
University of Iowa
Iowa Research Online

Theses and Dissertations

Spring 2009

Optimization techniques in data mining with
applications to biomedical and psychophysiological
data sets
Zhaohan Yu
University of Iowa

Copyright 2009 Zhaohan Yu

This thesis is available at Iowa Research Online: http://ir.uiowa.edu/etd/274

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Industrial Engineering Commons

Recommended Citation
Yu, Zhaohan. "Optimization techniques in data mining with applications to biomedical and psychophysiological data sets." MS
(Master of Science) thesis, University of Iowa, 2009.
http://ir.uiowa.edu/etd/274.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=ir.uiowa.edu%2Fetd%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages

OPTIMIZATION TECHNIQUES IN DATA MINING WITH APPLICATIONS TO

BIOMEDICAL AND PSYCHOPHYSIOLOGICAL DATA SETS

by

Zhaohan Yu

A thesis submitted in partial fulfillment
of the requirements for the Master of

Science degree in Industrial Engineering
in the Graduate College of

The University of Iowa

May 2009

Thesis Supervisor: Assistant Professor Pavlo Krokhmal

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

MASTER'S THESIS

This is to certify that the Master's thesis of

Zhaohan Yu

has been approved by the Examining Committee
for the thesis requirement for the Master of Science
degree in Industrial Engineering at the May 2009 graduation.

Thesis Committee: ___________________________________
 Pavlo Krokhmal , Thesis Supervisor

 Yong Chen

 Andrew Kusiak

ii

LIST OF TABLES ---iv

LIST OF FIGURES -- v

CHAPTER 1 INTRODUCTION --- 1

1.1 Data Mining Literature Review -- 1

1.2 Optimization-Based Methods in Data Mining ------------------------------- 2

1.2.1 Support Vector Machine Method ----------------------------------- 3

1.3 Linear programming and Multi-surface Method----------------------------- 4

1.3.1 K-Mean Method --- 4

1.3.2 Others Optimization Based Methods ------------------------------- 6

1.4 Time-Series Data Mining --- 7

CHAPTER 2 P-NORM MEASURES IN LINEAR PROGRAMMING
DISCRIMINATION --- 10

2.1 Introduction -- 10

2.2 P-Norm Separation Model --- 13

2.2.1 Solving linear programming problems with p-order conic
constraints using polyhedral approximations of p-order cones 22

2.3 Data Set Information and Computation Results ---------------------------- 25

CHAPTER 3 LINEAR DISCRIMINANT FUNCTION, K-NEAREST NEIGHBOR
METHODS AND NEURAL NETWORKS IN CLASSIFYING
PSYCHOPHYSIOLOGICAL DATA --------------------------------------- 29

3.1 Data Set Information and Characteristics ------------------------------------ 29

3.1.1 Background-- 29

3.1.2 Data Set Information --- 29

3.1.3 Data Set Transformation and Characteristics -------------------- 31

3.1.4 Error Measurements-- 40

3.2 Linear Programming Method -- 41

3.2.1 Algorithm for linear programming Discrimination Method --- 41
3.2.2 Computational Procedure --- 42

3.2.3 Computational Results --- 43

3.3 Principal Component Analysis Method -------------------------------------- 44

3.4 K-Nearest-Neighbor Method -- 48

3.4.1 Introduction --- 48

3.4.2 The Algorithm and Application ------------------------------------ 50

iii

3.5 Feedforward Neural Network --- 55

3.5.1 Multi-layer feed forward Neural Networks ----------------------- 55

3.5.2 Application -- 58

3.6 Peak Detection Method --- 63

CHAPTER 4 DISCUSSION AND CONCLUSION -- 70

APPENDIX A: CLASSIFICATION RESULTS FOR WISCONSIN BREAST
CANCER DATA SET -- 73

APPENDIX B: CLASSIFICATION RESULTS FOR THE DATA SETS FROM UCI -- 75

APEENDIX C: CORRELATION FOR EACH TRIAL IN THE
PSYCHOPHYSIOLOGICAL DATA--- 78

APPENDIX D RESULT FOR K-NEAREST NEIGHBOR METHOD --------------------- 80

APPENDIX E: RESULTS FOR NEURAL NETWORK ------------------------------------- 81

REFERENCES -- 83

iv

LIST OF TABLES

Table 1.1 K-mean: Common choices for proximity, centroids, and objective functions5

Table 2.1 Description of Wisconsin Breast Cancer Data Set (Original)25

Table 2.2 Comparison of classification error between different orders and different
1, 2 δ δ for Wisconsin Dataset...27

Table 2.3 Average classification error with different 1, 2 δ δ for different data sets28

Table 3.1 Explanation of EEG frequency Bands ...38

Table 3.2 Raw signal correlations in trials A01 and A02 of subject A39

Table 3.3 The test results of linear separation algorithm for EEG signals Fz, F7 with
different values of 1W, 2W ..44

Table 3.4 Average and standard deviation of classification error for using different
combinations of features ..44

Table 3.5 Testing and training errors for k-nearest neighbor method with different
time windows ...53

Table 3.6 Mean and standard deviation of testing accuracy for nearest-neighbor
method with different 1W and different signals when 2 100W= 54

Table 3.7 Mean and standard deviation of testing accuracy for nearest-centroid
method with different 1W and different signals when 2 100W= 55

Table 3.8 Details for the neural network ..60

Table 3.9 The result of neural network with 35 inputs for (a) algorithm 1 and (b)
algorithm 2 ...62

Table 3.10 The average classification accuracy for Algorithm 1 and 2 with different
numbers of inputs ...63

Table 3.11 The correlation between the average magnitudes and standard deviation
in the Peak Detection Method ...66

Table 3.12 Detail results from PDM for each data set ...68

Table 3.13 Accuracy and false alarm rate by PDM for each data set69

v

 LIST OF FIGURES

Figure 1.1 Structure of Data Mining ...1

Figure 2.1An optimal separator wx γ= for linearly inseparable sets: A (o) and B (+)
(Mangasarian, Bennett, 1991) ...13

Figure 2.2 Demonstration of two data sets have the same arithmetic mean (A), and one
data set has the arithmetic mean in the convex hull of data points from
another data set (B) ...21

Figure 3.1 EEG 10-20 System Diagram ..30

Figure 3.2 Illustration of data preparation before DFT ...34

Figure 3.3 DFT transforms of Fz and F7 signals in the frequency band 1~10 Hz for
subjects A, E, and F ...37

Figure 3.4 The Amplitude distributions of raw signal from A01 for task 0, 1 and 240

Figure 3.5 The magnitudes of task 0, 1, 2 of Subject A and E in Fz-F7 spaces47

Figure 3.6 Comparison between the linear separator obtained by LP and PCA for two
trials of subject E ...48

Figure 3.7 A Voronoi diagram ..50

Figure 3.8 A typical three layers feed forward neural network ...57

Figure 3.9 A procedure to train a neural network ..58

Figure 3.10 The two measurements versus time plots from PDM for data set A01, E01,
F01 ...66

Figure 3.11The points detected by the peak detection algorithm in E01 data set67

1

CHAPTER 1
INTRODUCTION

1.1 Data Mining Literature Review

Data Mining (DM) is the process of automatic discovery of useful information in

large data repositories (Tan, Steinbach, Kumar, 2005). It is especially appropriate for the

fields where researchers do not have a theoretical understanding but large amounts of

data. Generally, DM can be divided into two categories according to the objectives of

algorithms: Classification Analysis and Association Analysis.

Classification is a procedure of dividing data sets into different classes based

either on the knowledge of the predefined classes or just on structure of data set itself,

which are called supervised classification (or classification for short), and unsupervised

classification (cluster), respectively.

 Figure 1.1 Structure of Data Mining

2

Association Analysis is used for discovering interesting relationships, which are

called Association Rules, hidden in large data sets. Many fields such as web mining,

document analysis, and bioinformatics have applied Association Analysis.

1.2 Optimization-Based Methods in Data Mining

Many DM methods involve with Mathematical Programming techniques.

Optimization can contribute to DM in one of two ways: (1) Optimization can be a

component of a larger DM process (Padmanabhan, 2003). For instance, in Artificial

Neural Network (ANN), one of popular algorithms in pattern recognition, we minimize

this function:

2

1

1
() ()

2
w

N

i i
i

E y y
=

= −∑
⌢⌢⌢⌢

 (1.1)

to obtain a set of parameters w in part of its procedure. (2) New DM techniques can be

built using entirely optimization-based Method (Padmanabhan, 2003), which is also

called Optimization-Based Approach (OBA) Data Mining.

OBA Data Mining techniques are applied mainly in Classification Analysis,

whereas there are few algorithms in Association Analysis are based on Optimization. The

reason may due to that objective of Association Analysis is not able to be directly

formulated as optimization problem appropriately. Currently, several (OBA) algorithms

are developed based on Support Vector Machine (SVM) method in Supervised

Classification and also on k-Mean in Unsupervised Classification.

In certain classification cases, we could assume that we know the proper form of

the discriminant functions, and use the samples to estimate the values of parameters of

the classifier (Duda, Hart, Stork, 2001). If the assumption is based on linear model, then

it is called linear discriminant function. For instance, in Support Vector Machine (SVM)

3

method, the key is to discover a hyperplane (linear or non-linear, which corresponds to

linear or non-linear functions) to separate data set in �� space, and maximize the

“margin” between different classes. Data sets can be categorized into separable cases and

nonseparable cases.

1.2.1 Support Vector Machine Method

A linear SVM searches for a linear classifier 1b⋅ + =w x based on training data to

label unknown data. This classifier is also known as a maximal margin classifier because

it maximizes the “distance” between data points in different classes:

2

min
2

. . () 1, 1,2...i is t b i n⋅ + ≥ =
w

w

y w x

 (1.2)

It is a quadratic programming problem, and w, iy , ix are vectors, b is scalar, which can

be solved by the standard Lagrange multiplier method (Tan, Steinbach, Kumar, 2005).

A more general form of linear SVM which can handle the condition that there is

noise in training data or classes are overlapped is:

2

1

min ()
2

. . () 1 , 1,2...

n

i
i

i i i

C

s t b i n

ξ

ξ
=

+

⋅ + ≥ − =

∑
w

w

y w x

 (1.3)

where C and k are user-specified penalty parameters of misclassifying the training

instances, and iξ represent errors introduced by the classifier. This nonlinear

programming problem can be converted to Lagrangian dual problem and solved

numerically by using quadratic programming techniques. The formulation of

4

nonseparable case is general, and can be applied for both separable and nonseparable

cases.

1.3 Linear programming and Multi-surface Method

1.3.1 K-Mean Method

K-Mean is a cluster analysis algorithm and could be treated as an optimization

programming problem, which minimizes the sum of the “distances” of each point to its

nearest centroid. The clustering problem is then formulated as in (Bradley, Fayyad,

Mangasarian, 1999):

1 1,...,,..., 1

min min

1 int

1

.

k

m
i l

l kc c i

i

l

n

x c

x , i = , ... m are given data po s

c , l = , ... k are centroids of k clusters

, is some arbitrary norm on R

==

−∑

 (1.4)

For different definitions of “distance”, there are different specific objective

functions. The following table shows some choices for proximity function, centroid, and

objective function that can be used in the basic k-mean algorithm. For instance, if we

apply 1st-Norm (Manhattan Distance), then the centroid of a cluster will be the median of

the data points belong to that cluster(so it is also called k-median algorithm), which have

been proved mathematically.

5

Proximity Function Centroid Objective Function

Manhattan (
1L)

median

Minimize sum of the
1L distance of an object to

its cluster centroid

Squared Euclidean

(
2

2L)
mean

Minimize sum of the squared
2L distance of an

object to its cluster centroid

cosine

mean
Maximize sum of the cosine similarity of an

object to its cluster centroid

Bregman divergence

mean

Minimize sum of the Bregman divergence of an

object to its cluster centroid
Source: Tan, Steinbach, Kumar, Introduction to Data Mining, 2005

Table 1.1 K-mean: Common choices for proximity, centroids, and objective functions

Although we can explicitly formulate the objective function for k-mean

algorithm, the optimization problem can only solved by iteration instead of a closed-form

solution. Moreover, the algorithm can only guarantee a local optimum. The algorithm is

shown below. The two important issues in k-means algorithm are: (1) how to initial the K

centroids because the final outcome is sensitive to initial starting condition, (2) how to

update the centroids so they can converge to a local optimum or global optimum. In the

basic k-means algorithm, because the initial K centroids are selected randomly, it usually

takes several runs to guarantee that the result is optimal. Basic k-means and k-median

algorithms are shown below:

1. Select K points as initial centroids

2. Repeat

3. Form K clusters by assigning each point to its closest centroid

4. Compute the centroid of each cluster

6

5. Until Centroids do not change

(Busygin, Prokopyev, Pardalos, 2007) included some definitions of k-means

algorithm in their optimization-based approach for data classification. However, instead

of applying k-means in clustering, it was applied in classification. Before assigning test

data to certain clusters, they apply k-mean criterion to choose the feature weight of the

training set.

1

2 2
'

1 1

max

() () 1, ...,

0 1, 1, ...,

s.t. ,

m

i
x

i

m m

ij ik i ij ik i
i i

i

x

a c x a c x k r

x i m

=

= =

− ≤ − =

≤ ≤ =

∑

∑ ∑ (1.5)

In the formulation above, ix is the weight for feature i. ija is the ith feature in jth

sample and m is the total number of training data points. Moreover, ikc is the ith feature of

kth centroid which can be calculated by ija . r is the number of clusters. For a test sample

b, we will assign it to class ɵkS , if for all k=1 … r the following inequality hold:

 ^

2 2

1 1

() ()
m m

i i i ik i
iki i

b c x b c x
= =

− ≤ −∑ ∑ (1.6)

1.3.2 Others Optimization Based Methods

Logical Analysis of Data is another OBA algorithm. It builds a classifier for a

binary target variable based on learning a logical expression that can distinguish between

positive and negative examples in a data set (Padmanabhan,Tuzhilin, 2003). If some

attributes of data set are non-binary, cutoff value is applied to convert them into binary

variable. And a table with all the binary attributes and target variables are obtained. The

7

objective then becomes to explore a partially defined Boolean function (pdBf), with all

the binary attributes as input and target variable as output.

Density Estimation method is based on Bayes’ Theorem and can be formulated as

mathematical programming problem. First, we assume an appropriate probability

distribution for each cluster, and then we tune parameters of the distribution from

minimizing the negative log-likelihood for the given data (Bradley, Fayyad,

Mangasarian, 1999). An algorithm called Expectation-Maximization can be applied to

find a local minimum for this problem.

1.4 Time-Series Data Mining

In the last decade there has been an explosion of interest in mining of time-series

data. Literally hundreds of papers have introduced new algorithms to index, classify,

cluster and segment time series (Keogh and Kasetty, 2003). Partly, such a great interest to

time series mining is explained by the challenges that the classical methods of machine

learning and clustering have faced when applied to time series data (Keogh and Pazzani,

1998). Another reason is that time-series data become readily available and increasingly

important in many areas, such as economics and finance (prices of stocks), environmental

sciences (daily sea-surface temperature and weather patterns) etc.

A time series is a sequence of real numbers, each number representing a value at a

time point (Rafiei and Mendelzon, 1997). If there are several measures at the same time,

then there are several sequences of real numbers corresponding to the same time period.

This type of time-series data is called multidimensional data sequence. Typical examples

of a multidimensional data sequence include video stream and image (Lee, etc, 2000).

One of the first papers in time-series data mining has been written by (Agrawal,

Faloutsos and Swami, 1993). In this paper, the authors proposed to use Discrete Fourier

Transform (DFT) to map time sequences from time domain to frequency domain and just

keep the first few frequencies, then an algorithm called R*-tree (Bechmann, Kriegel,

8

Schneider, and Seeger, 1990) was applied to index the sequences and efficiently answer

similarity queries. R*-tree is a variant of R-tree, which is one of the most popular access

methods (Guttman, 1984). DFT also acts as filter that eliminates noise and unimportant

information in time-series data. Since then, more and more researchers accepted the idea

that time-series data need to be preprocessed before performing the “actual” data-mining

operations on it, thus the original data sequences are usually called “raw data”. Some of

the techniques used to preprocess the raw data sequences include DFT, Discrete Cosine

Transform (DCT), Singular Value Decomposition (SVD), Haar Wavelet (Popivanov,

Miller, 2002). All these techniques are involved with sigmoid shape functions, but a few

papers also applied a piece-wise linear segmentation, which attempts to model the data as

sequences of piecewise patterns (Keogh and Pazzani, 1998), (Geurts, 2001).

An important aspect of the data mining process is selection of the similarity

measure that defines what is “similar” and what is not and is usually application

dependent. Many researchers apply a traditional and intuitive Euclidean norm or

generally, pL norm to measure the difference between two data sequences, which is also

one of the reasons why DFT is popular. According to Parseval’s theorem, the Fourier

transform preserves the Euclidean distance in the time or frequency domain (Agrawal,

Faloutsos and Swami, 1993). However, the nature of time series data introduces also a

number of challenges in selecting a “good” similarity measure, namely the presence of

noise, offset translation, amplitude scaling, longitudinal scaling, linear drift,

discontinuities (Keogh and Pazzani, 1998). Note that, “similarity measure” may be used

in whole matching, i.e., for comparing equal length data sequences, as well as in the

subsequence matching, where one looks for a subsequence of the large sequence that

matches the query sequence best.

Generally, whole matching is considered to be easier than subsequence matching

because for subsequence matching, certain length subsequence need to be extracted

appropriately from whole sequence first, and then compares to sample sequence. There

9

are a few methods developed in the literature that give a satisfactory solution on how to

deal subsequence matching. In clustering of time-series data, similar problems exist.

Some researchers formed subsequences by sliding a window through the time-series data

to resolve this difficulty (Das, 1998).

According to (Keogh and Pazzani, 2002), most of time-series data mining tasks

can be categorized into four kinds:

• Indexing (Query by Content): Given a query time series Q, and some

similarity/dissimilarity measure D, find the nearest matching time series in

database DB.

• Clustering: Find natural groupings of the time series in database DB under

some similarity/dissimilarity measure D.

• Classification: Given an unlabeled time series Q, assign it to one of two or

more predefined classes.

• Segmentation: Given a time series Q containing n data points, construct a

model
_

Q from K piecewise segments (K<< n) such that
_

Q closely

approximates Q.

A general procedure for processing time-series data is listed below:

1. Preprocessing data: filter noise, outliers, and divide whole sequences into

equal length subsequences if it is necessary.

2. Processing data: Fourier transformation, Segmentation (piecewise linear

approximation)

3. Similarity Measures: Euclidean distance, pL norm

4. post-processing (optional)

10

CHAPTER 2
P-NORM MEASURES IN LINEAR PROGRAMMING DISCRIMINATION

2.1 Introduction

In the SVM method, nonlinear programming is employed to estimate the

parameters of the linear discriminant function. In the paper “Robust linear programming

separation of two linearly sets” (Bennett, Mangasarian, 1992), a linear programming

algorithm was introduced, which is similar to the SVM but computationally simpler. The

mathematical programming models of the linear programming and the SVM methods

have similar constraints but differing objective functions. In the SVM, the objective of

the equations (1.2) and (1.3) is to minimize the weighted sum of the margin of

hyperplane and the error of misclassification, whereas the linear programming only

provides an error-minimizing plane that minimizes an average sum of misclassified

points belonging to two disjoint point sets in n-dimensional space. Although linear

programming does not consider the margin of plane in its objective function,

computational results do not show consistent disadvantages of the LP-based approach.

In this chapter we propose a new p -norm linear discrimination model that

generalizes the model of (Bennett, Mangasarian, 1992) and reduces to linear

programming problems with p -order conic constraints. We demonstrate that the

developed model has nice methodological and computational properties (for examlpe, it

does not allow for a null separating hyperplane when the sets are linearly separable). The

presented approach for handling linear programming problems with p -order conic

constraints relies on construction of polyhedral approximations for p -order cones. A

case study on several popular data sets that illustrates the advantages of the developed

model is conducted.

Consider two discrete sets , nA B∈R comprised of m and k points, respectively:

1= { , , }mA a a… , 1{ , , }kB = b b… . One of the principal tasks arising in machine learning

11

and data mining is that of discrimination of these sets, namely, constructing a surface

() = 0f x such that () 0f ≤x for any A∈x and () 0f ≥x for all B∈x .

Of particular interest is the linear separating surface (hyperplane):

 () = = 0.f γΤ −x w x (2.1)

Clearly, existence of such a separating hyperplane is not guaranteed; in general, a

separating hyperplane that minimizes some sort of misclassification error is desired.

Observe that if points (1) (2), n∈y y R satisfy the inequalities

(1) (2)> 0, < 0γ γΤ Τ− −w y w y

for some w and γ , then they are located on the opposite sides of the hyperplane

= 0γΤ −w x . Consequently, the discrete sets A , nB ⊂ R are considered linearly

separable if and only if there exist n∈w R such that

> > for all =1, , , =1, , ,i j i m j kγΤ Τw a w b … …

with an appropriately chosen γ , or, equivalently,

 > .maxmin i j
A Bi j

Τ Τ

∈ ∈a b
a w b w (2.2)

Definition (2.2) is not suitable for use in mathematical programming models since it

involves strict inequalities. However, the fact that the separating hyperplane can be scaled

by any non-negative factor allows one to formulate the following result, whose proof we

include for completeness.

12

Proposition 1 (Bennett, Mangasarian, 1992) Discrete sets , nA B ⊂ R represented by

matrices 1= (, ,) m n
m

Τ ×∈A a a… R and 1= (, ,) k n
k

Τ ×∈B b b… R , respectively, are linearly

separable if and only if

 , for some , ,nγ γ γ≥ + ≤ − ∈ ∈Aw e e Bw e e w R R (2.3)

where e is the vector of ones of the appropriate dimension, = (1, ,1)Τe … .

Proof. Let A and B be linearly separable, then in accordance to definition (2.2), there

exists n∈v R such that

 *
*

=1, , =1, ,
=: > := maxmin i j

i m j k
a bΤ Τa v b v

… …

 (2.4)

Denote *
*= 2 / ()a b−w v , and * *

* *= () / ()a b a bγ + − ; then for any i A∈a

 *
* * *

=1, ,
* * *

22 2
1 = = 0,mini i i i

i k

a

a b a b a b
γΤ Τ Τ Τ − − − − ≥ − − −

a w a v a v a v
…

 (2.5)

which means that 0Aw e eγ− − ≥ . The second inequality in (2.3) follows analogously

13

Figure 2.1An optimal separator wx γ= for linearly inseparable sets: A (o) and B (+)
(Mangasarian, Bennett, 1991)

2.2 P-Norm Separation Model

In this paper generalize the robust linear discrimination model proposed by

(Bennett, Mangasarian, 1992)

T T

, , ,
min

s.t. ,

,

,

m kγ

γ
γ

+

− + ≥
− + + ≥

≥ ≥

w y z

e y e z

Aw e y e

Bw e z e

y 0 z 0

 (2.6)

The linear programming model (2.6) determines a hyperplane * * = 0γΤ −w x that

minimizes the average misclassification error. Indeed, in accordance to the definition

(2.3), the points of sets A and B that violate (2.3) will correspond to the non-zero

components of vectors y and z in the first and second constraints of problem (2.6),

respectively.

14

This interpretation allows us to reformulate the optimization problem (2.2) in the form of

a stochastic programming problem

1(,)

{E[(1)] E[(1)]},min
nγ

γ γΤ Τ
+ +

+∈
− + + + − +

w

a w b w
R

 (2.7)

where a and b are uniformly distributed random vectors with support sets A and B,

correspondingly

1 1

P{ = } = , P{ = } = for all , ,i j i jA B
m k

∈ ∈a a b b a b (2.8)

and () = max{0, }x x± ± . In this sense, the misclassification errors of points from A and/or

B can be viewed as realizations of random variables = (,)A AX X γw and = (,)B BX X γw

, whose smaller values are preferred, and thus the parameters w and γ must be selected

so as AX and BX assume values that are “small”.

As it is well known in stochastic programming and risk analysis, the “risk”

associated with random outcome is often attributed to the “heavy” tails of the probability

distribution. The risk-inducing “heavy” tails of probability distributions, are, in turn,

characterized by the distribution's higher moments. Thus, if the misclassifications

introduced by a separating hyperplane can be viewed as “random”, the misclassification

risk may be controlled better if one minimizes not the average (expected value) of the

misclassification errors, but their moments of order > 1p . This gives rise to the

following formulation for linear discrimination of sets A and B:

 1 2
1(,)

() () , [1,]min p p
n

p
γ

δ γ δ γ+ ++∈
− + + + − + ∈ +∞

w

Aw e e Bw e e
R

� � � � (2.9)

where p⋅� � is the “functional” pL norm, which in the probabilistic context can be written

as

15

1/(E | |) , [1,)

=
sup | |, =

p p

p

X p
X

X p

 ∈ ∞

∞
� � (2.10)

Assuming again that points of the sets A and B are “equiprobable” (or, in other words, all

points of set A, and, correspondingly, B, have equal “importance”), linear discrimination

problem (11) can be written as follows

1 2min

s. t.

, 0, , 0

p

p

w

δ ξ δ η
ξ

η
γ

γ
ξ η

+
≥

≥

≥ − + +
≥ − +

≥ ≥

y

z

y Aw e e

z B e e

z y

� �

� � (2.11)

In the mathematical programming formulation (2.11), p⋅� � denotes the “vector” norm in

finite-dimensional space, i.e., for n∈x R ,

1/

1

1

(| | | |) , [1,)

max{| |, ,| |}, =

p p p
n

n

x x p

x x p

+ + ∈ ∞
∞

…

…
 (2.12)

(in what follows, it will be clear from the context whether the “functional” or “vector”

definition of p -norm is used). Note that in the formulation (2.11) the parameters
1δ and

2δ represent weights of misclassification errors. In this study, we consider p-norm linear

separation models where
1δ and 2δ take values { 121 == δδ }, { 1 2

1 1
,

m n
δ δ= = } and {

1 2

1 1
,

p pm n
δ δ= = }.

Model (2.11) constitutes a linear programming problem with p -order conic

constraints. Using the “vector” norm notation, formulation (2.11) can be more succinctly

presented as

16

 1 2
1(,)

() ()min p p
nγ

δ γ δ γ+ ++∈
− + + + − +

w

Aw e e Bw e e
R

� � � � (2.13)

The p -conic programming linear separation model (2.11) shares many key properties

with the LP separation model of (Bennett, Mangasarian, 1992), including the guarantee

that the optimal solution of (2.11) is none-zero in w for linearly separable sets.

Proposition 2. When sets A and B, represented by matrices A and B , are linearly

separable (i.e., they satisfy (2.2) and (2.3)), the separating hyperplane * *= γΤw x given

by an optimal solution of (2.11) satisfies * ≠w 0 .

Proof:. By definition, separability of sets A and B immediately implies that at optimality
* *= = 0y z , or, equivalently,

0γ− − + ≤Aw e e and 0γ− + ≤Bw e e

which is equivalent to the definition of linear separable γ≥ +Aw e e , .γ − ≥e e Bw To

see that (0,w γ=) cannot be optimal for (2.12), note that if we set w = 0, then:

 1 2min)) 0
p p

δ γ δ γ+ ++ + − + >
r

e e e e (2.14)

and the optimal value of (2.11) is zero. If one assumes that * =w 0 , then the above

inequalities require that

 * *1, 1.γ γ≤ − ≥

This contradiction proves the proposition.

Secondly, the p -norm separation model (2.11) can produce a =w 0 solution only in a

rather special case that is identified by Theorem 1 below.

17

Theorem 1. Assume that the p -order conic programming problem (2.11) is strictly

feasible and, without loss of generality, 1/ 1/
2 1

p pk mδ δ> . Then, for any (1,)p∈ ∞ the p -

order conic programming problem (2) has an optimal solution where * =w 0 if and only

if

 ' '
1/

() , 1, 0,
p qm m

δ
δ

= = ≥ ≥
T

T T ' ' 2

1

e A
t B e t t t (2.15)

where q satisfies
1 1

= 1
p q

+ . In other words, the arithmetic mean of the points in A must

be equal to some convex combination of points in B. In the case of 1/ 1/
2 1

p pk mδ δ=

condition reduces to

m k

=
T Te A e A

 (2.16)

i.e., the arithmetic means of the points of sets A and B must coincide

Proof: Consider the dual of the p-order conic programming problem (2.11):

, , ,

1

2

max

. . 0

0

,

u v

q

q

s t

δ

δ

+

− =
− =
+ =
+ =

≥

≥

≥ ≥

T T

r t

T T

T T

e r e t

A r B t

e r e t

r u 0

t v 0

u

v

r 0 t 0

 (2.17)

where q is such that
1 1

1
p q

+ = .

18

First, by assuming 1/ 1/
2 1

p pk mδ δ≥ one does not lose any of generality because the

roles of the sets A and B can be switched to obtain this inequality. Observe that point

(0, , ,γ=w y z) being an optimal solution for primal implies that the first two

constraints of (2.18) become:

(1)

(1)

γ
γ

+

+

≥ +
≥ −

y e

z e
 (2.19)

Whereby the objective of the primal problem (2.20) takes the form

 1/ 1/
1 2min (1) (1)p pm k

γ
δ γ δ γ+ ++ + − (2.21)

Since 1/ 1/
2 1

p pk mδ δ≥ , then obviously, the objective value for primary problem is 1/
12 pmδ

with 1γ = . Also, because the primal is strictly feasible, duality gap is zero for the primal-

dual pair (2.12) and (2.17). Then we have

1/

12

0

pmδ+ =

− =

T T

T T

e r e t

e r e t
 (2.22)

From (2.22) we have that T 1mδ=e r , , and from the third constraint of the dual (2.17) we

obtain = −r u , by substitution of which in the fifth constraint of (2.17) we obtain a

system of equation and inequality that must be satisfied by vector r at optimality and

= −r u , we know for vector r

1/

1 2

1 2 1

... /

...

q
m

q q q q
m

r r r m m

r r r

δ
δ

+ + =

+ + ≤
1 (2.23)

19

To derive the solution of (2.23) , consider the following convex problem

1 2

1/
1 2

min g() ...

. . c()= ... / =0

q q q
m

q
m

r r r

s t r r r m mδ

= + +

+ + −
r

1

r

r
 (2.24)

Using Lagrange multiplier method, we form the Lagrange function of problem (2.25)

 1/
1 2 1 2... (... /)q q q q

m mL r r r r r r m mλ δ= + + + + + − 1 (2.25)

whose saddle point is determined from equations

1
1

1

1

1/
1

0

0

... / 0

q

q
m

m

q
m

L
qr

r

L
qr

r

L
r r m m

λ

λ

δ
λ

−

−

∂ = − =
∂

∂ = − =
∂
∂ = + − =
∂ 1

⋮⋮⋮⋮

 (2.26)

It is easy to see that
1/

1 2 ... / q
mr r r mδ= = = 1 is the only stationary point for function g(r).

And because g(r) is strictly convex continue, the saddle point is the minimum point and

minimum value for the objective is 1
qδ . And at the same time, in (2.23) 1() qg δ≤r .

Therefore, solutions to (2.23) with 1 2 1...q q q q
mr r r δ+ + < do not exist because minimum value

of g(r) under constraint c(r) is equal to 1
qδ . Therefore, we can conclude that for (2.23), it

has an unique solution, which is 1/
1 2 ... / q

mr r r mδ= = = 1 or
1/qm

δ= 1r e

Furthermore, because 0− =T TA r B t under solution (0, , ,γ=w y z):

20

1/

(1 1/) 1/
1 1

q

q p

m

m m m

δ

δ δ−

=

=

= =

T T

T T1

T T T

r A t B

e A t B

e A t t
B B

 (2.27)

Let
1/

1

'
pmδ

= t
t , then from (2.27), (')

m
=

T
Te A

t B . Finally since , (, 0)= − = − ≥r u t v r t

and 1/ pmδ=T
1e t :

' '2

1/
1

(')

1 and
p q

m

t
m

δ
δ

=

= ≥

T
T

T

e A
t B

e t
 (2.28)

Therefore, the theorem holds. This theorem theoretically explains the reason that why
1/ 1/

1 21/ , 1/p pm kδ δ= = should be chose. When 1/ 1/
2 1

p pk mδ δ≥ then from the theorem

we know that if the arithmetic mean of the points in A coincides with a convex

combination of some points of B, the formulation will obtain a worthless optimal solution

0, , ,γ=w y z ,Moreover, if 1/ 1/
2 1

p pk mδ δ= , then the theorem degenerates to (2.16),

which is the arithmetic mean of the points in A equals the arithmetic mean of the points in

B. The advantage of this is that the satisfaction of (2.16) by a real world data set is much

rarer than satisfaction of (2.28). In other words, using 1/ 1/
2 1

p pk mδ δ≥ is more likely to

obtain a null solution in real problem. The demonstration is in Figure 2.2.

21

Figure 2.2 Demonstration of two data sets have the same arithmetic mean (A), and one
data set has the arithmetic mean in the convex hull of data points from another

data set (B)

In order to have the stricter condition (2.16) of the form for the occurrence of

* =w 0 solution in the situation when the preferences for misclassification error are

different for sets A and B, the p -norm linear discrimination model can be extended to the

case where misclassifications of points in A and B are measured using norms of different

orders:

 1 2 1,21 21(,)

() () , [1,)min p p
n

p
γ

δ γ δ γ+ ++∈
− + + + − + ∈ ∞

w

Aw e e Bw e e
R

� � � � (2.29)

Intuitively, a norm of higher order places more “weight” on outliers; indeed, application

of = 1p norm would minimize the average misclassification error, in effect regarding all

misclassifications as equally important. In contrast, application of the =p ∞ norm would

minimize the largest misclassification error. Thus, by selecting appropriately the orders

p and q in (2.29) one may introduce tolerance preferences on misclassifications in sets

A and B. At the same time, it can be shown that the occurrence of * =w 0 solution in

(2.29) would signal the presence of the aforementioned singularity about the sets A , B .

22

Namely, we it is easy to see from the proof of Theorem 1 that its statement carries over to

model (2.29) practically without modifications.

2.2.1 Solving linear programming problems with p-order conic constraints using
polyhedral approximations of p-order cones

When p is greater than 2, one way to solve this specific p-order cone

programming problem is to approximate a p-order conic constraint by several linear

constraints. For a set,

 2 2 2
1 2, 3 1 2 3{(,) | }L x x x x x x= + ≤ (2.30)

(Ben-Tal and Nemirovski, 2001) applied a polyhedral approximation of 2L , and via a

way called “Tower of variables”, any second order constraint can be expressed by several

3 dimensional second order constraints. Therefore, in terms of this polyhedral

approximation, any second order constraints can be approximated by linear constraints.

Following Ben-Tal and Nemirovski’s idea, (Krokhmal, 2007) developed a method

that can approximate a 3-dimensional p-order cone in the positive orthant of 3R by a set

of linear equalities.

For 1>p ,
1/

3 1 2 1, 2 3() , , 0, p p px x x x x x≥ + ≥

an internal approximation can be

formulated as

1

2/ 2/ 2/ 2/
3 1 1

2/ 2/ 2/ 2/
1 1 2

(sin cos cos sin)

 (sin sin) (cos cos), 0 ... 1
i i i i

p p p p
i i i i

p p p p

x

x x i mα α α α

α α α α

+

+ +

+

−

≥ − + − = −
 (2.31)

and an external approximation can be written in the form

1

3

1 1
1 2

(cos sin)

cos sin , 0 ...

p

p p p
i i

p p
i i

x

x x i m

α α
α α

−

− −

−

≥ + =
 (2.32)

23

where 2/...0 10 πααα ≡<<<≡ m Therefore, to approximate a 12 +d -dimensional p-
order conic constraint:

1/

1(...)

, 0, 1 ... (2)

p p p
J

p d
j

t x x

t x j J J

≥ + +

≥ = =
 (2.33)

First, we represent this constraint by a set of 3-dimensional p-order conic inequalities

() (1) (1) 1/

2 1 2[() ()]

1 ... 2 , 1 ... ,

k k p k p p
j j j

d k

x x x

j k d

− −
−

−

≥ +

= =
 (2.34)

where
() 0
1 , (1 ... 2) d d

j jx t x x j≡ ≡ = . On the second step, every 3-dimensional p-order conic

constraint is approximated either by the internal approximation or the external

approximation. The final LP approximation is shown in (2.35).

1

1 2
, ,

() 2/ 2/ 2/ 2/
1 1

(1) 2/ 2/ (1) 2/ 2/
2 1 1 2

min

. .

 (sin cos cos sin)

 (sin sin) (cos cos), 1,...,2 , 1,.

w y,z

Aw-e y e

-Bw+e z e

e e e e

k p p p p
j e e e e

k p p k p p d k
j j

u v

st

f

f f j k

θ

α α α α

δ δ

γ
γ

α α α α

+

+ +

− − −
− +

+

+ ≥
+ ≥

−

≥ − + − = =

1

() 2/ 2/ 2/ 2/
1 1

(1) 2/ 2/ (1) 2/ 2/
2 1 1 2

()
1

.., , 0,... 1

 g (sin cos cos sin)

 (sin sin) (cos cos), 1,...,2 , 1,..., , 0,... 1

e e e e

i p p p p
h e e e e

i p p i p p c i
h h

d

d e l

g g h i c e l

f u

α α α α

α α α α

+

+ +
− − −
− +

= −

−

≥ − + − = = = −

=

1

1

(1)

2 1

()
1

(1)

2 1

 0, 0y z

d k

c h

k
d k

c

i
c i

f y

g v

g z

− +

− +

−
−−

−
−−

=

=

=

≥ ≥

 (2.35)

Finally, we can take the advantages of certain commercial software to solve this linear

programming problem. Note, for these p-order conic constraints (2.33), which 2 1dJ ≠ + ,

24

theoretically (()f J J−) number of slack variables can be added into conic constraints to

satisfy this condition 2 1dJ = + , and set as zero in additional linear equalities, where

2(log)() 2 roundJf J = . However, when J is comparable large, a huge number of slack

variables are needed; therefore, we deal it in a different way in the computational

procedure. Instead of adding all the slack variables at one time, we put one slack variable

a time during each level of “the tower” depending on whether or not the number of the

variables in that level is even or odd. For instance, for a conic constraint:

1/

1(...)

, 0, 1 ... (2)

p p p
J

p d
j

t x x

t x j J J

≥ + +

≥ = ≠
 (2.36)

If J is an even number, then no slack variable is needed for the first “level of tower”, then

1 0 0

2 1 2[() ()]

/ 2

p p
j j jx x x

j J

−≥ +

=
 (2.37)

If J is an odd number, then one slack variable is added, so

1 0 0
2 1 2[() ()]

0

(1) / 2

p p
j j j

J

x x x

x

j J

−≥ +

=
= +

 (2.38)

So on and so forth for the other levels. It is obvious that approach can significantly

reduce the number of slack variables when J is large. When j=700, for first approach

1024-700=324 slack variables are needed, but for second method, only 3 slack variables

are necessary.

25

2.3 Data Set Information and Computation Results

Several real-world data sets from UCI Machine Learning Repository (University

of California-Irvine) are classified by the method we proposed. The method is

implemented in C++ environment and CPLEX Solver (ILOG CPLEX® 10.0) is used to

solve the linear programming problem formulated.

Wisconsin Breast Cancer Data Set (Original): This breast cancer databases was

obtained from the University of Wisconsin Hospitals, Madison by Dr. William H.

Wolberg. There are 10 feature values and an ID number for each data point in the dataset,

which are obtained by medical examination on certain breast tumors. There are 699 data

points in the data sets, but because some values are missing, only 682 data points are used

in the experiment. The whole data set consist of two classes of data points, 444 (65.1%)

data points represent benign tumors, and the rest of 238 (34.9%) points correspond to

malignant cases. Other information is included in Table 2.1.

Data Set Characteristics: Multivariate
Number of
Instances:

699 Area Life

Attribute Characteristics: Integer
Number of
Attributes:

10
Data

Donated
7/15/199

2

Associated Tasks:
Classificatio

n
Missing
Values?

Yes
Number of
Web Hits:

543

Table 2.1 Description of Wisconsin Breast Cancer Data Set (Original)

In this numerical experiment, we use α and β to indicate benign and malignant

data sets, we randomly divide each set into a training set possessing 2/3 of the data and a

test set including the remaining 1/3. So if M data points are in set α and N data points are

in set β, then the numbers of benign and malignant data points in the training set are

(2 / 3)m M= and (2 / 3)n N= . The p-norm linear programming formulation is formulated

26

base on the training set and the obtained optimal classifier classify the test set. For every

specific value p, this procedure repeats 10 times and average error percentage for whole

data set is calculated. p increases from 1 to 5 by 0.1 step.

For a data point belongs to dataset α, the probability of this data point being

misclassified is / ' 100%e mα × , and similarly, the probability is / ' 1 0 0 %e nβ × for a data

point belong to β, where , e eα β
indicate the number of data points misclassified in set α

and β , and m’, n’ are the number of test data points in set α and β.

Therefore, for an arbitrary point in the whole data set, the probability of being

misclassified is equal to / ' / ' () /(' ')P e m P e n e e m nα α β β α α× + × = + + , where ,P Pα β

are the probabilities of a random point belonging to set α or β. Then we define error

percentage as [()/(' ')] 100%a be e m nε = + + × .

The complete results are shown in the Appendix. In Table 2.2, optimal order and

optimal average error percentage for different objective weights are collected. As Table

2.2 shows, when 1 21/ , 1/m nδ δ= =

and p=1.9, we obtain the lowest average error

percentage 2.77%. Moreover, compare this with the average error percentage obtained by

1 21/ , 1/m nδ δ= = , p=1, which is also the average error percentage obtained by original

formulation, we can see that the average error percentage decrease 3.48%.

In the results appended, with the same order but different values of 1 2, δ δ ,

objective coefficients 1 21/ , 1/m nδ δ= = “most time” obtain a better result than others’.

27

 121 ==δδ
1

2

1/

1/

m

n

δ
δ

=
=

1

2

1/

1 /

p

p

m

n

δ
δ

=

=

Optimal Order 2 1.9 1.5

Optimal Error % 3.22% 2.77% 2.82%

The percentage of error decreased
Compare w/ order 1

8.78% 3.48% 1.74%

Table 2.2 Comparison of classification error between different orders and different 1, 2 δ δ

for Wisconsin Dataset

Similar tests also run on Pima Indians Diabetes Data Set, Connectionist Bench

(Sonar, Mines vs. Rocks) Data Set, and Ionosphere Data Set, all of which are obtained

from UCI Machine Learning Repository. Note, among these tests only 121 == δδ and

1 21 / , 1 /p pm nδ δ= = are used. The results of average error percentage over all the

orders of p are shown in appendix. The value of parameter p increases from 1 to 5 by

every 0.1 step.

28

 Coefficients

Data Sets

121 == δδ

1 1/ pmδ =

2 1/ pnδ =

Results from other algorithms

Ionosphere 16.60% 18.13%

12.3%

(Radivojac, Obradovic, Dunker,

Vucetic, 2004)

Pima 29.51% 31.07%

26.3%

(Radivojac, Obradovic, Dunker,

Vucetic, 2004)

Sonar 30.23% 30.45%
24%

(Tan, Dowe, 2004)

Table 2.3 Average classification error with different 1, 2 δ δ for different data sets

As the results shown above, these data sets are “linear inseparable”, that means an

optimum hyperplane obtained in vector space, cannot classify “the most of” data points

correctly. Therefore, a nonlinear classifier or multi-hyperplane is necessary for this kind

of data sets. One thing need to be point out is that when compare to the result obtained by

other methods, our result is only slight worse, but our method is much simpler both in

theoretical and practical.

29

CHAPTER 3
LINEAR DISCRIMINANT FUNCTION, K-NEAREST NEIGHBOR METHODS AND

NEURAL NETWORKS IN CLASSIFYING PSYCHOPHYSIOLOGICAL DATA

3.1 Data Set Information and Characteristics

3.1.1 Background

Psychophysiology is a branch of physiology which is focused on the relationship

between mental (psyche) and physical (physiological) processes; it studies the interaction

between mind and body. Applied psychophysiology investigates the effects of emotional

states on the central nervous system, by observing and recording data on such

physiological processes as sleep rhythms, heart rate, gastrointestinal functioning, immune

response, and brain function. Techniques that are used to measure such factors include

electroencephalography (EEG), magnetic resonance imaging (MRI), computerized axial

tomography (CAT) scans, electrocardiography (ECG), and electrooculography (EOG).

ECG records the electrical activity of human heart over time, EEG measures the

electrical activity of human brain and EOG is a technique for measuring the resting

potential of the retina. Electroencephalogram, electrocardiogram and electrooculogram

are the resulting signals measured by EEG, ECG, and EOG. These psychophysiological

measures techniques are employed for classifying cognitive work load in laboratory and

real-world setting. Because the EEG, ECG, and EOG data can be recorded without

interfering task performance of the human subject, they are suitable for estimating

operator functional state. Since they are recorded in real time, they are time-series data

sets.

3.1.2 Data Set Information

The data set we used in our research comes from a project in which the human

operators performed a set of tasks of varying levels of cognitive difficulty. The specific

30

tasks concerned navigation and guidance of unmanned aerial vehicles (UAVs) in a

simulated environment. The goal of this study is to estimate the operators’ cognitive

states by analyzing their psycho-physiological measurements. The data were collected

during the simulation tasks from three participants, 'A', 'E' and 'F', each of whom

completed two trials, denoted as '01' and '02'. For instance, the second trial completed by

participant E is denoted as 'E02'. The simulation experiments and data collection have

been performed at the Air Force Research Lab at Wright-Patterson AFB (Dayton, OH).

In each trial, ECG, horizontal EOG, vertical EOG and five channels of EEG

signals were recorded. The EEG data were recorded from the scalp sites F7, Fz, Pz, T5,

and O2 of the 10/20 electrode system using an Electro Cap. The EOG electrodes were

placed above and below the midline of the right eye to record vertical movement and

blink activity. The ECG electrodes were placed on the sternum and the left clavicle. The

sampling rate was 200 Hz with a band pass from 0.5 to 52.4 Hz.

Figure 3.1 EEG 10-20 System Diagram

31

During the simulation, the operators have been subjected to three tasks of zero,

low, and high levels of cognitive workload, indicated by 0, 1, and 2:

'0': simulation running, no cognitive task being performed

'1': simulation running, low cognitive workload task being performed.

'2': simulation running, high cognitive workload task being performed.

These are the three classes we aim to classify. Sometimes we also refer to task 0

as None Cognitive Load (NCL) task and tasks 1and 2 as Cognitive Load (CL) task. A

time period in which the test subjects continually performs under the same level of

cognitive workload is called a “task”. For instance, if a subject works under the level 1

cognitive workload for 20 seconds, then we say that a task 1 happened for 20 seconds. A

fraction of this time period is called a sub-task. In each trial, a subject performs under

different situations for about 20 minutes, which is consisted of eight tasks 0 (no cognitive

load), four tasks 1 (low cognitive load), and four tasks 2 (high cognitive load). The tasks

0 last for about 50 to100 seconds, while the tasks 1 and 2 usually take about 20 seconds.

Note that this asymmetry in the durations of NCL and CL tasks may have an impact on

the computational results of our study.

3.1.3 Data Set Transformation and Characteristics

The Fourier Transform is a mathematical operation that transforms a signal from

the time domain to the frequency domain, and vice versa. We are accustomed to time-

domain signals in the real world. In the time domain, the signal is expressed with respect

to time. In the frequency domain, a signal is expressed with respect to frequency. We

apply the Discrete Fourier Transform (DFT) to convert our time-series data from the time

domain to the frequency domain, and analyze the magnitudes over certain frequency

band (e.g. from 1 Hz to 10 Hz) among the different tasks.

32

Discrete Fourier Transform takes as input a sequence of N real or complex

numbers 1 2(, ,...,)Nx x x=x and generates its N-dimensional transformation

1 2(, ,...,)NX X X=X . The DFT and its inverse are given by the following formulas:

(1)(1)

1

(1)(1)

1

() ()

() (1/) ()

N
j k

N
j

N
j k

N
k

X k x j

x j N X k

ω

ω

− −

=

− − −

=

=

=

∑

∑
 (3.1)

where
(2)/i N

N e πω −= and 1i = − .

Since the goal of this research is to find out the operators’ cognitive states at real

time, DFT should be applied to the data over a relatively short time period. In addition,

the length of the time period shouldn’t vary, which means the numbers of data collected

in these two periods are also the same assuming the sample rates are the same; otherwise

it is not rational to compare the magnitudes between two different long time periods. A

straightforward application of the DFT to signals of different lengths (or even the same

periodic signal, but over time windows of different length) may result in different outputs

(i.e., magnitudes of the frequencies comprising the signal). Thus, a special precaution

needs to be exercised when working with signals of different durations. In practice, this

difficulty can be circumvented by fixing the length of the input data for the DFT

transform.

The main application of the Fourier transform in signal analysis is to obtain a

spectral decomposition of a given signal into a set of harmonic frequencies that this

signal is comprised of. When applied to a stationary periodic signal that is a mixture of

several stationary harmonics, the graph of DFT typically looks as a series of “peaks”,

where the location of each peak identifies the frequency of a harmonic that is present in

the input signal, and the “height” of the peak corresponds to this harmonic’s amplitude.

33

This method works very well even when the periodic signal may contain a substantial

noise component.

However, the resolving power of the DFT diminishes when the input signal

changes dynamically in time. In the data set used in this study, all signals, except, maybe,

the ECG signal, exhibit a high degree of non-stationary and noisiness. In such a case, to

identify the composition of the input signal at any given time moment, the DFT can be

applied over shorter time windows. The length of the time window over which the DFT is

computed then becomes a crucial issue, and the computational results may significantly

depend on the choice of this parameter. If one chooses a large time window, the results

may be insensitive to the temporal changes in psychophysiological measurements caused

by the changes in the operator’s cognitive state. If the window is too short, the resulting

DFT transforms may be too noisy, and some lower frequency information in the signals

may be lost.

Moreover, the length should be decided before the DFT. If the lengths of these

two or several signals are about the same, then choosing the shortest length among all

these signals is a good choice. However, if the lengths of these signals are rather

different, then we may lose quite substantial amount of information by applying the

method mentioned. In this case, we select a comparatively small length, and divide all the

signals by this length. Then we apply DFT on all these “standard- length” signals, so the

magnitude of a signal is the average of the magnitudes of all the “standard length”

signals. The limitation of this method is that if the standard length is too short, then some

lower frequency information in the signals may be lost. Figure 3.2 provides a graphical

illustration of the method that we used to process the time-series data set before DFT. We

introduce two time windows, a larger one of length 1W, and a shorter window of length

2W. For instance, the data in Figure 3.2, which is the Fz EEG signal, recorded from

subject A in task 0. In this particular case, we first divide the data of task 0 into subtasks

of equal length 1W=3000, which corresponds to time interval of 15 seconds (since the

34

sampling frequency is 200 Hz). Then, each of the 1W-long sub-tasks is divided into six

windows, each of which includes 2W=500 data points.

Figure 3.2 Illustration of data preparation before DFT

After investigation, two EEG signals (Fz, F7) have interesting patterns, and could

be used to classify the data. We plot the magnitudes of these two signals in a two-

dimensional space for each task, and obtain plots for each trial as in Figure 3.3. As just

mentioned, we split a certain task into equal long sub-tasks, divide these sub-tasks into

certain long intervals, and then apply DFT to transform these intervals from time domain

to frequency domain. Finally, the average magnitudes over certain frequency band (1 Hz

to 10 Hz here) are computed, and the magnitudes of a certain sub-tasks are the average

magnitudes of these intervals in this sub-task. In Figure 3.3, it shows different tasks have

different magnitudes in these two signals. The task 0 usually has the biggest magnitudes

in both Fz and F7 among the three, followed by task 1. So the conclusion is the higher

cognitive level the task is in, the smaller magnitudes it has. Also, although there are

0 500 1000 1500 2000 2500 3000 3500 4000
-150

-100

-50

0

50

100

150

Time

F
z

W2=500

W1=3000

35

similarities between two trials of the same subject, for two subjects, we cannot say the

magnitudes of the signals are related. Similar pattern also be discovered in two EOG

signals.

Moreover, the smallest theoretical length of input data for calculating the average

magnitude from 1 Hz to 10 Hz is 20. Because the sample frequency of data is 200 Hz,

after using DFT convert 20 data points from the time domain to the frequency domain, 10

data points are outputted, which represent the magnitudes of frequencies from 0 Hz to

190 Hz by every 10 Hz. In this case, the magnitude at 10 Hz is used to approximate the

average magnitude from 1 Hz to 10 Hz. When the length is decided, a certain task is

divided by this length and several time periods are obtained for the task. Then DFT is

performed on the data of these equal long time periods and the average magnitude over

certain frequencies is calculated.

36

Subject A

Subject E

3 4 5 6 7 8 9
2

4

6

8

10

12

14

16
A01 (w1=3000 w2=100)

Fz

F
7

sub-task 0

sub-taks 1
sub-task 2

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
2

4

6

8

10

12

14
A02 (w1=3000, w2=100)

Fz

F
7

sub-task 0

sub-taks 1
sub-task 2

4 5 6 7 8 9 10 11
4

6

8

10

12

14

16

18
E01 (w1=3000 w2=100)

Fz

F
7

sub-task 0

sub-taks 1
sub-task 2

4 5 6 7 8 9 10
4

5

6

7

8

9

10

11

12

13

14
E02 (w1=3000, w2=100)

Fz

F
7

sub-task 0

sub-taks 1
sub-task 2

37

Subject F

Figure 3.3 DFT transforms of Fz and F7 signals in the frequency band 1~10 Hz for
subjects A, E, and F

The information in Table 3.1 shows the frequency bands for EEG signals defined

by some researchers and the brain activities corresponding to these certain bands. In

general, low frequency signals indicate low cognitive activities, and high frequency

signals are related to the activities which require thinking and concentration. Also, we

can see that low frequency bands (0~12) include Delta, Theta and Alpha, and high

frequency bands (>12) incorporate Beta and Gamma. In our research, we discover that

low frequency signals perform better in classifying no-cognitive and cognitive tasks than

higher frequency signals, which is also the reason why a frequency band from 1 Hz to 10

Hz is applied.

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
2

3

4

5

6

7

8

9
F01 (w1=3000 w2=100)

Fz

F
7

sub-task 0

sub-taks 1
sub-task 2

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
2

3

4

5

6

7

8

9

10
F02 (w1=3000, w2=100)

Fz

F
7

sub-task 0

sub-taks 1
sub-task 2

38

Type Frequency (Hz) Related Activities

Delta 0 – 3 Hz

� Adults slow wave
sleep

� In babies

Theta 4 – 7 Hz

� Young children
� Drowsiness or arousal

in older children and
adults

� Idling

Alpha 8 – 12 Hz

� Relaxed/reflecting
� Closing the eyes

Beta 12 – 30 Hz

� Alert/working
� Active, busy or

anxious thinking,
active concentration

Gamma 34 – 100 Hz

� Certain cognitive or
motor functions

Table 3.1 Explanation of EEG frequency Bands

In order to see the inter-relations between these eight signals the correlation

values are calculate between each signal in each trial. The values for subject A are shown

in the table 3.1, others are listed in the appendix. From the correlation coefficient, it is

noticed that for subject A and E, vertical EOG is strongly correlated with Fz (>0.68), and

Horizontal EOG closely related to F7 (>0.7). And on the other side, Fz and F7 only have

a medium correlation coefficient (usually < 0.5). However for subject F, only the

correlation between Horizontal EOG and F7 EEG exists (>0.79). These statistics can also

explain that why there are similar patterns between VEOG, HEOG and Fz, F7 EEGs.

Note, the correlation coefficients are calculated before the DFT. We also calculated the

39

coefficients after the DFT, the correlation values become even higher, which may be due

to some unique characteristics are tossed away in the process.

A01 1(ECG) 2(VEOG) 3(HEOG) 4(Fz) 5(F7) 6(Pz) 7(P7/T5) 8(O2)

1 1 -0.0089 0.0102 -0.0734 -0.0277 -0.085 -0.0675 -0.0691

2 -0.0089 1 -0.4725 -0.716 -0.7652 -0.1095 -0.2623 0.1504

3 0.0102 -0.4725 1 -0.048 0.8768 -0.3512 0.0055 -0.5768

4 -0.0734 -0.716 -0.048 1 0.3948 0.5663 0.4795 0.3203

5 -0.0277 -0.7652 0.8768 0.3948 1 -0.1166 0.1957 -0.4052

6 -0.085 -0.1095 -0.3512 0.5663 -0.1166 1 0.7155 0.8212

7 -0.0675 -0.2623 0.0055 0.4795 0.1957 0.7155 1 0.5837

8 -0.0691 0.1504 -0.5768 0.3203 -0.4052 0.8212 0.5837 1

A01

A02 1(ECG) 2(VEOG) 3(HEOG) 4(Fz) 5(F7) 6(Pz) 7(P7/T5) 8(O2)

1 1 -0.0085 0.0268 -0.0917 -0.021 -0.0974 -0.0775 -0.0849

2 -0.0085 1 -0.4712 -0.6821 -0.7454 -0.0985 -0.2559 0.146

3 0.0268 -0.4712 1 -0.0929 0.8794 -0.3753 -0.023 -0.5828

4 -0.0917 -0.6821 -0.0929 1 0.3329 0.5726 0.4675 0.3405

5 -0.021 -0.7454 0.8794 0.3329 1 -0.1551 0.1597 -0.4194

6 -0.0974 -0.0985 -0.3753 0.5726 -0.1551 1 0.7014 0.8256

7 -0.0775 -0.2559 -0.023 0.4675 0.1597 0.7014 1 0.5817

8 -0.0849 0.146 -0.5828 0.3405 -0.4194 0.8256 0.5817 1

A02

Table 3.2 Raw signal correlations in trials A01 and A02 of subject A

Furthermore, the distribution of each signal from the raw data is also plotted in

Figure 3.4, some appealing phenomenon is found: in each task the signals are unimodal

distributed and has comparable mean, however the difference between task 0 and task 1,

2 is that task 0 has a two side heavy-tails. To utilize this interesting point in classification,

we can measure the variance of each task or measure the variance in certain intervals, like

the tail areas of the distribution. However, a major drawback is that it not always

applicable to all the tasks.

40

So far, there are only four signals out of eight are found interesting for the

classification, vertical, horizontal EOGs and Fz, F7 EEGs. The ECG is unsurprisingly

unrelated with the cognitive level, and the other EEG signals seem to react randomly on

different tasks. The understanding is that for certain functions only left hemisphere have,

such like the analytical and logical abilities. And from the task description, we know that

the tasks are highly demanded for analytical and logical abilities and Fz, F7 positions are

located on the left side of brain.

Figure 3.4 The Amplitude distributions of raw signal from A01 for task 0, 1 and 2

3.1.4 Error Measurements

For the most common way to measure the classification error, error=n/m, where n

is the number of parts classified inaccurately, and m is the number of total number of

parts in testing sets, it cannot provide us a general perspective on how well an algorithm

performs due to the special condition of the data set. For instance, a testing set has been

divided into 81 parts, only 17 parts correspond to task 1 and the rest represent task 0.

Even an algorithm classified all the parts as task 0, the error only equals to 20.988%.

Therefore, we apply another type of error measure: /i ierror n m= , in is the number of

sub-task i misclassified, imis the total number of sub-task i. For the same instance above,

-100 -50 0 50 100
0

0.002

0.004

0.006

0.008

0.01

0.012

task0

-100 -50 0 50 100
0

0.002

0.004

0.006

0.008

0.01

0.012

task1

-100 -50 0 50 100
0

0.002

0.004

0.006

0.008

0.01

0.012

task2

41

the errors become error1=20.988% and error2=100%. Therefore, the second

measurement can provide more details about how well we classify the data set than the

first approach.

3.2 Linear Programming Method

3.2.1 Algorithm for linear programming Discrimination Method

Based on the characteristic in the frequency domain, a linear programming

method is applied to classify the data. The algorithm is shown as below, the input

parameters include:1W, 2W , 1F , and 2F . “Training” and “classifying” are two consecutive

phases in this algorithm. Moreover, DFT is only applied for one-dimensional

decomposition, for a multiple dimensional data set, the data in each dimension could be

transformed separately.

“Training Stage”

1. In the original training data, use 1W as the length of sub-tasks, separate the known

tasks in the data set and split every identified task into equal long sub-tasks.

2. Split every sub-task into 2W length and then apply DFT on every 2W-long data

points.

3. Compute the average magnitudes over 1F to 2F from the outputs; calculate the

average of (1W/ 2W) values; it is the “characteristic value” of this sub-task.

Therefore, each sub-task has its own characteristic value.

4. Apply the linear optimization method (2.6) , which tries to find an optimum

hyperplane that can separate different sub-tasks most correctly based on the

characteristic values. The optimum solution of this linear programming problem

includes a vector ω and a scalar r, which are the direction and location of this

hyperplane. The dimension of this hyperplane depends on the dimension of the

characteristic value, which depends on the dimension chosen from the data set.

“Classifying Stage”

42

5. Divide the testing data into equal 1W long consecutive segments in the time

domain. These segments are the unknown sub-tasks needed to be classified in the

following steps. It is possible that one unknown time period is contains by two

different sub-tasks. Then, just discard this kind of segments and don’t classify

them.

6. Compute the characteristic values of all segments as the same way in the studying

stage using the same parameters, 1W, 2W , 1F , and 2F .

7. Use the optimum hyperplane in learning stage to classify these unknown sub-

tasks.

Here only one hyperplane is applied to classify two conditions, non-cognitive

workload and cognitive workload. If classifying more conditions or higher classify

accuracy is needed, we could apply the greedy linear-programming-based algorithm

MSMT (Multi Surface Method Tree) and MSM (Multi Surface Method) (Bennett,

Mangasarian, 1992). Both these two methods are based on solving the linear

programming problem formulated above. For MSMT, the idea is to continue bi-split data

sets until all sets contain only one kind of data points or to some desired percentage so

there are at most i2 LP’s in every iteration. In comparison with MSMT, the advantage of

MSM is that only a single linear program needs to be solved at each step because when a

linear surface obtained, points classified correctly are discarded by the surface and

formulate linear programming problem based on the rest of data. So at the end, a

piecewise-linear surface is generated.

3.2.2 Computational Procedure

For each subject we have two trials, thus three subjects and six trials in all (A01,

A02, E01, E02, F01, and F02). For a subject, one trial is used as training set and the other

trial is used as testing set, then switch the training and testing set. Note, because

individual has his/her own “brain characteristics”, it haven’t found any promising

43

algorithms that are able to use the data from one subject to classify the data for another

subject.

For the features selection, four combinations are employed: (Fz, F7), (HEOG,

VEOG), (Fz, HEOG), (Fz, F7, HEOG, VEOG). For the parameters in the algorithm, we

calculate the average magnitude from 1 to 10 Hz, so 1F equals 1 and 2F equals to 10. For

1W and 2W, multiple values are chosen in order to find a pair of optimal values. The

values selected in the computational experiment include: [4000, 20/50/100/4000], [3000,

20/50/100/3000], [2000, 20/50/100/2000], [1000, 20/50/100/1000]. The value before the

comma is the value for parameter 1W, and the values after the comma are the values for

2W. For instance, in [4000, 20/50/100/4000], 1W equals to 4000, and 2W equals to 20, 50,

100, and 4000. Therefore, in each brackets, there are four pairs of values for the 1W and

2W.

3.2.3 Computational Results

The results are presented in the Table 3.3. We can see that for the parameters 1W

=2000 and 2W=20, the average error rate for both No Cognitive Load (NCL) tasks and

Cognitive Load (CL) tasks are the optimum among all the parameters. By applying DFT

and linear programming discrimination method, we can classify the NCL tasks and CL

tasks at the average accuracy of about 14.8% and 20.6%. Furthermore, from the Table

3.4, using Fz and F7 signals provide us not only a better average accuracy but also

smaller variance for the different values of the parameters (1W, 2W).

44

1W 4000 3000

2W 20 50 100 4000 20 50 100 3000

CL error 0.4974 0.3001 0.304 0.2968 0.2334 0.2633 0.249 0.2702

NCL error 0.319 0.2947 0.2991 0.2508 0.2508 0.2539 0.2355 0.2702

1W 2000 1000

2W 20 50 100 2000 20 50 100 1000

CL error 0.1476 0.2256 0.2104 0.2759 0.1929 0.2891 0.275 0.264

NCL error 0.2057 0.2196 0.2026 0.2541 0.2699 0.2872 0.2712 0.2435

Table 3.3 The test results of linear separation algorithm for EEG signals Fz, F7 with
different values of 1W, 2W

Signals Fz, F7 HEOG, VEOG HEOG, Fz
Fz,F7,

HEOG,VEGOG

AVE/STDV

CL error

0.147625

/0.057568

0.145733

/0.07094

0.164567

/0.178737

0.154575

/0.07228

AVE/STDV

NCL error

0.2056917

/0.09144

0.21505

/0.117397

0.220658

/0.217710

0.219200

/0.116993

Table 3.4 Average and standard deviation of classification error for using different
combinations of features

3.3 Principal Component Analysis Method

Principal Component Analysis (PCA) Method is a way of identifying patterns in

data, and expressing the data in such a way as to highlight their similarities and

differences (Smith, 2002), which transforms a number of possibly correlated variables

into a smaller number of uncorrelated variables called principal components. In principal

45

components analysis, we attempt to explain the total variability of n correlated variables

through the use of n orthogonal principal components. The components themselves are

merely weighted linear combinations of the original variables. Each principal component

is a linear combination of the original variables. Moreover, each principal component is a

single axis in the space of the data, and as a whole they form an orthogonal basis for the

space. The first principal component can be expressed as:

 1 11 1 21 2 1

1

...
T

1 a M
n nX a M a M a M

or X

= + + +

=
 (3.2)

1a is the first principal component coefficients, M is a variable in n dimensions, 1X

accounts for the maximum variability of the p variables of any linear combination. In

other words, projecting the data onto the first principal component, the projection data

has the maximal variance among the entire axis in the space. And the second principal

component 2X is formed such that its variance is the maximum amount of the remaining

variance and that it is orthogonal to the first principal component. That is 1 2' 1a a = . For a

variable M R p∈ , we have

 ' 0, 1, ..., 1

1, ...,

Ta M

a a for

i i

j i

X

j i

i p

=

= = −

=

 (3.3)

Here, ai is called the principal component coefficients.

For a matrix M, each column represents a variable, and each row comes from the

observations of these variables. And if TM has a zero empirical mean, then the PCA

transformation is given by

46

T TX M W

= V

=
Σ

 (3.4)

Where TVΣW is the singular value decomposition of TX .

Similar to the procedure in the linear programming algorithm, to plot Figure 3.6,

each trial is divided into several tasks according to the prior information, and each task is

split into equal long sub-tasks. Then, DFT is utilized to transform each sub-tasks from

time domain into frequency domain and calculate the average magnitudes over 1Hz to 10

Hz on signal Fz and F7 for these sub tasks. So each sub task has a two dimensional value,

the value for the whole task equals to the average value of all the sub tasks belong to

itself.

The length of sub-task is 100 data points or in other words half seconds, which is

relatively small comparing to duration of a whole task (usually having more than 4000

points). The dots, the stars and the triangles in the plots represent the value calculated for

every task. The blue dots represent task 0. The green stars represent task 1 and the red

triangle indicates the task 2. The advantage of this approach over the previous one is

more information could be extract from a task. And compare to the method we earlier, a

“better” plots is achieved (different kinds of tasks are more separable).

47

Figure 3.5 The magnitudes of task 0, 1, 2 of Subject A and E in Fz-F7 spaces

In Figure 3.5, NCL tasks and CL tasks are separable so the optimum value of

objective function always equals to zero and the LP formulations (2.6) has optimal

solutions. However, in Figure 3.6, it is obvious the linear separator varies dramatically

from one trial to the other trial for the same subject. This trait is undesirable for the

classification and contradict to the assumption that one subject should have similar

characteristics in different trials. As a result, another attribute of a “good” separator is

“robustness”, which loosely defined as the stability between the different trials for the

same subject.

Applying an algorithm involving PCA, a more “robust” separating algorithm can

be acquired. In the algorithm, PCA is used to obtain the first principal component

coefficient (it is also the direction vector of the axis which is vertical to the first principal

axis in the). Then, set the first principal component coefficient as the value of w in the LP

formulation (2.6); therefore, w is fixed before solving the LP, and only the optimum

value of r need to compute. In other words, we utilize the first principal component as the

direction of the separating hyperplane and solve the LP to find a location of the

hyperplane at where this hyperplane can separate all data points in the space. In Figure

3.6, separating planes for subject E are generated by this new method and the LP method.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18
A01 W2=100

Fz

F
7

task 0

task 1
task 2

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18
E01 W2=100

Fz

F
7

task 0

task 1
task 2

48

We can conclude by visual observation that the new approach is more “robust”. All of the

three subjects have similar results.

Figure 3.6 Comparison between the linear separator obtained by LP and PCA for two
trials of subject E

3.4 K-Nearest-Neighbor Method

3.4.1 Introduction

Linear discriminant function method is one of parametric techniques which are

based on the assumption that the underlying discriminant functions are known, with

49

several parameters need to adjust. However, this assumption is suspect in many

situations, and some nonparametric procedures can be used without this assumption.

There are several types of nonparametric methods in pattern recognition, among

which is k nearest-neighbor rule. General speaking, the rule of this method is simple: find

the “nearest k known points” of a certain test points and classify the test point into the

category in which “most” of the nearest points are.

 A general procedure for K-nearest neighbor method:

Training:

Build the set of training examples D

Classification:

Given a query instance ix to be classified,

Let 1{ ... } kkNN x x= denote the k instances from D that are nearest to ix

Then

 () arg max (,)
j

i j p
p x kNN

y x f x c
∈

= ∑ (3.5)

Where (,) {0,1}j pf x c ∈ indicates whether jx belongs to class pc , p is the number of

classes in a data set. When k=1, then k-nearest-neighbor method becomes nearest-

neighbor method, and in 2-dimensional space, the decision surface is a Voronoi diagram.

50

Figure 3.7 A Voronoi diagram

3.4.2 The Algorithm and Application

In the data set, although the training data points are usually linear separable, the

testing data points in the space are generally linear inseparable. But the linear hyperplane

can still separate most of the NCL and CL tasks. Meanwhile, for low cognitive and high

cognitive load tasks, the linear separator approach doesn’t perform well because of the

nonlinearity. Therefore, k-nearest neighbor method may be a good choice for a nonlinear

separator. In the implementation of k-nearest neighbor method, the classification is also

based on individual subject.

The algorithm using k-nearest neighbor method is similar to the algorithm using

linear optimization method; the only difference is that after the characteristic values of

training data are obtained, we applied k-nearest neighbor method instead of solving linear

programming problem to classify the testing data.

There are details in our research need to be specified here. First, we apply

“Euclidean norm” as the measure of distance in this method. Second, k-nearest neighbor

rule generally doesn’t consider the number of sample size, however in our algorithm, we

51

not only consider the “k nearest points’’ but also the number of training data where these

points belong to. Therefore, after the k nearest training points of one test point are

located, we count the number of training points in each class, then the numbers are

divided by the size of each class. Here the number of data points that each class has in the

training set, has an effect on the decision of k-nearest neighbor rule. The more data one

class has, the less effect a point in this class has on its neighbors. This method should

offer better result than the original one under the condition that unbalanced information

on different classes is given. For instance, in one of our research data set, because of the

design of experiment, the researchers collected more data in one class than the data in the

other two classes. Since this biased information was made by man-induced factor and it is

not part of the characteristics of the data set itself, without eliminating this factor, it

would deteriorate the classification results

The procedure for building training set and testing set:

For training data set:

1. For the original training data, identify the known tasks in the data set.

2. Split every known task into 2W length sub-tasks and then apply DFT on every 2W

data points.

3. Compute the average magnitudes over 1F to 2F on the outputs in step 2; calculate

the average values of all the sub-tasks in each task; it is the “characteristic value”

of this task. It is also the coordinates of a training data point in a multi-

dimensional space.

For testing data set, the procedure is similar with a little difference:

1. Divide the testing data into equal 1W long consecutive segments in the time

domain. These segments are the unknown sub-tasks needed to be classified in the

following steps.

2. Split every sub-task into 2W long span and then apply DFT on every 2W data

points.

52

3. Compute the average magnitudes over 1F to 2F from the outputs; calculate the

average of total (1W/ 2W) values; it is the “characteristic value” of this sub-task,

also the coordinates of a testing point.

The k-nearest-neighbor algorithm applied in our research:

1. Select a testing point

2. Calculate the distances from this testing point to every training points (Euclidean

Distance applied)

3. Sort the distances from smallest to the biggest

4. Find the training points corresponding to the first k distances, Count the classes

of these training points

5. The testing point is classified as { 1, ..., }, i

i

n
j Max i c

N
= = , j is the class that the

testing point assigned to, c the total classes the training data has, in is the number

of the training points belong to class i among the k- nearest points, iN is the

number of the training points belong to class i among all the training points.

Also, four combinations of signals are tested in this method: 1. all eight features.

2. Fz and F7 of EEGs. 3. ECG, Pz, T5, and O2 of EEGs. 4. VEOG, HEOG, and EEGs on

Fz, F7. First all signals are transformed to the frequency domain. Then the average

magnitudes from 1 Hz to 10 Hz are computed. k equals to 1 is applied. As it is

mentioned, there are six combinations for training and testing data set, A01/A02,

E01/E02, F01/F02, A02/A01, E02/E01, F02/F01, the dataset before the slash is the

testing set, the one after the slash is the training set.

Furthermore, we select different values for 2w, 3000, 2000, and 1000 which

corresponds to 15s, 10s, and 5s time periods. The training error and testing error are

obtained after each run. The error measurement described in 3.1.4 is applied. Since three

classes are available in the data set, the error measurement is a 3× 3 matrix, the diagonal

are the accuracy percentage for task 0, 1and 2. The off diagonal ijx elements indicate how

53

many percentages data in class i are misclassified as class j. The results for 3

combinations are listed in Table 3.5, the rest can be found in the appendix.

Fz, F7 A02/A01 E02/E01 F02/F01

Test

Error

15s

0.714 0.262 0.024 0.698 0.116 0.186 0.667 0.222 0.111

0.167 0.5 0.333 0.167 0.5 0.333 0.4 0.4 0.2

0.2 0.4 0.4 0.167 0.5 0.333 0 0 1

10s

0.651 0.286 0.064 0.641 0.219 0.141 0.609 0.219 0.172

0 0.778 0.222 0.222 0.333 0.444 0.222 0.111 0.667

0 0.625 0.375 0.1 0.2 0.7 0 0.25 0.75

5s

0.633 0.258 0.109 0.638 0.213 0.15 0.577 0.162 0.262

0 0.563 0.438 0.25 0.25 0.5 0.188 0.375 0.438

0.063 0.25 0.688 0.158 0.263 0.579 0.059 0 0.941

Train

Error

15s

1 0 0 1 0 0 0.889 0.111 0

0 0.75 0.25 0 0.5 0.5 0.25 0.75 0

0 0.25 0.75 0 0.5 0.5 0 0.25 0.75

10s

1 0 0 1 0 0 0.889 0.111 0

0 0.75 0.25 0 0.5 0.5 0.25 0.75 0

0 0.25 0.75 0 0.5 0.5 0 0.25 0.75

5s

1 0 0 1 0 0 0.889 0.111 0

0 0.75 0.25 0 0.5 0.5 0.25 0.75 0

0 0.25 0.75 0 0.5 0.5 0 0.25 0.75

Table 3.5 Testing and training errors for k-nearest neighbor method with different time
windows

We also calculate out the mean and standard deviation for accuracy over all the

different combinations in Table 3.6. The results show that k-nearest neighbor method has

a lower accuracy in separation of tasks (0) and tasks (1, 2) than the linear separation

method. Moreover, the best average classification accuracy is from using all the features

in the data set and with 1 3000W= . The longer the time periods is, the better the

classification results is. This is because that the larger 1W is, the more data points one

time window has, and the more accurate information about the cognitive status we can

54

extract. Nevertheless, the disadvantage of a larger 1W is that we would not be able to

identify a subject’s state in a short time scale and make it unpractical in real-time data

mining. Applying all the signals gives us the best result among all the four combinations’.

Also, the standard deviations are around 0.2 to 0.3, which may due to the individual

characteristics of each subject.

All features Fz,F7 ECG,Pz,T5,O2 VEOG,HEOG,Fz,F7

Mean STDEV Mean STDEV Mean STDEV Mean STDEV

15s
0.6797 0.3118 0.6594 0.3026 0.6733 0.3110 0.6732 0.3104
0.4000 0.2143 0.3714 0.2870 0.4000 0.2143 0.3191 0.2707
0.5946 0.3157 0.4946 0.3247 0.5898 0.3385 0.5898 0.3385

10s
0.6204 0.2922 0.6270 0.2958 0.6071 0.2912 0.6182 0.2900
0.4286 0.2755 0.3413 0.2836 0.4306 0.2827 0.4127 0.2921
0.5119 0.2931 0.5492 0.2986 0.4940 0.2797 0.5119 0.2931

5s
0.5476 0.2512 0.5697 0.2618 0.5487 0.2541 0.5442 0.2492
0.3680 0.2261 0.2411 0.1961 0.3666 0.2157 0.3257 0.1809
0.5668 0.2725 0.6127 0.2935 0.5668 0.2725 0.5743 0.2753

Table 3.6 Mean and standard deviation of testing accuracy for nearest-neighbor method
with different 1W and different signals when 2 100W=

Another similar method called Nearest-centroid algorithm:

1. Compute the centroids for all the classes in the training set:

1 2a +a +...+a
c i i ni

i n
= , ci is the centroid of class i, aji is a training point

belong to class i, and n is the total number of training points in class i.

2. Select a testing point; calculate the distances from this testing point to the

centroid of each class (Euclidean Distance applied).

3. The testing point is assigned to the class, which its nearest centroid belong

to.

55

This algorithm is a combination of k-mean method and nearest-neighbor rule: first

within training data, the centroid of each the class is found, and then testing data is

classified by applying these centroids and nearest neighbor method. The same parameters

and combinations of signals in k-nearest neighbor method are used in the nearest-centroid

method. The computational results are shown in Table 3.7. The k-nearest neighbor

method outperforms nearest-centroid method in all scenarios. Remark, using the

combination of ECG, Pz, T5 and O2 we obtain the same results as applying all the

features. It may be explained by that some of these four signals have higher magnitudes

in frequency domain and overshadow the other signals in the classification procedures.

All features Fz,F7 ECG,Pz,T5,O2 VEOG,HEOG,Fz,F7

Mean STDEV Mean STDEV Mean STDEV Mean STDEV

15s
0.5442 0.2804 0.6262 0.2959 0.5442 0.2804 0.5810 0.2813
0.4000 0.3151 0.4619 0.2542 0.4000 0.3151 0.4000 0.3372
0.5435 0.2574 0.4946 0.3035 0.5435 0.2574 0.5660 0.3028

10s
0.5534 0.2876 0.5957 0.2967 0.5534 0.2876 0.5692 0.2820
0.3294 0.2118 0.3651 0.2681 0.3294 0.2118 0.3333 0.2546
0.4560 0.2198 0.4849 0.2467 0.4560 0.2198 0.5401 0.2685

5s
0.4982 0.2472 0.5411 0.2488 0.4982 0.2472 0.5098 0.2390
0.3403 0.2113 0.3124 0.1677 0.3403 0.2113 0.3481 0.2106
0.4288 0.2823 0.6189 0.3023 0.4288 0.2823 0.5627 0.2761

Table 3.7 Mean and standard deviation of testing accuracy for nearest-centroid method
with different 1W and different signals when 2 100W=

3.5 Feedforward Neural Network

3.5.1 Multi-layer feed forward Neural Networks

Artificial neural networks method is a branch of artificial intelligence, which is

inspired by biological nervous systems. The similarities between biological nervous

systems and artificial neural networks are that they are both composed of simple elements

56

operating in parallel, and if the number of these simple elements reaches certain point,

they can perform complex functions. This simple element is called neuron both in

biological and artificial networks. However in artificial intelligence area, a “neuron”

actually means a parameterized function. The variables of the function are often called

inputs of the neuron and its value is its output (Dreyfus, 2005).

A neural network is a composition of several neurons, and a feed forward neural

network can be demonstrated by the graph in Figure 3.1, where the edges are the

connections and the vertices are neurons. Information always goes forward and never

goes back. In addition, in a multi-layer network, there are usually more than three layers

of neurons and they connect with each other one by one, from the input layer to output

layer. Note, the “neurons” in the input layer simply provide the input data to hidden layer

instead of processing the data, which is the reason, in some books and software the input

units are not referred as “input neurons”, and for hidden layer, the neurons are usually

sigmoid parameterized functions, while the linear functions are always applied in output

layer.

There are values for all the connections between each neuron, which called

weights. A neural network can be trained to perform a particular function by adjusting

these weights. Proved by Kolmogorov but refined by others, any continuous function

from input to output can be implemented in a three-layer net, give sufficient number of

hidden units, proper nonlinearities, and weights (Duda, Hart, Stork, 2001). Therefore,

theoretically a three-layer network with enough hidden neurons should be able to

approximate any functions, but in practice, researchers also utilize networks more than

one hidden layers due to the efficiency reason (with fewer total units).

As the rapid developments in computer technology, artificial neural network

becomes more and more popular. A great amount of effort is spent on the development of

neural networks for applications such as pattern recognition and modeling, data

compression, optimization, etc. The advantages of neural network over conventional

methods rely on its ability in solving

solution is too complex to be found, but

the problem.

A neural network

testing. In supervised classification

necessary for an optimal result. A common training procedu

3.9. To be precise, “train

connection so (,)f output target

threshold chosen according to different situations.

Figure 3.8 A typical t

Before training a network, the number of layers, the number of neurons for each

layer, the transfer functions for each layer, the training algorithm, and the performance

functions, should be decided

selected, the network predict the target value for each training data based on initialized

methods rely on its ability in solving problems which are not well understood or the

tion is too complex to be found, but it doesn’t provide any insight information

A neural network performs in two different modes: learning (or training) and

supervised classification, before a neural network is applied, training is

optimal result. A common training procedure is demonstr

, “training” is defined as finding the appropriate weights between each

(,)f output target δ≤ . f is the performance function, and

threshold chosen according to different situations.

A typical three layers feed forward neural network

a network, the number of layers, the number of neurons for each

layer, the transfer functions for each layer, the training algorithm, and the performance

, should be decided. At the beginning of the training process, a training set is

the network predict the target value for each training data based on initialized

57

problems which are not well understood or the

ht information about

performs in two different modes: learning (or training) and

is applied, training is

re is demonstrated in Figure

the appropriate weights between each

is the performance function, and δ is the

feed forward neural network

a network, the number of layers, the number of neurons for each

layer, the transfer functions for each layer, the training algorithm, and the performance

training process, a training set is

the network predict the target value for each training data based on initialized

58

weights. However, as training goes on, the network adjusts internally by a certain training

algorithm until it reaches a stable stage at which the outputs are considered satisfactory:

(, arg)f output t et δ> . After that, all weights in the network should be fixed and stop

training, go to the next stage: testing. In summary, learning is an adaptive process during

which the weights change in order to offer the best response to all the observed stimuli.

In the testing stage, the trained network is used to classify new, previously unseen inputs.

At this stage, the network receives an input signal and processes it to generate an output.

Figure 3.9 A procedure to train a neural network

3.5.2 Application

Previously research is based on the assumption that for the same subject, all the

trials are related, so based on the information in one trial, one should be able to classify

the tasks in another trial for the same subject. Nevertheless, it is possible that every trial

has its distinctive characteristics while they are related with each other at the same time.

More important, this unique characteristic may interfere with the performance of our

algorithm. In order to extinguish this factor as much as possible, a potential way is to

59

treat each trial as an independent trial and randomly select a fraction of the data as

training data and the rest as testing data.

Two different algorithms are implemented by the Neural Network Toolbox

(NNT) in the Matlab (The Mathworks, Inc), an all-purpose neural network environment.

In the first algorithm, a three-layer neural network with three neurons in the output layer

is applied since we have three classes in the dataset. Task 0, 1 and 2 correspond to target

value [1, 0, 0], [0, 1, 0], [0, 0, 1], respectively. The number of inputs is related to the

number of features we extract from the multidimensional time-series data set, and 20

neurons are in the hidden layer. All the information for the network is listed in Table 3.8.

For the second approach, two networks are utilized instead of one. The first

network separate NCL tasks (0) from CL tasks (1 and 2), and the second network identify

the low cognitive tasks (1) and the high cognitive tasks (2). Both networks have three

layers with the same transfer functions, training algorithm and learning function as in

Table 3.8. The differences between these two networks are: first, the output values have

different meanings. The target value for NCL tasks is 0, for CL tasks is 1, while in the

second network, low and high cognitive tasks correspond to target value 0 and 1. In

addition, the first network has 5 neurons and the second has 20. The reason different

numbers of neurons are chosen for the two networks, is not only based on experiment,

but also based on the observation of the linearity between non-cognitive and cognitive

tasks and the nonlinearity between low and high cognitive tasks.

60

Number of inputs 35, 28, 7

Number of outputs 3

Number of hidden neurons 20

Transfer function for hidden layer Hyperbolic Tangent Sigmoid

Transfer function for output layer Linear

Training algorithm Levenberg-Marquardt back propagation

Performance function Mean square error

Table 3.8 Details for the neural network

Note, different numbers of inputs are tested for the same data set in order to

discover the combination of features which can give the best classification result. In

Wilson and Russell’s paper (Wilson and Russell, 2007), they calculated the average

magnitudes over 5 bands from every EEG and EOG signal after the data was transferred

from time domain to frequency domain by DFT: delta (2.0 to 40 Hz), theta (5.0 to 8.0

Hz), alpha (9.0 to 13.0 Hz), beta (14.0 to 32.0 Hz), and gamma (33.0 to 43.0 Hz). Include

the 5 bands mentioned, 4 bands and 1 band are also tried. For 4 bands, they are 1 to 10

Hz, 11 to 20 Hz, 21 to 30 Hz, 31 to 40 Hz, and for 1 band, it is from 1 to 10 Hz. The 5

bands, 4 bands and 1band correspond to 35 inputs, 28 inputs and 7 inputs for the neural

network since VEOG, HEOG, Fz, F7, Pz, T5 and O2 are chosen.

Each trial is treated as an individual data set. Since the tasks are performed

continually during a certain time period, classifying every time point in the data set is

unpractical. Hence, every single trial is divided into equal long consecutive segments

along the time axis. Randomly 50% of the data is selected as training set, 25% of the data

61

as cross validation set, and the other 25% as testing set. Furthermore, the length of task 0

is at least 6 times longer than the time of the task 1 and 2 in each trial. If data is arbitrarily

selected as training set and testing set over the whole data, this unbalanced situation

would be kept in the training and testing set. And after the training, the neural network

would be biased: more sensitive to task 0. To avoid this situation, the same percentage of

data is selected from each task, and the data in task 2 and 3 is replicated to make they

have the same amount data as in task 1. A five-second long segment is used as input

signal to the network. And for each trial, we run 10 times and compute mean and

standard deviation of accuracy for each task. All the results can be found in the appendix,

only the results for 35 inputs are listed in Table 3.9.

In Table 3.10, the accuracies of the algorithm 1 and algorithm 2 are comparable.

The average accuracy for algorithm 1 among different trials is 0.85053, 0.47083, 0.59443

for task 0, task 1, and task 2, comparing to 0.85862, 0.375, 0.61667 from algorithm 2.

The neural network with 35 inputs gives the similar results in algorithm 1 and 2, and task

0 is easier to identify, again. For 7 inputs network, algorithm 1 gives the worst accuracy,

but algorithm 2 still have a similar or even better accuracy compare to the results from

the network with 35 and 28 inputs. Base on these observations, conclusion is that using

35 inputs in algorithm 1 has no advantages over using 28 inputs. Additional, applying 7

inputs can achieve a similar result by algorithm 2, although algorithm 1 with 28 inputs

has the best result over all.

62

Algor1 A01 E01 F01

35 input AVE STDV AVE STDV AVE STDV

Task 0 0.8871 0.06842 0.7806 0.14489 0.8323 0.08439

Task 1 0.425 0.28988 0.55 0.28382 0.5 0.26352

Task 2 0.6 0.26296 0.7 0.24596 0.6333 0.33148

Algor1 A02 E02 F02

35 input AVE STDV AVE STDV AVE STDV

Task 0 0.8581 0.08216 0.8903 0.04612 0.8548 0.05938

Task 1 0.45 0.2582 0.55 0.30732 0.35 0.33747

Task 2 0.5333 0.35833 0.4333 0.27444 0.6667 0.35137

Algorithm 1

Algor2 A01 E01 F01

35 input AVE STDV AVE STDV AVE STDV

Task 0 0.8387 0.12814 0.8161 0.21183 0.8968 0.06933

Task 1 0.375 0.35843 0.275 0.24861 0.35 0.33747

Task 2 0.575 0.26484 0.725 0.24861 0.8 0.2582

Algor2 A02 E02 F02

35 input AVE STDV AVE STDV AVE STDV

Task 0 0.871 0.11069 0.8194 0.09274 0.9097 0.0884

Task 1 0.4 0.35746 0.525 0.24861 0.325 0.26484

Task 2 0.525 0.27513 0.55 0.32914 0.525 0.18447

Algorithm 2

Table 3.9 The result of neural network with 35 inputs for (a) algorithm 1 and (b)
algorithm 2

63

 35 28 7

Algor1

Task 0 0.85053 0.82902 0.73978

Task 1 0.47083 0.5125 0.26667

Task 2 0.59443 0.60002 0.47778

Algor2

Task 0 0.85862 0.87312 0.86988

Task 1 0.375 0.42083 0.425

Task 2 0.61667 0.59167 0.6

Table 3.10 The average classification accuracy for Algorithm 1 and 2 with different
numbers of inputs

3.6 Peak Detection Method

The Peak Detection Method (PDM) is based on the assumption that the brain’s

state of a subject at a certain time point can be determined by the time period before and

after this point. In this algorithm, a fixed-length window slides through the time axis and

certain value are measured every time the window is located. Also, the value calculated is

assigned to the time point at the middle of the window. For this algorithm, these

parameters: 1w
 the length of the window, and 2w

 the span that every time the window

slides, need to be pre-determined. There are two ways to gauge the window: the

magnitude for a frequency band after DFT or the standard deviations for all the data in

the window since interesting patterns are found in the previous section. Both of these two

measures are applied on a single feature which also needs to choose prior.

Figure 3.10 is generated by the PDM, the X axis is the time axis; the Y axis

represents values of a certain measurement. The vertical lines indicate the finishing of

events: the black lines mean task 0 ends, the green indicates the task 0 and the red

indicates the task 2. Therefore, a task 2 happens between a black line and a red line, and a

task 1 happens between a black line and a green line. The parameters chosen here are

64

1 18 secw= and 2 1secw = , which imply the length of this moving window is 18 seconds

and this window moves 1 seconds every time. Furthermore, the feature chosen from the

data set is EEG signal on Fz spot and the frequency band is from 1 Hz to 10 Hz.

In Figure 3.10, for the same trial and the same subject, there are two plots, the plot

above applies measure of the standard deviations of the raw data and the plot below

calculates the average magnitude for the transformed EEG signal. Also, In Figure 3.10, at

the beginning of every task 1 and task 2, a peak appears in both two measurements. It

indicates that when a subject is performing under a CL task, the EEG data collected from

Fz spot always has a lower average magnitude in frequency domain and a lower standard

deviation in the time domain, than under a NCL task. Note, the negative values of both

two measurements are used in Figure 3.10 just for the convenience of observation.

Another interesting phenomenon is that these two measurements are closely correlated;

the correlation coefficients are in

65

A01

E01

0 2 4 6 8 10 12 14 16 18

x 10
4

-30

-25

-20

-15

-10

Stdv

0 2 4 6 8 10 12 14 16 18

x 10
4

-2

-1.5

-1

-0.5
Average Magnitudes

0 2 4 6 8 10 12 14 16

x 10
4

-40

-30

-20

-10
Stdv

0 2 4 6 8 10 12 14 16

x 10
4

-2.5

-2

-1.5

-1

-0.5
Average Magnitudes

66

F01

Figure 3.10 The two measurements versus time plots from PDM for data set A01, E01,
F01

Trail A01 A02 E01 E02 F01 F02

Correlation 0.9488 0.9392 0.9266 0.8927 0.8848 0.7498

Table 3.11 The correlation between the average magnitudes and standard deviation in the
Peak Detection Method

A heuristic peak detection algorithm is applied to discover the change during the

trial:

Initial max inf, 0y max= − = with predefined , δ γ

For i=1…n, n is the number of data points along the time axis.

If maxiy y> , then max iy y= and max i=

Else if max iy y δ> + and maxy γ> then Point (max max,x y) is a peak.

0 2 4 6 8 10 12 14 16 18

x 10
4

-30

-20

-10

0
Stdv

0 2 4 6 8 10 12 14 16 18

x 10
4

-1.5

-1

-0.5

0
Average Magnitudes

67

End

δ is the relative threshold to identify a peak and γ is the absolute threshold. Only a point

satisfies these two at the same time would be labeled as a peak. In our computational

experiment, δ equals to one standard deviation of all the points in the plot, and γ equals

to the mean plus one standard deviation.

The result from the algorithm applied on the previous “standard deviation plot” of

E01 is shown in Figure 3.11.In this figure, most of the peaks detected are the transitional

point of different tasks, although the peaks are not all on the exact time point of task 0

shifting into task 1 or 2,, they are close to the points in a satisfied precision. The results

for each data set are listed in Table 3.12. The table includes the number of transition

points it has for each trial, how many of them are detected, and how many false alarms

have been triggered. Note, for PDM, task 0 is considered as a baseline or benchmark, and

this method cannot differentiate task 1 and task 2 now.

Figure 3.11The points detected by the peak detection algorithm in E01 data set

0 2 4 6 8 10 12 14 16

x 10
4

-35

-30

-25

-20

-15

-10
Stdv of E01

68

Table 3.13 shows that the percentage of task 1 detected by PDM is comparable to

the percentage of task 2: average 87.50% and 83.33% respectively. The average total

accuracy is 72.16%. The reason that the total accuracy is lower than both of the

percentage of task 1 detected and task 2 detected is there are several false alarms during

each trails. Therefore, to increase the total accuracy, we need to lower the false alarm

rate.

Data

Set

Transitional

points

Correctly

detected:

Task1

detected:

Tasks2

detected:
False alarm

A01 8 8 4 4 3

A02 8 7 3 4 1

E01 8 8 4 4 1

E02 8 6 3 3 3

F01 8 8 4 4 3

F02 8 4 3 1 1

Table 3.12 Detail results from PDM for each data set

After all, PMD is still in a preliminary stage and has its own merits and

drawbacks. The method only adopts one signal out of eight so it is straightforward to

apply but may miss useful information in the rest signals. Although it doesn’t need to be

trained, several parameters need to be selected based on either the prior-experience or

certain information of the data set.

69

Accuracy False Alarm

Rate Task 1 Task 2 Total

A01 100% 100% 72.73% 27.27%

A02 75% 100% 87.5% 12.5%

E01 100% 100% 88.89% 11.11%

E02 75% 75% 66.67% 33.33%

F01 100% 100% 72.73% 27.27%

F02 75% 25% 44.44% 55.56%

Average 87.50% 83.33% 72.16% 27.84%

Table 3.13 Accuracy and false alarm rate by PDM for each data set

70

CHAPTER 4
DISCUSSION AND CONCLUSION

Our research mainly consisted by two parts. First, apply p-norm error measure

instead of 1-norm measure in the linear programming discrimination, which generates a

linear hyperplane to classify two data sets. With this p-norm error measure, the errors

generated by the classifier are not treated equally but rather biased. For p>1, the bigger

one error is, the more weight it obtains in the objective function.

Numerical results show this method can improve the result of classification and

the accuracy is promising for Breast Cancer Data Set. However, for other data sets, the

computational results are not good enough, which is due to the nonlinear character of

these data sets. When1 21/ , 1/m nδ δ= = , the result is always much better than

1 21, 1δ δ= = and 1 21 / , 1 / .p pm nδ δ= =

Second, investigation is conducted on a psychophysiological data set. Various

methods are tested on this multi-dimensional time-series data set, from the linear

programming method to the neural network method. With the help of DFT, The data is

able to be transferred from the time domain to the frequency domain, in which the data

set has interesting patterns. Generally speaking, for some of the EEG signals, a higher

average magnitude of a low frequency band (1-10 Hz, etc) indicates a low cognitive

activity, and the lower the magnitudes is, the more vigorously the brain acts.

The linear programming method can classify the NCL task and CL task with

average accuracies 14.8% and 20.6%. However, the linear programming method cannot

differentiate the low cognitive task and high cognitive task with comparable accuracies.

The K-nearest neighbor methods can be applied in categorizing 0, 1 and 2 tasks. The

average accuracies for the three tasks are around 60%, 40%, 50%, which are depending

on the parameters of the algorithm. Furthermore, artificial neural network have also been

tested for this data set. The optimal average accuracy is 85.05%, 47.08%, and 59.44%.

71

However, the way that neural network is utilized makes it impossible for real-time data

mining, which may be essential in practice.

In data mining, it is difficult to evaluate performance of an algorithm or compare

two algorithms without a specific data set so it is hard to say a certain algorithm is

“better” than another in general. An algorithm which wonderfully performs on a data set

may misclassify many data points in another data set. This fact is all because the domain

knowledge of specific data set is poor, which is also part of the reason why data mining

algorithms are applied. It is a dilemma. Therefore, the challenging questions are: does

that choosing a DM algorithm all depend on the type of data set or something else? Are

there any measurements can indicate which algorithms should be applied after a data set

is given but before any algorithms are tested on it?

In our case, even the same data set has been tested by different algorithms,

comparison between the performances of two algorithms applied in two different

procedures is inappropriate. We applied linear programming method, k-nearest neighbor

method and artificial neural network on this psychophysiological data set. These three

algorithms could be applied in different occasions and have their own advantages and

limitations. Generally, Linear programming method has a better performance than k-

nearest neighbor method in classify none cognitive tasks and cognitive tasks, which may

due to that k-nearest neighbor method cannot capture the real linearity in the data set.

Additionally, According to the computational results, we could conclude that this

psychophysiological data set is individual independent or even trial independent, which

imply each subject or each trial has its distinct characteristics. Besides, there is no

evidence so far that shows we can classify the data from one subject based on the data

from another one. However, all the subjects do share some similar characteristics: in

cognitive state: the signals tend to have the lower magnitudes in frequency domain and

lower standard deviation in time domain. Nevertheless, these characteristics are not

enough to identify the brain’ states.

72

From practical perspective, classifying the data set based on subject is more

realistic and meaningful since only classifying the data from one trial cannot satisfy the

requirements of real-time classification. The best and most reasonable way to apply

classification in this situation is that: before an operator is allowed to control a real UAV,

he/she goes to a training program and takes certain simulation tasks, in which personal

data is collected and analyzed, then the parameters of the data mining algorithm are

searched until required classification accuracy is achieved. Last, the operator can be in

charge of a real UAV and performs in real missions, and the performer’s functional states

would be indicated by the algorithm with parameters previously fixed.

Furthermore, separating NCL task and CL task is much easier than categorizing

different level of cognitive activities. An intuitive explanation would be that brain

functions qualitatively differently in none cognitive behavior and cognitive behavior.

Meanwhile, the difference between different level cognitive tasks is only quantitative.

Besides, the tasks in the experiment may be too subjective to be differentiated. Therefore,

making a clear definition or measurement on the cognitive level of tasks should be in the

future research. Also, identifying the requisites from the task, and explore how these

interact with the brain would help classifying this type of data set in the future. Due to the

curse of dimensionality, an effective feature reduction method is in demand. Ideally, in

order to reduce the dimensionality of the data set, a feature reduction method either

chooses useful features out of total features or combines several features into one. In our

research, the features are selected based on the data mining results, so they are simply

chosen by trial and error.

Finally, quoting from Robert D. Small (Small, 1997), A great deal of what is said

about data mining is incomplete, exaggerated, or wrong. When you undertake a data-

mining project, avoid a cycle of unrealistic expectations followed by disappointment.

Understand the facts instead, and your data-mining efforts will be successful.

73

APPENDIX A: CLASSIFICATION RESULTS FOR WISCONSIN BREAST CANCER

DATA SET (ERROR RATE)

P-order M=N=1 M=m, N=n M=m^p, N=n^p

 Benign Malignant total Benign Malignant total Benign Malignant total

1 2.64% 5.19% 3.53% 2.64% 3.29% 2.87% 2.64% 3.29% 2.87%

1.1 2.57% 5.19% 3.49% 2.77% 2.91% 2.82% 2.77% 2.91% 2.82%

1.2 2.57% 5.19% 3.49% 2.91% 3.16% 3.00% 2.84% 3.16% 2.95%

1.3 2.57% 4.81% 3.35% 2.91% 2.66% 2.82% 2.84% 3.04% 2.91%

1.4 2.64% 4.68% 3.35% 2.91% 2.53% 2.78% 2.84% 2.91% 2.86%

1.5 2.57% 4.68% 3.31% 2.91% 2.53% 2.78% 2.77% 2.91% 2.82%

1.6 2.57% 4.81% 3.35% 2.97% 2.53% 2.82% 2.77% 3.04% 2.86%

1.7 2.57% 4.68% 3.31% 2.97% 2.41% 2.77% 2.84% 3.04% 2.91%

1.8 2.57% 4.56% 3.27% 3.04% 2.41% 2.82% 2.84% 3.16% 2.95%

1.9 2.57% 4.56% 3.27% 3.04% 2.28% 2.77% 2.84% 3.29% 3.00%

2 2.57% 4.43% 3.22% 3.04% 2.28% 2.77% 2.84% 3.29% 3.00%

2.1 2.57% 4.68% 3.31% 3.11% 2.28% 2.82% 2.84% 3.42% 3.04%

2.2 2.57% 4.81% 3.35% 3.18% 2.28% 2.87% 2.77% 3.29% 2.95%

2.3 2.50% 4.94% 3.35% 3.24% 2.28% 2.90% 2.84% 3.42% 3.04%

2.4 2.50% 5.06% 3.39% 3.38% 2.28% 3.00% 2.84% 3.80% 3.18%

2.5 2.50% 5.19% 3.44% 3.38% 2.28% 3.00% 2.77% 4.05% 3.22%

2.6 2.50% 5.44% 3.53% 3.38% 2.28% 3.00% 2.70% 4.56% 3.35%

2.7 2.50% 5.57% 3.57% 3.38% 2.28% 3.00% 2.64% 4.43% 3.27%

2.8 2.43% 5.57% 3.53% 3.38% 2.53% 3.08% 2.64% 4.43% 3.27%

2.9 2.43% 5.57% 3.53% 3.31% 2.78% 3.12% 2.64% 4.43% 3.27%

3 2.43% 5.70% 3.57% 3.31% 2.91% 3.17% 2.64% 4.43% 3.27%

3.1 2.36% 5.82% 3.57% 3.31% 3.04% 3.22% 2.64% 4.68% 3.35%

3.2 2.36% 5.70% 3.53% 3.31% 3.16% 3.26% 2.50% 4.81% 3.31%

3.3 2.36% 5.95% 3.61% 3.31% 3.16% 3.26% 2.50% 5.19% 3.44%

3.4 2.30% 5.95% 3.58% 3.38% 3.16% 3.30% 2.50% 5.19% 3.44%

3.5 2.30% 6.08% 3.62% 3.38% 3.16% 3.30% 2.43% 5.19% 3.39%

3.6 2.30% 6.46% 3.75% 3.38% 3.29% 3.35% 2.43% 5.19% 3.39%

3.7 2.30% 6.58% 3.80% 3.31% 3.42% 3.35% 2.43% 5.44% 3.48%

3.8 2.30% 6.84% 3.89% 3.24% 3.42% 3.30% 2.36% 5.70% 3.53%

3.9 2.30% 6.96% 3.93% 3.11% 3.54% 3.26% 2.36% 5.70% 3.53%

4 2.30% 7.22% 4.02% 3.04% 3.54% 3.21% 2.36% 5.70% 3.53%

74

4.1 2.23% 7.22% 3.97% 3.04% 3.67% 3.26% 2.36% 5.95% 3.61%

4.2 2.23% 7.22% 3.97% 2.97% 3.80% 3.26% 2.36% 6.08% 3.66%

4.3 2.23% 7.09% 3.93% 2.91% 4.18% 3.35% 2.30% 6.33% 3.71%

4.4 2.23% 7.22% 3.97% 2.97% 4.18% 3.39% 2.30% 6.58% 3.80%

4.5 2.23% 7.34% 4.02% 2.97% 4.18% 3.39% 2.30% 6.58% 3.80%

4.6 2.16% 7.59% 4.06% 2.97% 4.18% 3.39% 2.30% 6.58% 3.80%

4.7 2.16% 7.72% 4.10% 2.97% 4.18% 3.39% 2.36% 6.71% 3.88%

4.8 2.23% 8.23% 4.33% 3.04% 4.30% 3.48% 2.36% 6.71% 3.88%

4.9 2.23% 8.61% 4.46% 2.97% 4.43% 3.48% 2.36% 6.96% 3.97%

5 2.23% 9.11% 4.63% 2.97% 4.43% 3.48% 2.36% 6.96% 3.97%

75

APPENDIX B: CLASSIFICATION RESULTS FOR THE DATA SETS FROM UCI

M=N=1

Ionosphere Pima Sonar

1 8.00% 33.10% 17.01% 41.56% 17.90% 26.14% 27.84% 31.25% 29.43%

1.1 8.00% 32.86% 16.92% 41.44% 18.26% 26.33% 29.73% 32.50% 31.03%

1.2 7.87% 32.38% 16.67% 41.89% 18.92% 26.92% 31.08% 32.19% 31.60%

1.3 8.13% 32.38% 16.84% 42.44% 19.28% 27.35% 27.84% 32.50% 30.02%

1.4 8.13% 30.71% 16.24% 41.56% 19.82% 27.39% 30.27% 31.88% 31.02%

1.5 8.00% 30.95% 16.24% 41.89% 20.30% 27.82% 28.65% 31.88% 30.16%

1.6 7.87% 30.71% 16.07% 42.11% 21.20% 28.48% 28.65% 28.75% 28.70%

1.7 8.00% 31.43% 16.41% 42.44% 21.38% 28.72% 27.84% 31.88% 29.73%

1.8 7.73% 31.19% 16.15% 42.33% 21.74% 28.91% 28.65% 31.56% 30.01%

1.9 8.00% 30.71% 16.15% 42.44% 21.86% 29.03% 31.35% 33.44% 32.33%

2 8.13% 30.95% 16.32% 42.67% 21.86% 29.11% 29.46% 31.25% 30.30%

2.1 8.13% 30.95% 16.32% 42.78% 21.98% 29.23% 29.19% 31.56% 30.30%

2.2 8.00% 31.19% 16.32% 42.67% 22.16% 29.30% 25.68% 32.81% 29.01%

2.3 7.60% 31.67% 16.24% 42.56% 22.22% 29.31% 26.76% 30.62% 28.57%

2.4 7.47% 31.90% 16.24% 42.78% 22.10% 29.30% 27.84% 35.00% 31.19%

2.5 7.60% 32.14% 16.41% 43.00% 22.28% 29.50% 28.38% 32.19% 30.16%

2.6 7.60% 32.38% 16.50% 43.22% 22.28% 29.57% 25.95% 33.75% 29.60%

2.7 7.60% 32.38% 16.50% 43.33% 22.34% 29.65% 31.89% 32.19% 32.03%

2.8 7.60% 32.38% 16.50% 43.44% 22.28% 29.65% 28.38% 33.13% 30.60%

2.9 7.60% 32.62% 16.58% 43.78% 22.40% 29.85% 28.65% 30.62% 29.57%

3 7.73% 33.10% 16.84% 43.78% 22.51% 29.92% 28.65% 30.94% 29.72%

3.1 7.60% 33.10% 16.75% 43.78% 22.69% 30.04% 26.22% 31.25% 28.57%

3.2 7.33% 33.10% 16.58% 43.78% 22.57% 29.96% 26.22% 33.44% 29.60%

3.3 7.33% 33.33% 16.66% 43.89% 22.75% 30.11% 27.84% 32.50% 30.02%

3.4 7.33% 33.10% 16.58% 43.89% 22.69% 30.07% 30.00% 30.94% 30.44%

3.5 7.20% 33.10% 16.50% 44.00% 22.87% 30.23% 26.22% 30.94% 28.43%

3.6 7.20% 33.33% 16.58% 44.11% 22.81% 30.23% 30.00% 30.63% 30.29%

3.7 7.20% 33.57% 16.67% 44.22% 22.99% 30.39% 27.57% 32.50% 29.88%

3.8 7.47% 33.57% 16.84% 44.33% 23.05% 30.46% 28.92% 30.62% 29.71%

3.9 7.33% 33.57% 16.75% 44.33% 22.99% 30.42% 28.38% 30.00% 29.14%

4 7.20% 33.81% 16.75% 44.44% 23.05% 30.50% 28.38% 28.75% 28.55%

4.1 7.20% 34.05% 16.84% 44.33% 23.23% 30.58% 28.92% 33.13% 30.89%

76

4.2 7.20% 34.29% 16.92% 44.22% 23.29% 30.58% 29.46% 34.06% 31.61%

4.3 7.20% 34.29% 16.92% 44.11% 23.29% 30.54% 26.76% 35.62% 30.90%

4.4 7.07% 34.29% 16.84% 44.11% 23.35% 30.58% 27.84% 35.00% 31.19%

4.5 6.93% 34.52% 16.83% 44.00% 23.41% 30.58% 27.84% 32.19% 29.87%

4.6 6.67% 34.76% 16.75% 44.00% 23.29% 30.50% 26.76% 33.44% 29.88%

4.7 6.67% 34.76% 16.75% 44.22% 23.35% 30.62% 29.19% 34.38% 31.62%

4.8 6.53% 34.76% 16.66% 44.22% 23.41% 30.66% 30.54% 32.50% 31.46%

4.9 6.40% 35.24% 16.75% 44.33% 23.53% 30.78% 29.19% 34.38% 31.62%

5 6.27% 36.43% 17.10% 44.22% 23.59% 30.78% 28.65% 33.12% 30.74%

average 7.47% 32.90% 16.60% 43.33% 22.13% 29.51% 28.48% 32.23% 30.23%

 M=m^p, N=n^p

p Ionosphere Pima Sonar

1 11.33% 29.29% 17.78% 33.00% 26.83% 28.98% 22.97% 38.44% 30.20%

1.1 11.33% 29.05% 17.69% 33.00% 27.01% 29.10% 29.73% 32.50% 31.03%

1.2 11.33% 29.76% 17.95% 33.67% 26.77% 29.17% 31.08% 32.19% 31.60%

1.3 11.33% 30.48% 18.20% 34.44% 26.83% 29.48% 27.84% 32.50% 30.02%

1.4 11.87% 30.48% 18.55% 35.00% 26.83% 29.68% 30.27% 31.88% 31.02%

1.5 12.13% 29.52% 18.37% 35.56% 26.83% 29.87% 28.65% 31.88% 30.16%

1.6 12.13% 29.29% 18.29% 35.78% 26.71% 29.87% 28.65% 28.75% 28.70%

1.7 12.13% 28.81% 18.12% 36.22% 26.77% 30.06% 28.38% 34.69% 31.33%

1.8 12.00% 29.05% 18.12% 36.67% 26.53% 30.06% 29.73% 32.50% 31.03%

1.9 12.27% 29.05% 18.29% 37.22% 26.59% 30.29% 31.35% 33.44% 32.33%

2 12.27% 29.05% 18.29% 37.11% 26.77% 30.37% 29.46% 31.25% 30.30%

2.1 12.00% 30.00% 18.46% 37.44% 26.77% 30.49% 27.57% 28.12% 27.83%

2.2 11.87% 30.24% 18.46% 37.44% 26.95% 30.60% 25.68% 32.81% 29.01%

2.3 11.87% 30.48% 18.55% 37.67% 26.95% 30.68% 26.76% 30.62% 28.57%

2.4 12.27% 30.95% 18.98% 37.67% 27.13% 30.80% 27.84% 35.00% 31.19%

2.5 12.00% 31.19% 18.89% 37.89% 26.95% 30.76% 28.38% 32.19% 30.16%

2.6 12.13% 31.19% 18.97% 38.22% 27.13% 30.99% 27.30% 34.69% 30.76%

2.7 12.13% 30.95% 18.89% 38.67% 27.13% 31.15% 31.89% 31.88% 31.89%

2.8 11.87% 31.19% 18.81% 39.00% 27.19% 31.30% 29.73% 33.44% 31.46%

2.9 11.87% 31.19% 18.81% 39.33% 27.25% 31.46% 28.11% 31.56% 29.72%

3 11.73% 31.19% 18.72% 39.44% 27.31% 31.54% 28.38% 32.19% 30.16%

3.1 11.73% 30.95% 18.63% 39.56% 27.31% 31.58% 26.49% 34.06% 30.03%

3.2 11.60% 30.95% 18.55% 39.56% 27.31% 31.58% 29.19% 33.44% 31.18%

77

3.3 11.33% 30.95% 18.37% 39.78% 27.37% 31.69% 29.73% 33.75% 31.61%

3.4 11.33% 30.71% 18.29% 39.78% 27.31% 31.65% 31.35% 33.13% 32.18%

3.5 10.93% 30.71% 18.03% 39.89% 27.19% 31.61% 27.57% 30.31% 28.85%

3.6 10.80% 30.71% 17.95% 40.11% 27.25% 31.73% 29.73% 31.88% 30.74%

3.7 10.67% 31.19% 18.04% 40.11% 27.25% 31.73% 25.41% 35.31% 30.04%

3.8 10.13% 31.43% 17.78% 40.22% 27.19% 31.73% 27.03% 30.94% 28.86%

3.9 10.13% 31.43% 17.78% 40.67% 27.25% 31.92% 30.27% 29.38% 29.85%

4 10.13% 31.43% 17.78% 40.78% 27.25% 31.96% 28.92% 30.62% 29.71%

4.1 10.00% 31.67% 17.78% 41.00% 27.25% 32.04% 28.92% 31.25% 30.01%

4.2 9.47% 31.90% 17.52% 41.11% 27.31% 32.12% 29.19% 32.81% 30.88%

4.3 9.20% 32.14% 17.43% 41.00% 27.19% 32.00% 28.38% 35.31% 31.62%

4.4 9.07% 32.14% 17.35% 41.11% 27.31% 32.12% 28.38% 34.38% 31.19%

4.5 8.80% 32.86% 17.44% 41.11% 27.25% 32.08% 29.19% 32.19% 30.59%

4.6 8.80% 32.86% 17.44% 41.00% 27.25% 32.04% 27.57% 34.38% 30.75%

4.7 8.67% 33.33% 17.52% 41.00% 27.13% 31.96% 25.95% 33.75% 29.60%

4.8 8.80% 33.33% 17.61% 41.00% 27.01% 31.88% 29.46% 32.50% 30.88%

4.9 8.40% 33.81% 17.52% 41.00% 27.01% 31.88% 28.65% 34.69% 31.47%

5 8.27% 34.05% 17.52% 41.00% 26.95% 31.84% 16.76% 44.69% 29.82%

Average 10.93% 31.00% 18.13% 38.57% 27.06% 31.07% 28.24% 32.96% 30.45%

78

APEENDIX C: CORRELATION FOR EACH TRIAL IN THE

PSYCHOPHYSIOLOGICAL DATA

E01 1 2 3 4 5 6 7 8
1 1 -0.012 0.0212 -0.0762 -0.0287 -0.0746 -0.0259 -0.019
2 -0.012 1 -0.1 -0.7283 -0.5557 -0.2712 -0.1926 -0.0067
3 0.0212 -0.1 1 -0.1232 0.7601 -0.2893 -0.0774 -0.4433
4 -0.0762 -0.7283 -0.1232 1 0.4693 0.6343 0.367 0.2765
5 -0.0287 -0.5557 0.7601 0.4693 1 0.0676 0.1338 -0.231
6 -0.0746 -0.2712 -0.2893 0.6343 0.0676 1 0.5531 0.6855
7 -0.0259 -0.1926 -0.0774 0.367 0.1338 0.5531 1 0.4617
8 -0.019 -0.0067 -0.4433 0.2765 -0.231 0.6855 0.4617 1

E02 1 2 3 4 5 6 7 8
1 1 -0.002 0.011 -0.076 -0.0424 -0.0807 -0.0335 -0.0278
2 -0.002 1 -0.0531 -0.8197 -0.629 -0.3855 -0.291 -0.0899
3 0.011 -0.0531 1 -0.1273 0.7084 -0.2657 -0.0634 -0.3531
4 -0.076 -0.8197 -0.1273 1 0.5214 0.6584 0.4296 0.2897
5 -0.0424 -0.629 0.7084 0.5214 1 0.1355 0.2014 -0.1252
6 -0.0807 -0.3855 -0.2657 0.6584 0.1355 1 0.6039 0.6551
7 -0.0335 -0.291 -0.0634 0.4296 0.2014 0.6039 1 0.5137
8 -0.0278 -0.0899 -0.3531 0.2897 -0.1252 0.6551 0.5137 1

79

F01 1 2 3 4 5 6 7 8
1 1 0.0044 0.0059 -0.0657 -0.0318 -0.0712 -0.047 -0.0324
2 0.0044 1 -0.106 -0.4065 -0.3115 -0.2249 -0.2417 -0.0659
3 0.0059 -0.106 1 0.0122 0.7998 -0.1453 0.0555 -0.3558
4 -0.0657 -0.4065 0.0122 1 0.3636 0.7001 0.6336 0.3733
5 -0.0318 -0.3115 0.7998 0.3636 1 0.0636 0.2686 -0.2126
6 -0.0712 -0.2249 -0.1453 0.7001 0.0636 1 0.7969 0.7387
7 -0.047 -0.2417 0.0555 0.6336 0.2686 0.7969 1 0.6411
8 -0.0324 -0.0659 -0.3558 0.3733 -0.2126 0.7387 0.6411 1

F02 1 2 3 4 5 6 7 8
1 1 -0.0066 0.0157 -0.0398 -0.0159 -0.0279 0.0059 0.0081
2 -0.0066 1 -0.1718 -0.365 -0.3203 -0.2529 -0.259 -0.1655
3 0.0157 -0.1718 1 0.032 0.8095 -0.0438 0.1535 -0.162
4 -0.0398 -0.365 0.032 1 0.4112 0.755 0.6482 0.5005
5 -0.0159 -0.3203 0.8095 0.4112 1 0.2447 0.4344 0.1042
6 -0.0279 -0.2529 -0.0438 0.755 0.2447 1 0.8417 0.8031
7 0.0059 -0.259 0.1535 0.6482 0.4344 0.8417 1 0.7922
8 0.0081 -0.1655 -0.162 0.5005 0.1042 0.8031 0.7922 1

80

APPENDIX D RESULT FOR K-NEAREST NEIGHBOR METHOD

Fz, F7 A02/A01 E02/E01 F02/F01

Test

Error

15s

0.909 0.091 0 0.81 0.167 0.024 0.818 0.182 0

0.4 0 0.6 0.4 0.4 0.2 0.2 0.8 0

0.2 0 0.8 0.429 0.143 0.429 0.167 0.333 0.5

10s

0.894 0.106 0 0.825 0.127 0.048 0.769 0.2 0.031

0.375 0.25 0.375 0.125 0.25 0.625 0.111 0.667 0.222

0 0.125 0.875 0.3 0 0.7 0.111 0.444 0.444

5s

0.812 0.135 0.053 0.691 0.183 0.127 0.638 0.26 0.102

0.467 0.067 0.467 0.353 0.118 0.529 0.368 0.316 0.316

0.063 0.188 0.75 0.105 0.263 0.632 0.15 0.15 0.7

Train

Error

15s

1 0 0 1 0 0 0.889 0.111 0

0 0.25 0.75 0 0.5 0.5 0.25 0.25 0.5

0 0.5 0.5 0 0.5 0.5 0 0 1

10s

1 0 0 1 0 0 0.889 0.111 0

0 0.25 0.75 0 0.5 0.5 0.25 0.25 0.5

0 0.5 0.5 0 0.5 0.5 0 0 1

5s

1 0 0 1 0 0 0.889 0.111 0

0 0.25 0.75 0 0.5 0.5 0.25 0.25 0.5

0 0.5 0.5 0 0.5 0.5 0 0 1

81

APPENDIX E: RESULTS FOR NEURAL NETWORK

 Algor1 A01 E01 F01

28 input AVE STDV AVE STDV AVE STDV

state 0 0.7935 0.13618 0.7935 0.16878 0.829 0.10204

state 1 0.55 0.32914 0.35 0.24152 0.575 0.23717

state 2 0.6667 0.35137 0.5667 0.31624 0.6 0.21084

Algor1 A02 E02 F02

28 input AVE STDV AVE STDV AVE STDV

state 0 0.8323 0.07573 0.8613 0.06978 0.8645 0.08437

state 1 0.55 0.28382 0.425 0.23717 0.625 0.29463

state 2 0.5667 0.27444 0.7333 0.21082 0.4667 0.32204

Algor2 A01 E01 F01

28 input AVE STDV AVE STDV AVE STDV

state 0 0.9194 0.04623 0.8742 0.19021 0.8548 0.11608

state 1 0.4 0.21082 0.375 0.27003 0.4 0.31623

state 2 0.55 0.30732 0.5 0.26352 0.625 0.29463

Algor2 A02 E02 F02

28 input AVE STDV AVE STDV AVE STDV

state 0 0.8935 0.05492 0.8323 0.1739 0.8645 0.04995

state 1 0.35 0.29345 0.5 0.20412 0.5 0.33333

state 2 0.475 0.2993 0.675 0.16874 0.725 0.2189

82

Algor1 A01 E01 F01

 7 input AVE STDV AVE STDV AVE STDV

state 0 0.7129 0.19442 0.8129 0.071 0.6774 0.149

state 1 0.275 0.14191 0.225 0.2189 0.2 0.22973

state 2 0.6667 0.31429 0.3333 0.27218 0.6333 0.29187

Algor1 A02 E02 F02

7 input AVE STDV AVE STDV AVE STDV

state 0 0.771 0.08111 0.7 0.12075 0.7645 0.11076

state 1 0.2 0.22973 0.4 0.29345 0.3 0.2582

state 2 0.4667 0.32204 0.4 0.34428 0.3667 0.29188

Algor1 A01 E01 F01

7 input AVE STDV AVE STDV AVE STDV

state 0 0.829 0.10757 0.8935 0.04574 0.8516 0.09273

state 1 0.375 0.3385 0.475 0.18447 0.35 0.29345

state 2 0.75 0.20412 0.6 0.35746 0.65 0.24152

Algor2 A02 E02 F02

7 input AVE STDV AVE STDV AVE STDV

state 0 0.8871 0.0532 0.871 0.06083 0.8871 0.06671

state 1 0.525 0.2189 0.375 0.35843 0.45 0.22973

state 2 0.475 0.2189 0.6 0.1291 0.525 0.34258

83

REFERENCES

Keogh and Pazzani. (1998). An enhanced representation of time series which
allows fast and accurate classification, clustering and relevance feed back. KDD'98 , 239-
241.

Agrawal, Faloutsos and Swami. (1993). Efficient Similarity Search in Sequence
Databases. Proc. of the 4th Conference on Foundations of Data Organization and
Algorithms. Chicago.

Bechmann, Kriegel, Schneider, and Seeger. (1990). The R*-tree: an efficient and
robust access method for points and rectangles. ACM SIGMOD , 322-332.

Bennett and Mangasariain. (1993). Bilinear Separtion of Two Sets in n-Space.
Computational Optimization and Application 2 , 207-227.

Bennett, Mangasarian. (1992). Robust Linear Programming Discrimination of
Two Linearly Inseparable Sets. Optimization Methods and Software 1 , 23-24.

Ben-Tal and Nemirovski. (2001). On Polyhedral Approximations of the Second-
Order Cone. Mathematics of Operations Research , 193-205.

Bradley, Fayyad, Mangasarian. (1999). Mathematical Programming for Data
Mining: Formulations and Challenges. INFORMS Journal on Computing .

Busygin, Prokopyev, Pardalos. (2007). An optimization-based approach for data
classification. Optimization Methods and Software .

Das, e. (1998). Rule Discovery From Time Series.

Dreyfus, G. (2005). Neural Networks-Methodology and Applications. Pairs:
Springer.

Duda, Hart, Stork. (2001). Pattern Classification.

Geurts, P. (2001). Pattern Extraction for Time Series Classification. PKDD 2001 ,
115-127.

Guttman, A. (1984). R-Tree A Dynamic Index Structure for Spatial Searching.

Keogh and Kasetty. (2003). On the Need for Time Series Data Mining
Benchmarks: A Survey and Empirical Demonstration. Data Mining and Knowledge
Discovery , 349-371.

Keogh and Pazzani. (2002). On the Need for Time Series Data Mining
Benchmarks: A Survey and Empirical Demonstration.

84

Krokhmal. (2007). Higher Moment Risk Measures. Quantitative Finance , 373-
387.

Lee, etc. (2000). Similarity Search for Multidimensional Data Sequences.

Managasarian, O. (1992). Mathematical Programming in Neural Networks.

Mangasarian, Bennett. (1991). Robust Linear Programming Discrimination of
Two Linearly Inseparable Sets. Computer Sciences Technical Report #1054 .

Padmanabhan, T. (2003). On the use of optimization for data mining theoretical
interactions and eCRM opportunities. Management Science 2003 INFORMS, (pp. 1327-
1343).

Padmanabhan,Tuzhilin. (2003). On the use of optimization for data mining:
theoretical interactions and eCRM opportunities. Management Science 2003 INFORMS ,
1327-1343.

Pang-Ning Tan, Michael Steinbach, Vipin Kumar. (2005). Introdunction to Data
Mining.

Popivanov, Miller. (2002). Similarity Search Over Time-Series Data Using
Wavelets. ICDE'02 .

Radivojac, Obradovic, Dunker, Vucetic. (2004). Lecture notes in computer
science. Springer.

Rafiei and Mendelzon. (1997). similarity-Based Queries for Time Series Data.

Small. (1997). Debunking Data Mining Myths. Information Week .

Smith. (2002). A Tutorial on Principle Componet Analysis.

TAN. (1999). DATA MINING. DATA MININNG JOURNAL , 88-99.

Tan, Dowe. (2004). Lecture Notes in Artificial Intelligence (LNAI). Springer.

Tan, Steinbach, Kumar. (2005). Introduction to Data Mining.

University of California-Irvine, S. o. (n.d.). UC Irvine Machine Learning
Repository. Retrieved from http://archive.ics.uci.edu/ml/

Wilson and Russell. (2007). Performance Enhancement in an Uninhabited Air
Vehicle Task Using Psychophysiologically Determined Adaptive Aiding. Human Factors
, 1005-1018.

	University of Iowa
	Iowa Research Online
	Spring 2009

	Optimization techniques in data mining with applications to biomedical and psychophysiological data sets
	Zhaohan Yu
	Recommended Citation

	Thesis_Apr8

