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ABSTRACT 

This work presents a three-dimensional, Eulerian, sharp interface, Cartesian grid- 

technique for simulating the response of elasto-plastic solid materials to hypervelocity 

impact, shocks and detonations. The mass, momentum and energy equations are solved 

along with evolution equations of deviatoric stress and plastic strain using a higher order 

shock capturing Essentially Non-Oscillatory scheme (ENO). Material deformation occurs 

with accompanying nonlinear stress wave propagation; in the Eulerian framework the 

boundaries of the deforming material are tracked in a sharp fashion using level sets and 

the conditions on the boundaries are applied by suitable modifications of a ghost fluid 

approach. The dilatational response of material is modeled using the Mie-Gruneisen 

equation of state and the Johnson-Cook model is employed to characterize the material 

response due to rate-dependent plastic deformation. This work deals with modification of 

deviatoric stress ghost state so that physically correct boundary conditions can be applied 

at the material interfaces. An efficient parallel algorithm is used to handle 

computationally intensive three-dimensional problems. The computer code developed in 

this work is then used to solve several problems in high speed impact phenomena. 

Numerous examples pertaining to impact, penetration, void collapse and fragmentation 

phenomena are presented along with careful benchmarking to establish the validity, 

accuracy and versatility of the approach. 

A detailed analysis of the response of a porous energetic material exposed to 

severe loadings (that are likely to trigger explosion) is studied using the established 

framework. Important insights into the effect of porosity on the material response to 

imposed shock loadings are obtained. 

 

 



 

 

2 

2 

Abstract Approved:  ____________________________________  
    Thesis Supervisor 

  ____________________________________  
    Title and Department 

  ____________________________________  
    Date 

  

 



 

 

1 

THREE DIMENSIONAL SHARP INTERFACE EULERIAN COMPUTATIONS OF 

MULTI-MATERIAL FLOWS 

by 

Anil Kapahi 

A thesis submitted in partial fulfillment 
of the requirements for the Doctor of 

Philosophy degree in Mechanical Engineering 
in the Graduate College of 

The University of Iowa 

December 2011 

Thesis Supervisor:  Professor H.S.Udaykumar 
 

 



 

 

Graduate College 
The University of Iowa 

Iowa City, Iowa 

CERTIFICATE OF APPROVAL 

_______________________ 

PH.D. THESIS 

_______________ 

This is to certify that the Ph.D. thesis of 

Anil Kapahi 

has been approved by the Examining Committee 
for the thesis requirement for the Doctor of Philosophy 
degree in Mechanical Engineering at the December 2011 graduation. 

Thesis Committee:  ___________________________________ 
    H.S.Udaykumar, Thesis Supervisor 

  ___________________________________ 
    Christoph Beckermann 

  ___________________________________ 
    Albert Ratner 

  ___________________________________ 
    Colby Swan 

  ___________________________________ 
    Olesya Zhupanska 



 

 ii 

2 

ACKNOWLEDGMENTS 

It is my pleasure to thank number of people who contributed to the completion of 

this thesis. First and foremost I offer my sincerest gratitude to my supervisor, Dr. 

H.S.Udaykumar, who has supported me throughout my thesis with his patience and 

knowledge. The best thing about Uday is the way he let you do things in your own way. 

Under his guidance, I learnt a lot and one could not wish for a better supervisor. 

I would like to sincerely thank members of my committee.  They have generously 

given their expertise and time to make this thesis better. 

Sincere thanks to my family in India for their love and support throughout my 

life. 

I would also like to thank all my past and present lab mates. Their friendship and 

knowledge have entertained and enlightened me for many years. I should also thank the 

staff members of Department of Mechanical Engineering for their help for last five years. 

Very special thanks to my girlfriend Rohini for her patience and support when I 

was only thinking about Ghost Fluid Method. 

This work was performed under grants from the AFOSR Computational 

Mathematics program (Program Manager: Dr. Fariba Fahroo) and from the AFRL-

RWPC (Computational Mechanics Branch, Eglin AFB, Program Manager: Dr. Michael 

E. Nixon). 



 

 iii 

3 

ABSTRACT 
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along with evolution equations of deviatoric stress and plastic strain using a higher order 

shock capturing Essentially Non-Oscillatory scheme (ENO). Material deformation occurs 

with accompanying nonlinear stress wave propagation; in the Eulerian framework the 

boundaries of the deforming material are tracked in a sharp fashion using level sets and 

the conditions on the boundaries are applied by suitable modifications of a ghost fluid 

approach. The dilatational response of material is modeled using the Mie-Gruneisen 

equation of state and the Johnson-Cook model is employed to characterize the material 

response due to rate-dependent plastic deformation. This work deals with modification of 

deviatoric stress ghost state so that physically correct boundary conditions can be applied 

at the material interfaces. An efficient parallel algorithm is used to handle 

computationally intensive three-dimensional problems. The computer code developed in 

this work is then used to solve several problems in high speed impact phenomena. 

Numerous examples pertaining to impact, penetration, void collapse and fragmentation 

phenomena are presented along with careful benchmarking to establish the validity, 

accuracy and versatility of the approach. 

A detailed analysis of the response of a porous energetic material exposed to 

severe loadings (that are likely to trigger explosion) is studied using the established 

framework. Important insights into the effect of porosity on the material response to 

imposed shock loadings are obtained. 
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CHAPTER 1  

INTRODUCTION 

The phenomena of high speed impact are of interest in many applications 

including munitions-target interactions [1], geological impact dynamics [2], shock 

processing of powders [3], outer space explosions [4], material coating [5], formation of 

shaped charges [6], etc.  Some of these applications are shown in Figure 1-1 and Figure 

1-2. The large kinetic energies imposed in impact and penetration problems or in shock 

loading of materials is dissipated by plastic deformation of the material. Under the high-

strain rate deformation conditions, the stress and strain fields are related through non-

linear rate-dependent elasto-plastic yield surfaces [7]. Wave propagation in the 

interacting media is highly nonlinear and may result in localized phenomena such as 

shear bands, crack propagation, fracture and/or complete failure of the material. The two 

main components for simulating high speed flows are efficient numerical schemes to: 1) 

handle embedded interfaces as sharp entities  through events like total fragmentation and 

2) large scale computational setup to handle large deformation in realistic three 

dimensional problems. These two key components are addressed and devised in this 

work. 

1.1 Motivation 

Traditionally, the tools that have been used to solve  problems involving high 

speed material dynamics have been termed hydrocodes [8], with the view that even when 

the materials are solids the nature of the material response places it in the category of a 

―flow problem‖. The broad range of available hydrocodes has been reviewed by [9] and 

[8]. The literature for two-dimensional and  axis-symmetric problems for high speed 

impact and penetration type problems is vast[7, 10-12] . However, there are very few 

methods which have been extended to three dimensions to solve meaningful physical 

problems. To date,  the test cases for high-speed impact and penetration problems in three 
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dimensions involving hundreds of processors have been reported by very few 

researchers[13-18]. For example, Belytschko et al. [17] used a meshless method, the 

element-free Galerkin (EFG) method to simulate inclined Taylor bar impact, the method 

was then modified to extended element-free Galerkin (XEFG) to study crack initiation 

and propagation[19] . A commonly used approach  for high velocity impact and 

penetration is the ALE method[20], used to simulate Taylor bar impacts and fluid-

structure interaction problems in  underwater explosions. Zhou et al. [16] have used 

smooth particle hydrodynamics (SPH) method to solve high velocity impact and 

penetration problem. A class of FEM methods such as parallel point interpolation method 

(PIM) [15], PRONTO3D code [14] have been  used to simulate Taylor bar impact and an 

oblique impact of metal sphere[21] respectively. Ma et al. [22] have used material point 

method (MPM) to simulate impact and explosion problems and  have also done the 

comparison [22, 23] of MPM method to FEM and SPH methods.  Apart from these 

researchers, scientific establishments such as the Los Alamos National Labs have rather 

large investments of personnel and efforts to develop multi-material three-dimensional 

computer codes, such as  the PAGOSA[18] code.  Despite these large investments, 

however, a reliable, efficient and accurate facility for high speed multimaterial flow 

computation remains a matter of research and the present work represents work at the 

leading edge of research in this area. 

1.2 Lagrangian v/s Eulerian 

In this work, a sharp interface Cartesian grid-based flow code is developed to 

solve high-speed impact, collision, penetration and fragmentation type problems in three 

dimensional Eulerian setting using hundreds of processors. To place the present approach 

in perspective, a brief review of alternatives is presented.  

The methods of choice for solving high-speed flow problems can be broadly categorized 

into Eulerian and Lagrangian. Both Lagrangian and Eulerian frameworks have been 
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identified with certain issues and take different paths in formulating large deformation 

problems in elasto-plastically deforming materials[24, 25]. The major points of 

discussion related to these frameworks can be summarized as: 

 Flow solvers can be based on a Lagrangian formulation, such as in EPIC and 

DYNA, where a moving unstructured mesh is used to follow the deformation, or 

an Eulerian formulation, such as CTH [11], where a fixed mesh is used and the 

boundaries are tracked through the mesh [26]. An intermediate approach, ALE 

(Arbitrary Lagrangian Eulerian) [8], combines Eulerian and Lagrangian frame of 

reference, allows the mesh to move so as to conform to the contours of the 

deforming object, but the mesh is not necessarily attached to material points [7]. 

The Lagrangian and to a lesser extent ALE methods have to contend with mesh 

entanglement and the burden of mesh management encountered frequently in 

large deformation problems. Therefore, for very large deformations which may 

include fragmentation of the interacting materials, the use of immersed boundary 

Eulerian methods relying on a fixed global mesh has emerged as a promising 

alternative. 

 The definition of stress measure is different in Lagrangian and Eulerian methods 

with Cauchy stress tensor being used in Eulerian description and Piola-Kirchhoff 

stress tensor for Lagrangian description. The same is true with strain measures. 

The reason for different stress and strain measures is due to different reference 

configurations, which is the current configuration in Eulerian description and the 

initial configuration in Lagrangian description. This discrepancy occurs only for 

large deformation problems as in small deformation problems the difference 

between these reference configurations is almost negligible.  

 Lagrangian methods adopt a multiplicative decomposition of deformation 

gradients [27] and a hyperelastic model for the elastic deformation [25].  Due to 

the presumed existence of a mapping to the undeformed state through the flow 
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process, they operate on the Piola-Kirchhoff stress tensor. For the severe 

deformation cases of interest in this work Xiao et al. [25]  point out that the 

multiplicative model assumes the presence of an ―intermediate‖ configuration 

which can be mapped on to the original undeformed state. However, such an 

intermediate configuration may not satisfy geometric uniqueness[25]. 

Furthermore, it is not clear how a mapping to the original geometry is relevant 

following complete fragmentation and ejection of debris. The Eulerian 

methodology is typically based on an additive decomposition of the strain rate 

tensor [28]. In terms of constitutive laws, the elastic part of the deformation is 

governed by hypoelasticity in the Eulerian framework. There is an issue of  non-

integrability in the hypoelastic model which results in elastic dissipation by not 

fully recovering the elastic part of strain[25]; however, in simulations involving 

high speed impact and penetration elastic strains are rather negligible and of little 

interest when compared to the plastic strain.  

 Another concern with Eulerian formulations is with regard to oscillatory solutions 

for a simple shear problem[29]; this problem has been shown to be resolved by 

using the objective rates such as Jaumann rate [28] for stress update.  

 Another important issue related to this work is the loss/gain of mass of small 

filaments of material comparable to grid size undergoing a very large deformation 

[30, 31]. The level set methods used in this work incorporates periodic  

reinitialization [32] and velocity extension procedure [33] which help in 

minimizing errors related to mass conservation. On the contrary, the Lagrangian 

methods incorporate erosion techniques[34] to remove highly distorted elements 

formed due to severe compression and distortion faced in high speed impact and 

penetration problems. 
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 Considering these issues, Eulerian methods are attractive due to the simplicity accruing 

from use of a fixed global grid, use of true stress state represented by the Cauchy stress 

tensor, and the ease of handling of contact and penetration using embedded interfaces. 

1.3 Eulerian Methodology  

In a traditional Eulerian approach, coexisting phases are carried through 

computational cells as a ―mixed‖ material and a suitable mixture formulation is adopted 

to account for the dynamics of this mixed material[35]. These methods have limitations 

in terms of the number of materials that can be defined in a single computational cell as 

algorithms can become very complicated in defining the mixture properties and 

associated constitutive laws[9]; these latter are ad hoc models that cannot be tested 

against physical reality and therefore rest on rather tenuous foundations. They also tend 

to create numerical difficulties in the presence of strong shocks, associated with non-

physical wave speeds that can arise from the ad hoc equation of state for pressure. 

 In a sharp interface method, in contrast with mixed-material type Eulerian 

methods , the interacting materials are sharply delineated by a tracked boundary[36].  

Boundary conditions for flowfield solutions in the two distinct media are applied at the 

interface location. The advantage of the sharp interface treatment is that issues associated 

with defining mixture properties and constitutive laws are circumvented; on the other 

hand, care must be exercised in imposing physically correct boundary conditions on the 

(possibly highly distorted) embedded boundary. This approach was developed in several 

previous papers for the two-dimensional case [7, 26] for arbitrary material pairs and 

shock strengths.  

 In contrast, the present work develops the idea of treating all interfaces as sharp 

entities[10, 21-23], with fields on either side treated as comprised of distinct materials. A 

modified Ghost Fluid Method (GFM) [37] is applied to treat the embedded interface. In 

contrast to [9, 10], where the discretization scheme was modified to incorporate the 



6 
 

boundary conditions at the interface, the present method decouples the discretization 

scheme from interface capturing. The present work addresses this issue by evaluating 

techniques to infuse the boundary conditions into the ghost cells. The interaction of the 

embedded boundaries with each other and the evolution of free boundaries is treated by 

applying appropriate boundary conditions at the resulting material-material and material-

void boundaries[38-40]. The extension to three dimensions is demonstrated and the issues 

that arise in specifying interface conditions and solving the system in a parallelized 

computational framework are addressed. 

1.4 Accomplishments of the Present Work 

Large-scale computations are required to simulate the physical phenomena 

involving detonation and shock waves in supernova formation, explosions, hypervelocity 

impact, penetration and fragmentation phenomena. The fundamental challenges involved 

in these problems are presence of the non- linear wave propagation and the large 

deformations suffered by the interacting media [26].The interaction of these waves with 

multi-materials can result in a complex wave structures in two and three dimensions. In 

addition, the embedded materials may experience large motions and deformation under 

the influence of the high-speed flows. The hydrodynamic pressures realized in such 

problems often overwhelm the strength of the material[9], leading to short transients of 

elastic deformation followed by drastic plastic flow of the material. The fundamental 

challenges to a simulation capability designed to solve problems involving the physical 

phenomena listed above arise from the large deformations, culminating in total 

fragmentation of materials, occurring under high strain-rate conditions [26].   

Numerical simulations of high speed impact and penetration phenomenon require 

vast computing power due to large deformations, number of time steps and other complex 

issues related to handling of contact[34]. Due to these challenges, any realistic simulation 

of a three dimensional problem requires handling of enormous amount of data making 
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parallelization of computer codes inevitable. In this work, the main focus is on parallel 

implementation of a fixed Cartesian grid flow solver with moving boundaries.  A higher 

order conservation scheme such as ENO (Essentially Non-Oscillatory)[41] is used for 

calculating the numerical fluxes and level sets are used to define the objects immersed in 

the flow field. Collisions between embedded objects are resolved using an efficient 

collision detection algorithm[40] and appropriate interfacial conditions are supplied. Key 

issues of supplying interfacial conditions at the location of the interface and populating 

the ghost cells with physically consistent values during and beyond fragmentation events 

are addressed in three dimensional setting. 

 The issues involved in parallelization of the moving boundary solver are 

presented with emphasis on strong shocks interacting with embedded interfaces (solid-

solid) in the three-dimensional compressible flow framework.  The handling of moving 

boundaries, tracked using narrow-band level sets leads to issues peculiar to the multi-

processor environment; the solution to object passage between subdomains and treatment 

of ghost regions for inter-processor communication are also addressed. Numerous 

examples pertaining to impact, penetration, void collapse and fragmentation phenomena 

are presented along with careful benchmarking to establish the validity, accuracy and 

versatility of the approach. 

Finally, the computer code developed in this work is used to study the response of 

an energetic material exposed to severe loadings (that are likely to trigger explosion). 

Fresh insights into the response of the material to shock loading as a function of the 

porosity content are obtained from the calculations. These case studies show the power of 

the techniques developed in analyzing the mechanics of complex materials to high-speed 

impact and high-strain rate loading.  
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Figure 1-1.Applications: a) Formation of shape charges involving various physical 
phenomena ranging from detonation of an explosive to final penetration of the target.  
Picture courtesy: Wikipedia. b)  Penetration of steel rod travelling at 540m/s into 
borosilicate glass. Picture courtesy: Bourne et al. J. Phys. IV France 7(C3) 157-162. 

 

 

 

     a) 

     b) 
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Figure 1-2. Applications a) Shock processing of material using cold gas dynamic 
spraying b) Whipple shield used on spacecraft to protect them from micrometeoroids and 
outer space debris. 

     b) 

     a) 
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CHAPTER 2 

 GOVERNING EQUATIONS 

2.1 Governing Equations 

Cast in Cartesian coordinates, the governing equations for the mechanics of 

materials experiencing compressible flow and deformation take the following form:  

Mass balance: 

div( V ) 0
t


  


                                                                                                          (2.1)   

Momentum balance     

V div( V V ) 0
t


    


                                                                                           (2.2)   

Energy balance:       

E div( EV V ) 0
t


    


                                                                                            (2.3)  

Evolution of deviatoric stresses in the case of a solid material:     

2div( V ) Gtr( ) 2 G 0
t 3


      



S
S D I D                                                                 (2.4)                                                                       

In Eqs. 2.1-2.4, V  is the velocity vector,  is the material density and E is the 

specific total energy of the material. The stress state of material is given by the Cauchy 

(true) stress tensor   which consists of a deviatoric  S  and a dilatational part P . The 

strain rate tensor is denoted by D  and G  is the shear modulus of material. The 

integration of the mass, momentum and energy balance laws along with the evolution of 

the deviatoric stress components are performed assuming a pure elastic deformation (i.e. 

freezing the plastic flow) as an elastic predictor step, followed by a radial return mapping 

to bring the predicted stress back to the yield surface [42]. Eqs. 2.1-2.4 are cast in 

hyperbolic conservation law form in a conservative formulation with conserved variable, 
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flux and source vectors are given in section 2.4. Other details pertaining to constitutive 

equations, radial return algorithm and  the Mie-Gruneisen equation for determining 

dilatational response have been laid out in [26] and are reproduced in this chapter  for 

completeness. 

2.2 Material Models 

The two main models used in this work for strain hardening materials are the rate 

independent Prandtl-Ruess material model [28] (Eq 2.5) and thermal softening based 

Johnson-Cook material model [43] (Eq 2.6), which are respectively:  

 
nP

Y A B                                                                                                                (2.5)        

    
PnP m

Y P
0

A B 1 C ln 1
  

          

                                                                  (2.6)         

Where the flow stress is Yσ ; A, B, C, n, m, P

0ε are model constants and 0

m 0

T -Tθ =
T -T

. 

Tm and T0 are material melting and the reference room temperatures respectively. 

The specific values of the parameters used in the Johnson-Cook model [43] are given in  

Table 2-1, for materials used in the computations to follow.  

2.3 Constitutive Relations 

The response of materials (elasto-plastic) to high intensity (shock/impact) loading 

conditions are modeled by assuming the additive decomposition of strain rule, 

E P
ij ij ijD D D                                                                                                                  (2.7) 

where ijD  is the total strain-rate tensor given as:                                                

ji
ij

j i

uu1D
2 x x
 

     

                                                                                                       (2.8) 

 

And E
ijD  , P

ijD  are the elastic and plastic strain-rate components respectively, and 

iu , ju  are the velocity components. Assuming isochoric plastic flow (tr ( P
ijD ) = 0), the 
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volumetric or dilatational response is governed by an equation of state while the 

deviatoric response follows the conventional theory of plasticity[36]. Hence the total 

stress in material can be expressed as  

ij ij ijS P                                                                                                                    (2.9)                                                                                          

where ij  is the Cauchy stress tensor, ijS  is the deviatoric component and P is the 

hydrostatic pressure taken to be positive in compression. Using Eq 2.7, the rate of change 

of deviatoric stress component can be modeled using hypo-elastic stress strain relation 

(Hooke’s law): 

P
ij ij ijŜ 2G( D D )                                                                                                        (2.10) 

where G is the modulus of rigidity, ijŜ  is the Jaumann derivative [27]. 

ij ij ik kj ik kjŜ S S S                                                                                                   (2.11) 

and ij   is the spin tensor[27]. The Jaumann derivative is used to ensure the 

objectivity of the stress tensor with respect to rotation. The spin tensor used in Eq 2.5 is 

given by: 

ji
ij

j i

uu1
2 x x
 

      

                                                                                        (2.12) 

The deviatoric strain-rate component in Eq 2.10 is given by: 

ij ij kk ij
1D D D
3

                                                                                                           (2.13)                                                                                                              

The isochoric plastic strain-rate component ( P P
ij ijD D ) in Eq 2.1 is modeled 

assuming a coaxial flow theory (Drucker’s Postulate) for strain hardening material [28]: 

p
ij ijD N                                                                                                                      (2.14) 

 

where  ij
ij

kl kl

SN
S S

  is the outward normal to the yield surface and  is a 

proportional positive scalar factor called the consistency parameter[7]. 
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2.4 Formulation 

To solve high strain-rate deformation of materials, the traditional operator 

splitting algorithm is employed [26]. The integration of mass, momentum and energy 

balance laws are performed assuming pure elastic deformation to obtain elastic predictor 

step; this is followed by a radial return procedure  [44] to project the predicted stress back 

to yield surface. 

Because of high speeds involved in the interaction process, the governing 

equations comprise a set of hyperbolic conservation laws cast in Cartesian coordinates; 

the governing equations take the following form: 

 
3D

U F G H S
t x y z

   
   

   
                                                                                      (2.15)                                                                                         

For the elastic predictor step, in addition to mass, momentum and energy 

equations, the constitutive models for deviatoric stress terms are evolved. Thus the 

conservative variable and the fluxes in Eq 2.15 take the form given below: 

 xx xy yy xz yz zzU , u, v, w, E, S , S , S , S , S , S                                                             (2.16)                                                                        

 2
xx xy yy xz yz zzF u, u p, uv, uw,u( E p ), uS , uS , uS , uS , uS , uS                         (2.17)          

 2
xx xy yy xz yz zzG v, uv, v p, vw,v( E p ), vS , vS , vS , vS , vS , vS                           (2.18)            

2
xx

xy yy xz yz zz

w, uw, vw, w p,w( E p ), wS ,
H

wS , wS , wS , wS , wS
        

        

                                                        (2.19)   

The Source term in Eq 2.15 can be written as: 

xx xy yy xz yz zz

xy xy yy yzxx xz
3D 3D

yzxz zz
3D E S S S S S S

S S S SS S0, , ,
x y z x y z

S
SS S ,S ,S ,S ,S ,S ,S ,S

x y z

     
    

      
   
         

                                  (2.20)    

where  
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   

 

E xx xy 3D xz xy yy 3D yz

3D xz yz zz

S uS vS wS uS vS wS
x y

         uS vS wS
z

 
      
 


  

                                  (2.21)   

xxS xy xy 3D xz xz xxS 2 S 2 S 2 GD                                                                          (2.22)                                                                

xyS xy yy xx 3D xz zy zy xz xyS ( S S ) ( S S ) 2 GD                                                   (2.23)                                                    

yyS yx xy 3D yz yz yyS 2 S 2 S 2 GD                                                                         (2.24)                                                             

 
xzS 3D xz zz xx xy yz yz xy zzS ( S S ) ( S S ) 2 GD                                               (2.25)                                    

 
yzS 3D yz zz yy yx xz xz xy yzS ( S S ) ( S S ) 2 GD                                              (2.26)                                                  

 
zzS 3D yz yz xz xz zzS 2 S 2 S 2 GD                                                                      (2.27) 

where 3D  takes the value 0 for two-dimensional problems. 

The evolution of effective plastic strain ( p ) and temperature (T) included in 

governing equations are given by: 

p
p.( u ) 0

t


   
                                                                                                    (2.28)                                            

                                                                           

2 e
kk p

T 1 p.( uT ) ( k T W )
t c 3


      


                                                                 (2.29)                                                       

where c is the specific heat, k is thermal conductivity, pW  is the stress power due 

to plastic work and  is the Taylor-Quinney parameter [11]. For the application 

considered in this work the conduction term ( 2T  ) is small compared to other two 

terms.  Also the stress power due to plastic work is given by: 

P P eW S                                                                                                                       (2.30)                                        

The effective plastic stress ( eS ) and the effective plastic strain-rate ( P ) are given 

by: 
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2
e ij ij

3S ( S : S )
2

                                                                                                           (2.31)                                                                                                        

2 P P 2
P ij ij

2 2( ) ( D : D )
3 3

                                                                                            (2.32)                                                                                           

2.5 Equation of State  

In case of gases, the pressure is related to transfer of momentum by particles 

participating in thermal motion, and is proportional to temperature. However the behavior 

of solids is different as the atoms of solids are close to each other and interact strongly. In 

order to compress a solid it is necessary to overcome the repulsive forces, which 

increases rapidly as atoms are brought close together[45]. The contribution in increase of 

pressure due to above reason is known as cold pressure. Therefore the pressure can be 

represented as a sum of cold pressure and thermal pressure. A suitable equation of state is 

required for modeling pressure in case of shocked compression of solids. In this work the 

closure for the set of governing equations is obtained by modeling the dilatational 

(pressure) response of material using a Mie-Gruneisen equation of state[36, 45].   For this 

purpose, the pressure P, specific internal energy e and specific volume (V 1 / )   are 

related through a relation of the form: 

c
c

( e e (V )) eP( e,V ) (V ) P (V ) f (V )
V V


                                                          (2.33)                                                            

where  ce  and cP  denote the reference specific internal energy and pressure at 0 K.  

(V )  in Eq 2.33 is the Gruneisen parameter defined as  

0 0
v

P(V ) V |
e

  
   

  
                                                                                            (2.34)                                                                                    

where 0  is a material parameter and 0 is the density of unstressed material. The 

function f (V )  in above equation is given by  



16 
 

 

2
0 0

0 02 2

2
0 0

0

c 1 (V V ) V V
(1 s ) 2V

f (V )
1 1c V V
V V

    
         

  
      
  

                                                       (2.35)                           

In the above expression,   is given by 01.0 



 , the constant 0c  is the bulk sound speed 

and s  is related to the isentropic pressure derivative of the isentropic bulk modulus. The 

parameters for the Mie-Gruneisen E.O.S for some of the materials used in this work are 

given in Table 2-2. 

2.6 Radial Return Algorithm 

The plastic deformation of material is governed by the yield function that 

constrains the stress to remain on or within the elastic domain: 

ijf ( S , ) 0      =>  admissible stress state                                                                   (2.36)                                                               

ijf ( S , ) 0      =>  inadmissible stress state                                                                (2.37)            

where f is a generic yield function and   is a scalar or tensor hardening parameter. 

 
In an operator splitting algorithm for elasto-plastic material, if the predicted 

―trial‖ elastic state (determined by freezing the plastic flow) falls within the yield surface, 

i.e.  f 0 , then the deformation is purely elastic and the final stress state is indeed the 

predicted trial state. The yield and subsequent plastic flow is said to have occurred when

f 0 . The inadmissible trial state for f 0 is corrected by bringing the stress back to 

the yield surface by enforcing the consistency condition f 0 , along a direction normal 

to the yield surface (
ij

f


, Figure 2-1). In this work , the algorithm[44] adopted is 

explained below. 
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The radial return algorithm due to Ponthot et al.[46] is based on J2 Von-Mises 

flow theory which assumes the existence of yield function (for isotropic materials) of the 

form  

ij Y e Yf ( S , ) S 0                                                                                                   (2.38)                                                                                       

with hardening law given by 

Y
2h
3

                                                                                                                     (2.39)                                                                          

Where Y is the current yield stress which can be determined using material 

models (Table 2-1) and h (also called plastic modulus) is the slope of effective stress 

versus effective plastic strain curve under uniaxial loading. Using Eq 2.32, the yield 

stress can be written as                                             

P
Y ijh                                                                                                                         (2.40)                                                     

When elastic deformation occurs, f 0 and 0  . Plastic deformation is said to occur 

when consistency condition holds true, ij Yf ( S , ) 0  . Thus, for elastic and plastic 

deformation, f and  can be obtained from the Kuhn-Tucker conditions of optimization 

theory [47]: 

f 0, 0, f 0                                                                                                           (2.41)                                                                       

In conjunction with operator splitting algorithm, deviatoric stress update  

P
ij ik kj ik kj ij ijS S S 2G( D D )                                                                                 (2.42)                                                                               

is split into two parts- ―trial‖ and ―corrector‖ step. The ―trial‖ elastic state is obtained by 

freezing the plastic flow ( P
ijD 0 ), 

 ij ,tr ik ,tr kj ik kj ,tr ijS S S 2GD                                                                                     (2.43)                                                                               

where ij ,trS  is the trial elastic stress tensor. The plastic corrector step is enforced to bring 

computed trial stress back to yield surface:   

P
ij ,cor ij ijS 2GD 2G N                                                                                               (2.44)                                                    
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where ij ,corS is the corrected stress update and ijN is the normal direction in which return 

mapping is effected: 

ij ,tr
ij

kl ,tr kl ,tr

S
N

S S
                                                                                                            (2.45)                                                      

In discrete form, the plastic corrector step can be written as  

ij ,cor ij ,tr ij ,trS S 2GN                                                                                                    (2.46)                                              

where
1

0

t

t

dt   , with t0 and t1 denoting the beginning and end of time interval of 

integration. The parameter  is determined by enforcing the generalized consistency 

condition, f 0 , at time t=t1. 

1
ij ,tr ij ,tr ij ,tr ij ,tr Y

3f [( S 2GN )( S 2GN )] 0
2

                                                      (2.47)                                 

Integrating Eqs 2.32 & 2.40 in time, we get 

P P
1 0

2
3

                                                                                                                  (2.48)                                  

1 0
Y Y

2h
3

                                                                                                                (2.49)                     

where ―0‖ and ―1‖ denote the values at t0 and t1, respectively. Substituting for 1
Y , Eq 

2.47 is simplified 

2 2 0 2
ij ,tr ij ,tr ij ,tr ij ,tr Y

4 4 2 2( 4G ) ( 4G S S h ) ( S S ( ) ) 0
9 3 3 3

                                    (2.50)                    

to obtain 

0
ij ,tr ij ,tr Y

2S S
3

h2G(1 )
3G

 

 



                                                                                                (2.51)                          
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Thus, once  is obtained, the correction of the predicted deviatoric stress is 

performed using Eq 2.46 and the consistency condition is enforced. Material models are 

required to determine the yield stress to enforce the consistency conditions in the return 

mapping algorithm. The material model used in this work is Johnson-Cook material 

model. The parameters corresponding to Johnson-Cook model is given in Table 2-1. 
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Table 2-1. Material model parameters with reference to Eq 2.6 where A = Y0, T0 = 298K 
and P

0 =1.0s-1      
 

Material  Y0 

(GPa) 

 B 

(GPa)  

N   C  m  G (GPa)  Tm (K) 

 Copper [26]  

0.4  

 

0.177  

 

1.0  

 

0.025  

 

1.09  

 

43.33  

 

1358 

Tungsten [26]  

1.51  

 

0.177  

 

0.12  

 

0.016  

 

1.0  

 

124.0  

 

1777 

High-hard 

steel[26] 

 

1.50  

 

0.569  

 

0.22  

 

0.003  

 

1.17  

 

77.3  

 

1723 

Aluminum[11]  

0.324  

 

0.114  

 

0.42  

 

0.002  

 

1.34  

 

26.0  

 

925 

Mild Steel 0.53 0.229 0.302 0.027 1.0 81.8 1836 
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Table 2-2  Parameters for Mie-Gruneisen Equation of State for different materials. 

Material  

 

 

 

    S 

Copper 8930 383.5 401.0 2.0 3940.0 1.49 

Tungsten 17600 477.0 38.0 1.43 4030.0 1.24 

Steel 7850 134.0 75.0 1.16 4570.0 1.49 

HMX 1900 1000.0 0.4 1.1 2058.0 2.38 

.  
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Figure 2-1. Radial return algorithm showing correction of trial stress by returning it back 
to the yield surface. 
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CHAPTER 3 

 NUMERICAL TECHNIQUES 

In a sharp interface Eulerian setting; there are two key aspects of the numeric that 

must be addressed: 

1. How to solve the governing equations accurately and stably in the presence of 

shocks and other steep gradients (shear layers, detonation fronts etc)? 

2. How to evolve the embedded interfaces to represent the large deformation of 

materials including the challenging situations of interfaces that collide, collapse 

on themselves and fragment? 

These two problems are not isolated from one another since the embedded interfaces in 

the problems of interest to this thesis interact with the flowfield in the bulk material. 

First, the interfaces are typically material boundaries and therefore the particle velocities 

computed by the bulk flow solver apply on the deforming interfaces as well. Second, as 

the interfaces evolve and interact with other interfaces, various type of interface 

conditions apply (as jump or compatibility conditions on the embedded material 

boundaries) on the bulk flow field. Thus, there is an intimate connection between flow 

solution and interface evolution as in other moving boundary problems.  

The Ghost Fluid Method is a general framework for treating embedded interfaces 

that tackles the above two problems while maintaining sharp embedded interfaces. The 

Ghost Fluid Method was first proposed by Glimm [48], later adopted by Fedkiw [37], and 

is frequently employed to treat incompressible flow problems with embedded interfaces. 

The central idea is the definition of a band of ghost points corresponding to each phase of 

the interacting materials. In this work, the response of the material interface subject to 

high velocity impact and shock loading conditions is captured using a modified Ghost 

Fluid Method (GFM) [37]. In previous work[26, 36], boundary conditions were applied 

at the interface and the stencils used in the flux construction procedure were modified to 
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accommodate the embedded interface. The novel aspect of the present work lies with the 

use of the GFM for the class of high speed elasto-plastic material interaction problems, 

particularly where the interactions can occur in the presence of nonlinear stress waves. 

The GFM relies on the definition of a band of ghost points corresponding to each phase 

of the interacting material[38, 40]. For instance, consider the case of two materials 

separated by an interface as shown in Figure 3-1. Once the ghost points are identified and 

populated with flow conditions, the two-material problem can be converted to two, 

single-material problems consisting of the real field and their corresponding ghost fields. 

With the GFM, the interface capturing scheme and the flux construction procedure are 

decoupled and the onus is shifted to populating the ghost nodes.  Thus, since one deals 

with two separate single fluid problems following injection of the ghost field with 

appropriate values, the numerical scheme for integrating the system of hyperbolic 

conservation law can be drawn from the entire arsenal of  standard single-fluid shock 

capturing schemes. In this work, a standard third-order convex ENO scheme [41] is 

employed to compute the fluxes at cell faces.Since the numerical schemes implemented 

in this work are well established and do not differ in any way from those that apply for 

single fluids[41], the implementation details are not presented here. Interested readers 

may refer to the original articles [41, 49] for details on the ENO and TVD Runge-Kutta 

schemes. 

3.1 Tracking of Embedded Interfaces 

3.1.1 Implicit Interface Representation Using Level Sets 

Sharp interface treatment requires tracking and representation of material 

interfaces as the underlying global mesh does not conform to the shape of interface. In 

this work,  level set methods[50, 51] are used to represent the embedded objects. The 

value of level set field, l , at any point is signed normal distance from the thl  immersed 

object with l 0  inside the immersed boundary and l 0  outside (Figure 3-2).  The 



25 
 

interface is implicitly determined by the zero level set field i.e. l 0  contour represents 

the thl immersed boundary. The standard narrow band[50]  level set algorithm is used to 

define the level set field. The embedded interfaces are propagated using level set 

advection equation. 

 l
l lV . 0

t


  


                                                                                                            (3.1)                                                                                                                                                                                                 

where lV  denotes the level set velocity field for the thl  embedded interface. A 

fourth-order ENO scheme for spatial discretization and third-order Runge-Kutta time 

integration are used in solving the level set advection equation. The velocity of level set 

field lV , is defined only on the embedded interface (i.e. the zero level set contour). The 

value of velocity field at the grid points that lie in the narrow band around the zero level 

set is determined by solving the extension equation to steady state as given below: 

extV . 0
t


  


                                                                                                            (3.2)                                                                                                        

where  is any quantity such as interface velocity component ( l x(V ) , l y(V )  or 

l z(V ) )  that needs to be extended away from the interface. The extension velocity extV   is 

given by 

ext l l lV sign( ) /                                                                                                   (3.3) 

This populates any desired quantity across the narrow band region. A 

reinitialization procedure is carried out after level set advection to return l  field to a 

signed distance function such that l 1  . The reinitialization procedure is done by 

solving the following equation to steady state  

l
l lw. sign( )

t


   


                                                                                                  (3.4)         

Where l 0
l 0

l 0

( )w sign(( ) )
( )


 


   and l 0( )  is the level set field prior to 

reinitialization. The details of level set methods can be found in following reference [50]. 
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The normal at a point is calculated using level set function  

n̂ 



                                                                                                                          (3.5)                                                                                                                                                   

3.1.2 Classification of Grid Points 

In this work, the interfaces are moving entities on a fixed global mesh. The Ghost 

Fluid method requires interfaces to be defined using distinct set of points. Therefore the 

grid points on the Cartesian mesh can be classified as bulk points and interfacial points. 

The points which lie immediately adjacent to the interface are tagged as interfacial points 

as shown in  

Figure 3-3. Identification of interfacial points is straightforward with the level set 

field (Figure 3-2). If Øcurr.Ønbr ≤ 0.0, where the subscript ―curr‖ denotes the current point 

and ―nbr‖ denotes the neighboring point, then the current and the neighboring point are 

tagged as interfacial points. All the other points are classified as bulk points. As shown in 

Figure 3-1, the Ghost fluid method can convert a two-material problem to two single 

material problems. This requires a band of ghost points to be defined for each phase of 

the interacting media as shown in Figure 3-3. The ghost point band typically extends up 

to 4 max (∆x, ∆y, ∆z) distance from the interface. Again, the level set field can be used to 

define the band of ghost points. The set of ghost points which are immediately adjacent to 

the interface are tagged as interfacial ghost points similar to the regular interfacial points. 

3.1.3 Detecting and Resolving Collisions 

In the present work, the material interfaces (represented by level sets) are 

expected to collide with other interfaces, collapse upon themselves or fragment. A typical 

example of the problems considered in this work is demonstrated in Figure 3-4.  This  is a 

snapshot during the initial stages of evolution of a high speed impact and penetration of a 

Steel target by a WHA long Tungsten rod [11]. A detailed analysis of this problem is 

presented in Chapter 5. At the instant shown in the figure, two objects have collided 
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resulting in different portions of the surfaces of the objects interacting with different 

materials. Such events need to be tracked and appropriate interface conditions are to be 

applied.  The procedure for accomplishing this is as follows. 

At the beginning of the calculation, the materials enclosed inside and outside the 

interface defining an object are identified as rigid solid, elasto-plastic solid or void. Then 

a "base material" is identified, indicating that the embedded objects are immersed in this 

base material. For the example shown the base material is the void (i.e. vacuum) phase. 

No calculations are performed in the void phase. Unless a collision is detected, the 

embedded object is considered to interact with the surrounding base material and the 

corresponding interface conditions (i.e. free surface conditions) are enforced to populate 

the ghost nodes. The nodes straddling the material interface are maintained in a linked list 

called ―interfacial nodes‖.  

To detect collision, for each interfacial node corresponding to the levelset (object) 

indexed l, if a neighboring cell lies inside a different levelset (object) say, indexed(k), the 

distance between two objects  is computed using the associated level set values from:  

 lk l k l k                                                                                                             (3.6) 

If this distance lk computed between any two approaching level sets is less than a 

specified tolerance, then the node is marked as a ``colliding node'' (Figure 3-4). The 

tolerance to flag collisions is set at  x  where   corresponds to the CFL number 

corresponding to interface advection. This preempts inter-penetration of level sets.  Once 

a set of ―colliding nodes‖ are established the appropriate interface treatment at such 

nodes is adopted as described below. 

3.2 Classification of the Interface and the Associated 

Boundary Conditions 

Various situations may arise when two different objects move toward each other 

as shown in Figure 3-4. Thus it is necessary that the colliding objects are detected as 
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described above and the interface conditions are applied; once a node is marked as a 

colliding node, the conditions corresponding to a material-material interface are enforced 

to populate the corresponding ghost node. Thus, for regions R1 in Figure 3-4, material-

void/free surface conditions are enforced and for regions R2, material-material conditions 

are enforced. This process is repeated for each level set. At colliding interfaces continuity 

of normal velocities and normal stress are enforced. Slip is permitted so that frictionless 

contact is modeled.  There are three key steps in populating the ghost field, viz.: 

1. Obtain interpolated values at a reflected point IP1 (see Figure 3-5(a)) 

corresponding to a ghost point P.  

2. Use extension, reflection or injection (depending on the type of interface 

condition to be applied) along axes oriented in the local interface normal and 

tangent coordinate to supply the values of all flowfield variables to the ghost 

point. 

3. Transform/combine/correct the information at the ghost point into primitive 

variables to obtain the final ghost field that satisfies interface conditions.  

These steps are explained below. Please note that the figures correspond to two 

dimensions in this section as it is difficult to draw three dimensional figures. However the 

procedure is explained for three dimensional frame work and a figure (Figure 3-6) 

depicting interface embedded in three dimensional cartesian grid is also shown. 

3.2.1 Step 1: Obtaining the Value at the Reflected Node 

IP1: 

The first step in supplying values to a point in the ghost field (point P in Figure 3-

5(a)) is to obtain the interpolated value of field variables in the ―real‖ material  at IP1. 

Point IP1 is obtained by reflecting the location of point P across the interface along the 

normal to the interface, i.e IP P IP IP1X X X X   . To define the ghost states at node P 

(Figure 3-5 (a)), a probe is inserted to identify the reflected node IP1 and the node IP on 
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the interface. Points IP and IP1 can be identified by using the level set distance function 

 :  

IP P P PX X N                                                                                                        (3.7)                                                                                   

IP1 P P PX X 2 N                                                                                                        (3.8)                                                                                                     

 where X  is the position vector, P the level set value at node P and PN  is the 

normal vector at node P, which is obtained from the levelset field.  Two schemes are 

investigated in the current work for obtaining the value of flow variables at IP1.  The first 

is a straight-forward bilinear interpolation using surrounding data and the second is a 

least squares reconstruction which does not provide exact nodal interpolation. The 

techniques are evaluated by testing their ability to provide benchmark solutions, and also 

by addressing the main issues in handling fragmentation events.  In problems of interest 

here, the materials can fragment; these fragments can consist of small structures, which 

may be resolved  by  very few grid points. In such cases, the robustness of the overall 

scheme for evolving interfaces depends on the ability to obtain sufficient interpolation 

points to populate the value at IP1 and thereby in the ghost nodes P. In the following two 

methods, the first offers a smaller stencil and strict interpolation, while the second uses a 

wider stencil and data-fitting. Bilinear interpolation is less computationally expensive 

than the least-squares estimation and therefore would be preferred in cases for which it is 

robust. Both methods work well prior to fragmentation, and the results obtained from 

both methods are shown (Chapter 5) to be comparable.  However, it is demonstrated  that 

the least-square fitting approach is robust and should be the method of choice for 

computing fragmentation events. 

3.2.1.1 Bilinear Interpolation 

To obtain the value at IP1, interpolation from surrounding nodes is performed 

using a bilinear interpolant: 
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1 2 3 4 5 6 7 8a a x a y a z a xy a yz a zx a xyz                                                             (3.9) 

 where (x,y,z) are the coordinates of the surrounding interpolation nodes. 

 To solve for the constants ai values at the surrounding interpolating nodes and the 

interface condition at IP are used (Figure 3-5(a)). At the node IP on the interface, either 

the value of the flow variables (Dirichlet conditions) or the flow gradient (Neumann type 

conditions) is available. Thus it is necessary to embed the appropriate boundary 

conditions to complete the interpolation procedure.  

For Dirichlet condition at IP, the Vandermonde matrix takes the following form:  

1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 6 6 6 6

7 7 7 7 7 7 7 7 7 7 7 7

IP IP IP IP IP IP IP IP

1 x y z x y y z z x x y z
1 x y z x y y z z x x y z
1 x y z x y y z z x x y z
1 x y z x y y z z x x y z
1 x y z x y y z z x x y z
1 x y z x y y z z x x y z
1 x y z x y y z z x x y z
1 x y z x y y z z

1 1

2 2

3 3

4 4

5 5

6 6

7 7

IP IP IP IP IP IP

a
a
a
a
a
a
a

x x y z a

    
    

    
    
    

    
    
    

    
    
    
        

                (3.10)  

 

For Neumann condition at IP, the matrix is modified as follows  

                                                               
1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 6 6 6 6

7 7 7 7 7 7 7 7 7 7 7 7

x y z x IP y IP y IP

1 x y z x y y z z x x y z
1 x y z x y y z z x x y z
1 x y z x y y z z x x y z
1 x y z x y y z z x x y z
1 x y z x y y z z x x y z
1 x y z x y y z z x x y z
1 x y z x y y z z x x y z
0 n n n n y n x n z n  z IP x IP z IP x IP IP y IP IP z IP IPy n z n x n y z n x z n x y

 
 
 
 
 
 
 
 
 
 
 
    
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1 1

2 2

3 3

4 4

5 5

6 6

7 7

IP IP

a
a
a
a
a
a
a
a

   
   

   
   
   

   
   
   

   
   
   
      

                                                                                                               (3.11)  

The last row of the coefficient matrix in Eq 3.11 is obtained by differentiating Eq 

3.9, noting that  

x y zn n n
n x y z

   
  

   
                                                                                       (3.12)                                                 

  

where  nx, ny and nz  are the normal vector components and IP corresponds to the value of 

the normal gradient at the point IP.  The normal components can be determined using 

level set field such that 

n̂ 



                                                                                                                        (3.13) 

Once the coefficients are determined, the flow properties at IP1 can be deduced using Eq 

3.9.  

3.2.1.2 Least-Squares Fitting  

The least-squares method [52] is a standard method for approximating functions 

from an overdetermined set of data points. Though the bilinear interpolation method 

discussed above works very well with various impact and penetration problems, the 

interpolation procedure may fail when the real material consist of a few nodes as shown 

in Figure 3-5 (d). The least-squares approach adopted in this framework works adaptively 

and can  handle tiny fragments encountered in severe deformation in case of very high 

speed impact and penetration. In addition, it is shown (CHAPTER 5) to produce results in 
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close agreement with benchmarks and with the bilinear interpolation approach, for cases 

where the latter works.  

To obtain a least-squares functional fit, the first step is to find the closest node (in 

the ―real‖ fluid) to  the reflected point IP1. Once the closest node is found, all of the 

neighboring nodes to the closest node are selected. In 3D, there will be a total of twenty 

seven nodes including the closest node. This set of nodes which lie in the real material 

are used to construct a bilinear field based on least squares as show in Figure 3-5 (b). 

Again, similar to previous case, one can write generic bilinear fitting function as 

1 2 3 4 5 6 7 8a a x a y a z a xy a yz a zx a xyz                   (3.14)                                                                                                                     

The error in the approximation can be written as  

n
2

1 2 i 3 i 4 i 5 i i 6 i i 7 i i 8 i i i i
i 1

e ( a a x a y a z a x y a y z a z x a x y z )


           (3.15)                                                                                 

 
Here n are the total number of nodes available for constructing the fitting 

function. It is required that the error should be minimum, differentiating Eq 3.15 w.r.t 

unknown coefficients results in 

i

e 0
a



                                                                                                                          (3.16) 

This will result in eight equations which can be written in a matrix form as shown below: 
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n n n n n n n n

i i i i i i i i i i i i
i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1
n n n n n n n n

2 2 2 2
i i i i i i i i i i i i i i i i

i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1
n n n n n n

2 2 2
i i i i i i i i i i i i i

i 1 i 1 i 1 i 1 i 1 i 1

1 x y z x y y z x z x y z

x x x y x z x y x y z x z x y z

y x y y y z x y y z x y z

       

       

     

       

       

     
n n

2
i i i

i 1 i 1
n n n n n n n n

2 2 2 2
i i i i i i i i i i i i i i i i

i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1
n n n n n n n n

2 2 2 2 2 2 2 2
i i i i i i i i i i i i i i i i i i i i

i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1
n n

i i i i i
i 1 i 1

x y z

z x z y z z x y z y z x z x y z

x y x y x y x y z x y x y z x y z x y z

y z x y z

 

       

       

 

 

       

       


n n n n n n

2 2 2 2 2 2 2 2
i i i i i i i i i i i i i i i

i 1 i 1 i 1 i 1 i 1 i 1
n n n n n n n n

2 2 2 2 2 2 2 2
i i i i i i i i i i i i i i i i i i i i

i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1
n n n

2 2 2
i i i i i i i i i i i i

i 1 i 1 i 1 i

y z y z x y z y z x y z x y z

x z x z x y z x z x y z x y z x z x y z

x y z x y z x y z x y z

     

       

  

      

       

  
n n n n n

2 2 2 2 2 2 2 2 2
i i i i i i i i i i i i

1 i 1 i 1 i 1 i 1
x y z x y z x y z x y z

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

    
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i
i 1
n

i i
i 1
n

1
i i

2 i 1
n

3
i i

i 14
n

5
i i i

i 16
n

7
i i i

i 18
n

i i i
i 1
n

i i i i
i 1

x

a
ya

a
z

a
a

x y
a
a y z
a

x z

x y z

















 
 

 
 

 
 

   
   

   
   

   
   
   

   
   
   
   
    

 
 
 
 
 
  

















                                                                                                         (3.17)  

The evaluated unknowns can be used to construct the ghost field at IP1using Eq 

3.14. The least-squares method can be used for severe plastic deformation problems 

involving fragmentation and damage as will be shown in CHAPTER 5 and CHAPTER6. 
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3.2.2 Step 2: Dirichlet, Neumann and Continuity 

Conditions and Populating Values at the Ghost Node P: 

In the impact and penetration problems studied here three types of interfaces can 

arise, viz. free surfaces or material-void interface (MVI) and impact surfaces or material-

material interface (MMI) and material-rigid solid interface (MRI).  The conditions that 

apply at these three types of interfaces reduce to Dirichlet, Neumann or continuity 

conditions. In general, the above set of conditions can be cast in a generic form as 

outlined below. Here I  corresponds to the flow variables for which boundary 

conditions are applied. The ghost points are supplied with flowfield variables such that 

the real field along with the corresponding ghost field satisfies the boundary conditions 

accurately at the interface. 

Dirichlet condition: In this case, the ghost field is defined such that the linear 

interpolation between the ghost node P and the corresponding reflected node IP1 retains 

the exact value of flow variable, IP IP    at the interface.  The ghost value to satisfy the 

above condition can be obtained from: 

D REAL
P IP IP12                                                                                                           (3.18)                                                                                               

where IP  is the value of REAL  at the interface. 

Neumann Condition:   This procedure is employed on those variables that are governed 

by Neumann conditions or variables that are discontinuous across the interface. Here, 

ghost values are found by extending values from the real field across the interface into 

the ghost region. For instance, when the extension procedure is employed for the ghost 

node at P, the flow values computed at IP1 are copied to the ghost node at P. 

N REAL
P IP1                                                                                                                   (3.19)                                                                                                                                                

 
Since variables are extrapolated with constant value, the extension procedure ensures a 

zero gradient at point IP on the interface i.e. 
IP

0
n

 
 

 
. 
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Continuity condition: In this procedure the value of continuous quantities are copied from 

real fluid to ghost fluid. The procedure itself is called injection as the ghost value is 

populated by directly injecting the real value. 

C REAL
P P                                                                                                                    (3.20)                                                                                                                                   

 where P is a point in ghost field as shown in Figure 3-6. 

3.2.3 Step 3: Transforming and Combining the Information 

at P to Obtain Primitive Variables at the Ghost Node 

The dependent variables at the selected interpolated nodes around IP1 (Figure 3-6) are 

transformed to local normal and tangential coordinates. The velocity components in 

transformed coordinates at the interpolation nodes are computed as follows: 

n n ˆu |u | u.n                                                                                                                 (3.21)                                                                                                               

1 1t t 1̂u |u | u.t                                                                                                                (3.22)                                                                                                                                              

2 2t t 2
ˆu |u | u.t                                                                                                                (3.23)                                                                                                        

where u  is the velocity vector in the Cartesian coordinates, nu  , t1u and t 2u  are the 

normal and tangential velocity vectors. 

The total stress tensor in the normal and tangential coordinates is given by 
TJ J                                                                                                                      (3.24)                                                                                                                                                   

where 

x y z

1x 1y 1z

2x 2 y 2z

n n n
J t t t

t t t

 
 

  
 
 

                                                                                                      (3.25)                                              

 

is the Jacobian matrix and 1̂n̂,t  and 2t̂  are local normal and tangential vectors defined at 

the interface. The normal vector in above matrix is computed as 

n̂ 



                                                                                                                        (3.26)                                                                                               
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Where  is the level set[51] function. The tangential vectors are computed using 

procedure given in Kang et al.[53].  

Three types of interface conditions apply in the types of problems interest in this work. If 

the node P lies in the void region then the condition corresponding to material-void 

interface (MVI) are enforced at the interface point IP. If the ghost node P lies in the 

deformable material and if P is tagged as a colliding node, then conditions corresponding 

to Material-Material Interface (MMI) are enforced at IP. If the node P lies in the rigid 

material then the material-rigid interface (MRI) conditions are enforced at IP. Note then 

in the following, superscripts D, N and C refer to Eqs. 3.18, 3.19 and 3.20 respectively 

for determining the ghost values. 

3.2.3.1 Material-Void  Interface (MVI)  

Conditions corresponding to the physical correct wave reflection phenomena[45] 

are enforced at the interface. For instance, a compressive wave incident on a free surface 

is reflected as tensile wave and vice-versa. The physical constraint to be satisfied at the 

MV interface is the traction free state, where the traction vectors at different planes with 

normals n̂ , 1t̂  and 2t̂  are given by 

1 2n nn x nt y nt zˆ ˆ ˆT n n n                                                                                                (3.27)                                                                                                                             

1 1 1 1 2 2t t n 1x t t 1y t t 1z
ˆ ˆ ˆT t t t                                                                                             (3.28)                                                                                                           

2 2 2 1 2 2t t n 2x t t 2 y t t 2z
ˆ ˆ ˆT t t t                                                                                            (3.29)                                                                                                          

As zero traction is required at the interface, n ˆT .n 0 .The above condition results 

in normal components of the stress vanishing at the interface such that:  

nn 0                                                                                                                           (3.30)                                                                                                                                   

1nt 0                                                                                                                           (3.31)                                                                                                                         

2nt 0                                                                                                                           (3.32)                                                                                                               
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As the material enclosed at node P corresponds to free surface then conditions 

corresponding to MVI are enforced as follows: 

G N
P P                                                                                                                           (3.33)                                                                                                                                      

G D
P PP P                                                                                                                        (3.34)                                                                                                                             

1 2

G N N N
P nP t P 1 t P 2

ˆ ˆˆu |u | n |u | t |u | t                                                                                        (3.35)                                                                                                               

1 2

G N N N
P nP x t P 1x t P 2xu u n u t u t                                                                                              (3.36)                                                                                                         

1 2

G N N N
P nP y t P 1y t P 2 yv u n u t u t                                                                                              (3.37)                                                   

1 2

G N N N
P nP z t P 1z t P 2zw u n u t u t                                                                                             (3.38)                                                                                   

The total stress tensor is given by 

P  S                                                                                                                   (3.39)                                                      

where   and S are total and deviatoric stress tensors in Cartesian coordinates 

respectively, P is the hydrostatic pressure and I is the second order identity tensor. As at 

the MVI type of interface the zero traction condition should be enforced, the stress tensor 

is reconstructed by enforcing slip condition (Neumann) for the tangential components 

and zero traction (reflective/Dirichlet) for the normal components. The reconstructed 

total stress tensor at point P in local normal and tangential coordinates will be: 

1 2

1 1 1 1 2

2 2 1 2 2

D D D
nn nt nt

G D N N
P t n t t t t

D N N
t n t t t t P

   
 

    
     

                                                                                             (3.40)                                                                                                               

Here these stress components are reflected and extended as indicated using the 

values at node IP1. The stress state at point IP1 is: 

1 2

1 1 1 1 2

2 2 1 2 2

nn nt nt

IP1 t n t t t t

t n t t t t IP1

   
 

     
     

                                                                                         (3.41)                                                                                           
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The individual volumetric components at the ghost node P in terms of stress 

values at the node IP1 can be written as  

D
nn P nn IP1( ) ( )                                                                                                            (3.42)                                                                                                                          

1 1 1 1

N
t t P t t IP1( ) ( )                                                                                                            (3.43)                                                                                                                 

2 2 2 2

N
t t P t t IP1( ) ( )                                                                                                           (3.44)                                                                                                        

Using Eqs. 3.42-3.44 one can write J1 (deviatoric stress invariant) at both P and 

IP1 as: 

1 1 2 21 IP1 nn t t t t IP1( J ) ( 3P ) 0                                                                              (3.45)                                                                                           

1 1 2 2

D N N D
1 P nn t t t t P( J ) ( 3P )                                                                                     (3.46)   

The trace of deviatoric stress J1, at the ghost node P can be written in terms of 

stress components at the real node IP1 such that                                                                               

1 1 2 21 P nn t t t t IP1( J ) ( 3P ) 0                                                                            (3.47)                                           

 It can be seen clearly that at the ghost node P the J1=0 condition is not satisfied, 

violating the fundamental invariance properties of the stress tensor. Therefore we fix this 

by correcting the stress state at the ghost node P. The procedure for this is shown below. 

Let G
nn , 

1 1

G
t t  and 

2 2

G
t t  are the corrected states at the ghost point P such that 

G D
nn nn P( )                                                                                                                    (3.48)                                                                                        

1 1 1 1

G N
t t t t P( )                                                                                                           (3.49)                                                              

2 2 2 2

G N
t t t t P( )                                                                                                          (3.50)                                           

In the above,   is the correction added to existing extended stress states. Now 

we can find   by enforcing J1=0 condition at the ghost node P as follows: 

1 1 2 2

G G G G
1 P nn t t t t P( J ) ( 3P ) 0                                                                               (3.51)                                                                                              

1 1 2 2

D N N D
nn t t t t P( 3P ) 2 0                                                                               (3.52)                                                                                    
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1 1 2 2

D N N D
nn t t t t P( 3P ) / 2                                                                               (3.53)                                                                           

Once the total stress tensor at the ghost node P is constructed, the stress 

components in Cartesian coordinates are recovered back using Eq 3.24.  This correction 

procedure is depicted clearly in Figure 3-7, where the comparison of J1 is shown for 

corrected and uncorrected ghost stress 

Finally, the deviatoric stress components for the ghost field are obtained using 

ghost pressure field as 
G G G
P P PP  S                                                                                                             (3.54)                                                                                                                             

3.2.3.2 Material-Material Interface 

The continuity of stresses and normal velocities must hold at MMI such that: 

nn[ ] 0                                                                                                                       (3.55)                                                                                                                                          

1nt[ ] 0                                                                                                                      (3.56)                                            

2nt[ ] 0                                                                                                                      (3.57)                                   

Now if the material enclosed at node P corresponds to Elasto-Plastic then 

conditions corresponding to MM are enforced such that 

G N
P P                                                                                                                           (3.58)                                                                                   

G C
P PP P                                                                                                                        (3.59)                                            

1 2

G C N N
P nP t P 1 t P 2

ˆ ˆˆu |u | n |u | t |u | t                                                                                        (3.60)                                         

1 2

G C N N
P nP x t P 1x t P 2xu u n u t u t                                                                                              (3.61)                                                          

1 2

G C N N
P nP y t P 1y t P 2 yv u n u t u t                                                                                              (3.62)                                           

1 2

G C N N
P nP z t P 1z t P 2zw u n u t u t                                                                                             (3.63)                                                                                       

Now, for the total stress tensor which is given by 

P  S                                                                                                                   (3.64)                                                  
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where   and S are total and deviatoric stress tensors in Cartesian coordinates 

respectively, P is the hydrostatic pressure and I is the second order identity tensor. As at 

the MMI type of interface, the stress tensor is reconstructed by enforcing slip condition 

(Neumann) for the tangential components and continuity for the normal components. The 

reconstructed total stress tensor at point P in local normal and tangential coordinates will 

be : 

1 2

1 1 1 1 2

2 2 1 2 2

C C C
nn nt nt

G C N N
P t n t t t t

C N N
t n t t t t P

   
 

    
     

                                                                                             (3.65)                                                                 

Here these stress components are injected and extended accordingly using the 

values at node P and IP1. The stress state at node IP1 is: 

1 2

1 1 1 1 2

2 2 1 2 2

nn nt nt

IP1 t n t t t t

t n t t t t IP1

   
 

    
     

                                                                                          (3.66)                                                          

As shown in MVI case, we can apply the correction procedure such that J1=0 is 

satisfied at the MMI interface as shown: 

The volumetric components at the ghost node P  can be written as        

C
nn P nn P( ) ( )                                                                                                               (3.67) 

1 1 1 1

N
t t P t t IP1( ) ( )                                                                                                            (3.68)                                                       

2 2 2 2

N
t t P t t IP1( ) ( )                                                                                                           (3.69)                                              

Using Eqs. 3.67-3.69 we can write J1 (deviatoric stress invariant) at both P and 

IP1 in terms of total stress   and hydrostatic pressure P. 

1 1 2 21 IP1 nn t t t t IP1( J ) ( 3P ) 0                                                                              (3.70)                                                                                                      

1 1 2 2

C N N C
1 P nn t t t t P( J ) ( 3P )                                                                                     (3.71)       
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The trace of deviatoric stress tensor, J1 at the ghost node P can be written in terms 

of extended components from the real node IP1 and injected components from the real 

node P such that                                                                                                                                                                   

1 1 2 21 P nn P t t t t IP1 P( J ) ( ) ( ) ( 3P ) 0                                                                      (3.72)                                                                                    

 It can be seen clearly that at the ghost node P the J1=0 condition is not satisfied. 

Therefore we fix this by correcting stress state at the ghost node P. The procedure for this 

is shown below. Let G
nn , 

1 1

G
t t  and 

2 2

G
t t  are the corrected states at the ghost point P such 

that 

G C
nn nn P( )                                                                                                                    (3.73)                                                                                                                             

1 1 1 1

G N
t t t t P( )                                                                                                           (3.74)                                                                                                                  

2 2 2 2

G N
t t t t P( )                                                                                                          (3.75)                                                                                                        

where   is the correction added to existing extended stress states. Now we can 

find   by enforcing J1=0 condition at the ghost node P as follows: 

1 1 2 2

G G G G
1 P nn t t t t P( J ) ( 3P ) 0                                                                               (3.76)                                                                                          

1 1 2 2

C N N C
nn t t t t P( 3P ) 2 0                                                                               (3.77)                                                                                

1 1 2 2

C N N C
nn t t t t P( 3P ) / 2                                                                               (3.78)                                                                       

            Once the total stress tensor at the ghost node P is constructed, the stress 

components in Cartesian coordinates are recovered back using Eq 3.24.  This correction 

procedure makes sure the correct ghost state is populated. 

3.2.3.3 Material- Rigid Solid Interface (MRI) 

The normal velocity at MRI interface satisfies the Dirichlet condition: 

nˆu.n U                                                                                                                        (3.79)                                                                                  
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Where Un is the normal velocity of the rigid solid object. In addition, the continuity of 

normal stresses and Neumann conditions for tangent velocity components (free slip) and 

tangential stress components are applied at the interface. 

3.3 Note on Szz Component 

Since J1, the first invariant of stress tensor by definition should be equal to zero 

irrespective of the coordinate system the Szz component can be computed as follows: 

1J Sxx Syy Szz 0                                                                                                   (3.80)                                                                                       

Szz ( Sxx Syy )                                                                                                     (3.81)                                                                              

Most of the computer codes extract Szz using the above equation obviating the 

solution of an additional evolution equation for for Szz. A problem very peculiar to the 

current method will occur for both MVI and MMI as the state of ghost tensor is such that 

J1 = 0 is not satisfied (section 3.3). Therefore, the procedure for extracting the ghost 

value of Szz using ghost Sxx and ghost Syy components will result in an incorrect ghost 

state. This can be avoided by either storing the ghost Szz component or by evolving the 

Szz equation. Avoiding these will result in elliptical base of bar as shown in Figure 3-8 

(a).Moreover, even after storing or evolving Szz component, the J1=0 condition will still 

be violated and will corrupt the solution at interface as shown in Figure 3-7. The 

correction given in last section clearly satisfy the J1=0 condition and the modified ghost 

stresses can be used to calculate Szz eliminating the need to either store Szz ghost 

component or evolve the Szz equation separately. This correction will also ensure the 

circular base of bar as shown in Figure 3-8 (b).  

3.4 Summary 

This chapter clearly depicted the need for the modification of Ghost Fluid Method 

to solve three dimensional problems. It was clearly shown that the straight forward 

extension of two dimensional methods as is often mentioned by various researchers will 
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not give a physically correct solution in three dimensions. The correction procedure 

mentioned here automatically satisfies the physical constraint on deviatoric stress tensor. 

The results corresponding to impact, penetration and fragmentation using the boundary 

conditions shown in this section are given in CHAPTER 5 and CHAPTER 6. 
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Figure 3-1.GFM approach converts a two-material problem to two single material 
problems. 
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Figure 3-2. Level set field (Ø) for an embedded object (circle). The value of field inside 
the object is negative and outside the object is positive. The zero level set contour 
implicitly defines the location of the embedded object. 
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Figure 3-3. Classification of grid points in the computational domain using level set 
function. 
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Figure 3-4. Procedure to detect collision between any two level sets; l indicate the value 

of the level set function corresponding to the l
th

 material interface. 
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Figure 3-5. Embedding the boundary conditions within the interpolation procedure (a) 
Bilinear Interpolation (b) Least Squares Procedure (c) Fragment involving sufficient 
number of nodes for bilinear interpolation (d) Fragment involving insufficient number of 
nodes for bilinear interpolation. 

 

(a)  (b)  

(c)  (d)  
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Figure 3-6. Three dimensional cartesian grid partially containing the interface showing 
the procedure of embedding the boundary conditions with the Least Square Method. 
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Figure 3-7. Taylor bar section showing the calculation for the first invariant of deviatoric 
stress at a section (a) uncorrected stress 1( J 0 ) . (b) corrected stress 1( J 0 ) . 

 

 

 

 

(a)  (b)  
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Figure 3-8. Contours of u-velocity and w-velocity for Taylor bar impact (Copper, 227 
m/s): a) Elliptical shape of Taylor bar due to avoiding the storage of ghost Szz 
component b) Circular shape of the bar after correction. 

 

(a)  

(b)  



52 
 

CHAPTER 4 

 PARALLEL ALGORITHM 

4.1 Introduction 

The parallel implementation pursued herein seeks to avoid storage of global 

information proportional to the size of the overall problem on a single processor; this is in 

the interest of enabling solution of truly large scale problems where it is imperative to 

maintain data localization on processors and to exchange information between processors 

only as necessary. The algorithm is designed to execute on a distributed memory system 

such as PC clusters where each processor carries only a designated sub—domain  of the 

overall domain and therefore executes only part of the overall computational task. The 

inter-processor communication is handled using MPI libraries [54]. A domain 

decomposition software that creates balanced partitions is highly desirable for parallel 

algorithms. In the following setup, METIS [55], a graph partitioning software, is used for  

load balancing so as to assign  apportion uniform computational load   to all processors. 

METIS uses the nodal connectivity as an input to generate partitions which are optimally 

load balanced. It also minimizes the communication time by minimizing the total number 

of edge cuts[55] . With the combination of MPI and METIS and local storage of data it is 

now possible to handle very large problems sizes. 

The algorithm given here is for a two-dimensional problem but relevant examples 

and figures are provided in the results sections for three dimensions. 

The step-by-step procedure for the parallel algorithm is as follows: 

i. The initial flow domain shown in Figure 4-1 is divided into horizontal or vertical 

stripes and is distributed to different processors. The distribution is such that each 

processor gets allocated with one stripe and none of the processors stores the 

whole mesh right at the outset of the calculation. Once this subdivision of the 
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domain is done the calculation never reverts back to a definition of the overall 

problem. 

ii. The mesh is constructed individually on each processor with cell index running 

from 1- Nmax. Here Nmax corresponds to maximum number of cells on the 

individual processor. 

iii. Two types of mappings are constructed for easy storage and retrieval of the 

information. These mappings relate the local index on a processor to the global 

index and vice versa. The details on these mappings will be explained later in this 

section. 

iv. These blocks of mesh are fed to METIS to obtain a load-balanced domain.  

METIS only gives the information about cells that should be removed or added 

from a particular sub-domain. All cells are tagged with either ―keep‖ or ―send‖ 

status. This status also contains the information about the processor it has to go to. 

The required information is exchanged using MPI and the final load balanced 

domain is constructed as shown in Figure 4-2. 

v. The ―global to local‖ and ―local to global‖ mappings are constructed again due to 

change in part of domain on individual processor. 

vi. A collision detection algorithm is used to find the neighboring processors, which 

will be used to exchange data across the processor boundary.  

vii. A single layer of ghost cells is constructed by tagging the cells on processor 

boundaries. These are the cells which are on the host processor and will be ghosts 

for neighboring processors. As the algorithm required for current work uses a 

third order ENO scheme[49], a ghost layer consisting of four cells is constructed. 

Multiple layers of ghost cells shown in Figure 4-3 are constructed using a Stencil 

algorithm explained in next section. 
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viii. The cell structure is constructed again with addition of ghost cells. The ―global to 

local‖ and ―local to global‖ mappings are augmented with addition of new ghost 

cells. 

ix. The embedded objects using level set functions are defined at this point. 

x. The initial conditions are prescribed on each processor individually according to 

the part of domain assigned to that processor. 

xi. The boundary conditions are read on one processor and are broadcast to other 

processors. 

xii. The primitive variables for ghost region are communicated across the processor 

boundaries for the construction of fluxes and source terms for host cells for all the 

processors. 

xiii. The flux terms and source terms are used to compute primitive variables for host 

cells. 

xiv. The process explained in step xii is repeated till the final time step. 

 

4.2 Issues With Parallelizing the Sharp-Interface Level Set-

Based Approach 

In this section the critical problems while parallelizing the code in the present 

framework will be explained.  These problems are related to handling (storage/retrieval) 

of global data, definition and construction of ghost layers, special treatment for moving 

boundaries and handling of GFM at processor boundaries. 

4.2.1 Handling of Global Data 

The efficient handling of global data is the most important aspect of 

parallelization. The idea is to strictly avoid having any arrays of the size of global flow 

domain, Ωg. As the flow domain is divided at the outset there does not exist a so-called  

―master processor‖[56] to take care for any global operations. The ―global to local‖,Ωgl 
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and ―local to global‖,Ωlg mappings are used for storage and retrieval of data. The 

mapping Ωgl will use gi as the global index and will return li as the local index. Similarly, 

the mapping Ωlg will use li as the local index and return gi as the global index. These 

mappings, shown in Figure 4-4 are constructed using a hash table [57]. The hash table 

[58] is a data structure which maps certain keys (global indices) to related values (local 

indices). The hash function is used to convert a key to an index of an array where 

corresponding local index is stored. This arrangement results in quick retrieval of 

information. 

The integer hash function is used in current implementation. As the ghost layer is 

being added to each processor, the number of cells on each processor is augmented with 

the added ghost cells. The Ωgl and Ωlg mappings are augmented after the inclusion of 

ghost layer as every processor gets a set of ghost cells with new local indices. This 

operation is illustrated in Figure 4-5. 

 

4.2.2 Definition and Construction of the Ghost Layer 

Since the domain is being partitioned amongst the p processors one needs to 

define a set of cells to store information from neighboring processors. This is necessitated 

by the solution process for partial differential equations of all types since nearest 

neighbors are involved in constructing flux information in finite difference and finite 

volume schemes. These cells, which are used at the edges of the subdomains to effect 

inter-processor communication, are called ghost cells. The definition of ghost region can 

be explained using two processors A and B shown in Figure 4-6. If a given domain is 

divided using two processors A and B, there will be a set of cells called ―host cells‖ 

where the primitive variables are computed on the processor itself and a set of cells called 

―ghost cells‖ where the primitive variables will be communicated from neighboring 

processor. This section will explain the need for a layer of ghost cells for a discretization 



56 
 

scheme  such as the central difference method. Here the cells with uppercase A and B are 

called host cells; on these cells, for discretization using a central difference scheme, the 

neighbor information can be obtained on the respective host processor itself. But for the 

cells having lowercase a and b, one needs information across the processor boundary for 

accurate construction of fluxes. For this purpose the fluxes for these cells are 

communicated from the neighboring processor. Hence the information for ghost layer of 

Processor A comes from host cells of Processor B and vice versa. This ensures that the 

same solution as obtained from a serial single processor computation will be achieved in 

parallel multi-processor calculation as well. In the present study, a third-order ENO 

scheme is used which requires four layers of ghost cells due to the adaptive stencil 

selection procedure implicit in such high-order schemes. The same logic  applies for the 

construction of ENO[49] in all the three dimensions. 

Particular attention must be paid to the   construction of the ghost layer. The first 

layer of ghost cells touches the processor boundary and can be tagged easily as shown in 

Figure 4-7 (a). In tagging the subsequent layers recursive [59] computation will need to 

be employed leading to a computationally inefficient procedure. Here, the recursive 

algorithm is avoided by using a stencil-based construction of ghost layer. In the stencil-

based construction the first layer of cells is constructed by tagging the cells on the 

processor boundary; then for every cell on processor boundary a set of cells is picked to 

serve as ghost cells for neighboring processors. The stencil based algorithm maps a 

predefined stencil with symbols ―X‖ on the tagged single layer ghost cell as shown in 

Figure 4-7(b). The cells which lie outside the processor can be easily omitted from the 

ghost layer structure using the Ωgl mapping. The mapping stencil for a three-dimensional 

case for a single computational will assume the form of a pyramid as shown in Figure 4-8 

(a) and Figure 4-8(b).  The different views of  the three dimensional stencil are also 

shown in Figure 4-9 (a) and Figure 4-9 (b) for a better view of the definition of these cells 

in 3D. 
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4.2.3 Moving Boundary Problems 

 In the case of moving boundary problems, an embedded (i.e. immersed) object is 

free to move across the flow domain. Issues arise   when this object enters from one 

processor to other, as illustrated in Figure 4-10 (a). Here an embedded object is defined 

using a level set field and is given a unit velocity in the negative y-direction. The level set 

is completely defined in processor A and processor B does not have any information 

about it. This results in corruption of the level set field when it crosses the processor 

boundary as seen in Figure 4-10 (b). 

   This problem is resolved by initializing the ghost region of neighboring 

processor with level set value of 0.0 as shown in Figure 4-11. This is done by tagging all 

the processors having a particular level set with flag = 1. Now for computation on a 

particular processor with flag = 1, if the neighboring processor has a value of  flag = 0, 

the initialization mechanism of ghost layer should be triggered on the neighboring 

processor. This ensures the allocation of memory for an incoming object in processor B. 

Initially the information will be communicated to the ghost region of processor B and 

once this is done level set update and generation algorithm on processor B will take over; 

this results in smooth entry of the object from processor A into processor B through the 

ghost layer. The Figure 4-12 shows the successful entering of level set from one 

processor to another.                                 

The above exercise shows how one can handle moving boundaries in this 

algorithm. The idea is to have information about the embedded object on the local 

processor and only initialize (i.e. allocate memory in) the ghost region of neighboring 

processors so that the correct values of level set function can be communicated. It should 

be noted that this problem will occur only for algorithms where  the level set function is 

defined in a narrow band[50]. In cases where level set function is defined throughout the 

domain, it can be just treated like any other flow variable. However, we expect that 
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typical level set based methods will employ narrow-band level set definitions and 

therefore the procedure detailed above is required. 

The same issue of corruption of the level set function can arise in other situations 

as well. First, if the approaching object is not convex as seen by the processor boundary 

the level set function can get corrupted as shown in Figure 4-13. Secondly even for a 

convex surface like a sphere, the mesh partition can be such that the level set function can 

become  corrupted as shown in Figure 4-14. The corruption of level set function can be 

prevented if we always initialize the neighboring processor’s ghost layer so that the 

incoming level set can be accommodated. This is shown in Figure 4-15. Once the ghost 

region is ready to accommodate incoming level set field, the problems described above 

will not occur and the level set field will move smoothly from one processor to another as 

shown in Figure 4-16 and Figure 4-17. 

4.2.4 GFM at Processor Boundaries 

In the context of sharp interface techniques for compressible flow the original 

ghost fluid method proposed by Fedkiw and coworkers needs to be modified to handle 

strong shocks. The development of the GFM with a Riemann solver at embedded 

interfaces in a serial algorithm was developed in the PhD thesis work of  S.Sambasivan 

[60]. In this section the parallel algorithm for implementing the ghost fluid method will 

be discussed. In the parallel framework there are two types of ghost cells, processor ghost 

cells and GFM ghost cells. Figure 4-18(a) shows a processor boundary with parallel ghost 

cells and GFM ghost cells corresponding to interface. The entire GFM region with 

parallel ghost cells is shown in Figure 4-18(b). Figure 4-19 clearly shows that some of the 

interface cells required for GFM operation lie in the parallel ghost region. The steps 

required to populate ghost field in parallel framework are: 

1. Populate the ghost field (GFM) for interfacial cells on real domain of every 

processor. This is done in the same fashion as in a serial algorithm[40]. 
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2.  Communicate the constructed ghost field across the processor boundary. 

3. Extend the ghost field to GFM ghost region on both real and ghost domain. 

4. Communicate the extended ghost field across the processor boundaries. 

Note that the extension process is done on all the cells of a particular processor. 

After the extension, the parallel communication is done to ensure correct values in whole 

GFM region (especially the region ∑) as the region ∑ (Figure 4-19) doesn’t have any 

interface cells for populating correct ghost field.  

The interface cells corresponding to the region ∑ are in the neighboring processor 

as shown in Figure 4-20. For clarity, only GFM cells corresponding to the interface are 

shown in Figure 4-20. The communication of extended ghost field ensures that the region 

∑ gets populated with correct values. 

 

4.2.5 Communication Using MPI 

The inter-processor communication is the most important part of a parallel code. 

As mentioned above, Message Passing Interface (MPI) is used for data communication 

across processor boundaries. MPI specification is widely used for solving significant 

scientific and engineering problems on parallel architectures. MPI adds  portability to 

computation code as it is hardware independent. The major MPI features used in this 

code are 

i. MPI_ISEND, MPI_IRECV for non-blocking point-point communications during 

initial domain decomposition and for inter processor communication during ghost 

region exchange. 

ii. MPI_BCAST for collective communication for broadcasting the inputs to all the 

processors. 

iii. MPI_ALLGATHER and MPI_ALLREDUCE for collective communication such 

as providing correct CFL number to all processors. 
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iv. MPI_BARRIER for synchronization of code.  

  

There are other data types like MPI_WTIME, MPI_ WAITALL which are used to handle 

data communication. 

The exchange of ghost region information is the most important part of 

communications associated with a parallel computer code. This operation can be done in 

either a synchronous way using MPI_SEND / MPI_RECV or in an asynchronous way 

using MPI_ISEND / MPI_IRECV. The synchronous way of communication halts the 

computational operations till the communications operations are not complete. This can 

take a lot of time if two threads which want to communicate are on different computers 

and are connected through a network. This network can be 10 Mbps, 100 Mbps or an 

infiniband, there will be a substantial cost of sending the data. This type of 

communication ensures safe handling of data as data is not used till the communication is 

complete but leads to underutilization of computer resources. 

The asynchronous communication is the key to get high performance as the 

threads can continue to do computing while communication with another thread is still 

pending. Unlike synchronous version these calls are non-blocking as if a thread uses a 

function to send data, the function will return immediately much before the data is 

finished being sent. Care must be taken as not to manipulate the data being sent in the 

buffer. MPI library provides a function call MPI_WAIT which can be used to ensure that 

the data being communicated has been received by the desired thread and it is safe to 

modify the buffer.  

4.3 Results 

In this section, validation of the parallel solution of moving boundary problems 

will be presented. First  canonical 2-d gas dynamics test problem  will be presented and 

then  standard solid impact test case are solved to demonstrate the successful treatment of 
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the GFM approach with an embedded boundary defined by a level set . The handling of 

multitude of objects in a shocked flow will also be shown at the end. 

4.3.1 Emery Wind Tunnel Case 

This is a standard  case for testing the compressible fluid code introduced by 

Emery[61]. Here, the solution is carried out on a Cartesian grid with a level set defining 

the step and the GFM approach being used at the solid-fluid interface. The initial 

conditions corresponding to shock wave of strength Mach 3 was imposed on the west 

boundary. The north and south boundaries were prescribed with reflective boundary 

condition and the east boundary is prescribed with Neumann boundary conditions. The 

initial and boundary conditions are the same as used by previous authors[62, 63]. A 

uniform grid of 0.0025 on 3.0 X 1.0 domain is used with six processors. The results are in 

excellent agreement with existing literature[60, 62, 63].  

The density contours plot shown in Figure 4-21 clearly captures the lambda 

pattern seen in this case. It also shows the contact discontinuity captured in the top part of 

domain. 

4.3.2  Taylor Bar Impact at 227m/s  and 400 m/s 

The Taylor test [64] is used as a canonical test problem to verify and validate 

numerical and experimental observations. This is a two dimensional case in which a 

cylindrical rod made of copper impacts a rigid flat substrate at 227m/s. A computation 

domain of radius 15.0 mm and length of 34.0 mm is chosen for this simulation. The top 

and right ends of domain are prescribed with Neumann boundary conditions. The 

presence of rigid wall at the bottom end of domain is modeled by enforcing a reflective 

boundary condition. The left end of domain is prescribed with symmetry condition. The 

simulation used 4 processors with a mesh size of 0.075 mm. The rod has an initial density 

of 8930 kg/m3, Young’s Modulus of 117GPa, Poisson’s ratio of 0.35, and yield stress of 

400MPa.  The calculations are carried up to 80s at which point nearly all the initial 
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kinetic energy has been dissipated as plastic work. Figure 4-22 shows the contours of 

pressure and effective plastic strain at the final time of 80µs. Table 4-1 shows the 

comparison of present results on the Taylor bar impact case with other computer codes.  

The same test was done for impact at 400m/s as the bar was expected to deform more 

severely.  As can be seen from Figure 5-4, the impact at 400 m/s reduces the bar to 

almost one third of its initial length with effective plastic strain having the value 5.0 at 

80µs. 

4.3.3 Shock Diffraction Patterns in a Dusty Cloud 

In this simulation, the DNS of a planar shock wave traversing through a dusty gas 

layer is performed. The problem was investigated by Fedorov et.al.[65] using a mixture 

model with Euler equations. The same problem is solved using the current parallel 

framework for shock strength of Mach 3. The computational domain of the problem is 

shown in  

Figure 4-23. The domain size is 60 mm X 30 mm with uniform grid size of  0.02 

mm. The shock wave in this problem interacts with randomly seeded 100 particles to 

generate   complex shock diffraction and vortex shedding pattern as shown in Figure 4-

24. This effort is a step towards the DNS of such large scale simulation. The different 

parts of Figure 4-24 clearly show that very minute details of interaction of shock wave 

with these particles are captured successfully. 

4.4 Summary 

The parallelization procedure for flow solver was presented in this chapter. The 

method has involved challenging tasks such as implementation of Ghost Fluid method in 

three dimensions, handling of level sets in parallel setting, localization of data with 

efficient storage and retrieval and efficient construction of ghost layer for inter processor 

communication.  
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Table 4-1.Comparison of axisymmetric Taylor impact results with other computational 
codes. 

Case 227 

m/s 

Final length      

(mm) 

Final Base Radius 

(mm) 

Maximum 

EPSBAR 

Current setting 21.45 6.8 3.0 

Camacho et al[11] 21.42-21.44 7.21-7.24 2.97-3.25 

Tran et al[26] 21.15 7.1 2.86 
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Figure 4-1 Initial computational domain assigned equally to different processors. Each 
color here denotes a different processor. 
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Figure 4-2. Load balanced domain obtained from domain decomposition software 
METIS. Each color here denotes a different processor.                  
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Figure 4-3. Computational domain with ghost layer: a) Augmentation of initial domain 
with ghost layer b) A 4 cells thick ghost layer for two processors. 
 

     a) 

     b) 
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 Figure 4-4.Illustration of initial ―local to global‖ and ―global to local‖ mappings before 
addition of ghost layer. 
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Figure 4-5. Mappings augmented with ghost layer as seen in shaded part. The ―local to 
global‖ and ―global to local‖ mappings are augmented due to addition of new cells during 
ghost layer construction procedure. 
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Figure 4-6. One-dimensional layer of host and ghost cells with processor boundaries. The 
cells with only uppercase characters are host cells and the cells with both uppercase and 
lowercase characters are ghost cells. 
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Figure 4-7. Stencil arrangement of two-dimensional setting: a) processor boundary with a 
single layer of ghost cells b) stencil mapped on a cell i to select neighboring cells for 
ghost layer construction. 

       b) 

     a) 
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Figure 4-8. Stencil arrangement for the three-dimensional setting. a) Single cell tagged on 
the processor boundary b) Three dimensional stencil mapped on single cell to select 
neighboring cells for ghost layer construction. 

       b) 

     a) 
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Figure 4-9. Stencil arrangement for three-dimensional setting. a) stencil as viewed from 
xy plane b) stencil as viewed from xz plane. The three-dimensional stencil is used to 
select cells for ghost layer construction. 

     b) 

     a) 
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Figure 4-10. Corruption of level set field while going from one processor to another. The 
situation is peculiar to narrow band level set algorithms as the level set field is defined 
only in the shaded region. 
 

 

     b) 

     a) 
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Figure 4-11. Allocation of memory for the level set field in ghost region of processor B to 
accommodate incoming moving object (shown in red color) from processor A. 
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Figure 4-12. Smooth entry of the embedded object from one processor to another with the 
correct level set field. 

 

     a) 

     b) 
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Figure 4-13. Corruption of level set field in case of non-convex embedded object. The 
situation is peculiar to narrow band level set algorithms as the level set field is defined 
only in the shaded region. 

 

     a) 

     b) 
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Figure 4-14. Corruption of level set field of a circular embedded object in a multi-
processor setting. The situation is peculiar to narrow band level set algorithms as the 
level set field is defined only in the shaded region. 

     b) 

     a) 

     c) 
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Figure 4-15. Allocation of memory for the level set field in the ghost region of processor 
B in two different scenarios. The incoming level set field can have entry from one 
processor to another at multiple points depending upon the shape of the embedded object 
(left) and intricate processor boundaries (right). The above procedure assures the 
allocation of memory to handle both the scenarios. 
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Figure 4-16. Embedded non-convex object moving with the correct level set field from 
one processor to another.  

 

     b) 

     a) 
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Figure 4-17.  Embedded object moving with correct the level set field in a multi-
processor setting. 
 

     a) 

     b) 
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Figure 4-18. Processor ghost region with interface a) processor ghost cells with a layer of 
cells (interface cells) defining GFM ghost cells b) Processor ghost cells with whole GFM 
ghost region. 
 

     b) 

     a) 
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Figure 4-19.Parallel GFM cells with region ∑. The region ∑ does not have any interfacial 
cells required for extension procedure. The interfacial cells corresponding to region ∑ lie 
in neighboring processor. 
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Figure 4-20. Parallel GFM with Region ∑ and its corresponding interface cells in the 
neighboring processor. 

 

 

 



84 
 

 

 

 

 

 

 

 

 

 

 

Figure 4-21. Density contours for Emery wind tunnel case. Emery wind tunnel case 
corresponds to interaction of a shock wave of strength Mach 3 with a rigid solid step. 
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Figure 4-22.  Illustration of the deformation of an axisymmetric Taylor bar (Copper, 
impact velocity = 227 m/s) in a multiprocessor calculation. The smooth passage of the 
bar through several processor boundaries is shown. Contours of pressure (left half of each 
bar) and effective plastic strain (εp) (right half of each bar) are shown in four different 
time instants in the deformation process: (a) t=20µs (b) t=40µs (c) t=60µs (d) t=80µs 

 

 

 

a)      b) 40µs 20µs 

60µs 80µs c) d) 
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Figure 4-23. Initial Configuration of the domain for DNS of shock wave traversing 
through a dusty layer of gas. A shock wave of strength Mach 3 interacts with 100 
stationary rigid solid particles. 
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Figure 4-24. Numerical Schlieren Image for a Mach 3 shock wave traversing through 
dusty layer of gas. The shock wave interacts with 100 rigid solid particles in a 
multiprocessor environment. 
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CHAPTER 5 

 COMPUTATIONS OF TWO-DIMENSIONAL MULTIMATERIAL 

FLOWS 

An array of 2-dimensional computations of multimaterial dynamics spanning 

phenomena of impact, penetration, collapse, ejection, extrusion and fragmentation are 

presented in this chapter using the parallelized algorithm described in the previous 

chapters. The cases are all benchmarked against computations of other researchers who 

have used various techniques for their calculations; in some cases experimental data are 

available and have been employed for validation of the present calculations as well.  

The numerical results presented in this work are obtained by solving the 

hyperbolic system of equations (Eqs. 2.1 -2.4) using a third-order TVD-based Runge-

Kutta scheme for time integration [49] and a third-order convex ENO scheme [41] for 

spatial discretization [26]. Since the numerical schemes implemented in this work are 

well established and do not differ in any way from those that apply for single fluids[41], 

the implementation details are not presented here. Interested readers may refer to the 

original articles [41, 49] for details on the ENO and TVD Runge-Kutta schemes. The 

parameters corresponding to Johnson-Cook material model and Mie-Grüneisen E.O.S. 

are listed in Table 2-1 & Table 2-2 respectively.  

5.1  Impact of a Copper Rod over a Rigid Substrate - 

Axisymmetric Taylor Bar Experiment 

The Taylor bar impact test is a standard test problem to verify and validate 

numerical simulations of elasto-plastic material dynamics. In the two-dimensional 

axisymmetric setting, a cylindrical rod made of copper with an initial radius of 3.2 mm 

and a length of 32.4 mm impacts a rigid flat substrate at 227 m/s (Figure 5-1).  

A computational domain of radius 15 mm and length 34.0 mm is employed for 

this simulation. A uniform mesh size of 0.075 mm is used. The simulation is done using 4 
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processors. The top and right end of the computational domain are prescribed with 

Neumann conditions. The bottom end of the domain is modeled as target by imposing 

rigid surface boundary conditions. The left of the domain is prescribed with symmetry 

conditions, so that using axisymmetry one half of the cylinder is simulated. The rod has 

an initial density of 8930 Kg/m3, Young's modulus E = 117 GPa  and yield stress 

Y 400MPa  . The material is assumed to harden linearly with a plastic modulus of 100 

MPa. The calculations are performed up to a time of 80µs (at which point nearly all the 

initial kinetic energy has been dissipated as plastic work). The CFL number is set to 0.4 

for this computation.  

The impact of the rod with the bottom rigid surface results in a precursor 

compressive elastic wave traveling in the bar followed by a slower nonlinear plastic wave 

front. The elastic wave travels the entire length and the width of the rod, and is reflected 

off the free surface as a relief wave. The deformation of the rod terminates with the 

reflected elastic wave interacting with the plastic wave, and the stress is reduced to zero 

[66]. The jetting of the rod continues along the line of contact up to 40 µs at which point 

the material begins to harden (Figure 5-2). With the hardening of the material near the 

foot of the rod, the plastic wave moves up the rod resulting in the bulging of the base as 

shown in Figure 4. At around 80 µs, the rod comes to rest (Figure 5-2). 

To validate the present approach, the results obtained from the current 

calculations are compared with previous numerical simulations[11, 26, 36, 67]. The 

parameters, such as the final radius of the mushroom foot, the final length and the 

maximum effective plastic strain, characterizing the impact of the rod computed in the 

present study agree well with the previously reported values (Table 5-1). The comparison 

of Taylor bar impact using the two different approaches (Biliear interpolation and Least-

squares estimation, see Chapter 3) to obtain values at the point IP1 (Figure 3-5) is also 

shown in Figure 6.  As can be seen from the figure, for this case both approaches provide 

nearly identical solutions. The added expense of the least-squares approach is not 
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justified in this case. Not however that the interpolation to points IP1 along the interface 

occur in a lower dimensional set of points (i.e. only in a one-mesh-point thick set of 

points adjoining the interface). As will be demonstrated below the least-squares approach 

is robust through the fragmentation of  interfaces while the bilinear interpolation fails for 

small fragments and sharp corners due to unavailability of interpolation points. The same 

test was done for impact at 400m/s as the bar was expected to deform more severely.  As 

can be seen from Figure 5-4, the impact at 400 m/s reduces the bar to almost one third of 

its initial length with effective plastic strain having the value 5.0 at 80µs. 

5.2 Axisymmetric Dynamic-Tensile Large-Strain Impact-

Extrusion of Copper 

An experimental study on the influence of grain size on the response of Copper 

was conducted in [68]. In this section, the numerical computations of the dynamic 

extrusion of a Copper sphere are presented. The example problem considered here 

consists of a Copper sphere of 7.6 mm in diameter undergoing a tensile extrusion process. 

The extrusion process is carried out by propeling the Copper sphere at 400 m/s towards 

the extrusion die. The extrusion die made of hardened Steel is designed with an entrance 

diameter of 7.62 mm and an exit diameter of 2.28 mm, a reduction of 70 % in cross 

sectional area as shown in the Figure 5-5.A uniform mesh of size gx 0.075mm   is 

chosen. The domain is decomposed using 24 processors. The Johnson-Cook material 

model is employed to capture the response of the sphere and the extrusion die. The 

interface topology during the course of simulation is shown in Figure 5-6 and Figure 5-7. 

The evolution of level set field with smooth passage from one processor to another is 

shown in Figure 5-8 and Figure 5-9. 

Despite the lack of a damage model[43], the present calculations are able to 

predict the overall behavior of the extrusion process that matches well with the 

experimental predictions reported in [68]. The maximum equivalent plastic strain  P
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was observed during the jetting phase and corresponds to a value of 7.8 (Figure 5-10). 

This value is in good agreement with effective plastic strain of 6-9 observed during 

stretching of shaped charged jets[68]. 

5.3  Handling of Fragments in Case of Severe Plastic 

Deformation 

The cases shown in the previous examples deal with plastic deformation of 

material in the event of high speed impact or penetration. Generally in the event of a high 

speed impact or penetration of a hard impactor on a soft target, the target undergoes rapid 

elastic deformation followed by severe plastic flow. Finally if the speed of impactor  is 

very high and the target is not thick enough to completely absorb the energy of incoming 

impactor, the resultant dynamics can lead to total fragmentation of the target material.  

The example consider here consists of a slender tungsten target penetrating a thin 

aluminium plate at 1250 m/s. The dimensions of impactor and target are shown in Figure 

5-11. A computational domain of radius 15 mm and length 32.0 mm is chosen for this 

simulation. The top and right end of the computational domain are prescribed with 

Neumann conditions. The presence of a rigid wall on the bottom end of the domain is 

modeled by enforcing a free-slip, no-penetration condition. The left end of the domain is 

prescribed with symmetry conditions (with Sxy = 0). 

The simulation was performed using three different mesh sizes of 0.0001 m, 

0.00005m and 0.000025m respectively to test for grid dependence of the solution past 

fragmentation, as shown in Figure5-12.  In these computations the least-squares approach 

was employed to obtain information at the IP1 points (Figure 3-5), as described in 

Chapter 3. The straightforward bilinear interpolation approach failed in the presence of 

the small fragments, which contain sharp corners with marginal resolution of such 

features. The Figure5-12 shows a snapshot of target and impactor at 12 microseconds for 

the different mesh sizes. It is observed that while the large scale features of the impactor 
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and targer are independent of the mesh size, the small scale features are dependent on the 

mesh size, as would be expected for the numerical fracture that occurs in the present case. 

Physically correct fragments will only be produced by including physical damage models 

[43]. The results for total framentation, following the evolution of the interface up to 30 

microseconds  is shown in Figure 5-13. The tungsten rod completely penetrators the steel 

target resulting in small fragments. The projectile and the fragments of the target then 

interacts with the rigid surface resulting in the flattening of the impactor against the rigid 

surface, ejection of material through the left and right ends of the domain and a remnant 

of both the impactor and target that are seen in the final frame in Figure 5-13 (h) at time= 

40 microseconds.  At that final instant the fragments separate from the steel target 

interact and settle on what remains of the deformed tungsten projectile.  The present 

techniques and computer program were able to compute the phenomena of  fragmentation 

in a robust fashion. 
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Table 5-1. Comparison of axisymmetric Taylor impact results with other computational codes. 

 

Case 227 m/s Final length      

(mm) 

Final Base Radius 

(mm) 

Maximum 

EPSBAR 

Current setting 21.45 6.8 3.0 

Camacho et al[11] 21.42-21.44 7.21-7.24 2.97-3.25 

Tran et al[26] 21.15 7.1 2.86 
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Figure 5-1. Initial configuration for two-dimensional axisymmetric Taylor test on a 
Copper rod at 227m/s. 
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Figure 5-2.  Illustration of the deformation of an axisymmetric Taylor bar (Copper, 
impact velocity = 227 m/s) in a multiprocessor calculation. The smooth passage of the 
bar through several processor boundaries is shown. Contours of pressure (left half of each 
bar) and effective plastic strain (εp) (right half of each bar) are shown in four different 
time instants in the deformation process: (a) t=20µs (b) t=40µs (c) t=60µs (d) t=80µs  

 

 

a)      b) T=40µs T=20µs 

T=60µs T=80µs c) d) 
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Figure 5-3. Taylor bar impact (Copper, 227 m/s) results at 80µs (a) Bilinear Interpolation 
(b) Least squares interpolation 

 

(a) (b) 
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Figure 5-4. Illustration of the deformation of an axisymmetric Taylor bar (Copper, impact 
velocity = 400 m/s) in a multiprocessor calculation. The smooth passage of the bar 
through several processor boundaries is shown. Contours of pressure (left half of each 
bar) and effective plastic strain (εp) (right half of each bar) are shown in four different 
time instants in the deformation process: (a) t=20µs (b) t=40µs (c) t=60µs (d) t=80µs 

 

 

 

 

T=20µs 

T=60µs T=80µs 
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T=40

d) 



98 
 

 

 

 

 

 

 

 

 

 

Figure 5-5. : Initial configuration for the axisymmetric extrusion of a copper sphere 
through a hardened steel die. The copper sphere propels towards the hardened steel die at 
400 m/s. 
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Figure 5-6. Evolution of the copper sphere interface extruded through hardened steel die 
at 400 m/s. The levelsets corresponding to the sphere (green) and die (red) are shown at 
two different times: a) 10µs b) 20µs 

 

 

(a) 10 µs (b) 20 µs 
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Figure 5-7. Evolution of the copper sphere interface extruded through hardened steel die 
at 400 m/s. The levelsets corresponding to the sphere (green) and die (red) are shown at 
two different times: a) 30µs b) 40µs 

 

 

(b) 40 µs (b) 30 µs 
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Figure 5-8. Level set field showing the evolution of copper sphere extruded through 
hardened steel die at 400 m/s: a) 10µs b) 20µs. Smooth evolutions of level set field across 
the processor boundaries depict the successful implementation of method. 

 

 

(a) 10 µs           (b) 20 µs 
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Figure 5-9. Level set field showing the evolution of copper sphere extruded through 
hardened steel die at 400 m/s: a) 30µs b) 40µs. Smooth evolutions of level set field across 
the processor boundaries depict the successful implementation of method. 

 

 

(a) 30 µs (b) 40 µs 
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Figure 5-10. Evolution of  copper sphere extruded through hardened steel die at 400 m/s. 
Contours of effective plastic strain (εp) (on the left half of bar) and velocity (on the right 
half of bar) are shown at an instant of 40µs. 
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Figure 5-11. Initial configuration for the penetration and fragmentation of a steel plate by 
a tungsten rod moving at 1250m/s.  
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Figure5-12. Snapshot of tungsten rod penetrating into a steel target at 12µs for different 
mesh sizes (a) 0.0001 (b) 0.00005 (c) 0.000025 
 

(b) 

 (c) 

(a) 
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Figure 5-13: Total fragmentation of steel target at different times,(a)-(h),5µs - 40µs  

(b) 10 µs 

(g) 35µs (h) 40µs 

(f) 30µs (e) 25µs 

(d) 20µs (c) 15µs 

(a) 5 µs 
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CHAPTER 6  

THREE –DIMENSIONAL COMPUTATIONS OF HIGH-SPEED 

MULTIMATERIAL FLOWS 

This chapter presents the 3-dimensional computations for multimaterial flows 

showing impact, penetration and fragmentation phenomena. These simulations are done 

using GFM method devised in Chapter 3 and are first of a kind in eulerian framework. 

There are very few codes [15, 34]which are capable of performing these simulations due 

to a lot of intricacies involved. These intricacies are related to implementation of Ghost 

Fluid Method in three dimensions, handling of an enormous amount of data, 

parallelization of flow solver with moving interfaces and finally post processing of 

results. The cases are all benchmarked against computations of other researchers who 

have used various techniques for their calculations; in some cases experimental data are 

available and have been employed for validation of the present calculations as well.  

6.1 Taylor Bar Impact  

During World War II, Taylor conducted an analysis on specimens deformed at 

very high rates of strain [66]. These experiments [64] involved impact of a cylindrical 

specimen over a rigid flat substrate, depicted the deformation process as a sequence of 

elastic and plastic wave propagation into the cylinder. The Taylor bar impact test is a 

standard test problem to verify and validate numerical and experimental observations. 

First, to benchmark the three-dimensional computations by comparing with other 

computations and experiments,  three-dimensional impact of a Taylor bar [64] is 

computed using the parallelized code.  These results are obtained by solving the 

hyperbolic system of equations, Eqs. (2.1-2.4) using a third-order TVD-based Runge-

Kutta scheme [49] for temporal discretization and a third-order convex scheme [41] for 

spatial discretization. These numerical schemes are well established and details for these 

can be obtained from the  above-mentioned references. The parameters corresponding to 
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Mie-Gruneisen are provided in Table 2-2. In this section we show two cases of impact of 

a copper rod on a rigid surface. The first case is a benchmark problem, impact at 227 m/s 

and the second case is impact at 400m/s to show the handling of high deformation and 

strain rates. 

6.1.1 Impact at 227m/s 

A copper bar of length 32.4 mm and 3.2 mm radius impacts on a rigid flat surface 

at 227 m/s. The computational domain consists of cuboid of dimensions 16 mm X 16 mm 

X 34 mm. The domain decomposition and initial Taylor bar are shown in Figure 6-1. The 

problem is simulated using 8 processors. The ghost layer required for inter-processor 

communication is shown in Figure 6-2. The bottom surface of domain is given reflective 

boundary condition and all other surfaces are prescribed with Neumann boundary 

condition.  The standard material properties for copper are used which can be found in 

high speed impact literature [11, 26] and are also provided in Table.  The mesh chosen is 

uniform with mesh size of 0.15 mm.  The numerical simulation is performed for 80 µs 

which marks the end of deformation process with material being deformed plastically. 

The results for Y-direction velocity during the course of simulation are shown in Three 

dimensional ghost layer required for inter-processor communication for eight processors. 

Each color denotes a different processor here. 

. These results give good agreement with experimental analysis. The two key 

things found in experimental analysis was that the deformed part presents a ―mushroom‖ 

at the end that accentuates itself as the velocity of impact increases and the boundary 

between the plastically deformed and the undeformed regions cannot be seen easily. The 

―mushroom‖ part is observed in following simulations with the radius of mushroom 

increasing with increase in impact velocity. Even the boundaries of deformed and 

undeformed regions in these simulations are not distinct. 
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As observed by Taylor[64], the process of deformation is a sequence of elastic 

and plastic wave propagating to cylindrical bar.  Initially the elastic wave is faster than 

the plastic wave and travels until it reaches the back surface of Taylor bar. It then reflects 

towards the plastic wave as a relief wave marking the end of deformation process. We 

also noticed that the jetting phenomenon continued till 40 µs at which point material 

begins to harden resulting in bulging at the base of material. The other observable 

quantities such as pressure and effective plastic strain at the cross section of bar is shown 

in Figure 6-4 and Figure 6-5. We also observed that the effective plastic strain which is 

concentrated mostly at the base of bar, Figure 6-5. It is a scalar parameter which grows 

whenever a material is actively yielding i.e. whenever the state of stress is on the yield 

surface. We would also like to show the readers the advantage of using level set method 

which accurately defines the interface and can handle large deformation problems as 

shown in Figure 6-6 by mesh containing Taylor bar at the beginning and at the end of 

simulation.  This also depicts the advantage of localization of information on each 

processor as explained in chapter 3.  

Finally we compared the impact time history of the variation of the dimensions of 

the bar with LSDYNA 3D code [14], IPSAP method [14] and parallel 3D PIM code [15] 

as shown in Table 6-1. It was observed that the results are in good agreement with 

available literature. 

 

6.1.2 Impact at 400 m/s 

The behavior of the bar in the above low velocity impact situation is now 

compared to that at a higher velocity to highlight the effect of impact velocity on the 

deformation of the bar. The simulation shows that the present method can handle large 

deformations and strain rates. The results from this simulation are shown in Figure 6-7. It 

can be seen that the deformation is very severe in this case with the bar reducing to one 
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third of its initial height. The shapes of the bars in the two cases are in excellent 

agreement with experimental views of the effects of impact velocity on Taylor bars and 

on the physical arguments of Taylor and others on the shapes assumed by bars impacting 

at different velocities[64, 66]. 

6.2 Perforation and Ricochet Phenomenon in Thin Plates 

Although numerous studies have analyzed impact and penetration phenomena, 

most of these studies are limited to two-dimensional or axisymmetric inline impacts[10, 

11, 26, 36]. However, the vast majority of  impacts  are oblique to the targets and are 

intrinsically three-dimensional. The real test of a three dimensional multi-material code is 

to simulate impact/penetration phenomena at an angle. In this section, three-dimensional 

high speed impact dynamics of two bodies is shown.  A mild steel sphere with velocity of 

610 m/s is impacted on a mild steel plate at an angle of 60 degrees. The diameter of mild 

steel is 6.35 mm and the dimensions of plate are 40 mm X 25 mm X 1.5 mm as show in 

Figure 6-8. A domain of size 40 mm X 25 mm X 20 mm is chosen for this computation. 

A uniform mesh size of 0.1 mm is used with total number of grid points close to 16 

million. The simulation is done using 196 processors. The material properties and E.o.S. 

parameters are given in Table 2-1 and Table 2-2 respectively. The initial mesh topology 

of sphere and plate is shown in  

Figure 6-9. The high speed sphere undergoes a severe deformation and ricochets 

from plate as shown by section view in Figure 6-10. The velocity vectors shown in Figure 

6-10 illustrate the ricochet phenomena observed during impact at high angles. The 

section views of final deformation  shown in Figure 6-11(a) and Figure 6-11(b)  are in 

excellent agreement with experimental results[21] and Lagrangian numerical 

computations[13, 34]. The interface topology at different instants of time is shown in 

Figure 6-12.  The velocity contours of inclined impact are shown in Figure 6-13 and 

Figure 6-14.  The sphere at high speed comes to rest at 80μs. Figure 6-15 shows the 
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initial and final location of deformed sphere for a section. It also shows the processor 

boundaries depicting the successful implementation of method. 

6.3 Fragmentation of a Thin Plate 

Generally in the case of high speed impact or penetration of a hard impactor on a 

soft target, the target undergoes negligible elastic deformation and then severe plastic 

deformation. Finally if the speed of impactor is very high and the target is not thick 

enough to completely absorb the energy of incoming impactor, the resultant scenario can 

lead to total fragmentation of target material.  The example consider here consist of a 

slender tungsten target penetrating a thin aluminum plate at 2000 m/s. The material 

properties and E.o.S. parameters are given in Table 2-1 and Table 2-2  respectively. The 

diameter of impactor is 1.5mm and its length is 3.5mm. The thickness of target is 1 mm. 

A computational domain of 10mm X 10mm X 10mm is chosen for this simulation. All 

the faces except the bottom face of domain are prescribed with Neumann boundary 

conditions. The bottom face acts as a rigid wall resulting in enforcement of reflective 

boundary condition. The results for total fragmentation are shown in Figure 6-16. The 

individual impactor and target topology is also shown in Figure 6-17.The results shown 

here are totally based on resolution and not on a damage model[43]. The idea here is to 

extend the methodology by using a damage model where the parts of material will be 

physically separated due to the state of stress. The present techniques and computer 

program implemented in three dimensions were able to handle small fragments generated 

during high speed imapct and penetration phenomena in a robust fashion. 
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Table 6-1. Comparison of three-dimensional Taylor Bar Impact with other computer codes. 

 

Code  Final length (mm) Final Radius (mm) 

Parallel 3D PIM [15] 21.6 7.1 

IPSAP    [14] 21.52 7.0 

LS-DYNA  [14] 21.23 6.18 

Current work 21.80 6.36 
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Figure 6-1. Load balanced domain decomposition created using partitioning software 
METIS where each color denotes a different processor: a) Decomposed domain b) Taylor 
bar. 

 

 

 

 

(a) (b) 
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Figure 6-2. Three dimensional ghost layer required for inter-processor communication for 
eight processors. Each color denotes a different processor here. 
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Figure 6-3. Y-direction velocity contours of Taylor bar impact at 227 m/s. The snapshots 
for a time interval of 20µs are shown depicting the phenomenon of jetting of bar till 40µs 
and finally hardening till 80µs. 

 

 

 

(a) 20µs 

(c) 60µs (d) 80µs 

(b) 40µs 
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Figure 6-4. Pressure contours at a cross-section of Taylor bar at 20µs, 40µs, 60 µs and 
80µs for an impact speed of 227 m/s. 

 

(a) 20µs (b) 40µs 

(c) 60µs (d) 80µs 
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Figure 6-5. Effective Plastic Strain(εp) contours at a cross-section of Taylor bar at 20µs, 
40µs, 60 µs and 80µs for an impact speed of 227 m/s. It can be seen clearly that plastic 
strain is mostly concentrated at the base of the bar. 

 

 

 

(a) 20µs (b) 40µs 

(c) 60µs (d) 80µs 
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Figure 6-6. Mesh defining the topology of Taylor bar at the beginning (left) and at the 
end (right) of simulation. 
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Figure 6-7. Y-direction velocity contours (left) and Effective plastic strain (εp) (right) for 
Impact at 400m/s at 80µs.  The severe deformation of bar at high impact speed of 400m/s 
results in increased plastic strain accumulation. 
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Figure 6-8. Initial setup of mild sphere impact on a thin mild steel plate.  The mild steel 
sphere of 6.35 mm diameter is impacted at an angle of 60 degree on a flat mild steel plate 
of 1.5 mm thickness. 
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Figure 6-9. Initial mesh topology of mild steel sphere and mild steel plate. Each color 
denotes a different processor here with 196 processors being used for this computation. 
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Figure 6-10. Section view of impacted sphere and plate with velocity vectors showing 
ricochet phenomenon. The mild steel sphere deforms and finally settles at the top of 
plate. 
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Figure 6-11. Mild steel impact at 610m/s (a) Side view of deformed sphere (b) Top view 
of deformed sphere. The figure also depicts the boundaries of processors containing the 
sphere. 

 

 

 

 

(b) 

(a) 
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Figure 6-12. Interface topology for inclined impact of sphere (mild steel) on a plate (mild 
steel)  at 610m/s at 0µs, 20µs, 40µs, 60 µs and 80µs. 

(a) 0µs (b) 20µs 

(d) 60µs (c) 40µs 

(e) 80 µs 
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Figure 6-13. Y-direction velocity contours of mild steel sphere impact at 610m/s  from 
0µs to 80µs. The contours clearly depict the final settlement of sphere with Y-direction 
velocity going to zero. 

 

 

(a) 0µs (b) 20µs 

(c) 40µs (d) 60µs 

(e) 80µs 
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Figure 6-14. Z-direction velocity contours of mild steel impact at 610 m/s from 0µs to 
80µs. The contours clearly depict the final settlement of sphere with Z-direction velocity 
going to zero. 

 

(b) 20µs 

(c) 40µs (d) 60µs 

(e) 80µs 

(a) 0µs 
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Figure 6-15. A snapshot of domain cross-section showing finally settled sphere at 80µs. 
The initial and final contours of both sphere and plate with processor boundaries clearly 
depict the ricochet phenomenon. 

 

 



128 
 

Figure 6-16. Interface topology of impactor and target showing total fragmentation from 
1-4µs. The target and impactor also interact with rigid surface as shown above. 

         (c) 3µs 

  (d) 4µs 

(a) 1µs 

(b) 2µs 
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Figure 6-17. Interface topology of individual target (top) and impactor (bottom) showing 
total fragmentation. 
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CHAPTER 7 

 VOID COLLAPSE IN ENERGETIC MATERIALS 

7.1 Introduction 

Shock waves interacting with heterogeneous materials are important in studies 

related to impact, penetration and detonation in condensed media, with applications in 

propulsive devices, munitions and explosive-target interactions. The study of release of 

energy is a crucial requirement in these systems. Traditional models for these 

applications are based on continuum theories where the microstructural heterogeneities of 

the material is ignored or homogenized. These simulations, based on a continuum 

mechanics approach[35, 69] at the macro scale miss the key aspect of modeling energy 

release at a scale corresponding to particle size. Designing propulsion devices and 

munitions for precise operational performances demands comprehensive understanding 

and manipulation of the spatial and temporal distribution of energy release in activated 

energetic materials.   

7.2 Mechanisms of Void Collapse 

In the present work, the modeling of void collapse in a high explosive is chosen as 

the focus. Examples of such materials include the popular HMX [70]. Initiation of a 

heterogeneous explosive can occur when an impulse given to the material evolves into a 

detonation wave.  This phenomenon of evolution of a shock wave into a detonation wave 

(which is a shock wave followed by a reaction front, where the shock is driven by energy 

supplied by chemical reaction) depends on the local heating of material, where 

temperature can be much higher compared to the bulk temperature.  These localized 

regions of high temperature are known as hot spots and can result in initiation of 

detonation under certain conditions. Bowden and Yoffe[71] proposed the mechanism of 

detonation initiation due to collapse of voids in the material; purposeful introduction or 

incidental occurrence of voids in cast explosives introduces   a potential site for hot spot 
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formation under shocked loading of an energetic material. There are number of 

mechanisms which can contribute in formation of hot spots. These mechanisms can 

operate collectively depending on size of voids, material properties, strength of shock 

wave and regime of operation. The various mechanisms proposed over the years are as 

follows: 

1. Compression of gas in the void: This mechanism can occur when a shock wave 

passes over the void, compressing the gas inside it.  As the void is collapsed, the 

entrapped gas inside the void is compressed to high temperature and pressure. The 

temperature can reach a value high enough to initiate ignition. Chaudhri and 

Field[72] have showed in their work that this phenomenon is important only for 

the size ranging from 50-μm to 1-mm collapsed by a low strength shock ~ 0.1 

GPa. Therefore the gas compression is a dominant mechanism when large pores 

are collapsed slowly. 

 

2. Hydrodynamic Impact: This mechanism occurs when a heterogeneous explosive 

is loaded at high shock strengths. At high speeds, the wave amplitude far exceeds 

the plastic yield strength of material deforming the lower surface of void. The 

deformed downstream surface thus form a high-speed jet of material which 

impacts against the upper surface of void resulting in increase of temperature. In 

this phenomenon the high kinetic energy of downstream surface is converted into 

internal energy during impact resulting in very high temperature favorable for 

detonation initiation. This mechanism [73]  therefore corresponds to the inertia-

dominated regime. 

 

3. Plastic work: When a solid material undergoes plastic deformation, the 

temperature rises due to conversion of plastic work into heat. Khasainov et al.[74] 

have pointed that significant heating can occur due to plastic work for smaller 
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void sizes, i.e. for void diameters less than micrometers and in short times of less 

than a microsecond. 

Other mechanisms that may be important for formation of hot spots are shear 

heating[75], kinetic energy release due to inter-particle impact [76], melting at inter-

particle boundaries[77], friction due to relative motion of particles and interfacial defects 

caused by shock passage [78]. All of these are local phenomena and occur at the scale of 

individual particles and are not reflected in a continuum model that operates on volume-

average[35] or mixture formulation[69]. 

7.2.1 Importance of Modeling the Meso-Scale Dynamics of 

Heterogeneous Explosives 

Typical analyses of the response of an energetic material exposed to severe 

loadings (that are likely to trigger explosion) have treated the energetic material as a 

macroscopically homogeneous material, which for heterogeneous explosives implies 

some form of homogenization or mixture theory[35, 69]. In such treatments the response 

of the material to a passing shock which initiates self-sustaining chemical reactions must 

somehow incorporate the microscopic, localized events such as hot-spots.  In most 

hydrocodes [9] that compute such response the Lee-Tarver ―Ignition and Growth model‖ 

[69] is used to initiate reaction.  This model provides a heat release rate at any point in a 

heterogeneous explosive as a function of the local shock pressures and the void fraction 

and can be used as a heat deposition source term in a homogenized multiphase model 

(such as the Baer-Nunziato model[35]). In the ignition and growth model a small fraction 

of the explosive is assumed to be ignited by the passage of the shock front; the reaction 

rate is controlled by pressure and surface area of the unreacted material, by adopting 

ideas from treatment of deflagration processes. The Lee-Tarver model[69] is a 

phenomenological model that provides the heat released behind the leading shock wave 

by modeling the energy release rate in the form: 
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                                                                             (7.1)  

 

Here F is the fraction of unreacted explosive, I, G, x, y, r, and z are constants that are 

empirically established and,  

0

1

V 1
V

                                                                                                                          (7.2) 

 

Where V0 is the initial specific volume of the explosive and V1 is the specific volume of 

the shocked, unreacted explosive.  

Note that in Eq 7.1 the first term accounts for ignition and the second for growth 

of the reaction front. The argument posed by Lee and Tarver is that ignition is supposed 

to depend on the compressive strength of the incident shock wave and also on the surface 

area corresponding to the fraction of unreacted explosive while growth of the reaction 

front depends on the pressure. This latter dependency is again an extension of the idea of 

burning fronts in deflagrating propellants. Note that in a heterogeneous medium ignition 

occurs at hot spots and buildup to detonation occurs as the reaction grows outward from 

these hot spots[69].  Thus the number and intensity of energy localizations at hot spots 

play a role in determining whether ignition and growth can lead to run-off to detonation. 

As shown by Khasainov and others[74, 75, 79] and demonstrated in results to be 

presented the formation of the hot-spots can lead to localized temperature and pressure 

excursions that are quite different than the imposed temperature and pressure fields in a 

shocked homogeneous material. Thus, the physics behind void collapse is not captured by 

arguments that are extended from deflagration phenomena in propellant stick burning. 

The way in which hot spot phenomena are argued[74, 80] to be reflected in the 

Lee-Tarver model depends on the mechanism of hot spot formation that is considered to 

operate. For example, if the hydrodynamic void collapse leads to hot spots, the exponent 

r is assigned the value 3. This is due to an assumed relationship between the particle 
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velocity up and void fraction η, viz.       . Since the hydrodynamic void collapse is an 

inertial mechanism that converts the local kinetic energy of the jet formed in the 

underside of the void into thermal energy the ignition process is assumed to depend on 

the kinetic energy. If the hot spot is formed due to plastic work done in deforming the 

void as it collapses, then this work is assumed to be proportional to ∫     [80], where p 

is the pressure and the integral is over the time of collapse of the void. Since       the 

exponent is given the value 4[80]. Whether r should be 3 or 4 is determined by recourse 

to experiments and the other constants in the equation above are fit to experiments as 

well. This procedure of determining the value of r depends on the type of explosive in an 

ad hoc way and is non-generalizable. The rational for fitting the constants in the Lee-

Tarver model appear to be based on semi-empirical and physical notions, but there is no 

specific understanding of how void collapse deposits energy and how this locally 

deposited energy leads to thermal runoff and detonation. 

While the Lee-Tarver model is quite popular in making predictions of the overall 

response of energetic materials using hydrocodes, it is difficult to see clearly how the 

void collapse mechanism, in particular void-void interactions can be adequately reflected 

in such a phenomenological model. In more recent work Tarver[81] and others[70] have 

taken a more micro-scopic view by asking the question ―what is a shock wave to an 

explosive molecule‖?[81]  In this view, by assuming that reactions in the condensed 

phase explosive material follow conventional Arrhenius rate laws[82], a material 

comprised of molecules of energetic material will be ignited if the local temperatures 

exceed certain critical values and the local thermal energy deposition is high enough that 

the activation energy barrier can be overcome. Thus, there are two key elements that 

reflect whether a hot spot will lead to successful ignition: local temperature (connecting 

hot spot intensity to reaction rate kinetics through the activation energy required to 

trigger reactions) and the ―strength‖ of the hot spot. The latter measure depends on the 

size of the hot spot, the time scale over which local ignition conditions can be maintained 
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etc. before dissipative mechanisms such as rarefaction waves, plastic work, thermal 

conduction, viscosity, and phase changes can draw energy away from the hot spot.  Thus, 

Tarver et al.[81] have obtained values of critical temperatures for HMX and TATB 

explosives that are functions of the sizes of the voids; the smaller the voids the larges the 

―critical temperatures‖. This implies that shocking a heterogeneous explosive with very 

small voids may not lead to ignition. 

The viewpoint in the current work is that, along the lines of the more recent work 

of Tarver et al.[81] and others [75, 77, 78] , a truly micro-scopic viewpoint is required to 

understand and quantify the effect of a shock on voids in the heterogeneous material. The 

issue of whether there will be ignition is taken to hinge on the following factors: 

1. When a void collapses what is the local temperature experienced by reactive 

molecules in the vicinity of the void? What is the time scale of relaxation of this 

local temperature? 

2. How does this localization depend of the shock strength and void size? 

3. When a piece of heterogeneous explosive containing a void (or a collection of 

voids) is exposed to shock loading what is its response? How does the input shock 

energy distribute itself into thermal and inertial modes in the material? 

4. What effects do void-void interactions have in a heterogeneous explosive and 

how do these effects depend on the loading parameters and void characteristics 

(e.g. shock strength, void size and shape)? 

  

7.3 Modeling of Shock-Induced Meso-Scale Dynamics 

Simulations of energy deposition and transport in the presence of grain scale 

features have been pursued in a variety of contexts.  Zhang et al.[83]  have examined the 

effects of metallic particles (and small arrays of particles) of initially circular shape in an 

RDX explosive (modeled as a homogeneous substrate). Udaykumar et al. [79, 84] have 
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examined the evolution and collapse of a void in an inert matrix and a reactive HMX 

matrix, demonstrating the different ways in energy localization can occur ranging from 

plastic work to hydrodynamic collapse. Cooper et al.[12] also studied void collapse in a 

metallic system using an Eulerian approach.  Frost et al. [85] have used the detonation-

shock-dynamics model for detonation propagation where the detonation front is tracked 

by means of a level set function. They examined the passage of a detonation wave 

through an array of inert particles. In all of these simulations the attempt was to examine 

the detailed micromechanics and energy localization phenomena pertaining to a single 

feature or small array of features embedded in an otherwise homogeneous substrate with 

properties pertaining to HEs. Reaugh[86]  examined features of void collapse, inter-

particle contact and deformation in a representative disordered mixture with realistic 

particle shapes simulating HMX crystals. Benson and coworkers[87] developed an 

Eulerian approach where the deformation field is mapped back to a fixed Eulerian mesh 

following a preliminary Lagrangian update step.  Within each grid cell in the Eulerian 

mesh several particles can coexist, with a volume fraction based approach to keep track 

of each particle.  Shock compaction of powders has been studied using this approach. 

Since particle surfaces are not explicitly tracked some of the mechanisms of energy 

deposition listed above (e.g. frictional, melting, and void collapse) cannot be included in 

the model.  Menikoff[77]  has used this framework to examine the compaction of a 

granular bed of HMX.  The propagation of stress waves in the inhomogeneous medium 

and the energy localization in a mesoscale sample containing a collection of (regularly 

shaped) crystals was studied. Using the Eulerian computer code CTH, Baer[78] and 

coworkers  have studied the mesoscale dynamics of HEs under the effect of imposed 

shocks.  Detailed 3D simulations of compaction (i.e. inert cases) and detonation (i.e. 

reactive cases) have been simulated. The HMX crystals are loaded in the computational 

domain using algorithms for particle size distribution and shapes that yield desired 

packing fractions.  The simulations were conducted with elastic-perfectly plastic models 
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for the crystals. In these works details of void dynamics, particularly the interactions 

between several voids subject to shock loading have not been elucidated. This work, 

using sharp interface treatment of the voids through the collapse stage, investigates and 

reveals several key aspects of the physics of void collapse and void-void interactions in 

an otherwise homogeneous matrix.  

7.4 Methodology 

 

The main objective of this work is to characterize and analyze the mechanisms 

which are important at relatively high speeds (particle velocities at or above 500 m/s), i.e. 

strong shocks interacting with typical void sizes in HMX (void diameters of the order of 

10μm) material without chemical reactions. In this setting the convective time scales are 

dominant, as these are very short (O~10-7s) compared to diffusive and viscous time scales   

(O~10-5s). This dominance allows us to exclude viscosity and thermal diffusion by 

treating HMX as an elastic – perfectly plastic material[70].  Therefore the physical 

mechanisms important in given regime will be plastic work and hydrodynamic impact. 

The response of a material (elastic- perfectly plastic) to high intensity (shock/impact) 

loading conditions is modeled. Details pertaining to material properties are listed in Table 

2-1. The computation of void collapse is performed by integration of the mass, 

momentum and energy balance laws along with the evolution of the deviatoric stress 

components,  assuming a pure elastic deformation (i.e. freezing the plastic flow) as an 

elastic predictor step, followed by a radial return mapping to bring the predicted stress 

back to the yield surface [42]. The details pretaining to governing equations, constitutive 

equations, radial return algorithm and  the Mie-Gruneisen equation for determining 

dilatational response have been laid out in CHAPTER 2.  A third-order TVD-based 

Runge-Kutta scheme [49] for temporal discretization and a third-order convex scheme 

[41] for spatial discretization is used. The void is defined as an embedded object using 
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the level set [50] function, which is then tracked during the course of the simulation. The 

interface treatment is handled using a modified GFM (Ghost Fluid Method) approach. 

These numerical schemes are well established and significant details are provided in 

CHAPTER 3. The computational code has been validated by simulating a plethora of 

physical problems for high speed impact and penetration in both two and three 

dimensions (CHAPTER 5 and CHAPTER 6). A validation for a physical situation similar 

to the void collapse process, i.e. demonstrating the interaction of shock wave with a 

hemispherical groove is shown in the next section. Further validation of the calculations 

for void collapse with limit cases of theory on hydrodynamic collapse (Rayleigh) is also 

performed.  Following the validation exercises the physics of void interactions in a 

porous material is carefully examined. The insights obtained from the present work are 

significant and novel and advance the understanding of the mechanics of void collapse 

when there are multiple voids interacting with shock loadings. 

7.5 Validation of the Computational Technique  

A phenomenon like void collapse, which occurs at very small temporal and spatial scales, 

is difficult to investigate experimentally due to large deformation and very high gradients 

in physical parameters. Therefore one takes recourse to   computer simulations to   

investigate these physical phenomena. Therefore, it is important to validate the computer 

simulation for a problem which is similar to collapse of a void but does not present 

challenges to experimental visualization. In this regard, the interaction of a shock wave 

with a hemi-spherical groove can be considered as a physical problem that is  similar to 

the computations performed by Cooper et al.[12]. A planar shock wave interacts with a 

copper plate with a hemispherical groove of radius 15 mm. The generated shock wave 

corresponds to particle velocity of 540 m/s and a pressure ratio of 230 Kbar. The 

interaction of the shock wave with the hemispherical groove results in a reflected 

expansion wave and the formation of a jet. The formation of a jet is confirmed in  
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experimental work[88] and in the numerical calculations done by Cooper et al.[12]. The 

simulation was performed in an axisymmetric setting on computational domain of 150 

mm X 300 mm with uniform mesh size of 0.5 mm. Figure 7-1 shows the formation of the 

jet in the copper material. The evolution of the shape of the jet along with velocity of the 

jet at one instant is also shown in Figure 7-1(b). The results were compared with the 

computed profiles of the jet at each instant of time shown in Figure 7-1(a) with the 

computations of Cooper et al. and the x-ray image of the jet and jet velocity obtained in 

the experiments of Mali et al[88].  Excellent quantitative agreement was obtained as 

listed in Table 7-1. 

7.6 Analysis of Single Void 

This section focuses on collapse of a cylindrical void in a HMX matrix material 

that is considered to be homogeneous. The computational setup is shown in Figure 7-2. A 

cylindrical void with a radius of 5μm, within a HMX material, undergoes deformation as 

a result of shocked loading by imposing a particle velocity of 500m/s at the bottom 

boundary as shown in Figure 7-2. The imposed shock is given a rise time equivalent to a 

fraction (10%) of the total time required by the shock to reach the lower surface of void.  

7.6.1 Grid Independence Study 

A grid independence study for a single void is performed to establish the framework for 

further analysis. A void size of 10µm in the HMX matrix is studied for different grid 

resolutions. A particle velocity of 500m/s is prescribed on the south boundary. For a fixed 

domain of size 30µm X 30µm, mesh sizes of 150 X 150, 200 X 200, 300 X 300 and 400 

X 400 were used. Apart from the coarse case of 150 X 150, the other mesh sizes were 

observed to have the same maximum temperature rise as shown in Figure 7-3. The time 

at which the significant rise in temperature occurred is the same for all mesh sizes. The 

energy distribution in the material by evaluating the ratio of total internal energy to total 

kinetic energy was also observed for the whole simulation. All the cases showed similar 
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results for change in slope of curve as seen in Figure 7-4. As all the fine mesh resolution 

cases showed the same rise in temperature at the same time and same contours for energy 

distribution, a mesh size of 300 X 300 is selected for further computations. This mesh 

size corresponds to 100 grid points across the void diameter. Thus, as the void collapses 

the number of grid points in the void diminishes but the adopted grid was found to be 

adequate to capture the dynamics of the collapse throughout the collapse process. It is 

noted that the present work carries the computations through and beyond complete 

disappearance of the void, which is quite infrequently the case in the literature. In 

Lagrangian methods for solving void collapse phenomena, it is rather challenging to 

follow the void shape close to or beyond total collapse. The present technique, with the 

least-squares treatment described in Chapter 3, succeeds in maintaining robustness 

through the collapse process. 

7.6.2 Temperature Rise and Energy Distribution 

When a homogeneous material is shock loaded, the rise in temperature is due to the bulk 

heating of material. However, in a heterogeneous material, the contribution to the rise in 

temperature comes from different mechanisms (Eq 2.29). It can be seen from Figure 7-5  

heterogeneities like voids introduce enhanced sensitivity in the material and its response 

to an incoming shock changes entirely. The main contributions in the rise of temperature 

in the case of a heterogeneous material for the given regime are plastic work and 

hydrodynamic impact. The process of void collapse beginning from impact at the bottom 

surface to total hydrodynamic collapse of void and finally disappearance of void can be 

explained in five stages shown in Figure 7-6.  

The stage 1 is the time before the shock reaches at the bottom surface of void. The energy 

of the shock wave itself causes ~60 K rise in temperature in the bulk solid material during 

stage 1. This stage is the same as impacting or shock loading a homogeneous material. In 

the second stage, the acceleration of material at the lower surface of the void occurs. 
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However this stage does not contribute much to temperature rise as shown in the Figure 

7-5. As the material starts accelerating, plastic deformation (Stage 3) begins and the 

material begins to resist the deformation. The plastic work required to deform the 

material heats the material, resulting in a modest rise of temperature.  Stage 4 comprises 

of total deformation of lower surface of void, jetting of the lower surface and 

impingement of the lower surface on the top surface resulting in hydrodynamic impact 

and a sharp rise in temperature to its peak (~1100 K) value. The impact phenomenon 

results in a secondary shock wave, which interacts with the initial shock wave resulting in 

complex wave patterns. Finally during stage 5, the hydrodynamic jet completely 

collapses the void and the void disappears. The interface evolution of the void collapse 

stages explained above is shown in Figure 7-9.  

An alternate way of looking at the above stages is in terms of the distribution of 

kinetic energy and internal energy. This can be investigated by taking the ratio of the total 

internal energy to the total kinetic energy over the whole domain as shown in Figure 7-7. 

This measure is significant as it reveals the way in which energy becomes partitioned in 

the material due to the combined effects of shock loading and shock focusing at the void. 

It also leads to an understanding of the apportioning of energy in the material between the 

kinetic energy (inertia) and internal energy (thermal) modes. Figure 7-8 shows the 

velocity field at the five stages explained above depicting the role of kinetic energy in the 

material. The initial part, i.e. Stage 1, of the curve with zero slope represents the small 

rise in internal energy during the time taken by the shock to reach lower surface of void. 

At stage 2, the material at the bottom surface of void starts accelerating resulting in 

increase in the kinetic energy as seen from the negative slope shown in Figure 7-7.  As 

explained earlier, the material resists this plastic deformation resulting in a modest 

increase in temperature and hence a rise in the internal energy. This can be seen in stage 3 

where the slope of the curve decreases in magnitude (Figure 7-7). The stage 4 is seen 

where there is a sharp rise of slope due to conversion of the kinetic energy to the internal 
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energy causing abrupt rise in temperature and pressure. This happens when the lower 

void surface impinges on the upper surface. Finally at stage 5, the void collapses fully 

resulting in the culmination of the energy redistribution behavior. It can also be seen from 

Figure 7-8 that the collapse of void results in a secondary cylindrical shock wave. This 

wave can interact with the voids downstream and can either enhance or diminish the 

intensity of the shock depending on the location of downstream void. This will be 

examined in the section below on the interaction of multiple voids. 

7.6.3 Comparison  

The results for the collapse of single void were also compared with experiments. 

In a recently published paper in the Journal of Fluid Mechanics Swantek et al.[89] have 

performed experimental studies for the void collapse phenomenon in a mixture of agarose 

and glycerol gradient buffer. These studies were done for the void sizes of 3mm. The 

voids were modeled as a cylindrical tube which is the key modeling assumption in the 

present 2D study was well and therefore the basis for comparison with experiments is 

substantial. The key observations made in experiments for a collapse of single void are 

compared to computational results and can be summarized as follows: 

  During the early stage of collapse the region upstream of the void has a velocity 

significantly greater than the free stream velocity. This observation can be 

corroborated by stage 2 shown in Figure 7-8, where the velocity is ~1250m/s, 

more than twice the value of free stream velocity. The magnitude of the vertical 

component of the velocity approaches more than three times the magnitude of free 

stream velocity (500 m/s) before the collapse of the void as observed in 

experiments. This can be seen in stage 3 of Figure 7-8. 

 A shielding region of zero velocity downstream the void is shown in (stage 1- 

stage 3) Figure 7-8 and is in agreement with experiment. This happens due to the 

diffraction of the shock wave around the void leaving the immediate downstream 
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region with zero velocity. The results for normalized void diameter with 

normalized collapse time were also compared and are shown in Figure 7-10. The 

initial period of acceleration corresponding to normalized time of 0.25 as 

observed in Figure 7-10 was in good agreement with the results of Swantek et al. 

 In the present work, the impact speeds are high enough so that the void collapse 

phenomenon is totally hydrodynamic. Therefore the void collapse times should be 

comparable to Rayleigh collapse times[90] for a bubble. Rayleigh defined the 

time of collapse for a spherical bubble, tc in terms of its radius R, the pressure at 

infinity P∞ and the internal pressure Pv as 

            
0.5

c
v

t 0.915 R
P P

 
  

 
                                                                                    (7.3) 

Johnsen et al.[91] have observed the time of collapse of a bubble for a pressure    

ratio of 714. It was observed that shock collapse times are one unit time greater 

than the  Rayleigh collapse time[89, 91]. Rayleigh collapse times[90] for three 

different speeds (500m/s, 1000m/s and 1500 m/s) were compared with void 

collapse times from current simulations. Figure 7-11 shows that the void collapse 

times are one time unit higher than the Rayleigh collapse time which is in good 

agreement with [89] and [91]. This can be because of the plasticity effects and 

due to the inclusion of shock passage times in void collapse times. It is also 

shown in Figure 7-11 that void collapse time without shock inclusion time 

coincides with Rayleigh line. 
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7.7 Multiple voids  

7.7.1 Inline Voids 

 The conventional notion of void-void interactions in a shocked heterogeneous 

material is that in a field of voids, the collapse of one void will led to strong pressure 

waves and temperature pulses which will lead to more intense collapse of the surrounding 

voids. Thus, voids are pictured to obtain a better understanding of what happens when 

shocks interact with multiple voids, first the behavior of two inline tandem voids in a 

two-dimensional setting is examined. As it was shown in the above cases, a secondary 

shock wave emanates from the point of collapse and can affect the load imposed on the 

voids downstream.  To study the effect of mutual separation and position of two voids in 

an otherwise homogeneous material, the gap (G) between voids was varied from0.5 D to 

2D, where D is the diameter of a void. 

For  G= 0.5D, the first (i.e. upstream) void behaved in a similar manner as a 

single void,  but the results for the second void were counterintuitive as there was no 

further increase in maximum temperature following its collapse( Figure 7-12 and Figure 

7-14). Moreover, the downstream void collapsed with much lower temperature compared 

to upstream void as shown in Figure 7-14. This can be due to shielding of the 

downstream void. As seen from Figure 7-13, the velocity immediately above the 

upstream void is close to zero even at the later stages of its collapse. This results in 

complete shielding of downstream void from incoming shock wave. The downstream 

void is not exposed to any flow until the upstream void has collapsed. A reduced 

interaction of downstream void with the incident shock wave results in a much lower 

collapse temperature. This is the ―shielding‖ effect that is also observed in the 

experiments of Swantek et al. 

The other interesting result from the computations   is the difference in the 

interface evolution for tandem voids. The interface evolution of the upstream void is 
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similar to the case shown in section 7.6.2 for a single void, with the void being 

compressed uniformly under the influence of shock loading. On the other hand, the 

second void collapses in a pinching fashion as shown in Figure 7-16. The velocity field in 

Figure 7-17 clearly shows that the upstream void is under a uniform shock compression 

compared to the downstream void, which momentarily interacts with a high speed jet 

formed during the collapse of upstream void.  The complex velocity field generated due 

to collapse of the upstream void interacts in an entirely different manner as it has a high 

speed jet impinging onto the downstream void. 

The rise in temperature due to hydrodynamic impact of the second void was lower  

than that of the first void for small gaps between the voids, but reached the same value as 

for a single void as the inter-void gap was increased as shown in Figure 7-14.  The 

variation of energy distribution for inline voids is shown in Figure 7-15. It can be seen 

that the void arrangement with G=0.5D did not have sharp rise in total internal energy 

during the collapse of downstream void. This is due to the lower value of temperature 

during the collapse of downstream void. Swantek et al.[89] also studied inline tandem 

voids with G=D. The key experimental observation in their case was also related to 

shielding of the downstream void due to the presence of the upstream one.  From the 

present computations, it is observed that the velocity value is higher in the inter-void 

region (Figure 7-17) compared to free stream velocity. A comparison of velocity contours 

at selected cross-sections: one diameter above the centerline, at the centerline and one 

diameter below the centerline are shown in Figure 7-18. It can be seen in Figure 7-18 that 

the velocity field at the center line is a maximum in the inter-void region which is in good 

agreement with experiment[89]. 

7.7.2 Offset Voids 

As discussed above the main goal of this study is to understand the behavior of 

shock loading of a HMX material with randomly placed many voids. While the above 
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section dealt with inline voids, the offset setting can be one of the arrangements among 

any two voids in a random arrangement.  The inline voids separated with G=0.5D 

discussed above were offset with a distance (Go) varying from D to 2.5D. Here Go is the 

horizontal (offset) distance between the centers of two voids. When the voids are in an 

offset condition as opposed to inline, since the downstream void is not in the direct path 

of the hydrodynamic jet emanating from the first void, the temperature rise due to 

collapse of second void is higher than any of the inline cases shown above. The setup and 

profile of maximum temperature for these cases is shown in Figure 7-19.  The variation 

of energy distribution in domain with time is shown in Figure 7-22. 

It is observed that initially, as Go is increased the downstream void collapsed with 

a higher temperature. But for Go>1.375D the value of maximum temperature started to 

fall as shown in Figure 7-20 and Figure 7-21. As the gap is increased further, the 

downstream void has no influence of upstream void and behaves as a single void. This 

happens for Go=2.5D. The enormous rise in temperature of downstream void in the case 

of 2D>Go>1.125D is due to both uniform compression and due to the effect of a 

secondary shock wave initiated due to the collapse of the  upstream void. In the offset 

setting, the downstream void is not shielded by the upstream void and is compressed 

uniformly by the planar shock wave from one side, as shown in Figure 7-23. While that 

process is going on, the high speed secondary shock wave due to collapse of the upstream 

void compresses the downstream void in the direction of the offset as shown by velocity 

vector field in Figure 7-24. This can also be seen from the evolution of the void interfaces 

(Figure 7-25).The two processes are the key reason for the enormous rise in temperature 

for the offset arrangement. 

7.7.3 Voids at 10%  Volume Fraction of HMX 

As was shown in the previous cases, the interaction between two voids in an 

otherwise homogeneous matrix can lead to a range of responses of a given void 
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depending on its position relative to other voids. Inline voids can lead to shielding effects 

while offset voids can lead to enhancement of the collapse phenomenon due to the 

combination of the incident shock and shocks reflected from other voids. In this section, 

we examine the effect of collections of voids    accounting for a range of void volume 

fraction (10%-25%) distributed randomly in a homogeneous HMX material. The initial 

loading velocity of 500 m/s is used for all the cases. The first simulation is done to 

incorporate voids randomly at 10% void volume fraction. The domain size is 100 µm X 

100 µm with a uniform grid size of 0.1 µm. This level of resolution corresponds to 

approximately 100 mesh points along the void diameter. The parallel version of code was 

used to reduce the computational time, details of which are given in CHAPTER 4. A total 

of 24 processors were used to decompose the computational domain. The initial domain 

decomposition with embedded voids represented as levelsets is shown in Figure 7-26. 

Figure 7-27 shows the initial configuration of voids with the voids being numbered from 

1-10, in order to track the temperature of each void individually during collapse The 

maximum temperature peaks corresponding to numbered voids and variation of energy 

distribution are shown in Figure 7-27and Figure 7-28 respectively. 

The results shown in the above sections for inline and offset arrangements of two 

voids are useful in understanding the behavior of the voids in the random arrangement by 

observing the relative position of voids and the corresponding peaks in maximum 

temperature during their collapse, as shown in Figure 7-27. The void 1 and void 2 

collapse just as in a single void case; void 3 collapses with a temperature slightly lower 

than single void case. The offset effect observed in the previous section can be seen in the 

collapse of void 4 and void 5, which collapse with a significantly higher temperature. The 

void 6 which is shielded by void 4 collapses with a lower temperature demonstrating the 

shielding effect. The offset effect can be seen again in the collapse of void 7 and void 10. 

The void 8 which has G~2D from void 5 collapses with the same temperature as void 5. 

The same scenario is observed for void 9 which has G~2D from void 7.  
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For the above case, from Figure 7-28,  the ratio of the internal energy to the 

kinetic energy can be seen to decrease before the collapse of void 1 and void 2 due to 

increase in velocity of material at the lower surface of voids. But the internal energy 

increases after the collapse of void 1 and void 2 due to hydrodynamic impact which 

raises the temperature and pressure. As the void collapse is a local phenomenon, the 

global energy distribution does not give a clear picture of the response of the material 

with increase in number of voids. As observed for all the voids, the slope of the curve 

decreases with increase in the kinetic energy before the collapse of void but again 

switches sign due to the combined effect of plastic work and hydrodynamic impact; 

however these changes are attenuated after the collapse of the first few voids due to the 

complex interaction of shock fronts and the energy being released by the various voids 

nearly simultaneously. It can also be seen that the after the collapse of last void (void 10), 

the ratio of the internal energy to kinetic energy is close to 1. This indicates that the 

material is behaving as a nearly homogeneous (but porous) material. This nearly 

homogeneous behavior however masks the highly localized excursions of the temperature 

in the material, specifically at the void collapse sites. In terms of the run-up to detonation 

therefore the homogenized thermal energy picture does not capture the local hot spot 

formation; these hot spots can initiate chemical reactions locally and the accumulated 

effects of these reaction fronts can lead to the formation of a detonation front leading to 

initiation. 

The temperature field corresponding to two different times (18 ns and 32 ns) is 

shown in Figure 7-29. The temperature field clearly shows the local hot spots where the 

temperature is much higher compared to bulk temperature of the material.  

7.7.4 Voids at 15%-25% Volume Fraction of HMX 

For higher volume fraction, the observable maximum temperature is observed to 

be highly dependent on the relative position of two voids in the matrix and not on the 
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overall volume fraction; all the cases had at least one void which collapsed within the 

range of 1600 to 1800 K (Figure 7-31, Figure 7-33 and Figure 7-35). The comparison of 

maximum temperature achieved in given sample of HMX with variation of void volume 

fraction is also shown in Figure 7-36 . This clearly depicts that the maximum temperature 

achieved in a given HMX sample is independent of void volume fraction and is more 

dependent on different inline and offset configurations of voids locally.  

However, the cases with higher volume fraction had many voids collapsing with 

temperatures less than 1000 K. This is due to increased shielding effect with increase in 

void volume fraction. The energy distribution as measured by the ratio of total internal 

energy to total kinetic energy gets close to one with increase in number of voids as shown 

in Figure 7-31, Figure 7-33 and Figure 7-35 .A comparison of energy distribution for 

different volume fractions is also shown in Figure 7-37(a) indicating the material 

behavior as homogeneous till the collapse of last void.  As can be seen in Figure 7-30, 

Figure 7-32 and Figure 7-34 void collapse is a local phenomenon with higher 

temperatures being observed only in the vicinity of voids. The temperature rise in the 

region away from voids is similar to the temperature rise from shock heating of a 

homogeneous material.    

To explain the overall study, two plots showing the variation of total internal 

energy and total kinetic energy with void fraction are shown in Figure 7-38 and Figure 7-

39 respectively. It can be seen from Figure 7-38(a) that increase in porosity results in 

weakening in strength of shock as the shock wave passage times for a given sample 

increases. Figure 7-38(b) shows that for a given shock strength, the increase in porosity is 

making material more energetic with increase in thermal energy. The distribution of 

kinetic energy is shown in Figure 7-39(a) and Figure 7-39(b). The increase in total kinetic 

energy is also similar to increase in total internal energy till the collapse of last void. 

However the kinetic energy decreases sharply after the collapse of last void. 
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Conclusions and Future Work.  

This chapter applied the techniques developed in the thesis to a challenging 

problem in multimaterial dynamics, viz. the response of a porous material to shock insult. 

For the first time the dynamics of the void collapse process in the presence of a collection 

of void is studied computationally, carrying the computations beyond the collapse stage. 

Several important physical insights were obtained from this study, consistent with 

recently published experimental observations of the response of 2-dimensional void 

arrays in a model material. 

To gain an understanding of void interactions, two interacting voids were 

simulated, with the voids placed at various distances apart in an inline and offset fashion.  

It was found that the secondary shock wave generated from the collapse of an upstream 

void will not always have important consequence on voids downstream.  A counter-

intuitive result found in this study is that if the downstream voids are less than a diameter 

apart and are in line with the upstream void, the hot spot formed when the downstream 

void collapses will be weaker than that formed upon the collapse of the upstream void. 

This is due to the shielding effect of the upstream void on the downstream void, i.e. the 

incident shock wave tends to diffract around the upstream void and therefore the 

downstream void does not feel the full impact of the incident shock. The effect of lateral 

offset (with respect to the orientation of the incident shock) in void position is interesting 

as well.  The offset void setting showed that the secondary shock wave can have an 

intensifying effect leading to an increase in temperature (over that of an isolated void) 

upon collapse of the void downstream; this is because the downstream void is 

compressed by the incident shock as it is not shielded by the upstream void and it is also 

further compressed by the secondary shock wave generated due to collapse of the 

upstream void. This dual mode compression results in a significant rise of temperature in 

the case of offset voids compared to the inline tandem voids. 
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The understanding gained from the simulations of two interacting voids was 

useful in analyzing a system with many voids. The void behavior in the case of 10%-25% 

void volume fraction correlated very well with the behavior of the inline tandem voids 

and offset voids. It was observed that the increase in the void volume fraction had no 

influence on maximum temperature achieved in the HMX sample. However the increased 

shielding effect was observed with the increase in void volume fraction. The energy 

distribution represented by the ratio of total internal energy to total kinetic energy 

depicted the material to be nearly homogeneous till the collapse of last void. This was 

due to the localized nature of void collapse phenomenon which was masked in global 

picture of energy distribution. Overall the findings of this study clearly showed that the 

void collapse is a local phenomenon and the traditional models based on continuum 

theories where the microstructural heterogeneities of the material is ignored or 

homogenized will not give the correct picture. The void-void interactions studied here 

clearly showed that these local events can have enormous influence on material behavior 

at macro level. The insights obtained from the present work are significant and novel and 

advance the understanding of the mechanics of void collapse when there are multiple 

voids interacting with shock loadings.  
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Table 7-1. Comparison with experimental and computational results for the final jet velocity and 
the final jet diameter. 

 

 Jet velocity (m/s) Jet diameter(cm) 

Current Results(Computation) 2600 0.58 

Cooper et.al.(Computation) 2640 0.48 

Mali et.al.(Experimental) 2700 0.6 
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Figure 7-1. Computational results of Mali et al. Experiment a) Time history of jet profile 
b) Velocity contours of jet. 
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Figure 7-2. Initial Domain setup showing cylindrical void in HMX matrix. 
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Figure 7-3.  Grid-refinement study showing maximum temperature in the domain for 
collapse of single void with initial loading velocity of 500 m/s. 
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Figure 7-4. Grid-refinement study showing energy distribution in the domain for collapse 
of single void with initial loading velocity of 500m/s. 
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Figure 7-5. Variation of maximum temperature with time for homogeneous and 
heterogeneous HMX material with initial loading velocity of 500 m/s. 
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Figure 7-6. Different stages showing the variation of temperature in a heterogeneous 
HMX material. 
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Figure 7-7. Variation in energy distribution with time in homogeneous and heterogeneous 
HMX material with initial loading velocity of 500 m/s. 
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Figure 7-8. Different stages showing variation in velocity for heterogeneous HMX 
material. 
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Figure 7-9. Evolution of the interface representing a single void in the HMX material. 
The shock loading velocity is 500m/s. 
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Figure 7-10. Normalized time vs. Normalized diameter for single cylindrical void. The 
results from current computation are compared with Swantek et al.[89]  
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Figure 7-11. Normalized collapse time 0tc
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Figure 7-12. Snapshots of temperature field for inline tandem voids with G=0.5D for 
initial loading velocity of 500 m/s. 
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Figure 7-13.Snapshots of velocity vectors for inline tandem voids with G=0.5D for initial 
loading velocity of 500 m/s. 
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Figure 7-14. Variation in maximum temperature of domain with time for tandem inline 
voids in cylindrical setting with initial loading velocity of 500 m/s. 
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Figure 7-15. Variation in energy distribution of domain with time for tandem inline voids 
in cylindrical setting with initial loading velocity of 500 m/s. 
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Figure 7-16. Evolution of void collapse in case of inline tandem voids with G=0.5D with 
initial loading velocity of 500 m/s: a) upstream void b) downstream void 

(a) 

(b) 
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Figure 7-17. Snapshots of velocity vectors for inline tandem voids with G=D for initial 
loading velocity of 500 m/s. 
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Figure 7-18. Velocity profile for inline tandem voids with G=D. The profiles are obtained 
at three cross-sections: above the centerline (⦁), centerline (∆) and below the centerline 
(□). 
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Figure 7-19. Variation in maximum temperature of domain with time for offset 
arrangement with initial loading velocity of 500 m/s. 
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Figure 7-20. Variation in maximum temperature of domain with time for offset 
arrangement with initial loading velocity of 500 m/s. Plot shows the time during the 
collapse of downstream void. 
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Figure 7-21. Variation in maximum temperature of domain with time for offset setting. 
Here Go is the horizontal gap between the centers of the voids. The plot shows the 
variation of maximum temperature with Go varying from D to 2.5D. 
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Figure 7-22. Variation in distribution of energy in domain with time for offset 
arrangement with initial loading velocity of 500 m/s. 
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Figure 7-23. Snapshots of temperature field for offset arrangement with Go=1.375D for 
initial loading velocity of 500 m/s. 
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Figure 7-24. Snapshots of velocity vectors for offset arrangement with Go=1.375D for 
initial loading velocity of 500 m/s. 
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Figure 7-25. Evolution of void collapse in case for offset arrangement with Go=1.375D 
for initial loading of 500 m/s: a) upstream void b) downstream void. 
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Figure 7-26. Load balanced domain decomposition created using METIS for 10 % 
volume fraction a) Initial domain consisting of 24 processors with embedded voids b) 
Voids embedded using level set function in the initial domain 
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Figure 7-27.Voids as 10% volume fraction in HMX material a) Initial configuration b) 
Variation of maximum temperature in domain with time. Numbers (1-10) on peaks 
correspond to collapse of numbered voids in Initial configuration. 

 

 



180 
 

 

 

 

 
Figure 7-28. Variation of energy distribution with time for domain having voids as 10% 
volume fraction. Numbers (1-10) correspond to collapse of numbered voids in Initial 
configuration  
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Figure 7-29. Snapshots of temperature field for voids as 10% volume fraction in HMX 
material at two instants. (a) 18µs (b) 22µs. 
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Figure 7-30. Voids as 15% volume fraction in HMX material a) Initial configuration b) 
Snapshots of temperature field at 32ns. 

(b) 

(a) 
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Figure 7-31. Voids as 15% volume fraction in HMX material a) Variation in maximum 
temperature with time b) Variation in energy distribution with time. 
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Figure 7-32. Voids as 20% volume fraction in HMX material a) Initial configuration b) 
Snapshots of temperature field at 38ns. 
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Figure 7-33. Voids as 20% volume fraction in HMX material a) Variation in maximum 
temperature with time b) Variation in energy distribution with time. 
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Figure 7-34. Voids as 25% volume fraction in HMX material a) Initial configuration b) 
Snapshots of temperature field at 40 ns. 
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Figure 7-35. Voids as 25% volume fraction in HMX material a) Variation in maximum 
temperature with time b) Variation in energy distribution with time. 

 

 

(a) 

(b) 



188 
 

 

 

 

 

 

  
Figure 7-36. Variation of maximum temperature in a given HMX sample as a function of 
void volume fraction. The shock loading velocity is 500 m/s in all the cases. 
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Figure 7-37.  Variation of energy distribution for different HMX samples with void 
volume fraction ranging from 0% (Homogeneous) to 20%. The shock loading velocity is 
500 m/s in all the cases. a) Variation with total time b) Variation with normalized time. 
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Figure 7-38. Variation of total internal energy for different HMX samples with void 
volume fraction ranging from 0% (Homogeneous) to 20%. The shock loading velocity is 
500 m/s in all the cases. a) Variation with total time b) Variation with normalized time 
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Figure 7-39. Variation of total kinetic energy for different HMX samples with void 
volume fraction ranging from 0% (Homogeneous) to 20%. The shock loading velocity is 
500 m/s in all the cases. a) Variation with total time b) Variation with normalized time. 
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CHAPTER 8 

 CONCLUSIONS AND FUTURE WORK 

8.1 The Contributions of This Thesis 

A Cartesian grid-based three dimensional solver for solving impact, penetration 

and fragmentation type problems is developed. This work has addressed challenging 

tasks, specifically 

1. The formulation and implementation of Ghost Fluid method in three dimensions 

was one of the most challenging tasks of this work. The boundary conditions were 

devised using a physical constraint on the deviatoric stress. The method 

developed was demonstrated with numerous examples of impact, penetration and 

fragmentation problems. 

2. The efficient handling of level-sets in a parallel processing framework was one of 

the key contributions of this work. The narrowband method[51] used in this work 

led to a peculiar situation of corruption of level set field at the processor 

boundaries. This happened during the passage of an embedded object from one 

processor to another.  An efficient algorithm to handle the level set entry was 

formulated and implemented. Various numerical examples in the multiprocessor 

environment for both two and three dimensions were shown to corroborate the 

successful implementation. 

3. The parallelization of flow solver was done using localization of data. The current 

implementation strictly avoided any array sizes corresponding to global size of 

the problem. The higher order numerical schemes used in this work required 

multiple layers of ghost cells. An intelligent stencil mapping algorithm was used 

to construct the ghost layer. This algorithm avoided the traditional way of 

constructing ghost layer using recursion resulting in saving of computational time. 
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4. The developed code was also used to understand the mechanism of void collapse 

in heterogeneous media. This problem is important both from a performance and 

hazard standpoint in designing energetic materials for munitions-type application. 

For the first time the dynamics of the void collapse process in the presence of a 

collection of void is studied computationally, carrying the computations beyond 

the collapse stage. Several important physical insights were obtained from this 

study which included the local void-void interactions to give the overall picture of 

the material behavior at macro level. 

 

The proposed method shows good agreement with other numerical techniques and 

experimental results for a wide range of high speed multimaterial interaction problems 

covering the range of impact, penetration, ejection, collapse, extrusion and fragmentation 

type problems.  In each case careful benchmarking with other numerical results and 

where available with experimental data has been performed, demonstrating that the 

technique produces excellent agreement with the available data. In addition, the three-

dimensional results shown in this work are first of a kind in an Eulerian framework. This 

places the current facility at the leading edge of techniques to solve the class of high-

speed multimaterial interaction problems of the type targeted by the computer code. The 

capabilities of the present code are rivaled to some extent only by large scale computer 

codes developed over many decades at national laboratories such as Los Alamos and 

Sandia Labs. In fact, a survey of the open literature on advance hydrocodes indicates that 

the current capabilities may even outperform rival codes in accuracy, versatility and 

scope. 
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8.2 Future Work and Extensions 

The framework developed in this work can be used to explore many directions. 

The work here can be extended in following ways: 

1. The major emphasis of this work was to solve large scale three dimensional 

multimaterial problems. Due to the complexity of these problems, the scaling of 

the computational code was not performed. However the computational code was 

used to run on hundreds of processor with acceptable computational timings. The 

foremost task should be to perform a rigorous scaling analysis on 512 cores as a 

first step towards terra scale and eventually peta scale computing. 

2. The local mesh refinement which is the part of serial version of computational 

code has to be incorporated for parallel computations. This is a challenging task 

and efforts in directions are currently underway.  

3. The addition of reactive mechanics to existing framework can help in better 

understanding of energetic materials. The incorporation of chemical reactions 

should be easy to accommodate in this framework as it will just lead to addition 

of species equations and source terms [92]. 

4. The results for fragmentation reported in this thesis were without a damage 

model. The task of replacing numerical damage with a physical damage model is 

going on. This will help in doing simulations involving highly fragmented 

geometries and cases with fragmentation events leading to formation of debris. 

5.  It is shown in this work that individual components of the heterogeneous medium 

can be resolved in computations. The techniques for representing the energetic 

material microstructure have evolved [93], so that it is now possible to visualize 

(through x-ray and gamma-ray CT (computed tomography  for example) the 

detailed microstructure of the material. This work is well established and was 

demonstrated in Ph.D. thesis of Seth Dillard[94]. The three dimensional solver 

established in this work can read in details of those meso-structures (in terms of 
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level set functions) to study the performance as well as hazardous effects of a 

given energetic material. This exercise of understanding a realistic energetic 

material can be another task for future. 

6. The data intensive study of void collapse phenomena can be used to train an 

artificial neural network (ANN). This research on the same line was accomplished 

in the thesis work of Chris Lu[95] where data on the forces experienced by 

particles in a cloud are collected from DNS using a compressible Eulerian solver 

and provided to an artificial neural network (ANN). The simulations were 

performed for a range of control parameters, such as Mach number, particle radii, 

particle-fluid density ratio, position, and volume fraction. The same idea can be 

extended to study the voids for a range of void sizes, loading velocities, void 

volume fraction, and void locations. The trained ANN can be used for computing 

the macro-scale flow behavior in a sample of energetic material. This work is 

currently under development. 
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