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CHAPTER  1  
INTRODUCTION 

1.1 Data Mining Literature Review 

Data Mining (DM) is the process of automatic discovery of useful information in 

large data repositories (Tan, Steinbach, Kumar, 2005). It is especially appropriate for the 

fields where researchers do not have a theoretical understanding but large amounts of 

data. Generally, DM can be divided into two categories according to the objectives of 

algorithms: Classification Analysis and Association Analysis. 

Classification is a procedure of dividing data sets into different classes based 

either on the knowledge of the predefined classes or just on structure of data set itself, 

which are called supervised classification (or classification for short), and unsupervised 

classification (cluster), respectively. 

 

 Figure 1.1 Structure of Data Mining 
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Association Analysis is used for discovering interesting relationships, which are 

called Association Rules, hidden in large data sets. Many fields such as web mining, 

document analysis, and bioinformatics have applied Association Analysis. 

1.2 Optimization-Based Methods in Data Mining 

Many DM methods involve with Mathematical Programming techniques. 

Optimization can contribute to DM in one of two ways: (1) Optimization can be a 

component of a larger DM process (Padmanabhan, 2003). For instance, in Artificial 

Neural Network (ANN), one of popular algorithms in pattern recognition, we minimize 

this function:  

 
2

1

1
( ) ( )

2
w

N

i i
i

E y y
=

= −∑
⌢⌢⌢⌢

 (1.1) 

to obtain a set of parameters w in part of its procedure. (2) New DM techniques can be 

built using entirely optimization-based Method (Padmanabhan, 2003), which is also 

called Optimization-Based Approach (OBA) Data Mining. 

OBA Data Mining techniques are applied mainly in Classification Analysis, 

whereas there are few algorithms in Association Analysis are based on Optimization. The 

reason may due to that objective of Association Analysis is not able to be directly 

formulated as optimization problem appropriately. Currently, several (OBA) algorithms 

are developed based on Support Vector Machine (SVM) method in Supervised 

Classification and also on k-Mean in Unsupervised Classification. 

In certain classification cases, we could assume that we know the proper form of 

the discriminant functions, and use the samples to estimate the values of parameters of 

the classifier (Duda, Hart, Stork, 2001). If the assumption is based on linear model, then 

it is called linear discriminant function. For instance, in Support Vector Machine (SVM) 



3 
 

 

method, the key is to discover a hyperplane (linear or non-linear, which corresponds to 

linear or non-linear functions) to separate data set in �� space, and maximize the 

“margin” between different classes. Data sets can be categorized into separable cases and 

nonseparable cases.  

1.2.1 Support Vector Machine Method 

A linear SVM searches for a linear classifier 1b⋅ + =w x based on training data to 

label unknown data. This classifier is also known as a maximal margin classifier because 

it maximizes the “distance” between data points in different classes:  

 

2

min
2

. . ( ) 1, 1,2...i is t b i n⋅ + ≥ =
w

w

y w x

 (1.2) 

It is a quadratic programming problem, and w, iy , ix are vectors, b is scalar, which can 

be solved by the standard Lagrange multiplier method (Tan, Steinbach, Kumar, 2005). 

A more general form of linear SVM which can handle the condition that there is 

noise in training data or classes are overlapped is: 
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C
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ξ
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⋅ + ≥ − =

∑
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 (1.3) 

where C and k are user-specified penalty parameters of misclassifying the training 

instances, and iξ  represent errors introduced by the classifier. This nonlinear 

programming problem can be converted to Lagrangian dual problem and solved 

numerically by using quadratic programming techniques. The formulation of 
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nonseparable case is general, and can be applied for both separable and nonseparable 

cases. 

1.3 Linear programming and Multi-surface Method 

1.3.1 K-Mean Method 

K-Mean is a cluster analysis algorithm and could be treated as an optimization 

programming problem, which minimizes the sum of the “distances” of each point to its 

nearest centroid. The clustering problem is then formulated as in (Bradley, Fayyad, 

Mangasarian, 1999): 

 

1 1,...,,..., 1

min min

1 int

1

     

    

.   

k

m
i l

l kc c i

i

l

n

x c

x , i = , ... m are given data po s

c , l = , ... k are centroids of  k clusters

, is some arbitrary norm on R

==

−∑

 (1.4) 

For different definitions of “distance”, there are different specific objective 

functions. The following table shows some choices for proximity function, centroid, and 

objective function that can be used in the basic k-mean algorithm. For instance, if we 

apply 1st-Norm (Manhattan Distance), then the centroid of a cluster will be the median of 

the data points belong to that cluster(so it is also called k-median algorithm), which have 

been proved mathematically. 
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Proximity Function Centroid Objective Function 

Manhattan (
1L ) 

 
median 

Minimize sum of the 
1L  distance of an object to 

its cluster centroid 

Squared Euclidean 

(
2

2L ) 
mean 

Minimize sum of the squared 
2L  distance of an 

object to its cluster centroid 

cosine 

 

mean 
Maximize sum of the cosine similarity of an 

object to its cluster centroid 

Bregman divergence 

 

mean 

 

Minimize sum of the Bregman divergence of an 

object to its cluster centroid 
Source: Tan, Steinbach, Kumar, Introduction to Data Mining, 2005 

Table 1.1 K-mean: Common choices for proximity, centroids, and objective functions 

Although we can explicitly formulate the objective function for k-mean 

algorithm, the optimization problem can only solved by iteration instead of a closed-form 

solution. Moreover, the algorithm can only guarantee a local optimum. The algorithm is 

shown below. The two important issues in k-means algorithm are: (1) how to initial the K 

centroids because the final outcome is sensitive to initial starting condition, (2) how to 

update the centroids so they can converge to a local optimum or global optimum. In the 

basic k-means algorithm, because the initial K centroids are selected randomly, it usually 

takes several runs to guarantee that the result is optimal. Basic k-means and k-median 

algorithms are shown below: 

1. Select K points as initial centroids 

2. Repeat 

3. Form K clusters by assigning each point to its closest centroid 

4. Compute the centroid of each cluster  
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5. Until  Centroids do not change 

(Busygin, Prokopyev, Pardalos, 2007) included some definitions of k-means 

algorithm in their optimization-based approach for data classification. However, instead 

of applying k-means in clustering, it was applied in classification. Before assigning test 

data to certain clusters, they apply k-mean criterion to choose the feature weight of the 

training set.  

 

1

2 2
'

1 1

max

( ) ( ) 1, ...,

0 1, 1, ...,

s.t.    ,   

           

m

i
x

i

m m

ij ik i ij ik i
i i
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a c x a c x k r

x i m

=

= =

− ≤ − =

≤ ≤ =

∑

∑ ∑  (1.5) 

In the formulation above, ix is the weight for feature i. ija is the ith feature in jth 

sample and m is the total number of training data points. Moreover, ikc is the ith feature of 

kth centroid which can be calculated by ija . r is the number of clusters. For a test sample 

b, we will assign it to class ɵkS , if for all k=1 … r the following inequality hold: 

 ^

2 2

1 1

( ) ( )
m m

i i i ik i
iki i

b c x b c x
= =

− ≤ −∑ ∑  (1.6) 

1.3.2 Others Optimization Based Methods 

Logical Analysis of Data is another OBA algorithm. It builds a classifier for a 

binary target variable based on learning a logical expression that can distinguish between 

positive and negative examples in a data set (Padmanabhan,Tuzhilin, 2003). If some 

attributes of data set are non-binary, cutoff value is applied to convert them into binary 

variable. And a table with all the binary attributes and target variables are obtained. The 
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objective then becomes to explore a partially defined Boolean function (pdBf), with all 

the binary attributes as input and target variable as output.  

Density Estimation method is based on Bayes’ Theorem and can be formulated as 

mathematical programming problem. First, we assume an appropriate probability 

distribution for each cluster, and then we tune parameters of the distribution from 

minimizing the negative log-likelihood for the given data (Bradley, Fayyad, 

Mangasarian, 1999). An algorithm called Expectation-Maximization can be applied to 

find a local minimum for this problem.  

1.4 Time-Series Data Mining 

In the last decade there has been an explosion of interest in mining of time-series 

data. Literally hundreds of papers have introduced new algorithms to index, classify, 

cluster and segment time series (Keogh and Kasetty, 2003). Partly, such a great interest to 

time series mining is explained by the challenges that the classical methods of machine 

learning and clustering have faced when applied to time series data ( Keogh and Pazzani, 

1998). Another reason is that time-series data become readily available and increasingly 

important in many areas, such as economics and finance (prices of stocks), environmental 

sciences (daily sea-surface temperature and weather patterns) etc. 

A time series is a sequence of real numbers, each number representing a value at a 

time point (Rafiei and Mendelzon, 1997). If there are several measures at the same time, 

then there are several sequences of real numbers corresponding to the same time period. 

This type of time-series data is called multidimensional data sequence. Typical examples 

of a multidimensional data sequence include video stream and image (Lee, etc, 2000). 

One of the first papers in time-series data mining has been written by (Agrawal, 

Faloutsos and Swami, 1993). In this paper, the authors proposed to use Discrete Fourier 

Transform (DFT) to map time sequences from time domain to frequency domain and just 

keep the first few frequencies, then an algorithm called R*-tree (Bechmann, Kriegel, 
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Schneider, and Seeger, 1990) was applied to index the sequences and efficiently answer 

similarity queries. R*-tree is a variant of R-tree, which is one of the most popular access 

methods (Guttman, 1984). DFT also acts as filter that eliminates noise and unimportant 

information in time-series data. Since then, more and more researchers accepted the idea 

that time-series data need to be preprocessed before performing the “actual” data-mining 

operations on it, thus the original data sequences are usually called “raw data”. Some of 

the techniques used to preprocess the raw data sequences include DFT, Discrete Cosine 

Transform (DCT), Singular Value Decomposition (SVD), Haar Wavelet (Popivanov, 

Miller, 2002). All these techniques are involved with sigmoid shape functions, but a few 

papers also applied a piece-wise linear segmentation, which attempts to model the data as 

sequences of piecewise patterns ( Keogh and Pazzani, 1998), (Geurts, 2001). 

An important aspect of the data mining process is selection of the similarity 

measure  that defines what is “similar” and what is not  and is usually application 

dependent. Many researchers apply a traditional and intuitive Euclidean norm or 

generally, pL  norm to measure the difference between two data sequences, which is also 

one of the reasons why DFT is popular. According to Parseval’s theorem, the Fourier 

transform preserves the Euclidean distance in the time or frequency domain (Agrawal, 

Faloutsos and Swami, 1993). However, the nature of time series data introduces also a 

number of challenges in selecting a “good” similarity measure, namely the presence of 

noise, offset translation, amplitude scaling, longitudinal scaling, linear drift, 

discontinuities ( Keogh and Pazzani, 1998). Note that, “similarity measure” may be used 

in whole matching, i.e., for comparing equal length data sequences, as well as in the 

subsequence matching, where  one looks for a subsequence of the large sequence that 

matches the query sequence best. 

Generally, whole matching is considered to be easier than subsequence matching 

because for subsequence matching, certain length subsequence need to be extracted 

appropriately from whole sequence first, and then compares to sample sequence. There 
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are a few methods developed in the literature that give a satisfactory solution on how to 

deal subsequence matching. In clustering of time-series data, similar problems exist. 

Some researchers formed subsequences by sliding a window through the time-series data 

to resolve this difficulty (Das, 1998). 

According to (Keogh and Pazzani, 2002), most of time-series data mining tasks 

can be categorized into four kinds: 

• Indexing (Query by Content): Given a query time series Q, and some 

similarity/dissimilarity measure D, find the nearest matching time series in 

database DB. 

• Clustering: Find natural groupings of the time series in database DB under 

some similarity/dissimilarity measure D. 

• Classification: Given an unlabeled time series Q, assign it to one of two or 

more predefined classes. 

• Segmentation: Given a time series Q containing n data points, construct a 

model
_

Q from K piecewise segments (K<< n) such that 
_

Q  closely 

approximates Q. 

A general procedure for processing time-series data is listed below: 

1. Preprocessing data: filter noise, outliers, and divide whole sequences into 

equal length subsequences if it is necessary.  

2. Processing data: Fourier transformation, Segmentation (piecewise linear 

approximation) 

3. Similarity Measures: Euclidean distance, pL norm 

4. post-processing (optional)  



10 
 

 

CHAPTER  2  
P-NORM MEASURES IN LINEAR PROGRAMMING DISCRIMINATION  

2.1 Introduction 

In the SVM method, nonlinear programming is employed to estimate the 

parameters of the linear discriminant function. In the paper “Robust linear programming 

separation of two linearly sets” (Bennett, Mangasarian, 1992), a linear programming 

algorithm was introduced, which is similar to the SVM but computationally simpler. The 

mathematical programming models of the linear programming and the SVM methods 

have similar constraints but differing objective functions. In the SVM, the objective of 

the equations (1.2) and (1.3) is to minimize the weighted sum of the margin of 

hyperplane and the error of misclassification, whereas the linear programming only 

provides an error-minimizing plane that minimizes an average sum of misclassified 

points belonging to two disjoint point sets in n-dimensional space. Although linear 

programming does not consider the margin of plane in its objective function, 

computational results do not show consistent disadvantages of the LP-based approach. 

In this chapter we propose a new p -norm linear discrimination model that 

generalizes the model of (Bennett, Mangasarian, 1992)  and reduces to linear 

programming problems with p -order conic constraints. We demonstrate that the 

developed model has nice methodological and computational properties (for examlpe, it 

does not allow for a null separating hyperplane when the sets are linearly separable). The 

presented approach for handling linear programming problems with p -order conic 

constraints relies on construction of polyhedral approximations for p -order cones. A 

case study on several popular data sets that illustrates the advantages of the developed 

model is conducted.  

Consider two discrete sets , nA B∈R  comprised of m  and k  points, respectively: 

1= { , , }mA a a… , 1{ , , }kB = b b… . One of the principal tasks arising in machine learning 
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and data mining is that of  discrimination of these sets, namely, constructing a surface 

( ) = 0f x  such that ( ) 0f ≤x  for any A∈x  and ( ) 0f ≥x  for all B∈x . 

Of particular interest is the linear separating surface (hyperplane):  

 ( ) = = 0.f γΤ −x w x  (2.1) 

Clearly, existence of such a separating hyperplane is not guaranteed; in general, a 

separating hyperplane that minimizes some sort of  misclassification error is desired. 

Observe that if points (1) (2), n∈y y R  satisfy the inequalities  

(1) (2)> 0, < 0γ γΤ Τ− −w y w y  

for some w  and γ , then they are located on the opposite sides of the hyperplane 

= 0γΤ −w x . Consequently, the discrete sets A , nB ⊂ R  are considered linearly 

separable if and only if there exist n∈w R  such that  

> > for all =1, , , =1, , ,i j i m j kγΤ Τw a w b … …  

with an appropriately chosen γ , or, equivalently,  

 > .maxmin i j
A Bi j

Τ Τ

∈ ∈a b
a w b w  (2.2) 

Definition (2.2) is not suitable for use in mathematical programming models since it 

involves strict inequalities. However, the fact that the separating hyperplane can be scaled 

by any non-negative factor allows one to formulate the following result, whose proof we 

include for completeness.  
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Proposition 1 (Bennett, Mangasarian, 1992) Discrete sets , nA B ⊂ R  represented by 

matrices 1= ( , , ) m n
m

Τ ×∈A a a… R  and 1= ( , , ) k n
k

Τ ×∈B b b… R , respectively, are linearly 

separable if and only if  

 , for  some , ,nγ γ γ≥ + ≤ − ∈ ∈Aw e e Bw e e w R R  (2.3) 

where e is the vector of ones of the appropriate dimension, = (1, ,1)Τe … .   

Proof. Let A and B be linearly separable, then in accordance to definition (2.2), there 

exists n∈v R  such that  

 *
*

=1, , =1, ,
=: > := maxmin i j

i m j k
a bΤ Τa v b v

… …

 (2.4) 

Denote *
*= 2 / ( )a b−w v , and * *

* *= ( ) / ( )a b a bγ + − ; then for any i A∈a   

 *
* * *

=1, ,
* * *

22 2
1 = = 0,mini i i i

i k

a

a b a b a b
γΤ Τ Τ Τ − − − − ≥ − − −  

a w a v a v a v
…

 (2.5) 

which means that 0Aw e eγ− − ≥ . The second inequality in (2.3) follows analogously 
  



13 
 

 

 

 

Figure 2.1An optimal separator wx γ= for linearly inseparable sets: A (o) and B (+) 
(Mangasarian, Bennett, 1991) 

2.2 P-Norm Separation Model 

In this paper generalize the  robust linear discrimination model proposed by 

(Bennett, Mangasarian, 1992) 

 

T T

, , ,
min

s.t. ,

,

,

m kγ

γ
γ

+

− + ≥
− + + ≥

≥ ≥

w y z

e y e z

Aw e y e

Bw e z e

y 0 z 0

 (2.6) 

The linear programming model (2.6) determines a hyperplane * * = 0γΤ −w x  that 

minimizes the average misclassification error. Indeed, in accordance to the definition 

(2.3), the points of sets A and B that violate (2.3) will correspond to the non-zero 

components of vectors y  and z  in the first and second constraints of problem (2.6), 

respectively. 
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This interpretation allows us to reformulate the optimization problem (2.2) in the form of 

a stochastic programming problem  

 
1( , )

{E[( 1) ] E[( 1) ]},min
nγ

γ γΤ Τ
+ +

+∈
− + + + − +

w

a w b w
R

 (2.7) 

where a and b are uniformly distributed random vectors with support sets A and B, 

correspondingly 

 
1 1

P{ = } = , P{ = } = for all , ,i j i jA B
m k

∈ ∈a a b b a b  (2.8) 

and ( ) = max{0, }x x± ± . In this sense, the misclassification errors of points from A and/or 

B  can be viewed as realizations of random variables = ( , )A AX X γw  and = ( , )B BX X γw

, whose smaller values are preferred, and thus the parameters w  and γ  must be selected 

so as AX  and BX  assume values that are “small”. 

As it is well known in stochastic programming and risk analysis, the “risk” 

associated with random outcome is often attributed to the “heavy” tails of the probability 

distribution. The risk-inducing “heavy” tails of probability distributions, are, in turn, 

characterized by the distribution's higher moments. Thus, if the misclassifications 

introduced by a separating hyperplane can be viewed as “random”, the misclassification 

risk may be controlled better if one minimizes not the average (expected value) of the 

misclassification errors, but their moments of order > 1p . This gives rise to the 

following formulation for linear discrimination of sets A and B:  

 1 2
1( , )

( ) ( ) , [1, ]min p p
n

p
γ

δ γ δ γ+ ++∈
− + + + − + ∈ +∞

w

Aw e e Bw e e
R

� � � �  (2.9) 

where p⋅� �  is the “functional” pL  norm, which in the probabilistic context can be written 

as  



15 
 

 

 
1/(E | | ) , [1, )

=
sup | |, =

p p

p

X p
X

X p

 ∈ ∞


∞
� �  (2.10) 

Assuming again that points of the sets A and B are “equiprobable” (or, in other words, all 

points of set A, and, correspondingly, B, have equal “importance”), linear discrimination 

problem (11) can be written as follows   

 

1 2min

s. t.

, 0, , 0

p

p

w

δ ξ δ η
ξ

η
γ

γ
ξ η

+
≥

≥

≥ − + +
≥ − +

≥ ≥

y

z

y Aw e e

z B e e

z y

� �

� �  (2.11) 

In the mathematical programming formulation (2.11), p⋅� �  denotes the “vector” norm in 

finite-dimensional space, i.e., for n∈x R ,  

 
1/

1

1

(| | | | ) , [1, )

max{| |, ,| |}, =

p p p
n

n

x x p

x x p

+ + ∈ ∞
∞

…

…
 (2.12) 

(in what follows, it will be clear from the context whether the “functional” or “vector” 

definition of p -norm is used). Note that in the formulation (2.11)  the parameters 
1δ and

2δ represent weights of misclassification errors. In this study, we consider p-norm linear 

separation models where 
1δ and 2δ  take values { 121 == δδ }, { 1 2

1 1
,

m n
δ δ= = } and {

1 2

1 1
,

p pm n
δ δ= = }. 

Model (2.11) constitutes a linear programming problem with p -order conic 

constraints. Using the “vector” norm notation, formulation (2.11) can be more succinctly 

presented as  



16 
 

 

 1 2
1( , )

( ) ( )min p p
nγ

δ γ δ γ+ ++∈
− + + + − +

w

Aw e e Bw e e
R

� � � �  (2.13) 

The p -conic programming linear separation model (2.11) shares many key properties 

with the LP separation model of (Bennett, Mangasarian, 1992), including the guarantee 

that the optimal solution of (2.11) is none-zero in w  for linearly separable sets.   

Proposition 2. When sets A and B, represented by matrices A  and B , are linearly 

separable (i.e., they satisfy (2.2) and (2.3) ), the separating hyperplane * *= γΤw x  given 

by an optimal solution of (2.11) satisfies * ≠w 0 .   

Proof:. By definition, separability of sets A and B immediately implies that at optimality 
* *= = 0y z , or, equivalently, 

0γ− − + ≤Aw e e   and  0γ− + ≤Bw e e  

which is equivalent to the definition of linear separable γ≥ +Aw e e , .γ − ≥e e Bw To 

see that ( 0,w  γ= ) cannot be optimal for (2.12), note that if we set w = 0, then: 

 1 2min ) ) 0
p p

δ γ δ γ+ ++ + − + >
r

e e e e  (2.14) 

and the optimal value of (2.11) is zero. If one assumes that * =w 0 , then the above 

inequalities require that  

 * *1, 1.γ γ≤ − ≥  

This contradiction proves the proposition.   

Secondly, the p -norm separation model (2.11) can produce a =w 0  solution only in a 

rather special case that is identified by Theorem 1 below.   
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Theorem 1. Assume that the p -order conic programming problem (2.11) is strictly 

feasible and, without loss of generality, 1/ 1/
2 1

p pk mδ δ> . Then, for any (1, )p∈ ∞  the p -

order conic programming problem (2) has an optimal solution where * =w 0  if and only 

if   

 ' '
1/

( ) , 1, 0,
p qm m

δ
δ

= = ≥ ≥
T

T T ' ' 2

1

e A
t B  e t  t  t  (2.15) 

where q satisfies 
1 1

= 1
p q

+ . In other words, the arithmetic mean of the points in A must 

be equal to some convex combination of points in B. In the case of 1/ 1/
2 1

p pk mδ δ=  

condition  reduces to  

 
m k

=
T Te A e A

 (2.16) 

i.e., the arithmetic means of the points of sets A and B must coincide 

Proof: Consider the dual of the p-order conic programming problem (2.11): 

 

, , ,

1

2

max

. . 0

0

,

u v

q

q

s t

δ

δ

+

− =
− =
+ =
+ =

≥

≥

≥ ≥

T T

r t

T T

T T

e r e t

A r B t

e r e t

r u 0

t v 0

u

v

r 0 t 0

 (2.17) 

where q is such that 
1 1

1
p q

+ = .  
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First, by assuming 1/ 1/
2 1

p pk mδ δ≥ one does not lose any of generality because the 

roles of the sets A and B can be switched to obtain this inequality. Observe that point 

( 0, , ,γ=w   y  z) being an optimal solution for primal implies that the first two 

constraints of (2.18) become: 

 

 
(1 )

(1 )

γ
γ

+

+

≥ +
≥ −

y e

z e
 (2.19) 

Whereby the objective of the primal problem (2.20) takes the form 

 1/ 1/
1 2min  (1 ) (1 )p pm k

γ
δ γ δ γ+ ++ + −  (2.21) 

Since 1/ 1/
2 1

p pk mδ δ≥ , then obviously, the objective value for primary problem is 1/
12 pmδ  

with 1γ = . Also, because the primal is strictly feasible, duality gap is zero for the primal-

dual pair (2.12) and (2.17). Then we have 

 
1/

12

0

pmδ+ =

− =

T T

T T

e r e t

e r e t
 (2.22) 

From (2.22) we have that T 1mδ=e r , , and from the third constraint of the dual (2.17) we 

obtain = −r u , by substitution of which in the fifth constraint of (2.17) we obtain a 

system of equation and inequality that must be satisfied by vector r  at optimality and 

= −r u , we know for vector r 

 
1/

1 2

1 2 1

... /

...

q
m

q q q q
m

r r r m m

r r r

δ
δ

+ + =

+ + ≤
1  (2.23) 
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To derive the solution of (2.23) , consider the following convex problem 

 
1 2

1/
1 2

min  g( ) ...

. .   c( )= ... / =0 

q q q
m

q
m

r r r

s t r r r m mδ

= + +

+ + −
r

1

r

r
 (2.24) 

Using Lagrange multiplier method, we form the Lagrange function of problem (2.25) 

 1/
1 2 1 2... ( ... / )q q q q

m mL r r r r r r m mλ δ= + + + + + − 1  (2.25) 

whose saddle point is determined from equations 

 

1
1

1

1

1/
1

0

         

0

... / 0

q

q
m

m

q
m

L
qr

r

L
qr

r

L
r r m m

λ

λ

δ
λ

−

−

∂ = − =
∂

∂ = − =
∂
∂ = + − =
∂ 1

⋮⋮⋮⋮

 (2.26) 

It is easy to see that 
1/

1 2 ... / q
mr r r mδ= = = 1 is the only stationary point for function g(r ). 

And because g(r ) is strictly convex continue, the saddle point is the minimum point and 

minimum value for the objective is 1
qδ . And at the same time, in (2.23) 1( ) qg δ≤r . 

Therefore, solutions to (2.23) with 1 2 1...q q q q
mr r r δ+ + < do not exist because minimum value 

of g(r ) under constraint c(r ) is equal to 1
qδ . Therefore, we can conclude that for (2.23), it 

has an unique solution, which is 1/
1 2 ... / q

mr r r mδ= = = 1  or 
1/qm

δ= 1r e  

Furthermore, because 0− =T TA r B t  under solution ( 0, , ,γ=w   y  z): 
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1/

(1 1/ ) 1/
1 1

q

q p
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m m m

δ

δ δ−

=

=

= =

T T

T T1
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 (2.27) 

Let 
1/

1

'
pmδ

= t
t , then from (2.27), ( ')

m
=

T
Te A

t B . Finally since ,  ( ,  0)= − = − ≥r u t v r t  

and 1/ pmδ=T
1e t :  

 
' '2

1/
1

( ')

1 and 
p q

m

t
m

δ
δ

=

= ≥

T
T

T

e A
t B

e t
 (2.28) 

Therefore, the theorem holds. This theorem theoretically explains the reason that why  
1/ 1/

1 21/ ,  1/p pm kδ δ= =  should be chose. When 1/ 1/
2 1

p pk mδ δ≥  then from the theorem 

we know that if the arithmetic mean of the points in A coincides with a convex 

combination of some points of B, the formulation will obtain a worthless optimal solution 

0, , ,γ=w   y  z ,Moreover, if 1/ 1/
2 1

p pk mδ δ= , then the theorem degenerates to (2.16), 

which is the arithmetic mean of the points in A equals the arithmetic mean of the points in 

B. The advantage of this is that the satisfaction of (2.16) by a real world data set is much 

rarer than satisfaction of (2.28). In other words, using 1/ 1/
2 1

p pk mδ δ≥  is more likely to 

obtain a null solution in real problem. The demonstration is in Figure 2.2. 
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Figure 2.2 Demonstration of two data sets have the same arithmetic mean (A), and one 
data set has the arithmetic mean in the convex hull of data points from another 

data set (B) 

In order to have the stricter condition (2.16) of the form  for the occurrence of 

* =w 0 solution in the situation when the preferences for misclassification error are 

different for sets A and B, the p -norm linear discrimination model can be extended to the 

case where misclassifications of points in A and B  are measured using norms of different 

orders:  

 1 2 1,21 21( , )

( ) ( ) , [1, )min p p
n

p
γ

δ γ δ γ+ ++∈
− + + + − + ∈ ∞

w

Aw e e Bw e e
R

� � � �  (2.29) 

Intuitively, a norm of higher order places more “weight” on outliers; indeed, application 

of = 1p  norm would minimize the average misclassification error, in effect regarding all 

misclassifications as equally important. In contrast, application of the =p ∞  norm would 

minimize the largest misclassification error. Thus, by selecting appropriately the orders 

p  and q in (2.29) one may introduce tolerance preferences on misclassifications in sets 

A and B. At the same time, it can be shown that the occurrence of * =w 0 solution in 

(2.29) would signal the presence of the aforementioned singularity about the sets A , B . 
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Namely, we it is easy to see from the proof of Theorem 1 that its statement carries over to 

model (2.29) practically without modifications.  

2.2.1 Solving linear programming problems with p-order conic constraints using 
polyhedral approximations of p-order cones 

When p is greater than 2, one way to solve this specific p-order cone 

programming problem is to approximate a p-order conic constraint by several linear 

constraints. For a set,  

 2 2 2
1 2, 3 1 2 3{( , ) | }L x x x x x x= + ≤  (2.30) 

(Ben-Tal and Nemirovski, 2001) applied a polyhedral approximation of 2L , and via a 

way called “Tower of variables”, any second order constraint can be expressed by several 

3 dimensional second order constraints. Therefore, in terms of this polyhedral 

approximation, any second order constraints can be approximated by linear constraints. 

Following Ben-Tal and Nemirovski’s idea, (Krokhmal, 2007) developed a method 

that can approximate a 3-dimensional p-order cone in the positive orthant of 3R  by a set 

of linear equalities. 

For 1>p , 
1/

3 1 2 1, 2 3( ) , , 0, p p px x x x x x≥ + ≥
 

an internal approximation can be 

formulated as 

 
1

2/ 2/ 2/ 2/
3 1 1

2/ 2/ 2/ 2/
1 1 2

(sin cos cos sin )

       (sin sin ) (cos cos ), 0 ... 1
i i i i

p p p p
i i i i

p p p p

x

x x i mα α α α

α α α α

+

+ +

+

−

≥ − + − = −
 (2.31) 

and an external approximation can be written in the form  

 

1

3

1 1
1 2

(cos sin )

cos sin , 0 ...  

p

p p p
i i

p p
i i

x

x x i m

α α
α α

−

− −

−

≥ + =
 (2.32) 
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where 2/...0 10 πααα ≡<<<≡ m Therefore, to approximate a 12 +d -dimensional p-
order conic constraint: 

 
1/

1( ... )

, 0, 1 ... ( 2 )

p p p
J

p d
j

t x x

t x j J J

≥ + +

≥ = =  
 (2.33) 

First, we represent this constraint by a set of 3-dimensional p-order conic inequalities 

 
( ) ( 1) ( 1) 1/

2 1 2[( ) ( ) ]

1 ... 2 , 1 ... ,    

k k p k p p
j j j

d k

x x x

j k d

− −
−

−

≥ +

= =
 (2.34) 

where 
( ) 0
1 , ( 1 ... 2 )  d d

j jx t x x j≡ ≡ = . On the second step, every 3-dimensional p-order conic 

constraint is approximated either by the internal approximation or the external 

approximation. The final LP approximation is shown in (2.35). 
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 (2.35) 

Finally, we can take the advantages of certain commercial software to solve this linear 

programming problem. Note, for these p-order conic constraints (2.33), which 2 1dJ ≠ + , 
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theoretically ( ( )f J J− ) number of slack variables can be added into conic constraints to 

satisfy this condition 2 1dJ = + , and set as zero in additional linear equalities, where 

2(log )( ) 2 roundJf J = . However, when J is comparable large, a huge number of slack 

variables are needed; therefore, we deal it in a different way in the computational 

procedure. Instead of adding all the slack variables at one time, we put one slack variable 

a time during each level of “the tower” depending on whether or not the number of the 

variables in that level is even or odd. For instance, for a conic constraint: 

 
1/

1( ... )

, 0, 1 ... ( 2 )

p p p
J

p d
j

t x x

t x j J J

≥ + +

≥ = ≠  
 (2.36) 

If J is an even number, then no slack variable is needed for the first “level of tower”, then 

 
1 0 0

2 1 2[( ) ( ) ]

/ 2

p p
j j jx x x

j J

−≥ +

=
 (2.37) 

If J is an odd number, then one slack variable is added, so 

 

1 0 0
2 1 2[( ) ( ) ]

0

( 1) / 2

p p
j j j

J

x x x

x

j J

−≥ +

=
= +

 (2.38) 

So on and so forth for the other levels. It is obvious that approach can significantly 

reduce the number of slack variables when J is large. When j=700, for first approach 

1024-700=324 slack variables are needed, but for second method, only 3 slack variables 

are necessary.  



25 
 

 

2.3 Data Set Information and Computation Results 

Several real-world data sets from UCI Machine Learning Repository (University 

of California-Irvine) are classified by the method we proposed. The method is 

implemented in C++ environment and CPLEX Solver (ILOG CPLEX® 10.0) is used to 

solve the linear programming problem formulated. 

Wisconsin Breast Cancer Data Set (Original): This breast cancer databases was 

obtained from the University of Wisconsin Hospitals, Madison by Dr. William H. 

Wolberg. There are 10 feature values and an ID number for each data point in the dataset, 

which are obtained by medical examination on certain breast tumors. There are 699 data 

points in the data sets, but because some values are missing, only 682 data points are used 

in the experiment. The whole data set consist of two classes of data points, 444 (65.1%) 

data points represent benign tumors, and the rest of 238 (34.9%) points correspond to 

malignant cases. Other information is included in Table 2.1. 

Data Set Characteristics: Multivariate 
Number of 
Instances: 

699 Area Life 

Attribute Characteristics: Integer 
Number of 
Attributes: 

10 
Data 

Donated 
7/15/199

2 

Associated Tasks: 
Classificatio

n 
Missing 
Values? 

Yes 
Number of 
Web Hits: 

543 

Table 2.1 Description of Wisconsin Breast Cancer Data Set (Original) 

In this numerical experiment, we use α and β to indicate benign and malignant 

data sets, we randomly divide each set into a training set possessing 2/3 of the data and a 

test set including the remaining 1/3. So if M data points are in set α and N data points are 

in set β, then the numbers of benign and malignant data points in the training set are 

(2 / 3)m M= and (2 / 3)n N= . The p-norm linear programming formulation is formulated 



26 
 

 

base on the training set and the obtained optimal classifier classify the test set. For every 

specific value p, this procedure repeats 10 times and average error percentage for whole 

data set is calculated. p increases from 1 to 5 by 0.1 step. 

For a data point belongs to dataset α, the probability of this data point being 

misclassified is / ' 100%e mα × , and similarly, the probability is / ' 1 0 0 %e nβ ×  for a data 

point belong to β, where ,  e eα β  
indicate the number of data points misclassified in set α 

and β , and m’, n’ are the number of test data points in set α and β. 

Therefore, for an arbitrary point in the whole data set, the probability of being 

misclassified is equal to / ' / ' ( ) /( ' ')P e m P e n e e m nα α β β α α× + × = + + , where ,P Pα β
 

are the probabilities of a random point belonging to set α or β. Then we define error 

percentage as [( )/( ' ')] 100%a be e m nε = + + × . 

The complete results are shown in the Appendix. In Table 2.2, optimal order and 

optimal average error percentage for different objective weights are collected. As Table 

2.2 shows, when   1 21/ , 1/m nδ δ= =
 
and p=1.9, we obtain the lowest average error 

percentage 2.77%. Moreover, compare this with the average error percentage obtained by

1 21/ , 1/m nδ δ= = , p=1, which is also the average error percentage obtained by original 

formulation, we can see that the average error percentage decrease 3.48%. 

In the results appended, with the same order but different values of 1 2, δ δ , 

objective coefficients 1 21/ , 1/m nδ δ= =  “most time” obtain a better result than others’. 
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 121 ==δδ  
1

2

1/

1/

m

n

δ
δ

=
=

 
1

2

1/

1 /

p

p

m

n

δ
δ

=

=
 

Optimal Order 2 1.9 1.5 

Optimal Error % 3.22% 2.77% 2.82% 

The percentage of error decreased 
Compare w/ order 1 

8.78% 3.48% 1.74% 

Table 2.2 Comparison of classification error between different orders and different 1, 2 δ δ  

for Wisconsin Dataset 

Similar tests also run on Pima Indians Diabetes Data Set, Connectionist Bench 

(Sonar, Mines vs. Rocks) Data Set, and Ionosphere Data Set, all of which are obtained 

from UCI Machine Learning Repository. Note, among these tests only  121 == δδ  and 

1 21 / , 1 /p pm nδ δ= =  are used. The results of average error percentage over all the 

orders of p are shown in appendix. The value of parameter p increases from 1 to 5 by 

every 0.1 step. 
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           Coefficients 

 

Data Sets 

121 == δδ
 

1 1/ pmδ =

2 1/ pnδ =
 

Results from other algorithms 

Ionosphere 16.60% 18.13% 

12.3% 

(Radivojac, Obradovic, Dunker, 

Vucetic, 2004) 

Pima 29.51% 31.07% 

26.3%  

(Radivojac, Obradovic, Dunker, 

Vucetic, 2004) 

Sonar 30.23% 30.45% 
24% 

(Tan, Dowe, 2004) 

Table 2.3 Average classification error with different 1, 2 δ δ  for different data sets 

As the results shown above, these data sets are “linear inseparable”, that means an 

optimum hyperplane obtained in vector space, cannot classify “the most of” data points 

correctly. Therefore, a nonlinear classifier or multi-hyperplane is necessary for this kind 

of data sets. One thing need to be point out is that when compare to the result obtained by 

other methods, our result is only slight worse, but our method is much simpler both in 

theoretical and practical. 
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CHAPTER  3   
LINEAR DISCRIMINANT FUNCTION, K-NEAREST NEIGHBOR METHODS AND 

NEURAL NETWORKS IN CLASSIFYING PSYCHOPHYSIOLOGICAL DATA  

3.1 Data Set Information and Characteristics 

3.1.1 Background 

Psychophysiology is a branch of physiology which is focused on the relationship 

between mental (psyche) and physical (physiological) processes; it studies the interaction 

between mind and body. Applied psychophysiology investigates the effects of emotional 

states on the central nervous system, by observing and recording data on such 

physiological processes as sleep rhythms, heart rate, gastrointestinal functioning, immune 

response, and brain function. Techniques that are used to measure such factors include 

electroencephalography (EEG), magnetic resonance imaging (MRI), computerized axial 

tomography (CAT) scans, electrocardiography (ECG), and electrooculography (EOG). 

ECG records the electrical activity of human heart over time, EEG measures the 

electrical activity of human brain and EOG is a technique for measuring the resting 

potential of the retina. Electroencephalogram, electrocardiogram and electrooculogram 

are the resulting signals measured by EEG, ECG, and EOG. These psychophysiological 

measures techniques are employed for classifying cognitive work load in laboratory and 

real-world setting. Because the EEG, ECG, and EOG data can be recorded without 

interfering task performance of the human subject, they are suitable for estimating 

operator functional state. Since they are recorded in real time, they are time-series data 

sets.  

3.1.2 Data Set Information 

The data set we used in our research comes from a project in which the human 

operators performed a set of tasks of varying levels of cognitive difficulty. The specific 
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tasks concerned navigation and guidance of unmanned aerial vehicles (UAVs) in a 

simulated environment. The goal of this study is to estimate the operators’ cognitive 

states by analyzing their psycho-physiological measurements. The data were collected 

during the simulation tasks from three participants, 'A', 'E' and 'F', each of whom 

completed two trials, denoted as '01' and '02'. For instance, the second trial completed by 

participant E is denoted as 'E02'. The simulation experiments and data collection have 

been performed at the Air Force Research Lab at Wright-Patterson AFB (Dayton, OH). 

In each trial, ECG, horizontal EOG, vertical EOG and five channels of EEG 

signals were recorded. The EEG data were recorded from the scalp sites F7, Fz, Pz, T5, 

and O2 of the 10/20 electrode system using an Electro Cap. The EOG electrodes were 

placed above and below the midline of the right eye to record vertical movement and 

blink activity. The ECG electrodes were placed on the sternum and the left clavicle. The 

sampling rate was 200 Hz with a band pass from 0.5 to 52.4 Hz. 

 

Figure 3.1 EEG 10-20 System Diagram 
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During the simulation, the operators have been subjected to three tasks of zero, 

low, and high levels of cognitive workload, indicated by 0, 1, and 2: 

'0': simulation running, no cognitive task being performed  

'1': simulation running, low cognitive workload task being performed.  

'2': simulation running, high cognitive workload task being performed.  

These are the three classes we aim to classify. Sometimes we also refer to task 0 

as None Cognitive Load (NCL) task and tasks 1and 2 as Cognitive Load (CL) task. A 

time period in which the test subjects continually performs under the same level of 

cognitive workload is called a “task”. For instance, if a subject works under the level 1 

cognitive workload for 20 seconds, then we say that a task 1 happened for 20 seconds. A 

fraction of this time period is called a sub-task. In each trial, a subject performs under 

different situations for about 20 minutes, which is consisted of eight tasks 0 (no cognitive 

load), four tasks 1 (low cognitive load), and four tasks 2 (high cognitive load). The tasks 

0 last for about 50 to100 seconds, while the tasks 1 and 2 usually take about 20 seconds. 

Note that this asymmetry in the durations of NCL and CL tasks may have an impact on 

the computational results of our study.  

3.1.3 Data Set Transformation and Characteristics  

The Fourier Transform is a mathematical operation that transforms a signal from 

the time domain to the frequency domain, and vice versa. We are accustomed to time-

domain signals in the real world. In the time domain, the signal is expressed with respect 

to time. In the frequency domain, a signal is expressed with respect to frequency. We 

apply the Discrete Fourier Transform (DFT) to convert our time-series data from the time 

domain to the frequency domain, and analyze the magnitudes over certain frequency 

band (e.g. from 1 Hz to 10 Hz) among the different tasks.  
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Discrete Fourier Transform takes as input a sequence of N real or complex 

numbers 1 2( , ,..., )Nx x x=x  and generates its N-dimensional transformation 

1 2( , ,..., )NX X X=X . The DFT and its inverse are given by the following formulas: 

 

( 1)( 1)

1

( 1)( 1)

1

( ) ( )

( ) (1/ ) ( )

N
j k
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j

N
j k

N
k

X k x j

x j N X k

ω

ω

− −

=

− − −

=

=

=

∑

∑
 (3.1) 

where 
( 2 )/i N

N e πω −=  and 1i = − . 

Since the goal of this research is to find out the operators’ cognitive states at real 

time, DFT should be applied to the data over a relatively short time period. In addition, 

the length of the time period shouldn’t vary, which means the numbers of data collected 

in these two periods are also the same assuming the sample rates are the same; otherwise 

it is not rational to compare the magnitudes between two different long time periods. A 

straightforward application of the DFT to signals of different lengths (or even the same 

periodic signal, but over time windows of different length) may result in different outputs 

(i.e., magnitudes of the frequencies comprising the signal). Thus, a special precaution 

needs to be exercised when working with signals of different durations. In practice, this 

difficulty can be circumvented by fixing the length of the input data for the DFT 

transform. 

The main application of the Fourier transform in signal analysis is to obtain a 

spectral decomposition of a given signal into a set of harmonic frequencies that this 

signal is comprised of. When applied to a stationary periodic signal that is a mixture of 

several stationary harmonics, the graph of DFT typically looks as a series of “peaks”, 

where the location of each peak identifies the frequency of a harmonic that is present in 

the input signal, and the “height” of the peak corresponds to this harmonic’s amplitude. 
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This method works very well even when the periodic signal may contain a substantial 

noise component.   

However, the resolving power of the DFT diminishes when the input signal 

changes dynamically in time. In the data set used in this study, all signals, except, maybe, 

the ECG signal, exhibit a high degree of non-stationary and noisiness. In such a case, to 

identify the composition of the input signal at any given time moment, the DFT can be 

applied over shorter time windows. The length of the time window over which the DFT is 

computed then becomes a crucial issue, and the computational results may significantly 

depend on the choice of this parameter. If one chooses a large time window, the results 

may be insensitive to the temporal changes in psychophysiological measurements caused 

by the changes in the operator’s cognitive state. If the window is too short, the resulting 

DFT transforms may be too noisy, and some lower frequency information in the signals 

may be lost. 

Moreover, the length should be decided before the DFT. If the lengths of these 

two or several signals are about the same, then choosing the shortest length among all 

these signals is a good choice. However, if the lengths of these signals are rather 

different, then we may lose quite substantial amount of information by applying the 

method mentioned. In this case, we select a comparatively small length, and divide all the 

signals by this length. Then we apply DFT on all these “standard- length” signals, so the 

magnitude of a signal is the average of the magnitudes of all the “standard length” 

signals. The limitation of this method is that if the standard length is too short, then some 

lower frequency information in the signals may be lost. Figure 3.2 provides a graphical 

illustration of the method that we used to process the time-series data set before DFT. We 

introduce two time windows, a larger one of length 1W, and a shorter window of length 

2W. For instance, the data in Figure 3.2, which is the Fz EEG signal, recorded from 

subject A in task 0. In this particular case, we first divide the data of task 0 into subtasks 

of equal length 1W=3000, which corresponds to time interval of 15 seconds (since the 
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sampling frequency is 200 Hz). Then, each of the 1W-long sub-tasks is divided into six 

windows, each of which includes 2W=500 data points. 

Figure 3.2 Illustration of data preparation before DFT 

After investigation, two EEG signals (Fz, F7) have interesting patterns, and could 

be used to classify the data. We plot the magnitudes of these two signals in a two-

dimensional space for each task, and obtain plots for each trial as in Figure 3.3. As just 

mentioned, we split a certain task into equal long sub-tasks, divide these sub-tasks into 

certain long intervals, and then apply DFT to transform these intervals from time domain 

to frequency domain. Finally, the average magnitudes over certain frequency band (1 Hz 

to 10 Hz here) are computed, and the magnitudes of a certain sub-tasks are the average 

magnitudes of these intervals in this sub-task. In Figure 3.3, it shows different tasks have 

different magnitudes in these two signals. The task 0 usually has the biggest magnitudes 

in both Fz and F7 among the three, followed by task 1. So the conclusion is the higher 

cognitive level the task is in, the smaller magnitudes it has. Also, although there are 
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similarities between two trials of the same subject, for two subjects, we cannot say the 

magnitudes of the signals are related. Similar pattern also be discovered in two EOG 

signals. 

Moreover, the smallest theoretical length of input data for calculating the average 

magnitude from 1 Hz to 10 Hz is 20. Because the sample frequency of data is 200 Hz, 

after using DFT convert 20 data points from the time domain to the frequency domain, 10 

data points are outputted, which represent the magnitudes of frequencies from 0 Hz to 

190 Hz by every 10 Hz. In this case, the magnitude at 10 Hz is used to approximate the 

average magnitude from 1 Hz to 10 Hz. When the length is decided, a certain task is 

divided by this length and several time periods are obtained for the task. Then DFT is 

performed on the data of these equal long time periods and the average magnitude over 

certain frequencies is calculated.  
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Subject F 

Figure 3.3 DFT transforms of Fz and F7 signals in the frequency band 1~10 Hz for 
subjects A, E, and F 

The information in Table 3.1 shows the frequency bands for EEG signals defined 

by some researchers and the brain activities corresponding to these certain bands. In 

general, low frequency signals indicate low cognitive activities, and high frequency 

signals are related to the activities which require thinking and concentration. Also, we 

can see that low frequency bands (0~12) include Delta, Theta and Alpha, and high 

frequency bands (>12) incorporate Beta and Gamma. In our research, we discover that 

low frequency signals perform better in classifying no-cognitive and cognitive tasks than 

higher frequency signals, which is also the reason why a frequency band from 1 Hz to 10 

Hz is applied. 
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Type Frequency (Hz) Related Activities 

Delta 0 – 3 Hz 

� Adults slow wave 
sleep 

� In babies 

Theta 4 – 7 Hz 

� Young children 
� Drowsiness or arousal 

in older children and 
adults 

� Idling 

Alpha 8 – 12 Hz 

� Relaxed/reflecting 
� Closing the eyes 

Beta 12 – 30 Hz 

� Alert/working 
� Active, busy or 

anxious thinking, 
active concentration 

Gamma 34 – 100 Hz 

� Certain cognitive or 
motor functions 

Table 3.1 Explanation of EEG frequency Bands 

In order to see the inter-relations between these eight signals the correlation 

values are calculate between each signal in each trial. The values for subject A are shown 

in the table 3.1, others are listed in the appendix. From the correlation coefficient, it is 

noticed that for subject A and E, vertical EOG is strongly correlated with Fz (>0.68), and 

Horizontal EOG closely related to F7 (>0.7). And on the other side, Fz and F7 only have 

a medium correlation coefficient (usually < 0.5). However for subject F, only the 

correlation between Horizontal EOG and F7 EEG exists (>0.79). These statistics can also 

explain that why there are similar patterns between VEOG, HEOG and Fz, F7 EEGs. 

Note, the correlation coefficients are calculated before the DFT. We also calculated the 
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coefficients after the DFT, the correlation values become even higher, which may be due 

to some unique characteristics are tossed away in the process. 

A01 1(ECG) 2(VEOG) 3(HEOG) 4(Fz) 5(F7) 6(Pz) 7(P7/T5) 8(O2) 

1 1 -0.0089 0.0102 -0.0734 -0.0277 -0.085 -0.0675 -0.0691 

2 -0.0089 1 -0.4725 -0.716 -0.7652 -0.1095 -0.2623 0.1504 

3 0.0102 -0.4725 1 -0.048 0.8768 -0.3512 0.0055 -0.5768 

4 -0.0734 -0.716 -0.048 1 0.3948 0.5663 0.4795 0.3203 

5 -0.0277 -0.7652 0.8768 0.3948 1 -0.1166 0.1957 -0.4052 

6 -0.085 -0.1095 -0.3512 0.5663 -0.1166 1 0.7155 0.8212 

7 -0.0675 -0.2623 0.0055 0.4795 0.1957 0.7155 1 0.5837 

8 -0.0691 0.1504 -0.5768 0.3203 -0.4052 0.8212 0.5837 1 

A01 

A02 1(ECG) 2(VEOG) 3(HEOG) 4(Fz) 5(F7) 6(Pz) 7(P7/T5) 8(O2) 

1 1 -0.0085 0.0268 -0.0917 -0.021 -0.0974 -0.0775 -0.0849 

2 -0.0085 1 -0.4712 -0.6821 -0.7454 -0.0985 -0.2559 0.146 

3 0.0268 -0.4712 1 -0.0929 0.8794 -0.3753 -0.023 -0.5828 

4 -0.0917 -0.6821 -0.0929 1 0.3329 0.5726 0.4675 0.3405 

5 -0.021 -0.7454 0.8794 0.3329 1 -0.1551 0.1597 -0.4194 

6 -0.0974 -0.0985 -0.3753 0.5726 -0.1551 1 0.7014 0.8256 

7 -0.0775 -0.2559 -0.023 0.4675 0.1597 0.7014 1 0.5817 

8 -0.0849 0.146 -0.5828 0.3405 -0.4194 0.8256 0.5817 1 

A02 

Table 3.2 Raw signal correlations in trials A01 and A02 of subject A 

Furthermore, the distribution of each signal from the raw data is also plotted in 

Figure 3.4, some appealing phenomenon is found:  in each task the signals are unimodal 

distributed and has comparable mean, however the difference between task 0 and task 1, 

2 is that task 0 has a two side heavy-tails. To utilize this interesting point in classification, 

we can measure the variance of each task or measure the variance in certain intervals, like 

the tail areas of the distribution. However, a major drawback is that it not always 

applicable to all the tasks.  
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So far, there are only four signals out of eight are found interesting for the 

classification, vertical, horizontal EOGs and Fz, F7 EEGs. The ECG is unsurprisingly 

unrelated with the cognitive level, and the other EEG signals seem to react randomly on 

different tasks. The understanding is that for certain functions only left hemisphere have, 

such like the analytical and logical abilities. And from the task description, we know that 

the tasks are highly demanded for analytical and logical abilities and Fz, F7 positions are 

located on the left side of brain. 

 

Figure 3.4 The Amplitude distributions of raw signal from A01 for task 0, 1 and 2 

3.1.4 Error Measurements 

For the most common way to measure the classification error, error=n/m,  where n 

is the number of parts classified inaccurately, and m is the number of total number of 

parts in testing sets, it cannot provide us a general perspective on how well an algorithm 

performs due to the special condition of the data set. For instance, a testing set has been 

divided into 81 parts, only 17 parts correspond to task 1 and the rest represent task 0. 

Even an algorithm classified all the parts as task 0, the error only equals to 20.988%. 

Therefore, we apply another type of error measure: /i ierror n m= , in is the number of 

sub-task i misclassified, imis the total number of sub-task i. For the same instance above, 
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the errors become error1=20.988% and error2=100%. Therefore, the second 

measurement can provide more details about how well we classify the data set than the 

first approach.  

3.2 Linear Programming Method  

3.2.1 Algorithm for linear programming Discrimination Method 

Based on the characteristic in the frequency domain, a linear programming 

method is applied to classify the data. The algorithm is shown as below, the input 

parameters include:1W, 2W , 1F , and 2F . “Training” and “classifying” are two consecutive 

phases in this algorithm. Moreover, DFT is only applied for one-dimensional 

decomposition, for a multiple dimensional data set, the data in each dimension could be 

transformed separately.  

“Training Stage” 

1. In the original training data, use 1W as the length of sub-tasks, separate the known 

tasks in the data set and split every identified task into equal long sub-tasks. 

2. Split every sub-task into 2W length and then apply DFT on every 2W-long data 

points.  

3. Compute the average magnitudes over 1F  to 2F from the outputs; calculate the 

average of ( 1W/ 2W) values; it is the “characteristic value” of this sub-task. 

Therefore, each sub-task has its own characteristic value. 

4. Apply the linear optimization method (2.6) , which tries to find an optimum 

hyperplane that can separate different sub-tasks most correctly based on the 

characteristic values. The optimum solution of this linear programming problem 

includes a vector ω and a scalar r, which are the direction and location of this 

hyperplane. The dimension of this hyperplane depends on the dimension of the 

characteristic value, which depends on the dimension chosen from the data set. 

“Classifying Stage” 
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5. Divide the testing data into equal 1W long consecutive segments in the time 

domain. These segments are the unknown sub-tasks needed to be classified in the 

following steps. It is possible that one unknown time period is contains by two 

different sub-tasks. Then, just discard this kind of segments and don’t classify 

them. 

6. Compute the characteristic values of all segments as the same way in the studying 

stage using the same parameters, 1W, 2W , 1F , and 2F . 

7. Use the optimum hyperplane in learning stage to classify these unknown sub-

tasks. 

Here only one hyperplane is applied to classify two conditions, non-cognitive 

workload and cognitive workload. If classifying more conditions or higher classify 

accuracy is needed, we could apply the greedy linear-programming-based algorithm 

MSMT (Multi Surface Method Tree) and MSM (Multi Surface Method) (Bennett, 

Mangasarian, 1992). Both these two methods are based on solving the linear 

programming problem formulated above. For MSMT, the idea is to continue bi-split data 

sets until all sets contain only one kind of data points or to some desired percentage so 

there are at most i2  LP’s in every iteration. In comparison with MSMT, the advantage of 

MSM is that only a single linear program needs to be solved at each step because when a 

linear surface obtained, points classified correctly are discarded by the surface and 

formulate linear programming problem based on the rest of data. So at the end, a 

piecewise-linear surface is generated. 

3.2.2 Computational Procedure 

For each subject we have two trials, thus three subjects and six trials in all (A01, 

A02, E01, E02, F01, and F02). For a subject, one trial is used as training set and the other 

trial is used as testing set, then switch the training and testing set. Note, because 

individual has his/her own “brain characteristics”, it haven’t found any promising 
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algorithms that are able to use the data from one subject to classify the data for another 

subject.  

For the features selection, four combinations are employed: (Fz, F7), (HEOG, 

VEOG), (Fz, HEOG), (Fz, F7, HEOG, VEOG). For the parameters in the algorithm, we 

calculate the average magnitude from 1 to 10 Hz, so 1F  equals 1 and 2F  equals to 10. For 

1W and 2W, multiple values are chosen in order to find a pair of optimal values. The 

values selected in the computational experiment include: [4000, 20/50/100/4000], [3000, 

20/50/100/3000], [2000, 20/50/100/2000], [1000, 20/50/100/1000]. The value before the 

comma is the value for parameter 1W, and the values after the comma are the values for 

2W. For instance, in [4000, 20/50/100/4000], 1W equals to 4000, and 2W equals to 20, 50, 

100, and 4000. Therefore, in each brackets, there are four pairs of values for the 1W and 

2W. 

3.2.3 Computational Results 

The results are presented in the Table 3.3. We can see that for the parameters 1W

=2000 and 2W=20, the average error rate for both No Cognitive Load (NCL) tasks and 

Cognitive Load (CL) tasks are the optimum among all the parameters. By applying DFT 

and linear programming discrimination method, we can classify the NCL tasks and CL 

tasks at the average accuracy of about 14.8% and 20.6%. Furthermore, from the Table 

3.4, using Fz and F7 signals provide us not only a better average accuracy but also 

smaller variance for the different values of the parameters ( 1W, 2W). 
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1W 4000 3000 

2W 20 50 100 4000 20 50 100 3000 

CL error 0.4974 0.3001 0.304 0.2968 0.2334 0.2633 0.249 0.2702 

NCL error 0.319 0.2947 0.2991 0.2508 0.2508 0.2539 0.2355 0.2702 

1W 2000 1000 

2W 20 50 100 2000 20 50 100 1000 

CL error 0.1476 0.2256 0.2104 0.2759 0.1929 0.2891 0.275 0.264 

NCL error 0.2057 0.2196 0.2026 0.2541 0.2699 0.2872 0.2712 0.2435 

Table 3.3 The test results of linear separation algorithm for EEG signals Fz, F7 with 
different values of 1W, 2W 

Signals Fz, F7 HEOG, VEOG HEOG, Fz 
Fz,F7, 

HEOG,VEGOG 

AVE/STDV 

CL error 

0.147625 

/0.057568 

0.145733 

/0.07094 

0.164567 

/0.178737 

0.154575 

/0.07228 

AVE/STDV 

NCL error 

0.2056917 

/0.09144 

0.21505 

/0.117397 

0.220658 

/0.217710 

0.219200 

/0.116993 

Table 3.4 Average and standard deviation of classification error for using different 
combinations of features 

3.3 Principal Component Analysis Method 

Principal Component Analysis (PCA) Method is a way of identifying patterns in 

data, and expressing the data in such a way as to highlight their similarities and 

differences (Smith, 2002), which transforms a number of possibly correlated variables 

into a smaller number of uncorrelated variables called principal components. In principal 
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components analysis, we attempt to explain the total variability of n correlated variables 

through the use of n orthogonal principal components. The components themselves are 

merely weighted linear combinations of the original variables. Each principal component 

is a linear combination of the original variables. Moreover, each principal component is a 

single axis in the space of the data, and as a whole they form an orthogonal basis for the 

space. The first principal component can be expressed as: 

 1 11 1 21 2 1

1

...
T

1 a M
n nX a M a M a M

or X

= + + +

=
 (3.2) 

1a is the first principal component coefficients, M is a variable in n dimensions, 1X  

accounts for the maximum variability of the p variables of any linear combination. In 

other words, projecting the data onto the first principal component, the projection data 

has the maximal variance among the entire axis in the space. And the second principal 

component 2X  is formed such that its variance is the maximum amount of the remaining 

variance and that it is orthogonal to the first principal component. That is 1 2' 1a a = . For a 

variable M R p∈ , we have 

 ' 0, 1, ..., 1

1, ...,

Ta M

a a  for   

  

i i

j i

X

j i

i p

=

= = −

=

 (3.3) 

Here, ai is called the principal component coefficients. 

For a matrix M, each column represents a variable, and each row comes from the 

observations of these variables. And if TM  has a zero empirical mean, then the PCA 

transformation is given by  
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T TX M W

= V

=
Σ

 (3.4) 

Where TVΣW is the singular value decomposition of TX .  

Similar to the procedure in the linear programming algorithm, to plot Figure 3.6, 

each trial is divided into several tasks according to the prior information, and each task is 

split into equal long sub-tasks. Then, DFT is utilized to transform each sub-tasks from 

time domain into frequency domain and calculate the average magnitudes over 1Hz to 10 

Hz on signal Fz and F7 for these sub tasks. So each sub task has a two dimensional value, 

the value for the whole task equals to the average value of all the sub tasks belong to 

itself.  

The length of sub-task is 100 data points or in other words half seconds, which is 

relatively small comparing to duration of a whole task (usually having more than 4000 

points). The dots, the stars and the triangles in the plots represent the value calculated for 

every task. The blue dots represent task 0. The green stars represent task 1 and the red 

triangle indicates the task 2. The advantage of this approach over the previous one is 

more information could be extract from a task. And compare to the method we earlier, a 

“better” plots is achieved (different kinds of tasks are more separable).   
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Figure 3.5 The magnitudes of task 0, 1, 2 of Subject A and E in Fz-F7 spaces 

In Figure 3.5, NCL tasks and CL tasks are separable so the optimum value of 

objective function always equals to zero and the LP formulations (2.6) has optimal 

solutions. However, in Figure 3.6, it is obvious the linear separator varies dramatically 

from one trial to the other trial for the same subject. This trait is undesirable for the 

classification and contradict to the assumption that one subject should have similar 

characteristics in different trials. As a result, another attribute of a “good” separator is 

“robustness”, which loosely defined as the stability between the different trials for the 

same subject. 

Applying an algorithm involving PCA, a more “robust” separating algorithm can 

be acquired. In the algorithm, PCA is used to obtain the first principal component 

coefficient (it is also the direction vector of the axis which is vertical to the first principal 

axis in the). Then, set the first principal component coefficient as the value of w in the LP 

formulation (2.6); therefore, w is fixed before solving the LP, and only the optimum 

value of r need to compute. In other words, we utilize the first principal component as the 

direction of the separating hyperplane and solve the LP to find a location of the 

hyperplane at where this hyperplane can separate all data points in the space. In Figure 

3.6, separating planes for subject E are generated by this new method and the LP method. 
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We can conclude by visual observation that the new approach is more “robust”. All of the 

three subjects have similar results. 

 

Figure 3.6 Comparison between the linear separator obtained by LP and PCA for two 
trials of subject E 

3.4 K-Nearest-Neighbor Method 

3.4.1 Introduction 

Linear discriminant function method is one of parametric techniques which are 

based on the assumption that the underlying discriminant functions are known, with 
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several parameters need to adjust. However, this assumption is suspect in many 

situations, and some nonparametric procedures can be used without this assumption. 

There are several types of nonparametric methods in pattern recognition, among 

which is k nearest-neighbor rule. General speaking, the rule of this method is simple: find 

the “nearest k known points” of a certain test points and classify the test point into the 

category in which “most” of the nearest points are. 

 A general procedure for K-nearest neighbor method: 

Training: 

Build the set of training examples D 

Classification: 

Given a query instance ix to be classified, 

Let 1{ ... } kkNN x x= denote the k instances from D that are nearest to ix  

Then 

 

 ( ) arg max ( , )
j

i j p
p x kNN

y x f x c
∈

= ∑  (3.5) 

 

Where ( , ) {0,1}j pf x c ∈  indicates whether jx  belongs to class pc , p is the number of 

classes in a data set. When k=1, then k-nearest-neighbor method becomes nearest-

neighbor method, and in 2-dimensional space, the decision surface is a Voronoi diagram. 
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Figure 3.7 A Voronoi diagram 

3.4.2 The Algorithm and Application 

In the data set, although the training data points are usually linear separable, the 

testing data points in the space are generally linear inseparable. But the linear hyperplane 

can still separate most of the NCL and CL tasks. Meanwhile, for low cognitive and high 

cognitive load tasks, the linear separator approach doesn’t perform well because of the 

nonlinearity. Therefore, k-nearest neighbor method may be a good choice for a nonlinear 

separator. In the implementation of k-nearest neighbor method, the classification is also 

based on individual subject. 

The algorithm using k-nearest neighbor method is similar to the algorithm using 

linear optimization method; the only difference is that after the characteristic values of 

training data are obtained, we applied k-nearest neighbor method instead of solving linear 

programming problem to classify the testing data.  

There are details in our research need to be specified here. First, we apply 

“Euclidean norm” as the measure of distance in this method. Second, k-nearest neighbor 

rule generally doesn’t consider the number of sample size, however in our algorithm, we 
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not only consider the “k nearest points’’ but also the number of training data where these 

points belong to. Therefore, after the k nearest training points of one test point are 

located, we count the number of training points in each class, then the numbers are 

divided by the size of each class. Here the number of data points that each class has in the 

training set, has an effect on the decision of k-nearest neighbor rule. The more data one 

class has, the less effect a point in this class has on its neighbors. This method should 

offer better result than the original one under the condition that unbalanced information 

on different classes is given. For instance, in one of our research data set, because of the 

design of experiment, the researchers collected more data in one class than the data in the 

other two classes. Since this biased information was made by man-induced factor and it is 

not part of the characteristics of the data set itself, without eliminating this factor, it 

would deteriorate the classification results 

The procedure for building training set and testing set: 

For training data set:  

1. For the original training data, identify the known tasks in the data set. 

2. Split every known task into 2W length sub-tasks and then apply DFT on every 2W 

data points.  

3. Compute the average magnitudes over 1F  to 2F on the outputs in step 2; calculate 

the average values of all the sub-tasks in each task; it is the “characteristic value” 

of this task. It is also the coordinates of a training data point in a multi-

dimensional space.  

For testing data set, the procedure is similar with a little difference: 

1. Divide the testing data into equal 1W long consecutive segments in the time 

domain. These segments are the unknown sub-tasks needed to be classified in the 

following steps.  

2. Split every sub-task into 2W long span and then apply DFT on every 2W data 

points.  
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3. Compute the average magnitudes over 1F  to 2F from the outputs; calculate the 

average of total (1W/ 2W) values; it is the “characteristic value” of this sub-task, 

also the coordinates of a testing point.  

The k-nearest-neighbor algorithm applied in our research: 

1. Select a testing point 

2. Calculate the distances from this testing point to every training points (Euclidean 

Distance applied) 

3. Sort the distances from smallest to the biggest 

4. Find  the training points corresponding to the first k distances, Count the classes 

of these training points 

5. The testing point is classified as { 1, ..., },   i

i

n
j Max i c

N
= = ,  j is the class that the 

testing point assigned to, c the total classes the training data has, in  is the number 

of the training points belong to class i among the k- nearest  points, iN is the 

number of the training points belong to class i among all the training points. 

Also, four combinations of signals are tested in this method: 1. all eight features. 

2. Fz and F7 of EEGs. 3. ECG, Pz, T5, and O2 of EEGs. 4. VEOG, HEOG, and EEGs on 

Fz, F7. First all signals are transformed to the frequency domain.  Then the average 

magnitudes from 1 Hz to 10 Hz are computed. k equals to 1 is applied. As it is 

mentioned, there are six combinations for training and testing data set, A01/A02, 

E01/E02, F01/F02, A02/A01, E02/E01, F02/F01, the dataset before the slash is the 

testing set, the one after the slash is the training set.  

Furthermore, we select different values for 2w, 3000, 2000, and 1000 which 

corresponds to 15s, 10s, and 5s time periods. The training error and testing error are 

obtained after each run. The error measurement described in 3.1.4 is applied. Since three 

classes are available in the data set, the error measurement is a 3×  3 matrix, the diagonal 

are the accuracy percentage for task 0, 1and 2. The off diagonal ijx elements indicate how 
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many percentages data in class i are misclassified as class j. The results for 3 

combinations are listed in Table 3.5, the rest can be found in the appendix.  

Fz, F7 A02/A01 E02/E01 F02/F01 

Test 

Error 

15s 

0.714 0.262 0.024 0.698 0.116 0.186 0.667 0.222 0.111 

0.167 0.5 0.333 0.167 0.5 0.333 0.4 0.4 0.2 

0.2 0.4 0.4 0.167 0.5 0.333 0 0 1 

10s 

0.651 0.286 0.064 0.641 0.219 0.141 0.609 0.219 0.172 

0 0.778 0.222 0.222 0.333 0.444 0.222 0.111 0.667 

0 0.625 0.375 0.1 0.2 0.7 0 0.25 0.75 

5s 

0.633 0.258 0.109 0.638 0.213 0.15 0.577 0.162 0.262 

0 0.563 0.438 0.25 0.25 0.5 0.188 0.375 0.438 

0.063 0.25 0.688 0.158 0.263 0.579 0.059 0 0.941 

Train 

Error 

15s 

1 0 0 1 0 0 0.889 0.111 0 

0 0.75 0.25 0 0.5 0.5 0.25 0.75 0 

0 0.25 0.75 0 0.5 0.5 0 0.25 0.75 

10s 

1 0 0 1 0 0 0.889 0.111 0 

0 0.75 0.25 0 0.5 0.5 0.25 0.75 0 

0 0.25 0.75 0 0.5 0.5 0 0.25 0.75 

5s 

1 0 0 1 0 0 0.889 0.111 0 

0 0.75 0.25 0 0.5 0.5 0.25 0.75 0 

0 0.25 0.75 0 0.5 0.5 0 0.25 0.75 

Table 3.5 Testing and training errors for k-nearest neighbor method with different time 
windows 

We also calculate out the mean and standard deviation for accuracy over all the 

different combinations in Table 3.6. The results show that k-nearest neighbor method has 

a lower accuracy in separation of tasks (0) and tasks (1, 2) than the linear separation 

method. Moreover, the best average classification accuracy is from using all the features 

in the data set and with 1 3000W= . The longer the time periods is, the better the 

classification results is. This is because that the larger 1W is, the more data points one 

time window has, and the more accurate information about the cognitive status we can 
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extract. Nevertheless, the disadvantage of a larger 1W is that we would not be able to 

identify a subject’s state in a short time scale and make it unpractical in real-time data 

mining. Applying all the signals gives us the best result among all the four combinations’. 

Also, the standard deviations are around 0.2 to 0.3, which may due to the individual 

characteristics of each subject. 

  
All features Fz,F7 ECG,Pz,T5,O2 VEOG,HEOG,Fz,F7 

Mean STDEV Mean STDEV Mean STDEV Mean STDEV 

15s 
0.6797 0.3118 0.6594 0.3026 0.6733 0.3110 0.6732 0.3104 
0.4000 0.2143 0.3714 0.2870 0.4000 0.2143 0.3191 0.2707 
0.5946 0.3157 0.4946 0.3247 0.5898 0.3385 0.5898 0.3385 

10s 
0.6204 0.2922 0.6270 0.2958 0.6071 0.2912 0.6182 0.2900 
0.4286 0.2755 0.3413 0.2836 0.4306 0.2827 0.4127 0.2921 
0.5119 0.2931 0.5492 0.2986 0.4940 0.2797 0.5119 0.2931 

5s 
0.5476 0.2512 0.5697 0.2618 0.5487 0.2541 0.5442 0.2492 
0.3680 0.2261 0.2411 0.1961 0.3666 0.2157 0.3257 0.1809 
0.5668 0.2725 0.6127 0.2935 0.5668 0.2725 0.5743 0.2753 

Table 3.6 Mean and standard deviation of testing accuracy for nearest-neighbor method 
with different 1W and different signals when 2 100W=   

Another similar method called Nearest-centroid algorithm: 

1. Compute the centroids for all the classes in the training set: 

1 2a +a +...+a
c i i ni

i n
= , ci is the centroid of class i, aji is a training point 

belong to class i, and n is the total number of training points in class i. 

2. Select a testing point; calculate the distances from this testing point to the 

centroid of each class (Euclidean Distance applied). 

3. The testing point is assigned to the class, which its nearest centroid belong 

to. 
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This algorithm is a combination of k-mean method and nearest-neighbor rule: first 

within training data, the centroid of each the class is found, and then testing data is 

classified by applying these centroids and nearest neighbor method. The same parameters 

and combinations of signals in k-nearest neighbor method are used in the nearest-centroid 

method. The computational results are shown in Table 3.7. The k-nearest neighbor 

method outperforms nearest-centroid method in all scenarios. Remark, using the 

combination of ECG, Pz, T5 and O2 we obtain the same results as applying all the 

features. It may be explained by that some of these four signals have higher magnitudes 

in frequency domain and overshadow the other signals in the classification procedures. 

  
All features Fz,F7 ECG,Pz,T5,O2 VEOG,HEOG,Fz,F7 

Mean STDEV Mean STDEV Mean STDEV Mean STDEV 

15s 
0.5442 0.2804 0.6262 0.2959 0.5442 0.2804 0.5810 0.2813 
0.4000 0.3151 0.4619 0.2542 0.4000 0.3151 0.4000 0.3372 
0.5435 0.2574 0.4946 0.3035 0.5435 0.2574 0.5660 0.3028 

10s 
0.5534 0.2876 0.5957 0.2967 0.5534 0.2876 0.5692 0.2820 
0.3294 0.2118 0.3651 0.2681 0.3294 0.2118 0.3333 0.2546 
0.4560 0.2198 0.4849 0.2467 0.4560 0.2198 0.5401 0.2685 

5s 
0.4982 0.2472 0.5411 0.2488 0.4982 0.2472 0.5098 0.2390 
0.3403 0.2113 0.3124 0.1677 0.3403 0.2113 0.3481 0.2106 
0.4288 0.2823 0.6189 0.3023 0.4288 0.2823 0.5627 0.2761 

Table 3.7 Mean and standard deviation of testing accuracy for nearest-centroid method 
with different 1W and different signals when 2 100W=  

3.5 Feedforward Neural Network 

3.5.1 Multi-layer feed forward Neural Networks 

Artificial neural networks method is a branch of artificial intelligence, which is 

inspired by biological nervous systems. The similarities between biological nervous 

systems and artificial neural networks are that they are both composed of simple elements 
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operating in parallel, and if the number of these simple elements reaches certain point, 

they can perform complex functions. This simple element is called neuron both in 

biological and artificial networks. However in artificial intelligence area, a “neuron” 

actually means a parameterized function. The variables of the function are often called 

inputs of the neuron and its value is its output (Dreyfus, 2005).  

A neural network is a composition of several neurons, and a feed forward neural 

network can be demonstrated by the graph in Figure 3.1, where the edges are the 

connections and the vertices are neurons. Information always goes forward and never 

goes back. In addition, in a multi-layer network, there are usually more than three layers 

of neurons and they connect with each other one by one, from the input layer to output 

layer. Note, the “neurons” in the input layer simply provide the input data to hidden layer 

instead of processing the data, which is the reason, in some books and software the input 

units are not referred as “input neurons”, and for hidden layer, the neurons are usually 

sigmoid parameterized functions, while the linear functions are always applied in output 

layer.  

There are values for all the connections between each neuron, which called 

weights. A neural network can be trained to perform a particular function by adjusting 

these weights. Proved by Kolmogorov but refined by others, any continuous function 

from input to output can be implemented in a three-layer net, give sufficient number of 

hidden units, proper nonlinearities, and weights (Duda, Hart, Stork, 2001). Therefore, 

theoretically a three-layer network with enough hidden neurons should be able to 

approximate any functions, but in practice, researchers also utilize networks more than 

one hidden layers due to the efficiency reason (with fewer total units). 

As the rapid developments in computer technology, artificial neural network 

becomes more and more popular. A great amount of effort is spent on the development of 

neural networks for applications such as pattern recognition and modeling, data 

compression, optimization, etc. The advantages of neural network over conventional 
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weights. However, as training goes on, the network adjusts internally by a certain training 

algorithm until it reaches a stable stage at which the outputs are considered satisfactory: 

( , arg )f output t et δ> . After that, all weights in the network should be fixed and stop 

training, go to the next stage: testing. In summary, learning is an adaptive process during 

which the weights change in order to offer the best response to all the observed stimuli. 

In the testing stage, the trained network is used to classify new, previously unseen inputs. 

At this stage, the network receives an input signal and processes it to generate an output. 

 

Figure 3.9 A procedure to train a neural network 

3.5.2 Application 

Previously research is based on the assumption that for the same subject, all the 

trials are related, so based on the information in one trial, one should be able to classify 

the tasks in another trial for the same subject. Nevertheless, it is possible that every trial 

has its distinctive characteristics while they are related with each other at the same time. 

More important, this unique characteristic may interfere with the performance of our 

algorithm. In order to extinguish this factor as much as possible, a potential way is to 
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treat each trial as an independent trial and randomly select a fraction of the data as 

training data and the rest as testing data. 

Two different algorithms are implemented by the Neural Network Toolbox 

(NNT) in the Matlab (The Mathworks, Inc), an all-purpose neural network environment. 

In the first algorithm, a three-layer neural network with three neurons in the output layer 

is applied since we have three classes in the dataset. Task 0, 1 and 2 correspond to target 

value [1, 0, 0], [0, 1, 0], [0, 0, 1], respectively. The number of inputs is related to the 

number of features we extract from the multidimensional time-series data set, and 20 

neurons are in the hidden layer. All the information for the network is listed in Table 3.8.  

For the second approach, two networks are utilized instead of one. The first 

network separate NCL tasks (0) from CL tasks (1 and 2), and the second network identify 

the low cognitive tasks (1) and the high cognitive tasks (2). Both networks have three 

layers with the same transfer functions, training algorithm and learning function as in 

Table 3.8. The differences between these two networks are: first, the output values have 

different meanings. The target value for NCL tasks is 0, for CL tasks is 1, while in the 

second network, low and high cognitive tasks correspond to target value 0 and 1. In 

addition, the first network has 5 neurons and the second has 20. The reason different 

numbers of neurons are chosen for the two networks, is not only based on experiment, 

but also based on the observation of the linearity between non-cognitive and cognitive 

tasks and the nonlinearity between low and high cognitive tasks.  
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Number of inputs 35, 28, 7 

Number of outputs 3 

Number of hidden neurons 20 

Transfer function for hidden layer Hyperbolic Tangent Sigmoid 

Transfer function for output layer Linear 

Training algorithm Levenberg-Marquardt back propagation 

Performance function Mean square error  

Table 3.8 Details for the neural network 

Note, different numbers of inputs are tested for the same data set in order to 

discover the combination of features which can give the best classification result. In 

Wilson and Russell’s paper (Wilson and Russell, 2007), they calculated the average 

magnitudes over 5 bands from every EEG and EOG signal after the data was transferred 

from time domain to frequency domain by DFT: delta (2.0 to 40 Hz), theta (5.0 to 8.0 

Hz), alpha (9.0 to 13.0 Hz), beta (14.0 to 32.0 Hz), and gamma (33.0 to 43.0 Hz). Include 

the 5 bands mentioned, 4 bands and 1 band are also tried. For 4 bands, they are 1 to 10 

Hz, 11 to 20 Hz, 21 to 30 Hz, 31 to 40 Hz, and for 1 band, it is from 1 to 10 Hz. The 5 

bands, 4 bands and 1band correspond to 35 inputs, 28 inputs and 7 inputs for the neural 

network since VEOG, HEOG, Fz, F7, Pz, T5 and O2 are chosen. 

Each trial is treated as an individual data set. Since the tasks are performed 

continually during a certain time period, classifying every time point in the data set is 

unpractical. Hence, every single trial is divided into equal long consecutive segments 

along the time axis. Randomly 50% of the data is selected as training set, 25% of the data 
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as cross validation set, and the other 25% as testing set. Furthermore, the length of task 0 

is at least 6 times longer than the time of the task 1 and 2 in each trial. If data is arbitrarily 

selected as training set and testing set over the whole data, this unbalanced situation 

would be kept in the training and testing set. And after the training, the neural network 

would be biased: more sensitive to task 0. To avoid this situation, the same percentage of 

data is selected from each task, and the data in task 2 and 3 is replicated to make they 

have the same amount data as in task 1. A five-second long segment is used as input 

signal to the network. And for each trial, we run 10 times and compute mean and 

standard deviation of accuracy for each task. All the results can be found in the appendix, 

only the results for 35 inputs are listed in Table 3.9.  

In Table 3.10, the accuracies of the algorithm 1 and algorithm 2 are comparable. 

The average accuracy for algorithm 1 among different trials is 0.85053, 0.47083, 0.59443 

for task 0, task 1, and task 2, comparing to 0.85862, 0.375, 0.61667 from algorithm 2. 

The neural network with 35 inputs gives the similar results in algorithm 1 and 2, and task 

0 is easier to identify, again. For 7 inputs network, algorithm 1 gives the worst accuracy, 

but algorithm 2 still have a similar or even better accuracy compare to the results from 

the network with 35 and 28 inputs. Base on these observations, conclusion is that using 

35 inputs in algorithm 1 has no advantages over using 28 inputs. Additional, applying 7 

inputs can achieve a similar result by algorithm 2, although algorithm 1 with 28 inputs 

has the best result over all.  
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Algor1 A01  E01  F01  

35 input AVE STDV AVE STDV AVE STDV 

Task 0 0.8871 0.06842 0.7806 0.14489 0.8323 0.08439 

Task 1 0.425 0.28988 0.55 0.28382 0.5 0.26352 

Task 2 0.6 0.26296 0.7 0.24596 0.6333 0.33148 

Algor1 A02  E02  F02  

35 input AVE STDV AVE STDV AVE STDV 

Task 0 0.8581 0.08216 0.8903 0.04612 0.8548 0.05938 

Task 1 0.45 0.2582 0.55 0.30732 0.35 0.33747 

Task 2 0.5333 0.35833 0.4333 0.27444 0.6667 0.35137 

 

Algorithm 1 

Algor2 A01  E01  F01  

35 input AVE STDV AVE STDV AVE STDV 

Task 0 0.8387 0.12814 0.8161 0.21183 0.8968 0.06933 

Task 1 0.375 0.35843 0.275 0.24861 0.35 0.33747 

Task 2 0.575 0.26484 0.725 0.24861 0.8 0.2582 

Algor2 A02  E02  F02  

35 input AVE STDV AVE STDV AVE STDV 

Task 0 0.871 0.11069 0.8194 0.09274 0.9097 0.0884 

Task 1 0.4 0.35746 0.525 0.24861 0.325 0.26484 

Task 2 0.525 0.27513 0.55 0.32914 0.525 0.18447 

 
Algorithm 2 

Table 3.9 The result of neural network with 35 inputs for (a) algorithm 1 and (b) 
algorithm 2 
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 35 28 7 

Algor1 

Task 0 0.85053 0.82902 0.73978 

Task 1 0.47083 0.5125 0.26667 

Task 2 0.59443 0.60002 0.47778 

Algor2 

Task 0 0.85862 0.87312 0.86988 

Task 1 0.375 0.42083 0.425 

Task 2 0.61667 0.59167 0.6 

Table 3.10 The average classification accuracy for Algorithm 1 and 2 with different 
numbers of inputs 

3.6 Peak Detection Method 

The Peak Detection Method (PDM) is based on the assumption that the brain’s 

state of a subject at a certain time point can be determined by the time period before and 

after this point. In this algorithm, a fixed-length window slides through the time axis and 

certain value are measured every time the window is located. Also, the value calculated is 

assigned to the time point at the middle of the window. For this algorithm, these 

parameters: 1w
 the length of the window, and 2w

 the span that every time the window 

slides, need to be pre-determined. There are two ways to gauge the window: the 

magnitude for a frequency band after DFT or the standard deviations for all the data in 

the window since interesting patterns are found in the previous section. Both of these two 

measures are applied on a single feature which also needs to choose prior.  

Figure 3.10 is generated by the PDM, the X axis is the time axis; the Y axis 

represents values of a certain measurement. The vertical lines indicate the finishing of 

events: the black lines mean task 0 ends, the green indicates the task 0 and the red 

indicates the task 2. Therefore, a task 2 happens between a black line and a red line, and a 

task 1 happens between a black line and a green line. The parameters chosen here are 
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1 18 secw=  and 2 1secw = , which imply the length of this moving window is 18 seconds 

and this window moves 1 seconds every time. Furthermore, the feature chosen from the 

data set is EEG signal on Fz spot and the frequency band is from 1 Hz to 10 Hz. 

In Figure 3.10, for the same trial and the same subject, there are two plots, the plot 

above applies measure of the standard deviations of the raw data and the plot below 

calculates the average magnitude for the transformed EEG signal. Also, In Figure 3.10, at 

the beginning of every task 1 and task 2, a peak appears in both two measurements. It 

indicates that when a subject is performing under a CL task, the EEG data collected from 

Fz spot always has a lower average magnitude in frequency domain and a lower standard 

deviation in the time domain, than under a NCL task. Note, the negative values of both 

two measurements are used in Figure 3.10 just for the convenience of observation. 

Another interesting phenomenon is that these two measurements are closely correlated; 

the correlation coefficients are in  
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F01 

Figure 3.10 The two measurements versus time plots from PDM for data set A01, E01, 
F01 

 

Trail  A01 A02 E01 E02 F01 F02 

Correlation 0.9488 0.9392 0.9266 0.8927 0.8848 0.7498 

Table 3.11 The correlation between the average magnitudes and standard deviation in the 
Peak Detection Method 

A heuristic peak detection algorithm is applied to discover the change during the 

trial: 

Initial max inf, 0y max= − = with predefined ,  δ γ  

For i=1…n, n is the number of data points along the time axis. 

If  maxiy y> , then max iy y=  and max i=  

Else if max iy y δ> +  and maxy γ>  then Point ( max max,x y ) is a peak. 
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End 

δ  is the relative threshold to identify a peak and γ  is the absolute threshold. Only a point 

satisfies these two at the same time would be labeled as a peak. In our computational 

experiment, δ equals to one standard deviation of all the points in the plot, and γ  equals 

to the mean plus one standard deviation. 

The result from the algorithm applied on the previous “standard deviation plot” of 

E01 is shown in Figure 3.11.In this figure, most of the peaks detected are the transitional 

point of different tasks, although the peaks are not all on the exact time point of task 0 

shifting into task 1 or 2,, they are close to the points in a satisfied precision. The results 

for each data set are listed in Table 3.12. The table includes the number of transition 

points it has for each trial, how many of them are detected, and how many false alarms 

have been triggered. Note, for PDM, task 0 is considered as a baseline or benchmark, and 

this method cannot differentiate task 1 and task 2 now.  

 

Figure 3.11The points detected by the peak detection algorithm in E01 data set 
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Table 3.13 shows that the percentage of task 1 detected by PDM is comparable to 

the percentage of task 2: average 87.50% and 83.33% respectively. The average total 

accuracy is 72.16%. The reason that the total accuracy is lower than both of the 

percentage of task 1 detected and task 2 detected is there are several false alarms during 

each trails. Therefore, to increase the total accuracy, we need to lower the false alarm 

rate.  

Data 

Set 

Transitional 

points 

Correctly 

detected: 

Task1 

detected: 

Tasks2 

detected: 
False alarm 

A01 8 8 4 4 3 

A02 8 7 3 4 1 

E01 8 8 4 4 1 

E02 8 6 3 3 3 

F01 8 8 4 4 3 

F02 8 4 3 1 1 

Table 3.12 Detail results from PDM for each data set 

After all, PMD is still in a preliminary stage and has its own merits and 

drawbacks. The method only adopts one signal out of eight so it is straightforward to 

apply but may miss useful information in the rest signals. Although it doesn’t need to be 

trained, several parameters need to be selected based on either the prior-experience or 

certain information of the data set.  
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Accuracy False Alarm 

Rate Task 1 Task 2 Total 

A01 100% 100% 72.73% 27.27% 

A02 75% 100% 87.5% 12.5% 

E01 100% 100% 88.89% 11.11% 

E02 75% 75% 66.67% 33.33% 

F01 100% 100% 72.73% 27.27% 

F02 75% 25% 44.44% 55.56% 

Average 87.50% 83.33% 72.16% 27.84% 

Table 3.13 Accuracy and false alarm rate by PDM for each data set 
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CHAPTER  4  
DISCUSSION AND CONCLUSION 

Our research mainly consisted by two parts. First, apply p-norm error measure 

instead of 1-norm measure in the linear programming discrimination, which generates a 

linear hyperplane to classify two data sets. With this p-norm error measure, the errors 

generated by the classifier are not treated equally but rather biased. For p>1, the bigger 

one error is, the more weight it obtains in the objective function.  

Numerical results show this method can improve the result of classification and 

the accuracy is promising for Breast Cancer Data Set. However, for other data sets, the 

computational results are not good enough, which is due to the nonlinear character of 

these data sets. When1 21/ , 1/m nδ δ= = , the result is always much better than 

1 21, 1δ δ= =  and 1 21 / , 1 / .p pm nδ δ= =  

Second, investigation is conducted on a psychophysiological data set. Various 

methods are tested on this multi-dimensional time-series data set, from the linear 

programming method to the neural network method. With the help of DFT, The data is 

able to be transferred from the time domain to the frequency domain, in which the data 

set has interesting patterns. Generally speaking, for some of the EEG signals, a higher 

average magnitude of a low frequency band (1-10 Hz, etc) indicates a low cognitive 

activity, and the lower the magnitudes is, the more vigorously the brain acts.  

The linear programming method can classify the NCL task and CL task with 

average accuracies 14.8% and 20.6%. However, the linear programming method cannot 

differentiate the low cognitive task and high cognitive task with comparable accuracies. 

The K-nearest neighbor methods can be applied in categorizing 0, 1 and 2 tasks. The 

average accuracies for the three tasks are around 60%, 40%, 50%, which are depending 

on the parameters of the algorithm. Furthermore, artificial neural network have also been 

tested for this data set. The optimal average accuracy is 85.05%, 47.08%, and 59.44%. 



71 
 

 

However, the way that neural network is utilized makes it impossible for real-time data 

mining, which may be essential in practice. 

In data mining, it is difficult to evaluate performance of an algorithm or compare 

two algorithms without a specific data set so it is hard to say a certain algorithm is 

“better” than another in general. An algorithm which wonderfully performs on a data set 

may misclassify many data points in another data set. This fact is all because the domain 

knowledge of specific data set is poor, which is also part of the reason why data mining 

algorithms are applied. It is a dilemma. Therefore, the challenging questions are: does 

that choosing a DM algorithm all depend on the type of data set or something else? Are 

there any measurements can indicate which algorithms should be applied after a data set 

is given but before any algorithms are tested on it?  

In our case, even the same data set has been tested by different algorithms, 

comparison between the performances of two algorithms applied in two different 

procedures is inappropriate. We applied linear programming method, k-nearest neighbor 

method and artificial neural network on this psychophysiological data set. These three 

algorithms could be applied in different occasions and have their own advantages and 

limitations. Generally, Linear programming method has a better performance than k-

nearest neighbor method in classify none cognitive tasks and cognitive tasks, which may 

due to that k-nearest neighbor method cannot capture the real linearity in the data set.   

Additionally, According to the computational results, we could conclude that this 

psychophysiological data set is individual independent or even trial independent, which 

imply each subject or each trial has its distinct characteristics. Besides, there is no 

evidence so far that shows we can classify the data from one subject based on the data 

from another one. However, all the subjects do share some similar characteristics: in 

cognitive state: the signals tend to have the lower magnitudes in frequency domain and 

lower standard deviation in time domain. Nevertheless, these characteristics are not 

enough to identify the brain’ states.  
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From practical perspective, classifying the data set based on subject is more 

realistic and meaningful since only classifying the data from one trial cannot satisfy the 

requirements of real-time classification. The best and most reasonable way to apply 

classification in this situation is that: before an operator is allowed to control a real UAV, 

he/she goes to a training program and takes certain simulation tasks, in which personal 

data is collected and analyzed, then the parameters of the data mining algorithm are 

searched until required classification accuracy is achieved. Last, the operator can be in 

charge of a real UAV and performs in real missions, and the performer’s functional states 

would be indicated by the algorithm with parameters previously fixed. 

Furthermore, separating NCL task and CL task is much easier than categorizing 

different level of cognitive activities. An intuitive explanation would be that brain 

functions qualitatively differently in none cognitive behavior and cognitive behavior. 

Meanwhile, the difference between different level cognitive tasks is only quantitative. 

Besides, the tasks in the experiment may be too subjective to be differentiated. Therefore, 

making a clear definition or measurement on the cognitive level of tasks should be in the 

future research. Also, identifying the requisites from the task, and explore how these 

interact with the brain would help classifying this type of data set in the future. Due to the 

curse of dimensionality, an effective feature reduction method is in demand. Ideally, in 

order to reduce the dimensionality of the data set, a feature reduction method either 

chooses useful features out of total features or combines several features into one. In our 

research, the features are selected based on the data mining results, so they are simply 

chosen by trial and error.  

Finally, quoting from Robert D. Small (Small, 1997), A great deal of what is said 

about data mining is incomplete, exaggerated, or wrong. When you undertake a data-

mining project, avoid a cycle of unrealistic expectations followed by disappointment. 

Understand the facts instead, and your data-mining efforts will be successful.  
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APPENDIX A: CLASSIFICATION RESULTS FOR WISCONSIN BREAST CANCER 

DATA SET (ERROR RATE) 

P-order M=N=1 M=m, N=n M=m^p, N=n^p 

 Benign Malignant total Benign Malignant total Benign Malignant total 

1 2.64% 5.19% 3.53% 2.64% 3.29% 2.87% 2.64% 3.29% 2.87% 

1.1 2.57% 5.19% 3.49% 2.77% 2.91% 2.82% 2.77% 2.91% 2.82% 

1.2 2.57% 5.19% 3.49% 2.91% 3.16% 3.00% 2.84% 3.16% 2.95% 

1.3 2.57% 4.81% 3.35% 2.91% 2.66% 2.82% 2.84% 3.04% 2.91% 

1.4 2.64% 4.68% 3.35% 2.91% 2.53% 2.78% 2.84% 2.91% 2.86% 

1.5 2.57% 4.68% 3.31% 2.91% 2.53% 2.78% 2.77% 2.91% 2.82% 

1.6 2.57% 4.81% 3.35% 2.97% 2.53% 2.82% 2.77% 3.04% 2.86% 

1.7 2.57% 4.68% 3.31% 2.97% 2.41% 2.77% 2.84% 3.04% 2.91% 

1.8 2.57% 4.56% 3.27% 3.04% 2.41% 2.82% 2.84% 3.16% 2.95% 

1.9 2.57% 4.56% 3.27% 3.04% 2.28% 2.77% 2.84% 3.29% 3.00% 

2 2.57% 4.43% 3.22% 3.04% 2.28% 2.77% 2.84% 3.29% 3.00% 

2.1 2.57% 4.68% 3.31% 3.11% 2.28% 2.82% 2.84% 3.42% 3.04% 

2.2 2.57% 4.81% 3.35% 3.18% 2.28% 2.87% 2.77% 3.29% 2.95% 

2.3 2.50% 4.94% 3.35% 3.24% 2.28% 2.90% 2.84% 3.42% 3.04% 

2.4 2.50% 5.06% 3.39% 3.38% 2.28% 3.00% 2.84% 3.80% 3.18% 

2.5 2.50% 5.19% 3.44% 3.38% 2.28% 3.00% 2.77% 4.05% 3.22% 

2.6 2.50% 5.44% 3.53% 3.38% 2.28% 3.00% 2.70% 4.56% 3.35% 

2.7 2.50% 5.57% 3.57% 3.38% 2.28% 3.00% 2.64% 4.43% 3.27% 

2.8 2.43% 5.57% 3.53% 3.38% 2.53% 3.08% 2.64% 4.43% 3.27% 

2.9 2.43% 5.57% 3.53% 3.31% 2.78% 3.12% 2.64% 4.43% 3.27% 

3 2.43% 5.70% 3.57% 3.31% 2.91% 3.17% 2.64% 4.43% 3.27% 

3.1 2.36% 5.82% 3.57% 3.31% 3.04% 3.22% 2.64% 4.68% 3.35% 

3.2 2.36% 5.70% 3.53% 3.31% 3.16% 3.26% 2.50% 4.81% 3.31% 

3.3 2.36% 5.95% 3.61% 3.31% 3.16% 3.26% 2.50% 5.19% 3.44% 

3.4 2.30% 5.95% 3.58% 3.38% 3.16% 3.30% 2.50% 5.19% 3.44% 

3.5 2.30% 6.08% 3.62% 3.38% 3.16% 3.30% 2.43% 5.19% 3.39% 

3.6 2.30% 6.46% 3.75% 3.38% 3.29% 3.35% 2.43% 5.19% 3.39% 

3.7 2.30% 6.58% 3.80% 3.31% 3.42% 3.35% 2.43% 5.44% 3.48% 

3.8 2.30% 6.84% 3.89% 3.24% 3.42% 3.30% 2.36% 5.70% 3.53% 

3.9 2.30% 6.96% 3.93% 3.11% 3.54% 3.26% 2.36% 5.70% 3.53% 

4 2.30% 7.22% 4.02% 3.04% 3.54% 3.21% 2.36% 5.70% 3.53% 
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4.1 2.23% 7.22% 3.97% 3.04% 3.67% 3.26% 2.36% 5.95% 3.61% 

4.2 2.23% 7.22% 3.97% 2.97% 3.80% 3.26% 2.36% 6.08% 3.66% 

4.3 2.23% 7.09% 3.93% 2.91% 4.18% 3.35% 2.30% 6.33% 3.71% 

4.4 2.23% 7.22% 3.97% 2.97% 4.18% 3.39% 2.30% 6.58% 3.80% 

4.5 2.23% 7.34% 4.02% 2.97% 4.18% 3.39% 2.30% 6.58% 3.80% 

4.6 2.16% 7.59% 4.06% 2.97% 4.18% 3.39% 2.30% 6.58% 3.80% 

4.7 2.16% 7.72% 4.10% 2.97% 4.18% 3.39% 2.36% 6.71% 3.88% 

4.8 2.23% 8.23% 4.33% 3.04% 4.30% 3.48% 2.36% 6.71% 3.88% 

4.9 2.23% 8.61% 4.46% 2.97% 4.43% 3.48% 2.36% 6.96% 3.97% 

5 2.23% 9.11% 4.63% 2.97% 4.43% 3.48% 2.36% 6.96% 3.97% 
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APPENDIX B: CLASSIFICATION RESULTS FOR THE DATA SETS FROM UCI  

M=N=1 

Ionosphere Pima Sonar 

1 8.00% 33.10% 17.01% 41.56% 17.90% 26.14% 27.84% 31.25% 29.43% 

1.1 8.00% 32.86% 16.92% 41.44% 18.26% 26.33% 29.73% 32.50% 31.03% 

1.2 7.87% 32.38% 16.67% 41.89% 18.92% 26.92% 31.08% 32.19% 31.60% 

1.3 8.13% 32.38% 16.84% 42.44% 19.28% 27.35% 27.84% 32.50% 30.02% 

1.4 8.13% 30.71% 16.24% 41.56% 19.82% 27.39% 30.27% 31.88% 31.02% 

1.5 8.00% 30.95% 16.24% 41.89% 20.30% 27.82% 28.65% 31.88% 30.16% 

1.6 7.87% 30.71% 16.07% 42.11% 21.20% 28.48% 28.65% 28.75% 28.70% 

1.7 8.00% 31.43% 16.41% 42.44% 21.38% 28.72% 27.84% 31.88% 29.73% 

1.8 7.73% 31.19% 16.15% 42.33% 21.74% 28.91% 28.65% 31.56% 30.01% 

1.9 8.00% 30.71% 16.15% 42.44% 21.86% 29.03% 31.35% 33.44% 32.33% 

2 8.13% 30.95% 16.32% 42.67% 21.86% 29.11% 29.46% 31.25% 30.30% 

2.1 8.13% 30.95% 16.32% 42.78% 21.98% 29.23% 29.19% 31.56% 30.30% 

2.2 8.00% 31.19% 16.32% 42.67% 22.16% 29.30% 25.68% 32.81% 29.01% 

2.3 7.60% 31.67% 16.24% 42.56% 22.22% 29.31% 26.76% 30.62% 28.57% 

2.4 7.47% 31.90% 16.24% 42.78% 22.10% 29.30% 27.84% 35.00% 31.19% 

2.5 7.60% 32.14% 16.41% 43.00% 22.28% 29.50% 28.38% 32.19% 30.16% 

2.6 7.60% 32.38% 16.50% 43.22% 22.28% 29.57% 25.95% 33.75% 29.60% 

2.7 7.60% 32.38% 16.50% 43.33% 22.34% 29.65% 31.89% 32.19% 32.03% 

2.8 7.60% 32.38% 16.50% 43.44% 22.28% 29.65% 28.38% 33.13% 30.60% 

2.9 7.60% 32.62% 16.58% 43.78% 22.40% 29.85% 28.65% 30.62% 29.57% 

3 7.73% 33.10% 16.84% 43.78% 22.51% 29.92% 28.65% 30.94% 29.72% 

3.1 7.60% 33.10% 16.75% 43.78% 22.69% 30.04% 26.22% 31.25% 28.57% 

3.2 7.33% 33.10% 16.58% 43.78% 22.57% 29.96% 26.22% 33.44% 29.60% 

3.3 7.33% 33.33% 16.66% 43.89% 22.75% 30.11% 27.84% 32.50% 30.02% 

3.4 7.33% 33.10% 16.58% 43.89% 22.69% 30.07% 30.00% 30.94% 30.44% 

3.5 7.20% 33.10% 16.50% 44.00% 22.87% 30.23% 26.22% 30.94% 28.43% 

3.6 7.20% 33.33% 16.58% 44.11% 22.81% 30.23% 30.00% 30.63% 30.29% 

3.7 7.20% 33.57% 16.67% 44.22% 22.99% 30.39% 27.57% 32.50% 29.88% 

3.8 7.47% 33.57% 16.84% 44.33% 23.05% 30.46% 28.92% 30.62% 29.71% 

3.9 7.33% 33.57% 16.75% 44.33% 22.99% 30.42% 28.38% 30.00% 29.14% 

4 7.20% 33.81% 16.75% 44.44% 23.05% 30.50% 28.38% 28.75% 28.55% 

4.1 7.20% 34.05% 16.84% 44.33% 23.23% 30.58% 28.92% 33.13% 30.89% 
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4.2 7.20% 34.29% 16.92% 44.22% 23.29% 30.58% 29.46% 34.06% 31.61% 

4.3 7.20% 34.29% 16.92% 44.11% 23.29% 30.54% 26.76% 35.62% 30.90% 

4.4 7.07% 34.29% 16.84% 44.11% 23.35% 30.58% 27.84% 35.00% 31.19% 

4.5 6.93% 34.52% 16.83% 44.00% 23.41% 30.58% 27.84% 32.19% 29.87% 

4.6 6.67% 34.76% 16.75% 44.00% 23.29% 30.50% 26.76% 33.44% 29.88% 

4.7 6.67% 34.76% 16.75% 44.22% 23.35% 30.62% 29.19% 34.38% 31.62% 

4.8 6.53% 34.76% 16.66% 44.22% 23.41% 30.66% 30.54% 32.50% 31.46% 

4.9 6.40% 35.24% 16.75% 44.33% 23.53% 30.78% 29.19% 34.38% 31.62% 

5 6.27% 36.43% 17.10% 44.22% 23.59% 30.78% 28.65% 33.12% 30.74% 

average 7.47% 32.90% 16.60% 43.33% 22.13% 29.51% 28.48% 32.23% 30.23% 

 

 M=m^p, N=n^p 

p Ionosphere Pima Sonar 

1 11.33% 29.29% 17.78% 33.00% 26.83% 28.98% 22.97% 38.44% 30.20% 

1.1 11.33% 29.05% 17.69% 33.00% 27.01% 29.10% 29.73% 32.50% 31.03% 

1.2 11.33% 29.76% 17.95% 33.67% 26.77% 29.17% 31.08% 32.19% 31.60% 

1.3 11.33% 30.48% 18.20% 34.44% 26.83% 29.48% 27.84% 32.50% 30.02% 

1.4 11.87% 30.48% 18.55% 35.00% 26.83% 29.68% 30.27% 31.88% 31.02% 

1.5 12.13% 29.52% 18.37% 35.56% 26.83% 29.87% 28.65% 31.88% 30.16% 

1.6 12.13% 29.29% 18.29% 35.78% 26.71% 29.87% 28.65% 28.75% 28.70% 

1.7 12.13% 28.81% 18.12% 36.22% 26.77% 30.06% 28.38% 34.69% 31.33% 

1.8 12.00% 29.05% 18.12% 36.67% 26.53% 30.06% 29.73% 32.50% 31.03% 

1.9 12.27% 29.05% 18.29% 37.22% 26.59% 30.29% 31.35% 33.44% 32.33% 

2 12.27% 29.05% 18.29% 37.11% 26.77% 30.37% 29.46% 31.25% 30.30% 

2.1 12.00% 30.00% 18.46% 37.44% 26.77% 30.49% 27.57% 28.12% 27.83% 

2.2 11.87% 30.24% 18.46% 37.44% 26.95% 30.60% 25.68% 32.81% 29.01% 

2.3 11.87% 30.48% 18.55% 37.67% 26.95% 30.68% 26.76% 30.62% 28.57% 

2.4 12.27% 30.95% 18.98% 37.67% 27.13% 30.80% 27.84% 35.00% 31.19% 

2.5 12.00% 31.19% 18.89% 37.89% 26.95% 30.76% 28.38% 32.19% 30.16% 

2.6 12.13% 31.19% 18.97% 38.22% 27.13% 30.99% 27.30% 34.69% 30.76% 

2.7 12.13% 30.95% 18.89% 38.67% 27.13% 31.15% 31.89% 31.88% 31.89% 

2.8 11.87% 31.19% 18.81% 39.00% 27.19% 31.30% 29.73% 33.44% 31.46% 

2.9 11.87% 31.19% 18.81% 39.33% 27.25% 31.46% 28.11% 31.56% 29.72% 

3 11.73% 31.19% 18.72% 39.44% 27.31% 31.54% 28.38% 32.19% 30.16% 

3.1 11.73% 30.95% 18.63% 39.56% 27.31% 31.58% 26.49% 34.06% 30.03% 

3.2 11.60% 30.95% 18.55% 39.56% 27.31% 31.58% 29.19% 33.44% 31.18% 
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3.3 11.33% 30.95% 18.37% 39.78% 27.37% 31.69% 29.73% 33.75% 31.61% 

3.4 11.33% 30.71% 18.29% 39.78% 27.31% 31.65% 31.35% 33.13% 32.18% 

3.5 10.93% 30.71% 18.03% 39.89% 27.19% 31.61% 27.57% 30.31% 28.85% 

3.6 10.80% 30.71% 17.95% 40.11% 27.25% 31.73% 29.73% 31.88% 30.74% 

3.7 10.67% 31.19% 18.04% 40.11% 27.25% 31.73% 25.41% 35.31% 30.04% 

3.8 10.13% 31.43% 17.78% 40.22% 27.19% 31.73% 27.03% 30.94% 28.86% 

3.9 10.13% 31.43% 17.78% 40.67% 27.25% 31.92% 30.27% 29.38% 29.85% 

4 10.13% 31.43% 17.78% 40.78% 27.25% 31.96% 28.92% 30.62% 29.71% 

4.1 10.00% 31.67% 17.78% 41.00% 27.25% 32.04% 28.92% 31.25% 30.01% 

4.2 9.47% 31.90% 17.52% 41.11% 27.31% 32.12% 29.19% 32.81% 30.88% 

4.3 9.20% 32.14% 17.43% 41.00% 27.19% 32.00% 28.38% 35.31% 31.62% 

4.4 9.07% 32.14% 17.35% 41.11% 27.31% 32.12% 28.38% 34.38% 31.19% 

4.5 8.80% 32.86% 17.44% 41.11% 27.25% 32.08% 29.19% 32.19% 30.59% 

4.6 8.80% 32.86% 17.44% 41.00% 27.25% 32.04% 27.57% 34.38% 30.75% 

4.7 8.67% 33.33% 17.52% 41.00% 27.13% 31.96% 25.95% 33.75% 29.60% 

4.8 8.80% 33.33% 17.61% 41.00% 27.01% 31.88% 29.46% 32.50% 30.88% 

4.9 8.40% 33.81% 17.52% 41.00% 27.01% 31.88% 28.65% 34.69% 31.47% 

5 8.27% 34.05% 17.52% 41.00% 26.95% 31.84% 16.76% 44.69% 29.82% 

Average 10.93% 31.00% 18.13% 38.57% 27.06% 31.07% 28.24% 32.96% 30.45% 
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APEENDIX C: CORRELATION FOR EACH TRIAL IN THE   

PSYCHOPHYSIOLOGICAL DATA 

E01 1 2 3 4 5 6 7 8 
1 1 -0.012 0.0212 -0.0762 -0.0287 -0.0746 -0.0259 -0.019 
2 -0.012 1 -0.1 -0.7283 -0.5557 -0.2712 -0.1926 -0.0067 
3 0.0212 -0.1 1 -0.1232 0.7601 -0.2893 -0.0774 -0.4433 
4 -0.0762 -0.7283 -0.1232 1 0.4693 0.6343 0.367 0.2765 
5 -0.0287 -0.5557 0.7601 0.4693 1 0.0676 0.1338 -0.231 
6 -0.0746 -0.2712 -0.2893 0.6343 0.0676 1 0.5531 0.6855 
7 -0.0259 -0.1926 -0.0774 0.367 0.1338 0.5531 1 0.4617 
8 -0.019 -0.0067 -0.4433 0.2765 -0.231 0.6855 0.4617 1 

E02 1 2 3 4 5 6 7 8 
1 1 -0.002 0.011 -0.076 -0.0424 -0.0807 -0.0335 -0.0278 
2 -0.002 1 -0.0531 -0.8197 -0.629 -0.3855 -0.291 -0.0899 
3 0.011 -0.0531 1 -0.1273 0.7084 -0.2657 -0.0634 -0.3531 
4 -0.076 -0.8197 -0.1273 1 0.5214 0.6584 0.4296 0.2897 
5 -0.0424 -0.629 0.7084 0.5214 1 0.1355 0.2014 -0.1252 
6 -0.0807 -0.3855 -0.2657 0.6584 0.1355 1 0.6039 0.6551 
7 -0.0335 -0.291 -0.0634 0.4296 0.2014 0.6039 1 0.5137 
8 -0.0278 -0.0899 -0.3531 0.2897 -0.1252 0.6551 0.5137 1 
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F01 1 2 3 4 5 6 7 8 
1 1 0.0044 0.0059 -0.0657 -0.0318 -0.0712 -0.047 -0.0324 
2 0.0044 1 -0.106 -0.4065 -0.3115 -0.2249 -0.2417 -0.0659 
3 0.0059 -0.106 1 0.0122 0.7998 -0.1453 0.0555 -0.3558 
4 -0.0657 -0.4065 0.0122 1 0.3636 0.7001 0.6336 0.3733 
5 -0.0318 -0.3115 0.7998 0.3636 1 0.0636 0.2686 -0.2126 
6 -0.0712 -0.2249 -0.1453 0.7001 0.0636 1 0.7969 0.7387 
7 -0.047 -0.2417 0.0555 0.6336 0.2686 0.7969 1 0.6411 
8 -0.0324 -0.0659 -0.3558 0.3733 -0.2126 0.7387 0.6411 1 

F02 1 2 3 4 5 6 7 8 
1 1 -0.0066 0.0157 -0.0398 -0.0159 -0.0279 0.0059 0.0081 
2 -0.0066 1 -0.1718 -0.365 -0.3203 -0.2529 -0.259 -0.1655 
3 0.0157 -0.1718 1 0.032 0.8095 -0.0438 0.1535 -0.162 
4 -0.0398 -0.365 0.032 1 0.4112 0.755 0.6482 0.5005 
5 -0.0159 -0.3203 0.8095 0.4112 1 0.2447 0.4344 0.1042 
6 -0.0279 -0.2529 -0.0438 0.755 0.2447 1 0.8417 0.8031 
7 0.0059 -0.259 0.1535 0.6482 0.4344 0.8417 1 0.7922 
8 0.0081 -0.1655 -0.162 0.5005 0.1042 0.8031 0.7922 1 
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APPENDIX D RESULT FOR K-NEAREST NEIGHBOR METHOD 

Fz, F7 A02/A01 E02/E01 F02/F01 

Test 

Error 

15s 

0.909 0.091 0 0.81 0.167 0.024 0.818 0.182 0 

0.4 0 0.6 0.4 0.4 0.2 0.2 0.8 0 

0.2 0 0.8 0.429 0.143 0.429 0.167 0.333 0.5 

10s 

0.894 0.106 0 0.825 0.127 0.048 0.769 0.2 0.031 

0.375 0.25 0.375 0.125 0.25 0.625 0.111 0.667 0.222 

0 0.125 0.875 0.3 0 0.7 0.111 0.444 0.444 

5s 

0.812 0.135 0.053 0.691 0.183 0.127 0.638 0.26 0.102 

0.467 0.067 0.467 0.353 0.118 0.529 0.368 0.316 0.316 

0.063 0.188 0.75 0.105 0.263 0.632 0.15 0.15 0.7 

Train 

Error 

15s 

1 0 0 1 0 0 0.889 0.111 0 

0 0.25 0.75 0 0.5 0.5 0.25 0.25 0.5 

0 0.5 0.5 0 0.5 0.5 0 0 1 

10s 

1 0 0 1 0 0 0.889 0.111 0 

0 0.25 0.75 0 0.5 0.5 0.25 0.25 0.5 

0 0.5 0.5 0 0.5 0.5 0 0 1 

5s 

1 0 0 1 0 0 0.889 0.111 0 

0 0.25 0.75 0 0.5 0.5 0.25 0.25 0.5 

0 0.5 0.5 0 0.5 0.5 0 0 1 
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APPENDIX E: RESULTS FOR NEURAL NETWORK 

 Algor1 A01  E01  F01  

28 input AVE STDV AVE STDV AVE STDV 

state 0 0.7935 0.13618 0.7935 0.16878 0.829 0.10204 

state 1 0.55 0.32914 0.35 0.24152 0.575 0.23717 

state 2 0.6667 0.35137 0.5667 0.31624 0.6 0.21084 

Algor1 A02  E02  F02  

28 input AVE STDV AVE STDV AVE STDV 

state 0 0.8323 0.07573 0.8613 0.06978 0.8645 0.08437 

state 1 0.55 0.28382 0.425 0.23717 0.625 0.29463 

state 2 0.5667 0.27444 0.7333 0.21082 0.4667 0.32204 

 

Algor2 A01  E01  F01  

28 input AVE STDV AVE STDV AVE STDV 

state 0 0.9194 0.04623 0.8742 0.19021 0.8548 0.11608 

state 1 0.4 0.21082 0.375 0.27003 0.4 0.31623 

state 2 0.55 0.30732 0.5 0.26352 0.625 0.29463 

Algor2 A02  E02  F02  

28 input AVE STDV AVE STDV AVE STDV 

state 0 0.8935 0.05492 0.8323 0.1739 0.8645 0.04995 

state 1 0.35 0.29345 0.5 0.20412 0.5 0.33333 

state 2 0.475 0.2993 0.675 0.16874 0.725 0.2189 
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Algor1 A01  E01  F01  

 7 input AVE STDV AVE STDV AVE STDV 

state 0 0.7129 0.19442 0.8129 0.071 0.6774 0.149 

state 1 0.275 0.14191 0.225 0.2189 0.2 0.22973 

state 2 0.6667 0.31429 0.3333 0.27218 0.6333 0.29187 

Algor1 A02  E02  F02  

7 input AVE STDV AVE STDV AVE STDV 

state 0 0.771 0.08111 0.7 0.12075 0.7645 0.11076 

state 1 0.2 0.22973 0.4 0.29345 0.3 0.2582 

state 2 0.4667 0.32204 0.4 0.34428 0.3667 0.29188 

 

Algor1 A01  E01  F01  

7 input AVE STDV AVE STDV AVE STDV 

state 0 0.829 0.10757 0.8935 0.04574 0.8516 0.09273 

state 1 0.375 0.3385 0.475 0.18447 0.35 0.29345 

state 2 0.75 0.20412 0.6 0.35746 0.65 0.24152 

Algor2 A02  E02  F02  

7 input AVE STDV AVE STDV AVE STDV 

state 0 0.8871 0.0532 0.871 0.06083 0.8871 0.06671 

state 1 0.525 0.2189 0.375 0.35843 0.45 0.22973 

state 2 0.475 0.2189 0.6 0.1291 0.525 0.34258 
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