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ABSTRACT

The structure and dynamics of the flow field created by a plunging flat plate airfoil

are investigated at a chord Reynolds number of 10,000 while varying plunge amplitude and

Strouhal number. Digital particle image velocimetry measurements are used to character-

ize the shedding patterns and the interactions between the leading and trailing edge vortex

structures (LEV and TEV), resulting in the development of a wake classification system

based on the nature and timing of interactions between the leading- and trailing-edge vor-

tices. The convection speed of the LEV and its resulting interaction with the TEV is primar-

ily dependent on reduced frequency; however, at Strouhal numbers above approximately

0.4, a significant influence of Strouhal number (or plunge amplitude) is observed in which

LEV convection is retarded, and the contribution of the LEV to the wake is diminished. It is

shown that this effect is caused by an enhanced interaction between the LEV and the airfoil

surface, due to a significant increase in the strength of the vortices in this Strouhal num-

ber range, for all plunge amplitudes investigated. Comparison with low-Reynolds-number

studies of plunging airfoil aerodynamics reveals a high degree of consistency and suggests

applicability of the classification system beyond the range examined in the present work.

Some important differences are also observed.

The three-dimensional flow field was characterized for a plunging two-dimensional

flat-plate airfoil using three-dimensional reconstructions of planar PIV data. Whereas the

phase-averaged description of the flow field shows the secondary vortex penetrating the

leading-edge shear layer to terminate LEV formation on the airfoil, time-resolved, instan-
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taneous PIV measurements show a continuous and growing entrainment of secondary vor-

ticity into the shear layer and LEV. A planar control volume analysis on the airfoil indicated

that the generation of secondary vorticity produced approximately one half the circulation,

in magnitude, as the leading-edge shear layer flux. A small but non-negligible vorticity

source was also attributed to spanwise flow toward the end of the downstroke.

Preliminary measurements of the structure and dynamics of the leading-edge vor-

tex (LEV) are also investigated for plunging finite-aspect-ratio wings at a chord Reynolds

number of 10,000 while varying aspect ratio and root boundary condition. Stereoscopic

particle image velocimetry (SPIV) measurements are used to characterize LEV dynamics

and interactions with the plate in multiple chordwise planes. The relationship between the

vorticity field and the spanwise flow field over the wing, and the influence of root boundary

conditions on these quantities has been investigated. The viscous symmetry plane is found

to influence this flow field, in comparison to other studies [82, 66, 15], by influencing tilting

of the LEV near the symmetry wall, and introducing a corewise root-to-tip flow near the

symmetry plane. Modifications in the root boundary conditions are found to significantly

affect this. LEV circulations for the different aspect ratio plates are also compared. At the

bottom of the downstroke, the maximum circulation is found at the middle of the semi-span

in each case. The circulation of the sAR = 2 wing is found to significantly exceed that of

the sAR = 1 wing and, surprisingly, the maximum circulation value is found to be indepen-

dent of root boundary conditions for the sAR = 2 case and also closely matched that of the

quasi-2D case.

Furthermore, the 3-D flow field of a finite wing of sAR = 2 was characterized using
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three-dimensional reconstructions of planar PIV data after minimizing the gap between the

plunging plate and the top stationary wall. The LEV on the finite wing rapidly evolved into

an arch structure centered at approximately the 50% spanwise position, similar to previous

observations by Calderon et al. [16], and Yilmaz and Rockwell [82]. At that location,

the circulation contribution due to spanwise flow was approximately half that of the shear

layer flux because of the significantly greater three-dimensionality in the flow. Increased

tilting at the 25% and 75% spanwise locations suggests increasing three-dimensionality at

those locations compared to the symmetry plane of the arch (50% spanwise location). The

deviation between the LEV circulation and integrated convective vorticity fluxes at the 50%

spanwise location suggests that entrainment of secondary vorticity plays a similar role in

regulating LEV circulation as in the 2D case. While the wing surface flux of vorticity could

not be measured in that case, the significant difference between LEV circulation and the

known integrated fluxes is comparable to that for the 2D plate, suggesting that a significant

boundary flux of secondary vorticity may exist.

vi



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Prior Research on Two-Dimensional Wakes . . . . . . . . . . . . . . 3
1.1.1 Wakes of 2D Oscillating Foils . . . . . . . . . . . . . . . . . 3
1.1.2 Vortex Interaction with a Wall . . . . . . . . . . . . . . . . . 10

1.2 Prior Research on Three-Dimensional Wakes . . . . . . . . . . . . . . 16
1.2.1 Wakes of 3D Oscillating Foils . . . . . . . . . . . . . . . . . 16
1.2.2 LEV Structure of finite-AR wings . . . . . . . . . . . . . . . 22
1.2.3 Spanwise Flow Within Shed Vortices . . . . . . . . . . . . . . 24

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4 Overview of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

CHAPTER

2 EXPERIMENTAL METHODOLOGY . . . . . . . . . . . . . . . . . . . . 30

2.1 Model Geometry and Kinematics . . . . . . . . . . . . . . . . . . . . 30
2.1.1 Parameter Space . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.2 Apparatus and Water Channel . . . . . . . . . . . . . . . . . 31
2.1.3 Root Boundary Conditions . . . . . . . . . . . . . . . . . . . 33

2.2 Experimental Techniques . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.1 2-D Digital Particle Image Velocimetry (PIV) Setup . . . . . . 37
2.2.2 3-D Stereoscopic Digital PIV Setup . . . . . . . . . . . . . . 38
2.2.3 2-D Time-Resolved Digital PIV . . . . . . . . . . . . . . . . 41
2.2.4 2-D PIV Setup for 3-D Volume Reconstruction . . . . . . . . 41

2.2.4.1 Calibration . . . . . . . . . . . . . . . . . . . . . . 43
2.2.4.2 3-D Volume Reconstruction . . . . . . . . . . . . . 45

2.2.5 Surface Pressure Measurements . . . . . . . . . . . . . . . . 49

3 FLOW EVOLUTION FOR A NOMINALLY 2-D PLUNGING AIRFOIL . . 53

3.1 Vorticity Distributions Near the Airfoil . . . . . . . . . . . . . . . . . 53
3.1.1 Overview of Flow Evolution: S t = 0.2 . . . . . . . . . . . . . 55
3.1.2 S t = 0.1 and 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1.3 S t ≥ 0.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Interaction Between the LEV and the Airfoil Surface . . . . . . . . . . 75
3.3 Advection of Leading Edge Vortex Structures . . . . . . . . . . . . . 80

3.3.1 Leading Edge Vortex Trajectories . . . . . . . . . . . . . . . . 82

vii



3.3.2 The Physics Governing Vortex Trajectories . . . . . . . . . . . 84
3.4 Classification of Vortex Shedding Patterns . . . . . . . . . . . . . . . 87

3.4.1 Definition of Wake categories . . . . . . . . . . . . . . . . . . 89
3.4.2 Generalization of Wake Categories . . . . . . . . . . . . . . . 92

4 3-D ANALYSIS OF FLOW EVOLUTION AND VORTICITY TRANS-
PORT ON THE 2-D PLUNGING AIRFOIL . . . . . . . . . . . . . . . . . 96

4.1 Flow Volumetric Reconstruction . . . . . . . . . . . . . . . . . . . . 96
4.1.1 3-D Evolution of Flow Field . . . . . . . . . . . . . . . . . . 96
4.1.2 Validation of 3-D Volume Reconstruction . . . . . . . . . . . 97

4.2 Analysis of Vorticity Transport in the LEV . . . . . . . . . . . . . . . 103
4.3 Insights into the Effects of Parameter Variation . . . . . . . . . . . . . 110

5 FLOW EVOLUTION FOR A FINITE-AR PLUNGING WING . . . . . . . 112

5.1 Preliminary Vortex Dynamics on Finite-Aspect-Ratio wings . . . . . . 112
5.1.1 sAR = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.1.2 sAR=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Effect of Root Boundary Conditions . . . . . . . . . . . . . . . . . . 119
5.3 3-D Flow Evolution on the sAR = 2 Wing . . . . . . . . . . . . . . . 122
5.4 Vorticity Transport on the sAR = 2 Wing . . . . . . . . . . . . . . . . 129

6 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . 132

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

viii

A UNCERTAINTY ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . 138
B 3-D INTERPOLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



LIST OF FIGURES

Figure

1.1 Visualization of vortex rings at downstream position X/D ≈ 9 for (a) T̂ = 2,
(b) Tˆ = 3.8, and (c) Tˆ = 14.5 (Adopted from Gharib et al.). . . . . . . . . . . . . . . . . .       5

1.2 Sketches of the wake of a plunging airfoil for various kh values. Note that h
is nondimensional amplitude of oscillation, and kh is nondimensional plunge
velocity which is proportional to St (Adopted from Lai and Platzer).  . . . . . . 7

1.3 Asymmetric wake produced by a plunging airfoil for St = 0.48, and ho/c=0.12
(Adopted from Jones et al.). . . . . . . . . . . . . . . . . . . . . . . . . . . .        8

1.4 Qualitative results for all simulations, based on k and kh. per=periodic; aper=
aperiodic; sym=symmetric; asym=asymmetric; LEV shed=LEV shed into flow;
LEV diss=LEV dissipated by interaction with the leading edge/nascent LEVs;
LEV circ=LEV circumnavigates the leading edge and is shed on the other side
(Adopted from Lewin and Haj-Hariri). . . . . . . . . . . . . . . . . . . .  .  .   9

1.5 A plot showing the dependency of wake structures on S ta, S tc, and ho/c. Note
that S tc = k/2π and S ta = kh/2π . Open symbols represent the computation
results of Lewin and Haj-Hariri [43]. Solid symbols represent the Lua et al.
[46] results. (Adopted from Lua et al.) . . . . . . . . . . . . . . . . . . . . .    10

1.6    Wake  of  a  NACA-0012  airfoil  pitching  sinusoidally about 1/4-chord  point 
(Adopted from Koochesfahani). . . . . . . . . . . . . . . . . . . . . . . . .      11

1.7 Wake patterns as function of the Strouhal number and angle of attack for ho/c
= 1 (Adopted from Anderson et al.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         12

1.8 Schematic of stages of dynamic stall at high Reynolds number (Adopted from
Doligalski et al.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      14

1.9 Adopted from Rival et al. . . . . . . . . . . . . . . . . . . . . . . . . . .   .     15

1.10 Sketch of the flow structure behind a pitching and plunging wing of aspect ratio
3 (Adopted from von Ellenrieder et al.). . . . . . . . . . . . . . . . . . . .   .     17

1.11 Wake topology of an ellipsoidal foil of aspect ratio 2.55 at St = 0.6 (Adopted
from Dong et al.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   .     18

ix



1.12 Vortex skeleton and dye visualization of wakes for S/C = 0.54, A/S = 0.31,
ReC = 640, a,c) S t = 0.43, b,d) S t = 0.23; (Adopted from Buchholz). . . . . . . . . .      20

1.13 Wake structure visualized by the isosurfaces of q-criterion for Reo = 4000,
S to = 0.6, for self-propelled virtual swimmers: (A) mackerel swimming like a
mackerel (MM); (B) lamprey swimming like a mackerel (LM); (C) mackerel
swimming like a lamprey (ML); (D) lamprey swimming like lamprey (LL),
(Adopted from Borazjani et al.). . . . . . . . . . . . . . . . . . . . . . . .  .  .     21

1.14 Dye visualization of three-dimensional vortex formation, (Adopted from Yil-
maz and Rockwell). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   23

1.15 a) Iso-surface of computed phase-averaged total pressure at selected phases of
the plunging motion, b) Perspective view of phase-averaged three-dimensional
structure of arch-type vortex above heaving wing at φ = 225o, (Adopted from
Visbal).  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .  .  .   25

1.16 comparison between planforms for iso-surface of phase-averaged vorticity at
St=0.6, (Adopted from Calderon et al.).  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     26

2.1 Cross-sectional shape of the plunging plate. . . . . . . . . . . . . . . .  .  .  .  .   31

2.2 a) Aluminum rigid airfoil, b) Parts of the mechanism which holds the rigid airfoil. 32

2.3 Plunging plates with different aspect ratios. . . . . . . . . . . . . . . . . . . . 33

2.4 Top view of the scotch yoke mechanism. . . . . . . . . . . . . . . . . . . . . . 34

2.5 Two boundary conditions for the plunging plate with sAR = 2 with and without
root plate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Boundary condition 2: a) Surface plate with the mounting bracket outside of
the slot, b) Driving shaft in the slot of surface plate, c) Plunging plate with
driving shaft and holding bracket outside of the slot. . . . . . . . . . . . . . . . 36

2.7 Details of the airfoil and wing modified mounting bracket. . . . . . . . . . . . 36

2.8 Side view of the experimental configuration. The plate plunges in and out of
the page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.9 a) 14-bit Imager ProX 4 megapixel CCD camera, b) 200 mJ/pulse dual-cavity
Nd: YAG Laser used for PIV. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

x



2.10 a) Coordinate system b) Side view of the experimental configuration, the plung-
ing plate moves in and out of the page. . . . . . . . . . . . . . . . . . . . . . . 40

2.11 a) IDT NX4-S1 high speed camera, b) DPSS continuous waveform laser. . . . . 42

2.12 Imaging configuration for PIV measurements. (a) side view showing the setup
for acquiring images in vertical/transverse planes, (b) upstream view showing
the setup for acquiring images in horizontal planes. . . . . . . . . . . . . . . . 44

2.13 Calibration mechanism for 2-D PIV measurements for the 3-D volume recon-
struction. (a) side view of the mechanism, (b)top view of the mechanism, (c)
LaVision calibration plate type 20, (d) Stanchion cross clamps used to hold
horizontal and vertical shafts. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.14 Plan and side view of the parallel and transverse planes of 3-D reconstruction
by Robinson and Rockwell [54]. The coordinate system and the corresponding
velocity components are illustrated. . . . . . . . . . . . . . . . . . . . . . . . 48

2.15 a) Horizontal and vertical PIV planes, b) The flow volume reconstructed from
horizontal and vertical PIV planes. The orientation of the reconstructed data is
such that the laser-illuminated region is above the plate, and the plate casts a
shadow in the region beneath it. . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.16 Locations of pressure taps on the surface of the airfoil. A narrow spanwise
slice of the airfoil is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.17 a) Apparatus for determination of pressure measurement system frequency re-
sponse, b) step response of the Validyne DP-103 pressure transducer. Symbols
show the pressure transducer output signal, and the line shows the optimum
second-order model response. c) Bode diagram for the model response shown
in Fig. 2.17(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 Small uncertainty in circulation by taking average of 12, 25, 50, 75, and 100
images for circulation measurements. . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Evolution of spanwise vorticity with phase for S t = 0.2, h0/c = 0.3, k = 1.05. . 57

3.3 Evolution of spanwise vorticity with phase combined with velocity vector fields
for S t = 0.2, h0/c = 0.3, k = 1.05. . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Selected phases at S t = 0.2 for h0/c = 0.2, k = 1.57 (a and b) and h0/c = 0.4,
k = 0.785 (c and d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xi



3.5 Wake vorticity distributions downstream of the plate at φ = 135◦ for S t = 0.2.
(a) h0/c = 0.2, k = 1.57; (b) h0/c = 0.3, k = 1.05, (c) h0/c = 0.4, k = 0.785. . . 62

3.6 The vorticity distribution near the plate for S t = 0.1 and φ = 90◦. (a) h0/c =

0.2, k = 0.785; (b) h0/c = 0.3, k = 0.524; (c) h0/c = 0.4; k = 0.393. . . . . . . 64

3.7 Evolution of spanwise vorticity with phase for S t = 0.3, h0/c = 0.3, k = 1.57. . 65

3.8 Vorticity distributions for S t = 0.3 and a) h0/c = 0.2, k = 2.36; b) h0/c = 0.4,
k = 1.18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.9 Wake vorticity distributions for S t = 0.3 at φ = 135◦, for (a) h0/c = 0.2,
k = 2.36; (b) h0/c = 0.3, k = 1.57; (c) h0/c = 0.4, k = 1.18. . . . . . . . . . . . 67

3.10 Evolution of spanwise vorticity with phase for S t = 0.4, h0/c = 0.3, k = 2.09. . 69

3.11 Wake vorticity distributions for S t = 0.4, h0/c = 0.4, k = 1.57. . . . . . . . . . 71

3.12 Wake vorticity distributions for S t = 0.4 at φ = 135◦, for (a) h0/c = 0.2,
k = 3.14; (b) h0/c = 0.3, k = 2.09; (c) h0/c = 0.4, k = 1.57. . . . . . . . . . . . 72

3.13 Vorticity distributions at S t = 0.5, h0/c = 0.2, k = 3.93. . . . . . . . . . . . . 73

3.14 Wake vorticity distributions for S t = 0.5 at φ = 135◦, for (a) h0/c = 0.2,
k = 3.93; (b) h0/c = 0.3, k = 2.62 ; (c) h0/c = 0.4, k = 1.96. . . . . . . . . . . . 74

3.15 Vorticity distribution at S t = 0.6, for (a) h0/c = 0.2 near the panel and (b) in
the wake, and (c) h0/c = 0.4 near the panel and (d) in the wake. . . . . . . . . . 76

3.16 A time sequence of the averaged vorticity contours for ho/c = 0.3, S t = 0.3,
k = 1.57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.17 A time sequence of the instantaneous vorticity contours for ho/c = 0.3, S t =

0.3, k = 1.57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.18 LEV trajectories as a function of a) phase angle and b) dimensionless time.
The line in (b) indicates the free-stream velocity. . . . . . . . . . . . . . . . . 83

3.19 LEV location at φ = 270◦ vs. (a) Strouhal number, (b) Reduced frequency. . . . 85

3.20 a) LEV circulation at φ = 90◦ as a function of Strouhal number, b) LEV con-
vection velocities computed using Equation 3.2, (c) the same data plotted as
a function of reduced frequency, d) LEV convection velocities estimated from
measured vortex trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xii



3.21 Wake pattern classification as function of Strouhal number, plunge amplitude,
and reduced frequency. Symbol shapes indicate category number: category 1
(N), category 2 (�), category 3 (_), category 4 ( ), and a large open square as-
sociated with any of these symbols indicates a deflected wake. Black symbols
represent the present results, gray symbols represent the results of Lua et. al.
and open symbols represent the results of Lewin and Haj-Hariri. . . . . . . . .  91

4.1 Evolution of the vorticity field on the central portion of the nominally two-
dimensional plunging plate at S t = 0.2, h0/c = 0.3, k = 1.05, a) φ = −90◦ and
b) φ = −45◦. First row: isometric view, second row: side view, third row: top
view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   98

4.2 Evolution of the vorticity field on the central portion of the nominally two-
dimensional plunging plate at S t = 0.2, h0/c = 0.3, k = 1.05, a) φ = 0◦ and b)
φ = 45◦. First row: isometric view, second row: side view, third row: top view. 99

4.3 Evolution of the vorticity field on the central portion of the nominally two-
dimensional plunging plate at S t = 0.2, h0/c = 0.3, k = 1.05, a) φ = 90◦ and
b) φ = 135◦. First row: isometric view, second row: side view, third row: top
view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 Evolution of the vorticity field on the central portion of the nominally two-
dimensional plunging plate at S t = 0.2, h0/c = 0.3, k = 1.05, a) φ = 180◦ and
b) φ = 225◦. First row: isometric view, second row: side view, third row: top
view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 The percentage of δUy as shown in equation 4.1 for the nominally two-dimensional
plunging plate at S t = 0.2, h0/c = 0.3, k = 1.05, φ = 45◦, with superimposed
contours of spanwise vorticity (black lines- solid lines show positive and dash
lines show the negative vorticity) at different spanwise locations. . . . . . . . . 102

4.6 The first collomn show the RHS of equation 4.2 and the second collomn show
LHS of equation 4.2 for the nominally two-dimensional plunging plate at S t =

0.2, h0/c = 0.3, k = 1.05, φ = 45◦. First row: z/s = 37.5%, second row:
z/s = 50%, and third row: z/s = 62.5%. . . . . . . . . . . . . . . . . . . . . . 104

4.7 Planar control volume in which the vorticity transport analysis was conducted. 105

4.8 Vorticity field, surface pressure distribution, and pressure gradient on the top
surface of the two-dimensional plate at (a) φ = −45◦ and (b) φ = 0◦. . . . . . . 106

4.9 (a) Integrated boundary vorticity fluxes and vorticity tilting terms, (b) the sum
of the integrated fluxes vs. LEV circulation throughout the downstroke of the
two-dimensional plate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xiii



4.10 Isocontours of spanwise velocity as a fraction of the free-stream velocity (filled
color contours-red indicates root-to-tip and blue indicates tip-to-root flow) with
superimposed contours of spanwise vorticity (black lines- solid lines show pos-
itive and dash lines show the negative vorticity) at different spanwise locations:
a) z/s = 37.5%, b) z/s = 43.75%, c) z/s = 50%, d) z/s = 56.25%, c) z/s = 62.5% . 109

4.11 Flux analysis based on phase-averaged flow field. First row: ho/c = 0.2, second
row: ho/c = 0.3, third row: ho/c = 0.4; first colomn: S t = 0.2, second column:
S t = 0.3, third column: S t = 0.4. . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1 Vorticity field of sAR = 2 wing at φ = 45◦ at S t = 0.2, h0/c = 0.3 . . . . . . . . 115

5.2 Vorticity field of sAR = 2 wing at φ = 90◦ at S t = 0.2, h0/c = 0.3 . . . . . . . . 115

5.3 Vorticity field of sAR = 2 wing at φ = 135◦ at S t = 0.2, h0/c = 0.3 . . . . . . . 116

5.4 Vorticity field of sAR = 2 wing at φ = 180◦ at S t = 0.2, h0/c = 0.3 . . . . . . . 116

5.5 Spanwise velocity field of sAR = 2 wing at φ = 45◦ at S t = 0.2, h0/c = 0.3 . . . 117

5.6 Spanwise velocity field of sAR = 2 wing at φ = 90◦ at S t = 0.2, h0/c = 0.3 . . . 117

5.7 Spanwise velocity field of sAR = 2 wing at φ = 135◦ at S t = 0.2, h0/c = 0.3 . . 118

5.8 Vorticity and spanwise velocity field of sAR = 1 wing at φ = 45◦ at S t = 0.2,
h0/c = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.9 Vorticity and spanwise velocity field of sAR = 1 wing at φ = 90◦ at S t = 0.2,
h0/c = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.10 Vorticity and spanwise velocity field of sAR = 1 wing at φ = 135◦ at S t = 0.2,
h0/c = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.11 Effect of root plate on vorticity field for dimensional spanwise location of
plunging plate with root plate at φ = 90◦ at S t = 0.2, h0/c = 0.3 for a)
sAR = 2, b) sAR = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.12 Effect of root plate on vorticity field for sAR = 2 plunging plate at φ = 90◦ at
S t = 0.2, h0/c = 0.3 a) with root plate and 2) without root plate. . . . . . . . . 123

5.13 Evolution of the iso-Q (Q=5) field on the plunging plate of aspect ratio 2 at
S t = 0.2, h0/c = 0.3, k = 1.05. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xiv



5.14 Evolution of the iso-Q (Q=5) field on the plunging plate of aspect ratio 2 at
S t = 0.2, h0/c = 0.3, k = 1.05. . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.15 Evolution of the iso-Q (Q=5) field on the plunging plate of aspect ratio 2 at
S t = 0.2, h0/c = 0.3, k = 1.05. . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.16 Evolution of the iso-Q (Q=5) field on the plunging plate of aspect ratio 2 at
S t = 0.2, h0/c = 0.3, k = 1.05. . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.17 Integrated vorticity transport terms for the wing of sAR=2 at the 50% of span-
wise position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.18 Integrated vorticity transport terms for the wing of sAR=2 at the (a) 25% (b)
75% of spanwise position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.1 Contours of velocity components as a fraction of free-stream velocity: (a) Ux,
(b) Uy , (c) Uz, and (d) contours of out-of-plane vorticity ωz for S t = 0.2,
h0/c = 0.3, k = 1.05 at φ = 45◦. Free stream velocity is 130 (mm/s). Solid
lines represent positive values and dashed lines represent negative values of the
vorticity contained within the contour. . . . . . . . . . . . . . . . . . . . . . . 139

B.1 Notation used to drive the quadratic splines (Adopted from Chapra and Canale). 146

xv



1

CHAPTER 1
INTRODUCTION

Birds, insects, and aquatic animals use oscillatory and undulatory motions to gen-

erate lift and thrust in a manner that produces high agility and often also efficiency. A wide

range of investigations, reviewed by Sane [55], Wang [74], Platzer et al. [49], Lentink and

Dickinson [42], Dabiri [20], and Shyy et al. [56], have improved our understanding of un-

steady aerodynamics for the design and development of flapping wing micro-aerial vehicles

and agile unmanned combat air vehicles. These studies have been motivated by the notable

flight characteristics of insects and birds, which involve a variety of wing motions. At least

two fundamental questions are introduced in these types of classical unsteady aerodynamic

problems. One is how the trailing edge vortex (TEV) sheds into the wake whenever there

is a change in effective angle of attack, either due to pitch or plunge which is an essentially

inviscid problem. The second question is how the leading edge vortex (LEV), whose for-

mation, pinch-off, advection and shedding into the wake are the core problems of dynamic

stall, contributes to the overall vorticity transport in the flow field.

Although unsteady aerodynamics models for predicting the aerodynamic forces

have been improved recently [73], they are typically validated for single canonical ma-

neuvers of specific geometries. Wagner [71] and Theodorsen [60] initiated the low-order

modeling of unsteady aerodynamics and established a basis for analyzing such problems

by decomposing the forces and moments on the wing into contributions from circulatory

and non-circulatory effects. Such classical vortex models are reliable for low angles of at-

tack, but they cannot predict forces when the angle of attack is increased where the LEV
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presents. For a pitching motion, McCroskey et al. [70] pointed out that as the LEV passes

over the airfoil surface, it significantly changes the chordwise pressure distribution and pro-

duces transient forces and moments fundamentally different from those in static stall. Wu

[79] showed that for the simple case of any bound circulation, the sectional lift is equal to

the product of the circulation (Γ) created by a wing and its translational velocity (U) , in

agreement with the Kutta-Jukowski theorem, as below:

F = U × Γ~ey (1.1)

where ~ey is the unit vector along the vortex axis. In this formula F is related to a contineous

shedding of the vorticity created on the body surface.

Since the vorticity shed from oscillating aerodynamic bodies can significantly alter

the aerodynamic forces on the body, the dynamics of the flow field have been reported for a

broad range of kinematics, geometries, and dynamic and kinematic parameters (Williamson

and A. Roshko [75], Freymuth [25], Koochesfahani [39], Triantafyllou et al. [62, 61],

Anderson et al. [3], Lai and Platzer [40], Lewin and Haj-Hariri [43], Lua et al. [46]). Of

equal importance, the shed vorticity field can significantly impact aerodynamic loads on

other bodies that are present in the wake, such as tandem wings or fins and other members

within a formation (Akhtar et al. [2], Rival et al. [51], Lua et al. [45], and Gopalkrishnan

[27]), and thus understanding the evolution of the shed vorticity can provide insight into

flow interactions within bird flocks and fish schools, as well as the control of biorobotic

vehicles. Moreover, the observations from boundary vorticity dynamics ([79] and [80]

) suggest that one must be able to express the total force and moment in terms of the

boundary vorticity fluxes.
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In the present work, we are intrested in a periodic plunge motion through a range

of Strouhal numbers and plunge amplitudes on the order of those observed in biological

locomotion in fluids. Many previous investigations are concerned with either amplitudes

that are small compared with that of flying or swimming animals (Freymuth [24]; Jones et

al. [36]; Lai and Platzer [40]; Young and Lai [84], Bohl and Koochesfahani [7]), which

tend to be on the order of the wing or fin chord length; or the dimensionless frequencies

are lower than those observed in biological locomotion (Lewin and Haj-Hariri [43], Lua et

al. [46]), as reported by Hu et al. [33]. This chapter represents a review of the relevant

literature of unsteady aerodynamics.

1.1 Prior Research on Two-Dimensional Wakes

1.1.1 Wakes of 2D Oscillating Foils

It is well known that flapping airfoils generate thrust at certain combinations of flap-

ping frequency and amplitude. Previous characterizations of flow structure at low Reynolds

number, O(100) to O(1000) and low amplitudes have shown the type of wake structure pro-

duced may depend on Strouhal number, or reduced frequency (or non-dimensional plunge

amplitude ho/c), but knowledge of the vortex topology in the unsteady wakes remains in-

complete and the role of each parameter is not clear. For propulsion with periodically-

articulated airfoils, Triantafyllou et al. [62, 61] conducted a linear stability analysis on the

mean wake profile to demonstrate that a) Strouhal number S t = f A/U (where f is the fre-

quency of oscillation, A is the wake width or peak-to-peak amplitude of the trailing edge,

and U is the swimming speed or free-stream velocity) is the primary parameter governing
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thrust performance, and b) that optimal propulsive efficiency occurs within the approximate

range 0.25 ≤ S t ≤ 0.35. They supported this conclusion with experimental measurements

and the observation that a broad range of aquatic animals swim within this Strouhal num-

ber range. These ideas were extended to flapping flight by Taylor et al. [59], who observed

that the flapping kinematics of several bird species were also tuned to this Strouhal number

range. However, additional dependencies on other parameters have also been identified.

The reduced frequency k = π f c/U (where c is the chord length), which is a dominant pa-

rameter emerging from ideal, linearized unsteady aerodynamic theory (Theodorsen [60],

Bisplinghoff et al. [5]), has also been identified as an important parameter governing aero-

dynamic performance and flow structure. Gharib, Rambod, and Sharif [26] introduced the

formation number n = Ut/D = L/D for a piston-generated axisymmetric vortex ring. As

illustrated in Figure 1.1, at n ≈ 4, the vortex ring was found to pinch off such that no addi-

tional vorticity would be entrained into the ring and instead forms secondary vortices akin

to a Kelvin-Helmholtz instability. As defined by Dabiri [20], vortex ring pinch-off is the

process whereby a forming vortex ring is no longer able to entrain additional vorticity from

a vortex generator.

Focusing on plunging motion, dye visualization experiments of Lai and Platzer [40]

on a plunging NACA-0012 airfoil showed that for 4.0 ≤ k ≤ 20.0, the wake structures orig-

inated from only the trailing edge of the airfoil (Figure 1.2). In a subsequent numerical

study, Young and Lai [84] used a 2D Reynolds-Averaged Navier-Stokes (RANS) approach

to study the frequency-amplitude parameter space for optimal thrust efficiency for a plung-

ing NACA-0012 airfoil at Re = O(104), and Jones et al. [36] demonstrated good agree-
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Figure 1.1: Visualization of vortex rings at downstream position X/D ≈ 9 for (a) T̂ = 2,

(b) T̂ = 3.8, and (c) T̂ = 14.5 (Adopted from Gharib et al. [26]).

ment in wake vortex structure between dye injection at the airfoil trailing edge in a water

tunnel, 2D laminar Navier-Stokes computation, and a 2D vortex-particle method. They

showed that, although leading-edge separation occurs for k ≤ 4, wake structures appear

to be controlled primarily by trailing-edge effect only. They demonstrated that the wake

structure simulations and thrust calculations carried out at constant St show that this cannot

be the single parameter controlling the flow, but that k and kh must be treated separately

for k ≤ 4 approximately and for the Reynolds number under consideration. Lewin and

Haj-Hariri [43] numerically investigated the wake structure and thrust performance of a

plunging airfoil at Rec = 500. They found a dependence of wake structure on Strouhal

number and reduced frequency. Leading edge vortices were found to be shed within the
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ranges 0.25 ≤ S t ≤ 0.48 and 1.0 ≤ k ≤ 4.0. For k < 4, discrete LEVs are shed; whereas

at higher k, nascent LEVs shear the previously generated vortex and do not advect down-

stream (Figure 1.4). At increased St, asymmetry, and aperiodicity are observed in the wake.

They found that the wake patterns depend primarily on the fate of the LEV: whether or not

it is shed, and how it interacts with the TEV. When shed, the LEV can either reinforce

(positively or negatively) the TEV, resulting in two vortices shed into the wake per flap, or

it can form a counter-rotating pair with the TEV, resulting in four vortices shed per flap.

In a recent experimental study, Lua et al. [46] identified five different wake struc-

tures generated by a harmonically plunging elliptic airfoil, caused by different interactions

between the vortices shed from the leading and trailing edge dependent on frequency and

amplitude (Figure 1.5). They found that the type of wake structure produced depends on

not only the Strouhal number, but also the non-dimensional plunge amplitude. Focusing on

the more relevant range of Reynolds numbers, Koochesfahani [39] studied high-frequency

low-amplitude airfoil pitch oscillations with quantitative and qualitative visualization, iden-

tifying vortex shedding patterns vs. motion kinematic parameters. He experimentally ex-

amined the wake structure produced by a NACA-0012 airfoil at Rec = 12, 000, as shown

in Figure 1.6. The kinematics of the airfoil were characterized in terms of the reduced

frequency 0.835 ≤ k ≤ 10.0. In general, for small k, a net drag force was experienced

and four spanwise vortices were shed in each pitching cycle, forming two counter-rotating

pairs, as shown. Two streamwise momentum deficits were observed corresponding to the

velocity fields induced by the vortex pairs. With increasing k, only two vortices were shed

in each pitching cycle aligned parallel to the free stream to form a momentumless wake.
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Figure 1.2: Sketches of the wake of a plunging airfoil for various kh values. Note that h is

nondimensional amplitude of oscillation, and kh is nondimensional plunge velocity which

is proportional to St (Adopted from Lai and Platzer [40]).
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Figure 1.3: Asymmetric wake produced by a plunging airfoil for St = 0.48, and ho/c=0.12

(Adopted from Jones et al. [36]).

With further increases in k, the vortices are slightly displaced in the transverse direction

to form a pattern resembling a von Karman vortex street but with the signs of the vortices

reversed such as to produce a mean addition of momentum rather than a deficit. For the two

pitching amplitudes examined, the estimated thrust coefficients were found to fall on two

distinct curves with varying k. Anderson et al. [3] used particle image velocimetry and di-

rect force measurement to study the combined pitch-plunge parameter space for propulsive

efficiency optimization, conducting a large parameter study, albeit force measurements and

flow field data were obtained at quite disparate Reynolds numbers (1.7). They demonstrate

the significance of the Strouhal number on the form of the wake, as predicted by the theory

of Triantafyllou et al. Their results for lower ho/c show nearly identical trends as far as the
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Figure 1.4: Qualitative results for all simulations, based on k and kh. per=periodic; aper=

aperiodic; sym=symmetric; asym=asymmetric; LEV shed=LEV shed into flow; LEV

diss=LEV dissipated by interaction with the leading edge/nascent LEVs; LEV circ=LEV

circumnavigates the leading edge and is shed on the other side (Adopted from Lewin and

Haj-Hariri [43]).
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Figure 1.5: A plot showing the dependency of wake structures on S ta, S tc, and ho/c. Note

that S tc = k/2π and S ta = kh/2π . Open symbols represent the computation results of

Lewin and Haj-Hariri [43]. Solid symbols represent the Lua et al. [46] results. (Adopted

from Lua et al. [46] )

wake form is concerned; however, the formation of a leading-edge vortex depends on ho/c

and angle of attack. They found that optimum efficiency occurs when the leading-edge vor-

tices interact constructively with the trailing-edge vortex, leading to two vortices deposited

per flap.

1.1.2 Vortex Interaction with a Wall

In order to develop robust models for wake structure and aerodynamic loads, it is

therefore important to understand the physics of leading-edge vortex formation and the
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Figure 1.6: Wake of a NACA-0012 airfoil pitching sinusoidally about 1/4-chord point

(Adopted from Koochesfahani [39]).
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Figure 1.7: Wake patterns as function of the Strouhal number and angle of attack for ho/c

= 1 (Adopted from Anderson et al. [3]).

mechanisms which are responsible for its strength. As will be shown in this dissertation,

interaction of the leading-edge vortex with the surface of the airfoil has a significant impact

on vortex strength. Visbal[64] performed high-fidelity large eddy simulations of a plung-

ing airfoil at Reynolds numbers between 10,000 and 60,000 and noted that, when the shear

layer became transitional, secondary vorticity, of opposite sign to the leading-edge vortex,

became entrained into the leading-edge vortex. Wojcik and Buchholz[77] observed a sim-

ilar phenomenon on the attached leading-edge vortex on the inboard portion of a rotating

blade, and inferred that the rate of annihilation of the leading-edge vortex due to entrain-

ment of secondary vorticity is often comparable to the circulation flux in the leading-edge

shear layer. Lewin and Haj-Hariri[43] performed numerical simulations of a plunging air-

foil at Re = 1000, and noted that the evolution of the secondary vorticity appeared to
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participate in the disconnection of the leading-edge vortex from the leading-edge shear

layer. These observations all suggest that the interaction of the leading-edge vortex with

the surface of a wing or airfoil plays an important role in governing the evolution of the

vortex, and therefore also the aerodynamic loads.

Many studies before on vortex interaction with walls are dedicated to infinite walls,

which were comprehensively reviewed by Doligalski et al. [21]. A dominant concept is

the eruption of the wall boundary layer leading to secondary vortex, originally calculated

by Walker [72] for a vortex along a wall. Figure 1.8 shows a schematic representation of

the various stages of ”spike-like” vortex layer formation upstream of the LEV. This vortex

layer appears at high Reynolds numbers and gives rise to a thin plume containing significant

levels of vorticity, which rapidly leaves the surface as shown in Figure 1.8 (c). Acharya and

Metwally [1] mentioned that, [the opposite-sign vorticity] cuts off the dynamic-stall vortex

from its source of vorticity. Luton et al. [47] numerically investigated the interaction of

a spanwise convective vortex with a boundary layer using incompressible Navier-Stokes

equations. They showed that a strong vortex induces an eruption and produces a secondary

vortex. The secondary vortex causes the primary vortex to rebound. However, weaker

vortices do not follow the inviscid trajectory despite the absence of a secondary vortex. A

weaker vortex redistributes the vorticity of the boundary layer, pulling it away from the

wall, which alters the vortex trajectory.

Very recently, Rival et al. [53], experimentally investigated the LEV growth and

detachment in a free-surface water tunnel with different leading-edge shapes. The tests

have been performed at Rec = 10, 000, k = 0.25 and S t = 0.16. The leading-edge shape
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Figure 1.8: Schematic of stages of dynamic stall at high Reynolds number (Adopted from

Doligalski et al. [21].



15

Figure 1.9: Adopted from Rival et al. [53]).

is shown to influence the feeding shear layer; and thus the development of the LEV. They

argued that there are two mechanisms that are responsible for LEV detachment process: a)

eruption layer (secondary vorticity), b) flow reversal from the trailing edge. The former is

affected by the vortex growth rate and thus the feeding shear layer. The latter dictates the

overall maximum circulation of the LEV and forces a rapid cut-off once the rear stagnation

point passes off of the trailing edge. They showed that the opposite-sign vorticity causes the

half saddle to lift off and form a full saddle, in turn allowing the rapid feeding of trailing-

edge vorticity forward to cut off the LEV as illustrated in Figure 1.9. Therefore, the trailing

edge (chord length) plays a critical role of limiting the LEV size (circulation) and this is

the most characteristic length scale for the vortex-separation process at higher Reynolds

numbers, where the eruption process will be less pronounced.

We need to clarify the effect of secondary vorticity on LEV strength and detachment

from feeding shear layer, also to determine the role of vorticity transport equation’s terms
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to understand the physical mechanisms governing the form and the strength of the wake.

1.2 Prior Research on Three-Dimensional Wakes

1.2.1 Wakes of 3D Oscillating Foils

Experimental and numerical investigations have shown that the flow structure in

the wakes of finite-aspect-ratio wings is complex and three-dimensional, and is therefore

fundamentally different from that of two-dimensional airfoils. Freymuth [24] represented

the formation of a vortex ring in the wake of a wing, including trailing edge and tip vortices.

Furthermore, the ends of the leading edge vortex were observed to anchor onto the surface

of the wing shedding to the wake to form its own vortex ring. Von Ellenrieder, Parker and

Soria [69] characterized the topological features of the near-wake of oscillating wing. They

proposed a model based on dye visualization of the flow field of a pitching and plunging

finite-AR rectangular wing at Rec = 164 and S t = 0.35. As shown in Figure 1.10, the model

consists of two merged vortex rings shed in each stroke where each structure wrapped

around the nearby structure. These connected vortex rings were generated from wing tip

vortices and successive trailing and leading edge vortices. Moreover, Blondeaux et al. [48]

and Dong, Mittal and Najjar [22], computationally characterized the features of the vortical

structures and their interaction in the near-wakes of an airfoil and an elliptical planform.

Blondeaux et al. [48] performed full three-dimensional numerical simulations, in order to

quantitatively analyse the unsteady flows studied by Freymuth [24] and von Ellenrieder et

al. [69]. Dong et al. [22] used an immersed boundary method to simulate the flow field

and thrust performance of a pitching and plunging ellipsoidal wing, for Rec = 200, and
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Figure 1.10: Sketch of the flow structure behind a pitching and plunging wing of aspect

ratio 3 (Adopted from von Ellenrieder et al. [69]).

S t = 0.6. They found the wake to consist of a separated array of vortex rings, where each

ring was formed from a vortex shed from the trailing edge and the connection of two tip

vortices as illustrated in Figure 1.11. A leading edge vortex is also shed, but it is not clear

how it is merged to the wake. They also investigated the effect of aspect ratio on these

wake structures, illustrating that reducing the aspect ratio has the effect of strengthening

the interaction between tip vortices, altering the formation of vortex rings which propagate

downstream under their own self-induced velocity.

For the panels pitching about its leading edge, Buchholz and Smits [13] defined the

topology in the wake region using a combination of qualitative and quantitative imaging.

They made a model of the wake of a finite-AR rectangular plate at Rec = 640, using both
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Figure 1.11: Wake topology of an ellipsoidal foil of aspect ratio 2.55 at St = 0.6 (Adopted

from Dong et al. [22]).
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dye visualization and DPIV to develop a qualitative vortex skeleton model supported by

quantitative measurements of vortex circulation (Figures 1.12(a) and 1.12(b)). The dye vi-

sualization picture and wake model is shown in Figures 1.12(c) and 1.12(d). Regardless of

the presence or absence of a leading edge vortex, differences in aspect ratio, geometry and

kinematics, their model was very similar to Dongs pattern. Clark and Smits [18] exam-

ined a mechanical model of a flexible manta ray with oscillating wings, and proposed wake

models consistent with the previous studies. They reported that at low Strouhal numbers

(S t < 0.15), near the root, there is minimal vortex interaction because little circulation is

generated in this region. At higher Strouhal numbers, in regions away from the root, a

greater degree of vortex interaction generates spanwise compression of the wake, which

makes the wake spread above and below the planform.

More recently, Borazjani and Sotiropoulos [8, 9, 10] investigated the effect of ge-

ometry, kinematics, and Reynolds number on wake structure by computing the flow field

generated by three-dimensional swimming bodies at Rec = O(100), O(104), and O(∞).

They concluded that, while Reynolds numbers and Strouhal numbers had strong effect on

the shape of the wakes, each wake could have been fit in one of the previous models (Figure

1.13). Taira and Colonius [58] computed the wake structure from impulsively translated

plates and characterized the strong interaction between the tip and trailing-edge vortex sys-

tems.
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(a) (b)

(c) (d)

Figure 1.12: Vortex skeleton and dye visualization of wakes for S/C = 0.54, A/S = 0.31,

ReC = 640, a,c) S t = 0.43, b,d) S t = 0.23; (Adopted from Buchholz [13]).
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Figure 1.13: Wake structure visualized by the isosurfaces of q-criterion for Reo = 4000,

S to = 0.6, for self-propelled virtual swimmers: (A) mackerel swimming like a mackerel

(MM); (B) lamprey swimming like a mackerel (LM); (C) mackerel swimming like a lam-

prey (ML); (D) lamprey swimming like lamprey (LL), (Adopted from Borazjani et al. [10].
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1.2.2 LEV Structure of finite-AR wings

With the intention of focusing more on the near surface flow of finite aspect ratio

wings, the onset and development of the three-dimensional LEV was addressed recently

from both experimental and computational perspectives. Yilmaz and Rockwell [82] con-

sidered unsteady plunging finite-AR plate, using quantitative imaging, showing the devel-

opment of large-scale patterns of streamwise-oriented vorticity. They also performed dye

flow visualizations as well as PIV measurements on a rectangular flat plate with angle of

α = 8o, S tc = 0.34 and ho/c = 0.5 (Figure 1.14). Strong axial flows were reported in the

leading edge vortex, directed towards the symmetry plane of the wing. As the plunging

motion progresses, the location of the transverse velocity maxima moves inboard.

Visbal [65] computed this sequence of flow patterns, and developed a model of

the three-dimensional flow structure, which involves the evolution of an arch-type vor-

tex. Figure 1.15(a) displays the structure of the computed arch-vortex using iso-surface of

phase-averaged pressure. The corresponding computed flow structure on several cross-flow

planes is also provided in Figure 1.15(a). Yilmaz, Ol and Rockwell [81] further character-

ized the types of three-dimensional vortex structures experimentally addressed by Yilmaz

and Rockwell [82] and computed by Visbal [67]. Granlund, Ol and Bernal [29] used dye

visualization and force measurements to determine the distinctions between rectangular

versus elliptical planforms, in a pitch-up motion. Trizila et al. [63] considered the com-

bined effects of the leading-edge vortex, tip vortices and a jet induced by vortices shed into

the wake. They found that aerodynamic improvements depend on the kinematic parame-

ters. Tip vortices evolve more slowly than leading edge vortices, where a tip vortex remains
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Figure 1.14: Dye visualization of three-dimensional vortex formation, (Adopted from Yil-

maz and Rockwell [82]).
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coherent and nearly attached to the wingtip until LEV detaches and sheds. As the reduced

frequency is increased, maximum of lift is delayed to higher angles of attack shows less

dependency on reduced frequency.

Volumetric three-component velocimetry measurements performed by Calderon et

al. [15], on finite-AR rectangular and elliptical wings subjected to a small amplitude pure

plunging motion with angle of attack of α = 20o. The highly three-dimensional leading

edge vortex structure is shown to be highly dependent on the oscillating frequency. At low

frequencies the vortex evolves quickly into an arch-type structure with an anchor point that

progressively moves from the tip to the root of the wing. For the sAR = 2 they observed

a full-arch on the half-span wing; however, a half-arch was detected on the half-span wing

for sAR = 1 (Figure 1.16).

1.2.3 Spanwise Flow Within Shed Vortices

Spanwise flow in the LEV vortex structure can lead to a significant change in the

vortex strengths. The contribution of spanwise flow to the LEV circulation is greater for

three-dimensional flow. Koochesfahani [39] reported that there is an axial flow in the vor-

tices in the wake of an oscillating airfoil with the walls at the end. Although, the wake

is generated here by two-dimensional motions of a geometrically two-dimensional body,

the resulting flow is not two-dimensional and an axial flow exists in the cores of the wake

vortices. One might ask how this axial flow is created and how it would affect the LEV cir-

culation. The axial flow takes the form of a spiraling of the vortex core fluid away from the

channel side walls toward the channel centerline. Cohn and Koochesfahani [19] demon-
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(a)

(b)

Figure 1.15: a) Iso-surface of computed phase-averaged total pressure at selected phases of

the plunging motion, b) Perspective view of phase-averaged three-dimensional structure of

arch-type vortex above heaving wing at φ = 225o, (Adopted from Visbal [67]).
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Figure 1.16: comparison between planforms for iso-surface of phase-averaged vorticity at

St=0.6, (Adopted from Calderon et al. [15]).

strated that the end walls could generate substantial axial flow. The axial flow transports

vorticity in and out of the plane and loses the coherency of the structure. These flows

have been shown to alter vortex circulation, (Bohl and Koochesfahani [6, 7], Hagen and

Kurosaka [31]). In a combined computational-experimental study, Visbal, Gogineni and

Gaitonde [68] characterized axial flow in nominally spanwise vortices, and demonstrated

that remarkably similar axial flows occurred for cases of either wall or free boundaries on

either side of the wall jet. The physics behind this axial flow in a leading-edge vortex,

during formation and development on the oscillating plate is still unclear, and has not been

addressed in relation to the no-slip walls. Yilmaz and Rockwell [83] showed, for low-

aspect-ratio wings, that the flow structure is highly three-dimensional, with pronounced

regions of surface-normal vorticity and surface-parallel swirl that are orthogonal to the

vorticity and swirl of the classical large-scale leading edge vortex. They described that

there is an axial flow within the leading-edge vortex which is oriented towards the plane of

symmetry of the wing, lifts up the structure from the wing surface and causes vortex dis-

tortion. Another important consequence of axial flow within the LEV is the interaction of
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opposing axial flows at the plane of symmetry, which leads to the development of normal

vorticity on both sidse of the plane of symmetry of the wing. This three-dimensionality has

important consequences for the variation of spanwise vorticity of the leading-edge vortex

along the span of the wing.

1.3 Objectives

The above discussion has demonstrated that our knowledge of vortex topology in

three-dimensional unsteady wakes of plunging wings is still incomplete. While much is

known about the vortex topology of these 2D and 3D flows, there is still not a framework

for a robust model by which the complete vortex structure in the wake may be predicted,

nor quantitative models for predicting the strengths of the various constituents of the wakes.

Such quantitative models must take into account the effects of a) the nature of the shear

layers shed from the edges of the wing or airfoil, b) interaction between the resulting flow

structures and the surface of the wing or airfoil, and c) interaction between the structures.

Two geometries are considered: a thin flat plate in nominally two dimensions, and thin flat

plates of semi aspect ratios 1 and 2, in three dimensions. ”Nominally two dimensions”

means that the model spans the water channel test section from wall-to-wall, with ideally

a very small gap at the ends. Particle image velocimetry allows interpretation of the flow

patterns in terms of phase-referenced wake patterns. Specifically, the objectives of the

present investigation are as follows:

1. Describe the evolution of wake structures.

2. Characterize vortex interactions in the flow.
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3. Demonstrate how LEV circulation varies with variation in parameters.

4. Elucidate the physical (vorticity transport) mechanisms that govern LEV circulation.

1.4 Overview of Thesis

In the present study, the flow dynamics for a simple plunging flat-plate airfoil fun-

damentally relevant to biologically-inspired micro air vehicle (MAV) aerodynamics is con-

sidered. Moreover, the evolution of the leading-edge vortices on a flat-plate airfoil and

wing with a rectangular planform is characterizeed. In particular, Chapter 2 describes the

experimental apparatus and PIV set ups used in this study. The airfoil geometries and

kinematics and the parameter will be described. While it is well-established that the evo-

lution of the leading edge vortex (and hence flow structure) and aerodynamic performance

are controlled by a combination of reduced frequency and Strouhal number, the physical

mechanisms governing the observed behaviors are not well-understood. Therefore, Chap-

ter 3 seeks to characterize parameter dependence of the interactions between leading and

trailing edge vortices and the forms of the resulting wakes, classification of observed wake

patterns, as well as to identify the physical mechanisms governing these interactions. This

is an important element of a framework for quantitative characterization of these wake

structures. In chapter 4, we will focus on vorticity transport mechanisms present in the

LEV which govern its evolution. Time-resolved and standard-frame-rate particle image

velocimetry are used to qualitatively and quantitatively characterize the evolution of the

leading edge vortex and its interaction with the secondary vortex generated on the plate

surface. A planar control volume analysis is performed on the leading-edge vortex with
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fluxes of circulation through the boundary quantified using PIV and streamwise measure-

ments of the pressure distribution on the surface of the airfoil. 3-D flow evolution and

vorticity transport analysis of finite-AR wings will be presented in chapter 5. Finally, the

observations of this study and future works are summarized in Chapter 6.
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CHAPTER 2
EXPERIMENTAL METHODOLOGY

2.1 Model Geometry and Kinematics

2.1.1 Parameter Space

To study the vortex characterization and circulation measurements of a rigid plung-

ing wing, an aluminum flat-plate airfoil of chord length 76 mm and thickness 3 mm as

shown in Figure 2.1 was articulated in a sinusoidal plunging motion:

h(t) = hosin(2π f t) (2.1)

The leading and trailing edges were rounded with a constant radius of half the plate thick-

ness, and the surface of the plate was painted black to minimize reflected light. Figure

2.2(a) shows the rigid airfoil that was used, and the whole mechanism together with other

parts including holding bracket, mounting plate, and force transducer for force measure-

ments purposes shown in Figure 2.2(b). Three plates were considered. The first, with an

aspect ratio of 4 spanned the entire height of the flow facility to within 1 mm of the top and

2 mm of the bottom boundaries, and therefore is considered a nominally two-dimensional

case. Two truncated plates were also considered with sAR = 2 and 1, as shown in Figure

2.3. Since the finite wing was bounded at its root by a stationary wall, this wall may be

considered a symmetry plane such that the configuration approximates a symmetric wing

with twice the aspect ratio. Thus, following the terminology applied by Calderon et al.[15]

, we will refer to the geometry as having a semi-aspect-ratio sAR = 2.

Plunge position was monitored for external cyclic triggering of PIV data aquisi-
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Figure 2.1: Cross-sectional shape of the plunging plate.

tion with a linear encoder having a resolution of 0.2 mm. The plunge amplitude and fre-

quency of oscillation were adjusted to vary the dimensionless plunge amplitude h0/c, and

the Strouhal number S t = 2 f ho/U or reduced frequency k = 2π f ho/U. Values investi-

gated in this study were h0/c = 0.2, 0.3, and 0.4, and S t = 0.1 to 0.6 in increments of

0.1. This range of Strouhal numbers was chosen to bracket the range of Strouhal numbers

relevant to biological locomotion [62, 59]. The resulting reduced frequencies were in the

range 0.39 < k < 4.7. For the finite-AR wings, the plunge amplitude was held constant

at ho/c = 0.3 and the frequency of oscillation was adjusted to control the Strouhal number

S t within the range 0.2 < S t < 0.4, which many flying and swimming animals employ;

however, we will focus on S tc = 0.2 for the finite-aspect-ratio wings.

2.1.2 Apparatus and Water Channel

The motion was generated with a scotch yoke mechanism driven at constant speed

by a a 24 VDC servo motor rated at 128 oz-in continuous torque at 380 rpm (Figure 2.4).

The servo motor was driven by an Advanced Motion Controls model BE12A6J amplifier.

For the 2D experiments, the amplifier was controlled by a constant analog voltage signal

generated using a National Instruments USB-data acquisition board connected to a PC run-

ning National Instruments LabVIEW software. Later, for the finite-AR wings the motion
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(a) (b)

Figure 2.2: a) Aluminum rigid airfoil, b) Parts of the mechanism which holds the rigid

airfoil.
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Figure 2.3: Plunging plates with different aspect ratios.

was controlled by a motion control system incorporating a Galil DMC-4040 controller,

Emerson Control Techniques XVM-6011-TONS motor, and an Emerson EP-B amplifier.

Experiments were conducted in a free-surface water channel with test section width

of 0.61 m, and a water depth of 0.33 m. The free surface was constrained between 0.6 m

upstream and 0.6 m downstream of the airfoil by rigid plates at the water surface as illus-

trated in Figure 2.8. The flow facility has flow conditioning consisting of an 8:1 contraction

ratio, honeycomb, and five screens to maintain free stream turbulence intensity below 0.3%.

Free-stream velocity is held constant at U∞ = 0.13 (m/s) for all experiments, producing a

chord-based Reynolds number of Rec = 10, 000.

2.1.3 Root Boundary Conditions

To examine the influence of the root boundary condition two different boundary

conditions were examined. The first root boundary condition considered as shown in the

right side of Figure 2.5 is that of the water channel surface plate. Figure 2.6 illustrates

the location of surface plate with respect to the apparatus and the driving shaft. There is
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Figure 2.4: Top view of the scotch yoke mechanism.

a slot on the surface plate as wide as the largest plunging amplitude in which the driving

shaft is moving back and forth. The slot has a Rectangular shape with rounded edges with

76.2 mm length and 25 mm width. There is a gap of approximately 6 mm between the top

of the mounting bracket and the water surface plate to accommodate the heads of screws

used to assemble the bracket. Second, a circular root plate was fixed perpendicular to the

wing, as shown in the left side of Figure 2.5 in order to create a well-defined boundary

on both top and bottom surfaces of the wing. The root plate shape is based on a design

proposed by Boutilier and Yarusevych [11] for wind tunnel investigations of steady airfoil

aerodynamics. In the absence of similar guidelines for plunging plates, this geometry was

adopted for the present study. The gap between the root plate and top surface plate is 38

mm which is beyond the boundary layer thickness (δ = 20mm).

Since the root plate has not been examined on moving bodies yet, therefore, the

effects of moving root plates on vortex structures is still unclear. To reduce the effects of

root boundary conditions on flow evolution and avoid the inflow and outflow from the slot
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Figure 2.5: Two boundary conditions for the plunging plate with sAR = 2 with and without

root plate.

on the surface plate, the gap between the top of the bracket (which mounted the airfoil or

wing to the scotch yoke mechanism) and the surface plate has been minimized (by using

countersunk screws) to less than 1 mm as shown in Figure 2.7. Similarly, a gap of less than

3 mm existed between the bottom of the airfoil and the bed of the water channel. For the

3-D volume reconstruction results in this study, this root boundary condition was used and

the spanwise locations are measured with respect to the top of the holding bracket.
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(a) (b)

(c)

Figure 2.6: Boundary condition 2: a) Surface plate with the mounting bracket outside of

the slot, b) Driving shaft in the slot of surface plate, c) Plunging plate with driving shaft

and holding bracket outside of the slot.

Figure 2.7: Details of the airfoil and wing modified mounting bracket.
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2.2 Experimental Techniques

2.2.1 2-D Digital Particle Image Velocimetry (PIV) Setup

Digital Particle Image Velocimetry (DPIV) is a statistical Lagrangian method that

estimates particle displacements between two consecutive images in a fluid flow to provide

a representative velocity field in a plane (Adrian (2005), Raffel et. al. (2007), and Tropea

et. al. (2007)). Potters Industries Inc.’s SPHERICEL® Hollow Glass Spheres were used to

seed the flow. The particles had a mean particle diameter of 10-11 µm with a density of 1.1

g/cc. These particle properties corresponded to a Stokes number (Stk = (τUtip)/c; where τ

is the relaxation time of the particles and Utip and c are the plate tip speed and chord length,

respectively.) of 8.5×10−4 which suggests the particles follow the streamlines very well and

since Stk <0.1, the deviation of the particle trajectories from the actual flow displacements

is <<1% (Tropea et. al. (2007)).

Two-component Digital Particle Image Velocimetry (DPIV) was applied as shown

in Figure 2.8. A LaVision Flowmaster system was employed, running DaVis 8.0.6. Images

were acquired with a 14-bit Imager ProX 4 megapixel CCD camera and 2048 × 2048

pixel resolution equiped with a Nikon Micro-Nikkor 105 mm f/2.8 lens (Figure 2.9(a)),

and illuminated using a 200 mJ/pulse dual-cavity Nd:YAG laser (Figure 2.9(b)). Velocity

vectors were calculated using an adaptive multi-pass cross-correlation method on 64 × 64

and 32 × 32 pixel interrogation windows with 50% overlap. Spurious vectors are removed

using a local median filter. Out-of-plane vorticity was calculated using a second-order

central differencing scheme.

Data presented in this study consists primarily of PIV velocity fields, each com-
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Figure 2.8: Side view of the experimental configuration. The plate plunges in and out of

the page.

posed of 100 instantaneous realizations of the flow, processed by DaVis 8.0.6. software.

The cameras were triggered using a US Digital EM1 Transmissive Optical Encoder Module

and a 120-counts-per-inch linear encoder strip that was mounted to the scotch yoke. The ve-

locity field was sampled at eight phases throughout the cycle separated by 45◦ increments.

Eight phases were imaged for each of the cases are: φ = −90◦,−45◦, 0◦, 45◦, 90◦, 135◦, 180◦,

and 225◦. The position φ = 0◦ is defined as the mid-point during the downstroke (where

the downstroke is defined as that in which the wing moves away from the laser).

2.2.2 3-D Stereoscopic Digital PIV Setup

In selected experiments on the sAR = 1 and 2 finite wings, Stereoscopic Particle

Image Velocimetry (SPIV) was implemented to obtain a three component velocity field at

selected chordwise planes, as illustrated in Figure 2.10(a). A LaVision Flowmaster system
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(a)

(b)

Figure 2.9: a) 14-bit Imager ProX 4 megapixel CCD camera, b) 200 mJ/pulse dual-cavity

Nd: YAG Laser used for PIV.
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(a) (b)

Figure 2.10: a) Coordinate system b) Side view of the experimental configuration, the

plunging plate moves in and out of the page.

was used which consisted of a dual cavity, 200 mJ/pulse Nd:YAG laser with light sheet op-

tics and two CCD cameras with 2048 × 2048 pixel resolution with a 14-bit dynamic range,

equipped with two 105 mm lenses placed at 54 degrees to each other with f-stop equal to

8.0. Velocity vectors were computed using LaVision DaVis 8.1.2 software with a standard

cross-correlation analysis on window sizes of 64 × 64 and 32 × 32 and 50% overlap. A

median filter was applied to remove any outliers. The experiments were performed on dif-

ferent spanwise locations as a percentage of the span length as shown for sAR = 2 in Figure

2.10(b). For example, 25% means the experiments were performed at z/b = 0.25 from the

root boundary.
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2.2.3 2-D Time-Resolved Digital PIV

Time resolved PIV was performed in order to better resolve the LEV formation and

interaction with the airfoil. An IDT NX4-S1 1.0 megapixel high speed camera with 1024

× 1024 pixel resolution (shown in Figure 2.11(a)), equiped with a 50mm Micro-Nikkor

lens, was used to image the full oscillation. The size of correlation windows was 32 × 32

and 32 × 32 pixel interrogation windows with 50% overlap.The camera’s exposure time

was 692 µs and images were usually taken at a rate of 800 frames-per-second where the

number of frames per cycle was varied between 400 and 1900. If, however, the frequency

of the motion was very high, the frame rate was increased to better discretize the motion

and obtain more accurate cross-correlation measurements. As a general rule of thumb,

the frame rate was set so that particles would travel about 4-6 pixels from one frame to

another. A Laserglow Technologies LRS-0532 Series Diode-Pumped Solid-State Laser

(532nm, green) continuous waveform laser, shown in Figure 2.11(b), was used to image

the mid-span location and in order to prevent the interference of parallax on the imaging

area, the camera was offset from the centerline so that it always had a direct view of the

airfoil’s side closest to the laser. Thirty full cycles were performed for each case, processed

by DaVis 8.1.2. software using time-series images, and averaged at each phase.

2.2.4 2-D PIV Setup for 3-D Volume Reconstruction

In order to analyze vorticity transport within the leading-edge vortex, the phase-

averaged flow field was measured within a three-dimensional region to capture the vortic-

ity field and its derivatives. Use of stereo PIV was impractical for this purpose since data
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(a) (b)

Figure 2.11: a) IDT NX4-S1 high speed camera, b) DPSS continuous waveform laser.

acquisition in multiple parallel planes would require a complicated refocusing and recali-

bration procedure at each plane, while imaging obliquely through a surface across which

the refractive index changes. Therefore, planar PIV data for three-dimensional flow field

reconstruction were acquired in multiple horizontal and vertical planes using the camera

and laser configurations illustrated in Figure 2.12. Vertical (y-z) planes were acquired with

the aid of a front-surface mirror of dimensions 75 x 75 mm suspended at a 45 degree angle

in the flow approximately 1.5 m downstream of the trailing edge of the airfoil or wing (sim-

ilar configuration as used in the experiments by [32], [13], [14]). As shown in 2.12(a), the

laser was laid down on a platform underneath the flume and to do the experiments at dif-

ferent streamwise locations, The plunging wing mechanism was moved in the streamwise

direction (x-direction) and positioned with the aid of a digital caliper. For this configura-

tion, since the PIV setup was not changed during the experiments and only the apparatus

was relocated in the x-direction, recalibration was not required.

For the horizontal planes (x − y planes), the configuration shown in Figure 2.12(b)
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was used where the cameras and the laser were moved separately in spanwise direction (z

direction), checking their positions with a digital caliper to accurately position the mecha-

nism relative to a fixed reference point, so that the distance between laser and camera does

not change. Note that only for the PIV measuments in x − y planes, two adjacent cameras

were used simultaneously to expand the field of view to about 5 chord lengths, including

the region over the wing as well as multiple chord lengths into the wake. The calibration

process will be discussed in section 2.2.4.1.

Three-dimensional flow fields were reconstructed on the two-dimensional airfoil

and the sAR = 2 wing. The vertical and horizontal separation between planes was 6.4

mm (∆z/c = ∆x/c = 0.08). For the airfoil, measurements were acquired in 13 horizontal

planes, and 40 vertical planes beginning 25 mm upstream of the leading edge. The volume

construction technique, described in the following, yielded 425984 vectors. For the finite-

aspect-ratio wing, 26 horizontal planes of data were acquired beginning at z/S = 0.15

(0.15S from the root of the wing, where S is the span (i.e. for the sAR = 2 wing, S is equal

to two chord lengths.)).

2.2.4.1 Calibration

To accurately calibrate the horizontal planes (x−y planes), a calibration mechanism

was designed and built as shown in Figure 2.13. In this mechanism, the calibration plate

was attached to a 1” diameter Stainless Steel horizontal shaft which was mounted on two

1” diameter Stainless Steel vertical shafts using two stanchion cross clamps as shown in

2.13(d). These two vertical shafts were mounted on a horizontal Acrylic plate and the
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(a) (b)

Figure 2.12: Imaging configuration for PIV measurements. (a) side view showing the setup

for acquiring images in vertical/transverse planes, (b) upstream view showing the setup for

acquiring images in horizontal planes.

calibration mechanism was carefully laid down on the bed of flume at the same spot, so the

reference point was at the same location for all calibration planes in z direction. The height

of the calibration plate was adjusted by using custom-made gauge blocks, thus the position

of this calibration plate was matched with the laser sheet at each spanwise location.

Since in this PIV setup two adjacent cameras were used, the key was calibrating

each camera properly, so that the coordinate system of each camera could be properly

registered. This was accomplished using the ”2 cameras (independent)” calibration mode

in DaVis 8.1.2 with an orthogonal grid target that covered the field of view of both cameras.

A LaVision calibration plate type 20 (Figure 2.13(c)) spanned the fields of view of both

cameras. After calibrating both cameras in their respective co-ordinate systems, an origin

was defined, and the relative x and y off-sets for Camera 2 were set with respect to the
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origin in Camera 1. For processing the images, the ”Sequential Cross correlation” mode in

DaVis 8.1.2 was employed to produce a single vector field spanning the two fields of view.

Since the calibration was of high quality, the root-mean-square (RMS) of the fit for pixel

displacement was 0.106 pixels.

2.2.4.2 3-D Volume Reconstruction

In order to obtain volumetric representations of the three-dimensional flow field,

Yilmaz and Rockwell [54] demonstrated that it is sufficient to have data in parallel planes

and one cross-plane as shown in Figure 2.14. They computed the out-of-plane component

of velocity for each parallel planes using the two in-plane components v and w and the

continuity equation for an incompressible flow as discussed in their study. Two interpo-

lation methods (Adaptive Gaussian Window and the Spline Thin Shell (STS)) were used

and they showed that the the STS technique provides a more faithful reconstruction of the

actual value of the out-of-plane velocity component. They also mentioned that the in-plane

interpolation of the velocity field can lead to substantial uncertainty of the interpolated val-

ues, in the case of randomly located velocity vectors, which emphasizes the importance of

employing high quality experimental techniques that generate high particle image density.

Later Yilmaz and Rockwell [83] used this method to investigate the 3-D flow evolution of

flapping wings. They used Tecplot software (Tecplot, Inc., Bellevue, WA) for the linear

interpolation as well as in-house developed software for the uncertainty analysis involving

in the interpolation and volume construction technique. They reported that for the parame-

ters employed in the their investigation, the representative uncertainty of the reconstructed
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(a) (b)

(c) (d)

Figure 2.13: Calibration mechanism for 2-D PIV measurements for the 3-D volume re-

construction. (a) side view of the mechanism, (b)top view of the mechanism, (c) LaVision

calibration plate type 20, (d) Stanchion cross clamps used to hold horizontal and vertical

shafts.
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velocity was 0.4%.

Longo et al. [44] conducted PIV measurements in multiple vertical and horizontal

planes and used Tecplot software package to generate the 3-D rectangular grid and linearly

interpolate the 2-D data onto this grid. Once all of the data from both PIV configurations

(vertical and horizontal planes) was interpolated onto this common grid, they computed an

average from the redundant velocity field data to represent the 3-D information at each grid

point.

In the present study, high resolution PIV measurements with high density of 2-

D images in the desired volumetric flow field were conducted and high-order interpola-

tion method were used to reduce the uncertainties in the reconstruction. Using the two-

dimensional phase-averaged velocities in streamwise and transverse cross-flow planes, vol-

umetric reconstructions of the flow field were obtained by emplying a code written in MAT-

LAB. Reconstruction of the PIV data was accomplished using tri-quadratic interpolation

onto a uniform grid of spacing ∆x/c = ∆y/c = ∆z/c = 0.0195, as shown in Figure 2.15.

The interpolation method and formulations are described in Appendix B. The final grid

size was 128 × 101 × 51 for the airfoil and 200 × 128 × 100 for sAR = 2 wing. The 3-D

volume reconstructed velocity field was validated by checking the differences of the redun-

dant cmponent of velocity (Uy) between horizontal and vertical planes and also examining

the divergence of the reconstructed flow field as discussed in 4.1.2.
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Figure 2.14: Plan and side view of the parallel and transverse planes of 3-D reconstruction

by Robinson and Rockwell [54]. The coordinate system and the corresponding velocity

components are illustrated.
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(a) (b)

Figure 2.15: a) Horizontal and vertical PIV planes, b) The flow volume reconstructed from

horizontal and vertical PIV planes. The orientation of the reconstructed data is such that

the laser-illuminated region is above the plate, and the plate casts a shadow in the region

beneath it.

2.2.5 Surface Pressure Measurements

Phase-averaged pressure measurements were conducted by James Akkala [12] on

the surface of the airfoil using flush-mounted pressure taps in order to estimate the vorticity

flux from the surface of the wing due to the pressure gradients set up by the leading-edge

vortex. Pressure taps of diameter 1.6 mm (1/16”) were mounted around the mid-span lo-

cation of the airfoil, beginning at 3.2 mm from the leading edge with chordwise spacing

of 1.6 mm over a chordwise distance of 22.2 mm (7/8”), and with chordwise spacing of

6.4 mmm (1/4”) over the remainder of the chord length, as shown in Figure 2.16. Surface

pressures were measured through one tap at a time with a Kistler 4264A piezoresistive dif-

ferential pressure transducer, with the remaining taps filled flush to the airfoil surface, and
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phase-averaged over 50 oscillation cycles. Because the plate was thin, the pressure mea-

surement tube emerged from the opposite side of the plate. One of the key objectives of this

study is to quantify the fraction of circulation entrained into the leading edge vortex from

the leading edge shear layer that is lost by annihilation through interaction of the leading-

edge vortex with the secondary (opposite-sign) vorticity generated on the surface of the

plate. It is important to characterize the dynamic response of the pressure transducer since

the pressure is fluctuating and the resonant frequency of the pressure transducer system

is significantly lower in water than it is in air. To determine the frequency response of the

pressure transducer and attached tubing, the apparatus shown in Fig. 2.17(a) was used. The

sealed canister sustained a pressure in a water environment so that the pressure transducer

and tubing can be filled with water simulating the experimental measurement environment.

A syringe was used to inject air into the canister in order to increase the pressure, and a

bubble positioned on top of a hypodermic tube sustained the pressure. Bursting of the bub-

ble created a step function in pressure. The step response of the pressure transducer was

used to determine the transfer function of a second-order linear system as done by Green

and Smits [30]. Fig 2.17(b) shows the signal produced by the Kistler pressure transducer

along with the model response, and Fig. 2.17(c) contains the resulting bode diagram. For

the present configuration, the undamped natural frequency was found to be ωn = 48.9rad/s

and the damping ratio was ζ = 0.235.
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Figure 2.16: Locations of pressure taps on the surface of the airfoil. A narrow spanwise

slice of the airfoil is shown.
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(a) (b)

(c)

Figure 2.17: a) Apparatus for determination of pressure measurement system frequency

response, b) step response of the Validyne DP-103 pressure transducer. Symbols show

the pressure transducer output signal, and the line shows the optimum second-order model

response. c) Bode diagram for the model response shown in Fig. 2.17(b).
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CHAPTER 3
FLOW EVOLUTION FOR A NOMINALLY 2-D PLUNGING AIRFOIL

3.1 Vorticity Distributions Near the Airfoil

The evolution of the flow field with variation in Strouhal number, plunge ampli-

tude, and phase is shown in Figs. 3.2 through 3.15. The wake structures was visualized

by the spanwise vorticity distribution and the the integral Γ2 parameter as an alternative

and somewhat objective means of identifying vortex boundaries, which was independently

developed by Graftieaux et al. [28] and Sousa [57]. The Γ2 field is defined as:

Γ2(P) =
1
N

∑
S

[
PM ∧ (UM − ŪP)

]
· z

‖PM‖ · ‖UM − ŪP‖
(3.1)

where P is a fixed point, and M is a point within a two-dimensional area S surrounding P,

and N is the number of points M within the area. UM is the velocity vector at the point M,

and z is the unit vector normal to the imaging plane. For each point P, the eight neighboring

points were used to compute the Γ2 fields, as recommended by Baik et al. [4]. Graftieaux

et al. [28] recommended a threshold of Γ2 = 0.65 to define vortex boundaries, and showed

that the Γ2 field displays approximately an axisymmetric top-hat distribution in the vicinity

of a vortex such that the boundary is quite insensitive to the value of the threshold. Since

the denominator of Equation 3.1 is very small where the streamlines have small curvature,

the Γ2 field tends to be noisy in the irrotational regions of the flow. To remove this noise,

A version of this Chapter has been published in Experiments in Fluids Journal [23].
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the Γ2 calculation was modified by setting to zero the values in the regions where the

vorticity magnitude was less than a threshold of 4 s−1. Leading-edge vortex trajectories

were obtained by tracking the point of maximum vorticity magnitude.

The flow is characterized using isocontours of vorticity (filled color contours) with

superimposed contours of Γ2 = ±0.65 (black lines). Red shades indicate positive (counter-

clockwise) vorticity, and blue shades indicate negative (clockwise) vorticity. Solid contours

of Γ2 represent positive values and dashed lines represent negative values, which corre-

spond to the sign of the vorticity contained within the contour. The contour legend shown

in Fig. 3.2 applies to all of the vorticity contour plots presented in this paper.

Typical uncertainty of the in-plane velocity components (u and v) was approxi-

mately 2% while typical uncertainty in the out-of-plane of vorticity (ωz) were estimated

to be 3%. The uncertainties in the velocity and vorticity are based only on PIV measure-

ment error, assuming a typical 0.1 pixel uncertainty in the displacement computed from

the cross-correlation analysis (e.g. Huang et al., 1997; Westerweel, 2000). The 2% ve-

locity uncertainty is based upon the free-stream velocity, and the 3% vorticity uncertainty

is obtained by propagating the velocity uncertainty through the central difference equation

used to compute the vorticity field, and evaluating at a typical peak vorticity value in the

LEV, assuming that the uncertainty is dominated by random errors. A detailed discussion

on error analysis is presented in Appendix A. Random measurement errors should decrease

as 1/
√

N when averaging over N velocity fields; however, the flow field variability in this

transitional flow is generally much greater than the measurement uncertainty. To estimate

convergence of the mean as it relates to the present study, we considered the leading-edge
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Figure 3.1: Small uncertainty in circulation by taking average of 12, 25, 50, 75, and 100

images for circulation measurements.

vortex circulation in the mean flow with increasing numbers of velocity fields in the aver-

age which shows that convergence is achieved with 100 velocity fields as shown in Figure

3.1.

3.1.1 Overview of Flow Evolution: S t = 0.2

To provide a baseline for the investigation of parameter variations, Fig. 3.2 shows

the evolution of the vorticity distribution generated by the plunging plate for S t = 0.2

and h0/c = 0.3, which corresponds to k = π/3 = 1.05. At the top of the downstroke

(Fig. 3.2(a)) the vorticity field downstream of the panel consists of multiple clockwise

vortex structures, as indicated by the Γ2 contours (which match well with local vorticity

concentrations). The compact discrete vortices were shed from the trailing edge throughout

the preceding upstroke, and the large, diffuse structure is the leading edge vortex generated
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one full cycle earlier during the preceding downstroke. Despite that the vorticity shed from

the leading edge sometimes forms more than one vortex, and that from the trailing edge

often resembles an unstable shear layer rather than a single discrete vortex, we will use

the abbreviations LEV and TEV to denote the vortex systems shed from the leading and

trailing edges, respectively. Figure 3.3 showes the velocity vector fields for the same case

with S t = 0.2 and h0/c = 0.3 which are the zoomed-in pictures of pictures in Figure 3.2.
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Early in the downstroke, (Fig. 3.2(b)), multiple new counter-clockwise vortex struc-

tures are similarly shed from the trailing edge until φ ≈ 0◦, where the counter-clockwise

LEV beneath the plate (not yet visible) reaches the trailing edge. The initiation of LEV

generation on the top surface begins somewhat later than shedding of vorticity from the

trailing edge, as it is first clearly present at φ = 0◦. Interaction between the LEV and the

top surface of the plate results in the generation of a region of counter-clockwise vorticity

between the LEV and the plate. As previously observed by Lewin and Haj-Hariri [43], in

the phase-averaged representation of the flow this counter-clockwise vorticity appears to

participate in the separation of the LEV from the shear layer as it is drawn forward and

ultimately penetrates the shear layer. This is illustrated in Figs. 3.2(d) through 3.2(f).

Experiments were repeated at S t = 0.2, with values of h0/c = 0.2 (k = π/2 = 1.57)

and 0.4 (k = π/4 = 0.785). Selected phases are shown in Fig. 3.4, which demonstrates

that the number of discrete structures shed from the trailing edge increases with plunge

amplitude. In both cases, the evolution of the flow field was qualitatively similar to that at

h0/c = 0.3; however, the convection rate of the LEV (d(xc/c)/dφ, where xc is the stream-

wise position of the vorticity peak in the LEV) is positively correlated with plunge ampli-

tude. The nature of interactions between leading- and trailing-edge vortices are therefore

primarily dependent on the plunge period at S t = 0.2 without significant influence of the

plunge amplitude, implying that vortex interactions are primarily dependent on reduced

frequency.

For all of the amplitudes investigated at S t = 0.2, the LEV convects over the full

chord length and interacts with trailing-edge structures shed during the subsequent strokes.
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(a) φ = 0◦ (b) φ = 90◦

(c) φ = 90◦ (d) φ = 180◦

Figure 3.4: Selected phases at S t = 0.2 for h0/c = 0.2, k = 1.57 (a and b) and h0/c = 0.4,

k = 0.785 (c and d).
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As Fig. 3.4 shows, the phase at which this occurs and the nature of the interaction depends

on h0/c. At h0/c = 0.2, the LEV generated during the downstroke reaches the trailing edge

as the nascent (opposite-sign) trailing edge structures begin to shed at the beginning of the

subsequent downstroke (i.e. a full cycle later), and consequently there is a strong interac-

tion between opposite-sign leading- and trailing-edge structures as shown in Fig. 3.4(a).

This results in a wide wake consisting of dipoles formed from leading- and trailing-edge

vorticity. Lua et. al. [46] observed a similar sequence of leading- and trailing-edge vortex

shedding at Rec = 1000, which they called a neutral wake. However, whereas strong asym-

metries exist in the dipoles observed here, Lua et. al. [46] observed only small differences

in the vortex strengths, and the distribution of the vortices was such that stronger interac-

tions were formed between like-signed vortices instead of forming dipoles. At h0/c = 0.4,

the leading edge vortex passes the trailing edge at a phase angle of approximately 180◦

along with like-signed trailing edge vorticity shed during the subsequent upstroke.

Fig. 3.5 shows the vorticity field evolving downstream of the plate for S t = 0.2 and

φ = 135◦ at the three amplitudes discussed above. The consequences of LEV interaction

with the trailing edge structures are apparent by comparing the three vorticity fields. At

h0/c = 0.2 (k = 1.57), the LEV forms the asymmetric dipole with the much stronger TEV

structure as described above, whereas for the higher amplitudes, the LEV is found among

the like-signed TEV structures.
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(a) (b)

(c)

Figure 3.5: Wake vorticity distributions downstream of the plate at φ = 135◦ for S t = 0.2.

(a) h0/c = 0.2, k = 1.57; (b) h0/c = 0.3, k = 1.05, (c) h0/c = 0.4, k = 0.785.
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3.1.2 S t = 0.1 and 0.3

Fig. 3.6 shows the flow field at φ = 90◦ for each of the amplitudes when the

Strouhal number is reduced to 0.1. A fine-scale Kármán-like vortex street, shedding from

the blunt trailing edge, is observed in the wake. In contrast to S t = 0.2, where formation of

a single leading edge vortex structure is typical, the increased convection rate for the cases

with S t = 0.1 results in the formation of multiple LEV structures. Rival et. al. [52] showed

that pinch off occurs at sufficiently low Strouhal numbers (S t = 0.08, h0/c = 0.5, k = 0.25)

and the dimensionless formation time T̂ , as defined by Dabiri [20], falls into a range of

4.4 < T̂ < 5.0; agreeing well with the concept of an optimal vortex formation time.

Fig. 3.7 shows the evolution of vorticity for S t = 0.3 and h0/c = 0.3. The reduced

frequency, k = π/2 = 1.57 matches that for S t = 0.2 and h0/c = 0.2, and the flow field

exhibits a similar wide wake with asymmetric dipole structure as that observed for S t = 0.2,

k = 1.57, again emphasizing the importance of reduced frequency to the flow structure. A

comparison of the corresponding phases in Figs. 3.4a and b with 3.7b and c reveals a

striking similarity in the vorticity distributions.

Fig. 3.8 shows the vorticity field at φ = 90◦ for S t = 0.3 with h0/c = 0.2 (k = 2.36)

and 0.4 (k = 1.18). Whereas at this phase angle, the LEV is near the leading edge in both

cases, at h0/c = 0.2, the LEV moves relatively little over the subsequent cycle due to the

reduced oscillation period. This is evident in Fig. 3.8(a) where a diffused and distorted

LEV, shed in the previous cycle, can be observed passing the trailing edge. In addition, two

concentrated vortex structures are shed from the trailing edge at k = 2.36; however, there

are several at k = 1.18. For all three amplitudes at S t = 0.3, the LEV was found to detach
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(a) (b)

(c)

Figure 3.6: The vorticity distribution near the plate for S t = 0.1 and φ = 90◦. (a) h0/c = 0.2,

k = 0.785; (b) h0/c = 0.3, k = 0.524; (c) h0/c = 0.4; k = 0.393.
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(a) φ = −90◦ (b) φ = 0◦

(c) φ = 90◦ (d) φ = 180◦

Figure 3.7: Evolution of spanwise vorticity with phase for S t = 0.3, h0/c = 0.3, k = 1.57.
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(a) φ = 90◦ (b) φ = 90◦

Figure 3.8: Vorticity distributions for S t = 0.3 and a) h0/c = 0.2, k = 2.36; b) h0/c = 0.4,

k = 1.18.

from its forming shear layer at approximately 0 degrees, concomitant with the penetration

of the opposite-sign vorticity.

The resulting wake patterns are highly dissimilar with varying amplitude, as shown

in Fig. 3.9. Whereas at h0/c = 0.2, the wake rapidly organizes into a reverse Kármán street

with vortices only slightly-displaced from the symmetry plane, at h0/c = 0.3, the broad

dipole wake persists further downstream, and at h0/c = 0.4, since the LEV is now integrated

within the multiple trailing-edge structures, the wake again appears to be gradually evolving

into a reverse Kármán -type structure.

3.1.3 S t ≥ 0.4

Increasing the Strouhal number to 0.4, some significant differences are observed

on the qualitative structure and evolution of the vorticity field that suggest an increased
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(a) (b)

(c)

Figure 3.9: Wake vorticity distributions for S t = 0.3 at φ = 135◦, for (a) h0/c = 0.2,

k = 2.36; (b) h0/c = 0.3, k = 1.57; (c) h0/c = 0.4, k = 1.18.
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influence of Strouhal number, in this range. Fig. 3.10 shows the evolution of the vorticity

field for S t = 0.4, h0/c = 0.3, and k = 2.09. One important difference is that the LEV

structure is now apparent at φ = −45◦, whereas it was not observed until φ = 0◦ in all

previous cases – which included a higher value of k for S t = 0.3 and h0/c = 0.2, supporting

that this is not a reduced frequency effect. Rather, this may be attributed to the higher

effective angle of attack (tan−1( f h0/U)) corresponding to the increased Strouhal number.

The advancement of LEV generation at S t = 0.4 was also observed for h0/c = 0.2 and

0.4. In addition, trailing edge vorticity now forms a single large vortex rather than multiple

discrete structures. The decrease in the number of trailing edge structures was attributed

to reduced frequency in the previously-examined cases; however, the reduction appears to

be augmented at S t = 0.4 when compared to Fig. 3.8(a) where S t = 0.3, h0/c = 0.2

and k = 2.36, yet two distinct TEV structures are observed. Another significant difference

observed under these conditions is that the LEV is ejected normal to the plate surface

upon generation of a new LEV on the subsequent cycle; however, this phenomenon wasn’t

universally observed at higher Strouhal numbers.

The convection rate (with respect to phase) of the LEV at S t = 0.4 is markedly

lower than that for the lower Strouhal numbers at similar reduced frequencies. This is best

illustrated by Fig. 3.11 where k = 1.57, matching the reduced frequencies of the lower-

Strouhal-number cases shown in Figs 3.4a and b, and 3.7. In Fig. 3.11, the LEV – which

becomes quite diffuse and elongated as it persists on the upper surface of the plate during

the upstroke – does not fully convect beyond the trailing edge. Rather, the nascent TEV

structure which begins to form at φ ≈ 270◦ divides most of the LEV structure from the
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(a) φ = −90◦ (b) φ = −45◦

(c) φ = 0◦ (d) φ = 45◦

Figure 3.10: Evolution of spanwise vorticity with phase for S t = 0.4, h0/c = 0.3, k = 2.09.
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previously-shed like-signed trailing edge structures. As a result, the dipole formed by the

weak LEV and the primary TEV structure is oriented upstream at φ = 90◦ rather than in

the transverse direction as is the case for k = 1.57 when S t = 0.2 and 0.3.

Wake vorticity distributions for S t = 0.4 are given in Fig. 3.12. For h0/c = 0.2 and

0.3, the wake rapidly organizes into a reverse Kármán vortex street. However, as with the

wakes for S t = 0.2 and 0.3, shown in Figs. 3.5 and 3.9, respectively, when h0/c = 0.4 such

that k = 1.57, a pair of dipoles are formed in the wake, again making the wake very broad.

Fig. 3.13 shows vorticity distributions for S t = 0.5, h0/c = 0.2, and k = 3.93, which

is largely representative of all three amplitudes. In general, the patterns are similar to S t =

0.4, with reduced LEV convection and more concentrated leading- and trailing-edge vortex

structures. At all plunge amplitudes, the shear layers emerging from the leading and trailing

edges accumulate in single leading- and trailing-edge vortices which are approximately

stationary during the upstroke and downstroke in which they are formed. This results in

a strong interaction between the LEV and the plate during the subsequent stroke in which

the LEV is flattened and dissipated. Due to the limited streamwise motion of the LEV, it

appears that the LEV vorticity makes little to no contribution to the vorticity in the wake of

the plate. In fact, as Fig. 3.13 shows, the LEV partially circumnavigates the leading edge

at φ = 0◦ and 180◦, as also observed by Lewin and Haj-Hariri [43]. Circumnavigation of

the LEV was also observed at h0/c = 0.3 but not at h0/c = 0.4. Fig. 3.14 shows vorticity

distributions in the wake for all three plunge amplitudes at S t = 0.5. It is evident that the

wake rapidly evolves into a reverse Kármán vortex street for all cases.

At S t = 0.6, the flow field is qualitatively similar to that at S t = 0.5 except that a
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(a) φ = 0◦ (b) φ = 90◦

(c) φ = 180◦ (d) φ = 270◦

Figure 3.11: Wake vorticity distributions for S t = 0.4, h0/c = 0.4, k = 1.57.
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(a) (b)

(c)

Figure 3.12: Wake vorticity distributions for S t = 0.4 at φ = 135◦, for (a) h0/c = 0.2,

k = 3.14; (b) h0/c = 0.3, k = 2.09; (c) h0/c = 0.4, k = 1.57.
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(a) φ = −90◦ (b) φ = 0◦

(c) φ = 90◦ (d) φ = 180◦

Figure 3.13: Vorticity distributions at S t = 0.5, h0/c = 0.2, k = 3.93.
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(a) (b)

(c)

Figure 3.14: Wake vorticity distributions for S t = 0.5 at φ = 135◦, for (a) h0/c = 0.2,

k = 3.93; (b) h0/c = 0.3, k = 2.62 ; (c) h0/c = 0.4, k = 1.96.
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significantly-deflected wake appears at h0/c = 0.4 as first reported by Jones et. al. [37].

Fig. 3.15 shows the vorticity field for S t = 0.6 with h0/c = 0.2 (k = 4.71) and h0/c = 0.4

(k = 2.36) in the vicinity of the plate and in the wake.

3.2 Interaction Between the LEV and the Airfoil Surface

Figure 3.16 shows phase-averaged vorticity distributions using time-resolved PIV

for the case of ho/c = 0.3, S t = 0.3, k = 1.57. Of particular interest is the mechanism

by which the LEV detaches from the shear layer, and the nature of the interaction between

the LEV and the secondary vorticity. The vorticity field shows as the plate accelerates, the

shear layer injects a significant amount of vorticity to the top of the plate, which rapidly

forms into the LEV (3.16(a), 3.16(b), 3.16(c), and 3.16(d)). The LEV grows in size and

strength and separates from the boundary layer vortex (3.16(e)). Then the LEV generates

opposite-sign vorticity (secondary vorticity) on the surface of the plate due to the pressure

gradient setup by the LEV (3.16(f)). The LEV and secondary vorticity continue to grow

(3.16(g), 3.16(h), and 3.16(i)) until the feeding shear layer starts to weaken (3.16(i)). When

the source of vorticity for the LEV is gone, the LEV detaches from the shear layer (3.16(j))

and starts to advect along the chord length (3.16(k) and 3.16(l)). At this time, the opposite-

sign vorticity starts to lift up from opposite-sign vortex layer and spill out into the external

flow (3.16(k) and 3.16(l)).

The existence ofsecondary vorticity is evidently a common phenomenon occurring

in a wide variety of applications when a vortex interacts with a wall ([21]). In general, a

boundary-layer eruption occurs in such circumstances in the form of a thin spire containing
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(a) φ = 270◦ (b) φ = 90◦

(c) φ = 270◦ (d) φ = 90◦

Figure 3.15: Vorticity distribution at S t = 0.6, for (a) h0/c = 0.2 near the panel and (b) in

the wake, and (c) h0/c = 0.4 near the panel and (d) in the wake.
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(a) φ = −90o (b) φ = −75o (c) φ = −60o

(d) φ = −45o (e) φ = −30o (f) φ = −15o

(g) φ = 0o (h) φ = 15o (i) φ = 30o

(j) φ = 45o (k) φ = 60o (l) φ = 75o

Figure 3.16: A time sequence of the averaged vorticity contours for ho/c = 0.3, S t = 0.3,

k = 1.57.
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significant levels of vorticity, which usually rolls up into a secondary vortex (Visbal [65]).

As discussed in many previous studies, it has been believed that this opposite-sign vorticity

is responsible for LEV detachment from its feeding shear layer which prevents it from

achieving further circulation. A dominant concept is the eruption of the wall boundary

layer leading to secondary vortex, originally calculated by Walker (1978) for a vortex along

a wall. Acharya and Metwally (1992) stated that, “[the secondary vorticity] cuts off the

dynamic-stall vortex from its source of vorticity ”. As observed by Lewin and Haj-Hariri

[43], for an airfoil of elliptical cross section plunging at Rec = 500 the counter-clockwise

vorticity appears to participate in the separation of the LEV from the shear layer as it is

drawn forward and ultimately penetrates the shear layer. However, the interaction appears

to be more complicated at higher Reynolds numbers. Visbal [64] numerically showed that

in addition to the primary leading edge vortical structures, another distinct feature is the

ejection of secondary vorticity due to the ensuing vortexsurface interaction. This ejected

vorticity is quite prominent between the two primary dynamic-stall vortices, and eventually

completely surrounds the leading vortex. Further downstream, this secondary vorticity

becomes less apparent due to spanwise instability effects, as discussed later. Recently,

Rival et al. [53], argued that there are two mechanisms that are responsible for the LEV

detachment process: a) the eruption layer (opposite-sign vorticity) as discussed, and b)

flow reversal from the trailing edge. The former affected by the vortex growth rate and

thus also the feeding shear layer. The latter dictates the overall maximum circulation of the

LEV and forces a rapid cut-off once the rear stagnation point passes off of the trailing edge,

changing the topology of the flow field. In our study, the chord length compared to the
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convective length scale (UT or U/ f ) is sufficiently large, therefore the flow reversal from

the trailing edge was not observed. It is not clear if the eruption of opposite-sign vorticity

is responsible for the LEV detachment or if it is simply concurrent with the weakening of

the shear layer at the end of the stroke. It was shown by Wojcik and Buchholz [77, 78]

that, for a rotating blade in which a stable leading-edge vortex is formed, entrainment of

the opposite-sign vorticity is a significant mechanism for the regulation of vortex strength.

Evolution of the instantaneous time-resolved flow field (real flow behavior) was

examined to determine the mechanisms of vorticity transport governing the development

and strength of the leading edge vortex. The instantaneous vorticity field for the case of

ho/c = 0.3, S t = 0.3, k = 1.57 is shown in Figure 3.17. Time-resolved PIV measurements

in the two-dimensional chordwise plane revealed an important difference between the in-

stantaneous and phase-averaged realizations of the leading-edge vortex development. As

shown in Figure 3.17, the evolution of the phase-averaged vorticity field is such that the

secondary vorticity (red) grows throughout the downstroke, remains as a simply-connected

structure, and is drawn upstream by the induction of the leading-edge vortex, ultimately

penetrating the shear layer at around φ = 55 degrees as the shear layer weakens. A similar

evolution was observed by Lewin and Haj-Hariri [43] in the instantaneous vorticity field

of a plunging elliptical airfoil at Re = 500. However, in the present case, the interaction

between the leading-edge vortex and secondary vorticity is much more complex. Indi-

vidual frames reveal small packets of secondary vorticity (shown by green arrows) being

entrained by the leading-edge shear layer, and drawn into the leading-edge vortex through-

out the downstroke, but with the greatest rate of entrainment observed later in the stroke,



80

where the penetration is observed in the mean vorticity field. The observation of this en-

trainment suggests that resulting annihilation within the leading-edge vortex may provide

an important mechanism regulating leading-edge vortex strength. Visbal [64] also noted

similar entrainment on a plunging airfoil when the Reynolds number was large enough for

the flow to be transitional. Wojcik and Buchholz [77, 78] observed similar entrainment on

a rotating flat plate at high angle of attack, and performed a vorticity flux analysis within

the leading-edge vortex revealing that the entrainment is an important sink of vorticity to

balance the leading-edge shear layer flux, and thus maintain a bounded leading-edge-vortex

circulation in that case. Although, the instantaneous flow fields represent the real physics,

in the next chapter, we perform a vorticity transport analysis of phase-averaged flow field

for the 2-D plunging airfoil to better understand the role of this secondary vorticity on the

LEV circulation.

3.3 Advection of Leading Edge Vortex Structures

Section 3.1 demonstrated that the qualitative behavior of wake structures depends

primarily on reduced frequency with a secondary influence of Strouhal number. In this sec-

tion, we examine that assertion in more detail by investigating the LEV streamwise position

as a function of time, phase, Strouhal number, and reduced frequency. The contribution of

the LEV to the wake circulation and structure depends on the convection rate of the LEV

since that affects the deterioration of the LEV through its interaction with the plate, and

how the LEV interacts with vorticity shed from the trailing edge.



81

(a) φ = −45o (b) φ = −30o

(c) φ = −15o (d) φ = 0o

(e) φ = 30o (f) φ = 45o

Figure 3.17: A time sequence of the instantaneous vorticity contours for ho/c = 0.3, S t =

0.3, k = 1.57.
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3.3.1 Leading Edge Vortex Trajectories

Fig. 3.18(a) shows the streamwise positions of leading edge vortex cores as a func-

tion of phase angle for the three plunge amplitudes and 0.2 ≤ S t ≤ 0.5. Strouhal number

and amplitude values are indicated by symbol shape and line type, respectively, whereas

symbol color has been used to define reduced frequency ranges (green: k ≤ 1.17, red:

k = 1.57, light blue: 1.96 ≤ k ≤ 2.36, dark blue: k ≥ 2.62). The results for St=0.1 and 0.6

have not been included here, since for S t = 0.1, there are multiple weak LEV structures

which rapidly leave the field of view, and for S t = 0.6 the LEV is essentially stationary,

similar to S t = 0.5. The location of maximum vorticity value within the LEV has been

identified manually and used to track the vortex cores so that the qualitative observations

about LEV behavior can be further clarified and quantified.

Fig. 3.18(a) clearly shows the importance of reduced frequency to the trajectories

of the LEV structures. With only a couple of exceptions (one in the top three trajectories

and one in the bottom three), the trajectories are ordered monotonically from the lowest

reduced frequency (k = 0.785) at the top to the highest (k = 3.14) at the bottom. Whereas,

during the downstroke, the LEV did not pass the mid-chord point for any of the parame-

ter combinations shown, the LEV celerity in the low-reduced-frequency cases (light blue)

increased significantly during the upstroke. A notable increase was also observed for the

cases in which k = 1.57 (red) although those LEVs did not pass the trailing edge by the end

of the upstroke. Although the impact of Strouhal number is not easily observed in the LEV

trajectories, its effect can be seen by comparing the positions of the LEV’s for the k = 1.57

cases during the upstroke. Whereas the LEV’s for S t = 0.2 and 0.3 generally follow a
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(a)

(b)

Figure 3.18: LEV trajectories as a function of a) phase angle and b) dimensionless time.

The line in (b) indicates the free-stream velocity.
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similar trajectory, the LEV at S t = 0.4 lags the other two cases by x/c ≈ 0.1 throughout

the upstroke.

The trajectory data are plotted in Fig. 3.18(b) as a function of dimensionless time

t∗ = tU/c. The convective time scale c/U is the same in all cases so t∗ is proportional to

dimensional time where t∗ = 0 corresponds to φ = −90◦. The LEV convective velocities

are similar during the downstroke, and move at approximately 0.35U. Consideration of

Figs 3.18(a) and 3.18(b) shows that during the upstroke, for k ≤ 1.17, the LEV convection

speed is very similar to the free stream velocity.

Figure 3.19 shows the streamwise position of the LEV at φ = 270◦ as a function

of both Strouhal number and reduced frequency, illustrating that reduced frequency is a

superior similarity variable for the LEV position, and Fig. 3.19(b) reveals an approximately

binary outcome. For high reduced frequencies and Strouhal numbers, both plots show that

the LEV position is relatively insensitive to the forcing frequency. For k ' 2, the LEVs

are ”trapped” on the plate surface, leading to their ultimate obliteration through interaction

with the plate surface; whereas for k / 2, the LEVs are eventually shed into the wake and

the position is highly sensitive to reduced frequency.

3.3.2 The Physics Governing Vortex Trajectories

Fig. 3.18(a) shows that, for 0◦ ≤ φ ≤ 90◦ – in which the LEV is being formed

during the downstroke – the convection velocity of the LEV varies little throughout the

parameter range investigated here; however, during the upstroke (90◦ < φ < 180◦), during

which time the LEV is either ejected into the wake or destroyed through its interaction
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(a)

(b)

Figure 3.19: LEV location at φ = 270◦ vs. (a) Strouhal number, (b) Reduced frequency.
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with the plate, the convection velocity is much more sensitive to reduced frequency. The

convection velocity is governed, at least in part, by the competition between the free-stream

velocity and the induced velocity field imparted on the vortex through its interaction with

the surface of the plate. Modeling this interaction as a compact vortex interacting with an

infinite wall, the convection velocity is given as Doligalski et. al. [21]:

Vc = U −
Γ

4πa
(3.2)

where U is the free-stream velocity, Γ is the vortex circulation, and a is its distance from

the wall. Fig. 3.20(a) shows the circulation of the LEV as a function of Strouhal number at

φ = 90◦ – the phase at which the LEV is typically near its maximum circulation – revealing

a significantly increased sensitivity for each plunge amplitude in the range 0.3 < S t <

0.5. The relationship between circulation and Strouhal number qualitatively resembles

the arctangent function governing effective angle of attack, as discussed in Section 3.1.3,

suggesting that effective angle of attack is an important parameter governing LEV strength.

Referencing Fig. 3.18(a), it is apparent that at all but the lowest Strouhal numbers, the

LEV is located well within the streamwise extent of the airfoil at φ = 180◦. Evaluating the

circulation and wall-normal distance, a (using the point of maximum vorticity) at φ = 180◦ ,

the convection velocities were evaluated according to Equation 3.2. The results are given

in Fig. 3.20(b) as a function of Strouhal number. A rapid drop in predicted convection

velocity is evident between S t = 0.3 and 0.4, concomitant with the rise in circulation.

This result suggests that Strouhal number should be more important in governing

For the cases in which the LEV had convected near or beyond the trailing edge at φ = 180◦,
data from an earlier phase was used to perform the calculation. These cases include: S t = 0.2,
h0/c = 0.3 (φ = 135◦); S t = 0.2, h0/c = 0.4 (φ = 90◦); and S t = 0.3, h0/c = 0.4 (φ = 90◦).
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the celerity of the leading-edge vortex as its value increases beyond approximately 0.4.

While we have noted qualitative differences in vortex structure that can be attributed to

Strouhal number, the interactions between leading- and trailing-edge vortices, and the re-

sulting wake structures, have been primarily dependent on reduced frequency – even at

higher values of Strouhal number. This apparent contradiction can be resolved by consid-

ering Figure 3.20(c), which contains the celerity data from Figure 3.20(b) plotted against

reduced frequency. Despite the Strouhal-number-related features in the circulation curves

for each plunge amplitude, the data do collapse reasonably well onto a line reflecting an

inverse relationship between LEV celerity and reduced frequency.

Actual LEV convection velocities were estimated from the measured position data,

using forward differences, at phases matching the ones given in Fig. 3.20(c). The results

are given in Fig. 3.20(d). While significant differences exist between the magnitudes of the

predicted and measured LEV convection velocities, the trends are quite similar. It is very

interesting that the measured celerity values drop very rapidly in the range 1.5 < k < 2,

reflecting the bimodal behavior of the LEV position illustrated in Figure 3.19(b).

3.4 Classification of Vortex Shedding Patterns

In Section 3.1, it was shown that the interactions of vortices generated by the plung-

ing plate, and the resulting wake patterns were governed primarily by reduced frequency.

However, for S t ' 0.4, some significant Strouhal-number-governed modifications were

observed in the formation and structure of the vortices. In the following discussion, we

further quantify the effect of Strouhal number on the leading edge vortex, and ultimately
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(a) (b)

(c) (d)

Figure 3.20: a) LEV circulation at φ = 90◦ as a function of Strouhal number, b) LEV

convection velocities computed using Equation 3.2, (c) the same data plotted as a func-

tion of reduced frequency, d) LEV convection velocities estimated from measured vortex

trajectories.
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reconcile these results with the observations of the reduced-frequency dependence of the

wake patterns. A wake structure classification scheme is subsequently introduced which is

then compared with observations of the flow evolution in other studies.

3.4.1 Definition of Wake categories

Consolidating the observations reported in Section 3.1, we find that the wake pat-

terns can be classified according to the following categories, primarily determined by k:

Category 1: Vortex shedding is synchronized such that the leading-edge vortex merges

with the like-signed trailing-edge structures created in the subsequent stroke. This

type of interaction was found for 0.52 ≤ k ≤ 1.18. Figs. 3.5(b) and 3.5(c) contain

examples showing how the placement of the LEV within the discrete TEV structures

can vary with k at S t = 0.2.

Category 2: With increasing reduced frequency, the LEV convects a shorter distance dur-

ing a cycle such that it reaches the trailing edge at a later phase, having been weak-

ened through diffusion and interaction with the plate. In Category 2 wakes, the result-

ing weak LEVs pass the trailing edge after the like-sign trailing edge vortex system

is shed in the subsequent stroke, and interact with the following stronger, opposite-

signed TEV structures to form a dipole that results in a wide wake. This type of wake

was observed for k = 1.57. This is similar to previously observed wakes referred to

as neutral wakes Lewin and Haj-Hariri [43] or 2-P wakes Williamson and Roshko

[75]. Since the dipoles are highly asymmetric in the present case, the vorticity dis-

tribution in the wake suggests positive mean thrust. Examples of this type of wake



90

structure are shown in Figs. 3.5(a), 3.7, 3.9(b), 3.11, and 3.12(c).

Category 3: For S t = 0.3 and h0/c = 0.2 (k = 2.36), the LEV is further delayed (with

respect to the phase of oscillation) so that it passes the trailing edge after the opposite-

sign TEV system one full cycle after its own generation, as shown in Figs. 3.8(a) and

3.9(a). Rather than forming an asymmetric dipole wake, the LEV rapidly dissipates,

leaving a dominant reverse Kármán vortex wake formed primarily by the TEV. At

S t = 0.6 and h0/c = 0.4, the reduced frequency is the same; however, this type of

wake evolution is not observed since the LEV does not pass the trailing edge.

Category 4: A reverse Kármán vortex street is formed consisting either of only vorticity

shed from the trailing edge (since the LEV is essentially obliterated through its in-

teraction with the plate), or a weak LEV is released into the wake more than one

full cycle after its generation. This occurs for all conditions observed with k ≥ 1.96

(which, in the present data set is only obtained for S t ≥ 0.4). At S t = 0.6 with

h0/c = 0.4, the TEV structures are deflected transversely such that an asymmetric

wake is formed (Figs. 3.15(c) and 3.15(d)).

These categories and the parameters for which they occur are summarized, for the

present data set, using the solid black symbols in Fig. 3.21. Lines of constant reduced

frequency are drawn in addition to the Strouhal number represented on the abscissa, so that

the dependence on each parameter can be evaluated. It is evident that all of the category 1

wakes occur to the left of the k=1.5 line, where the maximum Strouhal number investigated

here is 0.3. As noted above, the three cases at k = 1.57 all exhibit category 2 wakes. Only
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Figure 3.21: Wake pattern classification as function of Strouhal number, plunge amplitude,

and reduced frequency. Symbol shapes indicate category number: category 1 (N), category

2 (�), category 3 (_), category 4 ( ), and a large open square associated with any of these

symbols indicates a deflected wake. Black symbols represent the present results, gray

symbols represent the results of Lua et. al. [46], and open symbols represent the results of

Lewin and Haj-Hariri [43].
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one instance of a category 3 wake is observed in our data, which occurs for S t = 0.3 and

h0/c = 0.2.

As h0/c is reduced from 0.3 to 0.2 at S t = 0.2, the category increases from 1 to 2

and categories 1, 2, and 3 are present at S t = 0.3, corresponding to h0/c = 0.4, 0.3, and

0.2, respectively. However, at S t = 0.4, there is a jump from category 2 to 4 at S t = 0.4,

with a reduction in amplitude from h0/c = 0.4 to 0.3. This appears to cause a breakdown

in the pattern established at lower Strouhal numbers, in which we might expect to see

category 3 wakes within a range of approximately 1.57 < k < 2.5. However, category 4

wakes are universally observed at the higher Strouhal numbers. Given that there is only

one occurrence of a category 3 wake within our data set suggests that it is not stable for a

very large region within the parameter space.

3.4.2 Generalization of Wake Categories

Previous studies of the wake structures formed by NACA 0012 and elliptical air-

foils with pure plunge kinematics have been conducted by Lai and Platzer [40], Lewin and

Haj-Hariri [43], and Lua et. al. [46]. These studies focus primarily on Reynolds num-

bers between 500 and 1000, which is significantly lower than the present case. Previous

studies Buchholz and Smits [14, 65] noted fundamental differences in flow structure and

aerodynamic performance when Reynolds number was varied from O(103) to O(104), so

it is of interest to examine the applicability of the wake categories presented here over a

similar range of Reynolds numbers. Since Lewin and Haj-Hariri [43] and Lua et. al. [46]

also reported that wake structure was dependent on the nature of the interaction between
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leading- and trailing-edge vortices, the classification system presented in Section 3.4.1 has

been applied to the flow fields presented in those studies – to the extent that the wake classi-

fications could be determined from the figures – and the results are shown with the current

data in Fig. 3.21.

Agreement between the present work and the two prior studies is very good for

k / 1.57 among the points shown in Fig. 3.21. For k < 1.5, the one data point shown from

Lewin and Haj-Hariri [43] (S t = 0.256, and h0/c = 0.4) is a category 1 wake, consistent

with the present results. Both of the prior studies examined points with k ≈ 1.57, and all

but one were found to produce category 2 wakes, also consistent with the wake evolution

observed in the present study. One of the points from Lua et. al. [46] (S t = h0/c = 0.552)

is of higher amplitude than that investigated in this study and a category 2 wake is still

observed. The one point near this line that is category 3 ( Lewin and Haj-Hariri [43]

S t = 0.256, h0/c = 0.24) is also close to the only category 3 point observed in the present

study.

For k > 1.57, most of the data obtained from the prior studies are for h0/c < 0.2.

For k > 1.57 and h0/c < 0.2, category 4 wakes are universally observed, supporting that,

at at the lower Reynolds numbers, the proposed wake classification and the importance of

reduced frequency persists at h0/c < 0.2. Only two previous data points are presented for

k > 1.57 and h0/c > 0.2 (from Lua et. al. [46]), and both of these points indicate category

1 wakes – clearly distinct from the category 4 wakes for that parameter range in the present

study.

Two additional wakes from Lua et. al. [46] were characterized but not shown in Fig.



94

3.21 because they correspond to values of h0/c much larger than the others. The first point,

at (S t, h0/c, k) = (0.32, 1.6, 0.314), convects very quickly, forming a vortex dipole with the

trailing edge vortex shed in the same stroke. This observation supports the existence of at

least one additional wake category for reduced frequencies below the values investigated

in the present study. The second point, which is at (S t, h0/c, k) = (0.552, 1.104, 0.785)

exhibits a category 1 wake. This is consistent with the results of the present study for

similar reduced frequencies; however, it is noteworthy that (as noted above), for the same

Strouhal number, the evolution of most of the other wakes reported by Lua et. al. [46]

at h0/c < 0.4 fall into category 1. Taking into account the insight provided by Fig. 3.20,

this suggests that the differences in behavior noted here between the observations of Lua

et. al. [46] and the present work are caused by different trends in LEV circulation. Given

that the wakes recorded by Lua et. al. [46] at S t = 0.552 with amplitudes of h0/c = 0.276

and 0.368 are within the range of forcing parameters investigated in the present study,

the differences must be attributed to either Reynolds number or airfoil shape. In a recent

study on leading edge vortex formation and detachment, Rival et. al. [53] demonstrated

that leading edge shape can have a significant impact on vortex circulation, with a general

trend toward leading edges with high curvature generating larger circulation than those

with lower curvature (i.e. NACA 0012). This result suggests a lower circulation for the

elliptical airfoil, and thus a faster convection rate, supporting the category 1 result for those

wakes. On the other hand, Visbal [65] observed significant differences in flow evolution

between Rec = 103 and 104 at k = 0.25, including a lack of transitional effects at the lower

Reynolds number, and generation of multiple leading edge vortex structures at the higher
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Reynolds number. While it is difficult to extrapolate these results to the significantly higher

reduced frequencies noted here (k > 2), it is anticipated that Reynolds number could have

a significant impact on vortex generation and evolution.
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CHAPTER 4
3-D ANALYSIS OF FLOW EVOLUTION AND VORTICITY TRANSPORT ON

THE 2-D PLUNGING AIRFOIL

4.1 Flow Volumetric Reconstruction

4.1.1 3-D Evolution of Flow Field

The evolution of the flow field for k = 1.05, S t = 0.2, h0/c = 0.3 is shown in Figures

4.1 through 4.4 within the spanwise extent ∆z/c = 1.0 near the mid-span of the airfoil.

Each reconstruction is phase-averaged from 100 velocity fields. The plotted quantity is an

isosurface of vorticity magnitude |~ω| = 10 s−1 colored by the sign of ωz (red is positive and

blue is negative). The focus was on the leading edge vortex structure. This particular case

is a Category 1 flow in which the leading-edge vortex is generated and traverses the entire

chord of the plate within one plunge cycle, and is shed into the wake with the like-signed

trailing edge vorticity.

Figures 4.1 through 4.4 show that the LEV structure is qualitatively two-dimensional

during its traversal over the chord, but develops a spanwise instability once it is shed into

the wake (Figure 4.4(a)), which leads to a rapid dissipation in the structure. As the plate

starts moving down (Figure 4.1(a)), multiple positive vortex structures shed from the trail-

ing edge and the first structure shows some instability in spanwise direction as shown in

Figure and 4.1(b). The LEV formation on the top surface begins at φ = −22.5◦ (not shown

here), similar to the 2-D results. There is evidence of the generation of a positive (red)

secondary vortex due to the interaction of the LEV with the surface of the airfoil in Fig-

ures 4.2(a) through 4.3(a). The initiation of LEV instability in spanwise direction can be
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observed in top view of Figure 4.2(b). Also, TEV structures start to roll around each other

and dissipate in the wake. At φ = 90◦ the LEV has separated from shear layer and started

to advect downstream. By the time the vortex reaches the trailing edge (Figure 4.4(a)), very

little secondary vorticity is apparent, as indicated by the isosurface. The instability in the

LEV and TEV structures is more clear in the wake of Figure 4.4(a).

4.1.2 Validation of 3-D Volume Reconstruction

Uncertainty analysis of two-dimensional PIV measurements was discussed in Sec-

tion 3.1. In order to assess the uncertainties associated with the 3-D volume reconstruction

process described in Section 2.2.4.2, two approaches were considered. The first was to

compare the y−component of velocity which is measured in both vertical and horizontal

planes (y− z planes and x− y planes respectively). It was important to understand how this

redundant component of velocity changes between planes, and if we can rely on the out-of-

plane component measured from PIV in the normal direction. Figure 4.5 shows the ratio of

difference between Uy values of the vertical planes and horizontal planes to the free-stream

velocity multiplied by 100, as shown in equation 4.1 for the nominally two-dimensional

plunging plate at S t = 0.2, h0/c = 0.3, k = 1.05, φ = 45◦.

δUy =
(Uy)z−planes − (Uy)x−planes

U∞
× 100 (4.1)

This phase was selected because the LEV has its maximum strength. The maximum differ-

ence between the magnitude of Uy of horizontal and vertical planes is about 3% of the free

stream velocity in the region close to the leading edge.In the present study, the Uy values

of reconstructed flow field were calculated by taking the average of its value from the hor-
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(a) (b)

Figure 4.1: Evolution of the vorticity field on the central portion of the nominally two-

dimensional plunging plate at S t = 0.2, h0/c = 0.3, k = 1.05, a) φ = −90◦ and b) φ = −45◦.

First row: isometric view, second row: side view, third row: top view.
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(a) (b)

Figure 4.2: Evolution of the vorticity field on the central portion of the nominally two-

dimensional plunging plate at S t = 0.2, h0/c = 0.3, k = 1.05, a) φ = 0◦ and b) φ = 45◦.

First row: isometric view, second row: side view, third row: top view.
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(a) (b)

Figure 4.3: Evolution of the vorticity field on the central portion of the nominally two-

dimensional plunging plate at S t = 0.2, h0/c = 0.3, k = 1.05, a) φ = 90◦ and b) φ = 135◦.

First row: isometric view, second row: side view, third row: top view.
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(a) (b)

Figure 4.4: Evolution of the vorticity field on the central portion of the nominally two-

dimensional plunging plate at S t = 0.2, h0/c = 0.3, k = 1.05, a) φ = 180◦ and b) φ = 225◦.

First row: isometric view, second row: side view, third row: top view.
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(a) z/s = 37.5% (b) z/s = 50%

(c) z/s = 62.5%

Figure 4.5: The percentage of δUy as shown in equation 4.1 for the nominally two-

dimensional plunging plate at S t = 0.2, h0/c = 0.3, k = 1.05, φ = 45◦, with superimposed

contours of spanwise vorticity (black lines- solid lines show positive and dash lines show

the negative vorticity) at different spanwise locations.

izontal and vertical planes. Therefore, the representative uncertainty of the reconstructed

velocity was not greater than 3%.

The second approach to validate the reconstruction was to investigate whether the

continuity in the reconstructed flow field is satisfied or not. To examine this, the following

terms was computed:
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The left-hand-side of equation 4.2 is the continuity equation for an incompressible

flow which is ideally zero. To find out how close to zero the continuity of reconstructed

velocity field is, it has been compared to the right-hand-side of equation 4.2 which is the

summation of magnitude of velocity derivatives. Figure 4.6 reveals that the maximum

value of the continuity term is approximately 1% of the maximum of the summation of

magnitude of velocity derivatives for the case of S t = 0.2, h0/c = 0.3, k = 1.05 at φ = 45◦.

Repeating these approaches for other cases reperesented similar uncertainties in the flow

field.

4.2 Analysis of Vorticity Transport in the LEV

A three-dimensional vorticity transport analysis was conducted on the spanwise

symmetry plane of the two-dimensional airfoil, in which the terms of the vorticity trans-

port equation were evaluated and integrated over the boundaries and internal region of a

rectangular, planar control volume, as shown in Figure 4.7:

dΓ

dt
= −

∫
Az

uz
∂ωz

∂z
dAz+

∫
Az

(
ωy
∂uz

∂y
+ ωx

∂uz

∂x

)
dAz+

∫
1 to 3

un ωz dL+

∫
4
−ν

(
∂ωz

∂y

)
dL (4.3)

The spatial and temporal derivatives were approximated using central differences and for-

ward differences respectively. The left hand side is the rate of change of circulation in the

control volume. On the right hand side, the terms describe (from left to right) the con-

tribution due to the spanwise convection of a spanwise gradient in spanwise vorticity, the

tilting of vorticity from the y- and x-directions into the z-direction, convection of vorticity
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: The first collomn show the RHS of equation 4.2 and the second collomn show

LHS of equation 4.2 for the nominally two-dimensional plunging plate at S t = 0.2, h0/c =

0.3, k = 1.05, φ = 45◦. First row: z/s = 37.5%, second row: z/s = 50%, and third row:

z/s = 62.5%.
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Figure 4.7: Planar control volume in which the vorticity transport analysis was conducted.

across boundaries 1 through 3 (where un represents the velocity component in the direction

of the inward normal, and finally the diffusive flux of vorticity across the control volume

boundary coincident with the surface of the plate. It should be noted that the tilting term is

calculated only to better understand the magnitudes of the individual x- and y-tilting terms,

as their sum should be zero since tilting cannot alter the circulation of the vortex. The dif-

fusive boundary flux is computed from the phase-averaged surface pressure measurements

described in Section 2.2.5, and the integrand is determined based on computed pressure

gradients:

ν

(
∂ωz

∂y

)
wall

= −
1
ρ

(
∂p
∂x

)
wall

. (4.4)

The control volume was defined such that the upstream boundary (Boundary 1)

was located 0.042c from the leading edge coincident with the first pressure tap, and the

downstream boundary was located 0.5c from the leading edge. Figure 4.8 shows the phase-

averaged vorticity field, the surface pressure distribution, and the resulting surface vorticity

flux at φ = −45◦ and 0◦ during the downstroke [12]. Pressures are measured on the top
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]

(b)

Figure 4.8: Vorticity field, surface pressure distribution, and pressure gradient on the top

surface of the two-dimensional plate at (a) φ = −45◦ and (b) φ = 0◦.

surface of the airfoil by James Akkala. At φ = −45◦, the negative pressures indicated along

the chord length are due to inertial effects as the airfoil accelerates downward. At both

phases, a region of strong suction exists beneath the LEV, and a strong streamwise pressure

gradient exists at the downstream end of the leading-edge vortex that provides a significant

source of secondary vorticity, which is advected upstream by the velocity field inducted by

the LEV and ultimately entrained as described in Section 3.2.

Figure 4.9 contains the values of the terms in equation 4.3 integrated in time through-

out the downstroke. As Figure 4.9(a) illustrates, the shear layer flux through Boundary 1

is clearly the largest source of vorticity in the control volume. The maximum slope (max-



107

(a) (b)

Figure 4.9: (a) Integrated boundary vorticity fluxes and vorticity tilting terms, (b) the

sum of the integrated fluxes vs. LEV circulation throughout the downstroke of the two-

dimensional plate.

imum shear layer flux) occurs between approximately φ = −30◦ and -10◦, then steadily

declines over the second half of the stroke until it becomes approximately zero for approxi-

mately φ > 80◦. Interestingly, the opposite-sign pressure-gradient flux through Boundary 4

is approximately half that of the shear-layer flux, and has a similar shape – the net circula-

tion in the control volume is significantly reduced by the boundary vorticity flux generated

by the presence of the LEV itself. As Figures 4.1 through 4.4 suggest, there is very little

tilting occurring within the LEV during the downstroke, as both the x- and y-tilting terms

are very small. On the other hand, the flux of vorticity through Boundary 3 becomes im-

portant for φ > 45◦ as the LEV begins to cross the downstream boundary of the control

volume. Finally, it is evident that for φ > 45◦, spanwise convection of vorticity provides a

non-negligible sink of LEV vorticity, meaning that organized spanwise flow exists within

the vortex core, as well as a spanwise gradient in the vorticity distribution. Thus, an impor-

tant deviation from true two-dimensional flow is identified.
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Figure 4.10 shows the spanwise velocity distribution in relation to the vorticity field

at φ = 45◦ . A weak (approximately 1/5 of free-stream velocity) positive spanwise velocity

is apparent above the LEV and negative spanwise velocity in the secondary vortex. It varies

in strength but remains positive (downward) within the spanwise region above the LEV. It

is stronger in the region close to the root at 37.5% of span and it is wider at 62.5% of

span compared to the other spanwise locations. However, the size of the LEV structure

does not change along the span. The origin of this spanwise velocity is not clear. It may

be due to a) a growing instability within the LEV, or b) spanwise deflection of the plate.

Considering the fact that the spanwise velocity was measured for only one chord length

in the midspan region, it is not clear how this spanwise velocity developes in z-direction.

Since the spanwise velocity of the same magnitude gets wider along the span, this suggests

the LEV structure might have a tornado shape due to the interaction with the top and bottom

surfaces. On the other hand, the LEV structure might have been deformed in z-direction due

to the deflection of plunging plate, because the 3 mm plate thickness is very thin relative

to the 300 mm plate length made of Aluminum. Moreover, the LEV and TEV structures

present spanwise instability after shedding into the wake as shown in Figures 4.4(a) and

4.4(a), which might cause this positive spanwise velocity in the region of midspan.

Figure 4.9(b) shows the right hand side of Equation 4.3 integrated in time as well as

the circulation contained within the control volume as a function of time. The uncertainty

in the circulation is approximately 7%, whereas the uncertainty in the right side of Equa-

tion 4.3 is approximately 5% as shown in Figure 4.9(b), suggesting reasonable agreement,

although the circulation is consistently lower than the sum of the integrated fluxes.
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(a) (b) (c)

(d) (e)

Figure 4.10: Isocontours of spanwise velocity as a fraction of the free-stream velocity

(filled color contours-red indicates root-to-tip and blue indicates tip-to-root flow) with su-

perimposed contours of spanwise vorticity (black lines- solid lines show positive and dash

lines show the negative vorticity) at different spanwise locations: a) z/s = 37.5%, b) z/s =

43.75%, c) z/s = 50%, d) z/s = 56.25%, c) z/s = 62.5% .
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4.3 Insights into the Effects of Parameter Variation

Shear layer vorticity fluxes passing throught the control volume were computed for

nine combinations of Strouhal numbers and non-dimensionalized plunging amplitudes as

shown in Figure 4.11. The case shown in Figure 4.11(d) was discussed in section 4.2. Al-

though the magnitude of integrated shear layer vorticity fluxes and the LEV circulations are

different, the behavior of them is qualitativly similar. The slope of integrated vorticity flux

is twice of the slope of the LEV circulation during downstroke. At the end of downstroke

they level off and there is a deviation between the integrated shear layer vorticity fluxes and

the LEV circulations at the end of downstroke. Similar to the case of ho/c = 0.3, S t = 0.2 ,

the boundary vorticity flux is assumed to have a great influence on the LEV strength. Also,

the deviation between shear layer vorticity fluxes and the LEV circulations becomes largers

for higher S t and ho/c, where the flow seems to be very turbulent. This suggests that there

should be some three-dimensionality effect in the flow field despite the nature of 2-D flow

and there should be some annihilation which regulates the LEV strength like the spanwise

convection of vorticity or the instability in spanwise direction which were observed for the

case of ho/c = 0.3, S t = 0.2 (Figure 4.9(a)).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.11: Flux analysis based on phase-averaged flow field. First row: ho/c = 0.2,

second row: ho/c = 0.3, third row: ho/c = 0.4; first colomn: S t = 0.2, second column:

S t = 0.3, third column: S t = 0.4.
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CHAPTER 5
FLOW EVOLUTION FOR A FINITE-AR PLUNGING WING

5.1 Preliminary Vortex Dynamics on Finite-Aspect-Ratio wings

As described in Chapter 2, the same plunging kinematics were applied to finite

wings with roots bounded by a no-slip wall. The physical semi-aspect ratios of the plates

are sAR = 1 and 2, corresponding to full aspect ratios (mirrored about the symmetry plane)

of AR = 2 and 4. This section includes the results from Stereo Particle Image Velocimetry

measurements as described in section 2.2.2.

5.1.1 sAR = 2

In this section, we consider the vorticity and velocity fields for the finite plunging

plate of sAR = 2 with the root plate installed (See Figure 2.5). Figure 5.1 shows a quasi-3D

reconstruction of the spanwise component of the vorticity field for S t = 0.2, h0/c = 0.3 (k =

1.05) at φ = 45◦. At this phase of the plunge cycle, the LEV structure appears highly two

dimensional between the 25% and 75% spanwise positions. Near the root, the LEV appears

somewhat diminished. Figure 5.2 shows the plate at the bottom of the downstroke (φ =

90◦), where the LEV has moved further downstream. The LEV is now also significantly

diminished at the 75% spanwise position. At 12.5%, the LEV is increasingly elongated

and adjacent to the surface of the wing. In the mid-span region (25% to 50%), the LEV

becomes further elevated off of the surface and convects downstream. These vorticity cross

sections are consistent with the initial evolution of the LEV into a full arch structure over

the semi-span of the wing, similar to that observed by Calderon et al [15] for the sAR = 2
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rectangular wing.

Early in the upstroke, at φ = 135◦, the LEV moves further from the leading edge

and becomes significantly more deformed as shown in figure 5.3. The greatest excursion

from the plate is found at 37.5%, and this is also the location where the LEV has achieved

the greatest streamwise displacement. This development is still qualitatively consistent

with the observations of Calderon et al [15].

At φ = 180◦, mid-way through the upstroke, the LEV has reached the trailing edge

from the 12.5% to the 37.5% spanwise locations; however, at the 50% location, the LEV

is significantly retarded and it is also closer to the surface presented in figure 5.4. At

the 75% spanwise position, the LEV structure is barely detectable on top of the surface.

This suggests that the LEV has become highly reoriented into the streamwise direction

and drawn inward on the wing such that it is substantially inboard of the 75% spanwise

position.

Figs. 5.5 through 5.7 illustrate distributions of spanwise velocity in chordwise

planes coincident with the vorticity distributions described above for 45◦ ≤ φ ≤ 135◦.

To better interpret the spanwise velocity field, the figures have been stretched by a factor

of 2 in the spanwise direction to minimize overlap. Fig. 5.5 shows a strong root-to-tip

spanwise flow near the root (12.5% and 25% spanwise positions) at φ = 45◦ . There is

also a weaker region of tip-to-root flow upstream of the LEV. This pattern of outward and

inward flow is consistent with the velocity field induced by the LEV that has become tilted

down toward the plate. The root-to-tip spanwise flow is significantly decreased by the mid-

span region (37.5% and 50%). In the 75% spanwise plane, the pattern of spanwise flow
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becomes approximately reversed – there is outward flow upstream of the LEV and inward

flow downstream of the LEV, again consistent with the tilting of the LEV down toward

the wing. There is also a large region of tip-to-root flow downstream along the rest of the

chord. This is consistent with the induction of a separate, streamwise tip vortex outboard

of the 75% spanwise position.

At φ = 90◦, near the root, there is still strong root-to-tip flow up to 37.5%, which can

be seen in figure 5.6. At 50%, the region of tip-to-root flow has significantly strengthened,

consistent with the narrowing of the LEV structure over the span of the wing as shown in

Figure 5.2. At this point, root-to-tip flow is also significantly above the tip-to-root flow,

supporting the assertion based on observations of the vorticity field that the LEV is tilting

into the streamwise direction in this region. At φ = 135◦, strong spanwise root-to-tip flow

is still observed near the root. This region has moved downstream consistent with vorticity

field. On the other hand, tip-to-root flow is growing upstream of the LEV. Note that while

the LEV structure tilts and it is not extending toward the tip, thus the circulation values

might be different for vertical planes at different spanwise locations.

5.1.2 sAR=1

Figures 5.8 through 5.10 show the evolution of the vorticity and velocity fields on

the sAR = 1 wing for phase angles in the range 45◦ ≤ φ ≤ 135◦ for the same kinematic

parameters: S t = 0.2 and h0/c = 0.3 (k = 1.05). Similar to sAR = 2, the spanwise

velocity figures have been stretched twice in the spanwise direction. Figure 5.8 shows

that at φ = 45◦, the flow is much more highly three dimensional than for the sAR = 2
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Figure 5.1: Vorticity field of sAR = 2 wing at φ = 45◦ at S t = 0.2, h0/c = 0.3

Figure 5.2: Vorticity field of sAR = 2 wing at φ = 90◦ at S t = 0.2, h0/c = 0.3
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Figure 5.3: Vorticity field of sAR = 2 wing at φ = 135◦ at S t = 0.2, h0/c = 0.3

Figure 5.4: Vorticity field of sAR = 2 wing at φ = 180◦ at S t = 0.2, h0/c = 0.3
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Figure 5.5: Spanwise velocity field of sAR = 2 wing at φ = 45◦ at S t = 0.2, h0/c = 0.3

Figure 5.6: Spanwise velocity field of sAR = 2 wing at φ = 90◦ at S t = 0.2, h0/c = 0.3
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Figure 5.7: Spanwise velocity field of sAR = 2 wing at φ = 135◦ at S t = 0.2, h0/c = 0.3

wing since the cross-section of the LEV at the 75% spanwise position is now significantly

weakened and adjacent to the surface of the wing. At this phase, the flow structure appears

to be similar to the half arch structure observed on the semi-span wings by Yilmaz and

Rockwell[82], Visbal[66], and Calderon et al.[15]. There is strong tip-to-root spanwise

velocity at 75% as shown in figure 5.8(b), which decreases in the mid-span region. At

25%, the flow is reversed, and the spanwise flow here is primarily in the vortex core.

At φ = 90◦, the LEV becomes more diffuse at the 25% spanwise position, as shown

in Fig. 5.9(a), whereas at the mid-span position (50%), the LEV cross section begins to

elongate in the streamwise direction. In addition, the spanwise flow is growing due to the

three dimensionality (Fig. 5.9(b)).

At φ = 135◦, the LEV is descending near the root, as shown in figure 5.10(a) and
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(a) Vorticity filed (b) Spanwise flow field

Figure 5.8: Vorticity and spanwise velocity field of sAR = 1 wing at φ = 45◦ at S t = 0.2,

h0/c = 0.3

therefore takes on the appearance of a full-arch for sAR = 1 during upstroke. This is a

deviation from the single arch structure extrapolated to the full-span by Visbal[66] and

Calderon et al.[15]. Figure 5.10(b) explores that the spanwise velocity is stretched along

the chord length and it is like vorticity is tilting. Weak vorticity and high spanwise velocity

suggests that there is a highly streamwise oriented vortex on top of the surface.

5.2 Effect of Root Boundary Conditions

Whereas all previous results in Chapter 3 and 4 was obtained at the mid-span of the

on the nominally 2D plunging plate, also the scaling parameter of Buchholz et al. (2011)

established from measurements on the symmetry plane of a pitching symmetric panel, the

fix plate at the top surface of the water will form a no-slip plane in the experiments for the

finite wing. It is not entirely clear what influence this boundary condition will have on the
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(a) Vorticity filed (b) Spanwise flow field

Figure 5.9: Vorticity and spanwise velocity field of sAR = 1 wing at φ = 90◦ at S t = 0.2,

h0/c = 0.3

(a) Vorticity filed (b) Spanwise flow field

Figure 5.10: Vorticity and spanwise velocity field of sAR = 1 wing at φ = 135◦ at S t = 0.2,

h0/c = 0.3
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(a) (b)

Figure 5.11: Effect of root plate on vorticity field for dimensional spanwise location of

plunging plate with root plate at φ = 90◦ at S t = 0.2, h0/c = 0.3 for a) sAR = 2, b) sAR = 1

structure and dynamics of vorticity shed by the wing, since the interaction of vortices with

wall-bounded shear layers is known to generate (sometimes significant) axial flows in the

vortex core, and these flows have been shown to alter vortex circulation [6, 7, 19, 39].

A comparison of the same dimensional distances from the root plate as illustrated

in Figure 2.5 on sAR = 2 and sAR = 1 plunging wing with S t = 0.2, h0/c = 0.3 (k = 1.05)

is shown in figure 5.11. It reveals that close to the root, the LEV of sAR = 2 at 12.5%

is descending toward the surface of the plate; however, for sAR = 1 at 25%, a large LEV

structure is on the top surface which might intersect the root plate rather than the plunging

plate. Therefore, on the sAR = 1 wing, the LEV is more close to represent half-arch for

sAR = 1, consistent with Visbal’s and Calderon’s study.

The experimental three-dimensional phased-averaged flow structure of sAR = 2

with the root plate compared to sAR = 2 without the root plate is represented in figure
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5.12. The vorticity field reveals that the LEV of the wing with the root plate at 25% is

weaker than 50% but it is not clear what happens at the root (Fig. 5.12(a)). However, as we

showed in figure 5.2, at 12.5%, the LEV is descending to form the arch-type structure on

the top surface. The LEV of the wing without the root plate, at 25% is much weaker than

that of the wing with root plate, suggesting that the root acts more like the tip of the wing

and the LEV is more pronounced compared to the case with the root plate. This is also due

to the gap between the top of the plate without root plate and the top surface plate.

Regions of strong root-to-tip flow coincident with the vortex core at the most in-

board locations strongly suggests that the root boundary condition plays an important role

in the generation of spanwise flow. In previous studies for the cases of the inviscid sym-

metry plane (numerical simulations in Visbal[66], 3D streamlines in Fig. 4 and transverse

velocity fields in Fig. 18) or the full-span experiment (Yilmaz and Rockwell[82], veloc-

ity vectors in Fig. 3), there was no corewise flow near the symmetry plane, therefore the

corewise flow in our study is most likely caused by the root boundary condition.

5.3 3-D Flow Evolution on the sAR = 2 Wing

Since the no-slip wall boundary condition acted like root which might be caused

by the significant gap in the stationary wall case, the stationary root boundary condition

was modified. To reduce the effects of root boundary conditions on flow evolution and

to avoid the inflow and outflow from the slot in the top plate, the gap between the top of

the bracket (which mounted the airfoil or wing to the scotch yoke mechanism) and the top

plate has been minimized to less than 1 mm as shown in Figure 2.7. Similarly, a gap of
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(a) (b)

Figure 5.12: Effect of root plate on vorticity field for sAR = 2 plunging plate at φ = 90◦ at

S t = 0.2, h0/c = 0.3 a) with root plate and 2) without root plate.

less than 2 mm existed between the bottom of the airfoil and the bed of the water channel.

For the rest of this study, this root boundary condition was used and the spanwise locations

are measured with respect to the top of the holding bracket. Taking the preliminary results

of sAR = 2 wing, this section includes the results from two-dimensional Particle Image

Velocimetry measurements from two point of view as described in section 2.2.4 using 3-D

volume reconstruction method as described in section 2.2.4.2.

Figures 5.13 through 5.16 illustrates the isosurfaces of the Q-criterion[35] (Q = 5)

on the rectangular wing of AR = 2 for k = 1.05, S t = 0.2, and h0/c = 0.3, matching the

kinematics of the nominally two-dimensional plate. Again, each reconstruction is phase-

averaged from 100 velocity fields. First of all, the modified root boundary condition acts

like the moving root plate comparing the results shown in Figures 5.1 and 5.14(b) at φ =

45◦. At this phase, the LEV structure appears highly two dimensional over the wing, and
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only near the root, the LEV appears somewhat diminished. Also, Figure 5.15(a) and 5.2

show the plate at the bottom of the downstroke (φ = 90◦), where near root the LEV is

increasingly elongated and adjacent to the surface of the wing. These comparison confirms

that the modified root boundary condition is sufficiently acts like a symmetry plane. In

the mid-span region, the LEV becomes further elevated off of the surface and convects

downstream. These vorticity cross sections are consistent with the initial evolution of the

LEV into a full arch structure over the semi-span of the wing, similar to that observed by

Calderon et al [15] for the sAR = 2 rectangular wing with symmetry plane at root.

The shedding of vorticity from the finite-aspect-ratio wing is somewhat delayed in

comparison to the nominally two-dimensional wing, similar to the preliminary results. This

is particularly evident in the development of the leading edge vortex up to φ = −45◦. A

rapid decrease in the size of the LEV is also evident near the tip of the wing, which signals

the beginning of a rapid three-dimensional deformation of the LEV that causes the inboard

portion to lift off of the wing surface to form an arch-like structure as it advects downstream

along the chord through the mid-portion of the stroke (Figures 5.15(a) and 5.15(b). Early

in the upstroke, at φ = 135◦, the LEV moves further from the leading edge and becomes

significantly more deformed as shown in figure 5.15(b). At φ = 180◦, the LEV has become

highly reoriented into the streamwise direction and drawn inward on the wing such that it

is substantially inboard of the 75% spanwise position. Also, there must be the possibility

that it has become obliterated through interactions with the surface.
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5.4 Vorticity Transport on the sAR = 2 Wing

To further understand the evolution of the arch-type structure, we will repeat the

3D flux analysis described in section 4.2 at different spanwise locations on the wing. The

integrated values of the terms in Equation 4.3 are shown in Figure 5.17(a) during the down-

stroke, at the 50% spanwise position on the sAR = 2 wing. This location corresponds

approximately to the spanwise position of the middle of the LEV arch. As expected, and

similar to the 2D plate, the shear layer flux provides the greatest contribution to LEV circu-

lation. However, LEV circulation remains much lower than the integrated shear layer flux.

Moreover, spanwise flow provides a more significant sink of negative (LEV) vorticity than

for the 2D plate. However, the rate of change of circulation due to the spanwise flux does

not become significant until approximately φ = 0◦ when the LEV rolls up. The flux (slope

in the curve) continues to be significant until near the bottom of the downstroke (approxi-

mately φ = 70◦) after the arch is formed. The 50% spanwise plane approximately bisects

the arch structure so, despite the significant deformation of the LEV, there is little tilting of

vorticity in this plane.

Figure 5.17(b) compares the right hand side of Equation 4.3 integrated in time as

well as the circulation contained within the control volume as a function of time for sAR =

2. The sum of the fluxes through boundaries 1 through 3 and the spanwise convection

flux is approximately double that of the resulting LEV circulation. The surface pressure

measurements have not yet been conducted on the finite wing, and therefore the boundary

vorticity flux from the plate surface has not been included. Since for the 2D plate, the

boundary vorticity flux was approximately half of the shear layer flux, this would suggest
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(a) (b)

Figure 5.17: Integrated vorticity transport terms for the wing of sAR=2 at the 50% of

spanwise position.

a similar influence of the boundary flux in the finite wing at this position.

Figure 5.18 shows the integrated values of the terms in Equation 4.3 for the sAR = 2

wing at the 25% (close to root) and 75% (close to tip) of spanwise position. The shear

layer flux (boundary 1) is similar in magnitude at the 25% spanwise position as it is at the

50% spanwise position; however, it is slightly lower at the 75% spanwise position despite

being so close to the tip. The LEV circulation is also similar in magnitude at all three

spanwise positions. At the 25% spanwise position, the rate of change of circulation due to

the spanwise flux is about 25% larger than that at the 50% spanwise position. Although,

this requires further investigation to better understand the cause of the spanwise flow, it is

likely related to highly three-dimensional flow near the root due to evolution of the LEV

into an arch as well as interaction with the top plate at the root. It is also evident that, at the

25% spanwise position, the x− and y−tilting terms are highly asymmetric, suggesting the

breakdown of the assumption that the LEV behaves as a vortex tube.
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(a) (b)

Figure 5.18: Integrated vorticity transport terms for the wing of sAR=2 at the (a) 25% (b)

75% of spanwise position .
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In chapter 3, the evolution of the leading- and trailing-edge vortex structures shed

from a nominally two-dimensional, plunging flat-plate was investigated at Rec = 10, 000

using particle image velocimetry, and the trajectories of the LEV cores were quantified.

Leading-edge vortex circulation was found to be highly sensitive to Strouhal number within

the range 0.3 < S t < 0.5, concurrent with an accelerated roll-up of the leading-edge vortex.

Despite an increased importance of Strouhal number, for S t ' 0.4, on the evolution and

structure of vorticity shed from the leading and trailing edges, interactions between the

leading- and trailing-edge vortices – and therefore also the resulting wake patterns – were

found to depend primarily on reduced frequency.

For the parameter space considered, four categories of wake patterns were observed

based on the nature of the interaction between the leading- and trailing-edge vortex struc-

tures. These categories were found to depend primarily on reduced frequency within the pa-

rameter range investigated. In category 1 wakes, which were observed for 0.52 ≤ k ≤ 1.18,

the leading edge vortex merges with like-signed vorticity shed from the trailing edge in the

subsequent stroke. In category 2 wakes, which were consistently observed at k = 1.57, the

LEV passes the trailing edge after the like-sign trailing edge vortex system is shed in the

subsequent stroke, and interacts with the following stronger, opposite-signed trailing-edge

structures to form a dipole that results in a wide wake. Category 3 wakes were observed
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only for S t = 0.3 and h0/c = 0.2 (k = 2.36), where the LEV is further delayed (with respect

to the phase of oscillation) so that it passes the trailing edge after the opposite-sign TEV

system one full cycle after its own generation. Category 4 wakes, which were observed for

k > 1.96, are defined as those in which the LEV either does not pass the trailing edge, or

resides on the surface of the airfoil for at least three strokes such that it is very weak when

it is finally released into the wake. Generation of category 4 wakes are attributed to small

displacements of the LEV during a stroke, which are governed by two factors: a) short

airfoil plunging periods due to the high reduced frequencies for which they occur, and b)

stronger Biot-Savart induction of the LEV due to significant increases in LEV circulation.

In addition, at S t = 0.6 with h0/c = 0.4, a deflected category 4 wake was observed.

Comparison with computed and experimentally measured wakes by Lewin and Haj-

Hariri [43] and Lua et al. [46], respectively, at Reynolds numbers an order of magnitude

lower, yielded mostly similar results, also demonstrating validity of the proposed classifica-

tion system through extended regions of the parameter space. However, category 1 wakes

were also observed in the data of Lua et al. [46] for large Strouhal number and reduced

frequency, which is inconsistent with the present results. This indicates the importance of

Reynolds number and airfoil shape on wake structure, and suggests more studies of vortex

formation and evolution, including characterization of the shear layers feeding the vortices,

and the nature of interactions with the airfoil surface and opposite-sign layer beneath the

LEV.

In chapter 4, the three-dimensional flow field was characterized for a plunging

two-dimensional flat-plate airfoil using three-dimensional reconstructions of planar PIV
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data. Whereas the phase-averaged description of the flow field shows the secondary vor-

tex penetrating the leading-edge shear layer to terminate LEV formation on the airfoil,

time-resolved, instantaneous PIV measurements show a continuous and growing entrain-

ment of secondary vorticity into the shear layer and LEV. A planar control volume analysis

on the airfoil indicated that the generation of secondary vorticity produced approximately

one half the circulation, in magnitude, as the leading-edge shear layer flux. A small but

non-negligible vorticity source was also attributed to spanwise flow toward the end of the

downstroke. Wojcik and Buchholz [78] showed that cross-cancelation of LEV vorticity

appears to be a robust and significant mechanism of LEV regulation, which is still not

well understood. To predict the flow evolution and aerodynamic forces on flapping mecha-

nisms, it is necessary to understand how the vorticity transport is affected by geometry and

kinematics parameters.

In chapter 5, first the evolution of the LEV structure on finite-AR wings with sim-

ilar kinematics to the nominally 2D cases was studied experimentally using stereo-PIV in

multiple chordwise planes. The results show that LEV development during the cycle de-

pends primarily on aspect ratio; however, the wall boundary condition was found to be also

important in generation of spanwise flow within the vortex core. For both aspect ratios,

sAR = 1 and sAR = 2, A single- or double-arch LEV structure was observed, qualitatively

similar to Yilmaz and Rockwell [82], Visbal [65], and Calderon et al. [15]. For sAR = 1,

some descent of the arch near the wall suggests a deviation from the full-span case. For

sAR = 2, increased descent of arch near the wall supports double-arch structure, observed

by Calderon et al. [15]. Regions of strong root-to-tip flow coincident with the vortex core
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at the most inboard locations strongly suggest that the no-slip wall plays an important role

in the generation of spanwise flow. The influence of the no-slip wall in creating spanwise

flow is further supported by the observations of spanwise flow without the root plate. Al-

though spanwise flow is observed near the root in all cases, axial flow is not apparent in the

core of vortex structure, independent of root boundary conditions.

Furthermore, the 3-D flow field of a finite wing of sAR = 2 was characterized using

three-dimensional reconstructions of planar PIV data after minimizing the gap between the

plunging plate and the top stationary wall. The LEV on the finite wing rapidly evolved into

an arch structure centered at approximately the 50% spanwise position, similar to previous

observations by Calderon et al. [16], and Yilmaz and Rockwell [82]. At that location,

the circulation contribution due to spanwise flow was approximately half that of the shear

layer flux because of the significantly greater three-dimensionality in the flow. Increased

tilting at the 25% and 75% spanwise locations suggests increasing three-dimensionality at

those locations compared to the symmetry plane of the arch (50% spanwise location). The

deviation between the LEV circulation and integrated convective vorticity fluxes at the 50%

spanwise location suggests that entrainment of secondary vorticity plays a similar role in

regulating LEV circulation as in the 2D case. While the wing surface flux of vorticity could

not be measured in that case, the significant difference between LEV circulation and the

known integrated fluxes is comparable to that for the 2D plate, suggesting that a significant

boundary flux of secondary vorticity may exist.
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6.2 Future Work

Studying flow evolution on pure plunging flat plate airfoil/wing which simplified

the kinematics and geometry by minimizing the number of parameters that describe the

problem, helped to somewhat understand the wake structures of unsteady propulsors. As a

result, a classification scheme has been developed for structures produced by the plunging

airfoil based on the nature of the LEV and TEV’s interaction and the resulting structure

of the wake. However, the relation between the aerodynamic loads and these shedding

patterns is not understood yet while prediction of aerodynamic forces is a critical area for

designing micro-aerial vehicles. Of equal importance, understanding the evolution of the

shed vorticity can provide insight into flow interactions within bird flocks and fish schools,

as well as the control of biorobotic vehicles.

Yilmaz and Rockwell (2010), Visbal (2011), and Calderon et al (2012) studied just

the formation and evolution of LEV on top of the plate, but it is not clear exactly what

happens to this LEV in the wake. Furthermore, the existence of LEV in the wake presents

a challenge to current models of vortex wakes for pitching panels where the LEV is absent.

Therefore, in the interests of understanding the physics of bird and insect flight and aquatic

animal swimming, it is necessary to characterize the qualitative ultimate wake structure of

a plunging finite-AR wing.

One of the overarching goals of this work is to develop insight into the flow physics

of local vorticity transport where the generation and vorticity transport in the Leading-Edge

Vortex of a flapping wing needs further investigation considering other kinematics and

geometries to develop robust and physics-based models of leading-edge vortex formation
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and evolution. Of particular interest is the relationship between the vorticity field and

the spanwise flow field over the wing, the vortex core axial flow, and vortex tilting and

stretching which indicate the vortex breakdown. To gain further insight into the physics of

plunging wings, it will be very useful to measure the time-resolved pressure distribution

on the surface of the finite-AR panel to understand the importance of shear layer vorticity

flux vs. the boundary layer vorticity flux and see how the interaction with the wing surface

regulates the LEV circulation and . As shown for the 2-D airfoil, the pressure distribution

is the second primary source of the vorticity generation as well as propulsive forces acting

on the panel.

Furthermore, to predict the ultimate wake structure and aerodynamic loads, it is

necessary to consider the aspects of biological locomotions that have not been consid-

ered in the present work. Investigation of other basic kinematics such as pitching and

rolling, and examination of other geometries such as different planform shapes, will yield

an increased understanding of the mechanics of propulsors. For example, as Yilmaz and

Rockwell (2012) reported, the shape of planform affects on the spanwise velocity within

the leading edge vortex. Also by changing the kinematics to the rotational wings, it is ex-

pected to observe other mechanisms to be involved in vorticity transport in the LEV such

as centrifugal pumping due to the rotation of the wing.



138

APPENDIX A
UNCERTAINTY ANALYSIS

In this Appendix, the analysis of the uncertainties in Equation 4.3 is described in

detail based on the study of Wojcik [76]. This analysis was done on the 2-D PIV data for

the case of ho/c = 0.3, S t = 0.2, k = 1.05, at φ = 45◦ where the rate of change in vorticity

fluxes is maximum. Figure A.1 shows contours of the Ux, Uy, and Uz as a fraction of the

free-stream velocity, and contours of the ωz. The green box shows the boundary of the

control vlume used for the flux analysis.

A.1 Velocity and Vorticity

The velocity vectors are calculated using PIV by first using a cross-correlation anal-

ysis to determine a mean particle displacement within a sub-window of the domain between

the two images and dividing by the time interval separating the image pair [50]. For exam-

ple, the velocity component in x direction, Ux, can be defined as:

Ux =
∆x

M∆t
(A.1)

Where M is the magnification ratio. The total uncertainty in the streamwise velocity can be

obtained by once again taking partial derivatives of Ux with respect to the terms that will

contribute error.

δUx =
δ∆x

M∆t
(A.2)

The camera was calibrated with the laser plane using a LaVision type # 20 calibration

plate a third-order polynomial fit to the view, essentially dewarping the image. The root-

mean-square (RMS) of the fit was 0.106 pixels which is in the range (less than 0.3) to be
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(a) (b)

(c) (d)

Figure A.1: Contours of velocity components as a fraction of free-stream velocity: (a) Ux,

(b) Uy , (c) Uz, and (d) contours of out-of-plane vorticity ωz for S t = 0.2, h0/c = 0.3, k =

1.05 at φ = 45◦. Free stream velocity is 130 (mm/s). Solid lines represent positive values

and dashed lines represent negative values of the vorticity contained within the contour.
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considered as ”high quality”. With the quality of the data obtained and previous publica-

tions [34], the assumed uncertainties for the change in pixel position for δ∆x, δ∆y, δ∆z were

0.1, 0.1, and 0.3 pixels, respectively. Since the calibration was of high quality, the uncer-

tainty in the magnification ratio is assumed to not be a major component of uncertainty in

the spanwise velocity. The uncertainty in ∆t is determined by the laser timing and can be

as high as 10 to 100 nanoseconds, and assumed to be negligible.

During the processing of the PIV images , a window size of 32 × 32 was used. This

implied the magnification ratio was 0.02924 mm/pixel. Lastly, the ∆t used between laser

pulses for the data acquired was 1250 microseconds. Using these values, the uncertainties

can be obtained as seen below:

δUx = δUy = 2.3394(mm/s) (A.3)

which is about 1.8% of free stream velocity.

δUz = 3.5345(mm/s) (A.4)

which is about 2.7% of free stream velocity. Moreover, dynamic range of velocity DRv

corresponds to the ratio of maximum to minimum resolvable velocity which is defined as

below:

DRv =
Umax

δv
=

S max

δS
(A.5)

where S is displacement and δv and δs are the uncertainty in velocity and displacement,

respectively. Keane and Adrian [38] state that the displacement S should be smaller than

one quarter of the interrogation window size dI . Therefore, DRv is represented by:

DRv =

1
4dI

δS
(A.6)
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Based on this equation, the actual increase in dynamic velocity range can be determined.

Assuming δs = 0.1 pixel and dI = 64 pixel, the dynamic velocity range obtained in labora-

tory conditions is DRv = 160 : 1.

The out-of-plane vorticity component was calculated using the central difference

scheme. Using the uncertainties in the velocity components, the uncertainty in the vorticity

values can be determined by:

δωz =

 δ2
Uy

2X2
g

+
δ2

Ux

2Y2
g


1
2

(A.7)

where the Xg and Yg were the spacing between vector points and both determined to be

0.367 mm. This yeilds:

δωz = 3.8616(1/s) (A.8)

which is about 5% of maximum vorticity magnitude in the flow field.

A.2 LEV Circulation

To determine the circulation of a vortex, a MATLAB code was implemented using

a vorticity threshold for a specified area where the uncertainty in Γ is:

δΓ = δωzi j
∆x∆y

√
N (A.9)

A rectangular cross-section was used as the planar control volume, and based on the vector

spacing, it was determined to have approximately N = 1600 vectors in the control volume.

This yields δΓ = 247.1424(mm2/s) which is approximately ± 1.37% of LEV circulation.
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A.3 Spanwise Convection of Vorticity

From Equation 4.3, the spanwise convection of spanwise vorticity is:

Convection = −

∫
Az

uz
∂ωz

∂z
dAz (A.10)

Therefore, the uncertainty in the convection term is calculated discretely as described by

Wojcik [76] by:

δConvection =

(∂conv
∂Uz

δUz

)2

+

(
∂conv
∂ωzk+1

δωzk+1

)2

+

(
∂conv
∂ωzk−1

δωzk−1

)2

+

(
∂conv
∂Xg

δXg

)2

+

(
∂conv
∂Yg

δYg

)2

+

(
∂conv
∂Zg

δZg

)2 1
2

(A.11)

By substituting the values in equation A.11, the uncertainty in the convection term is 9.59

mm2/s2 which is approximately ± 0.23% of the convection value at φ = 45◦.

A.4 x-Tilting and y-Tilting of LEV

From Equation 4.3, the x-tilting and y-tilting terms are represented as:

x − tilting =

∫
Az

(
ωx
∂uz

∂x

)
dAz (A.12)

y − tilting =

∫
Az

(
ωy
∂uz

∂y

)
dAz (A.13)

The general uncertainty in the x-tilting is derived by Wojcik [76] in equation A.14:

δXTilting =

(∂XTilting

∂Uz j+1

δUz j+1

)2

+

(
∂XTilting

∂Uz j−1

δUz j−1

)2

+

(
∂XTilting

∂Uyk+1

δUyk+1

)2

+

(
∂XTilting

∂Uyk−1

δUyk−1

)2

+

(
∂XTilting

∂Uzi+1

δUzi+1

)2

+

(
∂XTilting

∂Uzi−1

δUzi−1

)2

+

(
∂XTilting

∂Xg
δXg

)2

+

(
∂XTilting

∂Yg
δYg

)2

+

(
∂XTilting

∂Zg
δZg

)2 1
2

(A.14)
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where the following assumptions were made:

δXg ≈ δYg ≈ δZg ≈ 0 (A.15)

δUyk+1
= δUyk−1

= δUy (A.16)

δUzi+1
= δUzi−1

= δUz j+1
= δUz j−1

= σUz (A.17)

Similar approach was used for the tilting term in y direction and assumed:

δUxk+1
= δUxk−1

= δUx (A.18)

Using the related values, results in an uncertainty for both the x-tilting and y-tilting

terms to be 2.35 mm2/s2, and the representative x-tilting and y-tilting terms equal to 310

and 363 mm2/s2 which yeilds to ± 0.75% and ± 0.65% uncertainty respectively.

A.5 Convection of Vorticity Across Boundaries

The shear layer vorticity flux was evaluated discretely as described in Equation 4.3.

The shear layer term is shown as below:

Boundaries =

∫
1 to 3

un ωz dL (A.19)

The general uncertainty of the shear layer term is expressed as:

δBoundary(1) =

(∂Boundary
∂Ux

δUx

)2

+

(
∂Boundary

∂ωz
δωz

)2

+

(
∂Boundary

∂Yg
δYg

)2 1
2

(A.20)

Ux velocity and ωz vorticity value over the boundary 1 are shown in Figures A.1(a) and

A.1(d) respectively. Those values yield an uncertainty in the shear layer term of 496.3

mm2/s2 for boundary 1, 53.7 mm2/s2 for boundary 2, and 151.3 mm2/s2 for boundary 3.
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The value of shear layer vorticity flux at φ = 45◦ was 40887 mm2/s2 for boundary 1, 1825

mm2/s2 for boundary 2, 14993 mm2/s2 for boundary 3. Therefore, the relative error in the

shear layer vorticity flux was calculated to be ± 1.2% for boundary 1, ± 2.9% for boundary

2, and ± 1.0% for boundary 3.
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APPENDIX B
3-D INTERPOLATION

For the 3-D volume reconstruction, tri-quadratic interpolation method was used

which is a method for interpolating values of a function defined at arbitrary points in 3D

space onto the new 3D grid.

B.1 Quadratic Spline Interpolation

In this section, the concept of spline interpolation using second-order polynomials

is explained. Spline interpolation is preferred over high-order polynomial interpolation

because the interpolation error is small even when using low degree polynomials for the

spline. The second-order spline can be represented generally as:

fi(x) = aix2 + bix + ci (B.1)

Figure B.1 has been included to clarify the notations. For n + 1 data points, there are n

intervals and consequently 3n unknown coefficients. Therefore, 3n equations are needed to

evaluate these unknowns. To find these unknowns the following steps need to be considered

as discussed by Chapra and Canale [17]:

1- The function values must be equal at the interior points for i = 1 to n − 1 which

provide 2 × (n − 1) equations:

ai+1x2
i + bi+1xi + ci+1 = f (xi) (B.2)

aix2
i + bixi + ci = f (xi) (B.3)
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Figure B.1: Notation used to drive the quadratic splines (Adopted from Chapra and Canale

[17]).

2- The first and last functions must pass through the end points which adds two more

equations:

a1x2
0 + b1x0 + c1 = f (x0) (B.4)

anx2
n + bnxn + cn = f (xn) (B.5)

3- The first derivatives at the interior points must be equal where f ′(x) = 2ax+b. Therefore,

the condition can be represented as below which provides another n − 1 equations:

2aixi + bi = 2ai+1xi + bi+1 (B.6)

4- Assume that the second derivative is zero at the first point in which the first two points

assumed to be connected by a straight line, can be expressed as:

ai = 0 (B.7)
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Now we have total 3n equations which can be solved for 3n interval coefficients at

each 3 points in one direction.

B.2 Tri-Quadratic Interpolation

In this method, a sequential application of one dimensional quadratic spline in-

terpolation is used in 3 directions as explained by Lekien and Marsden [41]. Since we

know the value of, for example, velocity U at each grid point (U(i, j, k)), first we can inter-

polate along z direction using one-dimensional quadratic splines interpolation method as

discussed in section B.1:

h(i, j, z) = QINTz[U(i, j, k − 1),U(i, j, k),U(i, j, k + 1)] (B.8)

where QINTz represents the quadratic spline interpolation only in z direction using the four

steps as discussed in B.1. Also, U(i, j, k − 1), U(i, j, k), and U(i, j, k + 1) are the velocity

values at three neighbor points Then we interpolate the h values along y direction:

g(i, y, z) = QINTy[h(i, j − 1, z), h(i, j, z), h(i, j + 1, z)] (B.9)

Finally, we interpolate the g values along x direction:

f (x, y, z) = QINTx[g(i − 1, y, z), g(i, y, z), g(i + 1, y, z)] (B.10)

This gives us a predicted value for the target point at (x,y,z). Note that the described pro-

cedure is just a general procedure to interpolate data in three directions and for horizontal

and vertical planes different approches were used. For example, for the horizontal planes

(x − y plane), since the x and y components are known, it is necessary to start in x and y

directions first, then interpolate in z direction (out-of-plane direction).
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