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ABSTRACT 

In this thesis, there are generally three contributions to the Ranking and Selection 

problem in discrete-event simulation area. Ranking and selection is an important problem 

when people want to select single or multiple best designs from alternative pool. 

There are two different types in discrete-event simulation: terminating simulation 

and steady-state simulation. For steady-state simulation, there is an initial trend before the 

data output enters into the steady-state, if we cannot start the simulation from steady 

state. We need to remove the initial trend before we use the data to estimate the steady-

state mean. Our first contribution regards the application to eliminate the initial 

trend/initialization bias. In this thesis, we present a novel solution to remove the initial 

trend motivated by offline change detection method. The method is designed to monitor 

the cumulative absolute bias from the estimated steady-state mean. Experiments are 

conducted to compare our procedure with other existing methods. Our method is shown 

to be at least no worse than those methods and in some cases much better. After 

removing the initialization bias, we can apply a ranking and selection procedure for the 

data outputs from steady-state simulation. 

There are two main approaches to ranking and selection problem. One is subset 

selection and the other one is indifference zone selection. Also by employing directed 

graph, some single-best ranking and selection methods can be extended to solve multi-

best selection problem. Our method is designed to solve multi-best ranking and selection. 

And in Chapter 3, one procedure for ranking and selection in terminating simulation is 

extended based full sequential idea. It means we compare the sample means among all 

systems in contention at each stage. Also, we add a technique to do pre-selection of the 

superior systems at the same time of eliminating inferior systems. This can accelerate the 

speed of obtaining the number of best systems we want. Experiments are conducted to 

demonstrate the pre-selection technique can save observation significantly compared with 
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the procedure without it. Also compared with existing methods, our procedure can save 

significant number of observations. We also explore the effect of common random 

number. By using it in the simulation process, more observations can be saved. 

The third contribution of this thesis is to extend the procedure in Chapter 3 for 

steady-state simulation. Asymptotic variance is employed in this case. We justify our 

procedure in asymptotic point of view. And by doing extensive experiments, we 

demonstrate that our procedure can work in most cases when sample size is finite. 
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CHAPTER 1  

INTRODUCTION 

Discrete event simulation is a classical tool to solve models with arbitrarily large 

state spaces, as long as the state of the system changes at a discrete set of points in time. 

In discrete event simulation, large amount of input data can be generated easily using 

random number generators. The output from the simulation model can be used to do 

further analysis and design of the system. For example, we can estimate the performance 

of a given system, compare the performance of multiple alternative designs based on the 

simulation outputs from each system, or find the optimal design of a system with the best 

estimated performance. Discrete event simulations have been applied in a large variety of 

areas such as manufacturing simulation, supply chain simulation, computer network 

simulation, capital investment decision evaluation, and hospital operation room 

occupation simulation. 

One important usage of simulation outputs is to select one or more best systems 

from a finite number of alternatives, which is called the ranking and selection (R&S) 

problem. Here, the “best” system is typically defined by the system with the 

maximum/minimum mean performance. In other words, a R&S method is to determine 

which system(s) have the largest/smallest mean performance. R&S procedures should be 

designed differently for the two different categories of discrete event simulation models, 

namely, the terminating simulation and the steady-state simulation. 

The first category of discrete event simulation is terminating/replicated 

simulation, which runs for some time interval of 𝑇𝐸, where E is a specified event that 

stops the simulation (Banks, Carson et al. 2004). For example, when we simulate the 

daily operations of a bank, each replication of the simulation can be used to simulate one-

day operation of the bank. The terminating event E of the simulation is the closing of the 

bank at the end of the day. For every replication, the simulation starts from the same 
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initial system state corresponding to the opening of the bank at the beginning of a day 

when no customer is in the bank. The performance output from each replication such as 

the number of customers served and the waiting times of customers can be averaged 

across multiple replications to estimate the mean performance of the bank.  

The second category of discrete event simulation is steady-state simulation. The 

analysis based on steady-state simulation focuses on the long-run performance of the 

system, in other words, the steady-state performance. For example, an emergency room 

operates continuously for 24 hours each day. There is no event E in this case. And we are 

interested in the performance of the emergency room in long terms: the daily average 

patient or the average time that it is occupied by a patient. It would be more appropriate 

to use steady-state simulation in this case. If the simulation starts in the empty state (no 

patient), it might take a while for the system to enter the steady state, since “empty” is 

obviously not the steady-state of an emergency room. System will enter into steady-state 

after a transient period, if it does not start in the steady state. Using the data from the 

transient period to estimate steady-state performance will cause bias in the estimation, 

which is called the initialization bias. We will introduce the initialization bias problem in 

more details in Section 1.1 and the R&S problems for terminating and steady-state 

simulation in Section 1.2 and Section 1.3, respectively. 

1.1 Initialization Bias Elimination 

When we are performing a steady-state simulation, the long-run performance 

which is independent of the initial conditions, is of our interest. However, the length of a 

simulation run is finite, so residual effects of the initial values will always exist in the 

outputs. These residual effects, also called initialization bias (IB), could cause trouble 

when we estimate parameters of interest in the steady state. For example, a queuing 

problem which starts empty will take a while to reach its steady state. If we want to 

estimate the average number of customers or waiting times at the steady state, a 
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truncation point must be determined and then the initialization bias could be eliminated 

by removing the data from the beginning to the truncation point. Then the data points left 

are considered as from the steady state and will be used to estimate the steady-state 

parameters. The problem of determining a truncation point of an output data series from a 

steady-state simulation in order to accurately estimate the steady-state parameters is 

called the IB elimination problem. To illustrate the importance of the IB elimination 

problem, Figure 1.1 shows an AR(1) data series starting from non-steady state, which 

causes initialization bias.  

 

Figure 1.1. AR(1) data series with initialization bias 

There is a long history of study of the IB elimination problem. Robinson (2002; 

2004; 2007) and Hoad, Robinson et al.(2008) point out that there are six categories of 

methods. Graphical methods identify initialization bias based on visual inspection of the 

simulation outputs or statistics of simulation outputs. Graphical methods are simple to 

use but depends too much on individual’s subjective judgment. The second category is 

heuristic methods which design rules to eliminate IB. The Marginal Standard Error Rule 
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(MSER) (White 1995; White 1997; Spratt 1998) belongs to this category. Heuristic 

methods are simple to implement and not depending on subjective judgment. The third 

category is statistical methods which use statistical principles to determine the 

initialization bias. One example is the regression method proposed by Law and Kelton 

(2000). Statistical methods designed so far are much more complicated than the methods 

belonging to the first two categories and require more computational time. The fourth 

category of methods are initialization bias tests (Schruben 1982; Schruben 1983; 

Vassilacopoulos 1989; Cash 1992; Cash, Dippold et al. 1992; Goldsman, Schruben et al. 

1994), which are used to solve a hypothesis testing problem to test whether initialization 

bias exists. These tests focus on testing the existence of IB rather than accurate estimation 

of truncation point and steady-state parameters. The last one is hybrid methods which 

combine the methods from different categories, but are often complicated and time-

consuming.  

Robinson (2007) employs the principles of statistical process control (SPC) as a 

new category of methods to eliminate IB. In this thesis, we call this method as the SPC 

method. SPC method is a special case of the change detection methods, which are 

procedures used to detect the location of a change point within a data series after which 

the distribution of the data is changed. SPC is an on-line change-detection method which 

does not utilize information after the detected change point. If the data after change point 

are available, which is the case in IB elimination problem, it will be more efficient to 

determine the change point utilizing the information from all the data. In this case the 

change detection method is considered as offline. Based on our knowledge, no IB 

elimination method has been developed based on the idea of off-line change detection. 
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1.2 Ranking and Selection Procedures for Terminating 

Simulation 

Ranking and selection methods are techniques for comparing “populations” with 

the goal of finding the single best or multi best among them, where “best” is defined by 

the maximum or minimum population mean. The selection is often assured by an 

assigned probability of correct selection.  

As stated in Kim and Nelson (2005), ranking and selection methods can trace 

back to two papers: Bechhofer (1954a) proposes the indifference-zone procedure (IZP) 

and Gupta (1965) establishes the subset selection procedure (SSP). Both focused on 

single best selection. Assume we want to select the single best system which holds the 

largest mean among K alternatives and the true means of all systems satisfy 𝜇1 ≤ 𝜇2 ≤

⋯ ≤ 𝜇𝐾. In indifference-zone procedure, the goal is to guarantee selecting the best 

system, K, with probability at least 1 − 𝛼, if 𝜇𝐾 − 𝜇𝐾−1 ≥ 𝛿, where δ is called the 

indifference zone parameter, which is the practically significant difference worth to 

detect and determined by the experimenter. To be more specific, the procedure should 

guarantee Pr{select 𝐾|𝜇𝐾 − 𝜇𝐾−1 ≥ 𝛿} ≥ 1 − 𝛼. While a subset selection procedure is to 

obtain a subset 𝐼 ⊂ {1, 2, … .𝐾} such that Pr{𝐾 ∈ 𝐼} ≥ 1 − 𝛼 (Gupta 1965; Kim and 

Nelson 2005). 

Based on IZP, Dudewicz and Dalal (1975) propose a two-stage procedure to solve 

the single best selection problem when variances of alternatives are unknown. The first 

stage is used to estimate the variance. Dudewicz and Dalal’s procedure specifies 𝑁𝑖, the 

total number of observations required from alternative system i, if all systems are 

independent and normally distributed, as 

𝑁𝑖 = max {𝑛0 + 1, �(ℎ𝑆𝑖
𝛿

)2�},  

where 𝑛0 is the number of observations in the first stage; h is a constant calculated 

from standard deviation obtained based the first stage observations; and δ  is the 
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indifference zone parameter. The procedure by Dudewicz and Dalal (1975) is based on 

weighted sample averages of the outputs from each system, which may not be convenient 

to use. Rinott (1978) designed another two-stage procedure that is based on (un-

weighted) sample means. 

When the number of alternatives is large, it may not be efficient to generate the 

same number of observations for all the systems. If some systems are obviously inferior 

to other systems, fewer observations from the inferior systems are enough to eliminate 

them from contention. Based on this idea, Nelson, Swann et al. (2001) design a procedure 

(Combined procedure) which combines an initial screening stage to remove the obviously 

inferior systems based on a subset selection procedure, and a  second stage of selecting 

the best system among the remaining systems based on an indifference zone selection 

procedure.  

The combined procedure has only one screening stage to eliminate the inferior 

systems, while the fully sequential procedure by Kim and Nelson (2001) evaluates 

systems and eliminate the inferior ones in multiple sequential stages. After generating 𝑛0 

initial observations, in each stage, the fully sequential procedure sample one observation 

(or one batch of observations) for all the alternatives in contention and eliminates the 

obviously inferior systems immediately. This way more saving in the total number of 

observations is achieved. Swisher (2003; 2004) provides a comprehensive survey of the 

single best R&S methods. 

Sometimes, selecting one single best system from the alternatives cannot satisfy 

experimenters’ need. For example, there might be some hidden or unmodeled factors in a 

system, such as political or environmental reasons (Kiekhaefer 2011). It is possible that 

the single best system/design selected cannot be adopted. It may be more desirable to 

select multi-best systems (best k systems, k>1) to provide more options. In such a case, a 

ranking and selection procedure that selects multi-best systems will be useful. An 

example is that a consulting company may want to offer clients more alternative choices. 
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In medicine, multi-best R&S can answer questions like ‘what are top three diet habits 

most likely cause obesity?’ In agriculture, it can answer questions like ‘what are the top 

five crop plans having the largest yields?’  

Although the majority of R&S literature focuses on the single-best problems, 

there are methods proposed for multi-best selection. Most of them are further developed 

based on the existing single best R&S methods. Extensions of SSP to solve multi-best 

R&S were introduced by Carroll, Gupta et al. (1975) and Bofinger and Mangersen 

(1986). IZP is also employed in multi-best R&S area. Bechhofer (1954b) extends his 

method (Bechhofer 1954a) to select more than one best systems. Dudewicz and Dalal’s 

(1975) two-stage procedure can solve both single-best and multi-best problems. 

Kiekhaefer (2011) develops multi-best R&S methods by extending Rinott’s (1978) two-

stage procedure and Nelson, Swann et al.’s (2001) combined procedure. For one of the 

most efficient single-best R&S methods, the fully sequential procedure (Kim and Nelson 

2001), there is no work existing trying to extend it into the multi-best R&S area. One of 

the aims of this thesis is to fill this gap. 

1.3 Ranking and Selection Procedures for Steady-state 

Simulation 

Most existing R&S methods are constructed under the assumption that the output 

data from each system are independent and identically distributed. And most terminating 

simulations can satisfy this assumption. However, the outputs from a single replication of 

steady-state simulation are mostly dependent. Typically, there are two possible methods 

to deal with this situation. For the first method, we generate m replications of outputs 

from each system. Each replication should be long enough to reach the steady state. Then 

we need to remove the data from the transient period to avoid initialization bias for each 

replication of each system. After removing initialization bias, we use the sample mean of 

the remaining data in each replication as one basic observation. In this way the 
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observations of each system are independent of each other and approximately normally 

distributed and the R&S methods for terminating systems can be applied in this scenario. 

The drawback of this method is that IB elimination for each replication causes substantial 

waste of data. The other method is to generate one single long replication. We only need 

to remove the initialization bias once. However, after removing the initialization bias, the 

remaining data are still dependent of each other. Although the classical batching method 

could normalize the data and make them more independent, the size of the batch might 

need to be very large to achieve this goal and it’s hard to control. With large batch sizes, 

the interval of decision on eliminating inferior systems will be long, which causes waste 

of observations, especially for the fully sequential procedures. Therefore, procedures that 

can use basic observations from single-replication of steady-state simulation are more 

desirable.  

Based on this idea, Nakayama (1997) and Damerdji and Nakayama (1999) 

extended some ranking and selection procedures for terminating systems into steady-state 

area. Goldsman et al. (2002) present a fully-sequential procedure FS+ to solve the single-

best ranking and selection problem for steady-state simulation. FS+ is based on one 

single replication of simulation output and the concept of asymptotic variance is 

employed. Experiments under different settings are also conducted and the results show 

that FS+ is efficient in most finite-sample cases. And Kim and Nelson (2006) prove 

theoretically that the procedure FS+ can assure certain probability of correct selection for 

selecting single best system for steady-state simulation by appropriate asymptotic 

analysis. Both of the papers focus on the single-best R&S problem. It’s very likely that 

the multi-best ranking and selection problem for steady-state simulation can be solved by 

extending the FS+ procedure. 
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1.4 Thesis Objectives and Outline 

The objective of the thesis is to solve the following related problems in simulation 

output analysis: 

1. Develop an efficient and robust IB elimination method for steady-state simulation 

based on the idea of offline change detection methods: In this thesis, we develop a 

new procedure, called the cusum rule, to remove IB bias. The derivation of the 

cusum rule is motived by modifying and applying an offline change detection 

method to solve the IB elimination problem. The cusum rule is a heuristic rule 

and does not rely on statistical assumptions. It is a robust and efficient method to 

solve initialization bias elimination problem. We will conduct extensive 

experiments to compare it with some other methods in the literature, particularly 

the MSER method which is considered as a benchmark method in the literature. 

This work is presented in Chapter 2 of this thesis. 

2. Develop a fully sequential R&S procedure that selects k (k≥1) best alternatives 

with a guaranteed probability of correct selection for terminating simulation: We 

develop a fully sequential procedure, called FS-k procedure, which is an extension 

of the procedure from Kim and Nelson (2001), to solve the multi-best R&S 

problem for terminating simulation. We also provide theoretical justification of 

the new procedure by proving the ensured probability of correct selection. 

Extensive experiments are conducted to study the performance of this procedure. 

This work is presented in Chapter 3 of this thesis. 

3. Adapt FS-k to steady-state simulation: In this thesis, we adapt the FS-k procedure 

so that it can be used for selection of multi-best systems based on basic 

observations from single replications of steady-state simulation. The concept of 

asymptotic variance is introduced. The procedure is theoretically proved to be 

effective in asymptotic sense. And different asymptotic variance estimators are 
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considered and compared. Experiments are conducted to test its performance for 

finite samples. More details of this work are presented in Chapter 4 of this thesis.  
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CHAPTER 2  

CUSUM-RULE FOR INITIALIZATION BIAS ELIMINATION IN 

STEADY-STATE SIMULATION 

2.1 Review of Related Work 

2.1.1 Problem Settings and MSER Method  

For an output series {𝑌𝑖, 𝑖 = 1, …𝑛} from a simulation, initialization bias 

elimination is to find a truncation point d so that the steady state mean of the output, µ, is 

estimated by 𝜇̂ = 1
𝑛−𝑑

∑ 𝑌𝑖𝑛
𝑖=𝑑+1 . 

One of the most popular methods for initialization bias elimination is the 

Marginal Standard Error Rules (MSER). It is a method originally designed by White 

(1995; 1997) to determine the truncation point by minimizing the width of marginal 

confidence interval of the sample mean after truncation. More specifically, the truncation 

point d is found by: 

𝑑 = argmin0≤𝑑<𝑛
1

(𝑛−𝑑)2
∑ �𝑌𝑖 − 𝑌�𝑛,𝑑�

2𝑛
𝑖=𝑑+1 , where 𝑌�𝑛,𝑑 = 1

𝑛−𝑑
∑ 𝑌𝑖𝑛
𝑖=𝑑+1  

Spratt (1998) revised the method by applying the MSER on batch means of data 

instead of the original data. If the batch size is m, then the updated method is called 

MSER-m. It is claimed that m=5 performs particularly well (Spratt 1998; White and 

Spratt 2000; Pasupathy and Schmeiser 2010). 

One shortcoming of MSER-m is that it can mistakenly determine a truncation 

point very close to the end of the data series when the last a few data are quite close in 

values (Hoad, Robinson et al. 2010). To avoid this situation, a common practice is to 

require that no more than half of the data can be deleted (White and Spratt 2000; 

Pasupathy and Schmeiser 2010). That is, the truncation point d is found by: 

𝑑 = argmin0≤𝑑≤𝑛2
1

(𝑛−𝑑)2
∑ �𝑌𝑖 − 𝑌�𝑛,𝑑�

2𝑛
𝑖=𝑑+1 . 
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Many authors have conducted extensive tests and found that MSER-5 performs 

very well, comparing with the other methods tested. For examples, White and Spratt 

(2000) compare five heuristic rules from the literature and find that MSER is the most 

effective rule in eliminating bias and outperforms all other rules for most data types 

considered in the chapter. Also, Hoad, Robinson et al.(2010) test 3048 cases using data 

having initial bias of various shapes, severities, lengths, and degrees of autocorrelation 

and show that MSER-5 performs robustly and effectively for most of data sets tested. 

Moreover, MSER-5 is easy to understand and implement. Thus, it is generally considered 

as a benchmark method for initialization bias elimination. 

2.1.2 Change Detection Problems  

In this chapter, we will propose a new method for initialization bias elimination 

that is originally introduced in the area of change detection. In this subsection, we will 

first introduce the change detection problems and two basic change detection methods 

that can potentially be applied for initialization bias elimination. 

For a data series {𝑋𝑡, 𝑡 = 1, …𝑛}, first assume that 𝑋𝑡 are independently 

distributed with 𝑋𝑖~𝑝𝜃, where 𝜃 = 𝜃0, when 1 ≤ 𝑡 ≤ 𝜏 − 1, and  𝜃 = 𝜃1 ≠ 𝜃0, when 

𝑡 ≥ 𝜏. In a change detection problem, we want to estimate the value of change time 𝜏 

based on the observed data. There are two types of change detection methods: online and 

offline. For online change detection methods, the data are observed sequentially and the 

decision on whether a change in θ  has occurred should be made as soon as possible at 

each time 𝑡, 𝑡 = 1, 2, … using only the observed data up to time 𝑡. In other words, a 

decision should be made at time 𝑡 only based on {𝑋1, … ,𝑋𝑡}, the data observed up to time 

t. For offline change detection methods, the change time is estimated after all the data 

{𝑋𝑖, 𝑖 = 1, …𝑛} are observed. That is, we can use all the data to decide whether and when 

a change occurs. 
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The most important application of online change detection is statistical process 

control (SPC). In SPC, 𝑋𝑖 represents measurements on a quality characteristic of a 

product. The process is called in-control if it is operating with only the chance causes of 

variation, which are inherent or natural variability of the process that always exists. The 

process is called out-of-control if it is operating in the presence of variability that are not 

coming from chance cause pattern, such as improperly adjusted or controlled machines or 

operator’s mistakes (Montgomery 2004). Suppose 𝑋𝑖~𝑝𝜃0 when the process is in-control 

and 𝑋𝑖~𝑝𝜃1 when it is out-of-control. The goal of a SPC method is to detect the out-of-

control status as soon as possible by sequentially observing the quality measurement data 

{𝑋1,𝑋2,𝑋3, … }. Therefore SPC is a collection of online change detection methods. The 

most popular and basic method of SPC for online change detection is the Shewhart 

control chart (Page 1955; Montgomery 2004). To construct a control chart, historical data 

thought to be in-control are first collected to estimate in-control process parameters such 

as mean and variance, and then determine the control limits (CL) of the control chart. 

After the control chart is constructed, the data points to be monitored will be plotted on 

the control chart. If a data point falls inside the control limits, the process is considered as 

in-control. Otherwise, a signal of a change to the out-of-control state is detected. Please 

refer to Montgomery (2004) for more details on construction and usage of control charts 

in SPC.  

Online detection only uses the data before t. If data after the change point are 

available, offline detection algorithm will be more efficient. For offline change detection, 

we will introduce a method based on the cumulative sums (cusum). If the change occurs 

at time t, the likelihood function for {𝑋𝑖, 𝑖 = 1, …𝑛} can be written as: 

𝐿𝑡 = �𝑝𝜃0(𝑋𝑖)
𝑡−1

𝑖=1

�𝑝𝜃1(𝑋𝑖)
𝑛

𝑖=𝑡

 

By using the maximum likelihood principle, we can estimate 𝜏 by 
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𝜏̂ = argmax
0≤𝑡≤𝑛

𝐿𝑡 (2.1) 

Then (2.1) can be written as 

𝜏̂ = argmax
0≤𝑡≤𝑛

�𝑝𝜃0(𝑋𝑖)
𝑡−1

𝑖=1

�𝑝𝜃1(𝑋𝑖)
𝑛

𝑖=𝑡

= argmax
0≤𝑡≤𝑛

� ln �𝑝𝜃0(𝑋𝑖)� + � ln �𝑝𝜃1(𝑋𝑖)�
𝑛

𝑖=𝑡

𝑡−1

𝑖=1

 

= argmax
0≤𝑡≤𝑛

� ln �𝑝𝜃1(𝑋𝑖)� −� ln �𝑝𝜃0(𝑋𝑖)�
𝑛

𝑖=𝑡

𝑛

𝑖=𝑡

 

The last equality is obtained by substracting ∑ ln �𝑝𝜃0(𝑋𝑖)�𝑛
𝑖=1  from 

∑ ln �𝑝𝜃0(𝑋𝑖)�+ ∑ ln �𝑝𝜃1(𝑋𝑖)�𝑛
𝑖=𝑡

𝑡−1
𝑖=1 .  

If we further assume that 𝑋𝑖~𝑁(𝜇,𝜎2), where 𝜇 = 𝜇0 when 𝑋𝑖 is in-control, and 

𝜇 = 𝜇1 > 𝜇0when 𝑋𝑖 is out of control, it can be seen that  

𝜏̂ = argmax
0≤𝑡≤𝑛

� ln �𝑝𝜇1(𝑋𝑖)� −� ln �𝑝𝜇0(𝑋𝑖)�
𝑛

𝑖=𝑡

𝑛

𝑖=𝑡

= argmax
0≤𝑡≤𝑛

�(𝑋𝑖 − 𝜇0 −
𝜇1 − 𝜇0

2
)

𝑛

𝑖=𝑡

 

Note that ∑ (𝑋𝑖 − 𝜇0 −
𝜇1−𝜇0
2

)𝑛
𝑖=𝑡  is the cumulative sum (cusum) of the shifts of 𝑋𝑖 

from 𝜇0 + 𝜇1−𝜇0
2

. The idea of cusum derived above based on the parametric assumptions 

can be generalized to nonparametric situations where the change-point τ is estimated by: 

𝜏̂ = argmax0≤𝑡≤𝑛 ∑ (𝑋𝑖 − 𝜇0 − 𝐾)𝑛
𝑖=𝑡 , (2.2) 

 
where the parameter K is called the reference value. For normal distribution with known 

𝜇1, 𝐾 is set as 𝜇1−𝜇0
2

. When cusum is used as a nonparametric method, K is a parameter of 

the method that needs to be decided. Intuitively, 𝑋𝑖 − 𝜇0 − 𝐾 can be considered as a 

“significant” evidence of a shift from 𝜇0. And the cusum value can be considered as an 

accumulation of these evidences of shift for all the observations after t. The change-point 

is estimated by maximizing the cumulative evidence of the significant shifts. Because of 

this intuitive interpretation of the cusum method, it can work as a nonparametric method 

with 𝜇1 unknown, although it is originally motivated under the assumption of normal 

distribution with known 𝜇1.  
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2.1.3 SPC Method for Initialization Bias Elimination 

From the last two subsections, we can see that there are a lot of similarities 

between IB problem and the change detection problem. The steady state data from 

simulation can be considered as data without changes in distribution (or “in-control”). 

The data with initial transient can be considered as data after a change has occurred (or 

“out-of-control”). Then detection of the period of initialization bias becomes the problem 

of detecting when the distribution of the data starts to change. Therefore the change 

detection algorithms can be borrowed to solve the initialization bias problem. This idea 

has been used by Robinson (2007) in terms of applying the Shewhart control chart to 

determine the initialization bias period in discrete-event simulation. A general outline for 

this method is given in Procedure 1. 

Procedure 1 (SPC method) 

1. Collect r replications of simulation outputs {{𝑌𝑖1, … ,𝑌𝑖𝑛}, 𝑖 = 1, … 𝑟}. The mean 

series are defined as: 𝑌� = (∑ 𝑌𝑖1𝑟
𝑖=1
𝑟

, … , ∑ 𝑌𝑖𝑛𝑟
𝑖=1
𝑟

). 

2. Determine the smallest batch size m so that the batch means can pass the test of 

no-autocorrelation using Fishman’s procedure (Fishman 1978; Fishman 1996) and 

the Anderson-Darling test of normality (Anderson and Darling 1954; Law and 

Kelton 2000). Batched data series are obtained as:𝑏 = �𝑛
𝑚
�  

𝑌�𝑗 =
∑ 𝑌�𝑖
𝑗𝑚
𝑖=(𝑗−1)𝑚+1

𝑚
, 𝑗 = 1, … , 𝑏 

3. Assume the second half of data series is in control (or in steady-state). A control 

chart is constructed by using the second half of the data as the ‘historical data’. 

The control limits are obtained by: 
𝜇̂ = 1

�𝑏2�
∑ 𝑌�𝑖𝑏
𝑖=𝑏−�𝑏2�+1

, 

𝜎� = �
1

�𝑏2�
∑ 𝑠𝑖2
𝑏
𝑖=𝑏−�𝑏2�+1

  where 𝑠𝑖2 is the variance for each batch mean. 

𝐶𝐿 = 𝜇̂ ± 𝑧 𝜎�
√5

,𝑓𝑜𝑟 𝑧 = 1, 2, 3. 
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4. Identify the truncation point and remove the initialization bias: Plot 𝑌�𝑗 , j=1, …, b 

on the control chart. The truncation point is identified as the largest j, j=1, …, �𝑏
2
� 

such that 𝑌�𝑗 is outside the control limits. To determine out-of-control signal, 

Robinson also applied the Western Electric rules (Montgomery 1994) plus a 

trace-back rule considering “the initial points all located in one side of the center 

line are considered as out of control”. If the truncation point is located on the 

second half of data series, this estimation is considered as ineffective and should 

be dropped. 

2.2 Proposed Method and Evaluation Criteria 

2.2.1 Our Proposed Method  

In this section, we propose a heuristic rule for initialization bias elimination by 

adapting the idea of the cusum change detection algorithm described in Section 2.1. We 

refer to this new heuristic rule as the cusum-rule. The cusum calculated in (2.2) requires 

the assumption of normal distribution, thus we use the batch-size method which is a 

classical method to normalize data at the beginning. For raw data 

{𝑌1𝑟𝑎𝑤,𝑌2𝑟𝑎𝑤,𝑌3𝑟𝑎𝑤 … ,𝑌𝑛𝑟𝑎𝑤} and batch size equal to 𝑚, batched data are: 

 �𝑌𝑖 , 𝑖 = 1, 2, … , 𝑏|𝑌𝑖 = 1
𝑚
∑ 𝑌(𝑖−1)∗𝑚+𝑗

𝑟𝑎𝑤𝑚
𝑗=1 , 𝑏 = �𝑛

𝑚
� �.  

The cusum calculated in (2.2) also requires the in-control mean 𝜇0. We propose to 

estimate 𝜇0 by 

𝜇̂0 = 1
|𝒯0|

∑ 𝑌𝑡𝑡∈𝒯0 , 

where 𝒯0 ⊂ {1, … , 𝑏} denotes the set of indices for the data that are considered as from 

the steady-state. Usually 𝒯0 is set as 

��𝑏
2
� + 1, �𝑏

2
� + 2, … , 𝑏�, 
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which is the second-half of the data series. For the reference value K in (2.2), we set 

𝐾 = 𝑘𝜎�, where 𝜎� is the estimated standard deviation of the data based on {𝑌𝑖, 𝑖 ∈ 𝒯0} and 

k is treated as a parameter of our proposed procedure. 

Another assumption the cusum method in Section 2.1 requires is that we know the 

directions of the mean shift, that is, either 𝜇0 < 𝜇1 or 𝜇0 > 𝜇1. In initialization bias 

elimination, the direction of the mean shifts during the initial transient may not be known. 

More importantly, the mean of the transient data may oscillate above and below the 

steady-state mean in some simulation applications. To make the cusum method 

applicable to all these situations, we propose to first transform 𝑌𝑖 by  

𝑌�𝑖 = |𝑌𝑖 − 𝜇̂0|, i=1, 2, …, 𝑏. 

We will then apply the cusum method to detect changes in the transformed data 

series {𝑌�𝑖, 𝑖 = 1, 2, … 𝑏} which are the absolute deviations of the original data from the 

estimated steady-state mean. When 𝑋𝑖 is from the steady-state, we expect 𝐸[𝑌�𝑖] to be 

unchanged and small. When 𝑌𝑖 is from the transient-state, we expect 𝐸[𝑌�𝑖] to be 

increased. Therefore, the cusum in Section 2.1 can be used to detect the mean-shift 

change in 𝑌�𝑖 from the steady-state to the transient state. The idea of using absolute 

deviations has been used in SPC literature (Montgomery 2004) in order to detection both 

mean and variance changes of a process.  

To eliminate initialization bias of data series {𝑌1, … ,𝑌𝑏}, the procedure to design 

the cusum-rule is: 

Procedure 2 (cusum-rule): 

1. Estimate in-control mean for raw data based on preset 𝒯0 

𝜇̂00 = 1
|𝒯0|

∑ 𝑌𝑡𝑡∈𝒯0 . 

|∙| calculates the number of elements of a set. 𝒯0 is set as ��𝑏
2
� + 1, �𝑏

2
� + 2, … , 𝑏�. 

2. Transform batched data to the absolution deviation from 𝜇̂00: 𝑌� = |𝑌� − 𝜇̂00| 
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3. Determine the new steady-state parameter for updated data series 𝑊.Sample 

mean, 𝜇̂0, is calculated based on {𝑌�𝑡, 𝑡 ∈ 𝒯0},  

𝜇̂0 = 1
|𝒯0|

∑ 𝑌�𝑡𝑡∈𝒯0 . 

To estimate the value of variance 𝜎�2, a batch-mean estimator 𝑉𝐵𝑀,𝑏1 (Goldsman, 

Schruben et al. 1994) is applied: 

a. Divide data series {𝑌�𝑡, 𝑡 ∈ 𝒯0} into b1 non-overlapping batches. Here, we 

assume |𝒯0| can be divided by b1. (Otherwise, throw away the first few in-

control data (those closest to out-of-control state) to make the number of 

remaining data divisible by 𝑏1) Thus, batch size 𝑚1 = |𝒯0|/𝑏1. 

b. Batch mean series for {𝑌�𝑡, 𝑡 ∈ 𝒯0} is calculated as: 

𝑌�𝑖,𝑚1 = 1
𝑚1
∑ 𝑌�𝑏−�𝑏2�+(𝑖−1)𝑚1+𝑙
𝑚1
𝑙=1 , 𝑖 = 1, 2, … 𝑏1. 

c. Calculate batch-mean estimator of 𝜎, 

𝜎�2 = 𝑉𝐵𝑀,𝑏1 =
𝑚1 ∑ (𝑌�𝑖,𝑚1−𝑌�

�𝑚1)𝑏1
𝑖=1

𝑏1−1
, where 𝑌��𝑚1 = 1

𝑏1
∑ 𝑌�𝑖,𝑚1
𝑏1
𝑖=1 .  

4. Determine the truncation point: 
Let 𝑆𝑡 = ∑ (𝑌�𝑖 − 𝜇̂0 − 𝐾)𝑡

𝑖=1 , 𝑡 = 1, … , 𝑏, 𝐾 = 𝑘 ∗ 𝜎�. If max1≤𝑡≤𝑏 𝑆𝑡 > 0 

𝜏̂ = argmax
1≤𝑡≤𝑏

𝑆𝑡 (2.3) 

If max1≤𝑡≤𝑏 𝑆𝑡 ≤ 0,  𝜏̂ = 0 

The selection of the parameter 𝑘 will be introduced later. The cusum-rule is 

computationally simple, with complexity of O(n). 

Remark: Another initialization bias elimination method is cusum plot (Barton and 

Schruben 1989) which also employs “cumulative sum” to remove initialization bias. 

Different from cusum method in Section 2.1 and our method, cusum plot is monitoring 

the sum of deviations of observations from cumulative sample mean. Given 𝑆0 = 0, and 

𝑆𝑖 = ∑ (𝑌� − 𝑌𝑡), 𝑖 = 1, … , 𝑛𝑖
𝑡=1 , where 𝑌� = ∑ 𝑌𝑡𝑛

𝑡=1 , cusum plot is a graph of 𝑆𝑖vs 𝑖. If 

there is initialization bias, plot of 𝑆𝑖 will all tend to stay on one side of zero; otherwise, 

plot of 𝑆𝑖 will tend to cross zero several times. There is also similar discussion in the 
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Markov Chain Monte Carlo (MCMC) literature about using the cusum plot to monitor 

Markov sampler and assess the convergence performance of the Markov chain (Yu 1996; 

Yu and Mykland 1998). Although including the same idea “cusum”, cusum plot is quite 

different from our cusum rule. First, cusum plot sets the reference value as the global 

average, while our method estimate it based on the in-control data; secondly, cusum plot 

identifies the change point by observing 𝑆𝑖 crossing zero, while our method finds the 

change point by locating the maximum of “cusum” in (2.3). Thirdly, our method employs 

the absolution modification which is helpful for detecting oscillating initialization bias, 

while cusum plot is only sensitive for one-side bias; finally, the detection rule of cusum 

plot is based on subjective judgment of users. Although Brooks (1998) tried to define 

some diagnostic parameters, an assumption that data series are symmetrically distributed 

about the mean value is employed. We will show the comparison results between cusum 

plot and our method in Section 2.3. 

2.2.2 Performance Criteria 

To assess and compare the effectiveness of different initialization bias elimination 

methods, we will use two performance criteria in this chapter. The first one is mean 

square error (MSE) of the estimated steady-state mean, which is defined as: 

𝑚𝑠𝑒(𝜇̂,𝜇) = 𝐸[(𝜇̂ −  𝜇)2] = 𝑏𝑖𝑎𝑠2(𝜇̂,𝜇) + 𝑣𝑎𝑟(𝜇̂), 

where 𝜇 represents the true steady-state mean and 𝜇̂ is estimated steady-state mean using 

an IB elimination procedure. It is pointed out that initialization bias elimination problem 

is a straight-forward point estimation of 𝜇 (Fishman 1972; Snell and Schruben 1985; 

Pasupathy and Schmeiser 2010). MSE, considering the bias and standard error at the 

same time, is a statistical traditional measurement of point-estimator quality. Thus, we 

choose MSE as the main criterion to evaluate performance of methods in this chapter. 

Another criterion we will use is percentage bias removed by truncation (PERC) 

(Hoad, Robinson et al. 2010), which is defined as: 
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𝑃𝐸𝑅𝐶 = �
∑ 𝑏𝑖𝐿�
𝑖=1

∑ 𝑏𝑖𝐿
𝑖=1

, for 𝐿� ≤ 𝐿

1,     for 𝐿� > 𝐿
 

(2.4) 

PERC can be applied when we design the data series by plus steady-state data 

series with bias series which is obtained from bias function. In (2.4), 𝑏𝑖 is the absolute 

value of bias function at the 𝑖𝑡ℎ observation, L is the true truncation point and 𝐿� is the 

estimated truncation point. PERC gives a clear and quantitative idea that how much 

initialization bias a method can remove. 

2.2.3 Selection of Parameter k 

In order to know how the parameter k should be selected, first consider the case 

that there is no transient period and all the data are from the steady-state. A data series 

without transient period is referred to as the steady-state data in this thesis. And the MSE 

of a method applied to the steady-state data is referred to as the steady-state MSE 

(SSMSE). For steady-state data, the optimal truncation point that minimizes MSE will be 

at zero, that is, all the data are retained to estimate the steady-state mean. Let SSMSE0 

denote the SSMSE when all the data are retained. Typically, the steady-state MSE of an 

IB elimination procedure is greater than SSMSE0.  

Now we look at how the parameter k in the cusum-rule affects its SSMSE. For 

any procedure, it is easy to see that its SSMSE is simply the variance of the mean 

estimator 𝜇̂. When k is very large (approaching to infinity), it can be seen that 𝑆𝑡 ≤

0,∀𝑡 ≥ 1 in Procedure 2. So we always have 𝜏̂ = 0 and the SSMSE of the cusum-rule 

will be exactly MSE0. On the other hand, when k is very small (close to 0), 𝑆𝑡 in 

Procedure 2 approximately forms a random walk (for independent data) and 𝜏̂ will be 

randomly distributed between 0 and b. In this case, many steady-state data may be 

truncated and the variance of 𝜇̂ is large. Consequently, the SSMSE when k is very small 

will be much larger than SSMSE0. Although a very large k is optimal for the steady-state 
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data, it does not work well when IB exists. It can be seen that, when k is very large, we 

still have 𝜏̂ = 0 when initialization bias exists, which will cause large bias and MSE 

because no data with IB is truncated. From the above analysis, we can see that there is 

obviously a trade-off between the variance caused by truncating steady-data and the bias 

caused by using data with IB. If k is too large, the cusum-rule is not sensitive to the mean 

shifts in the IB period, which causes large bias and MSE. If k is too small, the cusum -

rule tends to truncate many steady-state data, which causes large variance and MSE.  

This tradeoff is similar to the tradeoff between the type I error (also called false-

alarm rate) and detectability of mean shifts in selecting the control limit parameter of a 

control chart: narrow control limits cause large type I error while wide control limits 

reduce sensitivity to the mean shifts. In SPC literature, the control limit and other control 

chart parameters are selected by setting the type-I error to be within a specified value α. 

And two control charts are compared by first setting their parameters so that the type-I 

errors are close to each other. Then the detectability of the control charts for various types 

of mean shifts will be compared. In this chapter, we propose using the similar idea to 

select parameter k for the cusum-rule. More specifically, we will select k so that the 

SSMSE of the cusum-rule is less than or equal to (1 + 𝛼)MSE0, where 𝛼 > 0 and 1 + 𝛼 

is a user-specified upper limit on the ratio of the MSE comparing with MSE0. Examples 

of choices of 𝛼 are 0.05 or 0.10. When we compare the cusum-rule with another method, 

k will be selected so that the steady-state MSE of the two methods are close to each other. 

The steady-state MSE of an IB procedure depends on the distribution and the 

autocorrelation structure of the data series. We propose using the simplest steady-state 

case, where the data are i.i.d. normal random variables. 

In this chapter, we will focus our comparison between the cusum-rule and MSER. 

Since MSER does not have any parameter that can be used to adjust the SSMSE, we will 

select k so that the SSMSE of the cusum-rule is close to that of MSER. The procedure to 

estimate the SSMSE of an IB procedure is outlined in Procedure 3.  
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Procedure 3  

1. Let N be the number of replications and r be replication index. Set r=1. 

2. Generate b independent random observations 𝑌𝑟 = {𝑌1𝑟 ,𝑌2𝑟 , … ,𝑌𝑏𝑟} with 

𝑌𝑖𝑟~𝑁(0, 1), 𝑖 = 1,2, … , 𝑏. 

3. Apply IB procedure to 𝑌𝑟. Save the estimated steady state mean 𝜇̂𝑟. And let 

r=r+1 and repeat 2 and 3 until r=N. 

4. Estimate MSE based on 𝜇̂𝑟 , 𝑟 = 1, … ,𝑁.  

In the above procedure, we generate observations 𝑌𝑖𝑟 from the standard normal 

distribution 𝑁(0, 1) because it is easy to see that the SSMSE of both the cusum-rule and 

MSER are independent of the mean and variance of 𝑌𝑖𝑟. Typically the SSMSE of an IB 

procedure varies with different values of b, the length of data, which is cusum-rule is the 

number of batches. In Table 2.1, we list the SSMSE of MSER and SSMSE0 for different 

values b. 

Table 2.1 SSMSE(× 10−3) of MSER and SSMSE0 and the ratio between them for 
different data length N 

b 𝑆𝑆𝑀𝑆𝐸𝑚 𝑆𝑆𝑀𝑆𝐸0 𝑆𝑆𝑀𝑆𝐸𝑚/𝑆𝑆𝑀𝑆𝐸0 
250 4.31 3.99 1.08 
500 2.06 2 1.03 
750 1.36 1.34 1.02 

1000 1.02 1 1.01 
1500 0.674 0.668 1.01 
2000 0.504 0.501 1.01 
3000 0.334 0.333 1 
4000 0.251 0.250 1 
5000 0.2 0.2 1 

10000 0.1 0.1 1 

 

 In order to select k in the cusum-rule so that its SSMSE is close to that of MSER, 

we use the following procedure: 
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Procedure 4 

1. k=0 

2. Using Procedure 3 with N replications, estimate SSMSE of the cusum-rule, 

denoted by SSMSEc, and the SSMSE of MSER, denoted by SSMSEm. If 

(𝑆𝑆𝑀𝑆𝐸𝑐 − 𝑆𝑆𝑀𝑆𝐸𝑚)/𝑆𝑆𝑀𝑆𝐸𝑚 ≤ 0.01, stop. Otherwise, set 𝑘 = 𝑘 + 𝛿, where 

δ is the step size used to adjust k. Repeat 2. 

Using N=250,000 and δ=0.5, the k values for different values of b for the cusum-

rule are given in Table 2.2. 

Table 2.2 Selection of k value for different length b and corresponding SSMSE(× 10−3) 

b k 𝑆𝑆𝑀𝑆𝐸𝑐 𝑆𝑆𝑀𝑆𝐸𝑚 𝑆𝑆𝑀𝑆𝐸𝑐−𝑆𝑆𝑀𝑆𝐸𝑚
𝑆𝑆𝑀𝑆𝐸

  
250 0.95 4.34 4.31 0.00696 
500 0.85 2.07 2.06 0.00485 
750 0.75 1.37 1.36 0.00735 
1000 0.70 1.03 1.02 0.0098 
1500 0.60 0.680 0.674 0.0089 
2000 0.55 0.508 0.504 0.00794 
3000 0.45 0.337 0.334 0.009 
4000 0.40 0.253 0.251 0.00797 
5000 0.35 0.202 0.2 0.01 
10000 0.25 0.101 0.1 0.01 

 

Although the k value for the cusum-rule are selected based on i.i.d normally 

distributed data, in Section 2.3, we will conduct extensive experiments for data with 

various types of autocorrelation structure and distributions to compare both the steady-

state and IB elimination performance of the cusum-rule and MSER.  
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2.3.Experiments 

In this section, we will conduct extensive tests to evaluate the performance of the 

cusum-rule and compare it with other methods, particularly with MSER-5, the well-

accepted benchmark method for IB elimination. We first use a large variety of artificial 

data sets similar to those used by Hoad, Robinson et al. (2010) to test and compare the 

methods. Then we consider ARMA time series data with IB caused by initial values. 

Finally, we apply the cusum-rule to the simulation outputs from M/M/1 model. In all the 

experiments, we set the k value of the cusum-rule according to Table 2.2 and use batch 

size m=5 to be consistent with the batch size of MSER-5. We use N=10,000 replications 

to estimate MSE and PERC for all experiments. 

2.3.1 Experiments Using Artificial Data Sets 

To test the performance of MSER-5, Hoad, Robinson et al. (2010) uses artificial 

data sets that are generated using various bias functions with different lengths, severity, 

shape, and orientation, as well as steady-state data with different distributions and auto-

correlation structures. The selection of bias functions and steady-state data is based on 

their study of over 50 ‘real’ simulation models and outputs (Hoad, Robinson et al. 2010). 

In this chapter, we use a representative subset of the data set used by Hoad, Robinson et 

al. (2010). While all the data sets used by Hoad, Robinson et al. (2010) has data length 

n=1000, we also conduct experiments with shorter (n=250) and longer (n=4000) data 

lengths.  

2.3.1.1 Generation of Artificial Data Sets 

By testing methods with artificial data sets, we can completely control the data 

length n, the true truncation point L, the true steady-state mean µ, the severity of 

initialization bias C, the distribution of noise, and the shape of the bias function. This is 

helpful to make tests more adequate and complete. In this chapter, we generate steady-

state data and initial bias separately. The steady-state series is generated according to the  
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Table 2.3 Model and parameter setting for steady-state series 

Auto-correlation type Model Parameter setting 

No auto correlation 𝑋𝑡 = 𝜀𝑡  

AR(1) 𝑋𝑡 = 𝜙1𝑋𝑡−1 + 𝜀𝑡 𝜙1 = 0.9 

AR(2) 𝑋𝑡 = 𝜙2𝑋𝑡−1+𝜙3𝑋𝑡−2 + 𝜀𝑡 𝜙2 = −0.25,𝜙3 = 0.5 

ARMA(5) 𝑋𝑡 = 1 + 𝜀𝑡 + �[
1
2𝑖

(𝑋𝑡−𝑖 + 𝜀𝑡−𝑖)]
5

𝑖=1

  

Table 2.4 Initialization bias functions 

1. Mean Shift 
(MS) a(t) = �±𝐶𝑡 𝑡 = 1, … , 𝐿

0 𝑡 = 𝐿 + 1, … ,𝑛 

2. Linear trend 
(LI) 𝑎(𝑡) = �±𝐶(1 +

1
𝐿
−
𝑡
𝐿

) 𝑡 = 1, … , 𝐿
0 𝑡 = 𝐿 + 1, … ,𝑛

 

3. Quadratic 
trend (QU) 𝑎(𝑡) = �±

𝐶
𝐿2

(𝐿 + 1 − 𝑡)2 𝑡 = 1, … , 𝐿
0 𝑡 = 𝐿 + 1, … , 𝑛

 

4. Exponential 
trend (EX) 

 𝑎(𝑡) = �±𝐶 ∗ exp (
log � 𝐶

0.005�
𝐿 − 1

(1 − 𝑡)) 𝑡 = 1, … , 𝐿
0 𝑡 = 𝐿 + 1, … , 𝑛

 

5. Oscillating 
trend (OS) 𝑎(𝑡) = �±𝐶 ∗ exp�

log(0.005)
𝐿

�𝑡 −
𝐿

20
�� ∗ sin (

10𝜋
𝐿

𝑡) 𝑡 = 1, … , 𝐿

0 𝑡 = 𝐿 + 1, … , 𝑛
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models in Table 2.3. Different extents of auto-correlations are considered. Random noise 

𝜀𝑡 is set to be distributed as either N(1, 1) or Exp(1). For AR(1), AR(2) and ARMA(5) 

model, the initial values of {𝑋0,𝑋−1,𝑋−2, … } are set as the true steady-state mean of each 

model. In order to ensure that the data are sampled from the steady-state distributions, we 

treat the first 1000 data points as the warm-up period, which will be truncated, and select 

the next n data points as the steady-state series we really use. 

The initialization bias functions are generated based on the bias severity 

parameter C(=10,5,2,1), the data length n, and the true truncation point L(=0.1n, 0.2n, 

0.3n, 0.4n) as shown in Table 2.4. We add negative bias when the data length n = 250 and 

4000, and positive bias when n=1000. After generating initialization bias series 𝑎(𝑡) and 

steady-state series Xt, the data series with IB is generated by {𝑌𝑡 = 𝑋(𝑡) + 𝑎(𝑡), 𝑡 =

1, … , 𝑛}.  

2.3.1.2 Preliminary Testing Results 

We first consider simple data sets with no autocorrelation, normal errors, data 

length n=1000, and with a mean shift bias or linear trend bias. These data sets will be 

used to quickly test the four methods mentioned in this chapter: MSER, cusum-rule, SPC, 

and cusum-plot. We use C=10 so that the bias is severe and obvious. Thus a method 

failing to give a good estimation of steady-state mean for these simple data sets should be 

rejected. The testing results are showed in Table 2.5. Also, to make the comparison be 

consistent with the setting in Robinson (2007), each data sample used in each replication 

is actually the average of 5 replications of raw data series. In the first row of Table 2.5, 

we show the SSMSE (L=0) for all four methods. MSER has the smallest SSMSE and 

cusum-rule has a very similar one, while SPC and cusum-plot have much larger SSMSE 

than MSER and the cusum-rule. The other rows of Table 2.5 compare the MSEs of the 

four methods for data sets with different initial bias lengths and trends. The MSE of 

MSER-5 and cusum-rule are very close to each other in all these cases. Comparing with 
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MSER and the cusum-rule, SPC method has much larger MSE in many cases, especially 

when L=100 or 200. Another issue worth to mention is that SPC method has less than 5% 

effective records because of its severe false alarm. The idea of effective record is 

proposed by Robinson (2007) that the estimated truncation point using the SPC method is 

within the first half of raw data, while an estimated truncation point within the second 

half is considered as ineffective and additional samples should be collected to estimate 

the truncation point again. The low percentage of effective records using the SPC method 

causes substantial waste of data and computational cost.   

For the cusum-plot, we use the data point where the plot first crosses zero as the 

truncation point. From Table 2.5, it is obvious that the cusum-plot performs poorly in 

detecting the truncation point. For most cases, the cusum-plot never crosses zero 

(therefore the percentage of effective records is zero). The problem of the cusum-plot 

method can be clearly seen from Figure 2.1 which shows the cusum plot of 𝑆𝑖 vs. i for 

data with linear trends and true truncation point L equal to 100 and 400. We can find that 

in both types of data, the cusum plot is entirely on one side of zero and it reaches a value 

close to zero only at the beginning and the end of the data series, which is far from the 

true location of the truncation point. Another useful observation of Figure 2.1 is that the 

maximum of the cusum plot seems to be much more related to the location of the 

truncation point. And the cusum-rule proposed in this chapter is exactly based on the idea 

of using maximum of the cusum to estimate the truncation point. As discussed in Section 

2.2.1, another important difference between the cusum-rule and the cusum-plot is that the 

reference values are calculated differently. To see that the reference value used by the 

cusum-plot is not effective, we revise the cusum-plot method by using the location of the 

maximum of 𝑆𝑗 value as the truncation point, which is similar to the detection rule used in 

the cusum-rule. We refer to this revised (and improved) cusum-plot method as cusum-

plot-rev and compare its performance with other methods in Table 2.5. From these 

results, we can see that, although cusum-plot-rev is much better than the original cusum-
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plot, its performance is quite unstable, with very large MSE for the last three cases of 

linear trend data. This is because cusum-plot-rev, as in the original cusum-plot, still uses 

the global mean of the data as the reference value when calculating the cumulative sum 

𝑆𝑗, which causes the shape of the cusum-plot to be highly sensitive to the shape, length, 

and magnitude of the initialization bias. Since MSER-5 and Cusum-rule are the only 

methods under comparison that perform well for these simple cases, we will focus on 

only the comparison of these two methods in the following sections. 

Table 2.5 MSE(× 10−3) of five methods for Mean Shift and Linear trend data with C=10 
and 𝜀𝑡~N(1, 1) 

  MSER-5 Cusum-
rule 

SPC Cusum-plot Cusum-
plot-rev 

No 
 

L=0 0.2 0.2 0.31(4.42%) 0.256(98.9%) 2.41 
MS L=100 0.23 0.23 0.32(4.55%) NaN (0%) 0.22 

 L=200 0.25 0.26 0.32(4.66%) NaN(0%) 0.25 
 L=300 0.29 0.29 0.33(4.40%) NaN(0%) 0.29 
 L=400 0.34 0.34 0.36(4.37%) NaN(0%) 0.33 

LI L=100 0.22 0.22 0.31(4.51%) 322(1.12%) 0.22 
 L=200 0.26 0.26 0.34(4.37%) NaN(0%) 0.41 
 L=300 0.29 0.29 0.30(4.34%) NaN(0%) 2.4 
 L=400 0.34 0.35 0.33(4.42%) NaN(0%) 14 
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Figure 2.1 The cusum-plots for data series with linear trend, n=1000 and L=100 (left) or 
400 (right) 

2.3.1.3 Comparison Between the Cusum-rule and MSER-5 

for artificial data sets 

We conduct a total of 960 experiments to compare the performance of the cusum-

rule and MSER-5 for data series with a full combination of different parameter settings as 

shown in Table 2.6. 

Table 2.6 Parameters used to generate the artificial data sets 

Parameter Notation Values 
Noise distribution 𝜀𝑡 N(1, 1); Exp(1) 
Bias severity value  C 10; 5; 2; 1 
Date length n 250; 1000; 4000 
True truncation point L 0.1n; 0.4n 
Autocorrelation Type AR 0-no autocorrelation; 1-AR(1); 2-AR(2); 5-

  
Shape of the bias 

 

Shape MS; LI; QU; EX; OS 
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Table 2.7 Cases with maximum 𝑀𝑆𝐸𝑐
𝑀𝑆𝐸𝑚

 

n maxCM Error C L AR Shape 𝑀𝑆𝐸𝑚 𝑀𝑆𝐸𝑐 𝑃𝐸𝑅𝐶𝑚 𝑃𝐸𝑅𝐶𝑘 
250 1.07 N(1, 1) 1 25 1 EX 0.494 0.527 42% 41% 
1000 1.04 N(1, 1) 5 100 1 MS 0.119 0.123 96% 93% 
4000 1.06 N(1, 1) 10 400 5 MS 1.31 1.39 79% 69% 

Table 2.8 Cases with maximum 𝑀𝑆𝐸𝑚
𝑀𝑆𝐸𝑐

 

n maxMC Error C L AR shape 𝑀𝑆𝐸𝑚 𝑀𝑆𝐸c 𝑃𝐸𝑅𝐶𝑚 𝑃𝐸𝑅𝐶c 
250 2.2 Exp(1) 1 100 2 MS 0.0358 0.0163 79% 93% 
1000 8.13 Exp(1) 1 400 2 MS 0.0373 0.00458 77% 98% 
4000 7.09 N(1, 1) 1 1600 2 MS 0.00562 0.000793 97% 100% 

Table 2.9 All records with MSER and cusum-rule having more than 10% difference in 
MSE when n=250 

Error C n L AR shape 𝑀𝑆𝐸𝑚 𝑀𝑆𝐸𝑐 𝑃𝐸𝑅𝐶𝑚 𝑃𝐸𝑅𝐶𝑐 
N(1,1) 1 250 100 0 MS 0.0178 0.00885 91% 97% 
N(1,1) 1 250 100 0 LI 0.0143 0.0121 60% 66% 
N(1,1) 5 250 100 1 MS 1.04 0.876 86% 91% 
N(1,1) 1 250 100 2 MS 0.046 0.0219 73% 89% 
N(1,1) 1 250 100 2 LI 0.0218 0.0193 48% 55% 

Exp(1) 1 250 100 0 MS 0.0123 0.00747 94% 98% 
Exp(1) 1 250 100 0 LI 0.0124 0.0101 64% 71% 
Exp(1) 5 250 100 1 MS 0.86 0.771 90% 92% 
Exp(1) 1 250 100 2 MS 0.0358 0.0163 78% 93% 
Exp(1) 1 250 100 2 LI 0.0202 0.017 53% 61% 

 

In Table 2.7 and Table 2.8, we first show the cases where the MSE of the two 

methods are the most different. Table 2.7 lists the data series that gives the largest ratio of 

MSE of the cusum-rule (MSEc) over that of the MSER-5 (MSEm) for each n value, where 
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maxCM=𝑚𝑎𝑥 𝑀𝑆𝐸𝑐
𝑀𝑆𝐸𝑚

. Table 2.8 lists the data series that gives the largest ratio of MSEm over 

MSEc, where maxMC= 𝑚𝑎𝑥 𝑀𝑆𝐸𝑚
𝑀𝑆𝐸𝑐

.  

From Table 2.7, we can find cusum-rule is never more than 7% worse than MSER 

in terms of MSE based on all the experiments we have performed. However, MSER 

could be more than eight times worse than cusum-rule in some cases according to Table 

2.8. To explore the difference of behaviors between MSER and cusum-rule, we conduct 

further study on all the records with more than 10% difference in MSE, including 10 

(3.1%) records when data length n=250, 28(8.8%) records when n=1000 and 90 (28%) 

records when n=4000. When the data length is longer, there tends to be bigger difference 

in performance between the two methods. MSER has a bigger MSE and eliminates 

smaller percentage of initialization bias than the cusum-rule in all 128 cases. This 

indicates that both performance criteria support the claim that the cusum-rule is 

significantly better than the MSER for these records.  

We show all the records with more than 10% difference in MSE between the two 

methods when n=250 in Table 2.9 and when n=1000 in Table 2.10 and Table 2.11. To 

save space and show the results more clearly, the 90 records with more than 10% 

difference in MSE when n=4000 are showed in Table 2.9, Table 2.10 and Table 2.11 

grouped by the values of AR, L, Error distribution, and the shape of initialization bias, 

respectively.  

In all three tables, the first six columns show the parameter setting of each record: 

the noise distribution of each record, the bias severity value C, the data length n, the true 

truncation point L, the autocorrelation variable AR, and the shape of initialization bias. 

Then in the last four columns, the MSE value and PERC value of two methods are 

shown. From these three tables, we can find L=0.4n in all records which indicates that 

cusum-rule tends to behave substantially better than MSER when the percentage of 

initialization bias is bigger; severity value C is 1, 2 or 5 which indicates when the severity 

of bias is smaller, cusum-rule has more chance to have significantly better performance 
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than MSER-5; autocorrelation AR is 0, 1 or 2 which indicates we cannot find significant 

difference between the two methods in ARMA(5, 5) data; for the shape of initialization 

bias, only mean shift and linear trend are involved when n=250, and then exponential and 

quadratic trends show up in the table when n=1000. No oscillating data shows significant 

difference between the two methods.  

Table 2.10 All records with MSER and cusum-rule having more than 10% difference in 
MSE with n=1000 and N(1,1) 

Error C n L AR shape 𝑀𝑆𝐸𝑚 𝑀𝑆𝐸𝑐 𝑃𝐸𝑅𝐶𝑚 𝑃𝐸𝑅𝐶𝑐 
N(1,1) 5 1000 400 0 QU 0.00253 0.00226 96% 97% 
N(1,1) 5 1000 400 0 EX 0.00228 0.00206 90% 91% 
N(1,1) 2 1000 400 0 LI 0.00368 0.00292 92% 94% 
N(1,1) 2 1000 400 0 QU 0.00355 0.00284 85% 88% 
N(1,1) 2 1000 400 0 EX 0.00247 0.00219 74% 77% 
N(1,1) 1 1000 400 0 MS 0.0025 0.0018 99% 100% 
N(1,1) 1 1000 400 0 LI 0.0096 0.0051 61% 76% 
N(1,1) 1 1000 400 0 QU 0.0050 0.0036 57% 66% 
N(1,1) 1 1000 400 0 EX 0.0027 0.0024 47% 53% 
N(1,1) 5 1000 400 1 MS 0.2933 0.2089 96% 98% 
N(1,1) 5 1000 400 1 LI 0.3258 0.2884 61% 66% 
N(1,1) 2 1000 400 1 MS 0.6082 0.4999 14% 29% 
N(1,1) 5 1000 400 2 QU 0.0043 0.0038 95% 96% 
N(1,1) 2 1000 400 2 LI 0.0070 0.0052 88% 91% 
N(1,1) 2 1000 400 2 QU 0.0060 0.0048 80% 84% 
N(1,1) 1 1000 400 2 MS 0.0276 0.0036 83% 99% 

 

When data length n=4000, the percentage of data records with at least 10% 

difference in MSE grows to 28% of the total number of experiments. The cusum-rule is 

much more robust than MSER-5 when n=4000, which is shown in Figure 2.2, Figure 2.3 

and Figure 2.4 shows the boxplots of the ratios  𝑅𝑚/𝑐 = 𝑀𝑆𝐸𝑚
𝑀𝑆𝐸𝑐

 for difference 

autocorrelation settings. The median lines of 𝑅𝑚/𝑐 are all either higher than or close to 1. 
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These figures clearly show that for all cases the performance of the cusum-rule is similar 

to or better than that of MSER-5. However, for many cases, with the only exceptions of 

AR=5 and Shape=OS, the MSER-5 is much worse than the cusum-rule for many data 

sets, which indicates again that the cusum-rule is more robust than MSER-5, which is 

consistent with what we find when n=250 and 1000. 

Table 2.11 All records with MSER and cusum-rule having more than 10% difference in 
MSE with n=1000 and Exp(1) 

Error C n L AR shape 𝑀𝑆𝐸𝑚 𝑀𝑆𝐸𝑐 𝑃𝐸𝑅𝐶𝑚 𝑃𝐸𝑅𝐶𝑐 
Exp(1) 2 1000 400 0 LI 0.00402 0.00333 92% 93% 
Exp(1) 2 1000 400 0 QU 0.00371 0.00323 85% 87% 
Exp(1) 1 1000 400 0 MS 0.00705 0.0018 96% 100% 
Exp(1) 1 1000 400 0 LI 0.0101 0.00627 61% 72% 
Exp(1) 1 1000 400 0 QU 0.00535 0.00436 57% 62% 
Exp(1) 5 1000 400 1 MS 0.403 0.241 93% 97% 
Exp(1) 2 1000 400 1 MS 0.581 0.519 19% 27% 
Exp(1) 2 1000 400 2 LI 0.00771 0.00601 87% 90% 
Exp(1) 2 1000 400 2 QU 0.00626 0.00544 80% 83% 
Exp(1) 1 1000 400 2 MS 0.0373 0.00458 77% 98% 
Exp(1) 1 1000 400 2 LI 0.0164 0.0108 47% 60% 
Exp(1) 1 1000 400 2 QU 0.00798 0.00687 45% 52% 
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Figure 2.2 Boxplots of MSE ratio between MSER and cusum-rule grouped by AR when 
n=4000 

 

Figure 2.3 Boxplots of MSE ratio between MSER and cusum-rule grouped by L or noise 
distribution when n=4000 
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Figure 2.4 Boxplots of MSE ratio between MSER and cusum-rule grouped by bias shape 
when n=4000 

2.3.2 ARMA Model with L=0 and Initialization Bias 

Caused by Different Initial Values 

In this section, we will show the comparisons of performance between the cusum-

rule and MSER on auto-correlated data with initialization bias caused by different initial 

values. First, we show the SSMSE of the two methods in Table 2.12. It can be seen that 

the SSMSE of the cusum rule is still very close to that of the MSER-5 auto-correlated 

data and non-normal (exponential) noise distribution, even though the parameter k in the 

cusum-rule is selected based on the independent data with normal noise distribution. This 

result further justifies the procedure we propose for the selection of the parameter k for 

the cusum-rule. 

Table 2.13 shows the performance of MSER and cusum-rule for difference error 

distributions, severity of initialization bias caused by initial values, and auto-correlation 

 



36 
 

 

structures. In addition to report the MSE value, we also report the bias and standard 

deviation of the steady-state mean estimation. We can find that the results are very close 

between the two methods for AR=1 and 2. When AR=5, it appears that the MSE of the 

cusum-rule is significantly smaller than MSE of MSER-5.  

Table 2.12 SSMSE for MSER and cusum-rule for ARMA data 

 Error N(1, 1) 
 AR 0 1 2 5 

n=250 𝑆𝑆𝑀𝑆𝐸𝑚 0.0043 0.478 0.00769 15.7 
𝑆𝑆𝑀𝑆𝐸𝑐 0.00433 0.507 0.00785 16.6 

n=1000 𝑆𝑆𝑀𝑆𝐸𝑚 0.001 0.103 0.0018 4.87 
𝑆𝑆𝑀𝑆𝐸𝑐 0.00101 0.105 0.00183 4.77 

n=4000 𝑆𝑆𝑀𝑆𝐸𝑚 0.00025 0.0255 0.000447 1.06 
𝑆𝑆𝑀𝑆𝐸𝑐 0.000252 0.0259 0.000451 1.06 

      
 Error Exp(1) 
 AR 0 1 2 5 

n=250 𝑆𝑆𝑀𝑆𝐸𝑚 0.00451 0.476 0.00813 15.9 
𝑆𝑆𝑀𝑆𝐸𝑐 0.00441 0.501 0.00805 17 

n=1000 𝑆𝑆𝑀𝑆𝐸𝑚 0.00102 0.11 0.00185 4.86 
𝑆𝑆𝑀𝑆𝐸𝑐 0.00102 0.11 0.00185 4.72 

n=4000 𝑆𝑆𝑀𝑆𝐸𝑚 0.000252 0.0256 0.000442 1.07 
𝑆𝑆𝑀𝑆𝐸𝑐 0.000255 0.0257 0.00045 1.06 
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Table 2.13 Results for MSER-5 and cusum-rule for ARMA data with different initial 
values when n=1000 

Error C AR 𝑀𝑆𝐸𝑚 𝑏𝑖𝑎𝑠𝑚 𝑠𝑡𝑑𝑚 𝑀𝑆𝐸𝑐 𝑏𝑖𝑎𝑠𝑐 𝑠𝑡𝑑𝑐 
Exp(1) 10 1 0.112 -0.00371 0.334 0.112 0.0056 0.334 
Exp(1) 5 1 0.107 -0.00997 0.327 0.107 -0.00196 0.327 
Exp(1) 2 1 0.105 -0.0134 0.324 0.105 -0.00579 0.325 
Exp(1) 1 1 0.108 -0.0129 0.329 0.108 -0.00606 0.329 
N(1, 1) 10 1 0.105 0.0124 0.323 0.106 0.0126 0.325 
N(1, 1) 5 1 0.106 0.0156 0.326 0.108 0.0143 0.329 
N(1, 1) 2 1 0.105 0.0125 0.323 0.106 0.0107 0.326 
N(1, 1) 1 1 0.106 6.60E-05 0.326 0.108 -0.00057 0.329 
Exp(1) 10 2 0.00183 -0.00212 0.0427 0.00182 -0.00162 0.0427 
Exp(1) 5 2 0.00183 -0.00228 0.0427 0.00183 -0.00208 0.0427 
Exp(1) 2 2 0.00185 -0.00184 0.043 0.00185 -0.00153 0.043 
Exp(1) 1 2 0.00185 -0.00163 0.0429 0.00186 -0.00118 0.0431 
N(1, 1) 10 2 0.0018 0.000773 0.0424 0.00182 0.000645 0.0427 
N(1, 1) 5 2 0.00181 3.32E-05 0.0425 0.00182 -0.00034 0.0427 
N(1, 1) 2 2 0.00179 0.000713 0.0423 0.0018 0.000486 0.0424 
N(1, 1) 1 2 0.00176 0.000687 0.042 0.00178 0.000538 0.0422 
Exp(1) 10 5 4.97 -0.00707 2.23 4.86 0.0923 2.2 
Exp(1) 5 5 4.93 -0.0165 2.22 4.82 0.0412 2.2 
Exp(1) 2 5 4.74 -0.101 2.17 4.71 -0.0522 2.17 
Exp(1) 1 5 4.86 -0.115 2.2 4.79 -0.0719 2.19 
N(1, 1) 10 5 5.12 0.214 2.25 5.03 0.258 2.23 
N(1, 1) 5 5 4.81 0.0526 2.19 4.76 0.0631 2.18 
N(1, 1) 2 5 4.78 0.00413 2.19 4.72 0.00225 2.17 
N(1, 1) 1 5 4.66 0.00134 2.16 4.56 -0.00524 2.14 

Table 2.14 Results of MSER-5 and cusum-rule for M/M/1 data 

Traffic intensity n 𝑀𝑆𝐸𝑚 𝑏𝑖𝑎𝑠𝑚 𝑠𝑡𝑑𝑚 𝑀𝑆𝐸𝑐 𝑏𝑖𝑎𝑠𝑐 𝑠𝑡𝑑𝑐 
0.8 2000 0.105 -0.063 0.318 0.104 -0.0538 0.318 

4000 0.0525 -0.0369 0.226 0.0525 -0.0323 0.227 
0.9 2000 2.05 -0.29 1.40 1.97 -0.305 1.37 

4000 0.983 -0.211 0.969 0.962 -0.196 0.961 
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2.3.3 M/M/1 Models 

In this section, queuing system M/M/1 is applied to compare the two methods. 

The arrival rate is set as 0.8 and 0.9 and the service rate is set as 1. Thus, the 

corresponding traffic intensity is 0.8 and 0.9. The initial condition of the queue is empty. 

The steady state of customer’s waiting time is 4 and 9. Data length n here is set as 2000 

and 4000. Each data sample we applied methods on are mean series of five simulated 

series of M/M/1. The results are shown in Table 2.14. Cusum-rule still holds very close 

MSE with MSER and in most cases smaller than MSER. This comparison shows the 

cusum-rule could behave as good as MSER for data generated from basic queuing system 

M/M/1. 

2.3.4 Discussion 

From the comprehensive experiments we conduct, we can find that the cusum-

rule is a much more robust method than MSER-5, the benchmark heuristic rule for IB 

elimination. The cusum-rule is never 10% worse than MSER-5 in terms of the MSE for 

the data sets we tested, while in many cases it performs much better than MSER-5, with 

as much as 8 times smaller MSE.  

Moreover, the adjustable parameter k in the cusum-rule makes it possible for the 

method to adapt to different requirements of SSMSE, while MSER-5 cannot be adjusted 

to change its SSMSE. In Section 2.2.3, we have explained that, in this chapter, the k value 

is selected so that the cusum-rule has a similar SSMSE with that of MSER-5 in order to 

have a fair comparison with MSER-5. When we use the cusum-rule in practice, however, 

the k value does not have to be chosen exactly as Table 2.2. For example, in some cases, 

the users can tolerate more of the variance in the steady-state mean estimation and want 

to reduce the bias of the estimation further. This can be achieved by reducing the value of 

k from what is given in Table 2.2. Therefore, by adjusting the value of parameter k in the 

cusum-rule, it can achieve any desired level of trade-off between the bias and variance. 
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2.4 Summary 

In this chapter, we propose a new heuristic method, the cusum-rule, motived by 

the offline change detection methods, to eliminate IB in steady-state simulation.  

Extensive experiments are conducted to compare the cusum-rule with the SPC method 

for IB elimination, the cusum plot method, and the benchmark MSER-5 method. MSE is 

used as the main performance criterion to compare the methods. Through all the 

experiments, we demonstrate that the performance of the cusum-rule is at least 

comparable to that of MSER-5 in all cases we have tested, and is much better in many 

cases, which shows that the cusum-rule is more robust than MSER-5. In addition, the 

parameter k value enables the cusum-rule to tune the tradeoff between the bias and 

variance of the steady-state mean estimation. 
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CHAPTER 3  

FULLY SEQUENTIAL MULTI-BEST RANKING AND SELECTION 

FOR TERMINATING SIMULATION 

3.1 Problem Framework 

In this section, we formulate the multi-best ranking and selection problem. 

Suppose we compare K alternative systems through discrete event simulations. Let 

𝑋𝑖𝑗, 𝑖 = 1, … ,𝐾, 𝑗 = 1, … ,𝑁𝑖 represent the 𝑗𝑡ℎ observed simulation output of the ith 

system, where 𝑁𝑖 is the total number of outputs observed from system i. These outputs 

are assumed to be i.i.d. normal random variables for a fixed i, as they often represent 

either the average outputs of independent replications of simulations or approximately 

independent batch means from a single replication of steady-state simulation.  Let 

𝜇𝑖 = 𝐸[𝑋𝑖𝑗] represent the true mean of the 𝑖th alternative and 𝜎𝑖2 = 𝑉𝑎𝑟[𝑋𝑖𝑗] represent its 

variance. Suppose the ordering of the true means of the K systems is as follows, 

𝜇1 ≤ 𝜇2 ≤ ⋯ ≤ 𝜇𝐾 (3.1) 

This true ranking of the systems is unknown to the user. Without loss of generality, we 

assume that a better system has larger mean output. From (3.1), system K is the best 

system and system 1 is the worst. The goal of the k-best ranking and selection procedure 

is to select a subset 𝐼 ⊆ {1, 2, … ,𝐾} such that 

Pr{𝐼 = 𝒦|𝜇𝐾−𝑘+1 − 𝜇𝐾−𝑘 ≥ 𝛿} ≥ 1 − 𝛼. 

where 𝒦 = {𝐾,𝐾 − 1, … ,𝐾 − 𝑘 + 1}  is the k best systems and 1 − 𝛼 is the user-

specified confidence level, 𝛿 is the indifference zone parameter, which is the smallest 

difference between the mean outputs of two systems that the experimenter feels worth 

detecting. In this chapter, we call the k best systems, that is, systems K-k+1 to K, as 

superior systems and the other systems as inferior systems. 

In this chapter, we focus on the development of a fully sequential procedure to 

solve the k-best ranking and selection problem. A fully sequential procedure consists of 
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multiple stages. At each stage, the procedure takes one or more basic observations from 

each alternative system in play. Based on the observations collected at and prior to the 

current stage, apparently inferior systems will be eliminated and apparently superior ones 

will be pre-selected. The procedure will terminate either when k systems are selected or 

the total number of stages has reached a pre-determined limit. In either case, the k-best 

systems can be selected with the level of confidence specified by the user. Comparing 

with procedures with small number of stages (e.g. two or three stages), a fully sequential 

procedure has more opportunities to eliminate inferior systems or select superior systems 

in early stages. Therefore, the fully sequential procedure is potentially more efficient in 

terms of the average number of basic samples needed per system (ANS). It is 

recommended when the overhead of switching among stopping and restarting alternatives 

to obtain additional data at each stage is low, which is expected to be the case when 

modern computing environment is used.  

3.2 Multi-best R&S Fully Sequential Procedure  

In this section, we describe a fully sequential procedure, called Procedure FS-k, in 

this chapter, to solve the multi-best R&S problem. This procedure is an extension of the 

single-best (k=1) R&S fully sequential procedure from Kim and Nelson (2001) (KN). 

The extension of Procedure KN is mainly based on the following two ideas: (1) In the 

single-best R&S problems, only the elimination of apparently inferior systems will be 

considered. For the multi-best R&S problems, when k>1, we consider not only 

elimination of inferior systems, but also the selection of apparently superior systems, 

which will lead to greater saving of samples. (2) We introduce a directed graph to 

represent the systems and their pairwise comparison results. The apparently superior and 

inferior systems are identified based on the number of predecessors and successors of the 

corresponding node in the graph.  
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At the beginning of our procedure, we have a graph with m=K nodes and no arcs, 

each node representing a system/alternative. We have 𝑔 = 0 preselected systems. And at 

each stage we have m systems in contention and 𝑘 − 𝑔 system to be selected. The basic 

idea to screen apparently inferior systems and preselect superior systems at each stage of 

the procedure is described as follows. At each stage, after collecting an additional 

observation from each remaining system, we first compare all the systems in pairs. If we 

can assure system i is better than system i at certain probability, we will add a directed 

arc from system i to l in the graph. Once an arc is created, it will not change direction at 

later stages. When all the comparisons are finished, we will calculate the number of 

predecessors and the number of successors for each node/system. For system i, its 

predecessors are the nodes that can reach node i by a directed path. For example, if we 

have sti in the graph, this means that systems s and t are both predecessors of system 

i. Similarly, system t and system i are considered as the successors of system s. If system 

i has 𝑘 − 𝑔 predecessors, it means that there are at least 𝑘 − 𝑔 systems in contention that 

are better than system i. And system i should be eliminated from contention and node i, 

as well as all the arcs connected with i, need to be removed from the graph. If system i 

has 𝐾 − (𝑘 − 𝑔) inferior systems, it means that there are at most 𝑘 − 𝑔 − 1 systems that 

are better than system i so that system i can be determined as one of the 𝑘 − 𝑔 best 

systems. Thus, system i can be preselected and removed from the graph. Also all the arcs 

connected with system i need to be removed from the graph.  

The complete procedure is given as follows. 

Procedures FS-k:   

Initialization: Select confidence level 1 − 𝛼, indifference zone 𝛿 and first-stage sample 

size 𝑛0. Let 𝐼0 = {1, … ,𝐾} be the set of alternative designs. Create a directed graph 

𝑉 = (𝐼0, 𝐸), where E represents the set of directed edges between nodes in set 𝐼0. A 

directed edge in E from node i to node j is denoted by 𝑒𝑖𝑗: 𝑖 → 𝑗, 𝑖 ∈ 𝐼0, 𝑗 ∈ 𝐼0. Set 𝐸 = ∅. 

Node 𝑖1 is considered a predecessor (successor) of node 𝑖2 if there is a directed path in V 
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from 𝑖1 (𝑖2) to 𝑖2 (𝑖1). Let 𝐴𝑖 be the set of all the predecessors of node i and 𝐵𝑖 the set of 

all the successors of node i. And let 𝐺 = ∅ be the set of selected systems and 𝑆 = ∅ be 

the set of eliminated systems. Let ℎ2 = 2𝑐𝜂(𝑛0 − 1). 

Obtain 𝑛0 observations 𝑋𝑖𝑗, 𝑗 = 1, 2, … ,𝑛0, from each system i = 1,2,…, K. For 

all 𝑖 ≠ 𝑙, i = 1,2,…, K and l = 1,2,…, K, compute 𝑆𝑖𝑗2 = 1
𝑛0
∑ (𝑋𝑖𝑗 − 𝑋𝑙𝑗 − (𝑋�𝑖(𝑛0) −𝑛0
𝑗=1

𝑋�𝑙(𝑛0)))2, where 𝑋�𝑖(𝑛0) = 1
𝑛0
∑ 𝑋𝑖𝑗
𝑛0
𝑗=1 , i = 1,2,…, K. 

𝑆𝑖𝑗2  is the sample variance of data series  𝑋𝑖𝑗 − 𝑋𝑙𝑗 where 𝑗 = 1, 2, … , 𝑛0 . It’s the 

difference between alternatives i and l. Let 𝑁𝑖𝑙 = �ℎ
2𝑆𝑖𝑙

2

𝛿2
�, where ⌊∙⌋ indicates truncation of 

any fractional part, and let 𝑁𝑖 = max𝑙≠𝑖 𝑁𝑖𝑙. 

Here 𝑁𝑖 + 1 is the maximum number of observations that can be taken from 

system i. If 𝑛0 > max𝑖 𝑁𝑖, then stop and select the k systems with the largest 𝑋�𝑖(𝑛0) as 

the best k systems.  

Otherwise, set 𝐼 = 𝐼0, where I represents the set of systems still in contention, and 

the observation counter 𝑟 = 𝑛0.  Go to Screening. 

Screening: Let 𝑊𝑖𝑙(𝑟) = max {0, 𝛿
2𝑐𝑟

(ℎ
2𝑆𝑖𝑙

2

𝛿2
− 𝑟)} , ∀𝑖, 𝑙 ∈ 𝐼, 𝑖 ≠ 𝑙. Let 𝑚 = |𝐼| and 

𝑔 = |𝐺|. 

For ∀𝑖, 𝑙 ∈ 𝐼, 𝑖 ≠ 𝑙, if 𝑋�𝑖(𝑟) − 𝑋�𝑙(𝑟) ≥ 𝑊𝑖𝑙(𝑟) and 𝑒𝑖𝑙 ∉ 𝐸, 𝑒𝑙𝑖 ∉ 𝐸, then 𝐸 = 𝐸 ∪

𝑒𝑖𝑙, 𝐴𝑙 = 𝐴𝑙 ∪ {𝑖} and 𝐵𝑖 = 𝐵𝑖 ∪ {𝑙}. Then for ∀𝑖, 𝑙 ∈ 𝐼, 𝑖 ≠ 𝑙, define S𝑖𝑗𝐴 = {𝑙: 𝑙 ∈ 𝐴𝑖} ∪

{𝑖}, S𝑖𝑗𝐵 = �𝑙: 𝑙 ∈ 𝐵𝑗� ∪ {𝑗}. For ∀𝑙 ∈ S𝑖𝑗𝐴 , 𝑡 ∈ S𝑖𝑗𝐵  , let 𝐴𝑡 = 𝐴𝑡 ∪ S𝑖𝑗𝐴\{𝑡} and 𝐵𝑙 = 𝐵𝑙 ∪

S𝑖𝑗𝐵\{𝑙}. 

For ∀𝑖 ∈ 𝐼, if |𝐵𝑖| ≥ 𝑚 − (𝑘 − 𝑔), then 𝐺 = 𝐺 ∪ {𝑖}. If |𝐴𝑖| ≥ 𝑘 − 𝑔, then 

𝑆 = 𝑆 ∪ {𝑖}. If either of these two conditions is true, then 𝐼 = 𝐼\{𝑖},𝐴𝑙 = 𝐴𝑙\{𝑖} and 

𝐵𝑙 = 𝐵𝑙\{𝑖} ∀𝑙 ∈ 𝐼. 

Stopping Rule: If |𝐺| ≥ 𝑘, stop the procedure and select k systems in G that have the 

largest overall sample means 𝑋�𝑖(𝑟) = ∑ 𝑋𝑖,𝑗𝑟
𝑗=1  as the best k systems;  
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If |𝐺| + |𝐼| ≤ 𝑘, stop the procedure and select all the systems in G and I, together 

with 𝑘 − (|𝐺| + |𝐼|) system(s) in S that have the largest overall sample means as the best 

k systems; 

Otherwise, take one additional observation 𝑋𝑖,𝑟+1 from each alternative 𝑖 ∈ 𝐼. Set 

r = r + 1 and go to Screening. 

Constants: The constant c may be nonnegative integer. As the analysis made in Kim and 

Nelson (2001), c = 1 is a good compromise solution. The constant η is the solution to the 

equation 

𝑔(𝜂) ≡ ∑ (−1)𝑙+1 �1 − 1
2
𝐼(𝑙 = 𝑐)� �1 + 2𝜂(2𝑐−𝑙)𝑙

𝑐
�
−𝑛0−12𝑐

𝑙=1 = 𝛼
𝑘(𝐾−𝑘)

, 

where 𝐼(∙) is the indicator function. When c = 1, we have the closed-form solution 

𝜂 =
1
2

[�
2𝛼

𝑘(𝐾 − 𝑘)�
−2
𝑛0−1

− 1] 

. 

(3.2) 

The following result shows that the proposed procedure has a probability of 

correction selection of at least 1 − 𝛼. 

Theorem 3.1 Suppose that 𝜇𝐾−𝑘+1 − 𝜇𝐾−𝑘 ≥ 𝛿 and the covariance matrix of the 

observations from the K systems is an unknown 𝐾 × 𝐾 positive definite matrix Σ. Then 

procedure FS-k selects the best k systems with probability of at least 1 − 𝛼. 

Proof: 

First we will show that the procedure always stops. When 𝐼 = ∅, obviously at 

least one of stopping criteria is satisfied and the procedure is stopped. If the procedure 

has not stopped when 𝑟 = 𝑁𝑖 + 1, for any 𝑖1, 𝑖2 ∈ 𝐼 and 𝑖1 ≠ 𝑖2, we have 𝑊𝑖1𝑖2(𝑟) = 0 

and either 𝑒𝑖1𝑖2 ∈ 𝐸 or 𝑒𝑖2𝑖1 ∈ 𝐸. Then for any node 𝑖 ∈ 𝐼, 𝐼{𝑖} ⊆ 𝐴𝑖 ∪ 𝐵𝑖 and |𝐴𝑖| +

|𝐵𝑖| ≥ |𝐴𝑖 ∪ 𝐵𝑖| ≥ 𝑚 − 1. Therefore, either |𝐴𝑖| ≥ 𝑘 − 𝑔 or |𝐵𝑖| ≥ 𝑚 − (𝑘 − 𝑔). So for 

each system/node 𝑖 ∈ 𝐼, it must be in G or S (or both) after the screening step when 

𝑟 = 𝑁𝑖 + 1. Then we have 𝐼 = ∅ at the end of this iteration and the procedure will stop.  
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If 𝑛0 > max𝑖 𝑁𝑖, let ICS denote the event that the k best systems are not selected 

correctly by the procedure. 

Pr{𝐼𝐶𝑆} = Pr � � � 𝑋�𝑙(𝑛0) ≥ 𝑋�𝑖(𝑛0)
𝐾−𝑘+1≤𝑖≤𝐾1≤𝑙≤𝐾−𝑘

� 

≤ � � Pr{𝑋�𝑙(𝑛0) ≥ 𝑋�𝑖(𝑛0)}
𝐾−𝑘+1≤𝑖≤𝐾1≤𝑙≤𝐾−𝑘

 

≤ � � �(−1)𝑙+1 �1 −
1
2
𝐼(𝑙 = 𝑐)��1 +

2𝜂(2𝑐 − 𝑙)𝑙
𝑐

�
−𝑛0−12

𝑐

𝑙=1𝐾−𝑘+1≤𝑖≤𝐾1≤𝑙≤𝐾−𝑘

 

= 𝛼 

The last inequality is based on the proof of Theorem 1 by Kim and Nelson (2001). 

If 𝑛0 ≤ max𝑖 𝑁𝑖, define event 𝒜 = {for all 𝑖 ∈ {𝐾,𝐾 − 1, … ,𝐾 − 𝑘 + 1} and 

𝑙 ∈ {1, … ,𝐾 − 𝑘}, 𝑒𝑙𝑖 ∉ 𝐸 when the procedure stops}. Now we will show that if 𝒜 is 

true, at any iteration,  

𝐺 ⊆ {𝐾,𝐾 − 1, … ,𝐾 − 𝑘 + 1} and 𝑆 ⊆ {1, 2, … ,𝐾 − 𝑘}. (3.3) 
 

Before the first screening step of the procedure, condition (3.3) is obviously 

satisfied since 𝐺 = 𝑆 = ∅. Now assume that when 𝑟 = 𝑡 − 1, (3.3) is satisfied. Then 

when r=t and 𝒜 is true, it can be seen that |𝐴𝑖| < 𝑘 − 𝑔 for all 𝑖 ∈ 𝐼 ∩ {𝐾,𝐾 − 1, … ,𝐾 −

𝑘 + 1} and |𝐵𝑖| < 𝑚 − (𝑘 − 𝑔), for all 𝑙 ∈ 𝐼 ∩ {1, … ,𝐾 − 𝑘}. So (3.3) will be still 

satisfied when r=t. By induction, if 𝒜 is true, (3.3) is satisfied when the procedure stops. 

Next we will show that when the procedure stops, the best k systems, systems 𝐾,𝐾 −

1, … ,𝐾 − 𝑘 + 1, will be selected if 𝒜 is true. This is because if |𝐺| ≥ 𝑘 when the 

procedure stops, from (3.3), 𝐺 = {𝐾,𝐾 − 1, … ,𝐾 − 𝑘 + 1} and the best k systems will be 

selected. If |𝐺| + |𝐼| ≤ 𝑘 when the procedure stops, |𝑆| ≥ 𝐾 − |𝐺| − |𝐼| ≥ 𝐾 − 𝑘. From 

(3.3), 𝑆 = {1, 2, … ,𝐾 − 𝑘} and 𝐺 ∪ 𝐼 = {𝐾,𝐾 − 1, … ,𝐾 − 𝑘 + 1}. Then the best k 

systems will be selected.  Therefore, CS⊇ 𝒜, where CS represents the event that the k 

best systems are selected correctly. Then we have  
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Pr{𝐶𝑆} ≥ Pr{𝒜} 

= 1 − Pr� � � 𝑒𝑗𝑖 ∈ 𝐸
𝐾−𝑘+1≤𝑖≤𝐾1≤𝑗≤𝐾−𝑘

� 

≥ 1 − � � Pr�𝑒𝑗𝑖 ∈ 𝐸�
𝐾−𝑘+1≤𝑖≤𝐾1≤𝑗≤𝐾−𝑘

 

≥ 1 − 𝑘(𝐾 − 𝑘)�(−1)𝑙+1 �1 −
1
2
𝐼(𝑙 = 𝑐)��1 +

2𝜂(2𝑐 − 𝑙)𝑙
𝑐

�
−𝑛0−12

𝑐

𝑙=1

 

= 1 − 𝛼.  

The last inequality is based on the proof of Theorem 1 in Kim and Nelson (2001).∎  

When the observations from the K alternatives are uncorrelated, procedure FS-k 

can be improved by using a different equation to solve the constant η, as given in the 

following theorem.  

Theorem 3.2. Under the same assumptions as Theorem 3.1, except that Σ is a 

diagonal matrix, the procedure FS-k selects k systems with probability of at least 1 − 𝛼 

when 𝜂 solves 𝑔(𝜂) = 1 − (1 − 𝛼)
1

𝑘(𝐾−𝑘) . 

And when c=1, 

𝜂 =
1
2

[�2 − 2(1 − 𝛼)
1

𝑘(𝐾−𝑘)�

−2
𝑛0−1

− 1] (3.4) 

Proof:  

Let 𝐶𝑆𝑖𝑙 denote the event {𝑒𝑙𝑖 ∉ 𝐸 when the procedure stops}, 𝑖 ∈ {𝐾,𝐾 −

1, … ,𝐾 − 𝑘 + 1}, 𝑙 ∈ {1, … ,𝐾 − 𝑘}, and 𝒜 as defined in the proof of Theorem 3.1. Then 

we have 

 Pr{𝐶𝑆} ≥ Pr{𝒜}  

= Pr�� � 𝐶𝑆𝑖𝑙

𝐾

𝑖=𝐾−𝑘+1

𝐾−𝑘

𝑙=1

� 
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= 𝐸 �Pr� � �𝐶𝑆𝑖𝑙

𝐾−𝑘

𝑙=1

𝐾

𝑖=𝐾−𝑘+1

�−𝑋𝑙1, … ,−𝑋𝑙,𝑁𝑙+1,𝑋𝑖1, … ,𝑋𝑖,𝑁𝑖+1,𝑆𝑖𝑙2�� 

= 𝐸 � � � Pr�𝐶𝑆𝑖𝑙�−𝑋𝑙1, … ,− 𝑋𝑙,𝑁𝑙+1,𝑋𝑖1, … ,𝑋𝑖,𝑁𝑖+1, 𝑆𝑖𝑙2�
𝐾−𝑘

𝑙=1

𝐾

𝑖=𝐾−𝑘+1

� 

The last equality follows because the events are conditionally independent. Notice that 

Pr�𝐶𝑆𝑖𝑙�𝑋𝑙1, … ,𝑋𝑙,𝑁𝑙+1,𝑋𝑖1, … ,𝑋𝑖,𝑁𝑖+1, 𝑆𝑖𝑙2� is nondecreasing in −𝑋𝑙𝑗 and 𝑋𝑖𝑗. Therefore, 

by Lemma 2 in Kim and Nelson (2001), 

𝐸 � � �Pr�𝐶𝑆𝑖𝑙�𝑋𝑙1, … ,𝑋𝑙,𝑁𝑙+1,𝑋𝑖1, … ,𝑋𝑖,𝑁𝑖+1, 𝑆𝑖𝑙2�
𝐾−𝑘

𝑙=1

𝐾

𝑖=𝐾−𝑘+1

�  

= 𝐸𝑆𝑖𝑙2 �𝐸𝑋𝑙1,…,𝑋𝑙,𝑁𝑙+1,𝑋𝑖1,…,𝑋𝑖,𝑁𝑖+1
� � �Pr�𝐶𝑆𝑖𝑙�𝑋𝑙1, … ,𝑋𝑙,𝑁𝑙+1,𝑋𝑖1, … ,𝑋𝑖,𝑁𝑖+1, 𝑆𝑖𝑙2�

𝐾−𝑘

𝑙=1

𝐾

𝑖=𝐾−𝑘+1

��  

≥ 𝐸𝑆𝑖𝑙2 � � �𝐸𝑋𝑙1,…,𝑋𝑙,𝑁𝑙+1,𝑋𝑖1,…,𝑋𝑖,𝑁𝑖+1
[Pr�𝐶𝑆𝑖𝑙�𝑋𝑙1, … ,𝑋𝑙,𝑁𝑙+1,𝑋𝑖1, … ,𝑋𝑖,𝑁𝑖+1,𝑆𝑖𝑙2�

𝐾−𝑘

𝑙=1

𝐾

𝑖=𝐾−𝑘+1

]� 

= 𝐸𝑆𝑖𝑙2 � � ��1 − Pr(𝐼𝐶𝑆𝑖𝑙�𝑆𝑖𝑙2)�
𝐾−𝑘

𝑙=1

𝐾

𝑖=𝐾−𝑘+1

� 

≥ �1 − 𝑔(𝜂)�
𝑘(𝐾−𝑘)

 

= �1 − �1 − (1 − 𝛼)
1

𝑘(𝐾−𝑘)��
𝑘(𝐾−𝑘)

= 1 − 𝛼, 

where the last inequality follows from the proof of Theorem 3.1 in Kim and Nelson 

(2001).∎ 

3.3 Experimental Results 

In this section, we conduct experiments to test the procedure FS-k. The alternative 

systems are represented by different configurations of K random variables generated from 

normal distribution. In all cases, system K-k+1 to system K have the largest true means 
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and are considered as superior systems. We evaluate the procedure on different variance 

configurations of the systems, and also examine the effect of parameters including the 

number of alternative systems, K, the number of best systems required to be selected, k, 

the true means, 𝜇1, … , 𝜇𝐾, and the true variances, 𝜎12, … ,𝜎𝐾2. We describe the 

configurations of the simulated datasets in Section 3.3.1, experimental results for 

evaluating the benefit of the pre-selection of superior systems in Section 3.1.2 and 

experimental results for comparisons between FS-k and three other methods. 

3.3.1 Configurations and Experiment Design 

As our procedure is developed as an extension of the method by Kim and Nelson 

(2001), we test our procedure on similar datasets from Kim and Nelson (2001) and select 

the same parameters for the following experiments. The first-stage sample size is selected 

to be 𝑛0𝑟𝑎𝑤 = 24. The number of systems in each experiment is set as 30 and 10, and the 

number of best systems k is set as all the odd numbers in [1, K]. The indifference zone 

parameter is set as 𝛿 = 1
�𝑛0

𝑟𝑎𝑤. 

Two system configurations are applied. The first one is the slippage configuration 

(SC), in which 𝜇𝐾 = 𝜇𝐾−1 = ⋯ = 𝜇𝐾−𝑘+1 = 𝛿 and 𝜇𝐾−𝑘 = ⋯ = 𝜇1 = 0. The slippage 

configuration is also known as the least-favored configuration for ranking and selection, 

since the differences of the true means between each superior and inferior systems are 

exactly equal to the indifference zone value. To investigate the effectiveness of the 

procedure in selecting superior systems and eliminating inferior systems, the monotone 

decreasing means (MDM) configuration is also used. The differences between any two 

consecutive means are the same in MDM configuration. Thus, the true means of each 

system are set as 𝜇𝑖 = 𝛿 ∗ (𝑖 − 𝐾 + 1)for 𝑖 = 1, 2, … ,𝐾. 

For each configuration, the effect of increasing variances, decreasing variances 

and equal variances are examined. In the increasing-variance case, the variances of the 

superior systems are lower than the variances of inferior systems and they are set as 
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𝜎𝑖2 = |𝛿(𝑖 − 𝐾)| + 1 for 𝑖 = 1, 2, … ,𝐾; in the decreasing-variance case, the variances of 

the superior systems are higher than the variances of the inferior systems and they are set 

as 𝜎𝑖2 = 1
|𝛿(𝑖−𝐾)|+1

for 𝑖 = 1, 2, … ,𝐾; in the equal-variance case, 𝜎𝑖2 = 1. 

Thus, we have six configurations in total: SC with increasing variances (SCin), 

SC with decreasing variances (SCde), SC with equal variances (SCeq), MDM with 

increasing variances (MDMin), MDM with decreasing variances (MDMde) and MDM 

with equal variances (MDMeq). When K and k values are fixed, for each configuration, 

500 replications of experiments are performed. To evaluate the performance of our 

procedure, we use the average number of observations per system (ANS) as a measure of 

the computational cost of each procedure and PCS refers to the probability of correct 

selection, used to estimate the accuracy of the procedure. The nominal probability of 

correct selection is set as 0.95. 

 

3.3.2 Experimental Results for Evaluating Benefits of Pre-

selection of Superior Systems 

Table 3.1 shows the experimental results when the number of alternative systems 

K = 10 with k=1, 3, 5, 7 and 9 best systems. Table 3.2 shows the experimental results 

when the number of alternative systems K = 30 with k=1, 3, 5, 7…, 27, 29. To test the 

benefit of the pre-selection of superior systems, we show and compare the results from 

both the procedure with pre-selection of superior systems performed and the procedure 

without the pre-selection using the same data sets in each configuration and k value. The 

ANS, total number of stages, as well as the estimated probability of correct selection 

(PCS), are shown in Table 3.1 and Table 3.2. 

3.3.2.1 Effect of Pre-selection of Superior Systems 

Our procedure can pre-select obviously superior systems in order to save the 

observations generated from these superior systems. We conduct experiments to compare 
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the ANS and the number of stages between the procedures with and without the pre-

selection of the superior systems.  

Table 3.1 shows the experiment results when the number of alternatives, K=10. 

And Table 3.2 shows the results when K=30. From Table 3.1 and Table 3.2, we can find 

the procedure with or without selection makes no difference when we select the single 

best system. This is not out of expectation because if the (single) superior system is 

selected, it means at the same time all the other systems can be eliminated. Therefore, 

pre-selection of superior systems does not save any additional sampling from the 

procedure with only elimination of inferior systems (without the pre-selection of superior 

systems). 

When k > 1, the procedure with the pre-selection of superior systems can save 

more observations than the procedure without pre-selection. The number of stages is only 

affected by the system that needs the most samples. So when k>1, the pre-selection of 

superior systems may reduce the number of samples needed from many systems, but may 

have slight effect on the system that requires the most samples. As k increases, we can 

find that the ANS increases first and then decreases. The location of the peak depends on 

the type of the data. In equal-variance cases, for both SC and MDM configurations, the 

ANS value is symmetric when the procedure includes pre-selection of superior systems. 

This is because we can consider the pre-selection of superior systems and elimination of 

inferior systems as symmetric procedures for selecting systems with larger means as the 

best or selecting systems with smaller means as the best. 
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Table 3.1. ANS and number of stages for procedures with and without selection during 
process when the number of alternatives is K=10. 

C
 

 Without selection With selection 
  A

 
S
 

P
 

A
 

S
 

P
 S

 
 1
 

1
 

0.
 

11
 

1
 

0.
   1

 
2

 
0.

 
17

 
2

 
0.

   2
 

2
 

0.
 

17
 

2
 

0.
   2

 
1

 
0.

 
14

 
1

 
0.

   1
 

1
 

0.
 

89
 

1
 

0.
               

S
 

 1
 

2
 

0.
 

17
 

2
 

0.
   2

 
3

 
0.

 
27

 
3

 
0.

   3
 

3
 

0.
 

29
 

3
 

0.
   3

 
3

 
0.

 
27

 
3

 
0.

   2
 

2
 

0.
 

17
 

2
 

0.
               

S
 

 2
 

4
 

0.
 

28
 

4
 

0.
   5

 
6

 
0.

 
47

 
6

 
0.

   6
 

7
 

0.
 

56
 

7
 

0.
   7

 
7

 
0.

 
55

 
8

 
0.

   6
 

5
 

0.
 

36
 

6
 

0.
               

M
 

 6
 

1
 

0.
 

63 1
 

0.
   8

 
1

 
0.

 
74

 
1

 
0.

   9
 

1
 

1.
 

66
 

1
 

1.
   9

 
7

 
0.

 
53

 
7

 
0.

   6
 

4
 

0.
 

35
 

4
 

0.
               

M
 

 7
 

1
 

0.
 

74 1
 

0.
   1

 
2

 
1.

 
11

 
2

 
1.

   1
 

2
 

1.
 

12
 

2
 

1.
   2

 
2

 
1.

 
11

 
2

 
1.

   1
 

1
 

0.
 

74
 

1
 

0.
               

M
 

 9
 

1
 

0.
 

99
 

1
 

0.
   2

 
3

 
1.

 
17

 
3

 
1.

   3
 

4
 

0.
 

23
 

4
 

0.
   4

 
5

 
0.

 
25

 
5

 
0.

   4
 

4
 

0.
 

18
 

4
 

0.
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Table 3.2. ANS and number of stages for procedures with and without selection during 
process when the number of alternatives is K=30 

Config. k Without selection With selection 
  A

 
S
 

P
 

AN
 

S
 

P
 SCde 1 87

 
2

 
0

 
87.

 
2

 
0

  3 14
 

3
 

0
 

133
 

3
 

0
  5 16

 
3

 
0

 
149

 
3

 
0

  7 17
 

2
 

0
 

155
 

2
 

0
  9 19

 
2

 
0

 
157

 
2

 
0

  11 20
 

2
 

0
 

158
 

2
 

0
  13 21

 
2

 
0

 
155

 
2

 
0

  15 21
 

2
 

0
 

151
 

2
 

0
  17 21

 
2

 
0

 
144

 
2

 
0

  19 22
 

2
 

0
 

138
 

2
 

0
  21 22

 
2

 
0

 
131

 
2

 
0

  23 22
 

2
 

0
 

122
 

2
 

0
  25 22

 
2

 
0

 
110

 
2

 
0

  27 20
 

1
 

0
 

92.
 

1
 

0
  29 16

 
1

 
0

 
60.

 
1

 
0

         
SCeq 1 20

 
3

 
0

 
204

 
3

 
0

  3 34
 

5
 

0
 

333
 

5
 

0
  5 42

 
6

 
0

 
395

 
6

 
0

  7 47
 

6
 

0
 

432
 

6
 

0
  9 52

 
7

 
0

 
461

 
7

 
0

  11 56
 

7
 

0
 

478
 

7
 

0
  13 59

 
7

 
0

 
490

 
7

 
0

  15 62
 

7
 

0
 

495
 

7
 

0
  17 64

 
7

 
0

 
491

 
7

 
0

  19 65
 

7
 

0
 

480
 

7
 

0
  21 65

 
6

 
0

 
461

 
7

 
0

  23 65
 

6
 

0
 

435
 

6
 

0
  25 62

 
6

 
0

 
396

 
6

 
0

  27 56
 

5
 

0
 

334
 

5
 

0
  29 40

 
3

 
0

 
209

 
3

 
0

         
SCin 1 62

 
1

 
0

 
623

 
1

 
0

  3 98
 

1
 

0
 

943
 

1
 

0
  5 12

 
2

 
0

 
117

 
2

 
0
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 7 15
 

2
 

0
 

132
 

2
 

0
  9 18

 
2

 
0

 
150

 
2

 
0

  11 20
 

2
 

0
 

162
 

2
 

0
  13 22

 
2

 
0

 
172

 
2

 
0

  15 24
 

3
 

0
 

181
 

3
 

0
  17 27

 
3

 
0

 
187

 
3

 
0

  19 28
 

3
 

0
 

191
 

3
 

0
  21 30

 
3

 
0

 
189

 
3

 
0

  23 31
 

3
 

0
 

185
 

3
 

0
  25 31

 
3

 
0

 
172

 
3

 
0

  27 29
 

3
 

0
 

148
 

3
 

0
  29 22

 
2

 
0

 
934

 
2

 
0

         
MDMde 1 43

 
2

 
1 43.

 
2

 
1 

 3 55
 

1
 

1 49.
 

1
 

1 
 5 60

 
1

 
1 47.

 
1

 
1 

 7 62
 

1
 

1 44.
 

1
 

1 
 9 63

 
1

 
1 41.

 
1

 
1 

 11 62
 

9
 

1 37.
 

9
 

1 
 13 62

 
8

 
1 34.

 
8

 
1 

 15 61
 

6
 

1 32.
 

6
 

1 
 17 61

 
6

 
0

 
31.

 
6

 
0

  19 59
 

5
 

1 29.
 

5
 

1 
 21 57

 
4

 
1 28.

 
4

 
1 

 23 56
 

4
 

1 27.
 

4
 

1 
 25 52

 
3

 
1 26.

 
3

 
1 

 27 46
 

2
 

1 26.
 

2
 

1 
 29 37

 
1

 
0

 
24.

 
1

 
0

         
MDMeq 1 49

 
2

 
1 49.

 
2

 
1 

 3 80
 

2
 

1 69.
 

2
 

1 
 5 10

 
3

 
1 80.

 
3

 
1 

 7 13
 

3
 

1 87.
 

3
 

1 
 9 15

 
3

 
1 92.

 
3

 
1 

 11 18
 

3
 

0
 

95.
 

3
 

0
  13 20

 
3

 
1 97.

 
3

 
1 

 15 23
 

3
 

0
 

97.
 

3
 

0
  17 25

 
3

 
1 96.

 
3

 
1 

 19 27
 

3
 

1 95.
 

3
 

1 
 21 28

 
3

 
1 92.

 
3

 
1 
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 23 30
 

3
 

1 88.
 

3
 

1 
 25 30

 
3

 
1 80.

 
3

 
1 

 27 29
 

2
 

0
 

70.
 

2
 

0
  29 24

 
2

 
0

 
49.

 
2

 
0

         
MDMin 1 76

 
2

 
0

 
76.

 
2

 
0

  3 14
 

4
 

1 133
 

4
 

1 
 5 23

 
6

 
0

 
181

 
6

 
0

  7 33
 

7
 

1 223
 

7
 

1 
 9 45

 
9

 
1 269

 
9

 
1 

 11 59
 

1
 

1 309
 

1
 

1 
 13 76

 
1

 
0

 
351

 
1

 
0

  15 92
 

1
 

1 384
 

1
 

1 
 17 11

 
1

 
1 421

 
1

 
1 

 19 12
 

1
 

0
 

436
 

1
 

0
  21 14

 
1

 
1 454

 
1

 
1 

 23 16
 

1
 

1 454
 

1
 

1 
 25 18

 
1

 
1 445

 
1

 
1 

 27 18
 

1
 

1 395
 

1
 

1 
 29 16

 
1

 
0

 
264

 
1

 
0

 

 

3.3.2.2 Effect of Mean/Variance Configurations 

In Figure 3.1, we show the plots of the ANS versus the k value and the number of 

stages versus the k value for all six system configurations when K=30.  We can find that 

for the MDM configuration, the difference of the number of stages between the procedure 

with or without pre-selection of superior systems is too small to be distinguished in the 

plot. For SC data, when k is small, the difference is also not significant. The three 

different kinds of variance settings have different influences for the number of stages. 

When the variance is set larger for a system with a larger true mean, the number of stages 

peaks when k is around 5. When the systems have equal variances, the number of stages 

peaks in the middle where k is around 15. When the variance is set larger for a system 

with a smaller true mean, the number of stages peaks when k is around 25. For the 
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method with pre-selection of superior systems, ANS has the same trend as the number of 

stages. For the method without selection, the ANS and number of stages do not follow 

the same trend. When pre-selection of superior systems is not used, the ANS may still 

increase even after the number of stages has decreased. For all configurations except 

MDMde, the ANS peaks around 25; while MDMde peaks around 5. This is because 

without selection during processing, we need to generate observations for the superior 

systems until the end of the procedure. The number of superior systems is more dominant 

than the number of stages required to remove all the inferior systems for the five 

configurations SCin, SCeq, SCde, MDMeq and MDMin; while for MDMde data, it is 

easier to remove the inferior systems and thus the number of stages required to remove 

all the inferior systems is more dominant than the number of superior systems. 

3.3.2.3 Effect of Wrong Arc 

Among all the experiments, we also record the estimated probability that a wrong 

arc, which is the event defined as {𝑒𝑖𝑗 = 1,∃1 ≤ 𝐾 − 𝑘,𝐾 − 𝑘 + 1 ≤ 𝑗 ≤ 𝐾}, is added to 

the graph before the procedure stops. The experiment results show that the probability of 

correct selection is always greater than or equal to one minus the probability of wrong 

arc. This is expected based on the proof of Theorem 3.1. However, a wrong arc will not 

always lead to incorrect selections. We illustrate this by using a simple example as shown 

in Figure 3.2. In the system in Figure 3.3, we want to select 2 systems from 4 alternatives 

represented by the squares. Systems 4 and 3 are superior systems and system 1 and 2 are 

inferior ones. Suppose in one stage (stage i) of the procedure, a wrong arc 13 is added 

and at a later stage (stage j>i), three other arcs 34, 42 and 21 are added. In this 

case, according to our procedure, all the four systems would be selected to set G defined 

in Procedure FS-k. Then the two systems with larger sample means would be selected as 

the best systems. Thus, as long as in stage j, system 4 and 3 have larger sample means, 

we can still obtain a correct selection. 
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Figure 3.1. Plots of ANS and stages for SC data 
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Figure 3.2. Plots of ANS and stages for MDM data 
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Figure 3.3. Example for wrong arc but correct selection 

3.3.3 Experimental Results for Comparisons with Existing 

Methods 

3.3.3.1 Existing Methods and Common Random Number  

To solve the single best ranking and selection problem, Dudewicz and Dalal 

(1975) proposes a two-stage method, Rinott (1978) proposes another two-stage method 

and Nelson, Swann et al. (2001) proposes the combined procedure. Kiekhaefer (2011) 

makes extension of these three methods for selecting multi-best systems from 

alternatives. These extended methods are referred to as 𝑃𝐸, 𝑃𝑅′ and 𝑃𝑆𝑃′′ in Kiekhaefer 

(2011) and also applied in this thesis. We conduct experiments to compare the 

performance between our FS-k method and these three methods.  

Also, experiments are performed to test the effect of dependence across systems’ 

outputs due to the use of common random numbers (CRN). The effect of CRN is to 

reduce the value of 𝜎𝑖𝑙2. The reduction of 𝜎𝑖𝑙2 will tend to reduce 𝑆𝑖𝑙2 which would reduce 

the value of 𝑁𝑖𝑙 and could eliminate alternatives earlier in the sampling process. On the 

other hand, the use of CRN would increase the value of η and this tends to reduce the 

efficiency of the procedure (due to the different ways of calculation of η in (3.2) and 
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(3.4)). In this section, we show that the decrease in 𝑆𝑖𝑙2 due to the use of CRN can make 

the procedure more efficient despite of the increase in η. 

3.3.3.2 Experimental Results 

Experiments are conducted for configurations MDMde, MDMeq, MDMin, SCde, 

SCeq and SCin. K value is set as 10 and 30. And in each case, k = 1, 2, 3, 4, 5 best 

systems are selected. When CRN is employed, ρ represents the correlation between each 

pair of systems. And we consider ρ= 0.25, 0.5, 0.75. 

Table 3.3 shows the comparison results for FS-k method and 𝑃𝐸, 𝑃𝑅′ and 𝑃𝑆𝑃′′ 

among 10 alternative systems (K=10). Table 3.4 shows the comparison results among 30 

systems (K=30). Correlation ρ=0 indicates the systems are independent with each other. 

From the two tables, we can find that the FS-k method can save much more observations 

than the three other methods. The trend is clear that FS-k methods have universally 

smaller ANS than the others among all the configuratoins. And the PCS are all over the 

pre-specified value 0.95. It is shown in Table 3.5 that how much more efficient FS-k is 

than the other three methods.  

Table 3.3. Comparison experiments between FS-k method and other methods among 
K=10 alternatives 

MDMde K=10 

 k=1 k=2 k=3 k=4 k=5 

 ANS PCS ANS PCS ANS PCS ANS PCS ANS PCS 

FS-k 
ρ=0 

330.4 0.994 353.2 0.994 331.1 1 305.4 0.998 287.3 1 

FS-k 
ρ=0.25 

302.7 0.994 299.9 0.998 287.2 0.998 271.1 1 260.1 0.996 

FS-k 
ρ=0.5 

263.6 0.99 262.3 0.996 253.3 0.996 246.9 0.994 244 1 
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FS-k 
ρ=0.75 

242.4 0.998 241.2 0.996 240.3 1 240.1 1 240 1 

𝑃𝑅′ 724.2 1 856.3 1 909.9 1 932.7 1 941.2 1 

𝑃𝑆𝑃′′  497.8 1 526.2 1 437.2 1 368.4 1 330.3 1 

𝑃𝐸 655.5 1 784.4 1 837 1 858.9 1 867.1 1 

MDMeq K=10 

 k=1 k=2 k=3 k=4 k=5 

 ANS PCS ANS PCS ANS PCS ANS PCS ANS PCS 

FS-k 
ρ=0 37.20 0.998 44.21 0.998 49.38 0.998 51.41 0.998 52.08 0.996 

FS-k 
ρ=0.25 32.21 1 36.83 0.996 38.81 0.994 40.08 1 40.78 1 

FS-k 
ρ=0.5 27.41 1 29.46 0.998 30.15 0.996 31.11 1 30.64 1 

FS-k 
ρ=0.75 24.36 0.998 24.62 0.998 24.82 0.998 24.85 1 24.85 1 

𝑃𝑅′ 146.5 0.996 170.8 0.996 185.7 0.998 191 1 193 0.996 

𝑃𝑆𝑃′′  57.22 0.998 77.76 0.998 90.66 1 93.16 1 95.40 0.996 

𝑃𝐸 132.3 0.994 156.4 0.998 170.7 0.996 175.8 1 177.7 0.998 

MDMin K=10 

 k=1 k=2 k=3 k=4 k=5 

 ANS PCS ANS PCS ANS PCS ANS PCS ANS PCS 

FS-k 
ρ=0 48.41 0.996 71.30 1 90.88 0.996 109.1 0.996 124 0.998 

FS-k 
ρ=0.25 38.60 0.994 54.85 0.996 70.15 0.998 82.59 0.996 92.41 0.998 

FS-k 
ρ=0.5 29.84 1 39.39 0.998 48.32 1 57.31 1 63.44 1 

FS-k 
ρ=0.75 24.78 0.998 26.82 1 29.64 1 32.54 0.998 35.39 0.998 

𝑃𝑅′ 355 0.996 415.3 1 445.7 1 462.8 1 469.3 0.996 

𝑃𝑆𝑃′′  90.53 0.998 166.1 1 252.8 1 344.7 1 411.5 1 

𝑃𝐸 320.8 0.996 380.1 0.996 409.6 0.996 426.1 0.998 432.1 0.996 

SCde K=10 

 k=1 k=2 k=3 k=4 k=5 

 ANS PCS ANS PCS ANS PCS ANS PCS ANS PCS 

FS-k 
ρ=0 44.98 0.966 57.26 0.966 61.09 0.98 61.84 0.968 59.94 0.984 
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FS-k 
ρ=0.25 36.66 0.986 44.14 0.98 46.91 0.97 47.54 0.97 46.45 0.98 

FS-k 
ρ=0.5 29.31 0.984 32.57 0.98 34.19 0.978 34.15 0.978 33.68 0.978 

FS-k 
ρ=0.75 24.68 0.98 25.19 0.996 25.36 0.996 25.60 0.982 25.45 0.984 

𝑃𝑅′ 72.60 0.952 84.95 0.962 91.01 0.964 94.03 0.978 94.68 0.96 

𝑃𝑆𝑃′′  66.14 0.962 88.94 0.976 98.40 0.988 101.1 0.982 100.3 0.976 

𝑃𝐸 65.72 0.946 77.83 0.94 83.71 0.96 86.61 0.952 87.23 0.952 

SCeq K=10 

 k=1 k=2 k=3 k=4 k=5 

 ANS PCS ANS PCS ANS PCS ANS PCS ANS PCS 

FS-k 
ρ=0 72.79 0.96 100.3 0.966 116.3 0.964 124.4 0.956 124.9 0.956 

FS-k 
ρ=0.25 55.92 0.968 76.62 0.96 87.78 0.956 93.61 0.978 96.31 0.948 

FS-k 
ρ=0.5 39.45 0.98 51.90 0.962 58.67 0.964 62.76 0.972 63.17 0.96 

FS-k 
ρ=0.75 25.88 0.986 29.09 0.954 31.93 0.98 32.91 0.982 33.25 0.966 

𝑃𝑅′ 145.7 0.958 170.8 0.952 185.6 0.97 191 0.95 192.4 0.958 

𝑃𝑆𝑃′′  142.3 0.966 190.2 0.966 214 0.98 221.2 0.98 223.6 0.978 

𝑃𝐸 131.6 0.932 156.3 0.94 170.6 0.962 175.8 0.94 177.2 0.936 

SCin K=10 

 k=1 k=2 k=3 k=4 k=5 

 ANS PCS ANS PCS ANS PCS ANS PCS ANS PCS 

FS-k 
ρ=0 287.1 0.948 408.3 0.938 473.6 0.966 538.1 0.962 562.9 0.956 

FS-k 
ρ=0.25 213.3 0.968 308.2 0.95 361.7 0.966 405.6 0.96 424.8 0.948 

FS-k 
ρ=0.5 153.9 0.972 210.9 0.968 250 0.956 272.4 0.97 288.4 0.976 

FS-k 
ρ=0.75 83.60 0.966 115.7 0.962 134.7 0.972 147.6 0.978 156.5 0.96 

𝑃𝑅′ 676.6 0.964 794.2 0.954 858.5 0.97 883.4 0.946 886.8 0.976 

𝑃𝑆𝑃′′  782.7 0.962 938.1 0.97 1012 0.986 1037 0.974 1042 0.98 

𝑃𝐸 611.2 0.938 727 0.95 789.1 0.962 813.1 0.942 816.6 0.954 
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Table 3.4. Comparison experiments between FS-k method and other methods among 
K=30 alternatives 

MDMde K=30 

 k=1 k=2 k=3 k=4 k=5 

 ANS PCS ANS PCS ANS PCS ANS PCS ANS PCS 

FS-k 
ρ=0 29.14 0.996 29.87 0.998 29.22 0.998 28.22 1 27.52 1 

FS-k 
ρ=0.25 27.38 0.998 27.59 1 26.95 0.998 26.37 0.998 25.79 1 

FS-k 
ρ=0.5 25.58 0.998 25.46 1 25.10 0.998 24.77 1 24.55 1 

FS-k 
ρ=0.75 24.18 1 24.15 1 24.06 1 24.04 1 24.01 1 

𝑃𝑅′ 54.03 1 62.73 1 66.42 1 69.90 1 70.76 1 

𝑃𝑆𝑃′′  37.69 1 41.62 1 37.22 1 33.29 1 30.87 1 

𝑃𝐸 48.60 1 56.91 1 60.51 1 63.78 1 64.69 1 

MDMeq K=30 

 k=1 k=2 k=3 k=4 k=5 

 ANS PCS ANS PCS ANS PCS ANS PCS ANS PCS 

FS-k 
ρ=0 31.19 1 34.68 0.998 37.11 1 38.92 1 40.18 1 

FS-k 
ρ=0.25 28.26 1 30.86 1 32.14 1 33.56 1 34.29 1 

FS-k 
ρ=0.5 26.04 0.998 27.20 1 27.95 1 28.31 1 28.82 1 

FS-k 
ρ=0.75 24.32 1 24.58 1 24.69 1 24.79 1 24.92 1 

𝑃𝑅′ 199.2 0.998 230.4 1 249.3 1 262.5 0.998 270.2 1 

𝑃𝑆𝑃′′  42.89 0.996 54.05 1 61.28 1 65.50 1 67.04 1 

𝑃𝐸 174.9 0.996 206.6 1 225.1 0.998 237.9 1 245.5 1 

MDMin K=30 

 k=1 k=2 k=3 k=4 k=5 

 ANS PCS ANS PCS ANS PCS ANS PCS ANS PCS 

FS-k 
ρ=0 41.32 1 56.75 0.998 71.04 1 84.58 1 99.38 0.998 
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FS-k 
ρ=0.25 34.41 1 45.11 0.998 55.81 1 66.41 1 76.20 1 

FS-k 
ρ=0.5 28.57 0.998 34.30 0.996 40.59 0.998 46.69 0.998 54.07 1 

FS-k 
ρ=0.75 24.71 1 26.19 1 27.86 1 30.33 0.998 33.00 1 

𝑃𝑅′ 1111 0.998 128 0.998 1388 1 1461 0.998 1510 0.998 

𝑃𝑆𝑃′′  64.87 0.998 106.9 1 157.1 1 212.1 1 280.3 0.998 

𝑃𝐸 975.7 0.994 1153 0.998 125 1 1324 0.998 1371 0.998 

SCde K=30 

 k=1 k=2 k=3 k=4 k=5 

 ANS PCS ANS PCS ANS PCS ANS PCS ANS PCS 

FS-k 
ρ=0 35.66 0.988 42.53 0.982 46.59 0.984 48.97 0.988 50.11 0.988 

FS-k 
ρ=0.25 31.14 0.996 35.65 0.99 38.11 0.986 39.27 0.996 40.12 0.978 

FS-k 
ρ=0.5 27.51 0.99 29.59 0.994 30.45 0.986 31.47 0.998 31.57 0.992 

FS-k 
ρ=0.75 24.78 0.99 25.42 0.992 25.73 0.988 25.97 0.994 26.07 0.994 

𝑃𝑅′ 53.80 0.974 61.65 0.974 66.38 0.97 70.26 0.98 72.47 0.984 

𝑃𝑆𝑃′′  47.62 0.984 60.75 0.974 68.31 0.986 73.75 0.992 76.40 0.988 

𝑃𝐸 48.44 0.952 55.97 0.952 60.47 0.946 64.11 0.958 66.23 0.968 

SCeq K=30 

 k=1 k=2 k=3 k=4 k=5 

 ANS PCS ANS PCS ANS PCS ANS PCS ANS PCS 

FS-k 
ρ=0 86.70 0.97 119.4 0.966 139.3 0.958 154 0.958 166.4 0.964 

FS-k 
ρ=0.25 65.63 0.968 90.92 0.966 106.0 0.97 116.7 0.962 125.9 0.976 

FS-k 
ρ=0.5 45.59 0.962 60.58 0.96 70.56 0.978 78.43 0.974 84.20 0.976 

FS-k 
ρ=0.75 27.69 0.974 32.43 0.984 36.90 0.978 40.47 0.97 42.76 0.972 

𝑃𝑅′ 198.9 0.974 229.7 0.976 249.3 0.962 261.3 0.962 271.3 0.974 

𝑃𝑆𝑃′′  199.2 0.972 254.1 0.988 280.5 0.972 295.5 0.982 306.9 0.982 

𝑃𝐸 174.6 0.956 205.9 0.944 225.1 0.942 236.9 0.948 246.5 0.956 
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Table 3.5 shows the maximum and minimum percentages of observations FS-k 

saves compared to other three methods when ρ=0 (CRN is not used), as well as 𝑃𝐸, 𝑃𝑅′ 

and 𝑃𝑆𝑃′′, for all six configurations. From the results, we can find that FS-k can save 

13.02%-86.37% observations over all these cases than 𝑃𝐸, 𝑃𝑅′ and 𝑃𝑆𝑃′′ when K=10. It 

can save 10.85%-96.28% when K=30. The smaller k value is, the larger fraction of 

observations tends to be saved by FS-k. Table 3.6 shows the maximum and minimum 

percentages of observations saved by CRN compared with ρ=0 for the FS-k procedure 

(CRN is not used) among all six configurations. The larger correlation is applied, the 

more observations are saved. And we cannot see a clear pattern of influence from k value. 

The results demonstrate that a higher correlation among system can save more 

observations. 

 

 

 

SCin K=30 

 k=1 k=2 k=3 k=4 k=5 

 ANS PCS ANS PCS ANS PCS ANS PCS ANS PCS 

FS-k 
ρ=0 617.2 0.962 821.9 0.96 953.3 0.952 1072 0.964 1169 0.97 

FS-k 
ρ=0.25 497.3 0.95 643.7 0.972 748.4 0.966 847 0.958 922.8 0.962 

FS-k 
ρ=0.5 373.5 0.954 482 0.958 552.7 0.958 603.1 0.962 655.6 0.97 

FS-k 
ρ=0.75 235.8 0.962 305.5 0.97 348.3 0.958 374.5 0.972 404.5 0.952 

𝑃𝑅′ 1886 0.976 2194 0.962 2359 0.966 2490 0.978 2588 0.964 

𝑃𝑆𝑃′′  2165 0.97 2524 0.976 2700 0.986 2838 0.984 2943 0.986 

𝑃𝐸 1655 0.962 1966 0.948 2130 0.948 2257 0.97 2351 0.956 
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Table 3.5. Maximum and minimum percentages of observations FS- k ρ=0 saves 
compared to other three methods among all six configurations. 

  k = 1 k = 2 k = 3 k = 4  k = 5 
K=10 Max 86.37% 82.83% 79.61% 76.41% 73.57% 

Min 31.56% 26.43% 24.27% 17.10% 13.02% 
K=30 Max 96.28% 95.59% 94.89% 94.21% 93.42% 

Min 22.69% 24.01% 21.49% 15.23% 10.85% 

Table 3.6. Maximum and minimum percentages of observations saved by CRN compared 
with ρ=0 for FS-k among all six configurations. 

   k = 1 k = 2 k = 3 k = 4  k = 5 

K

=10 

ρ

=0.25 

Max 25.68% 24.51% 24.57% 24.81% 25.48% 
Min 

8.38% 15.09% 13.26% 11.23% 9.47% 

ρ

=0.5 

Max 46.38% 48.34% 49.58% 49.59% 49.44% 
Min 

20.22% 25.74% 23.50% 19.16% 15.07% 

ρ

=0.75 

Max 70.89% 71.66% 72.56% 73.56% 73.39% 
Min 

26.63% 31.71% 27.42% 21.38% 16.46% 

K

=30 

ρ

=0.25 

Max 24.30% 23.89% 23.89% 24.18% 24.35% 
Min 

6.04% 7.63% 7.77% 6.56% 6.29% 

ρ

=0.5 

Max 47.42% 49.29% 49.36% 49.08% 49.43% 
Min 

12.22% 14.76% 14.10% 12.23% 10.79% 

ρ

=0.75 

Max 68.06% 72.85% 73.52% 73.73% 74.32% 
Min 

17.02% 19.15% 17.66% 14.81% 12.75% 
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 3.4 Summary 

In this chapter, we described a fully sequential procedure, which pre-selects 

superior systems and eliminate inferior systems at each stage, to determine multi-best 

systems from alternative systems. We proved that, by using our procedure, we can 

correctly select a pre-specified number (k) of best systems from K alternative systems 

with probability of at least 1 − 𝛼, when the indifference zone parameter δ is known. We 

also conducted experiments to support the theoretical results and tested the influences of 

the number of systems to be selected, the pre-selection of superior systems, and different 

mean and variance configurations respectively. Compared to three existing methods, FS-k 

was shown to be able to significantly save computational load. We also conducted 

experiments to study the influence of common random numbers on the performance of 

the algorithm. CRN is demonstrated to be helpful in saving observations for the FS-k 

procedure to do multi-best ranking and selection. The larger the correlation is set, the 

more observations are saved.   
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CHAPTER 4  

RANKING AND SELECTION FOR STEADY-STATE SIMLATION 

4.1 Problem Framework 

In Chapter 3, we introduced a k-best ranking and selection method (FS-k) for 

terminating simulation. In this chapter, we will describe how to extend this fully 

sequential method to solve the multi-best R&S for steady-state simulation. The main 

issue to adapt FS-k to steady-state simulation is that FS-k is designed for independent and 

identically distributed data outputs. In other words, outputs from a single system are i.i.d. 

However, data outputs from one steady-state simulation are usually auto-correlated. To 

solve this problem, there are two simple methods discussed in Section 1.3. First we can 

generate m replications and consider the steady-state sample mean in each replication as 

one observation for the ranking and selection procedure. Another method is to generate a 

single long replication and use the batch mean method to generate approximately 

independent observations, which are the batch means. There are drawbacks in both 

methods. As we stated before, steady-state simulation focuses on the long-run 

performance of a system. The initial trend data in the transient state can cause trouble 

when we include them to estimate the steady-state mean. If we use the first method, i.e., 

to generate multiple replications, we have to remove the samples from the initial transient 

state for each replication, which causes a huge waste of samples. If we use the second 

method, i.e., to generate a single replication with batching, although we only need to do 

initialization bias elimination once, the batch size is hard to control. If the batch size is 

too large, it will reduce the opportunities to eliminate/screening inferior systems or 

preselect superior systems, which will cause inefficiency in the ranking and selection 

procedure. Thus, we will study another method which can maintain the efficiency of the 

fully-sequential R&S procedure and solve the i.i.d problem at the same time.  
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The main reason we need to assume that the outputs are i.i.d for the FS-k method 

in Chapter 3 is that we can then compute the sample variance of the difference between 

system i and l, simply by 

𝑆𝑖𝑙2 =  
1

𝑛0 − 1
� (𝑋𝑖𝑗 − 𝑋𝑙𝑗 − (𝑋�𝑖(𝑛0) − 𝑋�𝑙(𝑛0)))2

𝑛0

𝑗=1
 (4.1)  

For autocorrelated data from a single replication of steady-state simulation, 

however, the estimator in (4.1) cannot be used to estimate the variance of the sample 

mean. Therefore, an important task in this chapter is to study and use valid variance 

estimator for autocorrelated data. In Goldsman et al. (2002) and Kim and Nelson (2006), 

it has been shown both empirically and theoretically (in asymptotic sense) that 

modification of the fully sequential procedures for terminating simulation to select the 

single best alternative also work well in the single-replication steady-state simulation 

environment. In this chapter, we will follow the similar ideas to modify the FS-k 

procedure to select multiple best systems for single replications of steady-state simulation 

and test its performance.  

In Section 4.2, we will first introduce the idea of asymptotic variance estimators. 

Then in Section 4.3 we present how to extend the FK-k method for ranking and selection 

problems in steady-state simulation. We will also describe the procedure and provide the 

theoretical proof for it in terms of the asymptotic lower bounds of its probability of 

correct selection. Then we will show the design of simulation experiments to test the 

efficiency of our procedure in Section 4.4 and provide the experimental results in Section 

4.5 to see how the procedure behaves for finite samples.  

4.2 Asymptotic Analysis and Asymptotic Variance 

Estimators 

Asymptotic analysis, especially in this chapter, is to analyze the performance of a 

procedure as the simulation run length approaches infinity. It can establish some large-

sample validity if used appropriately. To estimate the variance of sample means for 
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autocorrleated data, a key concept is the variance parameter (or asymptotic variance 

constant), 𝜐𝑖2 ≡ lim𝑟→∞𝑟 𝑉𝑎𝑟(𝑋�𝑖(𝑟)) where 𝑋�𝑖(𝑟) = 1
𝑟
∑ 𝑋𝑖𝑗𝑟
𝑗=1 . There are many methods 

to estimate the variance parameter from the literature. Goldsman et al. (2002) review the 

variance estimators that have been developed. Goldsman (1983) suggests batch mean 

estimators. Nakayama (1995) applies the batch mean estimator to select the best system. 

Goldsman (1985) revises Dudewicz and Dalal’s (1975) method by applying the theory of 

standardized time series to estimate the variance parameter. Dudewicz and Zaino (1977) 

estimate 𝑣𝑖2 specifically for AR(1) process. Goldsman, Kim et al.(2002) and Kim and 

Nelson (2006) validated the usage of certain variance estimator in single-best fully 

sequential selection procedures for steady-state simulation empirically.  

There are a group of variance estimators based on the batching method. As we 

mentioned in the previous chapter, batching is to partition r output observations into b 

batches so that each batch has m observations. So we have 𝑟 = 𝑚𝑏. We will apply two 

batching-based variance estimators in this chapter and compare the performance between 

them. Different from the batching method mentioned in the previous section, when using 

batching to estimate the variance parameter, it’s not strongly required that the batch 

means are i.i.d. Thus the selection of batch size is much more flexible. 

The two asymptotic variance estimators we use are the batch means (BM) 

estimator and the weighted area (AREA) estimator. Suppose we have r observations 

𝑋𝑖1, … ,𝑋𝑖𝑟 from alternative i. The number of batches is set as b and the batch size is m. 

For BM estimator, the batch means are calculated as 

 𝑋�𝑖,𝑗,𝑚 = 1
𝑚
∑ 𝑋𝑖,(𝑗−1)𝑚+𝑙
𝑚
𝑙=1 , 𝑗 = 1, 2, … , 𝑏.   

Then the BM estimator recommended by Goldsman (1983) and Glynn and Whitt 

(1991) is  

 𝑚𝑉𝐵2 = 𝑚
𝑏−1

∑ (𝑋�𝑖,𝑗,𝑚 − 𝑋�𝑖(𝑟))2𝑏
𝑗=1 → 𝑣𝑖

2𝜒2(𝑏−1)
𝑏−1

, where 𝑋�𝑖(𝑟) = 1
𝑟
∑ 𝑋𝑖𝑗𝑟
𝑗=1  and 𝑟 → ∞. 

And the degree of freedom of the chi-square distribution 𝜒2(𝑑) is d=b-1. 
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The weighted area (AREA) estimator comes from a different methodology known 

as the standardized time series introduced by Goldsman (1990) and Schmeiser and Song 

(1989). First, a cumulative mean is calculated for each element in each batch of system i 

as: 

 𝑋�𝑖,𝑗,ℎ = 1
ℎ
∑ 𝑋𝑖,(𝑗−1)𝑚+𝑙
ℎ
𝑙=1   for j=1, 2, …, b and h=1, 2, …, m. 

Then the standardized time series from batch j of alternative i is defined as: 

 𝑇𝑖,𝑗,𝑚(𝑡) =
⌊𝑚𝑡⌋(𝑋�𝑖,𝑗,𝑚−𝑋�𝑖,𝑗,⌊𝑚𝑡⌋)

𝑣𝑖√𝑚
. 

The weighted area from batch j of system i is defined as:  

𝐴𝑖,𝑗 = 𝑣𝑖
𝑚
∑ 𝜔𝑚
𝑙=1 (𝑙/𝑚)𝑇𝑖,𝑗,𝑚(𝑙/𝑚), 

where 𝜔(∙) is pre-specified weighting function. 

Then the weighted area estimator can be written as: 

 𝑚𝑉𝐴2 = 1
𝑏
∑ 𝐴𝑖,𝑗2𝑏
𝑗=1 → 𝑣𝑖

2𝜒2(b)
𝑏

. 

The approximate distribution of estimator 𝑚𝑉𝐴2 is proved by Goldsman et al. 

(1990). The degree of freedom of the chi-square distribution 𝜒2(𝑑) is d = b. 

From the description above about the two variance estimators, we can see that 

they both satisfy the Assumption 4.1, stated in the next section: 

4.3 FS-k+ Procedure  

In this section, we will first describe the general idea of our approach and also 

introduce the related assumptions and background knowledge. And then we will present 

the procedure FS-k+, which is extended from FS-k in Chapter 3 and designed to solve 

multi-best ranking and selection for steady-state simulation. We will also give the 

theoretical proof to justify the procedure asymptotically.  

Similar to the proof of Theorem 3.1, a lemma about Brownian motion process 

will be used. 
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Lemma 4.1 (Fabian 1974)  

For a Brownian Motion Process 𝐵(∙,Δ) on [0, +∞), with 𝐸[𝐵(𝑡,Δ)] = Δt  and 

 Var[𝐵(𝑡,Δ)] = t  where Δ > 0. Then set 

𝑈(𝑡) = 𝒜 −ℬ𝑡, 

𝐿(𝑡) = −𝒜 + ℬ𝑡 

for some 𝒜 > 0 and ℬ = Δ/(2c) for some positive integer c. And let 𝑅(𝑡) 

represent the interval (𝐿(𝑡),𝑈(𝑡)) and let 𝑇∗ be the first time that 𝐵(𝑡,Δ) ∉ 𝑅(𝑡). 

Finally, let 𝒢 be the event that 𝐵(𝑇∗,Δ) ≤ 𝐿(𝑇∗). Then, we have 

Pr{𝒢} = � (−1)𝑙+1 �1 −
1
2
𝐼(𝑙 = 𝑐)� exp{−2𝒜ℬ(2𝑐 − 𝑙)𝑙} .

𝑐

𝑙=1
 

Remarks: here function 𝐼(𝑒𝑣𝑒𝑛𝑡) = 1, if 𝑒𝑣𝑒𝑛𝑡 is true, otherwise equal to 0. The 

event 𝒢 in the lemma can correspond to the situation that an incorrect selection is made 

between two systems.  

Lemma 4.1 (Fabian 1974) constructs a “continuation region” 𝑅(𝑡) for a specified 

Brownian motion process 𝐵(∙,Δ). The very first time 𝐵(∙,Δ)  moves out of the region 

𝑅(𝑡) (from either the upper side or lower side of the region) is denoted by 𝑇∗. And the 

probability that at 𝑇∗ it moves out from the lower side can be calculated mathematically 

as in the lemma. When we compare two systems, e.g. systems i and l with 𝜇𝑖 > 𝜇𝑙, in the 

ranking and selection procedure, we can construct an approximate Brownian motion 

process 𝐵(∙,Δ) based on the cumulative difference between these two systems, 𝑆(𝑟) =

∑ (𝑋𝑖𝑗 − 𝑋𝑙𝑗)𝑟
𝑗=1 , 𝑟 = 𝑛0, … ,𝑁.  Because 𝜇𝑖 > 𝜇𝑙, the process is more likely to leave from 

the region from the upper boundary, which is corresponding to correct selection between 

systems i and l. And leaving the region first from the lower boundary corresponds to 

incorrect selection. By adjusting the upper and lower limits appropriately, we are able to 

control the probability of incorrect selection, which is the event 𝒢 in the Lemma 4.1. 

The next problem we are facing is how to approximate the cumulative difference 

between two systems 𝑆(𝑟) by a Brownian motion process. The following assumption can 

help us accomplish this: 
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Assumption 4.1 

Functional Central Limit Theorem (FCLT) : For data series 𝑋𝑖1,𝑋𝑖2, … ,𝑋𝑖𝑟 from 

system i, there exist constants 𝜇𝑖 and 𝑣𝑖2 > 0, such that we can construct the standard 

partial sum, defined as 𝐶𝑖(𝑡, 𝑟) ≡
∑ 𝑋𝑖𝑗
⌊𝑟𝑡⌋
𝑗=1 −𝑟𝑡𝜇𝑖

𝑣𝑖√𝑟
, 0 ≤ 𝑡 ≤ 1. The probability distribution of 

𝐶𝑖(𝑡, 𝑟) over [0, 1] converges to that of a standard Brownian motion process, for t on the 

unit interval, as r increases, i.e. 𝐶𝑖(∙, 𝑟)
𝑑
⇒ 𝐵(∙), 𝑟 → ∞. 

Under Assumption 4.1, 𝜇𝑖 can be identified as the steady-state mean for system i 

and  𝑣𝑖2 is the asymptotic variance. The assumption also implies that for systems i and l, 

we have 𝐶𝑖(∙, 𝑟)
𝑑
⇒ 𝐵(∙), 𝐶𝑙(∙, 𝑟)

𝑑
⇒ 𝐵(∙), 𝑟 → ∞. Billingsley (1968) provides some 

conditions under which Assumption 4.1 is satisfied and demonstrates that many 

stochastic processes satisfy Assumption 4.1. 

In our procedure, we are calculating the variance estimator for the sample 

differences between the two systems. Thus we need to prove that for data series 𝑍𝑖𝑙(𝑗) =

 𝑋𝑖𝑗 − 𝑋𝑙𝑗 for 𝑗 = 1,2, … , 𝑟, 𝑖 ≠ 𝑙, its standard partial sum 𝐶𝑖𝑙(𝑡, 𝑟) =
∑ 𝑍𝑖𝑙(𝑗)−𝑟𝑡(𝜇𝑖−𝜇𝑙)
⌊𝑟𝑡⌋
𝑗=1

𝑣𝑖𝑙√𝑟
 

also approximates the Brownian motion process. 

Lemma 4.2 

For  𝑖 ≠ 𝑙, if system i and l satisfy Assumption 4.1 and are independent with each 

other, then there exists a constant 𝑣𝑖𝑙2 > 0 such that 𝐶𝑖𝑙(𝑡, 𝑟)
𝑑
→ 𝐵(∙) as 𝑟 → ∞.  

Proof: 

𝑣𝑖𝑙2 = lim𝑟→∞ 𝑟𝑉𝑎𝑟�𝑍̅𝑖𝑙(𝑟)� = lim𝑟→∞ 𝑟𝑉𝑎𝑟(𝑋�𝑖 − 𝑋�𝑙) = 𝑣𝑖2 + 𝑣𝑙2 due to the 

independence between system i and l. We set 𝐶𝑖(𝑡, 𝑟) and 𝐶𝑙(𝑡, 𝑟) represent the standard 

partial sum for system i and l. Then the standard partial sum for the difference between 

these two systems is 

𝐶𝑖𝑙(𝑡, 𝑟) =
∑ 𝑍𝑖𝑙(𝑗)−𝑟𝑡(𝜇𝑖−𝜇𝑙)
⌊𝑟𝑡⌋
𝑗=1

𝑣𝑖𝑙√𝑟
  

=
∑ �𝑋𝑖𝑗−𝑋𝑙𝑗�−𝑟𝑡(𝜇𝑖−𝜇𝑙)
⌊𝑟𝑡⌋
𝑗=1

𝑣𝑖𝑙√𝑟
  

= 
∑ 𝑋𝑖𝑗−𝑟𝑡𝜇𝑖
⌊𝑟𝑡⌋
𝑗=1

𝑣𝑖𝑙√𝑟
−

∑ 𝑋𝑙𝑗−𝑟𝑡𝜇𝑙
⌊𝑟𝑡⌋
𝑗=1

𝑣𝑖𝑙√𝑟
 

= 𝑣𝑖
𝑣𝑖𝑙
𝐶𝑖(𝑡, 𝑟) − 𝑣𝑙

𝑣𝑖𝑙
𝐶𝑙(𝑡, 𝑟)  
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Because systems i and l satisfy Lemma 4.2, we have 𝐶𝑖(𝑡, 𝑟)
𝑑
→ 𝐵𝑖(∙) and 𝐶𝑙(𝑡, 𝑟)

𝑑
→ 𝐵𝑙(∙). Also the two systems are independent with each other, so 𝐵𝑖(∙) and 𝐵𝑙(∙) are 

independent Brownian motion processes. Thus, according to (Billingsley 1968), 

�𝐶𝑖(𝑡, 𝑟),𝐶𝑙(𝑡, 𝑟)� → (𝐵𝑖(∙),𝐵𝑙(∙)). By Continuous Mapping Theorem(CMT), we have  

𝐶𝑖𝑙(∙, 𝑟)
𝑑
→ 𝑣𝑖

𝑣𝑖𝑙
𝐵𝑖(∙)−

𝑣𝑙
𝑣𝑖𝑙
𝐵𝑙(∙) which is a standard Brownian motion process. 

Remarks: 𝑣𝑖𝑙2  is the asymptotic variance for data series 𝑋𝑖𝑗 − 𝑋𝑙𝑗, 𝑗 = 1, 2, …. 

Lemma 4.2 demonstrates that the distribution of the cumulative differences 

between the sample outputs of two systems is approximately Brownian motion process. 

This fact will be used to justify our procedure in Theorem 4.1. 

To set up the limiting environment required by Lemma 4.2, we can make the 

indifference zone parameter 𝛿 → 0, which leads to the hardest situation for ranking and 

selection problem. And naturally, the required number of observations 𝑟 → ∞.  

While this PCS can be attained when sample size goes to infinity, we cannot 

guarantee it for finite sample sizes. That is the reason we will do empirical experiments to 

study how the procedure performs when the sample size is finite.  

 Following the above idea, we can assure the asymptotic probability of 

correct selection when comparing between two systems. This result can then be extended 

to selection of k best systems from K systems. The general idea is similar to that of 

Chapter 3. For system i, if we are confident that there are at least k systems better than it, 

it should be eliminated from the candidate pool right away to save observations and the 

problem becomes selection of k systems from K-1 systems; if we are confident there are 

at least K-k systems worse than system i, then it should be preselected as one of the best k 

systems and the problem becomes selecting k-1 systems from K-1 systems. The complete 

fully sequential procedure to select k best systems from K systems for steady-state 

simulation is given below.  
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Procedure (FS-k+): 

Initialization: Select confidence level 1 − 𝛼, indifference zone 𝛿, batch size 𝑚0 and 

first-stage sample size 𝑛0. The first-stage number of batches is 𝑏 = �𝑛0
𝑚0
�. 

Obtain 𝑛0 observations 𝑋𝑖𝑗, 𝑗 = 1, 2, … ,𝑛0, from each system i = 1,2,…, K. For 

all 𝑖 ≠ 𝑙, i, l  = 1, 2,…, K, compute 𝑚0𝑉𝑖𝑙2, which is the sample asymptotic variance of the 

difference between alternatives i and l. And 𝑚0𝑉𝑖𝑙2 → 𝜐𝑖𝑙2
𝜒2(𝑑)
𝑑

 as 𝑛0 → ∞, where d is the 

degree of freedom of the asymptotic variance estimator. 

For batch mean estimator, 𝑚0𝑉𝐵,𝑖𝑙
2 = 𝑚0

𝑏−1
∑ (𝑋�𝑖𝑗 − 𝑋�𝑙𝑗 − (𝑋�𝑖(𝑛0) − 𝑋�𝑙(𝑛0)))2𝑏
𝑗=1 . 

For area estimator, 𝑋�𝑖,𝑗,ℎ = 1
ℎ
∑ 𝑋𝑖,(𝑗−1)𝑚0+𝑙
ℎ
𝑙=1   for j=1, 2, …, b and h=1, 2, …, 

𝑚0, 𝐴𝑖𝑙,𝑗 = 1
𝑚0
∑ 𝜔𝑚0
𝑝=1 (𝑝/𝑚0)

p(𝑋�𝑖,𝑗,𝑚0−𝑋�𝑙,𝑗,𝑚0−(𝑋�𝑖,𝑗,𝑝−𝑋�𝑙,𝑗,p))

�𝑚0
, where 𝜔(𝑡) ≡ √840(3𝑡2 −

3𝑡 + 1/2). And asymptotic variance is estimated by 𝑚0𝑉𝐴,𝑖𝑙
2 = 1

𝑏
∑ 𝐴𝑖𝑙,𝑗2𝑏
𝑗=1 . 

 Let 𝑁𝑖𝑙 = �ℎ
2𝑚0𝑉𝑖𝑙

2

𝛿2
�, where ⌊∙⌋ indicates truncation of any fractional part, and let 

𝑁𝑖 = max𝑙≠𝑖 𝑁𝑖𝑙. 

Here 𝑁𝑖 + 1 is the maximum number of observations that can be taken from 

alternative i. If 𝑛0 > max𝑖 𝑁𝑖, then stop and select the k systems with the largest 𝑋�𝑖(𝑛0) 

as the best k systems.  

Otherwise, let 𝐼0 = {1, … ,𝐾} be the set of alternative designs. Create a directed 

graph 𝑉 = (𝐼0, 𝐸), where E represents the set of directed edges between nodes in set 𝐼0. 

A directed edge in E from node i to node j is denoted by 𝑒𝑖𝑗: 𝑖 → 𝑗, 𝑖 ∈ 𝐼0, 𝑗 ∈ 𝐼0. Set 

𝐸 = ∅. Node 𝑖1 is considered a predecessor (successor) of node 𝑖2 if there is a directed 

path in V from 𝑖1 (𝑖2) to 𝑖2 (𝑖1). Let 𝐴𝑖 be the set of all the predecessors of node i and 𝐵𝑖 

the set of all the successors of node i. And let 𝐺 = ∅ be the set of selected systems and 

𝑆 = ∅ be the set of eliminated systems. Let ℎ2 = 2𝑐𝜂𝑑. For BM variance estimator d=b-1 

and for AREA variance estimator d=b. 

Set 𝐼 = 𝐼0, where I represents the set of alternatives still in contention, and the 

observation counter 𝑟 = 𝑛0. Go to Screening and Preselection. 
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Screening and Preselection: Let 𝑊𝑖𝑙(𝑟) = max {0, 𝛿
2𝑐𝑟

(ℎ
2𝑚0𝑉𝑖𝑙

2

𝛿2
− 𝑟)} , ∀𝑖, 𝑙 ∈ 𝐼, 𝑖 ≠ 𝑙. Let 

𝑚 = |𝐼| and 𝑔 = |𝐺|. 

For ∀𝑖, 𝑙 ∈ 𝐼, 𝑖 ≠ 𝑙, if 𝑋�𝑖(𝑟) − 𝑋�𝑙(𝑟) ≥ 𝑊𝑖𝑙(𝑟) and 𝑒𝑖𝑙 ∉ 𝐸, 𝑒𝑙𝑖 ∉ 𝐸, then 𝐸 = 𝐸 ∪

𝑒𝑖𝑙, 𝐴𝑙 = 𝐴𝑙 ∪ {𝑖} and 𝐵𝑖 = 𝐵𝑖 ∪ {𝑙}. Then for ∀𝑖, 𝑙 ∈ 𝐼, 𝑖 ≠ 𝑙, define S𝑖𝑗𝐴 = {𝑙: 𝑙 ∈ 𝐴𝑖} ∪

{𝑖}, S𝑖𝑗𝐵 = �𝑙: 𝑙 ∈ 𝐵𝑗� ∪ {𝑗}. For ∀𝑙 ∈ S𝑖𝑗𝐴 , 𝑡 ∈ S𝑖𝑗𝐵  , let 𝐴𝑡 = 𝐴𝑡 ∪ S𝑖𝑗𝐴\{𝑡} and 𝐵𝑙 = 𝐵𝑙 ∪

S𝑖𝑗𝐵\{𝑙}. 

For ∀𝑖 ∈ 𝐼, if |𝐵𝑖| ≥ 𝑚 − (𝑘 − 𝑔), then 𝐺 = 𝐺 ∪ {𝑖}. If |𝐴𝑖| ≥ 𝑘 − 𝑔, then 

𝑆 = 𝑆 ∪ {𝑖}. If either of these two conditions is true, then 𝐼 = 𝐼\{𝑖},𝐴𝑙 = 𝐴𝑙\{𝑖} and 

𝐵𝑙 = 𝐵𝑙\{𝑖} ∀𝑙 ∈ 𝐼. 

Stopping Rule: If |𝐺| ≥ 𝑘, stop the procedure and select k systems in G that have the 

largest overall sample means 𝑋�𝑖(𝑟) = ∑ 𝑋𝑖,𝑗𝑟
𝑗=1  as the best k systems;  

If |𝐺| + |𝐼| ≤ 𝑘, stop the procedure and select all the systems in G and I, together 

with 𝑘 − (|𝐺| + |𝐼|) system(s) in S that have the largest overall sample means as the best 

k systems; 

Otherwise, take one additional observation 𝑋𝑖,𝑟+1 from each alternative 𝑖 ∈ 𝐼. Set 

r = r + 1 and go to Screening and Preselection. 

Constants: The constant c may be nonnegative integer. The same as the last chapter, we 

still use c = 1. The constant η is the solution to the equation 

𝑔(𝜂) ≡ ∑ (−1)𝑙+1 �1 − 1
2
𝐼(𝑙 = 𝑐)� �1 + 2𝜂(2𝑐−𝑙)𝑙

𝑐
�
−𝑑2𝑐

𝑙=1 = 1 − (1 − 𝛼)
1

𝑘(𝐾−𝑘), 

where 𝐼(∙) is the indicator function. When c = 1, we have the closed-form solution 

 

𝜂 =
1
2

[�2 − 2(1 − 𝛼)
1

𝑘(𝐾−𝑘)�

−2
𝑑
− 1] 

. 

(4.2)  

The procedure above is an extension of the procedure in Chapter 3 to 

autocorrelated outputs from steady-state simulation. When simulation outputs are i.i.d, 
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the two procedures are equivalent if we use BM estimator for the procedure in this 

chapter and set batch size as 1. Then the BM estimator is exactly calculating sample 

variance and using it as 𝑆𝑖𝑙2. Also the degree of freedom of the variance estimator would 

be 𝑑 = 𝑏 − 1 = 𝑛0 − 1. Thus the calculation of parameter ℎ and 𝜂 will be the same as 

Chapter 3.  Different from the procedure in Chapter 3, we use estimated asymptotic 

variance of the difference between observations from two systems to replace the sample 

variance 𝑆𝑖𝑙2.  And 𝑆𝑖𝑙2 follows a chi-square distribution with degrees of freedom 𝑛0 − 1. 

Comparing with Chapter 3, d is calculated differently in this chapter according to what 

variance estimator is used.  

Next we will provide the proof on the asymptotic result of our procedure.  

Theorem 4.1 Denote Χ𝑖 = {𝑋𝑖1,𝑋𝑖2, … }. And Χ1,Χ2, … ,Χ𝐾 represent the outputs 

from K systems. They are independent and satisfy Assumption 4.1 and 𝑚0𝑉𝑖𝑙2 is 

asymptotically distributed as 𝑣𝑖𝑙2𝜒𝑑2/𝑑 and is asymptotically independent of 𝐶𝑖𝑙(∙, 𝑟), then 

lim inf𝛿→0 Pr{𝐹𝐾 + 𝑠𝑒𝑙𝑒𝑐𝑡𝑠 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑘 𝑠𝑦𝑠𝑡𝑒𝑚𝑠} ≥ 1 − 𝛼 given 𝜇𝐾 ≥ 𝜇𝐾−1 ≥ ⋯ ≥

𝜇𝐾−𝑘+1 ≥ 𝜇𝐾−𝑘 + 𝛿 ≥ ⋯ ≥ 𝜇1 + 𝛿. 

Proof:  

We first define the same event 𝒜 as the proof for Theorem 3.1 𝒜 = {for all 𝑖 ∈

{𝐾,𝐾 − 1, … ,𝐾 − 𝑘 + 1} and  𝑙 ∈ {1, … ,𝐾 − 𝑘}, 𝑒𝑙𝑖 ∉ 𝐸 when the procedure stops}. 

Based on the proof of Theorem 3.1, we have Pr{𝐶𝑆} ≥ Pr{𝒜}. As described in 

Appendix, we can prove that for the ranking and selection between two systems, 

lim𝛿→0 sup Pr {𝐼𝐶𝑆} ≤ 1 − (1 − 𝛼)1/(𝑘(𝐾−𝑘)). 

When 𝐾 > 2, and let 𝐼𝐶𝑆𝑖𝑙 represent the event that an incorrect selection happens 

between a superior system 𝑖,𝐾 − 𝑘 + 1 ≤ 𝑖 ≤ 𝐾, and an inferior system 𝑙, 1 ≤ 𝑙 ≤ 𝐾 −

𝑘. Then, 

Pr{𝒜} 

= 1 − Pr�⋃ ⋃ (𝑠𝑦𝑠𝑡𝑒𝑚 𝑙 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑖)𝐾−𝑘
𝑙=1

𝐾
𝑖=𝐾−𝑘+1 �  

≥ 1 − ∑ ∑ Pr {𝐼𝐶𝑆𝑖𝑙}𝐾−𝑘
𝑙=1

𝐾
𝑖=𝐾−𝑘+1   
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Then, 

lim
𝛿→0

inf Pr{𝐶𝑆} 

≥ lim𝛿→0 inf�1 − ∑ ∑ Pr{𝐼𝐶𝑆𝑖𝑙}𝐾−𝑘
𝑙=1

𝐾
𝑖=𝐾−𝑘+1 �  

≥ lim𝛿→0 inf Pr {⋂ ⋂ 𝐶𝑆𝑖𝑙𝐾−𝑘
𝑙=1

𝐾
𝑖=𝐾−𝑘+1 }   

=

𝐸{lim𝛿→0 inf Pr {⋂ ⋂ 𝐶𝑆𝑖𝑙𝐾−𝑘
𝑙=1

𝐾
𝑖=𝐾−𝑘+1 |𝑋𝑖1, … ,𝑋𝑖(𝑁𝑖+1),𝑋𝑙1, … ,𝑋𝑙(𝑁𝑙+1),𝑚0𝑉𝑖𝑙2, 𝑖 = 𝐾 −

𝑘 + 1, … ,𝐾, 𝑙 = 1, …𝐾 − 𝑘}}  

= 𝐸{lim𝛿→0 inf∏ ∏ Pr {𝐶𝑆𝑖𝑙|𝑋𝑖1, … ,𝑋𝑖(𝑁𝑖+1),𝑋𝑙1, … ,𝑋𝑙(𝑁𝑙+1),𝑚0𝑉𝑖𝑙2}𝐾−𝑘
𝑙=1

𝐾
𝑖=𝐾−𝑘+1 }  

Events {𝐶𝑆𝑖𝑙|𝑋𝑖1, … ,𝑋𝑖(𝑁𝑖+1),𝑋𝑙1, … ,𝑋𝑙(𝑁𝑙+1),𝑚0𝑉𝑖𝑙2}, 𝑖 = 𝐾 − 𝑘 + 1, … ,𝐾, 𝑙 =

1, …𝐾 − 𝑘 are conditionally independent with each other. By using the argument which 

compares two systems and the fact that conditional probability is a bounded, continuous 

function of the condition, we have 

lim
𝛿→0

inf Pr{𝐶𝑆} 

≥ 𝐸{lim
𝛿→0

inf(Pr {𝐶𝑆𝑖𝑙|𝑋𝑖1, … ,𝑋𝑖(𝑁𝑖+1),𝑋𝑙1, … ,𝑋𝑙(𝑁𝑙+1),𝑚0𝑉𝑖𝑙2})𝑘(𝐾−𝑘)} 

≥ (lim
𝛿→0

inf Pr(𝐶𝑆𝑖𝑙))𝑘(𝐾−𝑘) 

≥ (1 − lim
𝛿→0

sup Pr(𝐶𝑆𝑖𝑙))𝑘(𝐾−𝑘) 

≥ 1 − 𝛼 

Remarks: 𝑚0𝑉𝑖𝑙2 is the estimated asymptotic variance for the differences between 

systems i and l based on the first-stage outputs. Thus, the value of 𝑚0𝑉𝑖𝑙2 is dependent on 

the first 𝑛0 observations. On the other hand, the term 𝐶𝑖𝑙(∙, 𝑟) is shown to approximate a 

standard Brownian motion process, when 𝑟 → ∞, which means 𝐶𝑖𝑙(∙, 𝑟) depends on the 

initial observations less and less as we collect more observations. Therefore, we can 

conclude that the asymptotic independence between 𝑚0𝑉𝑖𝑙2 and 𝐶𝑖𝑙(∙, 𝑟) stands. 
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4.4 Experiment Settings 

We presented the procedure and its proof on asymptotic performance of the 

algorithm in the previous section. In this section and Section 4.4 we will present the 

experiment settings and the corresponding results for applying our procedure in finite 

sample cases.  

We conduct a total of 344 different experiments. In each experiment, K systems 

are compared and k best systems are selected from those K systems. Data are simulated 

from two models: 

AR(1): 𝑋𝑖,𝑗 =  𝜇𝑖 + 𝜙�𝑋𝑖,𝑗−1 − 𝜇𝑖� + 𝑍𝑖,𝑗, where 𝑍𝑖,𝑗 𝑖.𝑖.𝑑~ 𝑁(0, 1 −𝜙2) 

MA(1): 𝑋𝑖,𝑗 =  𝜇𝑖 + 𝜃𝑍𝑖,𝑗−1 + 𝑍𝑖,𝑗, where 𝑍𝑖,𝑗 𝑖.𝑖.𝑑~ 𝑁(0, 1
1+𝜃2

) 

For these two models, the strength of dependence/correlation among all outputs 

from one system depend on 𝜙 and 𝜃. We set parameters 𝜙 and 𝜃 both as 0.9 in our 

experiments to see how the method works for data with high autocorrelation. 

For the configuration of steady state means for all alternative systems, we still use 

slippage configuration (SC) and monotonically decreasing means (MDM) as Chapter 3. 

For SC set-up, the true steady-state means among all alternatives are set as 𝜇𝐾 = 𝜇𝐾−1 =

⋯ = 𝜇𝐾−𝑘+1 = 𝜇𝐾−𝑘 + 𝛿 = ⋯ = 𝜇1 + 𝛿. Here, 𝛿 is the indifference zone parameter. SC 

is the hardest situation to do ranking and selection, because the difference between any 

pair of superior system and inferior system is the smallest value worth to detect, which is 

the indifference zone value. For MDM configuration, the true steady-state means are set 

as 𝜇𝑖 = 𝜇𝑖−1 + 𝛿. Under our settings, a system with a smaller steady-state mean is 

considered as better than one with a lager steady-state mean. Also, different from the 

setting in Chapter 3, the variance of the random noise is only related to the correlation 

parameter, 𝜙 for AR(1) model or 𝜃 for MA(1) model. Thus, among all the alternative 

systems in each experiment, all the output variances of the systems are equal. 

The indifference zone parameter 𝛿 is set as �𝜐𝐾−𝑘+12 /𝑛0 in this chapter, which is 

close to the standard deviation of first-stage sample mean of the kth best system. To have 
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a good set-up of indifference zone parameter and understand completely about the 

comparison results, we need to know the true value of the variance parameter. 

The true variance parameter 𝜐𝐾−𝑘+12  for AR(1) and MA(1) models can be 

determined by certain formula described by Sargent (1992) and Batur (2009). Based on 

our settings of models, the variance parameter is calculated as:  

for AR(1) data:  𝜐12 = 𝜐22 = ⋯ = 𝜐𝐾−𝑘+12 = ⋯ = 𝜐𝐾2 =  1+𝜑
1−𝜑

;  

for MA(1) data:  𝜐12 = 𝜐22 = ⋯ = 𝜐𝐾−𝑘+12 = ⋯ = 𝜐𝐾2 = 1 + 2𝜃
1+𝜃2

.  

We set 𝜑 and 𝜃 as 0.9 and thus the variance parameter 𝜐𝐾−𝑘+12  is known and the 

corresponding indifference zone parameter can be calculated. 

Then we need to set up the number of first stage samples 𝑛0, which is also set 

differently from Chapter 3. This is because the dataset we used in this chapter are auto-

correlated and thus we need more data to have a good estimation of asymptotic variance. 

The criterion we applied to select the value of 𝑛0 is to make sure that the difference 

between the asymptotic variance estimation based on the first stage samples  𝑣2(𝑛0) =

𝑛0𝑣𝑎𝑟(𝑋�(𝑛0)) and the true value of asymptotic variance 𝑣2 is very small, for example, 

close to 0.01𝑣2. Thus for AR(1) we set 𝑛0 as 1000 and for MA(1) we set it as 60. 

Another parameter needs to be determined is the batch size 𝑚0 for the first stage. 

We will look into the values of 𝑚0 that are divisors of 𝑛0 and keep at least four batches. 

Thus for AR(1) we have 𝑚0 = 40, 50, 100, 125, 200, 250. And for MA(1) we have 

𝑚0 = 10, 12, 15. 

For each experiment, 1000 replications are carried out. And the pre-specified 

probability of correct selection 1 − 𝛼 is set as 0.95. 
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Table 4.1 Parameters used in the experiments 

Parameter Meaning Value 

K Number of alternative systems 10;20 

k Number of systems need to be selected 1;3;5 

𝜙 Correlation parameter for AR(1) 0.9 

𝜃 Correlation parameter for MA(1) 0.9 

𝑛0 Number of first stage observations AR(1):1000 
MA(1): 60 

𝑚0 Batch size for variance estimation  AR(1):40; 50; 100; 125; 200; 250      
MA(a): 10; 12; 15 

1 − 𝛼 Nominal probability of correct selection 0.95 

𝑣2 Variance parameter AR(1): 19 
MA(1): 1.99 

4.5 Experimental results 

The experimental results are shown in this section. There are two criteria applied 

to compare the performance of procedure FK-k+ for different simulation outputs and 

different parameters used in the procedure. They are probability of correct selection 

(PCS) and the average number of samples per system (ANS).  

We will discuss the performance of FS-k+ procedure in the next two subsections 

for AR(1) model and MA(1) model, respectively. 

4.5.1 Experiment Results for AR(1) Model 

From Table 4.2 to Table 4.5, all experiments with AR(1) model and K=10 are 

shown. The experiments under SC setting have larger (in most cases more than two 

times) ANS than those under MDM. Also the PCS is higher for MDM than SC. This is 

easy to understand because SC is corresponding to the worst-case scenario for the 

ranking and selection, while MDM represents a much easier case where we can easily 

eliminate many systems with much inferior means in the early stages. Next, we will 

present how the FS-k+ procedure performs for SC and MDM separately. 
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  SCconfiguration: Table 4.2 and Table 4.3 show the experiments under SC and 

the AR(1) model, the BM estimator needs 20%-96% more observations than the 

AREA estimator. As shown in Figure 4.1, for both estimators, the ANS increases 

quickly when 𝑚0 is increased from 200 to 250. And ANS increases more slowly 

when 𝑚0 is smaller than 200. At the same time, from Table 4.3, we can find that 

PCS is reduced when decreasing 𝑚0 for both variance estimators. And the BM 

estimator has better PCS than the AREA estimator in most cases. Especially when 

𝑚0 is smaller than 50, the PCS of the AREA estimator drops to 0.6 or 0.7 and that 

of BM estimator is still about 0.9. To explore the reason why the PCS is low for 

the AREA estimator in some cases, we check values of 𝑚0𝑉𝑖𝑙2 using the sample 

size of the first-stage observations, based on the two estimators. As stated in the 

procedure FS-k+, 𝑚0𝑉𝑖𝑙2 → 𝜐𝑖𝑙2𝜒2(𝑑)/𝑑 as 𝑛0 → ∞ and 𝜐𝑖𝑙2  is the asymptotic 

variance for data series 𝑋𝑖𝑗 − 𝑋𝑙𝑗, 𝑗 = 1, 2, …..Then 𝐸[𝑚0𝑉𝑖𝑙2] → 𝜐𝑖𝑙2 . The true 

value for 𝜐𝑖𝑙2  for is 38 based on our settings. We generate 500 replications of data 

outputs, and calculate the value of 𝑚0𝑉𝑖𝑙2 for each replication and estimate 

𝐸[𝑚0𝑉𝑖𝑙2] by the average of them. We plot this estimation for both BM and AREA 

estimators for different 𝑚0 values in Figure 4.2. We can find that the AREA 

estimator fails to have a reasonable estimation when 𝑚0 is small. But both 

estimators have similarly good estimation when 𝑚0 ≥ 200. The increase of value 

k also causes the increase of ANS. When k is increased from 1 to 3 or from 3 to 5, 

there are both two units increase in k but the latter only cost less than one third of 

the former case, which indicates that the increasing of ANS is slower than the 

linear trend.  
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Figure 4.1 Plot of ANS for experiments with K=10, AR(1) model and SC 

Table 4.2 Average number of observations per system (ANS) when AR(1) models are 
tested under SC configuration and K=10. 

 k=1 k=3 k=5 
𝑚0 BM AREA BM AREA BM AREA 
250 30974.7 18530.32 83815.8 43758.25 100326.6 51044.18 
200 18117.66 13600.94 43058.27 29330.91 50761.01 34132.86 
125 10130.96 8585.16 19534.58 15675.96 21831.18 17980.31 
100 8356.51 6995.63 15199.22 12611.56 17136.9 13961.69 
50 5795.18 3542.65 9564.46 6014.01 10513.53 6638.79 
40 5259.12 2684.97 8398.36 4536.05 9165.19 4998.41 
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Table 4.3 Estimated probability of correct selection (PCS) when AR(1) models are tested 
with SC configuration, K=10. 

 k=1 k=3 k=5 

𝑚0 BM AREA BM AREA BM AREA 

250 0.958 0.96 0.951 0.938 0.946 0.959 

200 0.965 0.961 0.962 0.951 0.942 0.951 

125 0.949 0.942 0.949 0.927 0.942 0.941 

100 0.953 0.928 0.937 0.921 0.944 0.919 

50 0.935 0.798 0.928 0.749 0.926 0.733 

40 0.901 0.755 0.912 0.64 0.894 0.619 

 

Figure 4.2 The average variance for the difference between two systems among different 
m0, when AR(1) model are used and K=10, k=3 
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 MDM configuration: Table 4.4 and Table 4.5 show the results for experiments 

under MDM. In terms of ANS, MDM costs much less than SC, which is about 

43%-61% less. And the PCS are all over 0.95, except for one case with AREA 

estimator. When 𝑚0 is larger than 125, PCS are all larger than 0.99 which is much 

higher than the nominal PCS 0.95. This is because the setting for our procedure, 

i.e. the value of 𝜂, is based on the SC configuration and is conservative for the 

MDM configurations. The relationship between ANS and 𝑚0, as well as between 

ANS and k are the same as SC: ANS increases as 𝑚0 increases and as k increases. 

Also, in the MDM cases, although the variance estimation is still not good when 

𝑚0 is small, the easier configuration leads to much better PCS.  

Table 4.4 Average number of observations per system (ANS) when AR(1) models are 
tested with MDM configuration, K=10. 

 k=1 k=3 k=5 
𝑚0 BM AREA BM AREA BM AREA 
250 12741.56 7983.89 33963.54 17571.04 39461.42 19943.48 
200 7965.66 6075.01 17268.18 11908.53 20204.87 13607.16 
125 4375.09 3830.23 7899.94 6422.52 8833.64 7196.32 
100 3722.69 3092.25 6401.15 5143.14 7034.31 5697.31 
50 2605.76 1815.61 3952.71 2566.96 4276.37 2750.51 
40 2363.29 1536.68 3485.67 2016.19 3805.50 2146.82 

 

Table 4.6 to Table 4.9 show the experiment results under AR(1) model when 

there are 20 systems total. Although the number of alternative systems is doubled, the 

estimated ANS is only increased by 27% on average for SC and AR(1) case, and even 

reduced by 12% for MDM and AR(1) case. This shows the increase of K value doesn’t 

always cause extra observations per system. The effects of k and 𝑚0 on ANS and the 

performance of variance estimation when K=20 are similar to the cases when K=10. 
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Table 4.5 Estimated PCS when AR(1) models are tested with MDM configuration, K=10. 

 k=1 k=3 k=5 

𝑚0 BM AREA BM AREA BM AREA 

250 0.994 0.992 0.997 0.995 0.998 0.997 

200 0.992 0.997 1 0.998 0.997 0.995 

125 0.993 0.992 0.995 0.996 0.998 0.998 

100 0.995 0.987 0.999 0.995 0.995 0.998 

50 0.986 0.964 0.995 0.984 0.997 0.987 

40 0.982 0.942 0.991 0.966 0.996 0.971 

Table 4.6 Average number of observations per system (ANS) when AR(1) models are 
tested with SC configuration, K=20. 

 k=1 k=3 k=5 

𝑚0 BM AREA BM AREA BM AREA 

250 41245.43 23123.23 128588.9 60010.2 191826.45 83811.45 

200 23060.34 16549.24 59948.55 38032.29 83386.65 51526.25 

125 11633.47 9774.83 23552.515 19222.28 30215.91 24117.25 

100 9738.5 7956.82 18071.065 14617.795 22795.25 18139.46 

50 6437.95 3885.13 10931.13 6776.125 13032.31 8178.22 

40 5814.41 2926.78 9571.83 5018.245 11324.03 6094.37 

Table 4.7 Estimated PCS when AR(1) models are tested with SC configuration, K=20. 

 k=1 k=3 k=5 

𝑚0 BM AREA BM AREA BM AREA 

250 0.953 0.964 0.954 0.956 0.954 0.945 

200 0.954 0.937 0.945 0.961 0.948 0.95 

125 0.947 0.941 0.951 0.93 0.932 0.94 

100 0.943 0.927 0.942 0.912 0.933 0.911 

50 0.932 0.812 0.916 0.731 0.908 0.681 

40 0.92 0.728 0.867 0.565 0.885 0.463 
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Table 4.8 Average number of observations per system (ANS) when AR(1) models are 
tested with MDM configuration, K=20. 

 k=1 k=3 k=5 

𝑚0 BM AREA BM AREA BM AREA 

250 12024.02 6769.57 35354.94 16010.89 50461.45 22365.93 

200 6741.97 4920.75 16210.31 10305.92 22041.88 13557.46 

125 3532.55 3003.16 6438.15 5239.07 8102.53 6437.38 

100 2865.89 2495.52 4981.23 4086.46 6118.99 4879.31 

50 2081.18 1553.48 3010.06 2058.11 3470.86 2314.67 

40 1919.34 1387.51 2680.99 1709.27 3071.5 1870.42 

Table 4.9 Estimated PCS when AR(1) models are tested with MDM configuration, K=20. 

 k=1 k=3 k=5 

𝑚0 BM AREA BM AREA BM AREA 

250 0.996 0.995 0.998 0.999 0.999 0.998 

200 0.997 0.996 1 0.999 0.998 0.998 

125 0.999 0.995 1 0.998 1 0.998 

100 0.999 0.993 0.998 0.999 0.999 0.998 

50 0.993 0.978 0.998 0.992 0.999 0.992 

40 0.986 0.959 0.996 0.97 0.995 0.978 

 

4.5.2 Experiment Results for MA(1) Model 

Table 4.10 to Table 4.13 show the results for MA(1) models with K=10. One of 

the biggest differences in the results between AR(1) and MA(1) models is that the 

estimated ANS for MA(1) is only 10% of that of AR(1) on average, for both SC and 

MDM configurations. And all the PCS for MA(1) model are larger than 0.95 even for 

small 𝑚0 values. In MDM configuration, all the PCS is even larger than 0.99. Unlike 

AR(1) models, the PCS are close to each other between the two variance estimators. One 
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of the reasons for the good results is that the true asymptotic variance for the difference 

between two systems is 3.8, which is much smaller than AR(1). This is also why we only 

need 60 first-stage observations to do a good estimation of the asymptotic variance. Table 

4.14 shows that the estimated asymptotic variance is very close to the true value 3.8. 

There are also similar trends to AR(1) model. The ANS increases as 𝑚0 increases or as k 

increases. The AREA estimator costs 50%-80% observations of BM estimator. And the 

SC configuration takes more observations than the MDM configuration. 

Table 4.10 Average number of observations per system (ANS) when MA(1) models are 
tested with SC configuration, K=10. 

 k=1 k=3 k=5 

𝑚0 BM AREA BM AREA BM AREA 

15 1873.723 1150.017 5147.33 2709.528 6147.357 3168.944 

12 1101.151 868.7633 2567.051 1857.514 3045.074 2128.097 

10 821.9294 712.6566 1798.564 1431.298 2027.651 1649.123 

Table 4.11 Estimated PCS when MA(1) models are tested with SC configuration, K=10. 

 k=1 k=3 k=5 

𝑚0 BM AREA BM AREA BM AREA 

15 0.954 0.953 0.958 0.955 0.957 0.957 

12 0.961 0.949 0.951 0.952 0.957 0.953 

10 0.959 0.958 0.961 0.967 0.955 0.961 
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Table 4.12 Average number of observations per system (ANS) when MA(1) models are 
tested with MDM configuration, K=10. 

 k=1 k=3 k=5 

𝑚0 BM AREA BM AREA BM AREA 

15 775.61 492.3 2025.42 1114.4 2419.48 1207.33 

12 476.37 380 1054.33 752.22 1212.62 827.87 

10 369.73 312.06 727.71 579.30 823.02 652.4 

Table 4.13 Estimated PCS when MA(1) models are tested with MDM configuration, 
K=10. 

 k=1 k=3 k=5 

𝑚0 BM AREA BM AREA BM AREA 

15 0.992 0.994 0.995 0.999 0.998 0.995 

12 0.994 0.995 0.998 0.995 0.997 0.998 

10 0.992 0.994 0.995 0.996 0.998 0.995 

Table 4.14 Estimated asymptotic variance for the difference between systems for MA(1) 
model 

𝑚0 10 12 15 

Estimator BM AREA BM AREA BM AREA 

Est. var (𝑚0𝑉𝑖𝑙2)  3.7766  3.7934  3.7930 3.8325 3.8064    3.8863 

 

Table 4.15 and Table 4.18 show the experiment results under MA(1) model and 

when there are 20 systems in total. Although the number of alternative systems is 

doubled, the estimated ANS is only increased by 40% for SC configuration and reduced 

by 6% for MDM configuration. This is consistent with the result under AR(1) model. 
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Table 4.15 Average number of observations per system (ANS) when MA(1) models are 
tested with SC configuration, K=20. 

 k=1 k=3 k=5 

𝑚0 BM AREA BM AREA BM AREA 

15 2480.60 1442.34 7727.58 3697.51 11437.86 5176.67 

12 1382.14 1035.79 3610.61 2382.46 5070.48 3181.91 

10 1008.17 836.51 2322.08 1804.77 3114.37 2333.71 

Table 4.16 Estimated PCS when MA(1) models are tested with SC configuration, K=20. 

 k=1 k=3 k=5 

𝑚0 BM AREA BM AREA BM AREA 

15 0.963 0.942 0.969 0.973 0.95 0.947 

12 0.952 0.961 0.951 0.965 0.968 0.955 

10 0.958 0.966 0.945 0.952 0.951 0.955 

Table 4.17 Average number of observations per system (ANS) when MA(1) models are 
tested with MDM configuration, K=20. 

 k=1 k=3 k=5 

𝑚0 BM AREA BM AREA BM AREA 

15 742.56 422.43 2056.8 1007.86 3044.57 1364.16 

12 403.32 302.63 984.38 652.62 1323.66 856.49 

10 295.23 252.09 626.68 489.29 831.86 621.79 
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Table 4.18 Estimated PCS when MA(1) models are tested with MDM configuration, 
K=20. 

 k=1 k=3 k=5 

𝑚0 BM AREA BM AREA BM AREA 

15 0.999 0.997 0.999 1 0.998 0.999 

12 0.999 0.998 0.998 0.999 0.999 1 

10 0.996 0.996 0.999 0.999 1 1 

 

4.5.3 Summary of Experiment Results 

We conduct hundreds of experiments to test the performance of FS-k+ procedure 

in this chapter. Parameters such as the variance estimators, the data generating models, 

the between-system steady-state mean configuration, k, K and 𝑚0 are controlled. We find 

that our procedure, which is theoretically based on limiting process, can perform well in 

finite-sample scenario in most cases. BM estimator generally requires more observations 

than AREA estimator, but can usually assure higher PCS. So if the cost of observations is 

not as important as high probability of correct selection, BM estimator is preferred to 

AREA. The first-stage batch size 𝑚0 is also influential to the results. Large 𝑚0 requires 

more observations, but can assure higher PCS. This is another tradeoff between ANS and 

PCS.  

4.6 Conclusion 

In this chapter, we introduce the multi-best ranking and selection problem in 

steady-state simulation. And then we present the concept of asymptotic analysis and 

asymptotic variance, based on which we can extend the FS-k procedure for terminating 

simulation to solve R&S for steady-state simulations. The extended procedure FS-k+ is 

described and the theoretical proof on its asymptotic performance is provided. Then we 
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conduct hundreds of experiments to study the performance of FS-k+ and the influences of 

different parameter settings and data types for finite samples.  

Based on our results, we can conclude that our procedure is effective in 

determining the multi-best systems for steady-state simulation. And when we set up the 

procedure, there is a trade-off between the number of observations and the probability of 

correct selection. These need to be decided by considering the cost of observations, 

importance to assure PCS, and other factors. 
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CHAPTER 5  

CONCLUSION AND FUTURE WORK 

In this thesis, we studied ranking and selection problems for both terminating and 

steady-state simulation. A ranking and selection procedure is to find the single one 

system or multiple systems with the best (largest/smallest) population mean(s). We 

designed two multi-best R&S procedures based on the fully sequential concept, one for 

terminating simulation, and the other one for steady-state simulation. We also conducted 

extensive experiments to study the procedures and compared their performances with 

existing methods. A good procedure should achieve two goals: assure the probability of 

correction selection and save number of samples/observations. Thus we consider these 

two as the criteria in evaluation of our approaches in the experiments of this thesis. 

When we apply ranking and selection procedures to compare steady-state 

performance of systems, we should remove the initialization bias first. Initialization bias 

is caused by starting the sample generation from non-steady state, or transient state. The 

system would take a “warm-up” before it hits its steady-state. This “warm-up” period, in 

other words initial trend, needs to be removed. Otherwise it could cause bias if we 

estimate the steady-state mean by all the samples. Thus we designed a heuristic 

initialization bias elimination method called the cusum-rule in Chapter 2, which is 

motived by the offline change point detection methods in the statistics literature. We 

showed that the cusum-rule can perform at least as good as, in in a lot cases much better 

than other existing methods. 

In Chapter 3, we proposed the multi-best ranking and selection method FS-k for 

terminating simulations. FS-k procedure is a fully sequential procedure that can 

sequentially select superior systems and eliminate the inferior ones at the same time. We 

provided theoretical proof on a lower bound of the probability of correc selection based 

on the proposed procedure. We have shown that this procedure can significantly save 
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observations compared with other multi-best R&S methods. In Chapter 3, we also 

consider the effect of the usage of common random numbers. The procedure is still valid 

when common random numbers are used. Our experiments showed that systems with 

positive correlations among their outputs can help save observations.  

After studying multi-best R&S for terminating simulations, we looked into 

solving this problem for steady-state simulation. The FS-k procedure was extended to 

steady-state simulation by employing the concept of asymptotic variance. We described 

the procedure FS-k+ in detail in Chapter 4 and also gave the theoretical proof of its 

asymptotic performance. By conducting experiments with different data types and 

procedure settings, we could claim that our procedure is also effective in most finite-

sample cases. Different variance estimators and different parameter values could 

influence results significantly. Through numerical experiments, we explained there is a 

trade-off between the required number of observations and the probability of correct 

selection for different set-up of the procedure. 

In the future, we plan to study how the usage of common random numbers would 

affect the experiment results for multi-best R&S procedure for steady-state simulation. 

We need to check that if our FS-k+ procedure can be still be effective when common 

random numbers are used and if its effect is the same as in the terminating simulations. 

We would like to know how our multi-best ranking and selection procedures, both FS-k 

and FS-k+, perform when the data generating models are more complicated than the ones 

we used in the experiments for this thesis, e.g., when the distribution of the data is 

significantly deviated from normal distribution. And we would also want to find out how 

our initialization bias elimination method, the cusum-rule, as well as the ranking and 

selection algorithms, perform for complex simulation models in various real-world 

applications.  
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APPENDIX 

In this appendix, we give the details about proof of lim𝛿→0 sup Pr {𝐼𝐶𝑆} ≤ 1 −

(1 − 𝛼)1/(𝑘(𝐾−𝑘)) under the conditions given in Theorem 4.1. 

As in the proof for Theorem 3.2, we still start with the case with two alternatives, 

system i and l, and 𝜇𝑖 ≥ 𝜇𝑙 + 𝛿. The value of 𝜂 is set as (4.2). And we want to show the 

probability of incorrect selection (ICS) between two systems satisfies: 

 lim inf𝛿→0 Pr{𝐼𝐶𝑆} ≤ 1 − (1 − 𝛼)1/(𝑘(𝐾−𝑘)). 

When 𝑁𝑖𝑙 + 1 > 𝑛0, we set 𝑇(𝛿) = min {𝑟: 𝑟 ≥ 𝑛0 𝑎𝑛𝑑 |𝑋�𝑖(𝑟) − 𝑋�𝑙(𝑟)| ≥ 𝑊𝑖𝑙(𝑟)}. Here 

𝑇(𝛿) represents the stage at which the procedure FS-k+ terminates.  

Pr{𝐼𝐶𝑆} 

= Pr�𝑋�𝑖(𝑟) − 𝑋�𝑙(𝑟) ≤ 𝑊𝑖𝑙�𝑇(𝛿)�� 

= Pr�∑ �𝑋𝑖𝑗 − 𝑋𝑙𝑗�
𝑇(𝛿)
𝑗=1 ≤ −𝑇(𝛿) ∗ 𝑊𝑖𝑙�𝑇(𝛿)��  

= Pr �∑ �𝑋𝑖𝑗 − 𝑋𝑙𝑗�
𝑇(𝛿)
𝑗=1 ≤ −𝑇(𝛿) ∗ max �0, 𝛿

2𝑐𝑇(𝛿) �
ℎ2𝑚0𝑉𝑖𝑙

2

𝛿2
− 𝑇(𝛿)���  

= Pr �∑ �𝑋𝑖𝑗 − 𝑋𝑙𝑗�
𝑇(𝛿)
𝑗=1 ≤ min �0,−ℎ2𝑚0𝑉𝑖𝑙

2

2𝑐𝛿
+ 𝛿𝑇(𝛿)

2𝑐
��  

= Pr �∑ �𝑋𝑖𝑗 − 𝑋𝑙𝑗�
𝑇(𝛿)
𝑗=1 − (𝜇𝑖 − 𝜇𝑙)𝑇(𝛿) + (𝜇𝑖 − 𝜇𝑙)𝑇(𝛿) ≤ min �0,−ℎ2𝑚0𝑉𝑖𝑙

2

2𝑐𝛿
+

𝛿𝑇(𝛿)
2𝑐

��    

=

𝑃r {�∑ �𝑋𝑖𝑗 − 𝑋𝑙𝑗�
𝑇(𝛿)
𝑗=1 − (𝜇𝑖 − 𝜇𝑙)𝑇(𝛿)� 𝑣𝑖𝑙�𝑁𝑖𝑙 + 1� +

(𝜇𝑖 − 𝜇𝑙)𝑇(𝛿) 𝑣𝑖𝑙�𝑁𝑖𝑙 + 1 ⁄ ≤ min �0,− ℎ2𝑚0𝑉𝑖𝑙
2

2𝑐𝛿𝑣𝑖𝑙�𝑁𝑖𝑙+1
+ 𝛿𝑇(𝛿)

2𝑐𝑣𝑖𝑙�𝑁𝑖𝑙+1
�}  

≤ Pr {(∑ �𝑋𝑖𝑗 − 𝑋𝑙𝑗�
𝑇(𝛿)
𝑗=1 − (𝜇𝑖 − 𝜇𝑙)𝑇(𝛿)) 𝑣𝑖𝑙�𝑁𝑖𝑙 + 1� + 𝛿𝑇(𝛿) 𝑣𝑖𝑙�𝑁𝑖𝑙 + 1 ⁄   

 ≤ min {0,− ℎ2𝑚0𝑉𝑖𝑙
2

2𝑐𝛿𝑣𝑖𝑙�𝑁𝑖𝑙+1
+ 𝛿𝑇(𝛿)

2𝑐𝑣𝑖𝑙�𝑁𝑖𝑙+1
}} 

= 𝐸{Pr {(∑ �𝑋𝑖𝑗 − 𝑋𝑙𝑗�
𝑇(𝛿)
𝑗=1 − (𝜇𝑖 − 𝜇𝑙)𝑇(𝛿)) 𝑣𝑖𝑙�𝑁𝑖𝑙 + 1� + 𝛿𝑇(𝛿) 𝑣𝑖𝑙�𝑁𝑖𝑙 + 1 ⁄   

≤ min {0,− ℎ2𝑚0𝑉𝑖𝑙
2

2𝑐𝛿𝑣𝑖𝑙�𝑁𝑖𝑙+1
+ 𝛿𝑇(𝛿)

2𝑐𝑣𝑖𝑙�𝑁𝑖𝑙+1
}|𝑚0𝑉𝑖𝑙2}}   

Then inequality happens because 𝜇𝑖 − 𝜇𝑙 ≥ 𝛿 and we replace 𝜇𝑖 − 𝜇𝑙 by 𝛿.  

When 𝑁𝑖𝑙 + 1 ≤ 𝑛0, in other words, ℎ
2𝑚0𝑉𝑖𝑙

2

𝛿2
< 𝑛0, we have  

𝑊𝑖𝑙(𝑛0) = max �0, 𝛿
2𝑐𝑛0

�ℎ
2𝑚0𝑉𝑖𝑙

2

𝛿2
− 𝑛0�� = 0. 
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Pr{𝐼𝐶𝑆} = Pr {𝑋�𝑖(𝑛0) ≤ 𝑋�𝑙} 

= Pr{𝑋�𝑖(𝑛0) − 𝑋�𝑙 ≤ 0} 

= Pr {∑ �𝑋𝑖𝑗 − 𝑋𝑙𝑗�
𝑛0
𝑗=1 ≤ −𝑛0 ∗𝑊𝑖𝑙(𝑛0)}  

Thus, the result in 𝑁𝑖𝑙 + 1 > 𝑛0 case can also stand when 𝑁𝑖𝑙 + 1 ≤ 𝑛0 by making 

𝑇(𝛿) = 𝑛0. 

Further step, we want to prove that lim𝛿→0 sup Pr {𝐼𝐶𝑆} ≤ 1 − (1 − 𝛼)1/(𝑘(𝐾−𝑘)). 

For this purpose, we first construct a standardized partial sum  

𝐶𝑖𝑙(𝑡, 𝛿) =
∑ �𝑋𝑖𝑗−𝑋𝑙𝑗�−(𝑁𝑖𝑙+1)(𝜇𝑖−𝜇𝑙)𝑡
�(𝑁𝑖𝑙+1)𝑡�
𝑗=1

𝑣𝑖𝑙�𝑁𝑖𝑙+1
, where 0 ≤ 𝑡 ≤ 1. 

𝐶𝑖𝑙 can be interpreted as a function of 𝛿 because 𝑁𝑖𝑙 is a function of 𝛿. Then we define an 

estimation of 𝑇(𝛿): 

𝑇�(𝛿) = min {𝑡 ∈ � 𝑛0
𝑁𝑖𝑙+1

, 𝑛0+1
𝑁𝑖𝑙+1

, … , 1�:  

�𝐶𝑖𝑙(𝑡, 𝛿) + 𝛿𝑡(𝑁𝑖𝑙 + 1) 𝑣𝑖𝑙�𝑁𝑖𝑙 + 1 ⁄ � ≥ ℎ2𝑚0𝑉𝑖𝑙
2

2𝑐𝛿𝑣𝑖𝑙�𝑁𝑖𝑙+1
− 𝛿𝑡(𝑁𝑖𝑙+1)

2𝑐𝑣𝑖𝑙�𝑁𝑖𝑙+1
}. 

Actually 𝑇�(𝛿) = 𝑇(𝛿)/(𝑁𝑖𝑙 + 1). Also, a stopping time of the corresponding continuous-

time process is defined as: 

𝑇�(𝛿) = min {𝑡 ≥ 𝑛0
𝑁𝑖𝑙+1

:  

�𝐶𝑖𝑙(𝑡, 𝛿) + 𝛿𝑡(𝑁𝑖𝑙 + 1) 𝑣𝑖𝑙�𝑁𝑖𝑙 + 1 ⁄ � ≥ ℎ2𝑚0𝑉𝑖𝑙
2

2𝑐𝛿𝑣𝑖𝑙�𝑁𝑖𝑙+1
− 𝛿𝑡(𝑁𝑖𝑙+1)

2𝑐𝑣𝑖𝑙�𝑁𝑖𝑙+1
}. 

We can find for one fixed 𝛿, 𝑇�(𝛿)(𝑁𝑖𝑙 + 1) is the smallest integer greater than or equal to 

𝑇�(𝛿) (𝑁𝑖𝑙 + 1). Because as 𝛿 → 0, 1
𝑁𝑖𝑙+1

→ 0, 𝑇�(𝛿) → 𝑇�(𝛿) . Thus in the limit we can 

focus on continuous version 𝐶𝑖𝑙�𝑇�(𝛿), 𝛿�. 

According to Lemma 4.1 (Fabian 1974), Lemma 4.2 and assumptions, we can have: 

𝐶𝑖𝑙(𝑡, 𝛿) + 𝛿𝑡(𝑁𝑖𝑙 + 1) 𝑣𝑖𝑙�𝑁𝑖𝑙 + 1 ⁄ → 𝐵(𝑡,Δ) as 𝛿 → 0, conditioning on 𝑚0𝑉𝑖𝑙2 

where Δ = lim𝛿→0 𝛿(𝑁𝑖𝑙 + 1) 𝑣𝑖𝑙�𝑁𝑖𝑙 + 1 ⁄ =
�ℎ2𝑚0𝑉𝑖𝑙

2

𝑣𝑖𝑙
. 

Then to satisfy the requirement of Lemma 4.1 (Fabian 1974), we let  

𝒜(𝛿) = ℎ2𝑚0𝑉𝑖𝑙
2

2𝑐𝛿𝑣𝑖𝑙�𝑁𝑖𝑙+1

𝛿→0
�⎯�

�ℎ2𝑚0𝑉𝑖𝑙
2

2𝑐𝑣𝑖𝑙
≡ 𝒜, 

ℬ(𝛿) = 𝛿(𝑁𝑖𝑙+1)
2𝑐𝑣𝑖𝑙�𝑁𝑖𝑙+1

𝛿→0
�⎯�

�ℎ2𝑚0𝑉𝑖𝑙
2

2𝑐𝑣𝑖𝑙
≡ ℬ. 

Thus the continuous stopping time 𝑇�(𝛿) is the smallest t subject to 

�𝐶𝑖𝑙(𝑡, 𝛿) + 𝛿𝑡(𝑁𝑖𝑙 + 1) 𝑣𝑖𝑙�𝑁𝑖𝑙 + 1 ⁄ � ≥ 𝒜(𝛿) − ℬ(𝛿)𝑡 
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Define a mapping function 𝑓𝛿:𝐷[0, 1] → ℛ such that  

𝑓𝛿(𝑌) = 𝑌�𝑇𝑌,𝛿�, where 𝑇𝑌,𝛿 = inf{𝑡: |𝑌(𝑡)| −𝒜(𝛿) + ℬ(𝛿)𝑡 ≥ 0} for every 𝑌(𝑡) ∈

𝐷[0, 1] and 𝛿 > 0. So function 𝑓𝛿(𝑌) is the value of 𝑌(𝑡) at inf{𝑡: |𝑌(𝑡)| −𝒜(𝛿) +

ℬ(𝛿)𝑡 ≥ 0}. Similarly, define 𝑓(𝑌) = 𝑌(𝑇𝑌) where  𝑇𝑌 = inf {𝑡: |𝑌(𝑡)| −𝒜 + ℬ𝑡 ≥ 0} 

for every 𝑌(𝑡) ∈ 𝐷[0, 1] and 𝛿 > 0. 

Note that 

𝑓𝛿�𝐶𝑖𝑙(𝑡, 𝛿) + 𝛿𝑡(𝑁𝑖𝑙 + 1) 𝑣𝑖𝑙�𝑁𝑖𝑙 + 1 ⁄ � = 𝐶𝑖𝑙�𝑇�(𝛿), 𝛿� + 𝛿𝑇�(𝛿)(𝑁𝑖𝑙 + 1) 𝑣𝑖𝑙�𝑁𝑖𝑙 + 1 �  

and 𝑓�𝐵(∙,∆)� = 𝐵(𝑇𝐵(∙,∆),∆) by making 𝑌 = 𝐵(∙,∆). 

Denote 𝒴𝑖𝑙(𝑡, 𝛿) ≡ 𝐶𝑖𝑙(𝑡, 𝛿) + 𝛿𝑡(𝑁𝑖𝑙 + 1) 𝑣𝑖𝑙�𝑁𝑖𝑙 + 1 ⁄  where 𝑡 ∈ [0, 1] and 𝛿 > 0. 

Then according to (Kim 2005) and (Billingsley 1968), 𝑓𝛿�𝒴𝑖𝑙(𝑡, 𝛿)� → 𝑓�𝐵(∙,∆)� as 

𝛿 → ∞. 

Now unconditioning on 𝑚0𝑉𝑖𝑙2 we have                                                   

lim
𝛿→0

sup Pr{𝐼𝐶𝑆} 

≤ 𝐸[Pr {𝐵(𝑡,∆)exits continuation region through the lower boundary|𝑚0𝑉𝑖𝑙2] 

= 𝐸[∑ (−1)𝑙+1 �1 − 1
2
𝐼(𝑙 = 𝑐)� exp{−2𝒜ℬ(2𝑐 − 𝑙)𝑙}𝑐

𝑙=1 ] (By Lemma2) 

= 𝐸[∑ (−1)𝑙+1 �1 − 1
2
𝐼(𝑙 = 𝑐)� exp �−2 ℎ2𝑚0𝑉𝑖𝑙

2

(2𝑐)2𝑣𝑖𝑙
2 (2𝑐 − 𝑙)𝑙�𝑐

𝑙=1 ]  

= 𝐸[∑ (−1)𝑙+1 �1 − 1
2
𝐼(𝑙 = 𝑐)� exp �− 𝜂𝑑𝑚0𝑉𝑖𝑙

2

𝑐𝑣𝑖𝑙
2 (2𝑐 − 𝑙)𝑙�𝑐

𝑙=1 ] (By ℎ2 = 2𝑐𝜂𝑑) 

= ∑ (−1)𝑙+1 �1 − 1
2
𝐼(𝑙 = 𝑐)�𝑐

𝑙=1 𝐸[exp �− 𝜂𝑑𝑚0𝑉𝑖𝑙
2

𝑐𝑣𝑖𝑙
2 (2𝑐 − 𝑙)𝑙�]  

= ∑ (−1)𝑙+1 �1 − 1
2
𝐼(𝑙 = 𝑐)� (1 + 2𝜂(2𝑐−𝑙)𝑙

𝑐
)−𝑑/2𝑐

𝑙=1   

= 1 − (1 − 𝛼)1/(𝑘(𝐾−𝑘)) 

The fifth equality comes from the moment generating function of chi-square distribution. 

𝐸[exp(𝑡𝜒𝑣2)] = (1 − 2𝑡)−𝑣/2for 𝑡 < 1/2 and 𝜒𝑣2 is a chi-squared random variable with v 

degrees of freedom.  

We have proved that lim𝛿→0 sup Pr {𝐼𝐶𝑆} ≤ 1 − (1 − 𝛼)1/(𝑘(𝐾−𝑘)). 
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