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ABSTRACT 

Energy efficiency of industrial systems is of great concern to many. Modeling and 

optimization of industrial systems has been an active research area aiming at improvement of 

energy efficiency of these systems. Traditional analytical and physics-based methods, reported in 

literature, limit modeling industrial systems, which are complex, nonlinear, and dynamic.  

Due to progress in data collection techniques, large volume of data has been collected 

and stored for analysis. Although much valuable information is contained in such data, 

utilization of the data in modeling industrial systems is lagging. Data mining is a novel science, 

providing a platform and techniques to model complex systems and processes. Data mining 

techniques have been widely applied in modeling various systems. 

In this Thesis, two energy intensive industrial systems are investigated, a pump system in 

wastewater treatment plants, and an HVAC system in commercial buildings. Data mining is 

utilized to derive models describing the relationship between target, operational cost of systems, 

and system control variables. An optimization model is constructed to minimize operational cost 

of a system, and intelligent algorithms are employed to solve the optimization models. The study 

demonstrates a considerable energy saving by applying the proposed control strategy. 

The approach developed in this Thesis can be applied to industrial systems other than the 

pump and HVAC systems. 
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CHAPTER 1 

INTRODUCTION 

Energy savings have become an important issue reducing costs and minimizing adverse 

impact on the environment. Numerous studies on energy savings in industrial facilities and 

processes have been reported in the literature [1–3]. In this thesis, industrial facilities of energy 

intensive are investigated, among those are pump system in wastewater treatment plants and 

heating, ventilation, and air conditioning (HVAC) system in commercial buildings.  

It has been reported that approximately 3% of all electrical energy consumption in the 

United States and United Kingdom is typically accounted for electricity consumption by water 

and wastewater utilities [4]. Between 90% and 95% of the electricity purchased by water and 

wastewater utilities is used for pumping [5]. Consequently, optimizing management of pump 

system would lead to big economic benefits. The traditional operation of pump system is much 

dependent on experience of engineers, which leaves much space for energy savings using 

advanced management strategy. On the other hand, HVAC system is an important facility of 

buildings, providing heating, ventilation, and air conditioning to maintain comfort in buildings, 

as people spend large portion of time in buildings these days. The HVAC system consumes over 

50% of the building energy in the US [6]. In most buildings, HVAC system is operated under 

full capacity all the time to meet peak load which happens occasionally. Energy savings are 

expected to operate HVAC system based on in-time load of buildings. 

The development of data mining technology and data collection technique enable data-

driven method to extract valuable information from historical data collected. The goal of this 

thesis is to achieve energy saving by optimizing management of pump system and HVAC system 

using data mining method. 
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1.1 Review of techniques for modeling and optimizing a pump 

system 

The early research on pumps focused on the design of water distribution systems and 

pump control. The design research emphasized the minimization of costs. Alperovits and Shamir 

[7] optimized the design of a water distribution system using a linear programming gradient 

method. The proposed design aimed at minimizing the capital and operations cost of the water 

distribution system. Cunha and Sousa [8] investigated the design of a water distribution network 

with simulated annealing. Lansey and May [9] combined nonlinear programming and simulation 

in the design of a water distribution system. Studies on pump system control have focused on 

system efficiency. Ma and Wang [10] studied the control of variable speed pumps to optimize 

the energy efficiency of air-conditioning systems. Zhuan and Xia [11] applied model predictive 

control to a water pumping station. Ormsbee and Lansey [12] modeled and optimized the 

operations of a water supply system. The published studies on the design and operation of water 

distribution systems [7–12] have seldom considered energy savings.  

The interest in energy savings for pumps is growing. Wang et al. [13] discussed 

scheduling the operations of water supply pumps using physics-based models. Zhuan and Xia 

[14] applied dynamic programming to schedule pumps with the objective of minimizing the total 

cost. Zhang et al. [15] studied ways to minimize the energy used by pumps in wastewater 

processing using data-driven models. Scheduling models have been solved using computational 

intelligence algorithms, including a genetic algorithm [16], particle swarm optimization [17], and 

ant colony optimization [18]. Van Zyl et al. [19] incorporated two hill-climbing strategies into a 

genetic algorithm to enhance the local search. Hajji et al. [20] integrated the scatter search, Tabu 

search, and neural network algorithms. A hybrid optimization algorithm was demonstrated at the 

Bouregreg water production system in Morocco. Lopez-lbanez et al. [21] introduced a variable 

coding scheme to reduce the search space compared to the binary representation in optimization.  
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To the author’s knowledge, modeling characteristic of operating multiple pumps 

simultaneously is difficult and seldom investigated. The issue of scheduling pump system 

considering maintenance is also lack of attention. 

1.2 Review of optimal control of a HVAC system 

HVAC system has been an active area of the research, as it is one of the main energy 

consuming units in buildings. Typically, much efforts have been devoted to supervisory control 

these years, often named optimal control, which optimize HVAC system at the system level. 

Wang et al [22] gave a thorough review on supervisory control. Supervisory control can be 

classified to two categories, model-free supervisory control and model-based supervisory 

control. Model-based control can be further divided to physical based model control and 

black/gray-box model based supervisory control. 

 Model-free supervisory control develops no model, but control the system by rules 

generated by expert systems. Alcala et al. [23] proposed a fuzzy logic approach with rule weight 

derivation and rule selection to minimize the energy consumption of HVAC systems. Model-free 

supervisory control much depends on expert knowledge, which may suffer serious error out of 

knowledge of expert system. For model-based supervisory, based on physics, Lu et al. [24–25] 

formulated a global energy model by integrating energy models of the critical components of 

HVAC systems. Wang and Jin [26] studied the optimal control of an air-conditioning system 

using physics models. However, detailed physics models are complex and not suitable for online 

applications. Approaches other than physics-based models have been applied to optimize the 

performance of HVAC systems. Nassif and Moujaes [27] introduced a simple HVAC control 

strategy, selecting one of three pre-determined combinations of controller set points instead of 

solving physics-based models. Kusiak and Xu [28] applied a data-driven approach to construct a 

bi-objective optimization model for minimizing the energy consumption while preserving 

thermal comfort.  
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Although intensive discussions on minimizing the energy consumption of HVAC systems 

have been presented in the literature, the majority of research focused on optimization in a 

specified time interval, whereas optimization over long time horizons was rarely considered. 

1.3 Applications of data mining methods in industry 

Data mining is a powerful technique to discover and to reveal previously unknown, 

hidden, meaningful and useful patterns. [29]. Many engineering systems are not only energy 

intensive, and are becoming information intensive, as people realized the value of data.  

Engineering systems generally have non-linear and complex characteristics. It is difficult 

to describe those systems using physical laws. However, data collected during the operation of 

systems contain those valuable information. Data mining technology has been applied in many 

industrial system management to improve efficiency of power usage, predict and diagnose 

system faults and so on. Koksal et al. [30] comprehensively reviewed the application of data 

mining techniques in manufacturing industrials. Fu X. and Cheng F. [31] applied data mining 

technique to improve building operational performance. Clustering analysis and association rules 

for extracting valuable information from data were studied and applicability was validated. 

Ilhami et al [32] utilized data mining method for wind turbine operation. Due to the stochastic 

nature of wind, the power generated by wind turbine is very difficult to predict, but data mining 

method gives good results in wind power predictions. In [33], Data mining method was applied 

for detection of system faults to avoid expense of inefficiency or failure of system. In [34], Data 

mining was used in predicting coefficient of performance (COP) for refrigeration equipment. 

Predicting coefficient of performance is useful in equipment monitoring, which lead to better 

performance of equipment. 

Although data mining method has been widely applied to engineering field, it is still far 

from mature and advanced application in real systems. Further study is still required. 
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1.4 Thesis structure 

The structure of the thesis is organized as follows. The first chapter introduced the 

background and goal of this thesis. Study on modeling and optimization of pump systems and 

HVAC systems has been reviewed in this section. And we reviewed application of data mining 

in industrial systems’ operation. In chapter 2, pump system in a wastewater treatment plant was 

studied. Optimization model was constructed to help decide optimal pump system configuration 

and rotating speeds of pumps. Chapter 3 studied the scheduling of pump system considering 

maintenance of pumps. Maintenance decision of pump was modeled as a Markov decision 

process. In chapter 4, HVAC system in a commercial building is studied. Bi-objective 

optimization model considering both energy consumption and ramp rate of room temperature 

were presented. In the end, conclusion was made in chapter 5. 
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CHAPTER 2 

OPTIMIZATION OF WASTEWATER PUMPING PROCESS WITH A DATA-

DRIVEN APPROACH 

2.1 Introduction 

Pump system consumes considerable electricity in wastewater treatment plant. In this 

chapter, the pump system in a wastewater treatment plant is investigated. The objective is to 

compute and optimize the schedule of pump system in the preliminary process by minimizing 

energy consumption, while keeping the level of wet well chamber in a reasonable range.  

Multiple layer perceptron (MLP) neural network is applied to model the pumping process 

of the pump system. The energy consumption models and outflow rate models of pump system 

configurations are derived from historical data. The optimization model is constructed by 

integrating those models and physical constraints, in which optimal pump system configuration 

and rotating speeds settings of pumps were decided. A pilot study optimizing pump system 

schedule presented by Zhang et al [15] achieved around 24.3% energy savings. 

Due to the non-linearity and complexity of the optimization model, a computational 

intelligent algorithm, improved harmony search (IHS) [35] is utilized to solve the optimization 

model. Three scenarios are investigated, including low inflow rate scenario, medium inflow rate 

scenario, and high inflow rate scenario. Using the data collected from a wastewater treatment 

plant, considerable energy is saved in all three scenarios using the optimization model.  

2.2 Pump configuration and data 

The data used in this study is provided by Wastewater Reclamation Facility (WRF), 

located in Des Moines. In this plant, six pumps are used to lift waste water from the wet well 

chamber to preliminary process. Based on the inflow rate and level of wet well chamber, 

appropriate pump system configuration is selected, and proper pump speeds are set, which is 

controlled by the pre-programming PLC control. 
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The wastewater pumping process data used in this study is taken over the period from 

1/1/2011 to 1/31/2013. The data is sampled with interval of 15 minutes. The data is processed to 

exclude errors and outliers. With six pumps, there are 26 = 64 pump system configurations in 

theory, including the configuration with all pumps are idle. In practical operation, five pumps at 

most can be simultaneously operated, and one or more pumps need to be used for backup. 

Further, the frequency of using different pump system configurations is not the same, resulting 

varied amount of historical data for different pump system configurations. To build statistical 

significant neural network models, sufficient data are necessary. With the data used in this study, 

24 configurations with sufficient data are found. The data for each pump system configuration is 

summarized in Table 2.1. For configuration index C18, for example, the description {5, 6} 

represents both pumps 5 and 6 are operated in configuration C18. 

Table 2.1. Pump configuration and corresponding data sets 

Configuration 
Description Train Test Total 

Configuration 
Description Train Test Total 

Index Index 

C1 {1} 6370 1592 7962 C13 {2, 6} 290 73 363 

C2 {2} 4980 1245 6225 C14 {3, 4} 280 70 350 

C3 {3} 5150 1287 6437 C15 {3, 6} 503 126 629 

C4 {4} 6754 1688 8442 C16 {4, 5} 4906 1227 6133 

C5 {5} 7644 1911 9555 C17 {4, 6} 1926 482 2408 

C6 {6} 9136 2284 11420 C18 {5, 6} 597 115 712 

C7 {1, 2} 430 108 538 C19 {1, 3, 5} 194 49 243 

C8 {1, 4} 484 121 605 C20 {1, 4, 5} 286 72 358 

C9 {1, 5} 289 72 361 C21 {2, 4, 5} 254 64 318 

C10 {2, 3} 2003 503 2506 C22 {2, 4, 6} 367 92 459 

C11 {2, 4} 706 176 882 C23 {3, 4, 5} 377 94 471 

C12 {2, 5} 159 42 201 C24 {1, 3, 4, 5} 266 66 332 
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2.3 Construction of a predictive model 

To optimize the schedule of pump system, the relationship between output, energy 

consumption, and inputs, pump system configuration, rotating speeds of pumps, the level of wet 

well chamber, should be modeled. Different from physics based models, data-driven models are 

constructed. In expression (2.1) and (2.2), Et represents the total energy of at a scheduling time 

window t, 15 min. ei,t represents the energy consumed using a single configuration Ci at time 

window t. 

 
24

1

, ,

C

t i t i t

i C

E e x


  (2.1) 

 , , 1 1 24( , ), C ,...,Ci t i i t te f l i v  (2.2) 

where i indicates the pump system configuration Ci shown in Table 2.1. xi,t is a binary parameter. 

xi,t = 1 represents the pump system configuration Ci at time window t is selected for operating, 

and this configuration does not work if xi,t = 0. Sum of xi,t should be 1 over i from C1 to C24, 

since only one configuration can be operated at a single time window. vi,t is a vector of rotating 

speeds of pumps for configuration i at time t. lt-1 denotes the level of wet well chamber at time t-

1. fi () represents the MLP neural network energy consumption model for configuration i. 

Energy consumption model for each configuration is modelled using multiple layer 

perceptron (MLP) neural networks. The training dataset is used for training the model, while the 

test dataset is used for evaluating the accuracy of the model. As test result of configuration C6 

was shown in Figure 2.1, predicted energy consumption by MLP neural network is quite the 

same with the observed energy consumption, which indicats high accuracy of models built. 

Similar results can be found in Figure 2.2 for configuration C10. Four metrics shown in Appendix 

A, MAE, sdAE, MAPE, and sdAPE, are used for evaluating the accuracy of predictive models. 

The testing result of all configuration were summarized in Table 2.2. From 2.2, MAPE of most 

models are less than 6%, which showed impressive accuracies of models. 
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Figure 2.1. Observed and predicted energy consumption for C6 

 

 

 

Figure 2.2. Observed and predicted energy consumption for C10 
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Table 2.2. Accuracy of predictive models for energy consumption 

Configuration 

Index 
MAE sdAE MAPE sdAPE 

Configuration 

Index 
MAE sdAE MAPE sdAPE 

C1 7.77 7.16 2.33% 2.33% C13 13.77 10.99 2.43% 2.03% 

C2 38.66 12.43 11.39% 4.38% C14 6.84 5.14 1.27% 0.96% 

C3 18.73 14.95 5.11% 4.48% C15 13.46 21.8 2.33% 3.33% 

C4 12.24 10.77 3.72% 3.21% C16 3.78 3.89 0.72% 0.80% 

C5 21.67 16.92 6.04% 4.11% C17 17.18 12.32 3.03% 2.30% 

C6 11.63 8.66 3.29% 2.02% C18 17.2 12.62 3.52% 2.77% 

C7 20.02 15.43 3.19% 2.34% C19 9.24 7.01 1.06% 0.79% 

C8 5.49 5.05 0.85% 0.73% C20 8.93 6.41 0.79% 0.54% 

C9 9.64 10.04 1.19% 1.23% C21 7.83 6.63 0.72% 0.59% 

C10 10.74 7.46 1.72% 1.19% C22 12.82 10.62 1.35% 1.19% 

C11 11.91 8.71 2.17% 1.51% C23 9.00 6.56 0.95% 0.73% 

C12 11.95 7.1 2.32% 1.50% C24 8.28 6.16 0.53% 0.40% 

 

Besides the energy consumption model, outflow rate models of pump configuration 

system are modelled using MLP neural networks. Outflow rate is modelled for monitoring the 

level of wet well chamber. The outflow rate model is shown in (2.3), and the level of wet well 

chamber is calculated in (2.4).  

 , , 1( , )i t i i t tO g l  v  (2.3) 

 

20

1

C

, ,

C

1

t i t i t

i

t t

I O x

l l
A







 


 (2.4) 

where Oi,t represents the outflow rate by pump system configuration Ci at time window t; It 

denotes the inflow rate flowing into the wet well chamber at time window t; A represents the area 

of wet well chamber, and ()ig is the MLP neural network model of outflow rate for 

configuration Ci. 
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The accuracy of outflow models are summarized in Table 2.3. Except for configurations 

C2 and C3, MAPE of models are smaller than 6%. The sdAPE of outflow rate model is a little 

bigger than that of corresponding energy consumption model, but the accuracies are still high. 

The plot showing the test accuracy of outflow rate model for configuration C18 is shown in 

Figure 2.2. 

Table 2.3. Accuracy of outflow rate models 

Configuration 

Index 
MAE sdAE MAPE sdAPE 

Configuration 

Index 
MAE sdAE MAPE sdAPE 

C1 1.9 1.45 4.83% 4.42% C13 1.61 1.5 2.55% 2.45% 

C2 6.08 2.03 16.44% 9.32% C14 3.46 1.94 5.77% 3.42% 

C3 4.63 2.18 11.44% 7.63% C15 2.16 3.01 3.27% 4.32% 

C4 1.48 1.77 3.84% 5.64% C16 1.47 1.39 2.17% 2.15% 

C5 0.48 0.38 1.11% 0.89% C17 1.86 1.61 2.61% 2.18% 

C6 0.65 0.49 1.49% 1.20% C18 1.71 1.83 2.63% 2.52% 

C7 4.82 4.42 7.11% 6.86% C19 1.42 1.49 1.33% 1.39% 

C8 1.35 0.96 1.67% 1.10% C20 0.96 0.71 0.69% 0.51% 

C9 1.37 2.37 1.51% 3.87% C21 1.26 1.29 0.95% 0.96% 

C10 3.14 1.58 4.64% 2.45% C22 1.96 1.62 1.78% 1.51% 

C11 2.28 2.27 3.56% 2.74% C23 3.86 2.95 3.39% 2.77% 

C12 3.05 1.93 4.79% 3.09% C24 1.59 1.33 0.87% 0.74% 
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Figure 2.3. Observed and predicted outflow rate for configuration C18 

2.4 Optimization model 

The energy consumption and outflow rate models trained by MLP neural networks are 

utilized to construct the optimization model of the pump system. The objective is to minimize the 

energy consumption by selecting the pump system configuration and controlling the rotating 

speeds of pumps. Meanwhile, some constraints have to be satisfied: 1) The level of wet well 

chamber should be restricted in a given range; 2) The change ratio of level of wet well chamber 

should be smaller than a given value,   , to avoid big fluctuation of physical system; 3) Only 

one configuration can be operated at one time window; 4) The rotating speeds of pumps should 

be between 80% and 100% of full speed to keep efficiency of pumps; 5) In practical 

implementation, difference of rotating speeds between pumps under operating should be smaller 

than a given value,  , for balancing load on pumps. Furthermore, predictive models would be 

more rigorous in this area with sufficient historical data. As illustrated in Figure 2.4, rather than 

optimized in a rectangle area formed by lowest and highest pump speed, the red filled area 

restricted by difference of speeds is optimized. In Figure 2.4, pump systems with 2 pumps are 

given, similar to pump systems with other multiple pumps.  
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Integrating equations (2.1) – (2.4) and constraints, the optimization model is constructed 

in model (2.5). 

 

 

 

 

Figure 2.4. Optimization area of pump speeds for two pumps 
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where lmin and lmax represent the lower and upper boundary of wet well chamber, respectively. vij,t 
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represents the speed of pump j in pump system configuration Ci, at time window t. pij,t = 1 

indicates pump j in configuration i at time window t is running. 

The model (2.5) consists of binary variables and continuous variables, besides nonlinear 

neural network models. Solving model (2.5) is challenging for conventional algorithms. Here, a 

computational algorithm, improved harmony search (IHS) [35] algorithm is applied to solve 

model (2.5). 

Harmony search algorithm was first proposed by Z.W. Geem et al in 2001 [36], 

mimicking the process the improvisation of music players.  Although it is a relatively new 

metaheuristic algorithm, its effectiveness and advantages have been demonstrated in various 

application. In this study, an improved harmony search algorithm is utilized to solve model (2.5), 

which employs a novel method for generating new solution vectors that enhances accuracy and 

convergence rate of harmony search (HS) algorithm. The steps in the procedures of IHS 

algorithm are presented as follows. 

Step 1: Initialize parameters for IHS algorithm: HMCR, PAR, bw. 

Step 2: Initialize harmony memory (HM) by randomly generating solutions. 

Step 3: Improvise a new harmony. 

Step4: Update the harmony memory. 

Step5: Check the stopping criterion. Terminate if stopping criterion is satisfied; otherwise 

repeat Steps 3 to 5. 

Each harmony represents a solution, and each pitch denotes one decision variable. HMCR is 

harmony memory consideration rate, which decides if the new pitch is selected from harmony 

memory, or generated randomly for the new harmony (solution). The PAR is pitch adjust rate, 
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which controls whether adjust will be applied to new generated pitch, while bw (band width) 

controls scale that the pitch is adjusted. 

2.5 Computational results and discussion 

From the data set described in Section 2.2, 360 instances are used for validating the 

capacity of saving energy of model (2.5).  The inflow rate into the wastewater treatment plant 

would influence the pump operation and energy consumption. In this study, three scenarios are 

investigated considering level of inflow rate, low, medium and high, which were denoted with 

scenario 1, 2, and 3, respectively. The inflow rate for scenario 1 is ranging from 30 to 60 MGD. 

The inflow rate between 60 to 90 MGD is classified as scenario 2. And inflow rate of scenario 3 

is from 90 MGD to 200 MGD. 

Figures 2.5 and 2.6 show energy consumption and outflow rate by optimization in 

scenario 1.  It is obvious that optimized energy consumption is consistently smaller than that 

consumed before optimization, as shown in Figure 2.5. In Figure 2.6, outflow rate by 

optimization is almost the same as observed value. This came from the fact the area of wet well 

chamber is small. To keep the level of wet well chamber, outflow rate has to be very close to the 

volume of inflow rate. The optimization result of the first 20 cases for pump system 

configuration and rotating speed of pumps for scenario 1 has been summarized in Table 2.5 in 

Appendix, in which first 20 cases are shown. From the table, pump system configuration is 

changed from pump 3 to pump 5. Since same amount of water are pumped, energy consumption 

in optimization is much less, which may be the reason that pump 5 was more energy efficient 

than pump 3. 

The energy consumption savings can be observed in Figures 2.7 and 2.8 for scenarios 2 

and 3.  The first 20 cases of observed and optimized schedule for Medium and High inflow rate 

scenarios are summarized in Tables 2.6 and 2.7, respectively.  The results demonstrated 

difference of energy efficiency between pump system configurations. 
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Figure 2.5.Observed and optimized energy consumption for scenario 1 

 

 

 

Figure 2.6. Observed and optimized outflow rate for scenario 1 
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Figure 2.7.Observed and optimized pump energy consumption for scenario 2 

 

 

 

Figure 2.8. Observed and optimized pump energy consumption for scenario 3 
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120 cases with 15 minutes for each case are studied for each scenario. Therefore, 30 

hours are studied for each scenario. The energy savings are presented in Table 2.3. Similar 

percentages of energy savings are obtained in three scenarios. More absolute energy savings are 

achieved in higher inflow rate scenario. The result validated the capacity of saving energy of the 

optimization model. 

Table 2.4. Summary of energy saving by optimization 

Scenario 

Observed 

Energy 

(KWH) 

Optimized 

Energy 

(KWH) 

Energy 

Saved 

(KWH) 

Energy 

Saved (%) 

Scenario 1 11547.9 9411.7 2136.2 18.50% 

Scenario 2 20249.5 17102.3 3147.2 15.50% 

Scenario 3 35759.8 29892.3 5867.4 16.40% 

Table 2.5. Observed and optimized pump schedule for scenario 1 

Observed Pump Schedule Optimized Pump Schedule 

Pump

1 

Pump 

2 

Pump 

3 

Pump 

4 

Pump 

5 

Pump 

6 

Pump 

1 

Pump 

2 

Pump

3 

Pump

4 

Pump

5 

Pump

6 

- - 92.12 - - - - - - - 89.59 - 

- - 91.57 - - - - - - - 89.12 - 

- - 91.07 - - - - - - - 88.84 - 

- - 91 - - - - - - - 88.53 - 

- - 89.05 - - - - - - - 88.23 - 

- - 89.7 - - - - - - - 87.76 - 

- - 89.2 - - - - - - - 87.34 - 

- - 88.53 - - - - - - - 86.8 - 

- - 88.37 - - - - - - - 86.44 - 

- - 87.86 - - - - - - - 86.18 - 

- - 87.47 - - - - - - - 85.55 - 
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Table 2.5. Continued 

Observed Pump Schedule Optimized Pump Schedule 

Pump 

1 

Pump 

2 

Pump 

3 

Pump 

4 

Pump 

5 

Pump 

6 

Pump 

1 

Pump 

2 

Pump

3 

Pump

4 

Pump

5 

Pump

6 

- - 87.14 - - - - - - - 85.31 - 

- - 86.81 - - - - - - - 84.95 - 

- - 86.81 - - - - - - - 84.66 - 

- - 86.65 - - - - - - - 84.33 - 

- - 86.16 - - - - - - - 83.89 - 

- - 86.14 - - - - - - - 83.84 - 

- - 86.15 - - - - - - - 83.68 - 

- - 86.65 - - - - - - - 83.6 - 

- - 86.82 - - - - - - - 83.81 - 

Table 2.6. Observed and optimized pump schedule for scenario 2 

Observed Pump Schedule Optimized Pump Schedule 

Pump Pump Pump Pump Pump Pump Pump Pump Pump Pump Pump Pump 

1 2 3 4 5 6 1 2 3 4 5 6 

- 89.82 91.89 - - - - - - - 84.66 87.66 

- 90.16 92.44 - - - - - - - 85.52 87.86 

- 89.3 91.37 - - - - - - - 84.64 87.64 

- 89.64 91.89 - - - 90.43 - - - 87.43 - 

- 89.12 91.22 - - - - - - - 84.25 87.25 

- 89.12 91.37 - - - 89.74 - - - 86.74 - 

- 88.95 90.87 - - - - - - - 84.24 87.24 

- 88.27 90.19 - - - - - - - 84.14 87.14 

- 88.32 90.53 - - - 88.99 - - - 85.99 - 

- 87.92 90.02 - - - - - - - 83.88 86.88 

- 87.4 89.68 - - - - - - 87.45 86.66 - 

- 87.75 89.86 - - - - - - 86.6 86.45 - 

- 87.4 89.51 - - - - - - 85.81 87.38 - 

- 87.23 89.35 - - - - - - 85.79 86.79 - 

- 86.7 88.86 - - - - - - 86.01 86.21 - 

- 86.35 88.52 - - - - - - 85.32 86.79 - 

- 86.36 88.52 - - - - - - 84.82 87 - 
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Table 2.6. Continued 

Observed Pump Schedule Optimized Pump Schedule 

Pump 

1 

Pump 

2 

Pump 

3 

Pump 

4 

Pump 

5 

Pump 

6 

Pump 

1 

Pump 

2 

Pump 

3 

Pump 

4 

Pump 

5 

Pump 

6 

- 86.25 88.51 - - - - - - 84.48 86.61 - 

- 86.19 88.52 - - - - - - 84.59 86.47 - 

- 85.85 87.81 - - - - - - 85.01 84.8 - 

Table 2.7. Observed and optimized pump schedule for scenario 3 

Observed Pump Schedule Optimized Pump Schedule 

Pump Pump Pump Pump Pump Pump Pump Pump Pump Pump Pump Pump 

1 2 3 4 5 6 1 2 3 4 5 6 

100 97.36 99.88 88.35 - - 93.41 - 96.41 95.55 95.25 - 

100 97.7 99.88 88 - - 96.46 - 93.52 95.38 93.46 - 

100 97.53 99.88 88.17 - - 94.58 - 91.89 96.69 96.66 - 

100 97.52 99.88 88.16 - - 94.62 - 96.3 94.88 95.21 - 

100 97.59 99.88 88.17 - - 96.56 - 98.37 93.56 93.56 - 

100 97.71 99.88 88.17 - - 97.31 - 94.31 94.31 94.31 - 

100 97.71 99.89 88.17 - - 95.96 - 93.46 94.86 94.72 - 

100 97.71 99.88 87.32 - - 97.09 - 94.09 94.09 94.09 - 

100 97.53 99.89 87.15 - - 96.75 - 93.75 94.13 93.75 - 

100 97.7 99.88 85.96 - - 96.49 - 93.49 93.49 93.49 - 

100 97.54 99.89 85.62 - - 93.92 - 94.67 93.89 92.77 - 

100 97.72 99.89 85.78 - - 95.82 - 92.82 92.82 92.82 - 

100 97.71 99.89 84.94 - - 91.03 - 92.2 93.83 92.59 - 

100 97.71 99.89 83.59 - - 91.23 - 89.49 92.8 94.23 - 

- 97.72 99.89 94.36 - - - - 89.6 89.98 91.5 - 

- 92.79 95.3 95.72 - - 86.67 - 89.45 89.67 89.67 - 

91.41 86.95 89.34 90.08 - - 86.54 - 89.54 89.54 89.54 - 

91.73 87.28 89.67 90.58 - - 86.58 - 89.58 89.58 88.81 - 

91.92 87.46 89.67 90.59 - - 86.84 - 89.84 87.96 88.9 - 

91.21 86.75 89 89.9 - - 95.57 - - 92.57 98.57 - 
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CHAPTER 3 

OPTIMIZATION OF OPERATIONS AND MAINTENANCE COST OF 

PUMPS 

3.1 Introduction 

In this chapter, a model for scheduling the operations and maintenance of pumps in 

wastewater processing is investigated. The energy consumption and maintenance cost are 

considered. The pump performance is modeled using data-mining algorithms rather than physical 

laws. The modeling capability of these data-mining algorithms has been demonstrated in 

numerous studies [37, 38]. The maintenance decision-making is formulated as a Markov decision 

process (MDP) [39]. The feasibility of using a Markov decision process in studying machine 

maintenance scheduling was presented in [40, 41]. The scheduling model includes a data-driven 

pump performance model and the MDP maintenance decision-making model. Because of the 

model complexity, an extended particle swarm optimization algorithm is applied to solve it. 

3.2 Pump performance model 

A pump system composed of six heterogeneous pumps used in a wastewater treatment 

process is investigated in this research. This pump system is responsible for delivering 

wastewater from a raw wastewater junction chamber to the primary treatment process. The six 

pumps are used in various operational configurations. Because of the pump heterogeneity and 

head influence [13, 42], it is challenging to develop a generic model for all of these operational 

configurations. Considering individual configurations may lead to more accurate models [15, 

43]. In [15, 44], data-driven approaches were applied to model pump configurations. The energy 

consumption and wastewater outflow were modeled independently [15], which led to numerous 

models. In this paper, a new data-driven modeling strategy is introduced and tested. 
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3.2.1 Data description 

To model the performance of pumps, a dataset collected from Jan 1, 2011 to Jan 31, 2013 

is utilized. The data sampling interval is 15 min. The parameters in the dataset include the speeds 

of the six pumps, the junction chamber level, the wastewater outflow rate, and the energy 

consumption. The six pumps are indexed 1 to 6. The theoretical number of configurations for 

these six pumps is 62 [15]; however, only configurations with more than 190 data points are 

considered for modeling. Other configurations are discarded because of the insufficient data size. 

The dataset is then divided into subsets according to the pump configurations. Table 3.1 lists the 

pump configurations to be modeled and the corresponding datasets. 

Table 3.1. Pump configurations and corresponding data sets 

Configuration Index Description Training Test Configuration Index Description Training Test 

C1 {1} 3638 862 C13 {2, 6} 279 84 

C2 {2} 3636 864 C14 {3, 4} 268 82 

C3 {3} 3640 860 C15 {3, 6} 499 130 

C4 {4} 3598 902 C16 {4, 5} 3605 895 

C5 {5} 3609 891 C17 {4, 6} 1947 461 

C6 {6} 3623 877 C18 {5, 6} 566 146 

C7 {1, 2} 438 100 C19 {1, 3, 5} 199 44 

C8 {1, 4} 483 122 C20 {1, 4, 5} 284 74 

C9 {1, 5} 293 68 C21 {2, 4, 5} 238 80 

C10 {2, 3} 1994 512 C22 {2, 4, 6} 346 113 

C11 {2, 4} 711 171 C23 {3, 4, 5} 380 91 

C12 {2, 5} 165 34 C24 {1, 3, 4, 5} 267 63 
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3.2.2 Modeling strategy 

In this research, a multi-input multi-output (MIMO) model is developed to predict the 

energy consumption and wastewater outflow rate. A neural network algorithm [45] is applied to 

build the model. Figure 3-1 describes the proposed modeling strategy. 

 

 

 

 

Figure 3.1. Proposed modeling strategy 

The performance model of pump configuration i at time period t is formulated in (3-1). 

 ( , ), C ,C ,...,C , 1,2,...,, , N1 2
y f l i t Tti t i i t  x  (3.1) 
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, [ ]j

i t lb ubx x ,x , {0,1}j

ts i, j  . And e 

denotes energy consumption, o is wastewater outflow rate, function f(·) is MIMO model, input x 

is a vector of pump speeds, and l is the level of junction chamber. Variable s denotes status of 

pump. Pump is on with s = 1, otherwise, pump is off. Subscript i represents pump configuration 

i, and subscript t is time window t. The superscript j represents jth pump. 

A function, ( )iu  , is introduced to determine the selection of pump configuration i in a operation 

using strategy ts . By using 
,( 1) , j( )

i jg iI g as an indicator that pump j is operating in pump 

configuration i and 
,( 0) , j( )

i jg iI g to indicate that pump j is not selected, the general form of ( )iu  is 

expressed in (3.2). 
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Expression (3.2) is intuitively explained next. If 1Ci  , then only pump 1 is operated according 
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to Table 3.1. Thus, only 
1 ,1Cg equals 1, and the remaining variables are 0. Then, 

1
( )cu  is 

reformulated as 
1 2 3 4 5 6(1 )(1 )(1 )(1 )(1 )t t t t t ts s s s s s     , which ensures that pump configuration 1 

is selected, if and only if 1

ts is 1, while the remaining variables j

ts are 0 for 1j  . 

Based on Equations (3.1) and (3.2), the energy consumption of the pump system at t is 

computed according to (3.3). 

 
1

,( )( )
NC

t i t e i t

i C

E u


 s v y  (3.3) 

where 
1

( ) 1
NC

i t

i C

u


 s , (1,0)e v , 
1 2 6( , ,..., )T

t t t ts s ss , {0,1},j

ts j  . Similarly, the wastewater 

outflow rate of the pump system at time window t is expressed in (3.4). 

 
1

,( )( )
NC

t i t f i t

i C

F u


 s v y  (3.4) 

where (0,1)f v . 

The mass balance equation in (3.5) is utilized to compute the junction chamber level at 

the next time window based on the computed Ft. In (3.5), Q represents inflow rate, and A is area 

of junction chamber, and 0 denotes pump operation window. 

 0

1

( )t t

t t

Q F
l l

A





   (3.5) 

3.2.3 Model validation 

The dataset of each pump configuration in Section 3.2.1 was split into training and test 

datasets with ratios of 4/5 and 1/5, respectively, using random sampling. The models were 

trained using the training dataset and tested with the test dataset. The prediction accuracy of the 

developed models with measured using the following four metrics: 1) the mean absolute error 
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(MAE), 2) the standard deviation of the absolute error (sdAE), 3) the mean absolute percentage 

error (MAPE), and 4) the standard deviation of the absolute percentage error (sdAPE). These 

metrics are shown in Appendix A. 

The accuracy of the developed model for each pump configuration in predicting the 

energy consumption and wastewater outflow rate is presented in Table 3.2. A comparison of 

these results with the results reported in studies [15] shows that MAE and MAPE are slightly 

improved, while sdAE and sdAPE are significantly reduced. Figures 3.2 – 3.5 show the energy 

consumption and wastewater outflow rate prediction accuracies for two randomly selected pump 

configurations. 

Table 3.2. Prediction results for energy consumption and wastewater outflow rate 

Configuration 
Energy Consumption Wastewater Outflow Rate 

MAE sdAE MAPE sdAPE MAE sdAE MAPE sdAPE 

C1 6.33 5.09 0.02 0.01 1.18 1.04 0.03 0.03 

C2 6.51 5.47 0.02 0.01 0.87 0.81 0.02 0.02 

C3 6.29 5.14 0.02 0.01 0.81 1.02 0.02 0.02 

C4 6.36 6.06 0.02 0.02 1.04 0.93 0.02 0.03 

C5 4.45 5.26 0.01 0.01 1.52 0.85 0.03 0.02 

C6 7.93 7.62 0.02 0.02 1.04 0.83 0.02 0.02 

C7 14.34 13.27 0.02 0.02 2 2.48 0.03 0.04 

C8 5.19 6.09 0.01 0.01 1.33 1.1 0.02 0.01 

C9 11.75 31.26 0.02 0.04 1.67 3.92 0.02 0.05 

C10 7.42 5.52 0.01 0.01 1.83 1.8 0.03 0.03 

C11 6.98 6.31 0.01 0.01 1.18 1.09 0.02 0.02 

C12 8.94 13.28 0.02 0.02 1.35 2.53 0.02 0.03 

C13 14.69 11.61 0.03 0.02 1.38 1.05 0.02 0.02 

C14 6.6 4.55 0.01 0.01 1.63 1.52 0.02 0.02 

C15 20.49 82.4 0.03 0.12 1.79 2.15 0.03 0.03 

C16 6.34 5.76 0.01 0.01 1.64 1.93 0.02 0.02 

C17 14.8 10.8 0.03 0.02 1.17 0.97 0.02 0.01 

C18 15.03 10.94 0.03 0.02 1.22 1.06 0.02 0.01 
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Table 3.2 Continued 

 

Configuration 
Energy Consumption Wastewater Outflow Rate 

MAE sdAE MAPE sdAPE MAE sdAE MAPE sdAPE 

C19 6.67 5.66 0.01 0.01 1.39 1.11 0.01 0.01 

C20 8.34 5.81 0.01 0.01 1.31 0.96 0.01 0.01 

C21 10.13 6.39 0.01 0.01 1.57 1.3 0.01 0.01 

C22 14.8 13.28 0.01 0.01 3.31 4.81 0.03 0.04 

C23 12.29 10.09 0.01 0.01 2.97 2.02 0.02 0.02 

C24 7.8 5.72 0 0 1.14 0.94 0.01 0.01 

 

 

 

 

Figure 3.2. Observed and predicted energy consumption of configuration C1 
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Figure 3.3. Observed and predicted wastewater outflow rates of C1 

 

 

 

Figure 3.4. Observed and predicted energy consumption of C7 

 

30

35

40

45

50

55

60

65

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

W
as

te
w

at
er

 o
u
tf

lo
w

 r
at

e 
(M

G
D

)

Time interval (15-min)

Observed value Predicted value

400

450

500

550

600

650

700

750

800

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

E
n
er

g
y
 c

o
n
su

m
p

ti
o

n
 (

k
W

)

Time interval (15-min)

Observed value Predicted value



28 
 

 

Figure 3.5. Observed and predicted energy consumption of C7 

3.3 Pump system maintenance model 

A cost model for the maintenance of the pump system is introduced. A simplified 

maintenance scenario based on Assumptions 1 and 2 is considered. 

Assumption 1.Maintenance is performed on only one pump in a single period. 

Assumption 2. The maintenance time window, m , is n times the operational time window, 0 ,      

0m n  , where n > 1. 

In the pump system maintenance, decisions are made at two echelons. The first decision 

echelon, a decision vector, d, is introduced, and d = [d1, d2, d3, d4, d5, d6], {0,1}jd  , 

1,2,...,6j  and 
6

1

1j

j

d


 , describes the selection of the 
thj pump for maintenance. In the second 

echelon, two available maintenance actions need to be selected, a , {1,2}a . If 1a  , the pump 

will be repaired. If 2a  , the pump will be replaced by a new one. 
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3.3.1 Pump condition model 

A Markov process is utilized to model the pump conditions with the maintenance action, 

a . Two states for the pump condition are considered: normal (state 1) and inefficient (state 2). 

Let ' '

a

n m
p represent the probability of the pump condition transitioning from state 'n  to state 'm

under action a , ' ', 1,2n m  , the corresponding transition matrix, aP , is expressed as (3.6). 

 11 12

21 22

, 1,2
a a

a a a

p p
a

p p

 
  
 

P  (3.6) 

The operation of a pump impacts its condition. Thus, another matrix, oP , shown in Equation 

(3.7), is utilized to describe the transition probability of pump condition shifting. 

 11 12

21 22

[ ]
o o

o o o

p p

p p
P  (3.7) 

3.3.2 Markov decision model 

The cost of operating and maintaining pumps can be estimated based on the transition 

matrices, aP and oP , using models (3.8) and (3.9). Because the maintenance data are unavailable, 

the transition matrices, aP and oP , are assumed to be identical and independent for all pumps. A 

maintenance cost, aR , is incurred by implementing action a . In addition, the states of the pump 

condition after maintenance leads to two state costs, 1r  1( 0)r   and 2r . Based on the transition 

matrix, aP , and the costs, the expected cost of maintaining pump j with action a is formulated in 

Equation (3.8). 

 ' '

6
'

1 21 2
1

( , ) ( ), 1,2, 1,2a a

j a n n
j

C a d R p r p r a n


    d  (3.8) 

The ( , )tL sd in (3.9) is a pump operation loss function. Such a loss cost occurs when pumps 
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operate without maintenance. 

 ' '

6

( 0) 1 2( 1) 1 2
1

( , ) ( ) ( )( )j
j t

j o o

t d j ts n n
j

L I d I s p r p r 


 d s  (3.9) 

In (3.9), '1

o

n
p  and ' 2

o

n
p are the transition probabilities of operating pumps in states 1 and 2, 

respectively. 

3.4 Maintenance and operations scheduling model 

In this section, an optimization model is developed for scheduling the maintenance and 

operations of pumps. 

3.4.1 Objective function 

The maintenance and energy consumption costs are minimized in this study. A pump 

system performance model (3.3) is expressed in Section 3.2.2. However, because the first-

echelon maintenance decision d impacts the availability of pump configurations, the total energy 

consumption of the pump system over the maintenance period is expressed in (3.10). 

 
1

C 6

, ,

1 C 1

, ) (1 ) ( )( ),
o N

o

n
j

t i t j t i t e i t o m

t i j

d s u n




 
  

   E(d,s x s v y  (3.10) 

According to (3.8)-(3.10), the total cost of maintaining and operating the pump system, V is 

estimated in (3.11). 

 ,( , ) ( , ) , )t t i tV C a L  d d s E(d,s x  (3.11) 

3.4.2 Constraints 

Several constraints are considered in scheduling. First, the ramp rate of the wastewater 

junction chamber level at t should not be lower than 0 or higher than a pre-determined threshold, 

l , as expressed in (3.12). 

 0 tl l   (3.12) 
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The absolute difference between the influent flow rate and the wastewater outflow rate should be 

less than a threshold, F , as shown in (3.13). This constraint guarantees a smooth change in the 

junction chamber level, which is important in the wastewater delivery process. 

 t tQ F F   (3.13) 

The last important constraint is that for the pump speed settings discussed in Section 3.2.2. 

3.4.3 Optimization model 

Based on the objective function (3.11) and the constraints (3.12) and (3.13), the 

optimization model (3.14) is constructed.  
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 (3.14) 

The model (3.14) is transformed by applying a Lagrange multiplier, M, to constraints (3.12) and 

(3.13) [46]. 
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In addition, because there are only six options in the first-echelon decision jd , model 

(3.14) is reformulated as a master model (3.15) and six sub-models (3.16). 

The master model can be formulated as follows: 

 

1 2 6

min

s.t.

{ , , ..., }d d d

V

V V V V

 (3.15) 

The six sub-models are represented as follows: 
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 (3.16) 

After decomposition, only three types of variables, a, ts , and ,i tx are involved in model (3.16). 

the minimum of V can be obtained by solving model (3.16) iteratively with 1jd  , from j = 1 to 

6. 
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In (3.16), 
jdV is a linear combination of ( , )C ad , ( , )tL d s , ,, )t i tE(d,s x , and the penalty. 

Because ( , )C ad only involves variable a, and the left-over components only involve variables ts

and ,i tx , the minimum of 
jdV can be decomposed as the minimum of ( , )C ad and the minimum of 

the left-over parts. The optimal maintenance action a is deterministic because of the value of 

1 1

1 1 1 2 2( )n nR p r p r   / 2 2

2 1 1 2 2( )n nR p r p r   , a = 1, 2, 'n  = 1, 2. If the ratio is less than 1, the action a 

= 1 will be implemented. If the ratio is larger than 1, the action a = 2 will be implemented. If the 

ratio is equal to 0, either action can be implemented. Based on the minimum of ( , )C ad , the 

optimal ts and ,i tx need to be obtained to determine the minimum of 
jdV . 

3.5 Extended particle swarm optimization algorithm 

Solving model (3.16) is challenging for the following two reasons: 1) data-driven pump 

performance models are included, and 2) two types of variables, ts (binary) and ,i tx (continuous), 

are involved. The mixed integer and highly nonlinear property significantly increase the 

complexity of model (3.16), and the traditional solution algorithms are not applicable. In this 

paper, a variable coding technique and extended particle swarm optimization algorithm are 

introduced to solve the proposed model (3.16). 

3.5.1 Variable coding technique 

In model (3.16), the number of binary and continuous variables increases with the 

number of operational time windows, n. A large value of n will lead to a high computational 

cost. Moreover, according to the dataset in Section 3.2.1, it can be observed that the number of 

feasible pump configurations for operation scheduling is limited. The iterative application of an 

algorithm to solve model (3.16) would lead to frequent infeasible combinations of binary 

variables. 
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A coding technique is utilized to reduce the number of binary variables and prevent 

infeasible solutions. An integer variable, '

ts , is utilized to create a one-to-one map of the feasible 

values of the binary variable vector, ts , based on the available dataset in Section 3.2.1. For 

example, 
' 1ts  means ts = (1, 0, 0, 0, 0, 0)T. Therefore, if we let '

ts be the index of feasible pump 

configurations, searching for the optimal ts is equivalent to searching for the optimal value of '

ts . 

In estimating the value of the objective function, '

ts can be reversely translated into vector of 

binary values according to the one-to-one mapping. 

3.5.2 Hierarchical particle swarm optimization 

To search for the optimal values of 
'

ts and ,i tx , a hierarchical particle swarm optimization 

(HPSO) is developed based on the modified discrete PSO [47] and canonical PSO [17]. This 

HPSO contains two PSO search layers. If we let '
vs  and '

vx denote vectors of the candidate 

solution of 
'

ts and ,i tx , the first and second search layers are presented as Pseudo_Code_1_Layer 

and Pseudo_Code_2_Layer. 

Pseudo_Code_1_Layer: 

run.PSO_1( ){

            = Initialization( );

           count = 0;

           do{

                   Fitness.cal(run.PSO_2( , ), , );

                   LocalBest( , );

                   fi

p

p

p p

p

N

N

M N

N



 



vs

vs vs

vs

1

1

1

t GlobalBest( , );

                   Flight( , );

           }while(count );

           Return(fit );

}

p

p

c

N

N

G







vs

vs
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Pseudo_Code_2_Layer: 

run.PSO_2( , ){

            = Initialization(getDimension( ), );

           count = 0;

           do{

                   Fitness.cal( , );

                   LocalBest( , );

                 

p

p

p

p

M

M

M

M



 





vs

vx vs

vx

vx

2

2

2

  fit =GlobalBest( , );

                   Flight( , );

           }while(count );

           Return(fit );

}

p

p

c

M

M

G







vx

vx

 

In the Pseudo_Code_1_Layer and Pseudo_Code_2_Layer, the function Fitness.cal() 

returns the value of the objective function of model (3.16) based on the partical vectors 

(candidate solutions), '
vs  and '

vx , initialized by Initialization() of size, pN and 
pM . 

LocalBest() and GlobalBest() update the local optimum of each particle and the global optimum 

of the swarm, respectively. Flight() iteratively varies the values of '
vs  and '

vx . If we let k be the 

index of particles, the procedure of Flight() in each iteration can be described as (3.17) and 

(3.18). 

 1 1 2 2( ) ( )k k k k kh q lbest ps h q gbest ps       (3.17) 

 k k kps ps    (3.18) 

In (3.17),   = 0.5, h1 = 2, and h2 = 2 is applied according to [17]. The values of q1 and q2 are 

randomly generated from a uniform distribution, U[0,1]. 

3.6 Case study 

In the case study discussed in this section, the following maintenance scenarios are 

considered: a) the length of the maintenance time window is 3 h, the length of the operational 

time window is 15 min, and thus the value of n is 12; b) the initial pump condition state is 2; c) 



36 
 

the transition matrices, Pa  and Po , a = 1, 2, are set as shown in (3.19); d) the values of R1, R2, r1, 

and r2 are set arbitrarily as the costs of consuming 200 kW, 600 kW, 0 kW, and 800 kW of 

electricity, respectively. 

 1 2

0.5  0.5  1    0 1  0
, ,

0     1 0.8 0.2 1  0
o

     
       
     

P P P  (3.19) 

3.6.1 Algorithm convergence 

One random instance from the dataset in Section 3.2.1 is considered to study the HPSO 

convergence. The termination criteria of the 1st and 2nd layer searches in HPSO are set to 1000 

iterations. In the 2nd layer search, a pump configuration of three operating pumps is selected to 

check the convergence of the 2nd layer search. Figure 3.6 shows the result, and it can be observed 

that the 2nd layer search converges within 1000 iterations. 

 

 

 

 

Figure 3.6. Convergence of 2nd layer search in HPSO 

The convergence result of the 1st layer search in HPSO is shown in Figure 3.7. The 1st 

layer search can quickly converge (within 50 iterations) to local optimum based on the selected 

instance. 
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Figure 3.7. Convergence of 1st layer search in HPSO 

The standardized fitness value in Figures 3.6 and 3.7 is calculated based on (3.20). The 

fit presents a vector of the best fitness obtained over the search. 

 Standardized fitness = fit/max{fit} (3.20) 

Based on the convergence results, in Section 3.6.3, the maximum numbers of iterations for 

implementing 1st layer and 2nd layer searches of HPSO are set to 100 and 50, respectively. 

3.6.2 Computational instances 

Three computational instances (CI1, CI2, and CI3) representing a low inflow-rate 

instance, medium inflow-rate instance, and high inflow-rate instance, are investigated. Each 

computational instance includes 12 operational time windows and 1 maintenance time window. 

The length of each operational time window is 15 min. Data from 12:30 am to 3:15 am on 

1/10/2013 were selected for CI1 because the inflow rate was low, between 48 MGD and 60 

MGD.  Data from 13:30 pm to 16:15 pm on 2/14/2011 were selected for CI2. The inflow rate 

range during this period was 75–87 MGD. Data from 11:00 am to 13:45 pm were used for CI3 

because of the high inflow rate, 150–160 MGD. 
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3.6.3 Computational results 

The total cost of the pump system maintenance and operations with different dj based on 

CI1−CI3 is summarized in Table 3.3. The optimal dj that offers the lowest cost is shown in bold 

for the three computational instances. In CI1, pump 4 is recommended for maintenance because 

of having the lowest cost. Pump 3 is another option, even though its cost is slightly higher. In 

CI2, pump 6 is recommended for maintenance; however, maintaining pumps 2, 3, and 5 is also 

acceptable because of the low cost. In CI3, maintaining pump 1 involves the lowest cost. In some 

cases, Table 3.3 shows significant costs. This is because the maintenance of the corresponding 

pumps significantly affects the wastewater outflow rate and subsequently the junction chamber 

level. The maintenance action a = 1 is applied because it results in the lowest cost according to 

the fixed Ra and Pa. 

The pump operation schedules for the determined dj for CI1−CI3 are presented in Table 

3.4. The optimal pump configuration and optimal speed settings of the pumps in each operational 

time window are computed. When the wastewater inflow rate is low, operating one pump is 

preferred. When the wastewater inflow rate is higher, the operation of multiple pumps are 

required. 

It is feasible to realize energy savings by scheduling operations and maintenance 

simultaneously. Table 3.5 presents the observed and computed energy consumption of the pump 

system. The positive and negative cost gains in Table 3.5 were estimated according to (3.21). An 

energy saving of approximately 9% was achieved in CI1, while a low energy savings or extra 

energy consumption was observed for CI2 and CI3. These results indicate that pump 

maintenance has a small impact on scheduling pump operations for low inflow rates; however, 

the impact becomes more significant when the wastewater inflow rate is high. It is also possible 

that the low energy savings are due to limited number of available pump configurations. 

 
Observed value - Computed value

Gain = 100%
Observed value

  (3.21) 
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A comparison of the computed and observed energy consumptions and computed 

junction chamber levels for CI1−CI3 is provided in Figures 3.8−3.13. It can be noted that a 

smoother junction chamber level could be achieved, as illustrated in Figures 3.9, 3.11, and 3.13, 

the computed junction chamber indicates a jump at the 9th time window. This is due to an 

increase in the junction chamber level without violating the constraints, leading to significant 

energy savings according to Figure 3.12. 

Table 3.3. Pump maintenance decisions 

CI1   CI2   CI3 

dj Cost (kW)  dj Cost (kW)  dj Cost (kW) 

d1 = 1 3263.36  d1 = 1 3051.033  d1 = 1 2818.572 

d2 = 1 2398.89  d2 = 1 2618.574  d2 = 1 3863.28 

d3 = 1 1993.68  d3 = 1 2621.108  d3 = 1 953870.8 

d4 = 1 1992.71  d4 = 1 15592.65  d4 = 1 5200.689 

d5 = 1 2810.64  d5 = 1 2643.873  d5 = 1 1931160 

d6 = 1 3447.86   d6 = 1 2613.138   d6 = 1 5072.16 

 

Table 3.4. Computed schedules for three computational instances 

Time CI1 CI2 CI3 

Window Pump Speed Pump Speed Pump Speed 

  Configuration Settings Configuration Settings Configuration Settings 

1 {5} {97.4} {1,5} {82.3, 96.6} {2,4,5} {93.5, 93.7, 90.2} 

2 {1} {97.8} {1,2} {88.8, 89.9} {2,4,5} {93.4, 93.7, 90.2} 

3 {1} {97.1} {1,5} {80.4, 97.3} {2,4,5} {93.5, 93.6, 89.3} 

4 {1} {96.7} {2,4} {81.2, 81.1} {2,4,5} {93.6, 93.5, 89.0} 

5 {1,2} {80.2,  98.9} {2,5} {80.8, 96.6} {2,4,5} {93.8, 93.5, 89.3} 

6 {1,2} {84.1,  94.7} {2,4} {80.0, 97.2} {2,4,5} {92.5, 94.0, 87.4} 

7 {5} {96.8} {1,2} {89.0, 97.6} {2,4,5} {93.9, 93.4, 89.4} 

8 {1} {91.7} {1,5} {86.3, 98.0} {2,4,5} {91.9, 94.8, 86.7} 
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Table 3.4. Continued 

 

Time 

Window 

CI1 CI2 CI3 

Pump 

Configuration 

Speed 

Settings 

Pump 

Configuration 

Speed 

Settings 

Pump 

Configuration 

Speed  

Settings 

9 {1} {93.6} {2,5} {81.6, 97.9} {2,4,5} {100.0, 83.4,83.6} 

10 {1} {93.6} {1,5} {86.6, 97.0} {2,4,5} {97.5, 89.1, 88.1} 

11 {1} {92.7} {1,2} {90.4, 94.5} {2,4,5} {92.7, 90.7, 82.7} 

12 {5} {91.3} {1,5} {87.2, 92.5} {2,4,5} {93.8, 90.4, 84.1} 

Table 3.5. Pump energy consumption 

Computational 

Instance 

Computed 

Value 

Observed 

Value 
Gain 

CI1 (kW) 432.71 474.76 8.86% 

CI2 (kW) 646.57 581.47 -11.19% 

CI3 (kW) 1218.01 1253.3 2.82% 

 

 

 

 

Figure 3.8. Computed and observe pump energy consumptions of CI1 
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Figure 3.9. Computed and observed junction chamber levels of CI1 

 

 

Figure 3.10. Computed and observe pump energy consumptions of CI2 
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Figure 3.11. Computed and observed junction chamber levels of CI2 

 

 

 

Figure 3.12. Computed and observe pump energy consumptions of CI3 
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Figure 3.13. Computed and observed junction chamber levels of CI3 

3.7 Conclusion 

In this chapter, the maintenance and operations of pumps in a wastewater processing 

plant were studied. An optimization model was developed to optimize the maintenance and 

operational schedules. Asynchronous time windows for the maintenance and operations 

scheduling were considered. A Markov decision process was utilized to develop the maintenance 

decision-making model. A data-driven approach was utilized to model the pump system 

performance. The junction chamber level in the wastewater treatment was constrained in the 

optimization of the pump operation and maintenance scheduling. 

In solving the scheduling model, a variable coding technique was applied to reduce the 

number of variables. Because of the model complexity, a hierarchical particle swarm 

optimization (HPSO) algorithm was developed. The proposed HPSO algorithm include two 

layers. The first layer aims at obtaining an optimal solution for the integer variables. The second 

PSO search layer obtains an optimal solution for the continuous variables. The computational 

results from solving the maintenance and operations scheduling model were provided. The 

optimal maintenance decision, maintenance action, and operational schedule were presented. The 
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results indicated that energy savings were possible. In addition, the variation in the junction 

chamber level was smoothed. 
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CHAPTER 4 

PERFORMANCE OPTIMIZATION OF HVAC SYSTEM WITH 

COMPUTATIONAL INTELLIGENCE ALGORITHM 

4.1 Introduction 

Although intensive discussions on minimizing the energy consumption of HVAC systems 

have been presented in the literature, the majority of research focused on optimization in a 

specified time interval, whereas optimization over long time horizons was rarely considered. In 

this chapter, energy saving model in long time horizon was studied by considering objectives, 

both energy consumption and room temperature ramp rate (TRR). 

A room temperature ramp rate (TRR) expresses the change of room temperature over a 

time interval, e.g., 15 min. The minimization of the energy consumption only at a given time 

interval may result in significant fluctuations of the room temperature, reduce the energy saving 

space, and even increase the future energy consumption.  A well control of TRR is beneficial to 

smooth the settings of the HVAC controlled parameters and stabilize the energy saving in a long 

run. This study aims to investigate the HVAC system performance optimization by considering 

two objectives, the minimization of the total energy consumption and average TRR, through 

improving the control. The total energy consumption consists of energy consumed by air 

handling units (AHU), chillers, pumps, and fans. The average TRR is the mean TRR of five 

considered rooms. A data-driven approach is applied to build predictive models of energy 

consumption and average TRR. The accuracy of the predictive models is validated. In the 

control, two set points are optimized, the discharged air temperature set point (DAT-SP) and the 

supply air static pressure set point (SASP-SP), in order to discover the more suitable balance 

between air flow rate and inlet temperature in five rooms, reduce the total energy consumption, 

and ensure comfort. The variable air volume (VAV) boxes are controlled by the default 

proportional integral derivative (PID) controller. 
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A performance optimization model is introduced by incorporating the data-driven 

predictive models and constraints. Solving the proposed optimization model with traditional 

solution algorithms is challenging because of the complexity and nonlinearity. Thus, three 

computational intelligence (CI) algorithms are considered for the model solving: an evolutionary 

algorithm [48, 49], a particle swarm optimization [17], and a harmony search algorithm [35, 36]. 

The performance of these algorithms depends on their parameter settings. The design and 

analysis of computer experiments (DACE) [50, 51] is introduced to generate 300 samples of 

parameter settings for each algorithm to compare three CI algorithms. Five instances are 

considered in the evaluation. The best performing CI algorithm is selected to optimize the 

HVAC system’s performance. Three cases are investigated in this study to demonstrate the 

improvement in the HVAC system’s performance. The computational results are assessed by 

comparing with the baseline strategies. Significant energy savings are demonstrated. The benefit 

of TRR as a factor in energy optimization for a long-time horizon is validated. 

4.2 Predictive models of HVAC systems 

4.2.1 System description 

This study was conducted in a commercial building, the University Service Building 

(USB) at the University of Iowa. In the USB, one air handling unit (AHU) is responsible for 

heating, air conditioning, and ventilation of the entire building which has a gross floor area of 

71,123 ft² (6607 m2). The AHU was operated by setting the default constant values, i.e., 55 ℉ 

(12.78 °C) and 2.3 in. WG (0.57 kPa), respectively, to the temperature set point (DAT-SP) and 

the static pressure set point (SPSA-SP). To monitor whether the building temperature was well 

controlled, five representative rooms (Rooms 1–5) sensitive to the thermal load were selected. 

Once the room temperatures of these five representative rooms were within predefined ranges, 

the thermal comfort of the building was considered under control. 

The default values of two controlled setting points were determined for handling the peak 

load. However, based on such control setting, the HVAC system runs at its full capacity even at a 
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partial load. Therefore, by optimally adjusting the two controlled set points, energy savings are 

expected. To construct a performance optimization model, the relationships between the two 

controlled set points and the energy consumption, as well as the temperature of five rooms, need 

to be established.  

4.2.2 Building predictive models 

As two controlled set points were fixed at the USB, a data collection experiment was 

conducted to collect data of the HVAC system and the values of the two controlled set points 

were adjusted over time. The experiment was carried out during an occupancy period, from 8:00 

a.m. to 6:00 p.m., Monday to Friday, from May 20 to July 1, 2013. The ranges of DAT-SP and 

SASP-SP were 55–60 ℉ (12.78–15.56 °C) and 1.8–2.3 in. WG (0.45–0.57 kPa), respectively. 

Because complaints about high room temperatures were reported on June 3, the range of DAT-

SP was scaled down while the range of SASP-SP was maintained for the follow-up experiment 

period. The two controlled set points were modified every 15 min. At each modification, the 

values of the two controlled set points were randomly generated from their corresponding ranges. 

Next, the generated values were written into the controller of the AHU at the USB. 

The values of the parameters of the air handling unit (AHU) were recorded with 1-min 

sampling intervals. The dataset collected in the experiment was then averaged to 15-min 

intervals for modeling. After data pre-processing, the dataset was split into randomly sampled 

training (80% of the data) and test (20% of the data) sets. Six predictive models, the energy 

consumption model of the HVAC system and five room temperature models, were built. The 

feasibility of using these models in a real application was further validated by using data 

collected from July 9 to July 11, 2013. 

Table 4.1 summarized the parameters used in the predictive models. The parameters were 

categorized into three groups: controlled parameters, uncontrolled parameters, and target 

parameters. The target parameters were the outputs of the predictive models. The historical 



48 
 

values of the target parameters were also included as inputs to improve the prediction accuracy 

of the models. The six predictive models have the form shown in (4.1) and (4.2). 

 ( , , , )t d t d t t tE g E  x x u  (4.1) 

 ,( , , , )t d i t d t i t tT f T  x x u  (4.2) 

where E denotes computed energy consumption, T represents room temperature, x is an vector of 

control variables, and u is an vector of uncontrolled variables. Subscripts t denotes time, and d is 

a time interval (15 min), and subscript i is an index of representative room. 

The multi-layer perceptron (MLP) neural network [52, 53] was selected to construct the 

predictive models because a previous study [27] demonstrated that it outperformed other data 

mining algorithms. The four metrics defined in Appendix I were used to evaluate the 

performance of the predictive models. the mean absolute error (MAE), the standard deviation of 

absolute error (sdAE), the mean absolute percentage error (MAPE), and the standard deviation of 

absolute percentage error (sdAPE).Table 4.2 lists the test results of the predictive models. The 

MAPE of the energy predictive model was 5.19%, which indicated an accuracy of nearly 95%. 

The prediction accuracy for the five models of room temperature was as high as 99%. These high 

accuracy models were then utilized to construct the optimization model discussed in Section 4.4. 

The validation results in Table 4.3 illustrated that all the models have high prediction accuracy. 

According to Tables 4.2 and 4.3, the MAPE and sdAPE of the testing and validation results are 

similar for all the models. Therefore, the developed data-driven models can be utilized in 

simulations to aim at providing insights into the operations of HVAC systems. 
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Table 4.1. Summary of parameters for predictive models 

Parameter Type Parameter Name Description Unit 

Control parameters 
SASP-SP Static pressure set point In.WG 

DAT – SP Discharged air temperature set point ℉ 

Uncontrolled parameters OA –Temp Outside air temperature ℉ 

 S-CFM Supply air flow CFM 

 CTG-TEMP Air temperature after cooling coil ℉ 

 CLG-VALVE Cooling valve  control %Open 

 HTG-TEMP Air temperature after heating coil ℉ 
 MA-TEMP Mixed air temperature ℉ 
 RA-TEMP Return air temperature ℉ 

 HWS-TEMP Heating water supply temperature ℉ 
 HWR-TEMP Heating water return temperature ℉ 
 CW-S-T Cooling water supply temperature ℉ 
 CW-R-T Cooling water return temperature ℉ 

Target parameters E Energy KWH 

 Rm1 ZN-T Room 1 temperature ℉ 
 Rm2 ZN-T Room 2 temperature ℉ 
 Rm3 ZN-T Room 3 temperature ℉ 
 Rm4 ZN-T Room 4 temperature ℉ 

  Rm5 ZN-T Room 5 temperature ℉ 

Table 4.2. Test results of predictive models 

Model MAE Sd_AE MAPE Sd_APE 

Energy 1.74 2.05 5.19% 7.28% 

Rm1 ZN-T 0.14 0.14 0.20% 0.20% 

Rm2 ZN-T 0.14 0.38 0.20% 0.50% 

Rm3 ZN-T 0.09 0.09 0.10% 0.10% 

Rm4 ZN-T 0.15 0.23 0.20% 0.30% 

Rm5 ZN-T 0.18 0.17 0.20% 0.20% 
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Table 4.3. Validation results of predictive models 

Model MAE Sd_AE MAPE Sd_APE 

Energy 2.18 1.65 4.59% 3.66% 

Rm1 ZN-T 0.12 0.08 0.17% 0.11% 

Rm2 ZN-T 0.11 0.07 0.15% 0.10% 

Rm3 ZN-T 0.06 0.05 0.08% 0.07% 

Rm4 ZN-T 0.14 0.12 0.18% 0.15% 

Rm5 ZN-T 0 0 0.24% 0.20% 

4.3 Formulation of optimization model 

This study has focused on improving the performance of an HVAC system by achieving 

two objectives: the minimization of its energy consumption and the average ramp rate of the 

room temperature. To meet the system and thermal comfort requirements, the following 

conditions need to be satisfied: 

(1) The value of DAT-SP can vary from 55 to 58 ℉ (12.76–14.44 °C); 

(2) The value of SASP-SP can vary from 1.8 to 2.3 in. WG (0.45–0.57 kPa) ; 

(3) The room temperature of each representative room should fall between the pre-

determined lower bound and upper bound to ensure thermal comfort. 

The constraints of the room temperatures and control parameters are expressed in (4.3) and (4.4). 

 ,i , ,LT t i T iT U   (4.3) 

 l t d u x x x  (4.4) 

In studies [54, 55], a local optimization model was established by considering only one 

objective, minimizing the energy consumption over a time interval. However, optimization over 

a single time interval may not result in overall energy savings. This is due to the fact that 

optimization over one time interval may diminish the payoff over the subsequent time intervals. 

For example, the operator can set the lowest value of SASP-SP and the highest value for DAT-

SP (when the HVAC system operates at its lowest capacity) over a current time interval to 

maximize the reduction of the energy consumption while maintaining the thermal comfort within 

a pre-determined threshold. Although significant energy savings could be achieved in the current 
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time interval, such a control strategy will increase the room temperature, and subsequently 

diminish the potential for energy savings or even increase the energy consumption at future time 

intervals. To achieve energy savings in HVAC systems in the long run, minimization of the room 

temperature ramp rate (TRR) in each time interval is considered as another objective. Moreover, 

the reduction of the room temperature ramp rate will prevent setting controllable parameters at 

their boundaries and smooth the control over time. 

The two objectives, minimization of the energy consumption and the average TRR of five 

representative rooms, constitute the objective function. The energy consumption is normalized to 

[0, 1] according to (4.5). The minimum and maximum values of the observed energy 

consumption in the dataset are utilized. 

 
1

min{ }

max{ } min{ }

t dE
O  




E

E E
 (4.5) 

where E is a vector of observed energy consumption. 

The average TRR is computed by model (4.6) and normalized to [0,1] according to (4.7). 

The threshold, ξ, is the allowable maximum room temperature ramp rate. m is the total number 

of representative rooms. 
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By incorporating data-driven models ((4.1) and (4.2)) and constraints ((4.3) – (4.7)), the 

optimization model is formulated as (4.8). Coefficient, w, is utilized to distribute weights 

between two objectives, O1 and O2. 
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 (4.8) 

4.4 Computational intelligence algorithms 

As the optimization model in (4.8) includes MLP neural network models, it cannot easily 

solved with traditional optimization algorithms. To tackle this challenge, computational 

intelligence algorithms are applied. In this research, three computational intelligence (CI) 

algorithms, the evolutionary algorithm (EA) [48, 49], particle swarm optimization (PSO) [17], 

and harmony search (HS) [35, 36], are used to solve model (4.8). The EA and PSO algorithms 

have been widely studied in the literature [56, 57]. The HS is a novel algorithm developed in 

2001 and has been frequently discussed [35, 58]. The performance of these Three CI algorithms 

were compared in solving model (4.8). 

4.4.1 Algorithm description 

The EA algorithm is a meta-heuristic algorithm that simulates the biological evolution 

process. It produces new genes (solutions) through the recombination and mutation of the 

existing genes. EA

1a  represents size of the initial population, for i = 1, the size of the offspring 
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population for i = 2, mutation parameters for i = 3 and 4, and size of tournament selection for i = 

5. The basic steps of EA are presented next. 
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Figure 4.1. Pseodo Code of EA 

The PSO is a population-based meta-heuristic algorithm inspired by the social behavior 

of flocks of birds and schools of fish. Each particle (bird) is initialized by a vector at position ix

and a vector with velocity iv . Each particle wanders in the search space directed by its own 

velocity, personal searching experience, ibestx , and the searching experience of the swarm, gbestx . 

PSO

1a  is the size of the initial population in PSO. PSO

ia  are parameters controlling the velocity of 

flight in PSO, i = 2, 3, 4. The steps of the PSO are shown next. 
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Figure 4.2. Pseudo Code of PSO 

HS mimics the improvisation process in music. The basic steps of HS are shown next. In 

Step 4 of HS, two methods were used to construct a new harmony: 1) select pitches from 

harmonies in memory pool; 2) randomly select pitches from the range of the lower boundary, Lx

, and the upper boundary, Ux .  

1

HSa  denotes the size of the initial population in algorithm HS. HS

ia  is used to represent the 

size of the harmony memory for i = 2, harmony memory consideration rate (HMCR) for i = 3, 

pitch adjusting rate (PAR) for i = 4, and band width for i = 5. The pseudo code of HS is 

represented below. 
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Figure 4.3. Pseudo code of HS 

4.4.2 Comparative analysis 

The performance of the CI algorithms are impacted by their parameter settings. A 

comprehensive experiment was designed to investigate the performance of the three CI 

algorithms in solving equation (4.8) based on different combination of parameter settings. The 

experiment logic is shown in Figure 4.4. 
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Figure 4.4. Comparative study 

Using the Design and Analysis of Computer Experiments (DACE) approach [50], 300 

combinations of parameter settings for each algorithm were generated to examine the 

convergence frequencies and computational time of the three CI algorithms in solving model 

(4.8). In the experiment, the value of 1

ia for i = {EA, PSO, HS} was set to 10. Due to the different 

properties of the parameters in the three algorithms, two schemes illustrated next were applied to 

generate parameter settings for the considered CI algorithms: 

Design for EA: The EA involves 4 parameters, 
EA

ia , i = 2, 3, 4, and 5. The 2

EAa and 5

EAa are 

integers, 2

EAa = 10, 20, … , 100 and 5

EAa  = 1, 2, …, 10. The 3

EAa  and 4

EAa are real values, 3

EAa  and 

4

EAa  [0.1,1] . Because two continuous parameters are two discrete parameters are involved, a 

sliced-Latin hypercube design (LHD) [59] was used, which has been proven to provide better 

statistical properties than a regular LHD [51] when discrete parameters exist. The entire design is 

a 300-run LHD, which can be decomposed into 100 slices (defined by the combination of 2

EAa

and 5

EAa ), and each of them is a small three-run LHD. 

Design for PSO and HS: Three parameters have to be determined for both PSO and HS, 
PSO

ia  

and 
HS

ia , i = 2, 3, and 4. Because 
PSO

ia  and 
HS

ia are continuous parameters, the regular LHD was 

used for both PSO and HS. Similarly, a 300-run LHD was used. 
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4.4.3 Summary of computational results 

The performances of the three CI algorithms in solving model (4.8) are discussed in this 

section. Five computational instances were randomly selected from the test dataset. Each 

algorithm was implemented with 200 iterations for 300 combinations of parameter settings based 

on five selected computational instances. Two parameters, 1  and 2  , indicating the 

performances of the algorithms were recorded. Because the optimization model was proposed for 

online implementation, an algorithm with a high frequency of convergence and less 

computational time was desired. 

Table 4.4. Summary of experimental results 

Algorithms ε1 ε2 

EA 250 900 

PSO 282 0.26 

HS 263 0.04 

 

As shown in Table 4.4, the average computational time of EA is nearly 900 s (15 min), 

which is not acceptable in online optimization. Both the PSO and HS algorithms show the 

desired properties: 1) a high convergence frequency, 282/300 and 263/300; 2) and a short 

computing time, 0.26 and 0.04 s. Therefore, both of them are suitable for online optimization. 

4.5 Case studies 

The optimization of the HVAC system control using model (4.8) is conducted in this 

section based on different cases. To validate the effectiveness of the optimized control strategy, a 

baseline strategy presented in Definition 1 for controlling the same HVAC system at the USB is 

utilized. The VAV boxes in five rooms are still controlled by the PID controller. 
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Definition 1. The default controlled setting points of the HVAC system, 2.3 in. WG (0.57 kPa) 

for SASP-SP and 55 ℉ (12.76 °C) for DAT-SP, is considered as the baseline 

strategy. 

The optimal control strategy is compared with the baseline strategy to demonstrate the 

performance improvement in the HVAC system based on three cases. In Case I, minimization of 

the energy consumption was considered, which means the value of w in (4.8) was set to 1; in 

Case II, minimization of the energy consumption and minimization of the temperature ramp were 

considered equally important, and w was set to 0.5; and in Case III, only the minimization of 

TRR was considered, and w was set to 0.  

The HS algorithms was selected to solve model (4.8). The parameter settings of the HS 

algorithm considered in the cases studies are 2

HSa  = 0.88, 3

HSa  = 0.14, 4

HSa  = 0.40. This 

combination of parameter settings was selected from the 263 combinations of parameter settings. 

The maximum number of iterations of the HS algorithm was set to be 200. 

The daily data from 8:00 am to 17:45 pm on June 26, 2013, including 39 continuous 

instances, were used in all of the case studies discussed next. 

4.5.1 Case study results 

The results of Case I are shown in Figures 4.5, 4.6, and 4.7. Figure 4.5 demonstrates the 

optimized and baseline energy consumption of the HVAC system. Figure 4.6 compares TRRS, 

while Figure 4.7 presents the optimized values of the control set points. 

As shown in Figure 4.5, significant energy savings are obtained. The baseline strategy is 

actually optimal for the HVAC system at the beginning because the system needs to be operated 

at full capacity to decrease the room temperature to a comfortable level after the all night 

shutdown of the HVAC system at USB. In Figure 4.6, TRR can be slightly larger than 1. This is 

due to the fact that the room temperature ramp is normalized by dividing it by ξ, which is 

selected based on historical observations. The phenomenon, a TRR larger than 1, usually occurs 

at the beginning or end of the working hours for a short time. However, this has negligible 
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impact on leveraging the two objectives. Overall, the TRR under the proposed control strategy is 

larger than the TRR under the baseline control strategy, denoting a bigger fluctuation in room 

temperature. A peak value of TRR is also observed. According to Figure 4.5 and 4.6, it is 

capable to conclude that minimization of energy consumption only can result in significant 

energy savings while induce unstable thermal comfort. 

 

 

 

 

Figure 4.5. Optimized and baseline energy in Case I 

 

 

 

Figure 4.6. Optimized and baseline TRR in Case I 
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Figure 4.7. Optimized and baseline set points in Case I 

In case II, both the energy consumption and room temperature ramp rate were optimized. 

The energy consumption, TRR, and control set points were computed as shown in Figures 4.8, 

4.9, and 4.10, respectively. Compared with the results of Case I, the energy savings are 

promising, while the fluctuation of the control parameters is reduced. By controlling the TRR, 

the value of optimized TRR becomes smaller compared to the baseline TRR. 

 

 

 

 

Figure 4.8. Optimized and baseline energy in Case II 
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Figure 4.9. Optimized and baseline TRR in Case II 

 

 

 

Figure 4.10. Optimized and baseline set points in Case II 
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Figure 4.11. Optimized and baseline energy in Case III 

 

 

 

Figure 4.12. Optimized and baseline TRR in Case III 
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Figure 4.13. Optimized and baseline set points in Case III 

4.5.2 Summary of case studies 

The results of Case I, II, and III are summarized in Table 4.5. The optimized energy 

consumption and room temperature ramp rate are compared with the baseline values. The gains 

in energy consumption and room temperature ramp rate are defined in equation (4.4). 

 
Baseline value Optimized value

Gain
Baseline value


  (4.9) 

In Case I in Table 4.5, the energy consumption is reduced by 18.50%, while the 

temperature ramp rate increases to 10.20%. In Case II, the energy consumption and room 

temperature were equally weighted. Thus, a 15.70% energy savings is achieved with a 

temperature ramp rate similar to the baseline model. Minimization of the room temperature ramp 

rate led to a 9.80% decrease in the ramp rate, indicating better stability of the thermal comfort. 

The results in Table 4.5 indicate that focusing on minimizing the room temperature ramp rate 

leads to smaller gains in energy savings. 

The optimized energy consumptions for Case I and Case II are compared in Figure 4.14. 
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temperature ramp rate led to smaller energy savings than the model minimizing the energy 

consumption. For the HVAC system discussed in this paper, the results in Table 4.5 show that 

optimizing the energy consumption only leads to the largest energy savings. 

Table 4.5. Summary of case study results 

Power Case 1 Case 2 Case 3 

Optimized 1542.2 1595.3 1637.3 

Baseline 1893.4 1893.4 1893.4 

Gain 18.50% 15.70% 13.50% 

Temperature 

Ramp 
Case 1 Case 2 Case 3 

Optimized 19.3 17.4 15.8 

Baseline 17.5 17.5 17.5 

Gain -10.20% 0.60% 9.80% 

 

 

 

 

Figure 4.14. Optimized energy in Case I and Case II 
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4.6 Conclusion 

In this chapter, an optimization model for minimizing the energy consumption and 

preserving the thermal comfort of an office space was proposed. Data-driven methods were 

derived from data collected from an experiment.  

Three computational intelligence algorithms were introduced to solve the proposed 

optimization model. The performances of these algorithms were impacted by the parameter 

settings. To evaluate and compare the general performances of the three algorithms, a Design 

and Analysis of Computer Experiment technique was utilized to generate 300 parameter settings 

for each computational intelligence algorithm. The performance of each algorithm was evaluated 

by computing five instances from the dataset based on 300 parameter settings. Both of the 

harmony search algorithm and particle swarm optimization were found to be suitable for real-

time optimization because of their computational speed and quality of solutions. 

Optimization of the HVAC system performance was analyzed based on the proposed 

optimization model for three cases. The computational results indicated that energy savings 

could be achieved by optimizing the settings for the supply air static pressure set point and 

discharged air temperature set point. Additionally, the introduction of room temperature ramp 

control to the objective function was beneficial for smoothing the control settings of the set 

points and achieving better room thermal comfort. 
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CHAPTER 5 

CONCLUSION 

In this Thesis, data mining method has been applied to optimize the operation of a pump 

system in wastewater treatment plant, and management of a HVAC system in commercial 

buildings by deriving system models from historical models. Optimization model integrating 

system models and constraints were constructed and solved to achieve goal of reducing energy 

consumption. In Chapter 1, current research on optimizing the two systems, pump systems and 

HVAC systems, are reviewed. It also reviewed application of data mining method in industrial 

fields.  

In Chapter 2, pump system in a wastewater treatment plant was investigated. Energy 

consumption models and outflow rate models for different pump system configurations were 

built using historical data collected. Optimization model minimizing energy consumption and 

considering control of level of wet well chamber was built. An improved harmony search 

algorithm was used to solve optimization model. Around 16% percentage of energy consumption 

savings were achieved in Low, Medium, and High inflow rate scenarios simulation. 

In Chapter 3, a pilot study was carried out, optimizing operations of pump system 

considering maintenance in a wastewater treatment plant. Multi-input multi-output multiple 

layers perceptron neural networks were used to build energy consumption models and outflow 

rate models simultaneously, which showed slight better model accuracy than build models 

separately. The maintenance decision process of pump was formulated as a Markov decision 

process. Optimization model minimizing overall cost, including operation cost and maintenance 

cost, was constructed. Due to the complexity of optimization model, extended particle swarm 

optimization algorithm was proposed to solve it, and optimization strategies were provided for 

considered Low, Medium, and High inflow rate scenarios. 

In Chapter 4, Optimization of management of HVAC system in a commercial building 

was studied. Both energy consumption and quality of control buildings were considered to 
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minimize energy consumption and maintain comfort of people in buildings. Temperature ramp 

rate (TRR) was introduced to control the vibration of room temperature, which also proved the 

potential of saving more energy in long time horizon by considering both energy consumption 

and TRR than only consider energy consumption. Above 10% energy consumption savings can 

be achieved in simulation study. 

Applicability for implementation should be studied in future research. Although data-

mining method can generalize knowledge learned from data, it is potential to suffer system 

damage if situations out of training data happen. Therefore, validation and risk analysis of these 

models should be further carried out for application. On the other hand, the system may change 

gradually, it would be more worthwhile if system models developed by data mining method can 

be updated online.  
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APPENDIX A 

METRICS FOR EVALUATION OF PREDICTIVE MODELS 

The prediction accuracy of the developed predictive models in Chapters 2 to 4 were 

measured using the following four metrics: 1) the mean absolute error (MAE), 2) the standard 

deviation of the absolute error (sdAE), 3) the mean absolute percentage error (MAPE), and 4) the 

standard deviation of the absolute percentage error (sdAPE). These metrics are expressed in 

(A.1) – (A.4). 

1

MAE (1/ ) ˆ
n

k k

k

n y y


   (A.1) 

2

1 1

sdAE (1/ ) ( (1 / ) )ˆ ˆ
n n

k k k k

k k

n y y n y y
 

      (A.2) 

1

MAPE (1/ ) ( ) /ˆ
n

k k k

k

n y y y


   (A.3) 

2

1 1

sdAPE (1/ ) ( ( ) / (1 / ) ( ) / )ˆ ˆ
n n

k k k k k k

k k

n y y y n y y y
 

      (A.4) 

where y is the measured value, ŷ is the predicted value, k is the index of the data points, and n is 

the total number of data points. 
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