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ABSTRACT 

This thesis presents three novel contributions to the application as well as 

development of ranking and selection procedures.  Ranking and selection is an important 

topic in the discrete event simulation literature concerned with the use of statistical 

approaches to select the best or set of best systems from a set of simulated alternatives.  

Ranking and selection is comprised of three different approaches: subset selection, 

indifference zone selection, and multiple comparisons.  The methodology addressed in 

this thesis focuses primarily on the first two approaches: subset selection and indifference 

zone selection. 

Our first contribution regards the application of existing ranking and selection 

procedures to an important body of literature known as system reliability design.  If we 

are capable of modeling a system via a network of arcs and nodes, then the difficult 

problem of determining the most reliable network configuration, given a set of design 

constraints, is an optimization problem that we refer to as the network reliability design 

problem.  In this thesis, we first present a novel solution approach for one type of 

network reliability design optimization problem where total enumeration of the solution 

space is feasible and desirable.  This approach focuses on improving the efficiency of the 

evaluation of system reliabilities as well as quantifying the probability of correctly 

selecting the true best design based on the estimation of the expected system reliabilities 

through the use of ranking and selection procedures, both of which are novel ideas in the 

system reliability design literature.  Altogether, this method eliminates the guess work 

that was previously associated with this design problem and maintains significant runtime 

improvements over the existing methodology. 

Our second contribution regards the development of a new optimization 

framework for the network reliability design problem that is applicable to any topological 

and terminal configuration as well as solution sets of any sizes.  This framework focuses 
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on improving the efficiency of the evaluation and comparison of system reliabilities, 

while providing a more robust performance and user-friendly procedure in terms of the 

input parameter level selection.  This is accomplished through the introduction of two 

novel statistical sampling procedures based on the concepts of ranking and selection: 

Sequential Selection of the Best Subset and Duplicate Generation.  Altogether, this 

framework achieves the same convergence and solution quality as the baseline cross-

entropy approach, but achieves runtime and sample size improvements on the order of 

450% to 1500% over the example networks tested. 

Our final contribution regards the development and extension of the general 

ranking and selection literature with novel procedures for the problem concerned with the 

selection of the 𝑘-best systems, where system means and variances are unknown and 

potentially unequal.  We present three new ranking and selection procedures: a subset 

selection procedure, an indifference zone selection procedure, and a combined two stage 

subset selection and indifference zone selection procedure.  All procedures are backed by 

proofs of the theoretical guarantees as well as empirical results on the probability of 

correct selection.  We also investigate the effect of various parameters on each 

procedure’s overall performance. 
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ABSTRACT 

This thesis presents three novel contributions to the application as well as 

development of ranking and selection procedures.  Ranking and selection is an important 

topic in the discrete event simulation literature concerned with the use of statistical 

approaches to select the best or set of best systems from a set of simulated alternatives.  

Ranking and selection is comprised of three different approaches: subset selection, 

indifference zone selection, and multiple comparisons.  The methodology addressed in 

this thesis focuses primarily on the first two approaches: subset selection and indifference 

zone selection. 

Our first contribution regards the application of existing ranking and selection 

procedures to an important body of literature known as system reliability design.  If we 

are capable of modeling a system via a network of arcs and nodes, then the difficult 

problem of determining the most reliable network configuration, given a set of design 

constraints, is an optimization problem that we refer to as the network reliability design 

problem.  In this thesis, we first present a novel solution approach for one type of 

network reliability design optimization problem where total enumeration of the solution 

space is feasible and desirable.  This approach focuses on improving the efficiency of the 

evaluation of system reliabilities as well as quantifying the probability of correctly 

selecting the true best design based on the estimation of the expected system reliabilities  

through the use of ranking and selection procedures, both of which are novel ideas in the 

system reliability design literature.  Altogether, this method eliminates the guess work 

that was previously associated with this design problem and maintains significant runtime  

improvements over the existing methodology. 

Our second contribution regards the development of a new optimization 

framework for the network reliability design problem that is applicable to any topological 

and terminal configuration as well as solution sets of any sizes.  This framework focuses 
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on improving the efficiency of the evaluation and comparison of system reliabilities, 

while providing a more robust performance and user-friendly procedure in terms of the 

input parameter level selection.  This is accomplished through the introduction of two 

novel statistical sampling procedures based on the concepts of ranking and selection: 

Sequential Selection of the Best Subset and Duplicate Generation.  Altogether, this 

framework achieves the same convergence and solution quality as the baseline cross-

entropy approach, but achieves runtime and sample size improvements on the order of 

450% to 1500% over the example networks tested.  

Our final contribution regards the development and extension of the general 

ranking and selection literature with novel procedures for the problem concerned with the 

selection of the  -best systems, where system means and variances are unknown and 

potentially unequal.  We present three new ranking and selection procedures: a subset 

selection procedure, an indifference zone selection procedure, and a combined two stage 

subset selection and indifference zone selection procedure.  All procedures are backed by 

proofs of the theoretical guarantees as well as empirical results on the probability of 

correct selection.  We also investigate the effect of various parameters on each 

procedure’s overall performance. 
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CHAPTER 1 

INTRODUCTION 

Discrete-event simulation is the imitation of a hypothetical or real-world system 

of stochastic components through a computer generated model, where the state of the 

system changes through a series of discrete events [1]. This type of modeling often 

involves the use of mathematical, logical, statistical, and symbolic methods to generate 

artificial data, based on some real world data or distributions, to analyze various “what if” 

scenarios regarding system performance.  These artificial results can then be used to draw 

conclusions or make inferences about the actual performance of the system being studied 

to recommend and justify structural changes to the actual system.   

The importance and benefits of discrete-event simulation are numerous.  In fact, 

over the last three decades, discrete-event simulation has been consistently reported as 

one of the most popular and important operations research tools to the operations 

research practitioner.   Shannon, Long, and Buckles [2] conduct a survey regarding the 

importance of such tools among operations research practitioners in the Institute for 

Industrial Engineers, and simulation ranked first in utility and interest and second in 

familiarity.  Forgionne [3]; Harpell, Lane, and Mansour [4]; and Lane, Mansour, and 

Harpell [5] conduct surveys and all reported that simulation ranked second in importance 

and usage behind statistical analysis for operations research practitioners in large 

corporations.  Thomas and DaCosta [6] surveyed 137 large firms on the operations 

research tools they used most frequently, and simulation came in second behind statistical 

analysis.  In fact, discrete-event simulation can be found and used in virtually any 

industry, from manufacturing environments to hospital resource management, from 



2 
 

business management strategies such as Six Sigma to investment analysis.  The usage and 

benefits of this subject are limitless.   

In practice, discrete-event simulation is used to address many different types of 

problems.  For example, it is often used in: process improvements scenarios to identify 

and analyze bottlenecks, queuing systems to improve management of a given system, 

performance testing to evaluate ideas before implementation, optimization problems to 

evaluate competing alternatives and select the best solution, and stress testing to 

determine how a system will perform under extreme conditions or worst case scenarios.  

However, the central focus of most of these examples and in most discrete-event 

simulation studies is to select the best design scenario from among a set of competing 

alternatives. 

To achieve the goal of selecting the best design and to do so in an efficient and 

justifiably correct way, a popular approach referred to as ranking and selection is often 

relied upon in discrete-event simulation studies.  Ranking and selection (R&S) is a group 

of statistical techniques developed to address the optimization problem associated with 

the goal of selecting the “best” simulated system configuration or configurations from a 

given solution space, where “best” refers to the maximization or minimization of some 

user-specified performance measure.  These methods are popular because of their ease of 

use and value in the simulation output analysis.  In this thesis, we focus on the 

development of Ranking and Selection procedures as well as the application of R&S to 

the network reliability design problem.   

Network reliability design (NRD) is the optimization problem associated with 

maximizing the system reliability of a given network subject to a set of design 
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constraints.  In this thesis, we represent this problem via an undirected graph of reliable 

nodes and unreliable edges, where each edge maintains its own individual attributes, such 

as cost and reliability.  System reliability of any candidate design is then defined as the 

probability that a given set of terminal nodes within the graph are connected via 

functioning edges.  The objective of the problem is then to select the candidate design 

with maximum system reliability. 

There are many applications for the NRD optimization problem in practice.  For 

example, supply chains, sewage systems, flood mitigation systems and power grids can 

all be modeled as an unreliable network.  However, the most prevalent use of NRD has 

been in the design of communications networks, as there is increasing importance on the 

reliability of the services these networks provide.  Over the past ten years, 

communications networks have become one of the primary sources for information 

creation, storage, distribution and retrieval.  Many aspects of daily life, be it: news and 

weather reports, journal paper submittals, databases information retrieval, job 

applications, social networking, stock purchases, meetings or communications in general 

(to name a few), now rely heavily on the services provided by communication networks.  

Reliability has become an increasingly important consideration in the design of 

communication networks.  

Although the NRD problem is not exactly a discrete-event simulation problem, as 

it is more of a deterministic optimization problem, it still shares many of the same 

characteristics as a typical discrete-event simulation problem.  For example, although 

there is an exact solution to every problem, the reliability function typically requires 

some sort of approximation or simulation technique to evaluate it, thus the problem 
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objective functions are evaluated much like a typical simulation optimization problem.  

However, in the literature, the NRD problem is typically classified as a combinatorial 

optimization problem, which can lead to a great deal of information being lost in the 

solution process as well as sub-optimal results.  Therefore, in this thesis, we investigate 

the applications of simulation ranking and selection to NRD. 

1.1 Problem Backgrounds and Literature Review 

In this section we present literature reviews for both Ranking and Selection and 

the network reliability design problem. 

1.1.1 Ranking and Selection 

Ranking and selection is a group of statistical techniques used to justify the 

selection of the best or set of the best alternatives from a finite set of alternatives based 

on the estimation of their expected performance, where “best” refers to the alternative 

with the maximum or minimum expected value of a given performance criteria [7].  This 

group of techniques is unique in that they justify the selection of the best by ensuring that 

a user-specified probability of correct selection is obtained while minimizing the 

computational effort required to meet this probability.  Therefore, these procedures act as 

a guideline for the sampling process, specifying how many samples are required to ensure 

the desired probability of selecting the best alternative as well as determining when 

alternatives can be designated as inferior and eliminated from further sampling.   

R&S is a well developed and rather large body of literature with many places to 

find comprehensive reviews and overviews of R&S concepts and procedures.  For 

example, Fu [8, 9] provides reviews concerning how R&S is used throughout simulation 
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optimization.  Law and Kelton [10] provide a thorough yet simple introduction to R&S 

with references to more advanced concepts.  James et al. [11] provides a comprehensive 

and up-to-date survey of the R&S literature.  Goldsman and Nelson [7, 12, 13] provide 

new perspectives and state-of-the-art reviews of R&S, and Bechhofer, Santner, and 

Goldsman [14] and Kim and Nelson [15] provide texts regarding the overview of R&S. 

The statistical techniques used in R&S literature to evaluate the simulation 

optimization problem can be classified into two groups: subset selection procedures 

(SSP) and indifference-zone selection procedures (IZP), where each group maintains its 

own distinguishing characteristics, advantages and limitations.  We next provide a brief 

introduction and background regarding these two groups of procedures.  

1.1.1.1 Subset Selection Procedures 

Subset selection is a group of statistical procedures designed to select a random 

sized subset, that contains the best or a set of the best alternatives with a user-specified 

probability, from a finite population of alternatives,  based on the estimation of each 

alternative‟s expected performance.  As such, SSP are independent of the number of 

samples used, meaning they can be applied to a problem regardless of the sample size.  

However, because of this, these procedures generally maintain no mechanism to 

guarantee that the subset returned to the user will be smaller than the original population.  

Therefore, by themselves, SSP are limited in their use.  However, despite their 

limitations, many useful SSP have been proposed in the literature. 

Most SSP proposed in the literature focus on selection of the single best 

alternative.  Gupta [16] introduces this idea proposing a single-stage SSP for populations 

with common unknown variance.  Gupta and Santner [17, 18] extend Gupta‟s SSP to 
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allow for a user-specified subset size, and Sullivan and Wilson [19] propose an SSP that 

allows for unknown and unequal variances.  Nelson et al. [20] later extends this work to 

the more general case of populations with unknown and unequal variance, and Wilson 

[21] proposes an new decomposition lemma to enhance the lower bound on SSP 

probability of correct selection. 

For selection of a set of (possibly more than one) best alternatives, the literature is 

much smaller and less well developed.  Carroll, Gupta and Huang [22] propose a 

conservative approach for selecting a subset of a population of systems with known and 

unknown yet equal variance that contains the  -best systems.  Bofinger and Mengersen 

[23] introduce a less conservative choice of critical point for use with Carroll, Gupta and 

Huang‟s SSP.  Koenig and Law [24] propose a subset selection procedure for selecting 

the  -best systems without regard to order for a population of systems with unknown and 

potentially unequal variance.  To our knowledge, research beyond this remains open to 

investigation.   

1.1.1.2 Indifference Zone Selection Procedures 

Indifference zone selection is a group of statistical procedures designed to select 

the true best alternative or alternatives from a population of competing alternatives, based 

on the estimation of their expected performance, and with a user-specified probability.  

This selection is made through the use of a sample size calculation based on an 

indifference parameter, which indicates the user-specified practically significant 

difference that the experimenter is indifferent to.  These procedures are thus synonymous 

to a power calculation, in that they are used to determine the number of samples required 

to detect this practically significant difference and select the true best design with a given 
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probability.   However, although these procedures can be very useful, IZP by themselves 

can be overly conservative.  The reason for this is that IZP must sample every alternative 

in a population a prescribed number of times before a selection can be made.  Therefore, 

no elimination of inferior alternatives occurs until each alterative has been fully sampled.   

Despite this drawback, many useful IZP have been proposed in the literature.  

For selection of the single best alternative, a large number of IZP have been 

proposed.  Bechhofer [25] proposes the first single-stage IZ procedure for populations 

with known common variance.  Paulson [26] and Bechhofer et al [27] later improve upon 

this initial work proposing two-stage procedures for populations with unknown common 

variance.  Zinger and St. Pierre [28] propose an IZP for populations with unequal known 

variances.  Dudewicz and Dalal [29] as well as Rinott [30] present a two-stage IZP for 

populations with unequal and unknown variances.  Clark and Yang [31] extend Rinott‟s 

approach to account for the variance reduction technique known as common random 

numbers (CRN) for populations with a small number of candidate designs ( i.e. around 20 

or less).  Nelson and Matejcik [32] extend the work of Clark and Yang in a two-stage 

procedure for systems with a relatively large number of candidate designs ( i.e. around 

1000 or less) using the assumption of sphericity. 

For selection of the set of (more than one) best alternatives, the literature is very 

small.  Bechhofer [33, 34]  proposes a single stage IZP for common and known variance, 

to select the  -best systems with and without regard to order, as well as a two-stage IZP 

for selecting the  -best alternatives from a population of systems with common unknown 

variance.  To our knowledge, research beyond this remains open to investigation. 
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1.1.1.3 Combined Procedures 

In more recent years however, the literature has focused on the integration of 

these two R&S approaches as well as the inclusion of multiple comparison confidence 

intervals into a single combined procedure.  These combined procedures are typically 

more efficient and powerful in selecting the best alternative than their individual 

counterparts, as the benefits of each individual procedure typically account for and 

outweigh the limitations of the other.  However, these combined procedures are typically 

more conservative in their theoretical guarantee than their individual counterparts, thus 

are not always the best option to use in practice.  However, if prior information 

concerning the population of alternatives under study is not available (which is typically 

the case for most simulation problems), combined procedures are the best option.   

For selection of the single best alternative, the state-of-the-art ranking and 

selection procedures include Nelson‟s [20] two-stage combined SSP+IZP for populations 

with unknown and unequal variance, Nelson‟s [35] combined procedure for comparisons 

with a standard, Chick and Inoue‟s [36] Bayesian approach to the two-stage combined 

ranking and selection problem accounting for CRN, and Nelson and Kim‟s [37] fully 

sequential SSP+IZP for populations of systems with unknown and unequal mean and 

variance.  To our knowledge, combined procedures regarding the selection of the set of 

(more than one) best alternatives remain open to investigation.  

1.1.2 Network Reliability Design 

NRD is the difficult combinatorial optimization problem associated with finding 

the topological configuration of an unreliable network, given certain design constraints, 

that maximizes the system reliability function.  This optimization problem is considered 

difficult for two reasons.  First, finding the optimal solution from within the designated 

solution space is NP-hard [38].  One reason for this, is that the solution space is discrete 
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and the number of candidate designs in the solution space increases exponentially with 

the number of edges in the graph.  As a result, exact methods for searching the solution 

space such as total enumeration [39, 40], dynamic programming, and branch-and-bound 

[41] are only practical for small problems.  For moderate to large sized problems, 

heuristic search methods are typically necessary. 

Second, exact evaluation of the system reliability of any feasible design is also 

NP-hard [42].  One difficulty associated with this, is that the computational complexity of 

this calculation increases with the size and topology of the network, often rendering exact 

evaluation techniques such as total enumeration and network decomposition [43-47] 

impractical for even small topologies.  [48-55] have also proposed using theoretical 

bounds on the system reliability as a substitute for the actual reliability measure, however 

deriving tight bounds is often difficult.  As such, system reliability is typically 

approximated through simulation and estimation techniques such as Crude Monte Carlo 

simulation or more recently artificial neural networks [56].  For Crude Monte Carlo 

simulation, various approaches have been proposed to improve the efficiency of the 

simulation through different types of sampling techniques, such as dagger sampling [57], 

failure sampling [58], graph evolution [59], stratified sampling [48], importance sampling 

[60], and sequential construction and destruction methods [61, 62].  However, research 

regarding opportunities of additional savings of sampling efficiency in a particular 

optimization framework still remains an open area of study.   

Despite these difficulties, various approaches have been proposed for solving the 

NRD optimization problem, including: construction heuristics [63], genetic algorithms 

[64-71], neural networks [56, 72], simulated annealing [73, 74], and the cross-entropy 
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method [75-80].  However, research focusing on efficient evaluation of system reliability 

within a given search mechanism is a relatively new concept.  Hui et al. [76, 78] presents 

a cross entropy approach to solve the NRD problem using three alternative sampling 

methods for highly reliable networks, as well as introduces a hybrid cross-entropy 

approach to improve the efficiency of the convergence of the purchase probability vector.   

Altiparmak and Dengiz [80] propose a new generation algorithm and optimization 

framework for the cross entropy approach to eliminate the generation of infeasible 

solutions and only evaluate the most promising designs.   

1.1.3 Limitations of Literature 

This subsection summarizes the limitations of existing works in the NRD and 

R&S literature. 

1.1.3.1 Network Reliability Design 

Although a wide body of literature regarding the evaluation of system reliability 

and navigation of the solution space exist for the NRD optimization problem, we believe 

that there are still various opportunities for potential improvement.  First, to our 

knowledge, no solution approach has addressed the evaluation of system reliability from 

the context of a comparison problem, but rather from the context of an evaluation of each 

individual design.  Second, to our knowledge, no approach has  provided a lower bound 

guarantee on the probability of making a correct selection given the number of samples 

collected when enumeration of the entire solution space is possible.  And lastly, although 

various sampling methods to improve the efficiency of the Monte Carlo simulation to 

estimate system reliability have been proposed, to our knowledge, these methods are only 
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used within the context of the conventional approach to Monte Carlo simulation, which 

involves a user-specified number of Monte Carlo samples being collected from each 

design in consideration, regardless of solution quality.   

1.1.3.2 Ranking and Selection 

Although R&S is a well developed and rigorously tested set of statistical 

techniques, the primary focus in the literature has been on selection of the single best 

alternative.  However, selection of the set of multiple best alternatives can be very useful 

in practice as no model is a perfect representation of the real world, and hidden 

constraints may exist that ultimately require alternate solutions.  Although various 

individual procedures have been proposed for selecting the set of the best alternatives, to 

our knowledge, this specific body of literature is incomplete and has never considered the 

state-of-the-art combined procedure.  Also, apart from their individual applications, new 

advances in this area could open up potential for entirely new meta-heuristics concerning 

the general simulation optimization problem, as selection of the set of the best is a 

neighborhood search criteria common to many leading meta-heuristics.  

1.2 Thesis Objective and Outline 

In this thesis, we investigate the prospect of using R&S procedures and concepts 

based on R&S theory to improve the sampling efficiency in solving the NRD 

optimization problem as well as providing some sort of statistical guarantee on making a 

correct selection.  To do this, we classify the NRD problem according to the size of the 

solution space, and propose different solution methodology accordingly.  For a small 

number of candidate designs, we introduce an approach to directly apply the state-of-the-
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art approaches in R&S.  For a large number of candidate designs, we use the theory and 

concepts of R&S to develop a new optimization framework to improve the sampling 

efficiency of a commonly used meta-heuristic.  We then investigate the prospect of new 

generic combined R&S procedures backed by theoretical proofs to expand the R&S 

literature to encompass the selection of the  -best designs problem given unknown and 

unequal means and variances.  

The remainder of this thesis is structured as follows.  In Chapter 2 we propose a 

ranking and selection method for the small network reliability design problem.  In 

Chapter 3 we propose a new optimization framework to improve the efficiency of the 

evaluation process of the cross entropy approach for the large network reliability design 

problem.  In Chapter 4 we present three novel ranking and selection procedures for 

addressing the problem of selecting the  -best systems under the conditions of unknown 

and unequal means and variances.  Finally, in Chapter 5 we discuss conclusions as well 

as areas for potential future work.    
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CHAPTER 2 

A RANKING AND SELECTION APPROACH FOR SMALL NETWORK 

RELIABILITY DESIGN PROBLEMS 

2.1 The sNRD Problem 

In this chapter, we consider an important case of the network reliability design 

optimization problem in which the optimal design is selected by evaluating and 

comparing the estimated system reliability of every design within a finite solution space, 

i.e. any NRD where total enumeration of the solution space is practical and desirable.  In 

this thesis, we refer to this problem as the small network reliability design problem 

(sNRD).  Although this definition is subjective depending on the time each individual is 

willing to invest in the simulation, in this thesis we consider the sNRD as any NRD 

optimization problem with no more than 1000 candidate designs.   

Although problems with more than 1000 candidate designs are typically the most 

common NRD problems in the literature and industry, there are still many important 

applications for this sNRD methodology.  For example, network expansion [70, 77] is a 

common problem in practice as many existing networks are often redesigned or expanded 

rather than constructed from scratch.  Also, most state-of-the-art methods for solving the 

large NRD problem rely on repeatedly solving some type of neighborhood search within 

the framework of the heuristic search method.  These neighborhoods typically fall within 

the sNRD classification.  Thus the sNRD is the basis for most of the NRD solution 

methodology proposed in the literature.  

 To illustrate the sNRD problem, consider the network displayed in Figure 2.1, 

from [77], such that each edge maintains its own individual reliability.  In this example, 
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the existing network has been divided into two sets            and               

which require connecting via one additional edge.  The goal of this problem is therefore 

to select the location for the additional edge that maximizes system reliability.   

 

 

Figure 2.1: Example sNRD 

2.1.1 Issues with Monte Carlo Approaches to NRD 

The current approach to solving the sNRD problem involves selecting the design 

with the largest system reliability estimate based on the Monte Carlo evaluation of every 

design in the solution space, such that   Monte Carlo samples are observed from each 

design.  Although this sampling approach is straightforward and simple to implement, the 

procedure has its drawbacks.  First, the efficiency as well as accuracy of the procedure 

are highly dependent on the users prior knowledge of the example network and 

corresponding ability to select an efficient value of  .  Second, even if an efficient value 

of   is selected, this method of sampling is inefficient as many designs do not require   

samples in order to determine that they are indeed inferior designs. Third, this sampling 

method provides no a priori theoretical guarantee on the probability of making a correct 

selection.  In other words, this approach does not account for type I error associated with 

making a correct selection based on approximations, where type I error for the NRD 

A2 
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problem is the error associated with incorrectly selecting the optimal solution due to the 

uncertainty of the reliability estimates.  To our knowledge, no method within the NRD 

literature exists that tackles these three problems either individually or in combination.  

2.1.2 Chapter Objective and Outline 

The contribution of this chapter to the NRD literature is thus threefold.  First, to 

present a new formulation of the sNRD problem that accounts for the corresponding type 

I error associated with making a correct selection.  Second, to introduce the use of 

ranking and selection procedures to the reliability design literature by proposing novel 

solution methodology for the sNRD that quantifies and controls the type I error 

associated with correctly selecting the optimal solution based on approximations.  Third, 

to provide a rule of thumb for selecting a batch size that insures a good approximation of 

the binomial approximation to the normal distribution in our proposed procedure, in order 

to satisfy the normality assumption associated with the ranking and selection procedures.     

The remainder of this chapter is organized as follows.  Section 2 describes the 

NRD optimization problem, how Monte Carlo simulation is applied to solve it, and our 

new objectives in solving the sNRD.  Section 3 provides an overview of ranking and 

selection procedures.  Section 4 introduces the proposed method.  Section 5 justifies the 

extension and application of the chosen ranking and selection procedure to the NRD 

problem.  Finally, Section 6 provides numerical examples of the proposed procedure.   

2.2 Problem Formulation 

For the NRD optimization problem, let          represent a network with 

reliable node set           , unreliable edge set           , and terminal node set 
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    which represents the set of nodes that must be able to communicate with one 

another in order for the network to be considered operational.  We then define the 

network reliability design optimization problem as follows, 

    
    

      (2.1) 

where   is the set of feasible solutions defined by the following constraints: 

 

           
  
     

              

                  

(budget constraint) 

(edge constraint) 

(integer constraint) 

(2.2) 

where    represents the individual cost of edge     and                  is the edge 

purchase vector of design  , where     is the binary state of edge    , such that 

      
    if edge   is purchased in design    
    otherwise                                       

  (2.3) 

      is the evaluation of the system reliability of design  , and      is the maximum 

allowable budget for purchasing edges in each design.  

In a sNRD problem, we assume   is nonempty and finite, containing a total of   

feasible designs, such that       .  As such, we can index the set of all candidate 

designs via               , and represent the optimal solution(s) to (2.1) as    

                  , where         . 

System reliability for this problem is defined as the probability that a given set of 

terminal nodes     are connected at any given time, where the system is connected if 

all nodes in   can communicate with one another via operational edges.  Thus, if we let 

                   represent the  th possible edge state of design  , where an edge state 

is a unique vector of individual edge realizations     , such that 
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and    represent the set of all possible edge states for design  , then the system reliability 

of design   is mathematically defined as: 

                         

      

 (2.4) 

where        is the structure function for the evaluation of the connectivity of edge state 

   , such that 

         
         is connected in state       

                                              
  (2.5) 

and        is the probability of edge state     occurring given independent edge failures, 

such that  

 
          

       
    

      
 

     

       
    

      
 

 
(2.6) 

where    represents the individual reliability of edge    , and   
               .  

However, because the evaluation of (2.4) is difficult and cannot typically be solved in 

polynomial time for most networks, (2.1) is typically represented via:  

    
    

       (2.7) 

where        is the approximation of   , based on Monte Carlo simulation, such that 

            
       

  

   

  

 (2.8) 

where     is the  th randomly selected edge state of design   from state space   , such that 

the  th element of     is generated as follows, 

       
    if           

    if           

   

where      is randomly generated according to      U     ,    is the individual reliability 

of edge  ,    is the number of Monte Carlo samples observed in the evaluation of    .  
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These    Monte Carlo samples are assumed to be independent and identically distributed 

for all  , and independent of      for     .  Accordingly,     is an unbiased estimator of    

with corresponding variance, 

   
           

          

  

  

2.2.1 Common Random Numbers 

A common variant of Monte Carlo simulation is the use of common random 

numbers (CRN).  CRN is a variance reduction technique used to compare simulated 

alternatives under homogenous experimental conditions in order to reduce the random 

error involved in their pair-wise comparison.  For the network reliability design problem, 

CRN are implemented by using the same single stream of randomly generated numbers 

for the  th replication of each design, i.e.                    . 

However, the variance reduction achieved by CRN is not free, as it induces a non-

zero correlation between treatment means.  Therefore, this correlation must specifically 

be accounted for within the corresponding parameters of the procedure it is used in, 

making the overhead cost of using CRN more expensive.  Thus, whenever CRN is 

employed it is necessary to ensure that the tradeoff of increased overhead for reduced 

variance is beneficial to the overall procedure performance in some way.  

2.2.2 Proposed Objective 

Given a finite sampling horizon, no approximate can represent its true mean with 

absolute certainty.  With this in mind, any solution obtained using (2.7) should have a 

confidence level associated with how likely it is to represent the true best design.  
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However, this issue has never been addressed in the network reliability design literature.  

Solutions selected via (2.7) are just assumed to be optimal. 

Therefore, in this chapter we propose a more rigorous objective for the sNRD 

optimization problem in order to quantify this probability of correct selection (PCS), and 

provide a more meaningful result.  This objective is as follows, 

                                 (2.9) 

where   is the allowable type I family-wise error and   is the smallest difference worth 

detecting between any two system reliabilities, such that any two system reliabilities that 

differ by less than   are considered equivalent.  This definition states that, when making a 

selection based on approximations of the true system reliabilities, we want to select the 

true best design with a user-specified probability of at least    . 

We introduce the concept of   in this definition for two reasons.  First, it enables 

a more realistic representative of the real world, as one often only desires a certain level 

of accuracy within a design problem; and second, to make this new definition for the 

sNRD optimization problem more tractable, enabling the use of a sample size calculation 

to determine the number of Monte Carlo samples necessary to achieve a desired level of 

confidence. 

In order to implement (2.9) in terms of the NRD problem, however, there are still 

two major issues that need to be addressed.  First, we need to find a selection rule that can 

account for the type I error associated with the multiple comparisons involved in rank ing 

the   system reliabilities with a Monte Carlo simulation.  Second, we need a mechanism 

for determining the number of samples required to represent each individual design‟s 

system reliability, such that Monte Carlo samples are only taken when necessary.  For the 
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sNRD problem, we believe that (2.9) is possible through the use of ranking and selection 

procedures from the discrete event simulation literature.  

2.3 Methodology 

In this section, we describe our approach to adapt R&S procedures to the sNRD 

optimization problem as well as the four R&S procedures we consider in this thesis. 

2.3.1 Procedure Selection 

In this chapter, we consider adapting four R&S procedures to solve the sNRD 

optimization problem: Procedure R [30], which is a baseline 2-stage IZP (see Appendix 

A); Procedure CY [31], which is the extension of Procedure R to account for the use of 

CRN (see Appendix B); Procedure 2SP [20], which is a 3-stage combined procedure (see 

Appendix C); and Procedure KN [37], which is a fully sequential combined procedure 

that also accounts for the effects of CRN (see Section 4).  

Based on the published results in the ranking and selection literature, the approach 

we select for our proposed approach is Procedure KN, as it has been shown to maintain 

superior overall performance as compared to the other three procedures, for optimization 

problems similar to the sNRD problem [37].  For example, Procedure KN has been 

shown to make correct selections using significantly less total samples as well as 

maintain a more robust performance in terms of the selection of its input parameter 

levels.  For a verification of this selection, we refer the reader to Section 6.  
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2.3.2 Satisfying Normality Assumption with Batch Means 

In order to provide the theoretical guarantee associated with the user-specified 

probability of correct selection, all ranking and selection procedures discussed in this 

paper assume that the samples used in approximating the estimates of the expected 

performances for each individual alternative are normally distributed.  As such, these 

techniques cannot be directly applied to the sNRD optimization problem, as Monte Carlo 

simulation is often necessary to evaluate the system reliabilities, and Monte Carlo 

samples for reliability evaluation are Bernoulli random variables.  We account for this 

distribution mismatch, however, by approximating normally distributed samples, in 

accordance with the central limit theorem through the use of batch means of Monte Carlo 

samples. 

We redefine our samples in terms of the corresponding batch mean, such that 

     
 

 
       

 

   

 (2.10) 

where     represents the  th batch mean of the  th topological design of network  , and   

is the number of i.i.d. Monte Carlo samples used in each batch.  We then substitute    for 

all    in Procedure KN, where    is the number of batch means used in estimating the 

system reliability of design i, such that 

    
  

 
              

We then define the system reliability estimate for design   in terms of    and    , such 

that 
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 (2.11) 

with the estimation of its corresponding variance as,  

    
           

          

  

  

Therefore, when   is large enough,        will approximately follow a normal 

distribution.  For further discussion concerning this approximation and how to select a 

level for   that maintains a satisfactory normal approximation, we refer the reader to 

Section 2.5.1.   

2.4 Proposed Procedure 

In this section, we present our proposed approach, Procedure KN, as adjusted for 

network reliability, which we call: Procedure KN+NR; we then follow this with a 

discussion of the individual details involved in each step. 

Proposed Approach: Procedure KN+NR 

1) Using (2.10), take    i.i.d. batch means     from each design  ; set          , 

where        is the batch mean counter variable for Procedure KN+NR.  And 

determine the system reliability estimates for all   designs based on their initial 

   batch means,                   . 

2) Determine the sample variance of the difference of the system reliability estimates 

of design   and design   determined in Step 1, as follows 
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3) Calculate             where   is the solution to        (see Appendix D) 

represented by     
 

 
   

  

     
 

  
      

    if CRN are used and    

 
 

 
           

 
      

  
      

    if independent replications are used,   is 

the user-specified allowable type I error, and   is a constant with recommended 

value    . (see [37] for further details) 

4) Compute       
    

 
 

 

               

5) Set                     , and         . 

6) Initialize          , where   is defined as the set of candidate designs still in 

contention for the best. 

7) Set        and                                          where 

            
 

        
   

    

 
 

 

         . 

8) If      , stop and select the candidate design in   as the best. 

Else if         , stop and select the design in   with the largest system 

reliability estimate as the best design.  

Else, take    additional batch means for all    , set                 , 

where    is the user-specified incremental increase for        between 

subsequent iterations, such that     ; set                  for all    ; and 

return to Step 7. 
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To break this procedure down, Steps 1-5 represent the indifference zone 

procedure (IZP) of Procedure KN+NR, Steps 6-7 represent the subset selection procedure 

(SSP) of Procedure KN+NR, and Step 8 represents the stopping criteria.   

For the IZP, Step 1 and Step 2 are used to determine initial system reliability 

estimates and the variances associated with their pair-wise difference.  Steps 3, 4, and 5 

then initialize various parameters according to the system reliability estimates and 

variances in Steps 1 and 2, as well as various other user-specified inputs.  The result of 

these steps is determining the level of   in Step 5, which represents the maximum number 

of batch means to observe from any candidate design in Procedure KN+NR.   

For the SSP, Step 6 is used to initialize a set   to all   candidate designs, and Step 

7 is used to screen out inferior designs based on a significant difference of their 

associated pair-wise comparisons.  Thus,     represents the half-width of the confidence 

interval associated with determining if     is significantly inferior to    . 

Finally, Step 8 is the stopping and iteration criteria, such that if any of the 

specified objectives in the procedure are met, Procedure KN+NR terminates.  However, if 

none of the specified objectives are met,    additional batch means are observed from 

each design in set  , and the procedure returns to Step 7.  This process then continues to 

iterate in this manner until one of the stopping criteria are reached.  

2.5 Parameter Selection 

In this section, we propose a rule of thumb for selecting an efficient level of batch 

size that satisfies Procedure KN+NR‟s normality assumption.  We then extend the proofs 
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from [37] for both the recommended level of   as well as when using CRN are beneficial 

for our desired range of   in Procedure KN+NR.  

2.5.1 Batch Size that Maintains an Acceptable Binomial 

Approximation to the Normal for sNRD 

In section 2.4, we presented our proposed approach for solving the sNRD 

optimization problem, in accordance with the new objective defined in section 2.2.  In 

this procedure, we satisfy the normality assumption associated with the theoretical 

guarantee of Procedure KN by introducing the use of batch means of Monte Carlo 

samples to approximate a normal distribution.  However, in doing so, we are left with the 

task of selecting an appropriate level of batch size that still maintains an efficient 

simulation, which is not easy.  Therefore, in this section we develop a model to help 

select an efficient level of batch size for Procedure KN+NR based on the user-specified 

input parameters levels. 

Before we present this model, however, we must first introduce the concept of 

critical batch size.  Critical batch size, denoted by   , is the minimum level of batch size 

that maintains an appropriate normal distribution for Procedure KN+NR; and is the le vel 

of batch size for Procedure KN+NR that we want to predict.  This is because in [37], it is 

shown that when using batch means with Procedure KN, the smaller the batch size used 

the more efficient the simulation will be; however, in terms of the accuracy of the 

binomial approximation to the normal, the larger the batch size used the more accurate 

the resulting normal approximation will be, meaning the lower the risk of violating the 

normality assumption of Procedure KN.  Thus,    is the equilibrium point for these two 
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competing batch size objectives, and what we consider to be the optimal level of batch 

size for Procedure KN+NR.  We therefore construct our model to predict this value.  

Unfortunately, though, determining the critical batch size for any set of input 

parameter levels is not easy for the sNRD optimization problem, as    cannot be 

analytically derived, only approximated through simulation.  Therefore, we are not able 

to derive or specify an exact formula for this value, only a rule of thumb for its 

approximation.  The rule of thumb we developed is as follows,  

 

    

          

     
(2.12) 

where     gives an appropriate upper bound for   ,    is an estimate of the reliability of 

the best true candidate design,   is the number of candidate designs in the solution space, 

   is the initial number of batches, and   is a constant with range       such that the 

larger   is the more conservative the approximation for     will be.  When      , 

(2.12) is valid for the parameter range:               ,            ,    

           , and           . 

We developed (2.12) based on results from the experiment described in Appendix 

E, using a binomial random number generator,                 , as a substitute for 

each batch mean of Monte Carlo samples.  This not only greatly reduced the runtime of 

this experiment, but also provided a means of constructing a solution space in accordance 

with the worst case scenario for Procedure KN+NR, which is a scenario where the system 

reliability of the true best design is exactly   greater than the rest, i.e.         

       . 



27 
 

Table 2.1: Observed Critical Batch Size vs. Rule of Thumb Batch Size  

          

           RoT            RoT            RoT            RoT 

10 0.05 0.65 2 5 20 0.05 0.65 1 3 10 0.05 0.65 3 5 20 0.05 0.65 2 4 

10 0.05 0.8 3 6 20 0.05 0.8 2 4 10 0.05 0.8 4 7 20 0.05 0.8 3 5 

10 0.05 0.95 7 11 20 0.05 0.95 5 8 10 0.05 0.95 8 13 20 0.05 0.95 6 10 

10 0.05 0.99 11 25 20 0.05 0.99 8 18 10 0.05 0.99 14 29 20 0.05 0.99 10 21 

10 0.05 0.995 10 35 20 0.05 0.995 7 25 10 0.05 0.995 12 41 20 0.05 0.995 7 29 

10 0.03 0.65 3 6 20 0.03 0.65 2 4 10 0.03 0.65 4 7 20 0.03 0.65 3 5 

10 0.03 0.8 4 7 20 0.03 0.8 3 5 10 0.03 0.8 5 9 20 0.03 0.8 4 6 

10 0.03 0.95 10 14 20 0.03 0.95 8 10 10 0.03 0.95 12 17 20 0.03 0.95 10 12 

10 0.03 0.99 18 32 20 0.03 0.99 14 22 10 0.03 0.99 22 38 20 0.03 0.99 18 27 

10 0.03 0.995 20 44 20 0.03 0.995 16 32 10 0.03 0.995 24 53 20 0.03 0.995 20 38 

10 0.01 0.65 4 10 20 0.01 0.65 3 7 10 0.01 0.65 5 11 20 0.01 0.65 4 8 

10 0.01 0.8 7 13 20 0.01 0.8 6 9 10 0.01 0.8 8 15 20 0.01 0.8 7 11 

10 0.01 0.95 20 25 20 0.01 0.95 16 18 10 0.01 0.95 22 29 20 0.01 0.95 18 21 

10 0.01 0.99 38 54 20 0.01 0.99 33 39 10 0.01 0.99 46 65 20 0.01 0.99 36 46 

10 0.01 0.995 70 77 20 0.01 0.995 50 54 10 0.01 0.995 70 92 20 0.01 0.995 50 65 

10 0.005 0.65 5 13 20 0.005 0.65 4 7 10 0.005 0.65 6 16 20 0.005 0.65 5 11 

10 0.005 0.8 9 18 20 0.005 0.8 7 13 10 0.005 0.8 12 21 20 0.005 0.8 9 15 

10 0.005 0.95 26 35 20 0.005 0.95 19 25 10 0.005 0.95 30 41 20 0.005 0.95 24 29 

10 0.005 0.99 52 77 20 0.005 0.99 38 54 10 0.005 0.99 60 92 20 0.005 0.99 50 65 

10 0.005 0.995 100 108 20 0.005 0.995 75 77 10 0.005 0.995 100 130 20 0.005 0.995 90 92 

10 0.001 0.99 85 171 20 0.001 0.99 75 121 10 0.001 0.99 100 205 20 0.001 0.99 70 145 

10 0.001 0.995 170 241 20 0.001 0.995 100 171 10 0.001 0.995 140 290 20 0.001 0.995 100 205 

 
 
 

Table 2.1 summarizes the results corresponding to each of the 88 treatments used 

in the experiment in Appendix E, as well as corresponding approximation from (2.12) 

using      , indicated by column „RoT‟.  We refer to     in (2.12) as an upper bound 

to    as it never underestimates    for the given range of interest of the parameters, 
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according to our simulation results in Appendix E, yet follows the same trends and stays 

relatively close to the simulated values of   . 

To verify that (2.12) is valid for the range of   we specify, not just the range used 

to construct it in Appendix E, we randomly select ten of the sixty possible treatments of 

parameters:   ,  , and    from the range specified in Appendix E, while setting      , 

      , and   according to its     upper bound in (2.12).  Each treatment is then 

replicated 500 times in order to empirically determine the experimental probability of 

correct selection, which we denote as ExPCS in Table 2.2.  A summary of the results of 

these treatments are shown in Table 2.2. 

Table 2.2: Validation of Batch Size Rule of Thumb 

Treatment           Replications Avg Samples ExPCS 

1 0.95 0.05 0 500 500 2.0056E+05 0.962 

2 0.8 0.05 20 500 500 4.2437E+05 0.976 

3 0.999 0.001 20 500 500 1.0708E+07 0.970 

4 0.995 0.001 10 500 500 4.3662E+07 0.964 

5 0.65 0.05 10 500 500 7.2629E+05 0.976 

6 0.99 0.01 10 500 500 1.4212E+06 0.974 

7 0.995 0.03 10 500 500 4.3062E+05 1.00 

8 0.999 0.005 10 500 500 2.4436E+06 1.00 

9 0.8 0.01 10 500 500 1.2488E+07 0.976 

10 0.995 0.005 20 500 500 2.1319E+06 0.96 

 

 

Since the acceptable type I error rate was set to       , the nominal PCS for 

this problem was 0.95.  Comparing this to the results in Table 2.2, the ExPCS is greater 
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than the nominal PCS in every treatment.  Since these treatments are all randomly 

selected from our range of interest, this is a good indication that (2.12) is indeed a 

satisfactory and efficient upper bound approximation for    for our given range of 

interest of the parameters. 

2.5.2 Selection of   

Kim and Nelson [37] recommend the selection of     for Step 3 of Procedure 

KN+NR when the experimenter has no prior knowledge of the candidate designs in the 

solution space.  They support this claim by stating that under these conditions, the best 

choice of   should be the level that minimizes: 

     
          

 

  
 (2.13) 

and determine the minimum value for (2.13) for the range          , as indicated by 

the gray values in Table 2.3. 

However, since in the sNRD we apply Procedure KN+NR to a much larger range 

of   than tested in [37], we extend Kim and Nelson‟s justification for the recommended 

level of   to much larger range of  , to see if the same results apply.  Table 2.3 is a 

reproduction of the results from  [37] extended to the range of   relevant to the sNRD, 

i.e.           . 

As one can see from the results in Table 2.3,     still maintains the smallest 

area for all treatments, thus using the same logic as in [37] we conclude that     

remains the preferred choice for Procedure KN+NR in the sNRD problem, given no prior 
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knowledge of the candidate designs in the solution space.  For further details on this 

explanation, we refer the reader to [37]. 

Table 2.3: Area     in Units of           
    , when                 for 

           

     
  

2 5 10 20 100 200 400 600 800 1000 

5 

1 1.169 7.088 18.007 40.858 232.02 475.45 966.17 1459.1 1953.1 2447.8 

2 1.593 9.325 23.446 52.88 298.09 609.84 1237.9 1868.4 2500.3 3133 

3 2.096 12.14 30.433 68.517 385.43 788.15 1599.3 2413.6 3229.6 4046.6 

4 2.618 15.087 37.769 84.972 477.5 976.24 1980.7 2989 3999.3 5010.9 

5 3.147 18.084 45.237 101.7 571.36 1168 2369.5 3575.7 4784.2 5994.3 

10 5.822 33.284 83.142 186.8 1048.2 2142.4 4345.6 6557.2 8773.1 10992 

10 

1 0.112 0.403 9.738 1.221 3.296 4.858 7.056 8.729 10.131 11.359 

2 0.148 0.504 0.903 1.469 3.886 5.69 8.22 10.143 11.751 13.16 

3 0.193 0.645 1.148 1.863 4.893 7.153 10.32 12.725 14.736 16.498 

4 0.24 0.796 1.411 2.286 5.993 8.75 12.616 15.553 18.008 20.158 

5 0.288 0.946 1.682 2.723 7.116 10.395 14.985 18.469 21.384 23.935 

10 0.529 1.731 3.058 4.942 12.905 18.823 27.12 33.418 38.686 43.296 

15 

1 0.038 0.12 0.203 0.311 0.705 0.96 1.287 1.518 1.703 1.859 

2 0.05 0.148 0.243 0.366 0.804 1.085 1.443 1.696 1.898 2.068 

3 0.065 0.188 0.307 0.459 1.002 1.35 1.793 2.105 2.354 2.564 

4 0.08 0.231 0.376 0.563 1.222 1.645 2.183 2.562 2.864 3.119 

5 0.096 0.275 0.447 0.666 1.449 1.949 2.587 3.035 3.393 3.695 

10 0.176 0.499 0.81 1.204 2.611 3.516 4.663 5.471 6.114 6.657 

20 

1 0.019 0.056 0.092 0.136 0.285 0.374 0.485 0.561 0.62 0.669 

2 0.025 0.068 0.108 0.158 0.319 0.416 0.534 0.614 0.677 0.729 

3 0.032 0.087 0.136 0.197 0.395 0.515 0.66 0.758 0.835 0.899 

4 0.039 0.106 0.166 0.24 0.482 0.626 0.801 0.921 1.014 1.092 

5 0.047 0.126 0.198 0.286 0.571 0.741 0.949 1.09 1.2 1.292 

10 0.086 0.231 0.357 0.515 1.03 1.335 1.708 1.962 2.16 2.324 

 

2.5.3 Extension of CRN Justification 

Kim and Nelson [37] show that using CRN in Procedure KN is beneficial as long 

as  , the correlation induced between designs by CRN, is greater than   
  

  
 (where    
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and    are parameters of Procedure KN given in section 2.4). They further prove that    

is at least 1.02 times    for           so that CRN is beneficial as long as       .  In 

this section, we extend their proof to a larger range of   using the same justification.  To 

do this, let   be the ratio of    to   , i.e. 

   
  

  

 

 
 
 
   

  
   

 

  
    

   

 
 
           

 
     

  
    

   

 (2.14) 

Therefore,   is a function of the initial number of batches   , the acceptable type 

I error  , and the number of designs in the solution space  , for the range of interest: 

        ,        , and         .  We then find an upper bound for   by 

evaluating its partial derivatives over the given ranges of interest.   

To begin, we evaluate 
  

   
 for                ,             , and   

               .  For this range, 
  

   
 is always negative indicating that   is a decreasing 

function for        , which implies that we only need to consider the smallest value 

of    in our range of interest for our upper bound, i.e.      . 

Next, setting      , we evaluate 
  

  
 for                 and   

               .  For this range, 
  

  
 is always positive indicating that   is an increasing 

function for           , which implies that we only need to consider the largest 

value of   in our range of interest for our upper bound, i.e.      . 

Finally setting       and      , we can then express an upper bound for   

as a function of  , as follows 
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 (2.15) 

We then evaluate (2.15) for our desired range of           , where the continuous 

curve of this evaluation is displayed in Figure 2.2.  

 

Figure 2.2: Upper bound of   

Clearly,   still peaks at     as it did when evaluated for the smaller range of   

in [37].  Therefore, for the parameter range of interest in sNRD problems, we still 

conclude that        , implying that using CRN in Procedure KN+NR will be 

beneficial so long as       . And for larger  , say      ,         will be 

sufficient for CRN to be beneficial 
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2.6 Numerical Examples 

In this section we present three numerical examples to verify the selection of 

Procedure KN as our method of choice, validate the batch size rule of thumb model, and 

test the efficiency of Procedure KN+NR according to our     approximation, which we 

denote as Procedure KN+NR+RoT. 

2.6.1 Example Networks 

Throughout this section, we use three example networks to test our proposed 

procedures, which we refer to as: the 30-node chain, the 35-node chain, and the complex 

network. For the two chain network examples, each network consists of a base network 

defined as a path spanning all nodes in   and having       total edges, where all 

individual edge reliabilities are 0.99.  The goal of the problem is to add one additional 

edge to the base network in such a way that system reliability is maximized.  Figure 2.3 

shows a generic example of this problem, where the base network is represented by the 

solid edges connecting nodes   through   and the dashed edges represent instances of 

how an additional edge could be added to the base network.  For the 30-node and 35-

node base networks, this creates a solution space of 406 and 561 candidate designs 

respectively. 

 

Figure 2.3: Example Chain Network 

     -    … 
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For the complex network example, we consider the network expansion problem 

depicted in Figure 2.4, which is a network that cannot analytically be solved and whose 

system reliability is difficult to evaluate.  This example consists of a base network of 13 

nodes and 18 edges, whose individual edge reliabilities are all 0.95.  The goal of the 

problem is to expand the network to include node 0 as well as two additional edges in 

such a way that system reliability is maximized.  Therefore, exc luding edge redundancy, 

there are a total of 858 candidate designs in this solution space.  

 

 

Figure 2.4: Complex Network Expansion Example 

2.6.2 Verification of Efficiency of Procedure KN 

In this section, we verify that the published results from discrete event simulation 

concerning the performance of: Procedure R, Procedure CY, Procedure 2SP, and 

Procedure KN still apply to the sNRD problem, i.e. Procedure KN is the overall most 

efficient method.  To do this, we apply and compare these four procedures using the 30-
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node and 35-node chain networks.  We do not use the complex network example for this 

experiment as its run time was too great for both Procedure R and Procedure CY.  

For each example network, the acceptable type I error rate is set to       , the 

indifference parameter is set to        , the initial number of batches is set to    

  , and the batch size is set to the conservative level of      .  Each procedure is then 

subject to ten independent replications for each example network. 

Table 2.4 summarizes the results of the ten independent replications for each 

treatment.  The comparison metric used here is the average total number of un-batched 

Monte Carlo samples to make a selection, as this provided an unbiased measure of each 

procedure‟s efficiency.  Average total runtime, however, is in general directly 

proportional to average total number of Monte Carlo samples, with Procedure KN 

requiring 491 and 981 seconds to make a correct selection for the 30-node and 35-node 

chain networks respectively.  All replications of all treatments select the true best design.  

Table 2.4: Comparison of Ranking and Selection Methods on sNRD 

Procedure 30-node 35-node 

R 140,350,600 239,859,940 

CY 114,224,040 232,983,300 

2SP 3,899,734 5,858,560 

KN 568,820 799,740 

 

 

Therefore, using Procedure KN as a baseline, Procedure R, Procedure CY, and 

Procedure 2SP required 247, 201, and 7 times more total Monte Carlo samples to make a 

correct selection for the 30-node chain network; and 300, 292, and 8 times more total 
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Monte Carlo samples to make a correct selection for the 35-node chain network.  These 

results reflect those published in the ranking and selection literature for discrete event 

simulation [20, 37], indicating that the performance of these procedures as applied to the 

sNRD problem are indeed consistent with the general results.  Based on this, we conclude 

that Procedure KN was indeed the best ranking and selection approach to use in the 

sNRD optimization problem.   

2.6.3 Validation of Batch Size Rule of Thumb and the 

Probability of Correct Selection 

In Section 2.5.1, we present a batch size rule of thumb for Procedure KN+NR 

which is constructed using a binomial random number generator in place of Monte Carlo 

simulation.  In this section, we verify that this was indeed an acceptable substitution for 

developing our rule of thumb, by empirically determining the PCS of Procedure 

KN+NR+RoT, based on 100 independent replications using actual Monte Carlo samples, 

for each of the three example networks.  We then compare the efficiency of Procedure 

KN+NR+RoT with the conventional approach described in Section 1, in terms of their 

corresponding PCS based on an equal number of total Monte Carlo samples.  This is done 

by using    
      

 
 as the number of un-batched Monte Carlo samples to evaluate each 

candidate design in the conventional approach, where        represents the total number 

of Monte Carlo samples required for the proposed procedure to make a correct selection 

in replication  .  We then empirically determine the probability of correct selection for 

the conventional approach, for each of the three example networks, based on the solution 

quality of the corresponding 100 independent replications.  
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The parameters used in this experiment are:       ,       ,      , and 

         for the 30-node chain network;       ,       ,      , and          

for the 35-node chain network; and       ,       ,      , and          for the 

complex network.  A summary of these results are displayed in Table 2.5. 

Table 2.5: PCS of Conventional vs Proposed Procedure 

Network Number of 
Designs 

 # of Monte 
Carlo samples 
per design (  ) 

Conventional 
Approach 
Empirical PCS 

KN Empirical 
PCS 

30-node chain 406 1402 78% 100% 

35-node chain 561 1426 64% 100% 

Complex 858 8714 50% 100% 

 

 

Since we are unable to analytically verify the optimal design of the complex 

network, we accept the majority selection from both Procedure KN+NR+RoT and the 

conventional approach as the true best design, as shown in Table 2.6.  For each of the 

tables in Table 2.6 through Table 2.8, “Design” specifies the node pairs, in parentheses, 

of the base network to be connected using the additional edge/s; “Reliability” is the 

estimated system reliability of the specific design based on 25 million Monte Carlo 

samples; and “Percent Selection from ...” is the percentage of replications that the 

designated procedure selected that particular design as the best.  

For each example network in this experiment, Procedure KN+NR+RoT correctly 

select the true best design 100% of the time, whereas the conventional approach correctly 

select the true best design only 76%, 64%, and 50% of the time for the 30-node, 35-node, 
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and complex networks respectively.  This pattern seems to indicate that the larger the 

solution space and the more complex the topology of the example network, the more 

efficient Procedure KN+NR+RoT is as compared to the conventional approach.  These 

results both validate our batch size rule of thumb, and provide some insight into the 

efficiency and sample size savings associated with using Procedure KN+NR+RoT.  
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Table 2.6: Complex Network PCS Breakdown 

Design Reliability Percent Selection 
from KN 

Percent Selection from 
Conventional Approach 

              0.9674 0 11 

              0.9696 100 50 

              0.9677 0 7 

              0.9677 0 15 

               0.9676 0 8 

               0.9678 0 9 

Table 2.7: 30-node Chain Network PCS Breakdown 

Design Reliability Percent Selection from 
KN 

Percent Selection from Conventional 
Approach 

       0.9564 0 11 

       0.9639 100 78 

       0.9564 0 9 

       0.9489 0 2 

Table 2.8: 35-node Chain Network PCS Breakdown 

Design Reliability Percent Selection from 
KN 

Percent Selection from Conventional 
Approach 

       0.9379 0 2 

       0.9450 0 12 

       0.9379 0 3 

       0.9521 100 64 

       0.9450 0 14 

       0.9308 0 5 
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CHAPTER 3 

A NEW OPTIMIZATION FRAMEWORK FOR THE LARGE NETWORK 

RELIABILITY DESIGN PROBLEM 

3.1 Introduction 

In this chapter, we consider the most common case of the NRD problem in the 

literature which can also be considered the complement to the sNRD.  This problem is the 

NRD optimization problem where total enumeration of the solution space is impractical 

or infeasible, i.e. the optimal design is selected by evaluating and comparing the 

estimated system reliability of a subset of the solution space.  In this thesis, we refer to 

this problem as the large network reliability design problem (large NRD).  Although this 

definition is subjective depending on the time each individual is willing to invest in the 

simulation, in this thesis we consider the large NRD as any NRD optimization problem 

with more than 1000 candidate designs.   

The purpose of this chapter and subsequent contribution to the network reliability 

design literature is to provide a new optimization framework for the large NRD 

optimization problem that focuses on efficient and dynamic sampling within a given 

search heuristic.  This framework consists of a population-based global guidance system, 

a selection-of-the-best subset procedure, and a duplicate evaluation process for 

eliminating redundant design evaluations.  This procedure is geared toward ease of use, 

in that its performance is robust in terms of the input parameter selection, and the 

methodology is straightforward and easy to understand.   

The specific global guidance system we use is the cross-entropy method.   The 

cross-entropy method is a population-based meta-heuristic developed in 1997 by 
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Rubinstein [81] and often described as a Monte Carlo approach to combinatorial 

optimization.  This method is a global search heuristic with backtracking, meaning it is 

capable of escaping local optimums due to its random search mechanism.  The cross-

entropy method is defined as the following two step iterative process: 

 

1) Generate a sample of   designs from the solution space according to some 

random mechanism. 

2) Update the parameters of the random mechanism, on the basis of the data, in order 

to produce a "better" sample in the next iteration.  

We select this method as our global guidance system because it has already been 

proven both successful and easy to implement for the network reliability design problem 

[76-79, 82]. 

We couple the cross-entropy method with two novel statistical procedures 

designed to improve the sampling efficiency of the Monte Carlo simulation: Sequential 

Selection of the Best Subset (SSBS) and Duplicate Generation (DG).  SSBS is a 

sequential sampling procedure and is based on the ideas of ranking and selection from the 

simulation optimization literature.  Its purpose is to select a subset of each population of 

designs, using as few samples as statistically possible, that contains only the candidate 

designs better than the upper  -quantile of the population.  Duplicate Generation on the 

other hand, is a statistical procedure designed to eliminate the evaluation of redundant 

designs yet still provide an independent system reliability estimate for each duplicate 

design index. 

The remainder of this paper is organized as follows: Section 2 describes the large 

NRD optimization problem.  Section 3 provides an overview of the cross entropy 

approach for network reliability design.  Section 4 introduces our proposed optimization 
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framework and the details of both SSBS and DG.  Section 5 provides numerical examples 

to quantify the performance and significance of our proposed framework and Section 6 

provides a sensitivity analysis on the newly introduced input parameters as well as 

recommended settings.   

3.2 Problem Formulation 

For the large NRD optimization problem, we use the identical formulation as that 

of the sNRD in Chapter 2 but for       .  Therefore, using the same variable, 

constant and function definitions as in Chapter 2, we summarize the formulation of the 

large NRD: 

Let          represent a network with reliable node set           , 

unreliable edge set           , and terminal node set    .  We then define the 

large NRD optimization problem as follows, 

    
    

       (3.1) 

where   is the set of feasible solutions defined by the following constraints: 

 

           
  
     

              
                  

(budget constraint) 

(edge constraint) 

(integer constraint) 

(3.2) 

where    ,    and      are the same as in chapter 2,        is the approximation of    

based on Monte Carlo simulation using (2.8),   is nonempty and finite containing a total 

of        feasible designs, and the true optimal solution/s can be denoted by    

                   where    is evaluated via (2.4).   
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3.3 The Cross Entropy Approach  

In this section we describe the basic cross entropy (CE) approach for NRD [78].  

This approach consists of five steps: initialization, generation, evaluation, updating, and 

stopping.  We first present the entire procedure as a whole, shown in Algorithm 3.1, then 

explain the details involved in each step. 

3.3.1 The Cross Entropy Approach for Network Reliability Design  

Let                     represent the vector of the edge purchase probabilities 

during iteration   for network         , such that     is the probability of 

purchasing/selecting edge   during iteration   when generating a candidate design.  The 

cross entropy approach can then be described by the five-step procedure in Algorithm 3.1 

to iteratively update    based on the    best designs in iteration    , where       

and   is the number of randomly generated designs in each iteration, until    converges 

to the degenerate probability vector   .  This degenerate probability vector then 

corresponds to what is assumed to be   . 

Algorithm 3.1: The Cross Entropy Approach 

Step 1) Initialization: Initialize     such that              . Set    . 

Step 2) Generation: Generate a population of   candidate designs           from   

using Algorithm 3.2 with         . 

Step 3) Evaluation: Using Monte Carlo simulation, evaluate the system reliability of 

each design in Step 2 using the same number of samples for each candidate 

design evaluation.  Then determine    , the value of the candidate design with 

the     th largest estimated performance for iteration  ,  using (3.3). 

Step 4) Updating: Update     using (3.4), where      is described by (3.5). 

Step 5) Stopping: If                            , then stop and select     as the 

optimal solution; else, set       and return to Step 2. 
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We next describe the details of each step in Algorithm 3.1. 

3.3.2 Step 1 of Algorithm 3.1: Generation 

In the generation step, a random mechanism is used to generate   candidate 

designs from  , based on the edge purchase probability vector                    .  

The mechanism begins by generating a random permutation              of all    

edges in  , where    represents the  th edge index of permutation  .  Then starting with 

   , purchase edge    with probability     
    so long as the cost of edge    (i.e. 

   
) does not exceed the remaining allowable budget.  If edge    is purchased, set 

    
   where     

 is the binary state of edge   ; otherwise set     
  .  Repeat this 

procedure sequentially for each edge in   or until the allowable budget is exhausted.  The 

outline for this procedure is given in Algorithm 3.2. 

Algorithm 3.2: Design Generation 

Step 1) Set    ,            , and     
   for         . 

Step 2) Generate a uniform random permutation              of edges         .  

Step 3) If    
        with probability     

 set     
   and        

          
. 

Step 4) If      or         , stop; else set       and return to Step 3.  

3.3.3 Steps 3 and 4 of Algorithm 3.1: Evaluation & 

Updating 

Steps 3 and 4 of the cross entropy approach concern the evaluation and updating 

of    to direct the search to improving regions of  .  Step 3 evaluates the system 

reliability for each of the   candidate designs via a Monte Carlo simulation and sets     to 
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the     th largest system reliability estimate of the   candidate designs in iteration  , 

such that  

              (3.3) 

     is then updated in Step 4 as follows, 

                     (3.4) 

where   is a smoothing parameter typically assuming values between       and 

                       , such that 

      
              

   
 
   

              
 
   

           (3.5) 

where      is the approximation of    , such that 

          
            

         (3.6) 

and              
 is an indicator function, such that 

              
      if  

         
    otherwise     

    

Although (3.5) is capable of directing the search to find   , depending on the size 

of  , direct use of (3.5) can still lead to suboptimal convergence by enabling     to 

converge too quickly.  To avoid this,     is updated via the method of exponential 

smoothing in (3.4) as this enables all past iteration data to be accounted for in the 

updating of     and subsequently reduce the potential for suboptimal convergence.  

3.3.4 Step 5 of Algorithm 3.1: Stopping 

The cross entropy approach terminates when its stopping criterion, given in step 

5, has been fulfilled.  This criterion specifies that if the algorithm is to terminate in 

iteration  , then every individual purchase probability      must be within   of 0 or 1, 
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where   is a user-specified parameter with range       and typically assuming 

values within           . 

3.4 Proposed Framework 

In this section, we present our proposed optimization framework: Procedure 

CE+SSBS+DG.  This framework consists of seven steps: initialization, generation, 

classification, SSBS, DG, updating, and stopping.  We first present the procedure as a 

whole, shown in Algorithm 3.3, then explain the details involved in each newly added 

step and corresponding motivation. 

Algorithm 3.3: Procedure CE+SSBS+DG 

Step 1) Initialization: Set the iteration counter to     and the purchase probability 

vector to                     such that              . 

Step 2) Generation: Generate a population of   candidate designs           from   

using Algorithm 3.2 with         . 

Step 3) Classification: Partition the set of design indices generated in Step 2 into the 

pair-wise disjoint sets:  ,  ,   and        , according to  

Step 4) Algorithm 3.4 in Section 3.4.1.  The classification for these sets is based on 

the number of duplicates of each design generated in Step 2.  

Step 5) SSBS: Evaluate the designs in     using Algorithm 3.5 in Section 3.4.2. 

Step 6) DG: Generate a pseudo-random system reliability estimate for each design 

index in   using Algorithm 3.6 in section 3.4.3. 

Step 7) Updating: Determine     using (3.4), where      is described by (3.5) and    is 

described by (3.3) for the set of designs in        . 

Step 8) Stopping: If                            , then stop and select     as the 

optimal solution; else, set       and return to Step 2. 
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Thus, Algorithm 3.3 is basically an extension of Algorithm 3.1 that replaces Step 

3 of Algorithm 3.1 with the Classification phase in Step 3, SSBS in Step 4, and DG in 

Step 5 of Algorithm 3.3.  Step 6 of Algorithm 3.3 then selects the    designs with the 

largest system reliability estimates as the    best, just as done in Algorithm 3.1 when 

using the conventional approach.  Therefore, in the worst case scenario where no designs 

are eliminated in Steps 3-5 of Algorithm 3.3, CE+SSBS+DG will perform no worse than 

Algorithm 3.1.    

We next describe the details of each new step in Algorithm 3.3 as well as discuss 

the motivation for their inclusion in the optimization framework. 

3.4.1 Step 3 of Procedure CE+SSBS+DG: Classification 

Step 3 of Algorithm 3.3 serves as a means of partitioning the population of   

design indices generated in Step 2 into the pair-wise disjoint sets:  ,  ,   and        ; 

where   is the set of design indices with less than   total duplicates,   is a set of design 

indices representing all unique designs in the population that have   or more total 

duplicates, and    is the set of design indices not in   that are duplicates of design    .  

We use   to denote the set of unassigned design indices and   to denote the set of all 

duplicate designs not in  , i.e.           .  The outline for this procedure is given in  

Algorithm 3.4. 

Algorithm 3.4: Design Classification Procedure 

Step 3.1) Set    ,    ,            

Step 3.2) for      

set                      and       .  

if        
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if        

          

            

end 

 end 

Step 3.3) Set          

 

We illustrate the use of  

Algorithm 3.4 through the following example: suppose a population of seven 

randomly generated topologies              represent a total of four designs 

          such that            each represent design  ,         each represent design 

 ,      represents design  , and      represents design  .  If    , then following  

Algorithm 3.4, the indices of these seven designs can be partitioned as follows: 

 

1) All indices are unassigned. 

    ,    ,                   

2) For design  : since            , assign the first index to set   and the remaining 

two indices to the corresponding set   . 

    ,      ,         ,             

3) For design  : since          , assign the first index to set   and the remaining 

index to the corresponding set   . 

    ,        ,         ,       ,         

4) For design  : since        , assign this index to set  . 

      ,        ,         ,       ,       

5) For design  : since        , assign this index to set  , and compute  . 

        ,        ,         ,       ,               
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3.4.2 Step 4 of Procedure CE+SSBS+DG: Sequential Selection of the Best 

Subset 

In Algorithm 3.1, the conventional cross entropy approach based on Monte Carlo 

simulation uses an equal number of Monte Carlo samples in the evaluation of each 

design, regardless of solution quality.  However, this type of sampling approach is often 

inefficient as many inferior designs will not require this level of accuracy to determine if 

they are indeed inferior.  To improve upon this, we introduce a procedure called SSBS – 

Sequential Selection of the Best Subset, to provide efficient selection of the    best 

designs, based on statistical significance, using as few samples as possible.   

SSBS is a statistical sampling procedure designed for simple yet efficient 

selection of the    best designs from a population of   competing designs.  SSBS is 

fully sequential with elimination, meaning it simultaneously samples every design in 

consideration, one observation at a time, and eliminates designs from further sampling 

and contention for the best as soon as they are deemed inferior by a significant difference.   

This procedure thus improves upon this original approach by minimizing the number of 

Monte Carlo samples required to find the    best designs by eliminating inferior designs 

from further sampling and contention for the best at the earliest possible time.  

Step 4 of Algorithm 3.3 is where we employ SSBS.  In this step, the system 

reliability of the indices in sets   and   (generated in Step 2 and classified in Step 3) are 

evaluated using SSBS with screening and the Monte Carlo simulation without screening 

respectively, while the indices in set   are not evaluated as they will be dealt with later in 

Step 5.  The reason that the indices in   are evaluated differently than the indices in   is 

because the evaluation of the duplicates in         in Step 5 are dependent on the 

evaluation of    , thus, we do not want any designs in   to potentially be eliminated by 

the screening mechanism in SSBS. 
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Algorithm 3.5: Sequential Selection of the Best Subset 

Step 4.1) Set        .  

Step 4.2) Take    samples for each design in    .  This is necessary to ensure that 

the initial reliability estimates are approximated appropriately. Set 

         .   

Step 4.3) Set      
                         

                      

  

Step 4.4) Determine the sets of the upper and lower confidence limits     and     

respectively, where               , such that  

                
          

      

 

and               , such that  

                
          

      

 

Step 4.5) Set    
    to the     th largest lower confidence limit of the population of   

designs, such that    
              

Step 4.6) Eliminate the designs in   with      smaller than    
   , that is: set      

and                       
    . 

Step 4.7) Update   in accordance with the new set of indices defined by  .  

Step 4.8) If                    , where   is the allocated maximum sample 

size for each iteration, take    additional samples for each design in    , 

set                 , and return to Step 4.3.  Else, stop and return the 

indices in   as the set of designs still in contention for the    best, and 

their corresponding reliability estimates (   ) as the evaluation of their 

system reliabilities. 

 

Procedure SSBS begins with an initial sampling phase where    Monte Carlo 

samples are collected for every design in     in order to generate an initial system 
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reliability estimate for every unique design in consideration.  This initial sampling phase 

is used as a precautionary measure to ensure that all system reliability estimates are 

approximated appropriately before any elimination occurs.  It then creates copies of the 

reliability estimates for the design indices in   as temporary reliability estimates for the 

corresponding design indices in   in order to determine    
   .  

The procedure then begins what we call the screening phase, designated by Steps 

4.4-4.6.  This phase begins by calculating the upper and lower confidence limits 

associated with the system reliability estimate of each design index in        .  It 

then determines the     th largest lower confidence limit, designated by    
   , and 

eliminates all design indices in   whose upper confidence limit of its system reliability 

estimate are less than    
   .  The procedure then collects an additional    samples and 

returns to Step 4.3 to repeat the screening phase.  This sampling and screening process 

then iterate sequentially until either the user-allocated simulation effort has been 

exhausted (i.e. the maximum number of samples has been collected,         ), or the 

desired number of candidate designs has been obtained within the best subset.  This 

maximum sample criterion is used as a failsafe to keep SSBS from potentially iterating 

indefinitely when trying to differentiate between two very similar or duplicate designs.  It 

then returns the indices in  , and their corresponding system reliability estimates, as the 

set of designs still in contention for    best. 

3.4.2.1 Confidence Limits in SSBS 

Since the method of evaluation used in SSBS is Monte Carlo simulation, whose 

individual samples follow a Bernoulli distribution, the screening device in Step 5 of 

Procedure SSBS requires the computation and comparison of binomial confidence limits.   

However, exact evaluation of binomial confidence limits, otherwise known as the 

Clopper-Pearson Confidence Interval, requires the following calculation [83]:  
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                                             (3.7) 

where   is the number of successes observed in the sample,   is the uncertainty level 

associated with the confidence interval, and          is a binomial random variable 

with   trials and   probability of success.  However, calculation of the Clopper-Pearson 

confidence interval is not easy, thus given that SSBS requires evaluation of the binomial 

confidence interval thousands of times for even small problems, (3.7) is not a feasible 

option for this procedure.  Therefore, approximation methods are necessary.  

The two most common approaches for approximating the confidence limits are 

the normal approximation or Wald confidence interval: 

           
        

 
 (3.8) 

and the Wilson score confidence interval [84]: 

 
   

 
        

        
         

  
      

 

   

  
 
       

 
 

(3.9) 

where    is the outcome of a Bernoulli trials process,   is the number of Monte Carlo 

samples observed, and        is the       percentile of the standard normal 

distribution.  Although both approximations can be used interchangeably in SSBS, we 

present SSBS using (3.8) because it is simpler.  For further discussion on this selection, 

we refer the reader to section 3.5. 

3.4.3 Step 5 of Procedure CE+SSBS+DG: Duplicate 

Generation 

In many iterations of the cross-entropy method, especially ones close to 

convergence, many designs generated by the random mechanism are duplicates (i.e. 
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different design indices that represent the same topology), yet still require independent 

evaluation in order to minimize the effects of incurring any type I errors associated with 

approximating the system reliabilities in the optimization problem.  The purpose of this 

step therefore, is to provide fast pseudo-sampling of duplicate designs without the use of 

the expensive Monte Carlo simulation.  This is accomplished through a procedure we call 

Duplicate Generation (DG). 

DG is a very simple and straight forward procedure that uses the distribution of 

each system reliability estimate in   to quickly generate i.i.d. system reliability estimates 

for each design index in         by approximating a Monte Carlo simulation via a 

random-number generator. 

The idea behind this is that since all indices in        represent the same design 

with unknown true reliability   , each system reliability estimate generated from a Monte 

Carlo simulation will be an i.i.d. random number according to 
         

 
.  Therefore, 

instead of using a Monte Carlo simulation to generate estimates from this unknown 

distribution, DG approximates    of design     via       , then generates pseudo system 

reliability estimates for each design index in    via 
             

 
.  The outline for DG is 

provided in Algorithm 3.6. 

Algorithm 3.6 : Duplicate Elimination – Regeneration 

Step 5.1) Set                    

Step 5.2) Set     
             

 
             

3.5 Numerical Experiments 

In this section, we present three numerical examples to quantify the efficiency and 

selection ability of our proposed optimization framework.  We first compare the 
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performance of CE+SSBS+DG with CE, and assess the individual as well as combined 

effect of DG and SSBS on CE.  We then compare the performance of CE+SSBS+DG 

when using the two different confidence intervals outlined in (3.8) and (3.9) and how this 

choice affects the procedures performance.  

3.5.1 Example Networks 

We represent each example network by a graph of nodes and edges, where the 

nodes are labeled alphabetically, the edges are labeled numerically, and the terminal 

nodes (i.e. the nodes whose connectivity define the networks system reliability state) are 

represented via darkened nodes.  Individual edge reliabilities and costs are then provided 

in the corresponding tables according to each edge index.  

Example 1: Example 1 is the 6-node complete network shown in Figure 3.1.  This 

is a common problem in the literature referred to as a two-terminal network, as only two 

nodes, a source (a) and a sink (f) need to be able to communicate for the network to be 

considered operational.  For this problem, the individual link costs and reliabilities are 

provided in Table 3.1, the maximum allowable budget was set to 1500, and the remaining 

framework and cross-entropy parameters were set to:          ,      ,      , 

     , and       .  In all, there are a total of     candidate designs in this network, 

with optimal design displayed in Figure 3.2 having system reliability of 0.999928033. 

Example 2: Example 2 is the 7-node complete network shown in Figure 3.3.  This 

is another common problem in the literature referred to as an all- terminal network, as 

every node in the network must be able to communicate with every other node in the 

network for the system to be considered operational.  For this example, the individual 

link costs and reliabilities are randomly generated according to             and 

                respectively and are provided in Table 3.2, the maximum allowable 

budget was set to 125, and the remaining framework and cross-entropy parameters were 

set to:       ,       ,      ,       , and       .  Altogether, there are a 
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total of     candidate designs in this example and the optimal solution is unknown.  

However, the best found design (based on our simulation) is depicted in Figure 3.4 with 

estimated system reliability of 0.9934, based on a 10-million sample Monte Carlo 

simulation.  

Example 3: Example 3 is the 9-node complete network shown in Figure 3.5.  This 

example is another all-terminal design problem but with a much larger solution space.  

For this example, the individual link costs and reliabilities were randomly generated 

according to             and                 respectively and are provided in Table 

3.3, the maximum allowable budget was set to 300, and the other framework and cross-

entropy parameters were set to:       ,        ,       ,      , and 

      .  Altogether, there are a total of     candidate designs for this network and the 

optimal design is unknown.  However, the best found design (based on our simulation) is 

depicted in Figure 3.6 having estimated system reliability of 0.9490, based on a 10-

million sample Monte Carlo simulation.  
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Figure 3.1: 6-node complete two-terminal graph. 

 

 

 

 

Figure 3.2: Optimal design for Example 1. 
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Table 3.1: Example 1 Individual Link Cost and Reliabilities.  

                        

1 331 0.9951 6 335 0.9958 11 330 0.9947 

2 347 0.9968 7 332 0.9952 12 325 0.9937 

3 327 0.9942 8 302 0.9902 13 324 0.9935 

4 340 0.9959 9 344 0.9964 14 350 0.9973 

5 2000 0.9908 10 315 0.9917 15 312 0.9912 
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Figure 3.3: 7-node complete all-terminal graph. 

 

 

 

 

Figure 3.4: Best found design for Example 2. 
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Table 3.2: Example 2 Individual Link Cost and Reliabilities.  

                        

1 14 0.99 8 25 0.94 15 11 0.96 

2 30 0.98 9 26 0.93 16 18 0.92 

3 25 0.95 10 15 0.94 17 16 0.99 

4 23 0.99 11 15 0.91 18 13 0.92 

5 15 0.91 12 26 0.96 19 13 0.98 

6 24 0.94 13 20 0.94 20 15 0.98 

7 20 0.95 14 24 0.92 21 27 0.91 
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Figure 3.5: 9-node complete all-terminal graph. 

 

 

 

 

Figure 3.6: Best found design for Example 3. 
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Table 3.3: Example 3 Individual Link Cost and Reliabilities.  

                       

1 78 0.94 13 29 0.87 25 73 0.86 

2 51 0.93 14 13 0.98 26 49 0.89 

3 87 0.81 15 52 0.88 27 26 0.93 

4 20 0.82 16 62 0.82 28 32 0.93 

5 90 0.88 17 17 0.98 29 49 0.97 

6 71 0.81 18 44 0.88 30 62 0.87 

7 80 0.83 19 25 0.80 31 42 0.80 

8 55 0.82 20 92 0.91 32 58 0.87 

9 81 0.86 21 23 0.93 33 68 0.91 

10 55 0.82 22 23 0.82 34 24 0.91 

11 23 0.87 23 12 0.90 35 40 0.90 

12 97 0.89 24 30 0.90 36 37 0.86 
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For each example, the allowable type I error used in SSBS is set to       , the 

smoothing parameter is set to      , the stopping parameter is set to      , and the 

maximum allowable duplicates is set to      (when applicable).  All simulations are 

run on an HP xw4600 workstation with Intel® Core™ Duo CPU E8400@3.0Ghz 

processor, and each method is replicated a total of ten times for each example network.  

All corresponding data for the independent replications can be found in Appendix F 

through Appendix H. 

3.5.2 Breakdown of Performance 

To quantify the performance of CE+SSBS+DG and assess the individual as well 

as combined effects of DG and SSBS on CE+SSBS+DG, we compare the performance of 

CE with that of: CE+DG, CE+SSBS, and CE+SSBS+DG on each of the three example 

networks. 

Table 3.4 through Table 3.6 summarize the results of the ten independent 

replications for each method in Examples 1-3 respectively, where the raw data for each 

iteration is provided in Appendix F through Appendix H respectively.  In these tables, 

“Method” refers to the optimization method used in the simulation, “Frequency of Best” 

refers to the percentage of time the optimal design was found in the ten independent 

replications, “Average Iterations” refers to the average number of cross-entropy iterations 

required for   to converge to   , and “Average Time” and “Average Samples” refer to 

the average total time and average total number of Monte Carlo samples required for the  

simulation to converge to    respectively. 

In all three examples, each method converges to the optimal design in most 

replications, as indicated by „Frequency of Best‟, where any suboptimal convergence 

could be attributed to the standard error inherent to the simulation.  This suggests that all 

methods perform similarly in terms of their ability to correctly select the best design, thus 

can be compared on even terms. 
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Average cross-entropy iterations to convergence are also fairly consistent from 

method to method in all three examples, requiring an average of 6.8, 10.6, and 10.5 

iterations for Examples 1-3 respectively.  This consistency suggests that the cross-entropy 

search heuristic portion of each method is fairly stable and not much affected by the type 

of evaluation method used.  Methods using DG do tend to have slightly higher average 

iterations, requiring: 1.053, 1.261, and 1.138 more iterations on average for Examples 1-3 

respectively.  However, any cost associated with this increase in Average Iterations due 

to DG is always less than its benefit, as indicated by the overall reduction in Average 

Time and Average Samples between CE and CE+DG as well as CE+SSBS and 

CE+SSBS+DG, shown in Tables 3.4-3.6. 

Of the four methods we tested, CE+SSBS+DG has the overall best performance 

in every replication of every example, and CE consistently has the worst.  To put these 

results into better perspective, when using CE as the basis for comparison: CE+DG 

reduces Average Samples by a factor of 1.27, 1.18, and 1.18 for Examples 1-3 

respectively; CE+SSBS reduces Average Samples by a factor of 2.96, 4.24, and 7.29 for 

Examples 1-3 respectively; and CE+SSBS+DG reduces Average Samples by a factor of 

4.64, 9.29, and 15.39 for Examples 1-3 respectively; where Average Time follows a 

pattern similar and comparable to Average Samples.  

Overall, the effect of DG on average samples seems to be independent of the size 

of the solution space, reducing average samples by approximately 20% in all three 

examples.  The effect of SSBS, however, seems to be dependent on the size of the 

solution space, such that the larger the solution space is the more effective SSBS will be 

in reducing average samples. 

To test the significance of the effects of DG and SSBS in CE+SSBS+DG, we look 

at an ANOVA for the full factorial model for each example network, using the data 

provided in Appendix F through Appendix H.  Using the log transformation for Average 

Samples as our dependent variable, based on the Box-Cox transformation and its  



64 
 

 

Table 3.4: Example 1 Summary Statistics. 

Method Frequency of Best Average Iterations 
Average Time 

(seconds) 
Average Samples 

CE 100% 6.5 37,024 82,500,000 

CE+DG 100% 7 29,141 65,132,000 

CE+SSBS 90% 6.8 10,891 27,894,494 

CE+SSBS+DG 100% 7 8,328 17,787,130 

Table 3.5: Example 2 Summary Statistics. 

Method Frequency of 
Best 

Average 
Iterations 

Average Time 
(seconds) 

Average 
Samples 

CE 100% 9.2 15,024 32,800,000 

CE+DG 90% 11.6 13,568 27,785,200 

CE+SSBS 100% 9.6 2,391 6,225,738 

CE+SSBS+DG 100% 12.1 1,962 3,530,522 

Table 3.6: Example 3 Summary Statistics. 

Method Frequency of Best Average Iterations 
Average Time 

(seconds) 
Average Samples 

CE 100% 9.8 26,621 70,400,000 

CE+DG 90% 11.3 25,347 59,652,200 

CE+SSBS 100% 9.8 2,825 9,660,030 

CE+SSBS+DG 100% 11 1,962 4,573,660 
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associated diagnostic plots, the individual main effects of DG and SSBS are both 

significant at the        level in all three examples.  In addition to this, the interaction 

effect of DG with SSBS is also significant at the        level for all three examples, 

indicating that there is an added benefit of using these two procedures together. 

3.5.3 Comparison of Confidence Intervals 

To determine how the choice of confidence interval will affect the overall 

performance of CE+SSBS+DG, we compare the performance of CE+SSBS+DG using 

the binomial approximations described in (3.8) and (3.9) for all three example networks.  

Each example is conducted using the same experimental conditions described in section 

3.5.1. 

Table 3.7 summarizes the results of the ten independent replications for each 

method for each example network (for the raw results see Appendix I).  The optimal 

design is again selected in most replications.  Average iterations are very consistent from 

method to method with little to no difference between methods.  Average samples for 

CE+SSBS+DG are slightly lower when using (3.8), requiring on average 7.5%, 6.5%, 

5.1% less samples than (3.9) for Examples 1-3 respectively; however based on ten 

replications, this difference in Average Samples is not significant, having p-values of 

        ,         , and          for Examples 1-3 respectively.  This suggests 

that there is little to no benefit to using one approximation over the other.  Despite this, 

we still recommend (3.8), as although the two methods are statistically equivalent in 

terms of the performance of CE+SSBS+DG, (3.8) is simpler, easier to implement, and 

more common. 
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Table 3.7: Summary Statistics for Confidence Interval Analysis 

Example Method CI 
Frequency of 
Best 

Average Iterations Average Samples 

1 CE+SSBS+DG 
(3.8) 100% 7 17,787,130 

(3.9) 100% 6.6 19,116,660 

2 CE+SSBS+DG 
(3.8) 100% 12.1 3,530,522 

(3.9) 100% 12.1 3,760,074 

3 CE+SSBS+DG 
(3.8) 100% 11 4,573,660 

(3.9) 90% 11.3 4,808,214 

 

 

3.6 Parameter Sensitivity 

In this section, we investigate how the level of  , the allowable type I error 

associated with each individual confidence interval used in SSBS, as well as how the 

level of  , the maximum number of Monte Carlo samples allowed for each design 

estimate, effect the overall performance of CE+SSBS+DG. 

3.6.1   Sensitivity 

Recall that for CE+SSBS+DG,   only represents the allowable type I error 

inherent in pair-wise comparisons, not the entire procedure.  Therefore, for the proposed 

framework,   is considered an input parameter, not a lower bound on the probability of 

making a correct selection.  Thus, the purpose of this experiment is to see how the level 

of   effects the overall performance of CE+SSBS+DG, and if we can recommend a level 

of   for general use within the proposed framework.  

For this experiment, we return to the network in Figure 3.3 using the same costs, 

reliabilities, and parameter settings as in Example 2, but this time varying the level of   

over the range              .  Ten independent replications are observed for each level 

and used to determine the frequency of selecting the best design, average number of 
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iterations required to converge, and average total number of Monte Carlo samples 

required to converge. 

Table 3.8:   Sensitivity Summary Statistics. 

  Frequency of Best 
Average Number of 
Iterations 

Average Total 
Samples 

0.01 100% 11.6 3,898,040 

0.05 100% 12.1 3,530,522 

0.10 100% 11.9 2,663,818 

0.20 100% 14.8 2,426,542 

0.30 90% 11.7 2,043,940 

0.40 90% 12.5 1,744,512 

0.50 80% 12.9 1,573,616 

0.60 70% 11.8 1,136,604 

 

 

Table 3.8 summarizes the results in this experiment (for the raw results see 

Appendix J).  For this example, it appears that the larger   gets the smaller Total Samples 

becomes.  This is only true to a point however, as for      , the Frequency of Best 

starts declining as    increases, as the confidence intervals are failing to represent the true 

means thus leading to frequent suboptimal convergence.  This relationship is as expected 

though, because we know that for a two-sided confidence interval, as   approaches 1.0 

the half-width for the corresponding confidence interval approaches 0, meaning each 

confidence interval will be more and more likely to misrepresent it‟s corresponding true 

mean, resulting in a higher likelihood of incurring errors in the selection of the    best 

designs and subsequently increasing the risk of suboptimal convergence.  

This presents us with the typical trade-off: efficiency vs. accuracy, which leads to 

the question: what range of   is acceptable for general use in this type of problem?  
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Although we know, based on this example, that large values of   will likely work for 

many networks, we still recommend a conservative setting for this parameter such that 

             .  This is because we cannot generalize the results from one example to 

every network, so we believe that it is better to err on the side of caution in this case in 

order to reduce the risk of suboptimal convergence, despite this parameter setting being 

possibly less efficient in some cases.  

3.6.2   Sensitivity 

When using Monte Carlo simulation as the evaluation mechanism within a 

heuristic search such as the Cross Entropy Approach, selection of   is important in terms 

of the procedure efficiency as well as the solution quality.  This is because if too few 

samples are used, approximates will not accurately represent the true system reliabilities 

and subsequently lead to suboptimal convergence; whereas if too many samples are used, 

the evaluation process can be unnecessarily expensive.  However, a-priori selection of 

efficient   is typically not possible in this type of problem without prior information of 

the given network.  Therefore, in this experiment, we investigate how the level of   

effects the overall performance of CE+SSBS+DG as compared to CE.  

To do this, we again return to the network in Figure 3.3 using the same costs, 

reliabilities, and parameter settings as in Example 2, but varying the level of   for each 

method over the values                                   .  Ten independent 

replications were observed for each treatment of parameters for each method and used to 

determine the frequency of selecting the best design, average number of CE iterations 

required to converge, and average total number of Monte Carlo samples required to 

converge. 

Table 3.9 summarizes the results of ten independent replications for each level of 

  for each method (for the raw results see Appendix K).  For this experiment, we make 

our comparison over the range              as for        both methods begin 
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having consistent suboptimal convergence, indicating that the sample size was too small 

to appropriately approximate the system reliabilities.  Figure 3.7 shows a plot of   vs 

Total Samples for this range, where the dashed and solid lines represent the CE and 

CE+SSBS+DG methods respectively.  

Table 3.9:   Sensitivity Summary Statistics. 

Method   Frequency of Best Average Iterations Average Total Samples 

C
E

+
S

S
B

S
+

D
G

 

3,000 100% 12.2 2,906,994 

4,000 100% 12.1 3,530,522 

5,000 100% 11.8 3,949,232 

6,000 100% 10.4 4,243,072 

8,000 100% 10.9 5,453,556 

10,000 100% 10 5,974,300 

C
E

 

3,000 90% 9.9 26,700,000 

4,000 100% 9.2 32,800,000 

5,000 100% 9.3 41,500,000 

6,000 100% 9.4 50,400,000 

8,000 100% 9.4 67,200,000 

10,000 100% 9.4 84,000,000 

 

 

Clearly, CE+SSBS+DG requires much fewer samples to converge to the optimal 

solution than that of CE.  At their minimum values, total samples for CE is still 

approximately three times that of total samples for CE+SSBS+DG.  Also, the rate of 

increase in total samples with respect to   is much smaller for CE+SSBS+DG than CE, 

where total samples for CE is approximately proportional to  , and total samples for 

CE+SSBS+DG is approximately logarithmically proportional to  .  Thus, CE+SSBS+DG 

is much more robust in its overall performance in terms of the level of   selected, as   
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does not have nearly as strong of an influence on total samples in CE+SSBS+DG as it 

does in CE. 

 

Figure 3.7: Average Total Samples vs   
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CHAPTER 4 

NEW RANKING AND SELECTION PROCEDURES FOR SELECTING THE  -BEST 

4.1 Introduction 

In this thesis, we have shown that despite being designed for discrete event 

simulation, ranking and selection (R&S) procedures are applicable and effective in 

numerous other fields, such as the NRD problem.  Therefore, in this chapter, we turn our 

attention from the application of R&S procedures to that of their development, namely, 

we focus on the problem of selecting  -best alternative designs for    , which is 

henceforth referred to as the selection of the  -best problem.   

Over the past fifty years, a large body of literature has been devoted to the 

research and development of ranking and selection procedures, concerning selection of 

the single best alternative. However, to our knowledge, very little research has been 

devoted to the selection of the  -best problem. For a detailed review of the related 

literature, we refer the reader to Chapter 1. Selection of the  -best alternatives in 

simulation can be a very useful tool for the practical applications of R&S procedures, 

however, as hidden or un-modeled parameters can potentially invalid certain simulation 

solutions and many state-of-the-art global search heuristics rely on a neighborhood 

selection of the  -best search, such as the cross-entropy method introduced in chapter 3.  

Therefore, in this chapter, we propose a variety of new and more general R&S procedures 

for the selection of the  -best problem. 

The remainder of this chapter proceeds as follows: section 4.2 introduces our 

problem framework, section 4.3 introduces the proposed indifference zone procedure 

(IZP) and subset selection procedure (SSP) for selecting the  -best, section 4.4 introduces 

an important decomposition lemma for developing combined R&S procedures, section 

4.5 introduces our combined approach for the selection of the  -best, section 4.6 provides 

proofs for the theoretical guarantees associated with our procedures, and section 4.7 
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provides empirical results to investigate the actual efficiency, probability of correct 

selection (PCS), and overall performance of these new procedures. 

4.2 Problem Framework 

In this section, we define the R&S problem of interest as well as the goals we 

seek to achieve through our new procedures.  To do this, we use the notations consistent 

with that of [85]. 

Let    represent the normally distributed random output associated with the  th 

alternative design, for        .  Let     represent the  th observed output of alternative 

 , for         , where    is the total number of outputs observed from alternative  . 

These outputs are assumed to be independent and identically distributed for fixed  , as 

they represent either outputs of independent replications of simulations or approximately 

independent batch means from a single replication.   

Let           represent the expected value of an output from the  th alternative, 

and   
           represent its variance.  Then the order of the expected values of the   

alternatives can be denoted as follows,  

                 

where a larger expected value is indicative of a better or more desirable solution and [i] 

represents the index of the ith smallest alternative.  However, since outputs are random, 

we estimate the true mean of each alternative through their sample mean, which we 

denote by    , such that 

    
 

  

    

  

   

 

Therefore,       represents the sample mean for the  th smallest alternative.  
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Let   represent the set of indices of the  -best alternatives, such that   

                       .  The probability of correct selection requirement can 

be written as   

            (4.1) 

which states that the probability of making a correct selection is greater than or equal to a 

user-specified confidence level    , where a correct selection indicates that the goal of 

the specific procedure was met.  For our purposes we define the individ ual goals of the 

SSP and IZP using (4.2) and (4.3) respectively, where   is the minimum practically 

significant difference, i.e. the largest difference that the experimenter is indifferent to.  

 

 

Goal SSP: Use a given sample size n0 for each alternative to select a random-sized 
subset I of  the alternatives that contains the k-best alternatives associated with 

                        , where        , assuming                 

 .  

(4.2) 

 

Goal IZP: Determine the sample size for each alternative to select exactly the 

subset of k-best alternatives  , assuming                  . (4.3) 

4.3 Proposed Individual R&S Procedures 

In this section we introduce two new ranking and selection procedures, a SSP and 

an IZP, for selection of the  -best problems.  These procedures extend the literature of 

selection of the  -best problems to the more general, and more practical, case of 

unknown and unequal variance, that is, the variance of the output from each alternative is 

unknown and may be different from each other.  As such, these procedures assume that 

all samples are i.i.d.        
   random variables where    and   

  are unknown and 

potentially unequal for all  . 
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4.3.1 Subset Selection Procedure 

Based on section 4.2, the goal of a SSP is to select             of random size 

under conditions that satisfy (4.2), using an equal number (n0) of samples from each 

system in consideration, such that 

                              

Our proposed SSP is given as follows. 

Algorithm 4.1: Subset Selection of the k-Best 

Step 1) Select the overall confidence level    .  Then select the practically 

significant difference  , the sample size     , and the number of the best 

systems   to return to the user, such that      .    

Step 2) Sample     for        ,         . 

Step 3) Compute the sample means    , sample variances   
  and            for 

each system, where       
  
    

 

  
 

   

and    
     

 
           

 is the 

     
 

       quantile of the t-distribution with      degrees of freedom.  

Step 4) Let                
 

, where             , and  
 

     
 be the 

(Kk)th smallest                  . Set                

 
 

     
    

Step 5) Return  . 
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Notice that when    , this procedure reduces to Nelson‟s Screen-to-the-Best procedure 

[20], thus this procedure can be considered an extension or a more general version of 

Nelson‟s SSP. 

4.3.2 Indifference Zone Selection 

The following indifference zone procedure determines the total number of 

samples necessary to obtain from each of the   alternatives in order to select the  -best 

systems in accordance with (4.3), such that  

                                   

In order to accommodate for unequal and unknown   
 , this is a two-stage procedure, 

meaning that at the first stage an equal number of initial samples must be obtained from 

each system to estimate the variance of its output. Then the second stage sample size for 

each system is calculated and the best   systems will be selected based on all the samples 

from both stages. Our proposed IZP is given as follows. 

Algorithm 4.2: Indifference Zone Procedure for Selection of the k-Best 

Step 1)  Select the overall confidence level    , the practically significant 

difference  , the sample size    where     , and the number of the best 

systems   to return to the user, such that      .    

Step 2)  Sample     for        ,         . 

Step 3)  Determine the sample means       and sample variances    
   for each system 

 . 

Step 4)  Compute              
   

 
 

 

   where            
          is Rinott‟s 

constant (see [14] for tables). 
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Step 5)  Take       samples for system  , and compute the second-stage sample 

means     based on the    total samples. 

Step 6)  Select the   indices with the   largest second-stage sample means as the k-

best systems. 

Notice that when    , this procedure reduces to Rinott‟s two-stage IZP for selection of 

the single best, thus this procedure can be considered an extension or a more general 

version of Rinott‟s IZP. 

4.4 Decomposition Lemma 

In this section we introduce an important lemma from [20] that simplifies the 

development of combined subset selection and indifferent zone selection procedures.  

This lemma establishes that we can guarantee a probability of correct selection by 

combining a subset selection procedure with an indifference zone procedure that were 

developed in isolation from one another, even if the indifference zone procedure uses the 

same data as the subset selection procedure.  This lemma is as follows, (from [20] yet 

augmented for selection of the  -best). 

Let   be a subset selection procedure that collects data from each system and 

determines a random sized subset             based on this data, such that       

    , where         is the event that   contains the k-best alternatives. 

Let   ,           be the        distinct subsets of           that contain 

    Then let   be an indifference zone procedure that uses  , as well as the data used to 

determine  , as its initial stage of sampling to determine the number of additional samples 

required to select a set of indices      such that                for any such 

subset   , where             is the event that   is the set of the k best alternatives. 

Then since                    for all   , if a correct selection is made when 

  is applied to the entire set          , then a correct selection would also be made if   
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is applied to any of the      subsets that contains  .  This property will hold for any 

procedure whose sampling for system   depends only on the data generated for system  , 

as the procedure given in section 4.3.2.      

Let         
 
   , the event that   is selected for all subsets    to which   can 

be applied. 

Lemma 1: For the combined procedure    , 

Pr     Pr                

Proof: Any outcome belonging to the event   results in a correct selection, 

provided that the subset of systems considered by   contains  .  The event   only 

provides outcomes for which this is the case.  Any outcome that satisfies both conditions 

will certainly result in a correct selection.  Next notice that 

Pr      Pr    Pr    Pr      

 Pr    Pr             Pr      

                 

where the first inequality follows because          
 
                     . 

4.5 Combined Procedure 

In this section we introduce a combined procedure using the SSP and IZP from 

section 4.3 as well as Nelson‟s decomposition lemma from section 4.4. The combined 

procedure has the same goal as an IZP. But the potential benefit of the combined 

procedure over an individual IZP is that systems with obviously inferior performances 

can be screened out quickly based on SSP such that additional second stage samples for 

IZP are not needed for these systems. This combined procedure is given below. 
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Algorithm 4.3: Combined Procedure 

Step 1) Select the overall, first-stage and second-stage confidence levels:    , 

     and      such that         .  A convenient choice is    

      .   Then select the practically significant difference  , the initial 

number of samples     , and the number of the best systems   to return to 

the user.    

Step 2) Sample     for        ,         . 

Step 3) Compute first stage sample means      , sample variances    
   and 

           based on the    first-stage samples for each system, where 

      
  
    

 

  
 

   

and    
      

 
           

 is the       
 

       quantile of 

the t-distribution with      degrees of freedom.  

Step 4) Let                
 

 and  
 

     
 be the (Kk)th smallest       

           . Set                 
 

     
  . 

Step 5) If       then stop.  Otherwise compute the second-stage sample size 

       , where              
   

 
 

 

   and             
         , 

where   is Rinott‟s constant (see [14]  for tables). 

Step 6) At the second-stage, we take       samples for system    ,  Compute the 

second-stage sample means     based on the    total samples for each    . 

Step 7) Select the   indices with the   largest second-stage sample means as the k-

best systems. 
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The combined procedure satisfies                              for 

selection of the k-best following Lemma 1, in that the SSP makes a CS with probability 

      and the IZP makes a CS with probability      .  Thus the overall 

probability of making a correct selection for the combined procedure is at least   

           . 

4.6 Proofs 

In this section we provide proofs for the PCS given in our individual subset 

selection and indifference zone procedures for selecting the k-best, given in Section 4.3.  

These proofs are given in Sections 4.6.1 and 4.6.2, respectively.  

The following lemmas are used in the derivation of these proofs: 

Lemma 2 (Banerjee [86]): Let   be an        random variable that is 

independent of           , which are independent chi-quared random variables, with    

having degrees of freedom   .  Let   ,   ,…,    be arbitrary weights such that    
 
    

  and all     .  Then, 

         
   

  

  

 
         , where             

. 

Lemma 3 (Slepian [87]): If           has the multivariate normal distribution 

with nonsingular covariance matrix       
  

     

 
 then for any constants         the 

probability                   is strictly increasing as a function of     for    .  

In particular if                  then   

                            

 

   

 

Lemma 4 (Tamhane [88]): Let            be independent random variables, and 

let               ,          , be nonnegative, real-valued functions, each one 

nondecreasing in each of its arguments.  Then 
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4.6.1 Subset Selection Procedure Proof 

We first briefly summarize the SSP given in section 4.3.1 as follows: 

Suppose there are    independent outputs for each of the   alternatives under 

consideration. In this procedure, we guarantee to select a subset             of the   

alternatives such that: 

             (4.4) 

where      .  Let                
 

 and   

     
 represent the (K-k)th smallest 

               . Then (4.4) is achieved by including all alternatives in   that 

satisfy: 

       

     
 (4.5) 

The proof that (4.5) guarantees (4.4) is as follows, 

Proof: First, it can be shown that 

     

     
                          

 
, for all           (4.6) 

Then, under the condition that                  , (4.4) can be described as:  

Pr     Pr                        

 Pr         
   

     
                             

 Pr           
     

                 
 
                             

 Pr                         
 
                                    



81 
 

 Pr

 
 
 

 
 

  
 
                 

 
    

      
 

  
 

   
 

            
 

        

 
    

      
 

  
 

   
                

 

    

                    

where          , and the inequality is true because of (4.6).   

Next, to simplify terms, let  

    
                   

 
    

      
 

  
 

   
 

and 

     
    

      
 

  

 

   

 

We can then rewrite the previous probability statement as 

 Pr      
             

 
         

   

                    

                    

(4.7) 

Due to the symmetry of the normal distribution (4.7) can be rewritten as  

Pr      
           

 
        

   

                                    

  Pr      
       

   

                  (4.8) 

where (4.8) is true because          .  To further simplify, let 
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where   is the      
 

       quantile of the t-distribution with      degrees of freedom.  

Then, by conditioning on   
      

 , we can rewrite (4.8) as 

  Pr                           
      

    

     Pr           
      

  

 

       

   

   

  

                  
      

   

 

       

   

   

 

               

 

       

   

   

 (4.9) 

where the first inequality is true because: 

cov     
     

  
    

 

     
       

  
   

     
       

  
   

   

cov            
    

 

      
      

  
   

      
      

  
   

   

cov      
      

                 

and Lemma 3 (Slepian‟s inequality). And the second inequality is true because of Lemma 

4, where 

      
      

    Pr           
      

   

and       is nonnegative and non-decreasing in   
      

  since     is non-decreasing in 

  
      

 .   

Finally, to complete the proof, we look at the individual probability        

    . Since            and      , we have  
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       (4.10) 

where    
    

 

    
      

  and    
    

 

    
      

  and the inequality in (4.10) follows from  Lemma 2. 

Substituting (4.10) into (4.9) we get 

                
 

       

 

       

   

   

     

 

4.6.2 Indifference Zone Procedure Proof 

For the IZP in section 4.3.2, we guarantee to select k-best systems of the   

alternatives such that: 

                  (4.11) 

This is achieved by taking Ni independent outputs for each of the K alternatives such that: 

       
 

      
   

 
 

 

   (4.12) 

where            
         .  The proof for the theoretical guarantee of the IZP is as 

follows: 

Proof: For the selection of k-best problem, it can be shown that the mean configuration 

known as the slippage configuration, i.e.                               
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                            , minimizes the PCS.  Therefore, in the following 

proof we base our probability calculations on this worst case scenario:   

Pr     Pr select systems                

 Pr                       

 Pr 
               

     
           

       
   

 
 

     
           

       
   

           

To simplify, let  

    
               

     
           

       
            

and 

    
 

     
     

       
     

   
   

 

where              
         .  Since              

 

 
   

   , it  follows that  

    
 

     
           

       
   

 

Therefore we have 

Pr     Pr                   

   Pr                    
      

    

     Pr           
      

  

   

   

 

       

  

     Pr           
      

  

   

   

 

 

       

 

where the first inequality is true because: 
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cov     
     

  
    

    

     
            

       
 
   

     
            

       
 
   

   

cov            
    

    

      
       

     
       

   
      

       
     

       
   

   

cov      
      

                 

and Lemma 3 (Slepian‟s inequality).  The second inequality is true because of Lemma 4, 

where 

      
      

     Pr           
      

  

   

   

 

and       is nonnegative and non-decreasing in   
      

 , since     is non-decreasing in 

  
      

 . 

Then we have 

Pr               

   

   

 

 

       

 

       
 

     
     

       
     

   
   

 

   

   

 

 

       

 

where      is the CDF of the standard normal distribution.  

Let          
  
 

  
  are independent    variables with      degrees of 

freedom.  We have 

Pr           
 

                   
   

 

   

   

 

 

       

 

Let      be the density function of a    distribution with        degrees of 

freedom. The right hand side (RHS) of the above equation can be simplified as  
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 (4.13) 

Since            
          is the Rinott‟s constant, we have 

     
 

                           

 

 

 

   

      

 

 

          

Substituting the above equation into (4.13), we have  

            

4.7 Empirical Results 

In this section, we provide empirical results regarding the theoretical guarantees 

we proved in section 4.6 as well as the overall performance of our ranking and selection 

procedures in sections 4.3 and 4.5.  Since these procedures were designed to reduce to 

Nelson and Rinott when    , and since to our knowledge these are novel procedures in 

the ranking and selection literature, the following experiments were designed to closely 

resemble those of [20] with the additional parameter  .  This was done to enable us to use 

many of the parameter level recommendations made by [20], as well as to provide us 

with a basis for comparison for our new procedures when    .  The purpose of the 
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following experiments was to investigate the actual PCS, the benefit of including the 

screening step, and the effect of   on the overall performance.   

For these experiments, we used various configurations of normal distributions 

instead of using systems simulation examples.  This was done to provide us more control 

over the design of the experiment and enable us to draw conclusions on the performance 

of our procedures under different mean and variance configurations. This is also the 

common method used in the ranking and selection literature.  

In all experiments, we designate the systems in positions         as the  -best 

systems, while the systems in positions           represent the inferior systems.  The 

experimental factors of interest that we test are: the number of systems  , the number of 

the best systems to-be-selected  , the configuration of the population variances, and the 

configuration of the population means.  The practical significant difference    the initial 

number of samples   , and nominal PCS were set to the recommended levels in [20]. 

We next describe the variance and mean configurations as well as the parameter 

levels and the design of our experiments. 

4.7.1 Mean and Variance Configurations 

In the following experiments we consider two mean configurations, the slippage 

configuration (SC) and the monotone-decreasing means configuration (MDM).  These 

configurations are defined as follows, 

1. SC is a mean configuration where the means of the  -best systems are all equal 

and exactly   greater than the inferior systems, i.e.               

                                            .  This configuration is 

considered the “worst case scenario” for the selection of the  -best problem. 

2. MDM is a mean configuration where the mean of the  th best system is exactly 

        less than the best system, where   is some constant.  This is, in a 
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sense, considered the “favorable scenario” for a ranking and selection procedure 

and is used to showcase the benefit of the screening procedure.   

We also investigate three different configurations of the variance: equal variance 

across all systems, decreasing variance across all systems, and increasing variance across 

all systems.  The details regarding how we implement these various combinations of 

mean and variance configurations are described in the next section. 

4.7.2 Experiment Design 

For this experiment, we investigat the 2×3×2 factorial experiment for the twelve 

different combinations of the mean, variance and screening configurations.  For each 

mean, variance, and screening configuration, the number of systems was varied over 

               and the number of the best systems-to-be-selected was varied over 

           for    .  The initial number of samples is set to       as 

recommended in [20], and the practically significant difference is set to   
  

   
.   

When    , we use Algorithm 4.3 when screening is used, and Algorithm 4.2 

when screening is not used.  When    , we use Nelson‟s 2-stage combined procedure 

for selection of the single best system when screening is used, and Rinott‟s 2-stage 

indifference zone procedure for selection of the single best system when screening is not 

used. 

For the MDM configuration, all systems are spaced evenly such that the mean 

associated with index   is exactly one practically significant difference less than the mean 

associated with index    , where the mean of the first index is set to  , i.e.    

       for            . 

The variance configurations differ based on the type of mean configuration used.  

In SC, the variance is set such that:     
      

      
      with         

depending on whether the variance is decreasing or increasing, where    is the common 
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variance of the  -best systems.  In the MDM configuration, the variance is set to 

  
           for increasing variance and   

             for decreasing 

variance.  For both mean configurations,   
    

      
    is used for common 

variance. 

For each treatment, we perform 500 macroreplications (complete replications) 

using        and             as the nominal PCS.  Therefore, the standard error 

of the actual PCS is                         in all treatments.  

4.7.3 Results 

The results from these experiments are summarized in Table 4.1, where PCS 

refers to the observed probability of correct selection from the 500 macroreplications, 

ANS refers to the average number of samples per system, and PSS refers to the 

percentage of systems receiving second stage sampling.  We use PCS to provide us with 

an estimate of the conservativeness of the procedure, ANS to provide us with a measure 

of the computation load of a procedure, and PSS to provide a measure of the 

effectiveness of the screening procedure.  Figure 4.1 to Figure 4.3 also summarize the 

results for       and        from Table 4.1, showing the graphical depiction of the 

effect of   on ANS.   

For the combined and non-screening procedures, the PCS varies from close to the 

nominal value of 0.95 to 1.  In most configurations,     has a higher PCS than     

for the combined procedures, this is as expected as the selection of the  -best is generally 

more conservative than the single best equivalent.  On average, the PCS of the SC 

configuration is lower than that of the MDM configuration because the indifference zone 

procedures were designed for the SC configuration, which is the worst-case scenario.  

Consequently, the results for MDM configurations become more conservative. 

In certain scenarios, the combined procedure performs very well as compared to 

the non-screening equivalent, where as in other scenarios it does not.  For MDM, the 
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combined procedure is very successful in eliminating inferior systems from receiving 

second stage sampling, as indicated by the PSS and ANS values in Table 4.1.  For SC, 

however, the combined procedure performs consistently worse than the non-screening 

equivalent in all configurations.  This is because, as indicated  by the PSS values in Table 

4.1, the screening stage of the combined procedure is not very effective for this type of 

mean configuration, and is essentially running the non-screening equivalent for a nominal 

PCS of      instead of    .   

For the MDM configurations, PSS increases steadily with   given a fixed  .  This 

is as expected as more systems must be retained during the screening stage in order to 

make a correct selection.  For SC when    , PSS is fairly consistent around 1.  This 

indicates that the screening procedure is too conservative to be beneficial in the worst 

case scenario mean configuration.   

In general, ANS increases with  .  The caveat to this is seen in Table 4.1 when   

becomes a significant proportion of  , i.e.     and     , for both screening 

configurations of SC with increasing variance.  In this situation, since screening is 

ineffective due to the mean configuration, ANS depends primarily on the system 

variances.  Since the  -best alternatives have lower variance, when   becomes large 

enough as compared to  , ANS begins to decrease as the overall variance of the   

systems is lower.      

For all configurations, ANS increases in a slow sublinear trend with increasing   

except for MDM with increasing variance where ANS increases in a faster sublinear 

trend with increasing   for the combined procedures.   This larger increase in ANS is 

partly because Si
2 increases linearly with the system index for MDM with increasing 

variance, thus ANS grows much more quickly.  Also, since    is directly proportional to 

  , ANS grows more rapidly as variance increase with the system index.   

For all SC and MDM without screening configurations, ANS is increased by no 

more than 2 times when   is increased from 1 to 10.  For MDM with screening, ANS 
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increases by no more than 4 times when   is increased from 1 to 10.  Therefore, in 

general, our procedure requires only a small number of extra samples, as compared to 

selecting the single best design, to select multiple best systems simultaneously.  
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Table 4.1: Comparisons across all mean and variance configuration combinations, with 
     ,        , and         . 

  
  5 10 100 500 

  
  1 2 1 2 5 1 2 5 10 1 2 5 10 

MDM 

increasing 

variance 

PCS 0.996 0.998 0.998 0.998 1 1 0.998 1 1 1 1 1 1 

ANS 242 322 324 557 755 206 391 1012 2257 121 211 494 1035 

PSS 81% 96% 61% 83% 99% 12% 16% 25% 37% 3% 4% 7% 10% 

decreasing 

variance 

PCS 0.990 0.994 0.998 1 1 0.996 1 1 1 1 1 1 1 

ANS 90 124 70 97 134 24 29 38 50 15 16 18 22 

PSS 60% 82% 35% 48% 73% 5% 6% 9% 13% 1% 2% 2% 3% 

constant 

variance 

PCS 0.986 0.994 0.998 0.992 1 1 1 1 1 1 1 1 1 

ANS 133 193 113 175 298 40 55 91 146 20 25 36 52 

PSS 68% 91% 43% 60% 92% 6% 8.5% 13% 19% 2% 2% 3% 4% 

SC 

increasing 

variance 

PCS 0.972 0.976 0.97 0.98 0.98 0.98 0.984 0.992 0.994 0.982 0.972 0.992 0.992 

ANS 310 332 433 497 479 857 1009 1214 1365 1217 1422 1727 1988 

PSS 94% 99% 96% 99% 100% 99% 100% 100% 100% 100% 100% 100% 100% 

decreasing 

variance 

PCS 0.96 0.98 0.974 0.984 0.976 0.98 0.996 0.988 0.982 0.988 0.984 0.986 0.996 

ANS 99 143 120 165 235 216 260 328 396 305 358 439 512 

PSS 86% 98% 90% 99% 100% 97% 100% 100% 100% 99% 100% 100% 100% 

constant 

variance 

PCS 0.972 0.964 0.98 0.984 0.982 0.978 0.99 0.99 0.994 0.986 0.992 0.994 0.994 

ANS 170 206 223 276 310 430 509 623 719 609 713 868 1002 

PSS 92% 99% 94% 99% 100% 98% 100% 100% 100% 99% 100% 100% 100% 

MDM no 

screening 

increasing 

variance 

PCS 0.992 0.986 0.998 0.998 1 0.998 1 1 1 1 1 1 1 

ANS 222 262 446 543 626 6003 7127 8838 10254 41362 48597 59529 68864 

PSS 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

decreasing 

variance 

PCS 0.992 0.994 0.994 0.998 1 1 1 1 1 1 1 1 1 

ANS 91 106 91 110 127 43 50 62 72 21 23 27 31 

PSS 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

constant 

variance 

PCS 0.988 0.99 0.988 0.998 1 1 1 1 1 1 1 1 1 

ANS 138 166 183 224 259 362 430 532 614 519 608 745 864 

PSS 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

SC no 

screening 

increasing 

variance 

PCS 0.958 0.962 0.97 0.95 0.992 0.95 0.96 0.99 0.998 0.982 0.962 0.988 0.992 

ANS 245 257 351 400 385 719 853 1033 1170 1035 1216 1481 1708 

PSS 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
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decreasing 

variance 

PCS 0.97 0.948 0.962 0.954 0.982 0.968 0.972 0.986 1 0.966 0.98 0.998 0.99 

ANS 82 111 101 134 194 183 220 279 338 260 305 377 441 

PSS 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

constant 

variance 

PCS 0.966 0.952 0.964 0.968 0.97 0.962 0.974 0.992 0.994 0.95 0.98 0.992 0.99 

ANS 136 159 183 225 259 362 430 530 615 519 608 745 864 

PSS 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
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Figure 4.1:  Graphical comparison of Average Number of Samples (ANS) vs Number of 
Best-Systems-to-be-Selected ( ) for all increasing variance configurations.  

 

Figure 4.2: Graphical comparison of Average Number of Samples (ANS) vs Number of 
Best-Systems-to-be-Selected ( ) for all decreasing variance configurations.  
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Figure 4.3: Graphical comparison of Average Number of Samples (ANS) vs Number of 
Best-Systems-to-be-Selected ( ) for all constant variance configurations.  
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

This thesis focuses on the development of simulation ranking and selection 

procedures and applications to the NRD problem.  This thesis thus makes contributions to 

both the simulation optimization and system reliability design literature.   

In Chapter 2 of this thesis, we present a new objective and new methodology for 

solving the sNRD optimization problem.  This methodology focused on two criteria: 

increasing the sampling efficiency of the sNRD problem and quantifying the probability 

of making a correct selection.  We propose using a state-of-the-art R&S procedure to 

accomplish these goals, and develop a rule of thumb to approximate the minimum batch 

size that will maintain an acceptable normal assumption in this procedure as well as 

extend some justifications of this procedures to the sNRD population size.   We then 

provide numerical examples to verify that the procedure performs accordingly, as well as  

provide numerical examples to showcase the benefits of the proposed procedure in 

contrast to the conventional approach.  These examples show the proposed procedure 

achieving much higher probability, than the conventional method, of correctly selecting 

the optimal solution, given the same number of total Monte Carlo samples, as well as 

being more robust in terms of the selection of the input parameters and the ability of the 

user to efficiently make a correct selection.  

In Chapter 3 of this thesis, we propose a new optimization framework for solving 

the large NRD problem.  We call this framework CE+SSBS+DG as it is composed of the 

cross-entropy method and two statistical procedures that we develop, based on the 

concepts of R&S, to improve the sampling efficiency of the Monte Carlo simulation: 

sequential selection of the best subset (SSBS) and duplicate generation (DG).  The 

purpose of this framework is to change the focus of the Monte Carlo simulation from 

accurate evaluation of all the systems searched to one concerned only with the relative 
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rankings of the system reliability estimates.  Altogether this framework shows shorter 

runtimes and smaller sample sizes in comparison with the standard cross entropy 

approach, on the order of 500%-1500% over the three randomly generated example 

networks.  We also show CE+SSBS+DG to be more robust in terms of the selection of 

the maximum sample size  , meaning that selection of   has less influence on tota l 

samples for the proposed method than it does for the standard cross entropy approach. 

In Chapter 4 of this thesis, we present three new R&S procedures for the problem 

associated with the general simulation optimization problems concerning selection of the 

 -best alternatives.  These procedures are novel in that they accounted for systems with 

unknown and potentially unequal mean and variances as well as an indifference 

parameter, which to our knowledge has not been studied within the R&S literature.  For 

each procedure, we provide theoretical proofs regarding the probability of correct 

selection as well as an empirical analysis on its actual performance.  Although these 

procedures are more conservative than the single best equivalent in general, we show that 

they only require a small number of extra samples , as compared to the single best procedures, 

to simultaneously select the multiple best systems.  

For future work, we have plans for further applications of R&S in both system 

reliability design as well as simulation optimization.  For the NRD problem, we plan on 

employing the use of our individual and combined selection of the k-best R&S procedures to 

develop better solution methodology for both small NRD and the large NRD.  For R&S, we 

plan on extending the proof for our current IZP for selection of the k-best to a less 

conservative theoretical guarantee as well as publish a table of critical values associated with 

this new procedure for quicker reference.  This will require the development of a new 

executable program to numerically evaluate a very large and complex integral, which will 

ideally be published as the companion to this procedure.  We will also investigate the use of 

common random numbers in our proposed procedure for selection of the k-best. Finally, we 
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may also look at expanding the proof for our combined R&S procedure from a 2-stage 

procedure to a more efficient fully sequential procedure.   
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APPENDIX A 

PROCEDURE R 

1) Specify       . 

2) Take    batch means from each design. 

3) Determine   
  

              
   

   

    
 the unbiased estimate of   

   

4) Calculate  , where   is the solution to 

     
 

        
 

 
 

 

 
 
          

   

            
 

 

 

 
      

where      denotes the s-normal cdf, and       denotes the chi-squared pdf with   

degrees of freedom.  Tables for   are provided in [14]. 

5) Compute              
 

 
 

 

  
                  . 

6) Take       additional batch means from each design.   

7) Find the estimated reliability of each design,      
 

  

       
  

   
    . 

8) Select the system with the largest sample mean      as the best. 
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APPENDIX B 

PROCEDURE CY 

1) Take    batch means from each design  . 

2) Determine    
  

 

    
                            

 
  
   , the sample variance 

of the difference between design   and design  . 

3)    
   

 
     

      
 the    

 

     
 -quantile of the t-distribution with      

degrees of freedom. 

4) Compute                   
    

 
 

 

  . 

5) Take      additional batch means from each design. 

6) Find the estimated reliability of each design,      
 

 
    

 
       . 

7) Select the system with the largest estimated reliability      as the best. 
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APPENDIX C 

PROCEDURE 2SP 

Step 1) Select                         . 

Step 2) Calculate    
      

 
        

 for independent replications, or   

 
   

 
     

      
 for CRN. 

Step 3) Collect batch means                         and calculate   
  

   
 and 

  
  for all   where   

  

   
 

 

  

       
  
    and   

  
 

    
           

   

    
      for IR, or    

  
 

    
                         

 
  
    for CRN. 

Step 4) Set       
  
 

  
 

  
 

  
 

 

 

     . 

Step 5) If employing CRN, replace 
  
 

  
 

  
 

  
 with 

   
 

  
 where    

  
 

   
           

   

                   
 

 and      
  

   
     . 

Step 6)                                 
 
      . 

Step 7) If       stop and select the design in   as the best, else compute    

          
   

 
 

 

       where   is Rinott‟s constant. 

Step 8) Collect       additional batch means                          and 

calculate   
  

   
    where   

  

   
 

 

  

       
  

   
. 

Step 9) Select the design with the largest   
  

   
 as the best. 
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APPENDIX D 

PROCEDURE KN PARAMETERS 

                
 

 
          

         

 
 

         
 
     

  
 

     
 for CRN and          

 

    for independent replications.  
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APPENDIX E 

BATCH SIZE RULE OF THUMB EXPERIMENT 

Equation (2.12) was constructed as follows: 

First, holding all other parameter levels constant at their middle range value, we 

determined the individual relationship between each of           and the critical batch 

size value, for the parameter levels:                                         ,  

                                 ,                                              , 

             .  The best fit individual variable relationships with    were:        , 

     , 
 

  
   ,       . 

Second, we determine the critical batch size for the fractional factorial experiment 

of  ,  ,   , and    for the 108 treatments shown in Table 2.1.  Using this data, we then 

constructed various nonlinear models using the individual relationships of these four 

parameters with    as building blocks.  These models were then tested against the same 

data set until we were able to represent a similar nonlinear relationship through a 

relatively simple model that also maintained a sufficient buffer zone between the     

value and the actual    so as to never underestimate it.  

The reason Equation (2.12) was not constructed using an additive linear or 

nonlinear regression model was because we wanted (2.12) to be simple and compact, and 

the afore mentioned techniques could not produce a model as compact as (2.12).  
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APPENDIX F 

RAW DATA FOR EXAMPLE 1 OF SECTION 3.4 

Table F.1: Example 1 Raw Data. 

CE+SSBS+DG using (3.8) CE+SSBS CE+DG CE 

It
er

at
io

n
s 

T
im

e
 

T
o
ta

l 
S

a
m

p
le

s
 

It
er

at
io

n
s 

T
im

e
 

T
o
ta

l 
S

a
m

p
le

s
 

It
er

at
io

n
s 

T
im

e
 

T
o
ta

l 
S

a
m

p
le

s
 

It
er

at
io

n
s 

T
im

e
 

T
o
ta

l 
S

a
m

p
le

s
 

8 9,598 20,150,550 7 11,250 28,593,950 7 28,474 63,500,000 7 39970 90,000,000 

8 8,181 18,404,450 6 9,950 22,341,550 8 32,251 71,460,000 7 40295 90,000,000 

7 9,360 19,430,150 7 10,374 28,509,050 7 30,086 67,120,000 7 40511 90,000,000 

6 7,060 14,677,200 8 15,525 35,320,450 6 26,531 62,500,000 6 33857 75,000,000 

8 9,660 19,907,000 7 10,213 27,684,950 7 30,540 67,940,000 6 33680 75,000,000 

7 8,375 17,315,800 7 10,222 28,897,650 7 29,928 68,040,000 6 33583 75,000,000 

6 7,361 15,390,300 6 9,484 224,637,00 7 27,899 61,440,000 6 33634 75,000,000 

8 8,645 18,098,300 6 9,036 21,842,100 7 27,878 61,240,000 6 33648 75,000,000 

6 7,971 16,700,700 7 11,174 28,958,800 7 29,010 63,960,000 7 40463 90,000,000 

6 7,067 17,796,850 7 11678 28,901,950 7 28,813 64,120,000 7 40604 90,000,000 
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APPENDIX G 

RAW DATA FOR EXAMPLE 2 OF SECTION 3.4 

Table G.1: Example 2 Raw Data. 

CE+SSBS+DG using 

(3.8) 
CE+SSBS CE+DG CE 
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14 1,747 3,540,440 11 3,482 8,654,940 12 15,008 31,044,000 10 19,469 36,000,000 

15 1,872 4,263,060 9 2,065 5,502,180 15 14,456 29,680,000 11 21,933 40,000,000 

9 1,678 2,990,720 9 2,113 5,696,260 13 14,521 29,616,000 10 15,626 36,000,000 

10 1,654 2,946,640 10 2,376 6,219,840 9 11,526 24,180,000 8 11,881 28,000,000 

12 1,735 3,295,460 9 1,905 5,029,960 9 11,938 25,252,000 10 15,902 36,000,000 

9 1,673 2,910,720 9 2,083 5,635,660 15 13,810 28,392,000 9 13,880 32,000,000 

17 1,988 4,539,980 9 2,111 5,645,840 11 14,352 29,560,000 9 13,951 32,000,000 

10 1,722 3,273,500 9 2,133 5,803,900 13 16,092 30,160,000 8 11,938 28,000,000 

13 1,857 4,135,120 10 2,498 6,338,080 10 12,581 26,096,000 9 13,833 32,000,000 

12 1,764 3,409,580 11 3,148 7,730,720 9 11,398 23,872,000 8 11,831 28,000,000 
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APPENDIX H 

RAW DATA FOR EXAMPLE 3 OF SECTION 3.4 

Table H.1: Example 3 Raw Data. 

CE+SSBS+DG using 

(3.8) 
CE+SSBS CE+DG CE 
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10 1,720 4,043,880 11 4,497 13,331,760 10 22,738 55,160,000 10 28,438 72,000,000 

11 1,999 4,641,880 9 2,527 8,660,340 14 26,396 63,744,000 9 23,681 64,000,000 

11 2,153 4,937,540 10 2,756 9,339,560 12 25,781 60,420,000 9 23,813 64,000,000 

10 1,765 4,147,920 11 3,245 11,042,800 12 26,081 62,686,000 9 23,905 64,000,000 

11 1,984 4,672,840 9 2,100 7,944,160 11 23,969 57,492,000 11 30,587 80,000,000 

15 2,458 5,642,400 10 2,841 9,708,300 11 26,655 62,624,000 9 23,539 64,000,000 

12 2,266 5,267,860 9 2,489 9,424,460 11 28,982 58,644,000 10 27,482 72,000,000 

10 1,758 4,105,140 9 2,002 7,326,420 10 24,579 60,008,000 10 27,422 72,000,000 

10 1,756 4,159,680 10 2,653 8,772,420 12 25,430 61,472,000 10 26,905 72,000,000 

10 1,757 4,117,460 10 3,140 11,050,080 10 22,860 54,272,000 11 30,437 80,000,000 
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APPENDIX I 

BINOMIAL CONFIDENCE LIMITS EXPERIMENT 

 

Table I.1: Example 1 
Raw Data 

CE+SSBS+DG using 
(3.9) 
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7 9,667 20,266,300 

7 8,898 18,612,250 

7 9,817 20,588,500 

6 7,859 16,732,250 

7 9,267 19,314,650 

6 9,957 20,987,350 

6 7,761 16,424,900 

6 8,584 18,337,850 

7 9,057 19,039,500 

7 10,135 20,863,050 

Table I.2: Example 2 
Raw Data 

CE+SSBS+DG using 
(3.9) 
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14 1,928 3,891,180 

10 1,526 3,191,520 

10 1,503 3,118,300 

10 1,592 3,302,780 

13 1,938 4,057,860 

13 2,134 4,363,460 

11 1,934 4,021,920 

16 2,081 4,217,500 

12 1,914 3,919,880 

12 1,704 3,516,340 

Table I.3: Example 3 
Raw Data 

CE+SSBS+DG using 
(3.9) 
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11 2,076 4,835,760 

13 2,120 4,797,360 

12 2,107 4,791,340 

9 1,772 4,134,580 

10 1,802 4,097,380 

11 2,125 4,818,500 

10 1,871 4,255,080 

16 3,073 6,974,440 

11 2,004 4,753,200 

10 2,033 4,624,500 
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APPENDIX J 

RAW DATA FOR   SENSITIVITY IN SECTION 3.6.1 

Table J.1:   Sensitivity Raw Data Example 2. 
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0.01 10 3505460 0.10 11 2644580 0.30 10 1788700 0.50 11 1490080 

0.01 12 3947880 0.10 15 2517380 0.30 11 1946040 0.50 13 1655120 

0.01 16 5040000 0.10 10 2267080 0.30 11 1995360 0.50 12 1524920 

0.01 12 3789360 0.10 9 2270100 0.30 11 2168120 0.50 18 1975700 

0.01 11 3739320 0.10 13 2703860 0.30 14 2280940 0.50 12 1529760 

0.01 13 4194100 0.10 17 4037600 0.30 13 2157020 0.50 9 1047100 

0.01 11 3465840 0.10 12 2701760 0.30 14 2279140 0.50 11 1184760 

0.01 9 2990720 0.10 11 2459260 0.30 12 2161500 0.50 17 1987380 

0.01 10 3925900 0.10 12 2879720 0.30 11 2045840 0.50 14 1522800 

0.01 12 4381820 0.10 9 2156840 0.30 10 1616380 0.50 12 1818540 

0.05 14 3540440 0.20 11 2257780 0.40 17 2154580 0.60 12 1072580 

0.05 15 4263060 0.20 19 2767720 0.40 9 1502220 0.60 9 1071180 

0.05 9 2990720 0.20 11 1901200 0.40 15 1644620 0.60 11 1287280 

0.05 10 2946640 0.20 21 3168900 0.40 13 1892320 0.60 16 1561860 

0.05 12 3295460 0.20 10 1943340 0.40 14 2091080 0.60 10 1044180 

0.05 9 2910720 0.20 21 2667240 0.40 13 1794880 0.60 12 915740 

0.05 17 4539980 0.20 14 2442140 0.40 11 1599720 0.60 13 1234760 

0.05 10 3273500 0.20 15 2723200 0.40 11 1580380 0.60 10 919360 

0.05 13 4135120 0.20 13 2240120 0.40 9 1282840 0.60 12 1048980 

0.05 12 3409580 0.20 13 2153780 0.40 13 1902480 0.60 13 1210120 
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APPENDIX K 

RAW DATA FOR   SENSITIVITY IN SECTION 3.6.2 

Table K.1:   Sensitivity Raw Data Example 2 for CE+SSBS+DG using       . 

  Iter Total   Iter Total   Iter Total 

3,000 10 2,821,940 5,000 11 3,940,040 8,000 10 5,280,400 

3,000 11 2,699,000 5,000 10 4,012,020 8,000 11 5,615,440 

3,000 19 3,707,220 5,000 19 4,685,100 8,000 12 6,507,540 

3,000 10 2,640,320 5,000 12 4,249,840 8,000 11 5,447,000 

3,000 12 2,950,580 5,000 12 4,244,780 8,000 10 4,637,440 

3,000 12 3,157,460 5,000 11 3,641,840 8,000 11 5,863,520 

3,000 13 2,921,440 5,000 10 3,731,240 8,000 10 5,232,480 

3,000 13 3,076,900 5,000 12 3,689,800 8,000 11 5,259,740 

3,000 11 2,515,860 5,000 10 3,588,400 8,000 10 4,845,280 

3,000 11 2,579,220 5,000 11 3,709,260 8,000 13 5,846,720 

4,000 14 3,540,440 6,000 11 4,367,940 10,000 9 5,535,680 

4,000 15 4,263,060 6,000 14 5,790,720 10,000 10 6,378,920 

4,000 9 2,990,720 6,000 9 3,863,420 10,000 9 5,586,300 

4,000 10 2,946,640 6,000 10 3,825,140 10,000 9 5,697,320 

4,000 12 3,295,460 6,000 10 4,143,940 10,000 10 5,895,780 

4,000 9 2,910,720 6,000 9 3,685,840 10,000 10 5,987,120 

4,000 17 4,539,980 6,000 12 5,061,280 10,000 13 7,293,160 

4,000 10 3,273,500 6,000 10 4,029,220 10,000 10 6,046,740 

4,000 13 4,135,120 6,000 10 3,837,100 10,000 10 6,086,540 

4,000 12 3,409,580 6,000 9 3,826,120 10,000 10 5,235,440 
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Table K.2:   Sensitivity Raw Data Example 2 Sample for CE. 

  Iter Total   Iter Total   Iter Total 

3,000 11 30,000,000 5,000 10 45,000,000 8,000 9 64,000,000 

3,000 9 24,000,000 5,000 8 35,000,000 8,000 10 72,000,000 

3,000 10 27,000,000 5,000 8 35,000,000 8,000 9 64,000,000 

3,000 9 24,000,000 5,000 10 45,000,000 8,000 10 72,000,000 

3,000 14 39,000,000 5,000 9 40,000,000 8,000 9 64,000,000 

3,000 11 30,000,000 5,000 11 50,000,000 8,000 8 56,000,000 

3,000 9 24,000,000 5,000 8 35,000,000 8,000 9 64,000,000 

3,000 9 24,000,000 5,000 11 50,000,000 8,000 9 64,000,000 

3,000 8 21,000,000 5,000 10 45,000,000 8,000 11 80,000,000 

3,000 9 24,000,000 5,000 8 35,000,000 8,000 10 72,000,000 

4,000 10 36,000,000 6,000 9 48,000,000 10,000 10 90,000,000 

4,000 11 40,000,000 6,000 10 54,000,000 10,000 9 80,000,000 

4,000 10 36,000,000 6,000 10 54,000,000 10,000 11 100,000,000 

4,000 8 28,000,000 6,000 10 54,000,000 10,000 9 80,000,000 

4,000 10 36,000,000 6,000 9 48,000,000 10,000 9 80,000,000 

4,000 9 32,000,000 6,000 9 48,000,000 10,000 10 90,000,000 

4,000 9 32,000,000 6,000 8 42,000,000 10,000 8 70,000,000 

4,000 8 28,000,000 6,000 11 60,000,000 10,000 10 90,000,000 

4,000 9 32,000,000 6,000 9 48,000,000 10,000 9 80,000,000 

4,000 8 28,000,000 6,000 9 48,000,000 10,000 9 80,000,000 
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