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CHAPTER I 

INTRODUCTION 

 In an engineering optimization process, when a problem is formulated, it is 

necessary to figure out the design variables [1]. Usually, selecting a design variable is 

somewhat tricky because the problem statement does not provide explicit information 

regarding design variables. Therefore, one may want to consider every factor in the 

problem as a design variable so that the result of design optimization could be more 

trustworthy. 

 However, considering every single variable will absolutely result in increasing the 

dimension of a problem. This is critical in the aspect of computational cost in the 

optimization procedure especially for the reliability-based design optimization (RBDO), 

where a surrogate model is applied. The RBDO is an optimization algorithm that takes 

the concept of ‘reliability’ into account. There are two kinds of the RBDO, namely, 

sensitivity-based RBDO and sampling-based RBDO [2]. Nowadays, sampling-based 

RBDO is more widely utilized due to lack of sensitivity information in many applications 

and the possibility of application of sampling-based RBDO to the broader practical 

engineering problems. In the sampling-based RBDO, the probability of failure of the 

constraints needs to be calculated using Monte Carlo Simulation (MCS). Because the 

sampling method itself contains certain error, a relatively large number of samples are 

required [3].  

Often more than a half million points are required to calculate the probability of 

failure and sensitivity of the probabilistic constraints. At this stage, the computational 

cost is highly dependent on the number of design variables because as more design 
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variables are involved, larger number of samples should be generated to maintain the 

accuracy of the probability of failure and sensitivity. To get over this curse of dimension, 

focusing only on important design variables at each design stage is vital. Therefore, 

sorting out variables of high variance should be carried out by selecting a suitable 

measure. This process is called ‘variable screening’. By setting variables which have 

large variability as random variables, it is possible to reduce computational cost 

significantly. 

 Wei Chen et al. [4] used analysis of variance (ANOVA) decomposition for global 

sensitivity analysis of the probabilistic characteristics to evaluate relative contribution of 

not only each design variable, but also interaction of the variables which are called main 

effects and interaction effects, respectively. Besides, they have made use of variable 

subset decomposition to converse the calculations of subset interaction sensitivity indices 

to a combination of subset main sensitivity indices in global sensitivity analysis. K.J. 

Craig et al. also used a response surface model for variable screening in automotive 

crashworthiness problem [5]. An explicit surrogate model was also applied in the papers 

to vivify the importance in the industrial field. One problem in these papers, however, 

was that only an analytical method was introduced to characterize the importance of the 

variables, which restricts the benefits of the decomposition method to practical industrial 

applications. 

On the other hand, Y-T Wu et al. [6] have used the local sensitivity of the 

cumulative density function (CDF) with respect to input parameters as a measure to 

screen out the variables. Using a sampling method, i.e. the Monte Carlo Simulation, the 

sensitivity was easily obtained. They have also performed a test-of-hypothesis to 
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scrutinize the impacts of variables on the CDF sensitivity. The method provided a 

standard for screening. They have used no approximation either in performance or 

distribution functions for input variables, which made it applicable to nonlinear functions. 

But the debate over the number of the MCS samples for the convergence problem still 

remains controvertible. 

In this research, another measurement for screening variables is introduced so that 

the computational cost is reduced. The statistical inference used to interpret the result of 

sampling method is introduced, and this notion builds basis for the screening procedure. 

Moreover, the procedure is designed not to be affected by the form of output functions, 

which means not only explicit functions, but also implicit constraints are treated. This 

makes the screening method applicable to the sampling-based RBDO, in which implicit 

surrogate models could be involved. Besides, the method is applicable to different kind of 

distributions. 

Meanwhile, discussion over the number of MCS samples is presented to try to 

find the minimum number of samples to obtain meaningful results of the screening 

procedure. This curiosity naturally draws convergence problem of partial output variance 

into consideration. The research suggests an iterative method to solve this problem and 

shows the improvements in the optimization process with suitable examples. 

 Once the variable screening is complete, the sampling-based RBDO is carried out 

with the selected design variable set to demonstrate efficiency of the selected variable set 

in terms of computational cost and satisfaction of constraints.  
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 In Chapter II, a detailed procedure of RBDO is explained with sensitivity 

derivation. The curse of dimension is introduced which can be involved in RBDO when 

using a large number of design variables. 

 In Chapter III, the variable screening method is detailed using the central limit 

theorem and test-of-hypothesis. The screening method will choose the variable set which 

affects the output variance the most. 

 The test-of-hypothesis used in Chapter III is highly dependent on the number of 

samples. That is, the result of the test can be different if not enough samples are used. 

Therefore, in Chapter IV, the number of samples is determined which gives a consistent 

result of the test. 

 In Chapter V, three examples are demonstrated to verify the necessity of the 

variable screening method, and RBDO is carried out with the selected variables. 

 Finally in Chapter VI, the conclusion is provided with advantages and limits of 

the variable screening method is explained to recommend subsequent future research. 
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CHAPTER II 

SAMPLING-BASED RBDO 

 In this chapter, the sampling-based RBDO is introduced to motivate exploring the 

proceeding sections. This chapter is divided into 3 parts. The first part will explain the 

formulation of the sampling-based RBDO while pointing out the difference between the 

traditional optimization problem and the RBDO. The second part explains the derivation 

of the sensitivity of probabilistic constraints using the score functions. On the third part, 

the problems related to the computational cost are detailed. Mainly, the curse of 

dimension is explained which calls for a screening method. Different sampling methods 

will be introduced, and the aftermath caused by the sampling methods is featured. 

2.1. Problem Formulation 

 In general, a traditional deterministic optimization problem is formulated as 

follows: 

 
 

minimize ( )

0, 1,2,....,
subject to

,

j

L U ndv

obj

H j nc

R

 

  

d

d

d d d d
 (2.1) 

where  obj d is an objective function,  jH d are the constraints,  
T

idd is a design 

point, and ,L Ud d are the lower and upper bounds of the design point, respectively. The 

algorithms to find an optimum for this problem are well developed. However, in a 

practical engineering problem, the design variables involved in the design formulation are 

mostly not deterministic. That is to say, there exists uncertainty in engineering designs or 

manufacturing processes [2]. 
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Reflecting these aspects, a RBDO problem considers this uncertainty by 

introducing the concept of the probability of failure of the constraints at a design point. 

For a general RBDO problem, the following mathematical formulation can be 

established: 

 

 

  ,

minimize

0 , 1,2,...,
subject to

, and

j tar j

L U ndv nrv

obj

P H P j nc

R R

    

   

d

x

d d d d x

 (2.2) 

where  P represents probability, ,tar jP is the target probability of the thj constraint, and 

x is a random vector. Further, nc stands for the number of constraints, ndv for the number 

of design variables, and nrv for the number of random variables. The design variable 

 i id x is the mean of a random variable. The number of the random variables is 

always equal to or larger than the number of design variables. If a random variable is not 

used as a design variable, the random variable is called ‘random parameter’.  

 In a reliability analysis process, the probability of failure must be calculated. This 

calculation involves a multi-dimensional integration on the failure domain
F , which is 

defined as 

   0F nc iH  x x  (2.3) 

On the domain in Eq. (2.3), it is possible to define an indicator function 
F

I which 

possesses the value of one on the failure domain, and zero on the feasible domain as 

 

 
1

0 otherwiseF

F
I


 


x
x  (2.4) 
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This function plays a role of counting the number samples in the failure domain
F . 

With the indicator function and the domain defined as in Eq. (2.3), and (2.4), 

respectively, the probability of failure for a design point is computed as 

 

   

   

 

;

;

F

N F

F

FP f d

I f d

E I







 



   





θ x

x

x x θ x

x x θ x

x

 (2.5) 

where f is the probability density function of x ,  E stands for the mean of arguments, 

and θ is the parameter vector of the distribution. 

 Usually, a gradient-based optimization algorithm is used for RBDO. For this 

algorithm, the function values and their sensitivities at each design point are required. 

However, in the engineering problems, it is not quite easy to obtain accurate sensitivity 

due to the absence of explicit functions. In this situation, surrogate models are applied for 

the optimization process. A surrogate model, also known as a metamodel, is a regression 

model that estimates an unknown function with a reasonable number of samples. There is 

a series of surrogate models developed, but for the sampling-based RBDO purpose, 

Dynamic Kriging (DKG) which is developed by Liang Zhao, et al., is applied [7]. This 

method approximates the constraints with a dynamic basis selection and is very accurate 

though it is implicit. 

 If an accurate surrogate model is available for the optimization purpose, it is 

possible to obtain the function values and the sensitivities by applying sampling method, 

i.e. Monte Carlo Simulation (MCS) or the MCS using Latin Hypercube Simulation (LHS) 

to the surrogate model generated. For the function value evaluation, let  jH x represent 
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the surrogate model for the thj constraint. By using a sampling method, the probabilistic 

constraints in Eq. (2.2) is converted into 

        ,

1

1
0 0

F

N
i

j j tar j

i

P H P H I P
N




           x x x  (2.6) 

where N is the number of samples, 
F

I


is an indicator function defined by the failure 

domain using the surrogate models as in 

   0F nc iH  x x  (2.7) 

and  i
x is the 

thi  realization of x . 

2.2. Sensitivity Analysis 

 As mentioned above, the sensitivities of probabilistic constraints with respect to 

the each design variable 
i are required to use a gradient-based optimization. First, the 

following regularity conditions must be hold to derive the sensitivity mathematically [8, 

9]. For a probabilistic response        ;
NR

H E g g f d     xμ x x x μ x , 

1. The joint PDF of design variables  ;f
x

x μ is continuous. 

2.  H μ and  ;f
x

x μ are differentiable with respect to their argument μ . 

3. The mean satisfies μ , where   is an open domain. 

4. A Lebesgue dominating function  m x exists and is integrable, which also satisfies the 

following condition: 

  
 

 
;f

g m





x x μ
x x

μ
 (2.8) 
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 Under the regularity conditions, the 1
st
 derivative of the probabilistic constraints 

    0 Tarp P y P    μx x with respect to the 
thi  parameter 

i is obtained as 

 

 
   

 
 

 
 

 

 
 

;

;

log ;
;

log ;

N F

N F

N F

F

F

i i

i

i

i

P
I f d

f
I d

f
I f d

f
E I

 















  


 











 
  

 







μ

x

x

x

x

x

x
x x μ x

x μ
x x

x μ
x x μ x

x μ
x

 (2.9) 

Here, the distribution parameter vector θ isμ , which is the design vector. In Eq. (2.9), the 

1
st
 order derivative of the log of the PDF is called the first-order score function for

i , 

which is defined as 

 
   

 1 log ;
;

i

i

f
s








x x μ
x μ  (2.10) 

 For the purpose of the sensitivity derivation, as shown above, a differentiation of 

constraint function is not required. Instead, Eq. (2.9) requires only the 1
st
 derivative of the 

PDFs. Especially, when a surrogate model is applied to the RBDO problem, the 

sensitivity of the constraints is usually not available; and also inaccurate even if the 

surrogate model is considered to be accurate enough. Thus, it is in fact natural to use the 

score function to obtain the accurate sensitivity. 

 From the sensitivity which is represented by Eq. (2.9), it is possible to further 

calculate it by using MCS as 



10 

 

 
 

 

 
 

 

       1

1

log ;

1
;

F

iF

F

i i

N
i i

i

P f
E I

I s
N



 





   
  

  

 

μ x
x x μ

x

x x μ

 (2.11) 

Deriving the score functions for other distributions is quite straight forward. There is a 

list of PDFs and their score functions in [10]. 

2.3. Drawbacks of RBDO - Curse of Dimension 

 So far, this thesis has presented the formulation of RBDO and the sensitivity 

derivation. And there the sampling methods i.e. MCS or MCS with LHS were applied for 

the purpose. The MCS with LHS which uses stratified samples is preferred to the MCS in 

sampling-based RBDO for its relative accuracy with the small number of samples [11]. 

However, in the calculation of the probability of failure, it is required to inspect the tail 

area of a PDF which has very small proportion. Therefore, the number of samples for the 

calculation is still not small even though the LHS is applied. Further, the LHS is 

incongruent for the screening purpose in this research because it requires an explicit form 

of functions when applying the central limit theorem [12].   

 In the MCS, the average distance between two arbitrary sample points is getting 

longer if the same number of samples is engaged because the volume of space becomes 

larger, which in turn requires more samples to maintain the same density. Fig. 2.1 and 2.2 

shows a realization of sampling in each dimension. As shown below, they demonstrate 

the sparseness of samples in the higher dimension. 10 samples were drawn on 

 1 (0,10)x x   for 1-D case, and the same number of samples were drawn on 

 2 ( , ) (0,10), (0,10)x y x y    . 
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Figure 2.1  Samples in 1-D 

 

The mean distance in 1-D sampling in the case above is 1 3.12d   whereas 2 5.13d  in 

the 2-D case. Therefore more samples need to be inserted for the 2-D case. For the 

calculation of the probability of failure in a higher dimension, an extremely large number 

of samples will be adopted even if the dimension is increased by only 1. As demonstrated, 

the computational cost for MCS increases exponentially as the dimension increases, and 

this phenomenon is called ‘the curse of dimension’ [14]. 

 

 

Figure 2.1  Samples in 2-D 

 

 Moreover, for a surrogate model generation purpose, the number of function 

evaluations increases as dimension increases to generate an accurate surrogate model. If a 

function response is highly nonlinear and the function is of many design variables, then it 
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easily takes days to generate one surrogate model. In RBDO, when a surrogate model is 

applied, the models should be generated at each design point. Therefore, the 

computational time for the whole RBDO procedure is enormous. 

 To overcome this difficulty, there have been numerous trials such as the 

dimension reduction method in which the multi-dimensional integrations are decomposed 

into a number of low dimensional integrations while maintaining a certain level of the 

accuracy. However, an essential solution for the curse of dimension is to remove the 

randomness of the unnecessary variables, which is the main purpose of this paper. The 

method is called ‘variable screening,’ and it is used to rank the variables in sequence by 

their relative importance. If the randomness in the specific design variables could be 

removed, the number of MCS for the RBDO procedure will be reduced significantly. For 

the surrogate model generation purpose, removing random parameters could reduce the 

computational cost of the generation. Because the screened variables are assumed to be 

deterministic, there is no need to carry out the MCS at all. 

 In the following chapter, different screening methods using statistical inference 

i.e. the test-of-hypothesis and the central limit theorem are introduced. Especially, the 

screening methods provided in the subsequent section are able to deal with not only an 

explicit function but also an implicit function, which is the key feature of this research. 
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CHAPTER III 

VARIABLE SCREENING METHOD 

 This chapter shows a specific algorithm for the variable screening, and lists the 

ranking of the design variables determined by their relative importance. The formulation 

using statistical inferences is introduced with implicit functions, which is a strong aspect 

of the research. The first part will explain the measures of the screening method and find 

the possible candidates for screening the variables of the implicit functions. Different 

measurements with their merits and limits will be included. In the second part, the 

formulation of the screening method for each measure is explained based on the test-of-

hypothesis and the central limit theorem with a detailed procedure. 

3.1. Measures for Variable Screening 

 To perform a variable screening, it is critically important to choose a proper 

measure. Good measures are those with which it is possible to clearly identify the 

important variables. A highly strict measure might screen out all variables while a loose 

measure might not be able to screen out the variables at all. Neither of them is 

appropriate for the purpose of screening. In fact, the representative values, i.e. the mean, 

variance, skewness or kurtosis of distributions can be the first guesses for the measures.  

 Among them, the variance of an output distribution is a suitable measure for 

variable screening. Let us consider the output distribution of a certain function. If it is 

possible to quantify the effect of each design variable to the variance of the output 

distribution, the important variables are those with considerable influence to the output 

distribution. If variance is chosen as the measure for the variable screening, the selected 

variable as the result of the variable screening works for the robust design optimization. 
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Wei Chen et al. [15] used global sensitivity analysis (GSA), which is used to see 

the influence of variances on the whole output model, by applying analysis of variance 

(ANOVA) decomposition method to an output function as below. For an explicit function 

f , the following decomposition is possible: 

        1 2 3 12... 1 2 3

1 1 1

, , ,... , ... , , ,...
n n n

n m j j kl k l n n

j k l

f x x x x f x x x x x x x  
  

       (3.1) 

where 
mf is the mean of the output distribution,  s are decomposition items. In Ref.16, a 

certain function is decomposed into a number of low dimensional functions, and the 

global sensitivity is obtained by calculating the partial variances of the decomposed 

items. The method considers in that not only the effect of a variable itself but also the 

interaction effect of more than 2 variables could be analyzed. However, their method 

requires explicit form of constraint function as shown in Eq. (3.1), which is not always 

available in practical applications since the constraint functions may be implicit. 

 By analyzing the variance of constraints the variable screening will be carried out 

in this research. If the variance induced by a variable is small enough to be screened out, 

then the variable will be regarded as deterministic. Even though the procedure cannot 

eliminate the randomness in design variables from the initial design, the computational 

cost will be reduced very much in RBDO process. Even though sensitivity is not 

calculated, the sensitivity information is embedded in the screening procedure because 

the output variance depends on the steepness of the constraint functions. The variable 

screening method to be proposed is applicable where GSA cannot be applied because 

GSA requires explicit form of constraint functions. The following section shows the 

formulation of variable screening. 
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3.2. Formulation for Variable Screening 

 Consider an implicit constraint function of independent random variables with a 

certain distribution, denoted as  y f x , and x is a random variable vector, defined as 

 
 1 2, ,....,

T

kx x xx  (3.2) 

where k is the number of random variables. Each random variable follows its own 

distribution, and the parameters of the distribution are considered to be determined in 

advance. The mean of a distribution is the design variable, and the realization of a design 

variable is dependent on the type of the distribution. 

 Out of k number of variables, suppose we want to set the variables which have 

less impact on the output variance as deterministic. It is possible to figure out the impact 

of each variable by checking the variance of output response. To screen out the variables, 

let 
iy be the output response induced by the thi variable, while fixing all other variables at 

their mean as 

 
   1 2, ..., ,...i i i ky x f x    (3.3) 

to evaluate the effect of the thi variable on the output variance. Because 
ix is a random 

variable, a realization of the output response varies for every repetition. Therefore, it is 

not enough to evaluate the impact of each variable by evaluating the response only once, 

which calls for statistical methods to carry out variable screening. 

To see the mean of the impact of the thi random variable, a repetition of 

realizations is needed. For this procedure, MCS is applied. Repeating Eq. (3.3) by 

m times, it is possible to calculate the sample variance of the output response which is 

defined as below. The value is referred to as ‘the thi partial sample variance’ in this 
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research. One may want to use MCS with LHS instead of the MCS for its efficiency, but 

MCS with LHS requires an explicit form of f to use the central limit theorem (CLT) 

[16]. The sample variance is calculated as 

 

    

    

22

1 2

1

2

1

1
, ..., ,...

1

1
1 ~

1

m

i i k

j

m
j

i

j

s f x f
m

y f i k
m

  




 


  






μ

μ

 (3.4) 

where 
j

iy is the
thj repetition of the response calculation while fixing all the variables 

other than the thi  variable. The sample mean in Eq.(3.4) is divided by 1n  by Bessel’s 

correction to make it an unbiased estimator. For all the variables, it is possible to obtain 

the partial sample variance. 

To apply the CLT, the mean of the partial sample variances is required. Therefore, 

the partial sample variances are calculated p times, resulting in the matrix as 

  

2 2 2

11 12 1

2

212

2 2

1

p

ij

k kp

s s s

s
s

s s

 
 
  
 
 
 
 

M  (3.5) 

where 2

ijs is the 
thj repetition of the thi partial sample variance calculation. Because the 

elements on the same column are the samples of the partial sample variances, it is 

possible to apply the CLT by calculating the sample mean of each row. Summing up the 

elements, one can obtain the sample mean as 

  2

1

1
1 ~

p

j ij

i

s s j k
p 

   (3.6) 
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 In fact, in this screening method, relative impacts of the variables are of interest 

rather than the variance value itself. To evaluate the relative impact, the partial sample 

variances need to be normalized as 

 

1

N i
i k

j

j

s
s

s





 (3.7) 

 To apply the test-of-hypothesis, we need to know the distribution that a test 

statistic follows. However, it is not always possible to figure out which distribution does 

N

is in Eq. (3.7) follow because there are k number of variables involved. In fact, it is 

possible to find out mathematically the form of the distribution by the variable 

transformation, but the distribution is not a closed form which makes it hard to estimate 

the percentile values. To overcome this difficulty, the hypothesis would be changed 

instead of normalizing the random variables. 

To determine the distribution of the sample mean, as in Eq. (3.6), CLT is applied. 

CLT, which is one of the most powerful tools in statistics, states that for any positive 

integer n , whatever distribution the random variable x follows, for any distribution with 

finite mean   and standard deviation,  the statistic defined as 

 
 

 ~ 0,1
n x

N





 (3.8) 

converges in distribution to a standard normal variable [16]. 

Usually n  in Eq. (3.8), which is the number of repetitions, is required to be larger 

than 30 to suitably approximate the standard normal distribution. By CLT, 
is converges 

in distribution to  2, /N n  . That is,  
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    20,D

i in s N    (3.9) 

 To identify important design variables, the test-of-hypothesis approach is used. 

Setting the null hypothesis and the alternative hypothesis as described below, one can 

conclude that the variable is important if the null hypothesis is rejected within a 

prescribed confidence. The following hypotheses imply that the null hypothesis is 

rejected if the normalized partial sample mean is more than x % of the equality of 

proportion. Because a variable triggering large impact will result in large proportion, the 

hypothesis is believed to be adequate as 

 0 1

1 1

1 1
: %, : %

k k

i i i i

i i

H x H x
k k

   
 

        (3.10) 

where x is a prescribed percentage value, k is the number of variables, and i are the 

sample means of the partial sample variances. The region in which the null hypothesis is 

rejected is called ‘critical region’. And the boundary of critical region is referred to as 

acceptance limit. Because is  follows a normal distribution as in Eq. (3.9), the 

1  percent acceptance limit under the null hypothesis can be defined as 

  1

1

1
1

100

k

i i

i

x
P Z

k n



  



 
       

 
  (3.11) 

where 
1Z  is the standard normal variable corresponding to CDF, i.e.  1

1 1Z F 

   . 

Slutsky’s theorem [16] makes it possible to substitute the true mean and standard 

deviation with the sample mean and standard deviation to approximate the distribution. 

Therefore, it is possible to approximate Eq. (3.11) as 

 1

1

1
1

100

k

i i

i

x s
P s Z

k n
 



 
       

 
  (3.12) 
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where s is the sample standard deviation. With the substitution, the statistic is  in Eq. 

(3.12) approximately follows the normal distribution  2,iN s s . 

If the inequality in Eq. (3.12) is satisfied, then there is no reason to say that the 

null hypothesis is wrong. In contrast, if the inequality is not satisfied, it is possible to 

state that the null hypothesis is wrong with the 1  % confidence which means the 

variable has fairly large impact on the output mean. 

 When rearranging Eq. (3.12), it is possible to obtain 

 

1

1

1

1

1
1

100

1
1

100

k

i i

i

k

i i

i

x s
P s Z

k n

x s
P s Z

k n





 

 









 
       

 

  
       

  





 (3.13) 

 
1

1

100

k

i i

i

x s
q s

k n




 
    
 

 is called ‘test statistic’, and if q is larger than 

1Z  in Eq. (3.13), then the corresponding design variable is selected with the 1  % 

confidence. 

In fact, it is desirable to find the deterministic design optimum (DDO) at first 

when searching for the RBDO optimum. The research is proposed to be used at the DDO 

optimum point. Thus, the screening method proposed in this paper is applicable. That is 

to say, the screening method will filter the important variables, while leaving the other 

variables at the DDO optimum point. Assuming that inactive constraints at DDO 

optimum are far enough from the local window, only the active constraints need to be 

considered for the screening purpose. Therefore, the number of function evaluations in 

this variable screening method is equal to 
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     

     

2

i# of FE # of MCS for y # of repetition for s

# of variables # of active constraints # of Iterations

 

  
 (3.14) 

As shown in Eq. (3.14), if there are multiple active constraints then the test-of-

hypothesis must be done for all the constraints. The variables which will be screened out 

are those which are screened in every test. 

By removing the randomness in the variables that contribute to output variance 

less, the dimension of the surrogate model is also reduced. The size of the local window 

to generate a surrogate model is defined by the standard deviation of the input variables. 

Therefore, if a variable is supposed to be deterministic, the dimension of local window is 

reduced, which in turn results in reducing the dimension of surrogate model, as well as 

the computational cost. 

The variable screening method does not consider the interaction effect of the 

design variables, so 1-D surrogate models are used to carry out the variable screening. 

The computational cost for the generation of 1-D surrogate models is cheaper than the 

generation of the multi-dimensional surrogate models. Besides, more accurate surrogate 

model generation is possible because the samples applied to 1-D surrogate model 

generation are located only on axes whereas samples are located off the axes in multi-

dimensional surrogate models. Figure 3.1 and 3.2 demonstrates an example of sample 

locations in 2-D surrogate model generation and two 1-D surrogate model generations. 
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Figure 3.1  Locations of Samples for Surrogate Model Generation for Variable Screening 

in 2-D 

 

 

 

Figure 3.2  Locations of Samples for Surrogate Model Generation for RBDO in 2-D 
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 Besides, if all of the selected design variables are located on the design bound, 

then the variable screening should be carried out again for the screened variables because 

the feasible domain may not exist. Likewise, if all of the design variables employed in a 

constraint are located on the design bound, the variable screening method should not be 

applied. 
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CHAPTER IV 

SAMPLE SIZE DETERMINATION AND ITS APPLICATION 

 The errors occur in the test-of-hypothesis is critical in a decision making process. 

This chapter will describe the possible sources of errors in the test-of-hypothesis and find 

a way to reduce the possibility of error. In the first part, the problem of convergence 

related with the number of samples is posted. The second part will be contributed to 

finding out the minimum number of samples for the required possibility of error. The 

final part will be devoted to explaining the algorithm of combining the variable screening 

method and sample size determination. 

4.1. Discussion on Convergence 

The test-of-hypothesis used in Chapter III is not always correct. There are some 

components that have effect on decision making. First, acceptance limit in Eq. (3.12) 

varies with the number of repetition p  in the matrix in Eq. (3.5) and the prescribed 

confidence level. In the Fig. 4.1, the influence of 1  value on the acceptance limit is 

shown. If a high confidence level is required, then the acceptance region must be large. 

With a high confidence level, the acceptance limit becomes wider which is consistent 

with the expectation. 
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Figure 4.1  Influence of  on Acceptance Limit 

 

 If the number of repetition increases, however, the acceptance limit will become 

narrower because more information is collected. Fig. 4.2 demonstrates the tendency of 

the acceptance limit variation corresponding to the number of repetitions. As the number 

of repetitions increases, the acceptance limit tends to converge on a single value. 

In fact, errors involved in the hypothesis could be critical in making judgment. 

There are two kinds of errors, one is choosing the null hypothesis when the alternative 

hypothesis is true and the other is choosing the alternative hypothesis when the null 

hypothesis is true. The former error is called Type-I error, and the latter error is called 

Type-II error. There are 4 states of decision making including errors, as listed in Table 

4.1. Type-I error is less significant in the variable screening method because if the error 

occurs, a variable with less importance would be chosen as an important one. Thus the 

result of Type-I error is an increment in computational cost. Table 4.2 shows the 

possibility of each state. 
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Figure 4.2  Influence of Repetition on Acceptance Limit 

 

However, Type-II error is critical in the optimization process because variables 

with high impact on the output would be screened out, which may lead to a meaningless 

optimum result. Therefore, lower probability of Type-II error is preferred. Because there 

could be different critical regions which are of the same size, one may want to choose the 

critical region with minimum probability of Type-II error, or equivalently maximizing the 

power of the test among the critical regions. One of the ways to minimize the probability 

of Type-II error is to increase the number of samples. 

 

Table 4.1  Decisions in Test-of-Hypothesis 

Judgment 
State 

0H  is true 1H is true 

Select 0H  Correct Type-II error 

Reject 0H  Type-I error Correct 
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 The probabilities of the four states in the test-of-hypothesis are shown in Table 

4.2.  The probability of Type-I error is denoted as  , whereas the probability of Type-II 

error is denoted as  . 

 

Table 4.2  Probability in Test-of-Hypothesis 

Judgment 
State 

0H  is true 1H is true 

Select 0H  1     

Reject 0H    1   

 

 

 The sample mean and sample standard deviation does not converge well with the 

small number of samples. Therefore, the errors can occur with the small number of 

samples. Figure 4.3 shows convergence of the sample mean sampled from a normal 

distribution. As shown in the Fig. 4.3, a sample mean does not converge with the small 

number of samples but it converges in one value as the number of samples increase. And 

this fact could induce possible errors on decision making process. 
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Figure 4.3  Convergence of Sample Mean 

 

 However, the variance of the sample mean is high enough to make a decision 

error in the test-of-hypothesis when a small number of samples are used. When a high 

confidence level is required for the test, the possibility of making decision error becomes 

larger. Figure 4.4 and 4.5 show possible Type-I, and Type-II errors on the test-of-

hypothesis, respectively. The decision errors are defined as the sample means outside of 

the acceptance limit when the true mean is inside the limit, or vice versa. 
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Figure  4.4 Type-I Error 

 

 

Figure 4.5  Type-II Error 

 

In the test used in this research, there are two possible sources for sampling error. 

The first is the sample mean defined as in Eq. (3.4), and the other is the sample variance 

s in Eq. (3.12). As shown on Fig. 4.5 above, it is better to use more samples to reduce the 

possibility of error. However, a test-of-hypothesis using too many samples will require 

very large computational cost. Thus, it is necessary to estimate a suitable number for 
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sampling. Usually, if the null hypothesis is close to the true value or the standard 

deviation of the test statistic is large, then more samples are required to make the 

possibility of error small. The following chapter explains how to deal with the 

convergence problem, and tries to find a suitable number for sampling problem. 

4.2. Sample Size Determination 

To estimate the number of required samples, we need to investigate the power 

function, which is defined as 

 
   

  
1 1 2

1 Type-IIerror

, .,..,H nP x x x Cr

   

 
 (4.1) 

where  is a distribution parameter, ix are random variables, and Cr is critical region. 

The power function is a function of the distribution parameters, and for the test used in 

this research, the function is a strictly increasing function with respect to the its parameter 

 . Thus, if the difference between the two hypotheses is large, then the power increases 

as well. This is natural because it is easier to distinguish two hypotheses if the difference 

is large. Because only the normal distribution is applied to the test-of-hypothesis, it is 

possible to obtain the power function as 
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where  is CDF of the standard normal distribution, and Z is  -percentile value of the 

distribution. If the desired power in 1H is  percent, then the following relation could be 

obtained: 

 0

/
Z Z

n
 

 




    (4.3) 

 Rearranging Eq. (4.3), the number of samples for the desired power is obtained as 

a function of the alternative hypothesis as 

 
 
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, 1 ~
i
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i

Z Z
n i r

 

 

  
   
  
  

  (4.4)  

where r is the number of test statistics in 1H . 

To determine the sample size, i in 1H should be specified. If the difference in the 

denominator is small, which means the two hypotheses are ambiguous, then more 

samples need to be used. Likewise, if the standard deviation is large, the number also 

needs to be increased. Because 1H is defined as a range instead of a single value, an 

estimator for  and should be introduced. As shown in Eq. (4.4), not only i but also 

i affects the determination. Because of this, in the sample size determination, small 

0i   does not guarantee large in . Consequently, the in  calculated by the test statistics 

in 1H  need to be compared. Finally, the number of samples will be chosen as the largest 

value among in .  

4.3. Algorithm for Variable Screening with Sample Size Determination 

  So far, a variable screening method using the test-of-hypothesis has been 

introduced with appropriate sample size determination. However, the result from the test-
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of-hypothesis still could be somewhat inconsistent due to the randomness induced by the 

sample mean and standard deviation in the sample size determination in Eq. (4.4). To 

overcome this difficulty and obtain a reasonable result, a suitable combination of the two 

processes is required. In this research, an iterative algorithm is suggested to complete the 

test which involves a series of tests. 

 

 

Figure 4.6  Algorithm for Complete Test 
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Once the partial sample means are calculated, one can state the hypotheses and 

determine the sample size using the sample means. Therefore, another test-of-hypothesis 

could be carried out using the hypotheses and the sample size determined from the 

previous iteration. Thus, iteration consists of a test-of-hypothesis, to set up the 

hypotheses and determine the sample size.  If the result from the current iteration and the 

previous iteration are the same, then the result from the screening is considered to be 

accurate enough. Figure 4.6 shows the algorithm for a complete test. 
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CHAPTER V 

EXAMPLES 

5.1. Mathematical Verification Example 

In this example, the detailed procedure of the variable screening method is shown 

to verify how the method selects variables which result in large output variance. For the 

verification purpose, a 10 dimensional function is considered. The function is 

combination of polynomial functions and an exponential function, which is given as 

     2 4 3 3

1 2 3 4 5 6 7 8 9 10exp 20 12 5 12 22 10 8 59.71h x x x x x x x x x x          x  (5.1) 

 Each random variable follows its own distribution as shown in Table 5.1. Three 

kinds of probability density functions, namely normal, lognormal, and gamma 

distributions are considered and their PDF expressions are given in Table 5.2 [16]. 

 

Table 5.1 Input Design Variable Information 

Variable Distribution Type Input Distribution Parameters 

1x  Normal 1, 0.5    

2x  Lognormal 0.018, 0.1934a b    

3x  Normal 1, 1.1    

4x  Lognormal 0.018, 0.1934a b    

5x  Gamma 25, 0.04    

6x  Gamma 1.5625, 0.64    

7x  Normal 1, 0.2    

8x  Gamma 2.77, 0.36    

9x  Normal 1 , 0.85    

10x  Lognormal 0.0865, 0.4161a b    
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Table 5.2  PDFs of Normal, Lognormal and Gamma Distribution 

Distribution Type PDF 

Normal  
2

1 1
; , exp ,

22

x
f x x


 



   
       

   

 

Lognormal  

2
1 1 ln

exp 0
; , 22

0 elsewhere

x a
x

f x a b bxb 

    
      

     



 

Gamma 
   

1 /1
0

; ,

0 elsewhere

xx e x
f x

 

  

 
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 



 

  1

0

yy e dy


     

  

 

The mean and standard deviation for each distribution corresponding to the input 

parameters in Table 5.1 can be obtained using equations in Table 5.3. 

 

 

Table 5.3  Mean and Standard Deviation of Normal, Lognormal and Gamma Distribution 

Distribution Type Mean Standard Deviation 

Normal     

Lognormal  2exp / 2a b      2 2exp 1 exp 2b a b   

Gamma   2  
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Table 5.4 shows the calculated means and the standard deviations of input 

variables in Table 5.1. 
3x  has the largest input standard deviation whereas 

5x has the 

smallest one. 

 

Table 5.4  Mean and Standard Deviation of Input Design Variables 

Variable Distribution Type Mean Standard Deviation 

1x  Normal 1 0.500 

2x  Lognormal 1 0.195 

3x  Normal 1 1.100 

4x  Lognormal 1 0.195 

5x  Gamma 1 0.2 

6x  Gamma 1 0.8 

7x  Normal 1 0.200 

8x  Gamma 0.9972 0.598 

9x  Normal 1 0.850 

10x  Lognormal 1 0.434 

 

 

In the sample size determination and setting the hypotheses in the iteration 0, 100 

samples were used to evaluate the sample mean, and 50 samples were used to calculate 

the sample standard deviation. The mean values for the partial sample variance are 

calculated as shown in Table 5.5. At the iteration 0, the variable 7 shows the largest 

impact on the output variance while the variable 8 shows the smallest impact. 
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Table 5.5  Mean of Partial Sample Variance in Iteration 0 

Variable 1x  
2x  

3x  
4x  

5x  

Mean 2.617 68.756 172.763 0.969 169.128 

Variable 6x  
7x  

8x  
9x  

10x  

Mean 163.108 198.275 0.352 72.431 12.335 

 

 

From Table 5.5, for this example, one can set up the null and the alternative 

hypotheses as 

 
1 1

0 1: 91.7954 100%, : 91.7954 100%H x H x     (5.2) 

The superscripts in null and alternative hypotheses represent the iteration number in 

which the hypotheses are used. Eq. (5.2) is calculated from Eq. (3.10), by substituting k  

with 10, and i  by the means in Table 5.5. And Eq. (5.2) becomes the standard for the 

variable screening process in the next iteration. While doing so, let the probability of 

Type-I error be 95%. Then Z in Eq. (4.4) is equal to  1 0.95 1.645  , where   is the 

CDF of the standard normal distribution [16].  

 For the sample size determination, the variables of which the mean is larger than 

91.7954 are considered. In this example, the partial sample variances corresponding to 

the design variables 
3 5 6, ,x x x and 7x are larger than 91.7954. Calculating the standard 

deviation of the partial sample variance for each variable, it is possible to obtain Table 

5.6. 
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Table 5.6  Standard Deviation of Partial Sample Variance in Iteration 0 

Variable 1x  
2x  

3x  
4x  

5x  

Standard 

Deviation 
0.787 15.858 23.140 0.145 75.265 

Variable 6x  
7x  

8x  
9x  

10x  

Standard 

Deviation 
507.226 44.339 0.074 10.639 2.592 

 

 

 While setting the desired power for the test statistics, which is Z in Eq. (4.4), as 50%, it 

is possible to obtain Table 5.7 by substituting i with the variance of the partial sample 

variance in Table 5.6, and i with the mean of the partial sample variance in Table 5.5, 

0 with 91.7954 in Eq. (5.2). 

 

Table 5.7  Sample Size Determination in Iteration 0 

Variable 3x  
5x  

6x  
7x  

Sample size 2 13 651 4 

Maximum Sample Size 651 

 

 

As shown in Table 5.7, the minimum sample size to satisfy the probability of 

Type-II error in this example is 651n  . In the next iteration, the means of the partial 

sample variance can be calculated again using the sample size 651n   as in Table 5.8. 
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Table 5.8  Mean of Partial Sample Variance in Iteration 1 

Variable 1x  
2x  

3x  
4x  

5x  

Mean 2.683 68.962 175.037 0.965 175.397 

Variable 6x  
7x  

8x  
9x  

10x  

Mean 157.691 200.290 0.357 71.595 12.140 

 

 

From Table 5.7, one can set up the null and the alternative hypotheses as 

 
1 1

0 1: 86.6716 100%, : 86.6716 100%H x H x     (5.3) 

The null and alternative hypotheses in Eq. (5.3) are calculated from Eq. (3.10), by 

substituting k with 10, and i  with the means in Table 5.7. The standard deviations of 

the partial sample variances are calculated again using the sample size 651n   as in 

Table 5.9. 

 

 

Table 5.9  Standard Deviation of Partial Sample Variance in Iteration 1 

Variable 1x  
2x  

3x  
4x  

5x  

Standard 

Deviation 
0.744 14.344 24.112 0.154 79.242 

Variable 6x  
7x  

8x  
9x  

10x  

Standard 

Deviation 
207.387 42.271 0.070 10.092 2.845 

 

 

The sample size to calculate the partial sample variance in the next iteration is obtained 

as in Table 5.10.  
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Table 5.10  Sample Size Determination in Iteration 1 

Variable 3x  
5x  

6x  
7x  

Sample size 2 14 461 3 

Maximum Sample Size 461 

 

 

The 95% percentile value of the standard normal distribution is 1.645 [16]. 

Therefore, if the test statistic  q , which is calculated from Eq. (3.13) by substituting k  

with 10, 
1

1 k

i

ik




  with 91.7954 from Eq. (5.2), is  with the means of the partial sample 

variance from Table 5.7, and s with the standard deviation of the partial sample variance 

in Table 5.9 is larger than 1.645, the null hypothesis will be rejected and the 

corresponding design variable will be selected. Table 5.11 shows the calculated value of 

the test statistics. According to the result, the design variables 3 5 6, ,x x x , and 7x
 
are 

believed to have large impacts on the output variance. 

 

Table 5.11 Result of the Test-of-Hypothesis in Iteration 1 

Variable 1x  
2x  

3x  
4x  

5x  

Test Statistic -1.9e+03 -14.532 58.650 -8.2e+03 15.147 

Variable 6x  
7x  

8x  
9x  

10x  

Test Statistic 4.011 45.706 -1.8e+04 -24.388 -435.888 

 

 

Consequently, only one variable could be considered to be random while the rest 

are considered as deterministic variables by following this result. To check the 
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consistency of the result, more iteration is required. Using the maximum sample size in 

Table 5.10, it is possible to carry out the next iteration. Table 5.12 shows the mean of the 

partial sample variance in the iteration 2, and Table 5.13 shows the standard deviation of 

the partial sample variance in the iteration 2. 

 

 

Table 5.12  Mean of Partial Sample Variance in Iteration 2 

Variable 1x  
2x  

3x  
4x  

5x  

Mean 2.625 70.755 173.620 0.944 165.773 

Variable 6x  
7x  

8x  
9x  

10x  

Mean 166.453 200.651 0.368 71.499 12.609 

 

 

Table 5.13  Standard Deviation of Partial Sample Variance in Iteration 2 

Variable 1x  
2x  

3x  
4x  

5x  

Standard 

Deviation 
0.749 15.256 25.490 0.150 68.626 

Variable 6x  
7x  

8x  
9x  

10x  

Standard 

Deviation 
222.099 42.956 0.070 10.290 2.759 

 

 

Table 5.14 shows the result of the second iteration in the variable screening. The 

result is consistent with the result of the iteration 1, so the iteration stops. According to 

the result, and 3 5 6, ,x x x , and 7x
 
are required to be random while the others are fixed at 

the DDO optimum, and thus the result gives a guideline which variables should be 

removed during the RBDO process. 
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Table 5.14  Result of the Test-of-Hypothesis in Iteration 2 

Variable 1x  
2x  

3x  
4x  

5x  

Test Statistic -2.6e+03 -23.457 77.384 -1.2e+04 28.009 

Variable 6x  
7x  

8x  
9x  

10x  

Test Statistic 4.891 61.659 -2.7e+04 -32.564 -575.531 

 

 

To check whether the variable screening method truly selects the design variables 

which give large impact on the output variance, the output variance of each term in Eq. 

(5.1) are calculated by MCS using 1,000,000 samples. 

 

 

Table 5.15  Output Variance of Each Term 

 

Term  1Exp x  2

220x  312x  
45x  4

512x  

Output 

Variance 
2.704 69.947 174.506 0.955 173.267 

Variable 
3

6x  3

722x  8x  
910x  

108x  

Output 

Variance 
154.644 203.029 0.3598 72.360 12.133 

 

 

According to Table 5.15, 7x has the largest impact on the output variance whereas 

8x has the smallest impact. The output variances 3 5 6, ,x x x and 7x are the large, and the 

variables are selected. Thus the variable screening result is consistent with the result of 

the Table 5.14. In reality, however, calculating output variance of each term is not 

possible. Therefore, using the variable screening method can be a solution to select 

important design variables. 
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As shown in this example, the variable screening method selects the design 

variables which have large impact on the output variance. 

5.2. Speed Reducer Problem 

 A speed reducer is to be optimized in this problem [17]. The formulation for this 

problem is to 

 

 

   

   

     

     

 

2 2

1 2 3 3

2 2 3 3 2 2

1 6 7 6 7 4 6 5 7

3

4
1 2 32 2 2 4

1 2 3 1 2 3 2 3 6

4

Minimize  C

S.T. 0 , 1 ~ 11

where 

0.7854 3.3333 14.9334 43.0934

1.508 7.477 0.7854

1.9327 397.5
1, 1, 1

1.9

i

Tar

i F

L U

P G P i

C d d d d

d d d d d d d d d

X
G G G

X X X X X X X X X

G

  

 

  

     

     



d

X d

d d d

d

X X X

X  
  

 
  

 

     

 

2 63
4 2 35

54 3

2 3 7 6

2 6

5 2 3

6 7 2 33

7

61 1
8 9 10

2 2 4

7
11

5

745 / 16.9 103
1, 1100

0.1

745 / 157.5 10
850, 40

0.1

1.5 1.9
5 , 12, 1

1.1 1.9
1, 3 design =0.00135, 1 ~ 11

i

Tar

F

X X XX
G

X X X X

X X X
G G X X

X

XX X
G G G

X X X

X
G P i

X


 
  

 
   


     


   

X

X X

X X X

X

 (5.4) 

There are eleven constraints and seven design variables. The target probability of failure 

is 0.0135%, which is a 3 -design. The speed reducer consists of two shafts with bearings 

and gears. In this optimization problem, the weight of the reducer is to be minimized 

subject to the contact stress, bending stress, longitudinal displacement of the shafts, stress 

imposed on the shafts, and geometric constraints. 
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In Fig 5.1, the location of each design variable is shown [17]. 
1x is the width of 

the gear and 
2x is the teeth module, which is a scaling factor to enlarge the gear teeth. 

3x is the number of teeth in the pinion, 
3x and

4x are the distance between bearings, and 

6x and 
7x are the diameters of axis.  

 

Figure 5.1  Speed Reducer 

 

The distribution type, mean, standard deviation, and design bound of the design 

variables is shown in Table 5.16. Each design variable follows a normal distribution with 

different mean and standard deviation. 

 



44 

 

 
 

Table 5.16  Input Design Variable Information 

Variable Distribution Type Initial Design Parameters Design Bounds 

1x  Normal 3.2, 0.005    
12.6 3.6x   

2x  Normal 0.75 0.005    
20.7 0.8x   

3x  Normal 22.5, 0.005    
317.0 28.0x   

4x  Normal 7.8, 0.005    
47.3 8.3x   

5x  Normal 7.8, 0.005    
57.3 8.3x   

6x  Normal 3.4, 0.005    
62.9 3.9x   

7x  Normal 5.25, 0.005    
75.0 5.5x   

 

The DDO optimum for this problem is found as in Table 5.17, where four active 

constraints are found.  

 

 

Table 5.17  Summary of DDO Result 

Obj. Function Value Design Point Active Constraints 

2994.4 
(3.5000, 0.7000, 17.0000,

7.3934,7.7153, 3.3506, 5.2866)
 5, 6, 8, 11 

 

 

 Without the variable screening, the RBDO optimum point and the objective 

function value are found as in Table 5.18. There are four active constraints, and 2x , 3x are 

at their design bounds. The computational cost of the RBDO for this problem is around 1 

hour. The number of function evaluations is 371. 
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Table 5.18  Summary of RBDO Result Using All Variables 

Variable Set RBDO Optimum 

1 2 3 4 5 6 7, , , , , ,x x x x x x x   3.5765, 0.7000, 17.0000, 7.3000, 7.7541, 3.3651, 5.3017  

Obj. Function Value
 

Computational Cost 

3038.6
 

3609.35(s) 

Active Constraints Number of Function Calls 

5, 6, 8, 11  371 

 

 

To reduce the dimension of the problem, it is required to apply the screening 

method to the constraints 5, 6, 8, and 11. Using 100 samples to calculate the partial 

sample variance and k 50 repetitions in the matrix in Eq. (3.5), Table 5.19 is obtained. 

 

 

Table 5.19  Mean of Sample Variance in Iteration 0 

Constraint 5 

Variable 1x  
2x  

3x  
4x  

5x  
6x
 7x

 

Mean 0 7.75e-9 1.4e-11 7.8e-11 0 2.23e-5 0 

Constraint 6 

Variable 1x  
2x  

3x  
4x  

5x  
6x
 7x

 

Mean 0 1.1e-10 1.8e-13 0 9.3e-13 0 8.29e-6 

Constraint 8 

Variable 1x  
2x  

3x  
4x  

5x  
6x
 7x

 

Mean 2.14e-6 4.99e-5 0 0 0 0 0 

Constraint 11 

Variable 1x  
2x  

3x  
4x  

5x  
6x
 7x

 

Mean 0 0 0 0 4.25e-7 0 4.40e-7 
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The null and the alternative hypotheses for each constraint are set as 

 

   

   

   

   

0 1

0 1

0 1

0 1

Const 5 : 3.1895 06 100%, : 3.1895 06 100%

Const 6 : 1.1851 06 100%, : 1.1851 06 100%

Const 8 : 7.4361 06 100%, : 7.4361 06 100%

Const 11 : 1.2375 07 100%, : 1.2375 07 100

i i

i i

i i

i i

H s e H s e

H s e H s e

H s e H s e

H s e H s e

      

      

      

       %

 (5.5) 

Eq. (5.5) is calculated from Eq. (3.10), by substituting k with 10, and i  by the means in 

Table 5.19. The standard deviations of the partial sample variances are calculated in 

Table 5.20. 

 

 

Table 5.20  Standard Deviation of Partial Sample Variance in Iteration 0 

Constraint 5 

Variable 1x  
2x  

3x  
4x  

5x  
6x
 7x

 
Standard 

Deviation 
0 1.2e-09 2.0e-12 1.0e-11 0 2.4e-06 0 

Constraint 6 

Variable 1x  
2x  

3x  
4x  

5x  
6x
 7x

 
Standard 

Deviation 
0 1.2e-11 1.2e-14 0 1.4e-13 0 5.6e-07 

Constraint 8 

Variable 1x  
2x  

3x  
4x  

5x  
6x
 7x

 
Standard 

Deviation 
2.1e-07 1.0e-05 0 0 0 0 0 

Constraint 11 

Variable 1x  
2x  

3x  
4x  

5x  
6x
 7x

 
Standard 

Deviation 
0 0 0 0 8.2e-08 0 5.9e-08 

 

 

 In this example, the sample sizes required to obtain a reasonable screening result 

was calculated from Eq. (4.4) as in Table 5.21 while setting  1 0.95Z

 , 
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 1 0.5Z

  where  is the CDF of the standard normal distribution. With the sample 

size determined in Table 5.21, it is possible to calculate the test statistics. 

 

Table 5.21 Sample Size Determination in Iteration 1 

Constraint 5 

Variable 2x  
6x  

Sample Size 1 3 

Maximum Sample Size 3 

Constraint 6 

Variable 2x  
7x  

Sample Size 1 2 

Maximum Sample Size 2 

Constraint 8 

Variable 1x  
2x  

Sample Size 1 2 

Maximum Sample Size 2 

Constraint 11 

Variable 5x  7x  

Sample Size 1 3 

Maximum Sample Size 3 

 

 

The maximum sample size in Table 5.21 is the minimum sample size to avoid the 

errors with prescribed probability for each constraint. The final result of the variable 

screening is shown in Table 5.22 – 5.25 below. 

 

 

Table 5.22  Final Result of the Variable Screening for Constraint 5 

Constraint 5 

Variable 1x  
2x  

3x  
4x  

5x  
6x
 7x

 
Test 

Statistic 
-Inf -3.9e+3 -3.7e+6 -9.3e+5 -Inf 11.3219 -Inf 
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Table 5.23  Final Result of the Variable Screening for Constraint 6 

Constraint 6 

Variable 1x  
2x  

3x  
4x  

5x  
6x
 7x

 
Test 

Statistic 
-Inf -8.5e+4 -4.6e+7 -Inf -7.2e+6 -Inf 10.3590 

 

 

Table 5.24  Final Result of the Variable Screening for Constraint 8 

Constraint 8 

Variable 1x  
2x  

3x  
4x  

5x  
6x
 7x

 
Test 

Statistic 
-58.615 9.1456 -Inf -Inf -Inf -Inf -Inf 

 

 

Table 5.25  Final Result of the Variable Screening for Constraint 11 

Constraint 11 

Variable 1x  
2x  

3x  
4x  

5x  
6x
 7x

 
Test 

Statistic 
-Inf -Inf -Inf -Inf 26.016 -Inf 15.721 

 

 

 According to the result in Table 5.22 – 5.25, it is possible to consider 
6x from the 

constraint 5, 
7x from the constraint 6, 

2x from the constraint 8, and 5 7,x x  from the 

constraint 11 as the important variables. Because the design variable 2x is on its lower 

bound, feasible domain might not exist for the RBDO. In fact, when the RBDO is carried 

out only with 2 5 6, ,x x x , and 7x , which are selected design variables in Table 5.22 – 5.25, 

feasible domain does not exist so the RBDO could not find an optimum point. 

Consequently, the variable screening must be carried out for the rest of the variables in 
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the constraint 8. When the variable screening is complete, 
1x becomes a selected variable. 

Therefore, the selected design variable set is 1 2 5 6, , ,x x x x and
7x . Thus, the dimension of 

the problem shrinks to 5 from 7. Carrying out the RBDO with the selected design 

variables, Table 5.26 is obtained. 

 

 

Table 5.26  Summary of RBDO Result Using Selected Design Variables 

Variable Set RBDO Optimum 

1 2 5 6 7, , , ,x x x x x   3.5753, 0.7000, 17.0000, 7.3000, 7.7614, 3.3653, 5.3020  

Obj. Function Value
 

Computational Cost 

3039.4
 

2798.01(s) 

Active Constraints Number of Function Calls 

5, 6, 8  218 

 

 

 Table 5.27 shows the calculated value of the probability of failure of each 

constraint function at the RBDO optimum point. 

 

 

Table 5.27  Probability of Failure of Constraints at RBDO Optimum 

Constraint Probability of Failure (%) Constraint Probability of Failure (%) 

1G  0.000 7G  0.000 

2G  0.000 8G  0.154 

3G  0.000 9G  0.000 

4G  0.000 10G  0.000 

5G  0.140 11G  0.000 

6G  0.107   
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If 
3x and

4x are considered to be deterministic, the probability of failure 

corresponding to the RBDO optimum in Table 5.26 for each constraint function satisfies 

the target probability of failure 0.135%fP   in Eq. (5.4). 

5.3. Cantilever Beam Problem Using ANSYS 

 The next example is an optimization problem of cantilever beam using implicit 

surrogate model. In this problem, the volume of the cantilever beam is the objective 

function to be minimized, while the displacement at the tip and the stress at the root are 

required to be smaller than a prescribed value. The problem is formulated as 

 

   
 

 

3

1 2 3 4 5 6

491

2

1

Minimize 2 2 2 2

S.T. ( ) 0.0005 0.02275

300 / 0.02275

V x x x x x x cm

P d cm

P s N cm

     

 

   

x

x

 (5.6) 

The beam is comprised of five sections; with the design variables are the heights of the 

sections. In Eq. (5.6), the subscripts in the constraints indicate the node number. The 

nodes are located on the beam model as shown in the Fig. 5.2. Young’s modulus and 

Poisson’s ratio used for this beam are listed in Table 5.28. 

 

 

Table 5.28  Material Property 

Young’s Modulus Poisson’s Ratio 

221,000,000 /N cm  0.3  

  

 

At the initial design stage, the dimension of the beam is    50 10L H cm cm   . 

Further, the thickness of the beam is 1cm  and the beam is not influenced by gravity. The 
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root of the beam on the left side is fixed along the edge, and force of 10N is applied 

along the right edge of the beam as shown in Fig. 5.2. 

 

 

Figure 5.2  Design Variables and Location of Nodes on Cantilever Beam 

 

 The beam FEA model with 500 nodes is used for the stress and displacement 

analyses. At the initial design, the design variables are set as in Table 5.29. All the 

variables follow normal distribution with prescribed mean and standard deviation. The 

mean of the distribution is set as the design vector. 

 

 

Table 5.29  Input Design Variable Information 

Variable Distribution Type Initial Design Parameters Design Bounds 

1x  Normal 10, 0.2    
15.0 25.0x   

2x  Normal 10, 0.2    
21.0 13.0x   

3x  Normal 10, 0.2    
31.0 13.0x   

4x  Normal 10, 0.2    
41.0 13.0x   

5x  Normal 10, 0.2    
51.0 13.0x   

6x  Normal 10, 0.2    
61.0 13.0x   
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 The DDO optimum design is found as shown in Table 5.30, where both 

constraints are active. The design variable 
6x  hit the lower bound since small 

6x
 
does not 

reduce strength of the beam much whereas makes volume of the beam to be smaller 

efficiently. 

 

 

Table 5.30  Summary of DDO Result 

Objective 

Function Value 
Design Point 

Active 

Constraints 

707.7776   10.9209, 9.5595, 8.3181, 6.7525, 4.7983, 1.0000  1, 2  

 

 

The shape of the cantilever beam at the DDO optimum point is shown on Fig. 5.3. 

The tip of the beam becomes narrow, while the root of the beam becomes wide.  

 

 

 

 

Figure 5.3  Shape of Beam at DDO Optimum 

 

 

With all the six design variables, the RBDO optimum design is found as shown in 

Table 5.31. There is no significant change in the shape of the beam, but the height of each 

section becomes larger to satisfy the probabilistic constraints as shown in Fig. 5.4. 
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Figure 5.4  Shape of Beam at RBDO Optimum 

 

 

Table 5.31  Summary of RBDO Result Using All Variables 

Variable Set RBDO Optimum 

1 2 3 4 5 6, , , , ,x x x x x x   11.3335, 9.6370, 8.5635, 6.8662, 5.0435, 1.0000  

Obj. Function Value
 

Computational Cost 

725.5397 3674.280(s) 

Active Constraints Number of Function Calls 

1, 2 176 

 

 

Also, the probability of failure at the optimum is shown in Table 5.32. Both 

constraints satisfy the prescribed probability of failure. 

 

 

Table 5.32  Probability of Failure at RBDO Optimum 

 Constraint 1 Constraint 2 

Probability of Failure 2.0323% 2.2789% 

 

 

 

 To reduce the dimension of the problem, the variable screening is carried out for 
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both active constraints.  

 

Table 5.33  Final Result of Variable Screening 

Constraint 1 

Variable 1x  
2x  

3x  
4x  

5x  
6x
 

Test Statistic -72.778 10.264 2.994 4.102 3.437 -97.885 

Constraint 2 

Variable 1x  
2x  

3x  
4x  

5x  
6x
 

Test Statistic 16.098 -185.250 -1.1E+05 -Inf -Inf -Inf 

 

  

In constraint 1, the variables 
2 3 4, ,x x x  and 5x , which are in between the tip and 

the root, are selected as important variables. This is because output variance is affected 

by these design variables at the DDO optimum. 

From the result of Table 5.33, the variables 
1 2 3 4, , ,x x x x  and 5x are chosen as 

selected variables. Carrying out RBDO only with the selected variables, the result in 

Table 5.34 is obtained. 

 

 

Table 5.34  RBDO Result Using Five Selected Variables 

Selected Variable Set RBDO Optimum 

1 2 3 4 5, , , ,x x x x x   11.3366, 9.6632, 8.5037, 6.9120, 5.0065,1.0000  

Obj. Function Value
 

Computational Cost 

725.0764 3201.413(s) 

Active Constraints Number of Function Calls 

1, 2 168 
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As shown in Table 5.34, the computational cost decreases while the objective 

function value is same compared to Table 5.31. At this RBDO optimum, the probability 

of failure for each constraint is shown in Table 5.35. And the probability satisfies target 

value of 2.275% within acceptable range. 

 

 

Table 5.35  Probability of Failure at RBDO Optimum Using Five Selected Variables 

 Constraint 1 Constraint 2 

Probability of Failure 2.3316% 2.2908% 

 

 

More studies are carried out to find impact of different input standard deviation 

and the result of the variable screening. If the input standard deviation of a single variable 

 1x  becomes larger as shown in Table 5.36, the ranking of the important variable is 

changed. 

 

 

Table 5.36  Result of Variable Screening with Increased Standard Deviation of 1x  

Variable 1x  
2x  

3x  
4x  

5x  
6x
 

Standard 

Deviation 
0.4 0.2 0.2 0.2 0.2 0.2 

Test Statistic 

for Con. 1 
5.997 8.2055 4.4207 5.898 8.241 -254.165 

Test Statistic 

for Con. 2 
24.112 -132.422 -1.2e+05 -2.3e+05 -7.4e+05 -6.2e+05 

Result Selected Variables 
1 2 3

4 5

, ,

,

x x x

x x
 Screened Variables 6x  
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Same problem is considered when the variance of 
2x  is increased to 0.4. Then 

2x
 

becomes a selected design variable for the constraint 1 as shown in Table 5.37. 

 

Table 5.37  Result of Variable Screening with Increased Standard Deviation of 2x  

Variable 
1x  

2x  
3x  

4x  
5x  

6x
 

Standard 

Deviation 
0.2 0.4 0.2 0.2 0.2 0.2 

Test Statistic 

for Con. 1 
-60.426 5.648 -3.778 -3.731 -2.529 -985.662 

Test Statistic 

for Con. 2 
18.774 -155.12 -4.4e+05 -1.1e+05 -3.0e+05 -6.7e+05 

Result Selected Variables 1 2,x x  Screened Variables 
3 4

5 6

, ,

,

x x

x x
 

 

In case of the 3x and 4x , if the input standard deviation is increased, 1x  and the 

variable with the increased input standard deviation are chosen as selected variables. 

 

 

Table 5.38  Result of Variable Screening with Increased Standard Deviation of 3x  

Variable 1x  
2x  

3x  
4x  

5x  
6x
 

Standard 

Deviation 
0.2 0.2 0.4 0.2 0.2 0.2 

Test Statistic 

for Con. 1 
-31.947 -5.962 10.017 -1.522 -0.882 -151.379 

Test Statistic 

for Con. 2 
29.516 -114.999 -1.1e+06 -2.4e+06 -1.3e+06 -0.1e+06 

Result Selected Variables 1 3,x x  Screened Variables 
2 4

5 6

, ,

,

x x

x x
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Table 5.39  Result of Variable Screening with Increased Standard Deviation of 
4x  

Variable 1x  
2x  

3x  
4x  

5x  
6x
 

Standard 

Deviation 
0.2 0.2 0.2 0.4 0.2 0.2 

Test Statistic 

for Con. 1 
-65.429 -12.909 -4.527 6.002 -6.815 -96.872 

Test Statistic 

for Con. 2 
14.917 -152.789 -7.0e+05 -2.4e+05 -1.4e+06 -2.4e+05 

Result Selected Variables 1 4,x x  Screened Variables 
2 3

5 6

,

,

x x

x x
 

 

 

If the input standard deviation of a single variable is large enough as shown in 

Table 5.37 – 5.39, only one variable is selected. In this case, the variable dominates the 

output variance, which means considering the variable in the design stage will be the 

fastest way to satisfy the probabilistic constraints. If the input standard deviation is not 

large enough that a single variable does not dominate the output variance; and not small 

enough that nearly all the variables are selected, then multiple number of design variables 

are selected as shown in Table 5.40. 

 

 

Table 5.40  Result of Variable Screening with Increased Standard Deviation of 5x  

Variable 1x  
2x  

3x  
4x  

5x  
6x
 

Standard 

Deviation 
0.2 0.2 0.2 0.2 0.33 0.2 

Test Statistic 

for Con. 1 
-427.806 3.885 -8.524 -3.033 84.592 -787.372 

Test Statistic 

for Con. 2 
6.747 -95.097 -2.9e+05 -12e+05 -4.3e+05 -4.0e+05 

Result Selected Variables 1 2 5, ,x x x  Screened Variables 3 4 6, ,x x x  



58 

 

 
 

In Table 5.40, the variable 
5x  with increased standard deviation becomes a 

selected variable, but another variable 
2x  is also selected at the same time. 

Though standard deviation of 
6x is increased, however, the variable is always screened 

out. This is because neither of the constraints are a function of 
6x . And this is also the 

reason why 
6x  hits the lower bound. Table 5.41 shows the variable screening result with 

increased input standard deviation of 
6x . 

 

 

Table 5.41  Result of Variable Screening with Increased Standard Deviation of 6x  

Variable 1x  
2x  

3x  
4x  

5x  
6x
 

Standard 

Deviation 
0.2 0.2 0.2 0.2 0.2 0.4 

Test Statistic 

for Con. 1 
-170.047 13.509 9.023 9.132 12.649 -19.778 

Test Statistic 

for Con. 2 
28.433 -155.52 -4.9e+05 -9.5e+05 -15e+05 -0.3e+05 

Result Selected Variables 
1 2 3

4 5

, ,

,

x x x

x x
 Screened Variables 6x  

 

 

Likewise, all the variables other than 
1x are screened out for the constraint 2. The 

reason is because the second constraint is only a function of
1x . Therefore, even though a 

function is the one of unknown number of variables, the screening method automatically 

filters the variables which are not employed in the function. Once the variables are 

selected, the computational cost will significantly decrease when carrying out the RBDO. 

Table 5.42 shows the RBDO result the corresponding computational time using the 
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selected design variables obtained in Table 5.37 – 5.40 During the RBDO procedure, the 

screened variables remain at the DDO optimum value. 

 

 

Table 5.42  RBDO Result Using Selected Variables 

Selected 

Variable Set 
RBDO Optimum 

Obj. Function 

Value 

No Screening  11.0255, 9.6035, 8.3531, 6.7648, 4.8682, 1.0000  712.0487 

1 2,x x   11.3542, 9.8017, 8.3181, 6.7525, 4.7983, 1.0000  
 

716.9561 

1 3,x x   11.3179, 9.5595, 8.5832, 6.7525, 4.7983, 1.0000   716.9535 

1 4,x x
  11.3177, 9.5595, 8.3181, 7.0125, 4.7983, 1.0000  716.9453 

1 2 5, ,x x x   11.3444, 9.7254, 8.3181, 6.7525, 5.0615, 1.0000  720.2817 

 

 

As shown in Table 5.42, the objective function values at each RBDO optimum 

when the screening method is used are slightly larger than that of the RBDO optimum 

without the variable screening. However, when the computational costs are compared, a 

significant reduction is observed. 

 

 

Table 5.43  Computational Cost Using Selected Variables 

Selected Variable Set Computational Cost (s) 

No Screening 3674.280 

1 2,x x  581.062 

1 3,x x  579.747 

1 4,x x
 625.194 

1 2 5, ,x x x  1285.527 
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 Though the variable screening method considers the screened variables as 

deterministic, the screened variables are also random in reality. Therefore, when the 

reliability analysis for each RBDO optimum is carried out when setting all the design 

variables are random, it is possible to notice that the target probability of failure of 

constraints in Eq. (5.6) are not satisfied as shown in Table 5.44. 

 

 

Table 5.44  Probability of failure of Each Constraint with Selected Design Variables 

Selected Variable Set Constraint 1 Constraint 2 

No Screening 2.279% 2.240% 

1 2,x x  18.154% 2.301% 

1 3,x x  24.911% 2.344% 

1 4,x x
 26.484% 2.407% 

1 2 5, ,x x x  11.6441% 2.315% 

 

 

 Because the number of variables one can deal with is limited, it is not possible to 

satisfy the probabilistic constraints in Eq. (5.6). However, the RBDO result using the 

selected variable set gives the lowest probability of failure at the RBDO optimum when 

compared to other combinations of the same number of the design variables. For example, 

when the input standard deviation of 2x is increased, the selected design variables are 1x  

and 2x . When different variable sets are used to obtain the DDO optimum, the 

probability of failure at the RBDO optimum is worse than that of the RBDO optimum 

using 1x  and 2x . Table 5.45 shows the RBDO result with different combinations and 

Table 5.46 shows the result of the reliability analysis at each RBDO optimum. 
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Table 5.45 RBDO Optimum using Different Design Variable Combinations 

Combinations RBDO Optimum 

Selected Variables (
1 2,x x )  11.3542, 9.8017, 8.3181, 6.7525, 4.7983, 1.0000  

1 3,x x   11.3193, 9.5595, 8.5796, 6.7525, 4.7982, 1.0000  

1 4,x x
  11.3178, 9.5595, 8.3181, 7.0124, 4.7983, 1.0000  

1 5,x x   11.3196, 9.5595, 8.3181, 6.7525, 5.0623, 1.0000  

1 6,x x   11.3635, 9.5595, 8.3181, 6.7525, 4.7983, 1.1194  

 

 

 

Table 5.46 Probability of Failure of Constraints with Different Design Variable 

Combinations 

Combinations Constraint 1 Constraint 2 

Selected Variables (
1 2,x x ) 18.154% 2.301% 

1 3,x x  23.681% 2.694% 

1 4,x x
 23.961% 2.734% 

1 5,x x  23.490% 2.678% 

1 6,x x  35.302% 1.594% 

 

 

Therefore, the screening method finds most efficient set of variables for more 

reliable design when the limited computation power is available. The rest of the 

combinations could not find the RBDO optimum because the second constraint function 

is a function of 1x only. It is noticeable in Table 5.42 that when 1x  and 6x  are used to 

carry out the RBDO, the probability of failure for the constraint 2 even becomes smaller. 

This is because the constraint 1 is a function of 1x  to 5x , and when  1 2,x x ,  1 3,x x , 
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 1 4,x x , or  1 5,x x  are used, there are two design variables to adjust the constraint 1. 

But when  1 6,x x are used, there is one design variable to adjust the constraint 1. 

Therefore, 
1x becomes larger than that of other combinations to compensate the effect 

from either 2 3 4, ,x x x or
5x . 
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CHAPTER VI 

CONCLUSION 

 In general, the screening method is applied to a design optimization problem to 

rank the order of the design variables so that the problem size could be reduced. So far, it 

is shown that the screening method shown in this research considering the output 

variance of a function works well as demonstrated with the suitable examples. One of the 

benefits of the method is that it could be widely applicable because the method only 

requires the MCS of the output value of a function, which makes it possible to use for 

responses with implicit functions. The method is new in a sense because it considers not 

only the shape of a function, but also the input standard deviation of the design variables. 

 The test-of-hypothesis is utilized for the screening method. Because the test 

requires a prescribed threshold value for the critical region, the measurement for ranking 

variables, such as the threshold value for the region boundary, could be defined 

differently according to the problem involved. And this fact makes the screening method 

more flexible. 

 Another strong point of the proposed method is found in the number of function 

evaluations. Even though the computation cost is affected by the number of MCS points, 

repetitions, iterations, design variables, and active constraints as in Eq. (3.14), the number 

does not necessarily exceed the number of MCS in the design stage because only the 

DDO optimum point is involved in the screening method. Moreover, the number of 

function evaluation is determined in a way that the computational cost is minimized 

while maintaining a reasonable confidence level as shown in the chapter 4, and thus the 

computational cost for this method is relatively small. 
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 On the other hand, the result of the proposed screening method is valid only 

around the DDO optimum design where the test is carried out. Because the function value 

changes as design moves, if a design variable moves significantly then the ranking of the 

design variable could be changed. Therefore, if a constraint is highly nonlinear around 

the DDO optimum design, then there is a possibility that the ranking determined at the 

DDO optimum design will be changed while the design moves toward the RBDO 

optimum design. 

 Another problem comes from the relative effect of the variables. Because the 

method compares not the absolute value but the relative value of the output variance, the 

screening method will not work appropriately if one variable has significantly large 

impact on the output variance. In this case, only the variable which gives large output 

variance will be reported as an important one while the rest of the variables are all 

screened out, which could be an undesirable result. 

 A problem regarding active constraints is also a concern. In a special case, it is 

possible that the limit states of the inactive constraints at DDO optimum during the 

RBDO design process are so close to the DDO optimum design that the inactive 

constraints become active. In this case, the screening method should be applied to the 

inactive ones as well as active constraints. However, it is not easy to anticipate which 

constraint will become active in advance. 
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