4226 6) (0.9063 0.4226 6)

0.6 (0.9063 0.4226 6) ( 0.4226 0.9063 )
where [5,9], [1,5.5]

Y x x x x
x x x x

x x

= − + + − + + −

− × + − − − +
∈ ∈

x
 (4.6) 

Among the three sampling methods, the grid sampling method samples each 

design parameter at N points evenly along its axis. Hence, the number of entire samples 

used is Nm where m is the number of design parameters. In traditional Latin hypercube 

sampling, N points in an m-dimensional Latin hypercube are to be selected where each of 

the m coordinate dimensions is discretized to the values 1 through N. The points are to be 

chosen in such a way that no two points have any coordinate value in common. A so-

called improved Latin hypercube sampling (IHS) method was proposed [Beachkofski, 

2002]; it attempts to spread out the samples over the entire domain as evenly as possible. 

In this study, IHS is used for comparison purposes. Since each realization of Latin 

hypercube sampling is random and different from others, we took 100 trials for IHS, and 

the maximum, minimum, median and mean of the errors are recorded. The MSE value is 

calculated at 1000×1000 evenly distributed testing points over the entire domain after 

using the Kriging method for each sampling method at different sample sizes.  

The comparison in Table 4.1 shows that the MSE by using sequential sampling 

converges more quickly to zero than by using the grid sampling. When compared with 

IHS, even though in the best case (Min) IHS is more accurate, sequential sampling 
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converges more quickly in the probability sense (Mean and Median) and yields more 

accurate results as the samples size increases.  

Table 4. 1 Comparison of Three Sampling Methods 

# of 
Sample 

Grid 
Sampling 

LHS (100 trials) Sequential 
Sampling Min Max Mean Median 

9 45.7700 4.5585 45.7662 17.6739 13.5772 28.3378 
10 - 1.3421 42.9771 14.0425 10.9951 20.4632 
11 - 2.5313 37.7024 10.5840 8.2951 11.1661 
12 - 1.4786 28.2741 6.8540 4.8491 7.6797 
13 - 0.9482 16.9488 4.5887 3.4631 2.4228 
14 - 0.6957 14.2426 3.3310 2.9982 2.9324 
15 - 0.5573 10.7053 2.6185 2.0486 1.6182 
16 1.1469 0.3461 7.6221 1.7053 1.3589 1.1815 
17 - 0.3961 11.9416 1.4349 0.9891 0.7090 
18 - 0.3243 7.8473 1.1978 0.7965 0.4948 
19 - 0.3398 3.0215 0.8427 0.6542 0.3464 
20 - 0.1627 1.7970 0.7403 0.5485 0.3046 
25 0.9424 0.0112 0.9794 0.1850 0.1043 0.0326 
36 0.0150 0.0004 1.9020 0.0035 0.0021 0.0019 

 

Another widely used 2-D mathematical example for testing surrogate modeling is 

used to demonstrate the fast convergence of the sequential sampling. This 2-D function is 

the so-called Branin-Hoo problem given in Eq. (3.35) and shown here 

 
2 2

2 1 1 12

1 2

5.1 5 1( ) ( 6) 10(1 )cos( ) 10
4 8

5 10, 0 15

Y x x x x

x x
π π π

= − + − + − +

− ≤ ≤ ≤ ≤

x
 (4.7) 

The comparison study is the same as the previous 2-D example, carried out 

between grid sampling, Latin hypercube sampling and the sequential sampling. Table 4.2 
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shows the similar result compared with Table 4.1. The sequential sampling method 

converges faster than Latin hypercube sampling in probability sense. 

Table 4. 2 Error Comparison of Three Sampling Methods 

# of 
Samples 

Grid 
Sampling 

LHS (100 trials) Sequential 
Sampling Min Max Mean Median 

9 1.5324 0.9335 10.2490 2.2859 2.0126 3.3253 
10 - 0.6862 6.9577 2.0105 1.7270 3.2142 
11 - 0.6119 3.6918 1.7331 1.5889 1.8793 
12 - 0.5758 3.5160 1.5714 1.4669 0.9074 
13 - 0.5486 12.0986 1.6700 1.5116 0.7909 
14 - 0.4769 3.7629 1.4600 1.3876 1.0941 
15 - 0.1429 3.9855 1.4394 1.3072 0.8423 
16 1.1243 0.1506 4.2011 1.3024 1.3808 0.8460 
17 - 0.0711 2.5922 1.2321 1.2981 0.7655 
18 - 0.0706 3.0256 1.2700 1.3242 0.6200 
19 - 0.0239 3.4103 1.0452 1.1424 0.4419 
20 - 0.0306 2.3604 1.1194 1.1461 0.4583 
25 0.2600 0.0090 2.1187 0.7206 0.7230 0.0123 
36 0.5630 0.0018 1.6306 0.5484 0.6692 0.0023 

In addition, considering for multidimensional design cases, IHS is 

computationally far more expensive and not even affordable to apply. Another 

disadvantage of IHS is that the user does not know how many samples are enough for 

response surface until all samples are evaluated. If the response surface does not achieve 

the required accuracy based on the current samples, the user has to increase the sample 

size and use the Latin hypercube sampling method again. In this case, those previously 

evaluated samples may not be used at all which leads to a very large waste of sampling 

cost. On the other hand, in the sequential sampling method, the user increases the sample 
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size step by step and can stop when the accuracy of response surface is achieved. All of 

previous samples contribute to the response surface; hence no sample is wasted. 
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CHAPTER V  

MPP-BASED RBDO USING SURROGATE MODEL 

5.1 Introduction 

When the sensitivity of the performance function with respect to the design 

variable is not available in complex engineering applications, surrogate model is 

commonly used to approximate both the function and the sensitivities in RBDO process. 

In this study, we propose a new MPP-based RBDO using the proposed SS-DKG 

method. We use FORM for reliability analysis and apply the SS-DKG to generate the 

surrogate model for function evaluation and sensitivity calculation. In this way, we keep 

the efficiency and accuracy of sensitivity-based reliability analysis for probability of 

failure and offer a way to calculate the function evaluation and sensitivity that is more 

efficient and accurate compared to the existing global surrogate model methods. 

Numerical examples demonstrate that the proposed MPP-based RBDO using SS-

DKG can achieve similar accuracy and similar or better results in terms of computational 

efficiency when compared with the traditional sensitivity-based RBDO. At the same time, 

it offers a greater capability for dealing with diverse and practical engineering 

applications where sensitivity is not feasible. 

5. 2 Sequential Sampling Surrogate Modeling for MPP-

Based RBDO 

As shown in Chapters 3 and 4, the SS-DKG method is used to generate the 

surrogate model. In MPP-based RBDO using FORM, the surrogate model from SS-DKG 
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will be both used to construct the surrogate model and calculate the sensitivities of the 

surrogate model. 

Consider n samples ( ){ }, 1, 2,...,i i n=x  with their performance function values 

( )( )iy x  given within a local reliability analysis window at the given design d. Based on 

the DKG method, the approximation of the performance function and its sensitivities at 

the point of interest x are expressed as 

 
T -1 T -1 T T -1 -1 T -1

T T

ˆ( ) ( ) ( )y = − −

= +* *

x r R Y F R r f F R F F R Y
f β r γ

 (5.1) 
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∂
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∂
θ x xx . 

To successfully conduct the MPP-based RBDO as discussed in Section 2.4, a 

number of strategies for both efficiency and accuracy are applied, which are explained in 

the following sections. 

5.2.1 Center Fixed Local Support for Surrogate Model in 

Reliability Analysis 

During one design iteration of RBDO the performance function value and 

sensitivity with respect to design variables are required to find the MPP, which can be 

obtained using the DKG method.  Since the MPP search is conducted on a hyper-sphere 

in U-space where the current design is the origin, the surrogate model domain should be a 



86 
 

 

 

hyper-sphere that covers the design domain with the radius larger than the target 

reliability index βt. In this study, as shown in Fig. 5.1, the local support for the reliability 

analysis is defined as a hyper-sphere whose radius is cβt, where c is a scaling factor 

which is 1.2~1.5 depending on the nonlinearity of the performance functions.  

 

Figure 5.1 Local Support Size of Surrogate Model for Reliability Analysis in U-Space 

It is possible to generate a new local surrogate model with new samples for each 

MPP candidate. That is, new samples around the current MPP candidate are evaluated 

and a new local surrogate model is generated each time. However this approach would 

cause two problems. The first problem is that it wastes samples. In fact, for reliability 

analysis, since the MPP will always be located within a relatively small area around the 

origin, one center-fixed local surrogate model is enough. The second problem is, if a new 

surrogate model is generated every time with new samples for a new MPP candidate, the 

use of the previously evaluated samples for generation of the current surrogate model 
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may cause the estimated correlation R matrix to be ill-conditioned and consequently fail 

to predict a surrogate model. That is, R may become ill-conditioned if the samples are too 

aggregated within a narrow space.  Figure 5.2 shows how the ill-conditioned matrix 

happens if we generate samples and new local surrogate model for each MPP candidate 

search. As shown in Fig. 5.2, after two iterations of the MPP search, ten samples are 

generated along the axis; then, the current MPP candidate III will evaluate additional five 

samples. Within the local support of MPP candidate III, there are eight samples that 

aggregate in two parallel lines. In this situation, the estimated R would become ill-

conditioned. This situation would occur more often in high-dimensional design problems.  

Because of these two major reasons, it is better to have the local support fixed as a hyper-

sphere with the center at the origin in U-space for reliability analysis. 

 

Figure 5.2 Demonstration of Ill-conditioned Matrix Problem in U-Space 
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5.2.2 Adjustment of Insertion Criterion and Error 

Definition for Surrogate Modeling 

As explained in Section 4.2, the sequential sampling method is to identify the 

point that has the largest IC among the entire design domain. However in the RBDO 

procedure, we are focusing more on the neighborhood of the point of interest. Hence an 

adjustment is done to search the “weakest point” around the point of interest, which is 

described below: 

Step 1. Initial samples are placed by grid sampling into the local window, and the 

responses are evaluated at these samples. 

Step 2. Apply the Kriging method based on current existing samples. 

Step 3. Check the criterion ( )iIC x  within the domain D, which is defined as  

 (1 ) / 2ˆ{ | || ( ) ( ) || ( ) }pD y y Z α σ−= − ≤x x x x  (5.3) 

where x is the point of interest. 

Step 4. Find the point *x such that *( )IC x takes the largest value and insert one more 

sample at *x . 

Step 5. Check the error; if error is larger than tolerance, repeat Step 2 to Step 4. 

Otherwise, stop sampling. 

It is noted that the error has to reflect the discrepancy of the predicted response 

and the true response at the point of interest, while we only have the prediction interval 

bandwidth as the measure of accuracy of response. Hence the error here is defined as the 

average of the normalized prediction standard deviation as 

 
1

( )1
ˆ( )

N
i

i i

dErr
N y=

= ∑ x
x

 (5.4) 
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where ( )id x  is the bandwidth of the prediction interval at ix obtained by Eq. (3.22), N is 

the number of checking points within a small neighborhood of the point of interest 

{ 0 0| || || }i i d− <x x x , and d0 is the threshold. From Eq. (5.4) we can see that the error of 

the current point of interest xi is defined as the average error around it; this can be 

graphically understood in Fig. 5.3. Recall that the purpose of the surrogate model is to 

predict the function value and sensitivity accurately at the current point of interest; hence 

there is no need to check the entire support domain, only the neighborhood around the 

point of interest has to be assured to be accurate. Moreover, checking the entire support 

domain would make the accuracy criteria harder to achieve and therefore would lead to 

more sample insertion which is an unnecessary waste for function evaluation.  

On the other hand, if we check only the error at the point of interest, there is a 

chance that the error could be zero if the point of interest is also a sample that has been 

evaluated.  Since the error is used as the criteria to check that whether or not the surrogate 

model is accurate enough, zero error at the point of interest cannot provide any 

confidence in the accuracy for predicted sensitivity of the performance function. 

Therefore, a small neighborhood around the point of interest is most desirable for error 

checking. In this study, the neighboring area is defined as 10% of the current local 

window size. 

5.2.3 Adaptive Local Window Size in Deterministic Design 

Optimization 

In the RBDO algorithm, PMA+ requires to carry out deterministic optimization 

first and then start the RBDO process. In surrogate-model-based deterministic 
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optimization, there is a tradeoff between the support size and the accuracy of the 

surrogate model. As is well known, a smaller support can provide a more accurate 

surrogate model than a larger support does. At the same time, using more of previously 

evaluated samples is also desirable to save computational time, and a larger support can 

always include more of previously evaluated samples than a smaller support can. Hence it 

is important to decide a suitable support size to generate the surrogate model. In this 

study, we propose an adaptive support size method that can resolve this problem for the 

deterministic optimization process. 

 

Figure 5.3 Neighboring Area of the Point of Interest for Error Checking 

Starting from the initial design point, the first priority is to find the correct 

direction for the iteration. Hence a smaller support that can give more accurate sensitivity 

is desirable. As the design moves to the next position, the support size would be decided 

by the distances from the previous designs as 
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 1 1 maxmin( / , )k k k kR R d d R− −=  (5.5) 

where kR  is the kth support size, maxR is the maximum threshold, and kd is the distance 

between the k-1th design and the kth design as shown in Fig. 5.4.  

Equation 5.5 implies that when the design movement is large, which means two 

designs are quite different, the support size should be decreased to yield a more accurate 

surrogate model to determine the next direction. On the other hand, when the design 

movement is small, the support size should be increased to include more previously 

evaluated samples to save computational time. 

 

Figure 5.4 Relation Between Support Size and Design Movement 

A comparison study shows the efficiency of this adaptive support size in saving 

function evaluation. A deterministic optimization problem is defined as  
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The three constraints and the cost function contours are plotted in Fig. 5.5 First, 

the Kriging method using the fixed support size is applied to solve the deterministic 

optimization problem. Second the adaptive support size efficiency strategy is applied to 

solve the same problem. Finally these two results are compared with the result solved by 

using the sensitivity-based deterministic optimization algorithm.  As shown in Table 5.1, 

the number of function evaluations (NFE) consists of the function evaluation (FE) and 

the sensitivity calculation (SC).  The time for function evaluation is the time used to 

evaluate the function value at a given sample, and the time for sensitivity calculation is 

the time used to calculate the first-order derivative of the function respect to design 

variables and random parameters. The DKG method by using the adaptive support size 

efficiency strategy not only saves number of function evaluations, but also yields a more 

accurate optimum design.  
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Figure 5.5 Contour of Constraint and Cost Functions 

Table 5.1 Comparison Between Fixed & Adaptive Support Size 

Case 
Optimum Design 

X1            X2 
Cost NFE 

Fixed Support 5.2415 0.7278 -2.297 23FE 
Adaptive Support 5.1949 0.7414 -2.291 18FE 
Sensitivity-Based 5.1969 0.7404 -2.292 9 FE+9*2 SC 

5.2.4 Overall Process of MPP-Based RBDO Using 

Surrogate Modeling 

Summarizing results of the three sub-sections above, we can now apply the SS-

DKG method for the MPP-based RBDO problem. The SS-DKG, shown as Fig. 5.6, is 

applied to carry out the function evaluation and sensitivity calculation. For each point of 

interest, the support size of current surrogate model is decided first, and then the 

previously evaluated samples within the local support are found. The sequential sampling 
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strategy is carried out to insert more sample points until the surrogate model achieves the 

accuracy criterion. In the end the function value and sensitivity value are given by the 

Kriging method.  This SS-DKG is encapsulated as a black-box in the overall RBDO 

procedure and is called whenever the function value and sensitivity value are required, as 

shown in Fig. 5.7. 

 

Figure 5.6 Flowchart of SS-DKG Toolbox 
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Figure 5.7 Flowchart of MPP-based RBDO Using SS-DKG 

5.3 Numerical Examples 

In this section, the accuracy and efficiency of the SS-DKG for RBDO is verified 

by comparing it with the sensitivity-based RBDO. A 2-D highly nonlinear mathematical 

problem and a 12-D multidimensional engineering vehicle problem are carried out by 

both the MPP-based RBDO using surrogate model and the MPP-based RBDO using 

analytical sensitivity for comparison purposes. 



96 
 

 

 

5.3.1 2-D Mathematical Example 

A two-dimensional mathematical RBDO problem is formulated to 
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where the target probability of failure for each constraint is Tar  2.275%,  i=1~3
iFP = . Since 

the given target probability of failure is 2.275%, the reliability index of  

1 Tar( ) 2.0
iFPβ −= −Φ =  is selected. The properties of the random variables are shown in 

Table 5.2. 

Table 5.2 Properties of Random Variables 

Random 
Variables 

Distribution dL d0 dU Standard 
Deviation 

X1 Normal 0.0 5.0 10.0 0.3 

X2 Normal 0.0 5.0 10.0 0.3 
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In Table 5.3, it shows that both the MPP-based RBDO using analytical sensitivity 

and the MPP-based RBDO using surrogate model converge to the optimal design after 

two iterations. Numbers shown in column “Iteration” means the current design iteration 

and the current line search number. For example, “D.O.” means the deterministic 

optimum, and “1, 2” means that it is the first design with the second line search in 

RBDO. According to Table 5.3, we can see that the MPP-based RBDO using surrogate 

model can achieve the same optimum design as MPP-based RBDO using analytical 

sensitivity. Moreover, in this case, the number of function evaluations used in surrogate 

model method is smaller than the number used in MPP-based RBDO using analytical 

sensitivity because when the design is getting close to the optimum point more of the 

previously evaluated samples are used to save computational time. Hence the MPP-based 

RBDO using surrogate model is more efficient than MPP-based RBDO using analytical 

sensitivity in this case. 

5.3.2 M1A1 Tank Roadarm Example 

The roadarm of the M1A1 Tank is used to demonstrate the applicability of the SS-

DKG-based RBDO. The roadarm is modeled as the same one in Chapter III, as shown in 

Fig. 3.7. 

As described in Section 3.5.2, the shape design variables consist of four cross-

sectional shapes of the roadarm where the widths (x1-direction) of the cross-sectional 

shapes are defined as design variables, d1, d3, d5, and d7, at intersections 1, 2, 3, and 4, 

respectively, and the heights (x3-direction) of the cross-sectional shapes are defined as 

design variables, d2, d4, d6, and d8. Eight shape design random variables and four random 

parameters for the fatigue material properties are listed in Table 5.4. 
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Table 5.3 Comparison Between Two RBDO Methods 

Iteration Cost 1x  2x  NFE 

MPP-based RBDO using analytical sensitivity 

Initial -0.8333 5.0000 5.0000 - 
D.O. -2.2918 5.1969 0.7404 9FE+9*2 SC 
0,1 -2.2918 5.1969 0.7404 14FE+14*2 SC 
0,2 -1.9940 4.5288 1.3894 24FE+24*2 SC 
1,1 -1.8904 4.6433 1.5952 31FE+31*2 SC 
1,2 -1.8957 4.6372 1.5842 34FE+34*2 SC 
2,1 -1.9019 4.6706 1.5685 37FE+37*2 SC 
Opt. -1.9019 4.6706 1.5685 37FE+37*2 SC 

MPP-based RBDO using Surrogate Model 

Initial -0.8333 5.0000 5.0000 - 
D.O. -2.2913 5.1949 0.7414 18 
0,1 -2.2913 5.1949 0.7414 18 
0,2 -1.9517 4.8707 1.4510 21 
1,1 -1.8967 4.5731 1.5873 22 
1,2 -1.9018 4.6021 1.5740 22 
2,1 -1.8829 4.6862 1.6084 23 
2,2 -1.8866 4.6694 1.6015 24 
Opt. -1.9013 4.6692 1.5702 24 

The RBDO problem for the roadarm is formulated to 
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Table 5.4 Properties of Random Variables of Roadarm 

Random 
Variables 

Lower 
Bound 

Ld  

Initial Design 
0d  

Upper 
Bound 

Ud  
COV 

Distribution 
Type 

d1 1.3500 1.7500 2.1500 1% Normal 
d2 2.6496 3.2496 3.7496 1% Normal 
d3 1.3500 1.7500 2.1500 1% Normal 
d4 2.5703 3.1703 3.6703 1% Normal 
d5 1.3563 1.7563 2.1563 1% Normal 
d6 2.4377 3.0377 3.5377 1% Normal 
d7 1.3517 1.7517 2.1517 1% Normal 
d8 2.5085 2.9085 3.4085 1% Normal 

Fatigue Material Properties 

Non-design Uncertainties Mean COV 
Distribution 

Type 

Fatigue Strength Coefficient, σ 177000 3% Log-normal 

Fatigue Strength Exponent, b -0.0730 3% Normal 

Fatigue Ductility Coefficient, fε  0.4100 3% Log-normal 

Fatigue Ductility Exponent, c -0.6000 3% Normal 
 

For the deterministic design optimization process, 8-D surrogate model is used 

since the other 4 parameters are not changing in this process. Table 5.4 shows the final 

RBDO optimum results as well as the computational time. The computational time 

consists of two parts: function evaluation and sensitivity calculation. For sensitivity-

based RBDO, the sensitivity calculation per design variable takes about 20% of the time 

that the function evaluation does in finite element analysis. Hence, the overall 

computational time is calculated as 

 Comp. Time = Num(FE) + 0.5×Num(FE)×Num(Variables) (5.9) 
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Table 5.5 shows that the MPP-based RBDO using surrogate model used more 

computational time to achieve both the deterministic optimum and the RBDO optimum, 

compared with the sensitivity-based one. The optimum designs from each method are 

about the same. This example shows that the MPP-based RBDO using surrogate model 

can achieve same accuracy as the sensitivity-based one and therefore it will be more 

applicable for complex practical engineering applications where the sensitivity 

information are not available.  

Table 5.5 Comparison Between Two RBDO Methods 

Design 
Parameters 

Initial 
Design 

Deterministic 
Optimization 

RBDO 

Analytical Surrogate Analytical Surrogate 

d1 1.7500 1.6739 1.6552 1.7396 1.7442 
d2 3.2496 2.6496 2.6496 2.6496 2.6496 
d3 1.7500 1.9293 1.9225 1.9555 1.9601 
d4 3.1703 2.5703 2.5703 2.5703 2.5703 
d5 1.7563 1.4923 1.4771 1.5392 1.5421 
d6 3.0377 3.2992 3.2862 3.3605 3.3616 
d7 1.7517 1.6569 1.6303 1.7218 1.7291 
d8 2.9085 2.5085 2.5091 2.5085 2.5085 

Cost 515.09 469.445 466.746 477.923 478.649 

Active 
Constraints 

 1,3,5,8,12 1,3,5,8,12 1,3,5,8,12 1,3,5,8,12 

NFE  
11FE 

+11*8SC 
200FE 

317FE+ 
317*12SC 

1988FE 

Comp. 
Time 

 28.6 200 1077.8 1988 
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CHAPTER VI  

SAMPLING-BASED RBDO USING SURROGATE MODEL 

6.1 Introduction 

As shown in chapter V, when the sensitivity of the performance function in 

RBDO is not available, the MPP-based RBDO uses the sensitivity predicted by surrogate 

model. However, even though the prediction of the function value from SS-DKG is 

accurate enough, the sensitivity prediction could be still a challenging issue. The simple 

way to ensure the accuracy of the sensitivity is increasing the number of samples used for 

surrogate modeling, which is not cost-effective and may be even unaffordable for large 

dimensional applications. Therefore, another RBDO methodology that does not require 

the sensitivity from the surrogate model is needed. Lee [Lee et al., 2010] proposed the 

sampling-based RBDO which only uses the performance function value for RBDO. This 

sampling-based RBDO is desirable to integrate with surrogate model for complex 

engineering problems when the sensitivity of the performance is not available.  

As briefly discussed in chapter II, this sampling-based RBDO does not require 

obtaining the sensitivities of the performance functions and their sensitivities from the 

surrogate model. Instead, stochastic sensitivity analysis using the score function, which 

was proposed for the independent random variables or correlated Gaussian random 

variables, is used to derive the sensitivities of the probabilistic. The sensitivity analysis 

does not require the transformation from original design space to standard normal space, 

which means that there is no approximation or restriction in calculating the sensitivities 

of the probabilistic response. The surrogate model from the SS-DKG method is used to 

represent the performance function accurately. Once an accurate surrogate model is 
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available, the Monte Carlo simulation (MCS) is applied to the surrogate model to 

estimate the reliability or statistical moments of the system with negligible computational 

burden.  

In this chapter, the formulation of sampling-based RBDO using SS-DKG is 

explained first. Then the efficiency strategies applied in this RBDO procedure are 

explained in detail. Finally, two numerical examples are used to demonstrate the accuracy 

and efficiency of the sampling-based RBDO using surrogate model. 

6.2 Sampling-Based RBDO Using Sequential-Sampling-

Based Dynamic Kriging 

The mathematical formulation of a general RBDO problem is expressed as 

 Tar

L U

minimize      Cost( )
subject to     [ ( ) 0] , 1, ,

, R and R
ii F

m nrv

P G P i NC> ≤ =

≤ ≤ ∈ ∈

d
X

d d d d X

  (6.1) 

where T{ }id= =d μ(X)  is the design vector, which is the mean value of the m-

dimensional random vector T
1 2={ ,  , ,  }mX X XX  ; Tar

iFP  is the target probability of failure 

for the ith constraint; and NC, m, and nrv are the number of probabilistic constraints, 

design variables, and random variables, respectively.  

A reliability analysis, which is used to evaluate the probabilistic constraints in Eq. 

(6.1), involves calculation of the probability of failure, denoted by PF, which is defined 

using a multi-dimensional integral  

 ( ) [ ] ( ) ( ; ) ( )
N F FF FP P I f d E IΩ Ω ≡ ∈Ω = =  ∫ XR

μ X x x μ x X  (6.2) 
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where μ  is the mean of the random input { }T
1, , NX X=X  , ( )P ⋅  represents a 

probability measure, FΩ  is the failure set, ( ; )fX x μ  is a joint probability density function 

(PDF) of X, and [ ]E •  represents the expectation operator. The failure set is defined as 

{ }: ( ) 0F iGΩ ≡ >x x  for component reliability analysis of the ith constraint function Gi(x). 

As explained in Section 2.5.1, ( )
F

IΩ x  in Eq. (6.2) is called an indicator function and is 

defined as 
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Following the same procedure as in Section 2.5.2, the sensitivity of the 

probability of failure PF with respect to a design variable iµ  can be obtained as 
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 (6.4) 

since ( )
F

IΩ x  is not a function of iµ . The partial derivative of the log function of the joint 

PDF in Eq. (6.4) with respect to iµ  is known as the first-order score function for iµ  and 

is denoted as 

 (1) ln ( ; )( ; ) .
i

i

fsµ µ
∂

≡
∂

X x μx μ  (6.5) 

For statistically independent random variables, the first-order score function for 

iµ  is expressed as 

 (1) ln ( ; )ln ( ; )( ; ) i

i

X i i

i i

f xfsµ
µ

µ µ
∂∂

≡ =
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X x μx μ  (6.6) 
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and, for a correlated bivariate random input, it is expressed as 

 (1) ln ( ; )ln ( ; ) ln ( , ; )( ; ) i

i

X i i

i i i

f xf c u vsµ
µθ

µ µ µ
∂∂ ∂

≡ = +
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where c is a copula density function, ( ; )
iX i iu F x µ=

 
and ( ; )

jX j jv F x µ=
 
are cumulative 

distribution functions (CDFs) for Xi and Xj, respectively, and θ is the correlation 

coefficient. Each term in Eqs. (6.6) and (6.7) is listed in Tables 6.1 and 6.2, respectively. 

Table 6. 1 First-Order Score Function for iµ  for Independent Random Variables 
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Since the SS-DKG method is used to generate surrogate models for Gi(X), the 

MCS can be used for both probability of failure and its sensitivity estimation with 

negligible computational burden. By applying the MCS to the surrogate model denoted 

by ˆ ( )iG X , the probabilistic constraints in Eq. (6.1) can be approximated as 

 ( ) Tar
ˆ

1

1( ) [ ( ) 0] ( )
i iF

K
k

F i F
k

P P G I P
K Ω

=

≡ > ≅ ≤∑μ X x  (6.8) 
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Table 6. 2 Log-derivative of Copula Density Function 
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Independent 0 
 

where K is the MCS sample size, ( )kx  is the kth realization of X, and the failure set ˆ
FΩ  

for the surrogate model is defined as { }ˆˆ : ( ) 0F iGΩ ≡ >x x . Sensitivity of the probabilistic 

constraint is obtained using the score function as 

 ( ) (1) ( )
ˆ

1

1 ( ) ( ; )i

iF

K
F k k

ki

P
I s

K µµ Ω
=

∂
≅

∂ ∑ x x μ  (6.9) 

where (1) ( )( ; )
i

ksµ x μ  is obtained using Eqs. (6.6) and (6.7) for independent and correlated 

random input variables, respectively. From Eq. (6.9), it can be seen that the stochastic 

sensitivity analysis does not require sensitivities of performance functions, which are 

represented by surrogate models. 

For the sampling-based RBDO, the local window is used to generate a surrogate 

model instead of the global window. The SS-DKG method is well suited for the local 
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window by selecting an optimum set of basis functions to represent the response. That is, 

a different set of basis functions is selected to represent the response at different local 

window. For the initial sampling, Latin Centroidal Voronoi Tessellations (LCVT) is 

utilized to uniformly fill the local window, and then, additional samplings to satisfy the 

accuracy condition of the surrogate model are inserted using the sequential sampling 

explained in Chapter IV. The entire flowchart of sampling-based RBDO using SS-DKG 

is shown in Fig.6.1 . 

 

Figure 6. 1 Sampling-Based RBDO Using SS-DKG 
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6.3 Efficiency Strategies for Multiple Constraints and 

Optimization 

For a typical RBDO problem, usually there are a number of constraints, and the 

FEA simulation at samples is compute-intensive. Therefore, several efficiency strategies 

are applied to reduce the total computational time for RBDO procedure. 

6.3.1 Sample Reuse Strategy 

To ensure efficiently obtaining an accurate surrogate model from SS-DKG 

method, the surrogate model is always generated within a local design window instead of 

the global design domain as shown in Fig. (6.2). The local window is defined as 

 { 1 2( , ,..., ) | , 1,..., }i
m i i i tx x x x d c i mσ β− ≤ =x  (6.10) 

where c is a constant between 1.2~1.5, iσ and i
tβ are the standard deviation and the 

reliability index of the design variable ix , respectively.  

 

Figure 6. 2 The Local Window for Surrogate Model 
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To generate the surrogate model, Nr initial samples are needed. However, as the 

RBDO procedure is continuing, there might be some existing samples within the current 

local window when the design moves. The sample reuse strategy will first search for the 

local window to see if there is enough number of existing samples or not. If the number 

of existing samples Ne is enough, which means e rN N> , then there will be no additional 

sampling for this local window; otherwise, r eN N−  samples will be inserted into the 

local window. 

Moreover, when the current candidate design is close to the previous candidate 

design, usually there are a number of samples that are surrounding but not within the 

current local window. It is obvious that these existing samples are also valuable and 

should be used for the surrogate modeling for current design. In such cases, it is proposed 

to adjust the current local window size to include more existing samples. In this study, it 

is decided to increase the local window size by increasing c value in Eq. (6.10) from 

current value to 1.5 if 0.9e rN N> ×  . 

6.3.2 Using Violated Constraints for Accuracy Check 

As shown in Fig. (6.1), the accuracy check for the surrogate model will be carried 

out first to ensure there is enough number of samples within the local window to generate 

the accurate surrogate models. However, in practical engineering applications, there 

might be several constraints that are satisfied since the current design is far away from 

those limit states. In this case, generating the surrogate models for them would waste the 

computational time. Therefore, these “safe” constraints are ignored in the accuracy check 

and not used in sensitivity analysis and only those violated constraints are used. 
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Since the true responses of the constraints within current local window are only 

available at the sample points, a constraint is defines as violated if it is larger than zero at 

any sample point, expressed as 

 ( )there exist {1,2,..., }, such that ( ) 0i
di N G∈ >x  (6.11) 

where ( )ix is the ith samples in the local window. 

 It is worth mentioning that the status of the violated constraint may change as the 

design point moves during iteration. Some inactive constraints could become active or 

violated during the next iteration. 

6.3.3 Adaptive Initial Point for Correlation Parameter 

Estimation 

When applying the sampling-based RBDO to complex engineering problems, the 

number of variables used for surrogate modeling could be large. In such cases, the pattern 

search for DKG may become time-consuming. Therefore, how to efficiently carry out the 

pattern search process for correlation parameter needs to be found. It is noted that the 

computational time of pattern search is strongly affected by the initial search point. If the 

pattern search starts from the neighboring area of the true optimum, it can find the 

optimum within much shorter time compared with starting from a point far away from the 

optimum. Moreover, it is also obvious that even when the candidate design point moves 

during the RBDO procedure, the surrogate models are generated for the same 

performance functions. Therefore, one can assume that the optimal correlation parameter 

found from DKG in the previous iteration is close to the current optimal one and thus a 

good the initial point for the current pattern search. 



110 
 

 

 

One engineering example is used to demonstrate the improvement of using the 

previous optimum value as the initial searching point for pattern search in the current 

local window. The example is the same 12-D M1A1 roadarm example used in Chapter V.  

Constraint #1 is used for surrogate modeling generation. 400 samples are used in the 

current local window. As shown in Table 6.3, if the lower bound of the correlation 

parameter θwhich is T[0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01]L =θ  

is used as the initial searching point, the pattern search uses 1333 function calls to find 

the optimum value and the time spent is 123.4s. If the optimal opt
prevθ value from previous 

iteration is used as the initial searching point, the pattern search uses 763 function calls to 

find the optimum and the computational time is reduced to 70.8s. 

Table 6. 3 Improvement of Efficiency Using Different Initial Searching Points 

Init θ Optimum θ ψ(θ) No. of 
FE Time (s) 

Lθ  [0.01, 0.01, 0.095938, 0.1018, 0.01, 0.086172, 0.01, 
0.01, 0.13891, 0.27172, 0.01, 0.01] 0.010806 1333 123.4 

opt
prevθ  [0.011953, 0.01, 0.09594, 0.1018, 0.01, 0.088125, 

0.01, 0.01, 0.1389, 0.27563, 0.01, 0.01] 0.010941 763 70.8 

 

6.4 Numerical Examples 

6.4.1 2-D Mathematical Example 

To see how the proposed sampling-based RBDO using SS-DKG works, consider 

a 2-D mathematical RBDO problem, which is formulated as Eq. (5.7). The properties of 

two random variables are shown in Table 5.2, and they are assumed to be independent. 
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As shown in Eq. (6.12), the target probability of failure ( Tar
FP ) is 2.275% for all 

constraints. 

The design optimization initiates from the initial design (5, 5). As shown in Fig. 

6.3, with 3 iterations and 40 samples, the deterministic design optimization is completed 

first. Then the sampling-based RBDO process starts. Without additional samples, the 

RBDO optimum is successfully obtained. Table 6.4 compares the numerical results of 

five different RBDO methods. The first three results are obtained from the so-called 

MPP-based RBDO using analytical sensitivity, which requires the sensitivity of the 

constraint functions for the MPP search and design optimization. The MPP-based RBDO 

includes the FORM, the DRM with three quadrature points, which is denoted as DRM3, 

and the DRM with five quadrature points, which is denoted as DRM5 in Table 6.4. The 

last two results are obtained from the sampling-based RBDO, which uses the MCS for 

the estimation of the probability of failure and its sensitivity. The sampling-based RBDO 

using the SS-DKG method is the proposed method, and for the comparison of the 

accuracy of the proposed method, the result of the sampling-based RBDO using the true 

functions given in Eq. (6.11) is also shown in the table.  

From Table 6.4, it can be seen that the probability of failure of the second 

constraint (1.3438%) at the optimum design obtained using the FORM is not close to the 

target probability of failure (2.275%). This is because the second constraint is highly 

nonlinear as shown in Fig. 6.3 and the FORM cannot accurately estimate the probability 

of failure of highly nonlinear functions. To improve the accuracy of the probability of 

failure at the optimum design, the MPP-based DRM with three or five quadrature points 

can be used. 
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Figure 6. 3 RBDO History and Optimum Design 

Table 6.4 shows that the MPP-based DRM indeed improves the accuracy of the 

probability of failure at the optimum design with more function evaluations.  

Table 6. 4 Comparison of Various RBDOs ( 2.275%Tar
FP = ) 

Methods Cost Optimum 
Design 

MCS Number of 
Function 

Evaluations 1FP  
2FP  

MPP-Based 
RBDO 

FORM -1.9018 4.6709, 1.5689 2.4886 1.3438 52+52 

DRM3 -1.9048 4.7188, 1.5594 2.2934 1.9318 128+106 

DRM5 -1.9070 4.7307, 1.5539 2.2868 2.1620 146+102 

Sampling-
Based RBDO 

SS-DKG -1.9077 4.7316, 1.5530 2.2618 2.1835 50 

Anal. -1.9081 4.7385, 1.5512 2.2482 2.3471 N.A. 
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To obtain the optimum design, the FORM uses 52 function evaluations and 52 

sensitivity calculations, whereas the MPP-based DRM with five quadrature points uses 

146 function evaluations and 102 sensitivity calculations,. The number of function 

evaluations for the MPP-based DRM will be increased as the number of quadrature 

points increases. 

On the other hand, the sampling-based RBDO, which uses the SS-DKG method 

and stochastic sensitivity analysis, requires only 33 samples for the accurate optimum 

design. Without the sensitivity of the performance functions, the sampling-based RBDO 

can obtain a very accurate optimum design, and the optimum design is very close to the 

optimum design obtained using the true functions. This means that the SS-DKG method 

generates very accurate surrogate models for the true functions. From this example, it can 

be said that once accurate surrogate models are available, the proposed sampling-based 

RBDO yields very accurate optimum designs with good efficiency. 

6.4.2 M1A1 Tank Roadarm Example 

The roadarm of a tracked vehicle, as described in Section 5.3.2, is used to 

demonstrate the applicability of the SS-DKG for sampling-based RBDO again.  

From Table 6.5, it is found that the sampling-base RBDO using SS-DKG can 

obtain the same optimum design compared with the MPP-based RBDO using the 

analytical sensitivity information. Moreover, the sampling-based RBDO using SS-DKG 

uses less number of samples as used in Section 5.3.2. 
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Table 6. 5 Comparison Between Different RBDO Methods 

Design 
Parameters 

Initial 
Design 

Deterministic 
Optimization 

MPP-Based RBDO Sampling-Based 
RBDO 

SEN SS-DKG SEN SS-DKG 

d1 1.750 1.653 1.655 1.747 1.745 
d2 3.250 2.650 2.650 2.650 2.650 
d3 1.750 1.922 1.922 1.955 1.954 
d4 3.170 2.570 2.570 2.570 2.570 
d5 1.756 1.478 1.477 1.543 1.540 
d6 3.038 3.287 3.288 3.362 3.367 
d7 1.752 1.630 1.630 1.729 1.722 
d8 2.908 2.508 2.508 2.508 2.508 

Cost 515.09 466.80 466.84 478.59 478.18 

Active 
Constraints 

 1,3,5,8,12 1,3,5,8,12 1,3,5,8,12 1,3,5,8,12 

NFE  
11FE 

+11*8SC 
200FE 

317FE+ 
317*12SC 

1857FE 

Comp. 
Time 

 28.6 200 1077.8 1857 
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CHAPTER VI  

PARALLELIZATION OF RBDO USING SURROGATE MODEL 

7.1 Introduction 

With the successfully implement of using SS-DKG for sampling-based RBDO to 

engineering application as shown in Section 6.4, the methodology can be used for 

practical engineering application problems. However, there is one critical issue found 

during the testing problem in Section 6.4. That is, the computational time increases 

dramatically when the number of samples evaluated for FEA and fatigue analysis 

increases. Moreover, the total computational time for surrogate modeling and Monte 

Carlo simulation may also be very large or even unaffordable if the number of design 

variables and constraints are large for complex applications. Therefore, a high 

performance computing strategy needs to be implemented into the surrogate model based 

RBDO procedure to ensure it is applicable for large-scale complex applications. 

During the last two decades, the high performance computing (HPC) technology 

has been rapidly developed. Usually HPC refers to the engineering application of cluster-

based computing or multi-processor based computing. In the cluster-based computing 

process, a computing task is submitted into a master machine. The master machine 

converts the task into several sub-tasks and sends them to the machines on the cluster 

network which are called “clients”. Each of the client machines computes the sub-task 

simultaneously and returns the results after the computing to the master machine. The 

master machine finalizes the results from the client machine and outputs the final result to 

user in the end. In the multi-processor based computing process, there is only one 

machine that contains multiple processors and memory units. The main task is converted 
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into several sub-tasks by the master processor, computed by other processors 

simultaneously and finalized by the master processor in the end. 

Usually, two different ways of HPC are applied to different problems depending 

on the cost of computing resources. The cluster-based HPC can be cost-effective since 

the cost of the client machines can be relatively cheaper than the cost of a multi-processor 

machine at the same computing performance. However, the multi-processor based HPC 

can be more efficient since all data are transferred within the same machine whereas the 

cluster-based one is transferring the data on the network where communication time 

between the master and the client machines is also a concern. 

For the sampling-based RBDO using SS-DKG, both of the two HPC methods 

mentioned above are needed to handle different parallel computing process. In this 

chapter, the toolbox used for HPC in Matlab is introduced first; the parallelization of the 

sampling-based RBDO using SS-DKG is explained in details; and finally a numerical 

example is used to show the improvement on efficiency by using the HPC. 

 7.2 Parallel Computing Toolbox in Matlab 

Parallel Computing Toolbox in Matlab lets users solve computationally- and data-

intensive problems using Matlab® and Simulink® on cluster-based and multiprocessor-

based computers. Parallel processing constructs such as parallel for-loops, distributed 

arrays, parallel numerical algorithms, and message-passing functions to let user 

implement task- and data-parallel algorithms in Matlab at a high level language without 

programming for specific hardware and network architectures. As a result, converting 

serial Matlab applications to parallel Matlab applications requires few code modifications 
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and no programming in a low-level language is required. Users can run their applications 

interactively or offline batch environments. 

Users can use the toolbox to execute applications on a single multiprocessor 

desktop. Without changing the code, users can run the same application on a computer 

cluster, grid, or cloud computing service (using Matlab Distributed Computing Server). 

Parallel Matlab applications can be distributed as executables or shared libraries (using 

Matlab Compiler) that can access Matlab Distributed Computing Server. The workflow 

of using the parallel computing toolbox of Matlab is shown in Fig. 7.1. 

 

Figure 7. 1 Parallel Computing Toolbox in Matlab 

In summary, it has the key features that are useful for a quick setup to implement 

the HPC as follows:  

 Support data-parallel and task-parallel application development; 
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 Ability to annotate code segments with parfor (parallel for-loops) and spmd (single 

program multiple data) for implementing task- and data-parallel algorithms, 

respectively; 

 Have high-level constructs such as distributed arrays, parallel algorithms, and 

message-passing functions for processing large data sets on multiple processors; 

 Ability to run eight workers locally on a multicore desktop; 

 Integration with MATLAB Distributed Computing Server for cluster- and grid-based 

applications that use any scheduler or any number of workers; 

 Interactive and batch execution modes. 

7.3 Parallelization in RBDO 

With the parallel computing toolbox available, we will discuss the details about 

where the parallelization is needed in the proposed sampling-based RBDO using SS-

DKG method. 

7.3.1 Parallelization of Genetic Algorithm in DKG 

As discussed in Section 3.3, the DKG uses a genetic algorithm to select the best 

selection of the basis functions. In each generation during the GA process, there are 

2 1P
m PC P+ + + candidate selections that need to be evaluated for the fitness value. When 

the number of samples increases, the highest order number P increases and 2 1P
m PC P+ + +

increases in a faster way and may become compute-intenstive for large-scale problems. 

Therefore, parallelization of the evaluation for the fitness value in each generation is 

needed. Matlab provides a built-in option for the built-in genetic algorithm if the parallel 

computing toolbox is available. User can turn on that option for parallel computing 
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without any additional effort. Since the cluster-based HPC have additional time spent on 

the communication between the master machine and the client machines, to ensure the 

computing efficiency, this parallelization for GA is conducted on a 32-cores Linux 

server. 

7.3.2 Parallelization of Surrogate Models for Multiple 

Constraints in RBDO 

As discussed in Section 6.2, a typical RBDO problem contains a number of 

constraints. Since the surrogate model from SS-DKG is required for each violated 

constraint and the pattern search procedure may become compute-intensitve for large-

scale applications, it is desirable to carry out the surrogate modeling for all active or 

violated constraints simultaneously. Therefore, the parallelization of surrogate modeling 

for multiple constraints is needed, especially for large-scale applications. 

Since Matlab requires license on each of the client machine for cluster-based 

HPC, to carry out the parallelization cost-effectively, the parallelization of the surrogate 

modeling is conducted on the 32-cores Linux server too in this study. It is worth 

mentioning that the Matlab parallel computing toolbox allows only 8 cores working 

simultaneously, 8 surrogate models for the active or violated constraints are generated at 

the same time and the total computational time will still be significantly reduced. 

7.3.3 Parallelization of MCS in Reliability Analysis 

As discussed in Section 6.2, the Monte Carlo simulation (MCS) is used to 

calculate the probability of failure of the performance functions as well as the sensitivity 

of probabilistic constraints. For accuracy, the number of MCS sample usually takes a 
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large number, i.e. one million. Moreover, since the prediction from DKG at the MCS 

samples are not explicit according to Eq. (3.43), which means that to calculate the 

prediction at a point of interest, a large dimensional matrix calculation is involved. When 

the number of samples used for surrogate modeling is large, the total computational time 

for the prediction at the MCS samples becomes large too. Therefore, the parallelization of 

the MCS procedure is also needed to reduce the large computational time. This 

parallelization is also conducted on the 32-cores Linux server with 8 cores working 

simultaneously by using the Matlab parallel computing toolbox. 

7.3.4 Parallelization of Computer Aided Engineering 

Analysis (CAE) 

To generate the surrogate models by SS-DKG for the constraints in RBDO, it is 

required to evaluate the performance function at the samples, which is usually conducted 

by computer aided engineering analysis (CAE) such as finite element analysis, fatigue 

analysis, etc. This procedure is usually compute-intensive too. If the number of samples 

is large for a large-scale engineering application, the total computational time of 

conducting CAE for all samples may become unaffordable. Therefore, the parallelization 

is necessary for this procedure. Usually the CAE is carried out by the general CAE 

commercial software. The parallelization can be done on the cluster-based HPC by the 

parallel computing platform (LSF-Platform) in Linux/Unix server directly. Unlike the 8-

max-cores restriction for a multi-processor computer in Matlab parallel computing 

toolbox, the number of parallel computing session controlled by LSF-Platform under 

Linux/Unix is not restricted. Therefore, one can use as many machines on the cluster 

network as possible. 
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7.3.5 Summary of Parallelization in Sample-Based RBDO 

Using SS-DKG 

With the discussions from Sections 7.3.1~7.3.5, we can obtain the overall 

workflow of the parallelization in the sampling-based RBDO using SS-DKG which is 

shown in Fig. 7.2. 

 

Figure 7. 2 Workflow of Parallelization in RBDO 

7.4 Numerical Examples 

To demonstrate the improvement of the efficiency by applying the parallelization 

to the sampling-based RBDO using SS-DKG, the same 12-D M1A1 tank roadarm 

example is used. The comparison between the parallel computing and the original serial 

computing is carried out by running the reliability analysis at the initial design point with 

400 points in the local window. Nine constraints are identified as active or violated 
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constraints and surrogate models are generated for these 9 constraints. MCS with 500000 

samples are evaluated based on the surrogate models for these 9 constraints. The Matlab 

parallel computing toolbox is used on the 32-cores Linux server and the maximum 8 

workers are used for parallel computing. 

As shown in Table 7.1, the parallel computing indeed reduces the computational 

time by 64.6% for surrogate modeling and 89.3% for the MCS. The reason that the 

reduction of the computational time for the surrogate modeling is not exact 8 times 

compared with the serial one is that there are nine constraints are used to generate the 

surrogate models while eight cores are used. Therefore, it includes 2 iteration for the 

parallel computing, 1st iteration for constraint 1~8 and 2nd iteration for constraint 9 only. 

On the other hand, the MCS is parallelized based on the number of MCS samples; 

therefore, the reduction of the computational time is approximately proportional to the 

number of cores used. 

Table 7. 1 Comparison of Computational Time 

 No. of 
Sample 

No. of 
Constraint 

Surrogate 
Modeling (s) MCS (s) 

Total 
Time (s) 

Parallel 
400 9 

872.7 89.2 965.9 
Serial 2468.3 838.1 3322.4 
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CHAPTER VIII  

CONSERVATIVE SURROGATE MODEL USING WEIGHTED 

KRIGING VARIANCE FOR SAMPLING-BASED RBDO 

8.1 Introduction 

In sampling-based RBDO, Monte Carlo simulation (MCS) is used to carry out 

both the probability of failure and the stochastic sensitivity analysis. To carry out MCS 

efficiently in complex engineering applications, a surrogate model is used to predict the 

performance function at the MCS samples. When the surrogate model is not accurate 

enough, new samples are sequentially inserted to improve the prediction accuracy. 

However, inserting a large number of new samples sequentially may not be applicable 

when the samples are from the physical experiments or when the computational resource 

for simulation is limited. Therefore, the improvement of the surrogate model cannot be 

obtained by simply increasing the sample numbers. When applying the surrogate model 

for reliability-based design optimization when the number of samples is small, to assure 

the obtained optimum design can satisfy the probabilistic constraints, a conservative 

surrogate model is needed. Picheny [Picheny, 2009] used both the safety margin and 

safety factor approaches to construct conservative surrogate models and concluded that 

when the Kriging method is used, both methods provide similar performance in terms of 

the conservativeness and the accuracy. Hertog et al. [Hertog, et al., 2006], Luna and 

Young [Luna and Young, 2003] used the bootstrapping method to estimate the Kriging 

prediction interval to construct a conservative surrogate model.  The bootstrapping 

variance is larger than the traditional Kriging prediction variance by considering the 

uncertainty from the correlation parameter in the Kriging method.  However, the 
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bootstrapping procedure is time-consuming and is not applicable for high-dimensional 

problems. Viana et al. [Viana et al, 2010] used cross-validation to estimate the safety 

margin for the conservative surrogate model.  While the cross-validation error is widely 

used to estimate the prediction error, this constant safety margin approach does not 

distinguish the prediction error at different sample locations and often yields an over-

conservative surrogate model where the samples are aggregated around and under-

conservative surrogate model where the samples are sparse.  

In this study, a weighted Kriging variance is considered to construct a more 

accurate conservative surrogate model based the sample locations. To evaluate the 

importance from each sample and determine the weight for it, an accuracy measure of the 

surrogate model is needed first.  Under the Kriging framework, the Akaike information 

criterion (AIC) [Akaike, 1974] is a reliable indicator to assess the accuracy of the 

surrogate model.  Hurvich and Tsai [Hurvich and Tsai, 1989] proposed a corrected AIC 

(AICc) to correct the bias in AIC when the number of samples is small. Burnham and 

Anderson [Burnham and Anderson, 2002] recommended using AICc rather than AIC 

when the sample size is small and showed that the AICc converges to AIC as the number 

of sample increases. Martin and Simpson [Martin and Simpson, 2005] compared the 

performance of the AICc assessment with other methods and concluded that AICc 

provides the best accuracy assessment for surrogate model accuracy. In this study, the 

AICc is used to assess the accuracy changes in the surrogate model during the cross-

validation process, and an importance function value is assigned to each sample 

according to the relative changes in AICc of the surrogate model and the weight is also 

assigned to each sample according to the importance function values. Then a weighted 
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Kriging variance is calculated based on the weight values for each sample. By applying 

this weighted Kriging variance, one can construct the conservative surrogate model for 

dynamic Kriging and use it for sampling-based RBDO to assure the obtained optimum 

design will satisfy the probabilistic constraint.  

The remainder of this chapter is organized in three sections. First, the background 

of the AICc is briefly summarized. Then, the weighted Kriging variance using the weight 

from the relative change in AICc is introduced to construct the conservative surrogate 

model.  Third, the conservative surrogate model is applied to sampling-based RBDO and 

the optimum design is verified for the probabilistic constraint using numerical examples 

and compared with the results using the constant safety margin approach. 

8.2 Sampling-Based RBDO using Conservative Surrogate 

Model 

8.2.1 Corrected Akaike Information Criterion (AICc) 

The AIC is originally proposed to evaluate the quality of a model in statistics 

based on the log-likelihood function.  It is a measure of the relative goodness of fit of a 

statistical model, and in general expressed as 

 2 2 ln( )AIC k L= −  (8.1) 

where k is the number of parameters in the statistical model and L is the maximized value 

of the likelihood function for the estimated model. In the Kriging framework discussed in 

Chapter 3, the k is the number of dimension of X and L is the likelihood function. When 

the sample size is small, i.e., n/k < 40 (n is the number of sample), which is often the case 
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in engineering problems, the AICc is used instead to provide a unbiased estimation, 

which is expressed as 

 2 ( 1)
1

k kAICc AIC
n k

+
= +

− −
 (8.2) 

8.2.2 Weighted Kriging Prediction Variance for 

Conservative Surrogate Model 

In Eq. (3.22), the Kriging prediction variance 2
pσ is calculated and the C% upper 

bound of the prediction interval is 

 1
var krig 100 p

Cy y σ−  = +Φ  
 

 (8.3) 

where ( )1−Φ •  is the inverse CDF of standard normal random variable. This prediction 

upper is usually used as the C % level conservative surrogate model for Kriging and often 

times it is considered as a variable safety margin approach for constructing the 

conservative surrogate model. Since Kriging is an interpolation method, the prediction 

variance 2
pσ  becomes zero at the sample point. As a result, the conservative surrogate 

model vary  is the same as the krigy   at the sample points. This interpolation property of 

Kriging causes trouble when the conservative surrogate model is used for optimization 

problem. Consider a 1-D example, 

 2min (6 2) sin(12 4) [0,1]y x x x= − − − ∈  (8.4) 

The function plot and the Kriging prediction using seven points are shown in Fig. 8.1. 
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Figure 8. 1 1-D Problem with 7 Samples 

When the upper bound is used as the conservative surrogate model and used for 

optimization, the optimum x could be easily converged to the sample points, which are 

the local minima of vary  . Therefore, this upper bound of the Kriging prediction interval 

is not applicable for optimization. Another constant safety margin approach is also often 

used for the conservative surrogate model, where the safety margin is decided based on 

the empirical CDF of the cross-validation error. In this constant safety margin approach, 

the conservative surrogate model is obtained by shifting the Kriging prediction to certain 

amount and is often expressed as 

 xv krig ,%XV Cy y e= +  (8.5) 

where ,%XV Ce  is the C% percentile of the cross-validation error. This conservative 

surrogate model has the same discrepancy from the Kriging prediction regardless of the 

sample position. This raises a problem that the conservative surrogate model cannot 
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count in the different uncertainty of the discrepancy due to different sample locations. 

Therefore, this constant safety margin approach may become over-conservative where 

the samples are dense and under-conservative where the samples are sparse. Consider the 

same example as shown in Fig. 8.2. If there is no sample at x = 0.76, the safety margin

,%XV Ce  in Eq. (8.5)  is 1.454 and the conservative surrogate model is shown in Fig. 8.2. 

The conservative surrogate model is over-conservative in the region of [0, 0.56] and 

under-conservative in the region of [0.56, 1]. 

 

Figure 8. 2 1-D Problem with 6 Samples 

According to the two examples discussed above, one can see that when a 

conservative surrogate model from Kriging is used for optimization problem, a variable 

safety margin approach that has zero margin at the sample points is not desirable because 

it generate unnecessary local optima regions; whereas a constant safety margin may not 

be desirable because it does not count in the affect from the sample position.  What is 
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needed is a conservative surrogate model that uses a variable safety margin which does 

not generate local optima and counts in the effect from the sample position. 

In this study, a new conservative surrogate model that combines the variable 

safety factor approach from Eq. (8.3) and the constant safety margin approach from Eq. 

(8.5) is proposed.  First, to count in the effect from the sample position, an importance 

measure for each sample is needed. In this study, the AICc is chosen to quantify how 

important a sample is for the Kriging prediction. The importance function for sample xi is 

defined as 

 
( )

Im( ) , 1,...,
i

i
AICc AICcx i n

AICc

−−
= =  (8.6) 

where AICc is calculated using all n samples and ( )iAICc − is calculated by omitting xi. 

From Eq. (8.6), it can be seen that the larger Im( )ix is, the more important that xi is. Figs. 

8.3(a)-(g) show the Kriging prediction when each of the samples is omitted and the 

associated importance function values are shown in Fig. 8.3(h) as well. The sample point 

6 at x = 0.76 is indeed around the highly nonlinear region, and its importance function 

value is the largest among all 7 samples. The second most important sample point 5 is at 

x = 0.56 which is a local minimum. Therefore, this importance function by the relative 

change in AICc values can characterize how important one sample is for the Kriging 

prediction accuracy. 

After the importance value for each sample is calculated, to construct a weighted 

Kriging variance, a leave-one-out Kriging variance ( )( )2 i

pσ
−

is calculated using Eq. (3.22) 

where ith sample xi is omitted in generating the Kriging model, and then the weighted 

Kriging variance is expressed as 
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   (a) Kriging Prediction w/o Sample #1              (b) Kriging Prediction w/o Sample #2 

   

   (c) Kriging Prediction w/o Sample #4               (f) Kriging Prediction w/o Sample #6 

   

    (g) Kriging Prediction w/o Sample #7            (h) Im(x) Function Values at Each Sample 

Figure 8. 3 Leave-one-out Kriging Prediction 
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 ( )( )2 2
,

1
( )

n i

p weighted i p
i

w xσ σ
−

=

=∑  (8.7) 

where the weight function is defined as 

 

1

1/ Im( )( )
1/ Im( )

i
i n

i
i

xw x
x

=

=

∑
 (8.8) 

The weight function decides how much the leave-one-out Kriging variance  ( )( )2 i

pσ
−

 

contributes to the total Kriging variance when xi is missing according to the importance 

function value.  Finally, the conservative surrogate model based on the weighted Kriging 

variance is 

 1
,100con krig p weighted

Cy y σ−  = +Φ  
 

 (8.9) 

According to Eq. (8.9), one can see that when xi is omitted, the leave-one-out 

Kriging variance ( )( )2 i

pσ
−

  would not become zero at xi and therefore the total Kriging 

variance would not be zero at xi as well, and indeed smoothes the conservative surrogate 

model eventually. On the other hand, since the ( )( )2 i

pσ
−

  will be larger at the place where 

no sample is nearby, it will make the total weighted Kriging variance become variable on 

the entire domain. Consider the same example shown in Figs. 8.4 and 8.5. In Fig. 8.4, the 

lines labeled as Y_true, Y_krig, Y_xv, Y_var and Y_con are the true response, the 

Kriging response, the conservative surrogate model using constant safety margin, the 

upper bound of Kriging prediction interval, and the conservative surrogate model using 

the weighted Kriging variance, respectively.  



132 
 

 

 

When all seven samples are used, the conservative surrogate model using 

weighted Kriging variance is smoother than the upper bound of Kriging prediction 

interval and closer to the true response than the conservative surrogate model using the 

safety margin. Moreover, if one of the important sample, (i.e., x = 0.76 in this case), is 

missing, the conservative surrogate model using the weighted Kriging variance would 

have a larger discrepancy than the conservative surrogate model using the constant safety 

margin approach in the region of [0.56, 1] and a smaller discrepancy in the region of [0, 

0.56], as shown in Fig. 8.5. These two cases indeed show that the conservative surrogate 

model using the weighted Kriging variance can adaptively identify the conservativeness 

according to sample locations and provide a smooth surrogate model that does not change 

the optimum region of the original response function. 

8.2.3 Sampling-Based RBDO Using the Conservative 

Surrogate Model 

When a limited number of samples are used to generate the surrogate model, to 

assure the optimal design will satisfy the probabilistic constraints, the surrogate model 

needs to be replaced by the conservative surrogate model. Therefore, the conservative 

surrogate model using the weighted Kriging variance from Eq. (8.9) is used to represent 

the original performance function. The formulation of sampling-based RBDO becomes 

 Tar

L U

minimize      Cost( )
ˆsubject to     [ ( ) 0] , 1, ,

, and
j

c
j F

nd nr

P G P j nc> ≤ =

≤ ≤ ∈ ∈

d

X

d d d d R X R

  (8.10) 

where ˆ ( )c
jG X  is the conservative surrogate model for performance function ( )G X  . 
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Figure 8. 4 Conservative Surrogate Model Using Weighted Kriging Variance (7 samples) 

 

Figure 8. 5 Conservative Surrogate Model Using Weighted Kriging Variance (6 samples) 
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8.3 Numerical Example 

Consider the 2-D RBDO problem with three probabilistic constraints used in 

Section 5.3.1. The initial design point is d0 = [5 5]. First, it is worth mentioning that there 

is no need to construct the conservative surrogate model from the initial design point. In a 

typical RBDO process, the deterministic design optimization is carried out first. The 

RBDO process starts from the deterministic optimum thereafter. The conservative 

surrogate model will be constructed for the second stage for RBDO process only. In this 

example, the deterministic optimum is x = [5.19, 0.74] (which is the magenta cross in 

Fig. 8.6) and the number of sample in the local window is assumed to be fixed to 10 

samples from Latin hypercube sampling method. Since 10 samples may not be enough to 

construct accurate surrogate model, the conservative surrogate models using the proposed 

weighted Kriging variance are generated for two active constraints G1 and G2. For 

comparison study, the conservative surrogate models using the constant safety margin are 

also generated. The sampling-based RBDO is carried out using these two different 

conservative surrogate models and the optimum designs are compared in Table 8.2 and 

plotted in Fig. 8.6. The C% level is set to be 90% in this example. 

In Fig. 8.6, it can be seen that the surrogate model from dynamic Kriging model 

itself, which is the blue line, underestimates the true response and results in unreliable for 

the obtained optimum design d = [4.7432, 1.5391] (blue cross in Fig. 8.6) and the 

probability of failure for G2 is 2.4992% which is larger than the target probability of 

failure 2.275%, as shown in Table 8.1. Therefore the conservative surrogate model is 

indeed necessary for counting in the uncertainty from the surrogate model and assuring 

the optimum design can satisfy the probabilistic constraints. By using the weighted 
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Kriging variance for conservative surrogate model, the obtained RBDO optimum design 

is d = [4.7020, 1.5801], which is the red cross in Fig. 8.7, and the cost function value, the 

probability of failure for G1 and G2 are 1.8956− , 2.0654% and 1.6313%, respectively. As 

a comparison, the constant safety margin approach gives a more conservative optimum 

design d = [4.6510, 1.6205] (the green cross in Fig. 8.6) where the probability of failure 

for G1 and G2 are 1.8354% and 0.9455%, and the cost function value is 1.8783− . From 

the results in Table 8.1, one can see that the conservative surrogate model using the 

weighted Kriging variance can assure the optimum design satisfying the probabilistic 

constraints and has a better optimum design in terms of cost function compared to the 

conservative surrogate model using the constant safety margin approach. 

 

Figure 8. 6 Different Conservative Surrogate Models and Optimum Designs 
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Table 8. 1 Optimum Designs and the Probability of Failure at the Optimum 

Methods Cost Optimum Design 
MCS (5M) 

1FP , % 
2FP , % 

Surrogate 
Model 

Dynamic Kriging -1.9136 4.7432, 1.5391 2.3256 2.4992 

Constant Safety Margin -1.8783 4.6510, 1.6205 1.8354 0.9455 

Weighted Kriging Variance -1.8956 4.7020, 1.5801 2.0654 1.6313 

Analytical  -1.9079 4.7351, 1.5518 2.2715 2.2633 

 

When using the surrogate model for sampling-based RBDO, the sample profile 

may affect the result as well. A good sample profile for dynamic Kriging may end up 

having a better surrogate model. Therefore, to investigate whether the proposed weighted 

Kriging variance for conservative surrogate model has a stable performance, a statistical 

study is carried out. In this statistical study, 50 sets of 10-LHS samples are generated. For 

each sample set, the sampling-based RBDO is carried out using both the weighted 

Kriging variance approach and the constant safety margin approach. The comparison for 

cost function value and the probability of failure at the optimum are shown in Table. 8.2. 

Table 8. 2 Cost Function and Probability of Failure at Optimum Design (50 trials) 

Methods 
Cost 

(Median) 
1FP , % 

(Median) 
2FP , % 

(Median) 

# of 
Violation 

G1 

# of 
Violation 

G2 

Dynamic Kriging 1.9164−  2.5982 2.3232 1 28 
Constant Safety 

Margin 1.8809−  1.9002 0.9519 0 1 

Weighted Kriging 
Variance 1.8981−  2.1352 1.6287 0 3 
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In Table 8.2, when using dynamic Kriging itself, the optimum designs violate the 

probabilistic constraint G2 28 times out of 50 trials. It shows that the dynamic Kriging 

prediction either underestimates the true response or overestimates the true response at 

rough 50% chance for each way. By using the weighted Kriging variance for the 

conservative surrogate model, the obtained optimum designs violate the probabilistic 

constraint G2 3 times. As a comparison, if the constant safety margin is used for 

conservative surrogate model, the number of violation for G2 is 1 time out of 50 trials but 

at the same time the median cost function value at the optimum (which is 1.8809− ) is 

larger than the one by using the weighted Kriging variance (which is 1.8981− ). It is 

worth mentioning that since the conservativeness level in this example is set to be 90%, 

therefore both the constant safety margin approach and the weighted Kriging variance 

approach satisfy the conservativeness, and the weighted Kriging variance approach 

provides a better optimum in terms of the cost function value. 
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CHAPTER IX  

CONCLUSION, RESEARCH PROGRESS AND FUTURE WORK 

9.1 Conclusion 

Reliability-based design optimization (RBDO) has been widely used recently for 

design of engineering applications. To achieve the optimal design with the target 

reliability of the performance function, the optimization algorithm and reliability analysis 

are implemented.  However, in most large-scale complex engineering applications, the 

computer simulation of the performance function is compute-intensive and the sensitivity 

of the performance function is not available or extremely difficult to obtain. In such 

cases, the surrogate model is commonly used to represent the performance function as 

well as its sensitivity with respect to the design variables. However, traditional surrogate 

modeling methods are not accurate enough for reliability analysis use in RBDO; therefore 

the dynamic Kriging (DKG) is developed. In this DKG method, the traditional Kriging 

method is improved by using the pattern search for the correlation parameter estimation 

to obtain the accurate optimum; and selecting the best basis functions by a genetic 

algorithm based on a new accuracy criterion. A comprehensive study has been carried out 

to demonstrate that the DKG method can outperform other existing surrogate modeling 

methods in terms of generating an accurate surrogate model. 

Based on the proposed DKG method, a sequential sampling method, that uses the 

bandwidth of the confidence interval of the surrogate model from the DKG, is applied 

and integrated with the DKG method to efficiently generate the accurate surrogate model. 

Numerical examples show that the sequential sampling method can lead to the accurate 

surrogate model faster than the Latin hypercube sampling does. 
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With the proposed sequential-sampling-based dynamic Kriging (SS-DKG) 

method, the MPP-based RBDO and the sampling-based RBDO using the surrogate model 

are carried out. In the MPP-based RBDO, both the performance function value and its 

sensitivity with respect to the design variables are approximated by the surrogate model 

from the SS-DKG. Three efficiency strategies are applied to efficiently and accurately 

generate the surrogate model in a local window at the current design for reliability 

analysis.  

Numerical examples show that the MPP-based RBDO using the surrogate model 

can achieve the same RBDO optimum compared with the MPP-based RBDO using the 

analytical function and sensitivity. In the sampling-based RBDO, only the performance 

function value is approximated by the surrogate model from the SS-DKG. The sensitivity 

of the probabilistic constraint is obtained by using the scoring function and the MCS 

based on the surrogate model obtained by the SS-DKG. Three efficiency strategies are 

proposed to efficiently and accurately generate the surrogate model. Numerical examples 

show that the sampling-based RBDO using surrogate model can achieve a better RBDO 

optimum compared with the MPP-based RBDO using the analytical function and 

sensitivity since it does not require the approximation in probability of failure calculation, 

whereas FORM/SORM/DRM uses the approximation of the performance function to 

calculate the probability of failure in MPP-based RBDO. 

To ensure the practical application of the sampling-based RBDO using surrogate 

model, a high performance computing (HPC) method by using the parallel computing is 

proposed. Three parallelization procedures in the sampling-based RBDO are applied: (1) 

the parallelization of the genetic algorithm in the DKG, (2) the parallelization of the 
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surrogate modeling for multiple constraints, (3) the parallelization of the MCS in 

reliability analysis. Numerical example shows that the computational time is significantly 

reduced after applying the HPC to the sampling-based RBDO using surrogate model. 

When the number of samples used for surrogate modeling is small, the 

uncertainty from the surrogate model needs to be considered in RBDO using surrogate 

model to assure the obtained optimum satisfy the probabilistic constraints. A conservative 

surrogate model using the weighted Kriging variance is proposed. The weight assigned to 

each sample is calculated based on the proposed importance function according to the 

relative changes in AICc when current sample is omitted in surrogate modeling. By 

applying the proposed conservative surrogate model for sampling-based RBDO, the 

obtained design optimum can satisfy the probabilistic constraints and achieve a better 

optimum in terms of the cost function, compared to the optimum obtained by the constant 

conservative surrogate model. 

9.2 Research Progress 

The major of this study is to develop an accurate surrogate modeling method and 

apply it to the RBDO. Six tasks have been defined to meet the objective of the study: 

Task 1:  Development of method for accurate surrogate modeling; 

Task 2: Development of method for sampling method which can be integrated into 

the surrogate modeling method; 

Task 3:  Development of method for MPP-based RBDO using surrogate model; 

Task 4:  Development of method for sampling-based RBDO using surrogate 

model;  
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Task 5:  Development of method using high performance computing for RBDO 

using surrogate model; 

Task 6: Development of method for generating conservative surrogate model for 

sampling-based RBDO. 

9.3 Future Work 

The SS-DKG method developed in this work can efficiently achieve an accurate 

surrogate model as demonstrated and has been successfully applied to sampling-based 

RBDO. However, in the sampling-based RBDO, the surrogate model is used to estimate 

the limit state of the performance functions while the SS-DKG method predicts the true 

function on the entire domain. Thus, when the number of dimension of the design 

problem increases, the computational effort increases exponentially and may become 

unaffordable. To efficiently characterize the limit state of the performance function, a 

classification method may perform more efficient than the SS-DKG method does. The 

support vector machine (SVM) is a popular method when dealing with classification 

problem. However, current SVM method is not accurate due to the non-used true 

function response information, whereas the performance of the prediction accuracy 

strongly depends on the sample profile. Therefore, a more accurate SVM method that can 

use the true function response and sequentially insert samples in the limit state region 

needs to be developed. In future work, more work should be focused on the development 

of the new SVM method to improve the efficiency of using the surrogate model for 

sampling-based RBDO. 
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