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ABSTRACT

The primary objective of this study is to develop new computational meth-

ods for robust design optimization (RDO) and reliability-based design optimization

(RBDO) of high-dimensional, complex engineering systems. Four major research di-

rections, all anchored in polynomial dimensional decomposition (PDD), have been

defined to meet the objective. They involve: (1) development of new sensitivity

analysis methods for RDO and RBDO; (2) development of novel optimization meth-

ods for solving RDO problems; (3) development of novel optimization methods for

solving RBDO problems; and (4) development of a novel scheme and formulation to

solve stochastic design optimization problems with both distributional and structural

design parameters.

The major achievements are as follows. Firstly, three new computational meth-

ods were developed for calculating design sensitivities of statistical moments and re-

liability of high-dimensional complex systems subject to random inputs. The first

method represents a novel integration of PDD of a multivariate stochastic response

function and score functions, leading to analytical expressions of design sensitivities

of the first two moments. The second and third methods, relevant to probability dis-

tribution or reliability analysis, exploit two distinct combinations built on PDD: the

PDD-SPA method, entailing the saddlepoint approximation (SPA) and score func-

tions; and the PDD-MCS method, utilizing the embedded Monte Carlo simulation

(MCS) of the PDD approximation and score functions. For all three methods devel-
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oped, both the statistical moments or failure probabilities and their design sensitivi-

ties are both determined concurrently from a single stochastic analysis or simulation.

Secondly, four new methods were developed for RDO of complex engineering systems.

The methods involve PDD of a high-dimensional stochastic response for statistical

moment analysis, a novel integration of PDD and score functions for calculating

the second-moment sensitivities with respect to the design variables, and standard

gradient-based optimization algorithms. The methods, depending on how statistical

moment and sensitivity analyses are dovetailed with an optimization algorithm, en-

compass direct, single-step, sequential, and multi-point single-step design processes.

Thirdly, two new methods were developed for RBDO of complex engineering sys-

tems. The methods involve an adaptive-sparse polynomial dimensional decomposi-

tion (AS-PDD) of a high-dimensional stochastic response for reliability analysis, a

novel integration of AS-PDD and score functions for calculating the sensitivities of

the failure probability with respect to design variables, and standard gradient-based

optimization algorithms, resulting in a multi-point, single-step design process. The

two methods, depending on how the failure probability and its design sensitivities

are evaluated, exploit two distinct combinations built on AS-PDD: the AS-PDD-SPA

method, entailing SPA and score functions; and the AS-PDD-MCS method, utilizing

the embedded MCS of the AS-PDD approximation and score functions. In addi-

tion, a new method, named as the augmented PDD method, was developed for RDO

and RBDO subject to mixed design variables, comprising both distributional and

structural design variables. The method comprises a new augmented PDD of a high-
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dimensional stochastic response for statistical moment and reliability analyses; an in-

tegration of the augmented PDD, score functions, and finite-difference approximation

for calculating the sensitivities of the first two moments and the failure probability

with respect to distributional and structural design variables; and standard gradient-

based optimization algorithms, leading to a multi-point, single-step design process.

The innovative formulations of statistical moment and reliability analysis, design sen-

sitivity analysis, and optimization algorithms have achieved not only highly accurate

but also computationally efficient design solutions. Therefore, these new methods

are capable of performing industrial-scale design optimization with numerous design

variables.
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PUBLIC ABSTRACT

A great many complex systems and engineering structures are innately plagued

by extant uncertainties found in manufacturing processes and operating environments.

Under this Ph.D. study, design optimization of complex systems in the presence of

uncertainty was conducted; in other words, developing methods to achieve the best

possible design solution in which the nature of the system behavior is uncertain. The

research involved new fundamental developments and integration of novel compu-

tational methods to study two principal classes of design optimization: (1) robust

design optimization, which improves product quality by reducing the sensitivity of

an optimal design; and (2) reliability-based design optimization, which concentrates

on attaining an optimal design by ensuring sufficiently low risk of failure. Depending

on the objective set forth by a designer, uncertainty is effectively mitigated by these

design optimization methods. The innovative formulations of statistical moment and

reliability analyses, design sensitivity analysis, and optimization algorithms - the nec-

essary ingredients of the computer models developed - have achieved not only highly

accurate, but also computationally efficient design solutions. Therefore, these new

models are capable of performing industrial-scale design optimization with numerous

design variables. Potential engineering applications comprise ground vehicle design

for improved durability and crashworthiness, fatigue- and fracture-resistant design

for civil and aerospace applications, and reliable design of microelectronic packaging

under harsh environments, to name a few.

viii



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objective of the Study . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 4

2 STATE-OF-THE-ART REVIEW . . . . . . . . . . . . . . . . . . . . . 8

2.1 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Probability space . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Random variable . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Random vector . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Design under Uncertainty . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 RDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 RBDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Stochastic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Methods of statistical moment analysis . . . . . . . . . . 16
2.3.2 Methods of reliability analysis . . . . . . . . . . . . . . . 19
2.3.3 Dimensional decomposition methods . . . . . . . . . . . . 22

2.3.3.1 ANOVA dimensional decomposition . . . . . . . 23
2.3.3.2 Referential Dimensional Decomposition . . . . . 25
2.3.3.3 Truncated ADD and RDD . . . . . . . . . . . . 26

2.4 Stochastic Design Sensitivity Analysis . . . . . . . . . . . . . . . 30
2.4.1 Finite difference method . . . . . . . . . . . . . . . . . . . 31
2.4.2 Score function method . . . . . . . . . . . . . . . . . . . . 32
2.4.3 Other methods . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Robust Design Optimization . . . . . . . . . . . . . . . . . . . . 34
2.6 Reliability-Based Design Optimization . . . . . . . . . . . . . . . 36

2.6.1 FORM/SORM-based methods . . . . . . . . . . . . . . . 36
2.6.2 RDD-based methods . . . . . . . . . . . . . . . . . . . . . 38
2.6.3 Simulation-based methods . . . . . . . . . . . . . . . . . 38

2.7 Need for Fundamental Research . . . . . . . . . . . . . . . . . . 39
2.7.1 PDD methods for stochastic sensitivity analysis . . . . . 40

ix



2.7.2 PDD methods for RDO . . . . . . . . . . . . . . . . . . . 40
2.7.3 PDD methods for RBDO . . . . . . . . . . . . . . . . . . 41
2.7.4 PDD methods for mixed design variables . . . . . . . . . 41

3 STOCHASTIC SENSITIVITY ANALYSIS . . . . . . . . . . . . . . . 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Design under Uncertainty . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 RDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.2 RBDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Stochastic Analyses . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.1 Polynomial Dimensional Decomposition . . . . . . . . . . 47

3.3.1.1 Orthonormal Polynomials and Stochastic Expan-
sions . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 Statistical Moment Analysis . . . . . . . . . . . . . . . . 51
3.3.2.1 First- and Second-Order Moments . . . . . . . . 52
3.3.2.2 Higher-Order Moments . . . . . . . . . . . . . . 53

3.3.3 Reliability Analysis . . . . . . . . . . . . . . . . . . . . . 55
3.3.3.1 The PDD-SPA Method . . . . . . . . . . . . . . 56
3.3.3.2 The PDD-MCS Method . . . . . . . . . . . . . . 60

3.4 Design Sensitivity Analysis of Moments . . . . . . . . . . . . . . 62
3.4.1 Score functions . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.2 Sensitivities of first- and second-order moments . . . . . . 64

3.4.2.1 Exact Sensitivities . . . . . . . . . . . . . . . . . 64
3.4.2.2 Approximate Sensitivities . . . . . . . . . . . . . 65
3.4.2.3 Special Cases . . . . . . . . . . . . . . . . . . . 68
3.4.2.4 Evaluation of T̃ki,m,m′ . . . . . . . . . . . . . . . 69

3.4.3 Sensitivities of higher-order moments . . . . . . . . . . . 71
3.5 Design Sensitivity Analysis of Reliability . . . . . . . . . . . . . 72

3.5.1 The PDD-SPA method . . . . . . . . . . . . . . . . . . . 72
3.5.2 The PDD-MCS method . . . . . . . . . . . . . . . . . . . 75

3.6 Expansion Coefficients . . . . . . . . . . . . . . . . . . . . . . . . 76
3.6.1 Dimension-Reduction integration . . . . . . . . . . . . . . 77
3.6.2 Computational expense . . . . . . . . . . . . . . . . . . . 79

3.7 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.7.1 Example 1: a trigonometric-polynomial function . . . . . 81
3.7.2 Example 2: a cubic polynomial function . . . . . . . . . . 85

3.7.2.1 Case 1: Exponential Distributions . . . . . . . . 86
3.7.2.2 Case 2: Weibull Distributions . . . . . . . . . . 89

3.7.3 Example 3: a function of Gaussian variables . . . . . . . . 92
3.7.4 Example 4 : a function of non-Gaussian variables . . . . . 95
3.7.5 Example 5: a six-bay, twenty-one-bar truss . . . . . . . . 100

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

x



4 ROBUST DESIGN OPTIMIZATION . . . . . . . . . . . . . . . . . . 106

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.2 RDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.3 Proposed Methods for Design Optimization . . . . . . . . . . . . 108

4.3.1 Direct PDD . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3.2 Single-Step PDD . . . . . . . . . . . . . . . . . . . . . . . 109
4.3.3 Sequential PDD . . . . . . . . . . . . . . . . . . . . . . . 111
4.3.4 Multi-Point Single-Step PDD . . . . . . . . . . . . . . . . 113

4.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.4.1 Example 1: optimization of a mathematical function . . . 120
4.4.2 Example 2: size design of a two-bar truss . . . . . . . . . 123
4.4.3 Example 3: shape design of a three-hole bracket . . . . . 127
4.4.4 Example 4: shape design of a lever arm . . . . . . . . . . 133

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5 RELIABILITY-BASED DESIGN OPTIMIZATION . . . . . . . . . . 145

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.2 Reliability-Based Design Optimization . . . . . . . . . . . . . . . 146
5.3 Polynomial Dimensional Decomposition . . . . . . . . . . . . . . 148

5.3.1 Truncated PDD approximation . . . . . . . . . . . . . . . 150
5.3.2 Adaptive-Sparse PDD approximation . . . . . . . . . . . 151

5.4 Reliability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.4.1 The AS-PDD-SPA method . . . . . . . . . . . . . . . . . 155
5.4.2 The AS-PDD-MCS method . . . . . . . . . . . . . . . . . 159

5.5 Design Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . 161
5.5.1 Score functions . . . . . . . . . . . . . . . . . . . . . . . . 161
5.5.2 The AS-PDD-SPA method . . . . . . . . . . . . . . . . . 163
5.5.3 The AS-PDD-MCS method . . . . . . . . . . . . . . . . . 165

5.6 Expansion Coefficients by Dimension-Reduction Integration . . . 166
5.6.1 Full-grid integration . . . . . . . . . . . . . . . . . . . . . 168
5.6.2 Sparse-grid integration . . . . . . . . . . . . . . . . . . . 170
5.6.3 Combined sparse- and full-grids . . . . . . . . . . . . . . 173
5.6.4 Computational expense . . . . . . . . . . . . . . . . . . . 175

5.7 Proposed RBDO Methods . . . . . . . . . . . . . . . . . . . . . . 177
5.7.1 Multi-point approximation . . . . . . . . . . . . . . . . . 178
5.7.2 Single-step procedure . . . . . . . . . . . . . . . . . . . . 179
5.7.3 The AS-PDD-SPA and AS-PDD-MCS methods . . . . . . 181

5.8 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.8.1 Example 1: optimization of a mathematical problem . . . 188
5.8.2 Example 2 : optimization of a speed reducer . . . . . . . 192
5.8.3 Example 3: size design of a six-bay, twenty-one-bar truss 197

xi



5.8.4 Example 4: shape design of a jet engine bracket . . . . . 201
5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

6 STOCHASTIC DESIGN OPTIMIZATION INVOLVING MIXED DE-
SIGN VARIABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
6.2 Design under Uncertainty . . . . . . . . . . . . . . . . . . . . . . 211

6.2.1 Robust Design Optimization . . . . . . . . . . . . . . . . 212
6.2.2 Reliability-based Design Optimization . . . . . . . . . . . 213

6.3 Stochastic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.3.1 Augmented PDD . . . . . . . . . . . . . . . . . . . . . . . 215
6.3.2 Truncated Augmented PDD Approximation . . . . . . . . 219
6.3.3 Statistical Moment Analysis . . . . . . . . . . . . . . . . 220
6.3.4 Reliability Analysis . . . . . . . . . . . . . . . . . . . . . 222
6.3.5 Expansion Coefficients . . . . . . . . . . . . . . . . . . . . 223
6.3.6 Computational Expense . . . . . . . . . . . . . . . . . . . 225

6.4 Design Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . 226
6.4.1 Sensitivity of Moments . . . . . . . . . . . . . . . . . . . 227

6.4.1.1 Sensitivity of the First Moment . . . . . . . . . 229
6.4.1.1.1 Exact Sensitivities . . . . . . . . . . . . . 230
6.4.1.1.2 Approximate Sensitivities . . . . . . . . . 233

6.4.1.2 Sensitivity of the Second Moment . . . . . . . . 234
6.4.1.2.1 Exact Sensitivities . . . . . . . . . . . . . 234
6.4.1.2.2 Approximate Sensitivities . . . . . . . . . 237

6.4.2 Sensitivity of Failure Probability . . . . . . . . . . . . . . 238
6.5 Proposed Optimization Method . . . . . . . . . . . . . . . . . . . 241

6.5.1 Multipoint Approximation . . . . . . . . . . . . . . . . . 242
6.5.2 Single-Step Procedure . . . . . . . . . . . . . . . . . . . . 244
6.5.3 Proposed Multipoint Single-Step Design Process . . . . . 247

6.6 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . 252
6.6.1 Example 1: Sensitivities of Moments . . . . . . . . . . . . 254
6.6.2 Example 2: Sensitivities of Failure Probability . . . . . . 256
6.6.3 Example 3: Size and Configuration Design of a Six-bay,

Twenty-one-bar Truss . . . . . . . . . . . . . . . . . . . . 258
6.6.4 Example 4: Shape Design of a Three-Hole Bracket . . . . 263

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

7 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . 272

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
7.2 Recommendations for Future Work . . . . . . . . . . . . . . . . . 276

APPENDIX

xii



A ANALYTICAL SOLUTIONS OF SENSITIVITIES OF THE FIRST
AND SECONDMOMENTS OF THEOAKLEY ANDO’HAGAN FUNC-
TION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

xiii



LIST OF TABLES

Table

3.1 Intervals of the saddlepoint for Q = 4 . . . . . . . . . . . . . . . . . . . 60

3.2 Derivatives of log-density functions for various probability distributions . 81

3.3 Component failure probability and sensitivities at d0 = (0, 1)T for N = 10
(Example 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.4 Component failure probability and sensitivities at d0 = (0, 1)T forN = 100
(Example 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.5 Relative errors in calculating CGF (Example 4) . . . . . . . . . . . . . . 97

3.6 System failure probability and sensitivities for the six-bay, twenty-one-bar
truss (Example 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.1 Summary of features of the four proposed methods . . . . . . . . . . . . 119

4.2 Optimization results for the mathematical example . . . . . . . . . . . . 122

4.3 Statistical properties of random input for the two-bar truss problem . . . 125

4.4 Optimization results for the two-bar truss problem (m = 2, n = 3) . . . . 126

4.5 Optimization results for the two-bar truss problem (m = 3, n = 4) . . . . 127

4.6 Optimization results for the three-hole bracket . . . . . . . . . . . . . . . 131

4.7 Reductions in the mean and standard deviation of y0 from initial to opti-
mal designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.8 Efficiency and applicability of the four proposed methods . . . . . . . . . 142

5.1 Optimization results for the 100-dimensional mathematical problem . . . 189

5.2 Optimization results for speed reducer problem . . . . . . . . . . . . . . 196

5.3 Optimization results for the six-bay, twenty-one-bar truss problem . . . . 200

xiv



5.4 Initial values, optimal values, and bounds of design variables for the jet
engine bracket problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.1 Sensitivities of the first two moments at d0 = (0.4, 1)T and s0 = (0.55, 0.48)T 256

6.2 Sensitivities of probability of failure at s0 = 2 . . . . . . . . . . . . . . . 257

6.3 Optimization results for the six-bay, twenty-one-bar truss problem . . . . 263

6.4 Optimization results for the three-hole bracket . . . . . . . . . . . . . . . 268

xv



LIST OF FIGURES

Figure

1.1 The integration of the four research directions . . . . . . . . . . . . . . . 7

3.1 Relative errors in calculating the sensitivities of the first two moments of
y due to various PDD truncations; (a) ∂m̃

(1)
S,m(d0)/∂µ; (b)∂m̃

(1)
S,m(d0)/∂σ;

(c) ∂m̃
(2)
S,m(d0)/∂µ; (d) ∂m̃

(2)
S,m(d0)/∂σ (Example 1) . . . . . . . . . . . . 84

3.2 Sensitivities of the probability distribution of y with respect to λ for ex-
ponential distributions of input variables; (a) direct approach; (b) in-
direct approach-univariate; (c) indirect approach-bivariate; (d) indirect
approach-trivariate (Example 2) . . . . . . . . . . . . . . . . . . . . . . . 88

3.3 Sensitivities of the probability distribution of y with respect to λ for
Weibull distributions of input variables; (a) direct approach; (b) indirect
approach-univariate; (c) indirect approach-bivariate; (d) indirect approach-
trivariate (Example 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.4 Sensitivities of the probability distribution of y with respect to k for
Weibull distributions of input variables; (a) direct approach; (b) indirect
approach-univariate; (c) indirect approach-bivariate; (d) indirect approach-
trivariate (Example 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5 Results of the reliability and sensitivity analyses by the PDD-SPA method
and crude MCS/SF; (a) failure probability; (b) sensitivities of failure prob-
ability with respect to means; (c) sensitivities of failure probability with
respect to standard deviations (Example 4) . . . . . . . . . . . . . . . . 99

3.6 A six-bay, twenty-one-bar truss structure (Example 5) . . . . . . . . . . 101

4.1 A flow chart of the sequential PDD method . . . . . . . . . . . . . . . . 113

4.2 A flow chart of the multi-point single-step PDD method . . . . . . . . . 118

4.3 A two-bar truss structure . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4 A three-hole bracket; (a) design parametrization; (b) von Mises stress at
initial design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xvi



4.5 von Mises stress contours at mean values of optimal bracket designs by
the multi-point single-step PDD method; (a) univariate approximation
(S = 1, m = 1); (b) univariate approximation (S = 1, m = 2); (c)
univariate approximation(S = 1, m = 3); (d) bivariate approximation
(S = 2, m = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.6 Fatigue durability analysis of a lever arm in a wheel loader; (a) two lever
arms; (b) design parametrization in front view; (c) design parametrization
in top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.7 An FEA mesh of a lever arm . . . . . . . . . . . . . . . . . . . . . . . . 138

4.8 Contours of logarithmic fatigue crack-initiation life at mean shapes of the
lever arm by the multi-point single-step PDD method; (a) iteration 1; (b)
iteration 3; (c) iteration 9; (d) iteration 15 (optimum) . . . . . . . . . . . 139

4.9 RDO iteration histories for the lever arm; (a) objective function; (b) con-
straint function; (c) normalized design variables; note: design variables
are normalized with respect to their initial values . . . . . . . . . . . . . 140

5.1 A flowchart for constructing AS-PDD approximations . . . . . . . . . . . 154

5.2 A schematic description of the multi-point, single-step design process . . 183

5.3 A flow chart of the proposed AS-PDD-SPA and AS-PDD-MCS methods 186

5.4 Iteration histories of the AS-PDD-SPA method for four different initial
designs (Example 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.5 Iteration histories of the AS-PDD-MCS method for four different initial
designs (Example 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.6 A schematic illustration of the speed reducer (Example 2) . . . . . . . . 194

5.7 A six-bay, twenty-one-bar truss structure (Example 3) . . . . . . . . . . 198

5.8 A jet engine bracket; (a) a jet engine; (b) isometric view; (c) lateral view;
(d) top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

5.9 Definitions of 79 design variables . . . . . . . . . . . . . . . . . . . . . . 204

5.10 FEA mesh of the initial jet engine bracket design . . . . . . . . . . . . . 206

xvii



5.11 Contours of logarithmic fatigue crack-initiation life at mean shapes of the
jet engine bracket by the multi-point, single-step PDD method; (a) initial
design; (b) iteration 4; (c) iteration 7; (d) iteration 14 (optimum) . . . . 207

6.1 A schematic description of the multi-point, single-step design process . . 249

6.2 A flow chart of the proposed multi-point, single-step design process . . . 252

6.3 A six-bay, twenty-one-bar truss structure (Example 3) . . . . . . . . . . 261

6.4 A three-hole bracket; (a) design parametrization; (b) von Mises stress at
initial design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

6.5 von Mises stress contours at mean values of optimal bracket designs by
the multi-point, single-step PDD method; (a) univariate approximation
(S = 1, m = 1); (b) univariate approximation (S = 1, m = 2); (c)
univariate approximation (S = 1, m = 3); (d) bivariate approximation
(S = 2, m = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

xviii



1

CHAPTER 1
INTRODUCTION

1.1 Background and Motivation

A great many complex systems and engineering structures are innately plagued

by extant uncertainties found in manufacturing processes and operating environments.

Conventional design procedures, which rely on heuristically derived safety factors,

cannot account for the quantitative nature of the statistical variation of a system

response. Consequently, the resultant designs are either unnecessarily conservative in

overcompensating for uncertainties or unknowingly risky due to the inherent uncer-

tainties.

Given the existence of uncertainties, the assessment of stochastic responses

must be addressed during the design process of complex systems. To this end, three

distinct theories that rely on the information available—fuzzy set theory, information

theory, and probability theory—can be employed to characterize uncertainties and

assess stochastic responses. The probability theory, owing to its rigorousness, has

been mostly viewed as the most competitive way to model output uncertainties as

long as the knowledge of probability distributions of input uncertainties is provided.

When employing the probability theory to characterize uncertainties, depending on

the objective of the optimization, two major types of design problems, referred to as

robust design optimization (RDO) and reliability-based design optimization (RBDO),

have been increasingly employed by engineers and studied by researchers.
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Robust design optimization constitutes a mathematical framework for solving

design problems in the presence of uncertainty, manifested by statistical descriptions

of the objective and/or constraint functions [1–6]. Aimed at improving product qual-

ity, it minimizes the propagation of input uncertainty to output responses of interest,

leading to an insensitive design. Pioneered by Taguchi et al. [1], RDO is increasingly

viewed as an enabling technology for the design of aerospace, civil, and automotive

structures subject to uncertainty [2–6]. The objective or constraint functions in RDO

often involve second-moment properties, such as means and standard deviations, of

stochastic responses, describing the objective robustness or feasibility robustness of a

given design [3]. The main target of RDO is to reduce the variability of the system

performance, which is characterized most often by its standard deviations [7].

Compared with RDO, which concentrates on the optimal designs that make

the performance less sensitive to uncertainties, RBDO aims to find the optimal designs

with low probabilities of failure corresponding to some critical failure mechanisms.

In constraints of RBDO, known as probabilistic constraints or reliability constraints,

particular attention is paid to the issue of structural safety in extreme events. There-

fore, a limit state function is required to define the failure of the structural system.

In a traditional RBDO problem, the objective function is always defined in the mean

(or deterministic) sense. In a generalized RBDO problem, the objective function

depends on the mean and standard deviation of certain response, which leads to

reliability-based robust design optimization [3, 8, 9], an integrated framework that

blends the design objective robustness and probabilistic constraints. Therefore, an
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RBDO problem using probability theory typically requires complete statistical in-

formation on the responses. For the same reason, the implementation of RBDO is

known for computationally expensive reliability analysis.

Solving a practical RDO or RBDO problem draws in uncertainty quantifi-

cation of random responses and its coupling with gradient-based optimization al-

gorithms, consequently demanding a greater computational effort. Unfortunately,

existing methods for solving RDO and RBDO problems are usually restricted or even

prohibitive, owing to the following limitations: (1) the efficiency or accuracy of inher-

ent stochastic analysis for moments or reliabilities drops when the dimensionality of

the problem is high; (2) for many of the existing methods, stochastic sensitivity anal-

ysis requires additional stochastic analyses, thus increasing the computational cost;

(3) existing methods for solving RDO problems permit the objective and constraint

functions and their sensitivities to be calculated only at a fixed design, requiring new

statistical moment and sensitivity analyses at every design iteration until convergence

is attained; and (4) existing methods have not been adequately developed for high-

dimensional RBDO problems due to the loss of accuracy or efficiency in stochastic

analysis, stochastic sensitivity analysis, and optimization algorithms. The major mo-

tivation for this work is to develop methods of solving RDO and RBDO with greater

accuracy and/or better efficiency than traditional methods by addressing the four

aforementioned limitations of existing methods.
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1.2 Objective of the Study

The primary objective of this study is to develop new computational methods

for RDO and RBDO of high-dimensional, complex engineering systems. Four major

research directions, all anchored in polynomial dimensional decomposition (PDD),

have been defined to meet the objective. They involve: (1) development of new sensi-

tivity analysis methods for RDO and RBDO; (2) development of novel optimization

methods for solving RDO problems; (3) development of novel optimization methods

for solving RBDO problems; and (4) development of a novel scheme and formula-

tion to solve stochastic design optimization problems with both distributional and

structural design parameters. Figure 1.1 presents the integration of the four research

directions, including their coverage in Chapters 3 through 6.

1.3 Outline of the Thesis

The thesis is organized as follows. Chapter 2 presents the preliminaries of

probability theory. This chapter also furnishes the state-of-the-art review of existing

methods for design under uncertainty. Finally, the needs for fundamental research

are outlined.

Chapter 3 presents three new computational methods for calculating design

sensitivities of statistical moments and reliability of high-dimensional complex sys-

tems subject to random input. The first method represents a novel integration of

polynomial dimensional decomposition (PDD) of a multivariate stochastic response

function and score functions. The second and third methods, relevant to probability
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distribution or reliability analysis, exploit two distinct combinations built on PDD:

the PDD-SPA method, which entails the saddlepoint approximation (SPA) and score

functions, and the PDD-MCS method, which utilizes the embedded Monte Carlo

simulation (MCS) of the PDD approximation and score functions. Five numerical

examples are solved with the proposed methods, and the results are compared with

at least one of two crude MCS-based approaches or the exact solution.

Chapter 4 introduces four new PDD-based methods for RDO of complex en-

gineering systems. The methods depend on how statistical moment and sensitivity

analyses are dovetailed with an optimization algorithm, encompassing direct, single-

step, sequential, and multi-point single-step design processes. Four numerical ex-

amples entailing mathematical functions and solid-mechanics problems, including an

industrial-scale lever-arm design, illustrate the accuracy, convergence properties, and

computational efficiency of the proposed methods.

Chapter 5 puts forward two new methods for reliability-based design opti-

mization (RBDO) of complex engineering systems. The methods involve an adaptive-

sparse polynomial dimensional decomposition (AS-PDD) of a high-dimensional stochas-

tic response for reliability analysis, a novel integration of AS-PDD and score functions

for calculating the sensitivities of the failure probability with respect to design vari-

ables, and standard gradient-based optimization algorithms, encompassing a multi-

point, single-step design process. The two methods, depending on how the failure

probability and its design sensitivities are evaluated, exploit two distinct combinations

built on AS-PDD: the AS-PDD-SPA method, entailing the saddlepoint approximation
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(SPA) and score functions; and the AS-PDD-MCS method, utilizing the embedded

Monte Carlo simulation (MCS) of the AS-PDD approximation and score functions.

Four numerical results stemming from mathematical functions or engineering prob-

lems, including the shape design of a 79-dimensional jet engine bracket, demonstrate

the power of the methods developed to tackle practical RBDO problems.

Chapter 6 presents a new method, named as the augmented PDD method,

for robust design optimization and reliability-based design optimization subject to

mixed design variables accounting for both distributional and structural design vari-

ables. The method comprises a new augmented PDD of a high-dimensional stochastic

response for statistical moment and reliability analyses; an integration of the aug-

mented PDD, score functions, and finite-difference approximation for calculating the

sensitivities of the first two moments and the failure probability with respect to dis-

tributional and structural design variables; and standard gradient-based optimization

algorithms, encompassing a multi-point, single-step design process. Four numerical

examples, involving mathematical functions and solid-mechanics problems, contrast

the accuracy and computational efficiency of the proposed methods for sensitivity

analysis and RDO/RBDO, all entailing mixed design variables.

Finally, conclusions are drawn and future research directions are suggested in

Chapter 7.
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CHAPTER 2
STATE-OF-THE-ART REVIEW

This chapter presents mathematical generalities and existing methods and

algorithms, reviewing those widely employed for solving RDO and RBDO problems,

and then discusses the need for fundamental research. Section 2.1 elucidates the

preliminaries of probability theory. The mathematical formulations of RDO and

RBDO are defined in Section 2.2. Section 2.3 briefly reviews the existing methods

for statistical moments analysis and reliability analysis. Section 2.4 contains existing

methods for stochastic design sensitivity analysis. The state-of-the-art reviews of the

prevailing methods for solving RDO and RBDO are rendered in Sections 2.5 and 2.6,

respectively. Finally, the needs for fundamental research are outlined in Section 2.7.

2.1 Mathematical Preliminaries

The prevailing model for uncertainties in engineering is based on probability

theory. This section represents some essential definitions and notations in probability

theory that will be required here and throughout the forthcoming chapters.

2.1.1 Probability space

The probability space is a triple (Ω,F , P ), where the sample space Ω of a

random experiment is a collection of all possible outcomes of the random experiment.

The σ-field or σ-algebra F is a non-empty collection of subsets of Ω that satisfies the

following:
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1. The empty set ∅ ∈ F .

2. If any event A ∈ F , then AC ∈ F .

3. If Ai ∈ F is a countable sequence of sets, then ∪iAi ∈ F .

The probability measure P : F → [0, 1] is a function defined on F that has the

following properties:

1. For any event A in F , 0 ≤ P (A) ≤ 1.

2. If Ai ∈ F is a countable sequence of disjoint sets, then P (∪iAi) =
∑
i

P (Ai).

3. P (Ω) = 1, and P (ϕ) = 0, where ϕ denotes the empty set.

In short, a probability space is a measure space such that the measure of the whole

space is equal to one [10].

2.1.2 Random variable

Consider a probability space (Ω,F , P ) and denote by R the set of real numbers;

then, a random variable, denoted by X(ω), is a function mapping every elementary

event ω ∈ Ω to an associated real number. A random variable X induces a probability

measure on R called its distribution, usually described by giving its cumulative distri-

bution function (CDF), FX (x) := P (X ≤ x). For a continuous random variable X,

the probability density function (PDF), denoted by fX(x), is fX (x) := dFX (x) /dx,

if it exists. The PDF is non-negative everywhere, and its integral over the entire

space is equal to one. The rth statistical moment of a random variable X is defined

as

m(r) = E [Xr] =

∫
R
xr fX(x) dx, (2.1)
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where E is the expectation operator with respect to the probability measure fX(x)dx

of X. The first momentm(1) of a random variable X is called its mean µX := E [X] :=∫
R x fX(x) dx. A central moment is a moment of a random variable about its mean.

For instance, the variance of X, denoted by σ2
X , is its second central moment and

is defined as σ2
X := E

[
(X − µX)

2] := ∫
R (x− µX)

2 fX(x) dx; here, σX is called the

standard deviation of X. The third and fourth central moments are called skewness

and kurtosis of X, respectively. This research involves systems with random input

parameters following a variety of probability distributions like Beta, exponential,

Gaussian, Gumbel, Lognormal, Weibull etc., details of which can be found in the

literature [11].

2.1.3 Random vector

A collection of N random variables, where N < ∞, forms a column vec-

tor X = (X1, . . . , XN)
T, called a random vector, whose components X1, . . . , XN

are scalar-valued random variables and often correlated with each other. The joint

CDF, denoted by FX(x), of X is defined by the mapping X : Ω → RN and the

probability measure P , i.e., FX (x) := P
(
∩N

i=1 {Xi ≤ xi}
)
. If FX(x) is such that

fX(x) = ∂NFX(x)/∂x1 · · · ∂xN exists, then fX is called the joint PDF of X. If the

components of a random vector are independent, then the joint PDF fX(x) is a

product of their marginal PDFs, i.e., fX(x) =
∏N

i=1 fXi
(xi). The mean µX of a ran-

dom vector X is a fixed vector E(X) whose elements are the expected values of the

respective random variables.
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The covariance matrix, ΣX := E[(X−µX)(X−µX)
T], of a random vector is an

N×N matrix whose i, j element is the covariance Cov(Xi, Xj) := E[(Xi−µi)(Xj−µj)]

between the ith and the jth random variables. The variance of Xi is the ith diagonal

element of ΣX. The correlation coefficient, ρij := Σij/(σiσj), is defined only if both

of the standard deviations are finite and both of them are nonzero. When Xi and Xj

are independent, then Xi and Xj are uncorrelated, i.e., ρij = 0. But if Xi and Xj are

uncorrelated, then Xi and Xj are not necessarily independent.

2.1.4 Hilbert space

A vector space with an inner product defined on it is called inner product

space. A Hilbert space is a complete inner product space. In fact, Hilbert spaces are

probably the most natural generalization of Euclidean space, and their theory is richer

and retains many features of Euclidean space, a central concept being orthogonality.

A particular type of Hilbert space is the L2-space, which is defined as the set of all

functions f : RN → R such that the integral of the square of the absolute value of

the function is finite, i.e.,
∫
Ω
|f(x)|2 dx < ∞, induced by the inner product ⟨f, g⟩ :=∫

Ω
f(x)g(x)dx, which also exists and is finite. Therefore, denoted by L2(Ω,F , P ) the

L2-space associated with the probability triple (Ω,F , P ), the real random variables

X ∈ L2(Ω,F , P ) exist with a finite second moment, i.e., E[X2
i ] < ∞, i = 1, . . . , N ,

and E[XiXj] <∞, i, j = 1, . . . , N .
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2.2 Design under Uncertainty

Let N, N0, R, and R+
0 represent the sets of positive integer (natural), non-

negative integer, real, and non-negative real numbers, respectively. For k ∈ N, denote

by Rk the k-dimensional Euclidean space and by Nk
0 the k-dimensional multi-index

space. These standard notations will be used throughout the forthcoming sections.

Consider a measurable space (Ωd,Fd), where Ωd is a sample space and Fd is a

σ-field on Ωd. ForM ∈ N and N ∈ N, let dT = (d, s) = (d1, · · · , dMd
, s1, · · · , sMs)

T ∈

D be an RM -valued design vector with non-empty closed setD ⊆ RM , whereMd,Ms ∈

N and Md +Ms = M , and let X := (X1, · · · , XN)
T : (Ωd,Fd) → (RN ,BN) be an

RN -valued input random vector with BN representing the Borel σ-field on RN , de-

scribing the statistical uncertainties in loads, material properties, and geometry of a

complex mechanical system. The design variables are grouped into two major classes:

(1) distributional design vector d with dimensionality Md, and (2) structural design

vector s with dimensionality Ms. A distributional design variable dk, k = 1, · · · ,Md,

can be any distribution parameter or a statistic—for instance, the mean and stan-

dard deviation—of one or more random variables. A structural design variable

sp, p = 1, · · · ,Ms, can be any deterministic parameter of a performance function.

Defined over (Ωd,Fd), let {Pd : F → [0, 1]} be a family of probability measures. The

probability law of X is completely defined by a family of the joint probability density

functions (PDF) {fX(x;d), x ∈ RN , d ∈ D} that are associated with corresponding

probability measures
{
Pd,d ∈ RMd

}
, so that the probability triple (Ωd,Fd, Pd) of X

depends on d.
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Let yl(X;d, s), l = 0, 1, 2, · · · , K, be a collection of K +1 real-valued, square-

integrable, measurable transformations on (Ωd,Fd), describing relevant geometry

(e.g., length, area, volume, mass) and performance functions of a complex system.

The function yl : (RN ,BN) → (R,B) in general is not only an explicit function of

distributional and structural design variables d and s, but also implicitly depends on

distributional design variables d via the probability law of X.

2.2.1 RDO

The mathematical formulation of a general RDO problem involving an objec-

tive function c0 : RM → R and constraint functions cl : RM → R, where l = 1, · · · , K

and 1 ≤ K <∞, requires one to

min
(d,s)∈D⊆RM

c0(d, s) := g0 (Ed [y0(X;d, s)] , vard [y0(X;d, s)] ,d, s) ,

subject to cl(d, s) := gl (Ed [yl(X;d, s)] , vard [yl(X;d, s)] ,d, s) ≤ 0, l = 1, · · · , K,

dk,L ≤ dk ≤ dk,U , k = 1, · · · ,Md,

sp,L ≤ sp ≤ sp,U , p = 1, · · · ,Ms,

(2.2)

where Ed[yl(X;d, s)] :=
∫
RN yl(x;d, s)fX(x;d)dx is the mean of yl(X;d, s) with E de-

noting the expectation operator with respect to the probability measure fX(x;d)dx of

X, vard[yl(X;d, s)] := Ed[{yl(X;d, s)−Ed[yl(X;d, s)]}2] is the variance of yl(X;d, s),

gl, l = 0, 1, · · · , K, are arbitrary functions of Ed[yl(X;d, s)] and vard[yl(X;d, s)], dk,L

and dk,U are the lower and upper bounds, respectively, of dk, and sp,L and sp,U are

the lower and upper bounds, respectively, of sp. However, a special case of Equa-
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tion (2.2), commonly adopted in the RDO society [9, 12–14], involves the following

assumptions: (1) the design variables comprise solely distributional parameters, that

is, dT = d; (2) gl, l = 0, · · · , K, are not explicit functions of d and s and are lin-

ear transformations of the mean and standard deviation of yl; and (3) the responses

yl, l = 0, · · · , K, do not explicitly depend on d and s, although yl implicitly depends

on d via the probability law of X, leading one to

min
d∈D⊆RM

c0(d) := w1
Ed [y0(X)]

µ∗0
+ w2

√
vard [y0(X)]

σ∗0
,

subject to cl(d) := αl

√
vard [yl(X)]− Ed [yl(X)] ≤ 0, l = 1, · · · , K, (2.3)

dk,L ≤ dk ≤ dk,U , k = 1, · · · ,M,

where w1 ∈ R+
0 and w2 ∈ R+

0 are two non-negative, real-valued weights, satisfying w1+

w2 = 1; µ∗0 ∈ R \ {0} and σ∗0 ∈ R+
0 \ {0} are two non-zero, real-valued scaling factors;

and αl ∈ R+
0 , l = 0, 1, · · · , K, are non-negative, real-valued constants associated with

the probabilities of constraint satisfaction.

In Equation (2.3), c0(d) describes the objective robustness, and cl(d), l =

1, · · · , K, describe the feasibility robustness of a given design. Evaluations of both

objective robustness and feasibility robustness, involving the first two moments of

various responses, are required for solving RDO problems, consequently demanding

statistical moment analysis. Coupling with gradient-based optimization algorithms

mandates that the gradients of cl(d) be formulated, thus requiring design sensitivity

analysis of the first two moments. Existing approaches for statistical moment analysis

and design sensitivity of moments are elucidated in the forthcoming sections.
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2.2.2 RBDO

The mathematical formulation of a general RBDO problem involving an objec-

tive function c0 : RM → R and constraint functions cl : RM → R, where l = 1, · · · , K

and 1 ≤ K <∞, requires one to

min
(d,s)∈D⊆RM

c0(d, s) := g0 (Ed [y0(X;d, s)] , vard [y0(X;d, s)] ,d, s) ,

subject to cl(d, s) := Pd [X ∈ ΩF,l(d, s)]− pl ≤ 0, l = 1, · · · , K,

dk,L ≤ dk ≤ dk,U , k = 1, · · · ,Md,

sp,L ≤ sp ≤ sp,U , p = 1, · · · ,Ms,

(2.4)

where ΩF,l(d, s) ⊆ Ω is the lth failure set that, in general, may depend on d and

s, and 0 ≤ pl ≤ 1, l = 1, · · · , K, are target failure probabilities. However, in most

engineering applications, RBDO is commonly formulated to

min
d∈D⊆RM

c0(d),

subject to cl(d) := Pd [X ∈ ΩF,l(d)]− pl ≤ 0, l = 1, · · · , K,

dk,L ≤ dk ≤ dk,U , k = 1, · · · ,M,

(2.5)

where the distributional parameters solely describe the design variables, that is, dT =

d, c0 is a prescribed deterministic function of d, and yl(X), l = 1, · · · , K, are not

explicit functions of d, although yl implicitly depends on d via the probability law

of X. Relying on the nature of the failure domain ΩF,l, a component or a system

failure probability can be envisioned. For component failure probability, the failure

domain is often adequately described by a single performance function y(X), for

instance, ΩF,l := {x : yl(x) < 0}. In contrast, multiple, interdependent performance
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functions yl,i(x), i = 1, 2, · · · , are required for system reliability analysis, leading,

for example, to ΩF,l := {x : ∪iyl,i(x) < 0} and ΩF,l := {x : ∩iyl,i(x) < 0} for series

and parallel systems, respectively.

Generally, the objective function c0 in Equation (2.5) is an explicit function of

d in default of any assessment of stochastic responses. It can also be a function of the

mean and standard deviation of a certain response function, defining the objective

robustness as in Equation (2.3), leading to reliability-based robust design optimization

[3, 8, 9].

In Equation (2.5), evaluation of the reliability constraints cl(d), l = 1, · · · , K,

requires calculating the component or system probability of failure defined by the per-

formance functions. Coupling with gradient-based optimization algorithms mandates

that the gradients of cl(d) be formulated, thus requiring design sensitivity analysis

of failure probability. A brief review of existing methods for reliability analysis and

design sensitivity of failure probability is provided in the forthcoming sections.

2.3 Stochastic Analysis

2.3.1 Methods of statistical moment analysis

The fundamental problem rooted in statistical moment analysis entails calcula-

tion of a high-dimensional integral with respect to the probability measure fX(x;d)dx

ofX over RN , where N is the number of random variables. In general, such an integral

cannot be evaluated analytically. Direct numerical integration can be performed, but

it is not economically feasible when N exceeds three or four. Existing approximate
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methods for statistical moment analysis include the point estimate method (PEM)

[15, 16], Taylor series expansion or perturbation method [17, 18], tensor product

quadrature (TPQ) [19], Neumann expansion method [20], polynomial chaos expan-

sion (PCE) [20], statistically equivalent solution [21], dimension-reduction method

[22, 23], and others [24]. A few of these methods are further discussed as follows.

The point estimate method, originally proposed by Rosenblueth [15, 25] for

calculating the moments of a random response function of one or several random

variables, has been employed in several engineering applications [16, 26]. Let X be

an input random variable and y(X) be a response function of interest. The two-point

PEM evaluates statistical moments of y(X) by using two specified points x−and x+,

and associated weights, which are determined by matching the first three moments

of X. When y is a function of N random variables, the two-point PEM requires

2N points, causing exponentially increased computational efforts. Harr [27] extended

Roseblueth’s PEM to accommodate large numbers of random variables by employing

a rotational transformation to transform a correlated system into an uncorrelated

system, leading to a scheme requiring only 2N points for the two-point PEM scheme.

However, Harr’s PEM does not utilize the moments higher than the second order and

may result in loss of accuracy when the skewness ofX, for example, is not zero. In fact,

Rosenblueth’s PEM is a special case of the Gauss quadrature rule [28]. When input

random variables follow well-known probability distributions, such as normal, expo-

nential, and uniform distribution, the PEM generates points and weights as the points

and weights of the well-known Gauss-Hermite, Gauss-Laguerre, and Gauss-Legendre
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quadratures. However, for arbitrary distributed input variables, transformations from

an arbitrary random variable to a well-known random variable are required, bringing

nonlinearity into the response function, and thus may cause a degradation of accuracy.

Furthermore, when confronted with a large number of random variables, the PEM

is usually restrictive or even prohibitive due to exponentially scaled computational

demand.

The Taylor series expansion methods, introduced in the early 1980s in the

context of the stochastic finite element method, have been successfully employed for

random eigenvalue problems [29, 30], geotechnical problems [31, 32], and dynamic

problems [33]. As the name implies, the Taylor series expansion methods, requiring

that the performance function y(X) be differentiable, employ Taylor series approx-

imation of y(X) at the mean values of input random vector X. It can be used

advantageously in cases where the input uncertainties and output nonlinearity are

small, such that terms of a certain order and higher are negligible. When the first-

or second-order Taylor series expansion is applied, the first two moments of y(X) are

evaluated from the knowledge of second-moment properties of X and gradients of the

function y(X). For an N -dimensional random input X, if the gradients of y(X) are

computed with the forward or backward finite difference technique, the total numbers

of function evaluations are N + 1 and 1
2
N(N + 1) + 1 for the first- and second-order

Taylor series expansions, respectively. Consequently, the second-order Taylor series

expansion is more computationally expensive than the first-order one, although it is

generally more accurate than the latter. As mentioned earlier, the two major lim-
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itations of these methods are that both the uncertainty of random inputs and the

nonlinearity of performance functions must be small enough so that the contribution

from high-order terms can be ignored.

Recently, the tensor product quadrature method [19] has been employed for

statistical moment analysis. It should be noted that the TPQ method has close

relations with the aforementioned PEM [14, 16, 28]. The nodes and weights of the

TPQ method, satisfying the moment matching condition that is employed in the

PEM, are obtained through rigorous approaches such as the Stieltjes procedure or

the modified Chebyshev algorithm. For an arbitrary probability distribution, those

nodes and weights can be easily obtained, unlike the PEM, in which an additional

transformation is required and may lead to loss of accuracy. Similar to the PEM, the

TPQ method may also be restrictive or prohibitive for high-dimensional problems

due to exponentially increased computational burden.

2.3.2 Methods of reliability analysis

In 1969, Cornell [34] employed the first-order Taylor series expansion to es-

timate reliability, referred to as the mean-value first-order second moment (FOSM)

method. The mean-value FOSM is inaccurate and sensitive to the mathematical for-

mulation of the performance function, as the mean value point is usually not found

on the failure surface [35]. Hasofer and Lind [36] proposed the H-L reliability index,

laying the groundwork for the first- and second-order reliability method (FORM and

SORM) [37–43]. The FORM is based on the linear approximation of the failure surface
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at the most probable point (MPP), not the mean value point, and therefore is consid-

ered accurate as long as the curvature of the failure function in the standard Gaussian

image u of the original random variable space x is not too large at the MPP [35]. As a

natural extension to FORM, the SORM employs the quadratic approximation of the

failure surface. There are two ways to construct the quadratic approximation. The

first is called curvature fitting by Breitung et al. [39] and involves using the second-

order derivative of the performance function at the MPP. The second is referred to as

point fitting by Der Kiureghian et al. [40] and entails semi-paraboloids to interpolate

the performance function around the MPP. The determination of the MPP involves

nonlinear constrained optimizations, which can be formulated by the reliability in-

dex approach (RIA) to find the point on the performance surface to minimize the

distance to the origin of the u space. The minimized distance is the H-L reliabil-

ity index βHL. The probability of failure by FORM is approximated by Φ(−βHL),

where Φ(·) is the CDF of a standard Gaussian random variable [35]. For SORM,

various asymptotic formulae [39, 44] and non-asymptotic formulae [45, 46] exist. In

most applications, FORM is chosen because of its relatively low computational cost.

However, it encounters difficulties when dealing with strongly nonlinear performance

functions and is criticized for its inherent error in approximating the failure surface

as linear. The error can be reduced by SORM, which requires some curvatures to be

calculated, resulting in aggravated computational burden. Moreover, both methods

may yield considerable error due to the multiple MPPs resulting from a multimodal

performance function.
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Simulation methods are widely used to estimate probability of failure. Crude

Monte Carlo simulation (MCS) [47], relying on independent random sampling and

repeated deterministic trials, is insensitive to the number of input random variables.

Denoting by L the sample size, the convergence rate of direct MCS is O(L−1/2).

Therefore, to achieve high accuracy, crude MCS requires a large sample size and

hence many numerical analyses and thus is computationally intensive. In this regard,

several variance-reduction techniques, such as importance sampling [48, 49], stratified

sampling [50, 51], and directional simulation [52, 53], have been proposed. The basic

idea behind importance sampling and stratified sampling is that certain points of the

random variable space, which have more impact on the parameter being estimated

than others, should be emphasized by sampling more frequently. On the other hand,

the directional simulation method, as an efficient version of MCS, utilizes the χ2-

distribution and conditional expectation to reduce variance. The subset simulation,

cooperating with a modified Metropolis algorithm [54], has been applied recently for

estimation of failure probability [55]. It formulates the calculation of a small failure

probability as a product of a sequence of relatively large probabilities by conditioning

on various subsets. The major limitation of subset simulation is that the proposed

PDFs for the Metropolis algorithm, which heavily impact the convergence of the

algorithm, have to be chosen based on experience. Nonetheless, the simulation meth-

ods mentioned above mainly deal with the reliability analysis of simple mechanical

systems. For complex mechanical systems requiring time-consuming finite element

analysis (FEA), they become impractical or prohibitive.
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In the context of reliability analysis, many other methods can be found in

the literature. Using inverse Fourier transformation, exponential power series expan-

sion, and Hermite polynomial approximation, Daniels [56] developed the saddlepoint

approximation (SPA), providing an asymptotic formula for PDF of mean of n inde-

pendent identically distributed random variables. The SPA, as a tool for estimating

the densities and distribution function, was introduced to the area of structural relia-

bility analysis by Du et al. [57, 58]. As extensions of FORM and SORM, the advanced

mean value method (AMV) [41] and two-point nonlinear approximation (TANA) [59]

have also been developed to treat nonlinear performance functions. However, these

methods may result in significant errors in the case of multimodal performance func-

tions, as demonstrated by Bichon et al. [60].

2.3.3 Dimensional decomposition methods

The dimensional decomposition is a finite, hierarchical, and convergent expan-

sion of a multivariate output function in terms of its input variables with increasing

dimensions [61–64]. The decomposition ameliorates the curse of dimensionality [65]

to some extent by developing an input-output behavior of complex systems with low

effective dimensions [66], wherein the degrees of interactions between input variables

attenuate rapidly or vanish altogether. There exist two important variants of di-

mensional decomposition, described as follows, in the context of distributional design

parameters only.
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2.3.3.1 ANOVA dimensional decomposition

Let y(X) be a real-valued, square-integrable, measurable transformation on

(Ω,F), describing the relevant performance function of a complex system. It is as-

sumed that y : (RN ,BN) → (R,B) is not an explicit function of d, although y

implicitly depends on d via the probability law of X. Assuming independent coor-

dinates of X, its joint PDF is expressed by a product, fX(x;d) =
∏i=N

i=1 fXi
(xi;d),

of marginal PDF fXi
: R → R+

0 of Xi, i = 1, · · · , N , defined on its probability

triple (Ωi,Fi, Pi,d) with a bounded or an unbounded support on R. Then, for a given

subset u ⊆ {1, · · · , N}, fX−u(x−u;d) :=
∏N

i=1,i/∈u fXi
(xi;d) defines the marginal den-

sity function of X−u := X{1,··· ,N}\u. The analysis-of-variance (ANOVA) dimensional

decomposition (ADD), expressed by the recursive form [62–64]

y(X) =
∑

u⊆{1,··· ,N}

yu(Xu;d), (2.6)

y∅(d) =

∫
RN

y(x)fX(x;d)dx, (2.7)

yu(Xu;d) =

∫
RN−|u|

y(Xu,x−u)fX−u(x−u;d)dx−u −
∑
v⊂u

yv(Xv;d), (2.8)

is a finite, hierarchical expansion of y in terms of its input variables with increasing

dimensions, where u ⊆ {1, · · · , N} is a subset with the complementary set −u =

{1, · · · , N}\u and cardinality 0 ≤ |u| ≤ N , and yu is a |u|-variate component function

describing a constant or the interactive effect of Xu = (Xi1 , · · · , Xi|u|)
T , 1 ≤ i1 <

· · · < i|u| ≤ N , a subvector of X, on y when |u| = 0 or |u| > 0. The summation in

Equation (2.6) comprises 2N terms, with each term depending on a group of variables

indexed by a particular subset of {1, · · · , N}, including the empty set ∅. In Equation
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(2.8), (Xu,x−u) denotes an N -dimensional vector whose ith component is Xi if i ∈ u

and xi if i /∈ u. When u = ∅, the sum in Equation (2.8) vanishes, resulting in the

expression of the constant function y∅ in Equation (2.7). When u = {1, · · · , N}, the

integration in Equation (2.8) is on the empty set, reproducing Equation (2.6) and

hence finding the last function y{1,··· ,N}. Indeed, all component functions of y can be

obtained by interpreting literally Equation (2.8).

The ANOVA component functions yu, ∅ ̸= u ⊆ {1, · · · , N}, are uniquely

determined from the annihilating conditions [63, 64],

∫
R
yu(xu;d)fXi

(xi;d)dxi = 0 for i ∈ u, (2.9)

resulting in two remarkable properties: (1) the component functions, yu, ∅ ̸= u ⊆

{1, · · · , N}, have zero means; and (2) any two distinct component functions yu and

yv, where u ⊆ {1, · · · , N}, v ⊆ {1, · · · , N}, and u ̸= v, are orthogonal [64]. However,

the ADD component functions are difficult to obtain because they require calculation

of high-dimensional integrals.

Remark 2.1. The coefficient y∅ = Ed[y(X)] in Equation (2.7) is a function of the

design vector d, which describes the probability distribution of the random vector X.

Therefore, the adjective “constant” used to describe y∅ should be interpreted with

respect to X, not d. A similar condition applies for the non-constant component

functions yu, ∅ ̸= u ⊆ {1, · · · , N}, which also depend on d.
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2.3.3.2 Referential Dimensional Decomposition

Consider a reference point c(d) = (c1(d), · · · , cN(d))T ∈ RN that generally

depends on the design vector d and the associated Dirac measure
∏N

i=1 δ(xi − ci)dxi.

The referential dimensional decomposition (RDD) is created when
∏N

i=1 δ(xi − ci)dxi

replaces the probability measure in Equations (2.6)-(2.8), leading to the recursive

form [64]

y(X) =
∑

u⊆{1,··· ,N}

wu(Xu; c(d)), (2.10)

w∅(d) = y(c(d)), (2.11)

wu(Xu; c(d)) = y(Xu, c−u(d))−
∑
v⊂u

wv(Xv; c(d)), (2.12)

also known as cut-HDMR [67], anchored decomposition [68–70], and anchored-ANOVA

decomposition [71], with the latter two referring to the reference point as the anchor.

Xu and Rahman introduced Equations (2.10)-(2.12) with the aid of Taylor series ex-

pansion, calling them dimension-reduction [22] and decomposition [23] methods for

statistical moment and reliability analyses, respectively, of mechanical systems. Com-

pared with ADD, RDD lacks orthogonal features, but its component functions are

easier to obtain as they only involve function evaluations at a chosen reference point.

Remark 2.2. The constant w∅ in Equation (2.11) is a function c, which is generally

selected as the mean of the random vector X with the probability measure that

depends on d. Therefore, the adjective “constant” used to describe w∅ should be

interpreted with respect to X, not d. Similar conditions prevail for the non-constant

component functions wu, ∅ ̸= u ⊆ {1, · · · , N}, which also depend on d via c.
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2.3.3.3 Truncated ADD and RDD

Both ADD and RDD decompositions are grounded on a fundamental conjec-

ture known to be true in many real-world applications: given a high-dimensional func-

tion y, its |u|-variate component functions decay rapidly with respect to |u|, leading

to accurate lower-variate approximations of y. Indeed, given an integer 0 ≤ S < N ,

for all 1 ≤ |u| ≤ S, the truncated dimensional decompositions

ỹS(X) =
∑

u⊆{1,··· ,N}
0≤|u|≤S

yu(Xu;d), (2.13)

ŷS(X; c) =
∑

u⊆{1,··· ,N}
0≤|u|≤S

wu(Xu; c(d)), (2.14)

respectively, describe S-variate ADD and RDD approximations, which for S > 0

includes interactive effects of at most S input variables Xi1 , · · · , XiS , 1 ≤ i1 < · · · <

iS ≤ N , on y. It is elementary to show that when S → N , ỹS and ŷS both converge

to y in the mean-square sense, generating a hierarchical and convergent sequence of

approximation of y from each decomposition.

For error analysis, a suitable direct form of Equation (2.14) is desirable. The-

orem 2.3 supplies such a form, which was originally obtained by Xu and Rahman [22]

using the Taylor series expansion.

Let jk = (j1, · · · , jk) ∈ Nk
0, 1 ≤ k ≤ S, be a k-dimensional multi-index

with each component representing a non-negative integer. The multi-index, used in

Theorem 2.3, obeys the following standard notations: (1) |jk| =
∑p=k

p=1 jp; (2) jk! =∏p=k
p=1 jp!; (3) ∂

jky(c) = ∂j1+···+jky(c)/∂Xj1
i1
· · · ∂Xjk

ik
; (4) (Xu − cu)

jk =
∏p=k

p=1(Xip −

cip)
jp , 1 ≤ i1 < · · · < ik ≤ N .
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Theorem 2.3. For a differentiable multivariate function y : RN → R and 0 ≤ S <

N , if

ŷS(X; c) =
S∑

k=0

(−1)k
(
N − S + k − 1

k

) ∑
u⊆{1,··· ,N}
|u|=S−k

y(Xu, c−u) (2.15)

represents an S-variate RDD approximation of y(X), then ŷS(X; c) consists of all

terms of the Taylor series expansion of y(X) at c that have less than or equal to S

variables, i.e.,

ŷS,R(X; c) =
S∑

k=0

tk,

where

t0 = y(c),

tk =
∑
jk∈Nk

0
j1,··· ,jk ̸=0

1

jk!

∑
∅̸=u⊆{1,··· ,N}

|u|=k

∂jky(c) (Xu − cu)
jk ; 1 ≤ k ≤ S.

Proof. Xu and Rahman [22] proved this theorem in pages 1996-2000 of their paper

when c = 0 without loss of generality.

The stochastic method associated with the RDD approximation was simply called

the “decomposition method” [23]. Theorem 2.3 implies that the RDD approximation

ŷS(X; c) in Equation (2.15), when compared with the Taylor series expansion of y(X),

yields residual error that includes only terms of dimensions S + 1 and higher. All

higher-order S- and lower-variate terms of y(X) are included in Equation (2.15), which

should therefore generally provide a higher-order approximation of a multivariate

function than the equation derived from an S-order Taylor expansion.

For ADD or RDD to be useful, what are the approximation errors committed

by ỹS(X) and ŷS(X; c) in Equations (2.13) and (2.14)? More importantly, for a given
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0 ≤ S < N , which approximation between ADD and RDD is better? A recently

obtained theoretical result, Theorem 2.4, provides the answer.

Theorem 2.4. Let c = (c1, · · · , cN)T ∈ RN be a random vector with the joint proba-

bility density function of the form fX(c;d) =
∏j=N

j=1 fj(cj;d), where fj is the marginal

probability density function of its jth coordinate of X = (X1, · · · , XN)
T . Define two

second-moment errors

eS,A := E
[
(y(X)− ỹS(X))2

]
:=

∫
RN

[y(x)− ỹS(x)]
2 fX(x;d)dx (2.16)

and

eS,R(c) := E
[
(y(X)− ŷS(X; c))2

]
:=

∫
RN

[y(x)− ŷS(x; c)]
2 fX(x;d)dx, (2.17)

committed by the S-variate ADD and RDD approximations, respectively, of y(X).

Then the lower and upper bounds of the expected error E [eS,R] :=
∫
RN eS,R(c)fX(c;d)dc

from the S-variate RDD approximation, expressed in terms of the error eS,A from the

S-variate ADD approximation, are

2S+1eS,A ≤ E [eS,R] ≤

[
1 +

S∑
k=0

(
N − S + k − 1

k

)2(
N

S − k

)]
eS,A. (2.18)

where 0 ≤ S < N, S + 1 ≤ N <∞.

Proof. See Theorem 4.12 and Corollary 4.13 provided by Rahman [64].

Remark 2.5. Theorem 2.4 reveals that the expected error from the univariate (S =

1) RDD approximation is at least four times larger than the error from the univariate

ADD approximation. In contrast, the expected error from the bivariate (S = 2) RDD



29

approximation can be eight times larger or more than the error from the bivariate

ADD approximation. Given an arbitrary truncation, an ADD approximation is su-

perior to an RDD approximation. In addition, RDD approximations may perpetrate

very large errors at upper bounds when there exist a large number of variables and

appropriate conditions. Therefore, existing stochastic methods anchored in RDD ap-

proximations should be used with caveat. Furthermore, Rahman [64] has shown that

for a given 1 ≤ S < N, the S-variate ADD approximation is optimal, whereas the

S-variate RDD approximation is sub-optimal regardless of how the reference point is

selected.

More recently, a polynomial version of ADD approximation, referred to as

the polynomial dimensional decomposition (PDD) method, has been developed for

uncertainty quantification of high-dimensional complex systems. The PDD, which

inherits all desirable properties of ADD, also alleviates the curse of dimensionality

to some extent by splitting a high-dimensional output function into a finite sum of

simpler component functions that are arranged with respect to the degree of interac-

tion among input random variables. In addition, the PDD exploits the smoothness

properties of a stochastic response, whenever possible, by expanding its component

functions in terms of measure-consistent orthogonal polynomials, leading to closed-

form expressions of the second-moment characteristics of a stochastic solution. Al-

though the same polynomials are extant in PCE, a recent study found that when

the degrees of interaction become progressively weaker or vanish altogether, the PDD

approximation commits smaller error than does the polynomial chaos approximation
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for identical expansion orders [64].

2.4 Stochastic Design Sensitivity Analysis

Denote by Lr(Ω,F , Pd) a collection of real-valued random variables including

y(X), which is defined on (Ω,F , Pd) such that Ed [y
r(X)] < ∞, where r ≥ 1 is an

integer and Ed represents the expectation operator with respect to the probability

measure Pd. The rth moment of y(X) is defined by the integral

m(r)(d) := Ed [y
r(X)] :=

∫
RN

yr(x)fX(x;d)dx; r = 1, 2, · · · . (2.19)

Similarly, the failure probability, entailed in reliability analysis, is defined by the

integral

Pd [X ∈ ΩF ] :=

∫
RN

IΩF
(x)fX(x;d)dx := Ed [IΩF

(X)] , (2.20)

where ΩF is the failure set described by y(x) and

IΩF
(x) :=

{
1 if x ∈ ΩF ,
0 otherwise,

(2.21)

is an indicator function. Therefore, the expressions of moments and the failure prob-

ability in Equations (2.19) and (2.20) can be consolidated into a generic probabilistic

response

h(d) = Ed [g(X)] :=

∫
RN

g(x)fX(x;d)dx, (2.22)

where h(d) is the statistical moment if g(x) = yr(x), or failure probability if g(x) =

IΩF
(x). Based on these notations, the methods for stochastic sensitivity analysis are

elucidated as follows.
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2.4.1 Finite difference method

Because of its simple implementation, the finite difference method [72, 73]

is commonly employed to estimate design sensitivities. All variants of the finite

difference formulae, including the forward difference, central difference, and backward

difference, can be derived by truncating a Taylor series expanded about a given point.

A common estimate for the design sensitivity of the generic probabilistic response h(d)

defined in Equation (2.22) is the forward difference

∂h(d)

∂dk
∼=
∫
RN g(x)fX(x;d+∆dk · ek)dx−

∫
RN g(x)fX(x;d)dx

∆dk
, k = 1, · · · ,M,

(2.23)

where ek is the M -dimensional basis vector in the design space, in which the kth

component is one and other components are zeros ; and ∆dk represents a small per-

turbation in the design variable dk.

The finite difference method is probably the easiest method to implement for

design sensitivities. However, it suffers from computational inefficiency and possible

inaccuracy. First, one stochastic sensitivity analysis costs M + 1 times stochastic

analysis for the forward or backward difference method, or 2M times stochastic anal-

ysis for the central difference method. Second, the size of perturbation ∆dk greatly

affects the accuracy of the estimate. For a highly nonlinear h(d), a large perturbation

leads to inaccurate results. Theoretically, accurate results by Equation (2.23) can be

expected when ∆dk approaches zero. However, numerical noises become dominant if

too small a perturbation is used, thus ruining the results.
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2.4.2 Score function method

The score function method [74, 75] has been mostly viewed as a competitive

method, where both a stochastic response and its sensitivities can be obtained from a

single stochastic simulation. To calculate the sensitivities of the generic probabilistic

response h(d) defined in Equation (2.22), the score function method requires the

differential operator and the integral operator to commute; thus the following four

regularity conditions must be held.

1. The PDF fX(x;d) is continuous.

2. The design variable dk ∈ Θk ⊂ R, k = 1, · · · ,M , where Θk is an open interval

on R.

3. The partial derivative ∂fX(x;d)/∂dk exists and is finite for all x and dk ∈ Θk.

In addition, h(d) is differentiable with respect to d.

4. g(x)∂fX(x;d)/∂dk is dominated by some Lebesgue integrable function z(x) in

the sense that ∣∣∣∣g(x)∂fX(x;d)∂dk

∣∣∣∣ < z(x). (2.24)

With the above regularity conditions, applying the Lebesgue dominated convergence

theorem [76] to ∂h(d)/∂dk leads to

∂h(d)

∂dk
=

∂

∂dk

∫
RN

g(x)fX(x;d)dx

=

∫
RN

g(x)
∂ ln fX(x;d)

∂dk
fX(x;d)dx

=: Ed

[
g(X)s

(1)
dk
(X;d)

]
.

(2.25)

In last line of Equation (2.25), s
(1)
dk
(X;d) := ∂ ln fX(X;d) /∂dk is known as the first-

order score function for the design variable dk [74, 75]. In general, the sensitivities
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are not available analytically since the probabilistic responses h(d) are not either.

Nonetheless, the responses and their sensitivities have both been formulated as ex-

pectations of stochastic quantities with respect to the same probability measure,

facilitating their concurrent evaluations in a single stochastic simulation or analysis.

2.4.3 Other methods

As explained in Subsection 2.3.2, the probability of failure can be approxi-

mated from the knowledge of the reliability index βHL. When applying FORM or

SORM to solve RBDO problems, it is therefore of interest to study the sensitivity of

βHL with respect to design variables dk [35, 77]. When dk is a structural design vari-

able, the sensitivity of βHL simply involves the gradients of the performance function

with respect to dk and random variables. When dk is a distributional design variable,

the Rosenblatt transformation [78], required to convert the input random variables

into standard Gaussian variables, is a function of dk. Consequently, the sensitivity

of βHL in this case demands the partial derivative of the Rosenblatt transformation

with respect to dk. Nonetheless, the sensitivity analysis of βHL, rooted in the lin-

ear or quadratic approximation of the failure surface by FORM or SORM, inherits

the limitations of FORM or SORM. Therefore, when applied to highly nonlinear or

multimodal performance functions, it may yield inaccurate or inadequate estimates

of design sensitivities.

Recently, the kernel function method has been applied to estimate stochastic

sensitivity [79]. This method is very similar to the score function method. Further
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details of this method are available elsewhere [80].

2.5 Robust Design Optimization

The key component of RDO is the assessment of the first two moments of

stochastic response functions and their sensitivities. There are various methods or

approaches to estimate these quantities: point estimate methods [12], Taylor series

expansion [12], PCE [13], dimension-reduction methods [9, 14, 22, 23, 75], and TPQ

[14], to name a few. There exist three principal concerns or shortcomings when

conducting RDO with existing approaches or techniques.

First, commonly used stochastic methods, including the Taylor series or per-

turbation expansions, PEM, PCE, TPQ rule, and dimension-reduction methods may

not be adequate or applicable for uncertainty quantification of many large-scale prac-

tical problems. For instance, the Taylor series expansion and PEMs, although sim-

ple and inexpensive, begin to break down when the input-output mapping is highly

nonlinear or the input uncertainty is arbitrarily large. Furthermore, truly high-

dimensional problems are all but impossible to solve using the PCE and TPQ rule due

to the curse of dimensionality. The dimension-reduction methods, developed by Xu

and Rahman [22, 81], including a modification [82], alleviate the curse of dimensional-

ity to some extent, but they are rooted in the referential dimensional decomposition,

resulting in sub-optimal approximations of a multivariate function [64, 83].

Second, many of the aforementioned methods invoke finite-difference tech-

niques to calculate design sensitivities of the statistical moments. They demand re-
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peated stochastic analyses for nominal and perturbed values of design parameters and

are, therefore, expensive and unwieldy. Although some methods, such as Taylor se-

ries expansions, also provide the design sensitivities economically, the sensitivities are

either inaccurate or unreliable because they inherit errors from the affiliated second-

moment analysis. Therefore, alternative stochastic methods should be explored for

calculating the statistical moments and design sensitivities as accurately as possible

and simultaneously, but without the computational burden of crude MCS.

Third, existing methods for solving RDO problems permit the objective and

constraint functions and their sensitivities to be calculated only at a fixed design,

requiring new statistical moment and sensitivity analyses at every design iteration

until convergence is attained. Consequently, the current RDO methods, entailing

expensive FEA or similar numerical calculations, are computationally intensive, if

not prohibitive, when confronted with a large number of design or random vari-

ables. New or significantly improved design paradigms, possibly requiring a single or

a few stochastic simulations, are needed for solving the entire RDO problem. Further

complications may arise when an RDO problem is formulated in conjunction with

a multi-point approximation [84] − a setting frequently encountered when tackling

a practical optimization problem with a large design space. In that case, one must

integrate stochastic analysis, design sensitivity analysis, and optimization algorithms

on a local subregion of the entire design space.
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2.6 Reliability-Based Design Optimization

2.6.1 FORM/SORM-based methods

Methods based on FORM and SORM for solving RBDO can be classified, ac-

cording to how reliability analysis and optimization iteration are integrated, into three

categories: the double-loop approach [85–87], the single-loop approach [88, 89], and

the sequential approach [90, 91]. The double-loop approach consists of an outer opti-

mization loop that is used to obtain an optimum reliability-based design and an inner

optimization loop to conduct reliability analysis every time the design variables are

changed. As explained in Subsection 2.3.2, the inner optimization problem can be for-

mulated by RIA to find the point on the performance surface to minimize the distance

to the origin of the u space. Instead of the RIA, Tu et al. [86] proposed the perfor-

mance measure approach (PMA), in which inverse reliability analysis is formulated

to search for a point with the lowest performance function value on a hyper-surface

determined by the target reliability index. The PMA was reported to be computa-

tionally more efficient than the RIA owing to its spherical equality constraint [87].

However, regardless of how the inner optimization problem is solved, the double-loop

approach is expensive because, for each design (outer) iteration, a set of reliability (in-

ner) iterations involving costly function evaluations has to be generated for locating

the MPP. To overcome the high computational expense, Liang et al. [88, 89] pro-

posed a single-loop approach in which the inner-loop calculations are replaced with

an approximated solution obtained by the Karush-Kuhn-Tucker (KKT) optimality

condition. Consequently, the double-loop optimization problem is converted into an
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equivalent single-loop problem, which has been reported to have efficiency almost

equivalent to deterministic optimization and accuracy comparable to the double-loop

approach [89]. To avoid a nested loop, Du and Chen [91] also proposed a sequential

optimization and reliability assessment (SORA) approach, which formulates serial

“equivalent” deterministic optimization problems to achieve a progressive and rapid

convergence. The reliability assessments are conducted only after solving determinis-

tic optimization to verify probabilistic constraints. Therefore, shifting boundaries of

the violated constraints to the feasible domain, based on the reliability information

obtained in the previous iteration, is required. Nonetheless, given that double-loop,

single-loop, and sequential approaches are based on FORM/SORM, there are four

major concerns for these three methods. First, the linear or quadratic may not be

adequate or applicable for highly nonlinear practical problems. Furthermore, it was

noted that SORA confronts a convergence difficulty when the objective and/or con-

straint functions are highly nonlinear or non-smooth [91]. Second, the three methods

inherit the possible inaccuracy of sensitivity analysis resulting from FORM/SORM

as summarized in Subsection 2.4.3. Therefore, alternative stochastic methods are de-

sired for accurate and efficient sensitivity analysis of reliability. Indeed, recent results

from Zou and Mahadevan [92] and Rahman and Wei [93] reveal that a FORM-based

RBDO process may produce infeasible or inaccurate design. Third, it should be noted

that no formal proof of convergence exists for either single-loop or sequential algo-

rithms [90]. Fourth, these methods demand evaluations of objective and/or constraint

and sensitivity analyses at every design iteration, so new or significantly improved
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design paradigms are needed for solving the RBDO problem as efficiently as possible,

simultaneously, and without degrading the accuracy.

2.6.2 RDD-based methods

Rahman and Wei [93] proposed the univariate RDD method for reliability

sensitivity analysis and RBDO. Their method renders a univariate approximation of

a general multivariate function in the rotated Gaussian space for reliability analysis

and analytical expressions for sensitivity of failure probability with respect to design

variables. Computational effort for both failure probabilities and their sensitivities

has been reduced owing to performing multiple one-dimensional integrations. In their

recent work [94], a new multi-point univariate decomposition method was developed

for structural reliability analysis involving multiple MPPs. The method provided

a novel function decomposition at all MPPs, facilitating multiple local univariate

approximations of a performance function. More applications of RDD in RBDO can

be found in the literature [9, 14]. With the aid of RDD, these methods alleviate the

curse of dimensionality to some extent. However, a recent error analysis [64] reveals

the sub-optimality of RDD approximations, meaning that an RDD approximation,

regardless of how the reference point is chosen, cannot be better than an ANOVA

approximation for identical degrees of interaction.

2.6.3 Simulation-based methods

Simulation-based methods [95, 96] are recommended or used when tackling

highly nonlinear or non-smooth performance functions. Royset and Polak [95] pro-
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posed a simulation formulation to estimate the sensitivity of failure probability, in

which either crude MCS or Monte Carlo with importance sampling can be employed.

Another approach, referred to as stochastic subset optimization [96], directly inte-

grates the subset simulation technique with RBDO and permits the simultaneous

evaluation of structural reliability and identification of optimum of RBDO. With

this approach, it is also possible to identify a subset of the design variables that are

significant to objective or constraint functions. When an RBDO problem involves

highly nonlinear or noisy performance function, the FORM/SORM and other surro-

gate methods can be significantly deteriorated, whereas the simulation-based meth-

ods still have the merit of accuracy. However, simulation-based methods are often

computationally prohibitive, particularly when an RBDO mandates FEA of complex

mechanical systems.

2.7 Need for Fundamental Research

In summary, a new computational thinking challenging existing methods or

approaches should be pursued for advancing the frontiers of RDO and RBDO. Not

only novel computational methods are needed for calculating probabilistic character-

istics of responses or their design sensitivities, but also new or significantly improved

design paradigms, possibly requiring a single or a few stochastic simulations for solv-

ing an entire design optimization problem, should be created. To meet this objective,

four research directions, all anchored in PDD, are proposed, as follows.
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2.7.1 PDD methods for stochastic sensitivity analysis

Existing methods for stochastic sensitivity analysis, including the finite dif-

ference, score function, and FORM- or SORM-based methods, have been extensively

employed to solve RDO or RBDO problems of mechanical systems. However, when

confronted with a highly nonlinear and high-dimensional complex system, these meth-

ods often deteriorate in terms of accuracy or become prohibitive due to the loss of

efficiency. The RDD method ameliorates the curse of dimensionality to some extent

by developing an input-output behavior of complex systems with low effective di-

mensions. Unfortunately, it cannot be better than the ANOVA approximation for

identical degrees of interaction. The PDD, which inherits all desirable properties

of the ANOVA dimensional decomposition, has not been systematically studied for

stochastic sensitivity analysis. Therefore, it is of interest to extend PDD, aimed

at both high accuracy and/or high efficiency, from the following three aspects: (1)

exploiting the orthonormal property of polynomial bases to develop analytical ex-

pressions of the sensitivities of the moments of stochastic responses; (2) coupling the

PDD, SPA, and score function for sensitivities of reliability; and (3) integrating the

PDD, MCS, and score function for sensitivities of reliability.

2.7.2 PDD methods for RDO

Current design paradigms for solving RDO problems demand new statistical

moment and sensitivity analyses at every design iteration to evaluate objective and/or

constraint functions and their sensitivities. When dealing with a large number of de-
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sign or random variables or industrial-scale problems that entail expensive FEA or

similar numerical calculations, the current RDO methods are computationally inten-

sive, if not prohibitive. For this reason, it is necessary to develop a new or significantly

improved design paradigm in which only a single or a few stochastic simulations are

needed for solving the entire RDO problem. The new design paradigms should seam-

lessly integrate the PDD method into stochastic analysis, design sensitivity analysis,

and optimization algorithms.

2.7.3 PDD methods for RBDO

When applied to practical design problems involving highly nonlinear or high-

dimensional performance functions, existing RBDO methods, such as FORM/SORM-

based, RDD-based, and simulation-based methods, may not work due to degradation

of solution accuracy or prohibitively high computational cost. They all point to a

qualitative as well as quantitative difference between what has been studied and what

is required. To this end, a new PDD-based RBDO method is desirable to fulfill the

following requirements: accurate evaluations of both failure probabilities and their

design sensitivities, fast convergence of RBDO iterations, and satisfactory numerical

stability.

2.7.4 PDD methods for mixed design variables

Two major classes of design variables, distributional design variables and struc-

tural design variables, are involved in design optimization under uncertainty. How-

ever, much of the existing research, whether in conjunction with RDO or RBDO,
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focus on only one of the two classes of design variables. Indeed, there is a lack of

integrated frameworks for tackling stochastic design optimization problems in the

presence of both classes of design variables, referred to as mixed design variable prob-

lems. Therefore, the last topic of this research delves into developing a PDD-based

framework for solving RDO and RBDO problems involving mixed design variables by

conducting accurate and efficient stochastic sensitivity analyses with respect to both

distributional and structural design variables.
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CHAPTER 3
STOCHASTIC SENSITIVITY ANALYSIS

3.1 Introduction

This chapter presents three new computational methods for calculating de-

sign sensitivities of statistical moments and reliability of high-dimensional complex

systems subject to random input. The first method represents a novel integration

of PDD of a multivariate stochastic response function and Fourier-polynomial ex-

pansions of score functions associated with the probability measure of the random

input. Applied to the statistical moments, the method provides analytical expres-

sions of design sensitivities of the first two moments of a stochastic response. The

second and third methods, relevant to probability distribution or reliability analysis,

exploit two distinct combinations grounded in PDD: the PDD-SPA method, entail-

ing SPA and score functions; and the PDD-MCS method, utilizing the embedded

MCS of PDD approximation and score functions. Section 3.2 formally defines RDO

and RBDO problems, including their concomitant mathematical statements. Section

3.3 describes the PDD approximation of a multivariate function, resulting in explicit

formulae for the first two moments, and the PDD-SPA and PDD-MCS methods for

reliability analysis. Section 3.4 defines score functions and unveils new closed-form

formulae or numerical procedures for design sensitivities of moments. The conver-

gence of the sensitivities of moments by the proposed method is also proved in this

section. Section 3.5 describes the PDD-SPA and PDD-MCS methods for sensitivity
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analysis and explains how the effort required to calculate the failure probability also

delivers its design sensitivities, sustaining no additional cost. The calculation of PDD

expansion coefficients, required in sensitivity analyses of both moments and failure

probability, is discussed in Section 3.6. In Section 3.7, five numerical examples are

presented to probe the convergence properties, accuracy, and computational efficiency

of the proposed methods. Finally, conclusions are drawn in Section 3.8.

3.2 Design under Uncertainty

Consider a measurable space (Ωd,Fd), where Ωd is a sample space and Fd

is a σ-field on Ωd. Defined over (Ωd,Fd), let {Pd : F → [0, 1]} be a family of

probability measures, where for M ∈ N and N ∈ N, d = (d1, · · · , dM)T ∈ D is

an RM -valued design vector with non-empty closed set D ⊆ RM , and let X :=

(X1, · · · , XN)
T : (Ωd,Fd) → (RN ,BN) be an RN -valued input random vector with

BN representing the Borel σ-field on RN , describing the statistical uncertainties in

the loads, material properties, and geometry of a complex mechanical system. The

probability law of X is completely defined by a family of the joint probability density

functions (PDF) {fX(x;d), x ∈ RN , d ∈ D} that are associated with probability

measures {Pd, d ∈ D}, so that the probability triple (Ωd,Fd, Pd) of X depends on d.

A design variable dk can be any distribution parameter or a statistic — for instance,

the mean or standard deviation — of Xi.

Let yl(X), l = 1, 2, · · · , K, be a collection of K + 1 real-valued, square-

integrable, measurable transformations on (Ωd,Fd), describing performance functions
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of a complex system. It is assumed that yl : (RN ,BN) → (R,B) is not an explicit

function of d, although yl implicitly depends on d via the probability law of X.

3.2.1 RDO

A common mathematical formulation for RDO problems involving an objective

function c0 : RM → R and constraint functions cl : RM → R, where l = 1, · · · , K and

1 ≤ K <∞, requires one to

min
d∈D⊆RM

c0(d) := w1
Ed [y0(X)]

µ∗0
+ w2

√
vard [y0(X)]

σ∗0
,

subject to cl(d) := αl

√
vard [yl(X)]− Ed [yl(X)] ≤ 0, l = 1, · · · , K, (3.1)

dk,L ≤ dk ≤ dk,U , k = 1, · · · ,M,

where Ed[yl(X;d)] :=
∫
RN yl(x;d)fX(x;d)dx is the mean of yl(X;d) with E denoting

the expectation operator with respect to the probability measure fX(x;d)dx of X;

vard[yl(X;d)] := Ed[{yl(X;d) − Ed[yl(X;d)]}2] is the variance of yl(X;d); gl, l =

0, 1, · · · , K, are arbitrary functions of Ed[yl(X;d)] and vard[yl(X;d)]; dk,L and dk,U

are the lower and upper bounds, respectively, of dk; w1 ∈ R+
0 and w2 ∈ R+

0 are two

non-negative, real-valued weights, satisfying w1 + w2 = 1; µ∗0 ∈ R \ {0} and σ∗0 ∈

R+
0 \ {0} are two non-zero, real-valued scaling factors; and αl ∈ R+

0 , l = 0, 1, · · · , K,

are non-negative, real-valued constants associated with the probabilities of constraint

satisfaction.

In Equation (3.1), evaluations of both objective robustness and feasibility ro-

bustness, involving the first two moments of various responses, are required for solving

RDO problems, consequently demanding statistical moment analysis. Coupling with



46

gradient-based optimization algorithms mandates that the gradients of cl(d) be for-

mulated, thus requiring design sensitivity analysis of the first two moments.

3.2.2 RBDO

A well-known mathematical formulation for RBDO problems involving an

objective function c0 : RM → R and constraint functions cl : RM → R, where

l = 1, · · · , K and 1 ≤ K <∞, requires one to

min
d∈D⊆RM

c0(d),

subject to cl(d) := Pd [X ∈ ΩF,l(d)]− pl ≤ 0, l = 1, · · · , K,

dk,L ≤ dk ≤ dk,U , k = 1, · · · ,M,

(3.2)

where ΩF,l(d) ⊆ Ω is the lth failure set that, in general, may depend on d; 0 ≤ pl ≤

1, l = 1, · · · , K, are target failure probabilities; the distributional parameters solely

describe the design variables, that is dT = d, c0 is a prescribed deterministic function

of d; and yl(X), l = 1, · · · , K, are not explicit functions of d, although yl implicitly

depends on d via the probability law of X.

In Equation (3.2), evaluation of the reliability constraints cl(d), l = 1, · · · , K,

requires calculating the component or system probability of failure defined by the per-

formance functions. Coupling with gradient-based optimization algorithms mandates

that the gradients of cl(d) be formulated, thus requiring design sensitivity analysis of

failure probability.
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3.3 Stochastic Analyses

3.3.1 Polynomial Dimensional Decomposition

Let y(X) be a real-valued, square-integrable, measurable transformation on

(Ω,F), describing the relevant performance function of a complex system. It is as-

sumed that y : (RN ,BN) → (R,B) is not an explicit function of d, although y

implicitly depends on d via the probability law of X. Assuming independent coordi-

nates of X, its joint PDF is expressed by a product, fX(x;d) =
∏i=N

i=1 fXi
(xi;d), of

marginal PDF fXi
: R → R+

0 of Xi, i = 1, · · · , N , defined on its probability triple

(Ωi,Fi, Pi,d) with a bounded or an unbounded support on R. Then, for a given sub-

set u ⊆ {1, · · · , N}, fX−u(x−u;d) :=
∏N

i=1,i/∈u fXi
(xi;d) defines the marginal density

function of X−u := X{1,··· ,N}\u.

3.3.1.1 Orthonormal Polynomials and Stochastic Expansions

Let {ψij(xi;d); j = 0, 1, · · · } be a set of univariate, orthonormal polyno-

mial basis functions in the Hilbert space L2(Ωi,Fi, Pi,d) that is consistent with the

probability measure Pi,d or fXi
(xi;d)dxi of Xi for a given design d. For ∅ ̸= u =

{i1, · · · , i|u|} ⊆ {1, · · · , N}, where 1 ≤ |u| ≤ N and 1 ≤ i1 < · · · < i|u| ≤

N , let (×p=|u|
p=1 Ωip ,×

p=|u|
p=1 Fip ,×

p=|u|
p=1 Pip,d) be the product probability triple of Xu =

(Xi1 , · · · , Xi|u|). Denote the associated space of the |u|-variate component functions

of y by

L2

(
×p=|u|

p=1 Ωip ,×
p=|u|
p=1 Fip ,×

p=|u|
p=1 Pip,d

)
:=

{
yu :

∫
R|u|

y2u(xu;d)fXu(xu;d)dxu <∞
}
,

(3.3)
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which is a Hilbert space. Since the joint density of Xu is separable (independence

of xi, i ∈ u), that is, fXu(xu;d) =
∏|u|

p=1fXip
(xip ;d)dxip , the product ψuj|u|(Xu;d) :=∏|u|

p=1 ψipjp(Xip ;d), where j|u| = (j1, · · · , j|u|) ∈ N|u|0 , a |u|-dimensional multi-index

with ∞-norm ||j|u|||∞ = max(j1, · · · , j|u|), constitutes a multivariate orthonormal

polynomial basis in L2(×p=|u|
p=1 Ωip ,×

p=|u|
p=1 Fip ,×

p=|u|
p=1 Pip,d). Two important properties

of these product polynomials from tensor products of Hilbert spaces are as follows.

Proposition 3.1. The product polynomials ψuj|u|(Xu;d), ∅ ̸= u ⊆ {1, · · · , N}, j1, · · · ,

j|u| ̸= 0, d ∈ D, have zero means, i.e.,

Ed

[
ψuj|u|(Xu;d)

]
= 0. (3.4)

Proposition 3.2. Any two distinct product polynomials ψuj|u|(Xu;d) and ψvk|v|(Xv;d)

for d ∈ D, where ∅ ̸= u ⊆ {1, · · · , N}, ∅ ̸= v ⊆ {1, · · · , N}, j1, · · · , j|u| ̸= 0,

k1, · · · , k|v| ̸= 0, are uncorrelated and each has unit variance, i.e.,

Ed

[
ψuj|u|(Xu;d)ψvk|v|(Xv;d)

]
=

{
1 if u = v; j|u| = k|v|,
0 otherwise.

(3.5)

Proof. The results of Propositions 3.1 and 3.2 follow by recognizing independent

coordinates of X and using the second-moment properties of univariate orthonormal

polynomials: (1) Ed[ψij(Xi;d)] = 1 when j = 0 and zero when j ≥ 1; and (2)

Ed[ψij1(Xi;d)ψij2(Xi;d)] = 1 when j1 = j2 and zero when j1 ̸= j2 for an arbitrary

random variable Xi.

Remark 3.3. Given a probability measure Pi,d of any random variable Xi, the well-

known three-term recurrence relation is commonly used to construct the associated
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orthogonal polynomials [97, 98]. For m ∈ N, the first m recursion coefficient pairs

are uniquely determined by the first 2m moments of Xi that must exist. When

these moments are exactly calculated, they lead to exact recursion coefficients, some

of which belong to classical orthogonal polynomials. For an arbitrary probability

measure, approximate methods, such as the Stieltjes procedure, can be employed to

obtain the recursion coefficients [97, 98].

The orthogonal polynomial expansion of a non-constant |u|-variate ANOVA

component function in Equation (2.8) becomes [97, 99]

yu(Xu;d) =
∑

j|u|∈N
|u|
0

j1,··· ,j|u| ̸=0

Cuj|u|(d)ψuj|u|(Xu;d) (3.6)

for any ∅ ̸= u ⊆ {1, · · · , N} with

Cuj|u|(d) :=

∫
RN

y(x)ψuj|u|(xu;d)fX(x;d)dx (3.7)

representing the corresponding expansion coefficient. Similar to y∅, the coefficient

Cuj|u| also depends on the design vector d. When u = {i}, i = 1, · · · , N , the univariate

component functions and expansion coefficients are

y{i}(Xi;d) =
∞∑
j=1

Cij(d)ψij(Xi;d) (3.8)

and Cij(d) := C{i}(j)(d), respectively. When u = {i1, i2}, i1 = 1, · · · , N − 1, i2 =

i1 + 1, · · · , N , the bivariate component functions and expansion coefficients are

y{i1,i2}(Xi1 , Xi2 ;d) =
∞∑

j1=1

∞∑
j2=1

Ci1i2j1j2(d)ψi1j1(Xi1 ;d)ψi2j2(Xi2 ;d) (3.9)
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and Ci1i2j1j2(d) := C{i1,i2}(j1,j2)(d), respectively, and so on. Using Propositions 3.1

and 3.2, all component functions yu, ∅ ̸= u ⊆ {1, · · · , N}, are found to satisfy the

annihilating conditions of the ANOVA dimensional decomposition. The end result of

combining Equations (2.6)-(2.8) and (3.6) is the PDD [97, 99],

y(X) = y∅(d) +
∑

∅̸=u⊆{1,··· ,N}

∑
j|u|∈N

|u|
0

j1,··· ,j|u| ̸=0

Cuj|u|(d)ψuj|u|(Xu;d), (3.10)

providing an exact, hierarchical expansion of y in terms of an infinite number of

coefficients or orthonormal polynomials. In practice, the number of coefficients or

polynomials must be finite, say, by retaining at most mth-order polynomials in each

variable. Furthermore, in many applications, the function y can be approximated by

a sum of at most S-variate component functions, where S ∈ N; 1 ≤ S ≤ N , resulting

in the S-variate, mth-order PDD approximation

ỹS,m(X) = y∅(d) +
∑

∅̸=u⊆{1,··· ,N}
1≤|u|≤S

∑
j|u|∈N

|u|
0 ,||j|u|||∞≤m

j1,··· ,j|u| ̸=0

Cuj|u|(d)ψuj|u|(Xu;d), (3.11)

containing
∑S

k=0

(
N
k

)
mk number of PDD coefficients and corresponding orthonormal

polynomials. Due to its additive structure, the approximation in Equation (3.11)

includes degrees of interaction among at most S input variables Xi1 , · · · , XiS , 1 ≤

i1 ≤ · · · ≤ iS ≤ N . For instance, by selecting S = 1 and 2, the functions

ỹ1,m(X) = y∅ +
N∑
i=1

m∑
j=1

Cij(d)ψij(Xi;d) (3.12)
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and

ỹ2,m(X) = y∅(d) +
N∑
i=1

m∑
j=1

Cij(d)ψij(Xi;d)+

N−1∑
i1=1

N∑
i2=i1+1

m∑
j1=1

m∑
j2=1

Ci1i2j1j2(d)× ψi1j1(Xi1 ;d)ψi2j2(Xi2 ;d),

(3.13)

respectively, provide univariate and bivariate mth-order PDD approximations, con-

tain contributions from all input variables, and should not be viewed as first- and

second-order approximations, nor as limiting the nonlinearity of y. Depending on

how the component functions are constructed, arbitrarily high-order univariate and

bivariate terms of y could be lurking inside ỹ1,m and ỹ2,m. When S → N and m→ ∞,

ỹS,m converges to y in the mean-square sense, permitting Equation (3.11) to generate

a hierarchical and convergent sequence of approximations of y. Further details of

PDD can be found elsewhere [97, 99].

3.3.2 Statistical Moment Analysis

Let m(r)(d) := Ed[y
r(X)], if it exists, define the raw moment of y of order r,

where r ∈ N. Given an S-variate, mth-order PDD approximation ỹS,m(X) of y(X),

let m̃
(r)
S,m(d) := Ed[ỹ

r
S,m(X)] define the raw moment of ỹS,m of order r. The following

subsections describe the explicit formulae or analytical expressions for calculating the

moments by PDD approximations.
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3.3.2.1 First- and Second-Order Moments

Applying the expectation operator on ỹS,m(X) and ỹ2S,m(X), and recognizing

Propositions 3.1 and 3.2, the first moment or mean [100]

m̃
(1)
S,m(d) := Ed [ỹS,m(X)] = y∅(d) = Ed [y(X)] =: m(1)(d) (3.14)

of the S-variate, mth-order PDD approximation matches the exact mean of y, re-

gardless of S or m, whereas the second moment [100]

m̃
(2)
S,m(d) := Ed

[
ỹ2S,m(X)

]
= y2∅(d) +

∑
∅̸=u⊆{1,··· ,N}

1≤|u|≤S

∑
j|u|∈N

|u|
0 ,||j|u|||∞≤m

j1,··· ,j|u| ̸=0

C2
uj|u|

(d) (3.15)

is calculated as the sum of squares of all expansion coefficients of ỹS,m(X). Clearly, the

approximate second moment in Equation (3.15) approaches the exact second moment

m(2)(d) := Ed

[
y2(X)

]
= y2∅(d) +

∑
∅̸=u⊆{1,··· ,N}

∑
j|u|∈N

|u|
0

j1,··· ,j|u| ̸=0

C2
uj|u|

(d) (3.16)

of y when S → N and m → ∞. The mean-square convergence of ỹS,m is guaranteed

as y, and its component functions are all members of the associated Hilbert spaces.

In addition, the variance of ỹS,m(X) is also mean-square convergent.

For the two special cases, S = 1 and S = 2, the univariate and bivariate PDD

approximations yield the same exact mean value y∅(d), as noted in Equation (3.14).

However, the respective second-moment approximations,

m̃
(2)
1,m(d) = y2∅(d) +

N∑
i=1

m∑
j=1

C2
ij(d) (3.17)

and

m̃
(2)
2,m(d) = y2∅(d) +

N∑
i=1

m∑
j=1

C2
ij(d) +

N−1∑
i1=1

N∑
i2=i1+1

m∑
j2=1

m∑
j1=1

C2
i1i2j1j2

(d), (3.18)
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differ, depend on m, and progressively improve as S becomes larger. Recent works on

error analysis indicate that the second-moment properties obtained from the ANOVA

dimensional decomposition, which leads to PDD approximations, are superior to those

derived from dimension-reduction methods that are grounded in RDD [64, 83].

3.3.2.2 Higher-Order Moments

When calculating higher-order (2 < r <∞) moments by the PDD approxima-

tion, no explicit formulae exist for a general function y or the probability distribution

of X. In which instance, two options are proposed to estimate the higher-order mo-

ments.

Option I entails expanding the rth power of the PDD approximation of y by

ỹrS,m(X) = g∅(d) +
∑

∅̸=u⊆{1,··· ,N}
1≤|u|≤min(rS,N)

gu(Xu;d) (3.19)

in terms of a constant g∅(d) and at most min(rS,N)-variate polynomial functions

gu(Xu;d) and then calculating the moment

m̃
(r)
S,m(d) =

∫
RN ỹ

r
S,m(x)fX(x;d)dx

= g∅(d) +
∑

∅̸=u⊆{1,··· ,N}
1≤|u|≤min(rS,N)

∫
R|u|

gu(xu;d)fXu(xu;d)dxu (3.20)

by integration, if it exists. For well-behaved functions, including many encountered in

practical applications, m̃
(r)
S,m(d) should render an accurate approximation of m(r)(d),

the rth-order moment of y(X), although there is no rigorous mathematical proof of

convergence when r > 2. Note that Equation (3.20) involves integrations of ele-

mentary polynomial functions and does not require any expensive evaluation of the

original function y. Nonetheless, since ỹS,m(X) is a superposition of at most S-variate
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component functions of independent variables, the largest dimension of the integrals

in Equation (3.20) is min(rS,N). Therefore, Option I mandates high-dimensional

integrations if min(rS,N) is large. In addition, if rS ≥ N and N is large, then the

resulting N -dimensional integration is infeasible.

As an alternative, Option II, relevant to large N , creates an additional S̄-

variate, m̄th-order PDD approximation

z̃S̄,m̄(X) = z∅(d) +
∑

∅̸=u⊆{1,··· ,N}
1≤|u|≤S̄

∑
j|u|∈N

|u|
0 ,||j|u|||∞≤m̄

j1,··· ,j|u| ̸=0

C̄uj|u|(d)ψuj|u|(Xu;d) (3.21)

of ỹrS,m(X), where S̄ and m̄, potentially distinct from S and m, are accompanying

truncation parameters, z∅(d) :=
∫
RN ỹ

r
S,m(x)fX(x;d)dx, and C̄uj|u|(d) :=

∫
RN ỹ

r
S,m(x)

ψuj|u|(xu;d)fX(x;d)dx are the associated PDD expansion coefficients of z̃S̄,m̄(X). Re-

placing ỹrS,m(x) with z̃S̄,m̄(x), the first line of Equation (3.20) produces

m̃
(r)
S,m(d) =

∫
RN

z̃S̄,m̄(x)fX(x;d)dx =: z∅(d). (3.22)

Then the evaluation of z∅(d) from the definition, which also requires N -dimensional

integration, leads Equation (3.22) back to Equation (3.20), raising the question of

why Option II is introduced. Indeed, the distinction between the two options forms

when the constant z∅(d) is approximately calculated by dimension-reduction integra-

tion, to be explained in Section 3.6, entailing at most S̄-dimensional integrations.

Nonetheless, if S̄ ≪ rS < N , then a significant dimension reduction is possible in

Option II for estimating higher-order moments. In other words, Option II, which is an

approximate version of Option I, may provide efficient solutions to high-dimensional

problems, provided that a loss of accuracy in Option II, if any, is insignificant. The
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higher-order moments are useful for approximating the probability distribution of a

stochastic response or reliability analysis, including their sensitivity analyses, and will

be revisited in the next subsection.

3.3.3 Reliability Analysis

A fundamental problem in reliability analysis entails calculation of the failure

probability

PF (d) := Pd [X ∈ ΩF ] =

∫
RN

IΩF
(x)fX(x;d)dx =: Ed [IΩF

(X)] , (3.23)

where ΩF is the failure set and IΩF
(x) is the associated indicator function, which

is equal to one when x ∈ ΩF and zero otherwise. Depending on the nature of the

failure domain ΩF , a component or a system reliability analysis can be envisioned.

For component reliability analysis, the failure domain is often adequately described

by a single performance function y(x), for instance, ΩF := {x : y(x) < 0}. In

contrast, multiple, interdependent performance functions yi(x), i = 1, 2, · · · , are

required for system reliability analysis, leading, for example, to ΩF := {x : ∪iyi(x) <

0} and ΩF := {x : ∩iyi(x) < 0} for series and parallel systems, respectively. In this

subsection, two methods are presented for estimating the failure probability. The

PDD-SPA method, which blends the PDD approximation with SPA, is described

first. Then the PDD-MCS method, which exploits the PDD approximation for MCS,

is elucidated.
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3.3.3.1 The PDD-SPA Method

Let Fy(ξ) := Pd[y ≤ ξ] be the cumulative distribution function (CDF) of y(X).

Assume that the PDF fy(ξ) := dFy(ξ)/dξ exists and suppose that the cumulant

generating function (CGF)

Ky(t) := ln

{∫ +∞

−∞
exp(tξ)fy(ξ)dξ

}
(3.24)

of y converges for t ∈ R in some non-vanishing interval containing the origin. Us-

ing inverse Fourier transformation, exponential power series expansion, and Hermite

polynomial approximation, Daniels [56] developed an SPA formula to approximately

evaluate fy(ξ). However, the success of such formula is predicated on how accurately

the CGF and its derivatives, if they exist, are calculated. In fact, determining Ky(t)

is immensely difficult because it is equivalent to knowing all higher-order moments of

y. To mitigate this problem, consider the Taylor series expansion of

Ky(t) =
∑
r∈N

κ(r)tr

r!
(3.25)

at t = 0, where κ(r) := drKy(0)/dt
r, r ∈ N, is known as the rth-order cumulant of

y(X). If some of these cumulants are effectively estimated, then a truncated Taylor

series provides a useful means to approximate Ky(t). For instance, assume that, given

a positive integer Q < ∞, the raw moments m̃
(r)
S,m(d) of order at most Q have been

calculated with sufficient accuracy using an S-variate, mth-order PDD approximation

ỹS,m(X) of y(X), as described in the preceding subsection. Then the corresponding

approximate cumulants are easily obtained from the well-known cumulant-moment
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relationship,

κ̃
(r)
S,m(d) =


m̃

(1)
S,m(d) : r = 1,

m̃
(r)
S,m(d)−

r−1∑
p=1

(
r−1
p−1

)
κ̃
(p)
S,m(d)m̃

(r−p)
S,m (d) : 2 ≤ r ≤ Q,

(3.26)

where the functional argument d serves as a reminder that the moments and cu-

mulants all depend on the design vector d. Setting κ(r) = κ̃
(r)
S,m for r = 1, · · · , Q,

and zero otherwise in Equation (3.25), the result is an S-variate, mth-order PDD

approximation

K̃y,Q,S,m(t;d) =

Q∑
r=1

κ̃
(r)
S,m(d)t

r

r!
(3.27)

of the Qth-order Taylor series expansion of Ky(t). It is elementary to show that

K̃y,Q,S,m(t;d) → Ky(t) when S → N , m→ ∞, and Q→ ∞.

Using the CGF approximation in Equation (3.27), Daniels’ SPA leads to the

explicit formula [56],

f̃y,PS(ξ;d) =
[
2πK̃ ′′y,Q,S,m(ts;d)

]− 1
2
exp

[
K̃y,Q,S,m(ts;d)− tsξ

]
, (3.28)

for the approximate PDF of y, where ts is the saddlepoint that is obtained from

solving

K̃ ′y,Q,S,m(ts;d) = ξ (3.29)

with K̃ ′y,Q,S,m(t;d) := dK̃y,Q,S,m(t;d)/dt and K̃ ′′y,Q,S,m(t;d) := d2K̃y,Q,S,m(t;d)/dt
2

defining the first- and second-order derivatives, respectively, of the approximate CGF

of y with respect to t. Furthermore, based on a related work of Lugannani and Rice

[101], the approximate CDF of y becomes

F̃y,PS(ξ;d) = Φ(w) + ϕ(w)

(
1

w
− 1

v

)
,

w = sgn(ts)
{
2
[
tsξ − K̃y,Q,S,m(ts;d)

]} 1
2
, v = ts

[
K̃ ′′y,Q,S,m(ts;d)

] 1
2
,

(3.30)
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where Φ(·) and ϕ(·) are the CDF and PDF, respectively, of the standard Gaussian

variable and sgn(ts) = +1,−1, or 0, depending on whether ts is positive, negative, or

zero. According to Equation (3.30), the CDF of y at a point ξ is obtained using solely

the corresponding saddlepoint ts, that is, without the need to integrate Equation

(3.28) from −∞ to ξ.

Finally, using Lugannani and Rice’s formula, the PDD-SPA estimate P̃F,PS(d)

of the component failure probability PF (d) := P [y(X) < 0] is obtained as

P̃F,PS(d) = F̃y,PS(0;d), (3.31)

the PDD-SPA generated CDF of y at ξ = 0. It is important to recognize that no

similar SPA-based formulae are available for the joint PDF or joint CDF of dependent

stochastic responses. Therefore, the PDD-SPA method in the current form cannot

be applied to general system reliability analysis.

The PDD-SPA method contains several truncation parameters that should be

carefully selected. For instance, if Q is too small, then the truncated CGF from

Equation (3.27) may spoil the method, regardless of how large are the S and m cho-

sen in the PDD approximation. On the other hand, if Q is overly large, then many

higher-order moments involved may not be accurately calculated by the PDD ap-

proximation. More significantly, a finite-order truncation of CGF may cause loss of

convexity of the actual CGF, meaning that the one-to-one relationship between ξ and

ts in Equation (3.29) is not ensured for every threshold ξ. Furthermore, the impor-

tant property K̃ ′′y,Q,S,m(ts;d) > 0 may not be maintained. To resolve this quandary,

Yuen et al. [102] presented for Q = 4 several distinct cases of the cumulants, de-
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scribing the interval (tl, tu), where −∞ ≤ tl ≤ 0 and 0 ≤ tu ≤ ∞, such that

tl ≤ ts ≤ tu and K̃ ′′y,Q,S,m(ts;d) > 0, ruling out any complex values of the square

root in Equation (3.28) or (3.30). Table 3.1 summarizes these cases, which were em-

ployed in the PDD-SPA method described in this chapter. If the specified threshold

ξ ∈ (K̃ ′y,Q,S,m(tl;d), K̃ ′y,Q,S,m(tu;d)), then the saddlepoint ts is uniquely determined

from Equation (3.29), leading to the CDF or reliability in Equation (3.30) or (3.31).

Otherwise, the PDD-SPA method will fail to provide a solution. It is important

to note that developing similar cases for Q > 4, assuring a unique solution of the

saddlepoint, is not trivial, and was not considered in this work.
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Table 3.1: Intervals of the saddlepoint for Q = 4
(a)

Case Condition tl tu

1 κ̃
(4)
S,m > 0, ∆ > 0,

κ̃
(3)
S,m > 0

−κ̃(3)S,m +
√
∆

κ̃
(4)
S,m

+∞

2 κ̃
(4)
S,m > 0, ∆ > 0,

κ̃
(3)
S,m < 0

−∞
−κ̃(3)S,m −

√
∆

κ̃
(4)
S,m

3 κ̃
(4)
S,m > 0, ∆ = 0 −∞

(b)
+∞

(b)

4 κ̃
(4)
S,m > 0, ∆ < 0 −∞ +∞

5 κ̃
(4)
S,m = 0, κ̃

(3)
S,m > 0 −

κ̃
(2)
S,m

κ̃
(3)
S,m

+∞

6 κ̃
(4)
S,m = 0, κ̃

(3)
S,m = 0 −∞ +∞

7 κ̃
(4)
S,m = 0, κ̃

(3)
S,m < 0 −∞ −

κ̃
(2)
S,m

κ̃
(3)
S,m

8 κ̃
(4)
S,m < 0

−κ̃(3)S,m +
√
∆

κ̃
(4)
S,m

−κ̃(3)S,m −
√
∆

κ̃
(4)
S,m

(a) For K̃y,4,S,m(t;d) = κ̃
(1)
S,m(d)t+

1

2!
κ̃
(2)
S,m(d)t2 +

1

3!
κ̃
(3)
S,m(d)t3 +

1

4!
κ̃
(4)
S,m(d)t4, the discriminant of

K̃′
y,4,S,m(t;d) is ∆ := κ̃

(3)2

S,m − 2κ̃
(2)
S,mκ̃

(4)
S,m.

(b) The point −κ̃(3)
S,m/(2κ̃

(2)
S,m) should not be an element of (tl, tu), i.e., (tl, tu) = (−∞,∞) \

{−κ̃(3)
S,m/(2κ̃

(2)
S,m)}.

3.3.3.2 The PDD-MCS Method

Depending on component or system reliability analysis, let Ω̃F,S,m := {x :

ỹS,m(x) < 0} or Ω̃F,S,m := {x : ∪iỹi,S,m(x) < 0} or Ω̃F,S,m := {x : ∩iỹi,S,m(x) < 0} be

an approximate failure set as a result of S-variate, mth-order PDD approximations

ỹS,m(X) of y(X) or ỹi,S,m(X) of yi(X). Then the PDD-MCS estimate of the failure

probability PF (d) is

P̃F,PM(d) = Ed

[
IΩ̃F,S,m

(X)
]
= lim

L→∞

1

L

L∑
l=1

IΩ̃F,S,m
(x(l)), (3.32)



61

where L is the sample size, x(l) is the lth realization of X, and IΩ̃F,S,m
(x) is another

indicator function, which is equal to one when x ∈ Ω̃F,S,m and zero otherwise.

Note that the simulation of the PDD approximation in Equation (3.32) should

not be confused with crude MCS commonly used for producing benchmark results.

The crude MCS, which requires numerical calculations of y(x(l)) or yi(x
(l)) for input

samples x(l), l = 1, · · · , L, can be expensive or even prohibitive, particularly when

the sample size L needs to be very large for estimating small failure probabilities. In

contrast, the MCS embedded in PDD requires evaluations of simple analytical func-

tions that stem from an S-variate, mth-order approximation ỹS,m(x
(l)) or ỹi,S,m(x

(l)).

Therefore, an arbitrarily large sample size can be accommodated in the PDD-MCS

method. In which case, the PDD-MCS method also furnishes the approximate CDF

F̃y,PM(ξ;d) := Pd[ỹS,m(X) ≤ ξ] of y(X) or even the joint CDF of dependent stochastic

responses, if desired.

Although the PDD-SPA and PDD-MCS methods are both rooted in the same

PDD approximation, the former requires additional layers of approximations to cal-

culate the CGF and saddlepoint. Therefore, the PDD-SPA method, when it works,

is expected to be less accurate than the PDD-MCS method at comparable compu-

tational efforts. However, the PDD-SPA method facilitates an analytical means to

estimate the probability distribution and reliability − a convenient process not sup-

ported by the PDD-MCS method. The respective properties of both methods extend

to sensitivity analysis, presented in the following two sections.
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3.4 Design Sensitivity Analysis of Moments

When solving RDO problems using gradient-based optimization algorithms, at

least first-order derivatives of the first and second moments of a stochastic response

with respect to each design variable are required. In this section, a new method,

developed by blending PDD with score functions, for design sensitivity analysis of

moments of an arbitrary order, is presented.

3.4.1 Score functions

Suppose that the first-order derivative of a moment m(r)(d), where r ∈ N,

of a generic stochastic response y(X) with respect to a design variable dk, 1 ≤ k ≤

M , is sought. Taking a partial derivative of the moment with respect to dk and

then applying the Lebesgue dominated convergence theorem [76], which permits the

differential and integral operators to be interchanged, yields the sensitivity

∂m(r)(d)

∂dk
:=

∂Ed [y
r(X)]

∂dk

=
∂

∂dk

∫
RN

yr(x)fX(x;d)dx,

=

∫
RN

yr(x)
∂ ln fX(x;d)

∂dk
fX(x;d)dx,

=: Ed

[
yr(X)s

(1)
dk
(X;d)

]
(3.33)

provided that fX(x;d) > 0 and the derivative ∂ ln fX(x;d) /∂dk exists. In the last

line of Equation (3.33), s
(1)
dk
(X;d) := ∂ ln fX(X;d) /∂dk is known as the first-order

score function for the design variable dk [74, 75]. In general, the sensitivities are not

available analytically since the moments are not either. Nonetheless, the moments and

their sensitivities have both been formulated as expectations of stochastic quantities

with respect to the same probability measure, facilitating their concurrent evaluations
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in a single stochastic simulation or analysis.

Remark 3.4. The evaluation of score functions, s
(1)
dk
(X;d), k = 1, · · · ,M , requires

differentiating only the PDF of X. Therefore, the resulting score functions can be

determined easily and, in many cases, analytically − for instance, when X follows

classical probability distributions [75]. If the density function of X is arbitrarily

prescribed, the score functions can be calculated numerically, yet inexpensively, since

no evaluation of the performance function is involved.

When X comprises independent variables, as assumed here, ln fX(X;d) =∑i=N
i=1 ln fXi

(xi;d) is a sum ofN univariate log-density (marginal) functions of random

variables. Hence, in general, the score function for the kth design variable, expressed

by

s
(1)
dk
(X;d) =

N∑
i=1

∂ ln fXi
(Xi;d)

∂dk
=

N∑
i=1

ski(Xi;d), (3.34)

is also a sum of univariate functions ski(Xi;d) := ∂ ln fXi
(Xi;d) /∂dk ,i = 1, · · · , N ,

which are the derivatives of log-density (marginal) functions. If dk is a distribu-

tion parameter of a single random variable Xik , then the score function reduces to

s
(1)
dk
(X;d) = ∂ ln fXik

(Xik ;d) /∂dk =: skik(Xik ;d), the derivative of the log-density

(marginal) function of Xik , which remains a univariate function. Nonetheless, com-

bining Equations (3.33) and (3.34), the sensitivity is obtained from

∂m(r)(d)

∂dk
=

N∑
i=1

Ed [y
r(X)ski(Xi;d)] , (3.35)

the sum of expectations of products comprising stochastic response and log-density

derivative functions with respect to the probability measure Pd, d ∈ D.
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3.4.2 Sensitivities of first- and second-order moments

For independent coordinates of X, consider the Fourier-polynomial expansion

of the kth log-density derivative function

ski(Xi;d) = ski,∅(d) +
∞∑
j=1

Dk,ij(d)ψij(Xi;d), (3.36)

consisting of its own expansion coefficients

ski,∅(d) :=

∫
R
ski(xi;d)fXi

(xi;d)dxi (3.37)

and

Dk,ij(d) :=

∫
R
ski(xi;d)ψij(xi;d)fXi

(xi;d)dxi. (3.38)

The expansion is valid if ski is square integrable with respect to the probability

measure of Xi. When blended with the PDD approximation, the score function leads

to analytical or closed-form expressions of the exact or approximate sensitivities as

follows.

3.4.2.1 Exact Sensitivities

Employing Equations (3.10) and (3.36), the product appearing on the right

side of Equation (3.35) expands to

yr(X)ski(Xi;d) =

y∅(d) +
∑

∅̸=u⊆{1,··· ,N}

∑
j|u|∈N

|u|
0

j1,··· ,j|u| ̸=0

Cuj|u|(d)ψuj|u|(Xu;d)


r

×

(
ski,∅(d) +

∞∑
j=1

Dk,ij(d)ψij(Xi;d)

)
,

(3.39)
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encountering the same orthonormal polynomial bases that are consistent with the

probability measure fX(x;d)dx. The expectations of Equation (3.39) for r = 1 and

2, aided by Propositions 3.1 and 3.2, lead Equation (3.35) to

∂m(1)(d)

∂dk
=

N∑
i=1

[
y∅(d)ski,∅(d) +

∞∑
j=1

Cij(d)Dk,ij(d)

]
(3.40)

and

∂m(2)(d)

∂dk
=

N∑
i=1

[
m(2)(d)ski,∅(d) + 2y∅(d)

∞∑
j=1

Cij(d)Dk,ij(d) + Tki

]
, (3.41)

representing closed-form expressions of the sensitivities in terms of the PDD or

Fourier-polynomial expansion coefficients of the response or log-density derivative

functions. The last term on the right side of Equation (3.41) is

Tki =
N∑

i1=1

N∑
i2=1

∞∑
j1=1

∞∑
j2=1

∞∑
j3=1

Ci1j1(d)Ci2j2(d)Dk,ij3(d)×

Ed [ψi1j1(Xi1 ;d)ψi2j2(Xi2 ;d)ψij3(Xi;d)] , (3.42)

which requires expectations of various products of three random orthonormal poly-

nomials and is further discussed in Subsection 3.2.4. Note that these sensitivity

equations are exact because PDD and Fourier-polynomial expansions are exact rep-

resentations of square-integrable functions.

3.4.2.2 Approximate Sensitivities

When y(X) and ski(Xi;d) are replaced with their S-variate, mth-order PDD

and m′th-order Fourier-polynomial approximations, respectively, the resultant sensi-

tivity equations, expressed by

∂m̃
(1)
S,m(d)

∂dk
:=

∂Ed [ỹS,m(X)]

∂dk
=

N∑
i=1

[
y∅(d)ski,∅(d) +

mmin∑
j=1

Cij(d)Dk,ij(d)

]
(3.43)
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and

∂m̃
(2)
S,m(d)

∂dk
:=

∂Ed[ỹ2S,m(X)]
∂dk

=
∑N

i=1

[
m̃

(2)
S,m(d)ski,∅(d) + 2y∅(d)

mmin∑
j=1

Cij(d)Dk,ij(d) + T̃ki,m,m′

]
,

(3.44)

where mmin := min(m,m′) and

T̃ki,m,m′ =
N∑

i1=1

N∑
i2=1

m∑
j1=1

m∑
j2=1

m′∑
j3=1

Ci1j1(d)Ci2j2(d)Dk,ij3(d)×

Ed [ψi1j1(Xi1 ;d)ψi2j2(Xi2 ;d)ψij3(Xi;d)] , (3.45)

become approximate, relying on the truncation parameters S, m, and m′ in gen-

eral. At appropriate limits, the approximate sensitivities of the moments converge to

exactness as described by Proposition 3.5.

Proposition 3.5. Let ỹS,m(X) be an S-variate, mth-order PDD approximation of

a square-integrable function y(X), where X = (X1, · · · , XN)
T ∈ RN comprises in-

dependent random variables with marginal probability distributions fXi
(xi;d), i =

1, · · · , N , and d = (d1, · · · , dM)T ∈ D is a design vector with non-empty closed

set D ⊆ RM . Given the distribution parameter dk, let the kth log-density deriva-

tive function ski(Xi;d) of the ith random variable Xi be square integrable. Then for

k = 1, · · ·M,

lim
S→N,m,m′→∞

∂m̃
(1)
S,m(d)

∂dk
=
∂m(1)(d)

∂dk
(3.46)

and

lim
S→N,m,m′→∞

∂m̃
(2)
S,m(d)

∂dk
=
∂m(2)(d)

∂dk
. (3.47)
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Proof. Taking the limits S → N , m → ∞, and m′ → ∞ on Equations (3.43) and

(3.44) and recognizing m̃
(2)
S,m(d) → m(2)(d) and T̃ki,m,m′ → Tki,

lim
S→N, m,m′→∞

∂m̃
(1)
S,m(d)

∂dk
= lim

S→N, m,m′→∞

N∑
i=1

[
y∅(d)ski,∅(d) +

mmin∑
j=1

Cij(d)Dk,ij(d)

]

=
N∑
i=1

[
y∅(d)ski,∅(d) +

∞∑
j=1

Cij(d)Dk,ij(d)

]
(3.48)

=
∂m(1)(d)

∂dk

and

lim
s→N, m,m′→∞

∂m̃
(2)
S,m(d)

∂dk

= lim
S→N, m,m′→∞

N∑
i=1

[
m̃

(2)2

S,m(d)ski,∅(d) + 2y∅(d)

mmin∑
j=1

Cij(d)Dk,ij(d) + T̃ki,m,m′

]

=
N∑
i=1

[
m(2)2(d)ski,∅(d) + 2y∅(d)

∞∑
j=1

Cij(d)Dk,ij(d) + Tki

]
(3.49)

=
∂m(2)(d)

∂dk
,

where the last lines follow from Equations (3.40) and (3.41).

Of the two sensitivities, ∂m̃
(1)
S,m(d)/∂dk does not depend on S, meaning that

both the univariate (S = 1) and bivariate (S = 2) approximations, given the same

mmin < ∞, form the same result, as displayed in Equation (3.43). However, the

sensitivity equations of ∂m̃
(2)
S,m(d)/∂dk for the univariate and bivariate approximations

vary with respect to S, m, and m′. For instance, the univariate approximation results

in

∂m̃
(2)
1,m(d)

∂dk
=

N∑
i=1

[
m̃

(2)
1,m(d)ski,∅(d) + 2y∅(d)

mmin∑
j=1

Cij(d)Dk,ij(d) + T̃ki,m,m′

]
, (3.50)
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whereas the bivariate approximation yields

∂m̃
(2)
2,m(d)

∂dk
=

N∑
i=1

[
m̃

(2)
2,m(d)ski,∅(d) + 2y∅(d)

mmin∑
j=1

Cij(d)Dk,ij(d) + T̃ki,m,m′

]
. (3.51)

Analogous to the moments, the univariate and bivariate approximations of the sen-

sitivities of the moments involve only univariate and at most bivariate expansion

coefficients of y, respectively. Since the expansion coefficients of log-density deriva-

tive functions do not involve the response function, no additional cost is incurred

from response analysis. In other words, the effort required to obtain the statistical

moments of a response also furnishes the sensitivities of moments, a highly desirable

trait for efficiently solving RDO problems.

Remark 3.6. Since the derivatives of log-density functions are univariate functions,

their expansion coefficients require only univariate integration for their evaluations.

When Xi follows classical distributions − for instance, the Gaussian distribution −

then the coefficients can be calculated exactly or analytically. Otherwise, numerical

quadrature is required. Nonetheless, there is no need to employ dimension-reduction

integration for calculating the expansion coefficients of the derivatives of log-density

functions.

3.4.2.3 Special Cases

There exist two special cases when the preceding expressions of the sensitivities

of moments simplify slightly. They are contingent on how a distribution parameter

affects the probability distributions of random variables.

First, when X comprises independent variables such that dk is a distribution
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parameter of a single random variable, say, Xik , 1 ≤ ik ≤ N , then skik(Xik ;d) − the

kth log-density derivative function of Xik − is the only relevant function of interest.

Consequently, the expansion coefficients ski,∅(d) = skik,∅(d) (say) and Dk,ij(d) =

Dk,ikj(d) (say), if i = ik and zero otherwise. Moreover, the outer sums of Equations

(3.43) and (3.44) vanish, yielding

∂m̃
(1)
S,m(d)

∂dk
= y∅(d)skik,∅(d) +

mmin∑
j=1

Cikj(d)Dk,ikj(d) (3.52)

and

∂m̃
(2)
S,m(d)

∂dk
= m̃

(2)
S,m(d)skik,∅(d) + 2y∅(d)

mmin∑
j=1

Cikj(d)Dk,ikj(d) + T̃kik,m,m′ . (3.53)

Second, whenX consists of independent and identical variables, then ski(Xi;d) =

sk(Xi;d) (say), that is, the kth log-density derivative functions of all random vari-

ables are alike. Accordingly, the expansion coefficients ski,∅(d) = sk,∅(d) (say) and

Dk,ij(d) = Dk,j(d) (say) for all i = 1, · · · , N , producing

∂m̃
(1)
S,m(d)

∂dk
=

N∑
i=1

[
y∅(d)sk,∅(d) +

mmin∑
j=1

Cij(d)Dk,j(d)

]
(3.54)

and

∂m̃
(2)
S,m(d)

∂dk
=

N∑
i=1

[
m̃

(2)
S,m(d)sk,∅(d) + 2y∅(d)

mmin∑
j=1

Cij(d)Dk,j(d) + T̃ki,m,m′

]
. (3.55)

The results of sensitivity equations from these two special cases will be discussed in

the Numerical Examples section.

3.4.2.4 Evaluation of T̃ki,m,m′

The evaluation of T̃ki,m,m′ in Equation (3.45) requires expectations of various

products of three random orthonormal polynomials. The expectations vanish when



70

i1 ̸= i2 ̸= i3, regardless of the probability measures of random variables. For classi-

cal polynomials, such as Hermite, Laguerre, and Legendre polynomials, there exist

formulae for calculating the expectations when i1 = i2 = i3 = i (say).

When Xi follows the standard Gaussian distribution, the expectations are

determined from the properties of univariate Hermite polynomials, yielding [103]

Ed [ψij1(Xi;d)ψij2(Xi;d)ψij3(Xi;d)] =

√
j1!j2!j3!

(q − j1)!(q − j2)!(q − j3)!
, (3.56)

if q ∈ N, 2q = j1 + j2 + j3, and j1, j2, j3 ≤ q, and zero otherwise. When Xi follows

the exponential distribution with unit mean, the expectations are attained from the

properties of univariate Laguerre polynomials, producing [104]

Ed [ψij1(Xi;d)ψij2(Xi;d)ψij3(Xi;d)]

= (−1)j1+j2+j3

vmax∑
v=vmin

(j1 + j2 − v)!2j3−j1−j2+2v

v!(j1 − v)!(j2 − v)!

(
v

j3 − j1 − j2 + 2v

)
, (3.57)

if |j1− j2| ≤ j3 ≤ j1+ j2, and zero otherwise, where vmin = 1
2
(j1+ j2+1− j3), vmax =

min(j1, j2, j1 + j2 − j3). When Xi follows the uniform distribution on the interval

[−1, 1], the expectations are obtained from the properties of univariate Legendre

polynomials, forming [104]

Ed [ψij1(Xi;d)ψij2(Xi;d)ψij3(Xi;d)]

=
1

2

√
2(2j1 + 1)(2j2 + 1)(2j3 + 1)×

(j1 + j2 − j3 − 1)!!(j2 + j3 − j1 − 1)!!(j1 + j2 + j3)!!(j1 + j3 − j2 − 1)!!

(j1 + j2 − j3)!!(j2 + j3 − j1)!!(j1 + j2 + j3 + 1)!!(j1 + j3 − j2)!!
,

(3.58)

if q ∈ N, 2q = j1 + j2 + j3, and |j1 − j2| ≤ j3 ≤ j1 + j2, and zero otherwise. The

symbol !! in Equation (3.58) denotes the double factorial. However, deriving a master

formula for arbitrary probability distributions of Xi is impossible. In which case, the
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non-trivial solution of the expectation can be obtained by numerical integration of

elementary functions.

3.4.3 Sensitivities of higher-order moments

No closed-form or analytical expressions are possible for calculating sensitivi-

ties of higher-order (2 < r <∞) moments by the PDD approximation. Two options,

consistent with statistical moment analysis in Subsection 2.2, are proposed for sensi-

tivity analysis.

In Option I, the sensitivity is obtained by replacing y with ỹS,m in Equation

(3.33) and utilizing Equations (3.19) and (3.34), resulting in

∂m̃
(r)
S,m(d)

∂dk
=

∫
RN ỹ

r
S,m(x)s

(1)
dk
(x;d)fX(x;d)dx

= g∅(d)
N∑
i=1

∫
R ski(xi;d)fXi

(xi;d)dxi+

N∑
i=1

∑
∅̸=u⊆{1,··· ,N}, i∈u
1≤|u|≤min(rS,N)

∫
R|u|

gu(xu;d)ski(xi;d)fXu(xu;d)dxu+

N∑
i=1

∑
∅̸=u⊆{1,··· ,N}, i/∈u
1≤|u|≤min(rS,N)

∫
R|u|

gu(xu;d)fXu(xu;d)dxu×

∫
R ski(xi;d)fXi

(xi;d)dxi,

(3.59)

which involves at most min(rS,N)-dimensional integrations. Similar to statistical

moment analysis, this option becomes impractical when min(rS,N) is large or nu-

merous min(rS,N)-dimensional integrations are required.

In contrast, the sensitivity in Option II is attained by replacing ỹrS,m with z̃S̄,m̄
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in the first line of Equation (3.59), yielding

∂m̃
(r)
S,m(d)

∂dk
∼=

∫
RN z̃S̄,m̄(x)s

(1)
dk
(x;d)fX(x;d)dx

= z∅(d)
N∑
i=1

∫
R ski(xi;d)fXi

(xi;d)dxi+

N∑
i=1

∑
∅̸=u⊆{1,··· ,N}
1≤|u|≤S̄, i∈u

∑
j|u|∈N

|u|
0 ,||j|u|||∞≤m̄

j1,··· ,j|u| ̸=0

C̄uj|u|(d)
∫
R|u| ψuj|u|(xu;d)ski(xi;d)fXu(xu;d)dxu,

(3.60)

requiring at most S̄-dimensional integrations of at most m̄th-order polynomials, where

the terms related to i /∈ u vanish as per Proposition 3.1. Therefore, a significant gain

in efficiency is possible in Option II for sensitivity analysis as well. The sensitivity

equations further simplify for special cases, as explained in Section 3.2. Nonetheless,

numerical integrations are necessary for calculating the sensitivities by either option.

3.5 Design Sensitivity Analysis of Reliability

When solving RBDO problems using gradient-based optimization algorithms,

at least first-order derivatives of the failure probability with respect to each design

variable are required. Two methods for the sensitivity analysis of the failure proba-

bility, named the PDD-SPA and PDD-MCS methods, are presented.

3.5.1 The PDD-SPA method

Suppose that the first-order derivative ∂F̃y,PS(ξ;d)/∂dk of the CDF F̃y,PS(ξ;d)

of ỹS,m(X), obtained by the PDD-SPA method, with respect to a design variable dk,
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is desired. Applying the chain rule on the derivative of Equation (3.30),

∂F̃y,PS(ξ;d)

∂dk
=

Q∑
r=1

(
∂F̃y,PS

∂w

∂w

∂κ̃
(r)
S,m

+
∂F̃y,PS

∂v

∂v

∂κ̃
(r)
S,m

)
∂κ̃

(r)
S,m

∂dk
(3.61)

is obtained via the partial derivatives

∂F̃y,PS

∂w
= ϕ(w)

(
w

v
− 1

w2

)
,
∂F̃y,PS

∂v
=
ϕ(w)

v2
, (3.62)

∂κ̃
(r)
S,m

∂dk
=


∂m̃

(1)
S,m(d)

∂dk
: r = 1,

∂m̃
(r)
S,m(d)

∂dk
−

r−1∑
p=1

(
r−1
p−1

)(∂κ̃
(r)
S,m

∂dk
m̃

(r−p)
S,m (d) + κ̃

(p)
S,m

∂m̃
(r−p)
S,m

∂dk

)
: 2 ≤ r ≤ Q,

(3.63)

where the derivatives of moments, that is, ∂m̃
(r)
S,m/∂dk, r = 1, · · · , Q, required to

calculate the derivatives of cumulants, are obtained using score functions, as described

in Section 3.4. The remaining two partial derivatives are expressed by

∂w

∂κ̃
(r)
S,m

=
∂w

∂ts

∂ts

∂κ̃
(r)
S,m

+
∂w

∂K̃y,Q,S,m

[
∂K̃y,Q,S,m

∂κ̃
(r)
S,m

+
∂K̃y,Q,S,m

∂ts

∂ts

∂κ̃
(r)
S,m

]
, (3.64)

and

∂v

∂κ̃
(r)
S,m

=
∂v

∂ts

∂ts

∂κ̃
(r)
S,m

+
∂v

∂K̃ ′′y,Q,S,m

[
∂K̃ ′′y,Q,S,m

∂κ̃
(r)
S,m

+
∂K̃ ′′y,Q,S,m

∂ts

∂ts

∂κ̃
(r)
S,m

]
, (3.65)

where

∂w

∂ts
=
ξ

w
,

∂w

∂K̃y,Q,S,m

= − 1

w
,
∂K̃y,Q,S,m

∂ts
= ξ,

∂v

∂ts
=
[
K̃ ′′y,Q,S,m

] 1
2
, (3.66)

∂v

∂K̃ ′′y,Q,S,m

=
ts

2
√
K̃ ′′y,Q,S,m

,
∂ts

∂κ̃
(r)
S,m

= −

∂K̃ ′y,Q,S,m

∂κ̃
(r)
S,m

∂K̃ ′y,Q,S,m

∂ts

. (3.67)

The expressions of the partial derivatives ∂K̃y,Q,S,m/∂κ̃
(r)
S,m, ∂K̃

′
y,Q,S,m/∂κ̃

(r)
S,m, and

∂K̃ ′′y,Q,S,m/∂κ̃
(r)
S,m, not explicitly presented here, can be easily derived from Equation
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(3.27) once the cumulants κ̃
(r)
S,m, r = 1, · · · , Q, and the saddlepoint ts are obtained.

Similar sensitivity equations were reported by Huang and Zhang [79]. However, Equa-

tion (3.61) is built on the PDD approximation of a stochastic response, as opposed to

the RDD approximation used by Huang and Zhang. Furthermore, no transformations

of random variables are necessary in the proposed PDD-SPA method.

Henceforth, the first-order derivative of the failure probability estimate by the

PDD-SPA method is easily determined from

∂P̃F,PS(d)

∂dk
=
∂F̃y,PS(0;d)

∂dk
, (3.68)

the sensitivity of the probability distribution evaluated at ξ = 0. Algorithm 1 de-

scribes the procedure of the PDD-SPA method for calculating the reliability and its

design sensitivity of a general stochastic problem.

Algorithm 3.1 Numerical implementation of the PDD-SPA method for CDF
F̃y,PS(ξ;d) and its sensitivity ∂F̃y,PS(ξ;d)/∂dk

Define ξ and d
Specify S, S̄, m, m̄, and Q
Obtain the PDD approximation ỹS,m(X) ◃ [from Equation (3.11)]
for r ← 1 to Q do

Calculate m̃
(r)
S,m(d) ◃ [from Equation (3.20) for Option I, or Equation (3.22) for Option II;

if r = 1 and 2, then Equations (3.14) and (3.15) can be used]

Calculate ∂m̃
(r)
S,m(d)/∂dk ◃ [from Equation (3.59) for Option I, or Equation (3.60) for Option II;

if r = 1 and 2, then Equations (3.43) and (3.44) can be used]
end for
for r ← 1 to Q do

Calculate κ̃
(r)
S,m(d) ◃ [from Equation (3.26)]

Calculate ∂κ̃
(r)
S,m(d)/∂dk ◃ [from Equation (3.63)]

end for
Obtain interval (tl, tu) for the saddlepoint ◃ [from Table 3.1 if Q = 4]
Calculate K̃′

y,Q,S,m(tl;d) and K̃′
y,Q,S,m(tu;d) ◃ [from Equation (3.27)]

if ξ ∈ (K̃′
y,Q,S,m(tl;d), K̃

′
y,Q,S,m(tu;d)) then

Calculate saddlepoint ts ◃ [from Equations (3.27) and (3.29)]
Calculate F̃y,PS(ξ;d) ◃ [from Equation (3.30)]

Calculate ∂F̃y,PS(ξ;d)/∂dk ◃ [from Equations (3.61)-(3.67)]
else

Stop ◃ [the PDD-SPA method fails]
end if



75

3.5.2 The PDD-MCS method

Taking a partial derivative of the PDD-MCS estimate of the failure probability

in Equation (3.32) with respect to dk and then following the same arguments in

deriving Equation (3.33) produces

∂P̃F,PM(d)

∂dk
:=

∂Ed

[
IΩ̃F,S,m

(X)
]

∂dk
= Ed

[
IΩ̃F,S,m

(X)s
(1)
dk
(X;d)

]
= lim

L→∞

1

L

L∑
l=1

[
IΩ̃F,S,m

(x(l))s
(1)
dk
(x(l);d)

]
,

(3.69)

where L is the sample size, x(l) is the lth realization of X, and IΩ̃F,S,m
(x) is the

PDD-generated indicator function, which is equal to one when x ∈ Ω̃F,S,m and zero

otherwise. Again, they are easily and inexpensively determined by sampling analyt-

ical functions that describe ỹS,m and s
(1)
dk
. A similar sampling procedure can be em-

ployed to calculate the sensitivity of the PDD-MCS generated CDF F̃y,PM(ξ;d) :=

Pd[ỹS,m(X) ≤ ξ]. It is important to note that the effort required to calculate the

failure probability or CDF also delivers their sensitivities, incurring no additional

cost. Setting S = 1 or 2 in Equations (3.32) and (3.69), the univariate or bivariate

approximation of the failure probability and its sensitivities are determined.

Remark 3.7. It is important to recognize that no Fourier-polynomial expansions

of the derivatives of log-density functions are required or invoked in the PDD-MCS

method for sensitivity analysis of failure probability. This is in contrast to the sen-

sitivity analysis of the first two moments, where such Fourier-polynomial expansions

aid in generating analytical expressions of the sensitivities. No analytical expres-

sions are possible in the PDD-MCS method for sensitivity analysis of reliability or
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probability distribution of a general stochastic response.

Remark 3.8. The score function method has the nice property that it requires dif-

ferentiating only the underlying PDF fX(x;d). The resulting score functions can be

easily and, in most cases, analytically determined. If the performance function is not

differentiable or discontinuous − for example, the indicator function that comes from

reliability analysis − the proposed method still allows evaluation of the sensitivity if

the density function is differentiable. In reality, the density function is often smoother

than the performance function, and therefore the proposed sensitivity methods will

be able to calculate sensitivities for a wide variety of complex mechanical systems.

3.6 Expansion Coefficients

The determination of PDD expansion coefficients y∅(d) and Cuj|u|(d), where

∅ ̸= u ⊆ {1, · · · , N} and j|u| ∈ N|u|0 |; |j|u|||∞ ≤ m; j1, · · · , j|u| ̸= 0, is vitally impor-

tant for evaluating the statistical moments and probabilistic characteristics, including

their design sensitivities, of stochastic responses. The coefficients, defined in Equa-

tions (2.7) and (3.7), involve various N -dimensional integrals over RN . For large N ,

a full numerical integration employing an N -dimensional tensor product of a univari-

ate quadrature formula is computationally prohibitive and is, therefore, ruled out.

The author proposes that the dimension-reduction integration scheme, developed by

Xu and Rahman [22], followed by numerical quadrature, be used to estimate the

coefficients accurately and efficiently.



77

3.6.1 Dimension-Reduction integration

Let c = (c1, · · · , cN)T ∈ RN , which is commonly adopted as the mean of X,

be a reference point, and y(xv, c−v) represent an |v|-variate RDD component function

of y(x), where v ⊆ {1, · · · , N} [64, 83]. Given a positive integer S ≤ R ≤ N , when

y(x) in Equations (2.7) and (3.7) is replaced with its R-variate RDD approximation,

the coefficients y∅(d) and Cuj|u|(d) are estimated from [22]

y∅(d) ∼=
R∑
i=0

(−1)i
(
N −R + i− 1

i

) ∑
v⊆{1,··· ,N}
|v|=R−i

∫
R|v|

y(xv, c−v)fXv(xv;d)dxv (3.70)

and

Cuj|u|(d)
∼=

R∑
i=0

(−1)i
(
N −R + i− 1

i

) ∑
v⊆{1,··· ,N}
|v|=R−i,u⊆v

∫
R|v|

y(xv, c−v)ψuj|u|(xu)fXv(xv;d)dxv,

(3.71)

respectively, requiring evaluation of at most R-dimensional integrals. The reduced

integration facilitates calculation of the coefficients approaching their exact values as

R → N , and is significantly more efficient than performing one N -dimensional inte-

gration, particularly when R ≪ N . Hence, the computational effort is significantly

lowered using the dimension-reduction integration. For instance, when R = 1 or 2,

Equations (3.70) and (3.71) involve one-, or at most, two-dimensional integrations,

respectively.

For a general function y, numerical integrations are still required for performing

various |v|-dimensional integrals over R|v|, 0 ≤ |v| ≤ R, in Equations (3.70) and (3.71).

When R > 1, multivariate numerical integrations are conducted by constructing a

tensor product of underlying univariate quadrature rules. For a given v ⊆ {1, · · · , N},
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1 < |v| ≤ R, let v = {i1, · · · i|v|}, where 1 ≤ i1 < · · · < i|v| ≤ N . Denote by

{x(1)ip
, · · · , x(n)ip

} ⊂ R a set of integration points of xip and by {w(1)
ip
, · · · , w(n)

ip
} the

associated weights generated from a chosen univariate quadrature rule and a positive

integer n ∈ N. Denote by P (n) = ×p=|v|
p=1 {x(1)ip

, · · · , x(n)ip
} a rectangular grid consisting

of all integration points generated by the variables indexed by the elements of v. Then

the coefficients using dimension-reduction integration and numerical quadrature are

approximated by

y∅(d) ∼=
R∑
i=0

(−1)i
(
N −R + i− 1

i

) ∑
v⊆{1,··· ,N}
|v|=R−i

∑
k|v|∈P (n)

w(k|v|)y(x
(k|v|)
v , c−v) (3.72)

and

Cuj|u|(d)
∼=

R∑
i=0

(−1)i
(
N −R + i− 1

i

) ∑
v⊆{1,··· ,N}
|v|=R−i,u⊆v

∑
k|v|∈P (n)

w(k|v|)y(x
(k|v|)
v , c−v)ψuj|u|(x

(k|u|)
u ),

(3.73)

where x
(k|v|)
v = {x(k1)i1

, · · · , x(k|v|)i|v|
} and w(k|v|) =

∏p=|v|
p=1 w

(kp)
ip

is the product of inte-

gration weights generated by the variables indexed by the elements of v. Similarly,

the coefficients z∅(d) and C̄uj|u|(d) of an S̄-variate, m̄th-order PDD approximation of

ỹrS,m(X), required in Option II for obtaining higher-order moments and their sensitivi-

ties, can also be estimated from the dimension-reduction integration. For independent

coordinates of X, as assumed here, a univariate Gauss quadrature rule is commonly

used, where the integration points and associated weights depend on the probability

distribution of Xi. They are readily available, for example, the Gauss-Hermite or

Gauss-Legendre quadrature rule, when Xi follows Gaussian or uniform distribution.

For an arbitrary probability distribution of Xi, the Stieltjes procedure can be em-
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ployed to generate the measure-consistent Gauss quadrature formulae [97, 98]. An

n-point Gauss quadrature rule exactly integrates a polynomial with a total degree of

at most 2n− 1.

3.6.2 Computational expense

The S-variate,mth-order PDD approximation requires evaluations of
∑k=S

k=0

(
N
k

)
mk expansion coefficients, including y∅(d). If these coefficients are estimated by

dimension-reduction integration with R = S < N and, therefore, involve at most

an S-dimensional tensor product of an n-point univariate quadrature rule depend-

ing on m, then the total cost for the S-variate, mth-order approximation entails a

maximum of
∑k=S

k=0

(
N
k

)
nk(m) function evaluations. If the integration points include

a common point in each coordinate − a special case of symmetric input probability

density functions and odd values of n − the number of function evaluations reduces

to
∑k=S

k=0

(
N
k

)
(n(m)−1)k. Nonetheless, the computational complexity of the S-variate

PDD approximation is an Sth-order polynomial with respect to the number of random

variables or integration points. Therefore, PDD with dimension-reduction integration

of the expansion coefficients alleviates the curse of dimensionality to an extent deter-

mined by S.

3.7 Numerical Examples

Five numerical examples, comprising various mathematical functions and solid-

mechanics problems, are illustrated to examine the accuracy, efficiency, and conver-

gence properties of the PDD methods developed for calculating the first-order sen-
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sitivities of statistical moments, probability distributions, and reliability. The PDD

expansion coefficients were estimated by dimension-reduction integration with the

mean input as the reference point, R = S, and n = m + 1, where S and m vary

depending on the problem. In all examples, orthonormal polynomials and associated

Gauss quadrature rules consistent with the probability distributions of input variables,

including classical forms, if they exist, were employed. The first three examples entail

independent and identical random variables, where dk is a distribution parameter of

all random variables, whereas the last three examples contain merely independent

random variables, where dk is a distribution parameter of a single random variable.

The sample size for the embedded simulation of the PDD-MCS method is 106 in

Examples 2 and 3, and 107 in Example 5. Whenever possible, the exact sensitivities

were applied to verify the proposed methods, as in Examples 1 and 3. However, in

Examples 2, 4, and 5, which do not support exact solutions, the benchmark results

were generated from at least one of two crude MCS-based approaches: (1) crude MCS

in conjunction with score functions (crude MCS/SF), which requires sampling of both

the original function y and the score function s
(1)
dk
; and (2) crude MCS in tandem with

one-percent perturbation of finite-difference analysis (crude MCS/FD), which entails

sampling of the original function y only. The sample size for either version of the

crude MCS is 106 in Examples 2, 3, and 4, and 107 in Example 5. The derivatives

of log-density functions associated with the five types of random variables used in all

examples are described in Table 3.2.
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Table 3.2: Derivatives of log-density functions for various probability distributions

Distribution d fX(x;d)
∂ln fX (x;d)

∂d1

∂ln fX (x;d)
∂d2

Exponential {λ}T λ exp (−λx);

0 ≤ x ≤ +∞

1
λ
− x -

Gaussian {µ, σ}T 1√
2πσ

exp

[
− 1

2

(
x−µ
σ

)2
]
;

−∞ ≤ x ≤ +∞

1
σ

(
x−µ
σ

)
1
σ

[(
x−µ
σ

)2
− 1

]

Lognormal
(a)
{µ, σ}T 1√

2πxσ̃
exp

[
− 1

2

(
ln x−µ̃

σ̃

)2
]
;

0 < x ≤ +∞

− 1
σ̃

∂σ̃
∂µ

+ 1
σ̃2

(
ln x−µ̃

σ̃

)
×[

σ̃ ∂µ̃
∂µ

+ (lnx− µ̃) ∂σ̃
∂µ

] − 1
σ̃

∂σ̃
∂σ

+ 1
σ̃2

(
ln x−µ̃

σ̃

)
×[

σ̃ ∂µ̃
∂σ

+ (lnx− µ̃) ∂σ̃
∂σ

]

Truncated
(b)

Gaussian

{µ, σ}T
1

Φ(D)−Φ(−D)
1√
2πσ
×

exp

[
− 1

2

(
x−µ
σ

)2
]
;

µ−D ≤ x ≤ µ+D

1
Φ(D)−Φ(−D)

1
σ

(
x−µ
σ

)
1

Φ(D)−Φ(−D)
1
σ

[(
x−µ
σ

)2
− 1

]

Weibull {λ, k}T k
λ

(
x
λ

)k−1
exp

[
−

(
x
λ

)k]
;

0 ≤ x ≤ +∞

k
λ

[(
x
λ

)k − 1
] 1

k
+ (lnx− lnλ)×[

1−
(
x
λ

)k]
(a) σ̃2 = ln

(
1 + σ2/µ2

)
and µ̃ = lnµ − σ̃2/2. The partial derivatives of µ̃ and σ̃ with respect to µ or σ can be

easily obtained, so they are not reported here.
(b) Φ(·) is the cumulative distribution function of a standard Gaussian variable; D > 0 is a constant.

3.7.1 Example 1: a trigonometric-polynomial function

Consider the function

y(X) = aT
1X+ aT

2 sinX+ aT
3 cosX+XTMX, (3.74)

introduced by Oakley and O’Hagan [105], where X = (X1, · · · , X15)
T ∈ R15 is a 15-

dimensional Gaussian input vector with mean vector E[X] = (µ, · · · , µ)T ∈ R15 and

covariance matrix E[XXT ] = σ2diag[1, · · · , 1] =: σ2I ∈ R15×15; d = (µ, σ)T ; sinX :=

(sinX1, · · · , sinX15)
T ∈ R15 and cosX := (cosX1, · · · , cosX15)

T ∈ R15 are compact

notations for 15-dimensional vectors of sine and cosine functions, respectively; and

ai ∈ R15, i = 1, 2, 3, and M ∈ R15×15 are coefficient vectors and matrix, respectively,
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obtained from Oakley and O’Hagan’s paper [105]. The objective of this example

is to evaluate the accuracy of the proposed PDD approximation in calculating the

sensitivities of the first two moments, m(1)(d) := Ed[y(X)] and m(2)(d) := Ed[y
2(X)],

with respect to the mean µ and standard deviation σ of Xi at d0 = (0, 1)T .

Figures 3.1(a) through 3.1(d) present the plots of the relative errors in the ap-

proximate sensitivities, ∂m̃
(1)
S,m(d0)/∂µ, ∂m̃

(1)
S,m(d0)/∂σ, ∂m̃

(2)
S,m(d0)/∂µ, and ∂m̃

(2)
S,m(d0)

/∂σ, obtained by the proposed univariate and bivariate PDD methods (Equations

(3.54) and (3.55)) for increasing orders of orthonormal polynomials, that is, when the

PDD truncation parameters S = 1 and 2, 1 ≤ m ≤ 8, and m′ = 2. The measure-

consistent Hermite polynomials and associated Gauss-Hermite quadrature rule were

used. The relative error is defined as the ratio of the absolute difference between

the exact and approximate sensitivities, divided by the exact sensitivity, where the

exact sensitivity can be easily calculated, as shown in the appendix, for the function

y in Equation (3.74). Although y is a bivariate function of X, the sensitivities of the

first moment by the univariate and bivariate PDD approximations are identical for

any m. This is because the expectations of ỹ1,m(X) and ỹ2,m(X), when X comprises

independent variables, are the same function of d. In this case, the errors committed

by both PDD approximations drop at the same rate, as depicted in Figures 3.1(a)

and 3.1(b), resulting in rapid convergence of the sensitivities of the first moment.

However, the same condition does not hold true for the sensitivities of the second

moment because the univariate and bivariate PDD approximations yield distinct sets

of results. Furthermore, the errors in the sensitivities of the second moment by the
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univariate PDD approximation do not decay strictly monotonically, leveling off when

m crosses a threshold, as displayed in Figures 3.1(c) and 3.1(d). In contrast, the

errors in the sensitivities of the second moment by the bivariate PDD approximation

attenuate continuously with respect to m, demonstrating rapid convergence of the

proposed solutions. The numerical results presented are consistent with the mean-

square convergence of the sensitivities described by Proposition 3.5.
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Figure 3.1: Relative errors in calculating the sensitivities of the first two moments
of y due to various PDD truncations; (a) ∂m̃

(1)
S,m(d0)/∂µ; (b)∂m̃

(1)
S,m(d0)/∂σ; (c)

∂m̃
(2)
S,m(d0)/∂µ; (d) ∂m̃

(2)
S,m(d0)/∂σ (Example 1)
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3.7.2 Example 2: a cubic polynomial function

The second example is concerned with calculating the sensitivities of the prob-

ability distribution of

y(X) = 500− (X1 +X2)
3 +X1 −X2 −X3 +X1X2X3 −X4, (3.75)

where Xi, i = 1, 2, 3, 4, are four independent and identically distributed random vari-

ables. The sensitivities were calculated by the proposed PDD-MCS method using

two approaches: (1) a direct approach employing measure-consistent orthonormal

polynomials as bases and corresponding Gauss type quadrature rules for calculating

the PDD expansion coefficients, and (2) an indirect approach transforming original

random variables into Gaussian random variables, followed by Hermite orthonormal

polynomials as bases and the Gauss-Hermite quadrature rule for calculating the ex-

pansion coefficients. Since Equation (3.75) represents a third-order polynomial, the

measure-consistent orthonormal polynomials with the largest order m = 3 should ex-

actly reproduce y. In which case, the highest order of integrands for calculating the

PDD expansion coefficients is six; therefore, a four-point (n = 4) measure-consistent

Gauss quadrature should provide exact values of the coefficients. In the direct ap-

proach, univariate (S = 1), bivariate (S = 2), and trivariate (S = 3) PDD approxi-

mations were applied, where the expansion coefficients were calculated using R = S,

m = 3, and n = 4 in Equations (3.72) and (3.73). Therefore, the only source of error

in a truncated PDD is the selection of S. In the indirect approach, the transforma-

tion of y, if the input variables follow non-Gaussian probability distributions, leads

to non-polynomials in the space of Gaussian variables; therefore, approximation in a
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truncated PDD occurs not only due to S, but also due to m. Hence several values of

3 ≤ m ≤ 6 were employed for mappings into Gaussian variables. The coefficients in

the indirect approach were calculated by the n-point Gauss-Hermite quadrature rule,

where n = m+ 1.

A principal objective of this example is to gain insights on the choice of or-

thonormal polynomials for solving this problem by PDD approximations. Two dis-

tinct cases, depending on the probability distribution of input variables, were studied.

3.7.2.1 Case 1: Exponential Distributions

For exponential distributions of input random variables, the PDF

fXi
(xi;λ) =

{
λ exp(−λxi) : xi ≥ 0,
0 : xi < 0,

(3.76)

where λ > 0 is the sole distribution parameter, d = λ ∈ R, and d0 = 1.

Figure 3.2(a) presents the sensitivities of the probability distribution of y(X)

with respect to λ calculated at d0 for different values of ξ by the direct approach.

It contains four plots: one obtained from crude MCS/SF (106 samples) and the re-

maining three generated from univariate (S = 1), bivariate (S = 2), and trivariate

(S = 3) PDD-MCS methods. For the PDD-MCS methods, the measure-consistent

Laguerre polynomials and associated Gauss-Laguerre quadrature rule were used. The

sensitivity of distributions, all obtained for m = 3, converge rapidly with respect to

S. Compared with crude MCS/SF, the univariate PDD-MCS method is less accurate

than others. This is due to the absence of the cooperative effects of random variables

in the univariate approximation. The bivariate PDD-MCS solution, which captures
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cooperative effects of any two variables, is remarkably close to the crude Monte Carlo

results. The results from the trivariate decomposition and crude MCS/SF are coin-

cident, as ỹ3,3(X) is identical to y(X), which itself is a trivariate function.

Using the indirect approach, Figures 3.2(b), 3.2(c), and 3.2(d) depict the sen-

sitivities of the distribution of y(X) by the univariate, bivariate, and trivariate PDD-

MCS methods for several values of m, calculated when the original variables are

transformed into standard Gaussian variables. The sensitivities obtained by all three

decomposition methods from the indirect approach converge to the respective solu-

tions from the direct approach when m and n increase. However, the lowest order of

Hermite polynomials required to converge in the indirect approach is six, a number

twice that employed in the direct approach employing Laguerre polynomials. This

is due to higher nonlinearity of the mapped y induced by the transformation from

exponential to Gaussian variables. Clearly, the direct approach employing Laguerre

polynomials and the Gauss-Laguerre quadrature rule is the preferred choice for cal-

culating sensitivities of the probability distribution by the PDD-MCS method.
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Figure 3.2: Sensitivities of the probability distribution of y with respect to λ for ex-
ponential distributions of input variables; (a) direct approach; (b) indirect approach-
univariate; (c) indirect approach-bivariate; (d) indirect approach-trivariate (Example
2)
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3.7.2.2 Case 2: Weibull Distributions

For Weibull distributions of input random variables, the PDF

fXi
(xi;λ, k) =


k

λ

(xi
λ

)k−1
exp

[
−
(xi
λ

)k]
: xi ≥ 0,

0 : xi < 0,
(3.77)

where λ > 0 and k > 0 are scale and shape distribution parameters, respectively,

d = (λ, k)T ∈ R2, and d0 = (1, 0.5)T .

The sensitivities of the probability distribution of y(X) with respect to λ and

k, calculated by the direct approach, at d0 is exhibited in Figures 3.3(a) and 3.4(a), re-

spectively. Again, four plots, comprising the solutions from crude MCS/SF (106 sam-

ples) and three PDD-MCS methods using the direct approach, are illustrated. Since

classical orthonormal polynomials do not exist for Weibull probability measures, the

Stieltjes procedure was employed to numerically determine the measure-consistent

orthonormal polynomials and corresponding Gauss quadrature formula [97]. Sim-

ilar to Case 1, both sensitivities of the distribution by the PDD-MCS method in

Figures 3.3(a) and 3.4(a), all obtained for m = 3, converge rapidly to crude MCS

solutions with respect to S. However, the sensitivities of the distribution by all three

PDD-MCS approximations, when calculated using the indirect approach and shown

in Figures 3.3(b) through 3.3(d) and Figures 3.4(b) through 3.4(d), fail to get closer

even when the order of Hermite polynomials is twice that employed in the direct

approach. The lack of convergence is attributed to a significantly higher nonlinearity

of the transformation from Weibull to Gaussian variables than that from exponential

to Gaussian variables. Therefore, a direct approach entailing measure-consistent or-

thogonal polynomials and associated Gauss quadrature rule, even in the absence of
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classical polynomials, is desirable for generating both accurate and efficient solutions

by the PDD-MCS method.
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Figure 3.3: Sensitivities of the probability distribution of y with respect to λ for
Weibull distributions of input variables; (a) direct approach; (b) indirect approach-
univariate; (c) indirect approach-bivariate; (d) indirect approach-trivariate (Example
2)
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Figure 3.4: Sensitivities of the probability distribution of y with respect to k for
Weibull distributions of input variables; (a) direct approach; (b) indirect approach-
univariate; (c) indirect approach-bivariate; (d) indirect approach-trivariate (Example
2)
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3.7.3 Example 3: a function of Gaussian variables

Consider a component reliability problem with the performance function

y(X) =
1

1000 +
N∑
i=1

Xi

− 1

1000 + 3
√
N
, (3.78)

where X ∼ N(µ,Σ) is an N -dimensional Gaussian random vector with mean vector

µ = (µ, · · · , µ)T and covariance matrix Σ = σ2diag[1, · · · , 1] =: σ2I, and d = (µ, σ)T .

The objective of this example is to evaluate the accuracy of the proposed PDD-SPA

and PDD-MCS methods in calculating the failure probability PF (d) := Pd[y(X) < 0]

and its sensitivities ∂PF (d0) /∂µ and ∂PF (d0) /∂σ at d0 = (0, 1)T for two problem

sizes or dimensions: N = 10 and N = 100. The exact solutions for a general N -

dimensional problem are

PF (d) = Φ(−β), ∂PF (d)

∂µ
=
ϕ(−β)

√
N

σ
,
∂PF (d)

∂σ
=
ϕ(−β)(3− µ

√
N)

σ2
, (3.79)

where β = (3− µ
√
N) /σ , provided that 0 < σ2 <∞.

Since y in Equation (3.78) is a non-polynomial function, the univariate (S = 1)

or bivariate (S = 2) truncation of PDD for a finite value of m, regardless how large,

provides only an approximation. Nonetheless, using only m = 3 and n = 4, the

univariate and bivariate estimates of the failure probability and its two sensitivities

by the PDD-SPA and PDD-MCS methods for N = 10 are listed in Table 3.3. The

measure-consistent Hermite polynomials and associated Gauss-Hermite quadrature

rule were used in both methods. The results of the PDD-SPA method are further

broken down according to Options I (Equation (3.59)) and II (Equation (3.60)) for

calculating all moments of order up to four to approximate the CGF of y(X), as



93

explained in Algorithm 3.1. Option I requires at most eight-dimensional integrations

in the bivariate PDD-SPA method for calculating the moments of y(X), whereas

Option II entails at most two-dimensional integrations for the values of S̄ = 2 and

m̄ = 6 selected. However, the differences between the two respective estimates of the

failure probability and its sensitivities by these options, in conjunction with either

the univariate or the bivariate PDD approximation, are negligibly small. Therefore,

Option II is not only accurate, but also facilitates efficient solutions by the PDD-SPA

method, at least in this example. Compared with the results of crude MCS/SF (106

samples) or the exact solution, also listed in Table 3.3, both univariate and bivariate

versions of the PDD-SPA method, regardless of the option, are satisfactory. The same

trend holds for the univariate and bivariate PDD-MCS methods. No meaningful

difference is found between the respective accuracies of the PDD-SPA and PDD-

MCS solutions for a given truncation S. Indeed, the agreement between the bivariate

solutions from the PDD-SPA or PDD-MCS method and the benchmark results is

excellent.
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Table 3.3: Component failure probability and sensitivities at d0 = (0, 1)T for N = 10
(Example 3)

PDD-SPA

(Univariate,

Option I)

PDD-SPA

(Univariate,

Option II)

PDD-SPA

(Bivariate,

Option I)

PDD-SPA

(Bivariate,

Option II)

PDD-
MCS

(Univariate)

PDD-
MCS

(Bivariate)

Crude

MCS/SF

Exact

PF (d0)

(×10−3)

1.349 1.453 1.349 1.347 1.510 1.397 1.397 1.350

∂PF (d0)/∂µ

(×10−2)

1.401 1.529 1.401 1.550 1.553 1.447 1.447 1.401

∂PF (d0)/∂σ

(×10−2)

1.330 1.409 1.330 1.326 1.472 1.371 1.371 1.330

No. of

function eval.

41 41 761 761 41 761 106 -

For high-dimensional problems, such as N = 100, Table 3.4 summarizes the

estimates of the failure probability and its sensitivities by the PDD-SPA and PDD-

MCS methods using m = 3. Due to the higher dimension, the PDD-SPA method

with Option I requires numerous eight-dimensional integrations for calculating mo-

ments of y(X) and is no longer practical. Therefore, the PDD-SPA method with

Option II requiring only two-dimensional (S̄ = 2, m̄ = 6) integrations was used for

N = 100. Again both univariate and bivariate approximations were invoked for the

PDD-SPA and PDD-MCS methods. Compared with the benchmark results of crude

MCS/SF (106 samples) or the exact solution, listed in Table 3.4, the bivariate PDD-

SPA method and the bivariate PDD-MCS method provide highly accurate solutions

for this high-dimensional reliability problem.
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Table 3.4: Component failure probability and sensitivities at d0 = (0, 1)T for
N = 100 (Example 3)

PDD-SPA

(Univariate,

Option II)

PDD-SPA

(Bivariate,

Option II)

PDD-MCS

(Univariate)

PDD-MCS

(Bivariate)

Crude

MCS/SF

Exact

PF (d0)

(×10−3)

1.731 1.320 1.724 1.344 1.352 1.350

∂PF (d0)/∂µ

(×10−2)

5.994 6.412 5.538 4.413 4.437 4.432

∂PF (d0)/∂σ

(×10−2)

1.612 1.277 1.556 1.291 1.302 1.330

No. of

function eval.

401 79,601 401 79,601 106 -

Tables 3.3 and 3.4 also specify the relative computational efforts of the PDD-

SPA and PDD-MCS methods, measured in terms of numbers of original function

evaluations, when N = 10 and N = 100. Given the truncation parameter S, the

PDD-SPA and PDD-MCS methods require identical numbers of function evaluations,

meaning that their computational costs are practically the same. Although the bivari-

ate approximation is significantly more expensive than the univariate approximation,

the former generates highly accurate solutions, as expected. However, both versions

of the PDD-SPA or PDD-MCS method are markedly more economical than the crude

MCS/SF method for solving this high-dimensional reliability problem.

3.7.4 Example 4 : a function of non-Gaussian variables

Consider the univariate function [79]

y(X) = X1 + 2X2 + 2X3 +X4 − 5X5 − 5X6 (3.80)
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of six statistically independent and lognormally distributed random variables Xi with

means µi and standard deviations cµi, i = 1, · · · , 6, where c > 0 is a constant, repre-

senting the coefficient of variation ofXi. The design vector d = (µ1, · · ·µ6, σ1, · · · , σ6)T .

The objective of this example is to evaluate the accuracy of the proposed PDD-SPA

method in estimating the failure probability PF (d) := Pd[y(X) < 0] and its sensitivi-

ties ∂PF (d) /∂µi and ∂PF (d) /∂σi , i = 1, · · · , 6, at d = d0 = (120, 120, 120, 120, 50, 40,

120c, 120c, 120c, 120c, 50c, 40c)T for 0.1 ≤ c ≤ 0.7.

The function y, being both univariate and linear, is exactly reproduced by

the univariate (S = 1), first-order (m = 1) PDD approximation when orthonormal

polynomials consistent with lognormal probability measures are used. Therefore, the

univariate, first-order PDD approximation, along with Option I (Equation (3.59)),

was employed in the PDD-SPA method to approximate PF (d0), ∂PF (d0) /∂µi , and

∂PF (d0) /∂σi . All moments of order up to four were estimated according to Algorithm

3.1. The measure-consistent solutions by the PDD-SPA method and crude MCS/SF

are presented in Figures 3.5(a), 3.5(b), and 3.5(c). Huang and Zhang [79], who

solved the same problem, reported similar results, but at the expense of higher-

order integrations stemming from transformation to Gaussian variables. No such

transformation was required or performed in this work. According to Figure 3.5(a),

the failure probability curve generated by the PDD-SPA method closely traces the

path of crude MCS/SF (106 samples) for low coefficients of variation, although a

slight deviation begins to appear when c exceeds about 0.4. The loss of accuracy

becomes more pronounced when comparing the sensitivities of the failure probability
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with respect to means and standard deviations in Figures 3.5(b) and 3.5(c). Indeed,

for large coefficients of variation, that is, for c > 0.4, some of the sensitivities are no

longer accurately calculated by the PDD-SPA method. This is because the fourth-

order (Q = 4) approximation of the CGF of y(X), used for constructing the PDD-

SPA method, is inadequate. Indeed, Table 3.5 reveals that the relative errors in the

fourth-order Taylor approximation of the CGF, obtained by MCS (108 samples) and

evaluated at respective saddlepoints, rises with increasing values of the coefficient of

variation from 0.2 to 0.7. Therefore, a truncation larger than four is warranted for

higher-order approximations of CGF, but doing so engenders an added difficulty in

finding a unique saddlepoint. The topic merits further study.

Table 3.5: Relative errors in calculating CGF (Ex-
ample 4)

c ts Relative error
(a)

0.1 −1.0029× 10−1 0.0248

0.2 −2.5008× 10−2 0.0068

0.3 −1.1066× 10−2 0.0125

0.4 −6.1850× 10−3 0.0183

0.5 −3.9250× 10−3 0.0329

0.6 −2.6966× 10−3 0.0447

0.7 −1.9551× 10−3 0.2781
(a) The sample size of MCS is 108.

It is important to note that the univariate, first-order PDD-MCS method, em-

ploying measure-consistent orthonormal polynomials, should render the same solution



98

of crude MCS/SF. This is the primary reason why the PDD-MCS results are not de-

picted in Figures 3.5(a) through 3.5(c). Nonetheless, the PDD-MCS method should

be more accurate than the PDD-SPA method in solving this problem, especially at

larger coefficients of variation.



99

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.05

0.1

0.15

0.2

c

P
F
(d

0
)

 

 

PDD-SPA (S = 1,m = 1)

Crude MCS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
−2

−1

0

1

2

3

4

5
x 10

−3

c

∂
P
F
(d

0
)/
∂
µ
i

 

 

∂PF (d0)/∂µ1 PDD-SPA

∂PF (d0)/∂µ1 Crude MCS

∂PF (d0)/∂µ2 PDD-SPA

∂PF (d0)/∂µ2 Crude MCS

∂PF (d0)/∂µ3 PDD-SPA

∂PF (d0)/∂µ3 Crude MCS

∂PF (d0)/∂µ4 PDD-SPA

∂PF (d0)/∂µ4 Crude MCS

∂PF (d0)/∂µ5 PDD-SPA

∂PF (d0)/∂µ5 Crude MCS

∂PF (d0)/∂µ6 PDD-SPA

∂PF (d0)/∂µ6 Crude MCS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

c

∂
P
F
(d

0
)/
∂
σ
i

 

 

∂PF (d0)/∂σ1 PDD-SPA

∂PF (d0)/∂σ1 Crude MCS

∂PF (d0)/∂σ2 PDD-SPA

∂PF (d0)/∂σ2 Crude MCS

∂PF (d0)/∂σ3 PDD-SPA

∂PF (d0)/∂σ3 Crude MCS

∂PF (d0)/∂σ4 PDD-SPA

∂PF (d0)/∂σ4 Crude MCS

∂PF (d0)/∂σ5 PDD-SPA

∂PF (d0)/∂σ5 Crude MCS

∂PF (d0)/∂σ6 PDD-SPA

∂PF (d0)/∂σ6 Crude MCS

(a)

(b)

(c)

Figure 3.5: Results of the reliability and sensitivity analyses by the PDD-SPA method
and crude MCS/SF; (a) failure probability; (b) sensitivities of failure probability
with respect to means; (c) sensitivities of failure probability with respect to standard
deviations (Example 4)
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3.7.5 Example 5: a six-bay, twenty-one-bar truss

This example demonstrates how system reliability and its sensitivities can be

efficiently estimated with the PDD-MCS method. A linear-elastic, six-bay, twenty-

one-bar truss structure, with geometric properties shown in Figure 3.6, is simply

supported at nodes 1 and 12, and is subjected to four concentrated loads of 10,000

lb (44,482 N) at nodes 3, 5, 9, and 11 and a concentrated load of 16,000 lb (71,172

N) at node 7. The truss material is made of an aluminum alloy with the Young’s

modulus E = 107 psi (68.94 GPa). The random input is X = (X1, · · · , X21)
T ∈

R21, where Xi is the cross-sectional areas of the ith truss member. The random

variables are independent and lognormally distributed with means µi, i = 1, · · · , 21,

each of which has a ten percent coefficient of variation. From linear-elastic finite-

element analysis (FEA), the maximum vertical displacement vmax(X) and maximum

axial stress σmax(X) occur at node 7 and member 3 or 4, respectively, where the

permissible displacement and stress are limited to dallow = 0.266 in (6.76 mm) and

σallow = 37, 680 psi (259.8 MPa), respectively. The system-level failure set is defined

as ΩF := {x : {y1(x) < 0} ∪ {y2(x) < 0}}, where the performance functions

y1(X) = 1− |vmax(X)|
dallow

, y2(X) = 1− |σmax(X)|
σallow

. (3.81)

The design vector is d = (µ1, · · · , µ21)
T . The objective of this example is to evaluate

the accuracy of the proposed PDD-MCS method in estimating the system failure prob-

ability PF (d) := Pd [{y1(X) < 0} ∪ {y2(X) < 0}] and its sensitivities ∂PF (d)/∂µi, i =

1, . . . , 21 at d = d0 = (2, 2, 2, 2, 2, 2, 10, 10, 10, 10, 10, 10, 3, 3, 3, 3, 3, 1, 1, 1, 1)T in2

(×2.542 cm2).
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Figure 3.6: A six-bay, twenty-one-bar truss structure (Example 5)

Table 3.6 presents the system failure probability and its 21 sensitivities ob-

tained using the bivariate (S = 2), third-order (m = 3) PDD approximations of y1(X)

and y2(X) and two versions of crude MCS: crude MCS/SF and crude MCS/FD, pro-

viding benchmark solutions. The crude MCS/FD method does not depend on score

functions and, therefore, facilitates an independent verification of the PDD-MCS

method. The respective sensitivities obtained by the PDD-MCS method and crude

MCS/SF are practically the same. However, crude MCS/FD typically gives biased

sensitivity estimates, where slight fluctuations in the results are expected due to a

finite variance of the estimator. For two instances, such as when the sensitivities

are too small, crude MCS/FD produces trivial solutions and hence cannot be used as

reference solutions. Nonetheless, the general quality of agreement between the results

of the PDD-MCS method and crude MCS/FD is very good. Comparing the compu-

tational efforts, only 3445 FEA were required to produce the results of the PDD-MCS

method in Table 3.6, whereas 107 and 22×107 FEA (samples) were incurred by crude

MCS/SF and crude MCS/FD, respectively. The 22-fold increase in the number of
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FEA in crude MCS/FD is due to forward finite-difference calculations entailing all

21 sensitivities. Therefore, the PDD-MCS method provides not only highly accurate,

but also vastly efficient, solutions of system reliability problems.

Table 3.6: System failure probability and sensitivities for the six-bay, twenty-
one-bar truss (Example 5)

PDD-MCS Crude MCS/SF Crude MCS/FD

PF (d0) 8.1782× 10−3 8.3890× 10−3 8.3890× 10−3

∂PF (d0)/∂µ1 −2.6390× 10−2 −2.6546× 10−2 −2.3895× 10−2

∂PF (d0)/∂µ2 −2.6385× 10−2 −2.6505× 10−2 −2.3810× 10−2

∂PF (d0)/∂µ3 −1.0010× 10−1 −1.0320× 10−1 −8.8875× 10−2

∂PF (d0)/∂µ4 −3.5684× 10−2 −3.5972× 10−2 −3.1960× 10−2

∂PF (d0)/∂µ5 −2.6356× 10−2 −2.6469× 10−2 −2.3825× 10−2

∂PF (d0)/∂µ6 −2.6266× 10−2 −2.6364× 10−2 −2.3950× 10−2

∂PF (d0)/∂µ7 −1.3189× 10−3 −1.3213× 10−3 −1.1970× 10−3

∂PF (d0)/∂µ8 −1.3294× 10−3 −1.3244× 10−3 −1.2820× 10−3

∂PF (d0)/∂µ9 −1.6665× 10−3 −1.6514× 10−3 −1.5610× 10−3

∂PF (d0)/∂µ10 −1.7554× 10−3 −1.7576× 10−3 −1.5670× 10−3

∂PF (d0)/∂µ11 −1.3892× 10−3 −1.3945× 10−3 −1.2530× 10−3

∂PF (d0)/∂µ12 −1.3136× 10−3 −1.3140× 10−3 −1.2060× 10−3

∂PF (d0)/∂µ13 9.1378× 10−5 7.2857× 10−5 0.0

∂PF (d0)/∂µ14 2.3126× 10−4 2.0942× 10−4 1.3000× 10−4

∂PF (d0)/∂µ15 −6.3125× 10−4 −6.2761× 10−4 −5.8333× 10−4

∂PF (d0)/∂µ16 2.2333× 10−4 2.2261× 10−4 1.3333× 10−4

∂PF (d0)/∂µ17 −3.0844× 10−5 −3.9551× 10−5 0.0

∂PF (d0)/∂µ18 −2.0729× 10−4 −2.6582× 10−4 −8.8000× 10−4

∂PF (d0)/∂µ19 −3.5881× 10−3 −3.4714× 10−3 −3.2900× 10−3

∂PF (d0)/∂µ20 −4.1604× 10−3 −4.0774× 10−3 −3.2200× 10−3

∂PF (d0)/∂µ21 −7.7002× 10−4 −7.2830× 10−4 −8.5000× 10−4

No. of FEA 3445 107 22× 107
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It is important to recognize that the PDD-SPA method can be applied to solve

this series-system reliability problem by interpreting the failure domain as ΩF :=

{x : {ys(x) < 0}, where ys(X) := min{y1(X), y2(X)} and then constructing a PDD

approximation of ys(X). In so doing, however, ys is no longer a smooth function of X,

meaning that the convergence properties of the PDD-SPA method can be significantly

deteriorated. More importantly, the PDD-SPA method is not suitable for a general

system reliability problem involving multiple, interdependent component performance

functions. This is the primary reason why the results of the PDD-SPA method are

not included in this example.

3.8 Conclusion

Three novel computational methods grounded in PDD were developed for

design sensitivity analysis of high-dimensional complex systems subject to random

input. The first method, capitalizing on a novel integration of PDD and score func-

tions, provides analytical expressions of approximate design sensitivities of the first

two moments that are mean-square convergent. Applied to higher-order moments, the

method also estimates design sensitivities by two distinct options, depending on how

the high-dimensional integrations are performed. The second method, the PDD-SPA

method, integrates PDD, SPA, and score functions, leading to analytical formulae for

calculating design sensitivities of probability distribution and component reliability.

The third method, the PDD-MCS method, also relevant to probability distribution

or reliability analysis, utilizes the embedded MCS of the PDD approximation and
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score functions. Unlike the PDD-SPA method, however, the sensitivities in the PDD-

MCS method are estimated via efficient sampling of approximate stochastic responses,

thereby affording the method to address both component and system reliability prob-

lems. Furthermore, the PDD-MCS method is not influenced by any added approxi-

mations, involving calculations of the saddlepoint and higher-order moments, of the

PDD-SPA method. For all three methods developed, both the statistical moments or

failure probabilities and their design sensitivities are determined concurrently from a

single stochastic analysis or simulation. Numerical results from mathematical exam-

ples corroborate fast convergence of the sensitivities of the first two moments. The

same condition holds for the sensitivities of the tails of probability distributions when

orthonormal polynomials are constructed consistent with the probability measure of

random variables. Otherwise, the convergence properties may markedly degrade or

even disappear when resorting to commonly used transformations. For calculating

the sensitivities of reliability, the PDD-MCS method, especially its bivariate version,

provides excellent solutions to all problems, including a 100-dimensional mathemati-

cal function, examined. In contrast, the PDD-SPA method also generates very good

estimates of the sensitivities, but mostly for small to moderate uncertainties of ran-

dom input. When the coefficient of variation is large, the PDD-SPA method may

produce inaccurate results, suggesting a need for further improvements.

The computational effort of the univariate PDD method varies linearly with

respect to the number of random variables and, therefore, the univariate method is

highly economical. In contrast, the bivariate PDD method, which generally outper-
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forms the univariate PDD method, demands a quadratic cost scaling, making it more

expensive than the latter method. Nonetheless, both versions of the PDD method

are substantially more efficient than crude MCS.
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CHAPTER 4
ROBUST DESIGN OPTIMIZATION

4.1 Introduction

This chapter presents four new methods for robust design optimization of com-

plex engineering systems. The methods are based on: (1) PDD of a high-dimensional

stochastic response for statistical moment analysis; (2) a novel integration of PDD

and score functions for calculating the second-moment sensitivities with respect to

design variables; and (3) standard gradient-based optimization algorithms, encom-

passing direct, single-step, sequential, and multi-point single-step design processes.

Section 4.2 formally defines one particular kind of RDO problem in which all de-

sign variables are distributional parameters, including a concomitant mathematical

statement. Section 4.3 introduces four new design methods and explains how the

stochastic analysis and design sensitivities from a PDD approximation are integrated

with a gradient-based optimization algorithm in each method. Section 4.4 presents

four numerical examples involving mathematical functions or solid-mechanics prob-

lems, contrasting the accuracy, convergence properties, and computational efforts of

the proposed RDO methods. It is followed by Section 4.5, which discusses the effi-

ciency and applicability of all four methods. Finally, the conclusions are drawn in

Section 4.6.
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4.2 RDO

Consider a measurable space (Ωd,Fd), where Ωd is a sample space and Fd

is a σ-field on Ωd. Defined over (Ωd,Fd), let {Pd : F → [0, 1]} be a family of

probability measures, where for M ∈ N and N ∈ N, d = (d1, · · · , dM)T ∈ D is

an RM -valued design vector with non-empty closed set D ⊆ RM , and let X :=

(X1, · · · , XN)
T : (Ωd,Fd) → (RN ,BN) be an RN -valued input random vector with BN

representing the Borel σ-field on RN , describing the statistical uncertainties in loads,

material properties, and geometry of a complex mechanical system. The probability

law of X is completely defined by a family of the joint probability density functions

(PDF) {fX(x;d), x ∈ RN , d ∈ D} that are associated with probability measures

{Pd, d ∈ D}, so that the probability triple (Ωd,Fd, Pd) of X depends on d. A design

variable dk can be any distribution parameter or a statistic — for instance, the mean

or standard deviation — of Xi.

Let yl(X), l = 0, 1, 2, · · · , K, be a collection of K + 1 real-valued, square-

integrable, measurable transformations on (Ω,F), describing the relevant geometry

(e.g., length, area, volume, mass) and performance functions of a complex system.

It is assumed that yl : (RN ,BN) → (R,B) is not an explicit function of d, although

yl implicitly depends on d via the probability law of X. This is not a major limi-

tation, as most RDO problems involve means and/or standard deviations of random

variables as design variables. Nonetheless, a common mathematical formulation for

RDO problems involving an objective function c0 : RM → R and constraint functions
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cl : RM → R, where l = 1, · · · , K and 1 ≤ K <∞, requires one to

min
d∈D⊆RM

c0(d) := w1
Ed [y0(X)]

µ∗0
+ w2

√
vard [y0(X)]

σ∗0
,

subject to cl(d) := αl

√
vard [yl(X)]− Ed [yl(X)] ≤ 0, l = 1, · · · , K,

dk,L ≤ dk ≤ dk,U , k = 1, · · · ,M, (4.1)

where Ed[yl(X)] :=
∫
RN yl(x)fX(x;d)dx is the mean of yl(X) with Ed denoting the ex-

pectation operator with respect to the probability measure Pd,d ∈ RM ; vard[yl(X)] :=

Ed[{yl(X) − Ed[yl(X)]}2] is the variance of yl(X); gl, l = 0, 1, · · · , K, are arbitrary

functions of Ed[yl(X)] and vard[yl(X)]; w1 ∈ R+
0 and w2 ∈ R+

0 are two non-negative,

real-valued weights, satisfying w1 + w2 = 1; µ∗0 ∈ R \ {0} and σ∗0 ∈ R+
0 \ {0} are

two non-zero, real-valued scaling factors; αl ∈ R+
0 , l = 0, 1, · · · , K, are non-negative,

real-valued constants associated with the probabilities of constraint satisfaction; and

dk,L and dk,U are the lower and upper bounds, respectively, of dk. Other formulations

entailing nonlinear functions of the first two or higher-order moments can be envi-

sioned, but they are easily tackled by the proposed methods. Nonetheless, the focus

of this work is solving the RDO problem described by Equation (4.1) for arbitrary

functions yl, l = 0, 1, 2, · · · , K, and arbitrary probability distributions of X.

4.3 Proposed Methods for Design Optimization

The PDD approximations described in the preceding section provide a means

to approximate the objective and constraint functions, including their design sensi-

tivities, from a single stochastic analysis. Therefore, any gradient-based algorithm

employing PDD approximations should render a convergent solution of the RDO
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problem in Equation (4.1). However, there exist multiple ways to dovetail stochastic

analysis with an optimization algorithm. Four such design optimization methods, all

anchored in PDD, are presented in this section.

4.3.1 Direct PDD

The direct PDDmethod involves straightforward integration of the PDD-based

stochastic analysis with design optimization. Given a design vector at the current

iteration and the corresponding values of the objective and constraint functions and

their sensitivities, the design vector at the next iteration is generated from a suit-

able gradient-based optimization algorithm. However, new statistical moment and

sensitivity analyses, entailing re-calculations of the PDD expansion coefficients, are

needed at every design iteration. Therefore, the direct PDD method is expensive,

depending on the cost of evaluating the objective and constraint functions and the

requisite number of design iterations.

4.3.2 Single-Step PDD

The single-step PDD method is motivated on solving the entire RDO problem

from a single stochastic analysis by sidestepping the need to recalculate the PDD

expansion coefficients at every design iteration. It subsumes two important assump-

tions: (1) an S-variate, mth-order PDD approximation ỹS,m of y at the initial design

is acceptable for all possible designs; and (2) the expansion coefficients for one design,

derived from those generated for another design, are accurate.

Consider a change of the probability measure ofX from fX(x;d)dx to fX(x;d
′)dx,
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where d and d′ are two arbitrary design vectors corresponding to old and new designs,

respectively. Let {ψij(Xi;d
′); j = 0, 1, · · · } be a set of new orthonormal polynomial

basis functions consistent with the marginal probability measure fXi
(xi;d

′)dxi of Xi,

producing new product polynomials ψuj|u|(Xu;d
′) =

∏|u|
p=1 ψipjp(Xip ;d

′), ∅ ̸= u ⊆

{1, · · · , N}. Assume that the expansion coefficients, y∅(d) and Cuj|u|(d), for the old

design have been calculated already. Then, the expansion coefficients for the new

design are determined from

y∅(d
′) =

∫
RN

[ ∑
∅̸=u⊆{1,··· ,N}

∑
j|u|∈N

|u|
0

j1,··· ,j|u| ̸=0

Cuj|u|(d)×

ψuj|u|(xu;d) + y∅(d)

]
fX(x;d

′)dx (4.2)

and

Cuj|u|(d
′) =

∫
RN

[ ∑
∅̸=v⊆{1,··· ,N}

∑
j|v|∈N

|v|
0

j1,··· ,j|v| ̸=0

Cvj|v|(d)×

ψvj|v|(xv;d) + y∅(d)

]
ψuj|u|(xu;d

′)fX(x;d
′)dx, (4.3)

for all ∅ ̸= u ⊆ {1, · · · , N} by recycling the old expansion coefficients and using

orthonormal polynomials associated with both designs. The relationship between

the old and new coefficients, described by Equations (4.2) and (4.3), is exact and

is obtained by replacing y with the right side of Equation (3.10) in Equations (2.7)

and (3.7). However, in practice, when the S-variate, mth-order PDD approximation

(Equation (3.11)) is used to replace y in Equations (2.7) and (3.7), then the new
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expansion coefficients,

y∅(d
′) ∼=

∫
RN

[ ∑
∅̸=u⊆{1,··· ,N}

1≤|u|≤S

∑
j|u|∈N

|u|
0 ,||j|u|||∞≤m

j1,··· ,j|u| ̸=0

Cuj|u|(d)

× ψuj|u|(Xu;d) + y∅(d)

]
fX(x;d

′)dx (4.4)

and

Cuj|u|(d
′) ∼=

∫
RN

[ ∑
∅̸=v⊆{1,··· ,N}

1≤|v|≤S

∑
j|v|∈N

|v|
0 ,||j|v|||∞≤m

j1,··· ,j|v| ̸=0

Cvj|v|(d)ψvj|v|(Xv;d) +y∅(d)

]
×ψuj|u|(xu;d

′)fX(x;d
′)dx, (4.5)

which are applicable for ∅ ̸= u ⊆ {1, · · · , N}, 1 ≤ |u| ≤ S, become approximate,

although convergent. In the latter case, the integrals in Equations (4.4) and (4.5)

consist of finite-order polynomial functions of at most S variables and can be eval-

uated inexpensively without having to compute the original function y for the new

design. Therefore, new stochastic analyses, all employing S-variate, mth-order PDD

approximation of y, are conducted with little additional cost during all design itera-

tions, drastically curbing the computational effort in solving the RDO problem.

4.3.3 Sequential PDD

When the truncations parameters, S and/or m, of a PDD approximation are

too low, the assumptions of the single-step PDD method are likely to be violated,

resulting in a premature or inaccurate optimal solution. To overcome this problem,

a sequential PDD method, combining the ideas of the single-step PDD and direct
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PDD methods, was developed. It forms a sequential design process, where each

sequence begins with a single-step PDD using the expansion coefficients calculated

at an optimal design solution generated from the previous sequence. Although more

expensive than the single-step PDD method, the sequential PDD method is expected

to be more economical than the direct PDD method.

The sequential PDD method is outlined by the following steps. The flow chart

of this method is shown in Figure 4.1.

Step 1: Select an initial design vector d0. Define a tolerance ϵ > 0. Set the iteration

q = 1, qth initial design vector d
(q)
0 = d0, and approximate optimal solution

d
(0)
∗ = d0 at q = 0.

Step 2: Select (q = 1) or use (q > 1) the PDD and Fourier truncation parameters

S, m, and m′. At d = d
(q)
0 , generate the PDD expansion coefficients, y∅(d)

and Cuj|u|(d), where ∅ ̸= u ⊆ {1, · · · , N}, 1 ≤ |u| ≤ S, j|u| ∈ N|u|0 , ||j|u|||∞ ≤

m, j1, · · · , j|u| ̸= 0, using dimension-reduction integration with R = S,

n = m+ 1, leading to S-variate, mth-order PDD approximations of yl(X),

l = 0, 1, . . . , K, in Equation (4.1). Calculate the expansion coefficients of

the score functions, sk,∅(d) and Dik,j(d), where k = 1, · · · ,M and j =

1, · · · ,m′, analytically, if possible, or numerically, resulting in m′th-order

Fourier-polynomial approximations of sk(Xik ;d), k = 1, · · · ,M .

Step 3: Solve the design problem in Equation (4.1) employing PDD approximations

of yl, l = 0, 1, · · · , K and a standard gradient-based optimization algorithm.

In so doing, recycle the PDD expansion coefficients obtained from Step 2 in
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Equations (4.4) and (4.5), producing approximations of the objective and

constraint functions that stem from single calculation of these coefficients.

To evaluate the gradients, recalculate the Fourier expansion coefficients of

score functions as needed. Denote the approximate optimal solution by d
(q)
∗ .

Set d
(q+1)
0 = d

(q)
∗ .

Step 4: If ||d(q)
∗ − d

(q−1)
∗ ||2 < ϵ, then stop and denote the final approximate optimal

solution as d̃∗ = d
(q)
∗ . Otherwise, update q = q + 1 and go to Step 2.

Step 2: At                , generate PDD and 

Fourier-polynomial approximations of 

response and score functions.

( )

0

q
=d d

Step 4: Converge?

Step 1: Initialize; set                . ( )

0 0

q
=d d

Yes

No
Step 3: Solve the RDO problem 

using the single-step PDD method. 

Stop.

No

1q q= +

Figure 4.1: A flow chart of the sequential PDD method

4.3.4 Multi-Point Single-Step PDD

The optimization methods described in the preceding subsections are founded

on PDD approximations of stochastic responses, supplying surrogates of objective and
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constraint functions for the entire design space. Therefore, these methods are global

and may not be cost-effective when the truncation parameters of PDD are required

to be exceedingly large to capture high-order responses or high-variate interactions

of input variables. Furthermore, a global method using a truncated PDD, obtained

by retaining only low-order or low-variate terms, may not even find a true optimal

solution. An attractive alternative method, developed in this work and referred to

as the multi-point single-step PDD method, involves local implementations of the

single-step PDD approximation that are built on a local subregion of the design space.

According to this method, the original RDO problem is exchanged with a succession

of simpler RDO sub-problems, where the objective and constraint functions in each

sub-problem represent their multi-point approximations [84]. The design solution of

an individual sub-problem, obtained by the single-step PDD method, becomes the

initial design for the next sub-problem. Then, the move limits are updated, and the

optimization is repeated iteratively until the optimal solution is attained. Due to

its local approach, the multi-point single-step PDD method should solve practical

engineering problems using low-order and/or low-variate PDD approximations.

Let D = ×k=M
k=1 [dk,L, dk,U ] ⊆ RM be a rectangular domain, representing the

design space of the RDO problem defined by Equation (4.1). For a scalar variable

0 < β
(q)
k ≤ 1 and an initial design vector d

(q)
0 = (d

(q)
1,0, · · · , d

(q)
M,0), the subset D(q) =

×k=M
k=1 [d

(q)
k,0 − β

(q)
k (dk,U − dk,L)/2, d

(q)
k,0 + β

(q)
k (dk,U − dk,L)/2] ⊆ D ⊆ RM defines the qth

subregion for q = 1, 2, · · · . According to the multi-point single-step PDD method,
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the RDO problem in Equation (4.1) is reformulated to

min
d∈D(q)⊆D

c̃
(q)
0,S,m(d) := w1

Ed

[
ỹ
(q)
0,S,m(X)

]
µ∗0

+ w2

√
vard

[
ỹ
(q)
0,S,m(X)

]
σ∗0

,

subject to c̃
(q)
l,S,m(d) := αl

√
vard

[
ỹ
(q)
l,S,m(X)

]
− Ed

[
ỹ
(q)
l,S,m(X)

]
≤ 0,

l = 1, · · · , K,

d
(q)
k,0 − β

(q)
k (dk,U − dk,L)/2 ≤ dk ≤ d

(q)
k,0 + β

(q)
k (dk,U − dk,L)/2,

k = 1, · · · ,M, (4.6)

where ỹ
(q)
l,S,m(X) and c̃

(q)
l,S,m(d) , l = 0, 1, 2, · · · , K, are local, S-variate, mth-order PDD

approximations of yl(X) and cl(d), respectively, at iteration q, and d
(q)
k,0 − β

(q)
k (dk,U −

dk,L)/2 and d
(q)
k,0 + β

(q)
k (dk,U − dk,L)/2, also known as the move limits, are the lower

and upper bounds, respectively, of the subregion D(q). The multi-point single-step

PDD method solves the optimization problem in Equation (4.6) for q = 1, 2, · · ·

by successively employing the single-step PDD approximation at each subregion or

iteration until convergence is attained. When S → N and m → ∞, the second-

moment properties of PDD approximations converge to their exact values, yielding

coincident solutions of the optimization problems described by Equations (4.1) and

(4.6). However, if the subregions are sufficiently small, then for finite and possibly

low values of S and m, Equation (4.6) is expected to generate an accurate solution

of Equation (4.1), the principal motivation of this method.

The multi-point single-step PDD method is outlined by the following steps.

The flow chart of this method is shown in Figure 4.2.

Step 1: Select an initial design vector d0. Define tolerances ϵ1 > 0, ϵ2 > 0, and
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ϵ3 > 0. Set the iteration q = 1, d
(q)
0 = (d

(q)
1,0, · · · , d

(q)
M,0)

T = d0. Define

the subregion size parameters 0 < β
(q)
k ≤ 1, k = 1, · · · ,M , describing

D(q) = ×k=M
k=1 [d

(q)
k,0 − β

(q)
k (dk,U − dk,L)/2, d

(q)
k,0 + β

(q)
k (dk,U − dk,L)/2]. Denote

the subregion’s increasing history by a set H(0) and set it to empty. Set

two designs df = d0 and df,last ̸= d0 such that ||df − df,last||2 > ϵ1. Set

d
(0)
∗ = d0, qf,last = 1 and qf = 1. Usually, a feasible design should be

selected to be the initial design d0. However, when an infeasible initial

design is chosen, a new feasible design can be obtained during the iteration

if the initial subregion size parameters are large enough.

Step 2: Select (q = 1) or use (q > 1) the PDD truncation parameters S and m. At

d = d
(q)
0 , generate the PDD expansion coefficients, y∅(d) and Cuj|u|(d),

where ∅ ̸= u ⊆ {1, · · · , N}, 1 ≤ |u| ≤ S, j|u| ∈ N|u|0 , ||j|u|||∞ ≤ m,

j1, · · · , j|u| ̸= 0, using dimension-reduction integration with R = S, n =

m + 1, leading to S-variate, mth-order PDD approximations ỹ
(q)
l,S,m(X) of

yl(X) and c̃
(q)
l,S,m(d) of cl(d), l = 0, 1, · · · , K, in Equation (4.1). Calculate

the expansion coefficients of score functions, sk,∅(d) and Dik,j(d), where

k = 1, · · · ,M and j = 1, · · · ,m′, analytically, if possible, or numerically,

resulting in m′th-order Fourier-polynomial approximations of sk(Xik ;d),

k = 1, · · · ,M .

Step 3: If q = 1 and c̃
(q)
l (d

(q)
0 ) < 0 for l = 1, · · · , K, then go to Step 4. If q > 1 and

c̃
(q)
l (d

(q)
0 ) < 0 for l = 1, · · · , K, then set df,last = df , df = d

(q)
0 , qf,last = qf ,

qf = q and go to Step 4. Otherwise, go to Step 5.
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Step 4: If ||df − df,last||2 < ϵ1 or
∣∣∣[c̃(q)0 (df )− c̃

(qf,last)
0 (df,last)

]
/c̃

(q)
0 (df )

∣∣∣ < ϵ3, then

stop and denote the final optimal solution as d̃∗ = df . Otherwise, go to

Step 6.

Step 5: Compare the infeasible design d
(q)
0 with the feasible design df and interpo-

late between d
(q)
0 and df to obtain a new feasible design and set it as d

(q+1)
0 .

For dimensions with large differences between d
(q)
0 and df , interpolate ag-

gressively. Reduce the size of the subregion D(q) to obtain new subregion

D(q+1). For dimensions with large differences between d
(q)
0 and df , reduce

aggressively. Also, for dimensions with large differences between the sensi-

tivities of c̃
(q)
l,Sm(d

(q)
0 ) and c̃

(q−1)
l,Sm (d

(q)
0 ), reduce aggressively. Update q = q+1

and go to Step 2.

Step 6: If the subregion size is small, that is, β
(q)
k (dk,U − dk,L) < ϵ2, and d

(q−1)
∗ is

located on the boundary of the subregion, then go to Step 7. Otherwise, go

to Step 9.

Step 7: If the subregion centered at d
(q)
0 has been enlarged before, that is, d

(q)
0 ∈

H(q−1), then set H(q) = H(q−1) and go to Step 9. Otherwise, set H(q) =

H(q−1)∪{d(q)
0 } and go to Step 8.

Step 8: For coordinates of d
(q)
0 located on the boundary of the subregion and β

(q)
k (dk,U−

dk,L) < ϵ2, increase the sizes of corresponding components of D(q); for other

coordinates, keep them as they are. Set the new subregion as D(q+1).

Step 9: Solve the design problem in Equation (4.6) employing the single-step PDD

method. In so doing, recycle the PDD expansion coefficients obtained from
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Step 2 in Equations (4.4) and (4.5), producing approximations of the ob-

jective and constraint functions that stem from single calculation of these

coefficients. To evaluate the gradients, recalculate the Fourier expansion

coefficients of score functions as needed. Denote the optimal solution by

d
(q)
∗ and set d

(q+1)
0 = d

(q)
∗ . Update q = q + 1 and go to Step 2.

Table 4.1 summarizes several features of all four design methods developed

in this work. It describes the design space of a method, how many times a method

requires the PDD approximation, and whether the original problem or a sequence of

subproblems are solved.

Step 2: At                , generate PDD and 

Fourier-polynomial approximations of 

response and score functions.

( )

0

q
=d d

Step 3: Is new 

design feasible?

Step 4: Converge?

Step 6: Are conditions

for enlarging subregion size 

satisfied?

Step 9: Solve the RDO subproblem by single-

step PDD method. 

Step 5: Interpolate to 

obtain a new feasible 

design; reduce 

subregion size.

Stop1q q= +

Step 7: Is current design in 

the increasing histories? 

Step 8: Increase 

subregion and 

modify increasing 

history

Step 1: Initialize; set                . ( )

0 0

q
=d d

Yes

Yes

Yes
Yes

No

No No

No

Figure 4.2: A flow chart of the multi-point single-step PDD method
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Table 4.1: Summary of features of the four proposed methods

Feature Direct PDD Single-Step
PDD

Sequential
PDD

Multi-point
Single-Step PDD

Design space Global Global Global Local

Frequency of
PDD approxi-

mations

Every iteration Only first
iteration

A few
iterations

For every
subproblem

Problem
solved in every

iteration

Original
problem

Original
problem

Original
problem

Subproblems

4.4 Numerical Examples

Four examples are presented to illustrate the PDD methods developed in solv-

ing various RDO problems. The objective and constraint functions are either elemen-

tary mathematical functions or relate to engineering problems, ranging from simple

structural to complex FEA-aided mechanical designs. Both size and shape design

problems are included. In Examples 1-4, orthonormal polynomials, consistent with

the probability distributions of input random variables, were used as bases. For the

Gaussian distribution, the Hermite polynomials were used. For random variables

following non-Gaussian probability distributions, such as the Lognormal, Beta, and

Gumbel distributions in Example 2, the orthonormal polynomials were obtained either

analytically when possible or numerically, exploiting the Stieltjes procedure [97, 98].

However, in Examples 3 and 4, the original random variables were transformed into

standard Gaussian random variables, facilitating the use of classical Hermite polyno-

mials as orthonormal polynomials. The PDD truncation parameters S and m vary,
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depending on the function or the example, but in all cases the PDD expansion co-

efficients were calculated using dimension-reduction integration with R = S and the

number of integration points n = m + 1. The Gauss-quadrature rules are consistent

with the polynomial basis functions employed. Since the design variables are the

means of Gaussian random variables, the order m′ used for Fourier expansion coef-

ficients of score functions in Examples 1, 3, and 4 is one. However, in Example 2,

where the design variables describe both means and standard deviations of random

variables, m′ is two. The tolerances and initial subregion size parameters are as fol-

lows: (1) ϵ = 0.001; ϵ1 = 0.1, ϵ2 = 2; ϵ3 = 0 (Example 3), ϵ3 = 0.005 (Example 4);

and (2) β
(1)
1 = · · · = β

(1)
M = 0.5. The optimization algorithm selected is sequential

quadratic programming [106] in all examples.

4.4.1 Example 1: optimization of a mathematical function

Consider a mathematical example, studied by Lee et al. [14], involving two

independent Gaussian random variables X1 and X2 and two design variables d1 =

Ed[X1] and d2 = Ed[X2], which requires to

min
d∈D

c0(d) =

√
vard [y0(X)]

15
,

subject to c1(d) = 3
√
vard [y1(X)]− Ed [y1(X)] ≤ 0,

1 ≤ d1 ≤ 10, 1 ≤ d2 ≤ 10, (4.7)

where

y0(X) = (X1 − 4)3 + (X1 − 3)4 + (X2 − 5)2 + 10 (4.8)
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and

y1(X) = X1 +X2 − 6.45 (4.9)

are two random functions. The random variables X1 and X2 have respective means

d1 and d2, but the same standard deviation, which is equal to 0.4. The design vector

d = (d1, d2)
T ∈ D, where D = (1, 10)× (1, 10) ⊂ R2.

Two proposed RDO methods, the direct PDD and single-step PDD methods,

were applied to solve this problem. Since y0 and y1 are both univariate functions, only

univariate (S = 1) PDD approximations are required. The chosen PDD expansion

orders are m = 4 for y0 and m = 1 for y1. The initial design vector d0 = (5, 5)T

and, correspondingly,
√
vard0 [y0(X)] = 18.2987. The approximate optimal solution

is denoted by d̃∗ = (d̃∗1, d̃
∗
2)

T .

Table 4.2 summarizes the approximate optimal solutions, including the num-

bers of design iterations and function evaluations, by the two PDD methods. For

comparison, the results of a tensor product quadrature (TPQ) method and Taylor

series approximation, proposed by and obtained from Lee et al. [14], are also in-

cluded. From Table 4.2, all four methods engender close optimal solutions in four to

five iterations. Hence, each method can be used to solve this optimization problem.

Both PDD versions yield identical solutions due to the same truncation parameters

selected. However, the numbers of function evaluations required to reach optimal

solutions reduce dramatically when the single-step PDD is employed. This is because

a univariate PDD approximation is adequate for the entire design space, facilitating

exact calculations of the expansion coefficients by Equations (4.4) and (4.5) for any
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design. In which case, the expansion coefficients need to be calculated only once

during all design iterations. At respective optima, the exact values of objective func-

tions for the PDD methods are smaller than those for the TPQ and first-order Taylor

series methods. In addition, the numbers of function evaluations by the direct PDD

or single-step PDD method are moderately or significantly lower than those by the

TPQ method. Therefore, the PDD methods not only furnish a slightly better opti-

mal solution, but also a more computationally efficient one than the TPQ method,

at least in this example. Although the total numbers of function evaluations by the

direct PDD and Taylor series methods are similar, the single-step PDD method is

more efficient than the Taylor series method by almost a factor of six.

Table 4.2: Optimization results for the mathematical example

Method

Results
Direct
PDD

Single-Step
PDD TPQ

(a) Taylor
series(a)

d̃∗1 3.3508 3.3508 3.4449 3.4983

d̃∗1 4.9856 4.9856 5.000 4.9992

c0(d̃
∗)

(b)
0.0756 0.0756 0.0861(c) 0.0902

(c)

c1(d̃
∗)

(b)
-0.1873 -0.1599 -0.2978(c) -0.3504

(c)√
vard̃∗ [y0(X)]

(b)
1.1340 1.1340 1.2915

(c)
1.3535(c)

No. of iterations 5 5 4 4

No. of y0 evaluations 66 11 81 45

No. of y1 evaluations 30 5 81 45
(a) The results of TPQ (DSA) and Taylor series were obtained from Lee et al . [14].
(b) The objective function, constraint functions, and

√
vard̃∗ [y0(X)]were evaluated exactly.

(c) The objective and constraint functions of optimal designs by TPQ(DSA) and Taylor series were evaluated
exactly.
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4.4.2 Example 2: size design of a two-bar truss

The second example, studied by Ramakrishnan and Rao [107] and Lee et al.

[14], entails RDO of a two-bar truss structure, as shown in Figure 4.3. There are

five independent random variables, comprising the cross-sectional area X1, the half-

horizontal span X2, mass density X3, load magnitude X4, and material yield (tensile)

strength X5. Their probability distributions are listed in Table 4.3. The design

variables are as follows: d1 = Ed[X1] and d2 = Ed[X2]. The objective is to minimize

the second-moment properties of the mass of the structure subject to constraints,

limiting axial stresses of both members at or below the yield strength of the material

with 99.875% probability if yl, l = 1, 2, are Gaussian. The RDO problem is formulated

to

min
d∈D

c0(d) = 0.5
Ed [y0(X)]

10
+ 0.5

√
vard [y0(X)]

2
,

subject to c1(d) = 3
√

vard [y1(X)]− Ed [y1(X)] ≤ 0,

c2(d) = 3
√

vard [y2(X)]− Ed [y2(X)] ≤ 0

0.2 cm2 ≤ d1 ≤ 20 cm2, 0.1 m ≤ d2 ≤ 1.6 m,

(4.10)

where

y0(X) = X3X1

√
1 +X2

2 , (4.11)

y1(X) = 1− 5X4

√
1 +X2

2√
65X5

(
8

X1

+
1

X1X2

)
, (4.12)

and

y2(X) = 1− 5X4

√
1 +X2

2√
65X5

(
8

X1

− 1

X1X2

)
(4.13)

are three random response functions. The design vector d = (d1, d2)
T ∈ D, where

D = (0.2 cm2, 20 cm2) × (0.1 m, 1.6 m) ⊂ R2. The initial design vector is d0 =
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(10 cm2, 1 m)T . The corresponding mean and standard deviation of y0(d0) at the

initial design, calculated by crude MCS simulation with 108 samples, are 14.1422

kg and 2.8468 kg, respectively. The approximate optimal solution is denoted by

d̃∗ = (d̃∗1, d̃
∗
2)

T .

Figure 4.3: A two-bar truss structure

Table 4.4 presents detailed optimization results generated by the direct and

sequential PDD methods, each entailing univariate, bivariate, and trivariate PDD

approximations with m = 2, n = 3. The optimal solutions by all PDD methods or

approximations are very close to each other, all indicating that the first constraint

is active. Although there are slight constraint violations (c1 > 0), they are negligi-
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Table 4.3: Statistical properties of random input for the two-bar truss problem

Random variable Mean
Standard
deviation

Probability
distribution

Cross-sectional area (X1), cm
2 d1 0.02d1 Gaussian

Half-horizontal span(X2), m d2 0.02d2 Gaussian

Mass density (X3), kg/m
3 10,000 2000 Beta

Load magnitude (X4), kN 800 200 Gumbel

Yield strength (X5), MPa 1050 250 Lognormal

bly small. The results of bivariate and trivariate PDD approximations confirm that

the univariate solution by either the direct or sequential PDD method is valid and

adequate. However, the numbers of function evaluations step up for higher-variate

PDD approximations, as expected. When the sequential PDD method is employed,

the respective numbers of function evaluations diminish by a factor of approximately

two, regardless of the PDD approximation. While this reduction is not as dramatic

as the one found in the single-step PDD method (Example 1), the sequential PDD

method should still greatly improve the current state of the art of robust design.

Since this problem was also solved by the TPQ and Taylor series methods,

comparing their reported solutions [14], listed in the last two columns of Table 4.4,

with the PDD solutions should be intriguing. It appears that the TPQ method is

also capable of producing a similar optimal solution, but by incurring a computa-

tional cost more than most of the PDD methods examined in this work. Comparing

the numbers of function evaluations, the TPQ method is more expensive than the

univariate direct PDD method by factors of three to seven. These factors grow into

seven to 17 when graded against the univariate sequential PDD method. The Tay-
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lor series method needs only 378 function evaluations, which is slightly more than

288 function evaluations by the univariate sequential PDD, but it violates the first

constraint by at least six times more than all PDD and TPQ methods.

Table 4.4: Optimization results for the two-bar truss problem (m = 2, n = 3)

Method

Results Direct
PDD

(Univariate)

Direct
PDD

(Bivariate)

Direct
PDD

(Trivariate)

Sequential
PDD

(Univariate)

Sequential
PDD

(Bivariate)

Sequential
PDD

(Trivariate)

TPQ
(a)

Taylor

series
(a)

d̃∗1, cm
2 11.4749 11.5561 11.5561 11.4811 11.5710 11.5714 11.5669 10.9573

d̃∗2, m 0.3781 0.3791 0.3791 0.3777 0.3753 0.3752 0.3767 0.3770

c0(d̃∗)
(b)

1.2300 1.2392 1.2391 1.2306 1.2392 1.2392 1.2393 1.1741

c1(d̃∗)
(b)

0.0172 0.0096 0.0096 0.0167 0.0097 0.0096 0.0095 0.0657

c2(d̃∗)
(b)

-0.4882 -0.4911 -0.4910 -0.4889 -0.4948 -0.4950 -0.4935 -0.4650

Ed̃∗ [y0(X)]
(b)
, kg 12.2684 12.3591 12.3591 12.2732 12.3589 12.3598 12.3608 11.7105√

vard̃∗ [y0(X)]
(b)
,

kg

2.4666 2.4851 2.4851 2.4677 2.4849 2.4850 2.4852 2.3542

No. of
iterations

19 14 14 8 7 7 10 8

No. of y0
evaluations

190 518 896 80 259 448 594 108

Total no. of y1
& y2

evaluations

494 1876 4900 208 938 2450 3564 270

(a) The results of TPQ (DSA) and Taylor series were obtained from Lee et al. [14].
(b) The objective and constraint functions, Ed̃∗ [y0(X)], and

√
vard̃∗ [y0(X)] at respective optima, were evaluated by

crude MCS (108 samples).

When the expansion order and the number of Gauss-quadrature points are

increased to m = 3 and n = 4, respectively, the corresponding optimization results

by all PDD, TPQ, and Taylor series methods are summarized in Table 4.5. The

optimal solutions do not change greatly and, therefore, the results of Table 4.4 are

adequate. However, the numbers of function evaluations rise for each method, as they
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should for larger m or n. In which case, the univariate PDD methods are even more

efficient than the TPQ method by orders of magnitude.

Table 4.5: Optimization results for the two-bar truss problem (m = 3, n = 4)

Method

Results Direct
PDD

(Univariate)

Direct
PDD

(Bivariate)

Direct
PDD

(Trivariate)

Sequential
PDD

(Univariate)

Sequential
PDD

(Bivariate)

Sequential
PDD

(Trivariate)

TPQ
(a)

Taylor

series
(a)

d̃∗1, cm
2 11.5516 11.6439 11.6439 11.5650 11.6505 11.6498 11.6476 10.9573

d̃∗2, m 0.3805 0.3779 0.3779 0.3754 0.3763 0.3763 0.3767 0.3770

c0(d̃∗)(b) 1.2393 1.2481 1.2481 1.2386 1.2481 1.2481 1.2480 1.1741

c1(d̃∗)(b) 0.0095 0.0024 0.0025 0.0101 0.0024 0.0024 0.0025 0.0657

c2(d̃∗)(b) -0.4897 -0.4959 -0.4958 -0.4945 -0.4974 -0.4974 -0.4970 -0.4650

Ed̃∗ [y0(X)](b),
kg

12.3597 12.4480 12.4480 12.3538 12.4482 12.4477 12.4464 11.7150

√
vard̃∗ [y0(X)](b),

kg

2.4678 2.5025 2.5025 2.4836 2.5029 2.5028 2.5023 2.3542

No. of
iterations

15 16 15 7 5 5 10 8

No. of y0
evaluations

195 976 1875 91 305 625 2503 108

Total no. of y1
& y2

evaluations

510 3616 11,070 238 1130 3690 15,018 270

(a) The results of TPQ (DSA) were obtained from Lee et al. [14].
(b) The objective and constraint functions, Ed̃∗ [y0(X)], and

√
vard̃∗ [y0(X)] at respective optima, were evaluated by

crude MCS (108 samples).

4.4.3 Example 3: shape design of a three-hole bracket

The third example involves shape design optimization of a two-dimensional,

three-hole bracket, where nine random shape parameters, Xi, i = 1, · · · , 9, describe

its inner and outer boundaries, while maintaining symmetry about the central ver-

tical axis. The design variables, dk = Ed[Xk], i = 1, · · · ,9, are the means of these
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independent random variables with Figure 4.4(a) depicting the initial design of the

bracket geometry at the mean values of the shape parameters. The bottom two holes

are fixed, and a deterministic horizontal force F = 15, 000 N is applied at the center

of the top hole. The bracket material has a deterministic mass density ρ = 7810

kg/m3, deterministic elastic modulus E = 207.4 GPa, deterministic Poisson’s ratio

ν = 0.3, and deterministic uniaxial yield strength Sy = 800 MPa. The objective is

to minimize the second-moment properties of the mass of the bracket by changing

the shape of the geometry such that the maximum von Mises stress σe,max(X) does

not exceed the yield strength Sy of the material with 99.875% probability if y1 is

Gaussian. Mathematically, the RDO for this problem is defined to

min
d∈D

c0(d) = 0.5
Ed [y0(X)]

Ed0 [y0(X)]
+ 0.5

√
vard [y0(X)]√
vard0 [y0(X)]

,

subject to c1 (d) = 3
√

vard [y1(X)]− Ed [y1(X)] ≤ 0,

0 mm ≤ d1 ≤ 14 mm, 17 mm ≤ d2 ≤ 35 mm,

10 mm ≤ d3 ≤ 30 mm, 30 mm ≤ d4 ≤ 40 mm,

12 mm ≤ d5 ≤ 30 mm, 12 mm ≤ d6 ≤ 30 mm,

50 mm ≤ d7 ≤ 140 mm, −15 mm ≤ d8 ≤ 10 mm,

−8 mm ≤ d9 ≤ 15 mm, (4.14)

where

y0(X) = ρ

∫
D′(X)

dD′ (4.15)

and

y1(X) = Sy − σe,max(X) (4.16)
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are two random response functions, and Ed0 [y0(X)] and vard0 [y0(X)] are the mean and

variance, respectively, of y0 at the initial design d0 = (0, 30, 10, 40, 20, 20, 75, 0, 0)T

mm of the design vector d = (d1, · · · , d9)T ∈ D ⊂ R9. The corresponding mean

and standard deviation of y0 of the original design, calculated by first-order bivariate

PDD method, are 0.3415 kg and 0.00140 kg, respectively. Figure 4.4(b) portrays

the contours of the von Mises stress calculated by FEA of the initial bracket design,

which comprises 11,908 nodes and 3914 eight-noded quadrilateral elements. A plane

stress condition was assumed. The approximate optimal solution is denoted by d̃∗ =

(d̃∗1, · · · , d̃∗9)T .

Figure 4.4: A three-hole bracket; (a) design parametrization; (b) von Mises stress at
initial design
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Due to their finite bounds, the random variables Xi, i = 1, · · · , N , were as-

sumed to follow truncated Gaussian distributions with densities

fXi
(xi) =


ϕ(

xi−di
σi

)

Φ(Di)−Φ(−Di)
, ai ≤ xi ≤ bi,

0, otherwise,

(4.17)

where Φ(·) and ϕ(·) are the cumulative distribution and probability density functions,

respectively, of a standard Gaussian variable; σi =
√

vard[Xi] =
√

Ed[(Xi − di)2] =

0.2 is the standard deviation of Xi; and ai = di −Di and bi = di +Di are the lower

and upper bounds, respectively, of Xi. To avoid unrealistic designs, the bounds were

chosen to satisfy the following nine conditions: (1) D1 = (d2 − d1 − 1)/2; (2) D2 =

max[min{(d7−d2−2)/2, (d4−d2−2)/2}, 2σ2]; (3)D3 = min{(d3−2)/2, (30−d3−2)/2};

(4) D4 = min{(d7 − d4 − 2)/2, (d4 − d1 − 2)/2}; (5) D5 = (d5 − 11)/2; (6) D6 =

(d6 − 11)/2; (7) D7 = min{(d7 − d4 − 2)/2, (150− d7 − 5)/2}; (8) D8 = max{(25.57+

d8 − d9)/2, 2σ8}; and (9) D9 = max[min{(25.57 + d8 − d9)/2, (12.912 + d9)/2}, 2σ9].

These conditions are consistent with the bound constraints of design variables stated

in Equation (4.14).

The proposed multi-point single-step PDD method was applied to solve this

problem, employing three univariate and one bivariate PDD approximations for the

underlying stochastic analysis: (1) S = 1, m = 1; (2) S = 1, m = 2; (3) S = 1, m = 3;

and (4) S = 2, m = 1. Table 4.6 summarizes the optimization results by all four

choices of the truncation parameters. The optimal design solutions rapidly converge

as S or m increases. The univariate, first-order (S = 1, m = 1) PDD method,

which is the most economical method, produces an optimal solution reasonably close
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to those obtained from higher-order or bivariate PDD methods. For instance, the

largest deviation from the average values of the objective function at four optimum

points is only 2.5 percent. It is important to note that the coupling between single-

step PDD and multi-point approximation is essential to find optimal solutions of this

practical problem using low-variate, low-order PDD approximations.

Table 4.6: Optimization results for the three-hole bracket

Multi-Point Single-Step PDD Method

Results Univariate
(S = 1,m = 1)

Univariate
(S = 1,m = 2)

Univariate
(S = 1,m = 3)

Bivariate
(S = 2,m = 1)

d̃∗1, mm 12.8168 13.6828 13.9996 13.9936

d̃∗2, mm 17.0112 17.0071 17.5236 17.0133

d̃∗3, mm 26.6950 28.3935 28.8053 28.6254

d̃∗4, mm 30.1908 30.2860 30.0009 30.0083

d̃∗5, mm 12.0069 12.0003 12.0000 12.0000

d̃∗6, mm 12.0003 12.0000 12.0000 12.0000

d̃∗7, mm 118.1200 118.0900 117.4930 117.7929

d̃∗8, mm -13.7400 -13.8900 -13.8680 -13.9053

d̃∗9, mm 14.9124 14.9573 14.9991 14.9966

c̃0(d̃
∗)

(a)
0.6686 0.6430 0.6364 0.6602

c̃1(d̃
∗)

(a)
-1.6671 -0.8289 -1.8599 -8.8978

Ed̃∗ [y0(X)]
(a)
, kg 0.1230 0.1185 0.1181 0.1176√

vard̃∗ [y0(X)]
(a)
, kg 0.00137 0.00132 0.00130 0.00137

No. of iterations 42 43 36 39

No. of FEA 798 1204 1332 6357
(a) The objective and constraint functions, Ed̃∗ [y0(X)], and

√
vard̃∗ [y0(X)] at respective optima, were evaluated by

respective approximations.
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Figure 4.5: von Mises stress contours at mean values of optimal bracket designs by the
multi-point single-step PDD method; (a) univariate approximation (S = 1, m = 1);
(b) univariate approximation (S = 1, m = 2); (c) univariate approximation(S = 1,
m = 3); (d) bivariate approximation (S = 2, m = 1)

Figures 4.5(a) through 4.5(d) illustrate the contour plots of the von Mises
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stress for the four optimal designs at the mean values of random shape parameters.

Regardless of S or m, the overall area of an optimal design has been substantially

reduced, mainly due to significant alteration of the inner boundary and moderate

alteration of the outer boundary of the bracket. All nine design variables have under-

gone moderate to significant changes from their initial values. The optimal masses

of the bracket vary as 0.1230 kg, 0.1185 kg, 0.1181 kg, and 0.1186 kg − about a 65

percent reduction from the initial mass of 0.3415 kg. Compared with the conservative

design in Figure 4(b), larger stresses − for example, 800 MPa − are safely tolerated

by the final designs in Figures 4.5(a) through 4.5(d).

4.4.4 Example 4: shape design of a lever arm

The final example demonstrates the usefulness of the RDO methods advocated

in designing an industrial-scale mechanical component, known as a lever arm, com-

monly found in wheel loaders, as shown in Figure 4.6(a). Twenty-two random shape

parameters, Xi, i = 1, · · · , 22, resulting from manufacturing variability, describe the

shape of a lever arm in three dimensions, including two rounded quadrilateral holes

introduced to reduce the mass of the lever arm as much as possible. The design

variables, dk = Ed[Xk], k = 1, · · · ,22, are the means of these independent random

variables, with Figures 4.6(b) and 4.6(c) depicting the initial design of the lever arm

geometry at mean values of the shape parameters. The centers of the central and

right circular holes are fixed, and a deterministic horizontal force, F = 1600 kN, was

applied at the center of the left circular hole with a 71.5◦ angle from the horizontal
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line, as shown in Figure 6(b). These boundary conditions are determined from the

interaction of the lever arm with other mechanical components of the wheel loader.

The lever arm is made of cast steel with deterministic material properties, as follows:

mass density ρ = 7800 kg/m3, elastic modulus E = 203 GPa, Poisson’s ratio ν = 0.3,

fatigue strength coefficient σ
′

f = 1332 MPa, fatigue strength exponent b = −0.1085,

fatigue ductility coefficient ϵ
′

f = 0.375, and fatigue ductility exponent c = −0.6354.

The performance of the lever arm was determined by its fatigue durability obtained

by (1) calculating maximum principal strain and mean stress at a point; and (2)

calculating the fatigue crack-initiation life at that point from the well-known Coffin-

Manson-Morrow equation [108]. The objective is to minimize the second-moment

properties of the mass of the lever arm by changing the shape of the geometry such

that the minimum fatigue crack-initiation life Nmin(X) exceeds a design threshold of

Nc = 106 loading cycles with 99.875% probability if y1 is Gaussian. Mathematically,
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the RDO for this problem is defined to

min
d∈D

c0(d) = 0.5
Ed [y0(X)]

Ed0 [y0(X)]
+ 0.5

√
vard [y0(X)]√
vard0 [y0(X)]

,

subject to c1(d) = 3
√

vard [y1(X)]− Ed [y1(X)] ≤ 0,

382 mm ≤d1 ≤ 458 mm, 532 mm ≤ d2 ≤ 563 mm,

1075 mm ≤d3 ≤ 1185 mm, 152 mm ≤ d4 ≤ 178 mm,

305 mm ≤d5 ≤ 795 mm, 55 mm ≤ d6 ≤ 357.5 mm,

241 mm ≤d7 ≤ 630 mm, 435 mm ≤ d8 ≤ 689 mm,

241 mm ≤d9 ≤ 630 mm, 850 mm ≤ d10 ≤ 1023 mm,

818 mm ≤d11 ≤ 1131 mm, 850 mm ≤ d12 ≤ 1013 mm,

818 mm ≤d13 ≤ 1131 mm, 702 mm ≤ d14 ≤ 748 mm,

637 mm ≤d15 ≤ 755 mm, 816 mm ≤ d16 ≤ 888 mm,

637 mm ≤d17 ≤ 755 mm, 1006 mm ≤ d18 ≤ 1116 mm,

239 mm ≤d19 ≤ 447 mm, 947 mm ≤ d20 ≤ 1097 mm,

257 mm ≤d21 ≤ 447 mm, 505 mm ≤ d22 ≤ 833 mm,

(4.18)

where

y0(X) = ρ

∫
D′(X)

dD′ (4.19)

and

y1(X) = Nmin(X)−Nc (4.20)

are two random response functions, and Ed0 [y0(X)] and vard0 [y0(X)] are the mean and

variance, respectively, of y0 at the initial design d0 = (450, 562, 1075, 170, 795, 365, 630,
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689, 630, 850, 818, 850, 818, 748, 637, 888, 637, 1006, 447, 947, 447, 833)T mm of the de-

sign vector d = (d1, · · · , d22)T ∈ D ⊂ R22. Figure 4.7 portrays the FEA mesh for

the initial lever-arm design, which comprises 126,392 nodes and 75,114 ten-noded,

quadratic, tetrahedral elements.

As in Example 3, the random variables Xi, i = 1, · · · , 22, are truncated Gaus-

sian and have probability densities described by Equation (4.17) with ai = di−Di and

bi = di +Di denoting the lower and upper bounds, respectively. To avoid unrealistic

designs, Di = 2 when i = 1, 2, 4, 14, 16, and Di = 5 otherwise.

The proposed multi-point single-step PDD method was applied to solve this

lever-arm design problem employing only a univariate, first-order PDD approxima-

tion, that is, selecting S = 1, m = 1, for second-moment analyses of y0 and y1.

Figures 4.8(a) through 4.8(d) show the contour plots of the logarithm of fatigue

crack-initiation life at mean shapes of several design iterations, including the initial

design, throughout the RDO process. Due to a conservative initial design, with fa-

tigue life contour depicted in Figure 8(a), the minimum fatigue crack-initiation life

of 1.068×1012 cycles is much larger than the required fatigue crack-initiation life of a

million cycles. For the tolerance and subregion size parameters selected, 15 iterations

and 675 FEA led to a final optimal design with the corresponding mean shape pre-

sented in Figure 8(d). The mean optimal mass of the lever arm is 1263 kg − about a

79 percent reduction from the initial mass of 6036 kg. Correspondingly, the standard

deviation of the mass drops from 2.1031 kg to 1.8016 kg.
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Figure 4.6: Fatigue durability analysis of a lever arm in a wheel loader; (a) two lever
arms; (b) design parametrization in front view; (c) design parametrization in top view
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Figure 4.7: An FEA mesh of a lever arm

Figures 4.9(a) through 4.9(d) present the iteration histories of the objective

function, constraint function, and 22 design variables during the RDO process. The

objective function c0 is reduced from 0.9838 at initial design to 0.5238 at optimal

design, an almost 50 percent change. At optimum, the constraint function c1 is

−0.0342× 106 cycles and is, therefore, close to being active. The design variables d5,

d6, d7, d9, d19, and d21 have undergone the most significant changes from their initial

values, prompting substantial modifications of the shapes or sizes of the rounded

quadrilateral holes and thickness of the lever arm. The outer boundaries of the

profile of the lever arm, controlled by the design variables d1, d2, d3, and d4 have

undergone slight changes because the initial design used is the result of a traditional

deterministic optimization. This final example demonstrates that the RDO methods

developed – in particular, the multi-point single-step PDD method – are capable of

solving industrial-scale engineering design problems using only a few hundred FEA.
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Figure 4.8: Contours of logarithmic fatigue crack-initiation life at mean shapes of the
lever arm by the multi-point single-step PDD method; (a) iteration 1; (b) iteration
3; (c) iteration 9; (d) iteration 15 (optimum)
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Table 4.7 lists percentage changes in the mean and standard deviation of y0

from initial to optimal designs in all four examples. The second-moment statistics at

optimal designs are averages of all PDD solutions described earlier. Due to robust

design, the largest reduction of the mean is 78.81 percent, whereas the standard

deviation diminishes by at most 93.80 percent. The moderate drop in the standard

deviations of Examples 2-4 is attributed to the objective function that combines both

the mean and standard deviation of y0.
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Figure 4.9: RDO iteration histories for the lever arm; (a) objective function; (b) con-
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Table 4.7: Reductions in the mean and standard deviation of y0 from initial
to optimal designs.

Example
Ed̃∗ [y0(X)]−Ed0

[y0(X)]

Ed0
[y0(X)]

√
vard̃∗ [y0(X)]−

√
vard0

[y0(X)]√
vard0

[y0(X)]

1
(a)

Not applicable -93.80%

2
(b)

-12.51% -12.66%

3
(c)

-65.07% -4.35%

4 -78.81% -14.34%

(a) The value of Ed̃∗ [y0(X)] and
√

vard̃∗ [y0(X)] is the average of all corresponding PDD results in Table

4.2.
(b) The value of Ed̃∗ [y0(X)] and

√
vard̃∗ [y0(X)] is the average of all corresponding PDD results in Tables

4.4 and 4.5.
(c) The value of Ed̃∗ [y0(X)] and

√
vard̃∗ [y0(X)] is the average of all corresponding PDD results in Table

4.6.

4.5 Discussion

Since multiple methods and examples are presented in the chapter, it is useful

to summarize the efficiency and applicability of each method under different con-

ditions. Table 4.8 presents such a summary, including a few qualitative comments

inspired by the examples of the preceding section. Furthermore, the numerical results

indicate the following:

(1) The direct and single-step PDD methods generate identical optimal solutions for

the polynomial functions, but the latter method is substantially more efficient

than the former method.

(2) The direct and sequential PDD methods, both employing univariate, bivari-

ate, and trivariate PDD approximations, produce very close optimal solutions

for the non-polynomial functions, but at vastly differing expenses. For either



142

method, the univariate solution is accurate and most economical, even though

the stochastic responses are multivariate functions. Given a PDD approxima-

tion, the sequential PDD method furnishes an optimal solution incurring at

most half the computational cost of the direct PDD method.

(3) For both polynomial and non-polynomial functions, the TPQ method, although

accurate, is more expensive than most variants of the direct, single-step, and

sequential PDD methods examined. Considering the non-polynomial functions,

the univariate direct PDD and univariate sequential PDD methods are more

economical than the TPQ method by an order of magnitude or more.

(4) The multi-point single-step PDD method employing low-variate or low-order

PDD approximations, including a univariate, first-order PDD approximation,

is able to solve practical engineering problems with a reasonable computational

effort.

Table 4.8: Efficiency and applicability of the four proposed methods

Method Efficiency Applicability Comments

Direct PDD Low Both polynomial and non-
polynomial functions with small
design spaces

Expensive due to recalculation of ex-
pansion coefficients. Impractical for
complex system designs.

Single-Step PDD Highest Low-order polynomial functions
with small design spaces

Highly economical due to recycling of
expansion coefficients, but may pro-
duce premature solutions for complex
system designs.

Sequential PDD Medium Polynomial or non-polynomial
functions with small to medium
design spaces

More expensive than single-step PDD,
but substantially more economical than
direct PDD. May require high-variate
and high-order PDD approximations
for complex system designs.

Multi-point Single-
Step PDD

High Polynomial or non-polynomial
functions with large design spaces

Capable of solving complex, practi-
cal design problems using low-variate
and/or low-order PDD approximations.
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4.6 Conclusion

Four new methods are proposed for robust design optimization of complex

engineering systems. The methods involve PDD of a high-dimensional stochastic re-

sponse for statistical moment analysis, a novel integration of PDD and score functions

for calculating the second-moment sensitivities with respect to the design variables,

and standard gradient-based optimization algorithms, encompassing direct, single-

step, sequential, and multi-point single-step design processes. Because they are rooted

in ANOVA dimensional decomposition, the PDD approximations for arbitrary trun-

cations predict the exact mean and generate a convergent sequence of variance ap-

proximations for any square-integrable function. When blended with score functions,

PDD leads to explicit formulae, expressed in terms of the expansion coefficients, for

approximating the second-moment design sensitivities that are also theoretically con-

vergent. More importantly, the statistical moments and design sensitivities are both

determined concurrently from a single stochastic analysis or simulation.

Among the four design methods developed, the direct PDD method is the

simplest of all, but requires re-calculations of the expansion coefficients at each design

iteration and is, therefore, expensive, depending on the cost of evaluating the objective

and constraint functions and the requisite number of design iterations. The single-

step PDD method eliminates the need to re-calculate the expansion coefficients from

scratch by recycling the old expansion coefficients, consequently holding the potential

to significantly curtail the computational effort. However, it depends heavily on

the quality of a PDD approximation and the accuracy of the estimated expansion
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coefficients during design iterations. The sequential PDD method upholds the merits

of both the direct and single-step PDD methods by re-calculating the expansion

coefficients a few times more than the single-step PDD, incurring a computational

complexity that is lower than the direct PDD method. However, all three methods

just described are global and may not work if the design space is too large for a

PDD approximation, with a chosen degree of interaction or expansion order, to be

sufficiently accurate. The multi-point single-step PDD method mitigates this problem

by adopting a local implementation of PDD approximations, where an RDO problem

with a large design space is solved in succession. Precisely for this reason, the method

is capable of solving practical engineering problems using low-order and/or low-variate

PDD approximations of stochastic responses.
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CHAPTER 5
RELIABILITY-BASED DESIGN OPTIMIZATION

5.1 Introduction

This chapter presents two new methods — the adaptive-sparse PDD-saddlepoint

approximation (SPA), or AS-PDD-SPA, method and the adaptive-sparse PDD-Monte

Carlo simulation (MCS), or AS-PDD-MCS, method — for reliability-based design

optimization of complex engineering systems. Both methods are based on (1) an

adaptive-sparse PDD approximation of a high-dimensional stochastic response for

reliability analysis; (2) a novel integration of the adaptive-sparse PDD approxima-

tion and score functions for calculating the sensitivities of the failure probability

with respect to design variables; and (3) standard gradient-based optimization algo-

rithms, encompassing a multi-point, single-step design process. Section 5.2 formally

defines a general RBDO problem, including a concomitant mathematical statement.

Section 5.3 starts with a brief exposition of PDD and explains how it leads up to

the AS-PDD approximation. Section 5.4 formally introduces the AS-PDD-SPA and

AS-PDD-MCS methods for reliability analysis. Exploiting score functions, Section

5.5 explains how the effort required to calculate the failure probability by these two

methods also delivers its design sensitivities, sustaining no additional cost. The cal-

culation of PDD expansion coefficients, required for reliability and design sensitivity

analysis, is discussed in Section 5.6. Section 5.7 introduces a multi-point, single-step

iterative scheme for RBDO and explains how the reliability analysis and design sen-
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sitivities from the AS-PDD-SPA and AS-PDD-MCS methods are integrated with a

gradient-based optimization algorithm. Section 5.8 presents four numerical examples,

including shape design of a 79-dimensional engine bracket problem, to evaluate the

accuracy, convergence properties, and computational efforts of the proposed RBDO

methods. Finally, the conclusions are drawn in Section 5.9.

5.2 Reliability-Based Design Optimization

Consider a measurable space (Ωd,Fd), where Ωd is a sample space and Fd is a

σ-field on Ωd. Defined over (Ωd,Fd), let {Pd : F → [0, 1]} be a family of probability

measures, where for M ∈ N and N ∈ N, d = (d1, · · · , dM)T ∈ D is an RM -valued

design vector with non-empty closed set D ⊆ RM and let X := (X1, · · · , XN)
T :

(Ωd,Fd) → (RN ,BN) be an RN -valued input random vector with BN representing

the Borel σ-field on RN , describing the statistical uncertainties in loads, material

properties, and geometry of a complex mechanical system. The probability law of

X is completely defined by a family of the joint probability density functions (PDF)

{fX(x;d), x ∈ RN , d ∈ D} that are associated with probability measures {Pd, d ∈

D}, so that the probability triple (Ωd,Fd, Pd) ofX depends on d. A design variable dk

can be any distribution parameter or a statistic — for instance, the mean or standard

deviation — of Xi.

Let yl(X), l = 1, 2, · · · , K, be a collection of K + 1 real-valued, square-

integrable, measurable transformations on (Ωd,Fd), describing the performance func-

tions of a complex system. It is assumed that yl : (RN ,BN) → (R,B) is not an explicit
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function of d, although yl implicitly depends on d via the probability law of X. This

is not a major limitation, as most RBDO problems involve means and/or standard

deviations of random variables as design variables. Nonetheless, the mathematical for-

mulation for RBDO in most engineering applications involving an objective function

c0 : RM → R and probabilistic constraint functions cl : RM → R, where l = 1, · · · , K

and 1 ≤ K <∞, requires one to

min
d∈D⊆RM

c0(d),

subject to cl(d) := Pd [X ∈ ΩF,l(d)]− pl ≤ 0, l = 1, · · · , K,

dk,L ≤ dk ≤ dk,U , k = 1, · · · ,M, (5.1)

where ΩF,l(d) is the lth failure domain, 0 ≤ pl ≤ 1 is the lth target failure probability,

and dk,L and dk,U are the lower and upper bounds of the kth design variable dk.

The objective function c0 is commonly prescribed as a deterministic function of d,

describing relevant system geometry, such as area, volume, and mass. In contrast,

the constraint functions cl, l = 1, 2, · · · , K, are generally more complicated than

the objective function. Depending on the failure domain ΩF,l, a component or a

system failure probability can be envisioned. For component reliability analysis, the

failure domain is often adequately described by a single performance function yl(X),

for instance, ΩF,l := {x : yl(x) < 0}, whereas multiple, interdependent performance

functions yl,i(x), i = 1, 2, · · · , are required for system reliability analysis, leading, for

example, to ΩF,l := {x : ∪iyl,i(x) < 0} and ΩF,l := {x : ∩iyl,i(x) < 0} for series and

parallel systems, respectively. In any case, the evaluation of the failure probability in
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Equation (5.1) is fundamentally equivalent to calculating a high-dimensional integral

over a complex failure domain.

The evaluation of probabilistic constraints cl(d), l = 1, 2, · · · , K, requires

calculating component or system probabilities of failure defined by respective per-

formance functions. Coupling with gradient-based optimization algorithms man-

dates that the gradients of cl(d) also be formulated, thus requiring design sensi-

tivity analysis of failure probability. The focus of this work is to solve a general

high-dimensional RBDO problem described by Equation (5.1) for arbitrary functions

yl(X), l = 1, 2, · · · , K, and arbitrary probability distributions of X.

5.3 Polynomial Dimensional Decomposition

Let y(X) := y(X1, · · · , XN) represent any one of the random functions yl,

l = 1, · · · , K, introduced in Section 2, and let L2(Ωd,Fd, Pd) represent a Hilbert space

of square-integrable functions y with respect to the probability measure fX(x;d)dx

supported on RN . Assuming independent coordinates, the joint probability density

function of X is expressed by the product, fX(x;d) =
∏i=N

i=1 fXi
(xi;d), of marginal

probability density functions fXi
: R → R+

0 of Xi, i = 1, · · · , N , defined on its

probability triple (Ωi,d,Fi,d, Pi,d) with a bounded or an unbounded support on R.

Then, for a given subset u ⊆ {1, · · · , N}, fXu(xu;d) :=
∏|u|

p=1fip(xip ;d) defines the

marginal density function of the subvector Xu = (Xi1 , · · · , Xi|u|)
T of X.

Let {ψij(Xi;d); j = 0, 1, · · · } be a set of univariate orthonormal polyno-

mial basis functions in the Hilbert space L2(Ωi,d,Fi,d, Pi,d) that is consistent with
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the probability measure Pi,d of Xi for a given design d, where i = 1, · · · , N . For

a given ∅ ̸= u = {i1, · · · , i|u|} ⊆ {1, · · · , N}, 1 ≤ |u| ≤ N , 1 ≤ i1 < · · · <

i|u| ≤ N , denote by (×p=|u|
p=1 Ωip,d,×

p=|u|
p=1 Fip,d,×

p=|u|
p=1 Pip,d) the product probability triple

of the subvector Xu. Since the probability density function of Xu is separable

(independent), the product polynomial ψuj|u|(Xu;d) :=
∏|u|

p=1 ψipjp(Xip ;d), where

j|u| = (j1, · · · , j|u|) ∈ N|u|0 is a |u|-dimensional multi-index, constitutes an orthonormal

basis in L2(×p=|u|
p=1 Ωip,d,×

p=|u|
p=1 Fip,d,×

p=|u|
p=1 Pip,d).

The PDD of a square-integrable function y represents a hierarchical expansion

[97, 99]

y(X) = y∅(d) +
∑

∅̸=u⊆{1,··· ,N}

∑
j|u|∈N

|u|
0

j1,··· ,j|u| ̸=0

Cuj|u|(d)ψuj|u|(Xu;d), (5.2)

in terms of a set of random multivariate orthonormal polynomials of input variables

with increasing dimensions, where

y∅(d) =

∫
RN

y(x)fX(x;d)dx (5.3)

and

Cuj|u|(d) : =

∫
RN

y(x)ψuj|u|(xu;d)fX(x;d)dx,

∅ ̸= u ⊆ {1, · · · , N}, j|u| ∈ N|u|0 , (5.4)

are various expansion coefficients. The inner sum of Equation (5.2) precludes j1, · · · ,

j|u| ̸= 0, that is, the individual degree of each variable Xi in ψuj|u| , i ∈ u, cannot

be zero since ψuj|u|(Xu;d) is a zero-mean strictly |u|-variate function. Derived from
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the ANOVA dimensional decomposition [62], Equation (5.2) provides an exact repre-

sentation because it includes all main and interactive effects of input variables. For

instance, |u| = 0 corresponds to the constant component function y∅, representing

the mean effect of y; |u| = 1 leads to the univariate component functions, describing

the main effects of input variables, and |u| = S, 1 < S ≤ N , results in the S-variate

component functions, facilitating the interaction among at most S input variables

Xi1 , · · · , XiS , 1 ≤ i1 < · · · < iS ≤ N . Further details of PDD are available elsewhere

[97, 99].

Equation (5.2) contains an infinite number of coefficients, emanating from in-

finite numbers of orthonormal polynomials. In practice, the number of coefficients

must be finite, say, by retaining finite-order polynomials and reduced-degree interac-

tion among input variables. Doing so results in a truncated PDD and concomitant

approximation, but there is more than one way to perform the truncation, described

as follows.

5.3.1 Truncated PDD approximation

The PDD in Equation (5.2) is grounded on a fundamental conjecture known

to be true in many real-world applications: given a high-dimensional function y, its

|u|-variate component functions decay rapidly with respect to |u|, leading to accurate

lower-variate approximations of y. Furthermore, the largest order of polynomials in

each variable can be restricted to a finite integer. Indeed, given the integers 0 ≤ S <

N and 1 ≤ m <∞ for all 1 ≤ |u| ≤ S and the ∞-norm ||j|u|||∞ := max
(
j1, · · · , j|u|

)
,
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the truncated PDD [97, 99]

ỹS,m(X) := y∅(d) +
∑

∅̸=u⊆{1,··· ,N}
1≤|u|≤S

∑
j|u|∈N

|u|
0 ,∥j|u|∥∞

≤m
j1,··· ,j|u| ̸=0

Cuj|u|(d)ψuj|u|(Xu;d) (5.5)

leads to the S-variate, mth-order PDD approximation, which for S > 0 includes

interactive effects of at most S input variables Xi1 , · · · , XiS , 1 ≤ i1 < · · · < iS ≤ N ,

on y. It is elementary to show that when S → N and/or m → ∞, ỹS,m converges

to y in the mean-square sense, generating a hierarchical and convergent sequence of

approximations of y. The truncation parameters S and m depend on the dimensional

structure and nonlinearity of a stochastic response. The higher the values of S and

m, the higher the accuracy, but also the computational cost that is endowed with an

Sth-order polynomial computational complexity [97, 99]. The S-variate, mth-order

PDD approximation will be referred to as simply truncated PDD approximation in

this chapter.

5.3.2 Adaptive-Sparse PDD approximation

In practice, the dimensional hierarchy or nonlinearity, in general, is not known

apriori. Therefore, indiscriminately assigning the truncation parameters S and m is

not desirable, nor is it possible to do so when a stochastic solution is obtained via

complex numerical algorithms. In which case, one should perform these truncations

adaptively by progressively drawing in higher-variate or higher-order contributions

as appropriate. Furthermore, given 1 ≤ S < N , all S-variate component functions

of PDD may not contribute equally or even appreciably to be considered in the

resulting approximation. Therefore, a sparse approximation, expelling component
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functions with negligible contributions, is possible. Indeed, addressing these issues,

Yadav and Rahman [109] developed two AS-PDD approximations, but they have yet

to be exploited for solving RBDO problems.

Based on the author’s past experience, an S-variate PDD approximation,

where S ≪ N , is adequate, when solving real-world engineering problems, with the

computational cost varying polynomially (S-order) with respect to the number of

variables [97, 99]. As an example, consider the selection of S = 2 for solving a

stochastic problem in 100 dimensions by a bivariate PDD approximation, comprising

100×99/2 = 4950 bivariate component functions. If all such component functions are

included, then the computational effort for even a full bivariate PDD approximation

may exceed the computational budget allocated to solving this problem. However,

many of these component functions contribute little to the probabilistic characteristics

sought and can be safely ignored. Similar conditions may prevail for higher-variate

component functions. Henceforth, define an S-variate, partially AS-PDD approxima-

tion [109]

ȳS(X) : = y∅(d) +
∑

∅̸=u⊆{1,··· ,N}
1≤|u|≤S

∞∑
mu=1

∑
∥j|u|∥∞

=mu, j1,··· ,j|u| ̸=0

G̃u,mu>ϵ1,∆G̃u,mu>ϵ2

Cuj|u|(d)ψuj|u|(Xu;d) (5.6)

of y(X), where

G̃u,mu : =
1

σ2(d)

∑
j|u|∈N

|u|
0 ,∥j|u|∥∞

≤mu

j1,··· ,j|u| ̸=0

C2
uj|u|

(d), mu ∈ N, 0 < σ2(d) <∞, (5.7)

defines the approximate muth-order approximation of the global sensitivity index of
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y(X) for a subvector Xu, ∅ ̸= u ⊆ {1, · · · , N}, of input variables X and

∆G̃u,mu :=
G̃u,mu − G̃u,mu−1

G̃u,mu−1
(5.8)

defines the relative change in the approximate global sensitivity index when the largest

polynomial order increases from mu − 1 to mu, provided that 2 ≤ mu < ∞ and

G̃u,mu−1 ̸= 0. Here,

σ2(d) =
∑

∅̸=u⊆{1,··· ,N}

∑
j|u|∈N

|u|
0

j1,··· ,j|u| ̸=0

C2
uj|u|

(d) (5.9)

is the variance of y(X). Then the sensitivity indices G̃u,mu and ∆G̃u,mu provide an

effective means to truncate the PDD in Equation (5.2) both adaptively and sparsely.

Equation (5.6) is attained by subsuming at most S-variate component functions,

but fulfilling two inclusion criteria: (1) G̃u,mu > ϵ1 for 1 ≤ |u| ≤ S ≤ N , and

(2) ∆G̃u,mu > ϵ2 for 1 ≤ |u| ≤ S ≤ N , where ϵ1 ≥ 0 and ϵ2 ≥ 0 are two non-

negative tolerances. The resulting approximation is partially adaptive because the

truncations are restricted to at most S-variate component functions of y. When

S = N , Equation (5.6) becomes the fully AS-PDD approximation [109]. Figure 5.1

presents a computational flowchart to accomplish the numerical implementation of

both variants of the AS-PDD approximation. The algorithmic details of the iterative

process are available elsewhere [109] and are not included here for brevity.

The S-variate, partially AS-PDD approximation behaves differently from the

S-variate, mth-order PDD approximation. While the latter approximation includes

a sum containing at most S-variate component functions, the former approximation

may or may not include all such component functions, depending on the tolerances
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ϵ1 > 0 and ϵ2 > 0. It is elementary to show that ȳS approaches ỹS,m in the mean-square

sense as ϵ1 → 0,ϵ2 → 0, and m → ∞. The S-variate, partially adaptive-sparse PDD

approximation will be referred to as simply AS-PDD approximation in this chapter.
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5.4 Reliability Analysis

A fundamental problem in reliability analysis, required for evaluating the prob-

abilistic constraints in Equation (5.1), entails calculation of the failure probability

PF (d) := Pd [X ∈ ΩF ] =

∫
RN

IΩF
(x)fX(x;d)dx

=: Ed [IΩF
(X)] , (5.10)

where ΩF is the failure domain and IΩF
(x) is the associated indicator function, which

is equal to one when x ∈ ΩF and zero otherwise. Depending on the failure domain,

as explained in Section 2, ΩF := {x : y(x) < 0} for component reliability analysis

and ΩF := {x : ∪iyi(x) < 0} and ΩF := {x : ∩iyi(x) < 0} for series- and parallel-type

system reliability analyses, respectively. In this section, two methods are presented for

estimating the failure probability. The AS-PDD-SPA method, which blends the AS-

PDD approximation with SPA, is described first. Then the AS-PDD-MCS method,

which exploits the AS-PDD approximation for MCS, is elucidated.

5.4.1 The AS-PDD-SPA method

Let Fy(ξ) := Pd[y ≤ ξ] be the cumulative distribution function (CDF) of y(X).

Assume that the PDF fy(ξ) := dFy(ξ)/dξ exists and suppose that the cumulant

generating function (CGF)

Ky(t) := ln

{∫ +∞

−∞
exp(tξ)fy(ξ)dξ

}
(5.11)

of y converges for t ∈ R in some non-vanishing interval containing the origin. Us-

ing inverse Fourier transformation, exponential power series expansion, and Hermite
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polynomial approximation, Daniels [56] developed an SPA formula to approximately

evaluate fy(ξ). However, the success of such a formula is predicated on how accurately

the CGF and its derivatives, if they exist, are calculated. In fact, determining Ky(t)

is immensely difficult because it is equivalent to knowing all higher-order moments of

y. To mitigate this problem, consider the Taylor series expansion of

Ky(t) =
∑
r∈N

κ(r)tr

r!
(5.12)

at t = 0, where κ(r) := drKy(0)/dt
r, r ∈ N, is known as the rth-order cumulant of

y(X). If some of these cumulants are effectively estimated, then a truncated Taylor

series provides a useful means to approximate Ky(t). For instance, given a positive

integer Q < ∞, the approximate raw moments m̄
(r)
S (d) :=

∫
RN ȳ

r
S(x)fX(x;d)dx =:

Ed [ȳ
r
S(X)] of order 1 ≤ r ≤ Q can be calculated based on an S-variate, AS-PDD ap-

proximation ȳS(X) of y(X), involving integrations of elementary polynomial functions

and requiring no expensive evaluation of the original function y(X). Nonetheless,

because ȳS(X) is a superposition of at most S-variate component functions of inde-

pendent variables, the largest dimension of the integrals is min(rS,N). Therefore,

many high-dimensional integrations are involved if min(rS,N) is large, even though

the ȳS(X) is known analytically. An alternative approach, adopted in this chapter,

is dimension-reduction integration, approximating the N -dimensional integral by

m̄
(r)
S (d) ∼=

T∑
i=0

(−1)i
(
N − T + i− 1

i

)
∑

v⊆{1,··· ,N}
|v|=T−i

∑
k|v|∈P (nv)

w(k|v|)ȳrS(x
(k|v|)
v , c−v), (5.13)
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and hence involving at most T -dimensional lower-variate Gauss quadratures, where

T ≤ N is a positive integer. When T ≪ N , the computational cost of statistical mo-

ment analysis is markedly reduced. Then the corresponding approximate cumulants

are easily obtained from the well-known cumulant-moment relationship,

κ̄
(r)
S (d)=


m̄

(1)
S (d) : r = 1,

m̄
(r)
S (d)−

r−1∑
p=1

(
r−1
p−1

)
×

κ̄
(p)
S (d)m̄

(r−p)
S (d)

: 2 ≤ r ≤ Q,
(5.14)

where the functional argument d serves as a reminder that the moments and cumu-

lants all depend on the design vector d. Setting κ(r) = κ̄
(r)
S for r = 1, · · · , Q, and zero

otherwise in Equation (5.12), the result is an S-variate, AS-PDD approximation

K̄y,Q,S(t;d) =

Q∑
r=1

κ̄
(r)
S (d)tr

r!
(5.15)

of the Qth-order Taylor series expansion of Ky(t). It is elementary to show that

K̄y,Q,S(t;d) → Ky(t) when ϵ1 → 0, ϵ2 → 0, S → N , and Q→ ∞.

Using the CGF approximation in Equation (5.15), Daniels’ SPA leads to the

explicit formula [56],

f̄y,APS(ξ;d) =
[
2πK̄

′′

y,Q,S(ts;d)
]− 1

2
exp

[
K̄y,Q,S(ts;d)− tsξ

]
, (5.16)

for the approximate PDF of y, where the subscript ’APS’ stands for AS-PDD-SPA

and ts is the saddlepoint that is obtained from solving

K̄ ′y,Q,S(ts;d) = ξ (5.17)

with K̄ ′y,Q,S(t;d) := dK̄y,Q,S(t;d)/dt and K̄ ′′y,Q,S(t;d) := d2K̄y,Q,S(t;d)/dt
2 defining

the first- and second-order derivatives, respectively, of the approximate CGF of y
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with respect to t. Furthermore, based on a related work of Lugannani [101], the

approximate CDF of y becomes

F̄y,APS(ξ;d) = Φ(w) + ϕ(w)

(
1

w
− 1

v

)
,

w = sgn(ts)
{
2
[
tsξ − K̄y,Q,S(ts;d)

]} 1
2 ,

v = ts
[
K̄ ′′y,Q,S(ts;d)

] 1
2 , (5.18)

where Φ(·) and ϕ(·) are the CDF and PDF, respectively, of the standard Gaussian

variable and sgn(ts) = +1,−1, or 0, depending on whether ts is positive, negative, or

zero. According to Equation (5.18), the CDF of y at a point ξ is obtained using solely

the corresponding saddlepoint ts, that is, without the need to integrate Equation

(5.16) from −∞ to ξ.

Finally, using Lugannani and Rice’s formula, the AS-PDD-SPA estimate P̄F,APS

(d) of the component failure probability PF (d) := Pd[y(X) < 0] is obtained as

P̄F,APS(d) = F̄y,APS(0;d), (5.19)

the AS-PDD-SPA generated CDF of y at ξ = 0. It is important to recognize that no

similar SPA-based formulae are available for the joint PDF or joint CDF of dependent

stochastic responses. Therefore, the AS-PDD-SPA method in the current form cannot

be applied to general system reliability analysis.

The AS-PDD-SPA method contains several truncation parameters that should

be carefully selected. For instance, if Q is too small, then the truncated CGF from

Equation (5.15) may spoil the method, regardless of how large is the S chosen in the

AS-PDD approximation. On the other hand, if Q is overly large, then many higher-
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order moments involved may not be accurately calculated by the PDD approximation.

More significantly, a finite-order truncation of CGF may cause loss of convexity of the

actual CGF, meaning that the one-to-one relationship between ξ and ts in Equation

(5.17) is not ensured for every threshold ξ. Furthermore, the important property

K̄ ′′y,Q,S(ts;d) > 0 may not be maintained. To resolve this quandary, Yuen [102]

presented for Q = 4 several distinct cases of the cumulants, describing the interval

(tl, tu), where−∞ ≤ tl ≤ 0 and 0 ≤ tu ≤ ∞, such that tl ≤ ts ≤ tu and K̄
′′
y,Q,S(ts;d) >

0, ruling out any complex values of the square root in Equation (5.16) or (5.18). If

ξ falls into these specified thresholds, then the saddlepoint ts is uniquely determined

from Equation (5.17), leading to the CDF or reliability in Equation (5.18) or (5.19).

Otherwise, the AS-PDD-SPA method will fail to provide a solution. Further details

of these thresholds can be found elsewhere [110].

5.4.2 The AS-PDD-MCS method

Depending on component or system reliability analysis, let Ω̄F,S := {x :

ȳS(x) < 0} or Ω̄F,S := {x : ∪iȳi,S(x) < 0} or Ω̄F,S := {x : ∩iȳi,S(x) < 0} be an

approximate failure set as a result of S-variate, AS-PDD approximations ȳS(X) of

y(X) or ȳi,S(X) of yi(X). Then the AS-PDD-MCS estimate of the failure probability

PF (d) is

P̄F,APM(d) = Ed

[
IΩ̄F,S

(X)
]
= lim

L→∞

1

L

L∑
l=1

IΩ̄F,S
(x(l)), (5.20)

where the subscript ’APM’ stands for AS-PDD-MCS, L is the sample size, x(l) is the

lth realization of X, and IΩ̄F,S
(x) is another indicator function, which is equal to one
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when x ∈ Ω̄F,S and zero otherwise.

Note that the simulation of the PDD approximation in Equation (5.20) should

not be confused with crude MCS commonly used for producing benchmark results.

The crude MCS, which requires numerical calculations of y(x(l)) or yi(x
(l)) for input

samples x(l), l = 1, · · · , L, can be expensive or even prohibitive, particularly when

the sample size L needs to be very large for estimating small failure probabilities. In

contrast, the MCS embedded in the AS-PDD approximation requires evaluations of

simple polynomial functions that describe ȳS(x
(l)) or ȳi,S(x

(l)). Therefore, an arbitrar-

ily large sample size can be accommodated in the AS-PDD-MCS method. In which

case, the AS-PDD-MCS method also furnishes the approximate CDF F̄y,PM(ξ;d)

:= Pd[ȳS(X) ≤ ξ] of y(X) or even joint CDF of dependent stochastic responses, if

desired.

Although the AS-PDD-SPA and AS-PDD-MCS methods are both rooted in

the same PDD approximation, the former requires additional layers of approxima-

tions to calculate the CGF and saddlepoint. Therefore, the AS-PDD-SPA method,

when it works, is expected to be less accurate than the AS-PDD-MCS method at

comparable computational efforts. However, the AS-PDD-SPA method facilitates an

analytical means to estimate the probability distribution and reliability — a conve-

nient process not supported by the AS-PDD-MCS method. The respective properties

of both methods extend to sensitivity analysis, presented in the following section.



161

5.5 Design Sensitivity Analysis

When solving RBDO problems employing gradient-based optimization algo-

rithms, at least first-order derivatives of the failure probability with respect to each

design variable are required. Therefore, the AS-PDD-SPA and AS-PDD-MCS meth-

ods for reliability analysis in Section 5.4 are expanded for sensitivity analysis of the

failure probability in the following subsections.

5.5.1 Score functions

Let

h(d) = Ed[g(X)] :=

∫
RN

g(x)fX(x;d)dx (5.21)

be a generic probabilistic response, where h(d) and g(x) are either PF (d) and IΩF
(x)

for reliability analysis, or m(r)(d) and yr(x) for statistical moment analysis, where

m(r)(d) = Ed [y
r
S(X)], r = 1, · · · , Q, is the rth-order raw moment of y(X). Suppose

that the first-order derivative of h(d) with respect to a design variable dk, 1 ≤ k ≤M ,

is sought. Taking the partial derivative of h(d) with respect to dk and then applying

the Lebesgue dominated convergence theorem [76], which permits the differential and

integral operators to be interchanged, yields the sensitivity

∂h(d)

∂dk
:=

∂Ed [g(X)]

∂dk

=
∂

∂dk

∫
RN

g(x)fX(x;d)dx

=

∫
RN

g(x)
∂ ln fX(x;d)

∂dk
fX(x;d)dx

=: Ed

[
g(X)s

(1)
dk
(X;d)

]
, (5.22)
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provided that fX(x;d) > 0 and the derivative ∂ ln fX(x;d) /∂dk exists. In the last line

of Equation (5.22), s
(1)
dk
(X;d) := ∂ ln fX(X;d) /∂dk is known as the first-order score

function for the design variable dk [74, 111]. According to Equations (5.21) and (5.22),

the generic probabilistic response and its sensitivities have both been formulated as

expectations of stochastic quantities with respect to the same probability measure,

facilitating their concurrent evaluations in a single stochastic simulation or analysis.

Remark 5.1. The evaluation of score functions, s
(1)
dk
(X;d), k = 1, · · · ,M , requires

differentiating only the PDF of X. Therefore, the resulting score functions can be

determined easily and, in many cases, analytically — for instance, when X follows

classical probability distributions [111]. If the density function of X is arbitrarily

prescribed, the score functions can be calculated numerically, yet inexpensively, since

no evaluation of the performance function is involved.

When X comprises independent variables, as assumed here, ln fX(X;d) =∑i=N
i=1 ln fXi

(xi;d) is a sum ofN univariate log-density (marginal) functions of random

variables. Hence, in general, the score function for the kth design variable, expressed

by

s
(1)
dk
(X;d) =

N∑
i=1

∂ ln fXi
(Xi;d)

∂dk
=

N∑
i=1

ski(Xi;d), (5.23)

is also a sum of univariate functions ski(Xi;d) := ∂ ln fXi
(Xi;d) /∂dk , i = 1, · · · , N ,

which are the derivatives of log-density (marginal) functions. If dk is a distribu-

tion parameter of a single random variable Xik , then the score function reduces to

s
(1)
dk
(X;d) = ∂ ln fXik

(Xik ;d) /∂dk =: skik(Xik ;d), the derivative of the log-density
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(marginal) function of Xik , which remains a univariate function. Nonetheless, com-

bining Equations (5.22) and (5.23), the sensitivity of the generic probabilistic response

h(d) is obtained as

∂h(d)

∂dk
=

N∑
i=1

Ed [g(X)ski(Xi;d)] , (5.24)

the sum of expectations of products comprising stochastic response and log-density

derivative functions with respect to the probability measure Pd, d ∈ D.

5.5.2 The AS-PDD-SPA method

Suppose that the first-order derivative ∂F̄y,APS(ξ;d)/∂dk of the CDF F̄y,APS(ξ;d)

of ȳS(X), obtained by the AS-PDD-SPA method, with respect to a design variable

dk, is desired. Applying the chain rule on the derivative of Equation (5.18),

∂F̄y,APS(ξ;d)

∂dk
=

Q∑
r=1

(
∂F̄y,APS

∂w

∂w

∂κ̄
(r)
S

+
∂F̄y,APS

∂v

∂v

∂κ̄
(r)
S

)
∂κ̄

(r)
S

∂dk
(5.25)

is obtained via the partial derivatives

∂F̄y,APS

∂w
= ϕ(w)

(
w

v
− 1

w2

)
,
∂F̄y,APS

∂v
=
ϕ(w)

v2
, (5.26)

∂κ̄
(r)
S

∂dk
=



∂m̄
(1)
S (d)

∂dk
: r = 1,

∂m̄
(r)
S (d)

∂dk
−

r−1∑
p=1

(
r−1
p−1

)
×(

∂κ̄
(r)
S

∂dk
m̄

(r−p)
S (d) + κ̄

(p)
S

∂m̄
(r−p)
S

∂dk

): 2 ≤ r ≤ Q,

where the derivatives of moments, that is, ∂m̄
(r)
S /∂dk, r = 1, · · · , Q, required to calcu-

late the derivatives of cumulants, are obtained by the dimension-reduction numerical
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integration, given by

∂m̄
(r)
S (d)

∂dk
= Ed

[
ȳrS(X)s

(1)
dk
(X;d)

]
=

∫
RN

ȳrS(x)s
(1)
dk
(x;d)fX(x;d)dx

∼=
T∑
i=0

(−1)i
(
N − T + i− 1

i

) ∑
v⊆{1,··· ,N}
|v|=T−i∑

k|v|∈P (nv)

w(k|v|)ȳrS(x
(k|v|)
v , c−v)s

(1)
dk
(x

(k|v|)
v , c−v;d), (5.27)

involving the AS-PDD approximation and score functions and requiring also at most

T -dimensional lower-variate Gauss quadratures. The remaining two partial deriva-

tives in Equation (5.25) are expressed by

∂w

∂κ̄
(r)
S

=
∂w

∂ts

∂ts

∂κ̄
(r)
S

+
∂w

∂K̄y,Q,S

[
∂K̄y,Q,S

∂κ̄
(r)
S

+
∂K̄y,Q,S

∂ts

∂ts

∂κ̄
(r)
S

]
, (5.28)

and

∂v

∂κ̄
(r)
S

=
∂v

∂ts

∂ts

∂κ̄
(r)
S

+
∂v

∂K̄ ′′y,Q,S

[
∂K̄ ′′y,Q,S

∂κ̄
(r)
S

+
∂K̄ ′′y,Q,S

∂ts

∂ts

∂κ̄
(r)
S

]
, (5.29)

where

∂w

∂ts
=

ξ

w
,

∂w

∂K̄y,Q,S

= − 1

w
,

∂K̄y,Q,S

∂ts
= ξ,

∂v

∂ts
=
[
K̄ ′′y,Q,S

] 1
2 , (5.30)

∂v

∂K̄ ′′y,Q,S

=
ts

2
√
K̄ ′′y,Q,S

,
∂ts

∂κ̄
(r)
S

= −

∂K̄ ′y,Q,S

∂κ̄
(r)
S

∂K̄ ′y,Q,S

∂ts

. (5.31)

The expressions of the partial derivatives ∂K̄y,Q,S/∂κ̄
(r)
S , ∂K̄ ′y,Q,S/∂κ̄

(r)
S , and ∂K̄ ′′y,Q,S/∂κ̄

(r)
S ,

not explicitly presented here, can be easily derived from Equation (5.15) once the cu-

mulants κ̄
(r)
S , r = 1, · · · , Q, and the saddlepoint ts are obtained.
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Henceforth, the first-order derivative of the failure probability estimate by the

AS-PDD-SPA method is easily determined from

∂P̄F,APS(d)

∂dk
=
∂F̄y,APS(0;d)

∂dk
, (5.32)

the sensitivity of the CDF evaluated at ξ = 0.

5.5.3 The AS-PDD-MCS method

Taking the partial derivative of the AS-PDD-MCS estimate of the failure prob-

ability in Equation (5.20) with respect to dk and then following the same arguments

in deriving Equation (5.22) produces

∂P̄F,APM(d)

∂dk
:=

∂Ed

[
IΩ̄F,S

(X)
]

∂dk

= Ed

[
IΩ̄F,S

(X)s
(1)
dk
(X;d)

]
= lim

L→∞

1

L

L∑
l=1

[
IΩ̄F,S

(x(l))s
(1)
dk
(x(l);d)

]
, (5.33)

where L is the sample size, x(l) is the lth realization ofX, and IΩ̄F,S
(x) is the AS-PDD-

generated indicator function. Again, they are easily and inexpensively determined by

sampling analytical functions that describe ȳS and s
(1)
dk
. A similar sampling procedure

can be employed to calculate the sensitivity of the AS-PDD-MCS-generated CDF

F̄y,APM(ξ;d) := Pd[ȳS(X) ≤ ξ]. It is important to note that the effort required to

calculate the failure probability or CDF also delivers their sensitivities, incurring no

additional cost. Setting S = 1 or 2 in Equations (5.20) and (5.33), the univariate or

bivariate AS-PDD approximation of the failure probability and its sensitivities are

determined.
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Remark 5.2. The score function method has the nice property that it requires dif-

ferentiating only the underlying PDF fX(x;d). The resulting score functions can be

easily and, in most cases, analytically determined. If the performance function is not

differentiable or discontinuous − for example, the indicator function that comes from

reliability analysis − the proposed method still allows evaluation of the sensitivity if

the density function is differentiable. In reality, the density function is often smoother

than the performance function, and therefore the proposed sensitivity methods will

be able to calculate sensitivities for a wide variety of complex mechanical systems.

Remark 5.3. The AS-PDD-SPA and AS-PDD-MCS methods, discussed in Sections

4 and 5, are predicated on the S-variate, AS-PDD approximation ȳS(X) (Equation

(5.6)) and are, therefore, new. The author and his colleagues had developed in a

prequel similar methods, called the PDD-SPA and PDD-MCS methods [110], em-

ploying the truncated PDD approximation ỹS,m(X) ((5.5)). The new methods will be

contrasted with the existing ones in the Numerical Examples section.

5.6 Expansion Coefficients by Dimension-Reduction Integration

The determination of AS-PDD expansion coefficients y∅(d) and Cuj|u|(d) is

vitally important for reliability analysis, including its design sensitivities. As de-

fined in Equations (5.3) and (5.4), the coefficients involve various N -dimensional

integrals over RN . For large N , a multivariate numerical integration employing an

N -dimensional tensor product of a univariate quadrature formula is computationally

prohibitive and is, therefore, ruled out. An attractive alternative approach entails
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dimension-reduction integration, which was originally developed by Xu and Rahman

[22] for high-dimensional numerical integration. For calculating y∅ and Cuj|u| , this is

accomplished by replacing the N -variate function y in Equations (5.3) and (5.4) with

an R-variate RDD approximation at a chosen reference point, where R ≤ N . The

result is a reduced integration scheme, requiring evaluations of at most R-dimensional

integrals.

Let c = (c1, · · · , cN)T ∈ RN , which is commonly adopted as the mean of X,

be a reference point, and y(xv, c−v) represent an |v|-variate RDD component function

of y(x), where v ⊆ {1, · · · , N} [64, 83]. Given a positive integer S ≤ R ≤ N , when

y(x) in Equations (5.3) and (5.4) is replaced with its R-variate RDD approximation,

the coefficients y∅(d) and Cuj|u|(d) are estimated from [22]

y∅(d) ∼=
R∑
i=0

(−1)i
(
N −R + i− 1

i

)
×

∑
v⊆{1,··· ,N}
|v|=R−i

∫
R|v|

y(xv, c−v)fXv(xv;d)dxv (5.34)

and

Cuj|u|(d)
∼=

R∑
i=0

(−1)i
(
N −R + i− 1

i

) ∑
v⊆{1,··· ,N}
|v|=R−i,u⊆v∫

R|v|
y(xv, c−v)ψuj|u|(xu;d)fXv(xv;d)dxv, (5.35)

respectively, requiring evaluation of at most R-dimensional integrals. The reduced

integration facilitates calculation of the coefficients approaching their exact values as

R → N and is significantly more efficient than performing one N -dimensional inte-

gration, particularly when R ≪ N . Hence, the computational effort is significantly
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lowered using the dimension-reduction integration. For instance, when R = 1 or 2,

Equations (5.34) and (5.35) involve one-, or at most, two-dimensional integrations,

respectively. Nonetheless, numerical integrations are still required for performing

various |v|-dimensional integrals over R|v|, where 0 ≤ |v| ≤ R. When R > 1, the mul-

tivariate integrations involved can be approximated using full-grid and sparse-grid

quadratures, including their combination, described as follows.

5.6.1 Full-grid integration

The full-grid dimension-reduction integration entails constructing a tensor

product of the underlying univariate quadrature rules. For a given v ⊆ {1, · · · , N},

1 < |v| ≤ R, let v = {i1, · · · i|v|}, where 1 ≤ i1 < · · · < i|v| ≤ N . Denote by

{x(1)ip
, · · · , x(nv)

ip
} ⊂ R a set of integration points of xip and by {w(1)

ip
, · · · , w(nv)

ip
} the

associated weights generated from a chosen univariate quadrature rule and a positive

integer nv ∈ N. Denote by P (nv) = ×p=|v|
p=1 {x(1)ip

, · · · , x(nv)
ip

} the rectangular grid con-

sisting of all integration points generated by the variables indexed by the elements of

v. Then the coefficients using dimension-reduction numerical integration with a full

grid are approximated by

y∅(d) ∼=
R∑
i=0

(−1)i
(
N −R + i− 1

i

) ∑
v⊆{1,··· ,N}
|v|=R−i

∑
k|v|∈P (nv)

w(k|v|)y(x
(k|v|)
v , c−v), (5.36)

Cuj|u|(d)
∼=

R∑
i=0

(−1)i
(
N −R + i− 1

i

)
×∑

v⊆{1,··· ,N}
|v|=R−i,u⊆v

∑
k|v|∈P (nv)

w(k|v|)y(x
(k|v|)
v , c−v)ψuj|u|(x

(k|u|)
u ;d), (5.37)
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where x
(k|v|)
v = {x(k1)i1

, · · · , x(k|v|)i|v|
} and w(k|v|) =

∏p=|v|
p=1 w

(kp)
ip

is the product of integra-

tion weights generated by the variables indexed by the elements of v. For independent

coordinates of X, as assumed here, a univariate Gauss quadrature rule is commonly

used, where the integration points and associated weights depend on the probabil-

ity distribution of Xi. The quadrature rule is readily available, for example, as the

Gauss-Hermite or Gauss-Legendre quadrature rule, when Xi follows Gaussian or uni-

form distribution [98]. For an arbitrary probability distribution of Xi, the Stieltjes

procedure can be employed to generate the measure-consistent Gauss quadrature for-

mulae [98]. An nv-point Gauss quadrature rule exactly integrates a polynomial of

total degree at most 2nv − 1.

The calculation of y∅ and Cuj|u| from Equations (5.36) and (5.37) involves at

most R-dimensional tensor products of an nv-point univariate quadrature rule, requir-

ing the following deterministic responses or function evaluations: y(c), y(x
(j|v|)
v , c−v)

for i = 0, · · · , R, v ⊆ {1, · · · , N}, |v| = R− i, and j|v| ∈ P (nv). Accordingly, the total

cost for estimating the PDD expansion coefficients entails

LFG =
R∑
i=0

∑
v⊆{1,··· ,N}
|v|=R−i

n|v|v (5.38)

function evaluations, encountering a computational complexity that is an Rth-order

polynomial − for instance, linear or quadratic when R = 1 or 2 − with respect to

the number of random variables or integration points. For R < N , the technique

alleviates the curse of dimensionality to an extent determined by R. The dimension-

reduction integration in conjunction with the full-grid quadrature rule was used for
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constructing truncated PDD approximations [97, 99].

5.6.2 Sparse-grid integration

Although the full-grid dimension-reduction integration has been successfully

applied to the calculation of the PDD expansion coefficients in the past [97, 99, 112],

it faces a major drawback when the polynomial order mu for a PDD component func-

tion yu needs to be modulated for adaptivity. As the value of mu is incremented

by one, a completely new set of integration points is generated by the univariate

Gauss quadrature rule, rendering all expensive function evaluations on prior integra-

tion points as useless. Therefore, a nested Gauss quadrature rule, such as the fully

symmetric interpolatory rule capable of exploiting dimension-reduction integration,

becomes desirable.

The fully symmetric interpolatory (FSI) rule, developed by Genz and his asso-

ciates [113, 114], is a sparse-grid integration technique for performing high-dimensional

numerical integration. Applying this rule to the |v|-dimensional integrations in Equa-

tions (5.34) and (5.35), the PDD expansion coefficients are approximated by

y∅ ∼=
R∑
i=0

(−1)i
(
N −R + i− 1

i

) ∑
v⊆{1,··· ,N}
|v|=R−i

∑
p|v|∈P (ñv,|v|)

wp|v|

×
∑

q|v|∈Πp|v|

∑
t|v|

y
(
ti1αqi1

, · · · , ti|v|αqi|v|
, c−v

)
, (5.39)
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Cuj|u|
∼=

R∑
i=0

(−1)i
(
N −R + i− 1

i

) ∑
v⊆{1,··· ,N}
|v|=R−i,u⊆v∑

p|v|∈P (ñv,|v|)

wp|v|

∑
q|v|∈Πp|v|

∑
t|v|

y
(
ti1αqi1

, · · · , ti|v|αqi|v|
, c−v

)
×ψuj|u|

(
ti1αqi1

, · · · , ti|u|αqi|u|

)
, (5.40)

where v = {i1, · · · i|v|}, t|v| = (ti1 , · · · , ti|v|), p|v| = (pi1 , · · · , pi|v|), and

P (ñv ,|v|) = {p|v| : ñv ≥ pi1 ≥ · · · ≥ pi|v| ≥ 0,
∥∥p|v|∥∥ ≤ ñv} (5.41)

with
∥∥p|v|∥∥ :=

∑|v|
r=1 pir is the set of all distinct |v|-partitions of the integers 0, 1, · · · , ñv,

and Πp|v| is the set of all permutations of p|v|. The innermost sum over t|v| is taken

over all of the sign combinations that occur when tir = ±1 for those values of ir with

generators αqir
̸= 0 [114]. The weight

wp|v| = 2−K
∑

∥k|v|∥6ñv−∥p|v|∥

|v|∏
r=1

akir+pir

kir+pir∏
j=0,j ̸=pir

(
α2
pir

− α2
j

) , (5.42)

whereK is the number of nonzero components in p|v| and ai is a constant that depends

on the probability measure of Xi, for instance,

ai =
1√
2π

∫
R
exp

(
−ξ

2

2

) i−1∏
j=0

(
ξ2 − α2

j

)
dξ (5.43)

for i > 0 and a0 = 1 when Xi follows the standard Gaussian distribution [114]. An

ñv-parameter FSI rule exactly integrates a polynomial of degree at most 2ñv − 1.

The number of function evaluations by the original FSI rule [113] increases

rapidly as |v| and ñv increase. To enhance the efficiency, Genz [114] proposed an

extended FSI rule in which the function evaluations are significantly reduced if the
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generator set is chosen such that some of the weights wp|v| are zero. The pivotal step in

constructing such an FSI rule is to extend a (2β+1)-point Gauss-Hermite quadrature

rule by adding 2γ points or generators ±αβ+1,±αβ+2, . . . ,±αβ+γ with the objective

of maximizing the degree of polynomial exactness of the extended rule, where β ∈ N

and γ ∈ N. Genz [114] presented a special case of initiating the FSI rule from the

univariate Gauss-Hermite rule over the interval (−∞,∞). The additional generators

in this case are determined as roots of the monic polynomial ζ2γ+ tγ−1ζ
2γ−1+ · · ·+ t0,

where the coefficients tγ−1, · · · , t0 are obtained by invoking the condition

1√
2π

∫
R
exp

(
−ξ

2

2

) β∏
j=0

ξ2b
(
ξ2 − α2

j

)
dξ = 0, (5.44)

where γ > β. A new set of generators is propagated based on the prior rule and,

therefore, as the polynomial degree of exactness of the rule increases, all the previous

points and the expensive function evaluations over those points are preserved. A

remarkable feature of the extended FSI rule is that the choice of generators is such that

some of the weights wp|v| = 0 in each step of the extension [114], thus eliminating the

need for function evaluations at the integration points corresponding to zero weights,

making the extended FSI rule significantly more efficient than its earlier version.

The dimension-reduction integration in conjunction with the sparse-grid quadrature

rule was used for constructing AS-PDD approximations of high-dimensional complex

systems [109].
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5.6.3 Combined sparse- and full-grids

The adaptive-sparse algorithm [109] described by Figure 5.1, in tandem with

the sparse-grid quadrature, should be employed to calculate the requisite AS-PDD

expansion coefficients and hence determine the largest polynomial orders of PDD

component functions retained. However, due to potential approximation errors, the

expansion coefficients may need to be recalculated for at least two reasons.

The first source of error is low values of R set in the dimension-reduction

integration. According to the algorithm, the largest polynomial orders maxumu, ∅ ̸=

u ⊆ {1, · · · , N}, 1 ≤ |u| ≤ S, associated with all S-variate PDD component functions,

are determined using the expansion coefficients estimated by the dimension-reduction

integration with R = |u|. For instance, the largest polynomial orders max{i}m{i}, i =

1, · · · , N, of univariate (S = 1) PDD component functions are ascertained employing

the univariate expansion coefficients Cij, i = 1, · · · , N , j = 1, 2, · · · , estimated with

R = 1 to keep the computational effort at minimum. However, from the author’s

recent experience, the setting R = 1 is too low to warrant convergent solutions of

complex RBDO problems, especially when the original function y contains significant

interactive effects among input random variables. For an illustration, consider the

function

y(X1, X2, X3) = X3
1 +X2 +X2

3 + (1 +X1)
2(1 +X2)

2 (5.45)

of three independent standard Gaussian random variables X1, X2, and X3 with zero

means and unit variances. Selecting S = 2 and sufficiently small tolerance parameters,

let ȳ2(X1, X2, X3) denote a bivariate, AS-PDD approximation, reproducing all terms
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of y(X1, X2, X3). By definition, Equation (5.4) yields the exact univariate, first-order

coefficient C11 = 7. However, setting R = 1 for the dimension-reduction integration

in Equation (5.35), the adaptive-sparse algorithm produces an estimate of 5. The

underestimation of C11 originates from the failure to include the bivariate interactive

term (1 + X1)
2(1 + X2)

2 of Equation (5.45). Indeed, when R = 2 is employed,

Equation (5.35) reproduces the exact value of 7. Therefore, the value of R must be

raised to two to capture the two-variable interaction in this case and, in general, to S,

which is the largest degree of interaction retained in a concomitant S-variate AS-PDD

approximation. In other words, after the largest polynomial orders are determined by

the adaptive-sparse algorithm, the AS-PDD coefficients need to be recalculated when

S ≥ 2. The author proposes doing so using full-grid dimension-reduction integration

with R = S.

The second source of error is low-order Gauss quadrature. When calculating

AS-PDD expansion coefficients Cuj|u|by Equation (5.35), a low-order Gauss quadra-

ture, selected merely according to the order of ψuj|u|(xu;d) without accounting for

maxumu (reflecting the nonlinearity of y(xv, c−v)), may result in inadequate or erro-

neous estimates. For example, consider the bivariate, first-order expansion coefficient

C1211 for the function in Equation (5.45). According to Equation (5.4), the exact value

of C1211 = 4. However, when the 2 × 2 Gauss quadrature is used in the dimension-

reduction integration with R = 2, the adaptive-sparse algorithm produces an estimate

of 1. This is due to not accounting for the third-order term X3
1 (max{1}m{1} = 3) in

Equation (5.45), resulting in an under-integration by the order of Gauss quadrature
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chosen. Indeed, when the 3× 2 Gauss quadrature is employed, the resulting estimate

becomes 4, which is the exact value of C1211. Therefore, the order of Gauss quadra-

ture for the ith dimension in the dimension-reduction integration must be selected

according to both maxi∈umu and the order of the corresponding polynomial basis to

accurately estimate all |u|-variate expansion coefficients. In other words, after the

largest polynomial orders are determined by the adaptive-sparse algorithm, the AS-

PDD coefficients need to be recalculated. Again, the author proposes doing so using

full-grid dimension-reduction integration with a Gauss quadrature rule commensurate

with maxi∈umu.

5.6.4 Computational expense

For the AS-PDD approximation, the computational effort is commonly deter-

mined by the total number of original function evaluations required for calculating all

necessary expansion coefficients. In solving an RBDO problem, which is presented in

Section 5.7, the total computational effort stems from two types of calculations: (1)

initial calculations involved in the adaptive-sparse algorithm to automatically deter-

mine the truncation parameters of PDD; and (2) final calculations of the AS-PDD

expansion coefficients based on the knowledge of truncation parameters. The compu-

tational cost required by the initial calculations, that is, by the S-variate, adaptive-

sparse algorithm, is discussed by Yadav and Rahman [109], although an explicit

formula for the number of original function evaluations remains elusive. However, the
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computational cost can be bounded from above by

LI ≤
S∑

k=0

(
N

k

)
(mmax + 1)k , (5.46)

the number of function evaluations in the truncated S-variate, mmaxth-order PDD

approximation, where

mmax = max
∅̸=u⊆{1,··· ,N}, 1≤|u|≤S
G̃u,mu>ϵ1,∆G̃u,mu>ϵ2

mu <∞ (5.47)

is the largest order of polynomial expansions for all PDD component functions yu(Xu),

∅ ̸= u ⊆ {1, · · · , N}, 1 ≤ |u| ≤ S, such that G̃u,mu > ϵ1, ∆G̃u,mu > ϵ2. It is assumed

here that the number of integration points at each dimension is mmax +1. Therefore,

the computational complexity of the S-variate AS-PDD approximation is at most

an Sth-order polynomial with respect to the number of input variables or the largest

order of polynomial. Therefore, S-variate AS-PDD approximation alleviates the curse

of dimensionality to an extent determined by S, ϵ1, and ϵ2.

The number of original function evaluations required by the final calculations,

that is, by recalculations of the AS-PDD expansion coefficients based on the known

truncation parameters, can be obtained from another bound

LII ≤ 1 +
∑

v⊆{1,··· ,N}
1≤|v|≤S

∏
i∈v

maxmv ̸=0

max
u⊆{1,··· ,N},1≤|u|≤S,i∈u

G̃u,mu>ϵ1,∆G̃u,mu>ϵ2,mu∈N

⌈mu +maxmv + 1

2
⌉ (5.48)

when full-grid Gauss quadrature is employed. Here, the symbol ⌈t⌉ refers to the ceiling

function, which is the smallest integer not less than t. Therefore, the recalculation
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of the expansion coefficients results in a computational expense in addition to that

incurred by the adaptive-sparse algorithm. The total computational effort, measured

in terms of the total number of function evaluations, is bounded by LI +LII , and will

be discussed in the Numerical Examples section.

5.7 Proposed RBDO Methods

The PDD approximations described in the preceding sections provide a means

to evaluate the constraint functions, including their design sensitivities, from a single

stochastic analysis. No such approximation is required for the objective function,

when it is a simple and explicit deterministic function of design variables. However,

for complex mechanical design problems, for instance, Example 4 in the Numerical

Examples section, the objective function is usually determined implicitly by intrinsic

calculations from a computer-aided design code. In which case, the objective function

and its design sensitivities may also be simultaneously evaluated by constructing PDD

approximations of c0(d) in the space of design variables d. Additional details of the

PDD approximations of the objective function and its design sensitivities are not

included here for brevity.

An integration of reliability analysis, design sensitivity analysis, and a suit-

able optimization algorithm should render a convergent solution of the RBDO prob-

lem in Equation (5.1). However, new reliability and sensitivity analyses, entailing

re-calculations of the PDD expansion coefficients, are needed at every design itera-

tion. Therefore, a straightforward integration is expensive, depending on the cost
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of evaluating the objective and constraint functions and the requisite number of de-

sign iterations. In this section, a multi-point design process [84, 112], where a series

of single-step, AS-PDD approximations are built on a local subregion of the design

space, are presented for solving the RBDO problem.

5.7.1 Multi-point approximation

Let

D = ×k=M
k=1 [dk,L, dk,U ] ⊆ RM (5.49)

be a rectangular domain, representing the design space of the RBDO problem defined

by Equation (5.1). For a scalar variable 0 < β
(q)
k ≤ 1 and an initial design vector

d
(q)
0 = (d

(q)
1,0, · · · , d

(q)
M,0), the subset

D(q) = ×k=M
k=1

[
d
(q)
k,0 − β

(q)
k (dk,U − dk,L)/2,

d
(q)
k,0 + β

(q)
k (dk,U − dk,L)/2

]
⊆ D ⊆ RM (5.50)

defines the qth subregion for q = 1, 2, · · · . Using the multi-point approximation

[84, 112], the original RBDO problem in Equation (5.1) is exchanged with a succession

of simpler RBDO subproblems, expressed by

min
d∈D(q)⊆D

c̄
(q)
0,S(d),

subject to c̄
(q)
l,S(d) := Pd

[
X ∈ Ω̄

(q)
F,l,S(d)

]
− pl ≤ 0

l = 1, · · · , K,

d
(q)
k,0 − β

(q)
k (dk,U − dk,L)/2 ≤ dk ≤ d

(q)
k,0 +

β
(q)
k (dk,U − dk,L)/2, k = 1, · · · ,M, (5.51)
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where c̄
(q)
0,S(d), Ω̄

(q)
F,l,S(d) and c̄

(q)
l,S(d) , l = 1, 2, · · · , K, are local S-variate, AS-PDD

approximations of c0(d), ΩF,l(d) and cl(d), respectively, at iteration q, where Ω̄
(q)
F,l,S(d)

is defined using local, S-variate, AS-PDD approximations of ȳ
(q)
l,S (X) of yl(X), and

d
(q)
k,0−β

(q)
k (dk,U −dk,L)/2 and d

(q)
k,0+β

(q)
k (dk,U −dk,L)/2, also known as the move limits,

are the lower and upper bounds, respectively, of the kth coordinate of subregion

D(q). In Equation (5.51), the original objective and constraint functions are replaced

with those derived locally from respective AS-PDD approximations. Since the PDD

approximations are mean-square convergent [97, 99], they also converge in probability

and in distribution. Therefore, given a subregion D(q), the solution of the associated

RBDO subproblem also converges when ϵ1 → 0, ϵ2 → 0, and S → N .

5.7.2 Single-step procedure

The single-step procedure is motivated on solving each RBDO subproblem in

Equation (5.51) from a single stochastic analysis by sidestepping the need to recal-

culate the PDD expansion coefficients at every design iteration. It subsumes two

important assumptions: (1) an S-variate, AS-PDD approximation ȳS of y at the

initial design is acceptable for all possible designs in the subregion; and (2) the ex-

pansion coefficients for one design, derived from those generated for another design,

are accurate.

Consider a change of the probability measure ofX from fX(x;d)dx to fX(x;d
′)

dx, where d and d′ are two arbitrary design vectors corresponding to old and new

designs, respectively. Let {ψij(Xi;d
′); j = 0, 1, · · · } be a set of new orthonormal poly-
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nomial basis functions consistent with the marginal probability measure fXi
(xi;d

′)dxi

of Xi, producing new product polynomials ψuj|u|(Xu;d
′) =

∏|u|
p=1 ψipjp(Xip ;d

′), ∅ ̸=

u ⊆ {1, · · · , N}. Assume that the expansion coefficients, y∅(d) and Cuj|u|(d), for the

old design have been calculated already. Then, the expansion coefficients for the new

design are determined from

y∅(d
′) =

∫
RN

[ ∑
∅̸=u⊆{1,··· ,N}

∑
j|u|∈N

|u|
0

j1,··· ,j|u| ̸=0

Cuj|u|(d)

×ψuj|u|(xu;d) + y∅(d)

]
fX(x;d

′)dx (5.52)

and

Cuj|u|(d
′) =

∫
RN

[ ∑
∅̸=v⊆{1,··· ,N}

∑
j|v|∈N

|v|
0

j1,··· ,j|v| ̸=0

Cvj|v|(d)

×ψvj|v|(xv;d) + y∅(d)

]
ψuj|u|(xu;d

′)fX(x;d
′)dx, (5.53)

for all ∅ ̸= u ⊆ {1, · · · , N} by recycling the old expansion coefficients and using

orthonormal polynomials associated with both designs. The relationship between the

old and new coefficients, described by Equations (5.52) and (5.53), is exact and is

obtained by replacing y in Equations (5.3) and (5.4) with the right side of Equation

(5.2). However, in practice, when the S-variate, AS-PDD approximation (Equation

(5.6)) is used to replace y in Equations (5.3) and (5.4), then the new expansion
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coefficients,

y∅(d
′) ∼=

∫
RN

[ ∑
∅̸=u⊆{1,··· ,N}

1≤|u|≤S

∞∑
mu=1

∑
∥j|u|∥∞

=mu, j1,··· ,j|u| ̸=0

G̃u,mu>ϵ1,∆G̃u,mu>ϵ2

Cuj|u|(d)

× ψuj|u|(Xu;d) + y∅(d)

]
fX(x;d

′)dx (5.54)

and

Cuj|u|(d
′) ∼=

∫
RN

[ ∑
∅̸=v⊆{1,··· ,N}

1≤|v|≤S

∞∑
mv=1

∑
∥j|v|∥∞

=mv , j1,··· ,j|v| ̸=0

G̃v,mv>ϵ1,∆G̃v,mv>ϵ2

Cvj|v|(d)ψvj|v|(Xv;d) +y∅(d)

]
×ψuj|u|(xu;d

′)fX(x;d
′)dx, (5.55)

which are applicable for ∅ ̸= u ⊆ {1, · · · , N}, 1 ≤ |u| ≤ S, become approximate,

although convergent. In the latter case, the integrals in Equations (5.54) and (5.55)

consist of finite-order polynomial functions of at most S variables and can be evaluated

inexpensively without having to compute the original function y for the new design.

Therefore, new stochastic analyses, all employing S-variate, AS-PDD approximation

of y, are conducted with little additional cost during all design iterations, drastically

curbing the computational effort in solving an RBDO subproblem.

5.7.3 The AS-PDD-SPA and AS-PDD-MCS methods

When the multi-point approximation is combined with the single-step proce-

dure, the result is an accurate and efficient design process to solve the RBDO problem

defined by (5.1). Depending on whether the AS-PDD-SPA or AS-PDD-MCS method

is employed for reliability and design sensitivity analyses in the combined multi-point,
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single-step design process, two distinct RBDO methods are proposed: the AS-PDD-

SPA method and the AS-PDD-MCS method. Using the single-step procedure in both

methods, the design solution of an individual RBDO subproblem becomes the initial

design for the next RBDO subproblem. Then, the move limits are updated, and the

optimization is repeated iteratively until an optimal solution is attained. The method

is schematically depicted in Figure 5.2. Given an initial design d0, a sequence of de-

sign solutions, obtained successively for each subregion D(q) and using the S-variate,

AS-PDD approximation, leads to an approximate optimal solution d̄∗ of the RBDO

problem. In contrast, an AS-PDD approximation constructed for the entire design

space D, if it commits large approximation errors, may possibly lead to a premature or

erroneous design solution. The multi-point approximation in the proposed methods

overcomes this quandary by adopting smaller subregions and local AS-PDD approxi-

mations, whereas the single-step procedure diminishes the computational requirement

as much as possible by recycling the PDD expansion coefficients.

When ϵ1 → 0, ϵ2 → 0, S → N , and q → ∞, the reliability and its design

sensitivities by the AS-PDD approximations converge to their exactness, yielding

coincident solutions of the optimization problems described by Equations (5.1) and

(5.51). However, if the subregions are sufficiently small, then for finite and possibly

low values of S and nonzero values of ϵ1 and ϵ2, Equation (5.51) is expected to generate

an accurate solution of Equation (5.1), the principal motivation for developing the

AS-PDD-SPA and AS-PDD-MCS methods.
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Figure 5.2: A schematic description of the multi-point, single-step design process

The AS-PDD-SPA and AS-PDD-MCS methods in conjunction with the com-

bined multi-point, single-step design process is outlined by the following steps. The

flow chart of this method is shown in Figure 5.3.

Step 1: Select an initial design vector d0. Define tolerances ϵ(1) > 0, ϵ(2) > 0, and

ϵ(3) > 0. Set the iteration q = 1, d
(q)
0 = (d

(q)
1,0, · · · , d

(q)
M,0)

T = d0. Define

the subregion size parameters 0 < β
(q)
k ≤ 1, k = 1, · · · ,M , describing

D(q) = ×k=M
k=1 [d

(q)
k,0 − β

(q)
k (dk,U − dk,L)/2, d

(q)
k,0 + β

(q)
k (dk,U − dk,L)/2]. Denote

the subregion’s increasing history by a set H(0) and set it to empty. Set

two designs df = d0 and df,last ̸= d0 such that ||df − df,last||2 > ϵ(1). Set

d
(0)
∗ = d0, qf,last = 1 and qf = 1. Usually, a feasible design should be

selected to be the initial design d0. However, when an infeasible initial
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design is chosen, a new feasible design can be obtained during the iteration

if the initial subregion size parameters are large enough.

Step 2: Define tolerances ϵ1 > 0 and ϵ2 > 0. Use the adaptive PDD algorithm

together with sparse-grid integration to obtain truncation parameters of

c0(d) and yl(X), l = 1, · · · , K at current design d
(q)
0 . Set dAS = d

(q)
0 .

Step 3: Use (q > 1) the PDD truncation parameters obtained in Step 2. At d = d
(q)
0 ,

generate the AS-PDD expansion coefficients, y∅(d) and Cuj|u|(d), where

∅ ̸= u ⊆ {1, · · · , N}, 1 ≤ |u| ≤ S, and j|u| ∈ N|u|0 , j1, · · · , j|u| ̸= 0 was

determined in Step 2, using dimension-reduction integration with R = S,

leading to S-variate, AS-PDD approximations c̄
(q)
0,S(d) of c0(d) and ȳ

(q)
l,S (X)

of yl(X), l = 1, · · · , K.

Step 4: Evaluate c̄
(q)
l,S(d) of cl(d), l = 1, · · · , K, in Equation (5.51) and their sensi-

tivities by the AS-PDD-MCS or AS-PDD-SPA methods based on AS-PDD

approximations ȳ
(q)
l,S (X) in Step 3.

Step 5: If q = 1 and c̄
(q)
l,S(d

(q)
0 ) < 0 for l = 1, · · · , K, then go to Step 7. If q > 1 and

c̄
(q)
l,S(d

(q)
0 ) < 0 for l = 1, · · · , K, then set df,last = df , df = d

(q)
0 , qf,last = qf ,

qf = q and go to Step 7. Otherwise, go to Step 6.

Step 6: Compare the infeasible design d
(q)
0 with the feasible design df and inter-

polate between d
(q)
0 and df to obtain a new feasible design and set it as

d
(q+1)
0 . For dimensions with large differences between d

(q)
0 and df , inter-

polate aggressively, that is, interpolate close to df . Reduce the size of the

subregion D(q) to obtain new subregion D(q+1). For dimensions with large
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differences between d
(q)
0 and df , reduce aggressively. Also, for dimensions

with large differences between the sensitivities of c̄
(q)
l,S(d

(q)
0 ) and c̄

(q−1)
l,S (d

(q)
0 ),

reduce aggressively. Update q = q + 1 and go to Step 3.

Step 7: If ||df − df,last||2 < ϵ(1) or |[c̄(q)0,S(df )− c̄
(qf,last)
0,S (df,last)]/c̄

(q)
0,S(df )| < ϵ(3), then

stop and denote the final optimal solution as d̄∗ = df . Otherwise, go to

Step 8.

Step 8: If the subregion size is small, that is, β
(q)
k (dk,U − dk,L) < ϵ(2), and d

(q−1)
∗ is

located on the boundary of the subregion, then go to Step 9. Otherwise, go

to Step 11.

Step 9: If the subregion centered at d
(q)
0 has been enlarged before, that is, d

(q)
0 ∈

H(q−1), then set H(q) = H(q−1) and go to Step 11. Otherwise, set H(q) =

H(q−1)∪{d(q)
0 } and go to Step 10.

Step 10: For coordinates of d
(q)
0 located on the boundary of the subregion and

β
(q)
k (dk,U − dk,L) < ϵ(2), increase the sizes of corresponding components of

D(q); for other coordinates, keep them as they are. Set the new subregion

as D(q+1).

Step 11: Solve the design problem in Equation (5.51) employing the single-step pro-

cedure. In so doing, recycle the PDD expansion coefficients obtained from

Step 3 in Equations (5.54) and (5.55), producing approximations of the ob-

jective and constraint functions that stem from single calculation of these

coefficients. Denote the optimal solution by d
(q)
∗ and set d

(q+1)
0 = d

(q)
∗ .

Update q = q + 1 and go to Step 12.
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Step 12: If the form of a response function changes, go to Step 2; otherwise, go

to Step 3. A threshold t ∈ [0, 1] was used to determine whether the form

changed. Only when the relative change of the objective function is greater

than t, that is, |c0(d(q)
0 ) − c0(dAS)|/|c0(dAS)| > t, then it is assumed that

the form of the response function changes.

Step 3: At , use improved full-

grid integration to generate PDD

approximations of responses based on

truncation parameters.

( )

0

q
=d d

Step 5: Is new

design feasible?

Step 7: Converge?

Step 8: Are conditions

for enlarging subregion size

satisfied?

Step 11: Solve the RBDO subproblem by single-

step procedure.

Step 6: Interpolate to obtain a new feasible

design and reduce subregion size.

Stop

1q q= +

Step 9: Is current design in

the increasing histories?

Step 10: Increase

subregion and

modify increasing

history.

Step 1: Initialize; set .( )

0 0

q
=d d

Yes

Yes

Yes

Yes

No

No

No

No

Step 2: At , use adaptive-sparse

PDD method to obtain truncation

parameters.

( )

0

q
=d d

Step 12: Do the forms of
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Figure 5.3: A flow chart of the proposed AS-PDD-SPA and AS-PDD-MCS methods
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5.8 Numerical Examples

Four examples are presented to illustrate the AS-PDD-SPA and AS-PDD-MCS

methods developed in solving various RBDO problems. The objective and constraint

functions are either elementary mathematical functions or relate to engineering prob-

lems, ranging from simple structures to complex FEA-aided mechanical designs. Both

size and shape design problems are included. In Examples 1 through 4, orthonormal

polynomials, consistent with the probability distributions of input random variables,

were used as bases. For the Gaussian distribution, the Hermite polynomials were

used. For random variables following non-Gaussian probability distributions, such as

the Lognormal distribution in Example 3 and truncated Gaussian distribution in Ex-

ample 4, the orthonormal polynomials were obtained either analytically when possible

or numerically, exploiting the Stieltjes procedure [98]. The value of S for AS-PDD

approximation varies, depending on the function or the example, but in all cases

the tolerances are as follows: ϵ1 = ϵ2 = 10−4. The AS-PDD expansion coefficients

were calculated using dimension-reduction integration with R = S and the Gauss

quadrature rule of the ith dimension consistent with maxi∈umu. The moments and

their sensitivities required by the AS-PDD-SPA method in Examples 1 and 2 were

calculated using dimension-reduction integration with R = 2. The sample size for the

embedded simulation of the AS-PDD-MCS method is 106 in all examples. In Exam-

ples 1-3, the design sensitivities of the objective functions were obtained analytically.

Since the objective function in Example 4 is an implicit function, the truncated PDD

approximation of the objective function was employed to obtain design sensitivities.
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The multi-point, single-step PDD method was used in all examples. The tolerances,

initial subregion size, and threshold parameters for the multi-point, single-step PDD

method are as follows: (1) ϵ(1) = 0.1 (Examples 1 and 2), ϵ(1) = 0.01 (Example

3), ϵ(1) = 0.2 (Example 4); ϵ(2) = 2; ϵ(3) = 0.005 (Examples 1, 2, and 3), ϵ(3) = 0.05

(Example 4); (2) β
(1)
1 = · · · = β

(1)
M = 0.5; and (3) t = 0.99 (Example 1-3); t = 0.6 (Ex-

ample 4). The optimization algorithm selected is sequential quadratic programming

[106] in all examples.

5.8.1 Example 1: optimization of a mathematical problem

Consider a mathematical example, involving a 100-dimensional random vector

X, where Xi, i = 1, · · · , 100, are independent and identically distributed Gaussian

random variables, each with the mean value µ and the standard deviation s. Given

the design vector d = (µ, s), the objective of this problem is to

min
d∈D

c0(d) = d21 + 5d2,

subject to c1(d) = Pd(y1(X) < 0)− 10−3 ≤ 0,

−9 ≤ d1 ≤ 9, 0.5 ≤ d2 ≤ 4, (5.56)

where

y1(X) =
1

1000 +
100∑
i=1

Xi

− 1

1000 + 3
√
100

(5.57)

is a random function. The design vector d ∈ D, where D = [−9, 9]×[0.5, 4] ⊂ R2. The

exact solution of the RBDO problem in Equation (5.56) is as follows: d∗ = (0, 0.5)T ;

c0(d
∗) = 2.5; and c1(d

∗) = Φ(−6)−10−3 ≈ −10−3. The AS-PDD-SPA and AS-PDD-
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MCS methods with S = 1 were employed to solve this elementary RBDO problem.

The approximate optimal solution is denoted by d̄∗ = (d̄∗1, d̄
∗
2)

T .

Four different initial designs were selected to study the robustness of the pro-

posed methods in obtaining optimal design solutions. The first two initial designs

d0 = (−9, 4)T and d0 = (−4.5, 2)T lie in the feasible region, whereas the last two ini-

tial designs d0 = (9, 4)T and d0 = (4.5, 2)T are located in the infeasible region. Table

5.1 summarizes the optimization results, including the numbers of function evalua-

tions, by the AS-PDD-SPA and AS-PDD-MCS methods for all four initial designs.

The exact solution, existing for this particular problem, is also listed in Table 5.1 to

verify the approximate solutions. From Table 5.1, the proposed methods, starting

from four different initial designs, engender identical optima, which is the exact solu-

tion. Hence, each method can be used to solve this optimization problem, regardless

of feasible or infeasible initial designs.

Table 5.1: Optimization results for the 100-dimensional mathematical problem

d0 = (−9, 4)T d0 = (−4.5, 2)T d0 = (9, 4)T d0 = (4.5, 2)T
Exact

AS-

PDD-

SPA

AS-

PDD-

MCS

AS-

PDD-

SPA

AS-

PDD-

MCS

AS-

PDD-

SPA

AS-

PDD-

MCS

AS-

PDD-

SPA

AS-

PDD-

MCS

d̄∗1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

d̄∗2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

c0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

c1 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
Φ(−6)−

0.001

No. of

y1 eval.
3211 3211 1706 1706 2910 2007 1706 1405 −
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Figures 5.4 and 5.5 depict the iteration histories of the AS-PDD-SPA and AS-

PDD-MCS methods, respectively, for all four initial designs. When starting from the

feasible initial designs d0 = (−9, 4)T and d0 = (−4.5, 2)T , both methods experience

nearly identical iteration steps. This is because at every step of the design iteration

the AS-PDD-SPA method provides estimates of the failure probability and its design

sensitivities very close to those obtained by the AS-PDD-MCS method. Consequently,

both methods incur the same number of function evaluations in reaching respective

optimal solutions. In contrast, when the infeasible initial designs d0 = (9, 4)T and

d0 = (4.5, 2)T are chosen, there exist some discrepancies in the iteration paths pro-

duced by the AS-PDD-SPA and AS-PDD-MCS methods. This is primarily due to

the failure of SPA, where the existence of the saddlepoint is not guaranteed for some

design iterations. In which case, the MCS, instead of SPA, were used to calculate the

failure probability and its design sensitivities. Therefore, the computational cost by

the AS-PDD-SPA method should increase, depending on the frequency of the fail-

ure of SPA. Indeed, when the discrepancy is large, as exhibited for the initial design

d0 = (9, 4)T , nearly 900 more function evaluations are needed by the AS-PDD-SPA

method. For the initial design d0 = (4.5, 2)T , the discrepancy is small, and con-

sequently, the AS-PDD-SPA method requires almost 300 more function evaluations

than the AS-PDD-MCS method. In general, the AS-PDD-MCS method should be

more efficient than the AS-PDD-SPA method in solving RBDO problems since an

added layer of approximation is involved when evaluating CGF in the latter method.



191

1
0
0
.0

1
0
0
.
0 8

0
.0

8
0
.0

8
0
.
0

8
0
.
0

6
0
.0

6
0
.0

6
0
.
0

6
0
.
0

4
0
.0

4
0
.0

4
0
.
0

4
0
.
0

2
0
.
0

20
.

0

2
0
.0

1
0
.
0

1
0
.0

5.
0

2
.5

(9.0,4.0)

(4.5,2.0)

(-9.0,4.0)

(-4.5,2.0)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

µ

s

c1(d) = 0 Feasible domain Analytical optimum Contour of c0(d)

Starting at (9.0,4.0) Starting at (-9.0,4.0) Starting at (4.5,2.0) Starting at (-4.5,2.0)

Figure 5.4: Iteration histories of the AS-PDD-SPA method for four different initial
designs (Example 1)
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Figure 5.5: Iteration histories of the AS-PDD-MCS method for four different initial
designs (Example 1)
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5.8.2 Example 2 : optimization of a speed reducer

The second example, studied by Lee et al. [115], entails RBDO of a speed

reducer, which was originally formulated as a deterministic optimization problem by

Golinski [116]. Seven random variables, as shown in Figure 5.6, comprise the gear

width X1 (cm), the teeth module X2 (cm), the number of teeth in the pinion X3,

the distances between bearings X4 (cm) and X5 (cm), and the axis diameters X6

(cm) and X7 (cm). They are independent Gaussian random variables with means

Ed[Xk], k = 1, · · · , 7, and a standard deviation of 0.005. It is important to notice

that in reality X3 should be a discrete random variable, but here it is treated as a

continuous Gaussian random variable. The design variables are the means of X, that

is, dk = Ed[Xk]. The objective is to minimize the weight of the speed reducer subject

to 11 probabilistic constraints, limiting the bending stress and surface stress of the

gear teeth, transverse deflections of shafts 1 and 2, and stresses in shafts 1 and 2.
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Mathematically, the RBDO problem is formulated to

min
d∈D

c0(d) = 0.7854d1d
2
2(3.3333d

2
3 + 14.9334d3

−43.0934)− 1.508d1(d
2
6 + d27)

+7.477(d36 + d37) + 0.7854(d4d
2
6 + d5d

2
7)

subject to cl(d) = Pd(yl(X) ≤ 0)− Φ(−βl) ≤ 0,

l = 1, · · · , 11

2.6 cm ≤ d1 ≤ 3.6 cm, 0.7 cm ≤ d2 ≤ 0.8 cm,

17 ≤ d3 ≤ 28 , 7.3 cm ≤ d4 ≤ 8.3 cm,

7.3 cm ≤ d5 ≤ 8.3 cm, 2.9 cm ≤ d6 ≤ 3.9 cm,

5.0 cm ≤ d7 ≤ 5.5 cm, (5.58)

where

y1(X) = 1− 27

X1X2
2X3

, (5.59)

y2(X) = 1− 397.5

X1X2
2X

2
3

, (5.60)

y3(X) = 1− 1.93X4

X2X3X4
6

, (5.61)

y4(X) = 1− 1.93X5

X2X3X4
7

, (5.62)

y5(X) = 1100−√
(745X4/(X2X3))2 + 16.9× 106

0.1X3
6

, (5.63)

y6(X) = 850−√
(745X5/(X2X3))2 + 157.5× 106

0.1X3
7

, (5.64)
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y7(X) = 40−X2X3, (5.65)

y8(X) =
X1

X2

− 5, (5.66)

y9(X) = 12− X1

X2

, (5.67)

y10(X) = 1− 1.5X6 + 1.9

X4

, (5.68)

y11(X) = 1− 1.1X7 + 1.9

X5

, (5.69)

are 11 random performance functions and βl = 3, l = 1, · · · , 11. The initial de-

sign vector is d0 = (3.1 cm, 0.75 cm, 22.5 , 7.8 cm, 7.8 cm, 3.4 cm, 5.25 cm)T . The

approximate optimal solution is denoted by d̄∗ = (d̄∗1, d̄
∗
2, · · · , d̄∗7)T .

X6

X7

X4

X1X5

X2: teeth module

X3: number of teeth

Shaft 2

Bearing 2

Gear 2
Bearing 1

Gear 1

Shaft 1

Figure 5.6: A schematic illustration of the speed reducer (Example 2)
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Table 5.2 presents detailed optimization results generated by the AS-PDD-SPA

and AS-PDD-MCS methods, each entailing S = 1 and S = 2, in the second through

fifth columns. The optimal solutions by both proposed methods, regardless of S,

are very close to each other, all indicating no constraints are active. The objective

function values of optimal solutions by the AS-PDD-MCS method are slightly lower

than those by the AS-PDD-SPA method. Although there is a constraint violation,

that is, maxl cl > 0 in the AS-PDD-MCS method with S = 1, it is negligibly small.

The results of both versions (S = 1 and S = 2) of the AS-PDD-SPA and AS-PDD-

MCS methods confirm that the solutions obtained using the univariate (S = 1),

AS-PDD approximation are accurate and hence adequate. However, the numbers of

function evaluations step up for the bivariate (S = 2), AS-PDD approximation, as

expected. When the univariate, AS-PDD approximation is employed, the respective

numbers of function evaluations diminish by more than a factor of five, regardless of

method selected.

Since this problem was also solved by the RIA, PMA, RIA envelope method,

and PMA envelope method, comparing their reported solutions [115], listed in the

sixth through ninth columns of Table 5.2, with the proposed solutions should be in-

triguing. These existing methods are commonly used in conjunction with FORM for

solving RBDO problems. It appears that RIA and PMA and their respective en-

hancements are also capable of producing optimal solutions similar to those obtained

by the AS-PDD-SPA and AS-PDD-MCS methods, but by incurring computational

costs markedly higher than those by the latter two methods. Comparing the num-
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bers of function evaluations, the RIA and PMA methods are more expensive than

the AS-PDD-SPA methods by factors of 20 to 120. These factors grow into 25 to 150

when graded against the AS-PDD-MCS methods. The dramatic reduction of compu-

tational cost by the proposed methods indicates that the AS-PDD approximations, in

cooperation with the multi-point, single-step design process, should greatly improve

the current state of the art of reliability-based design optimization.

Table 5.2: Optimization results for speed reducer problem

AS-PDD-

SPA

S = 1

AS-PDD-

SPA

S = 2

AS-PDD-

MCS

S = 1

AS-PDD-

MCS

S = 2

RIA(a) PMA(a)
RIA

envelope(a)

PMA

envelope(a)

d̄∗1, cm 3.5767 3.5767 3.5784 3.5793 3.58 3.60 3.60 3.60

d̄∗2, cm 0.7000 0.7000 0.7000 0.7006 0.7 0.7 0.7 0.7

d̄∗3 17.0000 17.0000 17.0016 17.0024 17.0 17.8 17.0 17.2

d̄∗4, cm 8.2983 8.2984 7.3000 7.5062 7.43 7.30 7.61 8.30

d̄∗5, cm 7.9782 7.9783 8.2901 8.2713 8.24 7.79 8.15 8.30

d̄∗6, cm 3.8627 3.8645 3.4815 3.3630 3.37 3.40 3.43 3.43

d̄∗7, cm 5.3355 5.3394 5.3018 5.3018 5.31 5.34 5.50 5.45

c0, g 3224 3227 3082 3059 3039 3037 3207 3100

Max value

of cl, l =

1, · · · , 11 (b)

−3.67×

10−5

−3.27×

10−5
9.62×10−6

−7.53×

10−6

−4.97×

10−4

1.43×

10−2

−1.31×

10−3

−1.31×

10−3

No. of yl

eval., l =

1 · · · , 11

748 4132 517 3337 89,303 81,520 5304 10,917

(a) The results of RIA, PMA, RIA envelope, and PMA envelope are from Lee et al. [115].
(b) The constraint values are calculated by MCS with 108 sample size.
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5.8.3 Example 3: size design of a six-bay, twenty-one-bar truss

This example demonstrates how an RBDO problem entailing system reliability

constraints can be efficiently solved by the AS-PDD-MCS method. A linear-elastic,

six-bay, twenty-one-bar truss structure, with geometric properties shown in Figure

5.7, is simply supported at nodes 1 and 12, and is subjected to four concentrated

loads of 10,000 lb (44,482 N) at nodes 3, 5, 9, and 11 and a concentrated load of

16,000 lb (71,172 N) at node 7. The truss material is made of an aluminum alloy

with the Young’s modulus E = 107 psi (68.94 GPa). Considering the symmetry

properties of the structure, the random input is selected as X = (X1, · · · , X11)
T

∈ R11, where Xi, i = 1, · · · , 11 , is the cross-sectional area of the ith truss member.

The random variables are independent and lognormally distributed with means µi

in2, and standard deviations σi = 0.1 in2, i = 1, · · · , 11. From linear-elastic finite-

element analysis (FEA), the maximum vertical displacement vmax(X) and maximum

axial stress σmax(X) occur at node 7 and member 3 or 12, respectively, where the

permissible displacement and stress are limited to dallow = 0.266 in (6.76 mm) and

σallow = 37, 680 psi (259.8 MPa), respectively. The system-level failure set is defined

as ΩF := {x : {y1(x) < 0} ∪ {y2(x) < 0}}, where the performance functions

y1(X) = 1− |vmax(X)|
dallow

, y2(X) = 1− |σmax(X)|
σallow

. (5.70)

Due to symmetry, the design vector is d = (µ1, · · · , µ11)
T∈ D ⊂ R11. The objective

is to minimize the volume of the truss structure subject to a system reliability con-

straint, limiting the maximum vertical displacement and the maximum axial stress.
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Therefore, the RBDO problem is formulated to

min
d∈D

c0(d) = V (d),

subject to c1(d) = Pd [{y1(X) < 0} ∪ {y2(X) < 0}]− Φ(−3) ≤ 0,

1.0 ≤ dk ≤ 30.0, k = 1, · · · , 11, (5.71)

where V (d) is the total volume of the truss. The initial design is d0 = (15, 15, 15, 15, 15,

15, 15, 15, 15, 15, 15)T in2 (×2.542 cm2). The approximate optimal solution is denoted

by d̄∗ = (d̄∗1, · · · , d̄∗11)T .

(4)

(1)

(7)

(2)

(10)

(5)

(8)

(3)

(11)

(9)

(6)

(17)

(12) (13) (14)

(16)

(15)(21)
(19)

(18)(20)

10,000 lb 10,000 lb 10,000 lb 10,000 lb16,000 lb

10 in 10 in 10 in 10 in 10 in 10 in

9
in

8
in

5
in

1

2

4
6 8

10

12

3 5 7 9 11

Figure 5.7: A six-bay, twenty-one-bar truss structure (Example 3)

The second column of Table 5.3 presents detailed optimization results gen-

erated by the proposed AS-PDD-MCS method employing S = 2. For comparison,

the optimization results from the multi-point, single-step method using an existing

truncated PDD-MCS approximation (S = 2, m = 2) for reliability and sensitivity

analyses [110] are also tabulated in the third column. According to Table 5.3, both

solutions reveal no constraint violations, but there are moderate to significant dif-
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ferences in the design variables at respective optima. This is possible because the

surrogate approximations grounded in adaptive-sparse and truncated PDD approxi-

mations are not necessarily the same or even similar. Therefore, when the original

performance functions in Equation (5.70) are replaced with two different variants of

the PDD approximation, the same initial condition may lead to distinct local optima,

as found in this specific example. To seek further credibility for this reasoning, the

RBDO problem, using these two optimal solutions as initial designs, was re-solved by

crude MCS (106 samples) for evaluating the constraint and its design sensitivities in

Equation (5.71). The optimal solutions from crude MCS, listed in the fourth and fifth

columns of Table 5.3, are the same as the initial designs, indicating that the optimal

solutions generated by the proposed and existing RBDO methods pertain to two dis-

tinct local optima. Comparing the values of objective functions at the two optima,

the proposed AS-PDD-MCS method yields a slightly lower volume of the truss than

the existing method. Furthermore, the AS-PDD-MCS method accomplishes this feat

by reducing the number of function evaluations by 42 percent.

It is important to recognize that the AS-PDD-SPA method can be applied to

solve this RBDO problem involving series-system reliability analysis by interpreting

the failure domain as ΩF := {x : ysys(x) < 0}, where ysys(X) := min{y1(X), y2(X)}

and then constructing an AS-PDD approximation of ysys(X). In doing so, however,

ysys(X) is no longer a smooth function of X, meaning that the convergence proper-

ties of the resulting AS-PDD-SPA method can be significantly deteriorated. More

importantly, the AS-PDD-SPA method is not suitable for a general system reliability
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problem involving multiple, interdependent component performance functions. This

is the primary reason why the AS-PDD-SPA method was not used in this example.

Table 5.3: Optimization results for the six-bay, twenty-one-bar truss problem

AS-PDD-MCS

Truncated

PDD-MCS

S = 2, m = 2

Crude-MCS-
I(a)

Crude-MCS-

II(b)

d̄∗1, in
2 5.0071 4.3799 5.0071 4.3799

d̄∗2, in
2 4.7132 3.9511 4.7132 3.9511

d̄∗3, in
2 2.7500 2.5637 2.7500 2.5637

d̄∗4, in
2 2.8494 3.6468 2.8494 3.6468

d̄∗5, in
2 2.7354 3.4131 2.7354 3.4131

d̄∗6, in
2 5.2246 3.8784 5.2246 3.8784

d̄∗7, in
2 1.8607 4.8285 1.8607 4.8285

d̄∗8, in
2 1.6262 3.1202 1.6262 3.1202

d̄∗9, in
2 3.2716 5.1164 3.2716 5.1164

d̃∗10, in
2 1.3084 3.2883 1.3084 3.2883

d̄∗11, in
2 2.4425 2.1743 2.4425 2.1743

c0, in
3 641.14 722.14 641.14 722.14

c1
(c) −0.2000×

10−4
−0.5400×

10−4
−0.2000×

10−4
−0.5400×

10−4

No. of yi
eval.,

i = 1 · · · , 2
4,886 8,464 264,000,000 280,000,000

(a) Crude-MCS-I: initial design is set to the optimal solution of AS-PDD-MCS, i.e., the optimal solution in
the second column.

(b) Crude-MCS-II: initial design is set to the optimal solution of truncated PDD-MCS, i.e., the optimal solution
in the third column.

(b) The constraint values are calculated by MCS with 106 sample size.
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5.8.4 Example 4: shape design of a jet engine bracket

The final example demonstrates the usefulness of the RBDO methods advo-

cated in designing an industrial-scale mechanical component, known as a jet engine

bracket, as shown in Figure 5.8(a). Seventy-nine random shape parameters, Xi,

i = 1, · · · , 79, resulting from manufacturing variability, describe the shape of a jet

engine bracket in three dimensions, including two rounded quadrilateral holes intro-

duced to reduce the mass of the jet engine bracket as much as possible. The design

variables, dk = Ed[Xk], k = 1, · · · ,79, as shown in Figure 5.9, are the means (mm) of

these 79 independent random variables, with Figures 5.8(b)-(d) depicting the initial

design of the jet engine bracket geometry at mean values of the shape parameters.

The centers of the four bottom circular holes are fixed. A deterministic horizontal

force, F = 43.091 kN, was applied at the center of the top circular hole with a 48◦

angle from the horizontal line, as shown in Figure 5.8(c), and a deterministic torque,

T = 0.1152 kN-m, was applied at the center of the top circular hole, as shown in

Figure 5.8(d). These boundary conditions are determined from the interaction of the

jet engine bracket with other mechanical components of the jet engine. The jet engine

bracket is made of Titanium Alloy Ti-6Al-4V with deterministic material properties,

as follows: mass density ρ = 4430 kg/m3, elastic modulus E = 113.8 GPa, Poisson’s

ratio ν = 0.342, fatigue strength coefficient σ
′

f = 2030 MPa, fatigue strength exponent

b = −0.104, fatigue ductility coefficient ϵ
′

f = 0.841, and fatigue ductility exponent

c = −0.69. The performance of the jet engine bracket was determined by its fatigue

durability obtained by (1) calculating maximum principal strain and mean stress at
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a point; and (2) calculating the fatigue crack-initiation life at that point from the

well-known Coffin-Manson-Morrow equation [108]. The objective is to minimize the

mass of the jet engine bracket by changing the shape of the geometry such that the

minimum fatigue crack-initiation life Nmin(X) exceeds a design threshold of Nc = 106

loading cycles with 99.865% probability. Mathematically, the RBDO for this problem

is defined to

min
d∈D

c0(d) = ρ

∫
D′(d)

dD′,

subject to c1(d) = Pd [y1(X) < 0]− Φ(−3) ≤ 0,

dk,L ≤ dk ≤ dk,U i = 1, ..., 79, (5.72)

where

y1(X) = Nmin(X)−Nc (5.73)

is a high-dimensional random response function. The initial design d0 = (d0,1, · · · , d0,79)T

mm; the upper and lower bounds of the design vector d = (d1, · · · , d79)T ∈ D ⊂ R79

are listed in Table 5.4. Figure 5.10 portrays the FEA mesh for the initial jet engine

bracket design, which comprises 341,112 nodes and 212,716 ten-noded, quadratic,

tetrahedral elements.
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Figure 5.8: A jet engine bracket; (a) a jet engine; (b) isometric view; (c) lateral view;
(d) top view
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Figure 5.9: Definitions of 79 design variables
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Table 5.4: Initial values, optimal values, and bounds of design variables for the jet
engine bracket problem

i d0,i
mm

d̄∗i
mm

di,L
mm

di,U
mm

i d0,i
mm

d̄∗i
mm

di,L
mm

di,U
mm

i d0,i
mm

d̄∗i
mm

di,L
mm

di,U
mm

1 75 58.00 58 75 28 45 20.00 20 45 55 1 15.00 1 15

2 60 67.00 60 67 29 64 60.00 60 64 56 28 23.00 23 28

3 38 58.00 26 58 30 45 24.00 24 45 57 -2 5.00 -2 5

4 75 45.00 45 75 31 59.5 35.00 35 59.5 58 30 23.00 23 30

5 75 18.00 18 75 32 45 30.00 30 45 59 4 22.00 4 22

6 38 58.00 26 58 33 28 22.00 22 34 60 32 46.00 32 46

7 75 27.00 27 75 34 45 38.00 38 45 61 1 10.00 1 10

8 60 67.00 60 67 35 100 87.00 87 100 62 28 23.00 23 28

9 75 40.00 40 75 36 20 32.00 20 32 63 0 5.00 0 5

10 100 87.00 87 100 37 64 60.00 60 64 64 30 40.00 30 40

11 8.5 14.00 8.5 14 38 20 36.00 20 36 65 1 15.00 1 15

12 64 63.92 60 64 39 59.5 48.00 48 59.5 66 32 46.00 32 46

13 8.5 19.00 8.5 19 40 20 25.00 20 25 67 1 16.00 1 16

14 59.5 44.00 44 59.5 41 59.5 48.00 48 59.5 68 30 23.00 23 30

15 8.5 19.00 8.5 19 42 19 -8 -8 19 69 4 20.00 4 20

16 59.5 48.00 48 59.5 43 64 64.00 60 64 70 40 10.00 10 40

17 7.5 -14 -14 7.5 44 19 0.00 0 19 71 48 40.00 40 48

18 64 64.00 60 64 45 19 7.00 7 19 72 40 10.00 10 40

19 7.5 -3.5 -3.5 7.5 46 15 62.62 15 65 73 48 40.00 40 48

20 7.5 1.50 1.5 7.5 47 1 16.57 1 18 74 40 10.00 10 40

21 45 25.00 25 45 48 1 18.00 1 18 75 48 40.00 40 48

22 64 60.00 60 64 49 15 61.82 15 65 76 40 10.00 10 40

23 45 24.00 24 45 50 15 65.00 15 65 77 48 40.00 40 48

24 59.5 35.00 35 59.5 51 1 80.00 1 80 78 33 -2 -2 33

25 45 30.00 30 45 52 1 46.73 1 80 79 52 40.00 40 52

26 28 22.00 22 34 53 15 59.33 15 65

27 45 38.00 38 45 54 30 40.00 30 40
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Figure 5.10: FEA mesh of the initial jet engine bracket design

Due to their finite bounds, the random variables Xi, i = 1, · · · , 79, were

assumed to follow truncated Gaussian distributions with densities

fXi
(xi) =

ϕ

(
xi − di
σi

)
Φ

(
Di

σi

)
− Φ

(
−Di

σi

) (5.74)

when ai ≤ xi ≤ bi and zero otherwise, where Φ(·) and ϕ(·) are the cumulative

distribution and probability density functions, respectively, of a standard Gaussian

random variable; σi = 0.2 are constants; ai = di −Di and bi = di +Di are the lower

and upper bounds, respectively, of Xi; and Di = 2.

The proposed AS-PDD-MCS method was applied to solve this jet engine

bracket design problem employing S = 1 since employing S ≥ 2 demands a large

number of FEAs leading to a prohibitive computational cost for this 79-dimensional
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problem. Figures 5.11(a) through (d) show the contour plots of the logarithm of fa-

tigue crack-initiation life at mean shapes of several design iterations, including the ini-

tial design, throughout the RBDO process. Due to a conservative initial design, with

fatigue life contour depicted in Figure 5.11(a), the minimum fatigue crack-initiation

life of 0.665 × 1010 cycles is much larger than the required fatigue crack-initiation

life of a million cycles. For the tolerance and subregion size parameters selected, 14

iterations and 2,808 FEA led to a final optimal design with the corresponding mean

shape presented in Figure 5.11(d).

Figure 5.11: Contours of logarithmic fatigue crack-initiation life at mean shapes of
the jet engine bracket by the multi-point, single-step PDD method; (a) initial design;
(b) iteration 4; (c) iteration 7; (d) iteration 14 (optimum)
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Table 5.4 exhibits the values of design variables, objective function, and con-

straint function for both the optimal and initial designs. The objective function c0

is reduced from 2.9977 kg at initial design to 0.4904 kg at optimal design — an al-

most 84 percent change. At optimum, the constraint function c1 is −1.35 × 10−3

and is, therefore, close to being active. Most of the design variables, except for d12,

d18, and d43, have undergone the most significant changes from their initial values,

prompting substantial modifications of the shapes or sizes of the outer boundaries,

rounded quadrilateral holes, and bottom surfaces of the engine bracket. The design

variables d12, d18, and d43, controlling minor features of outer boundaries, are virtu-

ally unchanged, because the associated initial values used are close to or the same as

their lower or upper bounds, which the design process is seeking. This final example

demonstrates that the RBDO methods developed — in particular, the AS-PDD-MCS

method — are capable of solving industrial-scale engineering design problems with

affordable computational cost.

5.9 Conclusion

Two new methods, namely, the AS-PDD-SPA method and the AS-PDD-MCS

method, are proposed for reliability-based design optimization of complex engineering

systems. The methods involve an adaptive-sparse polynomial dimensional decomposi-

tion of a high-dimensional stochastic response for reliability analysis, a novel integra-

tion of AS-PDD and score functions for calculating the sensitivities of the probability

failure with respect to design variables, and standard gradient-based optimization al-
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gorithms, encompassing a multi-point, single-step design process. The AS-PDD-SPA

method capitalizes on a novel integration of AS-PDD, SPA, and score functions. The

result is analytical formulae for calculating the failure probability and design sensi-

tivities, solving component-level RBDO problems. In contrast, the AS-PDD-MCS

method utilizes the embedded MCS of AS-PDD approximations and score functions.

Unlike the AS-PDD-SPA method, however, the failure probability and design sensi-

tivities in the AS-PDD-MCS method are estimated via efficient sampling of approx-

imate stochastic responses, thereby affording the method the capability to address

either component- or system-level RBDO problems. Furthermore, the AS-PDD-MCS

method is not influenced by any added approximations, involving calculations of the

saddlepoint and higher-order moments, of the AS-PDD-SPA method. Since both

methods are rooted in the AS-PDD approximation, a dimension-reduction approach

combining sparse- and full-grid quadratures is proposed to estimate the expansion co-

efficients more accurately than existing techniques. For the two methods developed,

both the failure probability and its design sensitivities are determined concurrently

from a single stochastic analysis or simulation. Consequently, the methods provide

not only more accurate, but also more computationally efficient, design solutions than

existing methods. Moreover, the multi-point, single-step design process embedded in

the proposed methods facilitates a solution of an RBDO problem with a large design

space. Precisely for this reason, the methods developed are capable of solving high-

dimensional practical engineering problems, as demonstrated by the shape design of

a jet engine bracket with 79 design variables.
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CHAPTER 6
STOCHASTIC DESIGN OPTIMIZATION INVOLVING MIXED

DESIGN VARIABLES

6.1 Introduction

This chapter presents a new method for RDO and RBDO involving both dis-

tributional and structural design variables. The method comprises: (1) a new aug-

mented PDD of a high-dimensional stochastic response for statistical moment and

reliability analyses; (2) an integration of the augmented PDD, score functions, and

finite-difference approximation for calculating the sensitivities of the first two mo-

ments and the failure probability with respect to distributional and structural design

variables; and (3) standard gradient-based optimization algorithms, encompassing a

multi-point, single-step design process. Section 6.2 formally defines general RDO and

RBDO problems involving mixed design variables, including their concomitant math-

ematical statements. Section 6.3 introduces the augmented PDD and its truncation

in terms of both input random variables and new random variables affiliated with

the distributional and structural design variables. The section also explains how the

truncated augmented PDD leads to stochastic analysis consisting of analytical formu-

lae for evaluating the first two moments and the embedded Monte Carlo simulation

(MCS) for reliability analysis. Section 6.4 demonstrates that the effort required to

calculate statistical moments or failure probability also delivers their design sensi-

tivities. Section 6.5 introduces a multi-point, single-step iterative scheme for RDO

and RBDO and elucidates how the stochastic analysis and design sensitivities are
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integrated with a gradient-based optimization algorithm. Section 6.6 presents four

numerical examples involving mathematical functions or solid-mechanics problems,

and contrasts the accuracy and computational efforts of the proposed methods for

sensitivity analysis of moments and reliability as well as solutions of two RDO/RBDO

problems, all entailing mixed design variables. Finally, the conclusions are drawn in

Section 6.7.

6.2 Design under Uncertainty

Consider a measurable space (Ωd,Fd), where Ωd is a sample space and Fd is a

σ-field on Ωd. ForM ∈ N and N ∈ N, let dT = (d, s) = (d1, · · · , dMd
, s1, · · · , sMs)

T ∈

D be an RM -valued design vector with non-empty closed setD ⊆ RM , whereMd,Ms ∈

N and M = Md +Ms, and let X := (X1, · · · , XN)
T : (Ωd,Fd) → (RN ,BN) be an

RN -valued input random vector with BN representing the Borel σ-field on RN , de-

scribing the statistical uncertainties in loads, material properties, and geometry of a

complex mechanical system. The design variables are grouped into two major classes:

(1) distributional design vector d with dimensionality Md, and (2) structural design

vector s with dimensionality Ms. A distributional design variable dk, k = 1, · · · ,Md,

can be any distribution parameter or a statistic—for instance, the mean and stan-

dard deviation—of one or more random variables. A structural design variable

sp, p = 1, · · · ,Ms, can be any deterministic parameter of a performance function.

Defined over (Ωd,Fd), let {Pd : F → [0, 1]} be a family of probability measures. The

probability law of X is completely defined by a family of the joint probability density
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functions (PDF) {fX(x;d), x ∈ RN , d ∈ D} that are associated with corresponding

probability measures
{
Pd,d ∈ RMd

}
, so that the probability triple (Ωd,Fd, Pd) of X

depends on d.

Let yl(X;d, s), l = 0, 1, 2, · · · , K, be a collection of K +1 real-valued, square-

integrable, measurable transformations on (Ωd,Fd), describing relevant geometry

(e.g., length, area, volume, mass) and performance functions of a complex system.

The function yl : (RN ,BN) → (R,B) in general is not only an explicit function of

distributional and structural design variables d and s, but also implicitly depends

on distributional design variables d via the probability law of X. There exist two

prominent variants of design optimization under uncertainty, described as follows.

6.2.1 Robust Design Optimization

The mathematical formulation of a general RDO problem involving an objec-

tive function c0 : RM → R and constraint functions cl : RM → R, where l = 1, · · · , K

and 1 ≤ K <∞, requires one to

min
(d,s)∈D⊆RM

c0(d, s) := w1
Ed [y0(X;d, s)]

µ∗0
+ w2

√
vard [y0(X;d, s)]

σ∗0
,

subject to cl(d, s) := αl

√
vard [yl(X;d, s)]− Ed [yl(X;d, s)] ≤ 0, l = 1, · · · , K,

dk,L ≤ dk ≤ dk,U , k = 1, · · · ,Md,

sp,L ≤ sp ≤ sp,U , p = 1, · · · ,Ms, (6.1)

where Ed[yl(X;d, s)] :=
∫
RN yl(x;d, s)fX(x;d)dx is the mean of yl(X;d, s) with Ed

denoting the expectation operator with respect to the probability measure fX(x;d)dx

ofX; vard[yl(X;d, s)] := Ed[{yl(X;d, s)−Ed[yl(X;d, s)]}2] is the variance of yl(X;d, s);



213

w1 ∈ R+
0 and w2 ∈ R+

0 are two non-negative, real-valued weights, satisfying w1+w2 =

1; µ∗0 ∈ R \ {0} and σ∗0 ∈ R+
0 \ {0} are two non-zero, real-valued scaling factors;

αl ∈ R+
0 , l = 0, 1, · · · , K, are non-negative, real-valued constants associated with the

probabilities of constraint satisfaction; dk,L and dk,U are the lower and upper bounds,

respectively, of dk; and sp,L and sp,U are the lower and upper bounds, respectively, of

sp.

In Equation (6.1), c0(d, s) describes the objective robustness, and cl(d, s), l =

1, · · · , K, describes the feasibility robustness of a given design. Evaluations of both

objective robustness and feasibility robustness, involving the first two moments of

various responses, are required for solving RDO problems, consequently demanding

statistical moment analysis.

6.2.2 Reliability-based Design Optimization

The mathematical formulation of a general RBDO problem involving an objec-

tive function c0 : RM → R and constraint functions cl : RM → R, where l = 1, · · · , K

and 1 ≤ K <∞, requires one to

min
(d,s)∈D⊆RM

c0(d, s)

subject to cl(d, s) := Pd [X ∈ ΩF,l(d, s)]− pl ≤ 0, l = 1, · · · , K,

dk,L ≤ dk ≤ dk,U , k = 1, · · · ,Md,

sp,L ≤ sp ≤ sp,U , p = 1, · · · ,Ms, (6.2)

where ΩF,l(d, s) ⊆ Ω is the lth failure set that, in general, may depend on d and s,

and 0 ≤ pl ≤ 1, l = 1, · · · , K, are target failure probabilities.
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In Equation (6.2), the objective function c0(d, s) is commonly prescribed as a

deterministic function of d and s, describing relevant system geometry, such as area,

volume, and mass. In contrast, the constraint functions cl(d, s), l = 1, 2, · · · , K,

are generally more complicated than the objective function. Depending on the failure

domain ΩF,l(d, s), a component or a system reliability analysis can be envisioned. For

component reliability analysis, the failure domain is often adequately described by a

single performance function yl(X;d, s), for instance, ΩF,l(d, s) := {x : yl(x;d, s) < 0},

whereas multiple, interdependent performance functions yl,i(x;d, s), i = 1, 2, · · · , are

required for system reliability analysis, leading, for example, to ΩF,l(d, s) := {x :

∪iyl,i(x;d, s) < 0} and ΩF,l(d, s) := {x : ∩iyl,i(x;d, s) < 0} for series and parallel

systems, respectively.

The RDO and RBDO problems described by Equations (6.1) or (6.2) entail

mixed design variables, and, therefore, they constitute more general stochastic design

problems than those studied in the past [1–6, 9, 12–14, 86, 89, 91, 93, 112, 117–124].

Solving such an RDO or RBDO problem using gradient-based optimization algorithms

mandates not only statistical moment and reliability analyses, but also the gradients

of moments and failure probability with respect to both distributional and structural

design variables. The focus of this work is to solve a general high-dimensional RDO or

RBDO problem described by Equation (6.1) or (6.2) for arbitrary square-integrable

functions yl(X;d, s), l = 0, 1, 2, · · · , K, and arbitrary probability distributions of X,

provided that a few regularity conditions are met.
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6.3 Stochastic Analysis

6.3.1 Augmented PDD

Consider two additional measurable spaces (Ω1,F1) and (Ω2,F2), where Ω1

and Ω2 are two sample spaces and F1 and F2 are two σ-fields on Ω1 and Ω2, respec-

tively. Let D := (D1, · · · , DMd
)T : (Ω1,F1) → (RMd ,BMd) and S := (S1, · · · , SMs)

T :

(Ω2,F2) → (RMs ,BMs) be two affiliated random vectors with BMd and BMs rep-

resenting the Borel σ-fields on RMd and RMs , respectively. The probability laws

of D and S are completely defined by selecting two families of the joint PDFs

{fD(d;µD), d ∈ RMd} and {fS(s;µS), s ∈ RMs} with probability measures P1 and

P2, and corresponding mean vectors E1[D] = µD and E2[S] = µS, respectively.

Introduce an augmented measurable space (ΩA,FA), where ΩA := Ωd×Ω1×Ω2

is the augmented sample space and FA = Fd × F1 × F2 is the corresponding σ-

field on ΩA. Let y(X;d, s) := y(X1, · · · , XN ;d, s) represent any one of the ran-

dom functions yl, l = 0, 1, · · · , K, introduced in Section 6.2. Then y(X;D,S) :=

y(X1, · · · , XN ;D,S), obtained by simply replacing deterministic vectors d and s with

random vectors D and S in y(X;d, s), has the same functional form of y(X;d, s). Let

L2(ΩA,FA, PA) represent a Hilbert space of square-integrable functions y(X;D,S)

with respect to the probability measure PA = Pd × P1 × P2 supported on RN+M .

Assuming independent coordinates, the joint PDFs of X, D, and S are expressed by

the products,

fA(x,d, s) = fX(x;d)fD(d;µD)fS(s;µS) =
N∏
i=1

fXi
(xi;d)

Md∏
k=1

fDk
(dk;µD)

Ms∏
p=1

fSp(sp;µS),

(6.3)
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of marginal PDFs fXi
: R → R+

0 of Xi, fDk
: R → R+

0 of Dk, and fSp : R → R+
0 of

Sp, i = 1, · · · , N , k = 1, · · · ,Md, and p = 1, · · · ,Ms. Then, for three given subsets

u ⊆ {1, · · · , N}, v ⊆ {1, · · · ,Md}, and w ⊆ {1, · · · ,Ms},

fuvw(xu,dv, sw) :=

|u|∏
q=1

fXiq
(xiq ;d)

|v|∏
r=1

fDkr
(dkr ;µD)

|w|∏
t=1

fSqt
(sqt ;µS) (6.4)

defines the marginal density function of the subvector (Xi1 , · · · , Xi|u| , Dk1 , · · · , Dk|v| ,

Sp1 , · · · , Sp|w|)
T , where | · | denotes cardinality.

Let {ψiqjq(Xiq ;d); jq = 0, 1, · · · }, {ϕkrlr(Dkr ;µD); lr = 0, 1, · · · }, and {φptnt

(Spt ;µS); nt = 0, 1, · · · } be three sets of univariate orthonormal polynomial ba-

sis functions in the Hilbert spaces L2(Ωiq ,d,Fiq ,d, Piq ,d), L2(Ωkr,1,Fkr,1, Pkr,1), and

L2(Ωpt,2,Fpt,2, Ppt,2), respectively, which are consistent with the probability mea-

sures Piq ,d, Pkr,1, and Pqt,2, respectively, where iq = 1, · · · , N , kr = 1, · · · ,Md,

and qt = 1, · · · ,Ms. For given ∅ ̸= u = {i1, · · · , i|u|} ⊆ {1, · · · , N}, ∅ ̸= v =

{k1, · · · , k|v|} ⊆ {1, · · · ,Md} and ∅ ̸= w = {p1, · · · , p|w|} ⊆ {1, · · · ,Ms}, define three

associated multi-indices j|u| = (j1, · · · , j|u|) ∈ N|u|0 , l|v| = (l1, · · · , l|v|) ∈ N|v|0 , and

n|w| = (n1, · · · , n|w|) ∈ N|w|0 . Denote the product polynomials by

ψuj|u|(Xu;d) =


1 u = ∅,

∏|u|
q=1 ψiqjq(Xip ;d) ∅ ̸= u = {i1, · · · , i|u|} ⊆ {1, · · · , N},

(6.5)

ϕvl|v|(dv;µD) =


1 v = ∅,

∏|v|
r=1 ϕkrlr(dkr ;µD) ∅ ̸= v = {k1, · · · , k|v|} ⊆ {1, · · · ,Md},

(6.6)
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and

φwn|w|(sw;µS) =


1 w = ∅,

∏|w|
t=1 φptnt(spt ;µS) ∅ ̸= w = {p1, · · · , p|w|} ⊆ {1, · · · ,Ms},

(6.7)

which form three orthonormal basis functions in L2(×|u|q=1Ωiq ,d,×
|u|
q=1Fiq ,d,×

|u|
q=1Piq ,d),

L2(×|v|r=1Ωkr,1,×
|v|
r=1Fkr,1,×

|v|
r=1Pkr,1) , and L2(×|w|t=1Ωpt,2,×

|w|
t=1Fpt,2,×

|w|
t=1Ppt,2), respec-

tively. Since the PDF of the subvector (Xi1 , · · · , Xi|u| , Dk1 , · · · , Dk|v| , Sp1 , · · · , Sp|w|)
T

is separable (independent), the product polynomial

ψuvwj|u|l|v|n|w|(Xu,Dv,Sw) := ψuj|u|(Xu;d)ϕvl|v|(dv;µD)φwn|w|(sw;µS) (6.8)

is consistent with the PDF fuvw(xu,dv, sw) and constitutes an orthonormal basis in

L2(×|u|q=1Ωiq ,d×
|v|
r=1Ωkr,1×

|w|
t=1Ωpt,2,×

|u|
q=1Fiq ,d×

|v|
r=1Fkr,1×

|w|
t=1Fpt,2,×

|u|
q=1Piq ,d×

|v|
r=1Pkr,1×

|w|
t=1Ppt,2).

(6.9)

The augmented PDD of a square-integrable function y represents a hierarchical

expansion

y(X;D,S) = y∅(d,µD,µS) +
∑

u⊆{1,··· ,N},v⊆{1,··· ,Md}
w⊆{1,··· ,Ms},|u|+|v|+|w|≥1

∑
j|u|∈N

|u|
0 ,l|v|∈N

|v|
0 ,n|w|∈N

|w|
0

j1,··· ,j|u|,l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)ψuj|u|(Xu;d)ϕvl|v|(Dv;µD)φwn|w|(Sw;µS), (6.10)

in terms of a set of random multivariate orthonormal polynomials of input variables

with increasing dimensions, where

y∅(d,µD,µS) :=

∫
RN

y(x;d, s)fA(x,d, s)dxddds (6.11)
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and

Cuvwj|u|l|v|n|w|(d,µD,µS) :=

∫
RN+M

y(x;d, s)ψuj|u|(xu;d)ϕvl|v|(dv;µD)φwn|w|(sw;µS)

×fA(x,d, s)dxddds,

u ⊆ {1, · · · , N}, v ⊆ {1, · · · ,Md}, w ⊆ {1, · · · ,Ms}, |u|+ |v|+ |w| ≥ 1,

j|u| ∈ N|u|0 , l|v| ∈ N|v|0 ,n|w| ∈ N|w|0 , j1, · · · , j|u|, l1, · · · , l|v|, n1, · · · , n|w| ̸= 0 (6.12)

are various expansion coefficients. The inner sum of Equation (6.10) precludes j1, · · · , j|u|

̸= 0, l1, · · · , l|v| ̸= 0, and n1, · · · , n|w| ̸= 0, that is, the individual degree of involved

variables cannot be zero since ψuj|u|(Xu;d), ϕvl|v|(Dv;µD), and φwn|w|(Sw;µS) are

zero-mean strictly |u|-variate, |v|-variate, |w|-variate functions, respectively. Derived

from the ANOVA dimensional decomposition [62], Equation (6.10) provides an exact

representation because it includes all main and interactive effects of input and affili-

ated variables. For instance, |u|+|v|+|w| = 0 corresponds to the constant component

function y∅, representing the mean effect of y; |u|+ |v|+ |w| = 1 leads to the univari-

ate component functions, describing the main effects of input and affiliated variables;

and |u| + |v| + |w| = S, 1 < S ≤ N +M , results in the S-variate component func-

tions, facilitating the interaction among at most S input and affiliated variables. The

augmented PDD expansion in Equation (6.10) can be used to reproduce the function

y(X;d, s) by simply replacing the random vectors D and S in Equation (6.10) with

deterministic vectors d and s, that is,

y(X;d, s) = y∅(d,µD,µS) +
∑

u⊆{1,··· ,N},v⊆{1,··· ,Md}
w⊆{1,··· ,Ms},|u|+|v|+|w|≥1

∑
j|u|∈N

|u|
0 ,l|v|∈N

|v|
0 ,n|w|∈N

|w|
0

j1,··· ,j|u|,l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)ψuj|u|(Xu;d)ϕvl|v|(dv;µD)φwn|w|(sw;µS) (6.13)
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6.3.2 Truncated Augmented PDD Approximation

The augmented PDD in Equation (6.10) is grounded on a fundamental con-

jecture known to be true in many real-world applications: given a high-dimensional

function y, its (|u|+ |v|+ |w|)-variate component functions decay rapidly with respect

to |u| + |v| + |w|, leading to accurate lower-variate approximations of y. Further-

more, the largest order of polynomials in each variable can be restricted to a finite

integer. Indeed, given the integers 0 ≤ S < N + M and 1 ≤ m < ∞ for all

1 ≤ |u| + |v| + |w| ≤ S and the ∞-norms 1 ≤ ||j|u|||∞ := max
(
j1, · · · , j|u|

)
≤ m,

1 ≤ ||l|v|||∞ := max
(
l1, · · · , l|v|

)
≤ m, and 1 ≤ ||n|w|||∞ := max

(
n1, · · · , n|w|

)
≤ m,

the truncated augmented PDD

ỹS,m(X;D,S) = y∅(d,µD,µS) +
∑

u⊆{1,··· ,N},v⊆{1,··· ,Md}
w⊆{1,··· ,Ms},1≤|u|+|v|+|w|≤S

∑
j|u|∈N|u|0 ,l|v|∈N|v|0 ,n|w|∈N|w|

0

∥j|u|∥∞
,∥l|v|∥∞

,∥n|w|∥∞
≤m

j1,··· ,j|u|,l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)ψuj|u|(Xu;d)ϕvl|v|(Dv;µD)φwn|w|(Sw;µS), (6.14)

leads to the S-variate, mth-order augmented PDD approximation, which for S > 0

includes interactive effects of at most S input and affiliated variables, on y. It is

elementary to show that when S → N + M and/or m → ∞, ỹS,m converges to

y in the mean-square sense, generating a hierarchical and convergent sequence of

approximations of y. The truncation parameters S and m depend on the dimensional

structure and nonlinearity of a stochastic response. The higher the values of S and

m, the higher the accuracy, but also the computational cost that is endowed with

an Sth-order polynomial computational complexity. Simply replacing the random

vectors D and S in Equation (6.14) with deterministic vectors d and s renders an
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S-variate, mth-order augmented PDD approximation

ỹS,m(X;d, s) = y∅(d,µD,µS) +
∑

u⊆{1,··· ,N},v⊆{1,··· ,Md}
w⊆{1,··· ,Ms},1≤|u|+|v|+|w|≤S

∑
j|u|∈N|u|0 ,l|v|∈N|v|0 ,n|w|∈N|w|

0

∥j|u|∥∞
,∥l|v|∥∞

,∥n|w|∥∞
≤m

j1,··· ,j|u|,l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)ψuj|u|(Xu;d)ϕvl|v|(dv;µD)φwn|w|(sw;µS) (6.15)

of the original function y(X;d, s). The S-variate, mth-order augmented PDD ap-

proximation will be referred to as truncated augmented PDD approximation in this

chapter.

6.3.3 Statistical Moment Analysis

Let m(r)(d, s) := Ed[y
r(X;d, s)], if it exists, define the raw moment of y of or-

der r, where r ∈ N. Given an S-variate, mth-order PDD approximation ỹS,m(X;d, s)

of y(X;d, s), let m̃
(r)
S,m(d, s) := Ed[ỹ

r
S,m(X;d, s)] define the raw moment of ỹS,m of

order r. The following paragraphs describe the explicit formulae or analytical expres-

sions for calculating the first two moments by the PDD approximation.

Applying the expectation operator Ed on ỹS,m(X;d, s) and ỹ2S,m(X;d, s), and

recognizing the zero-mean and orthonormal properties of orthonormal basis, the first

and second moments of the S-variate, mth-order augmented PDD approximation are

m̃
(1)
S,m(d, s) := Ed [ỹS,m(X;d, s)]

= y∅(d,µD,µS) +
∑

u⊆{1,··· ,N},v⊆{1,··· ,Md},w⊆{1,··· ,Ms}
|u|=0,1≤|u|+|v|+|w|≤S

∑
j|u|∈N|u|0 ,l|v|∈N|v|0 ,n|w|∈N|w|

0

∥j|u|∥∞
,∥l|v|∥∞

,∥n|w|∥∞
≤m

j1,··· ,j|u|,l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)ϕvl|v|(dv;µD)φwn|w|(sw;µS) (6.16)
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and

m̃
(2)
S,m(d, s) := Ed

[
ỹ2S,m(X;d, s)

]
=

[
m̃

(1)
S,m(d, s)

]2
+

∑
u⊆{1,··· ,N}
1≤|u|≤S

∑
j|u|∈N

|u|
0 ,∥j|u|∥∞

≤m
j1,··· ,j|u| ̸=0

E2
uj|u|,S,m

(d, s), (6.17)

respectively, where the second moment involves new expansion coefficients

Euj|u|,S,m(d, s) =
∑

v⊆{1,··· ,Md},w⊆{1,··· ,Ms}
1≤|u|+|v|+|w|≤S

∑
l|v|∈N

|v|
0 ,n|w|∈N

|w|
0 ,∥l|v|∥∞

,∥n|w|∥∞
≤m

l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)

×ϕvl|v|(dv;µD)φwn|w|(sw;µS), (6.18)

via restructuring

ỹS,m(X;d, s) = m̃
(1)
S,m(d, s) +

∑
u⊆{1,··· ,N}
1≤|u|≤S

∑
j|u|∈N

|u|
0 ∥j|u|∥∞

≤m
j1,··· ,j|u| ̸=0

Euj|u|,S,m(d, s)ψuj|u|(Xu;d) (6.19)

in terms of ψuj|u|(Xu;d). Clearly, the approximate moments in Equations (6.16) and

(6.17) approach the exact moments

m(1)(d, s) := Ed [y(X)] = y∅(d,µD,µS) +
∑

u⊆{1,··· ,N},v⊆{1,··· ,Md}
w⊆{1,··· ,Ms},|u|=0

|u|+|v|+|w|≥1

∑
j|u|∈N

|u|
0 ,l|v|∈N

|v|
0 ,n|w|∈N

|w|
0

j1,··· ,j|u|,l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)ϕvl|v|(dv;µD)φwn|w|(sw;µS) (6.20)

and

m(2)(d, s) := Ed

[
y2(X;d, s)

]
=
[
m(1)(d, s)

]2
+

∑
u⊆{1,··· ,N}
|u|≥1

∑
j|u|∈N

|u|
0

j1,··· ,j|u| ̸=0

E2
uj|u|

(d, s) (6.21)
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of y when S → N +M and m→ ∞, where

Euj|u|(d, s) =
∑

v⊆{1,··· ,Md},w⊆{1,··· ,Ms}
|u|+|v|+|w|≥1

∑
l|v|∈N

|v|
0 ,n|w|∈N

|w|
0

l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)

×ϕvl|v|(dv;µD)φwn|w|(sw;µS) (6.22)

is again derived from restructuring Equation (6.10) in terms of ψuj|u|(Xu;d), that is,

y(X;d, s) = m(1)(d, s) +
∑

u⊆{1,··· ,N}
|u|≥1

∑
j|u|∈N

|u|
0

j1,··· ,j|u| ̸=0

Euj|u|(d, s)ψuj|u|(Xu;d). (6.23)

The mean-square convergence of ỹS,m is guaranteed as y, and its component functions

are all members of the associated Hilbert spaces. In other words, the mean and

variance of ỹS,m are also convergent.

6.3.4 Reliability Analysis

A fundamental problem in reliability analysis entails calculation of the failure

probability

PF (d, s) := Pd [X ∈ ΩF (d, s)] =

∫
RN

IΩF
(x;d, s)fX(x;d)dx =: Ed [IΩF

(X;d, s)] ,

(6.24)

where ΩF (d, s) is the failure set and IΩF
(x;d, s) is the associated indicator function,

which is equal to one when x ∈ ΩF (d, s) and zero otherwise. In this subsection, the

augmented PDD method for reliability analysis, which exploits the augmented PDD

approximation for MCS, is elucidated.

Depending on component or system reliability analysis, let Ω̃F,S,m := {x :

ỹS,m(x;d, s) < 0} or Ω̃F,S,m := {x : ∪iỹi,S,m(x;d, s) < 0} or Ω̃F,S,m := {x : ∩iỹi,S,m(x;
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d, s) < 0} be an approximate failure set as a result of S-variate, mth-order PDD

approximations ỹS,m(X;d, s) of y(X;d, s) or ỹi,S,m(X;d, s) of yi(X;d, s). Then the

augmented PDD estimate of the failure probability PF (d, s) is

P̃F,S,m(d, s) = Ed

[
IΩ̃F,S,m

(X;d, s)
]
= lim

L→∞

1

L

L∑
l=1

IΩ̃F,S,m
(x(l);d, s), (6.25)

where L is the sample size, x(l) is the lth realization ofX, and IΩ̃F,S,m
(x;d, s) is another

indicator function, which is equal to one when x ∈ Ω̃F,S,m and zero otherwise.

Note that the simulation of the augmented PDD approximation in Equa-

tion (6.25) should not be confused with the crude MCS commonly used for pro-

ducing benchmark results. The crude MCS, which requires numerical calculations of

y(x(l);d, s) or yi(x
(l);d, s) for input samples x(l), l = 1, · · · , L, can be expensive or

even prohibitive, particularly when the sample size L needs to be very large for esti-

mating small failure probabilities. In contrast, the MCS embedded in PDD requires

evaluations of simple analytical functions that stem from an S-variate, mth-order ap-

proximation ỹS,m(x
(l);d, s) or ỹi,S,m(x

(l);d, s). Therefore, an arbitrarily large sample

size can be accommodated in the augmented PDD method.

6.3.5 Expansion Coefficients

The determination of the augmented PDD expansion coefficients y∅(d,µD,µS)

and Cuvwj|u|l|v|n|w|(d,µD,µS) is vitally important for moment and reliability analysis,

including their design sensitivities. As defined in Equations (6.11) and (6.12), the

coefficients involve various (N + M)-dimensional integrals over RN+M . For large

(N +M), a multivariate numerical integration employing an (N +M)-dimensional
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tensor product of a univariate quadrature formula is computationally prohibitive

and is, therefore, ruled out. An attractive alternative approach entails dimension-

reduction integration, which was originally developed by Xu and Rahman [22] for

high-dimensional numerical integration. For calculating y∅ and Cuvwj|u|l|v|n|w| , this

is accomplished by replacing the (N + M)-variate function y in Equations (6.11)

and (6.12) with an R-variate truncation of the referential dimensional decomposition

(RDD) at a chosen reference point, where R ≤ N +M . The result is a reduced inte-

gration scheme, requiring evaluations of at most R-dimensional integrals, described

as follows.

Let c = (c1, · · · , cN)T ∈ RN , c
′
= (c

′
1, · · · , c

′
Md

)T ∈ RMd , and c
′′
= (c

′′
1 , · · · , c

′′
Ms

)T

∈ RMs , which are commonly adopted as the means of X, D, and S, respectively,

be the reference points. Let y(xu1 ,dv1 , sw1 , c−u1 , c
′
−v1 , c

′′
−w1

) represent an (|u1| +

|v1| + |w1|)-variate RDD component function of y(x,d, s), where u1 ⊆ {1, · · · , N},

v1 ⊆ {1, · · · ,Md}, and w1 ⊆ {1, · · · ,Ms} . Given a positive integer S ≤ R ≤ N +M ,

when y(x,d, s) in Equations (6.11) and (6.12) is replaced with its R-variate RDD ap-

proximation, the coefficients y∅(d,µD,µS) and Cuvwj|u|l|v|n|w|(d,µD,µS) are estimated

from [22]

y∅(d,µD,µS)
∼=

R∑
i=0

(−1)i
(
N +M −R + i− 1

i

) ∑
u1⊆{1,··· ,N},v1⊆{1,··· ,Md}

w1⊆{1,··· ,Ms},|u1|+|v1|+|w1|=R−i∫
R|u1|+|v1|+|w1|

y(xu1 ,dv1 , sw1 , c−u1 , c
′

−v1 , c
′′

−w1
)

×fu1v1w1(xu1 ,dv1 , sw1)dxu1ddv1dsw1 (6.26)
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and

Cuvwj|u|l|v|n|w|(d,µD,µS)
∼=

R∑
i=0

(−1)i
(
N +M −R + i− 1

i

) ∑
u1⊆{1,··· ,N},v1⊆{1,··· ,Md}

w1⊆{1,··· ,Ms},u⊆u1,v⊆v1,w⊆w1
|u1|+|v1|+|w1|=R−i∫

R|u1|+|v1|+|w1|
y(xu1 ,dv1 , sw1 , c−u1 , c

′

−v1 , c
′′

−w1
)ψuvwj|u|l|v|n|w|(xu,dv, sw)

×fu1v1w1(xu1 ,dv1 , sw1)dxu1ddv1dsw1 , (6.27)

respectively, requiring evaluation of at most R-dimensional integrals. The reduced

integration facilitates calculation of the coefficients approaching their exact values

as R → N +M and is significantly more efficient than performing one (N +M)-

dimensional integration, particularly when R ≪ N + M . Hence, the computa-

tional effort is significantly lowered using the dimension-reduction integration. For

instance, when R = 1 or 2, Equations (6.26) and (6.27) involve one-, or at most,

two-dimensional integrations, respectively. For a general function y, numerical inte-

grations are required for performing various low-dimensional integrations in Equations

(6.26) and (6.27). See [22] for further details.

6.3.6 Computational Expense

The S-variate, mth-order augmented PDD approximation requires evaluations

of
∑k=S

k=0

(
N+M

k

)
mk expansion coefficients, including y∅(d,µD,µS). If these coeffi-

cients are estimated by dimension-reduction integration with R = S < N +M and,

therefore, involve at most an S-dimensional tensor product of an n-point univariate

quadrature rule depending on m, then the total cost for the S-variate, mth-order

approximation entails a maximum of
∑k=S

k=0

(
N+M

k

)
nk(m) function evaluations. If the
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integration points include a common point in each coordinate − a special case of

symmetric input PDFs and odd values of n − the number of function evaluations re-

duces to
∑k=S

k=0

(
N+M

k

)
(n(m)− 1)k. Nonetheless, the computational complexity of the

S-variate augmented PDD approximation is an Sth-order polynomial with respect

to the number of random variables or integration points. Therefore, the augmented

PDD with dimension-reduction integration of the expansion coefficients alleviates the

curse of dimensionality to an extent determined by S.

6.4 Design Sensitivity Analysis

When solving RDO and RBDO problems employing gradient-based optimiza-

tion algorithms, at least the first-order sensitivities of the first two moments of

y(X;d, s) and the failure probability with respect to each distributional and structural

design variable are required. In this section, a new method involving the augmented

PDD, score functions, and finite-difference approximation is presented. For such sen-

sitivity analysis, the following regularity conditions are assumed.

1. The design variables dk ∈ Dk ⊂ R, k = 1, · · · ,Md and sp ∈ Sp ⊂ R, p =

1, · · · ,Ms, where Dk and Sp are open intervals of R.

2. The PDF fX(x;d) of X is continuous. In addition, the partial derivative

∂fX(x;d) /∂dk , k = 1, · · · ,Md, exists and is finite for all x ∈ RN and dk ∈ Dk.

Furthermore, the statistical moments of y and failure probability are differen-

tiable functions of d ∈ RMd .

3. The performance function y(x;d, s) is continuous. In addition, the partial
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derivative ∂y(x;d, s) /∂sp , p = 1, · · · ,Ms, exists and is finite for all x ∈ RN ,

d ∈ RMd , and sp ∈ Sp. Furthermore, the statistical moments of y and failure

probability are differentiable functions of s ∈ RMs .

4. There exists a Lebesgue integrable dominating function z(x) such that∣∣∣∣yr(x;d, s)∂fX(x;d)∂dk

∣∣∣∣ ≤ z(x),

∣∣∣∣IΩF
(x;d, s)

∂fX(x;d)

∂dk

∣∣∣∣ ≤ z(x),

r = 1, 2, k = 1, · · · ,Md. (6.28)

6.4.1 Sensitivity of Moments

Suppose that the first-order derivative of a moment m(r)(d, s), where r = 1, 2,

of a generic stochastic response y(X;d, s) with respect to a distributional design

variable dk, 1 ≤ k ≤ Md, or with respect to a structural design variable sp, 1 ≤

p ≤Ms, is sought. Taking a partial derivative of the moment with respect to dk and

then applying the Lebesgue dominated convergence theorem [76], which permits the

differential and integral operators to be interchanged, yields the sensitivity

∂m(r)(d, s)

∂dk
:=

∂Ed [y
r(X;d, s)]

∂dk
=

∂

∂dk

∫
RN

yr(x;d, s)fX(x;d)dx

=

∫
RN

y(x;d, s)
∂ln f(x;d)

∂dk
fX(x;d)dx+

∫
RN

∂yr(x;d, s)

∂dk
fX(x;d)dx

=: Ed

[
yr(X;d, s)s

(1)
dk
(X;d)

]
+ Ed

[
∂yr(X;d, s)

∂dk

]
(6.29)

with respect to the distributional design variables, provided that fX(x;d) > 0. In

the last line of Equation (6.29), s
(1)
dk
(X;d) := ∂ ln fX(X;d) /∂dk is known as the first-

order score function for the design variable dk [74, 97]. Compared with the existing

sensitivity analysis [97, 110], the second term, Ed [∂y
r(X;d, s) /∂dk ], appears due to

the permissible explicit dependence of y on the distributional design variables.
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The evaluation of score functions, s
(1)
dk
(X;d), k = 1, · · · ,M , requires differenti-

ating only the PDF of X. Therefore, the resulting score functions can be determined

easily and, in many cases, analytically − for instance, when X follows classical prob-

ability distributions [97]. If the density function of X is arbitrarily prescribed, the

score functions can be calculated numerically, yet inexpensively, since no evaluation

of the performance function is involved. When X comprises independent variables, as

assumed here, ln fX(X;d) =
∑i=N

i=1 ln fXi
(xi;d) is a sum of N univariate log-density

(marginal) functions of random variables. Hence, in general, the score function for

the kth design variable, expressed by

s
(1)
dk
(X;d) =

N∑
i=1

∂ ln fXi
(Xi;d)

∂dk
=

N∑
i=1

ski(Xi;d), (6.30)

is also a sum of univariate functions ski(Xi;d) := ∂ ln fXi
(Xi;d) /∂dk , i = 1, · · · , N ,

which are the derivatives of log-density (marginal) functions. If dk is a distribu-

tion parameter of a single random variable Xik , then the score function reduces to

s
(1)
dk
(X;d) = ∂ ln fXik

(Xik ;d) /∂dk =: skik(Xik ;d), the derivative of the log-density

(marginal) function of Xik , which remains a univariate function. Nonetheless, com-

bining Equations (6.29) and (6.30), the sensitivity is obtained as

∂m(r)(d, s)

∂dk
=

N∑
i=1

Ed [y
r(X;d, s)ski(Xi;d)] + Ed

[
∂yr(X;d, s)

∂dk

]
. (6.31)

Similarly, taking a partial derivative of the moment with respect to sp yields

the sensitivity

∂m(r)(d, s)

∂sp
:=

∂Ed [y
r(X;d, s)]

∂sp
=

∂

∂dk

∫
RN

yr(x;d, s)fX(x;d)dx

=

∫
RN

∂yr(x;d, s)

∂sp
fX(x;d)dx =: Ed

[
∂yr(X;d, s)

∂sp

]
(6.32)
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with respect to the structural design variables, involving only one term because the

PDF fX(x;d) does not depend on s. In general, these sensitivities are not available

analytically since the moments are not either. Nonetheless, the moments and their

sensitivities, whether in conjunction with the distributional or structural design vari-

ables, have both been formulated as expectations of stochastic quantities with respect

to the same probability measure, facilitating their concurrent evaluations in a single

stochastic simulation or analysis.

Given an S-variate, mth-order augmented PDD approximation ỹS,m(X;d, s)

of y(X;d, s), let ∂m̃
(r)
S,m(d, s) /∂dk and ∂m̃

(r)
S,m(d, s) /∂sp define the approximations of

moment sensitivities. The following subsections describe the explicit formulae or an-

alytical expressions for calculating the moments by augmented PDD approximations

for r = 1, 2.

6.4.1.1 Sensitivity of the First Moment

Setting r = 1 in Equations (6.31) and (6.32), the sensitivities of the first

moment are

∂m(1)(d, s)

∂dk
=

N∑
i=1

Ed [y(X;d, s)ski(Xi;d)] + Ed

[
∂y(X;d, s)

∂dk

]
(6.33)

and

∂m(1)(d, s)

∂sp
= Ed

[
∂y(X;d, s)

∂sp

]
, (6.34)

where k = 1, · · · ,Md and p = 1, · · · ,Ms.

For independent coordinates of X, consider the Fourier-polynomial expansion
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of the kth log-density derivative function

ski(Xi;d) = ski,∅(d) +
∞∑
j=1

Dk,ij(d)ψij(Xi;d), (6.35)

consisting of its own expansion coefficients

ski,∅(d) :=

∫
R
ski(xi;d)fXi

(xi;d)dxi (6.36)

and

Dk,ij(d) :=

∫
R
ski(xi;d)ψij(xi;d)fXi

(xi;d)dxi. (6.37)

The expansion is valid if ski is square integrable with respect to the probability

measure of Xi. When blended with the PDD approximation, the score function leads

to analytical or closed-form expressions of the exact or approximate sensitivities as

follows.

6.4.1.1.1 Exact Sensitivities

Restructuring Equation (6.13) as

y(X;d, s) = m(1)(d, s) +
∑

u={i}⊂{1,··· ,N}

∑
j∈N0

j ̸=0

Cij(d, s)ψij(Xi;d) +
∑

u⊆{1,··· ,N},v⊆{1,··· ,Md}
w⊆{1,··· ,Ms},|u|>1∑

j|u|∈N
|u|
0 ,l|v|∈N

|v|
0 ,n|w|∈N

|w|
0

j1,··· ,j|u|,l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)ψuj|u|(Xu;d)ϕvl|v|(dv;µD)φwn|w|(sw;µS), (6.38)

where

Cij(d, s) =
∑

u={i},v⊆{1,··· ,Md}
w⊆{1,··· ,Ms}

∑
j|u|=j∈N0,l|v|∈N

|v|
0 ,n|w|∈N

|w|
0

j,l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)

×ϕvl|v|(dv;µD)φwn|w|(sw;µS), (6.39)
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and employing Equations (6.35) and (6.38), the product appearing on the right side

of Equation (6.33) expands to

y(X;d, s)ski(Xi;d) =

 m(1)(d, s) +
∑

u={i}⊂{1,··· ,N}

∑
j∈N0

j ̸=0

Cij(d, s)ψij(Xi;d)

+
∑

u⊆{1,··· ,N},v⊆{1,··· ,Md}
w⊆{1,··· ,Ms},|u|>1

∑
j|u|∈N

|u|
0 ,l|v|∈N

|v|
0 ,n|w|∈N

|w|
0

j1,··· ,j|u|,l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)ψuj|u|(Xu;d)

× ϕvl|v|(dv;µD)φwn|w|(sw;µS)


(
ski,∅(d) +

∞∑
j=1

Dk,ij(d)ψij(Xi;d)

)
, (6.40)

encountering the same orthonormal polynomial bases that are consistent with the

probability measure fX(x;d)dx. Taking the expectation of Equation (6.40), aided by

the zero-mean and orthonormal properties of orthonormal basis, leads to

Ed [y(X;d, s)ski(Xi;d)] = m(1)(d, s)ski,∅ +
∞∑
j=1

Dk,ij(d)Cij(d, s). (6.41)

In Equation (6.13), the PDD coefficients y∅(d,µD,µS) and Cuvwj|u|l|v|n|w|(d,µD,µS)

and the polynomial basis ψuj|u|(Xu;d) are written as functions involving d; however,

they should be treated as constants when seeking the derivatives of y(X;d, s) with

respect to d. Therefore, the term ∂y(X;d, s) /∂dk can be written as

∂y(X;d, s)

∂dk
=

∑
u⊆{1,··· ,N},k∈v⊆{1,··· ,Md}
w⊆{1,··· ,Ms},|u|+|v|+|w|≥1

∑
j|u|∈N

|u|
0 ,l|v|∈N

|v|
0 ,n|w|∈N

|w|
0

j1,··· ,j|u|,l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)

×ψuj|u|(Xu;d)
∂ϕvl|v|(dv;µD)

∂dk
φwn|w|(sw;µS). (6.42)
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Applying the expectation operator Ed on ∂y(X;d, s) /∂dk and recognizing again the

zero-mean and orthonormal properties of orthonormal basis, leads to

Ed

[
∂y(X;d, s)

∂dk

]
=

∑
u=∅,k∈v⊆{1,··· ,Md}

w⊆{1,··· ,Ms},|u|+|v|+|w|≥1

∑
j|u|∈N

|u|
0 ,l|v|∈N

|v|
0 ,n|w|∈N

|w|
0

j1,··· ,j|u|,l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)

×
∂ϕvl|v|(dv;µD)

∂dk
φwn|w|(sw;µS). (6.43)

Similarly, applying the expectation operator Ed on ∂y(X;d, s) /∂sp and recognizing

the zero-mean and orthonormal properties of orthonormal basis, leads to

Ed

[
∂y(X;d, s)

∂sp

]
=

∑
u=∅,v⊆{1,··· ,Md}
p∈w⊆{1,··· ,Ms}

|u|+|v|+|w|≥1

∑
j|u|∈N

|u|
0 ,l|v|∈N

|v|
0 ,n|w|∈N

|w|
0

j1,··· ,j|u|,l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)

×ϕvl|v|(dv;µD)
∂φwn|w|(sw;µS)

∂sp
. (6.44)

Thus, the sensitivities of the first moment are

∂m(1)(d, s)

∂dk
=

N∑
i=1

[
m(1)(d, s)ski,∅ +

∞∑
j=1

Dk,ij(d)Cij(d, s)

]
+

∑
u=∅,k∈v⊆{1,··· ,Md}

w⊆{1,··· ,Ms},|u|+|v|+|w|≥1∑
j|u|∈N

|u|
0 ,l|v|∈N

|v|
0 ,n|w|∈N

|w|
0

j1,··· ,j|u|,l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)
∂ϕvl|v|(dv;µD)

∂dk
φwn|w|(sw;µS) (6.45)

and

∂m(1)(d, s)

∂sp
=

∑
u=∅,v⊆{1,··· ,Md}

p∈w⊆{1,··· ,Ms},|u|+|v|+|w|≥1

∑
j|u|∈N

|u|
0 ,l|v|∈N

|v|
0 ,n|w|∈N

|w|
0

j1,··· ,j|u|,l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)

×ϕvl|v|(dv;µD)
∂φwn|w|(sw;µS)

∂sp
, (6.46)

representing closed-form expressions of the sensitivities in terms of the augmented

PDD or Fourier-polynomial expansion coefficients of the response or log-density deriva-

tive functions.
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6.4.1.1.2 Approximate Sensitivities

When y(X;d, s) and ski(Xi;d) are replaced with their S-variate, mth-order

augmented PDD andm′th-order Fourier-polynomial approximations, respectively, the

resultant sensitivity equations, expressed by

∂m̃
(1)
S,m(d, s)

∂dk
:=

∂Ed [ỹS,m(X;d, s)]

∂dk
=

N∑
i=1

[
m̃

(1)
S,m(d, s)ski,∅ +

mmin∑
j=1

Dk,ij(d)C̃ij(d, s)

]
+

∑
u=∅,k∈v⊆{1,··· ,Md}

w⊆{1,··· ,Ms},1≤|u|+|v|+|w|≤S

∑
j|u|∈N|u|0 ,l|v|∈N|v|0 ,n|w|∈N|w|

0

∥j|u|∥∞
,∥l|v|∥∞

,∥n|w|∥∞
≤m

j1,··· ,j|u|,l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)

×
∂ϕvl|v|(dv;µD)

∂dk
φwn|w|(sw;µS) (6.47)

and

∂m̃
(1)
S,m(d, s)

∂sp
:=

∂Ed [ỹS,m(X;d, s)]

∂sp
=

∑
u=∅,v⊆{1,··· ,Md}
p∈w⊆{1,··· ,Ms}

1≤|u|+|v|+|w|≤S

∑
j|u|∈N|u|0 ,l|v|∈N|v|0 ,n|w|∈N|w|

0

∥j|u|∥∞
,∥l|v|∥∞

,∥n|w|∥∞
≤m

j1,··· ,j|u|,l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)ϕvl|v|(dv;µD)
∂φwn|w|(sw;µS)

∂sp
, (6.48)

where mmin := min(m,m′), and

C̃ij(d, s) =
∑

u={i},v⊆{1,··· ,Md}
w⊆{1,··· ,Ms},|u|+|v|+|w|≤S

∑
j|u|=j∈N0,l|v|∈N|v|0 ,n|w|∈N|w|

0

∥j|u|∥∞
,∥l|v|∥∞

,∥n|w|∥∞
≤m

j,l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)

×ϕvl|v|(dv;µD)φwn|w|(sw;µS), (6.49)

become approximate, relying on the truncation parameters S, m, and m′ in general.

It is elementary to show that the approximate sensitivities of the first moment, at

appropriate limits, converge to the exact sensitivities when S → N +M , m → ∞,

and m′ → ∞.
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6.4.1.2 Sensitivity of the Second Moment

Setting r = 2 in Equations (6.31) and (6.32), the sensitivities of the second

moment are

∂m(2)(d, s)

∂dk
=

N∑
i=1

Ed

[
y2(X;d, s)ski(Xi;d)

]
+ 2Ed

[
y(X;d, s)

∂y(X;d, s)

∂dk

]
(6.50)

and

∂m(2)(d, s)

∂sp
= 2Ed

[
y(X;d, s)

∂y(X;d, s)

∂sp

]
, (6.51)

where k = 1, · · · ,Md and p = 1, · · · ,Ms.

6.4.1.2.1 Exact Sensitivities

Employing Equations (6.35) and (6.38), the first term Ed

[
y2(X;d, s)ski(Xi;d)

]
on the right hand side of Equation (6.50), aided by the zero-mean and orthonormal

properties of orthonormal basis, can be expressed by

Ed

[
y2(X;d, s)ski(Xi;d)

]
= m(2)(d, s)ski,∅ + 2m(1)(d, s)

∞∑
j=1

Cij(d, s)Dk,ij(d) + Tki,

(6.52)

where

Tki =
N∑

i1=1

N∑
i2=1

∞∑
j1=1

∞∑
j2=1

∞∑
j3=1

Ci1j1(d, s)Ci2j2(d, s)Dk,ij3(d)

×Ed [ψi1j1(Xi1 ;d)ψi2j2(Xi2 ;d)ψij3(Xi;d)] , (6.53)

requiring expectations of various products of three random orthonormal polynomials

as discussed in previous chapters.
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The evaluation of the second term Ed [y(X;d, s)∂y(X;d, s)/∂dk] on the right

hand side of Equation (6.50) requires restructuring Equation (6.42) as

∂y(X;d, s)

∂dk
= ydk∅(d, s) +

∑
u⊆{1,··· ,N}
|u|≥1

∑
j|u|∈N

|u|
0

j1,··· ,j|u| ̸=0

Fdkuj|u|(d, s)ψuj|u|(Xu;d), (6.54)

where

ydk∅(d, s) =
∑

u=∅,k∈v⊆{1,··· ,Md}
w⊆{1,··· ,Ms},|u|+|v|+|w|≥1

∑
l|v|∈N

|v|
0 ,n|w|∈N

|w|
0

l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)

×
∂ϕvl|v|(dv;µD)

∂dk
φwn|w|(sw;µS), (6.55)

and

Fdkuj|u|(d, s) =
∑

k∈v⊆{1,··· ,Md},w⊆{1,··· ,Ms}
|u|+|v|+|w|≥1

∑
l|v|∈N

|v|
0 ,n|w|∈N

|w|
0

l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)

×
∂ϕvl|v|(dv;µD)

∂dk
φwn|w|(sw;µS). (6.56)

Hence, from Equations (6.23) and (6.54), and utilizing the orthonormal properties of

ψuj|u|(Xu;d),

Ed

[
y(X;d, s)

∂y(X;d, s)

∂dk

]
= m(1)(d, s)ydk∅(d, s)

+
∑

u⊆{1,··· ,N}
|u|≥1

∑
j|u|∈N

|u|
0

j1,··· ,j|u| ̸=0

Euj|u|(d, s)Fdkuj|u|(d, s). (6.57)

Similarly, the term Ed [y(X;d, s)∂y(X;d, s) /∂sp ] on the right hand side of Equation

(6.51) can be analytically derived as

Ed

[
y(X;d, s)

∂y(X;d, s)

∂sp

]
= m(1)(d, s)ysp∅(d, s)

+
∑

u⊆{1,··· ,N}
|u|≥1

∑
j|u|∈N

|u|
0

j1,··· ,j|u| ̸=0

Euj|u|(d, s)Gspuj|u|(d, s), (6.58)
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where

ysp∅(d, s) =
∑

u=∅,v⊆{1,··· ,Md}
p∈w⊆{1,··· ,Ms},|u|+|v|+|w|≥1

∑
l|v|∈N

|v|
0 ,n|w|∈N

|w|
0

l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)

×ϕvl|v|(dv;µD)
∂φwn|w|(sw;µS)

∂sp
, (6.59)

and

Gspuj|u|(d, s) =
∑

v⊆{1,··· ,Md},p∈w⊆{1,··· ,Ms}
|u|+|v|+|w|≥1

∑
l|v|∈N

|v|
0 ,n|w|∈N

|w|
0

l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)

×ϕvl|v|(dv;µD)
∂φwn|w|(sw;µS)

∂sp
. (6.60)

Thus, the sensitivities of the second moment are

∂m(2)(d, s)

∂dk
=

N∑
i=1

[
m(2)(d, s)ski,∅ + 2m(1)(d, s)

∞∑
j=1

Cij(d, s)Dk,ij(d) + Tki

]
+m(1)(d, s)ydk∅(d, s) +

∑
u⊆{1,··· ,N}
|u|≥1

∑
j|u|∈N

|u|
0

j1,··· ,j|u| ̸=0

Euj|u|(d, s)Fdkuj|u|(d, s) (6.61)

and

∂m(2)(d, s)

∂sp
= m(1)(d, s)ysp∅(d, s)

+
∑

u⊆{1,··· ,N}
|u|≥1

∑
j|u|∈N

|u|
0

j1,··· ,j|u| ̸=0

Euj|u|(d, s)Gspuj|u|(d, s), (6.62)

representing closed-form expressions of the sensitivities in terms of the augmented

PDD or Fourier-polynomial expansion coefficients of the response or log-density deriva-

tive functions.
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6.4.1.2.2 Approximate Sensitivities

When y(X;d, s) and ski(Xi;d) are replaced with their S-variate, mth-order

augmented PDD andm′th-order Fourier-polynomial approximations, respectively, the

resultant sensitivity equations, expressed by

∂m̃
(2)
S,m(d, s)

∂dk
:=

∂Ed

[
ỹ2S,m(X;d, s)

]
∂dk

=
N∑
i=1

[
m̃

(2)
S,m(d, s)ski,∅ + 2m̃

(1)
S,m(d, s)

×
mmin∑
j=1

C̃ij(d, s)Dk,ij(d) + T̃ki,m,m′

]
+ m̃

(1)
S,m(d, s)ỹdk∅,S,m(d, s)

+
∑

u⊆{1,··· ,N}
1≤|u|≤S

∑
j|u|∈N

|u|
0 ,∥j|u|∥∞

≤m
j1,··· ,j|u| ̸=0

Euj|u|,S,m(d, s)Fdkuj|u|,S,m(d, s) (6.63)

and

∂m̃
(2)
S,m(d, s)

∂sp
:=

∂Ed

[
ỹ2S,m(X;d, s)

]
∂sp

= m̃
(1)
S,m(d, s)ỹsp∅,S,m(d, s)

+
∑

u⊆{1,··· ,N}
1≤|u|≤S

∑
j|u|∈N

|u|
0 ,∥j|u|∥∞

≤m
j1,··· ,j|u| ̸=0

Euj|u|,S,m(d, s)Gspuj|u|,S,m(d, s), (6.64)

where mmin := min(m,m′),

ỹdk∅,S,m(d, s) =
∑

u=∅,k∈v⊆{1,··· ,Md}
w⊆{1,··· ,Ms}

1≤|u|+|v|+|w|≤S

∑
l|v|∈N|v|0 ,n|w|∈N|w|

0

∥l|v|∥∞
,∥n|w|∥∞

≤m

l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)

×
∂ϕvl|v|(dv;µD)

∂dk
φwn|w|(sw;µS), (6.65)

ỹsp∅,S,m(d, s) =
∑

u=∅,v⊆{1,··· ,Md}
p∈w⊆{1,··· ,Ms}

1≤|u|+|v|+|w|≤S

∑
l|v|∈N|v|0 ,n|w|∈N|w|

0

∥l|v|∥∞
,∥n|w|∥∞

≤m

l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)

×ϕvl|v|(dv;µD)
∂φwn|w|(sw;µS)

∂sp
, (6.66)
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Fdkuj|u|,S,m(d, s) =
∑

k∈v⊆{1,··· ,Md},w⊆{1,··· ,Ms}
1≤|u|+|v|+|w|≤S

∑
l|v|∈N|v|0 ,n|w|∈N|w|

0

∥l|v|∥∞
,∥n|w|∥∞

≤m

l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)

×
∂ϕvl|v|(dv;µD)

∂dk
φwn|w|(sw;µS), (6.67)

T̃ki,m,m′ =
N∑

i1=1

N∑
i2=1

m∑
j1=1

m∑
j2=1

m′∑
j3=1

C̃i1j1(d, s)C̃i2j2(d, s)Dk,ij3(d)×

Ed [ψi1j1(Xi1 ;d)ψi2j2(Xi2 ;d)ψij3(Xi;d)] , (6.68)

Gspuj|u|,S,m(d, s) =
∑

v⊆{1,··· ,Md},p∈w⊆{1,··· ,Ms}
1≤|u|+|v|+|w|≤S

∑
l|v|∈N|v|0 ,n|w|∈N|w|

0

∥l|v|∥∞
,∥n|w|∥∞

≤m

l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)

×ϕvl|v|(dv;µD)
∂φwn|w|(sw;µS)

∂sp
. (6.69)

become approximate, relying on the truncation parameters S, m, and m′ in general.

It is elementary to show that the approximate sensitivities of the second moment also

converge, to the exact sensitivities when S → N +M , m→ ∞, and m′ → ∞.

6.4.2 Sensitivity of Failure Probability

Taking a partial derivative of the augmented PDD estimate of the failure

probability in Equation (6.25) with respect to dk, k = 1, · · · ,Md or sp, p = 1, · · · ,Ms,

produces

∂P̃F,S,m(d, s)

∂dk
:=

∂Ed

[
IΩ̃F,S,m

(X;d, s)
]

∂dk

(6.70)

or

∂P̃F,S,m(d, s)

∂sp
:=

∂Ed

[
IΩ̃F,S,m

(X;d, s)
]

∂sp

, (6.71)
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where IΩ̃F,S,m
(x;d, s) is the augmented PDD-generated indicator function, which is

equal to one when x ∈ Ω̃F,S,m and zero otherwise. Since IΩ̃F,S,m
(x;d, s) depends

on the design vectors d and s and their corresponding derivatives are infinite, the

Lebesgue dominated convergence theorem is not applicable. Hence, the PDD-MCS

method developed in previous works [75, 110, 124] for the reliability sensitivity of per-

formance functions involving solely distributional design variables cannot be applied.

The following finite-difference formulae, utilizing the augmented PDD expansion of

the response function y(X;d, s), are proposed to evaluate the sensitivity of reliability.

Assume that the design sensitivities at the design point (d, s) are sought.

Let the small perturbations of the finite-difference approximation be ∆dk and ∆sp

for the kth component of d and the pth component of s, respectively, where k =

1, · · · ,Md and p = 1, · · · ,Ms. For the forward finite-difference approximation, the

corresponding perturbed design vectors are d+∆dk ·ek and s+∆sp ·ep, respectively,

where ek is the Md-dimensional basis vector, in which the kth component is one and

other components are zeros ; similarly, ep is theMs-dimensional basis vector, in which

the pth component is one and other components are zeros. Then, Equation (6.15)

induces two additional approximate response functions

ỹS,m(X;d+∆dk · ek, s) = y∅(d,µD,µS) +
∑

u⊆{1,··· ,N},v⊆{1,··· ,Md}
w⊆{1,··· ,Ms},1≤|u|+|v|+|w|≤S∑

j|u|∈N|u|0 ,l|v|∈N|v|0 ,n|w|∈N|w|
0

∥j|u|∥∞
,∥l|v|∥∞

,∥n|w|∥∞
≤m

j1,··· ,j|u|,l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)ψuj|u|(Xu;d)

×ϕvl|v|((d+∆dk · ek)v;µD)φwn|w|(sw;µS) (6.72)
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and

ỹS,m(X;d, s+∆sp · ep) = yi,∅(d,µD,µS) +
∑

u⊆{1,··· ,N},v⊆{1,··· ,Md}
w⊆{1,··· ,Ms},1≤|u|+|v|+|w|≤S∑

j|u|∈N|u|0 ,l|v|∈N|v|0 ,n|w|∈N|w|
0

∥j|u|∥∞
,∥l|v|∥∞

,∥n|w|∥∞
≤m

j1,··· ,j|u|,l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)ψuj|u|(Xu;d)

×ϕvl|v|(dv;µD)φwn|w|((s+∆sp · ep)w;µS), (6.73)

owing to two finite-difference perturbations. The sensitivity of the probability of

failure with respect to dk by the forward finite-difference approximation is

∂P̃F,S,m(d, s)

∂dk
= lim

∆dk→0

1

∆dk

[∫
RN

IΩ̃F,S,m,∆d
(X;d+∆dk · ek, s)fX(x;d+∆dk · ek)dx

−
∫
RN

IΩ̃F,S,m
(X;d, s)fX(x;d)dx

]
= lim

∆dk→0

1

∆dk
lim
L→∞

1

L

[
L∑

l1=1

IΩ̃F,S,m,∆d
(x(l1);d+∆dk · ek, s)

−
L∑

l2=1

IΩ̃F,S,m
(x(l2);d, s)

]
, k = 1, · · · ,Md, (6.74)

where Ω̃F,S,m,∆d and Ω̃F,S,m are failure domains determined by ỹS,m(X;d+∆dk ·ek, s)

and ỹS,m(X;d, s), respectively, L is the sample size, x(l1) is the l1th realization of X

with respect to PDF fX(x;d + ∆dk · ek), and x(l2) is the l2th realization of X with

respect to PDF fX(x;d).

Similarly, the sensitivity of the probability of failure with respect to sp by
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finite-difference approximation is

∂P̃F,S,m(d, s)

∂sp
= lim

∆sp→0

1

∆sp

[∫
RN

IΩ̃F,S,m,∆s
(X;d, s+∆sp · ep)fX(x;d)dx

−
∫
RN

IΩ̃F,S,m
(X;d, s)fX(x;d)dx

]
= lim

∆sp→0

1

∆sp
lim
L→∞

1

L

L∑
l=1

[
IΩ̃F,S,m,∆s

(x(l);d, s+∆sp · ep)

−IΩ̃F,S,m
(x(l);d, s)

]
, p = 1, · · · ,Ms, (6.75)

where Ω̃F,S,m,∆s and Ω̃F,S,m are failure domains determined by ỹS,m(X;d, s+∆sp · ep)

and ỹS,m(X;d, s), respectively, L is the sample size, and x(l) is the lth realization of

X with respect to PDF fX(x;d).

It is important to note that two additional approximate response functions in

Equations (6.72) and (6.73) are derived from the existing augmented PDD approxi-

mation used in Equation (6.25) for reliability analysis, requiring no additional original

function evaluations. Therefore, the reliability and its sensitivities have both been

formulated as embedded MCS based on the same PDD expansion, facilitating their

concurrent evaluations in a single stochastic simulation or analysis.

6.5 Proposed Optimization Method

The augmented PDD approximations described in the preceding sections pro-

vide a means to evaluate the objective and constraint functions, including their design

sensitivities, from a single stochastic analysis. An integration of reliability analysis,

design sensitivity analysis, and a suitable optimization algorithm should render a con-

vergent solution of the RDO and RBDO problems in Equations (6.1) and (6.2). How-

ever, new stochastic and design sensitivity analyses, entailing re-calculations of the
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augmented PDD expansion coefficients, are needed at every design iteration. There-

fore, a straightforward integration is expensive, depending on the cost of evaluating

the objective and constraint functions and the requisite number of design iterations.

In this section, a multi-point design process [84, 112, 124], where a series of single-

step, augmented PDD approximations are built on a local subregion of the design

space, is presented for solving the RDO and RBDO problems.

6.5.1 Multipoint Approximation

Let

D = ×k=Md
k=1 [dk,L, dk,U ]×p=Ms

p=1 [sp,L, sp,U ] ⊆ RM (6.76)

be a rectangular domain, representing the design space of the RDO and RBDO

problems defined by Equations (6.1) and (6.2). For scalar variables 0 < β
(q)
d,k ≤ 1,

0 < β
(q)
s,p ≤ 1, and an initial design vector d

(q)
0 = (d

(q)
1,0, · · · , d

(q)
Md,0

, s
(q)
1,0, · · · , s

(q)
Ms,0

), the

subset

D(q) = ×k=Md
k=1

[
d
(q)
k,0 − β

(q)
d,k(dk,U − dk,L)/2, d

(q)
k,0 + β

(q)
d,k(dk,U − dk,L)/2

]
×p=Ms

p=1

[
s
(q)
p,0 − β(q)

s,p(sp,U − sp,L)/2, s
(q)
p,0 + β(q)

s,p(sp,U − sp,L)/2
]

⊆ D ⊆ RM (6.77)

defines the qth subregion for q = 1, 2, · · · . Using the multipoint approximation [84,

112, 124], the original RDO and RBDO problems in Equations (6.1) and (6.2) are

exchanged with a succession of simpler subproblems, as follows.
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1. RDO

min
(d,s)∈D(q)⊆D

c̃
(q)
0,S,m(d, s) := w1

Ed

[
ỹ
(q)
0,S,m(X;d, s)

]
µ∗0

+ w2

√
vard

[
ỹ
(q)
0,S,m(X;d, s)

]
σ∗0

,

subject to c̃
(q)
l,S,m(d, s) := αl

√
vard

[
ỹ
(q)
l,S,m(X;d, s)

]
− Ed

[
ỹ
(q)
l,S,m(X;d, s)

]
≤ 0,

l = 1, · · · , K,

d
(q)
k,0 − β

(q)
d,k(dk,U − dk,L)/2 ≤ dk ≤ d

(q)
k,0 + β

(q)
d,k(dk,U − dk,L)/2,

k = 1, · · · ,Md,

s
(q)
p,0 − β(q)

s,p(sp,U − sp,L)/2 ≤ sp ≤ s
(q)
p,0 + β(q)

s,p(sp,U − sp,L)/2,

p = 1, · · · ,Ms. (6.78)

2. RBDO

min
(d,s)∈D(q)⊆D

c̃
(q)
0,S,m(d, s),

subject to c̃
(q)
l,S,m(d, s) := Pd

[
X ∈ Ω̃

(q)
F,l,S,m(d, s)

]
− pl ≤ 0, l = 1, · · · , K,

d
(q)
k,0 − β

(q)
d,k(dk,U − dk,L)/2 ≤ dk ≤ d

(q)
k,0 + β

(q)
d,k(dk,U − dk,L)/2,

k = 1, · · · ,Md,

s
(q)
p,0 − β(q)

s,p(sp,U − sp,L)/2 ≤ sp ≤ s
(q)
p,0 + β(q)

s,p(sp,U − sp,L)/2,

p = 1, · · · ,Ms. (6.79)

In Equations (6.78) and (6.79), c̃
(q)
0,S,m, ỹ

(q)
0,S,m, c̃

(q)
l,S,m, ỹ

(q)
l,S,m, and Ω̃

(q)
F,l,S,m, l = 1, 2, · · · , K,

are local S-variate, mth-order augmented PDD approximations of c0, y0, cl, yl, and

ΩF,l, respectively, at iteration q, where Ω̃
(q)
F,l,S,m is defined using local augmented PDD

approximations of ỹ
(q)
l,S,m of yl; and d

(q)
k,0−β

(q)
k (dk,U − dk,L)/2, d

(q)
k,0+β

(q)
k (dk,U − dk,L)/2,
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s
(q)
p,0−β

(q)
s,p(sp,U − sp,L)/2, and s

(q)
p,0+β

(q)
s,p(sp,U − sp,L)/2, also known as the move limits,

are the lower and upper bounds, respectively, of the associated coordinate of subre-

gion D(q). Hence, the original objective and constraint functions are replaced with

those derived locally from respective augmented PDD approximations. Since the aug-

mented PDD approximations are mean-square convergent [97, 99], they also converge

in probability and in distribution. Therefore, given a subregion D(q), the solution

of the associated RDO and RBDO subproblems also converges when S → N +M ,

m→ ∞, and m′ → ∞.

6.5.2 Single-Step Procedure

The single-step procedure is motivated on solving each RDO or RBDO sub-

problem in Equation (6.78) or (6.79) from a single stochastic analysis by sidestepping

the need to recalculate the PDD expansion coefficients at every design iteration. It

subsumes two important assumptions: (1) an S-variate, mth-order augmented PDD

approximation ỹS,m of y at the initial design is acceptable for all possible designs in

the subregion; and (2) the expansion coefficients for one design, derived from those

generated for another design, are accurate.

Consider a change of the probability measure of (X,D,S) from fX(x;d)fD(d;

µD)fS(s;µS)dxddds to fX(x;d
′
)fD(d;µ

′
D)fS(s;µ

′
S)dxddds , where (d, s) and (d

′
, s

′
)

are two arbitrary design vectors corresponding to old and new designs, respectively,

and µ
′
D and µ

′
S are new mean vectors for the corresponding affiliated random vec-

tors. Let {ψiqjq(Xiq ;d
′
); jq = 0, 1, · · · } , {ϕkrlr(Dkr ;µ

′
D); lr = 0, 1, · · · }, and
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{φptnt(Spt ;µ
′
S); nt = 0, 1, · · · } be three sets of new orthonormal polynomial basis

functions consistent with the marginal probability measures fXiq
(xiq ;d

′)dxiq of Xi,

fDkr
(dkr ;µ

′
D)ddkr of Dkr , and fSpt

(spt ;µ
′
S)dspt of Spt , respectively, producing new

product polynomials

ψuj|u|(Xu;d
′
)ϕvl|v|(dv;µ

′

D)φwn|w|(sw;µ
′

S) =

|u|∏
q=1

ψiqjq(Xiq ;d
′
)

|v|∏
r=1

ϕkrlr(dkr ;µ
′

D)

×
|w|∏
t=1

φptnt(spt ;µ
′

S), (6.80)

where ∅ ̸= u ⊆ {1, · · · , N}, ∅ ̸= v ⊆ {1, · · · ,Md} and ∅ ̸= w ⊆ {1, · · · ,Ms}. Assume

that the expansion coefficients, y∅(d,µD,µS) and Cuj|u|(d,µD,µS), for the old design

have been calculated already. Then, the expansion coefficients for the new design are

determined from

y∅(d
′
,µ

′

D,µ
′

S) =

∫
RN


∑

u⊆{1,··· ,N},v⊆{1,··· ,Md}
w⊆{1,··· ,Ms},|u|+|v|+|w|≥1

∑
j|u|∈N

|u|
0 ,l|v|∈N

|v|
0 ,n|w|∈N

|w|
0

j1,··· ,j|u|,l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)

× ψuj|u|(xu;d)ϕvl|v|(dv;µD)φwn|w|(sw;µS) + y∅(d,µD,µS)


×fX(x;d

′
)fD(d;µ

′

D)fS(s;µ
′

S)dxddds (6.81)
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and

Cuvwj|u|l|v|n|w|(d
′
,µ

′

D,µ
′

S) =

∫
RN


∑

u⊆{1,··· ,N},v⊆{1,··· ,Md}
w⊆{1,··· ,Ms},|u|+|v|+|w|≥1

∑
j|u|∈N

|u|
0 ,l|v|∈N

|v|
0 ,n|w|∈N

|w|
0

j1,··· ,j|u|,l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)ψuj|u|(xu;d)ϕvl|v|(dv;µD)φwn|w|(sw;µS)

+ y∅(d,µD,µS)

ψuj|u|(xu;d
′
)ϕvn|v|(dv;µ

′

D)φwn|w|(sw;µ
′

S)

×fX(x;d
′
)fD(d;µ

′

D)fS(s;µ
′

S)dxddds (6.82)

by recycling the old expansion coefficients and using orthonormal polynomials as-

sociated with both designs. The relationship between the old and new coefficients,

described by Equations (6.81) and (6.82), is exact and is obtained by replacing y

in Equations (6.11) and (6.12) with the right side of Equation (6.10). However, in

practice, when the S-variate, m-th order augmented PDD approximation (Equation

(6.14)) is used to replace y in Equations (6.11) and (6.12), then the new expansion

coefficients,

y∅(d
′
,µ

′

D,µ
′

S) =

∫
RN


∑

u⊆{1,··· ,N},v⊆{1,··· ,Md}
w⊆{1,··· ,Ms},1≤|u|+|v|+|w|≤S

∑
j|u|∈N|u|0 ,l|v|∈N|v|0 ,n|w|∈N|w|

0

∥j|u|∥∞
,∥l|v|∥∞

,∥n|w|∥∞
≤m

j1,··· ,j|u|,l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d,µD,µS)ψuj|u|(xu;d)ϕvl|v|(dv;µD)φwn|w|(sw;µS)

+ y∅(d,µD,µS)

 fX(x;d
′
)fD(d;µ

′

D)fS(s;µ
′

S)dxddds (6.83)
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and

Cuvwj|u|l|v|n|w|(d
′
,µ

′

D,µ
′

S) =

∫
RN


∑

u⊆{1,··· ,N},v⊆{1,··· ,Md}
w⊆{1,··· ,Ms},1≤|u|+|v|+|w|≤S

∑
j|u|∈N|u|0 ,l|v|∈N|v|0 ,n|w|∈N|w|

0

∥j|u|∥∞
,∥l|v|∥∞

,∥n|w|∥∞
≤m

j1,··· ,j|u|,l1,··· ,l|v|,n1,··· ,n|w| ̸=0

Cuvwj|u|l|v|n|w|(d, s)ψuj|u|(xu;d)ϕvl|v|(dv;µD)φwn|w|(sw;µS)

+ y∅(d,µD,µS)

ψuj|u|(xu;d
′
)ϕvl|v|(dv;µ

′

D)φwn|w|(sw;µ
′

S)

×fX(x;d
′
)fD(d;µ

′

D)fS(s;µ
′

S)dxddds, (6.84)

which are applicable for u ⊆ {1, · · · , N}, v ⊆ {1, · · · ,Md}, w ⊆ {1, · · · ,Ms}, and

1 ≤ |u|+ |v|+ |w| ≤ S, become approximate, although convergent. Simply replacing

µ
′
D and µ

′
S with d

′
and s

′
, respectively, in Equations (6.83) and (6.84) leads to the

PDD coefficients for the new design. Furthermore, the integrals in Equations (6.83)

and (6.84) consist of finite-order polynomial functions of at most S variables and

can be evaluated inexpensively without having to compute the original function y for

the new design. Therefore, new stochastic analyses, all employing S-variate, mth-

order augmented PDD approximation of y, are conducted with little additional cost

during all design iterations, drastically curbing the computational effort of solving an

RDO/RBDO subproblem.

6.5.3 Proposed Multipoint Single-Step Design Process

When the multipoint approximation is combined with the single-step proce-

dure, the result is an accurate and efficient design process to solve the RDO and
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RBDO problems defined by Equations (6.1) and (6.2). Using the single-step proce-

dure, the design solution of an individual RDO/RBDO subproblem becomes the initial

design for the next RDO/RBDO subproblem. Then, the move limits are updated,

and the optimization is repeated iteratively until an optimal solution is attained. The

method is schematically depicted in Figure 6.1. Given an initial design (d0, s0), a se-

quence of design solutions, obtained successively for each subregion D(q) and using

the S-variate, mth-order augmented PDD approximation, leads to an approximate

optimal solution (d̃∗, s̃∗) of the RDO/RBDO problem. In contrast, an augmented

PDD approximation constructed for the entire design space D, if it commits large

approximation errors, may possibly lead to a premature or erroneous design solution.

The multipoint approximation in the proposed methods overcomes this quandary by

adopting smaller subregions and local augmented PDD approximations, whereas the

single-step procedure diminishes the computational requirement as much as possible

by recycling the PDD expansion coefficients.

When S → N +M , m → ∞, m′ → ∞, and q → ∞, the moments, reliabil-

ity, and their design sensitivities by the augmented PDD approximations converge to

their exactness, yielding coincident solutions of the original RDO/RBDO problems

(Equations (6.1) and (6.2)) and RDO/RBDO subproblems (Equations (6.78) and

(6.79)). However, if the subregions are sufficiently small, then for finite and possibly

low values of S and m, Equation (6.78) or (6.79) is expected to generate an accu-

rate solution of Equation (6.1) or (6.2), the principal motivation for developing the

augmented PDD methods.
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Contours of Augmented PDD

approximation of c0 at initial

design .

Contours of c0
Multipoint step

Optimization without

multipoint step

Subregion

( )

*( , ) q
d s

0 0( , )d s

0 0( , )d s

* *( , )d s
*** ***

Figure 6.1: A schematic description of the multi-point, single-step design process

The augmented PDD methods in conjunction with the combined multi-point,

single-step design process is outlined by the following steps. The flow chart of this

method is shown in Figure 6.2.

Step 1: Select an initial design vector (d0, s0). Define tolerances ϵ1 > 0, ϵ2 > 0, and

ϵ3 > 0. Set the iteration q = 1, (d, s)
(q)
0 = (d0, s0). Define the subregion

size parameters 0 < β
(q)
d,k ≤ 1, k = 1, · · · ,Md, and 0 < β

(q)
s,p ≤ 1, p =

1, · · · ,Ms, describing the qth subregion defined in Equation (6.77). Denote

the subregion’s increasing history by a set H(0) and set it to empty. Set two

designs (d, s)f = (d0, s0) and (d0, s0)f,last ̸= (d0, s0) such that ||(d0, s0)f −

(d0, s0)f,last||2 > ϵ1. Set (d, s)
(0)
∗ = (d0, s0), qf,last = 1, and qf = 1. Usually,

a feasible design should be selected to be the initial design (d0, s0). However,
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when an infeasible initial design is chosen, a new feasible design can be

obtained during the iteration if the initial subregion size parameters are

large enough.

Step 2: Select (q = 1) or use (q > 1) the PDD truncation parameters S and m.

At (d, s) = (d, s)
(q)
0 , generate the augmented PDD expansion coefficients,

y∅(d,µD,µS) and Cuvwj|u|l|v|n|w|(d,µD,µS), where ∅ ̸= u ⊆ {1, · · · , N},

∅ ̸= v ⊆ {1, · · · ,Md}, ∅ ̸= w ⊆ {1, · · · ,Ms}, 1 ≤ |u| + |v| + |w| ≤ S,∥∥j|u|∥∥∞ , ∥∥l|v|∥∥∞ ,∥∥n|w|∥∥∞ ≤ m, using dimension-reduction integration with

R = S, n = m + 1, leading to S-variate, mth-order augmented PDD ap-

proximations ỹ
(q)
l,S,m(X;d, s) of yl(X;d, s) and c̃

(q)
l,S,m(d, s) of cl(d, s), l =

0, 1, · · · , K, in Equation (6.78) or (6.79). For RDO, calculate the expansion

coefficients of score functions, sk,∅(d) and Dik,j(d), where k = 1, · · · ,M

and j = 1, · · · ,m′, analytically, if possible, or numerically, resulting in

m′th-order Fourier-polynomial approximations of sk(Xik ;d), k = 1, · · · ,M .

Step 3: If q = 1 and c̃
(q)
l,S,m((d, s)

(q)
0 ) < 0 for l = 1, · · · , K, then go to Step 4. If q > 1

and c̃
(q)
l,S,m((d, s)

(q)
0 ) < 0 for l = 1, · · · , K, then set (d, s)f,last = (d, s)f ,

(d, s)f = (d, s)
(q)
0 , qf,last = qf , qf = q and go to Step 4. Otherwise, go to

Step 5.

Step 4: If ||(d, s)f−(d, s)f,last||2 < ϵ1 or
∣∣∣[c̃(q)0,S,m((d, s)f )− c̃

(qf,last)
0,S,m ((d, s)f,last)

]
/c̃

(q)
0,S,m

((d, s)f )| < ϵ3, then stop and denote the final optimal solution as (d̃∗, s̃∗) =

(d, s)f . Otherwise, go to Step 6.

Step 5: Compare the infeasible design (d, s)
(q)
0 with the feasible design (d, s)f and
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interpolate between (d, s)
(q)
0 and (d, s)f to obtain a new feasible design and

set it as (d, s)
(q+1)
0 . For dimensions with large differences between (d, s)

(q)
0

and (d, s)f , interpolate aggressively. Reduce the size of the subregionD(q) to

obtain new subregion D(q+1). For dimensions with large differences between

(d, s)
(q)
0 and (d, s)f , reduce aggressively. Also, for dimensions with large

differences between the sensitivities of c̃
(q)
l,Sm((d, s)

(q)
0 ) and c̃

(q−1)
l,Sm ((d, s)

(q)
0 ),

reduce aggressively. Update q = q + 1 and go to Step 2.

Step 6: If the subregion size is small, that is, β
(q)
d,k(dk,U − dk,L) < ϵ2, or β

(q)
s,p(sp,U −

sp,L) < ϵ2, and (d, s)
(q−1)
∗ is located on the boundary of the subregion, then

go to Step 7. Otherwise, go to Step 9.

Step 7: If the subregion centered at (d, s)
(q)
0 has been enlarged before, that is,

(d, s)
(q)
0 ∈ H(q−1), then set H(q) = H(q−1) and go to Step 9. Otherwise,

set H(q) = H(q−1)∪{(d, s)(q)0 } and go to Step 8.

Step 8: For coordinates of (d, s)
(q)
0 located on the boundary of the subregionand

β
(q)
d,k(dk,U − dk,L) < ϵ2, or β

(q)
s,p(sp,U − sp,L) < ϵ2 , increase the sizes of corre-

sponding components of D(q); for other coordinates, keep them as they are.

Set the new subregion as D(q+1).

Step 9: Solve the design problem in Equation (6.78) or (6.79) employing the single-

step PDD procedure. In so doing, recycle the PDD expansion coefficients

obtained from Step 2 in Equations (6.83) and (6.84), producing approx-

imations of the objective and constraint functions that stem from single

calculation of these coefficients. To evaluate the gradients, recalculate the
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Fourier expansion coefficients of score functions as needed. Denote the op-

timal solution by (d, s)
(q)
∗ and set (d, s)

(q+1)
0 = (d, s)

(q)
∗ . Update q = q + 1

and go to Step 2.

Step 2: At , generate augmented

PDD approximations of responses.

Step 3: Is new

design feasible?

Step 4: Converge?

Step 6: Are conditions

for enlarging subregion size

satisfied?

Step 9: Solve the RDO/RBDO subproblem by

single-step procedure.

Step 5: Interpolate to

obtain a new feasible

design; reduce

subregion size.

Stop1q q= +

Step 7: Is current design in

the increasing histories?

Step 8: Increase

subregion and

modify increasing

history

Yes

Yes

Yes
Yes

No

No No

No

Step 1: Initialize; set .( )

0 0 0( , ) ( , )q
=d s d s

( )

0( , ) qd s

Figure 6.2: A flow chart of the proposed multi-point, single-step design process

6.6 Numerical Examples

Four examples are presented to illustrate the proposed methods developed in

estimating design sensitivities and solving various RDO/RBDO problems involving

mixed design variables. The objective and constraint functions are either elementary
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mathematical functions or relate to engineering problems, ranging from simple struc-

tures to complex FEA-aided mechanical designs. Both size and shape design problems

are included. The PDD expansion coefficients were estimated by dimension-reduction

integration with the mean input as the reference point, R = S, and the number of

integration points n = m+ 1, where S and m vary depending on the problem. Since

the distributional design variables describe both means and standard deviations of

Gaussian random variables, the order m′ used for Fourier expansion coefficients of

score functions in Example 1 is two. However, in Example 4, where the distribu-

tional design variables are the means of truncated Gaussian random variables, m′ is

one. In Examples 1 through 4, orthonormal polynomials, consistent with the proba-

bility distributions of input random variables, were used as bases. For the Gaussian

distribution, the Hermite polynomials were used. For random variables following non-

Gaussian probability distributions, such as the Lognormal distribution in Example

3 and truncated Gaussian distribution in Example 4, the orthonormal polynomials

were obtained either analytically when possible or numerically, exploiting the Stielt-

jes procedure [98]. The sample size for the embedded MCS is 106 in all examples.

The multi-point, single-step design procedure was used in Examples 3 and 4 for solv-

ing RDO and RBDO problems. The tolerances, initial subregion size, and threshold

parameters for the multi-point, single-step procedure are as follows: (1) ϵ1 = 0.01,

ϵ2 = 2, ϵ3 = 0.005 (Example 3); ϵ1 = 0.01, ϵ2 = 2, ϵ3 = 0.05 (Example 4); (2)

β
(1)
d,1 = · · · = β

(1)
d,Md

= β
(1)
s,1 = · · · = β

(1)
s,Ms

= 0.5. The optimization algorithm selected is

sequential quadratic programming [106] in Examples 3 and 4.
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6.6.1 Example 1: Sensitivities of Moments

The first example involves calculating sensitivities of the first two moments of

a polynomial function

y(X;d, s) = 13.2(X1 +X2 + µ+ σ + s1 + s2) + 0.18(X1 +X2)
3

+0.31X2
1X2s1 + 0.25X2

2s1µ+ 0.11X1s2σ + 0.4s21s2µ
2, (6.85)

where X1 and X2 are two independent and identically distributed Gaussian random

variables, each with the same mean µ and standard deviation σ. The distributional

and structural design vectors are d = (µ, σ)T and s = (s1, s2)
T , respectively. The

affiliated random vector D = (D1, D2)
T is selected to be Gaussian, where the com-

ponents D1, D2 are independent with the same standard deviation of 1 but different

mean values E1[D1] = d1 = µ and E1[D2] = d2 = σ. The affiliated random vector

S = (S1, S2)
T is also normally distributed with the independent components S1, S2,

which have the same standard deviation of 1 but different mean values E2[S1] = s1

and E2[S2] = s2.

Table 6.1 presents the approximate sensitivities of the first two moments

Ed[y(X;d, s)] and Ed[y
2(X;d, s)] at d = d0 = (0.4, 1)T and s = s0 = (0.55, 0.48)T ,

obtained by the proposed augmented PDD methods (Equations (6.47),(6.48),(6.63),

and (6.64)). Three sets of estimates stemming from univariate (S = 1), bivariate

(S = 2), and trivariate (S = 3) third-order PDD approximations of y are included.

The exact solution, which exists for this problem, is also included in Table 6.1. The

univariate PDD, listed in the second column, provides satisfactory estimates for all

sensitivities, requiring only 26 function evaluations. Although the bivariate approx-
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imation is more expensive than the univariate approximation, the former generates

highly accurate solutions, as expected. The function y, being both trivariate and a

cubic polynomial, is exactly reproduced by the trivariate (S = 3), third-order (m = 3)

augmented PDD approximation when orthonormal polynomials consistent with Gaus-

sian probability measures are used. Therefore, the trivariate, third-order augmented

PDD approximation, along with the proposed sensitivity analysis method, reproduces

the exact solution. Although the third-order, bivariate augmented PDD approxima-

tion is unable to reproduce the original function exactly, it provides highly accurate

sensitivity results for most cases, which are the same as the exact or trivariate results

providing four significant digits, except for the sensitivity with respect to s1, which

has about one percent error. Comparing the computational efforts, 1546 function

evaluations were required by trivariate PDD to produce the exact results, whereas 26

and 266 function evaluations were incurred by the univariate and bivariate approx-

imations, respectively. Therefore, the univariate augmented PDD method furnishes

very accurate and highly efficient estimates of the first two moment sensitivities.
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Table 6.1: Sensitivities of the first two moments at d0 = (0.4, 1)T and s0 =
(0.55, 0.48)T

Augmented PDD
Exact

Univariate
(m = 3)

Bivariate
(m = 3)

Trivariate
(m = 3)

∂m(1)(d0, s0) /∂µ 41.6183 43.0063 43.0063 43.0063

∂m(1)(d0, s0) /∂σ 15.1955 15.1955 15.1955 15.1955

∂m(1)(d0, s0) /∂s1 13.2696 13.4936 13.4936 13.4936

∂m(1)(d0, s0) /∂s2 13.2634 13.2634 13.2634 13.2634

∂m(2)(d0, s0) /∂µ 3700.9977 3895.1957 3895.1957 3895.1957

∂m(2)(d0, s0) /∂σ 2201.2607 2365.6375 2365.6375 2365.6375

∂m(2)(d0, s0) /∂s1 1161.5037 1188.3302 1198.9252 1198.9252

∂m(2)(d0, s0) /∂s2 1160.9547 1164.1960 1164.1960 1164.1960

No. of Func.
Eval.

26 266 1546 −

6.6.2 Example 2: Sensitivities of Failure Probability

For the second example, consider two performance functions

y1(X; s) = −s+ 1 +
X2

1X
2
2

5s2
(6.86)

and

y2(X; s) = −1 +
5s4

X2
1 + 8X2 + 5

, (6.87)

where the random vector X comprises two independent Gaussian random variables,

X1 and X2, with the same standard deviation of 0.3 but different mean values
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Ed[X1] = 7.5 and Ed[X2] = 1. The structural design variable is s. The corresponding

affiliated random variable S is selected to be Gaussian with mean E2[S] = s and

standard deviation σs. The objective of this example is to evaluate the accuracy of

the proposed augmented PDD methods (Equation (6.75)) in calculating sensitivities

of the failure probabilities PF,1(s) := P [y1(X; s) < 0] and PF,2(s) := P [y2(X; s) < 0].

The perturbation size for finite-difference approximation is taken as ∆s = 0.001.

Table 6.2: Sensitivities of probability of failure at s0 = 2

∂PF,1(s0)

∂s

∂PF,2(s0)

∂s

No. of Func.
Eval. of y1
and y2

Augmented
PDD
(m = 3)

σs = 1

Univariate 0.1850 -3.8760 26

Bivariate 9.0× 10−3 -8.3340 122

Trivariate 0.0 -9.0910 250

σs = 0.3

Univariate 0.6220 -2.5560 26

Bivariate 0.3410 -1.5780 122

Trivariate 0.3370 -1.5560 250

σs = 0.0005

Univariate 0.5920 -1.8720 26

Bivariate 0.3160 -1.4700 122

Trivariate 0.3190 -1.4760 250

Exact 0.3228 -1.4100 −

Table 6.2 exhibits the sensitivities of the failure probabilities PF,1(s) and
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PF,2(s) with respect to the structural design variable s calculated at s = s0 = 2.

It contains the estimates of the sensitivities by the univariate (S = 1), bivariate

(S = 2), and trivariate (S = 3) third-order augmented PDD approximations of y1

and y2. Combined with the different values of σs, which are σs = 1, σs = 0.3, and

σs = 0.0005, a total of nine cases were examined to study the convergence with respect

to σs and the truncation S. The exact solution, also existing for this particular prob-

lem, is also listed in the last row to verify the approximate solutions. For σs = 1.0, all

results of univariate, bivariate, and trivariate augmented PDD approximation deviate

from the exact solution. However, when the value of σs decreases, the error is reduced

significantly, especially for the bivariate and trivariate cases. When σs = 0.0005, rea-

sonably accurate results are obtained by the bivariate and trivariate augmented PDD

approximations, incurring 122 and 255 function evaluations, respectively. In addition,

the univariate augmented PDD for σs = 0.0005 provides improved estimates of sen-

sitivities of failure probabilities with only 26 function evaluations. It is important to

note that the orders of σs and ∆s have to be similar to achieve satisfactory estimates

of sensitivities, as found, at least, in this particular example.

6.6.3 Example 3: Size and Configuration Design of a Six-bay, Twenty-one-bar

Truss

The third example demonstrates how RBDO problems with constraints limit-

ing the system reliability can be efficiently solved by the proposed method. A linear-

elastic, six-bay, twenty-one-bar truss structure, with geometric properties shown in
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Figure 6.3, is simply supported at nodes 1 and 12 and is subjected to a concentrated

load of 56,000 lb (249,100 N) at node 7. The truss material is made of an aluminum

alloy with the Young’s modulus E = 107 psi (68.94 GPa). Considering the symmetry

of the structure, the random input is selected as X = (X1, · · · , X11)
T ∈ R11, where

Xi, i = 1, · · · , 11, represents the cross-sectional area of the ith truss member. The

random variables are independent and lognormally distributed with means µi in
2 and

standard deviations σi = 0.1 in2, i = 1, · · · , 11. As depicted in Figure 6.3, the struc-

tural design vector s = (s1, s2)
T describes the node locations, where s1 represents the

horizontal location of nodes 2, 3, 10, and 11, and s2 represents the horizontal location

of nodes 4, 5, 8, and 9. Let vmax(X; s) and σmax(X; s) denote the maximum vertical

displacement of all nodes and maximum axial stress in all truss members, respectively,

determined from linear-elastic FEA. The permissible displacement and stress are lim-

ited to dallow = 0.266 in (6.76 mm) and σallow = 37, 680 psi (259.8 MPa), respectively.

The system-level failure set is defined as ΩF := {x : {y1(x; s) < 0} ∪ {y2(x; s) < 0}},

where the performance functions

y1(X; s) = 1− |vmax(X; s)|
dallow

, y2(X) = 1− |σmax(X; s)|
σallow

. (6.88)

Due to the symmetry of the structure and loads, the distributional design vector

is d = (µ1, · · · , µ11)
T∈ D ⊂ R11. The objective is to minimize the volume of the

truss structure subject to a system reliability constraint, limiting the maximum ver-

tical displacement and the maximum axial stress. Therefore, the RBDO problem is
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formulated to

min
(d,s)∈D

c0(d, s) = V (d, s),

subject to c1(d, s) = Pd [{y1(X; s) < 0} ∪ {y2(X; s) < 0}]− Φ(−3) ≤ 0,

1 ≤ dk ≤ 30, k = 1, · · · , 11,

8 ≤ s1 ≤ 12, 18 ≤ s2 ≤ 22, (6.89)

where V (d, s) is the total volume of the truss. The initial value of the distributional

design vector is d0 = (15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15)T in2 (×2.542 cm2), and

the initial value of the structural design vector is s0 = (10, 10)T in (×2.54 cm). The

approximate optimal solution is denoted by (d̃∗; s̃∗) = (d̃∗1, d̃
∗
2, · · · , d̃∗11; s̃∗1, s̃∗2)T . The

affiliated random vectors D and S are selected to be Gaussian, and their components

are independent with the same standard deviation of 0.0005 but different mean vectors

E1[D] = d and E2[S] = s. The small perturbation size of dk and sp for finite-difference

approximation of sensitivities of failure probabilities are taken as ∆dk = 0.001 and

∆sp = 0.001, respectively, for k = 1, · · · , 11 and p = 1, 2.
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Figure 6.3: A six-bay, twenty-one-bar truss structure (Example 3)

The proposed multi-point, single-step design procedure was applied to solve

this problem, employing bivariate, second-order augmented PDD approximations for

the underlying stochastic and design sensitivity analysis. The first column of Table 6.3

summarizes the values of design variables, objective function, and constraint function

for the optimal design, all generated by the augmented PDD method. The objective

function c0 is reduced from 3044.47 in3 at initial design to 1049.02 in3 at optimal

design — an almost 66 percent change. At optimum, the constraint function c1 is

−0.21 × 10−3 and is, therefore, close to being active. Most of the design variables

have undergone moderate to significant changes from their initial values, prompting

substantial modifications of sizes and configurations of the truss structures. For

further scrutinizing the optimum, the results by the crude MCS method, adapting the

optimum solution by the proposed augmented PDD method as the initial design, are

listed in the last column. The negligible difference between the results of the proposed
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PDD method and the results of the corresponding crude MCS method demonstrates

the accuracy of the proposed method. Comparing the computational efforts, only

7420 FEA were required to produce the results of the proposed method in Table

6.3, whereas 846 million FEA (samples) were incurred by crude MCS. Therefore, the

proposed augmented PDD methods provide not only highly accurate, but also vastly

efficient, solutions for this mixed RBDO problem.



263

Table 6.3: Optimization results for the six-bay, twenty-one-bar truss problem

Augmented PDD

S = 2, m = 2
Crude MCS(b)

d̃∗1, in
2 7.6858 7.6665

d̃∗2, in
2 7.7138 7.7005

d̃∗3, in
2 4.3102 4.3101

d̃∗4, in
2 4.7163 4.7162

d̃∗5, in
2 4.9026 4.9025

d̃∗6, in
2 4.2936 4.2935

d̃∗7, in
2 6.0545 6.0544

d̃∗8, in
2 5.0385 5.0384

d̃∗9, in
2 6.2239 6.2239

d̃∗10, in
2 4.5967 4.5967

d̃∗11, in
2 3.3725 3.3723

s̃∗1, in 12.0000 12.0000

s̃∗2, in 19.1703 19.1702

c0, in
3 1049.02 1048.35

c1
(a) −0.2100× 10−3 −0.5300× 10−4

No. of FEA 7,420 846,000,000
(a) The constraint values are calculated by MCS with 106 sample size.
(b) Crude MCS: initial design is set to the optimal solution of augmented PDD, i.e., the optimal solution in the

second column.

6.6.4 Example 4: Shape Design of a Three-Hole Bracket

The final example involves shape design optimization of a two-dimensional,

three-hole bracket, where five random shape parameters, Xi, i = 1, · · · , 5, describe

its inner and outer boundaries, while maintaining symmetry about the central verti-
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cal axis. The distributional design variables, dk = Ed[Xk], i = 1, · · · 5, are the means

of these five independent random variables, with Figure 6.4(a) depicting the initial

design of the bracket geometry at the mean values of the shape parameters. The

structural design variables, sp, p = 1, · · · 4, are four deterministic shape parameters

shown in Figure 6.4(a), along with the random shape parameters defining the geom-

etry of the three-hole bracket. The bottom two holes are fixed, and a deterministic

horizontal force F = 15, 000 N is applied at the center of the top hole. The bracket

material has a deterministic mass density ρ = 7810 kg/m3, deterministic elastic mod-

ulus E = 207.4 GPa, deterministic Poisson’s ratio ν = 0.3, and deterministic uniaxial

yield strength Sy = 800 MPa. The objective is to minimize the second-moment prop-

erties of the mass of the bracket by changing the shape of the geometry such that the

maximum von Mises stress σe,max(X; s) does not exceed the yield strength Sy of the

material with 99.875% probability if y1 is Gaussian. Mathematically, the RDO for

this problem is defined to

min
(d,s)∈D

c0(d, s) = 0.5
Ed [y0(X; s)]

Ed0 [y0(X; s)]
+ 0.5

√
vard [y0(X; s)]√
vard0 [y0(X; s)]

,

subject to c1(d, s) = 3
√
vard [y1(X; s)]− Ed [y1(X; s)] ≤ 0,

10 mm ≤ d1 ≤ 30 mm, 12 mm ≤ d2 ≤ 30 mm,

12 mm ≤ d3 ≤ 30 mm, −15 mm ≤ d4 ≤ 10 mm,

−8 mm ≤ d5 ≤ 15 mm, 0 mm ≤ s1 ≤ 14 mm,

17 mm ≤ s2 ≤ 35 mm, 30 mm ≤ s3 ≤ 40 mm,

50 mm ≤ s4 ≤ 140 mm, (6.90)
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where

y0(X; s) = ρ

∫
D′(X;s)

dD′ (6.91)

and

y1(X; s) = Sy − σe,max(X; s) (6.92)

are two random response functions, and Ed0 [y0(X; s)] and vard0 [y0(X; s)] are the mean

and variance, respectively, of y0 at the initial design (d0, s0) = (0, 30, 10, 40, 20, 20, 75,

0, 0)T mm of the design vector (d, s) = (d1, · · · , d5, s1, . . . , s4)T ∈ D ⊂ R9. The

corresponding mean and standard deviation of y0 of the original design, calculated

by the bivariate, first-order augmented PDD method, are 0.3415 kg and 0.00136 kg,

respectively. Figure 6.4(b) portrays the contours of the von Mises stress calculated by

FEA of the initial bracket design, which comprises 11,908 nodes and 3914 eight-noded

quadrilateral elements. A plane stress condition was assumed. The approximate

optimal solution is denoted by (d̃∗, s̃) = (d̃∗1, · · · , d̃∗5, s̃∗1, . . . , s̃∗4)T . The corresponding

affiliated random vectors D and S are selected to be Gaussian, and their components

are independent with the same standard deviation of 0.2 but different mean vectors

E1[D] = d and E2[S] = s.
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Figure 6.4: A three-hole bracket; (a) design parametrization; (b) von Mises stress at
initial design

Due to their finite bounds, the random variables Xi, i = 1, · · · , 5, were as-

sumed to follow truncated Gaussian distributions with densities

fXi
(xi) =

ϕ

(
xi − di
σi

)
Φ

(
Di

σi

)
− Φ

(
−Di

σi

) (6.93)

when ai ≤ xi ≤ bi and zero otherwise, where Φ(·) and ϕ(·) are the cumulative

distribution and probability density functions, respectively, of a standard Gaussian

variable; σi = 0.2; and ai = di−Di and bi = di+Di are the lower and upper bounds,

respectively, of Xi. To avoid unrealistic designs, the bounds were chosen with Di = 2,

which is consistent with the bound constraints of design variables stated in Equation

(6.90).
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The proposed multi-point, single-step PDD design procedure was applied to

solve this problem, employing three univariate and one bivariate augmented PDD

approximation for the underlying stochastic analysis: (1) S = 1, m = 1; (2) S = 1,

m = 2; (3) S = 1, m = 3; and (4) S = 2, m = 1. Table 6.4 summarizes the

optimization results by all four choices of the truncation parameters. The optimal

design solutions rapidly converge as S or m increases. The univariate, first-order

(S = 1, m = 1) PDD method, which is the most economical method, produces

an optimal solution reasonably close to those obtained from higher-order univariate

or bivariate PDD methods. For instance, the largest deviation from the average

values of the objective function at four optimum points is only 3.8 percent. It is

important to note that the coupling between the single-step procedure and multi-

point approximation is essential to find optimal solutions of this practical problem

using low-variate, low-order augmented PDD approximations.
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Table 6.4: Optimization results for the three-hole bracket

Results
Augmented PDD Method

Univariate

(S = 1, m = 1)

Univariate

(S = 1, m = 2)

Univariate

(S = 1, m = 3)

Bivariate

(S = 2, m = 1)

d̃∗1, mm 27.7537 28.0521 28.5815 26.8853

d̃∗2, mm 12.0030 12.0000 12.0000 12.0000

d̃∗3, mm 12.0003 12.0000 12.0000 12.0000

d̃∗4, mm -13.7431 -13.9282 -13.9025 -14.3121

d̃∗5, mm 14.7886 14.9982 15.0000 15.0000

s̃∗1, mm 13.6741 13.9833 14.0000 13.6256

s̃∗2, mm 17.0081 17.0096 17.0000 17.0000

s̃∗3, mm 30.0606 30.0002 30.0000 30.0000

s̃∗4, mm 118.1092 117.6801 117.5495 124.1864

c̃0(d̃
∗)(a) 0.6668 0.6638 0.6628 0.6895

c̃1(d̃
∗)(a) -1.8819 -14.1435 -18.3799 -10.1967

Ed̃∗ [y0(X; s)]
(a) , kg

0.1204 0.1184 0.1178 0.1278

√
vard̃∗ [y0(X; s)]

(a) , kg

0.00138 0.00138 0.00138 0.00135

No. of

iterations

35 21 37 19

No. of FEA 665 588 1369 3078

(a) The objective and constraint functions, Ed̃∗ [y0(X; s)], and
√

vard̃∗ [y0(X; s)] at respective optima, were

evaluated by respective approximations.
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Figure 6.5: von Mises stress contours at mean values of optimal bracket designs by the
multi-point, single-step PDD method; (a) univariate approximation (S = 1, m = 1);
(b) univariate approximation (S = 1, m = 2); (c) univariate approximation (S = 1,
m = 3); (d) bivariate approximation (S = 2, m = 1)
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Figures 6.5(a) through 6.5(d) illustrate the contour plots of the von Mises

stress for the four optimal designs at the mean values of random shape parameters.

Regardless of S or m, the overall area of an optimal design has been substantially

reduced, mainly due to significant alteration of the inner boundary and moderate

alteration of the outer boundary of the bracket. All nine design variables have under-

gone moderate to significant changes from their initial values. The optimal masses

of the bracket vary as 0.1204 kg, 0.1184 kg, 0.1178 kg, and 0.1278 kg − about a 63

percent reduction from the initial mass of 0.3415 kg. The second-moment statistics

at optimal designs are averages of all PDD solutions described earlier. The largest

reduction of the mean is 62.57 %, whereas the slight average drop, 0.99 %, in the

standard deviations, is attributed to the objective function that combines both the

mean and standard deviation of y0. Compared with the conservative design in 6.4(b),

larger stresses − for example, 800 MPa − are safely tolerated by the final designs in

Figures 6.5(a) through 6.5(d).

6.7 Conclusion

A novel computational method, referred to as the augmented PDD method, is

proposed for RDO and RBDO of complex engineering systems subject to mixed design

variables comprising both distributional and structural design variables. The method

involves a new augmented PDD of a high-dimensional stochastic response for statis-

tical moment and reliability analyses; an integration of the augmented PDD, score

functions; finite-difference approximation for calculating the sensitivities of the first
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two moments and the failure probability with respect to distributional and structural

design variables; and standard gradient-based optimization algorithms, encompassing

a multi-point, single-step design process. For RDO sensitivity analysis, the method

capitalizes on a novel integration of the augmented PDD and score functions, pro-

viding analytical expressions of mean-square convergent approximations of the design

sensitivities of the first two moments. For RBDO sensitivity analysis, the method uti-

lizes the embedded MCS of the augmented PDD approximation and a finite-difference

approximation to estimate the design sensitivities of the failure probability. In each

variant of design optimization, both the stochastic responses, whether the first two

moments or the failure probability, and their design sensitivities are determined con-

currently from a single stochastic analysis or simulation. Moreover, the multi-point,

single-step design process embedded in the proposed method facilitates a solution of

an RDO/RBDO problem entailing mixed design variables with a large design space.

Numerical results, including a shape design optimization of a three-hole bracket,

indicate that the proposed methods provide accurate and computationally efficient

sensitivity estimates and optimal solutions for general RDO and RBDO problems.
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CHAPTER 7
CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The major objective of this study was to develop novel computational methods

for RDO and RBDO of high-dimensional, complex engineering systems. Four major

tasks were completed to meet the objective of the study. They involved: (1) devel-

opment of new sensitivity analysis methods for RDO and RBDO; (2) development

of novel optimization methods for solving RDO problems; (3) development of novel

optimization methods for solving RBDO problems; and (4) development of a novel

scheme and formulation to solve stochastic design optimization problems with both

distributional and structural design parameters. The major conclusions from these

four tasks are summarized as follows:

1. Development of new sensitivity analysis methods for RDO and RBDO:

Three new computational methods were developed for calculating design sensi-

tivities of statistical moments and reliability of high-dimensional complex sys-

tems subject to random input. The first method represents a novel integra-

tion of PDD of a multivariate stochastic response function and score functions.

Applied to the statistical moments, the method provides mean-square conver-

gent analytical expressions of design sensitivities of the first two moments of a

stochastic response. The second and third methods, relevant to probability dis-

tribution or reliability analysis, exploit two distinct combinations built on PDD:
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the PDD-SPA method, entailing the SPA and score functions; and the PDD-

MCS method, utilizing the embedded MCS of the PDD approximation and score

functions. For all three methods developed, the statistical moments or failure

probabilities and their design sensitivities are both determined concurrently

from a single stochastic analysis or simulation. Numerical examples, including

a 100-dimensional mathematical problem, indicate that the new methods devel-

oped provide not only theoretically convergent or accurate design sensitivities,

but also computationally efficient solutions. A practical example involving ro-

bust design optimization of a three-hole bracket illustrates the usefulness of the

proposed methods.

2. Development of novel optimization methods for solving RDO prob-

lems: Four new methods were developed for RDO of complex engineering sys-

tems. The methods involve PDD of a high-dimensional stochastic response for

statistical moment analysis, a novel integration of PDD and score functions

for calculating the second-moment sensitivities with respect to the design vari-

ables, and standard gradient-based optimization algorithms. New closed-form

formulae were presented for the design sensitivities that are simultaneously de-

termined along with the moments. The methods depend on how statistical mo-

ment and sensitivity analyses are dovetailed with an optimization algorithm,

encompassing direct, single-step, sequential, and multi-point single-step design

processes. Numerical results indicate that the proposed methods provide accu-

rate and computationally efficient optimal solutions of RDO problems, including
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an industrial-scale lever arm design.

3. Development of novel optimization methods for solving RBDO prob-

lems: Two new methods were developed for RBDO of complex engineering sys-

tems. The methods involve AS-PDD of a high-dimensional stochastic response

for reliability analysis, a novel integration of AS-PDD and score functions for

calculating the sensitivities of the failure probability with respect to design

variables, and standard gradient-based optimization algorithms, encompassing

a multi-point, single-step design process. The two methods, depending on how

the failure probability and its design sensitivities are evaluated, exploit two dis-

tinct combinations built on AS-PDD: the AS-PDD-SPA method, entailing the

SPA and score functions; and the AS-PDD-MCS method, utilizing the embed-

ded MCS of the AS-PDD approximation and score functions. In both methods,

the failure probability and its design sensitivities are determined concurrently

from a single stochastic simulation or analysis. When applied in collaboration

with the multi-point, single-step framework, the proposed methods afford the

ability of solving industrial-scale design problems. Numerical results stemming

from mathematical functions or elementary engineering problems indicate that

the new methods provide more accurate and computationally efficient design so-

lutions than existing methods. Furthermore, shape design of a 79-dimensional

jet engine bracket was performed, demonstrating the power of the methods

developed to tackle practical RBDO problems.

4. Development of a novel scheme and formulation to solve stochastic
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design optimization problems with both distributional and structural

design parameters: A new method, named as augmented PDD method, was

developed for RDO and RBDO subject to mixed design variables comprising

both distributional and structural design variables. The method comprises a

new augmented PDD of a high-dimensional stochastic response for statistical

moment and reliability analyses; an integration of the augmented PDD, score

functions, and finite-difference approximation for calculating the sensitivities of

the first two moments and the failure probability with respect to distributional

and structural design variables; and standard gradient-based optimization al-

gorithms, encompassing a multi-point, single-step design process. New closed-

form formulae were presented for the design sensitivities of moments that are

simultaneously determined along with the moments. A finite-difference approx-

imation integrated with the embedded MCS of the augmented PDD was put

forward for design sensitivities of the failure probability. In conjunction with

the multi-point, single-step design process, the new method provides an efficient

means to solve an RDO/RBDO problem entailing mixed design variables with

a large design space. Numerical results, including a three-hole bracket design,

indicate that the proposed methods provide accurate and computationally effi-

cient sensitivity estimates and optimal solutions for general RDO and RBDO

problems.
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7.2 Recommendations for Future Work

Based on the research and development in this study, the following activities

are recommended for future efforts:

1. The methods developed in this work are all based on the fundamental assump-

tion that input random variables be independently distributed. Hence, further

research is required for stochastic analysis and design optimization when the

input random variables follow general dependent probability distributions.

2. The methods developed in this work are strictly valid for specified probability

distributions of random input variables. Advances in sensor technology and

high-performance computing allow scientists and engineers to generate and col-

lect extremely large and high-dimensional data sets, referred to as big data,

usually measured in terabytes and perabytes. Therefore, further developments

of data-driven design optimization methods, avoiding the subjectivity of assign-

ing parametric probability distributions, should be pursued.



277

APPENDIX A
ANALYTICAL SOLUTION OF SENSITIVITIES OF 1ST AND 2ND

MOMENTS OF THE OAKLEY AND O’HAGAN FUNCTION

Consider the Oakley and O’Hagan function y(X) in Equation 3.74. The ana-

lytical solutions for sensitivities of the first moment of y(X) with respect to µ and σ

are

∂m(1)(d)

∂µ
=

15∑
i=1

a1i + e−
σ2

2 cosµ
15∑
i=1

a2i − e−
σ2

2 sinµ
15∑
i=1

a3i + 2µ
15∑

i,j=1;i̸=j

Mij (A.1)

and

∂m(1)(d)

∂σ
= −σe−

σ2

2 (aT
2 sinµ+ aT

3 cosµ) + 2σtr(M), (A.2)

respectively, where al = {ali} ∈ R15, l = 1, 2, 3, and M = [Mij] ∈ R15×15 are

coefficient vectors and matrix, correspondingly, and tr is the trace operator. When

µ = 0 and σ = 1, they become

∂m(1)(d)

∂µ

∣∣∣∣
µ=0,σ=1

=
15∑
i=1

a1i + e−
1
2

15∑
i=1

a2i (A.3)

and

∂m(1)(d)

∂σ

∣∣∣∣
µ=0,σ=1

= −e−
1
2

15∑
i=1

a3i + 2tr(M). (A.4)
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Similarly, the analytical solution for sensitivities of the second moment of y(X) with

respect to µ and σ at µ = 0 and σ = 1 are

∂m(2)(d)

∂µ

∣∣∣∣
µ=0,σ=1

= 2×

[
15∑

i,j=1;i̸=j

a1iMjj +
15∑

i,j=1;i̸=j

a1iMij +
15∑

i,j=1;i ̸=j

a1iMji

+ 3
15∑
i=1

a1iMii + 2e−
1
2

15∑
i=1

a2iMii + e−
1
2

15∑
i,j=1;i̸=j

a2iMjj

+ e−
1
2

15∑
i,j=1;i ̸=j

a2iMij + e−
1
2

15∑
i,j=1;i ̸=j

a2iMji + e−
1
2

15∑
i,j=1;i ̸=j

a1ia3j

+ e−1
15∑

i,j=1;i̸=j

a2ia3j + e−2
15∑
i=1

a2ia3i

]
(A.5)

and

∂m(2)(d)

∂σ

∣∣∣∣
µ=0,σ=1

= 2×

[
−2e−

1
2

15∑
i=1

a3iMii + e−
1
2

15∑
i,j=1;i̸=j

a3iMjj + e−
1
2

15∑
i=1

a1ia2i

]

+ 2
15∑
i=1

a21i + 2e−2
15∑
i=1

a22i − 2e−1
15∑

i,j=1;i ̸=j

a3ia3j − 2e−2
15∑
i=1

a23i

+ 4
15∑

i,j=1;i̸=j

MiiMjj + 4
15∑

i,j=1;i̸=j

(MijMij +MijMji) + 12
15∑
i=1

MiiMii,

(A.6)

respectively.
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