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ABSTRACT 

Recent years have marked growing interest in energy conservation. Energy consumption 

by industrial systems has received attention of academic and industrial communities.  

The research reported in this Thesis considers energy efficiency of two industrial systems, 

the heating, ventilating and air-conditioning (HVAC) system, and the wastewater pumping 

system. The dynamic, nonlinear, and multivariate nature of these systems offer challenges in 

modeling and performance optimization.  

Traditional modeling approaches usually use physics-based equations and mathematical 

programming, with limitations in modeling complex systems and their optimization. As an 

emerging science with an abundance of successful applications in industrial, business, medical 

areas, data mining has proven powerful in modeling nonlinear systems. Successful applications 

of data mining algorithms, such as multilayer perceptron neural network, support vector machine, 

and boosting tree have been reported in the literature of complex system modeling. 

Computational intelligence is an emerging and promising area applicable to solving 

difficult optimization problems, for instance, mixed integer nonlinear programing problems. 

Computational intelligence algorithms provide optimal or near-optimal solutions in limited 

computation time. This Thesis focuses on employing computational intelligence algorithms to 

generate optimal control strategies for industrial systems. The main contribution of this research 

is in utilizing computational intelligence to solve mixed integer nonlinear programming 

optimization models built by data mining algorithms. The research reported in the Thesis offers a 

unified framework of applying data mining and computational intelligence to real-world system 

control and optimization.   
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CHAPTER 1  

INTRODUCTION 

Due to the increasingly growing energy use, energy savings are important. This research 

is aimed to apply data mining and computational intelligence to optimal control of high energy-

consuming facilities. Among those facilities are HVAC systems in commercial buildings and 

pumping systems in wastewater treatment plants.  

HVAC systems are designed to provide a comfortable thermal environment for occupants 

in buildings while meeting the requirements of indoor air qualities in all thermal zones. They are 

widely used in residential and commercial buildings all over the world. According to [1, 2], 

HVAC systems use as much as 60% of the energy consumed in buildings, and they account for 

approximately 30% of the total energy consumption in the United States. Therefore, the energy 

efficiency of HVAC systems is being considered as a vehicle for accomplishing energy savings. 

On the other hand, significant energy savings could be achieved in pumping systems in 

wastewater treatment plants (WWTPs). It has been reported that WWTPs are intensively energy-

consuming facilities with 4% of the US electricity being used to move and treat 

water/wastewater [3], and more than 80% of the energy costs for WWTPs are consumed by 

pump and blowers systems [4, 5].  

Optimizing both systems require trade-offs between seeking energy savings and 

maintaining system performance. The performance of the systems defines the constraints of 

optimization models. Solely minimizing energy consumption while ignoring the performance 

requirements is impractical and of little usefulness in system control. At this point, optimal 

control strategies in HVAC systems are those leading to energy savings while maintaining 

thermal comfort in buildings. While in pumping systems, optimal control settings are those 

provide system capacity to meeting workloads and reduce energy cost at the same time. This 

thesis emphasizes formulating comprehensive optimization framework for system modeling and 

optimization. 
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1.1. Review of methodologies of modeling and optimization 
HVAC systems 

Traditional approaches for modeling HVAC systems involve mathematical models or 

simulation software. Mathematical models are often generated from fundamental laws of energy, 

mass flow, heat transfer, and so forth.  

Lu et al. [6, 7] formulated a mixed-integer, non-linearly-constrained model for 

minimizing the energy consumption of HVAC systems. Wang et al. [8] used energy balance and 

heat transfer principles to develop a simple, yet accurate engineering cooling coil unit model for 

control and optimization of HVAC systems. Experiments showed that the model is robust and 

gave a better match to real performance over the operating range. Zhang et al. [9] developed a 

system model by incorporating solar air and water heating, a ventilated photovoltaic array, 

biomass boiler and active and passive thermal storage and utilized the proposed optimization 

algorithm to devise optimal or near-optimal supervisory control strategy for the system. Engdahl 

and Johansson [10] minimized the energy use of a system with variable air volumes by setting 

the supply air temperature optimally in response to load, fan power, coefficient of performance 

of the chiller, outdoor temperature, and outdoor relative humidity. They showed that the 

recommended control strategy was more energy-efficient than requiring a constant temperature 

for the supply air. Yao et al. [11] proposed specific energy models of the primary equipments in 

HVAC systems by using classic control theory. Energy savings of variable-air-volume system 

was compared to constant-air-volume system and fan-coil system by a simulation case. Yu et al. 

[12] discussed mathematical modeling with two different approaches, block-wise Simulink and 

bond graph for fault detection and diagnosis with objective of energy consumption reduction.  

Mathematical modeling approaches are generalized for wide application once 

assumptions are met in real applications. However, those models are always complex and 

nonlinear, which makes them computationally expensive and difficult for real-time 

implementation [13]. Simulation models were built and simulation program and packages were 

widely studied in literature. Some widely used programs are TRNSYS [14], HVACSIM+ [15], 

SIMBAD [16], and EnergyPlus [17]. Zhou et al. [17] developed a new simulation module on the 
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basis of the building energy simulation program, EnergyPlus, to evaluate the energy performance 

of the VRV air-condition system. Crawley et al. [18] comprehensively reviewed over 20 major 

building energy simulation programs and compared their features and capabilities.  

1.2. Review of methodologies of modeling and optimizing 
pumping systems 

Modeling approaches for pumping systems developed to date are predominantly physics 

and mathematical programming based. Research on pumping systems has been reported in the 

literature. Ormsbee and Lansey [19] reviewed different models and approaches proposed for 

water-supply pumping systems. Bechwith and Wong [20] used a genetic algorithm to solve the 

pump scheduling problem in a multi-source water supply system with multiple tanks. Barán et al. 

[21] utilized a mass balance model and evolutionary computational algorithms to solve a multi-

objective, pump-scheduling problem by minimizing four types of costs while satisfying the water 

demand and other constraints. More recently, Yang and Børsing [22] developed a mixed-integer, 

non-linear, programming model for a simple, multi-pump, boosting system that included three 

variable speed pumps, a simple water circular loop, and a storage tank. Wang et al. [23] modeled 

pump scheduling in a water distribution system as a bi-objective optimization problem by taking 

into account pump operational costs and the land subsidence issue to reduce costs and address 

environmental concerns. The results obtained by the proposed genetic algorithm-based method 

have resulted in a wide range of schedules.  

Kevin et al. [24] presented a methodology to generate pump schedules for small or 

midsize systems that produces the minimum energy cost while limiting the number of pump 

switches. Magatao et al. [25] studied scheduling for real-world pipeline applications. They 

proposed a mixed-integer linear programming model with uniform time discretization to 

optimize the pipeline operations and minimize the operational cost. Farmani et al. [26] 

developed a multi-objective optimization model that included cost, water quality, and reliability 

objectives in a water distribution network. The pipe network, pipe sizes, and pump operation 
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schedules were optimized. Although the results reported in Wang et al. [23] showed significant 

potential to improve the efficiency of multi-pump systems, the implementation horizon was 

limited by the static model of the pumps. 

1.3. Review of data mining and computational intelligence in 
system modeling and optimization 

Data mining approaches have gained attention in recent years. It enables establishing 

accurate underlying patterns of complex systems and processes from complicated, noisy, and 

imprecise data sets. It has proven to be a promising approach for modeling complex, dynamic, 

and non-linear systems. Rygielski et al. [27] reviewed  the evolution and applications of data 

mining, and compared neural networks and chi-square automated interaction detection (CHAID) 

in dealing with customer relationship management problems. Harding et al. [28] reviewed 

applications of data mining in manufacturing engineering, customer relationship management, 

information integration, and standardization. Zhang et al. [29] proposed a modified k-means 

clustering algorithm to develop one vibration monitoring model based on SCADA data for the 

wind turbine monitoring. Kusiak et al. [30] presented a data-driven approach to optimize the 

HVAC system. A neural network algorithm was used to build predictive model and a multi-

objective PSO algorithm was utilized to optimize overall energy optimization model. Moreover, 

data mining has widely applied in wind energy [31-33], HVAC systems [34, 35], and other areas 

[36-38]. 

On the other hand, computational intelligence have rapidly developed and been widely 

applied in tackling optimization problems in business, economics, industry, and manufacturing, 

engineering after first introduced by Bezdek [39]. The increasing complexity of nowadays real 

problems poses great challenges in solving these problems for optimal solutions, which makes 

traditional exact algorithms , like branch-and-bound, often perform poorly to obtain a 

satisfactory solution within a reasonable amount of time. Computational intelligence mainly 
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includes paradigms [40], like neural network [41, 42], evolutionary computing [43, 44], swarm 

intelligence [45], fuzzy system [46] and so forth [47]. 

Classical intelligent algorithms, such as genetic algorithms (GAs), particle swarm 

optimization (PSO), simulated annealing (SA), tabu search (TS), have shown great potential and 

remarkable successes in energy optimization domain [48-51]. At the same time, new intelligent 

algorithms, like harmony search (HS) [52], firefly algorithm (FA) [53], bat-inspired algorithm 

(BA) [54], are continuously developed for optimization.  

In this research, a framework of applying data mining and computational intelligence to 

system modeling and optimization is discussed. Data-driven models are first built by data mining 

algorithms. Then optimization model is established by combining data-driven models and related 

constraints. Computational intelligence algorithms are designed to solve overall optimization 

model for optimal system settings or operational strategies. 

1.4. Thesis structure 

The structure of this thesis is organized as follows. Chapter 1 gives reviews on traditional 

methodologies in modeling HVAC system and wastewater pumping systems, and the proposed 

data mining and computation intelligence for system modeling and optimization. In Chapter 2, 

energy optimization of a wastewater pumping system is studied. A neural network algorithm is 

proposed to model the performance of the system, and a greedy electromagnetism-like algorithm 

is designed to solve the mixed integer nonlinear programming model. Chapter 3 applies a data 

mining approach to model the energy consumption of an air handling unit in a HVAC system. 

Then a dynamic, penalty-based, electromagnetism-like algorithm is proposed to solve the energy 

optimization model to generate optimal settings for two set points of the system. In Chapter 4, 

the multi-layer perceptron neural network is to model a multi-zone HVAC system. The Firefly 

Algorithm is then utilized to solve the model with respect to energy savings as well as thermal 

comfort. Chapter 5 summarizes a practical implementation to demonstrate how data mining and 
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computational intelligence are combined in HVAC system optimization. Chapter 6 concludes the 

thesis and discusses future research directions. 
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CHAPTER 2 

DATA-DRIVEN PERFORMANCE OPTIMIZATION OF A WASTEWATER PUMP 
SYSTEM 

2.1. Introduction 

In this chapter, performance of a pumping system in the preliminary treatment process of 

a municipal wastewater treatment plant is optimized by improving the control strategies. Energy 

consumption and outflow rate of the pumping system are used to assess the performance and are 

modeled by a data mining approach. A mixed-integer nonlinear programming (MINLP) problem 

composed of data-driven models and related constraints is developed to produce strategies for 

improving performance of the pump system. The objective of the proposed MINLP model is 

minimizing energy consumption of the system while maintaining its pumping performance. 

Since data driven models are nonlinear and nonparametric, solving the MINLP by conventional 

optimization tools is challenging. In this research, a greedy electromagnetism-like (GEM) 

algorithm is proposed to solve the model. Three cases are studied to demonstrate the 

improvement of the pump system performance. The computational results show that the energy 

consumption of the pumping system can be significantly reduced by the proposed control 

strategies. 

2.2. Pump System Description 

The pumping system studied in this research operates at the Wastewater Reclamation 

Facility (WRF) located in Des Moines, Iowa. The pumping station includes six 55 MGD-class 

variable-speed wastewater pumps, five mechanical bar screens, and six aerated grit chambers, as 

illustrated in Figure 2.1. The preliminary treatment process involves collecting wastewater from 

sewers and removing debris and large particles from the wastewater. The bar screens in Figure 

2.1 remove paper, sticks, and other solids that could damage the plant equipment. Then, the 

pumping system conveys the influent into aerated grit chambers for grit removal. The pumping 
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system is the major energy consumer in the wastewater treatment process. Improving 

performance of the pump system by optimizing its energy consumption is desired and beneficial. 

Raw 
wastewater 

junction 
chamber

Bar 
screen

Aerated grit 
chamber

Pumping system

Primary 
clarifier  

Figure 2.1 Schematic diagram of wastewater preliminary                                                    
treatment process 

Six pumps can be operated under different configurations to meet the workload demand. 

Currently used control rules recommended by the pump supplier are based on the variation of the 

chamber level, denoted as L. Different rules are used to response to different chamber level, 

which is aimed to be controlled within a required range. Two issues pertaining to the 

optimization of the pumps will be investigated. First, the energy consumption should be taken 

into consideration while controlling the pumps. The second issue is related to the performance of 

each pump. When initially installed, the six pumps were identical and thus had the same 

mechanical and hydraulic performances. However, the different workload assigned to the pumps 

and their maintenance has led to differentiation in the pump dynamics. Therefore, each pump has 

acquired its own performance curve. Moreover, the head phenomenon [21-23] differentiates the 

performance of the pumping system for different pump configurations (sets of pumps operating 

at the same time). The original rules for selecting the pump configurations neglect these facts, 

and thus energy saving opportunity is missed. 
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The selection of a pump configuration and its timing calls for the optimization of the 

pump schedules. The pump schedules should consider the best pump configuration and the 

optimal speeds for the workload to minimize the energy consumption. To achieve this goal, 

accurate pump models are needed. Because of the complex, dynamic, and highly nonlinear 

nature of the pumping system, establishing accurate pump models to optimize the performance 

of the pumping system is a challenge. It is accomplished with a data-driven approach in this 

research. 

2.3. Model Development and Validation 

 2.3.1. Data description and model formulation 

The performance of a pumping system can be evaluated using two metrics: the energy it 

consumes and the flow rate it provides. Two types of models, the energy consumption model and 

wastewater outflow rate model, are built based on the available datasets. The datasets used in this 

paper were collected from July 20, 2010, to January 31, 2012. The parameters used in this 

research are the speed of each pump, energy consumption of the pumping system, wastewater 

outflow rate, and junction chamber level. The values of these parameters are recorded every 5 

min and   averaged over 15-min time intervals. Models developed based on 15-min data are more 

meaningful in the study of investigating the operational schedules. The pump speed is measured 

as a percentage of the nominal speed (500 RPM). The maximum pump output is around 50 MGD, 

and it could be increased to 55 MGD at a high wet well elevation.  

In total, there are 63 (26-1) different configurations for the 6 pumps. Because the pumps 

are controlled using variable frequency drives (VFDs), pumping begins only if the pump 

achieves at least 80% of its nominal speed to overcome the head pressure of the system. The 

pump is thus considered not in work when its speed is lower than 80% of the nominal speed, i.e., 

a speed value below 80% is disregarded. To ensure a dataset of sufficient size for the data mining, 

pump configurations with more than 300 data points are considered in this research. The raw 
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data are preprocessed for abnormal, noisy, erroneous, missing, and irrelevant data. The 

preprocessed dataset for each pump configuration is then divided into training (75%) and test 

(25%) sets. The training data sets are used to build the energy consumption and wastewater 

outflow rate models using data-mining algorithms. The test data sets are then utilized to evaluate 

the accuracy and robustness of the developed models. Table 2.1 summarizes all the 24 pump 

configurations considered in this research.  

Table 2.1 Different pump configurations and corresponding                                                   
dataset sizes 

Pump Configuration 
Number of Data Points 

Overall Set Training Set Test Set 
1 800 600 200 
2 800 600 200 
3 800 600 200 
4 800 600 200 
5 800 600 200 
6 800 600 200 

1, 3 786 590 196 
1, 4 695 522 173 
1, 5 620 465 155 
1, 6 478 359 119 
2, 4 447 336 111 
2, 6 1080 810 270 
3, 6 872 654 218 
4, 6 3451 2589 862 
5, 6 1602 1202 400 

1, 4, 5 407 306 101 
2, 4, 5 354 266 88 
2, 4, 6 584 438 146 
2, 5, 6 1078 809 269 
3, 4, 5 485 364 121 
3, 4, 6 347 261 86 
3, 5, 6 479 360 119 

1, 3, 4, 5 329 247 82 
2, 3, 4, 5, 6 729 547 182 
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The energy consumption model and outflow rate model use the pump speeds as inputs. 

The respective outputs are the energy consumption of the pumping system and the wastewater 

outflow rate of the system. The two models are presented in (2.1) and (2.2). 

( ) ( ) ( ) ( )( )i iE t f tπ πω=
                                                              (2.1) 

( ) ( ) ( ) ( )( )i iQ t f tπ πω=
                                                             (2.2) 

where ( )iπ  is i-th pump configuration, e.g., ( )1 [1]π = , ( )7 [1,3]π = , ( )24 [2,3,4,5,6]π = , and so 

on; ( ) ( )i tπω
 is the pump speed vector for the i-th configuration, e.g., ( ) ( ) ( ) ( ) ( )1 4 516 [ , , ]t t t tπω ω ω ω=

 ; 

( ) ( )iE tπ  is the energy consumption;  and ( ) ( )iQ tπ is the outflow rate of the pumping system. 

Although the chamber level impacts the head pressure of the pumps, and thus impacts the 

pump efficiency, it is not considered as an input for the data mining models. This is mainly 

because the level changes over a fairly small range and sometimes remains constant in 15-min 

data, which implies that this parameter would provide limited information to the models.   

2.3.2. Model validation 

In this research, a multi-layer perceptron (MLP) neural network is utilized to extract 

models of the energy consumption and flow rate for each pump configuration. MLP models are 

powerful tools with applications to classification, regression analysis, time series prediction, and 

other science and engineering areas [55-57]. The following four metrics ((2.3)–(2.6)) are used to 

assess the performance of the MLP derived models: the mean absolute error (MAE), standard 

deviation of the absolute error (SdAE), mean relative percentage error (MRPE), and standard 

deviation of the relative percentage error (SdPE).  

1

1 ˆ
n

i i
i

MAE y y
n =

= −∑                                                                    (2.3) 

( )2

1

ˆ

1

n

i i
i

y y MAE
SdAE

n
=

− −
=

−

∑
                                                     (2.4) 

1

ˆ1 100%
n

i i

i i

y yMRPE
n y=

−
= ×∑                                                          (2.5) 
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n

=

 −
− 

 =
−

∑
                                               (2.6) 

where iy  is the value observed by the model, ˆiy  is the predicted value, and n is the size of the 

training or test data set.  

Table 2.2 summarizes the accuracy of the models. With the exception of configuration (2, 

4), the accuracies of the energy consumption models are above 95%. Meanwhile, the outflow 

rate models achieve accuracies of at least 95%, except for configurations (2, 4), (3, 6), and (2, 3, 

4, 5, 6). The accuracies of all of the MLP models are higher than 90%. Configurations (1, 3), (1, 

4, 5), and (1, 3, 4, 5) are used to demonstrate the performance of the energy consumption and 

outflow rate models. Figures 2.2–2.4 depict the test results of the energy consumption models 

and Figures. 2.5–2.7 demonstrate the test results of the outflow rate models for the three pump 

configurations. Based on the comparisons, the predicted values closely follow the patterns of the 

observed values for the energy consumption and outflow rate models. The models are accurate 

enough to be used in the optimization discussed in the next section. 

Table 2.2 Test results of energy consumption and the wastewater outflow                                 
rate models derived using MLP algorithm 

Pump Configuration 
Energy Consumption Model Wastewater Outflow Rate Model 

MAE SdAE MRPE SdPE MAE SdAE MRPE SdPE 
1 8.27 6.60 0.02 0.01 0.98 0.82 0.02 0.02 
2 7.44 5.85 0.02 0.02 0.77 0.46 0.02 0.01 
3 7.44 10.60 0.02 0.02 0.86 1.17 0.02 0.03 
4 9.00 5.10 0.02 0.01 1.35 0.84 0.02 0.02 
5 5.34 6.17 0.01 0.01 0.95 0.81 0.02 0.02 
6 9.97 12.09 0.02 0.03 1.39 1.30 0.03 0.02 

1, 3 8.96 11.02 0.01 0.01 2.29 5.64 0.03 0.09 
1, 4 5.48 4.76 0.01 0.01 1.20 0.83 0.01 0.01 
1, 5 16.66 19.69 0.02 0.02 1.84 3.71 0.02 0.05 
1, 6 14.25 10.35 0.03 0.02 1.36 1.25 0.02 0.02 
2, 4 50.90 19.67 0.09 0.04 4.50 1.81 0.07 0.03 
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Table 2.2-continued 

2, 6 16.65 18.43 0.03 0.03 2.28 2.26 0.04 0.03 
3, 6 14.90 11.52 0.03 0.02 4.25 6.89 0.07 0.12 
4, 6 14.64 11.25 0.02 0.02 3.28 6.64 0.04 0.11 
5, 6 15.16 14.18 0.03 0.03 3.27 4.51 0.05 0.08 

1, 4, 5 11.22 10.81 0.01 0.01 4.98 8.64 0.03 0.05 
2, 4, 5 8.79 6.69 0.01 0.01 1.37 1.33 0.01 0.01 
2, 4, 6 12.02 9.85 0.01 0.01 2.64 2.30 0.02 0.02 
2, 5, 6 16.37 14.34 0.02 0.02 2.08 2.05 0.02 0.02 
3, 4, 5 13.01 21.45 0.01 0.02 4.13 2.97 0.04 0.03 
3, 4, 6 17.14 10.98 0.02 0.01 2.43 1.52 0.02 0.01 
3, 5, 6 16.89 13.31 0.02 0.01 2.99 1.61 0.03 0.02 

1, 3, 4, 5 15.44 9.90 0.01 0.01 2.10 1.62 0.01 0.01 
2, 3, 4, 5, 6 77.39 123.80 0.04 0.06 13.67 11.25 0.06 0.05 

 

Figure 2.2 Observed and MLP predicted energy for configuration (1, 3) 
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Figure 2.3 Observed and MLP predicted energy for configuration (1, 4, 5) 

  

Figure 2.4 Observed and MLP predicted energy for configuration (1, 3, 4, 5) 
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Figure 2.5 Observed and MLP predicted outflow rate for configuration (1, 3) 

 

Figure 2.6 Observed and MLP predicted outflow rate for configuration (1, 4, 5) 

 

Figure 2.7 Observed and MLP predicted outflow rate for configuration (1, 3, 4, 5) 
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2.4. Overall Energy Optimization Model 

The energy consumed by the pumping system is impacted by the system operations, i.e., 

pump configuration and the pump speeds. An optimal pump schedule includes the best pump 

configurations and the best pump speeds over time horizon T. In this research, T = 100 time 

increments, each 15 min long representing an optimization stage ( 15t∆ = ). At the beginning of 

each optimization stage, the pump configuration and pump speeds are determined based on the 

wastewater inflow rate. In practice, the inflow rate is difficult to measure. However, it can be 

computed according to the mass balance equation (2.7). 

( ) ( )( ) ( ) ( ) ( )( )iA L t L t t t q t Q tπ− − ∆ = ∆ −                                                 (2.7) 

where A is the bottom area of the chamber (here assuming A = 10000 ft2), ( )L t  is the junction 

chamber level corresponding to the current time increment, ( )L t t− ∆  is the junction chamber 

level at the previous time increment (15 min ago), ( )q t  is the inflow rate, and ( ) ( )iQ tπ  is the 

outflow rate of the pumping system. Because the junction chamber level and outflow rate of the 

pumping system are measured, the inflow rate can be calculated. Therefore, in this paper it is 

assumed that the inflow rate is known at each time increment.  

The objective of the model is to minimize the energy consumed by the pumping system 

in the planning horizon T (see (2.8)). 

( ) ( )min i i
t T i I

x E tπ
∈ ∈
∑∑                                                                    (2.8) 

Two decision variables are introduced. The first is a binary variable, denoted as xi, that is 

used to select a pump configuration. If pump configuration ( )iπ  is employed, xi = 1; otherwise xi 

= 0.  The second decision variable is the pump speed vector, ( ) ( )i tπω
 , for the i-th pump 

configuration. 

Several constraints are considered in the model. First, at each time increment, only one 

pump configuration can be chosen, as expressed in (2.9). 

1i
i I

x
∈

=∑                                                                             (2.9) 
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Second, during the planning horizon T, the chamber level should be kept within an 

acceptable range, as expressed in (2.10). 

( )lb ubL L t L≤ ≤                                                                       (2.10) 

where Llb and Lub are the lower and upper bounds of the level, respectively. The chamber level is 

defined by transforming mass balance equation (2.7) to (2.11).  

( )
( ) ( ) ( )( )

( )it q t Q t
L t L t t

A
π∆ −

= + − ∆                                                     (2.11) 

Another constraint is related to the pump speeds. A pump is considered as working when 

its speed is in the range [80%, 100%]. However, in the industrial dataset available for this 

research, the number of data points that included values near 80% and 100% was small. This 

may lead that it is hard to capture the patterns near these speeds. To ensure the accuracy of the 

models, the pump speed was restricted to the range in (2.12). 

[ ]0.85,0.95ω∈                                                                        (2.12) 

Last, two types of constraints learned by the data-mining algorithm are included in the 

model. One is the energy consumption constraint, and the other is the flow rate constraint, as 

shown in (2.13) and (2.14). 

( ) ( ) ( ) ( )i i

lb ub
iE E t E

π ππ≤ ≤                                                                  (2.13) 

( ) ( ) ( ) ( )
lb ub

i i iQ Q t Qπ π π≤ ≤                                                                  (2.14) 

where 
( )i

lbE
π

 and 
( )i

ubE
π

 are the minimum and maximum energy consumptions of the i-th pump 

configuration. Similarly, ( )
lb

iQπ   and ( )
ub

iQπ  are the lower and upper bounds of the flow rate for the i-

th pump configuration.  

By combining the energy consumption and outflow rate models with the related 

constraints, the overall mixed integer nonlinear model for optimizing the pump energy is 

established, expressed in (2.15). 
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                                           (2.15) 

2.5. Proposed Greedy Electromagnetism-like Algorithm 

In this section, a greedy electromagnetism-like algorithm, on the strength of cardinal 

electromagnetism-like algorithm (EM) [58], is proposed to solve the MINLP model in this 

research. The EM algorithm was first introduced by Birbil and Fang. Research has demonstrated 

that the EM algorithm outperforms traditional intelligent algorithms algorithm in optimization 

[59], neural network training [60], production scheduling [61], and other applications [62, 63]. 

However, little progress, to the best of our knowledge, has been made in applying the EM 

algorithm to solve MINLP models. The basic concepts and procedure of the cardinal 

electromagnetism-like algorithm is first introduced. The proposed greedy EM algorithm is then 

designed for solving the model. 

2.5.1. Theory of electromagnetism-like algorithm 

The EM algorithm utilizes an attraction-repulsion mechanism to move sample points 

toward optimality. The algorithm starts with sample points (a population) selected from a 

feasible space and continues its iterative process until a stopping condition (e.g., the maximum 

number of iterations) is met. Two steps are performed at each iteration of the algorithm. In the 

first step, each point is assigned a charge related to the value of the objective function, according 

to (2.16). Points that improve the values of the objective function are assigned higher charges. 
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The charge determines the magnitude of attraction of the point relative to the other points in the 

population, with a better objective function value leading to a higher magnitude of attraction. 

The force exerted on a point via other points is computed according to (2.17), and the total force 

vector is obtained by adding these attractive–repulsive forces (2.18).  

( ) ( )( )
( ) ( )( )1

exp ,   1,  2,  ,  
i best

i
m j best
j

n f x f x
q i m

f x f x
=

 − −
 = =
 − ∑



                                      (2.16) 

( ) ( ) ( )

( ) ( ) ( )
, ,

i j
j i j i

j i

i
j i j

i j j i
j i

q qx x if f x f x
x x

F j i i
q qx x if f x f x

x x


− < −= ≠ ∀

 − ≥ −

                               (2.17) 

, 1,2, ,
m

i i
j

j i
F F i m

≠

= =∑                                                       (2.18) 

( )

( )

0

0

i
i i ik
k k k ki

i
k i

i i ik
k k k ki

Fx u x if F
F

x
Fx x l if F
F

λ

λ


+ − >

= 
 + − ≤


                                            (2.19) 

Then, each point moves to a new location in the direction of the total force vector (2.19). 

In expressions (2.16)–(2.19), m is the population size; n is the dimension; and k is the dimension 

index of the model. 

The attraction-repulsion mechanism is captured in (2.17), implying that between two 

points, the point with the more favorable objective function value attracts the other one. 

Conversely, the point with the less favorable objective function value repels the other one. For 

example, consider the three points (1, 2, and 3) in Figure 2.8. Point 1 denotes a less favorable 

solution than point 2, yet, a better one than point 3. According to (2.17), point 2 attracts point 1, 

represented by F21, while point 3 repels point 1, represented by F31. The total force, F1, exerted 

on point 1 is the sum of the two force vectors, and point 1 moves in the direction of F1. 



20 
 

 
 

 

Figure 2.8 Attraction-repulsion mechanism 

 

Figure 2.9 Pseudo code of electromagnetism-like algorithm 

In the second step, a local search procedure is incorporated to improve the accuracy of 

the solution. A local refinement is applied, coordinate by coordinate, to the current best point in 

the population. Based on parameter δ, the maximum feasible step length, ( )( )max maxk k kS u lδ= − , is 

computed. Then, for each coordinate, a step length between 0 and 1 is randomly generated, and a 

new point is computed along that direction. If an improvement in the objective function is 

observed within the local search iterations (LSITER), the current best point is replaced, and the 
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search continues with the next coordinate. The pseudo code of the algorithm is illustrated in 

Figure 2.9. 

 

2.5.2 Proposed greedy electromagnetism-like algorithm 

The MINLP model (2.15) aims to select the optimal pump configurations and speeds, 

which is a two-level optimization. The upper level is to select the right pump configuration, and 

based on that the lower level optimization generates optimal pump speed settings. Considering 

that there are 100 optimization stages in model (2.15), it’s hard to obtain global optimal solution 

of the pump schedules. Thus, a greedy electromagnetism-like algorithm (GEM) is proposed to 

solve model (2.15) for each stage. Basically, at the beginning of optimization procedure, the 

algorithm will enumerate all the available pump configurations, and find the optimal pump speed 

settings regarding to the minimum energy consumption for each pump configuration.  After that, 

the best pump configuration and the corresponding speeds are selected from all the obtained 

pump configurations and speeds. The algorithm iteratively finds best pump configurations and 

speeds for every stage, which form the best pump schedule for the planning horizon. The pseudo 

code of the GEM is illustrated in Figure 2.10. 
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Figure 2.10 Pseudo code of the proposed greedy electromagnetism-like algorithm 

2.6. Computational Results and Analysis 

Three cases corresponding to low, medium, and high inflow rates are considered. The 

parameters for the EM algorithm are set for all cases as m = 50, MAXITER = 100, δ = 0.01, and 

LSITER = 10. The lower and upper bounds of the chamber level are Llb = 4 and Lub = 8 in all 

three cases. In each case, 100 data points (100 time increments) are considered, planning horizon 

T = 25 h since each data point represents 15 minutes long. In the low inflow rate case, the flow 
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rate ranges from 46 MGD to 61 MGD. Only pump 1 is used in this case. The inflow rate in the 

second case varies from 114 MGD to 139 MGD for the recorded pump configuration (2, 4, and 

6). For the high inflow rate case, the range of the inflow rate is between 155 MGD and 211 

MGD for the pump configuration (1, 3, 4, 5).  

The computational results are summarized in Table 2.3. Based on these results, the 

energy consumed by the pumping system can be reduced by 25%, 32%, and 17%, respectively, 

for the three different cases. Figures 2.11–2.13 compare the optimized and observed energy 

consumptions and chamber levels for the low inflow rate. Figures 2.14–2.16 compare the 

optimized and observed energy consumptions and chamber levels for the medium inflow rate. 

Finally, Figures 2.17–2.19 illustrate the optimized and observed energy consumptions and the 

chamber levels for the high inflow rate. As shown in Figures 2.13 and 2.16, the optimized low 

and medium inflow rate cases, the chamber is used to store wastewater until the upper bound of 

the chamber level is reached. Then, the wastewater is pumped out according the optimal pump 

schedule until the chamber level reaches the lower bound. Thus, the chamber becomes available 

for water storage. Accordingly, the wastewater outflow rate after the pumping system change 

fluctuates, as illustrated in Figures 2.12 and 2.15. In this way, the energy savings in the low 

inflow rate case comes from two parts, one is optimized pump speeds for each pump 

configuration, the other is the optimal pump schedules for the whole planning horizon. For the 

high inflow rate case, the flow rate behaves in a manner similar to the observed pattern (Figure 

2.18). This is mainly because the workload for the pumping system is always high. All of the 

inflow needs to be pumped out, and thus there is no buffer to store wastewater. In addition, there 

are few pump configurations that meet the workload because of the high inflow rate, which 

indicates there is little room for optimizing pump schedules. The energy savings for the high 

inflow rate case are mainly the result of the optimized pump speeds. 

The optimized pump schedule for the medium inflow rate case is listed in Table 2.4 in the 

Appendix. The optimized pump schedules for the other two cases are not included because of 

space limitations.  



24 
 

 
 

Table 2.3 Summary of computational results for three cases 

Case Low Medium High 
No. of Time Increments 100 100 100 

Observed Pump Configuration Pump 1 only Pumps 2, 4, 6 Pumps 1, 3, 4, 5 
Inflow Rate Range (MGD) 46–61 114–139 155–211 

Observed Total Energy Consumption (kWh) 11148.26 27461.49 37214.32 
Optimized Total Energy Consumption (kWh) 8324.50 18776.66 30972.69 

Energy Saving Amount (kWh) 2823.76 8684.83 6241.63 
Energy Saving Percentage (%) 25 32 17 

 

 

Figure 2.11 Observed and optimized energy consumptions for                                                             
low inflow rate 

 

Figure 2.12 Observed and optimized effluent flow rates for                                                                      
low inflow rate 

20

40

60

80

100

120

140

1 11 21 31 41 51 61 71 81 91En
er

gy
 c

on
su

m
pt

io
n 

(k
W

h)
 

Observed energy Optimized energy

0

20

40

60

80

100

1 11 21 31 41 51 61 71 81 91

O
ut

flo
w

 ra
te

 (M
G

D
) 

Observed outflow rate Optimized outflow rate



25 
 

 
 

 

Figure 2.13 Observed and optimized chamber levels for                                                                      
low inflow rate 

 

Figure 2.14 Observed and optimized energy consumptions for                                                
medium inflow rate 
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Figure 2.15 Observed and optimized effluent flow rates for                                                           
medium inflow rate 

 

Figure 2.16 Observed and optimized chamber levels for low inflow rate 
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Figure 2.17 Observed and optimized energy consumptions for                                                            
high inflow rate 

 

Figure 2.18 Observed and optimized effluent flow rates for                                                                
high inflow rate 
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Figure 2.19 Observed and optimized chamber levels for high inflow rate 

2.7. Summary 

Performance optimization of a pumping system in a wastewater treatment process for 

energy savings was presented. A neural network algorithm was utilized to extract two types of 

models, energy consumption and outflow rate, of each pumping system configuration. Accuracy 

of extracted models was validated by a test dataset. These two types of models were used to 

evaluate the performance of the pumping system.  

A mixed integer nonlinear programming model was then developed by incorporating the 

extracted data driven models and constraints. The objective was to optimize the energy 

consumption of the pumping system. The electromagnetism-like algorithm was applied to solve 

the MINLP model. The energy savings were demonstrated by solving the optimization model for 

three cases: low, medium, and high inflow rates. In each case, the optimization horizon of 100 

time increments (25 h) was considered. The computational experiments demonstrated that 

significant energy savings can be achieved by the modeling approach presented in this chapter.  
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2.7. Appendix 

Table 2.4 The observed and optimized pump schedules for the medium flow rate. 

Observed Pump Schedule  Optimized Pump Schedule  
Pump 

1 
Pump 

2 
Pump 

3 
Pump 

4 
Pump 

5 
Pump 

6 
Pump 

1 
Pump 

2 
Pump 

3 
Pump 

4 
Pump 

5 
Pump 

6 
- 90.74 - 93.49 - 94.32 - 89.31 - 86.26 94.72 - 
- 90.92 - 93.82 - 94.50 - - 85.00 94.37 94.99 - 
- 90.89 - 93.82 - 94.64 - - 85.80 94.99 95.00 - 
- 90.39 - 93.48 - 93.97 - - 85.00 95.00 94.55 - 
- 90.74 - 93.81 - 94.49 - - 85.00 95.00 94.55 - 
- 90.23 - 93.31 - 93.81 - 88.08 - 87.58 94.95 - 
- 90.41 - 93.32 - 94.32 - 92.14 - 85.00 95.00 - 
- 90.21 - 93.33 - 93.78 - 87.05 - 88.13 94.41 - 
- 90.22 - 93.32 - 93.97 - - 85.81 95.00 95.00 - 
- 90.23 - 92.97 - 93.98 - - 85.63 94.85 95.00 - 
- 90.24 - 92.99 - 93.82 - 90.04 - 85.09 94.07 - 
- 90.04 - 92.82 - 93.62 - - 85.81 95.00 95.00 - 
- 89.71 - 92.46 - 93.30 - 85.87 - 87.69 92.57 - 
- 89.02 - 92.12 - 92.97 - 90.87 - 85.00 95.00 - 
- 89.19 - 92.12 - 92.96 - 85.00 - 87.46 91.44 - 
- 89.36 - 92.10 - 92.97 - 85.43 - 87.28 91.68 - 
- 89.03 - 91.95 - 92.64 - 87.74 - 87.33 94.20 - 
- 88.84 - 91.78 - 92.60 - - 85.00 95.00 94.55 - 
- 88.68 - 91.28 - 92.29 - - 85.00 - - 93.62 
- 88.00 - 90.96 - 91.77 - 85.18 - 89.58 94.02 - 
- 87.81 - 90.76 - 91.40 - 85.72 - 87.47 92.17 - 
- 87.67 - 90.43 - 91.23 - 89.55 - 85.37 93.84 - 
- 87.28 - 90.26 - 90.87 - - 85.00 - - 92.20 
- 89.19 - 92.12 - 92.97 - - 85.56 95.00 94.86 - 
- 87.11 - 89.94 - 90.88 - - 85.00 - - 92.66 
- 87.13 - 90.09 - 90.72 - 88.08 - 85.24 92.12 - 
- 86.95 - 89.76 - 90.53 - - 85.00 - - 92.98 
- 86.26 - 89.42 - 89.87 - - 85.00 94.99 94.55 - 
- 86.43 - 89.08 - 90.02 - - 85.00 - - 91.95 
- 86.26 - 89.08 - 89.53 - 85.46 - 87.49 91.93 - 
- 86.25 - 89.43 - 90.01 - - 85.00 - - 92.93 
- 86.79 - 89.73 - 90.40 - 86.88 - 88.29 94.41 - 
- 84.72 - 87.53 - 88.33 - - 85.00 - - 91.59 
- 85.74 - 88.81 - 89.36 - - 85.49 95.00 94.83 - 
- 86.04 - 88.91 - 89.46 - 95.00 - - - 87.37 
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Table 2.4-continued 

- 86.06 - 89.24 - 89.68 - 86.87 - 87.23 93.09 - 
- 86.09 - 89.25 - 89.69 90.02 - - - 93.36 - 
- 86.43 - 89.43 - 90.03 - 85.21 - 89.41 93.86 - 
- 86.26 - 89.26 - 89.86 - - 85.00 - - 91.47 
- 86.61 - 89.42 - 90.19 - 87.39 - 86.02 92.27 - 
- 86.59 - 89.59 - 90.18 - - 85.00 - - 91.63 
- 86.95 - 89.92 - 90.72 - 87.68 - 86.13 92.70 - 
- 87.48 - 90.44 - 91.06 - - 85.00 - - 91.46 
- 87.46 - 90.26 - 91.04 - - 85.80 95.00 95.00 - 
- 87.66 - 90.42 - 91.41 - - 85.00 - - 91.32 
- 87.48 - 90.08 - 91.05 - - 85.00 95.00 94.55 - 
- 88.16 - 90.79 - 91.76 - - 85.00 - - 92.29 
- 88.00 - 90.79 - 91.59 - 85.00 - 88.54 92.62 - 
- 87.83 - 90.79 - 91.41 - - 85.00 95.00 94.40 - 
- 88.34 - 91.13 - 91.94 - - 85.00 - - 91.63 
- 88.32 - 91.28 - 92.26 - - 85.00 94.90 94.61 - 
- 88.85 - 91.79 - 92.27 - 86.33 - 85.46 90.64 - 
- 88.34 - 91.28 - 92.11 - 85.88 - 89.09 94.23 - 
- 89.03 - 91.97 - 92.79 - 87.59 - 87.57 94.33 - 
- 89.38 - 91.95 - 92.80 - - 85.00 - - 92.34 
- 89.03 - 91.79 - 92.63 - - 85.00 94.83 94.65 - 
- 88.85 - 91.62 - 92.48 - 85.77 - 88.45 93.33 - 
- 89.21 - 92.13 - 92.80 - 85.60 - 87.98 92.61 - 
- 89.38 - 92.30 - 93.31 - - 85.00 94.36 95.00 - 
- 90.06 - 92.99 - 93.64 - 86.29 - 88.72 94.25 - 
- 89.72 - 92.64 - 93.47 - - 85.00 94.87 94.64 - 
- 89.37 - 92.30 - 93.14 - - 85.00 95.00 94.55 - 
- 90.06 - 92.81 - 93.65 - - 85.00 - - 92.42 
- 90.06 - 92.63 - 93.48 - - 85.00 94.84 94.65 - 
- 89.89 - 92.63 - 93.48 - - 85.02 94.94 94.60 - 
- 89.71 - 92.80 - 93.48 - - 85.49 95.00 94.83 - 
- 89.89 - 92.64 - 93.48 - 86.27 - 89.30 95.00 - 
- 89.54 - 92.65 - 93.13 - 86.07 - 86.21 91.16 - 
- 89.54 - 92.48 - 92.97 - 85.82 - 87.67 92.49 - 
- 89.89 - 92.98 - 93.47 - 89.50 - 85.79 94.34 - 
- 89.54 - 92.47 - 93.14 - - 85.00 - - 91.17 
- 90.06 - 92.81 - 93.47 - - 85.80 95.00 95.00 - 
- 89.37 - 92.29 - 92.97 - 85.00 - 89.96 94.30 - 
- 89.19 - 91.78 - 92.80 - - 85.81 95.00 95.00 - 
- 88.86 - 91.96 - 92.63 - - 85.00 - - 91.54 
- 88.69 - 91.64 - 92.47 - - 85.79 94.99 95.00 - 
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Table 2.4-continued 

- 89.20 - 91.95 - 92.81 - 86.74 - 85.77 91.36 - 
- 89.03 - 91.79 - 92.47 - - 85.00 - - 92.43 
- 88.69 - 91.46 - 92.47 - - 85.00 94.36 95.00 - 
- 88.01 - 91.12 - 91.95 - 85.28 - 88.01 92.31 - 
- 88.50 - 91.63 - 92.08 - - 85.17 - - 92.00 
- 87.99 - 91.12 - 91.76 - - 85.81 95.00 95.00 - 
- 88.51 - 91.11 - 92.11 - - 85.00 - - 92.30 
- 88.52 - 91.46 - 92.30 - - 85.71 94.93 94.99 - 
- 88.35 - 91.29 - 92.13 - 86.87 - 86.47 92.24 - 
- 88.34 - 91.16 - 91.91 - - 85.00 - - 91.20 
- 88.16 - 91.12 - 91.92 - 85.63 - 88.12 92.79 - 
- 88.14 - 91.11 - 91.93 - - 85.28 94.71 94.90 - 
- 88.01 - 91.13 - 91.78 - - 85.00 - - 91.74 
- 87.63 - 90.61 - 91.21 - 87.24 - 85.47 91.54 - 
- 87.81 - 90.77 - 91.76 - 88.51 - 85.93 93.37 - 
- 87.82 - 90.94 - 91.60 - - 85.00 - - 92.88 
- 88.00 - 91.13 - 91.74 - 87.89 - 87.29 94.33 - 
- 88.33 - 91.28 - 91.93 - 87.53 - 87.66 94.38 - 
- 88.17 - 91.12 - 91.78 - - 85.00 - - 92.48 
- 86.94 - 89.74 - 90.55 - - 85.00 94.36 95.00 - 
- 88.67 - 91.45 - 92.27 - 88.65 - 85.40 92.89 - 
- 88.33 - 91.11 - 92.12 - - 85.00 - - 92.47 
- 88.33 - 91.45 - 92.27 - - 85.00 94.56 94.85 - 
- 88.50 - 91.28 - 92.29 - 86.91 - 88.55 94.78 - 
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CHAPTER 3 

MINIMIZING ENERGY CONSUMPTION OF AN AIR HANDLING UNIT WITH A 
COMPUTATIONAL INTELLIGENCE APPROACH 

3.1. Introduction 

The air handling unit (AHU) in an HVAC system impacts its overall performance. In this 

chapter, a data-mining approach is applied to optimize the energy consumption of an air handling 

unit. The goal of this research is to minimize the total energy consumption of an AHU system 

while maintaining the temperature and static pressure of the supply air at an acceptable level. 

Four controllable parameters, i.e., the flow rate of the chilled water supply, the position of the 

chilled-water coil valve, the temperature of the chilled water supply, and the speed of the supply 

fan speed were taken into consideration for optimal control. 

Considering the multi-dimensional, non-linear, mixed-variable, and constrained nature of 

HVAC systems, a data-mining approach was used to build separate energy consumption models 

for the chiller, the pump, and the supply and return fans. A non-linear model was developed to 

minimize the total energy consumption of the air-handling unit while maintaining the 

temperature of the supply air and the static pressure in a predetermined range. To obtain optimal 

setting for the AHU system, a dynamic, penalty-based, electromagnetism-like algorithm was 

designed to solve the proposed model. In all, 200 test data points were used to validate the 

proposed algorithm. The computational results showed that the total energy consumed by the air-

handling unit was reduced by almost 23%.  

3.2. Model Formulation 

A typical air handling unit (AHU) of an HVAC system supplies conditioned air to 

building zones. Figure 3.1 illustrates schematic diagram of an AHU. The supply air is at a 

specific temperature and flows at a specific rate to meet the heating or cooling load and ensure 

thermal comfort. Outdoor air mixes with the return air, and the mixed air passes through cooling 
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coils, heating coils, and the supply fan. Chilled water in the cooling coils cools the mixed air, and 

hot water or steam in the heating coils heats the mixed air to maintain the desired temperature of 

the supply.   

 

 Figure 3.1 Schematic diagram of a typical AHU system 

 

Figure 3.2 Energy consumption of different components in                                                                         
a sample cooling session 

The supply and return fans assist in moving the air for heat exchange as well as 

circulating it in the HVAC system at the required flow rate. Several components, i.e., the chiller, 

the boiler, the supply and return fans, and the water pump, consume energy. Since the 

chiller 73% 

fan 17% 

pump 10% 

chiller
fan
pump
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experiment for this research was conducted between June 22, 2011 and July 5, 2011, the energy 

used for heating was insignificant and, thus, was not taken into consideration.  

Figure 3.2 shows the energy consumption of different components of the HVAC system. 

Because our two-week experiment was performed in the summer, the chiller accounted for most 

of the energy consumed by the AHU system. The amount of energy consumed by a chiller is 

highly dependent on the heat transfer efficiency of the cooling coils. The greater the efficiency is, 

the less the energy consumption is. Turbulent air and water flows result in greater heat transfer 

efficiency than laminar flows [64]. A trade-off of the energy consumption between the chiller, 

the pump, and the fans can be accomplished by controlling the temperature of the chilled water 

supply, the flow rate of the water, and the flow rate of the air flow at optimal conditions. Thus, 

four controllable parameters, i.e., the flow rate of the chilled water, the temperature of the chilled 

water, the position of the valve on the chilled water coil, and the speed of the supply fan, were 

considered to optimize the total energy consumed by the chiller, the pump, and the fans while 

maintaining the temperature and static pressure of the supply air at the required levels. 

A data-mining approach was used to establish dynamic predictive models of the energy 

consumption of different components of the AHU system.  Based on large datasets, the data-

mining algorithms captured the dynamic operating patterns of the system. After the learning 

process, data-driven predictive models were developed. Once the current values of the inputs are 

determined, the output of the system at some chosen future time can be predicted by the models. 

Eq. (3.1), below, is a typical, multi-input, single-output predictive model derived by the data-

mining algorithms:  

( ) ( ) ( ) ( ) ( )( ), 1 , ,  ,  1 , , y t d f x t x t u t u t+ = − − 

                               (3.1) 

where mx R∈ is a vector of m controllable parameters, nu R∈  is a vector of n uncontrollable 

parameters, and ( )y t d+  is the predicted values of the outputs at time stamp ( )t d+ .  

Note that the terms ( ) ( ) ( )1 2 3, ,y t d y t d y t d+ + +  are the energy consumed by the chiller, 

the fans, and the pump, respectively.  
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The AHU energy optimization model is presented in (3.2). 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

min

,  ,  ,  1 ,  ,  ,  1 ,  

,  ,  ,  1 ,  ,  ,  1 ,  

,  ,  ,  1 ,  ,  ,  1 ,  

total

total fans pump chiller

fans

pump

chiller

E
E E E E

E t d f x t d x t x t u t u t

E t d f x t d x t x t u t u t

E t d f x t d x t x t u t u t
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= + +

+ = + − −

+ = + − −

+ = + − −

    

  

    

  

    

  

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

4 4 4 4 4

5 5 5 5 5

,  ,  ,  1 ,  ,  ,  1 ,  

,  ,  ,  1 ,  ,  ,  1 ,  

d f x t d x t x t u t u t

P t d f x t d x t x t u t u t

+ = + − −

+ = + − −

    

  

    

  

              (3.2) 

subject to: 

( )1,2, ,5i i

T

P

x S i
T S
P S

∈ =

∈
∈





 

where each ix  and iu ( )1,2, ,5i =   represent the controllable and uncontrollable parameters 

used for each predictive model, respectively. ( )T t d+  and ( )P t d+  are the temperature and static 

pressure of the supply air, respectively, at time stamp ( )t d+  after passing through the AHU 

system. S  refers to the constraints imposed by each parameter. 

3.3. Model Development and Validation 

3.3.1. Experiment Description and Data Preprocessing 

The HVAC system discussed in this paper is operated by the Energy Resource Station 

(ERS) of the Iowa Energy Center in Ankeny, Iowa. The ERS is equipped with two identical air-

handling units, each with identical, dedicated chillers. One air handling unit supplies four test 

rooms designated as the “A” rooms, and the other unit serves the four test rooms designated as 

the “B” rooms. In this research, the experiment setups for the four rooms are the same, and thus 

the system is regarded as one AHU serving a single zone.  The designed total cooling capacity of 

the AHU is 122,100 BTU/H. The designed total supply air flow is 3200 CFM. The maximum 

supply fan static pressure is 3.2 in. WG and the supply fan speed is 1834 RPM. Sensors have 
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been installed to collect over 300 parameters for the AHU, heating and chilling plants, and 

various testing zones. The experiment was conducted from 12:00 A.M. on June 22, 2011, to 

23:59 P.M. on July 5, 2011. The sampling time interval for the original data set was one minute. 

The 1-min data were averaged over 15-minute intervals (15-min data) for model training and 

testing. The transformed dataset included 1344 observations. This dataset was partitioned into 

training (85%) and test (15%) sets. The training set was used for selecting the desired features, 

selecting the algorithm to be used, and training the model. The test set was used to assess the 

predictive accuracy of the model. The datasets used for our research are described in Table 3.1. 

Table 3.1 Description of the datasets  

Data Set Description Number of Observations 
1 Model training: 85% of the preprocessed data 1142 
2 Model test: the remaining 15% of the data  202 

 
 
 

3.3.2. Parameter Selection 

The selection of parameters is an important step in data mining. It allows the removal of 

parameters that make insignificant contributions to the ability of the models to provide accurate 

predictions. The appropriate selection of parameters usually improves the scalability and 

accuracy of the resulting models, as well as the ability of users to understand and interpret the 

results [65]. 

Numerous algorithms for selecting parameters have been proposed in the literature. 

Wrapper algorithms [66] and boosting-tree algorithms [67-69] are commonly applied to reduce 

the dimensionality of the parameter space. Wrapper approaches use an introduction algorithm to 

search the space of all possible parameters and evaluate each subset of parameters. Models are 

built and their prediction performances are computed as regression scores to quantify the 

relevance of those subsets. Greedy forward-selection algorithms are frequently used as 
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introduction algorithms. They progressively integrate new parameters, thereby optimizing the 

regression score. The Wrapper approach is time consuming when the introduction algorithm is 

too complex. 

The boosting-tree algorithm computes a sequence of trees in which each successive tree 

is built for the prediction residuals of the preceding tree [70]. At each step of the boosting 

algorithm, the data are partitioned into two samples at every split node. The best partitioning is 

determined, and the regression errors are computed. Then, the successive tree is fitted to reduce 

the error. In the process of generating successive trees, the statistical importance of each 

parameter at each split of every tree is accumulated and normalized. Predictors with a higher-

importance rank indicate a larger contribution to the predicted output.  

In this chapter, the input parameters are the parameters that impact the operation of the 

system, including controllable parameters, such as temperature of the chilled water, and 

uncontrollable parameters, such as the temperature of the outside air. The outputs of the AHU 

system are the required quality of the air (supply air temperature, humidity, and CO2 

concentration), the static pressure of supply air, and the flow rate of the supply air. The levels of 

energy consumption of different AHU components are considered as outputs since they are 

indicative of the performance of the AHU system.  The parameters considered for this research 

are summarized in Table 3.2.  

The properties of the pump and the fan are represented by Eqs. (3.3) and (4) [71], which 

suggest that variations of the pump/fan speed impact the water/air flow rate and the efficiency of 

the variable-frequency driver (VFD) and, ultimately, the energy consumption. Thus, the energy 

consumptions of the fan and the pump are modeled using the pump/fan VFD speed and the 

water/air flow rate as inputs. 

The power of the constant-speed pump or fan is provided in Eq. (3.3): 

/ / /
/

, /

w a p f p f
p f

trans motor p f

H G
N

γ
η η

=                                                                  (3.3) 
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Table 3.2 Parameters selected based on the input-output analysis of the AHU system 

Type Parameter Name Description Unit 

Input 

SAT-SPT AHU supply air temperature set point (constant at 55 °F) °F 
SASP-SPT Supply air duct static pressure set point (constant at 1.4 in. WG) In. WG 

ACCA-EWT Chiller entering water temperature °F 
CHWC-EAT Chilled water coil entering air temperature °F 
CHWC-EWT Chilled water coil entering water (supply) temperature °F 
CHWC-VLV Chilled water coil valve position %Open 
CHWPASPD Pump % speed (constant at 75%) %Speed 
CHWPAGPM Chilled water pump water flow rate GPM 

SA-SPD Supply fan VFD speed %Speed 
RA-SPD Return fan VFD speed %Speed 

RF%SFSPD Return fan % of supply fan speed (constant at 90%) % 
OA-TEMP Outside air temperature °F 
OA-HUMD Outside air humidity %RH 
IR-RADIA Infrared radiation B/HFt2 
SOL-HORZ Solar normal flux B/HFt2 
SOL-BEAM Solar beam B/HFt2 

Output 

SA-CFM Supply air flow rate CFM 
SA-HUMD Supply air humidity %RH 
SA-TEMP AHU supply air temperature °F 

SA-SP AHU Supply air duct static pressure In. WG 
CHILLER-ENERGY Energy consumption of the chiller KJ 

FANS-ENERGY Energy consumption of supply and return fans KJ 
PUMP-ENERGY Energy consumption of the pump KJ 

 

The power of the variable-speed pump or fan is provided in Eq. (3.4): 

( ) ( )
/ / /

/ ,var
, /

w a p f p f
p f

trans motor p f vfd

H G
N

n n
γ

η η η
=                                                (3.4) 

where N is the power, H is the head of the pump/fan, G is the mass flow rate, γ is the specific 

weight, η is the efficiency, n is speed of the motor, and p/f refers to the pump or fan.  

In our experiment, the temperature and static pressure of the supply air were maintained 

constant at 55 °F (12.8 °C) and 1.4 in. WG (0.35 kPa), respectively. The speed of the return fan 

speed was set at 90%, and the speed of the chilled water pump was fixed at 75%. The models for 

the pump and fans were developed as follows: 

1. The fan speed was the input of the return fan model.  
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2. The energy consumption of the pump was predicted by using the chilled water supply 

water flow rate.  

3. The flow rates of the supply and return air also were introduced to the models of the 

supply and return fans.  

The boosting-tree algorithm was used to select additional parameters for modeling the 

energy consumption of the chiller and the output of the temperature and the static pressure of the 

supply air. The time delay is also considered. Since the time interval of the data was 15 minutes, 

considering parameter values at the previous state of the system was enough to eliminate the 

system delay. Table 3.3 -3.6 list the parameters for developing the predictive models. 

Table 3.3 Parameters selected for developing models of the energy consumption of                                       
the chiller, temperature of the supply air, and static pressure of the supply air 

Parameter Point Name Description 
( )1 +1x t  CHWPAGPM(t + 1) Chilled water flow rate at time stamp t + 1 

( )2 +1x t  SF-SPD(t + 1) Supply Fan VFD speed at time stamp t + 1 

( )3 +1x t  CHWC-VLV(t + 1) Chilled water coil valve position at time stamp t + 1 

( )4 +1x t  CHWC-EWT(t + 1) Chilled water coil supply temperature at time stamp t + 1 

( )4x t  CHWC-EWT Chilled water coil supply temperature at time stamp t 

( )1u t  ACCA-EWT Chiller entering water temperature at time stamp t 

( )2u t  CHWC-EAT Chilled water coil entering air temperature at time stamp t 

( )3u t  OA-TEMP Outside air temperature at time stamp t 

Table 3.4 Parameters selected for developing the energy consumption                                                  
model of the pump 

Parameter Point Name Description 
( )1 +1x t  CHWPAGPM(t + 1) Chilled water flow rate at time stamp t + 1 

( )1x t  CHWPAGPM Chilled water flow rate at time stamp t 
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Table 3.5 Parameters selected for developing the energy                                                                     
consumption model of the return fan 

Parameter Point Name Description 
( )2 +1x t  SF-SPD(t + 1) Supply fan VFD speed at time stamp t + 1 

( )2x t  SF-SPD Supply fan VFD speed at time stamp t 

( )4u t  RA-CFM Return air flow rate at time stamp t 

Table 3.6 Parameters selected for developing the energy                                                          
consumption model of the supply fan 

Parameter Point Name Description 
( )2 +1x t  SF-SPD(t + 1) Supply Fan VFD Speed at time stamp t + 1 

( )2x t  SF-SPD Supply Fan VFD Speed at time stamp t 

( )5u t  SA-CFM supply air flow rate at time stamp t 

 

3.3.3 Energy consumption modeling and validation 

Four energy consumption models for different components were established by data-

mining algorithms. Since the chiller accounts for most of the energy consumed, the accuracy of 

the model used for estimating the energy consumption of the chiller will have a significant effect 

on the optimization of the overall system. The model of energy consumption by the chiller is 

shown in Eq. (3.5): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 2 3 4 4 1 2 31 +1 ,  +1 ,  +1 ,  +1 ,  ,  ,  ,  y t f x t x t x t x t x t u t u t u t+ =                (3.5) 

where the input parameters are described in Table 3.3. In Eq. (5), t  is the current time, and  + 1t

is the next time period. Function ( )f   describes the energy consumption model learned by the 

data mining algorithms.  

In this research, the following data-mining algorithms have been considered: the multi-

layer perceptron (MLP) ensemble algorithm, boosting-tree (regression) algorithm, the random-

forest algorithm [72], the support vector machine [73], and the classification and regression tree 

(CART) algorithm [74]. To evaluate performance of the predictive models, four metrics, i.e., (3.6) 
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- (3.9) in the following, were used: the mean absolute error (MAE), the standard deviation of 

absolute error (Sd_AE), the mean absolute percentage error (MAPE), and the standard deviation 

of absolute percentage error (Sd_PE).  

1

1 ˆ
n

i i
i

MAE y y
n =

= −∑                                                                    (3.6) 

( )2

1

ˆ
_

1

n

i i
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n
=

− −
=

−

∑
                                                   (3.7) 
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=

 − − 
 =

−

∑
                                           (3.9) 

where iy  is the observed value, ˆiy  is the predicted value, and n is the size of the training or test 

data set.  

Table 3.7 summarizes the performance of the models developed by the data-mining 

algorithms. The model derived by the MLP ensemble algorithm outperformed all other models in 

terms of the accuracy and stability. The corresponding values of MAPE (0.0599) and Sd_PE 

(0.0521) were the lowest obtained with any of the algorithms. Thus, the MLP ensemble was 

selected as the candidate algorithm to construct other predictive models.  

Table 3.7 Accuracy of the prediction of energy consumption by the chiller provided                               
by different data-mining algorithms 

Algorithm MAE Sd_AE MAPE Sd_PE 
MLP ensemble 160.971 7.772 0.060 0.052 
Boosting-tree 231.665 13.788 0.080 0.073 
Random forest 231.063 3.676 0.074 0.066 

Support vector machine 244.425 11.815 0.085 0.067 
CART 283.984 18.501 0.092 0.082 
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The energy consumption models for the pump, the supply fan, and the return fan are 

expressed as Eqs. (3.10), (3.11), and (3.12).  

( ) ( ) ( )( )2 1 11 +1 ,  y t f x t x t+ =                                                         (3.10) 

( ) ( ) ( ) ( )( )3 2 2 41 +1 ,  ,  y t f x t x t u t+ =                                               (3.11) 

( ) ( ) ( ) ( )( )4 2 2 51 +1 ,  ,  y t f x t x t u t+ =                                               (3.12) 

To validate the accuracy of the models, 200 data points were considered. The comparison 

between the observed and the predicted values for energy consumption for the different models 

is provided in Figures 3.3-3.6. Table 3.8 shows the performance of the six models.  

Table 3.8 Prediction accuracy of different models by the MLP ensemble algorithm 

Model Data set MAE Sd_AE MAPE Sd_PE 

Chiller energy  Training 160.971 7.772 0.060 0.052 
Test 209.792 11.457 0.059 0.046 

Supply fan energy Training 7.613 0.543 0.015 0.017 
Test 9.914 0.940 0.017 0.026 

Return fan energy Training 1.839 0.149 0.009 0.012 
Test 2.455 0.164 0.011 0.013 

Pump energy Training 0.821 0.044 0.002 0.002 
Test 0.521 0.024 0.001 0.000 

Supply air temperature Training 0.046 0.044 0.001 0.001 
Test 0.076 0.080 0.001 0.001 

Supply air static pressure Training 0.007 0.006 0.005 0.004 
Test 0.006 0.007 0.005 0.005 
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Figure 3.3 The observed and predicted chiller energy consumption by the MLP 

 

Figure 3.4 The observed and predicted pump energy consumption by the MLP 
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Figure 3.5 The observed and predicted supply fan energy consumption by the MLP 

 

Figure 3.6 The observed and predicted return fan energy consumption by the MLP 
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3.3.4 Modeling and Validation of the Temperature and Static 
Pressure of the Supply Air 

In the experiment reported in this paper, the set points of the temperature and static 

pressure of the supply air were kept constant at 55 °F (12.8 °C) and 1.4 in. WG (0.35 kPa), 

respectively. Some differences between the desired and the set values were observed in the 

experiment that involved the industrial-grade system. The predictive models of the temperature 

and static pressure of the supply air, shown in (3.13) and (3.14), respectively, were used to make 

sure the two parameters were in the acceptable range, given the optimal control settings. The 

inputs of the models, described in Table 3.3, were the same as those used in the model of the 

energy consumption of the chiller.    

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 3 4 4 1 2 31 +1 ,  +1 ,  +1 ,  +1 ,  ,  ,  ,  tempy t f x t x t x t x t x t u t u t u t+ =             (3.13) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 3 4 4 1 2 31 +1 ,  +1 ,  +1 ,  +1 ,  ,  ,  ,  pressurey t f x t x t x t x t x t u t u t u t+ =                (3.14) 

Validation with 200 data points from the test set showed that the predicted values follow 

are in good agreement with the observed values (Figures 3.7 and 3.8). The statistics of the results 

are summarized in Table 3.8. 

 

Figure 3.7 Comparison of the observed and predicted temperature of the supply air 
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Figure 3.8 Comparison of observed and predicted static pressure of the supply air 

3.4. Optimization of the Energy Consumption of the AHU System 

In this section, we describe the development of an optimization model for use in for 

minimizing the overall energy consumption of the AHU. Due to the nonlinearity of the model, a 

novel, dynamic-penalty electromagnetism-like algorithm (DPEM) was used. The computational 

results show that a substantial amount of energy can be saved by using the settings of the 

controllable parameters computed by the DPEM algorithm. 

3.4.1. Overall optimization model 

The aim of the research reported in this paper was to minimize the overall energy 

consumption of the AHU while maintaining the predefined values of the temperature and static 

pressure of the supply air. Since the temperature and static pressure of the supply air change in 

response to the corresponding set points (constant at 55 °F (12.8 °C) and 1.4 in. WG (0.35 kPa, 

respectively), small deviations of the two parameters are captured as constraints. The upper and 

lower bounds of the controllable parameters are identified as constraints based on the ranges 

learned by the MLP ensemble algorithm. The constraints of the optimization model are as 

follows: (1) The acceptable ranges for the temperature and static pressure of the supply air are 53 

to 56 °F (11.7 to 13.3 °C) and 1.3 to 1.5 in. WG (0.32 to 0.37 kPa); (2) The flow rate of the 
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chilled water provided by the pump can vary between 20 and 22 GPM; (3) The speed of the 

supply fan VFD can range from 58% to 70% of the design speed (1834 RPM); (4) The extent to 

which the valve position on the chilled water coil can open can vary from 17% to 67%; and (5) 

The temperature of the chilled water supply is controlled between 38 and 44 °F (3.3 °C and 

6.7 °C). 

The optimization model is presented in (3.15). An approach for solving model (15) is 

presented in the next section. 

( )1 2 3, 4
1 2 3 4, ,

min totalx x x x
E y y y y= + + +  

subject to: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 3 4 4 1 2 3

2 1 1
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pressure
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               (3.15) 

3.4.2. Dynamic penalty-based electromagnetism-like algorithm 

In the last two decades, significant progress has been made in the development and 

application of approximation optimization techniques, also known as intelligent algorithms. In 

this paper, a novel, dynamic penalty-based electromagnetism-like algorithm (DPEM) is proposed 

to optimize model (3.15).  

The electromagnetism-like algorithm (EM) was introduced by Birbil and Fang [58]. The 

literature has shown that the EM algorithm outperforms many traditional algorithms in solving 

optimization problems [59], neural network training [60], production scheduling [61], and other 
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areas [62, 63]. The efficiency attribute of the EM algorithm has led to its application in 

optimization of HVAC systems. 

The EM algorithm utilizes an attraction-repulsion mechanism to move sample points 

towards optimality. The algorithm starts with sample points (a population) selected from a 

feasible space and continues its iterative process until a stopping condition (e.g., the maximum 

number of iterations) is met.  

( ) ( )( )
( ) ( )( )1

exp ,   1,  2,  ,  
i best

i
m j best
j

n f x f x
q i m

f x f x
=

 − −
 = =
 − ∑



                                  (3.16) 

( ) ( ) ( )

( ) ( ) ( )
, ,

i j
j i j i

j i

i
j i j

i j j i
j i

q qx x if f x f x
x x

F j i i
q qx x if f x f x

x x


− < −= ≠ ∀

 − ≥ −

                                   (3.17) 

There are two steps at every iteration of the algorithm. In the first step, each point is 

assigned a charge related to the value of the objective function according to (3.16). Points that 

improve the values of the objective function are assigned higher charges. A charge determines 

the magnitude of attraction of the point relative to the other points in the population. The better 

the objective function value, the higher the magnitude of attraction. The force exerted on a point 

via other points is computed according to (3.17), and the total force vector is obtained by adding 

these attractive–repulsive forces (3.18). Then, each point moves to a new location in the 

direction of the total force vector (3.19). In Eqs. (3.16) - (3.19), m is the population size; n is the 

dimension; and k is the dimension index of the model. 

, 1,2, ,
m

i i
j

j i
F F i m

≠

= =∑ 

                                                       (3.18) 
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In the second step, a local search procedure is incorporated to improve the accuracy of 

the solution. A local refinement is applied, coordinate by coordinate, to the current best point in 

the population. Using parameter δ, the maximum feasible step length ( )( )max maxk k kS u lδ= −  is 

computed. Then, for each coordinate, a step length between 0 and 1 is generated randomly, and a 

new point is computed along that direction. If an improvement of the objective function is 

observed within the local search iterations (LSITER), the current best point is replaced, and the 

search continues with the next coordinate. 

To simplify the solution procedure of the non-linear, constrained model (3.15) presented 

in Section 4.1, a dynamic-penalty approach is employed [75]. The constraints of the temperature 

tempy  and static pressure pressurey  of the supply air (model (3.15)) are transformed into penalty 

functions, as shown in Eqs. (3.20) and (3.21). The values of the two penalty functions are 

normalized to [0, 1] to eliminate their relative importance. The final objective function ( )f x  is 

expressed as Eq. (3.21) after the penalty functions have been incorporated. 

( ) ( ){ } ( ){ }{ } ( )1 max 0, 53 1 max 0, 1 56 / 56 53temp tempv x y t y t= − + + + − −                    (3.20) 

( ) ( ){ } ( ){ }{ } ( )2 max 0, 1.3 1 max 0, 1 1.5 / 1.5 1.3pressure pressurev x y t y t= − + + + − −                  (3.21) 

( ) ( ) ( )
2

1
total j

j
f x E c gen v xα β

=

= + × ∑ ,                                                    (3.22) 

where c, α, and β are control parameters, gen is the iteration number of the DPEM algorithm, x is 

the solution vector that represents the values of the four controllable parameters at time stamp t + 

1. 

In the early stages of the DPEM, the penalty is small, which leads to the exploration of 

both the feasible and the infeasible regions. As the solution evolves, the penalty increases to 

guide the population toward a feasible region. In this research, a point in the population has four 

dimensions, each representing one of the four controllable parameters. Each dimension of the 

particles is initialized uniformly within the upper and lower bounds of the corresponding control 

parameter. Other uncontrollable inputs are read from the data set.  

The steps of DPEM are shown below: 
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Step 0: Define EM parameters, population size m, maximum number of iterations 

MAXITER, local search parameter δ, and local search iterations LSITER. Initialize penalty 

control parameters c, α, and β. 

Step 1: Initialize solution points with uniform distribution within the upper and lower 

bounds of the controllable parameters, and Set i = 1. 

Step 2: Evaluate the points according to the objective function and compare them to 

select the current best point xbest. 

Step 3: If iteration number is greater than MAXITER, stop; otherwise, go to Step 4. 

Step 4: Compute the charges of all points from Eq. (3.16). 

Step 5: Compute the forces of all points and select their directions according to Eq. (3.17). 

Step 6: Compute the total force vector for each point and move all points, except the 

current best point, according to Eqs. (3.18) and (3.19). 

Step 7: Evaluate the points and update the current best point xbest. 

Step 8: Perform a local search about each coordinate of the current best point LSITER 

times. 

Step 9: Set i = i + 1 and go to Step 3. 

3.4. Computational Results and Discussion 

To demonstrate the optimization process, 200 test data points were used for simulation. 

The DPEM algorithm was applied to solve model (3.15) for each of the 200 cases. The 

parameters in the algorithm were set as 2α = ,   1β = , m = 50, MAXITER = 100, δ = 1, and 

LSITER = 10. The value of the penalty parameter, c = 10, was due to the small values of the two 

penalty functions (normalized between 0 and 1). It should also be noted that the temperature and 

flow rate of the chilled water supply were adjusted in increments of 0.1°F and 0.1 GPM, 

respectively, in the local search process. The simulation results for all 200 cases are shown in 

Figs.3. 9 – 3.15. Fig. 3.9 shows the total energy consumption before and after optimization. 

Model (3.15) reduced the total energy consumption of the AHU system by almost 23% (Table 
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3.9). Figure 3.10 demonstrates that, in one case, the temperature of the supply air was less than  

53 °F (11.7 °C), i.e., it was out of range, while the static pressure of the supply air remained in 

the required range for all cases (Figure 3.11). The optimal settings of the four controllable 

parameters, i.e., the flow rate of the chilled water, the speed of the supply fan, the position of 

VLV on the chilled water cooling coil, , and the temperature of the chilled water, are illustrated 

in Figures 3.12 – 3.15 for all 200 simulation cases. In most cases, the flow rate of the chilled 

water and the speed of the supply fan were set higher than the original settings. The position of 

the chilled water cooling coil VLV had smaller values and the temperature of the chilled water 

supply changed within the controllable ranges. Table 3.9 summarizes the energy consumption 

results before and after optimization. Greater flow rates of chilled water and fan speeds allowed 

more efficient heat transfer between the air and the chilled water in the cooling coil. Small values 

of the VLV position decreased the amount of water supplied by the chiller, ultimately reducing 

the energy consumption of the chiller. The energy consumed by the pump and fans increased due 

to the high flow rate of water and the greater speed of the supply fan. The optimized control 

settings reduced the energy consumed by the chiller significantly, while the energy consumed by 

the fans and pumps was increased by a slight amount, thus decreasing the overall energy 

consumption of the AHU. The optimized control has resulted in energy savings while increasing 

variability of the controllable parameters. This is due to imperfect selection of the data sampling 

interval. This variability can be reduced by performing additional experiments. 

Table 3.9 Energy optimization results for different components of the AHU system 

 Chiller Pump Supply Fan Return Fan Total Energy 
Observed (KJ) 606102.7 82629.7 96564.5 38397.4 823694.3 
Optimized (KJ) 400715.5 86207.6 106426.9 41930.9 635280.9 
Reduced (KJ) 205387.2 -3577.9 -9862.4 -3533.5 188413.4 

Reduced Rate (%)  33.9 -4.3 -10.2 -9.2 22.9 
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Figure 3.9 Total energy consumption before and after optimization 

 

Figure 3.10 Temperature of the supply air before and after optimization 
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Figure 3.11 Static pressure of the supply air before and after optimization 

 

Figure 3.12 Observed and optimized water flow rates for the 200 cases 
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Figure 3.13 Observed and optimized supply fan speeds for the 200 cases 

 

Figure 3.14 Observed and optimized chilled water cooling coil VLV position                                        
for the 200 cases 
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Figure 3.15 Observed and optimized chilled water supply temperatures                                                     
for 200 cases 

3.5. Summary 

In this chapter, the energy consumed by an air handling unit was minimized by 

combining data-mining with computational intelligence. The multi-layer perceptron ensemble 

algorithm was applied to develop predictive models of the energy consumption the chiller, the 

pump, and the supply and return fans. To minimize the energy consumption while maintaining 

the temperature and static pressure of the supply air at predetermined levels, a non-linear, 

constrained optimization model was developed. A dynamic penalty function-based 

electromagnetism-like algorithm was proposed to solve the model. Computational results 

showed that the energy consumed by the chiller could be reduced significantly by slightly 

increasing the energy consumption of the pump and fans. The total energy consumption of the 

AHU system was reduced by almost 23%.  

Future research involving optimization criteria is needed to accommodate different 

supply air requirements (e.g., humidity and CO2 concentration). The research presented in the 

paper has focused on single zone modeling. Modeling different zones calls for new experiments 

and data which were not available in this research. The single-zone approach presented in this 

chapter is generalizable to a multi-zone optimization provided that the suitable data is available. 
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CHAPTER 4 

MODEL-PREDICTIVE CONTROL OF A MULTI-ZONE HVAC SYSTEM 

4.1. Introduction 

In the research presented in Chapter 3, the HVAC system was regarded single AHU 

serving single zone. This assumption simplifies the relationship between the AHU and its 

terminal, and leads to a simple case of the HVAC system. However, cases in which one AHU 

serves several rooms to achieve thermal comfort for all rooms are more popular and widely seen 

in the real world. Thus, this research, aiming at further promoting the applicability and 

enhancing the validity of the HAVC research, is conducted to model the energy and thermal 

comfort of a multi-zone HVAC system and optimize the control strategy of the system with 

respect to the minimization of the energy consumption while maintain thermal comfort of all 

zones. The control strategy in a planning horizon involves the sequence settings of two setpoints, 

the supply air temperature setpoint and the supply air static pressure setpoint. The thermal 

comfort investigated in this research is solely measured by the temperature of each room.  

A data-mining approach is applied to establish the total energy consumption model and 

temperature models corresponding to each zone. Afterwards, an overall optimization model with 

the objective of minimizing the total energy consumption is formulated. A new intelligent 

algorithm, called firefly algorithm, is introduced to solve the model and generate optimal settings 

of the two setpoints. The proposed approach has been validated with the computational 

experiments.  Two experiments with different constraints on the controlled temperature 

deviations are used to demonstrate the proposed approach. 100 cases are computed in each 

experiment. In the first experiment, the controlled room temperature deviations are restricted 

within 1 °F (+/- 0.5°F) compared with the room temperature generated from the original control 

strategy.  In the second experiment, the deviations are set within 2°F (+/-1°F). Computational 

results show that more than 6% and 12% energy savings have been respectively observed.  
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4.2. System Description and Modeling 

4.2.1 System description and data collection 

A typical HVAC system includes an air handling unit (AHU) and one or several thermal 

zones. Figure 4.1 illustrates the schematic diagram of such an HVAC system. The supply air is at 

a specific temperature and flows at a specific rate to meet the heating or cooling load and ensure 

thermal comfort. Outdoor air mixes with the return air, and the mixed air passes through cooling 

coils, heating coils, and the supply fan. Chilled water in the cooling coils cools the mixed air, and 

hot water or steam in the heating coils heats the mixed air to maintain the desired temperature of 

the supply.  The supply and return fans assist in moving the air for heat exchange as well as 

circulating it in the HVAC system at the required flow rate.  

The HVAC system investigated in this research is operated by the ERS (Energy Resource 

Station) in Ankeny, Iowa. It is equipped with two identical air-handling units, each with identical, 

dedicated chillers. One air handling unit supplies four test rooms designated as the “A” rooms, 

and the other unit serves the four test rooms designated as the “B” rooms, shown as Figure 4.2. 

Each room as a thermal zone has a Viable-air-volume (VAV) box connected to the air handling 

unit. The VAV box could be adjusted by the thermostat to control the volume of the entering air 

and maintain the comfort of the room. To simulate the impact of people and thermal activities, 

the android systems and lighting in each room are used produce internal loads. In this research, 

we only take the AHU-A and its serving zones into account. 



58 
 

 
 

 

Figure 4.1 Schematic diagram of a typical HVAC system with multi-zones 

 

Figure 4.2 Plane view of ERS facility 

The data for AHU-A was collected from 12:00 A.M. on February 15, 2011, to 23:59 P.M. 

on March 4, 2011. Over 300 parameters measuring the different the air handling unit, the chiller 

and heating plant, and the different test zones, as well as outside weather conditions are recorded 

every 1 minute. The sampling time interval is transformed into 30 minutes by averaging the 1-
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min data. After preprocessing the data set, there are 911 data points in total. The first 85% data 

points are used for parameter selection and model training, while the remaining part is for the 

test procedure. In the recorded dataset, the supply air temperature setpoint varies from 55°F to 

65 °F, the supply air static pressure changes from 0.5 In. WG to 1.8 In. WG. Since the 

experiment was conducted in heating session, the total energy consumed by the HVAC system 

includes several components, the chiller, the chilled water pump, the heating water boiler, the 

supply and return fans, and the loop A pump for circulating heating water. The energy 

consumption is measured by kW sine the time interval used for the sampling is the same, i.e. 

30mins. 

4.2.2 Predictive modeling 

To build predictive data-mining models, proper parameter selection should be executed to 

decrease the data dimensions and reduce the information redundancy. Since that it’s not easy to 

find relevant and significant parameters from the huge dataset, the process of parameter selection 

should always combines the domain knowledge obtained from understanding of the system and 

the insights gained by the efficient data-mining algorithms. The input parameters are those 

impact the operation of the system, including controllable parameters, the supply air temperature 

and the static pressure setpoints, and uncontrollable parameters such as the outside air 

temperature and the solar normal flux.  

A boosted tree algorithm is applied to further select the more relevant parameters. Table 

4.1 summarizes the final input parameters for the total energy consumption model. As for test 

rooms, the internal conditions of rooms should be taken into account. Parameters measuring the 

simulated loads are analyzed and relevant ones are added for the temperature model construction. 

Table 4.2-4.5 show the parameters for modeling the temperature of the four rooms. In these 

tables, the ranks and the importance values of parameters are computed by the boosted tree 

algorithm. It should be noted that the importance of the light levels on window #1 and #2 in the 

interior room are zero. This is because that in the recorded data set, the light levels on window #1 
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and #2 are zero all the time. Due to this fact, the temperature predictive model in the interior 

room doesn’t include the two parameters.  After identifying the input parameters and the output, 

the mathematical formulations for the five models could be expressed in the following Equations 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 1 1 2 10 5 6 7 91 +1 , +1 , , , , , 1 , 1 , 1 , 1E t f x t x t y t u t u t u t u t u t u t u t+ = − − − −

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 1 2 9 1, 7,1 +1 , +1 , , , , , ,EA EA EAT t f x t x t u t u t u t v t v t+ =    

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 1 2 9 1, 7,1 +1 , +1 , , , , , ,IA IA IAT t f x t x t u t u t u t v t v t+ =    

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 1 2 9 1, 7,1 +1 , +1 , , , , , ,SA SA SAT t f x t x t u t u t u t v t v t+ =    

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 1 2 9 1, 7,1 +1 , +1 , , , , , ,WA WA WAT t f x t x t u t u t u t v t v t+ =    

where ( )1E t +  is the total energy consumed by the HVAC system at time t+1, ( )1EAT t + , 

( )1IAT t + , ( )1SAT t + , ( )1WAT t + , are respectively the room temperature in the east, interior, 

south, and west room at time t+1. ( )1 +1x t  and ( )2 +1x t  are the supply air static pressure setpoint 

and the supply air temperature setpoint values set for time t+1. 

Table 4.1 Parameters selected for building total energy consumption model 

Variable Point Name Rank Importance Description Unit 
( )1u t  MA-TEMP 100 1.000000 Mixed air temperature °F 

( )1y t  Total-WAT(t) 100 0.999407 Total energy consumption KW 

( )2u t  SA-CFM 100 0.997013 Supply air flow rate CFM 

( )3u t  CHWC-EAT 99 0.987172 Chilled water coil entering water 
temperature °F 

( )4u t  HWC-DAT 99 0.987075 Heating water coiling departure air 
temperature °F 

( )5u t  SF-SPD 80 0.798501 Supply fan VFD speed % 
Speed 

( )8 1u t −  SOL-HORZ(t-1) 79 0.793165 Solar normal flux B/HFt2 

( )6u t  SOL-BEAM 78 0.776810 Solar beam B/HFt2 

( )7u t  CHWC-VLV 75 0.751002 Chilled water coil valve position % 

( )1 +1x t  SA_SPSPT(t+1) 75 0.747956 Supply air static pressure setpoint In. WG 

( )6 1u t −  SOL-BEAM(t-1) 70 0.703182 Solar beam B/HFt2 

( )8u t  SOL-HORZ 63 0.631291 Solar normal flux B/HFt2 

( )9u t  ACCA-EWT 52 0.517922 Chiller entering water temperature °F 

( )7 1u t −  CHWC-VLV(t-1) 48 0.476723 Chilled water coil valve position %Open 
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Table 4.1-continued 

( )10u t  OA-TEMP 45 0.451455 Outside air temperature °F 

( )11u t  OA-HUMD 44 0.439442 Outside air humidity %RH 

( )10 1u t −  OA-TEMP(t-1) 43 0.430608 Outside air temperature °F 

( )2 +1x t  SAT_SPT(t+1) 43 0.427746 Supply air temperature setpoint °F 

Table 4.2 Parameters selected for building temperature model in East Room (Temp-EA) 

Variable Point Name Rank Importance Description Unit 
( )2u t  SA-CFM 100 1.000000 Supply air flow rate CFM 

( )1u t  MA-TEMP 98 0.977668 Mixed air temperature °F 

( )3u t  CHWC-EAT 94 0.935126 Chilled water coil entering water 
temperature °F 

( )4u t  HWC-DAT 93 0.934324 Heating water coiling departure air 
temperature °F 

( )1,EAv t  VAVHCGPM-EA 90 0.901850 VAV heating coil flow rate GPM 

( )2,EAv t  VAV-DMPR-EA 81 0.805132 VAV damper position %Open 

( )3,EAv t  VAV-DP-EA 79 0.791317 Velocity pressure differential In. WG 

( )4,EAv t  RA-DMPR-EA 77 0.765095 Recirculated air damper %Closed 

( )8u t  SOL-HORZ 74 0.743840 Solar normal flux B/HFt2 

( )5,EAv t  RM-LITE2-EA 73 0.726915 Light level on window #2 FtC 

( )6,EAv t  RM-LITE1-EA 72 0.718760 Light level on window #1 FtC 

( )6u t  SOL-BEAM 71 0.714542 Solar beam B/HFt2 

( )7u t  CHWC-VLV 71 0.713521 Chilled water coil valve position %Open 

( )7,EAv t  LIGHTLVL-EA 70 0.695356 Light level from ceiling FtC 

( )2 +1x t  SAT_SPT(t+1) 69 0.687735 Supply air temperature setpoint °F 

( )10u t  OA-TEMP 67 0.669883 Outside air temperature °F 

( )5u t  SF-SPD 63 0.634715 Supply fan VFD speed % Speed 

( )1 +1x t  SA_SPSPT(t+1) 57 0.573135 Supply air static pressure setpoint In. WG 
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Table 4.3 Parameters selected for building temperature model in Interior Room (Temp-IA) 

Variable Point Name Rank Importance Description Unit 
( )1u t  MA-TEMP 100 1.000000 Mixed air temperature °F 

( )3u t  CHWC-EAT 97 0.966032 Chilled water coil entering water 
temperature °F 

( )4u t  HWC-DAT 96 0.961214 Heating water coiling departure 
air temperature °F 

( )3,IAv t  VAV-DP-IA 87 0.870300 Velocity pressure differential In. WG 

( )2u t  SA-CFM 81 0.807753 Supply air flow rate CFM 

( )7,IAv t  LIGHTLVL-IA 77 0.773773 Light level from ceiling FtC 

( )2 +1x t  SAT_SPT(t+1) 76 0.757145 Supply air temperature setpoint °F 

( )2,IAv t  VAV-DMPR-IA 73 0.725705 VAV damper position %Open 

( )8u t  SOL-HORZ 71 0.705119 Solar normal flux B/HFt2 

( )4,IAv t  RA-DMPR-EA 68 0.681232 Recirculated air damper %Closed 

( )6u t  SOL-BEAM 61 0.605456 Solar beam B/HFt2 

( )7u t  CHWC-VLV 60 0.595037 Chilled water coil valve position %Open 

( )10u t  OA-TEMP 58 0.580150 Outside air temperature °F 

( )5u t  SF-SPD 57 0.568448 Supply fan VFD speed % Speed 

( )1 +1x t  SA_SPSPT(t+1) 43 0.433351 Supply air static pressure setpoint In. WG 

( )1,EAv t  VAVHCGPM-IA 31 0.312092 VAV heating coil flow rate GPM 

( )5,IAv t  RM-LITE2-IA 0 0.000000 Light level on window #2 FtC 

( )6,IAv t  RM-LITE1-IA 0 0.000000 Light level on window #1 FtC 

Table 4.4 Parameters selected for building temperature model in South Room (Temp-SA) 

Variable Point Name Rank Importance Description Unit 
( )6u t  SOL-BEAM 100 1.000000 Solar beam B/HFt2 

( )2,SAv t  VAV-DMPR-SA 98 0.982757 VAV damper position %Open 

( )6,SAv t  RM-LITE1-SA 98 0.979662 Light level on window #1 FtC 

( )1u t  MA-TEMP 97 0.968453 Mixed air temperature °F 

( )3u t  CHWC-EAT 95 0.952256 Chilled water coil entering water 
temperature °F 

( )4u t  HWC-DAT 94 0.943306 Heating water coiling departure air 
temperature °F 

( )3,SAv t  VAV-DP-SA 94 0.935909 Velocity pressure differential In. WG 

( )8u t  SOL-HORZ 93 0.933969 Solar normal flux B/HFt2 
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Table 4.4-continued 

( )5,SAv t  RM-LITE2-SA 93 0.931232 Light level on window #2 FtC 

( )7,SAv t  LIGHTLVL-SA 88 0.877913 Light level from ceiling FtC 

( )2u t  SA-CFM 82 0.823981 Supply air flow rate CFM 

( )4,SAv t  RA-DMPR-SA 74 0.744208 Recirculated air damper %Closed 

( )1,SAv t  VAVHCGPM-SA 68 0.684999 VAV heating coil flow rate GPM 

( )7u t  CHWC-VLV 65 0.645336 Chilled water coil valve position %Open 

( )2 +1x t  SAT_SPT(t+1) 62 0.619476 Supply air temperature setpoint °F 

( )5u t  SF-SPD 55 0.552893 Supply fan VFD speed % Speed 

( )1 +1x t  SA_SPSPT(t+1) 49 0.485930 Supply air static pressure setpoint In. WG 

( )10u t  OA-TEMP 37 0.372192 Outside air temperature °F 

Table 4.5 Parameters selected for building temperature model in West Room (Temp-WA) 

Variable Point Name Rank Importance Description Unit 
( )1u t  MA-TEMP 100 1.000000 Mixed air temperature °F 

( )4u t  HWC-DAT 97 0.967260 Heating water coiling departure air 
temperature °F 

( )3u t  CHWC-EAT 96 0.959010 Chilled water coil entering water 
temperature °F 

( )2,WAv t  VAVHCGPM-WA 91 0.912558 VAV damper position %Open 

( )6,WAv t  RM-LITE1-WA 85 0.852728 Light level on window #1 FtC 

( )3,WAv t  VAV-DP-WA 80 0.796603 Velocity pressure differential In. WG 

( )5,WAv t  RM-LITE2-WA 77 0.768865 Light level on window #2 FtC 

( )7,WAv t  LIGHTLVL-WA 71 0.711310 Light level from ceiling FtC 

( )2,WAv t  VAV-DMPR-WA 67 0.672981 VAV damper position %Open 

( )7u t  CHWC-VLV 63 0.629861 Chilled water coil valve position %Open 

( )6u t  SOL-BEAM 59 0.592312 Solar beam B/HFt2 

( )2u t  SA-CFM 54 0.540244 Supply air flow rate CFM 

( )8u t  SOL-HORZ 53 0.534687 Solar normal flux B/HFt2 

( )5u t  SF-SPD 51 0.512276 Supply fan VFD speed % Speed 

( )10u t  OA-TEMP 49 0.490121 Outside air temperature °F 

( )4,WAv t  RA-DMPR-WA 41 0.406538 Recirculated air damper %Closed 

( )2 +1x t  SAT_SPT(t+1) 33 0.326308 Supply air temperature setpoint °F 

( )1 +1x t  SA_SPSPT(t+1) 31 0.308902 Supply air static pressure setpoint In. WG 
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The multi-layer perceptron (MLP) neural network is employed to establish the models. 

To evaluate the performance of the predictive models, four metrics in the following are used: the 

mean absolute percentage error (MAPE), the standard deviation of absolute percentage error 

(Sd_PE), the maximum absolute error (MAX), and the minimum absolute error (MIN). 
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{ }1 1 2 2ˆ ˆ ˆmax , , , n nMAX y y y y y y= − − −  

{ }1 1 2 2ˆ ˆ ˆmin , , , n nMIN y y y y y y= − − −  

Table 4.6 Detailed information of the neural networks 

Model Output No. of Hidden 
Units 

Training 
Algorithm 

Hidden Layer 
Activation Function 

Output Activation 
Function 

Total energy 
consumption 5 BFGS 99 Tanh Identity 

Temp-EA 5 BFGS 100 Tanh Identity 
Temp-IA 5 BFGS 57 Tanh Logistic 
Temp-SA 11 BFGS 118 Exponential Exponential 
Temp-WA 8 BFGS 129 Tanh Exponential 

Table 4.7 Prediction accuracy of the data-mining models 

Model  Dataset MAPE Sd_PE MAX MIN 

Total energy consumption Training 0.1025 0.0925 1312.7 0.0752 
Test 0.1069 0.1038 2098.7 1.2475 

Temp-EA Training 0.0072 0.0068 2.9029 0.0009 
Test 0.0079 0.0072 2.7613 0.0001 

Temp-IA Training 0.0077 0.0067 2.9972 0.0032 
Test 0.0075 0.0067 2.7362 0.0021 

Temp-SA Training 0.0071 0.0069 2.7016 0.0022 
Test 0.0082 0.0083 2.9380 0.0014 

Temp-WA Training 0.0098 0.0090 4.0789 0.6307 
Test 0.0083 0.0064 2.2613 0.4492 
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Table 4.6 summaries the detailed information of the five neural network models. Table 

4.7 presents the training and test accuracies measured by the four metrics. The total energy 

consumption model has accuracy nearly 90%, and the accuracies of all the temperature models 

achieve 99%. Figure 4.3 illustrates the observed and predicted energy consumption. The 

predictive models established by the MLP are then used for the optimization process discussed in 

the next section.  

 

Figure 4.3 The comparison of the observed and predicted energy consumption 

4.3. Energy Optimization Modeling 

4.3.1 Overall energy optimization model 

The objective is to optimize the settings of the two setpoints to achieve the minimum 

energy consumption of the HVAC system while maintaining the thermal comfort in all four 

rooms. ( )1E t + , the total energy consumption at time t+1, is used as the objective function to be 

minimized in search of the optimal settings of the supply air temperature and static pressure 

setpoints. The varying ranges for the two setpoints recorded in the original dataset are [0.5 In. 

WG, 1.8 In. WG] and [55°F, 65°F], respectively. However, the data points near the bounds are 
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very rare, which makes it hard for the data mining algorithm to capture the pattern if the setpoint 

values are near the bounds. Considering this fact, the constraints for the two setpoints are 

restricted within [0.8 In. WG, 1.5 In. WG] and [56°F, 64°F]. The constraints of the temperature 

in four rooms are defined by the deviation from the recorded temperature generated by the 

original control strategies. In this research, two types of temperature constraints with deviation 

within 1 °F (+/- 0.5°F) and 2°F (+/-1°F) are considered. With the first type of controlled 

temperature constraints, the overall optimization model is shown as follows. 

( )
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where *T  is the room temperature by implementing the  original control strategies. 

4.3.2 Firefly algorithm 

Solving this nonlinear model pose a challenge for traditional optimization algorithm. 

Nature-inspired algorithms, like particle swarm optimization (PSO), simulated annealing (SA), 

are highly capable of finding optimal or near optimal solutions for complex optimization 

problems. In this paper, a new novel nature-inspired intelligent algorithm, called firefly 

algorithm (FA) is employed to tackle this problem. 
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Firefly algorithm is a novel nature-inspired algorithm inspired by social behavior of 

fireflies. Fireflies are one of the most special, captivating and fascinating creature in the nature. 

There are about two thousand firefly species, and most fireflies produce short and rhythmic 

flashes. The rate and the rhythmic flash, and the amount of time form part of the signal system 

which brings both sexes together. Therefore, the main part of a firefly's flash is to act as a signal 

system to attract other fireflies. By idealizing some of the flashing characteristics of fireflies, 

firefly-inspired algorithm was presented by Xin-She Yang [53, 54]. Firefly-inspired algorithms 

use the following three idealized rules: 1) All fireflies are unisex which means that they are 

attracted to other fireflies regardless of their sex; 2) The degree of the attractiveness of a firefly is 

proportion to its brightness, thus for any two flashing fireflies, the less brighter one will move 

towards the brighter one and the more brightness means the less distance between two fireflies. If 

there is no brighter one than a particular firefly, it will move randomly; 3) The brightness of a 

firefly is determined by the value of the objective function. For a maximization problem, the 

brightness can be proportional to the value of the objective function. Other forms of brightness 

can be defined in a similar way to the fitness function in genetic algorithms.  

The research work done by Xin-She Yang shows that firefly algorithm is very efficient in 

finding the global optima with high success rates. This gives inspiration to introduce the 

algorithm for solving this complex optimization model.  Based on the three rules stated before, 

the basic steps of the firefly algorithm can be summarized as the pseudo code shown in Figure 

4.4. 
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Figure 4.4 Pseudo code of the firefly algorithm 

Three components of the algorithm based on the three rules are explained here. 

Attractiveness: In the firefly algorithm, the main form of attractiveness function ( )rβ  

can be any monotonically decreasing functions such as the following generalized form: 

( ) ( )0 expr rβ β γ= −  

where r is the distance between two fireflies, 0β  is the attractiveness at r = 0 and γ  is a fixed 

light absorption coefficient. 

Distance: The distance between any two fireflies i and j at ix  and jx  is the Cartesian 

distance as follows, 

( )2

, ,
1

d

ij i j i k j k
k

r x x x x
=

= − = −∑
 

where ,i kx  is the k-th component of the i-th firefly. 
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Movement: The movement of a firefly, i is attracted to another more attractive (brighter) 

firefly j, is determined by 

( ) ( )0
1exp
2i i j ix x r x x randβ γ α  = + − − + − 

   

where the second term is due to the attraction while the third term is randomization with α  

being the randomization parameter and “rand” is a random number generator uniformly 

distributed in [0, 1]. 

The firefly algorithm is originally designed for the continuous global optimization 

problem. For the nonlinear constrained optimization model in this research, the constraints are 

integrated into the objective function by transforming into a penalty function. The penalized 

objective function is stated as following. 
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where w  is the penalty parameter (set as a large number in the computation, 1000000). k=1, 2, 3, 

4, representing the four rooms. 

4.4. Computational Results and Analysis  

Two experiments are considered. Experiment 1 restricts the controlled temperature 

deviation in each room within 1 °F, which means the deviation falls in the range [-0.5°F, 0.5°F]. 

While in Experiment 2, the deviation of the controlled temperature in each room falls in the 

range [-1°F, 1°F]. In each of the experiments, 100 cases are computed to demonstrate the 

effectiveness of the proposed approach. Parameters for the firefly algorithm are set as 0 1β γ= = ,

0.2α = , MaxGen=50, popsize=50. Figure 4.5 demonstrates the iteration process of the firefly 

algorithm for one computing case. The algorithm finds the optimal solution at the 36-th iteration, 

which shows that the algorithm could escape from the local minimum during later iterations. 
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Table 4.8 presents the energy consumption before and after optimization in these two 

experiments. 6.38% and 12.85% energy saving are achieved by this optimization strategy. 

 

Figure 4.5 The iterations of the firefly algorithm in one case 

Table 4.8 Energy consumption before and after optimization 

 Scenario 1 Scenario 2 
Recorded total energy consumption 360929.78 
Optimized total energy consumption 337887.08 317311.66 

Total energy savings 23042.70 43618.12 
Saving ratio 6.38% 12.85% 

 
 
 

Figure 4.6 depicts the recorded and optimized total energy consumption in Experiment 1. 

Figures 4.7-4.8 compare the original and recommended settings of the supply air temperature 

and static pressure setpoints in Experiment 1. Similarly, Figure 4.9 demonstrates the recorded 

and optimized total energy consumption in Experiment 2. Figures 4.10-4.11 show the 

comparisons of the recorded and recommended two setpoints in Experiment 2. By comparing the 

two experiments, we can see that relaxing the temperature constraints can lead to more energy 

savings.  
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Figures 4.12-4.15 illustrate the controlled temperature in the four rooms in Experiment 1. 

The figures suggest that the room temperatures are under control. Illustrations of controlled room 

temperature in Experiment 2 are not included. 

 

Figure 4.6 The recorded and optimized total energy consumption                                                           
in Experiment 1 

 

Figure 4.7 The recorded and recommended supply air temperature setpoint                                  
settings in Experiment 1. 
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Figure 4.8 The recorded and recommended supply air static pressure                                              
setpoint settings in Experiment 1. 

 

Figure 4.9 The recorded and optimized total energy consumption                                                           
in Experiment 2 
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Figure 4.10 The recorded and recommended supply air static pressure                                                       
setpoint settings in Experiment 2 

 

Figure 4.11 The recorded and recommended supply air temperature                                                    
setpoint settings in Experiment 2 
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Figure 4.12 The recorded and optimized temperature of East Room                                                            
in Experiment 1 

 

Figure 4.13 The recorded and optimized temperature of Interior Room                                                      
in Experiment 1 
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Figure 4.14 The recorded and optimized temperature of South Room                                                           
in Experiment 1 

 

Figure 4.15 The recorded and optimized temperature of West Room                                                           
in Experiment 1 
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optimization model is established by combining the predictive models and related constraints. 

After solving the optimization model by the firefly algorithm, two controllable parameters, 

namely the supply air temperature setpoint and the supply air static pressure setpoint, are 

optimized. The optimal settings constitute the best control strategies for the HVAC system. Two 

experiments with different constraints on the controlled temperature deviations are conducted to 

verify the proposed approach. Computational results show that more than 6% and 12% energy 

savings are respectively observed. The room temperatures are under control at the same time. 

Modeling multi-zone HVAC system is complex. There are rooms for improving the 

accuracy of the energy consumption model built in this research. More accurate model will lead 

to more credible optimization result. Meanwhile, thermal comfort measured by better criteria or 

by considering more metrics, like the humidity, should to be investigated further. 
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CHAPTER 5 

HVAC SYSTEM OPTIMIZATION VIA DATA MINING AND COMPUTATIONAL 
INTELLIGENCE: AN IMPLEMENTATION 

5.1. Introduction 

Heating, ventilation, and air conditioning (HVAC) systems are high energy consumers. 

Energy savings in HVAC systems could be obtained by utilizing intelligent control strategies. In 

our research, data-mining and computational intelligence are intensively applied to model and 

optimize HVAC systems with the objectives of energy savings and thermal comfort. 

Investigations show that data mining approach can successfully extract the underlying patterns in 

the system, and thus build accurate predictive models. These data-driven models are integrated in 

optimization models. Optimal control strategies, typically settings of setpoints, are generated by 

solving energy optimization models. Computational results in our previous research show that 

energy consumption of the HVAC system could be significantly reduced by our proposed 

modeling and optimization approaches. 

A practical implementation with two objectives, focusing on the methodology validation 

and practical implementation, is conducted to demonstrate the applicability of the proposed 

approaches. At the methodology side, though theoretical studies demonstrate huge potential of 

energy savings by this promising approach, the reliability and accuracy of the predictive data-

driven models are to be validated in this real case. At the implementation side, through this case, 

we aim to establish a unified framework of how data mining and computational intelligence are 

implemented in real-world HVAC systems. The interactions of different systems are tested and 

verified, the complete steps, from room selection to data collection, and to final implementation 

are discussed.  
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Figure 5.1 Framework of the real time online implementation 

In this implementation, two setpoints, namely the supply air static pressure set point and 

the discharge air temperature set point are investigated. Optimal control strategy is the best 

settings of the two set points which control the system to achieve minimum energy consumption 

while maintaining the acceptable thermal comfort of the building. The main process of the real 

time online optimization for this implementation is illustrated by Figure 5.1. A data collection 

experiment is first conducted to collect data to build predictive energy consumption model and 

temperature models, which describe the relationship between the two setpoints and the output, 

energy consumption and temperature. Then by combining related thermal comfort constraints, 

which is temperature constraints in this study, and range constraints of set points, the energy 

optimization model is established. At time t, the optimal settings of the set points for time t+1 

time are generated by intelligent algorithm and thus written to the real system. The system runs 

under the settings, and new real time data are extracted at time t+1, the optimization iterates for 

the next time interval. 
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5.2. Building and System 

The commercial building investigated in this implementation is the University Services 

Building (USB) at the University of Iowa. The building was built in 1999, and is located at 1 

West, Prentiss, Iowa city. The gross floor area is 71,123 square feet. The building has four floors, 

and provides offices, meeting rooms, and recreation areas for different departments of the 

university.  

 

Figure 5.2 The University Services Building 

The HVAC system in the building includes a single air handling unit (AHU), a chiller 

plant, boilers, pumps, fans, and serving zones. The system is controlled by Jonson Control 

system, the real time data are stored in a SQL server, shown in Figures 5.3-5.4. A software called 

Data Command (Figure 5.5) is used to connect the real physic system and the software control 

system. The values of the set points are read by the Data Command software, and then written to 

the real components of the HVAC system. In the real implementation, a csv file is created to 

store the values of the two setpoints first. Then each time the values are modified by the 

optimization program, Data Command software will notice that by scanning the csv file very one 

minute. After knowing the modification, Data Command will read the values and write them to 

the HVAC system automatically.  
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Figure 5.3 Johnson control system – parameters in the USB                                                                     
air handling unit 

 

Figure 5.4 SQL server – store real time data 
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Figure 5.5 Data Command interface 

5.3. Data Collection Experiment  

In this implementation, two set points, the supply air static pressure set point and the 

discharge air temperature set point, are investigated. By optimally setting these two set points, 

the energy savings are expected to be captured. However, in practice, the values of the two set 

points are respectively fixed at 2.3 in. WG and 55°F in the system. In order to build the 

relationship between the two set points and the system outputs, like energy consumption and 

room temperature, the system should be running under changing settings of the two set points to 

collect enough data for model building. The data collection experiment is thus conducted to 

achieve this goal. 

The occupancy period for the system is defined every 8:00 A.M. to 5:00 P.M., Monday to 

Friday. The data collection experiment was designed from 6:00 A.M., Sep. 10, 2012 to 6:30 P.M., 

Sep. 28, 2012. Two weekends (Sep. 15, 16, and Sep. 22, 23) were excluded. The two set points 

were changed every 30 mins. The schedules of the two set points are as follows. The discharge 

air temperature setpoint was changed from 55°F to 60°F with 0.1°F increment. The supply air 

static pressure setpoint was varied from 1.8 in. WG to 2.4 in. WG. with 0.1 in. WG increment. 

Ideally there should be 360 data points, 15 days with 24 records each day.  
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The data collection process was implemented by MATLAB. Figure 5.6 illustrates 

changing values of the set pints in MATLAB. Figure 5.7 shows the data collection experiment in 

which the MATLAB program was running on a virtual machine at the Energy Control Center, 

which is located at the third floor of the University Services Building. The program ran all the 

time during the experiment period. It should be noted that there was a time limit, which is not 

quite clear, for Data Command software connecting with the corresponding server. That means if 

the Data Command could not read new data for a certain period of time, it will lose connection. 

To avoid this problem, the Matlab program wrote the old values of two set points every 10 mins. 

After 30 mins, the new values would be written (See Figure 5.5).  

 

Figure 5.6 MATLAB for data collection 
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Figure 5.7 The data collection experiment on a virtual machine 

In practical implementation, a lot of work should be done to deal with the interactions of 

different software. The protection of security of the real system makes several types of errors 

occur. In the data collection process, different types of errors occurred, which interrupted the 

Matlab program several times. The first type of errors is shown in Figure 5.8. First error came at 

9:08 am, Sep. 10, 2012. This is the common error which occurred several times. It involved the 

privilege and security issues. 
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Figure 5.8 The first type of error during the data collection experiment 

 

Figure 5.9 The second type of error during the data collection experiment 

The second type of errors occurred around 12:00 pm, Sep. 10, 2012, shown in Figure 5.9. 

It involved the Excel Reading issue. Another error occurred during the process was that the 

virtual machine was forced shut down on Sep. 17, 2012 due to the system update on the virtual 

machine. This leaded that the whole day’s data was void. Additionally, during the experiment, a 



85 
 

 
 

problem occurred on the chiller and the chiller was taken out of service for a period of time. This 

made the discharge air temperature reach above 65°F, which was regarded abnormal. Thus, data 

points with a discharge air temperature above 65°F were also excluded from the data set. 

5.4. Room Selection 

To validate the data mining approach for HVAC optimization, evaluating whether the 

building is under control is of importance. Since the University Services Building has nearly a 

hundred of rooms and general zones controlled by the single air handling unit, it is impractical to 

monitor the system by taking all the zones into account. 

Selecting representative rooms for monitoring is finished to better measure the 

controllability of the building. In this study, several factors, like the floor, the orientation, the 

type, are considered for the room selection. Critical rooms, which are defined as those with 

general usage and have typical characteristics shared by many others, are selected as 

representative zones to be monitored during this implementation. Usually meeting rooms have a 

very high cooling load when there is a meeting, but are not necessary to be controlled where they 

are unoccupied. These kinds of rooms are idle for very long time and couldn’t be critical rooms.  

The building is claimed under control if the selected critical rooms are under control, i.e., 

the temperature in each critical room is within the range defined by the actual heating setpoint 

and actual cooling setpoint. For this study, the critical rooms should be those are already well 

under control by the original control strategy.  

Eight rooms are initially picked for consideration. Data used for evaluating the rooms are 

collected from 5:15 P.M., July 30, 2012 to 5:00 P.M. August 30, 2012. Taking Room 4 as an 

instance, Figure 5.10 illustrates the comparison of the actual room temperature and the 

corresponding heating and cooling set points. Table 5.1 summarizes the information of the rooms. 

The control ratios are computed based on the occupancy period of the rooms. They basically 

mean that for how long the rooms are under control during the occupancy period. The table 

shows that only Room 4 are controlled well by the original control strategy. This is mainly 
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because that the actual cooling and heating setpoints are set tight and strict, making it hard for 

the room temperature to fall into the range. Figure 5.11 and Figure 5.12 intuitively demonstrate 

the situations in Room 7 and Room 8, in which the actual room temperatures vary beyond the 

predefined actual cooling and heating setpoints.  

Considering the representativeness as well as the control ratio of the rooms, Room 2, 4, 7, 

and 8 are finally selected as critical rooms for this implementation, after changing the actual 

cooling and heating setpoints in Room 7 and Room 8. Table 5.2 presents the information of the 

final rooms. 

Table 5.1 The room selected and the original control ratio 

Room 
No. Location Rooms Actual Cooling 

Setpoint 
Actual Heating 

Setpoint 
Control 
Ratio 

1 First floor, North ROOM 102A 74.98 73.98 0.085427 

2 First floor, South ROOM 121-
31,32&33 75.5 74.5 0.440882 

3 Second floor, 
West ROOM 201 75.3 74.3 0.47806 

4 Second floor, 
North 

ROOM 220-
5,6,7,8 77.38 76.38 0.804396 

5 Second floor, 
Interior ROOM 224 73.86 72.86 0.510158 

6 Third floor, East ROOM 341 67.63 66.63 0 

7 Third floor, 
Interior ROOM 320-5 69.5 68.5 0.118421 

8 Third floor, 
South ROOM 321-33 68.7 67.7 0 
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Figure 5.10 The comparison of the actual room temperature                                                                   
and setpoints in Room 4 

 

Figure 5.11 The comparison of the actual room temperature                                                                    
and setpoints in Room 7 
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Figure 5.12 The comparison of the actual room temperature                                                                   
and setpoints in Room 8 

Table 5.2 The critical rooms selected for the implementation 

Room 
No. Location Rooms Actual Cooling 

Setpoint 
Actual Heating 

Setpoint 
Control 
Ratio 

2 First floor, 
South 

ROOM 121-
31,32&33 75.5 74.5 0.440882 

4 Second floor, 
North 

ROOM 220-
5,6,7,8 77.38 76.38 0.804396 

7 Third floor, 
Interior ROOM 320-5 70 71 0.535087 

8 Third floor, 
South ROOM 321-33 73 74 0.440087 

5.5. Data Mining Modeling 

Parameters measuring the functioning of the air handling unit and thermal comfort of 

different zones were recorded every 1 minute. The time stamp is transformed into 30 minutes by 

averaging the original data points. After preprocessing, there are 300 data points in the final 

dataset. 85% are used to build the data mining models, and the remaining are for testing the 

accuracy and stability of the models. 
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The parameters selected for the energy consumption model are summarized in Table 5.3. 

Table 5.4 presents the parameters selected for building the temperature model in Room 8. The 

parameters used for temperature models in other rooms are the same with those in Table 5.4. 

Table 5.3 Parameters selected for building energy consumption model 

Point name Rank Importance Description Unit 
CW-R-T 100 1.000000 Chilled water return temperature °F 
CW-S-T 87 0.871468 Chilled water supply temperature °F 
CL-VLV 77 0.765106 Cooling valve control %Open 

OA-TEMP 73 0.725706 Outside air temperature °F 
MA-TEMP 68 0.679566 Mixed air temperature °F 
DA-TEMP 66 0.655022 Discharged air temperature °F 
RA-TEMP 63 0.625273 Return air temperature °F 
DA-STPT 53 0.526073 Discharged air temperature setpoint °F 

RA-SP 46 0.455347 Return static pressure In. WG 
SA-SP 45 0.451086 Supply static pressure In. WG 

SA-CFM 43 0.426814 Supply air CFM CFM 
RA-CFM 42 0.420577 Return air CFM CFM 
RA-VFD 40 0.403371 Return VFD speed control % Speed 

CHWR-TEMP 40 0.402218 Chilled water return temperature % Speed 
SA-VFD 35 0.347783 Supply VFD Speed control % Speed 

STA-STSP 26 0.262965 Supply air static pressure setpoint In. WG 

Table 5.4 Parameters selected for building temperature model in Room 8 

Point name Rank Importance Description Unit 
DA-TEMP 100 1.000000 Discharged Air Temperature  °F 
DA-STPT 97 0.969816 Discharged Air Temperature Setpoint °F 
CW-R-T 92 0.920689 Chilled water return temperature °F 
CW-S-T 87 0.873606 Chilled water supply temperature c 

MA-TEMP 84 0.837691 Air temperature after heating coil °F 
MA-TEMP 83 0.827385 Mixed air temperature °F 
OA-TEMP 77 0.766247 Outside air temperature °F 

CHWR-TEMP 73 0.730635 Chilled water return temperature °F 
RA-VFD 63 0.628827 Return VFD speed control % Speed 
SA-CFM 62 0.624080 Supply CFM CFM 
CL-VLV 58 0.584872 Cooling valve control %Open 
SA-VFD 58 0.581926 Supply VFD speed % Speed 

STA-STSP 49 0.492345 Supply air static pressure setpoint In. WG 
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The multi-layer perceptron (MLP) neural network is employed to establish the models. 

To evaluate performance of the predictive models, four metrics are used: the mean absolute 

percentage error (MAPE), the standard deviation of absolute percentage error (Sd_PE), the mean 

absolute error (MAE), the standard deviation of absolute error (Sd_AE). 
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where iy   is the observed value, ˆiy  is the predicted value, and n is the size of the training or test 

data set.  

Table 5.5 summaries information of the five neural network models. Table 5.6 presents 

the accuracy measured by the four metrics.  Figure 5.13 shows the comparison between the 

observed and predicted energy consumption. 

Table 5.5 Information about the neural network models 

Model Output No. of Hidden 
Units 

Training 
Algorithm 

Hidden Layer Activation 
Function 

Output Activation 
Function 

Energy 
consumption 8 BFGS 56 Tanh Tanh 

Temp-Room 2 9 BFGS 67 Logistic Identity 
Temp-Room 4 25 BFGS 66 Tanh Logistic 
Temp-Room 7 12 BFGS 66 Tanh Exponential 
Temp-Room 8 7 BFGS 147 Tanh Exponential 
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Table 5.6 Prediction accuracy of the data-mining models 

Model MAPE Sd_PE MAE Sd_AE 
Total energy consumption 0.169039 0.413404 8.611003 9.217378 

Temp-Room 2 0.003714 0.0029148 0.281503 0.221067 
Temp-Room 4 0.00235 0.001874 0.18081 0.144214 
Temp-Room 7 0.00313 0.00266 0.219767 0.186923 
Temp- Room 8 0.003941 0.003561 0.292917 0.264546 

 

 

Figure 5.13 Comparison between the observed and predicted energy consumption 

5.6. Implementation 

The implementation is conducted through Oct. 11 to Oct. 19, 2012, despite of weekends. 

If the outside air temperature is below 60 °F, the HVAC system in the University Services 

Building will switch to heating mode, in which the chiller would be shut down. Since the 

optimization on the two setpoints is based on energy consumption model built for cooling mode, 

it makes no sense to conduct optimization on the real system if the chiller is shut down. Because 

of the relatively low outside air temperature during experiment period, there seems not so much 

room for optimization and the potential energy savings.  

The software wrote for this implementation would first check whether the current time is 

in occupancy period, which is defined from 9 A.M. to 5 P.M., Monday to Friday. If so, the 
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software then pools out real time data for the models, and check whether the outside air 

temperature is below 60 °F. If the outside air temperature is below 60 °F, the software would set 

the default values for the two setpoints, which are respectively 55 °F and 2.3 in. WG. If the 

outside air temperature is above 60 °F, the optimization procedure is conducted to generate 

optimal settings of the two setpoints and write the optimal value to the system. Figure 5.14 and 

Figure 5.15 illustrate the output of the software in different scenarios. 

A network problem occurred on the virtual machine for the experiment Oct. 16, 2012, 

which stopped the software from pooling data from the SQL server. Figure 5.16 depicts the 

problem. 

 

Figure 5.14 Software output for scenario where outside air temperature                                                         
is below 60 °F 
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Figure 5.15 Software output for scenario where outside air temperature                                                        
is above 60 °F 

 

Figure 5.16 Network error forced the software to stop 
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The network problem is solved after the implementation period. As stated before, 

practical implementation involves a lot of work to deal with the security of the database, the 

network, the control system, the safe operation of the HVAC system, and the interactions of 

different software. Any error could interrupt the real time implementation. For this 

implementation, however, the goal of building a unified framework of applying data mining and 

computational intelligence to HVAC system optimization is achieved.  

5.6. Summary 

In this chapter, a real-time implementation was conducted with two objectives, to validate 

the data mining approaches, and to build a unified framework of applying data mining and 

computational intelligence to HVAC system optimization. A commercial building called the 

University Services Building at the University of Iowa was used for the experiment.  

A data collection experiment was conducted to collect data for building data mining 

models. Critical rooms were selected to measure whether the system is under control during 

implementation. Different kinds of errors which occur because of system security and other 

issues were tackled. The HVAC system and the interactions of related software used in the 

implementation were successfully tested. The whole implementation process was verified.  

To get accurate data mining models, enough data points are required. Therefore, a longer 

time period (at least one month) should be used for the data collection in future experiment.  And 

a long time implementation is also needed to draw strong conclusion on the energy saving result. 
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CHAPTER 6 

CONCLUSION 

This thesis proposes data mining and computation intelligence to the system modeling 

and optimization. Two industrial systems, the HVAC system and the wastewater pumping 

system are considered to test the effectiveness of the proposed approach. Chapter 1 introduces 

current approaches of modeling and optimizing the two systems in literature, and reviews the 

data mining and computational intelligence in modeling and optimization. 

In the first part (Chapter 2), a pumping system in a wastewater treatment plant is first 

examined. The performance of the pumping system evaluated by the energy consumption and the 

outflow rate are modeled by a data mining approach. A mixed-integer nonlinear programming 

(MINLP) model with regard to minimizing energy consumption was established and solved by a 

designed greedy electromagnetism-like (GEM) algorithm. The computational experiments 

demonstrated that significant energy savings can be achieved. 

The second part (Chapter 3 – Chapter 5) mainly focuses on modeling and optimization of 

HVAC systems. In Chapter 3, energy consumption of different components in an air handling 

unit system was separately modeled. A non-linear optimization model was developed to 

minimize the total energy consumption of the air-handling unit while maintaining the supply air 

temperature and static pressure in a predetermined range. A dynamic penalty-based 

electromagnetism-like algorithm was employed. Energy consumption of the AHU system was 

reduced by almost 23% in the computational experiment. 

Chapter 4 presents a multi-layer perceptron neural network to model the energy 

consumption and the thermal comfort of each zone, measured by room temperature, in a multi-

zone HVAC system. The firefly algorithm is utilized to solve the energy optimization model. 

More than 6% and 12% energy savings are respectively observed in two computational 

experiments.  
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In Chapter 5, a real-time practical implementation was conducted to validate the data 

mining approach in HVAC system modeling. A unified framework of applying data mining and 

computational intelligence in HVAC system modeling and optimization is established. The real 

system and interactions of related used software are successfully tested and verified. Further 

implementation with longer time for data collection as well as real time implementation is 

needed. 

Future research should focus on the improvement of the accuracy of data mining models 

while avoiding over-fitting and on the validation of the data mining approach by practical 

implementations in different systems. Comparison of and evaluation on the effectiveness of 

different intelligent algorithms are also to be considered. 
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