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ABSTRACT

The problem of risk-averse decision making under uncertainties is studied from

both modeling and computational perspectives. First, we consider a framework for con-

structing coherent and convex measures of risk which is inspired by infimal convolution

operator, and prove that the proposed approach constitutes a new general representation of

these classes. We then discuss how this scheme may be effectively employed to obtain a

class of certainty equivalent measures of risk that can directly incorporate decision maker’s

preferences as expressed by utility functions. This approach is consequently utilized to

introduce a new family of measures, the log-exponential convex measures of risk. Con-

ducted numerical experiments show that this family can be a useful tool when modeling

risk-averse decision preferences under heavy-tailed distributions of uncertainties. Next,

numerical methods for solving the arising optimization problems are developed. A special

attention is devoted to the class p-order cone programming problems and mixed-integer

models. Solution approaches proposed include approximation schemes for p-order cone

and more general nonlinear programming problems, lifted conic and nonlinear valid in-

equalities, mixed-integer rounding conic cuts and new linear disjunctive cuts.
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PUBLIC ABSTRACT

Recently, stochastic programming and decision making under conditions of uncer-

tainty have been receiving an increasing amount of attention in the literature. With the

ongoing advances in the amount of computational power, it is now possible to successfully

solve optimization problems in the presence of random parameters for many practical appli-

cations. In the present work two challenges associated with the introduction of randomness

into optimization are discussed: how these uncertainties can be modeled, and then how the

resulting problems can be solved numerically. Efforts in designing appropriate ”measures

of risk” are outlined in the first chapter, with special consideration given to the phenomena

of heavy-tailed distributions of losses and catastrophic risk. This leads to the introduction

of a new general modeling framework that have not been considered in the literature before.

Next, the mathematical programming consequences of the proposed modeling approaches

are considered. This work includes design of novel solution procedures for both convex

and mixed-integer programming problems of a special kind.

v



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Decision Making Under Uncertainties . . . . . . . . . . . . . . . . . 1
1.2 Aim of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 CERTAINTY EQUIVALENT RISK MEASURES . . . . . . . . . . . . . . 6

2.1 Risk Measures Based on Infimal Convolution . . . . . . . . . . . . . . 6
2.1.1 Coherent and Convex Measures of Risk . . . . . . . . . . . . 6
2.1.2 An Infimal Convolution Representation for Coherent and Con-

vex Measures of Risk . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Convolution Representation and Certainty Equivalents . . . . 12
2.1.4 Optimality Conditions and Some Properties of Optimal η . . . 20

2.2 Application: Log-Exponential Convex Measures of Risk . . . . . . . . 24
2.2.1 Case Study 1: Flood Insurance Claims Model . . . . . . . . . 27

2.2.1.1 Dataset description . . . . . . . . . . . . . . . . . . 27
2.2.1.2 Model formulation . . . . . . . . . . . . . . . . . . 28
2.2.1.3 Normal data . . . . . . . . . . . . . . . . . . . . . 29
2.2.1.4 Implementation details . . . . . . . . . . . . . . . . 30
2.2.1.5 Discussion of results . . . . . . . . . . . . . . . . . 31

2.2.2 Case Study 2: Portfolio Optimization . . . . . . . . . . . . . . 32
2.2.2.1 Model description . . . . . . . . . . . . . . . . . . 32
2.2.2.2 Dataset description . . . . . . . . . . . . . . . . . . 33
2.2.2.3 Implementation details . . . . . . . . . . . . . . . . 33
2.2.2.4 Discussion of results . . . . . . . . . . . . . . . . . 34

2.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 POLYHEDRAL APPROXIMATIONS IN P -ORDER CONE PROGRAM-
MING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Problem Formulation and Literature Review . . . . . . . . . . . . . . 41
3.2 Polyhedral Approximations of p-Order Cones . . . . . . . . . . . . . 44
3.3 Cutting Plane Methods for Polyhedral Approximations of SOCP and

pOCP Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vi



3.3.1 A Cutting Plane Procedure for Polyhedral Approximations of
pOCP Problems . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.2 Fast Cut Generation for Gradient Approximations of p-Order
Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.3 Fast Cut Generation for Lifted Polyhedral Approximation of
Second-Order Cones . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.4.1 Portfolio Optimization with Higher Moment Coherent Risk

Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.4.1.1 Higher Moment Coherent Risk Measures . . . . . . 76
3.4.1.2 pOCP Portfolio Optimization Model . . . . . . . . . 77
3.4.1.3 MIpOCP Portfolio Optimization Models . . . . . . 78
3.4.1.4 Implementation and Scenario Data . . . . . . . . . 79

3.4.2 Cutting Plane Techniques for the Lifted and Gradient Approx-
imations of SOCP Problems . . . . . . . . . . . . . . . . . . 80

3.4.3 Polyhedral Approximations and Cutting Plane Techniques for
Rational-Order Mixed-Integer pOCP Problems . . . . . . . . 83

3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 VALID INEQUALITIES FOR P -ORDER CONE PROGRAMMING . . . . 91

4.1 Problem Formulation and Literature Review . . . . . . . . . . . . . . 91
4.2 Conic Mixed Integer Rounding Cuts for p-Order Cones . . . . . . . . 92
4.3 Lifted Conic Cuts for p-Order Cones . . . . . . . . . . . . . . . . . . 98

4.3.1 General Framework . . . . . . . . . . . . . . . . . . . . . . . 98
4.3.2 Lifting Procedure for 0-1 p-Order Cone Programming Problems100
4.3.3 Lifting Procedure for MIpOCP Problems . . . . . . . . . . . . 101
4.3.4 Polyhedral Approximations of p-Order Cones . . . . . . . . . 103

4.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.4.1 Problem Formulations . . . . . . . . . . . . . . . . . . . . . . 105

4.4.1.1 Randomly Generated MIpOCP Problems . . . . . . 105
4.4.1.2 Portfolio Optimization with Cardinality and Lot-Buying

Constraints . . . . . . . . . . . . . . . . . . . . . . 105
4.4.2 Discussion of Results: Conic MIR Cuts . . . . . . . . . . . . 106

4.4.2.1 Randomly Generated MIpOCP Problems . . . . . . 106
4.4.2.2 Portfolio Optimization with Cardinality Constraints 107
4.4.2.3 Portfolio Optimization with Lot-Buying Constraints 107

4.4.3 Discussion of Results: Lifted Conic Cuts . . . . . . . . . . . . 108
4.4.3.1 Portfolio Optimization . . . . . . . . . . . . . . . . 108

4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5 A SCENARIO DECOMPOSITION ALGORITHM FOR STOCHASTIC
PROGRAMING PROBLEMS WITH CERTAINTY EQUIVALENT MEA-
SURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

vii



5.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Scenario Decomposition Algorithm . . . . . . . . . . . . . . . . . . . 116

5.2.1 An Efficient Solution Method for Sub-Problem (5.6) . . . . . 124
5.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3.1 Portfolio Optimization with Higher Moment Coherent Risk
Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3.1.1 SOCP Formulation in p = 2 Case . . . . . . . . . . 131
5.3.1.2 SOCP Reformulation of p-Order Cone Program . . . 132
5.3.1.3 An Exact Solution Method for pOCP Programs Based

on Polyhedral Approximations . . . . . . . . . . . . 134
5.3.2 Portfolio Optimization with Log Exponential Convex Risk Mea-

sures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3.3 Computational Results . . . . . . . . . . . . . . . . . . . . . 137

5.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6 MIXED-INTEGER NONLINEAR PROGRAMMING WITH CERTAINTY
EQUIVALENT MEASURES OF RISK . . . . . . . . . . . . . . . . . . . . 147

6.1 Introduction: Problem Formulation and Solution Approach . . . . . . 147
6.2 Branch-and-Bound based on Outer Polyhedral Approximations . . . . 150

6.2.1 Existing Methods and Approach Due to Vielma et al. . . . . . 150
6.2.2 Lifted Approximation Procedure . . . . . . . . . . . . . . . . 153
6.2.3 Branch-and-Bound Method . . . . . . . . . . . . . . . . . . . 158

6.3 Valid Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.3.1 Existing Approaches . . . . . . . . . . . . . . . . . . . . . . 160
6.3.2 Lifted Non-Linear Cuts . . . . . . . . . . . . . . . . . . . . . 161
6.3.3 Linear Disjunctive Cuts . . . . . . . . . . . . . . . . . . . . . 164

6.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.4.1 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . 171
6.4.2 Implementation Remarks, Numerical Results and Conclusions 171

6.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 177

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

viii



LIST OF TABLES

Table

2.1 Relative difference in total loss γ = LLogExpCR−LCVaR

min{LLogExpCR,LCVaR} for NFIP data for various
values of the parameters K and m. Entities in bold correspond to the instances
for which LogExpCR measure outperformed CVaR. . . . . . . . . . . . . . . . 37

2.2 Relative difference in total loss γ = LLogExpCR−LCVaR

min{LLogExpCR,LCVaR} for normal data for var-
ious values of the parameters K and m. Entities in bold LogExpCR to the
instances for which LogExpCR measure outperformed CVaR. . . . . . . . . . 38

2.3 Relative difference (in %) in average portfolio return due to LogExpCR mea-
sure and CVaR. Parameter n represents the total number of assets on the mar-
ket,m is the number of time intervals in the training horizon, r̄ is the prescribed
expected rate of return. Labels “2-day”, “2-week”, and “1-month” correspond
to portfolio rebalancing periods. . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Average running time (in seconds) for solving portfolio optimization problem
(3.46)–(3.47) with p = 2. Symbol “−−” indicates cases when computations
exceeded 1 hour time limit, while “∗ ∗ ∗” indicates cases for which the solver
returned “Out of memory” error. . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2 Average running times (in seconds) for BnB/CP implementation of portfolio
optimization problem with cardinality constraint (3.48) and p = 3.0, bench-
marked against IBM ILOG CPLEX 12.2 MIP Barrier solver applied to SOCP
reformulation of (3.48). Better running times are highlighted in bold. . . . . . . 88

3.3 Average running times (in seconds) for BnB/CP implementation of portfolio
optimization problem with lot-buying constraints (3.49) and p = 3.0, bench-
marked against IBM ILOG CPLEX 12.2 MIP Barrier solver applied to SOCP
reformulation of (3.49). Better running times are highlighted in bold, and XX%
denotes the integrality gap after 1 hour. . . . . . . . . . . . . . . . . . . . . . 89

4.1 Performance of conic MIR cuts for randomly generated MIpOCP problems.
The colomn “% better” represents the percentage of problem instances for
which conic MIR cuts approach outperformed CPLEX with default parame-
ters in terms of solution time and number of nodes respectively. “Difficult”
instances are problem instances which cannot be solved in the root node. . . . . 110

ix



4.2 Performance of conic cuts for cardinality constrained portfolio optimization
problems. Entries in bold correspond to the minimum solution time for each
row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3 Performance of conic cuts for lot-buying constrained portfolio optimization
problems. Entries in bold correspond to the minimum solution time for each
row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1 Average computation times (in seconds) obtained by solving problems [SOCP]
and [SOCP-SD] for p = 2 using CPLEX, GUROBI and MOSEK. All running
times are averaged over 20 instances. . . . . . . . . . . . . . . . . . . . . . . . 140

5.2 Average computation times (in seconds) obtained by solving problems [Sp-
COP] and [SpCOP-SD] for p = 3 using GUROBI and MOSEK. All running
times are averaged over 20 instances and symbol “—” indicates that the time
limit of 3600 seconds was exceeded. . . . . . . . . . . . . . . . . . . . . . . . 141

5.3 Average computation times (in seconds) obtained by solving problems [LpOCP]
and [LpOCP-SD] for p = 3 using CPLEX, GUROBI and MOSEK. All running
times are averaged over 20 instances and symbol “—” indicates that the time
limit of 3600 seconds was exceeded. . . . . . . . . . . . . . . . . . . . . . . . 142

5.4 Average computation times (in seconds) obtained by solving a specified num-
ber of instances for problems [LogExpCP] and [LogExpCP-SD] using MOSEK
solver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.5 Average number of partitioned scenarios. . . . . . . . . . . . . . . . . . . . . 144

6.1 Running time of AIMMS-AOA and the proposed implementation of the branch-
and-bound method in lot-buying constrained portfolio optimization. Results
averaged over 20 instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.2 Running time of AIMMS-AOA and the proposed implementation of the branch-
and-bound method in cardinality constrained portfolio optimization. Results
averaged over 20 instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.3 Performance of two valid inequality families in lot-buying constrained portfo-
lio optimization. The rows refer to: no cuts – pure branch-and-bound presented
in Section 6.2, lifted – lifted cuts from Section 6.3.2, split – disjunctive cuts in-
troduced in Section 6.3.3. Results averaged over 20 instances. Running time
and nodes in solution tree columns reflect only instances solved within 1 hour
time limit by all three approaches. Similarly gap after time limit corresponds
to instances for which no optimal solution was found within the time limit for
each of the methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

x



6.4 Performance of two valid inequality families in cardinality constrained portfo-
lio optimization. The rows refer to: no cuts – pure branch-and-bound presented
in Section 6.2, lifted – lifted cuts from Section 6.3.2, split – disjunctive cuts in-
troduced in Section 6.3.3. Results averaged over 20 instances. Running time
and nodes in solution tree columns reflect only instances solved within 1 hour
time limit by all three approaches. Similarly gap after time limit corresponds
to instances for which no optimal solution was found within the time limit for
each of the methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

xi



LIST OF FIGURES

Figure

2.1 Typical behavior of portfolio value, as a multiple of the initial investment (1.0),
over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xii



1

CHAPTER 1
INTRODUCTION

1.1 Decision Making Under Uncertainties

A decision making problem under uncertainties can be stated as the problem of se-

lecting a decision x ∈ C ⊂ Rn, given that the cost X of this decision depends not only

on x, but also on a random event ω ∈ Ω: X = X(x, ω). A principal modeling challenge

that one faces in this setting is to select an appropriate ordering of random outcomes X ,

or, in other words, define a way to choose one uncertain outcome, X1 = X(x1, ω), over

another, X2 = X(x2, ω). A fundamental contribution in this context is represented by the

expected utility theory of von Neumann and Morgenstern (1944), which argues that if the

preferences of a decision maker are rational, i.e., they satisfy a specific system of proper-

ties (axioms), then there exists a utility function u : R 7→ R, such that a decision under

uncertainty is optimal if it maximizes the expected utility of the payoff. Equivalently, the

random elements representing payoffs under uncertainty can be ordered based on the cor-

responding values of expected utility of these payoffs. Closely connected to the expected

utility theory is the subject of stochastic orderings (see, for example, Levy (1998)), and

particularly stochastic dominance relations, which have found applications in economics,

decision theory, game theory, and so on.

An alternative approach to introducing preference relations over random outcomes

X(x, ω), which has traditionally been employed in optimization and operations research

literature, and which is followed in the present work, is to introduce a function ρ : X 7→ R,
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where X is an appropriately defined space containing X , such that X1 is preferred to X2

whenever ρ(X1) < ρ(X2). The decision making problem in the presence of uncertainties

can then be expressed as a mathematical program

min{ρ(X) : X = X(x, ω) ∈ X , x ∈ C}, (1.1)

where function ρ is usually referred to as a risk measure. In stochastic programming liter-

ature, the objective of a minimization problem like (1.1) has traditionally been chosen in

the form of the expected cost, ρ(X) = EX (Prékopa (1995); Birge and Louveaux (1997)),

which is commonly regarded as a representation of risk-neutral preferences. In the finance

domain, a pioneering work of Markowitz (1952) has introduced a risk-reward paradigm

for decision making under uncertainty, and variance was proposed as a measure of risk,

ρ(X) = σ2(X). Since then, the problem of devising risk criteria suitable for quantifica-

tion of specific risk-averse preferences has received significant attention (see a survey in

Krokhmal et al. (2011)). It was noticed, however, that the “ad-hoc” approach of construct-

ing ρ may yield risk functionals that, while serving well in a specific application, are faulty

in the general methodological sense. Artzner et al. (1999) suggested an axiomatic approach,

similar to that of von Neumann and Morgenstern (1944), to defining a well-behaved risk

measure ρ in (1.1), and introduced the concept of coherent measures of risk. Subsequently,

a range of variations and extensions of the axiomatic framework for designing risk func-

tionals have been proposed in the literature, such as convex and spectral measures of risk,

deviation measures, and so on (see Föllmer and Schied (2002); Rockafellar et al. (2006);

Rockafellar and Uryasev (2013)). Since many classes of axiomatically defined risk mea-

sures represent risk preferences that are not fully compatible with the rational risk-averse
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preferences of utility theory, of additional interest are risk measures that possess such a

compatibility in a certain sense.

1.2 Aim of the Study

In this context, the goal of the present study is to explore new approaches to risk-

averse stochastic programming. We aim at pursuing two objectives: construct a new

methodology for generating measures of risk and then develop mathematical program-

ming techniques in order to ensure that the arising optimization problems can be efficiently

solved.

In this study we propose a new representation for the classes of coherent and convex

measures of risk, which builds upon a previous work of Krokhmal (2007). This represen-

tation is then used to introduce a class of coherent or convex measures of risk that can

directly incorporate rational risk preferences as prescribed by the corresponding utility

function, through the concept of certainty equivalent. This class of certainty equivalent

measures of risk contains some of the existing risk measures, such as the popular Condi-

tional Value-at-Risk (Rockafellar and Uryasev (2000, 2002)) as special cases. As an ap-

plication of the general approach, we introduce a two-parameter family of log-exponential

convex risk measures, which quantify risk by emphasizing extreme losses in the tail of the

loss distribution. Two case studies illustrate the practical merits of the log-exponential risk

measures; in particular, it is shown that these nonlinear measures of risk can be preferable

to more traditional measures, such as Conditional Value-at-Risk, if the loss distribution is

heavy-tailed and contains catastrophic losses.
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We show that a decision making problem based on the proposed preference relation

can be formulated as a convex nonlinear programming problem. Our next goal is then to

explore computational approaches to effectively solve such problems in the case of both

convex and mixed-integer models. A notable example of the optimization problems under

consideration is constituted by the class of p-order cone programming problems. In our

view, it is of particular interest to study solution methods targeted specifically at this class.

First, such problems result from the decision making models based on evaluation of risk in

terms of higher moments of the loss distributions, which have been shown in the literature

to lead to promising practical results (see among others Krokhmal (2007); Malevergne and

Sornette (2005)). Second, while such problems generalize the well-studied class of second-

order cone programming, they have received significantly less attention in the literature.

Finally, due to the conic property, such problems can be easier to solve compared to the

general counterparts, thus they can be used as a test-ground for evaluating applicability of

the proposed methods in more general settings.

The rest of the manuscript is organized as follows. In Chapter 2 we present our work

on devising a new risk-averse stochastic programming framework: a new representation for

convex and coherent risk measures, the class of certainty equivalent risk measures, and the

family of log-exponential convex risk measures. The chapter concludes with a discussion

of the conducted case studies. In Chapters 3 and 4 we discuss solution methods for p-order

cone programming problems. Specifically, in Chapter 3 we explore approximation schemes

for p-order cone programming and in Chapter 4 we propose two families of valid inequali-

ties for the mixed-integer model. In the next two chapters we tackle the general stochastic
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programming problems with certainty equivalent constraints. Namely, we show how two

main computational challenges associated with our problem formulation can be addressed.

In Chapter 5 we develop a targeted scenario decomposition method in order to deal with

stochastic constraints. Finally, in Chapter 6 we consider nonlinear constraints present in

mixed-integer nonlinear programming problems that arise from risk-averse stochastic pro-

gramming with certainty equivalent measures of risk. We have previously published some

of the results presented in the following chapters in Vinel and Krokhmal (2014a,b, 2015);

Rysz et al. (2014)
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CHAPTER 2
CERTAINTY EQUIVALENT RISK MEASURES

2.1 Risk Measures Based on Infimal Convolution

2.1.1 Coherent and Convex Measures of Risk

Consider a random outcome X ∈ X defined on an appropriate probability space

(Ω,F ,P), where X is a linear space of F-measurable functions X : Ω 7→ R. A function

ρ : X 7→ R = R ∪ {+∞} is said to be a convex measure of risk if it satisfies the following

axioms:

(A0) lower semicontinuity (l.s.c.);

(A1) monotonicity: ρ(X) ≤ ρ(Y ) for all X ≤ Y ;

(A2) convexity: ρ
(
λX + (1− λ)Y

)
≤ λρ(X) + (1− λ)ρ(Y ), λ ∈ [0, 1];

(A3) translation invariance: ρ(X + a) = ρ(X) + a, a ∈ R.

Similarly, a function ρ : X → R is said to be a coherent measure of risk if it satisfies (A0)

– (A3), and, additionally,

(A4) positive homogeneity: ρ(λX) = λρ(X), λ > 0.

Remark 1. We assume that linear space X is endowed with necessary properties in such a

way that risk measures that we consider are well defined (do not assume the value of−∞).

Specifically, it can be assumed that E|X| < +∞. Similarly, X is equipped with appropriate

topology. Unless stated otherwise we would assume the topology induced by convergence

in probability. We also assume throughout this chapter that all considered functions are

proper. Recall that a function f : X 7→ R is proper if f(X) > −∞ for all X ∈ X , and
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dom f = {X ∈ X | f(X) < +∞} 6= ∅.

Remark 2. In this work we adopt the traditional viewpoint of engineering literature that a

random element X represents a cost or a loss, in the sense that smaller realizations of X

are preferred. In economics literature it is customary to consider X as wealth or payoff

variable, whose larger realizations are desirable. In most cases, these two approaches can

be reconciled by inverting the sign of X , which may require some modifications to the

properties discussed above. For example, the translation invariance axiom (A3) will have

the form ρ(X + a) = ρ(X)− a in the case when X is a payoff quantity.

Remark 3. Without loss of generality we also assume that a convex measure of risk satisfies

normalization property: ρ(0) = 0 (observe that coherent measures necessarily satisfy this

property). First, such a normalization requirement is natural from methodological and

practical viewpoints, since there is usually no risk associated with zero costs or losses.

Second, due to translation invariance any convex ρ can be normalized by setting ρ̃(X) =

ρ(X)− ρ(0).

Remark 4. It is worth noting that normalized convex measures of risk satisfy the so-called

subhomogeneity property:

(A4′) subhomoheneity: ρ(λX) ≤ λρ(X) for λ ∈ (0, 1) and ρ(λX) ≥ λρ(X)

for λ > 1.

Indeed, in order to see that the first inequality in (A4′) holds, observe that λρ(X) =

λρ(X) + (1 − λ)ρ(0) ≥ ρ(λX + (1 − λ0)) = ρ(λX) for λ ∈ (0, 1). Similarly, if λ > 1,

then 1
λ
ρ(λX) = 1

λ
ρ(λX) +

(
1− 1

λ

)
ρ(0) ≥ ρ(X).
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Artzner et al. (1999) and Delbaen (2002) have proposed a general representation

for the class of coherent measures by showing that a mapping ρ : X 7→ R is a coher-

ent risk measure if and only if ρ(X) = supQ∈Q EQX, where Q is a closed convex subset

of P -absolutely continuous probability measures. Föllmer and Schied (2002) have gen-

eralized this result to convex measures of risk. Since then, other representations have

been proposed, (see Kusuoka (2001, 2012); Frittelli and Rosazza Gianin (2005); Dana

(2005); Acerbi (2002)). For example, Acerbi (2002) has suggested a spectral representa-

tion: ρ(X) =
∫ 1

0
VaRλ(X)ψ(λ)dλ, where ψ ∈ L1([0, 1]). While many of these results led

to important methodological conclusions, most of them did not provide a readily available,

practical way to construct new risk measures in accordance with specified risk preferences.

Below we discuss a representation that can be better suited for this purpose.

2.1.2 An Infimal Convolution Representation for Coherent and Convex Measures of

Risk

An approach to constructing coherent measures of risk that was based on the opera-

tion of infimal convolution was proposed in Krokhmal (2007). Given a function φ : X 7→ R,

consider a risk measure ρ, which we will call a convolution-based measure of risk, in the

form

ρ(X) = inf
η
η + φ(X − η). (2.1)

Then, the following claim has been shown to hold.

Proposition 2.1 (Krokhmal, 2007, Theorem 1). Suppose that function φ satisfies axioms

(A0)–(A2) and (A4), and, additionally, is such that φ(η) > η for all constant η 6= 0. Then
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the infimal convolution in (2.1) is a proper coherent risk measure. Moreover, the infimum

in (2.1) is attained for all X , and can be replaced with a minimization operator.

In this section we show that this approach can be substantially generalized which

leads us to formulate Theorem 2.5 below. Before moving to this general result we establish

a few subsidiary lemmas. First, we demonstrate that expression (2.1) is a representation,

i.e., any coherent measure of risk can be expressed in the form of (2.1).

Lemma 2.2. Let ρ be a coherent risk measure. Then, there exists a proper function φ :

X 7→ R that satisfies axioms (A0)–(A2) and (A4), φ(η) > η for all constant η 6= 0, and is

such that ρ(X) = minη η + φ(X − η).

Proof: For a given proper and coherent ρ consider φρ(X) = 2[ρ(X)]+, where [X]+ =

max{X, 0}, and observe that φρ is proper and satisfies (A0)–(A2) and (A4) if ρ is coherent,

and, moreover, φρ(η) = 2[η]+ > η for all real η 6= 0. Finally, minη η + φρ(X − η) =

minη η + 2[ρ(X − η)]+ = minη η + 2[ρ(X) − η]+ = ρ(X), i.e., any coherent ρ can be

represented in the form of (2.1). �

Remark 5. It is easy to see from the proof of Lemma 2.2 that the function φ in represen-

tation (2.1) is not determined uniquely for any given coherent measure ρ. Indeed, one can

choose (among possibly others) φ(X) = α[ρ(X)]+ for any α > 1.

Next, we show that the infimal convolution representation (2.1) can be generalized

to convex measures of risk. Technically, proof of Proposition 2.1 in Krokhmal (2007) relies

heavily on the positive homogeneity property (A3) of coherent risk measures, but as we

demonstrate below, it can be amended in order to circumvent this issue. Recall that, given



10

a proper, l.s.c., convex function f on Rn and x ∈ dom f , its recession function (f0+)(y)

can be defined as

(f0+)(y) = lim
τ→∞

f(x+ τy)− f(x)

τ
.

Note that in Rockafellar (1997), Theorem 8.5 it is shown that the expression above does not

depend on x ∈ dom f , i.e., (f0+)(y) is well-defined. The result established below mirrors

that of Proposition 2.1 in the case of convex measures.

Lemma 2.3. Suppose that a proper function φ satisfies axioms (A0)–(A2), and, addition-

ally, is such that φ(η) > η for all constant η 6= 0 and φ(0) = 0. Then the infimal convolu-

tion ρ(X) = infη η+ φ(X − η) is a proper convex risk measure. Moreover, the infimum is

attained for all X , and can be replaced with minη.

Proof: For any fixed X ∈ X consider function φX(η) = η + φ(X − η). Clearly, since

φ is proper, l.s.c. and convex, φX is l.s.c., convex in η and φX > −∞ for all η. Next

we will show that the infimum in the definition of ρ is attained for any X . First, suppose

that domφX = ∅, hence ρ(X) = +∞, and the infimum in the definition is attained for any

η ∈ R. Now, assume that there exists η̃ ∈ domφX , and consequently both φ(X−η̃) < +∞

and ρ(X) < +∞. Recall that a proper, l.s.c. function φX attains its infimum if it has no

directions of recession (see, Theorem 27.2 in Rockafellar (1997)), or in other words, if

φX0+(ξ) > 0 for all ξ 6= 0. Observe that

(φX0+)(ξ) = lim
τ→∞

η̃ + τξ + φ(X − η̃ − τξ)− η̃ − φ(X − η̃)

τ

= ξ + lim
τ→∞

φ(X − η̃ − τξ)
τ

≥ ξ + lim
τ→∞

φ
(X − η̃

τ
− ξ
)
,

where the last inequality follows from Remark 4 for sufficiently large τ . Since φ is l.s.c.

and φ(ξ) > ξ for all ξ 6= 0, we can conclude that limτ→∞ φ
(
X−η̃
τ
− ξ
)
≥ φ(−ξ) > −ξ,
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whereby (φX0+)(ξ) > 0 for all ξ 6= 0, which guarantees that the infimum in the definition

is attained, and ρ(X) = minη η + φ(X − η). Next, we will verify that axiom (A0) holds.

As shown above, for any X ∈ X there exists ηX such that ρ(X) = ηX + φ(X − ηX).

Consequently,

lim inf
Y→X

ρ(Y ) = lim inf
Y→X

(
ηY + φ(Y − ηY )

)
≥ lim inf

Y→X

(
ηX + φ(Y − ηX)

)
= ηX + lim inf

Y→X
φ(Y − ηX) ≥ ηX + φ(X − ηX) = ρ(X),

where the last inequality holds due to lower semicontinuity of φ. Whence, by definition,

ρ is l.s.c. Verification of properties (A1)–(A3) is analogous to that presented in Krokhmal

(2007), Theorem 1. �

Lemma 2.4. Let ρ be a convex risk measure and let ρ(0) = 0. Then there exists a proper

function φ(X) that satisfies axioms of monotonicity and convexity, is lower semicontinuous,

φ(η) > η for all η 6= 0, and such that ρ(X) = minη η + φ(X − η).

Proof: Analogous to Lemma 2.2 we can take φρ(X) = 2[ρ(X)]+. �

Combining the above results, we obtain a general conclusion.

Theorem 2.5. A proper, l.s.c. function ρ : X 7→ R is a convex (respectively, coherent)

measure of risk if and only if there exists a proper, l.s.c. function φ : X 7→ R, which satisfies

the axioms of monotonicity and convexity (and, respectively, positive homogeneity), φ(η) >

η for all η 6= 0, φ(0) = 0, and such that ρ(X) = minη η + φ(X − η).

The importance of infimal convolution representation (2.1) for convex/coherent risk

measures lies in the fact that it is amenable for use in stochastic programming problems
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with risk constraints or risk objectives (note that the problem does not necessarily have to

be convex).

Lemma 2.6. Let ρ be a coherent measure of risk, and for some F,H : X 7→ R andC(X ) ⊂

X consider the following risk-constrained stochastic programming problem:

min{F (X) : ρ(X) ≤ H(X), X ∈ C(X )}. (2.2)

Then, for a given convolution representation (2.1) of ρ, problem (2.2) is equivalent to a

problem of the form

min{F (X) : η + φ(X − η) ≤ H(X), X ∈ C(X ), η ∈ R}, (2.3)

in the sense that if (2.2) is feasible, they achieve minima at the same values of the decision

variable X and their optimal objective values coincide. Moreover, if risk constraint is

binding at optimality in (2.2), then (X∗, η∗) delivers a minimum to (2.3) if and only if X∗

is an optimal solution of (2.2) and η∗ ∈ arg min{η + φ(X∗ − η)}.

Proof: Analogous to that in Krokhmal (2007), Theorem 3. �

Additionally, representation (2.1) conveys the idea that a risk measure represents

an optimal value or optimal solution of a stochastic programming problem of special form.

2.1.3 Convolution Representation and Certainty Equivalents

The infimal convolution representation (2.1) allows for construction of convex or

coherent measures of risk that directly employ risk preferences of a decision maker through

a connection to the expected utility theory of von Neumann and Morgenstern (1944). As-
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suming without loss of generality that the loss/cost elements X ∈ X are such that−X rep-

resents wealth or reward, consider a non-decreasing, convex deutility function v : R 7→ R

that quantifies dissatisfaction of a risk-averse rational decision maker with a loss or cost.

Obviously, this is equivalent to having a non-decreasing concave utility function u(t) =

−v(−t). By the inverse of v we will understand function v−1(a) = sup {t ∈ R : v(t) = a}.

Remark 6. Note that if a non-decreasing, convex v(t) 6≡ const then, according to the defi-

nition above, the inverse is finite, and moreover, if there exists t, such that v(t) = a < +∞,

then v−1(a) = max{t ∈ R | v(t) = a}. Additionally, let v−1(+∞) = +∞.

Then, for any given α ∈ (0, 1), consider function φ in the form

φ(X) =
1

1− α
v−1Ev(X), (2.4)

where we use an operator-like notation for v−1, i.e., v−1Ev(X) = v−1(Ev(X)).

Expression CE(X) = v−1Ev(X) represents the certainty equivalent of an uncertain

loss X , a deterministic loss/cost such that a rational decision maker would be indifferent

between accepting CE(X) or an uncertain X; it is also known as quasi-arithmetic mean,

Kolmogorov mean, or Kolmogorov-Nagumo mean (see, among others, Bullen et al. (1988);

Hardy et al. (1952)). Certainty equivalents play an important role in the decision making

literature (see, for example, Wilson (1979); McCord and Neufville (1986)); in the context

of modern risk theory, certainty equivalents were considered in the work of Ben-Tal and

Teboulle (2007).

In order for function φ as defined by (2.4) to comply with the conditions of Theorem

2.5, the deutility function should be such that φ(η) = 1
1−αv

−1v(η) > η for η 6= 0. This
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necessarily implies that v(η) = v(0) for all η ≤ 0, provided that v is proper, non-decreasing

and convex. Indeed, if v(η∗) < v(0) for some η∗ < 0, then according to the above remarks

v−1v(η∗) = max{η : v(η) = v(η∗)} = η∗∗, where η∗∗ is such that η∗ ≤ η∗∗ < 0 and

v−1v(η∗∗) = η∗∗, and so φ(η∗∗) = (1− α)−1η∗∗ < η∗∗.

Additionally, without loss of generality it can be postulated that v(0) = 0, i.e., zero

loss means zero dissatisfaction. Indeed, ṽ−1Eṽ(X) = v−1Ev(X) for ṽ(t) = v(t) − v(0),

i.e., such a transformation of the deutility function does not change the value of the certainty

equivalent. Similarly, it is assumed that v(t) > 0 for all t > 0. Unless v(t) ≡ 0 there exists

a t̃, such that v(t) = 0 for all t ≤ t̃ and v(t) > 0 for all t > t̃. Now, consider ṽ(t) = v(t− t̃),

in which case ṽ−1(a) = v−1(a) + t̃, and ṽ−1Eṽ(X) = v−1Ev(X − t̃) + t̃. Consequently, if

we denote by ρ and ρ̃ the corresponding risk measures, then due to translation invariance,

ρ̃(X) = min η +
1

1− α
ṽ−1Eṽ(X − η) = min η +

1

1− α
v−1Ev(X − η − t̃) + t̃ =

ρ(X) + C,

where C is a constant i.e., both ρ and ρ̃ correspond to the same decision preferences. In

other words, unless v(t) ≡ 0, we can assume that v(t) > 0 for all t > 0. It also represents

a practical consideration that positive losses entail positive deutility/dissatisfaction.

To sum up, we consider non-decreasing, convex deutility function v : R 7→ R such

that

v(t) = v
(
[t]+
)

=


v(t) > 0, t > 0,

0, t ≤ 0.
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We will refer to such a function as a one-sided deutility. The corresponding expression for

risk measure (2.1) becomes

ρ(X) = min
η

η +
1

1− α
v−1Ev(X − η)

= min
η

η +
1

1− α
v−1Ev

(
[X − η]+

)
.

(2.5)

Next we analyze the conditions under which formulation (2.5) yields a coherent or convex

measure of risk. We will assume that the space X is such that certainty equivalent above is

well-defined, particularly, integrability condition is satisfied.

Proposition 2.7. If v is a one-sided deutility function, then φ(X) = 1
1−αv

−1Ev(X) is

proper, l.s.c., satisfies the axiom of monotonicity and φ(η) > η for all η 6= 0.

Proof: Clearly, such a φ is proper and l.s.c. The monotonicity property of φ defined by

(2.4), φ(X) ≤ φ(Y ) for all X ≤ Y , follows from both v and v−1 being non-decreasing.

Finally, note that

φ(η) =
1

1− α
v−1v(η) =

1

1− α
v−1v([η]+)

=
1

1− α
sup

{
t : v(t) = v([η]+)

}
≥ 1

1− α
[η]+ > η

for all η 6= 0. �

From Proposition 2.7 we can conclude that in order for the conditions of Theorem

2.5 to be satisfied we only need to guarantee convexity of the certainty equivalent (2.4)

(note that axiom (A4) is satisfied if certainty equivalent itself is positive homogeneous). A

sufficient condition of this type has been established in Ben-Tal and Teboulle (2007).

Proposition 2.8 (Ben-Tal and Teboulle, 2007). If v ∈ C3(R) is strictly convex and
v′

v′′
is

convex, then certainty equivalent v−1Ev is also convex.
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The following observation shows how this result can be adapted to establish con-

vexity of certainty equivalents in the case of one-sided deutility functions.

Corollary 2.9. If v ∈ C3[0,∞) is strictly convex and
v′

v′′
is convex on [0,+∞), then cer-

tainty equivalent v−1+ Ev+ is convex, where v+(t) = v([t]+).

Proof: Indeed, note that v−1+ Ev+(X) = v−1+ Ev([X]+) = v−1Ev([X]+), which is convex as

a superposition of a convex (Proposition 2.8 for function v) and a non-decreasing convex

functions. �

Remark 7. Conditions of Proposition 2.8 are only sufficient, i.e., it is possible for a cer-

tainty equivalent to be convex, when Proposition 2.8 does not apply (as shown in Corollary

2.9). Moreover, these conditions are rather restrictive, specifically, requirement v ∈ C3(R).

Thus, it is worth noting that if v is a one-sided deutility function and its certainty equiva-

lent is convex, then ρ defined in (2.5) is a convex (or coherent) measure of risk, regardless

of whether Corollary 2.9 holds. At the same time, this result can be useful, as shown in

Proposition 2.16.

Observe that if function φ is taken in the form of (2.4), where v is a one-sided deu-

tility, the structure of the resulting risk measure (2.5) allows for an intuitive interpretation,

similar to that proposed by Ben-Tal and Teboulle (2007). Consider, for instance, a problem

of resource allocation for a hazardous mission planning, where X represents the unknown

in advance cost of resources necessary to cover losses and damages. Assume that it is possi-

ble to allocate amount η worth of resources in advance, whereby the remaining part of costs,

[X−η]+, will have to be covered after the actual realization ofX is observed. To a decision
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maker with deutility v, the uncertain cost remainder [X − η]+ is equivalent to the deter-

ministic amount of certainty equivalent v−1Ev([X − η]+). Since this portion of resource

allocation is “unplanned” additional penalty is imposed. If this penalty is modeled using a

multiplier 1
1−α , then the expected additional cost of the resource is 1

1−αv
−1Ev([X − η]+).

Thus, the risk associated with the mission amounts to η + (1 − α)−1v−1Ev([X − η]+),

and can be minimized over all possible values of η, leading to definition (2.5). Moreover,

when applied to the general definition (2.1), this argument provides an intuition behind the

condition φ(η) > η above. Indeed, the positive difference φ(η)−η can be seen as a penalty

for an unplanned loss.

We also note that certainty equivalent representation (2.5) for coherent or convex

measures of risk is related to the optimized certainty equivalents (OCEs) due to Ben-Tal

and Teboulle (2007),

OCE(X) = sup
η

η + Eu(X − η). (2.6)

While interpretations of formulas (2.5) and (2.6) are similar, and moreover, it can be shown

that, under certain conditions on the utility function, ρ(X) = −OCE(X) is a convex mea-

sure of risk, there are important differences between these representations. In (2.6), the

quantity being maximized is technically not a certainty equivalent, while the authors have

argued that specific conditions on utility function u allowed them to consider it as one. In

addition, representation (2.6) entails addition of values with generally inconsistent units,

e.g., dollars and utility. Finally, as shown above, representation (2.5) allows for construct-

ing both coherent and convex measures of risk, while the OCE approach yields a coherent

risk measure if and only if the utility function is piecewise linear.
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Remark 8. It is straightforward to observe that by choosing the one-sided deutility function

in (2.5) in the form v(t) = [t]+ one obtains the well-known Conditional-Value-at-Risk

(CVaR) measure (Rockafellar and Uryasev (2002)), while one-sided deutility v(t) = [t]p+

yields the Higher-Moment Coherent Risk (HMCR) measures (Krokhmal (2007)).

Remark 9. In general, risk measure ρ is called a tail measure of risk if it quantifies the risk

of X through its right-hand tail, [X − c]+, where the tail cutoff point c can be adjusted ac-

cording to risk preferences Krokhmal et al. (2011). Observe that the above analysis implies

that coherent or convex risk measures based on certainty equivalents (2.5) are necessarily

tail measures of risk (see also Propositions 2.14 and 2.15 below).

Another key property of the risk measures that admit a certainty equivalent repre-

sentation (2.5) is that they “naturally” preserve stochastic orderings induced on the space

X of random outcomes by the utility function u or, equivalently, deutility v. Assuming

again that X is endowed with necessary properties, e.g., integrability, of particular interest

are the properties of isotonicity with respect to second order stochastic dominance (SSD)

(see, e.g., De Giorgi (2005); Pflug (2006); Krokhmal (2007)),

(A1′) SSD isotonicity: ρ(X) ≤ ρ(Y ) for all X, Y ∈ X such that −X <SSD −Y ,

and, more generally, isotonicity with respect to k-th order stochastic dominance (kSD),

(A1′′) kSD isotonicity: ρ(X) ≤ ρ(Y ) for all X, Y ∈ X such that −X <kSD −Y ,

for a given k ≥ 1.
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Recall that random outcomeX is said to dominate outcome Y with respect to second-order

stochastic dominance (SSD), X <SSD Y , if

∫ t

−∞
FX(ξ) dξ ≤

∫ t

−∞
FY (ξ) dξ for all t ∈ R,

where FZ(t) = P{Z ≤ t} is the c.d.f. of a random element Z ∈ X . Similarly, outcome X

dominates outcome Y with respect to kth-order stochastic dominance (kSD), X <kSD Y ,

if

F
(k)
X (t) ≤ F

(k)
Y (t), for all t ∈ R,

where F (k)
X (t) =

∫ t
−∞ F

(k−1)
X (ξ)dξ, F

(1)
X (t) = P{X ≤ t}. Stochastic dominance relations

in general, and SSD in particular have occupied a prominent place in decision making liter-

ature (see, for a example, Levy (1998) for an extensive account), in particular due to a direct

connection to the expected utility theory. Namely, it is well known Rothschild and Stiglitz

(1970) that X <SSD Y if and only if Eu(X) ≥ Eu(Y ) for all non-decreasing and concave

utility functions u, i.e., if and only if Y is never preferred overX by any rational risk-averse

decision maker. In general, it can be shown that X <kSD Y if and only if Eu(X) ≥ Eu(Y )

for all u ∈ U (k), where U (k) is a specific class of real-valued utility functions; particularly,

U (1) consists of all non-decreasing functions, U (2) contains all non-decreasing and concave

functions, U (3) amounts to all non-decreasing, concave functions with convex derivative,

and so on (see, for example, Fishburn (1977) and references therein). This characteriza-

tion of kSD dominance relation naturally implies that the proposed certainty equivalent

representation yields risk measures that are necessarily kSD-isotonic, given that the set of

considered deutility functions is appropriately restricted.
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Proposition 2.10. If deutility function v is such that −v(−t) ∈ U (k), then risk measure ρ

given by the certainty equivalent representation (2.5) is kSD-isotonic, i.e., satisfies (A1′′).

Proof: Follows immediately from the definition of kSD dominance, kSD isotonicity and

the discussion above. �

Corollary 2.11. If a real-valued function v is a one-sided deutility, then (2.5) defines a risk

measure that is isotonic with respect to second order stochastic dominance.

The importance of SSD- and, generally, kSD isotonicity of risk measures (2.5) in the sense

of Proposition 2.10 attributes to the fact that coherent or convex measures of risk in general

are not kSD-isotonic for k ≥ 2 (see De Giorgi (2005) for an explicit example). Note, that it

has been established in the literature that a law-invariat convex measure of risk defined on

an atomeless probability space is SSD isotonic (see, Föllmer and Schied (2004), Corollary

4.59). At the same time, Proposition 2.10 and Corollary 2.11 directly show that the pro-

posed certainty equivalent measures are natirally connected to kSD orderings. In this con-

text, the certainty equivalent representation (2.5) ensures that risk-averse preferences ex-

pressed by the utility (equivalently, deutility) function are “transparently” inherited by the

corresponding certainty equivalent-based risk measure; indeed, note that Proposition 2.10

does not require that the certainty equivalent in (2.5) is convex.

2.1.4 Optimality Conditions and Some Properties of Optimal η

Consider the definition of CVaR, CVaRα(X) = minη η + 1
1−αE[X − η]+. The

lowest value of η that delivers minimum in this definition is know in the literature as Value-

at-Risk (VaR) at confidence level α, and while VaR in general is not convex, it is widely
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used as a measure of risk in practice, especially in financial applications (Jorion (1997);

Duffie and Pan (1997)). Thus, it is of interest to investigate some properties of η∗(X) ∈

arg min η+ 1
1−αv

−1Ev(X − η). First, we can formulate necessary and sufficient optimality

conditions.

Proposition 2.12. Suppose that v is a non-decreasing and convex function, certainty equiv-

alent v−1Ev is convex and E∂±v(X − η∗) is well defined, then

η∗ ∈ arg min η + 1
1−αv

−1Ev(X − η) if and only if

∂−v
−1(Ev(X − η∗)

)
· E∂−v(X − η∗) ≤ 1− α ≤

∂+v
−1(Ev(X − η∗)

)
· E∂+v(X − η∗),

where ∂±v denote one-sided derivatives of v with respect to the argument.

Proof: Let us denote φX(η) = η + 1
1−αv

−1Ev(X − η). Since certainty equivalent v−1Ev

is convex, φX is also convex, and thus, it has left and right derivatives everywhere on

domφX 6= ∅, and η delivers a minimum to φX if and only if ∂−φX(η) ≤ 0 ≤ ∂+φX(η).

In what follows, we determine closed form expressions for left and right derivatives of φX .

By definition, if η ∈ domφX then

∂+φX(η) = lim
ε↓0

φX(η + ε)− φX(η)

ε

=1 +
1

1− α
lim
ε↓0

v−1Ev(X − η − ε)− v−1Ev(X − η)

ε
.

Repeating a usual argument used to prove the chain rule of differentiation (see, e.g., Ran-

dolph (1952)), we can define

Q(y) =


v−1(y)− v−1Ev(X − η)

y − Ev(X − η)
, y < Ev(X − η),

∂−v
−1(Ev(X − η)

)
, otherwise,
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in which case

∂+φX(η) = 1 +
1

1− α
lim
ε↓0

{
Q
(
Ev(X − η − ε)

)Ev(X − η − ε)− Ev(X − η)

ε

}
.

Clearly, limε↓0Q
(
Ev(X − η − ε)

)
= ∂−v

−1(Ev(X − η)
)

by monotone convergence theo-

rem, and the only part left to find is

lim
ε↓0

Ev(X − η − ε)− Ev(X − η)

ε
= − lim

ε↓0

Ev(X − η)− Ev(X − η − ε)
ε

.

Observe that lim
ε↓0

v(x− η)− v(x− η − ε)
ε

= ∂−v(x − η) for any fixed x ∈ R (note that

∂−v(x− η) exists since v is convex). Moreover,

v(x− η)− v(x− η − ε)
ε

↗ ∂−v(x− η) as ε↘ 0,

where↗ denotes monotonic convergence from below (Rockafellar, 1997, Theorem 23.1).

Thus, by monotone convergence theorem, we can interchange the limit and expectation:

lim
ε↓0

Ev(X − η)− Ev(X − η − ε)
ε

= E lim
ε↓0

v(X − η)− v(X − η − ε)
ε

= E∂−v(X − η),

i.e., ∂+φX(η) = 1 − 1
1−α∂−v

−1(Ev(X − η)
)
· E∂−v(X − η). Similar argument can be

applied to evaluate ∂−φX(η) in order to complete the proof. �

Corollary 2.13. Condition

(v−1)′(Ev(X − η))Ev′(X − η) = 1− α

is sufficient for η to deliver the minimum in (2.4), given that (v−1)′ and v′ are well-defined.

Conditions established above show that for a fixed X , the location of η∗(X) is determined

by the parameter α. Two propositions below illustrate this observation.
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Proposition 2.14. Given an X ∈ dom ρ for all α ∈ (0, 1), if η∗α(X) ∈ arg min η +

1
1−αv

−1Ev(X−η), where v is a one-sided deutility function, and certainty equivalent v−1Ev

exists for any X , and is convex, then η∗α1
(X) ≤ η∗α2

(X) for any α1 < α2.

Proof: Below we will use η∗α(X) and η∗α interchangeably in order to simplify the notation.

Let α1 < α2. Since v is a one-sided deutility, then v(X − η) = v([X − η]+), and by the

definition of η∗α(X),

η∗α1
+

1

1− α1

v−1Ev
(
[X − η∗α1

]+
)
≤ η∗α2

+
1

1− α1

v−1Ev
(
[X − η∗α2

]+
)
.

Suppose that η∗α1
> η∗α2

, then one has

0 < η∗α1
− η∗α2

≤ 1

1− α1

(
v−1Ev

(
[X − η∗α2

]+
)
− v−1Ev

(
[X − η∗α1

]+
))

<
1

1− α2

(
v−1Ev

(
[X − η∗α2

]+
)
− v−1Ev([X − η∗α1

]+)
)
.

This immediately leads to

η∗α1
+

1

1− α2

v−1Ev
(
[X − η∗α1

]+
)
< η∗α2

+
1

1− α2

v−1Ev
(
[X − η∗α2

]+
)
,

which contradicts the definition of η∗α2
, thus furnishing the statement of the proposition.

�

Proposition 2.15. Given an X ∈ dom ρ for all α ∈ (0, 1), if η∗α(X) ∈ arg min η +

1
1−αv

−1Ev(X−η), where v is a one-sided deutility function, and certainty equivalent v−1Ev

exists for any X , and is convex, then

lim
α→1

η∗α(X) = ess.sup(X).
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Proof: Again, let us consider function φX(η) = η + 1
1−αv

−1Ev(X − η), and since v is a

one-sided deutility, φX(η) = η + 1
1−αv

−1 ∫
X≥η v(X − η)dP. Suppose that ess.sup(X) =

A < +∞, consequently P(X ≥ A− ε) > 0 for any ε > 0. Note that φX(A) = A. Now,

φX(A− ε) =A− ε+
1

1− α
v−1

∫
X≥A−ε

v(X − A+ ε)dP ≥

A− ε+
1

1− α
v−1

∫
X≥A− ε

2

v(X − A+ ε)dP ≥

A− ε+
1

1− α
v−1
(
v
(ε

2

)
P
(
X ≥ A− ε

2

))
= A− ε+

1

1− α
Mε,

where Mε = v−1
(
v
(
ε
2

)
P
(
X ≥ A − ε

2

))
> 0. Hence, φX(A − ε) > φX(A) for any

sufficiently large values of α, which means that in this case any η∗α(X) ∈ arg min η +

1
1−αv

−1Ev(X − η) has to satisfy η∗α(X) ∈ (A − ε, A], and thus limα→1 η
∗
α(X) = A =

ess.sup(X).

Now, let ess.sup(X) = +∞. Note that
∫
X≥η v(X − η)dP is a non-increasing func-

tion of η. Let A ∈ R and φX(A) = A + 1
1−αv

−1 ∫
X≥A v(X − A)dP. Since ess.sup(X) =

+∞, there exists Ã > A such that 0 <
∫
X≥Ã v(X − Ã)dP <

∫
X≥A v(X − A)dP. Thus,

φX(Ã) = Ã + 1
1−αv

−1 ∫
X≥Ã v(X − Ã)dP < φX(A) for any sufficiently large α, which

yields η∗α(X) > A. Since the value of A has been selected arbitrarily, limα→1 η
∗
α(X) =

+∞ = ess.sup(X). �

2.2 Application: Log-Exponential Convex Measures of Risk

As it was already mentioned above, CVaR and HMCR measures can be defined in

terms of the proposed certainty equivalent-based representation (2.5). Note that both cases

correspond to positively homogeneous functions φ, and, therefore, are coherent measures

of risk. Next we consider a convex measure of risk resulting from the certainty equivalent
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representation (2.5) with an exponential one-sided deutility function v(t) = −1 + λ[t]+:

ρ(λ)α (X) = min
η

η +
1

1− α
logλ Eλ

[X−η]+ , where λ > 1 and α ∈ (0, 1). (2.7)

We refer to such ρ(λ)α as the family of log-exponential convex risk (LogExpCR) measures.

First, using the general framework developed above, it can be readily seen that LogExpCR

family are convex measures of risk.

Proposition 2.16. Functions ρ(λ)α (X) defined by (2.7) are proper convex measures of risk.

Proof: Follows immediately from Theorem 2.5, Proposition 2.7 and Corollary 2.9. �

A particular member of the family of LogExpCR measures is determined by the val-

ues of two parameters, α and λ. Recall that in Section 2.1.4 we have established that param-

eter α plays a key role in determining the position of η∗α(X) ∈ arg min η+ 1
1−αv

−1Ev(X−

η), particularly, α1 < α2 leads to η∗α1
(X) ≤ η∗α2

(X), and limα→1 η
∗
α(X) = ess.sup(X).

These two properties allow us to conclude that α determines the “length” of the tail of

distribution of X , or, in other words, determines which part of the distribution should be

considered “risky”. This is in accordance with a similar property of the CVaR measure,

which, in the case of a continuous loss distribution, quantifies the risk as the expected loss

in the worst 1 − α percent of the cases. See Krokhmal (2007) for a similar argument for

HMCR measures.

Furthermore, one has

ρ(λ)α (X) = min
η
η +

1

1− α
logλ Eλ

[X−η]+ = min
η
η +

1

1− α
1

lnλ
lnEelnλ[X−η]+

=
1

lnλ
min
η
η lnλ+

1

1− α
Ee[X lnλ−η lnλ]+ =

1

lnλ
min
η′

η′ +
1

1− α
Ee[X lnλ−η′]+ =

1

lnλ
ρ(e)α (X lnλ).
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This implies that LogExpCR measures satisfy a “quasi positive homogeneity” prop-

erty:

ρ(λ)α (X) lnλ = ρ(e)α (X lnλ),

where parameter lnλ plays the role of a scaling factor. Thus, in the case of log-exponential

convex measures of risk (2.7), scaling can be seen as a way to designate the total range of

the loss variable. Consequently, a combination of the parameters α and λ determines both

the region of the loss distribution that should be considered “risky”, and the emphasis that

should be put on the larger losses. Note, that the specific choice of the parameter values

should be determined by the decision-maker’s preferences and attitude towards risk. A

preliminary computational study may be required to calibrate this values.

It is of interest to note that LogExpCR measures are isotonic with respect to any

order k ≥ 1 of stochastic dominance:

Proposition 2.17. The family of log-exponential convex measures of risk (2.7) are kSD-

isotonic for any k ≥ 1, i.e., ρ(λ)α (X) ≤ ρ
(λ)
α (Y ) for all X, Y ∈ X such that −X <kSD −Y .

Proof: Follows immediately from Proposition 2.10 for v defined above. �

Based on these observations and the preceding discussion, we can conclude that

the introduced family of LogExpCR measures possesses a number of desirable properties

from both optimization and methodological perspectives. It is widely acknowledged in the

literature that risk is associated with “heavy” tails of the loss distribution; for example, in

Krokhmal (2007) it has been illustrated that evaluating risk exposure in terms of higher tail

moments can lead to improved decision making in financial applications with heavy-tailed
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distributions of asset returns. Furthermore, there are many real-life applications where

risk exposure is associated with catastrophic events of very low probability and extreme

magnitude, such as natural disasters, which often turn out to be challenging for traditional

analytic tools (see, for example, Kousky and Cooke (2009); Cooke and Nieboer (2011) and

references therein, Iaquinta et al. (2009), or Kreinovich et al. (2012)). By construction,

LogExpCR measures quantify risk by putting extra emphasis on the tail of the distribution,

which allows us to hypothesize that they could perform favorably compared to conventional

approaches in situations that involve heavy-tailed distributions of losses and catastrophic

risks. This conjecture has been tested in two numerical case studies that are presented

next. The idea is to evaluate the quality of solutions based on the risk estimates due to

nonlinear LogExpCR measure with those obtained using linear CVaR measure, which can

now be considered as a standard approach in risk-averse applications. Particularly, we were

interested in assessing the influence that the behavior of the tails of the underlying losses

distributions has in this comparison.

2.2.1 Case Study 1: Flood Insurance Claims Model

2.2.1.1 Dataset description

For the first part of the case study we used a dataset managed by a non-profit re-

search organization Resources for the Future (Cooke and Nieboer (2011)). It contains flood

insurance claims, filed through National Flood Insurance Program (NFIP), aggregated by

county and year for the State of Florida from 1980 to 2006. The data is in 2000 US dollars

divided by personal income estimates per county per year from the Bureau of Economic
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Accounts (BEA), in order take into account substantial growth in exposure to flood risk.

The dataset has 67 counties, and spans for 355 months.

2.2.1.2 Model formulation

Let random vector ` represent the dollar values of insurance claims (individual ele-

ments of this vector correspond to individual counties), and consider the following stochas-

tic programming problem, where ρ is a risk measure:

min ρ(`>x)

s. t.
∑
i

xi = K

xi ∈ {0, 1}.

(2.8a)

(2.8b)

(2.8c)

Such a formulation allows for a straightforward interpretation, namely, the goal

here is to identify K counties with a minimal common insurance risk due to flood as esti-

mated by ρ. Clearly, such a simplified model does not reflect the complexities of real-life

insurance operations. At the same time, since the purpose of this case study is to analyze

the properties of risk measures themselves, a deliberately simple formulation was chosen

so as to highlight the differences between solutions of (2.8) due to different choices of the

risk measure ρ in (2.8a).

Given that the distribution of ` is represented by equiprobable scenario realizations

`i,j , and m is the number of scenarios (time periods), model (2.8) with risk measure chosen
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as the Conditional Value-at-Risk, ρ(X) = CVaRα(X), can be expressed as

min η +
1

1− αCVaR

∑
j

1

m

[∑
i

xi`i,j − η
]
+

s. t.
∑
i

xi = K

xi ∈ {0, 1}.

(2.9a)

(2.9b)

(2.9c)

Similarly, if a LogExpCR measure is used, ρ(X) = ρ
(e)
α (X), then (2.8) can be formulated

as

min η +
1

1− αLogExpCR
log
∑
j

1

m
e[
∑
i xi`i,j−η]+

s. t.
∑
i

xi = K

xi ∈ {0, 1}.

(2.10a)

(2.10b)

(2.10c)

2.2.1.3 Normal data

In order to be able to evaluate the effect of the tail behavior of the loss distribu-

tion on the obtained solutions of decision making problems, we additionally generated a

similar dataset based on normal distribution. Particularly, we draw 355 realizations from

67-dimensional normal distribution with mean µ and covariance matrix Σ, where µ and

Σ are mean and covariance estimates of NFIP data respectively. Our goal here is to make

sure that the main difference between the datasets lays in the tails (normal distribution is

a well-known example of a light-tailed distribution), and by preserving mean vector and

covariance matrix we secure that this dataset captures the leading trends present in the

original data. Now, by comparing the decisions due to CVaR and LogExpCR measures for

these two datasets we can make conclusions on the effects that the tails of the distributions
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have on the quality of subsequent decisions.

2.2.1.4 Implementation details

Problems (2.9) and (2.10) represent a mixed-integer linear programming (MIP) and

a mixed-integer non-linear programming (MINLP) problems respectively. MIP problems

were solved using IBM ILOG CPLEX 12.5 solver accessed through C++ API. For the

MINLPs of the form (2.10) we implemented a custom branch-and-bound algorithm based

on outer polyhedral approximation approach, which utilized CPLEX 12.5 MIP solver and

MOSEK 6.0 for NLP subproblems.

In order to evaluate the quality of the decisions we employed a usual training-testing

framework. Given a preselected value m, the first m scenarios were used to solve problems

(2.9) and (2.10), then for the remaining N − m scenarios the total loss was calculated as

Lρ =
∑N

j=m

∑
i `i,jx

ρ
i , where xρ represents an optimal solution of either problem (2.9)

or problem (2.10), and N is the total number of scenarios in the dataset. In other words,

the decision vector xρ is selected based on the first m observations of the historical data

(training), and the quality of this solution is estimated based on the “future” realizations

(testing).

For this experiments we have set the parameter αCVaR set to 0.9, which is a usual

practical choice and can be interpreted as cutting off 90% of the least significant losses.

A preliminary test experiment has been performed to select αLogExpCR in such a way that

approximately same portion of the distribution was cut off, which yielded αLogExpCR = 0.5.

For the sake of simplicity, parameter λ has been set equal to e.
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2.2.1.5 Discussion of results

Tables 2.1 and 2.2 summarize the obtained results for NFIP and simulated normal

data sets, respectively. Discrepancy in the quality of the decisions based on LogExpCR and

CVaR measures is estimated using the value

γ =
LLogExpCR − LCVaR

min
{
LLogExpCR, LCVaR

} ,
which represents the relative difference in total losses LLogExpCR and LCVaR associated with

the respective decisions. For example, γ = −100% corresponds to the case when losses due

to CVaR-based decision were twice as large as losses due to LogExpCR-based decision.

First of all, we can observe that there is a definite variation between the results

obtained with NFIP data on one hand and with simulated normal data on the other. Particu-

larly, the absolute values of γ in Table 2.2 on average are considerably smaller compared to

those in Table 2.1, which indicates that in the case of normal data the risk measures under

consideration result in similar decisions, while heavy-tailed historical data leads to much

more differentiated decisions.

Secondly, Table 2.1 suggests that LogExpCR measure yields considerably better

solutions for certain sets of parameter values. Most notably, such instances correspond to

smaller values of both K and m. Intuitively, this can be explained as follows. Recall that

m is the number of scenarios in the training set, and N −m is the number of scenarios in

the testing set, which means that larger values of m correspond to shorter testing horizon.

Clearly, the fewer scenarios there are in the testing set, the fewer catastrophic losses occur

during this period, and vice versa, for smaller values ofm there are more exceptionally high

losses in the future. Thus, the observed behavior of γ is in accordance with our conjecture
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that LogExpCR measures are better suited for instances with heavy-tailed loss distributions.

Parameter K, in turn, corresponds to the number of counties to be selected, thus, the larger

its value is, the more opportunities for diversification are available for the decision-maker,

which, in turn, allows for risk reduction.

To sum up, the results of this case study suggest that under certain conditions, such

as heavy-tailed loss distribution, relatively poor diversification opportunities, and suffi-

ciently large testing horizon, risk-averse decision strategies based on the introduced log-

exponential convex measures of risk can substantially outperform strategies based on linear

risk measures, such as the Conditional Value-at-Risk.

2.2.2 Case Study 2: Portfolio Optimization

As heavy-tailed loss distributions are often found in financial data, we conducted

numerical experiments with historical stock market data as the second part of the case

study.

2.2.2.1 Model description

As the underlying decision making model we use the traditional risk-reward portfo-

lio optimization framework introduced by Markowitz (1952). In this setting, the cost/loss

outcomeX is usually defined as the portfolio negative rate of return, X(x, ω) = −r(ω)>x,

where x stands for the vector of portfolio weights, and r = r(ω) is the uncertain vector

of assets’ returns. Then, a portfolio allocation problem can be formulated as the prob-

lem of minimizing some measure of risk associated with the portfolio while maintaining a
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prescribed expected return:

min
x∈Rn+

{
ρ(−r>x)

∣∣∣ E(r>x) ≥ r̄, 1>x ≤ 1
}
, (2.11)

where r̄ is the prescribed level of expected return, x ∈ Rn
+ denotes the no-short-selling

requirement, and 1 = (1, . . . , 1)>. If the risk measure used is convex, it is easy to see that

(2.11) is a convex optimization problem. In this case study, we again select ρ in (2.11) as

either a LogExpCR or CVaR measure.

2.2.2.2 Dataset description

We utilized historical stock market data available through Yahoo!Finance. We

picked 2178 listings traded at NYSE from March, 2000 through December, 2012 (total

of 3223 trading days). As it was noted above, financial data often exhibit highly volatile

behavior, especially higher-frequency data, while long-term data is usually relatively nor-

mal. In order to account for such differences, we generated three types of datasets of loss

distribution, which were based on two-day, two-week and one-month historical returns.

Particularly, if pi,j is the historical close price of asset i on day j, then we define the cor-

responding two-day, ten-day, and one-month returns as ri,j =
pi,j−pi,j−∆

pi,j−∆
, where ∆ takes

values ∆ = 2, 10, and 20, respectively.

2.2.2.3 Implementation details

We utilize a training-testing framework similar to the one used in the previous sec-

tion, but additionally, we also employ “rolling horizon” approach, which aims to simulate

a real-life self-financing trading strategy. For a given time moment, we generate a scenario
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set containing, respectively, m two-day, ten-day, and one-month returns immediately pre-

ceding this date. Then, the portfolio optimization problem (2.11) is solved for each type

of scenario set in order to obtain the corresponding optimal portfolios; the “realized” port-

folio return over the next two-day, ten-day, or one-month time period, respectively, is then

observed. The portfolio is then rebalanced using the described procedure. This rolling-

horizon procedure was ran for 800 days, or about 3 years.

Recall that parameter r̄ in (2.11) represents the “target return”, i.e., the minimal

average return of the portfolio. Parameter r̄ was selected as r̄ = τ maxi{Eωri(ω)}, i.e.,

as a certain percentage of the maximum expected return previously observed in the market

(within the timespan of the current scenario set). Parameter τ has been set to be ”low“,

”moderate“, or ”high“, which corresponds to τ = 0.1, 0.5, 0.8. For each pair of n and m

we repeat the experiment 20 times, selecting n stocks randomly each time. Parameters

αLogExpCR, αCVaR and λ have been set in the same way as in Case Study 1.

2.2.2.4 Discussion of results

Obtained results are summarized in Table 2.3, and a typical behavior of the portfolio

value over time is presented in Figure 2.1. As in the previous case, we report relative

difference in the return over appropriate time period (2-day, 2-week, or 1-month) averaged

over the testing horizon of 800 days and over 20 random choices of n assets. Note that

since in this case the quality of the decision is estimated in terms of rate of return, i.e., gain,

positive values in Table 2.3 correspond to the cases when the LogExpCR-based portfolio

outperforms the CVaR-based portfolio.
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Similarly to the previous case, we can observe that the behavior of the tails of

the distribution plays a key role in the comparison: under 1-month trading frequency the

differences between CVaR and LogExpCR portfolios are relatively insignificant, compared

to the 2-day case. Moreover, we can again conclude that for heavy-tailed loss distributions

the introduced LogExpCR measure may compare favorably against CVaR; in particular,

conditions of restricted diversification options (relatively small value of n) make utilization

of LogExpCR measures more beneficial compared to a linear measure such as CVaR.

2.3 Concluding Remarks

In our view, the contribution of this chapter is threefold. First, we introduce a new

general representation of the classes of convex and coherent risk measures by showing

that any convex (coherent) measure can be defined as an infimal convolution of the form

ρ(X) = minη η + φ(X − η), where φ is monotone, convex, and φ(η) > η for all η 6= 0,

φ(0) = 0 (and positive homogeneous for coherency), and vice versa, constructed in such a

way function ρ is convex (coherent). Another way to look at this result is to observe that a

monotone and convex φ only lacks translation invariance in order to satisfy the definition of

a convex risk measure, and infimal convolution operator essentially forges this additional

property, while preserving monotonicity and convexity. According to this scheme, a risk

measure is represented as a solution of an optimization problem, hence it can be readily

embedded in a stochastic programming model.

Secondly, we apply the developed representation to construct risk measures as in-

fimal convolutions of certainty equivalents, which allows for a direct incorporation of risk
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preferences as given by the utility theory of von Neumann and Morgenstern (1944) into a

convex or coherent measure of risk. This is highly desirable since, in general, the risk pref-

erences induced by convex or coherent measures of risk are inconsistent with risk prefer-

ences of rational expected-utility maximizers. It is also shown that the certainty equivalent-

based measures of risk are “naturally” consistent with stochastic dominance orderings.

Finally, we employ the proposed scheme to introduce a new family of risk mea-

sures, which we call the family of log-exponential convex risk measures. By construction,

LogExpCR measures quantify risk by placing emphasis on extreme or catastrophic losses;

also, the LogExpCR measures have been shown to be isotonic (consistent) with respect to

stochastic dominance of arbitrary order. The results of the conducted case study show that

in highly risky environments characterized by heavy-tailed loss distribution and limited

diversification opportunities, utilization of the proposed LogExpCR measures can lead to

improved results comparing to the standard approaches, such as those based on the well-

known Conditional Value-at-Risk measure.
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Table 2.1: Relative difference in total loss γ = LLogExpCR−LCVaR

min{LLogExpCR,LCVaR} for NFIP data for various

values of the parameters K and m. Entities in bold correspond to the instances for which

LogExpCR measure outperformed CVaR.

K\m 20 60 100 140 180 220 260 300

1 -45038.3% -3944.4% -4652.2% -3663.7% -3663.7% -220.2% -220.2% -220.2%
3 -1983.7% -971.0% -211.5% -146.7% -146.7% -68.4% 0.0% 0.0%
5 -1284.2% -464.2% -85.7% -13.1% -13.1% 0.0% -6.6% 0.0%
7 -853.9% -342.5% 0.0% 0.0% 0.0% -0.4% -4.5% -13.1%
9 -387.1% -282.9% 0.0% 0.0% 0.0% 0.0% -3.1% 10.8%
11 -369.9% -181.0% 0.0% -18.2% 14.0% -27.8% 5.5% -2.2%
13 -360.4% -33.5% 0.0% -13.0% 1.0% 4.3% 0.0% 41.0%
15 -353.9% -27.9% -3.2% 3.1% 0.0% -3.6% 4.8% 20.6%
17 -129.8% -1.1% -0.2% 3.7% -26.5% 11.5% 25.4% 25.4%
19 -66.3% 21.6% 0.9% 0.0% 0.0% -2042.1% 35.4% 23.1%
21 -64.0% 5.0% 0.0% -279.0% 2.5% -1.6% 35.0% 8.0%
23 -57.4% 4.8% 0.0% 0.7% -65.6% -0.1% 20.3% 81.8%
25 -49.5% 0.0% -82.4% 0.0% -39.2% 4.4% 76.9% 84.7%
27 -48.2% 0.0% -52.2% 0.0% 4.7% 4.1% 68.7% 84.1%
29 -47.0% -34.3% 33.0% -254.3% -463.8% 4.0% 81.8% 83.5%
31 -41.1% -31.2% 8.7% -218.4% -309.8% 8.5% 79.3% 83.7%
33 -10.6% 46.4% -10.0% -162.7% -161.7% 8.9% 19.6% 84.6%
35 -9.5% 0.0% -12.2% -142.9% -153.1% 37.8% 53.9% 47.6%
37 -7.7% 12.0% -81.7% 5.3% 2.7% 57.0% 15.0% 9.9%
39 0.0% 5.3% -102.8% 45.8% 45.4% 43.4% 8.6% 5.6%
41 0.0% 11.4% -77.3% 30.9% 43.8% 34.8% 20.7% 4.8%
43 0.0% -13.4% -11.0% 53.8% 4.0% 50.0% 19.8% -3.4%
45 0.0% 0.0% -28.1% 54.5% -36.1% 26.2% 14.2% 8.5%
47 -9.1% 9.0% 4.5% 19.4% 6.4% 17.5% 28.2% -2.2%
49 0.0% 6.4% 27.8% -3.5% -20.1% 7.0% 0.5% -8.5%
51 0.0% 5.1% 49.6% -2.6% 1.0% -9.5% -5.0% 2.1%
53 39.9% -16.2% 24.7% 28.6% 23.0% 2.9% -4.9% -137.2%
55 -7.1% -8.7% 28.0% 21.6% -0.9% 5.6% -83.5% -19.1%
57 0.0% 3.0% 28.5% 3.6% 4.1% 2.6% -9.1% -9.2%
59 0.0% 20.0% 9.0% 2.0% -0.6% 0.1% 25.3% 27.4%
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Table 2.2: Relative difference in total loss γ = LLogExpCR−LCVaR

min{LLogExpCR,LCVaR} for normal data for various

values of the parameters K and m. Entities in bold LogExpCR to the instances for which

LogExpCR measure outperformed CVaR.

K\m 20 60 100 140 180 220 260 300

1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
5 0.0% 2.2% -107.1% 0.0% 0.0% -17.6% 22.8% -58.1%
7 0.0% 14.0% 0.0% 85.3% 28.8% 84.8% 86.4% 21.9%
9 0.0% 14.2% 27.2% 11.0% 2.9% 0.0% 0.0% 0.0%

11 17.2% 12.9% 0.0% 34.8% 33.9% 66.8% 36.0% -50.4%
13 19.2% 16.6% -3.3% -11.1% 2.6% 18.0% -12.3% 0.0%
15 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
17 0.0% -3.4% 34.0% 0.0% 0.0% 312.1% 0.0% -355.0%
19 43.0% -8.2% 8.9% 52.3% 76.7% -65.9% -20.3% 0.0%
21 0.0% 4.3% 21.5% -45.4% 506.1% -123.1% -119.2% 1.9%
23 27.3% -32.1% 48.8% 75.2% 242.3% -63.1% 3.0% -112.1%
25 -317.3% -8.0% 16.9% 74.7% 151.1% -71.3% -129.0% -64.7%
27 9.7% -34.1% 31.1% -50.8% 96.3% 154.3% 163.8% -16.8%
29 7.4% 13.7% 19.4% 78.4% 44.6% 272.6% -15.3% -31.4%
31 1.8% 10.3% 5.3% 6.4% 52.6% 234.0% 44.8% -5.5%
33 10.5% -14.7% -15.2% -31.2% -32.8% 11.5% -15.0% 10.1%
35 9.1% 6.0% 0.0% 0.0% 36.8% 36.9% 437.2% 0.0%
37 5.1% -1.0% 0.0% 18.0% 39.1% 20.8% 119.3% 0.0%
39 0.0% -0.8% -1.4% 10.3% 13.2% -14.6% -109.7% 73.6%
41 19.8% 18.3% 0.0% 24.7% 22.1% 0.0% 44.0% 762.8%
43 7.6% 8.7% 6.4% 0.0% -6.1% 0.0% 0.0% 0.0%
45 6.9% 5.9% 11.4% 7.9% 6.1% 16.9% -20.6% -99.3%
47 0.0% 1.1% 16.6% 4.0% 13.0% 0.0% 21.5% 46.7%
49 -2.8% 22.5% 17.7% -7.5% -11.2% -2.3% 0.0% -294.8%
51 0.0% 5.1% 17.8% 5.0% 10.4% -28.4% -0.1% -47.4%
53 -1.1% 0.0% -6.7% -0.5% 25.4% 0.0% 0.0% -39.7%
55 6.8% 0.0% 17.5% 18.3% 0.0% -9.3% 37.8% -87.4%
57 1.3% 0.0% 0.0% -14.5% -21.8% 0.0% 0.0% 0.0%
59 6.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% -10.0%
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Table 2.3: Relative difference (in %) in average portfolio

return due to LogExpCR measure and CVaR. Parameter n

represents the total number of assets on the market, m is

the number of time intervals in the training horizon, r̄ is

the prescribed expected rate of return. Labels “2-day”, “2-

week”, and “1-month” correspond to portfolio rebalancing

periods.

n m r̄ 2-day 2-week 1-month

20 2000 0.1 57.3 29.5 8.3
0.5 138.3 1.1 –12.9
0.8 5.9 –24.1 –7.4

200 2000 0.1 –17.9 –14.6 –2.2
0.5 11.1 –21.1 5.4
0.8 17.6 –13.5 –2.2
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Figure 2.1: Typical behavior of portfolio value, as a multiple of the initial investment (1.0),

over time.
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CHAPTER 3
POLYHEDRAL APPROXIMATIONS IN P -ORDER CONE PROGRAMMING

3.1 Problem Formulation and Literature Review

In the remaining chapters we will focus our attention on mathematical program-

ming techniques that can be employed in solving optimization problems resulting from the

proposed decision making approaches discussed in Chapter 2. Our first goal will be to ex-

plore methods for solving p-order cone programming problems, as this class, in our view,

presents a particularly important and interesting case. Later in the manuscript we will dis-

cuss in more details the connection between p-order cone programming problems and the

modeling approach presented in Chapter 2, but for the next two chapters our main attention

will be focused on designing solution techniques for such problems without regard to a

particular modeling framework. With this in mind, we consider the following optimization

problem

min c>x

s. t. Ax ≤ b,∥∥C(k)x+ e(k)
∥∥
pk
≤ h(k)>x+ f (k), k = 1, . . . , K,

x ∈ Rn,

(3.1a)

(3.1b)

(3.1c)

where ‖ · ‖p denotes the p-norm in RN :

‖a‖p =

{ (
|a1|p + · · ·+ |aN |p

)1/p
, p ∈ [1,∞),

max
{
|a1|, . . . , |aN |

}
, p =∞.

We call formulation (3.1) a p-order cone programming problem (pOCP) by analogy with

second-order cone programming (SOCP), which constitutes a special case of (3.1) when
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pk = 2 for all k = 1, . . . , K.

The available literature on solving problem (3.1) with “general” values of pk ∈

(1,∞), i.e., not restricted to well-studied special cases of pk = 1, 2, or ∞, is relatively

limited. Interior-point approaches to p-order cone programming have been considered by

Xue and Ye (2000) with respect to minimization of sum of p-norms; a self-concordant bar-

rier for p-cone has also been introduced by Nesterov (2012). Glineur and Terlaky (2004)

proposed an interior-point algorithm along with the corresponding barrier functions for a

related problem of lp-norm optimization (see also Terlaky (1985)). A polyhedral approxi-

mation approach to pOCP problems was considered by Krokhmal and Soberanis (2010). In

the case when p is a rational number, the existing primal-dual methods of second-order cone

programming can be employed for solving p-order cone optimization problems using a re-

duction of p-order cone constraints to a system of linear and second-order cone constraints

proposed by Nesterov and Nemirovski (1994) and Ben-Tal and Nemirovski (2001a), see

also Morenko et al. (2013).

This chapter represents a continuation of the work of Krokhmal and Soberanis

(2010) on polyhedral approximation approaches to solving pOCP problems. This work’s

contribution to the literature consists of the following: it is shown that the cutting plane

method developed in Krokhmal and Soberanis (2010) for solving a special type of polyhe-

dral approximations of pOCP problems, which allows for generation of cuts in a constant

time not dependent on the accuracy of approximation, is applicable to a larger family of

polyhedral approximations. Further, it is demonstrated that this constant-time cut gener-

ation procedure can be modified so as constitute an exact solution method with O(ε−1)
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iteration complexity. Moreover, we demonstrate the existence of a constant-time cut gener-

ation scheme for lifted polyhedral approximations of SOCP problems that are constructed

recursively, with the length of recursion controlling the accuracy of approximation, and

which were introduced by Ben-Tal and Nemirovski (2001b). Finally, we illustrate that the

polyhedral approximation approach and the corresponding cutting plane solution methods

can be efficiently employed for obtaining exact solutions of mixed-integer extensions of

pOCP problems (see below).

There is substantial literature on solution approaches for mixed integer cone pro-

gramming problems. In many cases, the proposed approaches attempt to extend some of

the techniques developed for mixed integer linear programming. One of such research di-

rections concerns development of branch-and-bound schemes based on outer polyhedral

approximations of cones. This potentially allows for computational savings in travers-

ing the branch-and-bound tree due to the “warm start” capabilities of linear programming

solvers. In particular, Vielma et al. (2008) proposed a branch-and-bound method for MIS-

OCP was proposed that employed lifted polyhedral approximations of second order cones

due to Ben-Tal and Nemirovski (2001b). Drewes (2009) presented subgradient-based lin-

ear outer approximations for the second order cone constraints in mixed integer programs.

With respect to mixed integer nonlinear programming, a similar idea has been exploited by

Bonami et al. (2008) and Tawarmalani and Sahinidis (2005).

The chapter is organized as follows: in Section 3.2 we discuss the general properties

of polyhedral approximations of p-cones, Section 3.3.1 summarizes the general cutting

plane method for polyhedral approximations of pOCP problems. In Sections 3.3.2 and
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3.3.3 we explore fast constant-time cut generating techniques for gradient-based and lifted

polyhedral approximations of pOCP and SOCP problems, respectively. The developed

solution techniques are then illustrated on pOCP and SOCP problems of type (3.1), and are

also employed for solving mixed-integer p-order cone programming (MIpOCP) problems

min c>x+ d>z

s. t. Ax+Bz ≤ b,∥∥C(k)x+D(k)z + e(k)
∥∥
pk
≤ h(k)>x+ g(k)>z + f (k), k = 1, . . . , K,

x ∈ Rn, z ∈ Zm,

(3.2a)

(3.2b)

(3.2c)

(3.2d)

which arise in the context of portfolio optimization with certainty equivalent risk measures.

The corresponding discussion is presented in Section 3.4.

3.2 Polyhedral Approximations of p-Order Cones

In what follows, we consider, without loss of generality, p-cones in the positive

orthant of RN+1:

K(N+1)
p =

{
ξ ∈ RN+1

+

∣∣ ξ0 ≥ ‖(ξ1, . . . , ξN)‖p
}
. (3.3)

Then, by a polyhedral approximation of K(N+1)
p we understand a polyhedral cone in

RN+1+κm
+ , where κm ≥ 0 may be generally non-zero,

H(N+1)
p,m =

{(
ξ
u

)
∈ RN+1+κm

+

∣∣∣∣ H(N+1)
p,m

(
ξ
u

)
≥ 0

}
, (3.4)

having the properties that:

(H1) any (ξ0, . . . , ξN)> ∈ K(N+1)
p can be extended to some

(ξ0, . . . , ξN , u1, . . . , uκm)> ∈ H(N+1)
p,m ;
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(H2) for some prescribed ε = ε(m) > 0, any (ξ0, . . . , uκm)> ∈ H(N+1)
p,m satisfies

‖(ξ1, . . . , ξN)‖p ≤ (1 + ε)ξ0.

Herem is the parameter of the construction that controls the approximation accuracy ε. Re-

placing each of the p-order cone constraints in problem (3.1) by their polyhedral approx-

imations of the form (3.4), we obtain a linear programming approximation of the pOCP

problem (3.1):

min

c>x
∣∣∣∣∣ Ax ≤ b, H(Nk+1)

pk,mk

h(k)>x+ f (k)

C(k)x+ e(k)

u(k)

 ≥ 0, k = 1, . . . , K

 . (3.5)

Observe that the projection of the feasible region of (3.5) on the space of variables x lies

in between the feasible set of pOCP (3.1) and that of its “ε-relaxation”,

min
{
c>x

∣∣∣ Ax ≤ b, ∥∥C(k)x+ e(k)
∥∥
pk
≤ (1 + ε)

(
h(k)>x+ f (k)

)
, k = 1, . . . , K

}
.

(3.6)

Thus, problem (3.5) represents an ε-approximation of pOCP (3.1), given that the feasible

regions of problems (3.1) and (3.6) are “close”. Conditions under which the feasible sets of

(3.1) and (3.6) are indeed O(ε)-close have been given by Ben-Tal and Nemirovski (2001b),

Proposition 4.1 for the case of p = 2, and their argumentation carries over to the case

of p 6= 2 practically without modifications. Specifically, if we denote by (pOCP) and

(pOCPε) the initial problem (3.1) and its polyhedral ε-approximation (3.6), respectively,

the following holds.

Proposition 3.1 (Ben-Tal and Nemirovski (2001b)). Assume that (pOCP) is: (i) strictly
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feasible, i.e., there exist x̄ and r > 0 such that

Ax̄ ≤ b,
∥∥C(k)x̄+ e(k)

∥∥
pk
≤ h(k)>x̄+ f (k) − r, k = 1, . . . , K, (3.7a)

and (ii) “semibounded”, i.e., there exists R > 0 such that

Ax ≤ b,
∥∥C(k)x+ e(k)

∥∥
pk
≤ h(k)>x+ f (k), k = 1, . . . , K ⇒

h(k)>x+ f (k) ≤ R, k = 1, . . . , K.

(3.7b)

(3.7c)

Then for every ε > 0 such that γ(ε) = Rε/r < 1, one has

γ(ε)x̄+ (1− γ(ε)) Feas (pOCPε) ⊂ Feas (pOCP) ⊂ Feas (pOCPε),

where Feas (P) denotes the feasible set of a problem (P).

Remark 10. The established inclusions essentially state, that under these conditions ε-

relaxation of the pOCP problem provides both an outer and an inner approximation of the

feasible region of the pOCP. For example, if we can take x̄ = 0, then the claim reduces to

(1− γ(ε)) Feas (pOCPε) ⊂ Feas (pOCP) ⊂ Feas (pOCPε), where γ(ε) → 1 for ε → 0.

In other words, Feas (pOCPε) and (1 − γ(ε)) Feas (pOCPε) are “close” to Feas (pOCP)

from the outside and from the inside respectively, and thus, for any feasible solution of the

relaxation there is a close feasible solution of the initial problem.

In constructing polyhedral approximations (3.4) of p-order cones we follow the

approach of Ben-Tal and Nemirovski (2001b), who developed efficient, in terms of dimen-

sionality, polyhedral approximations for quadratic cones. The first step in the construction

procedure consists in a lifted representation, dubbed by the authors “tower of variables”, of
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a p-cone in RN+1
+ , as a nested sequence of N − 1 three-dimensional p-cones. The original

construction relied on the assumption thatN = 2d for some integer d ≥ 1, which was by no

means restrictive, but allowed for a simple structure of the lifted set, which could be visual-

ized as a symmetric binary tree of three-dimensional cone inequalities that are partitioned

into d = log2N “levels”, with 2d−l inequalities at a level l. Below we present a slightly

different notation/representation of the “tower-of-variables” lifting technique that does not

explicitly use the binary tree structure, and which simplifies its practical implementation in

the case of general N 6= 2d. Namely, given the (N + 1)-dimensional p-cone, consider the

set defined by intersection of N − 1 three-dimensional p-cones in RN+1
+ × RN−1

+ :

ξ0 = ξ2N−1, ξN+j ≥ ‖(ξ2j−1, ξ2j)‖p, j = 1, . . . , N − 1. (3.8)

Proposition 3.2. Projection of set (3.8) onto the space of variables (ξ0, . . . , ξN) coincides

with the set (3.3). In other words, any ξ ∈ RN+1
+ that satisfies (3.3) can be extended to

ξ̃ ∈ RN+1
+ ×RN−1

+ that satisfies (3.8), and any ξ̃ ∈ R2N
+ satisfying (3.8) is such that its first

N + 1 components satisfy (3.3).

Proof: Follows immediately by expanding the recursion in (3.8). �

The second step of the procedure is to construct a polyhedral approximation

H(3)
p,m =

{(
ξ
u

)
∈ R3+κm

+

∣∣∣∣ H(3)
p,m

(
ξ
u

)
≥ 0

}
(3.9)

for each of the three-dimensional p-cones in (3.8). Observe that if approximation (3.9) of

each of the three-dimensional p-cones (3.8) containsO(ν) facets, ν = ν(m), the total num-

ber of facets in the approximation of the original (N + 1)-dimensional p-cone is O(νN),

i.e., it is linear in the dimensionality N of the original p-cone.
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Proposition 3.3. Consider cone (3.3) and its lifted representation (3.8). If each of the

three-dimensional cones in (3.8) is approximated by (3.9) with an accuracy ε > 0, the

resulting approximation accuracy ε of the original cone (3.3) satisfies ε ≤ (1 + ε)dlog2Ne−

1 = dlog2Neε+O(ε2).

Proof: The vector ξ̃ ∈ R2N
+ must satisfy ξ0 = ξ2N−1, (1 + ε)ξN+j ≥ ‖(ξ2j−1, ξ2j)‖p,

j = 1, . . . , N − 1. Expanding the recursion, we obtain

ξp0 = ξp2N−1 ≥
ξp2N−3

(1 + ε)p
+

ξp2N−2
(1 + ε)p

≥
ξp2N−7

(1 + ε)2p
+

ξp2N−6
(1 + ε)2p

+
ξp2N−5

(1 + ε)2p
+

ξp2N−4
(1 + ε)2p

≥

ξp1
(1 + ε)pk1

+ . . .+
ξpN

(1 + ε)pkN
,

where ki is the number of “levels” in the “tower of variables” on the way from ξ2N−1 to ξi. It

is straightforward to check that ki ∈ {dlog2Ne− 1, dlog2Ne} and thus, (1 + ε)dlog2Neξ0 ≥

‖(ξ1, . . . , ξN)‖p. �

When p = 1 or p = ∞, the cone K(3)
p is already polyhedral; in the case of p = 2,

the problem of constructing a polyhedral approximation of the second-order cone K(3)
2 was

also addressed by Ben-Tal and Nemirovski (2001b), who proposed the following lifted
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polyhedral approximation of K(3)
2 ,

u0 ≥ ξ1,

v0 ≥ ξ2,

ui = cos
(

π
2i+1

)
ui−1 + sin

(
π

2i+1

)
vi−1, i = 1, . . . ,m,

vi ≥
∣∣− sin

(
π

2i+1

)
ui−1 + cos

(
π

2i+1

)
vi−1

∣∣, i = 1, . . . ,m,

um ≤ ξ0, vm ≤ tan
(

π
2m+1

)
um,

0 ≤ ui, vi, i = 0, . . . ,m.

(3.10a)

(3.10b)

(3.10c)

(3.10d)

(3.10e)

(3.10f)

Remarkably, the accuracy of the polyhedral approximation (3.10) is exponentially small

in m: ε(m) = O
(
4−m

)
. The construction is based on an elegant geometric argument that

utilizes a well-known elementary fact that rotation of a vector in R2 is an affine transfor-

mation that preserves the Euclidean norm (2-norm) and that the parameters of this affine

transform depend only on the angle of rotation. An approach to constructing a framework

of polyhedral relations that generalizes inductive constructions of extended formulations

via projections, such as the polyhedral approximation (3.10) has been introduced by Kaibel

and Pashkovich (2011).

Unfortunately, the lifted polyhedral approximation (3.10) of the second-order cone

K(3)
2 does not seem to be extandable to general p-order cones K(3)

p with p ∈ (1, 2)∪ (2,∞).

Therefore, we employ a “gradient” approximation of K(3)
p using circumscribed planes.

Given the parameter of construction m ∈ N, let us call function ϕm : [0,m] 7→ [0, π/2] an

approximation function if it is continuous and strictly increasing on [0,m], and, moreover,
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satisfies

∆ϕm = max
i=0,...,m−1

{ϕm(i+ 1)− ϕm(i)} → 0, m→∞.

Then, for the following parametrization of the p-cone surface in R3
+

ξ1 = ξ0
cos θ

(cosp θ + sinp θ)1/p
, ξ2 = ξ0

sin θ

(cosp θ + sinp θ)1/p
, ξ0 ≥ 0, θ ∈ [0, π

2
], (3.11)

where θ is the polar angle, any given approximation function ϕm generates a gradient

approximation of K(3)
p

H(3)
p,m(ϕm) =

{
ξ ∈ R3

+

∣∣ ξ0 ≥ αp,i[ϕm] ξ1 + βp,i[ϕm] ξ2, i = 0, . . . ,m
}
, (3.12a)

where(
αp,i[ϕm]

βp,i[ϕm]

)
=
(

cosp ϕm(i) + sinp ϕm(i)
)1/p−1(cosp−1 ϕm(i)

sinp−1 ϕm(i)

)
, i = 0, . . . ,m.

(3.12b)

The values ϕm(i) in (3.12) represent the polar angles at which the planes ξ0 = αp,iξ1+βp,iξ2

are tangent to the p-cone K(3)
p . In such a way, the properties of the polyhedral approx-

imation (3.12) of the p-cone K(3)
p are determined by the values of ϕm at integer values

{0, . . . ,m} of its argument; nevertheless, the computability properties of ϕm(t) for arbi-

trary values t ∈ [0,m] are also of major importance, as will be shown in the next section.

The following proposition establishes the quality of the gradient polyhedral approximation

(3.12), and is a generalization of a similar result established for a special choice of ϕm in

Krokhmal and Soberanis (2010).

Proposition 3.4. For large enough values of m ∈ N, the polyhedral setH(3)
p,m(ϕm) defined

by the gradient approximation (3.12) with approximation function ϕm satisfies properties
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(H1)–(H2). Specifically, if the approximation function is such that for some r > 0

∆ϕm = O(m−r), m� 1,

then for any ξ ∈ K(3)
p one has ξ ∈ H(3)

p,m, and any ξ ∈ H(3)
p,m satisfies ‖(ξ1, ξ2)‖p ≤

(1 + ε(m))ξ0, where the approximation accuracy ε(m) is polynomially small in m:

ε(m) = O
(
m−rmin{p,2}), m� 1.

Remark 11. One possible choice of ϕm is ϕm(t) = π
2m
t, which yields a “uniform” gradient

approximation of the p-cone, i.e., a gradient approximation (3.12) where the circumscribed

planes are spaced “uniformly” with respect to the polar angle θ, and are tangent to the

p-cone at the polar angles θi = πi
2m

. In this case, the approximation accuracy satisfies

ε(m) = O
(
m−min{p,2}) (see Krokhmal and Soberanis (2010)) and is constant among all

sectors
[
πi
2m
, π(i+1)

2m

]
. In the case of p 6= 2, however, the accuracy of the uniform gradient

approximation varies depending on the sector. Thus, it may be of interest to construct an

approximation function ϕm that results in a constant accuracy at each sector [ϕm(i), ϕm(i+

1)], thereby minimizing the number of facets needed to achieve the desired accuracy. On

the other hand, if the structure of the problem is such that an optimal solution is known to

be located in a certain part of the cone, it might be beneficial to construct an approximation

that is more accurate within this particular region and less accurate outside of it. These

considerations provide an intuition on how a careful choice of ϕm may reduce the size of

the problem in question. We, however, are not pursuing the problem of constructing an

“optimal” approximation in this work.
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For p = 2 and a given approximation accuracy, the lifted polyhedral approximation

(3.10) due to Ben-Tal and Nemirovski (2001b) is superior to the gradient polyhedral ap-

proximation (3.12) in terms of dimensionality. However, computational studies of Glineur

(2000); Krokhmal and Soberanis (2010) indicated that solving LP problems of the form

(3.5) that were constructed as polyhedral approximations, either lifted or gradient, of SOCP

problems, was computationally inefficient comparing to the “native” SOCP solution tech-

niques, such as self-dual interior-point methods.

At the same time, the computational efficiency of the polyhedral approximation ap-

proach can be substantially improved by employing decomposition methods that exploit

the specific structure of polyhedral approximations in (3.12), whereby the polyhedral ap-

proximation approach becomes competitive with SOCP-based solution methods for pOCP

problems with p 6= 2. This was demonstrated for a special case of the uniform gradi-

ent polyhedral approximation in Krokhmal and Soberanis (2010). In the next section we

show that analogous computational efficiencies can be achieved for more general gradient

polyhedral approximations of pOCP problems, as well as for the lifted polyhedral approx-

imation of SOCP problems.

3.3 Cutting Plane Methods for Polyhedral Approximations of SOCP and pOCP

Problems

Computationally efficient methods for solving polyhedral approximations (3.4) of

SOCP and pOCP problems can be constructed by taking advantage of (i) the special struc-

ture of the problem induced by the “tower-of-variables” representation of high-dimensional
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cones as an intersection of three-dimensional ones in a lifted space, and (ii) the special

structures of polyhedral approximations of three-dimensional quadratic or p-order cones.

With respect to (i), a cutting plane method that, given a polyhedral approximation

for 3D cones, utilizes the structure of the “tower-of-variables” reformulation in the approx-

imating problems (3.4), was proposed in Krokhmal and Soberanis (2010). This method is

briefly described in Section 3.3.1 below, since it is necessary in the context of (ii), namely,

for exploiting the special properties of gradient and lifted polyhedral approximations of 3D

cones for fast cut generation. In particular, the discussion that follows in Sections 3.3.2 and

3.3.3 demonstrates that, despite the differences in construction and properties, the lifted

Ben-Tal-Nemirovski’s approximation (3.10) of quadratic cones and the gradient approxi-

mation (3.12) of p-cones offer the same computational efficiency for cut generation.

3.3.1 A Cutting Plane Procedure for Polyhedral Approximations of pOCP Problems

The cutting plane algorithm described here is applicable to reformulations of pOCP

problems obtained using the “tower-of-variables” lifting technique (3.8). Assuming for

simplicity that problem (3.1) contains only one p-cone constraint (K = 1) of dimension

N + 1, the corresponding reformulation of (3.1) is obtained by lifting the p-cone constraint
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using the “tower-of-variables” method as

min c>x

s. t. Ax ≤ b

wN+j ≥ ‖(w2j−1, w2j)‖p, j = 1, . . . , N − 1,

wj ≥ |(Cx+ e)j|, j = 1, . . . , N,

w2N−1 = h>x+ f,

(3.13a)

(3.13b)

(3.13c)

(3.13d)

(3.13e)

where w ∈ R2N−1. Each of the three-dimensional p-order cones (3.13c) is subsequently

replaced by its polyhedral approximation (3.9), which yields the following polyhedral ap-

proximation of pOCP (3.1):

min c>x

s. t. H(3)
p,m

(
wj

uj

)
≥ 0, j = 1, . . . , N − 1,

uj ∈ Rκm
+ ,

(3.13b), (3.13d), (3.13e),

(3.14a)

(3.14b)

(3.14c)

(3.14d)

where the vectorswj stand for the tripletswj = (wN+j, w2j−1, w2j)
>. Constructed in such

a way polyhedral approximation of the pOCP problem (3.1) possesses a special structure

that can be exploited for solving the LP problem (3.14) efficiently. In particular, the fol-

lowing cutting plane representation for (3.14) was presented in Krokhmal and Soberanis
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(2010):

min c>x

s. t. wN+j ≥ (0, . . . , 0, w2j−1, w2j) π̂i, i ∈ Pp,m, j = 1, . . . , N − 1,

(3.13b), (3.13d), (3.13e),

(3.15a)

(3.15b)

(3.15c)

where Pp,m is the set of vertices π̂i of the polyhedron

{
π ≥ 0

∣∣∣∣ H>p,mπ ≤
(

1
0

)}
, (3.16)

and the matrix Hp,m is obtained by augmenting the approximation matrix H
(3)
p,m with two

extra rows (0, 1, 0 · · · 0), (0, 0, 1, 0 · · · 0), where 1’s correspond to the variables w2j−1 and

w2j:

Hp,m =

 H
(3)
p,m

0 1 0 · · · 0
0 0 1 · · · 0

 .

Constraints (3.15b) are then generated via an iterative procedure. Assuming that problem

(3.15) is bounded, consider the master problem in the form

min c>x

s. t. wN+j ≥ ςj,iw2j−1 + τj,iw2j, i = 1, . . . , Cj, j = 1, . . . , N − 1,

(3.13b), (3.13d), (3.13e),

(3.17a)

(3.17b)

(3.17c)

where ςj,i and τj,i stand for the components π̂ν−1 and π̂ν of the vector π̂ ∈ Rν , and Cj is the

number of constraints generated during preceding iterations. Let (x∗, w∗) ∈ Rn+2N−1 be

an optimal solution of the master (note that if (3.17) is infeasible, then (3.15) is infeasible

too, and the procedure stops). For each j = 1, . . . , N − 1, the following LP problem is
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solved:

ζ∗j := max

{(
0, . . . , 0, w∗2j−1, w

∗
2j

)
π

∣∣∣∣ H>p,mπ ≤
(

1
0

)
, π ≥ 0

}
, (3.18)

and it is checked whether the condition

w∗N+j ≥ ζ∗j = w∗2j−1π
∗(j)
ν−1 + w∗2jπ

∗(j)
ν (3.19)

holds, where π∗(j) is an optimal solution of (3.18). If it does not, a new constraint (3.17b)

is added for the variable wN+j by incrementing the corresponding counter of constraints

in (3.17b): Cj := Cj + 1, and setting ςj,i′ = π
∗(j)
ν−1, τj,i′ = π

∗(j)
ν for i′ = Cj . Upon

checking condition (3.19) for all variables wN+j , j = 1, . . . , N − 1, in (3.17), the master

problem (3.17) is augmented with new constraints and is solved again. If (3.19) holds for all

variables wN+j , and thus no new cuts are generated during an iteration, the current solution

x∗,w∗ of the master problem is optimal for the original LP approximation problem (3.15).

In such a way, the described cutting plane procedure obtains an optimal solution, if it exists,

of the original LP approximation problem (3.15) after a finite number of iterations, with,

perhaps, some anticycling scheme employed.

3.3.2 Fast Cut Generation for Gradient Approximations of p-Order Cones

The cutting-plane scheme of Section 3.3.1 exploits the properties of the “tower-

of-variables” representation (3.8) of high-dimensional p-cones as a nested sequence of 3D

p-cones to facilitate solving (large-scale) polyhedral approximations (3.4). In this section

we show that if the gradient polyhedral approximation (3.12) is used for approximating

three-dimensional p-cones in (3.14), the structure of this approximation can be utilized to
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achieve significant computational savings, provided that the approximation function ϕm of

the gradient polyhedral approximation satisfies a certain computability condition.

Proposition 3.5. Consider a polyhedral approximation (3.5) of pOCP problem (3.1), ob-

tained by reformulating each of the K p-cones in (3.1) using the “tower-of-variables”

representation (3.8) and then applying the gradient polyhedral approximation (3.12) with

parameter of construction m and approximation function ϕm. Then, if ϕ−1m is computable

in O(1) time, during an iteration of the cutting plane scheme of Section 3.3.1 new cuts can

be generated in O
(∑

kNk

)
time that is independent of m, where Nk + 1 is the dimension

of kth p-cone in (3.1).

Similarly to Proposition 3.4, this result strengthens the statement in Krokhmal and Sobera-

nis (2010). We still provide its proof here, since it is necessary for formalizing a subsequent

observation in Proposition 3.6.

Proof: Proof of Proposition 3.5: When the gradient polyhedral approximation (3.12) is

used, the cut-generating problem (3.18) can be formulated as

max

{
m∑
i=0

(αp,iξ
∗
1 + βp,iξ

∗
2) πi −

2∑
i=1

ξ∗i si

∣∣∣∣ m∑
i=0

πi ≤ 1, π0, . . . , πm ≥ 0, s1, s2 ≥ 0

}
,

(3.20)

where the constants ξ∗1 and ξ∗2 stand for the corresponding elements of the current optimal

solution w∗ of the master problem: ξ∗1 = w∗2j−1, ξ∗2 = w∗2j . Disregarding the trivial case

of ξ∗1 = ξ∗2 = 0, we assume that at least one of these parameters is positive: ξ∗1 + ξ∗2 > 0.

It is clear that solving (3.20) amounts to finding a maximum element of the set {αp,iξ∗1 +
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βp,iξ
∗
2}i=0,...,m. Namely, if one has

i∗ ∈ arg maxi=0,...,m

{
αp,i ξ

∗
1 + βp,i ξ

∗
2

}
, (3.21a)

then an optimal solution π∗ of (3.20) is given by

π∗i = 0, i ∈ {0, . . . ,m} \ i∗; π∗i∗ = 1; s1 = αp,i∗ ; s2 = βp,i∗ . (3.21b)

For fixed ξ∗1 , ξ
∗
2 ≥ 0 and p > 1, consider the function

g(t) = ξ∗1
cosp−1 t

(cosp t+ sinp t)1−1/p
+ ξ∗2

sinp−1 t

(cosp t+ sinp t)1−1/p
, t ∈ [0, π

2
],

with the derivative

g′(t) = (p− 1)
sinp−1 t cosp−1 t

(cosp t+ sinp t)2−1/p

(
−ξ∗1
cos t

+
ξ∗2

sin t

)
.

Obviously, for t ∈ [0, π
2
] function g(t) is either strictly monotone (when one of ξ∗1 , ξ

∗
2 is

zero) or has a unique global maximum at t∗ = arctan(ξ∗2/ξ
∗
1). Then, for a continuous and

strictly increasing approximating function ϕm : [0,m] 7→ [0, π
2
], the function g(ϕm(·)) is

also either monotone on [0,m] or has a unique maximum at ϕ−1m (arctan(ξ∗2/ξ
∗
1)). Conse-

quently, if the inverse ϕ−1m of the approximating function is computable in O(1) time, the

index i∗ of a maximum element of the sequence

g(ϕm(i)) = ξ∗1 αp,i + ξ∗2 βp,i, i = 0, . . . ,m,

which defines an optimal solution (3.21) of cut-generating problem (3.20), can be deter-

mined in O(1) time as

i∗ ∈ arg max
{
ϕ−1m (0), bϕ−1m (t∗)c, bϕ−1m (t∗)c+ 1, ϕ−1m (π

2
)
}
, (3.22)
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where t∗ = arctan(ξ∗2/ξ
∗
1).

Given that each p-cone constraint of order pk and dimensionality Nk + 1 requires

Nk − 1 such operations, generation of new cuts in problem (3.17) that employs a gradient

polyhedral approximation requires O
(∑

kNk

)
time. �

In the case when ξ∗1 , ξ
∗
2 > 0, the index i∗ of the cut that may have to be added

to the master is given by bϕ−1m (t∗)c or bϕ−1m (t∗)c + 1. Note that as m increases (and the

quality of approximation becomes finer), for any fixed ξ∗1 , ξ
∗
2 > 0 the facets corresponding

to bϕ−1m (t∗)c, bϕ−1m (t∗)c+ 1 converge to a plane tangent to the cone at the point determined

by the polar angle θ∗ = arctan(ξ∗2/ξ
∗
1), so that the corresponding cut takes the form

wN+j ≥w2j−1
cosp−1 θ∗

(cosp θ∗ + sinp θ∗)1−1/p
+ w2j

sinp−1 θ∗

(cosp θ∗ + sinp θ∗)1−1/p
,

θ∗ = arctan
w∗2j
w∗2j−1

.

(3.23)

In this case, one does not need to solve the cut-generating LP (3.18) and check condition

(3.19) in order to add the corresponding cut. Namely, for a current solution w∗ of the

master, cut (3.23) is added to the master if the condition

∥∥(w∗2j−1, w∗2j)∥∥p ≤ (1 + ε)w∗N+j (3.24)

is not satisfied for the respective j = 1, . . . , N − 1. The following proposition formalizes

this procedure.

Proposition 3.6. Given an instance of pOCP problem (3.1) that satisfies the conditions of

Proposition 3.1, consider a cutting plane scheme for constructing an approximate solution

of its lifted reformulation (3.13), where the master problem has the form (3.17), and for a
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given solution x∗,w∗ of the master, cuts of the form (3.23) are added if condition (3.24) is

not satisfied for a specific j. Assuming that (3.13) is bounded, this cutting plane procedure

terminates after a finite number of iterations for any given ε > 0, with, perhaps, some

anti-cycling scheme applied. In particular, the algorithm is guaranteed to generate at

most O(ε−1) cutting planes, and in the special case of p = 2 the described cutting plane

algorithm is guaranteed to stop after at most O(ε−0.5) iterations.

Proof: Let ε > 0 be the approximation accuracy for the 3D p-cones in (3.13), and w∗N+j ,

w∗2j−1, and w∗2j be the elements of the current solution of the master. We will show that

there exists some δε such that if θ∗j is located at an angular distance closer than δε from an

existing cut, then (3.23) implies (3.24), i.e., no new cut can be added withing δε from an

existing one. By (3.23), for any existing cut at polar angle θk the solution of the master

should satisfy

w∗N+j ≥ w∗2j−1
cosp−1 θk

(cosp θk + sinp θk)
1− 1

p

+ w∗2j
sinp−1 θk

(cosp θk + sinp θk)
1− 1

p

=
∥∥(w∗2j−1, w

∗
2j)
∥∥
p
×(

cos θ∗j

(cosp θ∗j + sinp θ∗j )
1
p

cosp−1 θk

(cosp θk + sinp θk)
1− 1

p

+

sin θ∗j

(cosp θ∗j + sinp θ∗j )
1
p

sinp−1 θk

(cosp θk + sinp θk)
1− 1

p

)
,

where θ∗j = arctan
w∗2j
w∗2j−1

. Let θ∗j = θk + δ, where δ > 0, in which case

w∗N+j ≥
∥∥(w∗2j−1, w

∗
2j)
∥∥
p
×

cos δ (cosp θk + sinp θk) + sin δ (sinp−1 θk cos θk − cosp−1 θk sin θk)

(cosp(θk + δ) + sinp(θk + δ))
1
p (cosp θk + sinp θk)

1− 1
p

=
∥∥(w∗2j−1, w

∗
2j)
∥∥
p

(
A(θk, δ) cos δ +B(θk, δ) sin δ

)
,

(3.25)
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where we denote

A(θk, δ) =
(cosp θk + sinp θk)

1
p

(cosp(θk + δ) + sinp(θk + δ))
1
p

,

B(θk, δ) =
sinp−1 θk cos θk − cosp−1 θk sin θk

(cosp(θk + δ) + sinp(θk + δ))
1
p (cosp θk + sinp θk)

1− 1
p

.

As δ approaches zero, the right-hand side in (3.25) converges uniformly to
∥∥(w∗2j−1, w

∗
2j)
∥∥
p
.

Namely, let K0 = minθ ‖(cos θ, sin θ)‖p = const > 0, then∣∣A(θk, δ) cos δ +B(θk, δ) sin δ − 1
∣∣ ≤

sin δ|B(θk, δ)|+ A(θk, δ)(1− cos δ) + |A(θk, δ)− 1|

≤ 2

Kp
0

sin δ +
1

K0

(1− cos δ)+

1

K0

∣∣∣( cosp θk + sinp θk
) 1
p −

(
cosp(θk + δ) + sinp(θk + δ)

) 1
p

∣∣∣
≤ 2

Kp
0

sin δ +
1

K0

(1− cos δ) +
2

Kp
0

δ

≤ 2π

Kp
0

∣∣∣∣ δπ/2
∣∣∣∣+

π2

4K0

∣∣∣∣ δπ/2
∣∣∣∣2 ≤ ( 2π

Kp
0

+
π2

4K0

)∣∣∣∣ δπ/2
∣∣∣∣ =: K1δ,

where Lagrange’s mean value theorem for the function f(t) = ‖(sin t, cos t)‖p was utilized,

along with the well known facts that sin δ ≤ δ and 1− cos δ ≤ δ2.

Then, for any ε > 0 there exists δε = 1
K1

ε
1+ε

such that for any θk and any δ ≤ δε con-

dition (3.23) implies (3.24) by w∗N+j ≥ (1 −K1δ)‖(w∗2j−1, w∗2j)‖p ≥ 1
1+ε
‖(w∗2j−1, w∗2j)‖p.

Hence, no two cuts can be located closer than at an angular distance of δε, whereby no more

than
⌈
π
2δε

⌉
+ 1 = O

(
ε−1
)

cuts can be generated. A stronger result holds for p = 2, indeed,
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observe that in this case (3.25) can be rewritten as

w∗N+j ≥ w∗2j−1 cos θk + w∗2j sin θk

=
∥∥(w∗2j−1, w∗2j−1)∥∥2(cos θ∗j cos θk + sin θ∗j sin θk) =

∥∥(w∗2j−1, w∗2j−1)∥∥2 cos δ.

(3.26)

Again, in order for (3.26) to imply (3.24), one has to require that cos δ ≥ 1
1+ε

, or cos δε =

1
1+ε

, which implies δε = O(ε0.5). The statement of the proposition then follows immedi-

ately from Proposition 3.3, according to which the approximation accuracy ε of the (N+1)-

dimensional p-cone satisfies ε ≤ O(ε). �

Remark 12. The cutting plane procedure outlined in Proposition 3.6 can be regarded as an

exact solution algorithm for pOCP problem (3.13), and, correspondingly, the original pOCP

problem (3.1), in the sense that once an approximate solution xε1 is obtained with the given

accuracy ε = ε1, an (improved) solution xε2 can subsequently be constructed by setting

new accuracy ε = ε2 < ε1 and resuming the cutting plane algorithm (i.e., the algorithm

does not have to be restarted). In contrast, the cutting plane method of Section 3.3.1 in this

case would require updating the algorithm itself, namely changing the LP problem (3.18)

that is used to generate new cuts.

3.3.3 Fast Cut Generation for Lifted Polyhedral Approximation of Second-Order Cones

In this section we demonstrate that a result analogous to Proposition 3.5 can be

formulated in the case of the lifted approximation (3.10) due to Ben-Tal and Nemirovski

(2001b), i.e., such an approximation also allows for efficient cut-generation technique.
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In accordance to the cutting plane method of Section 3.3.1, consider the master

problem (3.17) that corresponds to a polyhedral approximation of the SOCP (p = 2) ver-

sion of problem (3.13), where Ben-Tal and Nemirovski’s lifted polyhedral approximation

(3.10) of three-dimensional quadratic cones in the “tower-of-variables” is used. In this

case, the coefficients ςj,i, τj,i in (3.17b) are found as the simplex multipliers of the first two

constraints of the LP problem

z∗j = min z

s. t. u0 ≥ w∗2j−1,

v0 ≥ w∗2j,

ui = cos
( π

2i+1

)
ui−1 + sin

( π

2i+1

)
vi−1, i = 1, . . . ,m,

vi ≥
∣∣∣− sin

( π

2i+1

)
ui−1 + cos

( π

2i+1

)
vi−1

∣∣∣, i = 1, . . . ,m,

um ≤ z,

vm ≤ tan
( π

2m+1

)
um,

u,v, z ≥ 0,

(3.27a)

(3.27b)

(3.27c)

(3.27d)

(3.27e)

(3.27f)

(3.27g)

where w∗2j−1, w
∗
2j are the components of the optimal solution of the master problem ob-

tained during the most recent iteration. If the optimal value of (3.27) satisfies w∗N+j < z∗j ,

then a new cut of the form (3.17b) is added to the master.

It is important to note that, unlike the gradient polyhedral approximation (3.12) of

p-cones, the lifted approximation (3.10) of quadratic cones due to Ben-Tal and Nemirovski

is constructed recursively, where the parameterm represents the recursion counter and con-

trols approximation accuracy. Intuitively, the process of constructing this lifted approxima-
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tion of a 3D quadratic cone can be visualized as a sequence of “rotations” and “reflections”

in R2. Given a vector (u0, v0) in the positive quadrant of the plane, during the first iteration

of the recursion it is rotated clockwise by π/4 around the origin and, if the rotation puts it

into the lower half-plane, it is reflected symmetrically about the horizontal axis, resulting

in vector (u1, v1) that is again in the positive quadrant. During the second iteration, vector

(u1, v1) is rotated clockwise by π/8 and reflected symmetrically about the horizontal axis

if it falls into the lower half-plane due to the rotation. The resulting vector is designated

(u2, v2), and so on.

In view of this, as the first step of constructing a O(1) solution algorithm for the

dual of (3.27), we formally show that an optimal solution of (3.27) can be obtained inO(m)

time by applying the above recursion procedure to vector (w∗2j−1, w
∗
2j).

To this end, let us denote by (ri, αi) the polar coordinates of the pair (ui, vi) in

(3.27):

ri = ri(ui, vi) = ‖(ui, vi)‖2, αi = αi(ui, vi) = arg(ui, vi) = arctan(vi/ui).

In what follows, we will use notations (ui, vi) and (ri, αi) interchangeably. Since one can

always put z = um in (3.27), the discussion of feasibility and optimality in (3.27) reduces

to that for the pair of vectors (u,v) = (u0, . . . , um; v0, . . . , vm). First, let us make two

observations.

Observation 3.7. If (u,v) is feasible for (3.27), then αi ≤
π

2i+1
for i = 0, . . . ,m.

Proof: Indeed, if for some i0 one has αi0 >
π

2i0+1
, then by (3.27d)–(3.27e) αi0+1 >

π

2i0+2
,

which, by continuation, yields a contradiction with (3.27g) that requires αm ≤
π

2m+1
. �
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Observation 3.8. Given a feasible (u,v) and i0 ∈ {1, . . . ,m}, a feasible (ũ, ṽ) can be

constructed that satisfies (ui, vi) = (ũi, ṽi) for i ≤ i0 − 1 and (r̃i, α̃i) =
(
r̃i−1,

∣∣α̃i−1 −
π

2i+1

∣∣) for i ≥ i0.

Proof: For this, we only need to verify that (3.27g) is satisfied for (ũ, ṽ). Due to Obser-

vation 3.7, one has αi0−1 ≤
π

2i0
. Thus, by construction α̃i0 ≤

π

2i0+1
, α̃i0+1 ≤

π

2i0+2
, . . . ,

α̃m ≤
π

2m+1
, which is equivalent to (3.27g). �

With this in mind we can construct an optimal solution to the problem under con-

sideration.

Lemma 3.9. An optimal solution for the problem (3.27) can be obtained by setting con-

straints (3.27b)–(3.27f) to equalities, or in other words r∗0 = ‖(w∗2j−1, w∗2j)‖,

α∗0 = arg(u0, v0), and r∗i = r∗i−1, α
∗
i =

∣∣α∗i−1 − π
2i+1

∣∣ for i = 1, . . . ,m.

Proof: For a feasible (u,v), let k be the largest of those i ∈ {1, . . . ,m} for which (3.27e)

is a strict inequality i.e., k is such that constraint (3.27e) is non-binding for i = k and

binding for i = k + 1, . . . ,m. Following Observation 3.8 with i0 = k, define a feasible

(ũ, ṽ) which satisfies

(ũi, ṽi) = (ui, vi), i = 0, . . . , k − 1,

(r̃k, α̃k) =
(
rk−1,

∣∣∣αk−1 − π

2k+1

∣∣∣),
(r̃i, α̃i) =

(
r̃i−1,

∣∣∣αi−1 − π

2i+1

∣∣∣), i = k + 1, . . . ,m.

(3.28)

From the definition of k and (3.28) it follows that αk = α̃k + ∆, where ∆ > 0 due to

(3.27e). By construction one has

rk = rk−1
cos α̃k

cos(α̃k + ∆)
> r̃k. (3.29)
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Now let us demonstrate that (ũ, ṽ) yields at least as good objective value as (u,v), or in

other words, ũm ≤ um. Note that the definition of k and (3.28) immediately imply that

um = rm cosαm = rk cosαm, ũm = r̃m cos α̃m = r̃k cos α̃m, (3.30)

and

α̃m =
∣∣∣ π

2m+1
−
∣∣∣ π
2m
− . . .−

∣∣∣ π

2k+2
− α̃k

∣∣∣ . . . ∣∣∣,
αm =

∣∣∣ π

2m+1
−
∣∣∣ π
2m
− . . .−

∣∣∣ π

2k+2
− αk

∣∣∣ . . . ∣∣∣. (3.31)

Let us consider three cases:

(a) Assume that αk = α̃k + ∆ ≤ π

2m+1
. In this case equalities (3.31) yield the following

expressions for αm and α̃m:

α̃m =
π

2m+1
− α̃k, αm =

π

2m+1
− (α̃k + ∆) < α̃m,

which upon substitution in (3.30) provide that um ≥ ũm.

(b) Now consider the case of α̃k > α̃m. Successive application of the inequality ||a| −

|b|| ≤ |a−b| to the expressions in (3.31) yields that |αm−α̃m| ≤ ∆, and consequently

αm ≤ α̃m + ∆. Thus, from (3.30) one has um = rk cosαm ≥ rk cos(α̃m + ∆). Upon

substituting expression (3.29) for rk into the last inequality, we obtain

um ≥ rk−1
cos α̃k

cos(α̃k + ∆)
cos(α̃m + ∆) =: f(∆).

Noting that f ′(∆) = rk−1 cos(α̃k)
sin(α̃k − α̃m)

cos2(α̃m + ∆)
> 0 for α̃k > α̃m and f(0) = ũm,

we can conclude that um ≥ f(∆) ≥ f(0) = ũm.

(c) Finally, suppose that both conditions of (a) and (b) are not satisfied i.e., α̃k ≤ α̃m

and α̃k + ∆ >
π

2m+1
. Consider, the ratio of um and ũm as given by (3.30), where
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expressions (3.29) and (3.28) are used for rk and r̃k, respectively:

um
ũm

=
cos α̃k cosαm

cos α̃m cos(α̃k + ∆)
.

The above assumption and Observation 3.7 imply that α̃k ≤ α̃m and αm ≤
π

2m+1
<

α̃k + ∆, whence the last equality readily yields um/ũm ≥ 1.

In (a)–(c) we have shown that for feasible (u,v) such that constraint (3.27e) is

binding for i = k + 1, . . . ,m, we can construct a feasible solution with at least as good

objective and constraint (3.27e) binding for i = k, . . . ,m. Using this claim inductively, we

can conclude that for any feasible (u,v) one can construct a feasible solution for which all

constraints in (3.27e) are satisfied as equalities and which has objective at least as good as

(u,v).

Finally, note that a similar argument can be constructed if (3.27b) or (3.27c) are

not active. Indeed, the case when v0 > w∗2j is completely analogous to the case when

(3.27e) is not active. Similarly, if u0 > w∗2j−1, which essentially increases the value of r0

and reduces the value of α0 by some δ, let us denote as r′0, α′m and u′m the new values of

r0, αm and um corresponding to this case. Then we can observe that u′m = r′0 cosα′m >

r′0
sinα0

sin(α0 − δ)
cos(αm − δ). Hence,

um
u′m

=
cosαm sin(α0 − δ)
cos(αm − δ) sinα0

=
cos δ − cotα0 sin δ

cos δ + tanαm sin δ
<

1.

Thus, we can observe that the solution, constructed by setting constraints (3.27b)–

(3.27f) to equalities yields at least as good objective value as any other feasible solution.

�

By virtue of Lemma 3.9, the problem of finding optimal of (3.27) is reduced to the
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following: given α0 ∈ [0, π
2
] and m ≥ 1, determine αm from the recurrent relations

αi =
∣∣∣αi−1 − π

2i+1

∣∣∣, i = 1, . . . ,m. (3.32)

Clearly, this can be done in O(m) time. Below we show that determining αm from the

recursion (3.32) requires O(1) time.

For now, let us assume that α0 6=
iπ

2m+1
. For k = 1, . . . , 2m, define set A(m)

k =(
(k − 1)π

2m+1
,
kπ

2m+1

)
. Note that by Observation 3.7, αm ∈ A(m)

1 for any α0.

Lemma 3.10. If α0 ∈ A(m)
k and αm is given by (3.32), then

αm =


α0 −

(k − 1)π

2m+1
, if k is even

kπ

2m+1
− α0, if k is odd.

(3.33)

Proof: First, note that, by construction, the recursive formula (3.32) corresponds to the

process of rotations and reflections i.e., if we treat αi as a polar angle, then αi+1 is obtained

by rotating αi clockwise by
π

2i+1
and then, if the result is in the lower half-plane, reflect-

ing with respect to the horizontal axis. In accordance to (3.32), a reflection is performed

whenever αi−1−
π

2i+1
< 0, therefore for a given α0 we can define the number of reflections

ξ(m)(α0) as

ξ(m)(α0) =
∣∣∣{i : αi−1 −

π

2i+1
< 0
}∣∣∣.

Next, note that if α0, β0 ∈ A
(m)
k , then ξ(m)(α0) = ξ(m)(β0) and, moreover, for any i

there exists ki such that αi, βi ∈ A(m)
ki

. Indeed, by the definition of set A(m)
k we have that

sign
(
α0− π

4

)
= sign

(
β0− π

4

)
and thus α1, β1 ∈ A(m)

k1
, where k1 = k−2m−1 if k ≥ 2m−1+1

(no reflection) or k1 = 2m−1 − k + 1 if k ≤ 2m−1 (one reflection). Successively repeating

this argument we observe that it holds for any i.
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Hence, we can define ξ(m)
k as the number of reflections due to (3.32) for α0 ∈ A(m)

k ,

or ξ(m)
k = ξ(m)(α0) for any α0 ∈ A(m)

k . Let us show that if α0 ∈ A(m)
k , then

αm =

 α0 −
(k − 1)π

2m+1
, if ξ(m)

k is even,
kπ

2m+1
− α0, if ξ(m)

k is odd.

Using the identity |a| = a sign a, the recursive representation (3.32) can be written as

αm = δm

(
· · ·
(
δ2

(
δ1

(
α0 −

π

4

)
− π

8

)
· · · − π

2m+1

)
= α0

m∏
i=1

δi − δ, (3.34)

where

δi = sign
(
αi−1 −

π

2i+1

)
and δ =

m∑
j=1

π

2j+1

m∏
i=j

δi.

According to the arguments given above,
∏m

i=1 δi and δ should be the same for all α0 ∈

A
(m)
k . Also note that

∏m
i=1 δi = ±1, and for all α0 we should have αm ∈

[
0,

π

2m+1

]
.

Suppose that
∏m

i=1 δi = 1, i.e., αm = α0 − δ, which is a linear translation of the interval[(k − 1)π

2m+1
,
kπ

2m+1

]
. Since the result of the translation should be contained in

[
0,

π

2m+1

]
,

we have that δ =
(k − 1)π

2m+1
. Similarly, one can conclude that

δ =


(k − 1)π

2m+1
, if

m∏
i=1

δi = 1,

− kπ

2m+1
, if

m∏
i=1

δi = −1.

(3.35)

Now, let us show that ∣∣ξ(m)
j − ξ(m)

j−1
∣∣ = 1, (3.36)

or, in other words, parity of ξ(m)
j alternates with j. In order to see this, consider the follow-

ing inductive argument.
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(i) Observe that ξ(1)1 = 1, ξ
(1)
2 = 0, i.e., the claim holds for m = 1. Indeed, the claim

immediately follows from the fact that α1 =
∣∣∣α0 −

π

4

∣∣∣ for m = 1.

(ii) Let m ≥ 2 and k ≤ 2m−1, then

ξ
(m)
k = ξ

(m)
2m−k+1 + 1. (3.37)

Indeed, α0 ∈ A(m)
k with k ≤ 2m−1 implies that α0 <

kπ

2m+1
≤ π

4
, and hence α1 =

π

4
− α0, or, equivalently, α1 ∈ A(m)

2m−1−k+1 with one reflection performed. Similarly,

for α0 ∈ A
(m)
2m−k+1 with k ≤ 2m−1 we have that α0 >

(2m − k)π

2m+1
≥ π

4
, whence

α1 = α0 −
π

4
i.e., α1 ∈ A(m)

2m−k+1−2m−1 = A
(m)

2m−1−k+1, requiring no reflections. Note

that both cases α0 ∈ A
(m)
2m−k+1 and α0 ∈ A

(m)
k result in α1 ∈ A

(m)

2m−1−k+1 with the

latter requiring one reflection, which means that ξ(m)
k = ξ

(m)
2m−k+1 + 1.

(iii) Let m ≥ 2 and k ≥ 2m−1 + 1, then

ξ
(m)
k = ξ

(m−1)
k−2m−1 . (3.38)

Similarly to the above, for k ≥ 2m−1 + 1 and α0 ∈ A
(m)
k it holds that α0 >

(k − 1)π

2m+1
≥ π

4
, meaning that α1 = α0 −

π

4
∈ A(m)

k−2m−1 with no reflections. Rewrit-

ing (3.32) as 2αi+1 =
∣∣∣2αi − π

2i+1

∣∣∣, let βi = 2αi+1, whence β0 = 2α1 and βi =∣∣∣βi−1− π

2i+1

∣∣∣, i = 1, . . . ,m−1. Then, observing that β0 ∈ A(m−1)
k−2m−1 , it is easy to see

that for k ≥ 2m−1 +1, the problem of finding βm−1 given β0 ∈ A(m−1)
k−2m−1 is equivalent

to the problem of determining αm from α0 ∈ A(m)
k and, therefore, ξ(m)

k = ξ
(m−1)
k−2m−1 .

(iv) Now, assume that (3.36) holds for some m ≥ 1 and let us show that it also holds

for m + 1. To this end, consider the value of
∣∣ξ(m+1)
j − ξ

(m+1)
j−1

∣∣: if j > 2m + 1

(i.e., (iii) can be used for both j and j − 1), then by (3.38) we have that
∣∣ξ(m+1)
j −
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ξ
(m+1)
j−1

∣∣ =
∣∣ξ(m)
j−2m − ξ

(m)
j−1−2m

∣∣ = 1. If j ≤ 2m (i.e., (ii) can be used for both j and

j − 1), then by (3.37)
∣∣ξ(m+1)
j − ξ(m+1)

j−1
∣∣ =

∣∣ξ(m+1)

2m+1−j+1 − ξ
(m+1)

2m+1−j+2

∣∣. By substituting

j′ = 2m+1 − j + 2 we have that
∣∣ξ(m+1)
j − ξ

(m+1)
j−1

∣∣ =
∣∣ξ(m+1)
j′ − ξ

(m+1)
j′−1

∣∣, where

j′ > 2m + 1, which reduces to the previous case. Otherwise, if j = 2m + 1, then

by (3.37)
∣∣ξ(m+1)
j − ξ(m+1)

j−1
∣∣ =

∣∣ξ(m+1)
j − (ξ

(m+1)
j + 1)

∣∣ = 1. Thus, inductively we

observe that (3.36) holds for any m.

Finally, by (i) and (3.38) we observe that ξ(m)
2m = 0 for allm, and thus by (3.36) ξ(m)

k

is even iff k is even. �

Lemma 3.11. If α0 =
kπ

2m+1
, then the recursive relations (3.32) yield

αm =

 0, if k is odd
π

2m+1
, if k is even.

(3.39)

Proof: It is straightforward to see that for α0 =
π

2
recursion (3.32) yields αm =

π

2m+1
.

Also observe that αm defined by the recursion (3.32) is continuous with respect to α0. Let

α0 =
kπ

2m+1
, k < 2m and consider a strictly monotone sequence α+

0 (n) ↓ α0 with the

corresponding sequence α+
m(n) obtained by the recursion (3.32). For sufficiently large n

we have that α+
0 (n) ∈ A

(m)
k+1. If k is odd, then by Lemma 3.10 we have that α+

m(n) =

α+
0 (n) − kπ

2m+1
→ 0, i.e., by continuity of αm with respect to α0, such α0 yields αm = 0.

And if k is even, then α+
m(n) =

(k + 1)π

2m+1
− α+

0 (n)→ π

2m+1
, i.e., αm =

π

2m+1
. �

Based on Lemmas 3.9 – 3.11 the following corollary can be formulated.

Corollary 3.12. An optimal solution of problem (3.27) can be constructed in a constant

O(1) time that does not depend on accuracy of approximation induced by m. Particularly,
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if α0 = arg(w1, w2) and r0 = ‖(w1, w2)‖2, then optimal value of um can be found as

um = r0 cosαm, where

αm =


α0 −

(k − 1)π

2m+1
, α0 ∈

(
(k − 1)π

2m+1
,
kπ

2m+1

]
and k is even,

kπ

2m+1
− α0, α0 ∈

(
(k − 1)π

2m+1
,
kπ

2m+1

]
and k is odd,

π

2m+1
, α0 = 0.

(3.40)

Now, let us consider the simplex multipliers of (3.27) that yield new cuts. By

Lemma 3.9 we can equivalently rewrite the problem as

min um,

s. t. u0 = w∗2j−1,

v0 = w∗2j,

ui = cos
( π

2i+1

)
ui−1 + sin

( π

2i+1

)
vi−1, i = 1, . . . ,m,

vi = δi

(
− sin

( π

2i+1

)
ui−1 + cos

( π

2i+1

)
vi−1

)
, i = 1, . . . ,m,

u,v ≥ 0,

(3.41a)

(3.41b)

(3.41c)

(3.41d)

(3.41e)

where

δi = sign

(
− sin

(
π

2i+1

)
ui−1 + cos

(
π

2i+1

)
vi−1

)
.

Note that for given w1, w2 these δi are constants and coincide with δi defined in (3.34). It

is easy to see that, by construction, (3.41) has only one feasible point, which is an optimal

solution for the initial problem (3.27). Again, we assume that δi 6= 0.

Denote by yi the simplex multipliers for constraints (3.41b) and (3.41d), and by ti

the simplex multipliers for constraints (3.41c) and (3.41e), the dual problem can be formu-
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lated as

max w∗2j−1y0 + w∗2jt0

s. t. yi−1 − cos
( π

2i+1

)
yi + δi sin

( π

2i+1

)
ti ≤ 0, i = 1, . . . ,m,

ti−1 − sin
( π

2i+1

)
yi − δi cos

( π

2i+1

)
ti ≤ 0, i = 1, . . . ,m,

ym ≤ 1,

tm ≤ 0.

(3.42a)

(3.42b)

(3.42c)

(3.42d)

(3.42e)

Lemma 3.13. An optimal solution of (3.42) can be found by setting all the constraints to

equalities, in which case

ym = 1, tm = 0,

yi−1 = cos

(
π

2i+1
+ δi

(
π

2i+2
+ . . .+ δm−1

π

2m+1

)
. . .

)
, i = 1, . . . ,m,

ti−1 = sin

(
π

2i+1
+ δi

(
π

2i+2
+ . . .+ δm−1

π

2m+1

)
. . .

)
, i = 1, . . . ,m.

(3.43)

Proof: Indeed, let ym = 1, tm = 0 and let us set all the constraints to equalities. Then

ym−1 = cos
π

2m+1
, tm−1 = sin

π

2m+1
. Further, from the elementary trigonometry we obtain

that
ym−2 = ym−1 cos

π

2m
− δm−1tm−1 sin

π

2m
= cos

( π
2m

+ δm−1
π

2m+1

)
,

tm−2 = ym−1 sin
π

2m
+ δm−1tm−1 cos

π

2m
= sin

( π
2m

+ δm−1
π

2m+1

)
.

Inductively we can see that in this case (3.43) holds. Finally, by comparing primal (3.41)

and dual (3.42) we observe that by complementary slackness, (3.43) gives an optimal solu-

tion for the dual. �

Recall that in order to construct a new cut we need the values of simplex multipliers

for constraints (3.27b) and (3.27c) i.e., y0 and t0. By Lemma 3.13, one has y0 = cos γ and
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t0 = sin γ, where

γ =
π

4
+ δ1

(
π

8
+ δ2

(
π

16
+ . . .+ δm−1

π

2m+1

)
. . .

)
.

Also note that by duality, w∗2j−1y0 +w∗2jt0 = z∗, hence |γ−α0| = arccos
z∗∥∥(w∗2j−1, w∗2j)∥∥2 .

Now, by comparing this with Lemma 3.13 and Corollary 3.12 it follows that

γ =


α0 − arccos

z∗∥∥(w∗2j−1, w∗2j)∥∥2 , α0 ∈
(

(k − 1)π

2m+1
,
kπ

2m+1

)
and k is even,

α0 + arccos
z∗∥∥(w∗2j−1, w∗2j)∥∥2 , α0 ∈

(
(k − 1)π

2m+1
,
kπ

2m+1

)
and k is odd.

(3.44)

Finally, observe that if δi = 0 for some i, then both expressions in (3.44) can be converted

into a part of a feasible solution of the dual (3.42) and since they yield the same optimal

objective value, any can be taken for cut construction. In such a way, we have shown that

the following proposition holds.

Proposition 3.14. Consider the SOCP version of problem (3.1) withK second-order (pk =

2) cone constraints of dimension Nk + 1, and its polyhedral approximation (3.5) obtained

by reformulating each second-order cone constraint using the “tower-of-variables” repre-

sentation (3.8) and applying Ben-Tal-Nemirovski’s lifted polyhedral approximation (3.10)

with parameter of approximationm to the resultingNk−1 three-dimensional second-order

cones. Then, during an iteration of the cutting plane scheme of Section 3.3.1, new cuts can

be generated in a constant O
(∑

kNk

)
time that does not depend on m.

Remark 13. While the statement of Proposition 3.14 parallels that of Proposition 3.5 for

gradient polyhedral approximations of p-cones, its significance with respect to Ben-Tal-
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Nemirovski’s lifted polyhedral approximation of quadratic cones is substantially different,

due to the fact that Ben-Tal-Nemirovski’s approximation is essentially recursive in con-

struction. In this sense, Proposition 3.14 and Lemma 3.10 provide a “shortcut” method for

computing this recursion in a constant time that does not depend on the recursion’s depth.

Remark 14. While Proposition 3.14 establishes a new approximate solution method for

SOCP problems, we do not expect that it will be superior to the existing first-order and

interior-point solution approaches, such as proposed in Lan et al. (2011); Lan and Mon-

teiro (2013); Aybat and Iyengar (2012, 2013). As it has already been noticed, methods

based on polyhedral approximations do not generally outperform self-dual IP SOCP meth-

ods, see Glineur (2000); Krokhmal and Soberanis (2010). However, in our view, computa-

tionally, the main advantage of the proposed cutting-plane procedure for lifted polyhedral

approximation of SOCP problem is the fact that the resulting problem is a linear program

of a moderate size, and thus, extensive body of literature on solving such problems can be

utilized. As an example of the case, when such an approach might be advantageous, we

study mixed-integer pOCP (MIpOCP) problems (3.2), see Section 3.4.3 for details. The

branch-and-bound framework used there asks for repetitive solution of the polyhedral ap-

proximation of MIpOCP problem, and thus we can benefit form warm start capabilities of

the solvers, since the construction of the cutting-plane procedure ensures that in each node

the resulting relaxations are similar to each other.
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3.4 Numerical Experiments

3.4.1 Portfolio Optimization with Higher Moment Coherent Risk Measures

3.4.1.1 Higher Moment Coherent Risk Measures

As it has been discussed above, our interest in solving optimization problems with

p-order cone constraints stems from the new developments in risk averse decision mak-

ing under uncertainty and stochastic optimization. Following the framework presented in

Chapter 2 we consider a probability space (Ω,F ,P), and a random outcome X , which is

an element of the linear space Lp(Ω,F ,P) of F-measurable functions X : Ω 7→ R, where

p ≥ 1. Then, a risk measure ρ(X) is defined as a mapping ρ : Lp 7→ R. In particular, the

higher moment coherent risk (HMCR) measures (Krokhmal (2007)), which we focus on in

this case study, have been defined as

HMCRp,α(X) = min
η∈R

η + (1− α)−1
∥∥[X − η]+

∥∥
p
, α ∈ (0, 1), p ≥ 1, (3.45)

where [X]+ = max{0, X} and ‖X‖p = (E|X|p)1/p. By definition, HMCR measures

quantify risk in terms of higher tail moments of loss distribution, which are commonly

associated with “risk”. If, traditionally to stochastic programming, it is assumed that

the set Ω is discrete and consists of N scenarios, Ω = {ω1, . . . , ωN}, with the corre-

sponding probabilities $1, . . . , $N , then expressions involving HMCR measures, e.g.,

HMCRp,α(X(x, ω)) ≤ u, can be implemented via (N + 1)-dimensional p-order cone con-

straints. For a detailed discussion of the properties of HMCR measures, see Krokhmal

(2007).
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3.4.1.2 pOCP Portfolio Optimization Model

In our study, we again consider risk-reward portfolio optimization model. Namely,

if just as in Chapter 2 the cost/loss outcome X is defined as the negative rate of return of

the portfolio,X(x, ω) = −r(ω)>x, where x stands for the vector of portfolio weights, and

r = r(ω) is the uncertain vector of assets’ returns. Then, one may formulate the problem

of minimizing the portfolio risk as given by HMCR measure, subject to the expected return

constraint and the budget constraint as follows:

min
x∈Rn+

{
HMCRα,p(−r>x)

∣∣∣ E(r>x) ≥ r̄, 1>x ≤ 1
}
, (3.46)

where r̄ is the prescribed level of expected return, x ∈ Rn
+ denotes the no-short-selling

requirement, and 1 = (1, . . . , 1)>. If r(ω) is discretely distributed, P{r(ω) = rj} = $j ,

j = 1, . . . , N , then (3.46) reduces to pOCP problem with a single p-order cone constraint:

min η + (1− α)−1t

s. t. t ≥ ‖w‖p,

Diag
(
$
−1/p
1 , . . . , $

−1/p
N

)
w + (r1, . . . , rN)>x+ 1η ≥ 0,

x>($1r1 + . . .+$NrN) ≥ r̄,

1>x ≤ 1,

x ≥ 0, w ≥ 0,

(3.47)

where Diag(a1, . . . , ak) denotes the square k×k matrix whose diagonal elements are equal

to a1, . . . , ak and off-diagonal elements are zero.
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3.4.1.3 MIpOCP Portfolio Optimization Models

In addition to the convex portfolio optimization model (3.46), we consider two

mixed-integer extensions of (3.46). One of them is a cardinality-constrained portfolio op-

timization problem, which allows for no more than M assets in the portfolio, where M is a

given constant:

min
x∈Rn+, z∈{0,1}n

{
HMCRα,p(−r>x)

∣∣∣ E(r>x) ≥ r̄, 1>x ≤ 1, x ≤ z, 1>z ≤M
}
,

(3.48)

Similarly to (3.46), formulation (3.48) represents a 0–1 MIpOCP problem with a single

conic constraint. In addition, we consider portfolio optimization with lot-buying con-

straints, which reflect a common real-life trading policy that assets can only be bought

in lots of shares,for instance, in multiples of 1,000 shares (see, e.g., Perold (1984); Bonami

and Lejeune (2009); Scherer and Martin (2005) and references therein). In this case, the

portfolio allocation problem can be formulated as MIpOCP with a p-order cone constraint,

min
x∈Rn+, z∈Zn+

{
HMCRα,p(−r>x)

∣∣∣∣ E(r>x) ≥ r̄, 1>x ≤ 1, x =
L

C
Diag(p) z

}
,

(3.49)

where L is the size of the lot, C is the investment capital (in dollars), and vector p ∈ Rn

represents the prices of assets.

The following proposition ensures that the introduced portfolio optimization prob-

lems with HMCR measures (3.46)–(3.49) are amenable to the polyhedral approximation

solution approach discussed in the previous sections.
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Proposition 3.15. If pOCP problem (3.47) is feasible, then it satisfies the approximation

conditions (3.7) of Proposition 3.1. Moreover, the same applies to continuous relaxations

of MIpOCP problems (3.48) and (3.49).

Proof: Evidently, the strict feasibility condition (3.7a) can always be satisfied by se-

lecting sufficiently large t and η in (3.47). To see that (3.47) is “semibounded” in the

sense (3.7b), note that the only unrestricted variable in the problem is η, but due to the

properties of the optimal solution of (3.45) (see Krokhmal (2007)) it can be bounded as

|η| ≤ maxj,x{|r>j x|} ≤ maxj ‖rj‖∞. The same arguments apply to relaxations of (3.48)

and (3.49). �

3.4.1.4 Implementation and Scenario Data

We used the LP and Barrier MIP solvers of IBM ILOG CPLEX 12.2 to obtain so-

lutions to the formulated portfolio optimization problems. All problems were coded in

C++ and computations ran on a 3GHz PC with 4GB RAM in Windows XP 32bit environ-

ment. The additional details of numerical experiments are discussed in the corresponding

subsections below.

In both continuous and discrete portfolio optimization problems, we used historical

data for n stocks chosen at random from the S&P500 index. Namely, returns over N

consequent 10-day periods starting at a (common) randomized date were used to construct

the set of N equiprobable scenarios ($j = N−1, j = 1, . . . , N ) for the stochastic vector r.

The values of parameters L,C,K, α, and r̄ were set as follows: L = 100, C = 100,000,

M = 5, α = 0.9, r̄ = 0.005.
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3.4.2 Cutting Plane Techniques for the Lifted and Gradient Approximations of SOCP

Problems

The pOCP formulation (3.47) of portfolio selection model (3.46) was used to eval-

uate the performance of polyhedral approximation-based solution methods discussed in

Section 3.3. Particularly, we were interested in comparing the cutting plane methods for

solving gradient (p = 2) and lifted polyhedral approximations of SOCP problems that

were presented in Sections 3.3.2 and 3.3.3, respectively. Recall that the gradient polyhe-

dral approximation, while being applicable to cones of arbitrary order p ∈ (1,∞), in the

case of p = 2 is inferior to Ben-Tal and Nemirovski’s lifted polyhedral approximation of

second-order cones. At the same time, the results of Sections 3.3.2 and 3.3.3 demonstrate

that, in the context of the cutting plane scheme of Section 3.3.1, both types of polyhedral

approximations are amenable to generation of cutting planes in a constant time that does

not depend on the accuracy of approximation. Thus, it was of interest to compare the cut-

ting plane techniques for gradient and lifted approximations of the SOCP (p = 2) version

of portfolio optimization problem (3.47).

In particular, four types of solution methods were studied. First, the complete LP

formulation of Ben-Tal-Nemirovski’s lifted polyhedral approximation of problem (3.47)

with p = 2 was solved using CPLEX 12.2 LP solver (referred to as “LP-lifted” below).

Second, this polyhedral approximation LP was solved using the cutting plane method of

Section 3.3.1 combined with the fast cut generation technique of Section 3.3.3 (referred to

as “CG-lifted”).

Third, the SOCP version of (3.47) was solved using the “exact” cutting plane
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method of Proposition 3.6 (recall that this cutting plane method derives from the corre-

sponding scheme for gradient polyhedral approximation, but does not require a polyhedral

approximation problem to be formulated). This method is referred to as “CG-exact”.

Lastly, we solved a gradient polyhedral approximation of the SOCP version of

(3.47) using the cutting plane method of Section 3.3.1 with the fast cut-generation scheme

of Section 3.3.2. The gradient polyhedral approximation was, however, “optimized” in this

case to reduce the number of approximating facets as described below, and is referred to as

“CG-grad-opt”.

Recall that Proposition 3.3 furnishes an expression for the approximation accuracy

ε of (N + 1)-dimensional p-cone provided that each of the three-dimensional p-cones is

approximated with the same accuracy ε. it can be shown (see, Glineur (2000)) that in

the case of the lifted approximation technique due to Ben-Tal and Nemirovski (2001b)

applied to second-order cones, the size of polyhedral approximation can be reduced without

sacrificing its accuracy ε by properly selecting the accuracies εi of 3D cone approximations

at each level i of the “tower-of-variables”. This approach can also be utilized in the case of

lifting procedure (3.8) for p-cones,

ξ0 = ξ2N−1, ξN+j ≥ ‖(ξ2j−1, ξ2j)‖p, j = 1, . . . , N − 1.

Particularly, by introducing approximation accuracies for 3D p-cones at each “level” as
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ε1, ε2, ..., ε`, where ` = dlog2Ne, one can observe that

ξp0 = ξp2N−1 ≥
ξp2N−3

(1 + ε1)p
+

ξp2N−2
(1 + ε1)p

≥
ξp2N−7

(1 + ε1)p(1 + ε2)p
+

ξp2N−6
(1 + ε1)p(1 + ε2)p

+
ξp2N−5

(1 + ε1)p(1 + ε2)p
+

ξp2N−4
(1 + ε1)p(1 + ε2)p

≥ . . . ≥

ξp1∏k1

i=1(1 + εi)p
+ . . .+

ξpN∏kN
i=1(1 + εi)p

,

where once again ki ∈ {dlog2Ne − 1, dlog2Ne} is the number of “levels” in the “tower

of variables” on the way from ξ2N−1 to ξi. Then, the total number of approximation facets

can be reduced by solving the following problem:

min
mi∈N+

{∑̀
i=1

qimi

∣∣∣∣ 1 + ε ≥
∏̀
i=1

(
1 + εi(mi)

)}
, (3.50)

where, for a given i, mi is the number of facets in polyhedral approximation of a 3D p-cone

at “level” i, εi = εi(mi) is the main term of the corresponding approximation accuracy, and

qi is the number of 3D p-cones thusly approximated. The objective of (3.50) represents

the total number of approximation facets, while the constraint ensures that the desired ap-

proximation accuracy ε of the multidimensional p-cone is achieved. A feasible solution to

(3.50) can be obtained analytically by solving its continuous relaxation with relaxed con-

straint
∑`

i=1 εi(mi) ≤ ln(1 + ε), and then taking mi = dm∗i e, where m∗i is the solution

of the relaxed problem. This procedure resulted in, on average, a 30% reduction in the

number of approximating facets for the uniform gradient polyhedral approximation.

The results are summarized in Table 3.1, where for each combination of the number

of assets n, number of scenarios N , and approximation accuracy ε, the running times are

averaged over 20 instances. It has been noted that for the linear programming problems

resulting from the lifted approximation, CPLEX Dual Simplex solver performed better for
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smaller problem instances, while CPLEX Barrier solver – for larger sizes. Thus, we used

the Barrier solver for all instances except for the two smaller problem sizes (the first six

rows in Table 3.1). At the same time, for the cut-generation approaches we used CPLEX

Dual Simplex solver (selected by default).

It follows from Table 3.1 that the cutting plane technique of Sections 3.3.1 and 3.3.3

for solving Ben-Tal-Nemirovski’s lifted approximations of SOCP problems (“CG-lifted”)

offers significant computational improvement over solving the “complete” LP formulation

of such approximations (“LP-lifted”). This is consistent with the corresponding findings re-

ported in Krokhmal and Soberanis (2010) for uniform gradient polyhedral approximations

of pOCP problems. It is also worth noting that the performance of the cutting plane method

of Section 3.3.1 in combination with fast cut generation of Section 3.3.3 (“CG-lifted”) is on

par with that of the “exact” cutting plane method of Proposition 3.6 (“CG-exact”). How-

ever, the cutting plane method of Section 3.3.1 and Section 3.3.3 for gradient polyhedral

approximations with reduced number of facets (“CG-grad-opt”) generally works slightly

faster than the other two cutting plane methods, though the observed improvement is in-

significant.

3.4.3 Polyhedral Approximations and Cutting Plane Techniques for Rational-Order

Mixed-Integer pOCP Problems

The approaches to constructing and solving polyhedral approximations of pOCP

problems (3.1) described above, can also be efficiently applied to mixed-integer extensions

of pOCP (MIpOCP) (3.2); in particular, we are considering rational-order MIpOCP prob-
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Table 3.1: Average running time (in seconds) for solving portfolio optimization problem

(3.46)–(3.47) with p = 2. Symbol “−−” indicates cases when computations exceeded 1

hour time limit, while “∗∗∗” indicates cases for which the solver returned “Out of memory”

error.

n,N ε LP-lifted CG-lifted CG-exact CG-grad-opt

50, 500 10−2 0.43 0.12 0.11 0.10
10−4 0.63 0.18 0.17 0.14
10−8 2.77 0.31 0.32 0.32

150, 1500 10−2 1.83 0.96 0.98 0.89
10−4 3.85 1.24 1.18 1.09
10−8 16.29 1.67 1.65 1.64

150, 3000 10−2 37.24 1.66 1.29 1.98
10−4 96.39 5.80 5.03 5.52
10−8 296.20 15.11 15.63 15.55

200, 5000 10−2 151.91 9.31 10.20 7.46
10−4 230.21 23.49 22.76 22.87
10−8 791.41 48.30 47.48 47.08

200, 10000 10−2 320.80 17.93 18.52 17.26
10−4 624.63 45.96 46.56 45.09
10−8 −− 97.13 96.23 96.97

200, 20000 10−2 677.14 31.56 31.15 30.21
10−4 898.74 85.95 86.43 84.12
10−8 ∗ ∗ ∗ 195.99 196.20 195.36
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lems, i.e., instances (3.2) where all pk are rational: pk = rk/sk.

In this study of MIpOCP problems (3.2), we follow the approach of Vielma et al.

(2008), i.e., instead of solving a nonlinear pOCP relaxation of (3.2) at each node i of the

branch-and-bound tree,

min c>x+ d>z

s. t. Ax+Bz ≤ b,∥∥C(k)x+D(k)z + e(k)
∥∥
pk
≤ h(k)>x+ g(k)>z + f (k), k = 1, . . . , K,

x ∈ Rn, z(i) ≤ z ≤ z(i),

(3.51)

we solve its polyhedral approximation

min c>x+ d>z

s. t. Ax+Bz ≤ b,

H(Nk+1)
pk,mk

 C(k)x+ D(k)z + e(k)

h(k)>x+ g(k)>z + f (k)

w(k)

 ≥ 0, k = 1, . . . , K,

x ∈ Rn, z(i) ≤ z ≤ z(i),

(3.52)

where z(i), z(i) are the lower and upper bounds on the relaxed values of variables z, and the

approximation matrix H
(Nk+1)
pk,mk is constructed using lifting procedure (3.8) and applying

gradient polyhedral approximation (3.12) to the resulting 3D p-cones. In particular, we

employ the fast cutting plane scheme for polyhedral gradient approximation presented in

Section 3.3.2 to solve the LP problem (3.52) at each node of the tree.

Only when an integer-valued solution of (3.52) is found, in order to check its feasi-

bility with respect to the exact nonlinear formulation (3.2) and declare incumbent or branch

further, the exact pOCP relaxation (3.51) of MIpOCP must be solved with bounds on the
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relaxed values of variables z determined by the integer-valued solution in question (see

Vielma et al. (2008) for details). To solve the pOCP relaxation (3.51) exactly, we re-

formulate (3.51) in the SOCP form by representing p-order cone constraints via a set of

second-order cones. Such a representation is available for rational-order cones (see, e.g.,

Nesterov and Nemirovski (1994); Ben-Tal and Nemirovski (2001a); Alizadeh and Goldfarb

(2003)), but it is generally non-unique and requires O(N log r) three-dimensional rotated

quadratic cones to represent (N + 1)-dimensional p-cone with p = r/s (Krokhmal and

Soberanis (2010)). We use the “economical” SOCP representation of rational-order cones

due to Morenko et al. (2013), which allows for replacing an (r/s)-cone in RN+1 with ex-

actly dlog2 reN quadratic cones; in application to (3.51) with pk = rk/sk it yields a SOCP

problem of the form

min c>x+ d>z

s. t. Ax+Bz ≤ b, C(k)x+ D(k)z + e(k)

h(k)>x+ g(k)>z + f (k)

w(k)

 ∈ SNkrk/sk , k = 1, . . . , K,

x ∈ Rn, z ≤ z ≤ z,

(3.53)

where SNkrk/sk is a set of Nkdlog2 rke “rotated” quadratic three-dimensional cones of the

form ξ20 ≤ ξ1ξ2 that is equivalent to the original (Nk + 1)-dimensional pk-cone. To sum

up, the designed branch-and-bound method for MIpOCP primarily relies on the polyhedral

approximation of the continuous relaxations with fast cutting plane generation technique,

and, additionally, non-linear solver is called for reformulated exact relaxation, when a new

incumbent solution is found. Note, that alternatively, the exact approximation algorithm,
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as described in Proposition 3.6, can be used to solve the exact relaxation for each new

incumbent solution, at the same time, this choice is not crucial for the overall performance,

since the bulk of the computation time is spent in the nodes of the solution tree, and exact

solver is only called sporadically.

The described polyhedral approximation-based approach to solving MIpOCP prob-

lems was coded in C++ using CPLEX Concert Technology. In particular, the cutting plane

scheme for solving the polyhedral approximation (3.52) of the relaxation (3.51) of the

MIpOCP problem was implemented using CPLEX’s callback functionality, and the SOCP

reformulation (3.53) of (3.51) was solved using CPLEX Barrier solver.

The computational performance of this algorithm (referred to as BnB/CP below)

was compared to that of the standard CPLEX 12.2 MIP Barrier solver, which was employed

to solve MIpOCP problems in the SOCP reformulation:

min c>x+ d>z

s. t. Ax+Bz ≤ b, C(k)x+ D(k)z + e(k)

h(k)>x+ g(k)>z + f (k)

w(k)

 ∈ SNkrk/sk , k = 1, . . . , K,

x ∈ Rn, z ∈ Rm,

where, as before, SNkrk/sk denotes the set of second-order cones equivalent to a (Nk + 1)-

dimensional (rk/sk)-cone constructed in accordance to Morenko et al. (2013).

Namely, the BnB/CP algorithm and CPLEX MIP Barrier solver were applied to

MIpOCP problems with p = 3.0 in the form of portfolio optimization with cardinality

constraints (3.48) and lot-buying constraints (3.49) of various sizes (number of integer
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Table 3.2: Average running times (in seconds) for BnB/CP implementation of portfolio

optimization problem with cardinality constraint (3.48) and p = 3.0, benchmarked against

IBM ILOG CPLEX 12.2 MIP Barrier solver applied to SOCP reformulation of (3.48).

Better running times are highlighted in bold.

n = 50 n = 100 n = 200
N Barrier MIP BnB/CP Barrier MIP BnB/CP Barrier MIP BnB/CP

250 8.43 11.96 13.12 14.56 21.45 32.90
500 11.67 15.43 37.68 36.79 60.11 65.87
1000 12.77 19.58 38.18 35.40 89.36 75.81
1500 33.80 47.01 107.27 92.63 284.44 190.46

variables n = 50, 100, 200, dimensionality of p-cone N = 250, . . . , 1500). The results are

summarized in Tables 3.2 and 3.3, respectively, where the running times are averaged over

20 instances. Observe that in the case of cardinality-constrained portfolio optimization

problems, the proposed BnB/CP method is inferior to the standard CPLEX MIP Barrier

solver on smaller instances, and outperforms it on larger instances. This trend is con-

firmed by the numerical experiments on portfolio optimization problems with lot-buying

constraints, which are generally harder to solve than the cardinality-constrained problems.

In this latter case, the BnB/CP method dominates the standard CPLEX MIP Barrier solver

on all problem instances. Moreover, it is important to point out that CPLEX 12.2 employs

its own polyhedral approximations of second-order cones for solving MISOCP problems,

and the results presented in Tables 3.2 and 3.3 demonstrate the contribution of the proposed

fast cutting plane techniques for solving the polyhedral approximations of conic program-

ming problems.
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Table 3.3: Average running times (in seconds) for BnB/CP implementation of portfolio

optimization problem with lot-buying constraints (3.49) and p = 3.0, benchmarked against

IBM ILOG CPLEX 12.2 MIP Barrier solver applied to SOCP reformulation of (3.49).

Better running times are highlighted in bold, and XX% denotes the integrality gap after 1

hour.

n = 50 n = 100 n = 200
N Barrier MIP BnB/CP Barrier MIP BnB/CP Barrier MIP BnB/CP

250 38.46 27.91 114.77 82.92 1020.84 743.22
500 99.41 55.17 339.63 254.41 2163.89 1196.76
1000 586.51 506.10 2666.62 2395.59 1.99% 1.18%

3.5 Concluding Remarks

In this chapter we discussed the use of polyhedral approximations as a solution ap-

proach to linear and mixed-integer programming problems with p-order cone constraints.

In particular, we showed that the fast cutting-plane method for solving pOCP problems

originally proposed by Krokhmal and Soberanis (2010) for a special case of gradient ap-

proximation of p-cones, and which allows for cut generation in a constant time independent

of the approximation accuracy, can be extended to a broader class of polyhedral approxi-

mations. Moreover, a variation of this approach is proposed that constitutes essentially an

exact O(ε−1) solution method for nonlinear pOCP problems. In addition, we show that

generation of cutting planes in a time that is independent of the approximation accuracy

is available for the lifted polyhedral approximation of second-order cones due to Ben-Tal

and Nemirovski (2001b), which is itself recursively constructed, with the number of re-
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cursion steps being dependent on the desired accuracy. Finally, it is demonstrated that the

developed cutting plane techniques can be effectively applied to obtain exact solutions of

mixed-integer p-order cone programming problems.
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CHAPTER 4
VALID INEQUALITIES FOR P -ORDER CONE PROGRAMMING

4.1 Problem Formulation and Literature Review

In the previous chapter we have shown that involving polyhedral approximation

techniques can provide promising computational results when solving mixed-integer p-

order cone programming (MIpOCP) problems. In this chapter we will continue this study

by exploring possible approaches for generating valid inequalities for such problems.

Two approaches for generating valid inequalities for mixed-integer second-order

cone programming (MISOCP) problems have been proposed by Atamtürk and Narayanan

(2010, 2011). In the first paper the authors introduce a reformulation of a second order

cone constraint using a set of two-dimensional second order cones and then derive valid

inequalities for the resulting mixed integer sets. The obtained cuts are termed by the authors

conic mixed integer rounding cuts. In Atamtürk and Narayanan (2011), a general lifting

procedure for deriving nonlinear conic valid inequalities is proposed and applied to 0-1

MISOCP problems. In a recent work of Belotti et al. (submitted), disjunctive conic cuts for

MISOCP problems are introduced. For the case of general convex sets the authors are able

to describe the convex hull of the intersection of a convex set and a linear disjunction. And

in the particular case of the feasible set of the continuous relaxation of a MISOCP problem

they derive a closed-form expression for such a convex hull, thus obtaining a new nonlinear

conic cut. Among other approaches to solving mixed integer cone programming problems

one can mention the split closure of a strictly convex body by Dadush et al. (2011), lift-
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and-project algorithm due to Stubbs and Mehrotra (1999), Chvátal-Gomory and disjunctive

cuts for 0-1 conic programming by Çezik and Iyengar (2005).

It is worth noting that the vast majority of the existing literature on mixed inte-

ger cone programming problems addresses the case of self-dual cones, and particularly

second-order cones, with relatively little attention paid to problems involving cones that

are not self-dual, as is the case in MIpOCP with p ∈ (1, 2) ∪ (2,∞). In this chapter,

we consider derivation of valid inequalities for mixed integer problems with p-order cone

constraints following the techniques of Atamtürk and Narayanan (2010, 2011) proposed

for MISOCP. We derive closed form expressions for two families of valid inequalities for

MIpOCP problems: mixed integer rounding conic cuts and lifted conic cuts. We also pro-

pose to use outer polyhedral approximations as a practical way of employing nonlinear

lifted cuts within branch-and-cut framework.

The chapter is organized as follows. In Section 4.2 we present mixed integer round-

ing cuts for p-cone constrained mixed integer sets. Section 4.3 discusses (nonlinear) lifted

cuts for 0-1 and mixed integer p-order cone programming problems. Computational studies

of the developed techniques on randomly generated MIpOCP problems as well as portfolio

optimization problems with real-life data are discussed in Section 4.4, followed by con-

cluding remarks in Section 4.5.

4.2 Conic Mixed Integer Rounding Cuts for p-Order Cones

In this section we present a class of mixed integer rounding cuts for MIpOCP prob-

lems arising in the context of risk-averse stochastic optimization. We again consider mixed
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integer p-order cone programming problem of the form

min c>x x + c>y y

s. t. Dxx+ Dyy ≤ d

‖[Ajx + Gjy − bj]+‖pj ≤ e>j x + f>j y − hj, j = 1, . . . , k

x ∈ Zn+, y ∈ Rq
+,

(4.1)

Operator [ · ]+ explicitly accounts for the problem structure induced by downside risk mea-

sures such as certainty equivalent measures of risk. For simplicity, we consider the case

of a single p-cone constraint in (4.1), k = 1. Following the approach of Atamtürk and

Narayanan (2010) of constructing mixed integer rounding cuts for problems of type (4.1)

with p = 2, we rewrite the p-cone constraint in (4.1) as

t0 ≤ e>x + f>y − h

ti ≥ [a>i x + g>i y − bi]+, i = 1, . . . ,m

t0 ≥ ‖(t1, . . . , tm)‖p,

where ai and gi denote the i-th rows of matrices A and G, respectively. Then, the task of

deriving valid inequalities for the original p-cone mixed integer set in (4.1) can be reduced

to obtaining valid inequalities for the polyhedral mixed integer set

T =
{
x ∈ Zn+, y ∈ Rp

+, t ∈ R : [a>x + g>y − b]+ ≤ t
}
,

or, without loss of generality, the set

T̃ =
{

(y+, y−, t,x) ∈ R3
+ × Zn+ : [a>x+ y+ − y− − b]+ ≤ t

}
. (4.2)

The following two propositions provide an expression for a family of such inequalities.
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Proposition 4.1. For α 6= 0, the inequality

n∑
j=1

φf|α|

(
aj
|α|

)
xj − φf|α|

(
b

|α|

)
≤ t+ y−

|α|
, (4.3)

where fα = b
|α| −

⌊
b
|α|

⌋
and

φf (a) =

{
(1− f)n, n ≤ a < n+ f
(1− f)n+ (a− n)− f, n+ f ≤ a < n+ 1

is valid for T̃ .

Proposition 4.2. Inequalities (4.3) with α = aj , j = 1, . . . , n, are sufficient to cut off all

fractional extreme points of the relaxation of T̃ .

Proofs of Propositions 4.1 and 4.2 are furnished in the reminder of this section. It is worth

noting, however, that since (4.2) is a polyhedral mixed integer set, the derived valid in-

equalities can also be obtained using the general theory of mixed integer rounding (MIR)

inequalities; see, for example, Nemhauser and Wolsey (1988). An advantage of the direct

derivation is that it provides a natural way of dealing with continuous variables y+, y−, t.

Propositions 4.1 and 4.2 justify the usage of inequalities of type (4.3) as cuts in a branch-

and-cut procedure and, following Atamtürk and Narayanan (2010), we refer to these in-

equalities as conic MIR cuts. The results of numerical experiments on utilization of conic

MIR cuts (4.3) in MIpOCP problems are presented in Section 4.4.

Following Atamtürk and Narayanan (2010), let us first consider a simple case of

the following set

T =
{

(y, w, t, x) ∈ R3
+ × Z : [x+ y − w − b]+ ≤ t

}
.
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Let us denote by relax(T ) the continuous relaxation of T and by conv(T ) its convex

hull. It can be seen that extreme rays of relax(T ) are as follows: (1, 0, 0, 1), (−1, 0, 0, 0),

(1, 0, 1, 0), (−1, 1, 0, 0), and its only extreme point is (b, 0, 0, 0). Let us also denote f =

b − bbc. Clearly, the case of f = 0 is not interesting, hence it can be assumed that f > 0,

whereby conv(T ) has four extreme points: (bbc, 0, 0, 0), (bbc, f, 0, 0), (dbe, 0, 1 − f, 0),

(dbe, 0, 0, 1 − f). With these observations in mind we can formulate the following propo-

sition.

Proposition 4.3. Inequality

(1− f)(x− bbc) ≤ t+ w (4.4)

is valid for T and cuts off all points in relax(T ) \ conv(T ).

Proof: First, let us show the validity of (4.4). The base inequality for T is

[x+ y − w − b]+ ≤ t. (4.5)

Now, let x = bbc − α and α ≥ 0. In this case, (4.5) turns into t ≥ [y − w − f − α]+ and

(4.4) becomes t ≥ −(1− f)α−w. Observing that [y−w− f −α]+− (−(1− f)α−w) =

max{y − f − αf, (1− f)α + w} ≥ 0, one obtains that (4.5) implies (4.4) for x ≤ bbc.

On the other hand, if x = dbe + α with α ≥ 0, we have (4.5) becomes t ≥

[y − w + (1− f) + α]+ and (4.4) turns into t ≥ (1− f)(1 + α)− w. Similarly to above,

[y − w + (1 − f) + α]+ − ((1 − f)(1 + α) − w) = max{y − w + (1 − f) + α − (1 −

f)−α(1− f) +w,w− (1− f)(1 +α)} = max{y+αf,w− (1− f)(1 +α)} ≥ 0, which

means that (4.5) implies (4.4) for x ≥ dbe. Hence, (4.4) is valid for T .
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To prove the remaining part of the proposition, consider the polyhedron T́ defined

by the inequalities

x+ y − w − b ≤ t,

0 ≤ t,

0 ≤ y,

0 ≤ w,

(1− f)(x− bbc) ≤ t+ w.

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

Since T́ has four variables, the basic solutions of T́ are defined by four of these inegualities

at equality. They are:

• Inequalities (4.6), (4.7), (4.8), (4.9): (x, y, w, t) = (b, 0, 0, 0) is infeasible if f 6= 0.

• Inequalities (4.6), (4.7), (4.8), (4.10): (x, y, w, t) = (dbe, 0, 1− f, 0).

• Inequalities (4.6), (4.7), (4.9), (4.10): (x, y, w, t) = (bbc, f, 0, 0).

• Inequalities (4.6), (4.8), (4.8), (4.10): (x, y, w, t) = (dbe, 0, 0, 1− f).

• Inequalities (4.7), (4.9), (4.8), (4.10): (x, y, w, t) = (bbc, 0, 0, 0).

Hence, conv(T ) has exactly the same extreme points as T́ , which completes the proof. �

In the general case, let

T̂ =
{

(y+, y−, t,x) ∈ R3
+ × Zn+ : [a>x+ y+ − y− − b]+ ≤ t

}
, (4.11)

and consider the following function

φf (a) =

{
(1− f)n, n ≤ a < n+ f
(1− f)n+ (a− n)− f, n+ f ≤ a < n+ 1.
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Proof: [of Proposition 4.1] First consider the case α = 1. We can rewrite the base inequal-

ity for (4.11) as[(∑
fj≤f

bajcxj +
∑
fj>f

dajexj
)

+
(∑
fj≤f

fjxj + y+
)
−
(∑
fj>f

(1− fj)xj + y−
)
− b
]
+
≤ t,

where fj = aj − bajc. Observe that

x́ =
∑
fj≤f

bajcxj +
∑
fj>f

dajexj ∈ Z,

ý =
∑
fj≤f

fjxj + y+ ≥ 0,

ẃ =
∑
fj>f

(1− fj)xj + y− ≥ 0.

Hence, we can apply simple conic MIR inequality (4.4) with variables (x́, ý, ẃ, t):

(1− f)
(∑
fj≤f

bajcxj +
∑
fj>f

dajexj − bbc
)
≤ t+

∑
fj>f

(1− fj)xj + y−.

Rewriting it with the help of function φf (a), we obtain
∑n

j=1 φf (aj)xj − φf (b) ≤ t + y−.

So, by Proposition 4.3 inequality (4.3) is valid for α = 1. In order to see that the result

holds for all α 6= 0 we only need to scale the base inequality:

[ 1

|α|
(a>x+ y+ − y− − b)

]
+
≤ t

|α|
.

�

Proof: [of Proposition 4.2] The set relax(T̂ ) is defined by n + 3 variables and n + 4

constraints. Therefore, if xj > 0 in an extreme point, then the remaining n+ 3 constraints

must be active. Thus, the continuous relaxation has at most n fractional extreme points

(xj, 0, 0, 0) of the form xjj = b
aj
> 0, and xji = 0, for i 6= j. Such points are infeasible if

b
aj

/∈ Z. Now, let aj > 0. For such a fractional extreme point inequality (4.3) reduces to
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φfaj (1)xj−φfaj
(
b
aj

)
≤ t+y−

aj
, or (1−faj)xj−(1−faj)

⌊
b
aj

⌋
≤ t+y−

aj
,which by Proposition

4.3 cuts off fractional extreme point with xjj = b
aj

.

Now, let us consider aj < 0. In this case we observe that the inequality (4.3) reduces

to φf|aj |(−1)xj − φf|aj |
(

b
|aj |

)
≤ t+y−

|aj | , or −(1− f|aj |)xj − (1− f|aj |)
⌊

b
|aj |

⌋
≤ t+y−

|aj | , which

again, cuts off fractional extreme point with xjj = b
aj

.

�

4.3 Lifted Conic Cuts for p-Order Cones

4.3.1 General Framework

Atamtürk and Narayanan (2011) have studied lifting for conic mixed integer pro-

gramming, where a general approach for constructing valid nonlinear conic inequalities for

mixed inter conic programming problems was proposed. Namely, consider a general mixed

integer conic set

Sn(b) =

{
(x0, . . . ,xn) ∈ X0 × · · · ×Xn : b−

n∑
i=0

Aixi ∈ C
}
, (4.12)

where Ai ∈ Rm×ni , b ∈ Rm, C is a proper cone (a closed, convex, pointed cone with

nonempty interior), and each X i ⊂ Rni is a mixed integer set. Sets S0(b), . . . , Sn−1(b)

are restrictions of the set Sn(b). Further, it is assumed that the following conic inequality

h− F0x0 ∈ K,

where K is a proper cone, is known to be valid for the restriction S0(b). The approach

proposed in Atamtürk and Narayanan (2011) is to iteratively find a sequence F1, . . . ,Fn,
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such that

h−
i∑

j=0

Fjxj ∈ K (4.13)

is valid for the respective restriction Si(b) for all i. Such a procedure is called lifting and

the resulting inequality that is valid for the initial mixed integer set Sn(b) is called lifted

inequality. In order to determine the values of F1, . . . ,Fn, the lifting set is introduced for

v ∈ Rm as

Φi(v) =

{
d ∈ Rs : h−

i∑
j=0

Fjxj − d ∈ K for all (x0, . . . ,xi)> ∈ Si(b− v)

}
.

Then, a necessary and sufficient condition for (4.13) to be valid can be formulated, which

essentially provides a description of the set of valid inequalities.

Proposition 4.4 (Atamtürk and Narayanan (2011)). Inequality (4.13) is valid for Si(b)

if and only if Fit ∈ Φi(A
it) for all t ∈ X i and i = 0, . . . , n.

The condition established by Proposition 4.4 is still too general to be used to derive expres-

sions for conic cuts. For example, it can be seen that in this way the resulting inequalities

are sequence-dependent, i.e., a change in the order in which variables xi are introduced

will change the sets Φi(v). The following theorem provides a “sequence-independent”

approach to construction of lifting procedure.

Theorem 4.5 (Atamtürk and Narayanan (2011)). If Υ(v) ⊂ Φ0(v) for all v ∈ Rm and

Υ is superadditive, then (4.13) is a lifted valid inequality for Sn(b) whenever Fit ∈

Υ(Ait) for all t ∈ X i and i = 0, . . . , n.

Then, the following procedure can be formulated for derivation of lifted conic inequalities:
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Step 1. Compute Φ0(v).

Step 2. If Φ0(v) is not superadditive, find a superadditive Υ(v) ⊂ Φ0(v).

Step 3. For each i find Fi such that for all t ∈ X i: Fit ∈ Υ(Ait) is satisfied.

In Atamtürk and Narayanan (2011) this process was employed to obtain nonlinear lifted

conic cuts for 0-1 MISOCP problems; however, no computational results were reported.

Below we apply this procedure to derive nonlinear lifted conic cuts for 0-1 and mixed

integer p-order cone programming problems with risk-based constraints, and also discuss

polyhedral approximations of these cuts that are used in numerical implementation.

4.3.2 Lifting Procedure for 0-1 p-Order Cone Programming Problems

In the case of 0-1 p-order cone programming problem we consider the following

conic set

Snp (b) =

{
(x, η+, η−, y, t) ∈ {0, 1}n × R4

+ :
[ n∑
i=1

aixi + η+ − η− − b
]p
+

+ yp ≤ tp
}
,

where p ∈]1,∞[. The set Snp (b) represents a relaxation of a high dimensional 0-1 mixed

integer p-order conic set: all but one dimensions of the p-cone are aggregated into the term

yp. If necessary, by complementing the binary variables, we can assume that all ai ≥ 0.

The restriction S0
p of this set can be taken as

S0
p(b) =

{
(x, y, t) ∈ {0, 1} × R2

+ : [x− b]p+ + yp ≤ tp
}
.

Notice that S0
p(b) has one extreme point (b, 0, 0), which is fractional when b ∈]0, 1[. Thus,

in the only interesting case we have bbc = 0. Using the results of the previous section, the

initial valid inequality can be selected as
∣∣(1−f)(x−bbc)

∣∣p+yp ≤ tp, where f = b−bbc (the
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fact that this inequality is valid can be verified directly by simply examining the possible

values of x, y, t). Now, by definition, in order to compute Φ0(v) we need to find such d that

inequality

∣∣(1− f)(x− bbc) + d
∣∣p + yp ≤ tp (4.14)

is satisfied for all x, y, t such that [x− b+ v]p+ + yp ≤ tp.

Recalling that bbc = 0 and, therefore, f = b, we obtain that (4.14) can be rewritten

as |(1 − b)x + d|p + yp ≤ tp for all x, y, t such that [x − b + v]p+ + yp ≤ tp. Given that

x ∈ {0, 1}, for x = 0 we have |d| ≤ [v−b]+, and for x = 1 we have |1−b+d| ≤ [1−b+v]+.

Thus, if v ≥ b then |d| ≤ v − b, and if v < b then d = 0, i.e., |d| ≤ [v − b]+, whereby

Φ0(v) = {d : |d| ≤ [v − b]+}, which is superaddive. Finally, the following proposition

holds.

Proposition 4.6. Conic inequality

∣∣∣(1− f)(x− bbc) +
n∑
i=1

αixi

∣∣∣p + yp ≤ tp (4.15)

with αi = [ai − b]+ is valid for the set Snp (b).

Proof: Since Φ0(v) is superadditive, by Theorem 4.5 we only need to verify that the

chosen values of αi satisfy αix ∈ Φ0(aix) for x ∈ {0, 1}, which follows readily from the

expression for Φ0(v). �

4.3.3 Lifting Procedure for MIpOCP Problems

Similarly, in the case of MIpOCP problem we consider the set

Snp (b) =

{
(x, η+, η−, y, t) ∈ Zn+ × R4

+ :
[ n∑
i=1

aixi + η+ − η− − b
]p
+

+ yp ≤ tp
}
,
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where p ∈]1,∞[. Once again, the set Snp (b) represents a relaxation of a high dimensional

mixed integer p-order cone constraint. Let us also assume that values xi are bounded, e.g.,

xi ∈ {0, . . . ,M} for all i. Again, without loss of generality let us suppose that ai > 0. The

restriction of Snp (b) can be selected as

S0
p(b) =

{
(x, y, t) ∈ Z+ × R2

+ : [x− b]p+ + yp ≤ tp
}
, (4.16)

but in this case let us choose a weaker initial valid inequality,
[
(1−f)(x−bbc)

]p
+

+yp ≤ tp.

The problem of computing Φ0(v) is then reduced to the problem of finding values of d such

that [
(1− f)x− bbc(1− f) + d

]
+
≤
[
x− b+ v

]
+
. (4.17)

Recall that we are only interested in a superadditive subset Υ(v) of such set. One of the

possible choices is Υ(v) =
{
d ≥ 0

∣∣ d ≤ [v − b + bbc(1 − f)]+
}

. Indeed, 0 ∈ Υ(v) by

definition, and (4.17) is a consequence of inequality (1−f)x−bbc(1−f)+d ≤ x− b+v,

which yields the above expression for Υ(v). Lastly, the following proposition holds.

Proposition 4.7. Conic inequality

[
(1− f)(x− bbc) +

n∑
i=1

αixi

]p
+

+ yp ≤ tp (4.18)

with αi =
[ai − b+ bbc(1− f)

M

]
+

is valid for Snp (b).

Proof: Indeed, in accordance to Section 4.3.1 it suffices to show that for such a choice of

αi we have αix ∈ Υ(aix) for all x. But for x 6= 0 we have

Υ(aix) =
{
d ≥ 0 : d ≤ [aix− b+ bbc(1− f)]+

}
,
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and

αix =

[
ai − b+ bbc(1− f)

M

]
+

x ≤ [ai − b+ bbc(1− f)]+ ≤ [aix− b+ bbc(1− f)]+.

While for x = 0, clearly, 0 ∈ Υ(0). �

4.3.4 Polyhedral Approximations of p-Order Cones

Observe that lifted cuts (4.15) and (4.18) for 0-1 and mixed integer p-order cone

programming problems, respectively, have the form of p-order cones themselves. Thus,

one may expect that while addition of such cuts can reduce the number of nodes explored

in the branch-and-bound tree, the computational cost of solving the relaxed problem with

extra p-cone constraints at the nodes may increase. In view of this, we propose to replace

the nonlinear p-order cone cuts (4.15) and (4.18) with their polyhedral approximations

during the branch-and-cut procedure. A detailed discussion of polyhedral approximations

of p-order cones has been presented in Chapter 3.

Since in our case the lifted cuts have the form of 3-dimensional p-cones, we use a

simple gradient polyhedral approximation. Particularly, a gradient polyhedral approxima-

tion for the conic set K(3)
p = {ξ ∈ R3

+ : ξ3 ≥ ‖(ξ1, ξ2)‖p}, p ∈]1,∞[, can be constructed

as

H(3)
p,` =

{
ξ ∈ R3

+ : ξ3 ≥ α
(p)
i ξ1 + β

(p)
i ξ2, i = 0, . . . , `

}
, (4.19)

where [
α
(p)
i

β
(p)
i

]
= (cosp θi + sinp θi)

1−p
p

[
cosp−1 θi
sinp−1 θi

]
, θi =

πi

2`
, i = 0, . . . , `.

Here H(3)
p,` is an approximation of K(3)

p in the sense that ξ ∈ K(3)
p implies ξ ∈ H(3)

p,` , and

ξ ∈ H(3)
p,` implies (1+ε)ξ3 ≥ ‖(ξ1, ξ2)‖p, where ε = ε(`) is the accuracy of approximation.
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In the case of polyhedral approximation (4.19) it can be estimated as (see Krokhmal and

Soberanis (2010) for details):

ε(`) ≈


1
p

(
1− 1

p

)p(
π
2`

)p
, p ∈ (1, 2),

1
8
(p− 1)

(
π
2`

)2
, p ∈ (2,∞).

For example, for p = 4.0 it suffices to have ` = 25 facets in the approximation to ensure an

accuracy of 10−3.

4.4 Numerical Experiments

In this section we report the results of numerical experiments on applying the

derived MIR and lifted conic cuts to MIpOCP problem instances. In this case study,

three types of problem instances were considered: the first type represents the “generic”

MIpOCP instances with randomly generated data, and the second and third types of in-

stances represent two portfolio optimization problems with cardinality constraints and lot-

buying constraints, respectively. Historical financial data was used for both types of port-

folio optimization problems. A detailed description of each problem type is given below.

Computations were ran on a 3GHz PC with 4GB RAM, and CPLEX 12.2 solver

was used. Since CPLEX cannot natively handle p-cone constraints with p 6= 2, a second-

order cone reformulation (Nesterov and Nemirovski (1994); Alizadeh and Goldfarb (2003);

Morenko et al. (2013)) was applied to p-order cone constraints with rational p > 2. The de-

rived cuts were added at the root node of the branch-and-bound tree using CPLEX callback

routines. In addition, each instance was solved using the default mixed integer CPLEX

solver with built-in cuts. In both cases, default solver configuration was used, except the

number of threads was limited to one, and QCP relaxations of the model were used at each
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node.

4.4.1 Problem Formulations

4.4.1.1 Randomly Generated MIpOCP Problems

The first set of problem instances consisted of randomly generated mixed integer p-

order cone programming problems of general form. Specifically, the following formulation

was used:

min c>x + y+ + y−

s. t.
∥∥[Ax + y+1− y−1− b]+

∥∥
p
≤ e>x + fy+ − gy− − h

x ∈ Zn+, y+, y− ∈ R+,

(4.20)

where A ∈ Rn×m, c,b, e ∈ Rn, f, g, h ∈ R, and 1 = (1, . . . , 1)>. Each of the parameters

A,b, c, e, f, g, h in (4.20) was selected from the uniform U(1, 1000) distribution.

4.4.1.2 Portfolio Optimization with Cardinality and Lot-Buying Constraints

Similarly to the experiments presented in Chapter 3 two types of portfolio optimiza-

tion models were considered. Portfolio optimization with cardinality constraints:

min
y∈Rn+, x∈{0,1}n

{
HMCRα,p(−r>y) : E(r>y) ≥ r0, 1>y ≤ 1, y ≤ x, 1>x ≤ K

}
,

(4.21)

and lot-buying constraints:

min
y∈Rn+, x∈Zn+

{
HMCRα,p(−r>y) : E(r>y) ≥ r0, 1>y ≤ 1, y =

L

C
Diag(p)x

}
.

(4.22)
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In our computations we set K = 5, α = 0.9, L = 1,000 and C = $100,000.

For portfolio optimization problems, we used historical data for n stocks chosen at

random from the S&P500 index, and returns overm consequent 10-day periods starting at a

(common) randomized date were used to construct the set of m scenarios for the stochastic

vector r in (4.21), (4.22).

4.4.2 Discussion of Results: Conic MIR Cuts

4.4.2.1 Randomly Generated MIpOCP Problems

For each pair of parameters (n,m) that determine the number of integer variables

and the dimensionality of p-cone, 50 randomly generated instances of problem (4.20) were

solved. The results are summarized in Table 4.1, where the average computational time (in

seconds), the average number of nodes explored in the search tree, and the average number

of cuts added during the solution procedure are reported. In addition, we report the per-

centage of cases in which addition of conic MIR cuts improves the computational time and

the number of nodes explored, respectively, as compared to the default CPLEX routines. It

has also been noted that randomly generated problems are relatively easy to solve; in fact,

many instances were solved at the root node. Therefore, in addition to the results averaged

over all instances of a given problem size (n,m), Table 4.1 presents the results averaged

over “difficult” instances, i.e., instances that could not be solved at the root node by CPLEX

solver with default parameter settings. As one can see, in most cases utilization of conic

MIR cuts reduces the average solution time and the number of nodes explored in the so-

lution tree, with the improvement being more noticeable for difficult instances and larger
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sizes of the problem. It is also worth noting that while solution times vary for different

values of the parameter p, the observed improvement due to implementation of conic MIR

cuts stays approximately the same.

4.4.2.2 Portfolio Optimization with Cardinality Constraints

For each problem size we generated 30 problem instances. The obtained results are

summarized in Table 4.2. We can again conclude that for the majority of the instances,

introduction of conic MIR cuts leads to an improved performance in comparison to the

default CPLEX solution procedures, although the improvement is considerably smaller

comparing to that observed on randomly generated problems. Note also that a significantly

smaller number of cuts were generated in problem instances of this type; moreover, in many

cases the default CPLEX optimizer did not add any cuts to the problem.

4.4.2.3 Portfolio Optimization with Lot-Buying Constraints

The results averaged over 30 instances for each problem size are summarized in

Table 4.3. Note that in many instances of problems of this type, no user cuts of the proposed

structure have been found. It can also be noted that regardless of the number of cuts found,

solution times are rather comparable to those of the default CPLEX optimizer, which may

indicate that conic MIR cuts do not make a significant difference in problems of this type.
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4.4.3 Discussion of Results: Lifted Conic Cuts

4.4.3.1 Portfolio Optimization

For evaluation of the performance of lifted cuts derived in Section 4.3, we used

both types of portfolio optimization problems, with parameters set up as described above.

As it has been already noted, each lifted nonlinear cut was replaced by its outer gradi-

ent polyhedral approximation. Specifically, the approximation accuracy was set at 10−3.

Since in this case each cut results in multiple additional linear constraints, we restricted the

number of lifted cuts to be added at the root node to two. The results obtained for port-

folio optimization problems with cardinality constraints (4.21) and lot-buying constraints

(4.22), each averaged over 30 problem instances, are summarized in Tables 4.2 and 4.3,

respectively. We observed similar improvements in computational time for both types of

problems. Also, it has been observed that utilization of lifted cuts in portfolio optimization

with lot-buying constraints does not generally lead to a reduction in the number of nodes

explored in the solution tree. Thus, based on this observation and results of the experi-

ments of the previous section, we can suggest that the observed improvement is probably

partially due to considerably less time spent while looking for cuts. In contrast, in portfolio

problems with cardinality constraints we observe reductions in both the number of nodes

and solution times due to utilization of lifted cuts.

4.5 Concluding Remarks

The recent progress in solving mixed integer programming problems can partially

be attributed to the advances in utilization of valid inequalities for integer and mixed in-
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teger sets. Mixed integer cuts allow for tightening of the bounds given by the continuous

relaxation of the problem during the branch-and-cut procedure and, as a result, can lead to

reductions in the number of nodes explored in the branch-and-bound tree and in the overall

computational time. Typically, valid inequalities exploit specific structure of the feasible

set of the problem. This paper presents two families of valid inequalities for mixed inte-

ger p-order programming problems that arise in risk-averse stochastic optimization with

downside risk measures. Particularly, we developed mixed integer rounding cuts and non-

linear lifted cuts for mixed integer p-order conic sets, extending the corresponding results

for mixed integer second order programming problems by Atamtürk and Narayanan (2010,

2011). Computational studies on randomly generated problems as well as discrete portfo-

lio optimization problems with historical data demonstrate that both conic MIR cuts and

lifted conic cuts lead to improved solution times. In general, nonlinear cuts are not yet

as prevalent as linear ones, partly due to the fact that additional nonlinear inequalities in

the bounding (relaxed) problem tend to have deteriorating effect on the computational time

of branch-and-bound procedure. In order to improve the computational tractability of the

derived nonlinear lifted cuts within the branch-and-cut framework, we proposed replacing

them with their polyhedral approximations; since the nonlinear lifted cuts constitute low-

dimensional p-cones, the corresponding polyhedral approximations are relatively inexpen-

sive. In this respect, our computational results are among the first successful applications

of nonlinear cuts in nonlinear mixed integer programming problems.
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Table 4.1: Performance of conic MIR cuts for randomly generated MIpOCP problems. The

colomn “% better” represents the percentage of problem instances for which conic MIR

cuts approach outperformed CPLEX with default parameters in terms of solution time and

number of nodes respectively. “Difficult” instances are problem instances which cannot be

solved in the root node.

p = 2.0
all instances “difficult” instances

n m default CPLEX conic MIR % better default CPLEX conic MIR % better

500

time 26.88 22.88 29.41% 58.22 43.77 61.11%
200 nodes 2.0 0.75 100.00% 5.67 2.11 100.0%

cuts 16.74 48.65 – 16.06 50.94 –
time 218.0 224.72 52.83% 356.27 369.85 67.86%

600 nodes 3.34 3.17 92.45% 6.32 6.0 85.71%
cuts 73.45 53.90 – 19.08 55.82 –
time 1117.45 856.59 45.61% 2045.46 1418.66 65.22%

1000 nodes 1.68 0.60 96.49% 4.17 1.48 91.30%
cuts 102.54 63.40 – 76.00 50.87 –

p = 3.0
all instances “difficult” instances

n m default CPLEX conic MIR % better default CPLEX conic MIR % better

500

time 12.60 11.10 37.25% 24.11 20.68 76.92%
200 nodes 0.88 0.31 100.00% 1.23 3.46 100.0%

cuts 11.71 49.65 – 11.38 50.94 –
time 189.76 71.90 51.92% 421.64 133.0 87.50%

600 nodes 6.92 2.13 100.00% 22.94 7.06 100.00%
cuts 18.92 54.58 – 15.37 48.26 –
time 910.04 560.12 66.67% 1741.93 974.53 61.90%

1000 nodes 1.53 0.35 98.25% 4.14 0.95 95.24%
cuts 32.81 63.40 – 22.0 50.87 –

p = 4.0
all instances “difficult” instances

n m default CPLEX conic MIR % better default CPLEX conic MIR % better

500

time 31.92 26.54 35.29% 62.04 48.06 52.17%
200 nodes 2.29 0.98 98.04% 5.09 2.17 95.65%

cuts 26.16 48.65 – 29.17 63.83 –
time 582.88 324.86 43.40% 875.88 471.92 55.88%

600 nodes 9.25 8.0 88.84% 14.41 12.47 82.36%
cuts 76.75 53.91 – 37.87 60.01 –
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Table 4.2: Performance of conic cuts for cardinality constrained portfolio optimization

problems. Entries in bold correspond to the minimum solution time for each row.

p = 2.0

default CPLEX conic MIR cuts lifted conic cuts
n m time nodes cuts time nodes cuts time nodes cuts
100 600 360.97 31.31 0.10 315.98 31.90 3.00 281.34 30.59 2.00

1000 787.16 31.15 0.00 772.44 77.90 3.00 595.66 30.77 2.00
1400 916.18 37.58 0.00 766.14 55.50 3.00 664.73 25.8 2.00

150 600 446.11 41.8 0.00 400.02 41.20 3.00 377.87 40.2 2.00
1000 1566.79 53.44 0.00 1436.57 53.20 3.00 1326.74 52.33 2.00
1400 2601.84 40.69 0.00 2343.03 38.83 3.00 2196.61 39.92 2.00

p = 3.0

default CPLEX conic MIR cuts lifted conic cuts
n m time nodes cuts time nodes cuts time nodes cuts
100 600 813.62 47.93 0 537.14 45.63 3.00 610.98 45.35 2.00

1000 1449.75 49.78 0 1216.24 49.90 3.00 1213.02 49.67 2.00
1400 1671.64 36.38 0 1518.44 59.87 3.00 1428.81 40.2 2.00

150 600 488.07 41.4 0.2 415.92 40.67 3.00 354.40 39.8 2.00
1000 2877.30 80.81 0.05 2661.90 83.87 3.00 2514.82 86.71 2.00
1400 4307.80 70.72 0.11 4006.54 70.43 3.00 3739.91 69.89 2.00

p = 4.0

default CPLEX conic MIR cuts lifted conic cuts
n m time nodes cuts time nodes cuts time nodes cuts
100 600 1234.58 47.08 0.10 1186.99 45.83 3.00 1062.46 45.58 2.00

1000 2368.82 45.05 0.00 2204.83 48.20 3.00 2062.06 47.87 2.00
1400 3243.04 33.49 0.00 2630.18 34.40 3.00 2552.70 31.48 2.00

150 600 435.52 34.50 0.17 371.95 58.65 3.00 340.62 33.33 2.00
1000 5913.61 94.71 0.00 5451.90 47.95 3.00 5168.28 97.57 2.00
1400 6442.82 62.50 0.05 6087.91 31.30 3.00 5286.47 62.85 2.00
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Table 4.3: Performance of conic cuts for lot-buying constrained portfolio optimization

problems. Entries in bold correspond to the minimum solution time for each row.

p = 2.0
default CPLEX conic MIR cuts lifted conic cuts

n m time nodes cuts time nodes cuts time nodes cuts
10 200 9.09 4.13 1.50 9.59 5.10 0.00 8.03 5.31 2.00

600 45.53 4.67 2.61 40.08 5.57 0.13 32.98 6.17 2.00
1000 117.78 11.47 2.37 111.44 13.97 0.33 102.81 14.74 2.00

20 200 42.49 20.79 3.64 37.17 23.13 0.40 32.00 25.36 2.00
600 103.28 12.80 5.00 101.67 16.93 0.13 94.96 20.16 2.00
1000 188.04 13.63 3.19 177.53 13.83 1.10 168.88 13.63 2.00

50 200 54.50 42.94 4.38 51.21 45.40 0.50 46.55 47.44 2.00
600 307.66 33.19 6.19 286.28 41.27 1.50 268.13 46.75 2.00
1000 640.82 49.71 3.71 635.54 62.03 0.00 664.29 69.35 2.00

p = 3.0
default CPLEX conic MIR cuts lifted conic cuts

n m time nodes cuts time nodes cuts time nodes cuts
10 200 18.56 4.79 3.57 17.33 7.73 0.03 15.50 9.50 2.00

600 49.60 8.33 2.22 42.32 9.73 0.03 34.46 10.39 2.00
1000 96.15 10.19 2.38 94.93 12.97 0.03 90.25 15.38 2.00

20 200 34.05 9.06 3.11 27.11 10.97 1.10 21.23 12.00 2.00
600 96.98 9.51 4.22 79.78 12.00 1.10 66.74 13.84 2.00
1000 130.59 4.53 4.35 134.93 4.67 1.23 141.49 4.53 2.00

50 200 78.29 30.55 5.10 70.07 35.93 0.03 57.25 39.95 2.00
600 316.89 37.39 5.33 275.04 38.17 0.03 210.81 37.67 2.00
1000 540.25 22.58 5.37 500.46 36.87 1.00 459.55 47.74 2.00

p = 4.0
default CPLEX conic MIR cuts lifted conic cuts

n m time nodes cuts time nodes cuts time nodes cuts
10 200 23.29 6.29 2.29 17.93 6.13 2.00 13.58 5.71 2.00

600 44.50 3.57 2.21 41.56 3.93 7.03 37.73 4.21 2.00
1000 122.08 8.00 2.29 123.10 10.13 25.03 125.04 12.71 2.00

20 200 49.11 7.93 4.07 43.88 16.07 0.13 40.19 20.40 2.00
600 110.42 16.47 3.31 101.32 18.00 12.50 89.95 18.24 2.00
1000 315.87 10.89 4.94 279.44 11.10 34.23 256.45 10.89 2.00

50 200 127.20 43.78 5.17 118.54 46.67 0.46 112.06 48.06 2.00
600 416.48 36.76 4.68 344.87 33.93 21.40 294.47 29.32 2.00
1000 993.53 44.50 5.71 825.43 46.20 33.17 682.21 56.59 2.00
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CHAPTER 5
A SCENARIO DECOMPOSITION ALGORITHM FOR STOCHASTIC

PROGRAMING PROBLEMS WITH CERTAINTY EQUIVALENT MEASURES

5.1 Introduction and Motivation

In this section, we propose an efficient algorithm for solving large-scale stochas-

tic optimization problems with a class of “downside”, or “tail” risk measures that have

been proposed in Chapter 2. The presented scenario decomposition algorithm exploits the

special structure of the feasible set induced by the respective risk measures as well as the

properties common to the considered class of risk functionals. As an illustrative example

of the general approach, we consider stochastic optimization problems with both higher-

moment coherent risk measures (HMCR) and log-exponential convex risk (LogExpCR)

measures.

Perhaps, the most frequently implemented risk measure in stochastic programming

problems is the well known Conditional Value-at-Risk (CVaR) (Rockafellar and Uryasev,

2000, 2002). When X is piecewise linear in x and set C is polyhedral, stochastic pro-

gram with CVaR objective or constraints reduces to a linear programming (LP) problem.

Several recent studies addressed the solution efficiency of LPs with CVaR objectives or

constraints for cases when the number of scenarios is large. Lim, Sherali, and Uryasev

(2010) noted that stochastic program in this case may be viewed as a nondifferentiable

optimization problem and implemented a two-phase solution approach to solve large-scale

instances. In the first phase, they exploit descent-based optimization techniques to circum-

vent nondifferentiable points by perturbing the solution to differentiable solutions within
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their “relative neighborhood”. The second phase employs a deflecting subgradient search

direction with a step size established by an adequate target value. They further extended

this approach with a third phase that resorts to the simplex algorithm after achieving con-

vergence by employing an advanced crash-basis dependent on solutions obtained from the

first two phases.

Künzi-Bay and Mayer (2006) developed a solution technique for the problem , with

measure ρ chosen as the CVaR, that utilized a specialized L-shaped method after refor-

mulating it as a two-stage stochastic programming problem. However, Subramanian and

Huang (2008) noted that the problem structure does not naturally conform to the charac-

teristics of a two-stage stochastic program and introduced a polyhedral reformulation of

the CVaR constraint with a statistics based CVaR estimator to solve a closely related ver-

sion of the problem. In a followup study (Subramanian and Huang, 2009), they retained

Value-at-Risk (VaR) and CVaR as unknown variables in the CVaR constraints, enabling a

more efficient decomposition algorithm, as opposed to Klein Haneveld and van der Vlerk

(2006), where the problem was solved as a canonical integrated chance constraint prob-

lem with preceding estimates of VaR. Espinoza and Moreno (2012) proposed a solution

method that entailed generation of aggregated scenario constraints to form smaller relax-

ation problems whose optimal outcomes were then used to directly evaluate the respective

upper bound on the objective of the original problem.

In what follows, we develop a general scenario decomposition solution framework

for solving stochastic optimization problems with certainty equivalent-based risk measures

by utilizing principles related to those in Espinoza and Moreno (2012). The rest of the chap-
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ter is organized as follows. In Section 5.2 we propose the scenario decomposition algorithm

for stochastic programming problems with structure that is induced by the risk measures

described in Chapter 2. Then, experimental studies on portfolio optimization problems

with large-scale data sets that demonstrate the effectiveness of the developed technique are

presented in Section 5.3 . In the reminder of this section we discuss the implementation of

the risk measures discussed above in mathematical programming problems.

Given a discrete set of scenarios {ω1, . . . , ωN} = Ω that induce cost or loss out-

comes X(x, ω1), . . . , X(x, ωN) for any given decision vector x, it is easy to see that the

risk constraint can be represented by the following set of inequalities:

η + (1− α)−1w0 ≤ h(x),

w0 ≥ v−1
(∑
j∈N

πjv(wj)

)
,

wj ≥ X(x, ωj)− η, j ∈ N ,

wj ≥ 0, j ∈ N ,

(5.1a)

(5.1b)

(5.1c)

(5.1d)

where N denotes the set of scenario indices, N = {1, . . . , N}, and πj = P(ωj) > 0 repre-

sent the corresponding scenario probabilities that satisfy π1 + · · · + πN = 1. Throughout

the paper we will also assume that function v satisfies the following assumption:

(U1) Function v(t) is continuously differentiable, increasing, convex, and, moreover, such

that v(0) = 0 and the certainty equivalent v−1Ev(X) is convex in X .

In the above discussion it was shown that several types of risk measures emerge

from different choices of the deutility function v. Here we note that the corresponding rep-

resentations of constraint (5.1b) in the context of HMCR and LogExpCR measures lead to



116

sufficiently “nice”, i.e., convex, mathematical programming models. For HMCR measures

inequality (5.1b) becomes

w0 ≥
(∑

j∈N
πjw

p
j

)1/p
, (5.2)

which is equivalent to a standard p-order cone under affine scaling. Noteworthy instances of

(5.2) for which readily available mathematical programming solution methods exist include

p = 1, 2. In the particular case of p = 1, which corresponds to CVaR, the problem (5.1)

reduces to a linear programming (LP) model. For instances when p = 2, a second-order

cone programming (SOCP) model that is efficiently solvable using long-step self-dual in-

terior point methods transpires. However, no similarly efficient solution methods exist for

solving p-order conic constrained problems when p ∈ (1, 2)∪(2,∞) due to the fact that the

p-cone is not self-dual in this case. Additional discussion and computational considerations

for such instances are given in Section 5.3.1. Lastly, the following exponential inequality

corresponds to constraint (5.1b) when ρ is a LogExpCR measure:

w0 ≥ ln
∑

j∈N
πje

wj , (5.3)

which is also convex and allows for the resulting optimization problem to be solved using

appropriate (e.g., interior point) methods.

5.2 Scenario Decomposition Algorithm

Large scale stochastic optimization models with CVaR measure and the correspond-

ing solution algorithms have received considerable attention in the literature. In this section

we propose an efficient scenario decomposition algorithm for solving large-scale mathe-
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matical programming problems that use certainty equivalent-based risk measures, which

contain CVaR as a special case.

The algorithm relies on solving a series of relaxation problems containing linear

combinations of scenario-based constraints that are systematically decomposed until an

optimal solution of the original problem is found or the problem is proven to be infeasible.

Naturally, the core assumption behind such a scheme is that sequential solutions of smaller

relaxation problems can be achieved within shorter computation times. When the distri-

bution of loss function X(x, ω) has a finite support (scenario set) Ω = {ω1, . . . , ωN} with

probabilities P(ωj) = πj > 0, the stochastic programming problem with risk constraint

admits the form

min g(x)

s. t. x ∈ C,

η + (1− α)−1w0 ≤ h(x),

w0 ≥ v−1
(∑
j∈N

πjv(wj)

)
,

wj ≥ X(x, ωj)− η, j ∈ N ,

wj ≥ 0, j ∈ N ,

(5.4a)

(5.4b)

(5.4c)

(5.4d)

(5.4e)

(5.4f)

where N = {1, . . . , N}. If we assume that function g(x) and feasible set C are “nice”

in the sense that problem min{g(x) : x ∈ C} admits efficient solution methods, then

formulation (5.4) may present challenges that are two-fold. First, constraint (5.4d) may

need a specialized solution approach, especially in the case of large N . Similarly, when

N is large, computational difficulties may be associated with handling the large number of
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constraints (5.4e)–(5.4f). In this work we present an iterative procedure for dealing with a

large number of scenario-based inequalities (5.4e)–(5.4f).

Since the original problem (5.4) with many constraints of the form (5.4e)–(5.4f)

may be hard solve, a relaxation of (5.4) can be constructed by aggregating some of the

scenario constraints. Let {Sk : k ∈ K} denote a partition of the set N of scenario indices

(which we will simply call scenario set), i.e.,

⋃
k∈K

Sk = N, Si ∩ Sj = ∅ for all i, j ∈ K, i 6= j.

The aggregation of scenario constraints by adding inequalities (5.4e) within sets Sk pro-

duces the following master problem:

min g(x)

s. t. x ∈ C,

η + (1− α)−1w0 ≤ h(x),

w0 ≥ v−1
(∑
j∈N

πjv(wj)

)
,

∑
j∈Sk

wj ≥
∑
j∈Sk

X(x, ωj)− |Sk|η, k ∈ K,

wj ≥ 0, j ∈ N .

(5.5a)

(5.5b)

(5.5c)

(5.5d)

(5.5e)

(5.5f)

Clearly, any feasible solution of (5.4) is also feasible for (5.5), and the optimal value of

(5.5) represents a lower bound for that of (5.4). Since the relaxed problem contains fewer

scenario-based constraints (5.5e), it is potentially easier to solve. It would then be of inter-

est to determine the conditions under which an optimal solution of (5.5) is also optimal for

the original problem (5.4). Assuming that x∗ is an optimal solution of (5.5), consider the
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problem

min η + (1− α)−1w0

s. t. w0 ≥ v−1
(∑

j∈N

πjv(wj)

)
,

wj ≥ X(x∗, ωj)− η, j ∈ N,

wj ≥ 0, j ∈ N.

(5.6a)

(5.6b)

(5.6c)

(5.6d)

Proposition 5.1. Consider problem (5.4) and its relaxation (5.5) obtained by aggregating

scenario constraints (5.4e) over sets Sk, k ∈ K, that form a partition of N = {1, . . . , N}.

Assuming that (5.4) is feasible, consider problem (5.6) where x∗ is an optimal solution of

relaxation (5.5). Let (η∗∗,w∗∗) be an optimal solution of (5.6). If the optimal value of (5.6)

satisfies condition

η∗∗ + (1− α)−1w∗∗0 ≤ h(x∗), (5.7)

then (x∗, η∗∗,w∗∗) is an optimal solution of the original problem (5.4).

Proof: Let x◦ be an optimal solution of (5.4). Obviously, one has g(x∗) ≤ g(x◦). The

statement of the proposition then follows immediately by observing that inequality (5.7)

guarantees the triple (x∗, η∗∗,w∗∗) to be feasible for problem (5.4). �

The statement of Proposition 5.1 allows one to solve the original problem (5.4) by

constructing an appropriate partition of N and solving the corresponding master problem

(5.5). Below we outline an iterative procedure that accomplishes this goal.

Step 0: The algorithm is initialized by including all scenarios in a single partition,

K = {0}, S0 = {1, . . . , N}.
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Step 1: For a current partition {Sk : k ∈ K}, solve the master problem (5.5). If

(5.5) is infeasible, then the original problem (5.4) is infeasible as well, and the algorithm

terminates. Otherwise, let x∗ be an optimal solution of the master (5.5).

Step 2: Given a solution x∗ of the master, solve problem (5.6), and let (η∗∗,w∗∗)

denote the corresponding optimal solution. If condition (5.7) is satisfied, the algorithm

terminates with (x∗, η∗∗,w∗∗) being an optimal solution of (5.4) due to Proposition 5.1. If,

however, condition (5.7) is violated,

η∗∗ + (1− α)−1w∗∗0 > h(x∗),

then the algorithm proceeds to Step 3 to update the partition.

Step 3: Determine the set of scenario-based constraints in (5.6) that, for a given

solution of the master x∗, are binding at optimality:

J = {j ∈ N : w∗∗j = X(x∗, ωj)− η∗∗ > 0} (5.8)

Then, the elements of J are removed from the existing sets Sk:

Sk = Sk \ J , k ∈ K,

and added to the partition as single-element sets:

{
S0, . . . ,SK

}
∪
{
SK+1, . . . ,SK+|J |

}
,

where, SK+i = {ji} for each ji ∈ J , i = 1, . . . , |J |, and the algorithm proceeds to Step 1.

Theorem 5.2. Assume that in problem (5.4) functions g(x) and X(x, ω) are convex in x,

h(x) is concave in x, v satisfies assumption (U1), and the set C is convex and compact.
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Then, the described scenario decomposition algorithm either finds an optimal solution of

problem (5.4) or declares its infeasibility after at most N iterations.

Proof: Let us show that during an iteration of the algorithm the size of the partition of the

set N of scenarios increases by at least one.

Let {Sk : k ∈ K} be the current partition of N, (x∗, η∗,w∗) be the corresponding

optimal solution of (5.5), and (η∗∗,w∗∗) be an optimal solution of (5.6) for the given x∗,

such that the stopping condition (5.7) is not satisfied,

η∗∗ + (1− α)−1w∗∗0 > h(x∗). (5.9)

Let S̄∗ denote the set of constraints (5.6c) that are binding at optimality,

S̄∗ =
{
j : w∗∗j = X(x∗, ωj)− η∗∗ > 0, j ∈ N

}
.

Next, consider a problem obtained from (5.6) with a givenx∗ by aggregating the constraints

(5.6c) that are non-binding at optimality:

min η + (1− α)−1w0

s. t. w0 ≥ v−1
(∑
j∈S0

πjv(wj)

)
,

wj ≥ X(x∗, ωj)− η, j ∈ S̄∗,∑
j∈S∗

wj ≥
∑
j∈S∗

X(x∗, ωj)− |S∗|η,

wj ≥ 0, j ∈ N,

(5.10a)

(5.10b)

(5.10c)

(5.10d)

(5.10e)

where S∗ = N \ S̄∗. Obviously, an optimal solution (η∗∗,w∗∗) of (5.6) will also be optimal

for (5.10).
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Next, observe that at any stage of the algorithm, the partition {Sk : k ∈ K} is such

that there exists at most one set with |Sk| > 1, namely set S0, and the rest of the sets in the

partition satisfy |Sk| = 1, k 6= 0. Let us denote

S̄0 = N \ S0 =
⋃

k∈K\{0}

Sk.

Assume that S̄∗ ⊆ S̄0. By rewriting the master problem (5.5) as

min g(x)

s. t. x ∈ C,

η + (1− α)−1w0 ≤ h(x),

w0 ≥ v−1
(∑
j∈N

πjv(wj)

)
,

wj ≥ X(x, ωj)− η, j ∈ S̄0,∑
j∈S0

wj ≥
∑
j∈S0

X(x, ωj)− |S0|η,

wj ≥ 0, j ∈ N,

(5.11a)

(5.11b)

(5.11c)

(5.11d)

(5.11e)

(5.11f)

(5.11g)

we observe that the components η∗,w∗ of its optimal solution are feasible for (5.10). In-

deed, from (5.11e) one has that

w∗j ≥ X(x∗, ωj)− η∗, j ∈ S̄∗,

which satisfies (5.10c), and also

w∗j ≥ X(x∗, ωj)− η∗, j ∈ S̄0 \ S̄∗ = S∗ \ S0.

Adding the last inequalities yields

∑
j∈S∗\S0

w∗j ≥
∑

j∈S∗\S0

X(x∗, ωj)− |S∗ \ S0| η∗,
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which can then be aggregated with (5.11f) to produce

∑
j∈S∗

w∗j ≥
∑
j∈S∗

X(x∗, ωj)− |S∗|η∗,

verifying the feasibility of (η∗,w∗) for (5.10). Since (5.11c) has to hold for (x∗, η∗,w∗),

we obtain that

η∗∗ + (1− α)−1w∗∗ ≤ η∗ + (1− α)−1w∗ ≤ h(x∗),

which furnishes a contradiction with (5.9). Therefore, one has to have S̄0 ⊂ S̄∗ for (5.9) to

hold, meaning that at least one additional scenario from S̄∗ will be added to the partition

during Step 3 of the algorithm. It is easy to see that the number of iterations cannot exceed

the number N of scenarios. �

Remark 15. The fact that the proposed scenario decomposition method terminates within

at most N iterations represents an important advantage over several existing cutting-plane

methods that were developed in the literature for problems involving Conditional Value-

at-Risk measure (Künzi-Bay and Mayer, 2006), integrated chance constraints (Klein Han-

eveld and van der Vlerk, 2006), and SSD constraints (Roman et al., 2006). In the men-

tioned works, the cutting-plane algorithms utilized supporting hyperplane representations

for scenario constraints, which were themselves exponential in the size N of scenario sets.

Although finite convergence of the cutting plane techniques was guaranteed by the poly-

hedral structure of the scenario constraints (in the case when X(x, ω) is linear in x), no

estimate for the sufficient number of iterations was provided. A level-type regularization

of cutting plane method for problems with SSD constraints, which allows for an estimate

of the number of cuts due to Lemaréchal et al. (1995), is discussed in Fábián et al. (2011).
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5.2.1 An Efficient Solution Method for Sub-Problem (5.6)

Although formulation (5.6) may be solved using appropriate mathematical pro-

gramming techniques, an efficient alternative solution method can be employed by noting

that (5.6) is equivalent to

min η +
1

1− α
v−1

(∑
j∈N

πjv
(
X(x∗, ωj)− η

)
+

)
, (5.12)

which is a mathematical programming implementation of certainty equivalent representa-

tion under a finite scenario model where realizations X(x∗, ωj) represent scenario losses

corresponding to an optimal decision x∗ in the master problem (5.5). An optimal value of η

in (5.6) and (5.12) can be computed directly using its properties dictated by representation.

Namely, let Xj = X(x∗, ωj) represent the optimal loss in scenario j for problem

(5.5), and let X(m) be the m-th smallest outcome among X1, . . . , XN , such that

X(1) ≤ X(2) ≤ . . . ≤ X(N).

The following proposition enables evaluation of η∗∗ as a “cutoff” point within the tail of

the loss distribution.

Proposition 5.3. Given a function v(·) that satisfies (U1) and an α ∈ (0, 1), a sufficient

condition for η∗∗ to be an optimal solution in problems (5.12) and (5.6) has the form

∑
j:Xj>η∗∗

πjv
′(Xj − η∗∗)

v′(v−1(
∑

j∈N πjv(X − η∗∗)+))
+ α− 1 = 0, (5.13)

where v′ denotes the derivative of v.
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Remark 16. Note, that this claim essentially rephrases the result that we have already es-

tablished in Chapter 2 (see, Proposition 2.12 and Corollary 2.13). We will still present the

detailed proof of this proposition, since it will be useful later in our analysis.

Proof: The underlying assumption on v entails that φ(X) = (1−α)−1v−1Ev(X) is convex,

whence the objective function of (5.12)

ΦX(η) = η + φ(X − η) = η +
1

1− α
v−1
(∑

j∈N
πjv(Xj − η)+

)
(5.14)

is convex on R. Moreover, the condition φ(η) > η for η 6= 0 guarantees that the set of

minimizers of ΦX(η) is compact and convex in R. Indeed, it is easy to see that ΦX(η) = η

for η ≥ X(N) and ΦX(η) ∼ − αη
1−α for η � −1.

Now, consider the left derivative of ΦX(η) at a given point η = η∗∗:

− (1− α) + (1− α)
d−

dη
ΦX(η)

∣∣∣∣
η=η∗∗

=
d−

dη

{
v−1
(∑

j∈N
πjv(Xj − η)+

)}∣∣∣∣
η=η∗∗

= lim
ε→0+

1

−ε

{
v−1
( ∑
j:Xj≥η∗∗

πjv(Xj − η∗∗ + ε)

)
− v−1

( ∑
j:Xj≥η∗∗

πjv(Xj − η∗∗)
)}

=
d−

dη

{
v−1
( ∑
j:Xj≥η∗∗

πjv(Xj − η)

)}∣∣∣∣
η=η∗∗

=
d

dη

{
v−1
( ∑
j:Xj≥η∗∗

πjv(Xj − η)

)}∣∣∣∣
η=η∗∗

,

where the last equality follows from the continuous differentiability of function

v−1
(∑

j:Xj≥η∗∗ πjv(Xj − η∗∗)
)

at the point η∗∗ due to the assumed properties of v. Anal-

ogously, the right derivative of ΦX(η) at η = η∗∗ equals to

d+

dη
ΦX(η)

∣∣∣∣
η=η∗∗

= 1 +
1

1− α
d

dη

{
v−1
( ∑
j:Xj>η∗∗

πjv(Xj − η)

)}∣∣∣∣
η=η∗∗

,

where the strict inequality in summation is due to fact that v(Xj − η∗∗ − ε)+ = 0 for all

ε > 0 if η∗∗ ≤ Xj .
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Observe that ΦX(η) may only be non-differentiable at points η = Xj . Indeed,

for any η∗∗ 6= Xj , j ∈ N, the obtained expressions for left and right derivatives become

equivalent, and equation (5.13) is obtained from the first order optimality conditions by

computing the derivatives of the functions in braces and noting that
∑

j:Xj≥η∗∗ πjv(Xj −

η∗∗) =
∑

j:Xj>η∗∗
πjv(Xj − η∗∗) =

∑
j∈N πjv(Xj − η∗∗)+. �

Recall that the presented above scenario decomposition algorithm uses the subprob-

lem (5.6) for determining an optimal value of η∗∗, as well as for identifying (during Step 3)

the set J of scenarios that are binding at optimality, i.e., for which X(x∗, ωj) − η∗∗ > 0.

This can be accomplished with the help of the derived optimality condition (5.13) as fol-

lows.

Step (i) Compute values Xj = X(x∗, ωj), where x∗ is an optimal solution of (5.5),

and sort them in ascending order: X(1) ≤ . . . ≤ X(N).

Step (ii) For m = N,N − 1, . . . , 1, compute values Tm as

TN = 1− α,

Tm = 1− α−
∑N

j=m+1 πjv
′(X(j) −X(m)

)
v′
(
v−1

(∑N
j=m+1 πjv

(
X(j) −X(m)

))) , m = N − 1, . . . , 1,
(5.15)

until m∗ is found such that

Tm∗ ≤ 0, Tm∗+1 > 0. (5.16)

Step (iii) If Tm∗ = 0, then the solution η∗∗ of (5.6), (5.12) is equal to X(m∗). Other-

wise, η∗∗ satisfies

η∗∗ ∈
(
X(m∗), X(m∗+1)

]
,

and its value can be found by using an appropriate numerical procedure, such as Newton’s
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method. The set J in (5.8) is then obtained as

J = {j : Xj = X(k), k = m∗ + 1, . . . , N}.

Proposition 5.4. Given an optimal solution x∗ of the master problem (5.5), the algorithm

described in steps (i)–(iii) yields an optimal value η∗∗ in (5.6), (5.12) and the set J to be

used during steps 2 and 3 of the scenario decomposition algorithm.

Proof: First, observe that an optimal solution η∗∗ of (5.6) and (5.12) satisfies η∗∗ ≤ X(N).

Indeed, assume to the contrary that η∗∗ = X(N) + ε for some ε > 0. The optimal value of

(5.6) is then equal to X(N) + ε, and can be improved by selecting, e.g., ε = ε/2.

Next, observe that quantities Tm are equal, up to a factor 1− α, to the right deriva-

tives of function ΦX(η) (5.14) at η = X(m), i.e., Tm = (1− α)d
+

dη
ΦX(η)

∣∣
η=X(m)

. The value

of TN = 1 − α follows directly from the fact that ΦX(η) = η for η ≥ X(N). Then, if

strict inequalities in (5.16) hold, two cases are possible. Namely, an optimal η∗∗ is located

inside the interval
(
X(m∗), X(m∗+1)

)
if d−

dη
ΦX(X(m∗+1)) > 0. Alternatively, η∗∗ = X(m∗+1)

if d−

dη
ΦX(X(m∗+1)) ≤ 0. Thus, we have the second statement of step (iii).

If Tm∗ = 0 in (5.16), observe that necessarily d−

dη
ΦX(Xm∗) ≤ 0 since the left

derivative of ΦX at X(m) differs from the expression (5.15) by an extra summand πmv′(0)

in the numerator. If v′(0) = 0 then d−

dη
ΦX(Xm∗) = d+

dη
ΦX(Xm∗) = 0 and η∗∗ = X(m∗) is

a minimum due to Proposition 5.3. If v′(0) > 0 then d−

dη
ΦX(Xm∗) < 0 and η∗∗ = X(m∗)

is again either a unique minimizer, or represents the left endpoint of the set of minimizers.

This validates the first claim of step (iii).

Once the value of η∗∗ is obtained during step (iii), the set J in (5.8) is constructed
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as the set of scenario indices corresponding to X(m∗+1), X(m∗+2), . . . , X(N).

Note that it is not necessary to prove that there always exists m∗ ∈ {1, . . . , N − 1}

such that Tm∗ ≤ 0 and Tm∗+1 > 0. If indeed it were to happen that Tm > 0 for all

m = 1, . . . , N , this would imply that set J must contain all scenarios, i.e., J = N, making

the exact value of η∗∗ irrelevant in this case, since the original problem (5.4) would have to

be solved at the next iteration of the scenario decomposition algorithm. �

Remark 17. We conclude this section by noting that the presented scenario decomposition

approach is applicable, with appropriate modifications, to more general forms of downside

risk measures ρ(X) = minη{η + φ((X − η)+)}. The focus of our discussion on the case

when function φ has the form of a certainty equivalent, φ(X) = v−1Ev(X+), is dictated

mainly by the fact that the resulting constraint (5.4d) encompasses a number of interesting

and practically relevant special cases, such as second-order cone, p-order cone, and log-

exponential constraints.

5.3 Numerical Experiments

Portfolio optimization problems are commonly used as an experimental platform

in risk management and stochastic optimization. In this section we illustrate the com-

putational performance of the proposed scenario decomposition algorithm on a portfolio

optimization problem, where the investment risk is quantified using HMCR or LogExpCR

measures.

A standard formulation of portfolio optimization problem entails determining the

vector of portfolio weights x = (x1, . . . , xn)> of n assets so as to minimize the risk while
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maintaining a prescribed level of expected return. We adopt the traditional definition of

portfolio losses X as negative portfolio returns, X(x, ω) = −r(ω)>x, where r(ω) =

(r1(ω), . . . , rn(ω))> are random returns of the assets. Then, the portfolio selection model

takes the general form

min R
(
− r(ω)>x

)
s. t. 1>x = 1,

E
[
r(ω)>x

]
≥ r̄,

x ≥ 0,

(5.17a)

(5.17b)

(5.17c)

(5.17d)

where 1 = (1, . . . , 1)>, equality (5.17b) represents the budget constraint, (5.17b) ensures

a minimum expected portfolio return level, r̄, and (5.17d) corresponds to no-short-selling

constraints.

The distribution of the random vector r(ω) of assets’ returns is given by a finite set

of N equiprobable scenarios rj = r(ωj) = (r1j, . . . , rnj)
>,

πj = P
{
r = (r1j, . . . , rnj)

>} = 1/N, j ∈ N ≡ {1, . . . , N}. (5.18)

5.3.1 Portfolio Optimization with Higher Moment Coherent Risk Measures

In the case when risk measure ρ in (5.17) is selected as a higher moment coherent

risk measure, ρ(X) = HMCRp,α(X), the portfolio optimization problem (5.17) can be

written in a stochastic programming form that is consistent with the general formulation
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(5.4) as

min η + (1− α)−1w0

s. t. w0 ≥ ‖(w1, . . . , wN)‖p,

π
−1/p
j wj ≥ −r>j x− η, j ∈ N,

x ∈ C, w ≥ 0,

(5.19a)

(5.19b)

(5.19c)

(5.19d)

where C represents a polyhedral set comprising the expected return, budget, and no-short-

selling constraints on the vector of portfolio weights x:

C =
{
x ∈ Rn :

∑
j∈N

πjr
>
j x ≥ r̄, 1>x = 1, x ≥ 0

}
. (5.20)

Due to the presence of p-order cone constraint (5.19b), formulation (5.19) constitutes a

p-order cone programming problem (pOCP).

Solution methods for problem (5.19) are dictated by the specific value of parameter

p in (5.19b). As has been mentioned, in the case of p = 1 formulation (5.19) reduces to a LP

problem that corresponds to a choice of risk measure as the CVaR, a case that has received

a considerable attention in the literature. In view of this, of particular interest are nonlinear

instances of problem (5.19), which correspond to values of the parameter p ∈ (1,+∞).

Below we consider instances of (5.19) with p = 2 and p = 3. In the case of p = 2,

problem (5.19) can be solved using SOCP self-dual interior point methods. In the case of

p = 3 and, generally, p ∈ (1, 2)∪(2,∞), the p-cone (5.19b) is not self-dual, and we employ

two techniques for solving (5.19) and the corresponding master problem (5.5): (i) a SOCP-

based approach that relies on the fact that for a rational p, a p-order cone can be equivalently

represented via a sequence of second order cones, and (ii) an LP-based approach that allows
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for obtaining exact solutions of pOCP problems via cutting-plane methods.

Detailed discussions of the respective formulations of problems (5.19) are provided

below. Throughout this section, we use abbreviations in brackets to denote the different

formulations of the “complete” versions of (5.19) (i.e., with complete set of scenario con-

straints (5.19c)). For each “complete” formulation, we also consider the corresponding

scenario decomposition approach, indicated by suffix “SD”. Within the scenario decom-

position approach, we present formulations of the master problem (denoted by subscript

“MP”); the respective subproblems are then constructed accordingly. For example, the

SOCP version of the complete problem (5.19) with p = 2 is denoted [SOCP], while the

same problem solved by scenario decomposition is referred to as [SOCP-SD], with the

master problem being denoted as [SOCP-SD]MP (see below).

5.3.1.1 SOCP Formulation in p = 2 Case

In case when p = 2, formulation (5.19) constitutes a standard SOCP problem

that can be solved using a number of available SOCP solvers, such as CPLEX, MOSEK,

GUROBI, etc. In order to solve it using the scenario decomposition algorithm presented

in Section 5.2, the master problem (5.5) is formulated with respect to the original problem

(5.19) with p = 2 as follows:

min η + (1− α)−1w0

s. t. w0 ≥ ‖(w1, . . . , wN)‖2,∑
j∈Sk

π
1/2
j

π(k)
wj ≥

(∑
j∈Sk

πj
π(k)

r>j

)
x− η, k ∈ K,

w ≥ 0, x ∈ C.

[SOCP-SD]MP
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Note that in the case of HMCR2,α measure, the function v(t) = t2 is positive homogeneous

of degree two, which allows for eliminating the scenario probabilities πj from constraint

(5.5d) and representing the latter in the form of a second order cone in the full formulation

(5.19) and in the master problem [SOCP-SD]MP. This affects constraints (5.5d), which

then can be written in the form of the second constraint in [SOCP-SD]MP. The subproblem

(5.6) is reformulated accordingly.

5.3.1.2 SOCP Reformulation of p-Order Cone Program

One of the possible approaches for solving the pOCP problem (5.19) with p = 3

involves reformulating the p-cone constraint (5.19b) via a set of quadratic cone constraints.

Such an exact reformulation is possible when the parameter p has a rational value, p = q/s.

Then, a (q/s)-order cone constraint in the positive orthant RN+1
+

{
w ≥ 0 : w0 ≥ (w

q/s
1 + . . .+ w

q/s
N )s/q

}
(5.21)

may equivalently be represented as the following set in RN+1
+ × RN

+ :

{
w,u ≥ 0 : w0 ≥ ‖u‖1, wqj ≤ usjw

q−s
0 , j ∈ N

}
. (5.22)

Each of the N nonlinear inequalities in (5.22) can in turn be represented as a sequence of

three-dimensional rotated second-order cones of the form ξ20 ≤ ξ1ξ2, resulting in a SOCP

reformulation of the rational-order cone (5.21) (Nesterov and Nemirovski, 1994; Alizadeh

and Goldfarb, 2003; Krokhmal and Soberanis, 2010). Such a representation, however, is

not unique and in general may comprise a varying number of rotated second order cones

for a given p = q/s. In this case study we use the technique of Morenko et al. (2013),
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which allows for representing rational order p-cones with p = q/s in RN+1 via Ndlog2 qe

second order cones. Namely, in the case of p = 3, when q = 3, s = 1, the 3-order cone

(5.21) can equivalently be replaced with dlog2 3eN = 2N quadratic cones

{
w,u,v ≥ 0 : w0 ≥ ‖u‖1, w2

j ≤ w0vj, v2j ≤ wjuj, j ∈ N
}
. (5.23)

In accordance with the above, a p-order cone inequality in RN+1 can be represented by a

set of 3D second order cone constraints and a linear inequality when p is a positive rational

number. Thus, the [SpOCP] problem (5.19) takes the following form:

min η + (1− α)−1w0

s. t. w0 ≥ ‖u‖1,

w2
j ≤ w0vj, v

2
j ≤ wjuj, j ∈ N,

π
−1/p
j wj ≥ −r>j x− η, j ∈ N,

x ∈ C, w,v,u ≥ 0.

[SpOCP]

The corresponding master problem sub-problem [SpOCP-SD]MP in the scenario decompo-

sition method is constructed by replacing constraints of the form (5.19c) in the last problem

as follows:

min η + (1− α)−1w0

s. t. w0 ≥ ‖u‖1,

w2
j ≤ w0vj, v

2
j ≤ wjuj, j ∈ N,

∑
j∈Sk

π
1−1/p
j

π(k)
wj ≥

(∑
j∈Sk

πj
π(k)

r>j

)
x− η, k ∈ K,

x ∈ C, w,v,u ≥ 0.

[SpOCP-SD]MP
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5.3.1.3 An Exact Solution Method for pOCP Programs Based on Polyhedral Approxima-

tions

Computational methods for solving p-order cone programming problems that are

based on polyhedral approximations represent an alternative to interior-point approaches,

and can be beneficial in situations when a pOCP problem needs to be solved repeatedly,

with small variations in problem data or problem structure.

Thus, in addition to the SOCP-based approaches for solving the pOCP problem

(5.19) discussed above, we also employ an exact polyhedral-based approach with O(ε−1)

iteration complexity that was proposed in Chapter 3. It consists in reformulating the p-order

cone w0 ≥ ‖(w1, . . . , wN)‖p via a set of three-dimensional p-cones

w0 = w2N−1, wN+j ≥ ‖(w2j−1, w2j)‖p, j = 1, . . . , N − 1, (5.24)

and then iteratively building outer polyhedral approximations of the 3D p-cones until the

solution of desired accuracy ε > 0 is obtained,

‖(w1, . . . , wN)‖p ≤ (1 + ε)w0.

In the context of the lifted representation (5.24), the above ε-relaxation of p-cone inequality

translates into N − 1 corresponding approximation inequalities for 3D p-cones:

‖(w∗2j−1, w∗2j)‖p ≤ (1 + ε)w∗N+j, j = 1, . . . , N − 1, (5.25)

where ε = (1 + ε)1/dlog2 Ne − 1. Then, for a given ε > 0, an ε-approximate solution of

pOCP portfolio optimization problem (5.19) is obtained by iteratively solving the linear
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programming problem

min η + (1− α)−1w0

s. t. w0 = w2N−1,

wN+j ≥ αp(θkj)w2j−1 + βp(θkj)w2j, θkj ∈ Θj, j = 1, . . . , N − 1,

π
−1/p
j wj ≥ −r>j x− η, j ∈ N,

x ∈ C, w ≥ 0,

[LpOCP]

where coefficients αp and βp are defined as

αp(θ) =
cosp−1 θ

(cosp θ + sinp θ)1−
1
p

, βp(θ) =
sinp−1 θ

(cosp θ + sinp θ)1−
1
p

.

If, for a given solution w∗ = (w∗0, . . . , w
∗
2N−1) of [LpOCP], the approximation condition

(5.25) is not satisfied for some j = 1, . . . , N − 1,

‖(w∗2j−1, w∗2j)‖p > (1 + ε)w∗N+j, (5.26)

then a cut of the form

wN+j ≥ αp(θ
∗
j )w2j−1 + βp(θ

∗
j )w2j, θ∗j = arctan

w∗2j
w∗2j−1

, (5.27)

is added to [LpOCP]. The process is initialized with Θj = {θ1}, θ1 = π/4, j = 1, . . . , N −

1, and continues until no violations of condition (5.26) are found. In Chapter 3 it was shown

that this cutting-plane procedure generates an ε-approximate solution to pOCP problem

(5.19) within O(ε−1) iterations.

The described cutting plane scheme can be employed to solve the master problem

corresponding to the pOCP problem (5.19). Namely, the cutting-plane formulation of this
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master problem is obtained by replacing the p-cone constraint (5.19b) with cutting planes

similarly to [LpOCP], and the set of N scenario constraints (5.19c) with the aggregated

constraints (compare to [SpOCP-SD]MP):

min η + (1− α)−1t

s. t. w0 = w2N−1,

wN+j ≥ αp(θkj)w2j−1 + βp(θkj)w2j, θkj ∈ Θj, j = 1, . . . , N − 1,

∑
j∈Sk

π
1−1/p
j

π(k)
wj ≥

(∑
j∈Sk

πj
π(k)

r>j

)
x− η, k ∈ K,

x ∈ C, w ≥ 0.

[LpOCP-SD]LB

5.3.2 Portfolio Optimization with Log Exponential Convex Risk Measures

In order to demonstrate the applicability of the proposed method when solving

problems with measures of risk other than the HMCR class, we examine an analogous

experimental framework for instances when R(X) = LogExpCRe,α(X). The portfolio op-
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timization problem (5.17) may then be written as

min η + (1− α)−1w0

s. t. w0 ≥ ln
∑
j∈N

πje
wj ,

wj ≥ −r>j x− η, j ∈ N,

x ∈ C, w ≥ 0.

[LogExpCP]

Note that in contrast to pOCP and SOCP problems discussed in the preceding subsections,

the above formulation is not a conic program. Since it involves a convex log-exponential

constraint, we call this problem a log-exponential convex programming problem (LogEx-

pCP) that can be solved with interior point methods.

The corresponding master problem for the scenario decomposition algorithm is ob-

tained from [LogExpCP] by aggregating the scenario constraints in accordance to (5.5):

min η + (1− α)−1w0

s. t. w0 ≥ ln
∑
j∈N

πje
wj ,

∑
j∈Sk

wj ≥ −
∑
j∈Sk

r>j x− |Sk|η, k ∈ K,

x ∈ C, w ≥ 0.

[LogExpCP-SD]MP

In the next section we examine the computational performances within each implementa-

tion class of problem (5.19).

5.3.3 Computational Results

The portfolio optimization problems described in Section 5.3.1 and 5.3.2 were im-

plemented in C++ using callable libraries of three solvers, CPLEX 12.5, GUROBI 5.02,
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and MOSEK 6. Computations ran on a six-core 2.30GHz PC with 128GB RAM in 64-

bit Windows environment. In the context of benchmarking, each adopted formulation was

tested against its scenario decomposition-based implementation. Moreover, it was of par-

ticular interest to examine the performance of the scenario decomposition algorithm us-

ing various risk measure configurations, thus, the following problem settings were solved:

problems [SOCP]-[SOCP-SD] with risk measure as defined by HMCR for p = 2; problems

[SpOCP]-[SpOCP-SD] and [LpOCP]-[LpOCP-SD] with HMCR measure for p = 3; and

problems [LogExpCP]-[LogExpCP-SD] with LogExpCR measure. The value of parameter

α in the employed risk measures was fixed at α = 0.9 throughout.

The scenario data in our numerical experiments was generated as follows. First,

a set of n stocks (n = 50, 100, 200) was selected at random from the S&P500 index.

Then, a covariance matrix of daily returns as well as the expected returns were estimated

for the specific set of n stocks using historical prices from January 1, 2006 to January 1,

2012. Finally, the desired number N of scenarios, ranging from 1,000 to 100,000, have

been generated as N independent and identically distributed samples from a multivariate

normal distribution with the obtained mean and covariance matrix.

On account of precision arithmetic errors associated with the numerical solvers, we

introduced a tolerance level ε > 0 to specify the permissible gap in the stopping criterion

(5.7):

η∗∗ + (1− α)−1w∗∗0 ≤ h(x∗) + ε. (5.28)

Specifically, the value ε = 10−5 was was chosen to match the reduced cost of the simplex

method in CPLEX and GUROBI. In a similar manner, we adjust (5.15) around m∗ for
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precision errors as

Tm∗+1 (p)− ε < 0 and Tm∗ (p) + ε > 0.

Empirical observations suggest the accumulation of numerical errors is exacerbated by

the use of fractional values of scenarios in assets returns, rij . To alleviate the numerical

accuracy issues, the data in respective problem instances of the scenario decomposition

algorithm were appropriately scaled.

The results of our numerical experiments are summarized in Tables 5.1 – 5.5. Un-

less stated otherwise, the reported running time values are averaged over 20 instances.

Table 5.1 presents the computational times observed during solving the full formulation,

[SOCP], of problem (5.19) with HMCR measure and p = 2, and solving the same problem

using the scenario decomposition algorithm, [SOCP-SD], with the three solvers, CPLEX,

GUROBI, and MOSEK. Observe that the scenario decomposition method performs better

for all instances and solvers, with the exception of the largest three scenario instances when

using GUROBI with n = 50 assets. However, this trend is tampered as the number of assets

increases.

Table 5.2 reports the running times observed during solving of the second-order

cone reformulation of the pOCP version of problem (5.19) with p = 3, in the full formula-

tion ([SpOCP]) and via the scenario decomposition algorithm ([SpOCP-SD]). The obtained

results indicate that, although the scenario decomposition algorithm is slower on smaller

problem instances, it outperforms direct solution methods as the numbers of scenarios N

and assets n in the problem increase. Due to observed numerical instabilities, the CPLEX

solver was not considered for this particular experiment.
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Table 5.1: Average computation times (in seconds) obtained by solving problems [SOCP]

and [SOCP-SD] for p = 2 using CPLEX, GUROBI and MOSEK. All running times are

averaged over 20 instances.

CPLEX GUROBI MOSEK
n N [SOCP] [SOCP-SD] [SOCP] [SOCP-SD] [SOCP] [SOCP-SD]
50 1000 1.00 0.46 0.62 0.45 0.26 0.15

2500 3.03 0.51 1.88 1.07 0.60 0.36
5000 6.58 0.55 3.81 2.78 1.24 0.72
10000 13.72 1.35 9.56 7.89 2.56 1.61
25000 31.03 3.53 32.40 34.04 7.33 5.18
50000 60.62 9.05 101.09 117.24 17.64 12.43
100000 137.14 25.25 327.95 449.78 36.78 33.02

100 1000 2.46 0.86 1.73 0.42 0.61 0.18
2500 6.14 0.99 4.87 1.17 1.50 0.47
5000 13.69 1.10 11.13 3.55 3.25 1.15
10000 27.06 2.21 21.94 9.63 6.69 3.03
25000 72.95 8.85 71.34 37.48 20.41 6.88
50000 157.25 20.88 185.56 129.37 44.01 16.61
100000 319.90 58.29 464.12 467.35 79.75 41.58

200 1000 6.87 2.19 5.60 0.58 6.68 0.29
2500 17.48 2.10 15.36 1.37 4.49 0.73
5000 34.93 2.98 33.96 4.15 9.36 1.92
10000 76.13 5.03 63.67 16.50 19.54 5.51
25000 206.29 24.16 196.45 54.00 53.89 29.15
50000 447.85 55.93 438.40 152.76 112.47 28.85
100000 950.17 112.60 998.86 539.46 234.68 61.98
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Table 5.2: Average computation times (in seconds) obtained by solving problems [SpCOP]

and [SpCOP-SD] for p = 3 using GUROBI and MOSEK. All running times are averaged

over 20 instances and symbol “—” indicates that the time limit of 3600 seconds was ex-

ceeded.

GUROBI MOSEK
n N [SpOCP] [SpCOP-SD] [SpOCP] [SpCOP-SD]
50 1000 2.58 2.73 0.18 0.63

2500 10.63 6.61 0.49 0.96
5000 32.01 19.27 1.06 1.70
10000 87.27 41.34 2.31 3.49
25000 198.56 92.39 7.14 6.70
50000 455.63 540.09 16.36 13.70
100000 1217.96 2080.34 35.33 30.29

100 1000 7.16 3.14 0.30 0.75
2500 29.47 8.44 0.85 1.37
5000 90.25 19.74 1.88 2.32
10000 277.72 44.31 4.52 3.91
25000 642.63 92.11 12.66 8.66
50000 1365.37 1716.37 28.64 15.10
100000 — — 65.48 28.29

200 1000 17.86 3.87 0.69 1.01
2500 78.28 8.65 1.90 1.56
5000 276.89 22.40 4.41 2.47
10000 799.65 49.02 9.88 4.84
25000 2118.11 107.14 29.99 9.60
50000 — — 64.52 17.41
100000 — — 139.87 34.99
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Table 5.3: Average computation times (in seconds) obtained by solving problems [LpOCP]

and [LpOCP-SD] for p = 3 using CPLEX, GUROBI and MOSEK. All running times are

averaged over 20 instances and symbol “—” indicates that the time limit of 3600 seconds

was exceeded.

CPLEX GUROBI MOSEK
n N [LpOCP] [LpOCP-SD] [LpOCP] [LpOCP-SD] [LpOCP] [LpOCP-SD]
50 1000 0.27 0.12 0.22 0.59 0.82 0.46

2500 1.65 0.24 0.74 0.83 4.26 0.66
5000 6.81 0.46 2.31 1.54 15.08 1.46
10000 19.20 1.42 7.73 3.86 60.66 3.75
25000 31.93 3.93 56.52 13.74 381.67 11.34
50000 179.49 16.07 117.72 36.51 1412.81 25.47
100000 903.36 62.79 474.68 112.72 — 54.45

100 1000 0.37 0.13 0.23 0.61 2.94 0.65
2500 2.22 0.28 0.86 0.98 7.11 1.06
5000 8.58 0.79 2.82 1.76 32.20 1.95
10000 28.71 2.18 9.28 4.13 122.75 4.99
25000 45.37 4.99 35.11 13.13 1138.99 15.34
50000 200.12 18.80 122.21 39.78 2753.54 34.17
100000 3336.26 82.79 1316.29 138.74 — 80.15

200 1000 0.61 0.20 0.33 0.89 15.68 1.06
2500 3.13 0.44 1.30 1.17 20.64 1.37
5000 13.25 1.01 3.72 2.11 70.49 2.97
10000 47.97 3.31 13.20 4.72 322.36 8.12
25000 195.28 6.98 94.45 14.77 2418.52 26.91
50000 936.60 27.20 665.61 45.43 — 53.62
100000 — 114.08 3301.44 160.92 — 123.89
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Table 5.4: Average computation times (in seconds) obtained by solving a specified number

of instances for problems [LogExpCP] and [LogExpCP-SD] using MOSEK solver.

MOSEK Instances Solved
n N [LogExpCP] [LogExpCP-SD]
50 1000 0.61 0.27 12

2500 0.97 0.58 14
5000 1.89 1.18 12
10000 4.88 2.57 9
25000 14.99 7.94 12
50000 26.65 18.76 15
100000 65.45 61.48 17

100 1000 0.57 0.25 17
2500 1.65 0.53 16
5000 3.69 1.14 10
10000 9.18 2.53 15
25000 24.61 13.83 13
50000 50.66 39.72 19
100000 148.54 59.02 16

200 1000 5.25 0.37 19
2500 4.22 0.75 17
5000 9.53 1.39 18
10000 21.17 2.63 17
25000 62.03 7.59 17
50000 145.89 16.47 18
100000 333.73 43.56 19
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Table 5.5: Average number of partitioned scenarios.

MOSEK
n N [SOCP-SD] [SpOCP-SD] [LpOCP-SD] [LogExpCP-SD]

50 1000 80.3 24.8 21.3 61.8
2500 180.8 47.8 47.0 77.8
5000 349.3 80.3 79.0 104.6

10000 711.6 133.4 128.3 154.3
25000 1834.9 232.0 318.3 178.2
50000 3582.1 445.4 675.0 841.7

100000 6945.1 774.1 1346.4 1447.5

100 1000 87.2 32.0 27.0 81.4
2500 191.2 73.6 74.1 107.8
5000 367.6 107.4 102.4 192.2

10000 711.1 148.9 156.9 229.7
25000 1808.6 278.1 348.6 1869.1
50000 3802.9 457.8 729.7 2418.6

100000 7323.3 831.3 1395.8 923.4

200 1000 108.2 39.5 36.4 100.7
2500 201.7 72.7 73.0 154.5
5000 395.6 116.3 119.6 198.1

10000 744.0 184.9 171.2 304.6
25000 1805.5 308.3 347.0 464.2
50000 3607.8 512.2 697.6 788.1

100000 7198.9 865.0 1384.3 1153.5
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Next, the same problem is solved using using the polyhedral approximation cutting-

plane method described in Section 5.3.1. Table 5.3 shows the running times achieved by

all three solvers for problems [LpOCP] and [LpOCP-SD] with p = 3. In this case, the

scenario decomposition method resulted in order-of-magnitude improvements, which can

be attributed to the “warm-start” capabilities of CPLEX and GUROBI’s simplex solvers.

Consistent with these conclusions is also the fact that the simplex-based solvers of CPLEX

and GUROBI yield improved solution times on the full problem formulation comparing

to the SOCP-based reformulation [SpOCP], where barrier solvers were invoked. The dis-

crepancy between [LpOCP] and [LpOCP-SD] solution times is especially prominent for

MOSEK, but in this case it appears that MOSEK’s interior-point LP solver was much less

effective at solving the [LpOCP] formulation using the cutting plane method.

Finally, Table 5.4 displays the running times for the discussed implementation of

problems [LogExpCR] and [LogExpCP-SD]. Of the three solvers considered in this case

study, only MOSEK was capable of handling problems with constraints that involve sums

of univariate exponential functions. Again, the scenario decomposition-based solution

method appears to be preferable in comparison to solving the full formulation. Note, how-

ever, that computational times were not averaged over 20 instances in this case due to

numerical difficulties associated with the solver for many instances of [LogExpCP].

It is also of interest to comment on the number of scenarios that had to be gen-

erated during the scenario decomposition procedure in order to yield an optimal solution.

Table 5.5 lists the corresponding average number of scenarios partitioned for each prob-

lem type over all instances. Although these numbers may slightly differ among the three
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solvers, we only present results for MOSEK as it was the only solver used to solve all the

problem in Sections 5.3.1 and 5.3.2. Observe that far fewer scenarios are required relative

to the total set size N . In fact, as a percentage of the total number of scenarios, the number

of scenarios that were generated during the algorithm in order to achieve optimality was

between 0.7% and 11% of the total scenario set size.

5.4 Concluding Remarks

In this chapter, we proposed an efficient algorithm for solving large-scale convex

stochastic programming problems that involve a class of risk functionals in the form of

infimal convolutions of certainty equivalents. We exploit the property induced by such

risk functionals that a significant portion of scenarios is not required to obtain an optimal

solution. The developed scenario decomposition technique is contingent on the identifica-

tion and separation of “non-redundant” scenarios by solving a series of smaller relaxation

problems. It is shown that the number of iterations of the algorithm is bounded by the

number of scenarios in the problem. Numerical experiments with portfolio optimization

problems based on simulated return data following the covariance structure of randomly

chosen S&P500 stocks demonstrate that significant reductions in solution times may be

achieved by employing the proposed algorithm. Particularly, performance improvements

were observed for the large-scale instances when using HMCR measures with p = 2, 3,

and LogExpCR measures.
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CHAPTER 6
MIXED-INTEGER NONLINEAR PROGRAMMING WITH CERTAINTY

EQUIVALENT MEASURES OF RISK

6.1 Introduction: Problem Formulation and Solution Approach

As presented in the previous chapter, one of the computational challenges associ-

ated with the introduction of the modeling approaches proposed in Chapter 2 comes from

the large number of linear constraints linked to the scenario variables. In the current chapter

we will explore the other two computational issues: the presence of the nonlinear constraint

and integer variables. While our main interest is tied to the stochastic programming appli-

cations presented earlier, the solutions methods described in this work are not application-

specific, i.e., can be used in other areas, as long as the problem of interest can be formulated

as given below.

The general problem formulation considered in the current work can be expressed

as follows.

min c>x

s. t. v−1k

(
mk∑
j=1

pkjvk

( n∑
i=1

akijxi + bkj

))
≤

n∑
i=1

aki0xi + bk0, k = 1, . . . , K

Hx ≤ h

x ∈ Zn1
+ × Rn2

+ .

(6.1a)

(6.1b)

(6.1c)

(6.1d)

Here, n = n1 + n2 is the dimensionality of the mixed-integer decision vector x, and c, h,

H are vectors and a matrix of appropriate dimensions.

The main object of interest in problem (6.1) is the set of constraints (6.1b), where it
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is assumed that coefficients pkj are positive, pkj > 0, for all values of j and k, and functions

vk : R 7→ R, k = 1, . . . , K, have the following special properties (in accordance to the

results obtained in Chapter 2)

(i) vk(t) = 0 for t ≤ 0

(ii) vk(t) are increasing and convex for t ≥ 0

(iii) vk are such that constraints (6.1b) are convex.

To simplify the exposition and notation, in what follows we are going to suppress

index k in (6.1b), essentially assuming a single nonlinear constraint in problem (6.1), K =

1. Then, given the above assumptions on function v, it is straightforward to see that problem

(6.1) can be rewritten in the form

min c>x

s. t. w0 ≥ v−1
( m∑

j=1

pjv(wj)

)

wj ≥
n∑
i=1

aijxi + bj, j = 1, . . . ,m

w0 ≤
n∑
i=1

ai0xi + b0

w ≥ 0

Hx ≤ h

x ∈ ZN1
+ × RN2

+ ,

(6.2a)

(6.2b)

(6.2c)

(6.2d)

(6.2e)

(6.2f)

(6.2g)

We will also assume that the set X is polyhedral, so that the main challenges associated

with solving problem (6.2) arise from the nonlinear constraint (6.2b) and the integrality

constraints (6.2f).
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In the context of risk-averse stochastic programming as it was discussed in Chapter

5, the decision making problem of minimizing certainty equivalent risk measure subject to

feasibility of the decision vector can be expressed as

min
x∈X ,η∈R

η +
1

1− α
v−1
( m∑
j=1

pjv([X(x, ωj)− η]+)
)
, (6.3)

where ω takes value ωj with the probability pj for j = 1, . . . ,m. If additionally we assume

that the loss outcome is a linear function of the decision vector, i.e., X(x, ωj) = a>j x+ bj ,

and x ∈ Zn1 × Rn2 then (6.3) can be reformulated as

min η +
1

1− α
t

s. t. t ≥ v−1
( m∑
j=1

pjv(wj)
)

wj ≥ a>j x+ bj − η, j = 1, . . . ,m

x ∈ Zn1 × Rn2 ,w ≥ 0.

(6.4a)

(6.4b)

(6.4c)

(6.4d)

Comparing this formulation to (6.2) we can observe that (6.4) is a special case of the prob-

lem above. Since the focus of the current work is on the computational methods addressing

the nonlinear and integrality constraints in (6.2), the difference between these two formula-

tions is essentially irrelevant to our discussion in the reminder of this chapter. Additionally,

in view of this discussion, we will refer to constraint (6.2b) as a certainty equivalent con-

straint.

The two most influential ideas for solution procedures in mixed-integer program-

ming are: branch-and-bound algorithm and valid inequalities. Development of both of this

approaches in relation to problem (6.2) will be addressed in this chapter. In Section 6.2



150

we will present a version of branch-and-bound method targeted at the specific nonlinear

constraints considered in this chapter. Next, in Section 6.3 we will address two procedures

for generating inequalities valid for the feasible set of (6.2): lifted nonlinear cuts and dis-

junctive cuts. Finally in Section 6.4 we will present some results of numerical experiments.

Relevant literature review will be presented in Sections 6.2 and 6.3.

The main contributions of this chapter in our view are twofold. First, we show that

two techniques (a special implementation of a branch-and-bound and lifted nonlinear valid

inequalities) considered in the previous chapters in the case of MIpOCP problems can be

extended to the more general case considered here. While, both of this extensions do not

require novel theoretical development, heavily relying on the results already established,

the novelty of the problem formulation justifies, in our view, our interest in these extensions.

Particularly, we show how these techniques can be reformulated in order to address this new

application area, while still allowing for the use of the already existing theoretical basis.

Secondly, we propose another numerical approach, which relies on a simple geometric idea

for construction of linear disjunctive cuts. To the best of our knowledge such a process have

not been considered in the literature before.

6.2 Branch-and-Bound based on Outer Polyhedral Approximations

6.2.1 Existing Methods and Approach Due to Vielma et al.

Branch-and-bound (BnB) methods for solving MINLP problems are often divided

into two categories depending on the way continuous relaxations are handled. The first

group consists of the methods which solve exact non-linear continuous relaxation, usually
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using some version of an interior point method to deal with the arising NLP problems (see,

for example Gupta and Ravindran, 1985; Borchers and Mitchell, 1994; Leyffer, 2001 and

references therein). Alternatively, polyhedral approximations can be employed to help with

finding approximate solutions of the continuous relaxations (Duran and Grossmann, 1986;

Fletcher and Leyffer, 1994; Quesada and Grossmann, 1992; Bonami et al., 2008; Vielma

et al., 2008). This approach has been the basis for a few MINLP solvers such as Bonmin

(Bonami et al., 2008), FilMINT (Abhishek et al., 2010) or AOA (AIMMS open MINLP

solver). For example, outer approximation algorithms (AOA) solve alternating sequence

of MILP master problems and NLP subproblems, while in LP-NLP-based branch-and-

bound (Quesada and Grossmann, 1992, FilMINT) the solution of a single master mixed-

integer linear programming (MILP) problem is terminated every time an integer valued

candidate is found to solve an exact NLP, solution of which is then used to generate new

outer approximations.

Another framework has been proposed in Vielma et al. (2008) for the case of MIS-

OCP problems. The authors exploit the fact that there exists an extremely efficient lifted

outer polyhedral approximation of second order cones, and thus they propose to solve full-

sized approximating LP at each node of the master MILP, while, as previously, an exact

NLP is solved every time a new integer solution is found. Note that in this case, the al-

gorithm is guaranteed to find a solution that is ε-feasible at each node of the BnB tree

(essentially, new approximating hyperplanes are generated in every node in order to ensure

that), as opposed to LP-NLP approach, where NLP solution is used to generate new ap-

proximating facets. Hence, one of the key differences between different implementations
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of such branch-and-bound methods can be viewed as a trade-off between the size of ap-

proximating LPs (i.e., the accuracy of the approximation) and the number of exact NLPs

that need to be solved. Note that an exact NLP, of cause, provides tighter lower bounds,

and thus, more pruning capabilities, while LPs bring-in superior warm-start efficiencies,

consequently speeding up the processing time in each node. In this sense, the approach due

to Vielma et al. (2008) can be viewed as the most conservative in terms of the use of the

exact solvers: NLPs are only solved when absolutely necessary to verify incumbent integer

solutions.

The fact that this approach relies on an efficient lifted approximation scheme is

essential, since it may require an exponential number of facets to achieve a guaranteed

ε-feasibility for general nonlinear constraints. The main source of difficulty here can be

associated with high dimensionality of the constraint, i.e., it can be seen as a manifestation

of the “curse of dimensionality”. In Chapter 3 we have shown that this framework can be

competitive even when no such efficient approximation scheme is available by designing

a branch-and-bound based on polyhedral approximations for MIpOCP problems. The key

idea there was the introduction of a cutting plane generation procedure for approximately

solving continuous pOCP relaxations. In the next subsection we are going to demonstrate

that a similar approach is feasible in the more general setting considered in the current

chapter.
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6.2.2 Lifted Approximation Procedure

In the case of MISOCP problems the goal of defining an efficient approximation

scheme can be accomplished with a lifted approximation due to Ben-Tal and Nemirovski

(2001b). The approach proposed there can be described as a two-step procedure, where

in the first step a lifting technique is used in order to reduce the dimensionality of the

problem, and then an efficient way of approximating low-dimensional second-order sets is

proposed. In Chapter 3 the second step of this procedure has been replaced by an efficient

cutting plane generation framework. In the current chapter we again utilize the first step

of the lifting procedure due to Ben-Tal and Nemirovski (2001b), and then investigate low-

dimensional cutting plane generation possibilities.

The technique proposed in Ben-Tal and Nemirovski (2001b) for dimensionality re-

duction has been dubbed by the authors as tower-of-variables. It lets them represent a

single m + 1 dimensional second-order cone as an intersection of m three-dimensional

cones. In Chapter 3 we demonstrated that the same procedure can be employed for p-order

cones, and moreover a more compact implementation is possible. Here we observe that

the structure of constraint (6.1b) allows to employ a similar process summarized in the

proposition below.

Proposition 6.1. The set in the space of variables w0, . . . , wm defined by the system of

constraints

w0 = w2m−1, v(wm+j) ≥ β2j−1v(w2j−1) + β2jv(w2j), j = 1, . . . ,m− 1, (6.5)

where βj = pj for j = 1, . . . ,m and βj = 1 for j = m+ 1, . . . , 2m− 1 and wm+1, . . . are
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lifting variables, is equivalent to set defined by (6.2b).

Proof: The claim of the proposition can be verified directly. �

Following from this proposition, the second step of the approximation procedure

described above is reduced to the problem of approximating a set of 3D constraints of the

form

v(w0) ≥ β1v(w1) + β2v(w2), (6.6)

or equivalently,

w0 ≥ v−1
(
β1v(w1) + β2v(w2)

)
=: f(w1, w2). (6.7)

Due to this dimensionality reduction it can be completed using a simple gradient approx-

imation approach, i.e., through the use of tangent planes. Before continuing with this

approach, it is necessary to comment on the precise definition of approximation that we

use in the current context.

Recall that for a second-order cone, L2 = {w ∈ Rm+1 | w0 ≥ ‖(w1, . . . , wm)‖2}, a

point w ∈ Rm+1 is usually said to be ε-feasible if (1 + ε)w0 ≥ ‖(w1, . . . , wm)‖2 (Ben-Tal

and Nemirovski, 2001b). At the same time, it will be clear from the discussion below that

due to the lack of the conic property in the general case such an approach is not readily

applicable. Whence, we propose a slightly different definition. Namely, we will call a

point (w0, w1, w3) ε-feasible towards (6.6), if

(1 + ε)w0 + ε ≥ f(w1, w2). (6.8)

Note that this close with the “multiplicative” definition of approximation for second-order
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conic constraints for larger values of w1, w2, while it relies on the “additive” part when

w1, w2 are small.

Now, since the relaxed feasible set considered in the current work is convex, a

cutting plane defined as

w0 ≥ f(w∗1, w
∗
2) + f ′w1

(w∗1, w
∗
2)(w1 − w∗1) + f ′w2

(w∗1, w
∗
2)(w2 − w∗2), (6.9)

which is tangent to the 3-dimensional set (6.7) at point (f(w∗1, w
∗
2), w

∗
1, w

∗
2), is globally

feasible. Observe that
f(w1, w2) =f(w∗1, w

∗
2) + f ′w1

(w∗1, w
∗
2)(w1 − w∗1) + f ′w2

(w∗1, w
∗
2)(w2 − w∗2)

+R11(w
∗
1, w

∗
2)(w1 − w∗1)2+

2R12(w
∗
1, w

∗
2)(w1 − w∗1)(w2 − w∗2) +R22(w

∗
1, w

∗
2)(w2 − w∗2)2

≤w0 +R11(w
∗
1, w

∗
2)(w1 − w∗1)2+

2R12(w
∗
1, w

∗
2)(w1 − w∗1)(w2 − w∗2) +R22(w

∗
1, w

∗
2)(w2 − w∗2)2

where Rij(w1, w2) are the coefficients of the remainder of Taylor’s expansion.

Next, we will make the following regularity assumptions in addition to (i)–(iii)

above:

(iv) function v is two times continuously differentiable

(v) v(t) > 0 for all t > 0

(vi) feasible region of problem (6.2) is bounded.

Assumption (iv) will simplify our further analysis and let us establish iteration complexity

below. At the same time it can be noted that the existence of cutting plane (6.9) follows

from convexity assumption and does not require a more strict claim (iv). In other words,

the cutting plane procedure described below can still be applied even if (iv) does not hold.
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Given these assumptions, it is easy to see that v′(t) > 0 for all t > 0 since v is

nondecreasing, convex and strictly positive on t > 0. This and assumption (vi) above

imply that f ′ and f ′′ are bounded on the feasible region of (6.2). Hence, usual calculus

analysis (see, for example Thomas et al. (2007), Section 14.10) suggests thatRij(w1, w2) ≤

maxi,j maxw1,w2 f
′′
ij(w1, w2) = M < +∞.

Now, if (w1, w2) and (w∗1, w
∗
2) are sufficiently close, for instance, |w1 − w∗1| ≤ δ

and |w2 − w∗2| ≤ δ, then

f(w1, w2) ≤ w0 + 4Mδ2.

Suppose that a point (w0, w1, w2) satisfies a set of cutting plane constraints (6.9). If it is

at least δ =
√

ε
4M

close (in terms of `1-norm) to one of the pairs (w∗1, w
∗
2) used to define

cutting planes (6.9), then it satisfies w3 ≥ f(w1, w2) + ε. Of cause, this observation is a

simple manifestation of the well-known fact that a sufficiently smooth and convex set in

three dimensions can be approximately described by a number of its supporting planes. We

still include this explicit analysis here, because, in our opinion, it provides a clear intuitive

explanation for Proposition 6.2 below.

Putting together our development so far we can formulate the following procedure

for approximately solving a continuous relaxation of (6.2). Consider a master problem in
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the form of (6.2), where nonlinear constraint is substituted with a set of cutting planes (6.9):

min c>x

s. t. wm+j ≥ f
(
w
kj
1 , w

kj
2

)
+ f ′w1

(
w
kj
1 , w

kj
2

)(
w2j−1 − w

kj
1

)
+

f ′w2

(
w
kj
1 , w

kj
2

)(
w2j − w

kj
2

)
,

j = 1, . . . ,m− 1, kj = 1, . . . , Kj,

(6.2c)–(6.2g),

where Kj is the number of cutting planes on variables wm+j, w2j−1, w2j , derived around

the pairs (w
kj
1 , w

kj
2 ), kj = 1, . . . Kj . Then, given a w∗ (a current solution of the master

problem), we can add new constraints (6.9) around pairs (w∗2j−1, w
∗
2j), for those j for which

approximation condition (1 + ε)w∗m+j + ε ≥ f(w∗2j−1, w
∗
2j) is violated. Then the master

can be resolved and the iterative process continues. The following proposition establishes

some of the properties of the procedure.

Proposition 6.2. Suppose that for a given solution w∗ of the master cuts in the form of

(6.9) are added if condition (6.8) is not satisfied for a specific triple (wm+j, w2j−1, w2j),

j = 1, . . . ,m − 1 as described above. Assuming that the feasible region is bounded, this

cutting plane procedure terminates after a finite number of iterations for any given ε > 0.

In particular, the algorithm is guaranteed to generate at most O(ε−1.5) cutting planes.

Proof: As shown in the discussion above, a new master problem solution cannot be δ-close

(in terms of L1 norm) to one of the previous solutions and still violate condition (6.8), and

thus only a finite number of new cutting planes can be generated. In other words, each

generated cutting plane effectively occupies a cube with volume 8δ3. If V is the volume
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of the feasible region for (w0, w1, w2), then the maximum number of cutting planes can be

estimated as VM1.5

ε1.5
, if δ is selected as δ =

√
ε

4M
. �

Observe that this result essentially provides an exact algorithm for solving problem

(6.2). Indeed, once a solution with a desired accuracy ε is found, an improved solution can

be constructed by adding new cutting planes. In other words, such a procedure can yield a

solution that is arbitrary close to the solution of the exact problem.

Consequently, compare this result to a similar proposition we presented earlier in

Chapter 3. It has been shown there that a cutting plane approximation procedure is guaran-

teed to terminate with ε-feasible solution in O(ε−1) iterations for p-order cone programing

and O(ε−0.5) in the case of second-order cones. While the claim proved here is weaker,

it is in accordance with our expectation, since due to conic property, the analysis of cut-

ting plane procedure in p-order cones can be essentially carried through in two dimensions

(polar coordinates). Lack of this property in the case of certainty equivalent constraints,

hence, leads to a less tight bound on the number of iterations. At the same time, all our

experiments with both conic and nonconic problems suggest that in practice, only a small

fraction of all possible facets is generated, i.e., the fact that this bound is very restrictive,

may not hurt computational performance.

6.2.3 Branch-and-Bound Method

Now that an efficient approximation procedure for solving continuous relaxations

is determined, it can be incorporated in a branch-and-bound method due to Vielma et al.

(2008).
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Namely, we consider a master mixed-integer linear programming (MILP) problem

(we will denote it as P1) which is constructed from problem (6.2) by substituting (6.2b)

with a set of initial cutting planes of the form of (6.9). The solution procedure consists

of applying a regular branch-and-bound method to P1 with two adjustments. First, lower

bounds obtained from the continuous relaxations of P1 are found by applying the approx-

imation scheme due to Proposition 6.2 with a preselected value of ε = ε1. Note that it is

not required to remove any of the added cutting planes before proceeding to the next node

of the solution tree, since these constraints are globally feasible. Second, when an integer-

valued solution of P1 is found, in order to check its feasibility with respect to the exact

nonlinear formulation and declare incumbent or branch further, the exact continuous relax-

ation of P1 must be solved with bounds on the relaxed values of variables x determined by

the integer-valued solution in question (see, Vielma et al. (2008) for more details and for-

mal analysis). In order solve the exact relaxation, we once again employ Proposition 6.2,

that is to say, we construct a second problem P2, which represents a continuous relaxation

of (6.2). In this case, we solve it using the same cutting plane procedure due to Proposition

6.2 but with ε = ε2 � ε1 instead. A sufficiently small value of ε2 guarantees an essentially

exact solution.

Note that it has been previously observed (see, Vielma et al. (2008); Vinel and

Krokhmal (2014b) and Chapter 3 of the current work) that ε1 can be selected to be relatively

large and still provide promising computational results, which explains the relation ε2 � ε1

above. Note also that in this case, the described procedure can be viewed as repetitive

resolving of a relatively small-scale LPs due to P1, guided by a regular branch-and-bound,
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with occasional calls to a large-scale P2.

6.3 Valid Inequalities

6.3.1 Existing Approaches

It is well-known in the literature that valid inequality theory has been essential in

development of efficient solvers, particularly in mixed-integer linear programming (MILP).

Building on this success various approaches to generating valid inequalities have been

proposed for mixed-integer nonlinear programming (MINLP) problems. To name a few:

Atamtürk and Narayanan (2010) and Atamtürk and Narayanan (2011) have proposed mixed

inter rounding (MIR) and conic lifted cuts for conic programming problems; Stubbs and

Mehrotra (1999) studied cutting plane theory in 0-1 mixed-convex programming; Çezik and

Iyengar (2005) proposed Chvatal-Gomory cuts in conic programming; Bonami (2011) have

considered lift-and-project cuts. There have also been a series of publications addressing

possible approaches to designing disjunctive (or split) cuts in MINLP (for example, Burer

and Saxena 2012; Cadoux 2010; Kılınç et al. 2010; Modaresi et al. 2015; Saxena et al. 2008

among others).

In this section we consider two approaches for generation of valid inequalities for

the mixed-integer programming problem (6.2). First we are going to discuss lifted non-

linear cuts, building on the developments presented in Chapter 4. Next, we will present

a simple geometric argument that allows us to construct a class of linear disjunctive cuts

valid for our feasible set.
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6.3.2 Lifted Non-Linear Cuts

A lifting procedure for conic mixed-integer programming has been proposed in

Atamtürk and Narayanan (2011). Authors introduced a lifting scheme, which provides a

way of generating new conic valid inequalities for mixed-inter conic sets. We have em-

ployed this approach for solving MIpOCP problems in Chapter 4 and obtained promising

numerical results for a class of risk-averse portfolio optimization models. While this tech-

nique has been proposed as a way to generate conic cuts for conic feasible sets, as we show

below, it can be extended for certainty equivalent constraints as well. As will be clear from

our discussion below, our main contribution here lies in the reformulation of the procedure

in nonconic terms, while most of the proofs directly follow from the previous developments

in Atamtürk and Narayanan (2011) and Chapter 4.

Consider set V = {x ∈ Rm+1 |
∑m

j=1 pjv(xj) ≤ v(x0)}, which is going to play the

role of a conic set in Atamtürk and Narayanan (2011). We can then define

T n(b) =
{
xi ∈ X i | b−

n∑
i=0

Aix
i ∈ V

}
, (6.10)

where each X i is a mixed-integer set in Rni and Ai and bi are of appropriate dimensions.

Suppose that u : R 7→ R satisfies the same assumptions as function v. Let us further

suppose that inequality h− F 0x0 ∈ U is valid for T 0(b). Atamtürk and Narayanan (2011)

show how this inequality can be lifted by computing F 1, . . . , F i resulting in valid cuts for

T i(b) h−
∑i

`=0 F
`x` ∈ U.when sets V and U are proper cones. By repeating arguments of

Atamtürk and Narayanan (2011) the following theorem can be shown to hold for a lifting
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set Φi(v) defined as

Φi(v) =
{
∂ ∈ Rp |h−

n∑
i=0

F ixi − d ∈ U for all (x0, . . . , x
i) ∈ T i(b− v)

}
.

Theorem 6.3. 1. Φi(v) is closed and convex.

2. 0 ∈ Φi(0)

3. Φi+1(v) ⊂ Φi(v)

4. F 1, . . . , F i+1 generate a valid inequality for T i+1(b) iff F i+1xi ∈ Φi(Ai+1xi) for all

xi.

5. If Ω(v) ⊂ Φ0(v) is superadditive, then F 1, . . . , F i+1 generate a valid inequality for

T i+1(b) whenever F i+1xi ∈ Ω(Ai+1xi) for all xi.

Proof: Since the arguments establishing the analogous results in Atamtürk and Narayanan

(2011) do not rely on the conic assumption we believe it to be unnecessary to repeat those

here. �

As it was noted above, we employed an analogous result for the case of p-order

conic constraints (V = {x ∈ Rm+1 |x0 ≥ ‖x‖p}) in Chapter 4. As it turns out, the

reasoning we used there does not rely on the conic property as well, i.e., our results from

Chapter 4 can be carried through without major changes. Particularly, we can consider a

set T̂ n(b) as

T̂ n(b) =

{
(x, η+, η−, y, t) ∈ Zn+ × R4

+ : v

([ n∑
i=1

aixi + η+ − η− − b
]
+

)

+ v(y) ≤ v(t)

}
,

and then show that the following claim holds.
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Proposition 6.4. Inequality

v

([
(1− f)(x− bbc) +

n∑
i=1

αixi

]
+

)
+ v(y) ≤ v(t) (6.11)

is valid for T̂ n(b), where αi =
[ai − b+ bbc(1− f)

M

]
+

, f = b − bbc, and M is such that

xi ≤M for all i.

This result is a very restricted application of Theorem 6.3. Indeed here we are con-

sidering the case when the set U is the same as the initial set V and moreover, not only

all the analysis is restricted to three-dimensional nonlinear constraints, but also the second

dimension (represented by variable y) is assumed to be continuous (in other words, inte-

gral structure of the second dimension is relaxed). Despite these simplifications we have

demonstrated in Chapter 4 that such an approach may yield promising computational re-

sults in MIpOCP problems. In Section 6.4 we will numerically analyze this procedure in

mixed-integer programming with certainty equivalent constraints. Moreover, two of these

stipulations can be in fact viewed as natural assumptions for the task of deriving valid in-

equalities in our case. Observe that due to the tower-of-variables techniques presented in

Section 6.2 the constraints are already represented in three-dimensional form, and further-

more, it is also highly undesirable from computational perspective to deal with U different

from initial set V , since this would result in additional numerical challenges associated

with the new type of nonlinearity in the problem.
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6.3.3 Linear Disjunctive Cuts

Throughout this section we will use the following notation: x̄ = (x0,x) ∈ Rn+1.

We will also reformulate certainty equivalent constraints as

x̄ ∈ K, K :=

{
x̄ ∈ Rn+1

∣∣∣∣F (x) ≤ x0

}
,

F (x) := v−1
( m∑
j=1

v(|a>j x+ bj|)
)
, x ∈ Zn+.

(6.12)

Note that we consider F (x) := v−1
(∑m

j=1 v(|a>j x + bj|)
)

instead of possible F (x) :=

v−1
(∑m

j=1 v([a>j x + bj]+)
)

which would be in accordance with stochastic programming

motivations. Such a choice simplifies some of our development below, and since it results

in a relaxed set K any valid inequality obtained for K will be valid for problem (6.2) as

well.

Disjunctive or split cuts have been extensively studied in the literature, especially

when applied to MIP problems (Balas, 1971). This approach is based on a very intuitive

idea: consider disjunction xk ≤ π0 ∨ xk ≥ π1 = π0 + 1 with π0 ∈ Z+, where k ∈ 1 . . . n

is preselected. Due to integrality condition there are no feasible solutions outside of this

disjunction, hence, system (6.12) implies that

x̄ ∈ conv

({
x̄ ∈ K
xk ≤ π0

}⋃{
x̄ ∈ K
xk ≥ π1

})
. (6.13)

Consequently, any inequality describing this convex hull is valid for the feasible region

of (6.12). Moreover, in the case of mixed-integer linear programming (MILP) all the sets

involved (including the convex hull above) are polyhedral which substantially simplifies

the construction procedures, and hence, increases the effectiveness of the cuts. There also

exists a considerable amount of literature on generalizing this approach for MINLP prob-
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lems (Burer and Saxena, 2012; Cadoux, 2010; Kılınç et al., 2010). Recently there have

also been presented various efforts to design nonlinear disjunctive cuts, see Andersen and

Jensen (2013); Belotti et al. (submitted); Bienstock and Michalka (2014); Modaresi et al.

(2015); Burer and Kılınç (2014).

It has been shown (see, for example, Modaresi et al., 2015) that in some cases it may

be possible to describe convex hull (6.13) using a single non-linear constraint, particularly,

such a description is available for second-order conic set K. Note that many of this works

consider the problem in much more involved cases of general disjunctions.

With this in mind, consider certainty equivalent system (6.12). A first question that

we could ask here is whether it is more desirable to find a closed-form nonlinear description

of (6.13) following one of the recent developments mentioned above, or whether a linear

description would be more useful in this case. Note that if such a nonlinear description

is to be found and then used in a numerical procedure to solve problem (6.2), then it is

highly desirable for it to be expressed in the same form as the nonlinear constraint already

present. Indeed, since adding nonlinearity to a mixed-integer programming problem can

substantially increase the difficulty of solving it, adding a new type of nonlinearity may

further increase this complexity. Moreover, if the computational procedures used are tai-

lored specifically to the constraints already present in the problem, then addition of a new

type of nonlinear cut that is not comparable with these approaches may be impractical. The

descriptions obtained in the literature for a second-order conic set K express the convex

hull of the disjunction in terms of quadratic sets, essentially preserving the second-order

conic nonlinearity in many practical cases, thus justifying the approach.
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Consequently, consider (6.13) with certainty equivalent system (6.12). We can con-

clude that it is desirable that its description itself is represented in terms of function F

defined in (6.12). At the same time, consider supporting hyperplanes for (6.13). It is easy

to realize that there exist such hyperplanes that their intersection with the convex hull (6.13)

is a straight line segment in between xk = π0 and xk = π1. On the other hand, a boundary

of a set defined in terms of function F does not in general contain such segments, since it,

in general is nonconic. Thus, it is reasonable to expect that such a closed-form description

of convex hull (6.13) cannot be expressed in terms of function F alone. With this in mind,

we propose to concentrate on a more modest goal of constructing supporting hyperplanes

for (6.13), or in other words, linear disjunctive cuts.

Next will propose an intuitive idea for a procedure aimed at avoiding difficulties

associated with the general disjunctive cut generation techniques available in the literature

by exploiting specific structural properties of (6.13). Suppose that we have selected a x̄0 ∈

K such that x0k = π0, i.e., x̄0 is located on one side of the disjunction. Given such a x̄0 find

x̄1 ∈ K such that x1k = π1 and ∂n−1F (x1) ∩ ∂n−1F (x0) 6= ∅, where subdifferential ∂n−1

is taken with respect to variables xi, i 6= k. A linear disjunctive cut is then constructed

as a constraint
∑

i αixi + β ≤ x0, where (α1, . . . , αk−1, αk+1, . . . , αn)T ∈ ∂n−1F (x0) ∩

∂n−1F (x1), while αk and β are selected in such a way that
∑

i αix
0
i+β = x00 and

∑
i αix

1
i+

β = x10.

For illustrative purposes first assume that F is differentiable at both x̄0 and x̄1. In

this case requirement ∂n−1F (x0)∩ ∂n−1F (x1) 6= ∅ reduces to ∂F
∂xi

(x0) = ∂F
∂xi

(x0) = αi for

all i 6= k. In other words, the constructed hyperplane is such that it passes through both x̄0
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and x̄1 and is tangent to the sides of the disjunction at these points due to the requirement

αi = ∂F
∂xi

(x0). Hence, such an inequality is necessary valid by construction since the set K

is convex.

Formally, the described process can be formulated as follows. Given x̄0 ∈ Rn×R,

k ∈ {1, . . . , n}, π0, π1 ∈ Z, and function v : R 7→ R, find x̄1 ∈ Rn × R and (α, β) ∈

Rn × R such that



n∑
i=1

αix
0
i + β = x00

n∑
i=1

αix
1
i + β = x10

x0k = π0

x1k = π1

F (x0) = x00

F (x1) = x10

(α1, . . . , αk−1, αk+1, . . . , αn)> ∈ ∂n−1F (x0) ∩ ∂n−1F (x1)

(6.14a)

(6.14b)

(6.14c)

(6.14d)

(6.14e)

(6.14f)

(6.14g)

where F (x) := v−1
(∑m

j=1 v(|a>j x + bj|)
)

, and ∂n−1F (x) denotes subdifferential with

respect to variables xi for i 6= k. Let us denote

P :=
{
x̄ ∈ Rn+1

∣∣∣ n∑
i=1

αixi + β ≤ x0

}
.

Then K represents the initial feasible set due to constraint (6.12) and P is the half space

valid for the linear cut
∑n

i=1 αixi +β ≤ x0. By ∂K and ∂P we will understand boundaries

of these sets. Next we will show that such a linear cut is valid for conv
(
{K, xk ≤ π0} ∪

{K, xk ≥ π1}
)

.
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Observation 6.5. The following claims hold:

1. x̄i ∈ ∂K for i = 0, 1

2. x̄i ∈ ∂P for i = 0, 1

3. if x̄ /∈ P and xk = π0 then x̄ /∈ K

4. if x̄ /∈ P and xk = π1 then x̄ /∈ K

Proof: Claims (1) and (2) follow immediately from (6.14a)–(6.14b) and (6.14e)–(6.14f).

In order to see that (3) holds, note that (6.14) implies that on the space restricted by xk =

π0 the set ∂P is a supporting hyperplane for the set ∂K, which immediately implies (3).

Analogous observation holds for (4).

�

Observation 6.6. The following claims hold:

1. If x̄ ∈ ∂P and xk < π0, then x̄ /∈ intK.

2. If x̄ ∈ ∂P and xk > π1, then x̄ /∈ intK.

Proof: First consider claim (1). Suppose that the contrary holds, i.e., that x̄ ∈ intK.

Then there exists an ε > 0 such that ȳ = (x0 − ε,x) ∈ K and ȳ /∈ P . Now consider

the segment connecting points ȳ and x̄1, i.e., the set {λȳ + (1 − λ)x̄1 |λ ∈ [0, 1]} =: T .

Since both ȳ ∈ K and x̄1 ∈ K, then T ⊂ K. Since π0 < π1 and xk < π0, then there exists

z̄ = (z0, z) ∈ T such that zk = π0. At the same time, z̄ /∈ P as ȳ /∈ P while x̄1 ∈ ∂P .

Thus, by Observation 6.5 (3) x̄ /∈ K which contradicts the assumption above. Hence the

claim (1) holds. Clearly, (2) can be proved analogously. �
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Proposition 6.7. If x̄ ∈ K and xk /∈ [π0, π1], then x̄ ∈ P .

Proof: Again, suppose the contrary, i.e., that x̄ /∈ P , which means that
∑n

i=1 αixi + β >

x0. Then, there exists ȳ = (x0 + ε,x) ∈ ∂P (take ε =
∑n

i=1 αixi + β− x0). Moreover, by

definition ȳ ∈ intK. If xk < π0 then this conclusion contradicts with Observation 6.6 (1),

otherwise, xk > π1 and the conclusion above contradicts Observation 6.6 (2). �

This result guaranties that the cut generated by (6.14) is feasible for (6.13). More-

over, it is easy to see that for any β̃ > β and α̃ = α the corresponding cut is not feasible

due to Observation 6.5 (1). Hence, system (6.14) produces a tight cut in the sense that it

cannot be improved by an affine transformation.

Observe that x̄(1) ∈ Rn × R and (α, β) ∈ Rn × R are the unknowns in the system

(6.14). Given a specific value of x1 ∈ Rn such that ∂n−1F (x(0)) ∩ ∂n−1F (x(1)) 6= ∅ it

is easy to determine the rest. Indeed, one can readily note that x10 is uniquely defined by

(6.14f), (α1, . . . , αk−1, αk+1, . . . , αn)> can be selected according to (6.14g) and αk and β

are fixed by (6.14a) and (6.14f). Thus, the most challenging step in this procedure is the

selection of x1 satisfying ∂n−1F (x(0)) ∩ ∂n−1F (x(1)) 6= ∅. Clearly, function F defined in

(6.12) is piecewise continuously differentiable, yet, the choice of such an x1 can be diffi-

cult numerically, due to the nature of subdifferentials. Consequently, we propose to employ

another approximation procedure in order to achieve this goal. Namely, we consider substi-

tuting |t| u
√
t2 + ε, and hence, defining F̃ (x) := v−1

(∑m
j=1 v

(√
(a>j x+ bj)2 + ε

))
.

Then, F̃ is continuously differentiable and in order to find x1 we propose to solve a system
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of nonlinear equations with a given x0

∂F̃

∂xi
(x1) =

∂F̃

∂xi
(x(0)), i = 1, . . . , k − 1, k + 1, . . . , n. (6.15)

After system (6.15) is solved, the validity of the found x1 can be verified directly by com-

paring ∂n−1F (x(0)) and ∂n−1F (x(1)).

Remark 18. To this end we have not commented on the existence of a solution of (6.14).

While we cannot formally show that x̄1 defined in (6.14) necessarily exists in general, all

our numerical experience suggests that this questions can be resolved positively. In other

words, it seems to be the case that an appropriate x̄1 can always be found in practice.

Finally, it is necessary to comment on the selection of k, π0, π1 and x̄0. If the cut

generation procedure is implemented in a branch-and-bound setting, it can be assumed that

a solution of a relaxed problem x̄relax is known beforehand. Hence, it is natural to select

k ∈
{
{1, . . . , n}

∣∣∣xrelax
k /∈ Z

}
, π0 = bxrelax

k c and π1 = π0 + 1. Since the goal of generating

a valid inequality is to cutoff x̄relax, then it is natural to pick x̄0 according to x0i = xrelax
i , for

i 6= k, x0k = π0 and x00 = F (x0).

Before concluding this section, it is worth noting that the proposed procedure does

not represent a general way to generate a split closure for the feasible set (6.12). Alterna-

tively it can be seen as a quick and simple numerical procedure to find a valid inequality

that can cutoff the current non-integral solution.

6.4 Numerical Experiments

In this section we will report some of the results of numerical case studies per-

formed in order to evaluate the proposed techniques. As it has been explained in the in-
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troduction, our main interest in the problem class considered in this chapter stems from

risk-averse approaches to stochastic programming, and hence we base our numerical ex-

periments on this application area. Next, we will discuss particular formulation used in our

study.

6.4.1 Model Formulation

We use the same two types of discrete portfolio optimization problems as in the

previous chapters. Namely, lot-buying constrained problem:

min
x∈Rn+, z∈Zn+

{
ρ(−r>x)

∣∣∣∣ E(r>x) ≥ r̄, 1>x ≤ 1, x =
L

C
Diag(p) z

}
, (6.16)

where r̄ is the prescribed level of expected return, x ∈ Rn
+ denotes the no-short-selling

requirement, 1 = (1, . . . , 1)>, L is the size of the lot, C is the investment capital (in

dollars), and vector p ∈ Rn represents the prices of assets; and cardinality constrained

problem:

min
x∈Rn+, z∈{0,1}n

{
ρ(−r>x)

∣∣∣ E(r>x) ≥ r̄, 1>x ≤ 1, x ≤ z, 1>z ≤ Q
}
, (6.17)

where Q is the maximum number of assets in the portfolio.

6.4.2 Implementation Remarks, Numerical Results and Conclusions

We used historical data for n stocks chosen at random out of stocks traded on

NYSE, such that historical prices are available for 5100 consecutive trading periods pre-

ceding December, 2012. Returns overm consequent 10-day periods starting at a (common)

randomized date were used to construct the set ofm equiprobable scenarios for the stochas-

tic vector r. The values of parameters L,C,Q, α, and r̄ were set as follows: L = 1000,
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C = 100,000, Q = 5, α = 0.9, r̄ = 0.005.

We used historical data for n assets chosen at random out of stocks traded on NYSE,

such that historical prices are available for 5100 consecutive trading periods preceding De-

cember, 2012. Returns over m consequent 10-day periods starting at a (common) ran-

domized date were used to construct the set of m equiprobable scenarios for the stochastic

vector r. The values of parameters L,C,K, α, and r̄ were set as follows: L = 1000,

C = 100,000, M = 5, α = 0.9, r̄ = 0.005.

CPLEX MIP and LP solvers have been used to implement the branch-and-bound

method described in Section 6.2. Namely, callback routines have been employed in order to

add approximating hyperplanes at each node of the solution tree, while a goal framework

was utilized to direct branching. The exact algorithm based on approximation scheme

presented in Section 6.2 has been used to verify incumbent solutions.

The two families of valid inequalities have been employed through CPLEX call-

back routine. In our experiments we only added cuts in the root node of the solution tree.

A quasi-Newton’s method has been used to solve the underlying nonlinear systems of equa-

tions when finding linear split cuts presented in Section 6.3.3.

Two sets of experiments have been performed. First, the implementation of the

branch-and-bound method from Section 6.2 has been compared against AIMMS AOA im-

plementation. The results for lot-buying and cardinality constrained problems are summa-

rized in Table 6.1 and 6.2 respectively. Observe that our custom implementation signif-

icantly outperforms AOA method for all choices of the parameters n and m. It is worth

noting that, as it is stated in AIMMS manual, their implementation is much more efficient
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for binary variables, which is the case in our cardinality constrained problems. This ob-

servation explains the fact that in our experiments the improvement over AOA method has

been less significant for this class of the problems. Overall, we can conclude that this

study confirms that the branch-and-bound approach presented here can be seen as a viable

strategy for solving the considered class of MINLP problems.

In the second stage of our case study, we aimed at evaluating the effect that valid

inequalities defined in Section 6.3 can play in solving problems (6.16) and (6.17). Results

of this case study are summarized in Table 6.3 and 6.4. Note that for each problem size

20 instances were generated and solved with a 1 hour time limit. We report the number of

instances solved within the time limit, solution time and number of nodes in the branch-

and-bound tree averaged over the instances that have been solved in 1 hour by all three

approaches, and the average integrality gap among instances not solved to optimality.

We can observe that in both of the models the usage of the proposed valid inequal-

ities leads to improved solution performance, especially for larger problems sizes. It is, in

our view, particularly important to note that we are able to solve more problem instances

within the time limit, as well as significantly reduce the integrality gap. It can also be noted

that while in the case of lot-buying constrained problems the lifted cuts presented in Sec-

tion 6.3.2 exhibit the best overall performance, in cardinality constrained optimization, this

approach does not provide any improvement over pure branch-and-bound.
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Table 6.1: Running time of AIMMS-AOA and the proposed implementation of the branch-

and-bound method in lot-buying constrained portfolio optimization. Results averaged over

20 instances.

n 5 10 20

m 10 50 100 10 50 100 10 50 100

CGBNB 0.93 0.87 0.34 0.80 1.46 1.62 1.51 2.70 3.99
AIMMS 49.17 67.10 73.55 104.43 151.35 221.19 195.29 618.61 7710.85

Table 6.2: Running time of AIMMS-AOA and the proposed implementation of the branch-

and-bound method in cardinality constrained portfolio optimization. Results averaged over

20 instances.

n 10 20 50

m 500 1000 2000 500 1000 2000 500 1000 2000

CG-BNB 0.74 1.72 5.10 12.03 22.57 50.64 108.67 240.38 263.57
AIMMS 11.65 35.90 96.88 294.74 459.21 639.43 863.50 1489.65 2071.98
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Table 6.3: Performance of two valid inequality families in lot-buying constrained portfolio

optimization. The rows refer to: no cuts – pure branch-and-bound presented in Section 6.2,

lifted – lifted cuts from Section 6.3.2, split – disjunctive cuts introduced in Section 6.3.3.

Results averaged over 20 instances. Running time and nodes in solution tree columns reflect

only instances solved within 1 hour time limit by all three approaches. Similarly gap after

time limit corresponds to instances for which no optimal solution was found within the time

limit for each of the methods.

n m number solved running time nodes in solution tree gap after time limit

lifted split no cuts lifted split no cuts lifted split no cuts nonlin split no cuts

50 500 20 20 20 11.57 9.92 11.01 5864.50 4309.05 5905.65 — — —
1000 20 20 20 41.07 38.45 28.57 9307.70 8265.75 6453.65 — — —
2000 20 20 20 68.12 68.11 138.37 7411.30 6559.15 13016.30 — — —
5000 19 19 19 695.14 622.18 581.49 18903.58 16145.32 15368.53 2.41% 5.19% 6.25%

100 500 19 14 14 400.22 436.02 467.32 129745.46 173480.42 190997.69 — — —
1000 15 13 13 456.84 502.90 1300.26 77967.64 86555.38 221685.91 2.68% 14.02% 6.06%
2000 19 20 15 179.06 337.18 223.93 11908.73 24955.93 16974.87 3.01% — 5.46%
5000 19 20 18 673.90 670.20 731.66 16101.59 13831.22 17026.82 — — —

200 500 6 1 0 — — — — — — 87.92% 46.49% 191.83%
1000 0 0 0 — — — — — — 16.31% 24.34% 22.99%
2000 8 6 5 498.57 787.33 2153.11 25654.00 35918.50 138485.00 8.33% 3.84% 6.50%
5000 17 12 12 1408.58 1804.24 1539.48 19271.44 20442.11 22581.56 — — —

500 500 0 0 0 — — — — — — 128.91% 128.89% 200.04%
1000 0 0 0 — — — — — — 109.42% 114.03% 116.02%
2000 0 0 0 — — — — — — 29.27% 29.34% 28.95%
5000 2 1 0 — — — — — — 124.45% 113.67% 213.15%

1000 500 0 0 0 — — — — — — 97.01% 98.57% 106.20%
1000 0 0 0 — — — — — — 227.93% 227.73% 316.26%
2000 0 0 0 — — — — — — 54.65% 55.90% 65.86%
5000 0 0 0 — — — — — — 111.06% 214.31% 219.85%
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Table 6.4: Performance of two valid inequality families in cardinality constrained portfolio

optimization. The rows refer to: no cuts – pure branch-and-bound presented in Section 6.2,

lifted – lifted cuts from Section 6.3.2, split – disjunctive cuts introduced in Section 6.3.3.

Results averaged over 20 instances. Running time and nodes in solution tree columns reflect

only instances solved within 1 hour time limit by all three approaches. Similarly gap after

time limit corresponds to instances for which no optimal solution was found within the time

limit for each of the methods.

n m number solved running time nodes in solution tree gap after time limit

lifted split no cuts lifted split no cuts lifted split no cuts nonlin split no cuts

50 500 20 20 20 108.84 122.91 108.67 25574.20 26636.55 25574.20 — — —
1000 20 20 20 240.62 252.45 240.38 19634.00 19239.50 19634.00 — — —
2000 20 20 20 263.00 288.33 263.57 7651.90 7506.10 7651.90 — — —
5000 20 20 20 152.99 76.31 151.91 1274.30 994.70 1274.30 — — —

100 500 6 7 6 2001.51 1795.24 1998.73 293837.33 111602.00 293837.33 23.63% 20.40% 23.62%
1000 0 3 0 — — — — — — 29.48% 28.22% 29.36%
2000 3 5 3 2770.52 2440.59 2796.48 54008.00 42317.75 54008.00 13.08% 11.84% 13.07%
5000 18 19 18 1043.44 991.63 1047.82 7770.28 6734.63 7770.28 4.63% 4.60% 4.61%

200 500 0 1 0 — — — — — — 85.93% 74.56% 85.78%
1000 0 0 0 — — — — — — 71.87% 52.10% 71.86%
2000 0 0 0 — — — — — — 37.56% 17.68% 37.56%
5000 0 0 0 — — — — — — 8.87% 8.82% 8.87%

500 500 0 1 0 — — — — — — 178.71% 79.19% 178.56%
1000 0 0 0 — — — — — — 126.57% 26.28% 126.58%
2000 0 0 0 — — — — — — 67.29% 37.03% 67.30%
5000 0 0 0 — — — — — — 21.63% 13.15% 21.63%

1000 500 0 0 0 — — — — — — 223.31% 123.95% 223.31%
1000 0 0 0 — — — — — — 163.56% 65.14% 163.57%
2000 0 0 0 — — — — — — 92.95% 73.52% 92.96%
5000 0 0 0 — — — — — — 219.35% 124.00% 219.36%
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6.5 Concluding Remarks

In this chapter we reconsidered some of the methods that have been previously pro-

posed in the literature, and shown that these approaches can be naturally applied in the case

of mixed-integer nonlinear programming problems . In addition we also proposed a new

simple procedure for generating disjunctive cuts. The performed numerical experiments

show some promising results.
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