
University of Iowa
Iowa Research Online

Theses and Dissertations

Spring 2013

Flow structure and performance of a flexible
plunging airfoil
James Marcus Akkala
University of Iowa

Copyright 2013 James Akkala

This thesis is available at Iowa Research Online: http://ir.uiowa.edu/etd/2433

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Mechanical Engineering Commons

Recommended Citation
Akkala, James Marcus. "Flow structure and performance of a flexible plunging airfoil." MS (Master of Science) thesis, University of
Iowa, 2013.
http://ir.uiowa.edu/etd/2433.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F2433&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F2433&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F2433&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=ir.uiowa.edu%2Fetd%2F2433&utm_medium=PDF&utm_campaign=PDFCoverPages


FLOW STRUCTURE AND PERFORMANCE OF A FLEXIBLE PLUNGING

AIRFOIL

by

James Marcus Akkala

A thesis submitted in partial fulfillment of the
requirements for the Master of Science

degree in Mechanical Engineering
in the Graduate College of

The University of Iowa

May 2013

Thesis Supervisor: Assistant Professor James H. J. Buchholz



Copyright by
JAMES MARCUS AKKALA

2013
All Rights Reserved



Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

MASTER’S THESIS

This is to certify that the Master’s thesis of

James Marcus Akkala

has been approved by the Examining Committee for the thesis requirement for the
Master of Science degree in Mechanical Engineering at the May 2013 graduation.

Thesis Committee:

James H. J. Buchholz, Thesis Supervisor

H.S. Udaykumar

Albert Ratner



ACKNOWLEDGEMENTS

I would like to start off by thanking Professor James Buchholz for allowing

me the privilege of carrying out this project. The opportunities that he has provided

me over these past two years have truly defined my experience at The University

of Iowa, and I consider myself lucky to have had the opportunity to working with

him. I would also like to thank Professors H.S. Udaykumar and Albert Ratner for

their willingness to serve on my committee It has been my pleasure to work with an

amazing research team. Azar Eslam Panah in particular has been an outstanding co-

collaborator and I am fortunate to have had the chance to work with her. I also want

to thank the rest of my colleagues: Seyed Mohammad ”Haji” Hajimirzaie, Jordan

Null, Joe Tank and Craig Wojcik. Last but not least, I want to thank both my parents

and Katie Radtke for their steadfast support in all that I do. This work began as an

Undergraduate Research Fellowship that was funded by the Iowa Center for Research

by Undergraduates. It was also supported in part by the Air Force Office of Scientific

Research, award number FA9550-11-1-0019.

ii



ABSTRACT

An investigation was performed with the intent of characterizing the effect of

flexibility on the flow structure and aerodynamic performance of a plunging airfoil,

over a parameter space applicable to birds and flapping MAVs. Both the material

properties of the airfoil and the kinematics of its motion were characterized optically.

The vortex dynamics associated with the plunging motion were mapped out using

particle image velocimetry (PIV), and categorized according to the behavior of the

leading edge vortex (LEV) and its interaction with the trailing edge vortex (TEV).

The development and shedding process of the LEVs was also studied, along with

their flow trajectories. Results of the flexible airfoils were compared to similar cases

performed with a rigid airfoil, so as to determine the effects caused by flexibility.

Aerodynamic loads of the airfoils were also measured using a force sensor, and the

recorded thrust, lift and power coefficients were analyzed for dependencies, as was the

overall propulsive efficiency. Thrust and power coefficients were found to scale with

the Strouhal number defined by the trailing edge amplitude, causing the data of the

flexible airfoils to collapse onto a single curve. The lift coefficient was likewise found to

scale with trailing edge Strouhal number. On the other hand, the wake classification

and the propulsive efficiency were more successfully scaled by the reduced frequency

of the motion. The circulation of the LEV was found for each case and the resulting

data was scaled using a parameter developed for this study, which provided significant

collapse of the data throughout the entire parameter space.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Roughly a century has passed since Knoller[12] and Betz[1] first made headway

in the characterization of ”flapping flight” mechanics by recognizing that an oscillat-

ing airfoil would produce thrust due to its changing angle of attack, and yet the

remarkably efficient locomotion used by birds and insects has yet to be fully under-

stood. The complexity of the problem mainly stems from the fact that the flapping

action has translation, rotational and deformational modes, each of which is exceed-

ingly complicated on its own not to mention as a whole. Knoller and Betz aside, one

of the most revolutionary ideas within this field came from von Kármán and Burgers

[23] when they correlated thrust and drag generation to specific patterns of vortex

alignment in an object’s wake. The Knoller-Betz effect has since been adapted as a

key component of swimming animals that use fins to propel themselves, which truly

makes it one of the fundamental modes of transportation. The work by Kármán

and Burgers has become applicable to the performance of any object that produces

a wake. These two examples demonstrate the importance of these types of studies,

despite the limited progress in the overall characterization of flapping flight.

Much of the work performed in this area of fluid mechanics deals with very

rudimentary, rigid models that may capture the general kinematics of a motion, but

completely fail at capturing the highly-complicated, highly-efficient motion that swim-



2

ming and flying creatures have come to develop. After all, there are no animals that

use completely rigid wings or fins as a means of locomotion, quite obviously demon-

strating that there is a measurable benefit accompanied by flexibility. In fact, flexi-

bility has been accepted as one of the most significant factors in wing aerodynamics

[20]. Understanding this benefit and it application could revolutionize any number of

scientific or industrial fields by allowing for the storage, redistribution and remittance

of energy within a material to maximize the achievable work.

Biomimetic locomotion is achieved through fluid-body interactions that create

specific flow structures that produce the desired motion. The production of vortices

by flapping airfoils has been seen to be the main cause of efficient propulsion, more

importantly vortices produced at the leading edge of the airfoil [14]. Since the best

way to produce a strong LEV is a plunging motion, the most direct way to identify

key aspects of the flow that maximize efficiency would be to characterize the effects of

the LEV created by a plunging, flexible airfoil. Comparing such a study to a similar

one performed using rigid airfoils should allow for a distinction to be made between

the two. Whatever effect flexibility is found to have will provide fundamental insight

into the manner in which efficiencies can be maximized.

It should also be noted that a plunging motion is one of the fundamental

mechanisms of flapping propulsion that can be applied in a myriad of different ways.

Understanding the fundamental fluid dynamic mechanisms involved in the generation

of flow structures created by a plunging airfoil will ultimately inform the development

of low-order aerodynamic models and scaling parameters. Such models could be uti-
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lized in the programing of micro air vehicles and other mechanically operated vehicles,

allowing them to calculate appropriate responses to a changing environment in real

time. Although a pure plunge motion does not accurately represent the kinemat-

ics of biological/biomimetic flight or swimming, the outcomes of this work will have

applicability to both.

1.2 Thesis Objectives and Overview

This thesis will explore the effects of flexibility on both the aerodynamic per-

formance and the flow structure of a flexible airfoil undergoing a pure-plunge motion.

Both phase-locked and time-resolved particle image velocimetry (PIV), as well as time

resolved force measurements were performed over a wide range of plunge frequency

and amplitudes.

Chapter 2 provides a literature review on the subject of flapping airfoils and

details key results found in past studies. Chapter 3 describes the experimental set ups

that were used in this investigation, as well as the procedures that were implemented.

It also details airfoil models that were used and the parameter space that was explored.

Chapter 4 reports the results of the investigation, covering the airfoil’s kinematic

response, evolution of the vortices generated by the plunge motion, classification of

the observed wake patterns, scaling the circulation of the leading edge vortex and an

analysis of the aerodynamic forces that were produced. Conclusions about this study

and plans for future work can be found in Chapter 5.
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CHAPTER 2
LITERATURE REVIEW

Knoller (1909) [12] and Betz (1912) [1] were the first to discover that an air-

foil oscillating in a free stream would produce a thrust due to the effective angle of

attack induce by the plunging motions. The manner in which this angle of attack

is induced is depicted in Figure 2.1, which also shows the manner in which thrust

can be produced. Katzmayr [11] was the first to experimentally verify this theory in

1922, leading to the dual naming of the principle as either the Knoller-Bets effect or

the Katzmayr effect. In the years since, there have been a wide range of both compu-

tational and experimental studies performed that were aimed at the characterization

of the efficiencies involved with such plunging motions. Interest spread into the wake

structures behind these airfoils after von Kármán and Burgers [23] showed that the

orientation of wake vortices can induce a net force on the body creating them. More

precisely, a reverse Kármán street created behind a particular body was found to

create a net thrust. This is achieved when the wake vortices align so that the velocity

they induce on each other is oriented upstream, Figure 2.2 demonstrates how vortices

should be arranged as to create this upstream force. It is also interesting to note

that the work up to this point had mainly been focused on the characterization of lift

forces, and Von Kármán and Burgers were the first to characterize the propulsive ef-

fect [5]. Garrick [5] extended the scope of the problem into that of a pitching airfoil in

attempt to more fully characterize the models involved with bird flight, and his work

would eventually be experimentally investigated by Koochesfahani [13]. Although
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Figure 2.1: Knoller-Betz effect.

Figure 2.2: Reverse Kármán street.

the Katzmayr effect was developed for rigid airfoils, Richardson extended its appli-

cation to fish locomotion, citing the to-and-fro oscillation of their bodies as a means

of changing the angle of attack [16]. It is through such comparisons to biomimetic

motions that the models of interest have developed from simple oscillating airfoils, to

pitching motions and eventually to the effects of spanwise and chordwise flexibility.

Kang, Aono, Cesnik and Shyy [10] performed an extensive analysis of the

parameter space governing the performance of flapping wings in order to determine the

most influential terms and identify key mechanisms for force generation. They looked

at cases of chordwise, spanwise and isotropic flexibility and tried to find scalable

similarities in the results. Interestingly, they found that even substantial changes in



6

the pressure and force histories did not tend to change the vorticity fields. The ratio

between the frequency of motion and natural frequency of the airfoil was seen to be

an important factor in the airfoil’s performance, and that the ratio needed to be less

than one in order to drive the system forward. The power input and resulting thrust

were not linearly related, thus neither was the propulsive efficiency (the ratio between

the two). This maximum efficiency was found to occur when the frequency ratio was

roughly 0.4.

Heathcote and Gursul [8] performed both force and particle image velocimetry

(PIV) velocimetry measurement on seven different oscillating airfoils, all of which had

varying degrees of flexibility, over a wide range of Strouhal number and three different

Reynolds numbers. They noted that increasing the flexibility of an airfoil increased

both the thrust produced and the propulsive efficiency. The propulsive efficiency

was highly dependent on the flow near the leading edge of the airfoil, and when this

region experienced flow separation the propulsive efficiency was seen to reduce greatly.

Decreasing the strength of the leading edge vortex (LEV) thus became necessary to

achieve high propulsive efficiencies, which could be done by decreasing the angle of

attack. However, decreasing the angle of attack decreased the thrust coefficient, an

effect that is amplified at lower Strouhal numbers. When the leading and trailing

edges of the airfoil were still mostly in phase with each other, the wake structures

were seen to be fairly similar. This can be seen in Figure 2.3, which shows the velocity

vectors for rigid, moderately flexible and extremely flexible airfoils at the top of their

stroke. The moderately flexible as a downward angle of attack, which was cited to



7

be the reason for the velocity vectors in the wake being similar to the rigid case. As

the trailing edge became increasingly out of phase with the leading edge, the vortices

in the wake decreased in strength. Also, as they increased the Strouhal number past

a critical value, the time-averaged velocity of the wake became asymmetric due to

vortical structures being shed in uneven pairs. Since the vortices of the more flexible

airfoils were not as strong as their rigid counterparts, the wake was less affected and

their asymmetry decreased. This can be seen in Figure 2.4, where the time-averaged

wakes are shown for the three airfoils shown previously. Once again, the rigid and

the moderately flexible airfoils are very similar and the asymmetry of the wake is

obvious. The wake of the extremely flexible airfoil, however, is much weaker and

remains symmetric. Larger cross-stream distances between wake vortices also tended

to display higher thrust values. The peak in propulsive efficiency was eventually found

to occur around a Strouhal number of 0.3 while thrust coefficient peaks occurred at

higher values.

Cleaver, Wang and Gursul [3] also found the leading edge vortex to be crucial

to the propulsive efficiency, since its strength was directly related to the time-averaged

lift forces. They also found the thrust to improve with stronger trailing edge vortices,

since their increased cross-stream spacing created stronger time averaged jets. Lewin

and Haj-Hariri [14] performed experiments with heaving rigid airfoils, and found the

LEV’s behavior to be the primary influence on the wake pattern. This variety of wake

patterns is partially due to the multiple modes of interaction between the LEV and

trailing edge vortices (TEVs) when they are shed. They also found the LEV to be
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Figure 2.3: Velocity vectors of the wakes produced by three airfoils tested by Heath-

cote and Gursul.

Source: Heathcote and Gursul [8]. AIAA Journal. 1066-1079 (2007).

Figure 2.4: Time-averaged wakes produced by three airfoils tested by Heathcote and

Gursul.

Source: Heathcote and Gursul [8]. AIAA Journal. 1066-1079 (2007).
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an important factor in the maximum heaving efficiency, stating that there are large

jumps in efficiency when the LEV stops being shed and starts being dissipated at

the leading edge. Although there are specific classes of wakes that apply to different

parameter ranges, the boundaries of these classes were shown to be very unstable and

constantly switch back and forth between one wake pattern and another.

Jaworski and Gordnier [9] performed a computational study on flexible airfoils,

and found increased flexibility consistently reduced an airfoils drag. They even saw

flows that produced net drags with rigid airfoils were able to produce net-thrusts with

flexible airfoils. In general, net-drag flows would occur at low oscillation frequencies,

and would transition to net thrust as frequency and plunge amplitude increased.

The eventual conclusion of their analysis was that the deformation of flexible airfoils

creates a camber across which a favorable pressure gradient can create an upstream

force. Figure 2.5 shows a fabricated pressure distribution about a plunging airfoil

that will help to demonstrate the effects of camber. This figure is very roughly based

on the pressure distributions that were computed by Jaworski and Gordnier [9], an

example of which is shown in Figure 2.6. Due to the plunging motion, there will

be a high pressure on the bottom of the airfoil and a low pressure on the upper

surface. The leading edge vortex (LEV) being generated by the plunge drops the

pressure on the top of the airfoil even further. The pressure difference between the

two sides of the airfoil produces a force normal to the surface, a few examples of this

force are shown in Figure 2.5 as grey arrows extending across the airfoil. Because

of the airfoil’s camber, or curvature, a component of this force is positioned in the
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Figure 2.5: Pressure distribution around plunging airfoil.

positive streamwise direction, thus adding to the thrust of the airfoil. Figure 2.6 shows

some actual contours of vorticiy and pressure that were computed computationally

by Jaworski and Gordnier [9] for a dimensionless plunge amplitude h0/c = 0.5 and

reduced frequency k = πfc/U∞ = 1 and Reynolds number of 2500. Figure 2.7 shows

how the favorable camber produces a pressure gradient. The pressure difference across

the airfoil is given by the black line, and the airfoil’s shape is given by the blue line.

The product of the pressure difference and slope of the airfoil is given in red, and

corresponds to the thrust enhancing component. Shyy et al.[20] also stated that

increased thrust can occur when the projected area in the free-stream direction is

increased. This increase in area allows for a greater amount of the pressure difference

to act in a thrust producing manner.

Monnier, Naguib and Koochesfahani [15] analyzed the wakes of flexible pitch-

ing airfoils. They focused on simple, symmetric wakes but did note the presence
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Figure 2.6: Vorticity and pressure contours computed by Jaworski and Gordnier for

a plunging flexible membrane.

Source: Jaworski and Gordnier [9]. J. of Fluids and Structures. 31, 49-66 (2012).
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Figure 2.7: Thrust producing component of pressure distribution by Jaworski and

Gordnier for a plunging flexible membrane.

Source: Jaworski and Gordnier [9]. J. of Fluids and Structures. 31, 49-66 (2012).
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of asymmetric, ”deflected” wakes at higher pitch frequencies. During their charac-

terization of the results, they found that the cross stream spacing and streamwise

spacing of the wake vortices correlated better when cases were plotted as functions of

Strouhal number calculated from the trailing edge amplitude. They found the same

to be true when plotting vortex circulation, convection velocity and the airfoil’s thrust

coefficient.

Rival, Kriegseis, Schaub, Widmann and Tropea [17] offered a solution to the

topic of leading edge vortex separation using a topological analysis. They use a

constant Eulerian characteristic (χsurface) defined by the number of holes and handles

included in the area of interest (Equation 2.1) to balance out the number of full nodes

(N), half nodes (N ′ = 0), full saddles (S) and half saddles (S ′) (Equation 2.2):

χsurface = 2− 2
∑

handles−
∑

holes = −2 (2.1)

χsurface = 2
∑

N +
∑

N ′ − 2
∑

S +
∑

S ′ (2.2)

Full nodes and full saddles define points in the actual flow field, and are shown

respectively as green dots and red diamonds in Figure 2.8, taken from Rival et al.

[17]. Half saddles represent points on the airfoil boundary, and are shown in Figure

2.8 as yellow diamonds. There are four stages of LEV growth topologically depicted

in Figure 2.8. The first diagram shows the flow with no LEV. As the LEV first

begins to generate, it forms one structure at the leading edge of the airfoil. When this

structure grows, the LEV divides into two pieces: the main vortex and the shear layer

(clockwise rotating areas in the third diagram). This division becomes necessary when
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the counterclockwise area develops beneath the LEV due to the no slip condition.

These three regions share a full saddle, as seen in the third diagram and as long as

that saddle exists the LEV is considered to be attached. However, the downstream

half-saddle of the LEV moves down the chord as the LEV grows. This half saddle

eventually connects with the half-saddle at the trailing edge to create a full saddle.

In order to keep the topology properly defined the full saddle from the third diagram

disappears, thereby detaching the LEV and allowing it to move off independent of

the airfoil. This process was further demonstrated by Rival et al.[17] using Figure

2.9. The stagnation points of the streamlines on the airfoil surface represent the half-

saddles previously mentioned. Figure 2.8 shows how these streamlines extend the

rear stagnation point towards the trailing edge as the LEV grows and demonstrate

how the shear layer appears to disconnect from the LEV when this point becomes

its own full-saddle, thus providing some measure of validation for the theory. The

main idea that this analysis proposes is that the LEV detachment is governed by the

chord length of the airfoil, however this analysis does not address cases where the

LEV detaches before the half saddle reaches the trailing edge.

Another informative analysis provided by Rival et al.[17] is a comparison of

the strength of the leading edge shear layer and the area of opposite sign vorticity.

The first part of Figure 2.9 shows the vorticity contours and velocity vectors near the

leading edge of the airfoil at phase φ = 90◦ or t/T = 0.25 where t is time and T is the

period. The scaled circulation of the shear layer and area of opposite sign vorticity

are plotted versus time in the second part of the figure, where the area of integration
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is defined by the dotted green line shown in the contour field. Detachment in this

case was considered to occur right around t/T = 0.25, which is when the overall

circulation of the region outlined in green dropped to half that of the shear layer.

In their investigation, Rival et al.[17] examined the effects of leading edge

geometry on an airfoil’s performance while undergoing a single, downward plunge

motion. Instantaneous vorticity measurements for three different airfoil geometries

are provided in Figure 2.11, which show the effect of leading edge shape on the

development of the LEV. The leading edge shape does appear to have some effect

on the roll up of the LEV, which subsequently effects the opposite sign vorticity

generated on the airfoil’s surface. However, the LEV detachment still seems to occur

around the same time regardless of leading edge shape, and overall the flow structure

looks very similar. It should also be noted that the vorticity distributions shown are

from the instantaneous PIV measurements of one plunge, and Rival et al.[17] showed

there to be some variation from cycle to cycle for any of the given geometries. Lift

histories provided by Rival et al.[17] are shown in Figure 2.12 for each of the different

geometries. Once again, there is some variation that can be attributed to leading edge

shape; however it does not appear too significant. Furthermore, Rival et al.[17] were

investigating aerodynamic profiles that had drastic variations in leading edge shape.

Minor changes in leading edge profile will therefore be assumed to have negligible

effects on the overall flow structure.

Characterizing the mechanics behind the ”flapping” motion often seen in na-

ture comes down to two main aspects: the wake structure and the aerodynamic forces
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Figure 2.8: Topological sketch used by Rival et al. to demonstrate the LEV shedding

process.

Source: Rival et al.[17] 51st Aerospace Sci. Meeting, AIAA Paper 2013-0836 (2013).

Figure 2.9: Streamlines presented by Rival et al. for a plunging flat plate. When the

stagnation point indicated by the streamlines reaches the trailing edge, the LEV is

considered to be detachmented.

Source: Rival et al.[17] 51st Aerospace Sci. Meeting, AIAA Paper 2013-0836 (2013).
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Figure 2.10: Correlation between leading edge shear layer and area of opposite sign

vorticity performed by Rival et al.

Source: Rival et al.[17] 51st Aerospace Sci. Meeting, AIAA Paper 2013-0836 (2013).

(as well as the interaction between the two). A lot of focus has been put on char-

acterizing the plunging and pitching motion of rigid airfoils, but the key aspect of

flexibility has yet to be fully explored. It was shown by Lewin and Haj-Hariri[14] that

strong LEVs greatly affect the wakes structures and the aerodynamic forces. Since

the main advantage of plunging motions is the generation of large leading edge vor-

tices (LEVs), an in-depth investigation of their development and aerodynamic effects

should prove to be a fruitful endeavor. Indeed, Lewin and Haj-Hariri[14] performed

an excellent characterization of the effects of LEV on wake structures and efficien-

cies, but their work still needs to be extended to flexible airfoils and higher Reynolds

numbers. Most wake characterizations of flexible airfoils have been primarily con-

cerned with characterizing the wake itself [8] [6], and not its interaction with LEVs.
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Figure 2.11: Vorticity contours demonstrating the effect of leading edge shape, per-

formed by Rival et al.

Source: Rival et al.[17] 51st Aerospace Sci. Meeting, AIAA Paper 2013-0836 (2013).
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Figure 2.12: Lift histories for five airfoils with different leading edge geometries,

performed by Rival et al.

Source: Rival et al.[17] 51st Aerospace Sci. Meeting, AIAA Paper 2013-0836 (2013).

The study performed for this thesis sought to remedy that by investigating the be-

havior of the LEV over a wide range of parameters in order to determine its main

dependencies. The manner in which the LEV affects the wake will be characterized,

as will the transition from LEV shedding to LEV dissipation. Along the same line,

the development and detachment of the LEV will be examined for any patterns, and

the applicability of the topology-based analysis presented by Rival et al. [17] will be

investigated. Finally, the aerodynamic forces will be measured, and scaling methods

proposed by Kang et al.[10] and Cleaver et al. [3] will be explored.
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CHAPTER 3
EXPERIMENTAL METHODOLOGY

3.1 Overview and Model Geometries

The purpose of the study performed was to identify the effect that flexibility

has on a rudimentary, plunging airfoil. Two flexible airfoils were used to do this,

and results were compared to those obtained by Eslam Panah and Buchholz [4] for

a rigid airfoil undergoing an identical motion. The flexible airfoils were made from

Dow Corning Sylgard 184 Polydimethylsiloxane (PDMS), more commonly known as

silicone. Sylgard 184 has a specific gravity of 1.04. The airfoils were constructed

by casting the silicone in a closed mold, with a stainless steel rod embedded in the

leading edge that would be used to drive the plunge motion. The flexibility of the two

airfoils was varied by changing the chord length, one of which was 112.7125 millimeters

(4.4375 inches) and the other of which was 82.55 millimeters (3.25 inches). The flexible

airfoils will thus be referred to as either the ”long” or ”short” airfoil, keeping in mind

that the longer the airfoil’s chord length, the higher degree its degree of flexibility.

The aft 9 millimeters (0.35 inches) of the airfoil were tapered down at an angle of 15

degrees, creating a sharp trailing edge. Both flexible airfoils had uniform thicknesses

of 4.8 millimeters (0.19 inches) and spans of approximately 320 millimeters (12.6

inches). The moderately large chord-to-span aspect ratio of the airfoils helped to

create a two-dimensional mean flow at the symmetry plane (mid-span). There was

a 5 millimeter (0.2 inch) gap between the tip of the airfoil and the bottom of the
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Figure 3.1: Cross-sectional shape of the long airfoil.

Figure 3.2: Cross-sectional shape of the short airfoil.

water channel as well as between the root of the airfoil and plate constraining the

free surface. The addition of these boundary conditions helped to reduce spanwise

flow. The two-dimensionality of the simulation was validated by injecting dye several

inches upstream of the airfoil using a 3.175 millimeter (0.125 inch) outer-diameter

stainless steel tube. Video footage of the process showed no organized spanwise

flow, thus supporting the two-dimensionality of the problem. In order to ensure two-

dimensional motion of the airfoil, a carbon fiber rod was embedded in the trailing

edge of the airfoil to prevent any spanwise deformation. The geometries of the flexible

airfoils, and the location of the leading and trailing edge rods are shown in Figures

3.1 and 3.2. Figure 3.3 shows the geometry of the rigid airfoil used by Eslam Panah

and Buchholz[4], which had a chord length of 76.2 millimeters (3 inches), width of

3.18 millimeters (0.125 inches) and span of 304.8 millimeters (12 inches).
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Figure 3.3: Cross-sectional shape of the rigid airfoil.

The plunge motion was created using a scotch yoke mechanism that was driven

by a DC servo motor and amplifier. The leading edge was thus oscillated in a sinu-

soidal motion with the transverse displacement specified as:

h(t) = −h0sin(2πft) (3.1)

The phase angle convention used by Eslam Panah and Buchholz [4] was adopted

for the present study as well, which specifies the phase angle φ = 0◦ to occur as the

airfoil passes the centerline of its motion during the downstroke. This puts φ = −90◦

and φ = 90◦ at the top and bottom of the motion respectively. The scotch yoke mech-

anism (Figure 3.4) was placed atop a free-surface water channel that had a width of

0.61 meters and depth of 0.33 meters, as depicted in Figure 3.5. The free surface of

the channel was constrained by rigid plates that extended 0.6 meters both up and

downstream, to prevent the formation of surface waves. The water channel flow was

conditioned using a honeycomb, five screens and an 8:1 plenum-to-channel contrac-

tion ratio, resulting in a turbulence intensity of less than 0.3 percent. The airfoil

was approximately 0.75 meters downstream of the contraction. Figure 3.6 shows the

position of the scotch yoke, free-surface plates and the water channel contraction.
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Figure 3.4: Scotch Yoke.

Figure 3.5: Side view of the experimental configuration used for PIV. The airfoil is

moving normal to the page.
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Figure 3.6: Water channel and the postion of the scotch yoke.
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3.2 Parameter Space

The main goals of this investigation were to determine the Thrust, Lift and

Input Power associated with the airfoils’ plunge motion, measure the Circulation of

any given vortex structure shed by the airfoil, as well as to characterize the effect of

flexibility on the wake structure of the airfoil. The dimensional variables governing

these quantities are fluid density (ρf ) and dynamic viscosity (µ), the free stream ve-

locity (U∞), the airfoil’s density (ρb) and its modulus of elasticity (E), the plunge

frequency (f) and peak-to-peak amplitude of the leading edge(A). The final param-

eters needed are those that describe the airfoil’s geometry, which are chord length

(c), airfoil thickness (w), pitch angle of the leading edge (α0) and span (s). However,

it should be noted that the investigation being described assumed a two-dimensional

problem, so span will not be considered. Also, the pitch angle is not relevant here

since the airfoil’s motion did not involve pitching. The properties identified and their

dimensional components are listed in Table 3.1, where M is mass, L is length and T is

time. The properties chosen here coincide with those chosen by Kang et al.[10] except

that they also included Poisson’s ratio (ν) in a stiffness parameter that resulted from

non-dimensionalization of the Euler-Bernoulli equation. In their analysis, however,

they ended up setting this value to a constant. Since it is also constant in the present

analysis, its removal from the parameter space should not have an effect.

The dimensionless parameters resulting from the dimensional analysis of airfoil

performance are summarized below in Equation 3.2. It should be noted that I ′ is the

second moment of area in the z-direction per unit span. I ′ = sw3

12
1
s
∝ w3. The full
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Table 3.1: Summary of parameters to be non-dimensionalized

E ρbody ρfluid µfluid U∞ f A c w

ML−1T−2 ML−3 ML−3 ML−1T−1 LT−1 T−1 L L L

analysis performed to achieve these results can be found in the Appendix.

CL, CT , CP , or Γ∗ = f

(
EI ′

ρU2A2c
,
fA

U
,
h0
c
, ReC ,

ρb
ρf
,
I ′

c3
, α0

)
(3.2)

Two dimensionless parameters describing the airfoil kinematics were chosen

to be varied: Strouhal number and plunge amplitude. The chord-based Reynolds

number was also held at a constant 10,000, which is on the order of typical micro-

air vehicles and smaller birds [24]. The ratio between fluid and body densities was

constant, as the same material was used for both flexible airfoils. The moment of

inertia I’ was constant but the chord length was not, so the I′

c3
parameter was different

for each of the airfoils. The EI ′ term of the stiffness parameter was constant for the

flexible airfoils, but the stiffness parameter was varied as a byproduct of changing

the plunge amplitude and chord length. Throughout the rest of the study, variation

in flow behavior and force measurements were examined for their dependence on St,

h0/c and chord length (which affects the stiffness parameter and the outcome of I′

c3
).

Occasionally dependencies on reduced frequency, k, are also noted. In the majority of

the analysis presented here, the Strouhal number (St) is based on the peak-to-peak

amplitude of the leading edge of the airfoil, since it is a prescribed quantity; however
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in the discussion of aerodynamic forces the Strouhal number based on trailing edge

amplitude (StTE) will also be considered due to the importance that it has been seen

to have in governing these quantities [15] [22] [21].

During the Digital Particle Image Velocimetry (PIV) portion of the study,

dimensionless plunge amplitudes of h0/c = 0.3, 0.4 and 0.5 were investigated for the

flexible airfoils, along with Strouhal numbers of St = 0.2, 0.3, 0.4 and 0.5. Eslam

Panah and Buchholz[4], however, used h0/c = 0.2, 0.3 and 0.4 and St = 0.1, 0.2,

0.3, 0.4, 0.5 and 0.6, so the parameter spaces did not overlap completely. To get a

better overlap, the flexible parameter space was changed to h0/c = 0.2, 0.3 and 0.4

and St = 0.2, 0.3, 0.4, 0.5 and 0.6 for both the force measurements and subsequent

time-resolved PIV measurements.

3.3 Material Property Analysis

3.3.1 Apparatus and Methodology

In accordance with the manufacturer’s instructions, the Sylgard 184 base and

curing agent were mixed in a 10:1 ratio. Approximately 200 grams of the mixture was

made at a time in a glass beaker, and stirred for 10 minutes. This created bubbles

in the mixture, so the beaker was placed in a vacuum chamber for 10 minutes. This

process served to not only draw the already visible bubbles to the surface, but also

caused more dissolved gas to be released and draw out those additional bubbles as

well. This would eventually minimize, and usually completely eliminate, the bubbles

that would be released during the final curing stages after the mold was poured.
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After ten minutes, the beaker was removed from the chamber and the bubbles that

had gathered on the surface were manually burst. The beaker was placed back in the

vacuum chamber for another 40 minutes, and when it was removed for the second

time no bubbles remained. The silicone was then poured into a mold (shown in Figure

3.7) that was closed on all sides but the top (which would correspond to the root of

the airfoil), and could be broken in half to remove the cast airfoil. The stainless steel

and carbon fiber rods were placed in the mold, and silicone poured around them.

Preliminary casting led to the discovery that the Sylgard did not bond very well with

the stainless steel on its own. To reliably attach the silicone to the leading edge

rod, Dow Corning 732 Multi-Purpose Sealant was used to coat the stainless steel

rod before it was inserted into the mold. This sealant adhered very well to both

the stainless steel and the Sylgard, thereby acting as a bonding medium between the

two materials. The Sealant was also black, which helped to reduce the amount of

laser light reflected by the shaft during PIV measurements, thus reducing glare in the

images. Although the Sylgard bonded fairly well to the carbon fiber rod, it was also

coated in Sealant before being inserted in the mold to further strengthen the bond.

Once the mold was filled, it was placed in a vacuum chamber for 48 hours to cure.

After the 48 hours, the mold was opened and the airfoil was allowed to breathe for

another day before it was used. The same mold was used to make both fins, which

were both originally cast with chord lengths of 112mm. One of the airfoils was then

cut from the leading edge rod, and 30mm of the chord length cut off before being

reattached to the 0.25 inch diameter leading edge rod with the Sealant to produce
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Figure 3.7: Mold used to cast flexible airfoils.

the 82.55mm chord of the short airfoil. The bottoms of the airfoils were coated with

a thin layer of the black sealant to promote better imaging of the bottom edge of the

airfoil, as the clear silicone tended to reflect a lot of the PIV laser light down and

create bright spots and blur the airfoil boundary. Figures 3.8 and 3.9 show the final

products of the airfoil-casting process. Figure 3.10 also shows the rigid airfoil that

was used.

PDMS is known to have very stable material properties, which helped to main-
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Figure 3.8: 112mm chord length flexible airfoil.

Figure 3.9: 82.55mm chord length flexible airfoil.

Figure 3.10: 76.2mm chord length rigid airfoil.
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tain consistent response even after long periods of used and submersion in water [19].

Since it is one of the properties included in the parametric space, the modulus of

elasticity needed to be determined. To do so, a Lloyd Instrument LS1 Digital Ma-

terial Tester (tensometer), shown in Figure 3.11 was used to analyze three samples

of Sylgard strips that were cut from one of the preliminary airfoil castings that had

been previously submerged in water for 60 hours. These strips all had thicknesses of

4.8mm and lengths of 125mm. Two of the samples had widths of 8.5mm and the third

had a width of 21mm. The samples were secured into 1 inch wide clamps (Figure

3.12) on the tensometer, and stretched at a rate of 30 millimeters-per-minute until

30 percent strain was reached. Upon completion of the first trial the tensometer was

zeroed, and after a minute had passed a second test of the sample performed. With

two tests for each of the three samples, six resulting stress-strain curve were pro-

duced. Although the tensometer accurately applied and recorded stresses, the strain

readings were deemed unreliable because the material near the clamp was obviously

compressed, which caused considerable deformation of the cross-sectional area. Thus

during the tests, the extension rate was not uniform through the whole sample. To

get more reliable strain values, two straight, black lines were made 50mm apart on

each of the samples using a very thin layer of the 732 Sealant. A Nikon D3100 SLR

camera operating in 1080P video mode and 23 frames per second was used to record

the sample as it was stretched. The video was then broken up into single frames and

pixel displacements of the two black lines used to calculate strain. There was ap-

proximately 25mm between the marks and the deformed area created by the clamps,
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leading to the assumption that the cross section shape between the lines remained

constant throughout the testing. Because of this, the strain could be calculated sim-

ply by taking the change in the number of pixels between the marks and dividing it

by the original pixel count. The sealant also created very distinct lines that stayed

that way throughout the entirety of the test (verses ink markings that would blur

when the sample was stretched) so the pixel displacement was able to be consistently,

and reliably measured. Stress and strain values were calculated using Equations 3.3

and 3.4, where F is the force being exerted by the tensometer at any given point in

time, A0 is the original cross-sectional area of the test strip, L is the initial number

of pixels between the two black marks and l is the number of pixels between the two

black marks at any given point in time.

σ =
F

A0

(3.3)

ε =
l − L
L

(3.4)

It was fairly easy to discern the moment at which the tensometer started

moving, so correlating the strains with the time resolved stress values recorded by

the machine was straightforward.
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Figure 3.11: Lloyd Instrument LS1 Digital Material Tester with 4.8mm X 125mm X

21mm sample.
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Figure 3.12: 4.8mm X 125mm X 21mm PDMS sample clamped into tensometer.
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3.4 Digital Particle Image Velocimetry

3.4.1 Apparatus and Methodology

For the phase-locked PIV measurements, the water channel described earlier

was seeded with hollow glass spheres that had a mean diameter of 11 millimeters and

density of 1.0 g/cc. A dual-cavity 200 mJ/pulse Nd:YAG laser with light sheet optics

was used to illuminate the imaging plane at the mid-span location. PIV images were

taken with a LaVision Inc. Flowmaster system with a 14-bit Imager ProX 4 CCD

camera and 2048x2048 pixel resolution, equipped with a 50mm Micro-Nikkor lens.

The Nd:YAG laser is shown in Figure 3.13, and the PIV camera is shown in Figure

3.14 The cameras were calibrated by placing a ruler in the imaging plane and taking a

picture, and setting the pixel displacement to between two points in the image equal

to the corresponding length. Eight phases were imaged for each of the cases examined:

φ = −90◦,−45◦, 0◦, 45◦, 90◦, 135◦, 180◦, and 225◦, positioned respectively through the

cycle as shown in Figure 3.15. During each data collection run, two phases (180◦

apart from each other) were recorded, meaning four consecutive runs were needed to

collect all the phases. Since the results of 100 images were averaged to get the final

velocity field for each phase, these data collection runs each consisted of 200 image

pairs (100 pairs for each of the two phases). The cameras were triggered using a US

Digital EM1 Transmissive Optical Encoder Module and a 120-counts-per-inch Linear

Strip that was mounted to the scotch yoke.
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Figure 3.13: Nd:YAG Laser used for PIV.

Figure 3.14: Imager ProX PIV camera.
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Figure 3.15: Phase locations.

3.4.2 PIV Processing

Lavision DaVis 8.1.2 software was used for data acquisition and PIV process-

ing. When triggered, the CCD camera took two single exposed images 4000 µs apart.

These image pairs were processed using a discrete FFT cross-correlation analysis that

consisted of two passes using a 64 X 64 window size then two more passes with a 32

X 32 window size, with 50-percent overlap. Outliers were removed using a median

filter and then iteratively replaced. For each phase, the 100 resulting velocity fields

were averaged, and then the vorticity field determined using Equation 3.5 where vxi

and vyi are the x and y velocity of a given pixel and ∆x and ∆y are the x and y grid

spacing respectively.
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ωz =
vyi+1

− vyi−1

2∆x
−
vxi+1

− vxi−1

2∆y
(3.5)

The vortex boundaries were identified using the Γ2 method presented by

Graftieaux et al.[7]. Equation 3.6 shows how Γ2 was calculated for each point (P ),

where
−−→
PSm is the displacement vector between the central point and one of its neigh-

bors (Sm),
−→
UP is the velocity vector of point P ,

−−→
USm is the velocity vector of point

Sm, and N is the number of points surrounding P . Figure 3.16 shows an example of

these parameters, and the relation between P and the surrounding points Sm. The

Γ2 values that were computed for this study used eight surrounding nodes so N = 8.

Γ2(P ) =
1

N

N∑
m=1

−−→
PSm × (

−−→
USm −

−→
UP )

‖
−−→
PSm‖ · ‖

−−→
USm −

−→
UP‖

(3.6)

Contour levels of Γ2 = 0.65 were used to define the boundaries of the area over

which the vorticity was integrated to obtain circulation.

An outline of the airfoil’s cross-section was determined by manually going

through each image and selecting boundary points. The area affected by the parallax

and the shadow cast by leading edge rod were likewise determined.

3.5 Time Resolved Digital Particle Image Velocimetry

3.5.1 Apparatus and Methodology

Time resolved PIV was performed in order to better resolve the LEV forma-

tion and interaction with the airfoil. The mechanism set up remained the same as the

previous PIV. However, an IDT NX4-S1 1.0 megapixel high speed camera with 1024
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Figure 3.16: Description of the parameters used in Equation 3.6 to find Γ2.
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Figure 3.17: IDT NX4-S1 high speed camera.

X 1024 pixel resolution (shown in Figure 3.17), equipped with a 50mm Micro-Nikkor

lens, was used to image the full oscillation. The camera’s exposure time was 692 µs

and images were usually taken at a rate of 500 frames-per-second. If, however, the

frequency of the motion was very high, the frame rate was increased to better dis-

cretize the motion and obtain more accurate cross-correlation measurements. A 5W

Laserglow Technologies LRS-0532 Series Diode-Pumped Solid-State Laser (532nm,

green) continuous waveform laser, shown in Figure 3.18, was used to image the mid-

span location and in order to prevent the interference of parallax on the imaging area,

the camera was offset from the centerline so that it always had a direct view of the

airfoil’s side closest to the laser. Twenty trials were performed for each case, where

one trial consisted of a full cycle, the results of which were phase averaged.

3.5.2 PIV Processing

A cross-correlation analysis was performed using two consecutive images taken

by the high speed camera. The first pass used a 64 X 64 window size, and then three
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Figure 3.18: DPSS continuous waveform laser.

passes with a 32 X 32 window size, all of which had a 50-percent overlap. As before,

outliers were removed with a median filter and then iteratively replaced. Once velocity

vectors were determined, Equation 3.5 was used to compute the vorticity fields which

were averaged later using Matlab. Instead of using the Γ2 method as before to identify

vortex boundaries, a vorticity threshold of 0.05 was used instead. This allowed all of

the vorticity associated with a given vortex to be captured.

The previous method of manually segmenting the airfoil’s geometry was im-

practical for the time resolved data since there number of images was much higher.

Instead, segmentation was done in an automated, two-step process. First, the image

was loaded into Matlab, an example of which can be seen in Figure 3.19a. In order

to remove the particles in the image, the image was blurred using the fspecial(’disk’)

function, which performed a circular averaging filter with a radius that was set to 3

resulting in Figure 3.19b. After blurring the image, all pixels having an intensity less
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than 97-percent of the maximum possible value were set to 0, leaving behind the area

shown in Figure 3.19c. The bright area left behind corresponded to where the laser

sheet intersected the airfoil. Points on the upper surface of this white area were then

selected at specific x-pixel locations, which are shown as red points in Figure 3.20a.

The point at the trailing edge was found by simply locating the white spot that was

the furthest downstream. The leading edge was difficult to discern due to its low

reflectivity, so the pink points in the figure were calculated using the location of the

first red point and the known leading edge geometry. Figure 3.20b shows the selected

points on the original image. The airfoil’s centerline was obtained by shifting down

the boundary points by half the thickness. Then a third order polynomial was fit to

points (excluding the four at the leading edge). This resulting centerline can be seen

in Figure 3.20c. Once again using what was known about the airfoil’s geometry the

final outline of the airfoil could be generated from the centerline. This final outline

can be seen in Figure 3.20d.

The centerline was later used for several other analyses, including: deriving

the strain experienced by the airfoil, deflection of the trailing edge and characterizing

the inertial forces associated with the airfoil’s movement.

3.6 Force Measurements

3.6.1 Apparatus and Methodology

An ATI Mini40-E Six-Axis Force Transducer (Figure 3.21) was used to measure

the aerodynamic loads on the airfoil as it oscillated. For the purposes of this study,
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(a) Image after intensity correction. (b) Blurred image.

(c) Image after threshold applied.

Figure 3.19: Example of the filtering process used to identify the airfoil’s boundary

in the time resolved PIV images.
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(a) Points selected from the filtered image. (b) Point location on the raw image.

(c) Calculated centerline of the airfoil. (d) Finished outline of the airfoil

Figure 3.20: Method used to derive an outline from the filtered PIV images.
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Figure 3.21: ATI Mini40-E Six-Axis Force Transducer.

however, only x-directional and y-directional components of the transducer were used

in order to measure lift and thrust respectively. The transducer, shown in Figure

3.21 was factory calibrated to measure forces up to 40 Newtons and torques up to

2 Newton-meters. Mounting brackets were secured on either side of the transducer,

which were then attached to the driving-rod of the scotch-yoke mechanism above

and the leading edge rod below, as shown in Figure 3.22. Data was collected at

10,000Hz, using a National Instruments USB-6216 16-input, 16-bit, 400kS/s DAQ

card. Readings were taken for 50 cycles, the results of which were averaged to get

the final force readings.

3.6.2 Post-Processing

Before and after each data collection run, the force transducer was tared while

the airfoil remained stationary. Phase averaging over 50 cycles removed most of

the noise; however, some vibrations were repeatable from cycle to cycle and could
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Figure 3.22: Side view of the experimental configuration used for force measurements.

not be averaged out. Once any offsets were properly subtracted from the averaged

data, the results were further filtered by means of a fifth-order, low-pass Bessel filter

in Matlab. The signals were run through the filter twice, once forwards and once

backwards to remove phase shifts caused by the filtering process. In most cases, the

cutoff frequency was set at ten-times the oscillation frequency. In some cases, large-

amplitude oscillations persisted in the filtered signal. Since these oscillations could

not be correlated with any obvious unsteady flow features, the cutoff frequency was

reduced. This was done on only a few occasions, most of which were for the rigid

airfoil due its tendency to vibrate excessively. On the other hand, if the first filtering

operation successfully removed all of the minor peaks present in the unfiltered data,

the cutoff frequency was increased until the noise was just about to reappear.
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In addition to filtering the force measurements, the inertial loads of the airfoils

themselves had to be removed from the measurements. For the rigid airfoil, this was

fairly simple, as the position function was known and thus so was the acceleration of

the airfoil. The airfoil and bracket were weighed, and that mass multiplied by the

acceleration. The force that resulted was subtracted from the Lift measurements.

This process was slightly more difficult with the flexible airfoils. The centerlines that

had been previously calculated for each case was used to determine the acceleration

of the flexible portion of the airfoil in both the x and y directions. This was done in

a two-step process. To begin, a third-order polynomial was fit to the centerline data

computed in Section 3.5.2:

y = Ax3 +Bx2 + Cx+D (3.7)

This equation was used to find the appropriate differential streamwise element

(dx) for a given differential arc length (ds) of the airfoil using Equation 3.10, where

xj is the x-position of a given point in frame j:

ds2 = dx2 + dy2 (3.8)

ds2 = (xj+1 − xj)2 + (yj+1 − yj)2 (3.9)

ds2 = (xj+1 − xj)2 + ((Ax3j+1 +Bx2j+1 + Cxj+1 +D)− (Ax3j +Bx2j + Cxj +D))2

ds2 = (xj+1 − xj)2 + (A(x3j+1 − x3j) +B(x2j+1 − x2j) + C(xj+1 − xj))2 (3.10)

The resulting x-values were then plugged back into Equation 3.7 to get the
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corresponding y-values. The accelerations for each of the specified points along the

curve could then be found by using their x and y positions from different frames. The

average accelerations in the x and y directions for each of the j-number of frames

were found using the finite difference approximations given in Equations 3.11 and

3.12, with N = 1500, equally spaced points prescribed along the centerline of the

airfoil.

ay =
1

N

N∑
n=1

yn,j+1 − 2yn,j + yn,j−1
dt2

(3.11)

ax =
1

N

N∑
n=1

xn,j+1 − 2xn,j + xn,j−1
dt2

(3.12)

This acceleration was multiplied by the associated mass of each segment of the

airfoil to get the force associated with it. Additionally, the product of the acceleration

of the leading edge and the combined mass of the leading edge rod and force sensor

bracket was added to the force already calculated in the y-direction. Instantaneous

thrust, lift and power coefficients were calculated using Equations 3.13, 3.14 and

3.15, where thrust (T) is the force in the upstream direction, lift (L) is the force

in the direction normal to the free-stream velocity and transverse velocity is given

as: Vtransverse = −2πfh0cos(2πft). Time-averaged thrust, lift and power coefficients

were found by integrating the instantaneous values over one cycle and then dividing

by the period. Propulsive efficiency, η, was determined by taking the ratio between

the time-averaged thrust and power coefficients (Equation 3.16).
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CT =
T

0.5ρfU2
∞cs

(3.13)

CL =
L

0.5ρfU2
∞cs

(3.14)

CP =
LVtransverse
0.5ρfU3

∞cs
(3.15)

η =
CT

CP
(3.16)

The aerodynamic forces associated with the oscillation are expected to be

dependent Strouhal number [22] [21]. Since the Strouhal number is usually meant

to be dependent on the width of the wake, it would be beneficial to compute the

Strouhal numbers based on the trailing edge amplitude [15]. These amplitudes were

determined from the outlines that were computed from the high speed camera images.
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CHAPTER 4
RESULTS AND DISCUSSION

4.1 Airfoil Material Properties and Kinematics

The results of the tensometer testing can be seen in Figure 4.1, where Cases

1 and 2 were the 8.5 millimeter samples and Case 3 was the 21 millimeter sample.

The first and second trials of each sample are represented as A and B respectively.

All the trials show similar results, with good repeatability over time. The six trials

were averaged, the results of which can be seen in Figure 4.2 that also shows error

bars corresponding to one standard deviation. A linear regression was performed for

the first 5-percent strain, which yielded a modulus of elasticity of 2.1 MPa.

Actual strain values were calculated using the centerlines derived from the

time resolved imaging and basic beam bending theory. Equation 4.1 was used to

find this strain, where yn is the distance from the beam’s neutral axis to the point of

interest and d2y
dx2

is the second derivative of the centerline.

εx = −yn
dθ

dx
= yn

d2y

dx2
(4.1)

Since the maximum strain needs to be found, the maximum possible value

for yn (half the airfoil thickness) was used. For each phase that was recorded, the

strain values were calculated along the full length of the airfoil. The maximum and

minimum strains at each of these phases was determined, as was the average strain of

the entire airfoil during that phase. These three values were plotted with phase and
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Figure 4.1: Non-Averaged Stress-Strain curves for Sylgard 184 .

Figure 4.2: Averaged Stress-Strain curves for Sylgard 184.
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displayed approximately sinusoidal behavior, as demonstrated in Figure 4.3 for the

case of h0/c= 0.4 and St= 0.5 for the long airfoil. The maximum strain values of these

sinusoidal-responses were found for each case an reported in Figure 4.4(a). The root

mean square of the averaged data shown in Figure 4.3 was also calculated for each case

and plotted in Figure 4.4(b), which demonstrates a more accurate characterization

of the overall strain-response. Since it is the trailing edge deflection that governed

deformation and strain, both Figures 4.4(a) and 4.4(b) were plotted using Strouhal

number based on the trailing edge amplitude on the abscissa. The maximum strain

seen was just below 16-percent, which is quite a bit higher than the linear 5-percent

range that was determined earlier. However reexamination of Figure 4.2 shows that

even up to 25-percent strain, the response still remains fairly linear.

In order to better characterize the kinematics of the airfoil, the location of

the trailing edge with respect to the leading edge was plotted in Figure 4.5. This

figure demonstrates how there is not only an amplitude difference between the two,

but a phase shift as well. When this phase shift gets big enough, the trailing edge

amplitude will start decreasing, even though the deflection may still increase. This

behavior would be expected with high flexibility and high frequencies, as the forcing

frequency passes through the resonant frequency of this bending mode. Figures 4.6(a)

and 4.6(b) show the maximum trailing edge amplitude of the cases explored for the

long and short airfoils respectively (with dashed lines signifying the leading edge

and solid lines signifying the trailing edge), and Figures 4.7(a) and 4.7(b) show their

deflections. At a St = 0.6 and h0/c = 0.2 the maximum amplitude of the long airfoil
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Figure 4.3: Maximum, Average and Minimum strain values for h0/c = 0.4 and St =

0.5 (long airfoil).

(a) Maximum Strain (b) RMS of Average Strain

Figure 4.4: Maximum strain and RMS of the average strain for each of the long airfoil

cases.
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Figure 4.5: Y-Position of the leading and trailing edges of the long airfoil as it oscil-

lates at St = 0.4 and h0/c = 0.3.

decreases while the deflection keeps increasing. It also appears that if h0/c is increased

to 0.3, the trailing edge amplitude is beginning to level off as well. No such pattern

is decidedly distinguishable for the short airfoil; in fact, the trailing edge amplitude

seems to increase in the same linear manner regardless of leading edge amplitude, a

phenomena attributed to its higher resonant frequency. One final pattern to note is

that at very low plunge frequencies such as h0/c = 0.4 and St = 0.2, there is almost

no deflection, especially with the short airfoil. Thus, there is a significant variation

in deflection over the parameter range that was studied.
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(a) Long airfoil (b) Short airfoil

Figure 4.6: Maximum leading and trailing edge amplitude for (a) the long airfoil and

(b) the short airfoil.

(a) Long airfoil (b) Short airfoil

Figure 4.7: Maximum deflection for (a) the long airfoil and (b) the short airfoil.
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4.2 Vortex Evolution

Vorticity fields of the phase-averaged PIV measurements were non-dimensionalized

using Equation 4.2 where ω is the vorticity component normal to the imaging plane,

c is chord length and U is free stream velocity.

ω∗ =
ωc

U
(4.2)

The x and y position were both normalized by chord length (c). Iscontours of

vorticity were created using the limits mentioned in Section 3.4.2 to create Figures

4.8 and 4.9. Using the raw PIV images, the outline of the airfoil was determined and

inserted into the figures. There was a slight shadow cast by the leading edge rod, and

the affected area was blanked out in gray. There was also some parallax cause by the

bottom edge of the airfoil, which is blanked in gray as well. These figures show the

isocontours of all eight phases, and help to demonstrate the general vortex formation

and shedding process exhibited by the plunging airfoils.

Figure 4.8 shows the evolution of the flow structure created by the long airfoil

at h0/c = 0.4 and St = 0.3, which corresponds to a reduced frequency, k = πfc/U

= 1.18. The top of the plunge motion (φ = −90◦) is show in Figure 4.8a, and it

descends downwards during the next three phases. In Figure 4.8e, the airfoil has

reached the bottom of its motion and begun to move back upwards, and by this time

the concavity of the airfoil has also reversed. Once the airfoil is angled down the

trailing edge vortex begins to form, and it does so until the concavity switches again

at the top of the motion (φ = −90◦).
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The leading edge shear layer begins to form on the top of the airfoil at φ =

−90◦, but roll up of the leading edge vortex does not begin until the airfoil passes the

centerline at φ = 0◦. This roll up cannot be seen in Figures 4.8 and 4.9 due to parallax,

but it can be seen in Figures 4.22 through 4.23. When this roll up begins, a layer

of opposite-sign vorticity begins to form between the leading edge vortex (LEV) and

the airfoil’s surface. As the airfoil continues the downstroke, the LEV keeps growing.

By the bottom of the motion (φ = 90◦) the LEV has separated from the leading

edge shear layer and begun to advect downstream. When the LEV passes the trailing

edge of the airfoil it is strained out into a crescent shape as it is pulled around the

trailing edge and into the wake. Upon the LEVs separation from the shear layer and

its subsequent movement downstream, the opposite-sign vorticity near the surface is

drawn up in front of the LEV (Figure 4.8f). At the same time, the remnants of the

leading edge shear layer also begin to move downstream, remaining adjacent to the

airfoil’s surface. As stated earlier, the trailing edge shear layer begins to form when

the airfoil’s trailing edge angles downward (Figure 4.8e). The shear layer develops

until roughly φ = 135◦ and then begins shedding vortices. For the case being shown

in Figure 4.8 this shedding occurs in the form of multiple, small trailing edge vortices

(TEVs) that immediately begin moving downstream (Figure 4.8f). Until φ = 180◦,

these small TEVs appear to be in a fairly straight line, with the distance between

each TEV and the trailing edge proportional to the amount of time that has passed

since it was shed. However, as the LEV is pulled around the trailing edge and strained

into the wake, the TEVs that it passes over are drawn downstream, ahead of other
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vortices that were shed earlier (Figure 4.8h). This gives the wake an ”S” shape.

Figure 4.9 shows the contours for h0/c = 0.4 and St = 0.5, corresponding to k

= 1.96. As before, the LEV appears to roll up around φ = 0◦, however no opposite-

sign vorticity can be seen, most likely because it was blocked by the projection of the

bottom of the airfoil. At φ = 90◦, the LEV again appears to detach from the shear

layer, however the shear layer is much weaker. As the opposite-sign vorticity beneath

the LEV is pushed upstream, it connects with the LEV beginning to form on the

other side of the airfoil (Figure 4.9f). This appears to hinder, and potentially even

reverse, the advection of the LEV (Figures 4.9f and g). During this time when the

LEV is not advecting downstream, it dissipates significantly. Around φ = −90◦ any

remnants of the LEV get shed into the wake (Figure 4.9a). This delayed arrival at

the trailing edge is potentially a byproduct of the opposite-sign vorticity stagnating

the LEV, but could also be due to the fact that the LEV appears to advect slower

with phase as Strouhal number increases.

The trailing edge shear layer forms on the top of the airfoil at φ = 90◦ (like

the previous case). However, before the shear layer can move past the trailing edge

the remnants of the opposite-sign shear layer need to be pushed out of the way,

slightly delaying the shedding process. When TEV structures do break off from the

shear layer (Figures 4.9g and h), they are larger and thus stronger than those seen

earlier. The first vortex shed is strong enough to stagnate in the flow momentarily

and begin drawing the subsequent TEV down in front of it (Figure 4.9g). In addition

to the fact that they are large, this change can further be explained by the fact that
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the individual TEV structures have a higher shedding frequency at higher Strouhal

numbers, and are thus able to affect each other more readily. It is important to note

that overall, the wake in this case is made primarily of TEV structures.

The relative position and strength of the LEVs and TEVs observed throughout

the entire parameter space studied are shown in Figure 4.10a-h. Each line in the figure

(i.e. [a-b], [c-d], [e-f] and [g-h]) shows phases φ = 90◦ and φ = 270◦ for a different

Strouhal number. These two phases correspond to the bottom and top of the stroke,

or the phase when the LEV detaches and the phase when the TEV stops shedding.

The vortices for each of the three plunge amplitudes are shown on each of the figures,

with any differences between the three labeled. Figures 4.10a, 4.10c, 4.10e and 4.10g,

reveal an important pattern. As Strouhal number increases, the LEV is pulled further

upstream. This supports the observation made earlier about LEVs appearing to

advect slower with phase as Strouhal number increases. Interestingly, decreasing the

plunge amplitude also tends to move the LEV further upstream, while simultaneously

drawing it closer to the airfoils surface. Since the advection rate appears dependent

on Strouhal number and amplitude, it would seem plausible that its progress from

phase to phase is dependent on plunge frequency. One such way to therefore scale the

trajectory of the LEV is with the convective length scale UT, where U is free stream

velocity and T is the period of motion. For a given plunge amplitude, this length

scaling would become smaller at higher Strouhal numbers, corresponding to what is

seen in the figure.

Figure 4.10b shows no TEVs, mainly because they all either dissipated imme-
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(a) φ = −90◦ (b) φ = −45◦ (c) φ = 0◦

(d) φ = 45◦ (e) φ = 90◦ (f) φ = 135◦

(g) φ = 180◦ (h) φ = 225◦

Figure 4.8: The evolution of vorticity over one cycle for h0/c = 0.4, St = 0.3 and

k = 1.18 (long airfoil).
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(a) φ = −90◦ (b) φ = −45◦ (c) φ = 0◦

(d) φ = 45◦ (e) φ = 90◦ (f) φ = 135◦

(g) φ = 180◦ (h) φ = 225◦

Figure 4.9: The evolution of vorticity over one cycle for h0/c = 0.4, St = 0.5 and

k = 1.96 (long airfoil).
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diately or were draw downstream and out of view too quickly. Figures 4.10d, 4.10f

and 4.10h show how the TEVs demonstrate a behavior similar to that of the LEV. As

both St and h0/c increase, the TEVs are drawn further upstream. This is once again

a byproduct of there being less time between phases as Strouhal number is increased,

and as plunge amplitude decreases. With less time between two shedding TEVs, the

strengths of their interactions increase and the TEVs become increasingly entrained

in one another. Eventually there is one large vortex with multiple smaller vortices

separating from the shear layer and being drawn down and around it.

Based on what has been seen up to this point, the hypothesis has been formed

that the LEV advects at a constant speed related to the free stream velocity. In order

to further quantify this argument, the points of maximum LEV vorticity were deter-

mined and tracked through a full cycle. The LEV trajectory is shown as a function

of dimensionless time tU/c (where U/c is the convective length scale previously dis-

cussed) for h0/c = [0.2, 0.3, 0.4] and St = [0.2, 0.3, 0.4] in Figures 4.11, 4.12 and 4.13

for the long, short and rigid airfoils respectively. The data for the rigid airfoil was

provided by Eslam Panah and Buchholz [4], and was produced using phase-locked

PIV images which is why there is a much lower temporal resolution.

There are two main points to take away from these plots. First, the trajec-

tories demonstrate approximately the same convective velocity regardless of airfoil

flexibility, Strouhal number or plunge amplitude. The second key aspect of the fig-

ures is that they each demonstrate the two-fold nature of the LEV advection, first

moving downstream at about half the free-stream velocity and then around x/c = 0.4
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(a) φ = 90◦ (b) φ = 270◦

(c) φ = 90◦ (d) φ = 270◦

(e) φ = 90◦ (f) φ = 270◦

(g) φ = 90◦ (h) φ = 270◦

Figure 4.10: Vortex positions St = 0.2 (a and b), St = 0.3 (c and d), St = 0.4 (e and

f), St = 0.5 (g and h) (long airfoil).
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they speed up and the approach the free-stream velocity. When the LEV separates

from the shear layer (also known as ”detachment”), it joins the free-stream flow and

gets advected away. Thus, the fact that the LEV advection velocity jump occurs con-

sistently at x/c = 0.4 might suggest that its detachment from the leading edge shear

layer is determined by the chord length of the airfoil. These results are consistent

with the topology-governed separation criterion referenced earlier in Chapter 2 [17].

Even so, the explanation provided by Rival et al. [17] involved a half-saddle reaching

the trailing edge, which is not observed in the data for the flexible airfoil.
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Figure 4.11: Trajectory of the LEV for select cases of the long airfoil.
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Figure 4.12: Trajectory of the LEV for select cases of the short airfoil.
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Figure 4.13: Trajectory of the LEV for select cases of the rigid airfoil.
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4.3 Wake Classifications

Eslam Panah and Buchholz [4] developed a classification scheme for structures

produced by a rigid plunging panel based on the nature of the LEV and TEV’s inter-

action and the resulting structure of the wake. The applicability of this classification

scheme was examined for the flexible airfoils. Figure 4.14 shows what the four wake

classes look like at both the middle of the upstroke, as well as at the top of the

motion. In these figures the LEVs (which are produced during the downstroke) are

represented by dotted lines and TEVs (produced during the upstroke) by solid lines;

additionally, blue lines signify vortices rotating in the clockwise direction and red lines

signify those rotating the counter-clockwise direction (corresponding respectively to

negative and positive vorticity via the right hand rule).

Since trailing edge vortex behavior is similar throughout the entire parameter

space, the leading edge vortex behavior governs wake classification. For the discussion

at hand, the term ”shed” will be used to describe when a vortex passes the trailing

edge of the airfoil. This occurs for the LEVs once they have separated from the leading

edge and advected the entire chord length. Since the LEV advection speed was seen

to be free-stream velocity dependent, the position of the LEV at any specific phase

should be governed by the oscillation frequency. Because the LEV’s position with

phase is very important in classifying these wake structures, it is therefore expected

that these wake structures will be governed by the reduced frequency (k) of the

motion.

Category 1 wakes occur when the LEV advects quickly with phase and is shed
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into the wake along with the same-signed shear layer created during the subsequent

stroke. In this case, the LEV has completely cleared the trailing edge of the airfoil

before an opposite-signed shear layer had formed from the underside of the airfoil.

Although the like-signed LEV and TEVs merge together in the case of the rigid airfoil,

essentially forming a reverse Kármán street, the LEV remains distinct from the TEV

in the cases of the flexible airfoils.

In Category 2 wakes, the LEV advects more slowly with phase, and is thus

shed just before the opposite-signed shear layer begins to form at the trailing edge.

The close proximity of these two vortices creates an asymmetric dipole that is driven

by self-induction out and away from the airfoil, normal to the free-stream, to create

a wide wake.

When the LEV appears to slow down even more with phase, it eventually

sheds after the opposite-signed TEV has begun to form, thus creating a Category

3 wake. When this occurs, the opposite-signed shear layer entrains the LEV and

quickly dissipates it. In some cases of a Category 2 wake the TEV entrains the LEV

in a somewhat similar manner, however for the wake to be classified as a Category

3 the LEV must be further upstream than the TEV at the moment of their first

interaction. Thus any velocity induced by the TEV on the LEV via the Biot-Savart

relation must be directed towards the airfoil for the wake to be labeled a Category 3.

Category 4 wakes occur when the LEV never passes the trailing edge of the

airfoil, and thus has no presence in the wake. There are two ways in which this can

occur. First, the LEV can be obliterated on the surface of the airfoil. Second, the
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area of opposite-signed vorticity between the LEV and surface of the airfoil connects

with the shear layer on the opposite side of the airfoil, thus increasing its strength

and allowing it to simultaneously dissipate the LEV and drive it upstream.

Wake categories for the three airfoils are plotted in Figures 4.15-4.17 as func-

tions of h0/c and St, with lines of constant k plotted as well. In the figures, the cases

that are framed by the box are ones whose categories change depending on airfoil

flexibility. The first thing to note with the wake classification is that the boundaries

between different categories do seem to coincide with lines of relatively constant k.

Category 2 wakes have only been observed when the Strouhal number and dimen-

sionless plunge amplitude are equal, corresponding to k = π/2.

The computed vorticity fields of each case are shown in Figures 4.18 through

4.21. In these figures, non-dimensional vorticity is calculated according to Equation

4.2. The max and min values for the contours were set at [15, -15], [20, -20], [25, -25]

and [30, -30] for St = 0.2, 0.3, 0.4 and 0.5 respectively. 15 contour levels were used,

with levels 7-9 removed for clarity.

Figures 4.18 through 4.21 present some of the results obtained from four dif-

ferent cases, and demonstrate the effects caused by flexibility. Figure 4.18 shows

the contours for h0/c = 0.3 and St = 0.2 (k = 1.05), which demonstrate a typical

Category 1 wake. The deflection of the flexible airfoils in this case are very small,

which is why the wake structures of the three different airfoils (Figures 4.18a, b and

c) look very similar. Figures 4.18a and 4.18b do, however, show how the LEVs of

the flexible airfoils do not merge with the TEV in this category, while those of the
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(a) Category 1

(b) Category 2

(c) Category 3

(d) Category 4

Figure 4.14: Wake structure classification categories.
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rigid airfoil do (Figures 4.18c). This appears to be because the flexible airfoils cause

significant straining in the LEVs, which appears to push them further downstream

and away from the TEVs.

The Category 2 wakes achieved with h0/c = 0.3 and St = 0.3 (k = 1.57) are

shown in 4.19. Interestingly, despite the increased deformation of the flexible airfoils,

the vorticity patterns are almost identical. The LEV creates a dipole with the TEV

that pushes it outwards. The first TEV structure is slightly upstream of the rest,

which is potentially caused by said dipole pushing it upstream. Even the behavior of

the small vortex of opposite-sign vorticity created between the LEV and airfoil is the

same in the three examples, advecting behind the LEV and merging with the TEV.

Another example of the Category 2 wake is shown in Figure 4.20. Here, h0/c = 0.4

and St = 0.4 (k = 1.57), and a few key differences can be seen. First, the LEV of the

long airfoil appears to move faster than those of the other airfoils, and when it passes

the trailing edge, it gets excessively strained, almost the entire width of the wake.

This straining gets even more severe with higher amplitudes, which is why the wake

category for the long airfoil’s case h0/c = 0.5 and St = 0.5 (k = 1.57) is no longer

a Category 2, but has been reduced to a Category 1. The LEV straining became

significant enough to pull the entire structure downstream of the trailing edge, and

since it would be out of reach of the TEV no dipole could be made. In this case,

however, the wakes of the short and rigid airfoils look almost the same, except that

the TEV of the short airfoil is made of several smaller structures, while that of the

rigid airfoil seems to be made of just a few, large vortices. Also, the LEV of the
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short and rigid airfoils is slightly upstream of the TEV despite this being a Category

2 wake. This is because the LEV originally started downstream of the TEV, but

then became entrained in the TEV and was pushed upstream. Although the LEV

eventually gets dissipated by the TEV, the whole interaction also produced the wide

wake indicative of Category 2.

Figure 4.17 shows only one case of a Category 3 wake, Figure 4.16 shows two

and Figure 4.15 shows four, which demonstrates how increasing flexibility tends to

delay the obliteration of the LEV. Since the LEVs do not disappear, they are able

to travel the full chord length and enter the wake to create the increased number

of Category 3 wakes. This is likely caused by the increased deflection of the long

airfoil, which weakens the interaction between the airfoil and the vortex. This weaker

interaction leads to less destruction of the LEV.

An example of this whole idea is presented in Figure 4.21, showing isocontours

for h0/c = 0.3 and St = 0.4 (k = 2.09). In Figure 4.21a, the LEV of the long airfoil

can be seen advecting down the airfoil like it normally does and shedding right after

the opposite signed TEV, creating a Category 3. In Figures 4.21b-c, however, the

LEV can be seen to stagnate on the airfoil’s surface and dissipate significantly during

the upstroke. Any remnants of the LEV are cast away from the airfoi at the end

of the strokel, where they finish dissipating before entering the wake. This not only

shows the obliteration process itself, but also how it causes the advection of the LEV

to stop and stagnate on the airfoil.

In their topology analysis, Rival et al.[17] state that when the LEV stagnation
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Figure 4.15: Wake structure classification for the long airfoil.

point reaches the trailing edge it separates and opens up a channel for reversed flow to

come around the trailing edge and connected with the opposite-sign vorticity created

by the LEV. However, in every one of the cases that were just examined, there exists a

boundary layer on the downstream half of the airfoil that prohibits this channel from

being opened. Because of this, the half saddle of the LEV cannot reach the trailing

edge and combine with the other half saddle located there, thus LEV separation

would never occur. For this reason, the presented topology method does not seem to

be applicable to this investigation.
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Figure 4.16: Wake structure classification for the short airfoil.
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Figure 4.17: Wake structure classification for the rigid airfoil.
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(a) Long Airfoil

(b) Short Airfoil

(c) Rigid Airfoil

Figure 4.18: Vorticity isocontours for h0/c = 0.3 and St = 0.2 at φ = 135◦, φ = 180◦

and φ = 225◦ for the (a) long airfoil (Category 1), (b) short airfoil (Category 1) and

(c) rigid airfoil (Category 1).
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(a) Long Airfoil

(b) Short Airfoil

(c) Rigid Airfoil

Figure 4.19: Vorticity isocontours for h0/c = 0.3 and St = 0.3 at φ = 180◦, φ = 225◦,

φ = 270◦ and φ = 315◦ for the (a) long airfoil (Category 2), (b) short airfoil (Category

2) and (c) rigid airfoil (Category 2).
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(a) Long Airfoil

(b) Short Airfoil

(c) Rigid Airfoil

Figure 4.20: Vorticity isocontours for h0/c = 0.4 and St = 0.4 at φ = 180◦, φ = 270◦

and φ = 360◦ for the (a) long airfoil (Category 2), (b) short airfoil (Category 2) and

(c) rigid airfoil (Category 2).
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(a) Long Airfoil

(b) Short Airfoil

(c) Rigid Airfoil

Figure 4.21: Vorticity isocontours for h0/c = 0.3 and St = 0.4 at φ = 180◦, φ = 225◦,

φ = 270◦ and φ = 315◦ for the (a) long airfoil (Category 3), (b) short airfoil (Category

4) and (c) rigid airfoil (Category 4).
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Time resolved vorticity-isocontours (with vorticity non-dimensionalized ac-

cording to Equation 4.2) depicting the development of the LEV are shown in Figures

4.22-4.25. A continuous contour was used for these figures, with the maximum and

minimum values set at [-20, 20], [-35, 35], [-30, 30] and [-30, 30] respectively (same

levels used in previous isocontours). All cases shown are for h0/c = 0.3 for the short

airfoil and show instantaneous (non-averaged) vorticity contours and velocity-vectors.

A black outline has been inserted into the figures to show vortex boundaries in the

mean flow. These boundaries which were computed from the averaged data using a

vorticity threshold of ω = 0.05.

Figure 4.22 shows results for St = 0.3, which corresponds to a Category 2 wake.

In this figure, the roll-up of the LEV begins around φ = −10◦ (Figure 4.22b), however

the vortex does not begin to generate upstream flow near the airfoil until φ = 0◦

(Figure 4.22c) which coincides with the moment that opposite-sign vorticity can be

seen to begin forming. Between φ = 40◦ and φ = 70◦ (Figure 4.22f and h) the leading

edge shear layer and parts of the opposite-sign region are intermittently entrained

into the LEV. At φ = 85◦ (Figure 4.22i), the LEV had completely detached from the

shear layer. After this detachment, the shear layer forms a smaller vortex upstream

of the opposite-sign region. At the same time, the opposite-sign vorticity erupts

from the airfoil, moving out between the shear layer and the LEV. This essentially

results in the opposite-sign vorticity being located upstream of the LEV rather than

beneath it. In their new orientation, the opposite-sign vorticity and LEV induce a

velocity on each other that drives them upwards (normal to the airfoil) during the
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airfoils upstroke as they continue to advect downstream, preserving them from being

obliterated on the surface (Figure 4.22l).

Figure 4.23 shows a case with St = 0.6, and demonstrates a different interaction

between the LEV, shear layer and opposite-sign vorticity. In this case, the LEV

detaches around φ = 75◦ (Figure 4.23e), and the opposite-sign vorticity stays very

close to the airfoil’s surface. At φ = 100◦ (Figure 4.23f), the shear layer that had

been feeding the LEV has almost completely disappeared. Once the upstroke starts,

the shear layer of opposite-sign extends up from the underside of the airfoil (Figure

4.23e). As there is nothing between this underside shear layer and the opposite-sign

vorticity, the two connect. The extra strength that the underside shear layer provides

is enough to dissipate the LEV while driving it up to the leading edge of the airfoil.

This phenomenon (the LEV being pulled upstream) was consistently seen at Strouhal

numbers of 0.6, meaning the effect might have more to do with the airfoils transverse

velocity than its plunge frequency.

The transition between the advected and dissipated LEV modes is not strictly

defined, and tends to occur over multiple Strouhal numbers. These transition Strouhal

numbers sometimes show the LEV being advected and at other times show it being

dissipated. The two observed modes will be referred to as Case A and Case B,

which are depicted in Figures 4.24 and 4.25 respectively. The two instantaneous

cases shown in these figures correspond St = 0.5. Case A occurs when the shear

layer forms its own, smaller vortex after separating from the LEV, which eventually

hinders the connection of the opposite-sign vorticity and the underside shear layer.
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Another characteristic of this case is the eruption of the opposite-sign vorticity that

causes it to accumulate upstream of the LEV and results in a net velocity oriented

normal to the airfoils surface. Case B occurs when the shear layer disappears after

the LEV detaches, allowing the opposite-sign vorticity to connect with the shear layer

formed on the underside of the airfoil and results in an induced velocity between the

opposite-sign vorticity and LEV that is directed upstream, thereby causing significant

dissipation of the LEV.

Figures 4.24 and 4.25 are very similar up to φ = 60◦ (Figures 4.24e and 4.25e).

However, Figure 4.24f shows the LEV of Case A to still be attached at φ = 70◦, while

Figure 4.25f shows the LEV of Case B to be detached. Because Case A detaches

later, the shear layer is maintained longer. Although this shear layer is weaker than

what was seen in Figure 4.22, it still hinders the connection of the opposite-sign

vorticity to the underside shear layer (Figures 4.24i-k). This connection is further

prevented by the eruption of the opposite-sign vorticity up and away from the airfoil,

which can be observed in Figures 4.24g-j. The induced velocity between the opposite-

sign vorticity and LEV drives the pair away from the airfoil (Figures 4.24i-l), allowing

for their advection. The increased strength of these two vortices does seem to make

them diffuse a lot quicker than previously seen, which is why not much of the LEV

makes it to the wake.

In contrast, the shear layer of Case B detaches from the LEV earlier (Figure

4.25f) and it is soon completely dissipated (Figure 4.25g). Once it is gone and the

upstroke begins, the opposite-sign vorticity is able to begin connecting to the de-
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veloping shear layer extending up from the underside of the airfoil (Figure 4.25i-l).

Since there is some eruption of the opposite-sign vorticity that moves it away from

the leading edge (Figure 4.25h and i), this connection is not very strong, but the

effects can begin to be seen. A major portion of the opposite-sign vorticity and LEVs

induced velocity is directed upstream, resulting in the diffusion of the LEV (Figure

4.25i-k). However, since the opposite-sign vorticity was not able to fully connect with

the underside shear layer, it is not strong enough to completely dissipate the LEV.

The effects of the free stream eventually overpower that of the opposite-sign vorticity,

resulting in the LEV being advected downstream (Figure 4.25l); but, this advection

does not last very long, as the weakened LEV is soon completely dissipated.

As demonstrated, the case of St = 0.5 and h0/c = 0.3 produces multiple

modes of vortex evolution, that could be classified as Category 3 in some instances

and Category 4 in others. However, when the vorticity data of multiple, phase-locked

cycles are averaged, the Category 4 wake appears to dominate, thus explaining the

classification displayed in Figure 4.16.

Lewin and Haj-Hariri [14] noted the presence of aperiodic wake structures

occurring in transition regions, where the flow structure switches between multiple

modes from cycle-to-cycle. However, their work involved much lower Reynolds num-

bers that showed periodic wakes to be the norm. The higher Reynolds number of

this study showed aperiodic wakes over a wide range of cases that are not necessarily

restricted to category boundaries. This suggests that higher Reynolds number causes

a shift from periodic wakes being the norm to aperiodic being the norm, especially in
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the cases of higher Strouhal numbers and higher reduced frequencies.

4.4 Circulation Measurements and Scaling

Circulation values were calculated for the phase-locked PIV measurements,

using boundaries identified via the Γ2 method developed by Graftieaux et al.[7]. The

circulation values were found by integrating the vorticity field over the area of a given

vortex, whose boundaries were given by a Γ2 threshold of 0.65. Figure 4.26 reports

the long airfoils dimensional circulation of the LEV (which is generated during the

downstroke) and TEV (generated during the upstroke) as they build, shed and advect

downstream for St = 0.3. Figure 4.26a shows that the maximum LEV circulation

takes place between φ = 45◦ and φ = 135◦. More specifically, the maximum is

usually around φ = 90◦, which is therefore the phase that will be used to determine

the dimensional values that will be scaled. Figure 4.26b shows the TEVs evolution,

which appears to experience a large increase in circulation at φ = 90◦. Since this is

the phase at which the trailing edge shear layer usually starts to form, the circulation

is expected to grow significantly at this point.

Figure 4.27 (a) plots the circulation of the LEV at φ = 90◦ for the long airfoil.

A scaling parameter proposed by Buchholz et al.[2] has been applied and is shown in

Figure 4.27(b):

Γ∗PG =
Γ

fA2
(4.3)

This parameter was developed to scale the total circulation shed by a pitching
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(a) φ = −25◦ (b) φ = −10◦ (c) φ = 0◦

(d) φ = 10◦ (e) φ = 25◦ (f) φ = 40◦

(g) φ = 60◦ (h) φ = 70◦ (i) φ = 85◦

(j) φ = 100◦ (k) φ = 130◦ (l) φ = 150◦

Figure 4.22: Category 2 LEV development and detachment for h0/c = 0.3, St = 0.3

and k = 1.57 (short airfoil).
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(a) φ = −25◦ (b) φ = −5◦ (c) φ = 15◦

(d) φ = 30◦ (e) φ = 75◦ (f) φ = 100◦

(g) φ = 120◦ (h) φ = 140◦ (i) φ = 160◦

(j) φ = 167◦ (k) φ = 200◦ (l) φ = 230◦

Figure 4.23: LEV development and detachment for h0/c = 0.3, St = 0.6 and k = 3.14

(short airfoil).
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(a) φ = −30◦ (b) φ = −10◦ (c) φ = 6◦

(d) φ = 25◦ (e) φ = 60◦ (f) φ = 70◦

(g) φ = 90◦ (h) φ = 115◦ (i) φ = 130◦

(j) φ = 145◦ (k) φ = 160◦ (l) φ = 195◦

Figure 4.24: Category 4, Case A LEV develpment and detachment for h0/c = 0.3,

St = 0.5 and k = 2.62 (short airfoil).
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(a) φ = −30◦ (b) φ = −10◦ (c) φ = 6◦

(d) φ = 25◦ (e) φ = 60◦ (f) φ = 70◦

(g) φ = 90◦ (h) φ = 115◦ (i) φ = 130◦

(j) φ = 145◦ (k) φ = 160◦ (l) φ = 195◦

Figure 4.25: Category 4, Case B LEV develpment and detachment for h0/c = 0.3,

St = 0.5 and k = 2.62 (short airfoil).
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(a) LEV (b) TEV

Figure 4.26: Dimensional (a)LEV and (b)TEV circulation measurements as a func-

tion of phase angle.

panel in a single stroke with no LEV present, and is based on the vorticity generation

by streamwise pressure gradients. The parameter offers very little collapse of the

data, likely because it was created for a flow that had no LEV.

For the problem at hand, the following scaling parameter was developed to

scale the circulation of the LEV:

Γ∗∗k =
Γ

fAc
×
√
k (4.4)

Derivation of this term begins with the definition of circulation within a closed

contour. Assuming a circular LEV cross-section, we then define two scales: a veloc-

ity scale equal to the azimuthal velocity of the vortex boundary and a length scale

representing the radius of the vortex. The results are shown in Equation 4.5.

Γ =

∮
~u · d~s =

∫ 2π

0

uref · rrefdθ (4.5)
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(a) Γ (b) Γ∗PG

Figure 4.27: Kinematic LEV circulation measurements (a) Dimensional and (b) Non-

Dimensionalized according to Equation 4.3.

Because the vortex is being created by the plunging motion, the azimuthal

velocity at the perimeter of the LEV is assumed to be related to the maximum

transverse velocity of the airfoil leading edge, then uref ∝ fA. We also assume that

the area (S) of the LEV increases linearly with plunging period. Taking into account

the fact that the vortex area can be generalized as the area of a circle, S = πr2. Since

this area grows linearly with time, it is proportional to the period T or f−1. With a

constant free stream velocity and chord length (i.e. for a specific airfoil), the plunge

frequency is proportional to k so that the vortex radius rref ∝
√
T =

√
1/f ∝

√
1/k.

The resulting scale of the LEV circulation therefore ends up being fA
√

1/k. There

is a leftover unit of length that still needs to be canceled out, which is why an extra

c (chord length) appears in Equation 4.4.

The results of this scaling parameter are shown in Figures 4.28-4.30. Signifi-
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(a) Γ (b) Γ∗∗k

Figure 4.28: Long airfoil LEV circulation measurements (a) Unscaled and (b) Scaled

using Equation 4.4.

cant collapse of the data can be seen for both of the flexible cases. Although the rigid

airfoil results don’t collapse quite as well, they still collapse considerably.

4.5 Force Measurements

Force measurements were recorded for all three airfoils using the setup de-

scribed in Section 3.6.1. Figures 4.31(a) through 4.31(c) show an example of the

filtering process described in Section 3.6.2, where the unfiltered data is shown in red

and the final results are shown in black. For this case, the cutoff frequencies were

14.36, 11.27 and 9.55 times that of the oscillation frequency of the long, short and

rigid airfoils respectively.

Figures 4.32 and 4.33 show example thrust and lift measurements for the short

airfoil before and after the removal of airfoil inertia using the method described in

Section 3.6.2. It can be seen in Figure 4.32 that the deformation of the airfoil has
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(a) Γ (b) Γ∗∗k

Figure 4.29: Short airfoil LEV circulation measurements (a) Unscaled and (b) Scaled

using Equation 4.4.

(a) Γ (b) Γ∗∗k

Figure 4.30: Rigid airfoil LEV circulation measurements (a) Unscaled and (b) Scaled

using Equation 4.4.
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negligible effects on thrust performance, as the blue line showing the inertial loading

is zero. Figure 4.33 also shows the inertial loading in the transverse direction as a blue

line and the uncorrected lift measurements in red. The black line shows the resulting

lift force once the inertia of the airfoil has been removed, which has been given a

slight phase shift. More importantly, there were two peaks in the lift force before

the correction, and afterwards the true peak had become apparent. This maximum

occurs very close to φ = 90◦, suggesting that added mass effects are dominant in the

lift force.

The instantaneous coefficients of thrust, lift and power were calculated using

Equations 3.13, 3.14 and 3.15. The time resolved values for h0/c = 0.2 and St =

0.4 (k = 3.14) are shown in Figure 4.34, which demonstrates the typical behavior

that was observed in the full parameter space. The thrust produced by the flexible

airfoils was generally similar in both shape and magnitude, although the short airfoil

tended to have sharper peaks in the thrust and power coefficient responses. The

power coefficients of the flexible airfoils are always positive and are usually of the

same magnitude. The power coefficients of the rigid airfoil tended to briefly drop

below zero, indicating phases in which energy is extracted from the flow.

Figures 4.35-4.37 show the thrust, lift and power coefficients for h0/c = 0.3

and St = 0.4, 0.5 and 0.6. Once again, the coefficients of the flexible airfoils behave

similarly to each other. However, the power coefficients of the rigid airfoil do demon-

strate a significant change in behavior. At the lowest Strouhal number (St = 0.4),

the power coefficient of the rigid airfoil has started to become greater than that of the
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(a) Long Airfoil (b) Short Airfoil

(c) Rigid Airfoil

Figure 4.31: Unfiltered and filtered force measurements for (a) Long Airfoil, (b) Short

Airfoil and (c) Rigid Airfoil.
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Figure 4.32: Example of the thrust measurement correction for h0/c = 0.2 St = 0.4

(short airfoil).

Figure 4.33: Example of the lift measurement correction for h0/c = 0.2 St = 0.4

(short airfoil).
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Figure 4.34: Coefficients of thrust, lift and power for h0/c = 0.2, St = 0.4 and k =

3.14 for all three airfoils.

other two. At St = 0.5, the rigid airfoil has a significantly higher power coefficient

than its flexible counterparts. Finally, at St = 0.6, one of the peaks in the rigid power

coefficient has continued to rise, while the other drops. The thrust and lift readings

can likewise be seen to be asymmetric. This case (h0/c = 0.3 and St = 0.6) has been

seen to cause asymmetric wakes for the rigid airfoil [4]. Such wakes would produce

time averaged wake velocities that are angled off to one side, like what is shown in

Figure 2.4 [8]. Seeing the presence of the asymmetric wake not only serves to help

validate the force readings, but also demonstrates the capability of detecting these

wakes from force measurements instead of flow visualization.

There are several possible variables that the aerodynamic forces are dependent
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Figure 4.35: Coefficients of thrust, lift and power for h0/c = 0.3, St = 0.4 and k =

2.09 for all three airfoils.

Figure 4.36: Coefficients of thrust, lift and power for h0/c = 0.3, St = 0.5 and k =

2.62 for all three airfoils.
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Figure 4.37: Coefficients of thrust, lift and power for h0/c = 0.3, St = 0.6 and k =

3.14 for all three airfoils.

on. Strouhal number is usually considered the parameter that governs lift and thrust,

and it has been shown that Strouhal number based on the trailing edge amplitude is

the primary parameter governing thrust coefficient and propulsive efficiency in two-

dimensional, oscillating airfoils [15]. Alternatively, reduced frequency has been shown

to govern wake structure, which should also have an effect on the aerodynamics. To

check what variable is the most applicable for the current study, the average thrust

coefficient was plotted against all three parameters, as seen in Figure 4.38, which

shows that the trailing-edge Strouhal number collapses the data the best.

The average thrust coefficients for all three airfoils can be seen in Figure 4.39

as a function of trailing-edge Strouhal number. Here, the values for the short airfoil
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experience considerable collapse to a single line, and the results of the long airfoil

appear to collapse onto the same curve as well. Because the time resolved thrust and

power coefficient responses of the flexible airfoils were very similar, this collapse of

data to a single curve is expected. Maximum lift of the three airfoils can be found

in Figure 4.40, which once more shows considerable collapse of data for the flexible

airfoils. As before, the flexible airfoils seem to collapse down to the same curve, which

in this case seems to be linear. The rigid airfoil does not seem to experience very

good collapse. The average power coefficient is shown in Figure 4.41, and the flexible

airfoils can once again be seen to collapse to the same curve. Interestingly 4.41 shows

the short airfoil reaching higher coefficient values, whereas the flexible airfoils showed

similar values in their thrust and lift coefficients.

According to Figures 4.6(a) and 4.6(b), when h0/c = 0.2 the trailing edge

amplitude of the airfoil begins to decrease for St = 0.5 and 0.6, suggesting a transition

to a higher bending mode. Because the trailing edge amplitude is the key parameter

in collapsing the force data, these cases could potentially behave differently than

the rest. Sure enough, Figures 4.39a, 4.40a and 4.41a show that the two cases in

question do cause the thrust, lift and power coefficient to deviate from the rest of

the long airfoils data. Similarly in Figure 4.41b (short airfoil), the maximum power

coefficients of these two cases are the only ones that do not collapse with the others.

Although the thrust and lift coefficients in Figures 4.39b and 4.40b don’t show such

extreme deviations at h0/c = 0.2 and St = 0.5, they do appear significant at h0/c =

0.2 and St = 0.6.
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The propulsive efficiency of the airfoils is plotted in Figure 4.42 versus the

trailing edge Strouhal number. However, the efficiencies of the flexible airfoils were

found to collapse better when plotted versus reduced frequency, as seen in Figure

4.43. Kang et al. [10] found peak efficiencies to be related to the natural frequencies

of the airfoil. Using basic beam bending theory, the natural frequencies can be found

using Equation 4.6, where M is the airfoil’s mass, I is the second moment of area, E

is the modulus of elasticity and c is chord length.

fn =
1

2π
ω =

1

2π

√
k

M
=

1

2π

√
3EI

Mc3
(4.6)

The resulting natural frequencies for the short and long airfoils are 2.99 Hz

and 1.54 Hz respectively. Kang et al. [10] found that the maximum propulsive

efficiency occurred around 0.4 ∗ fn. Taking this ideal frequency and converting it to

a reduced frequency yields k = 2.75 for the short airfoil, and k = 2.88 for the long

airfoil, which Figures 4.43a and 4.43b show to approximately coincide with the peak

efficiency. Lewin and Haj-Hariri [14] stated that the peak efficiency will occur when

the LEV starts being dissipated. Although the peaks in efficiency do not fall exactly

on the border between Categorys 3 and 4 in the wake classifications shown in Figures

4.15-4.17, these boundaries have already been shown to be indistinct. It is possible

that the peak efficiencies do occur when the instantaneous LEV behavior becomes

solely dissipative, and the opposite-sign vorticity connects with the shear layer on the

opposite side of the airfoil during every single cycle.

It is interesting that the thrust and power coefficients tend to scale best with
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trailing edge Strouhal number, while the propulsive efficiency (the ratio between the

thrust and power coefficients) scales with reduced frequency. For this reason, it can

be inferred that the amplitude of the plunge motion affects both thrust and power

in the same way, and this effect is canceled out when the ratio is taken. Since both

the wake structure and propulsive efficiency are shown to be dependent on reduced

frequency, there is potentially a correlation between the two that has not yet been

identified by this investigation.
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(a) Reduced Frequency (b) Strouhal Number

(c) Strouhal Number based on trailing edge

Figure 4.38: Average Thrust Coefficient of the long airfoil as a function of (a) reduced

frequency (b) Strouhal number and (c) Strouhal number based on the trailing edge
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(a) Long Airfoil (b) Short Airfoil

(c) Rigid Airfoil

Figure 4.39: Average Thrust Coefficient as a function of trailing edge Strouhal number

for (a) Long Airfoil, (b) Short Airfoil and (c) Rigid Airfoil.
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(a) Long Airfoil (b) Short Airfoil

(c) Rigid Airfoil

Figure 4.40: Maximum Lift Coefficient as a function of trailing edge Strouhal number

for (a) Long Airfoil, (b) Short Airfoil and (c) Rigid Airfoil.
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(a) Long Airfoil (b) Short Airfoil

(c) Rigid Airfoil

Figure 4.41: Maximum Power Coefficient as a function of trailing edge Strouhal

number for (a) Long Airfoil, (b) Short Airfoil and (c) Rigid Airfoil.
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(a) Long Airfoil (b) Short Airfoil

(c) Rigid Airfoil

Figure 4.42: Average Propulsive Efficiency as a function of trailing edge Strouhal

number for (a) Long Airfoil, (b) Short Airfoil and (c) Rigid Airfoil.
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(a) Long Airfoil (b) Short Airfoil

(c) Rigid Airfoil

Figure 4.43: Average Propulsive Efficiency as a function of reduced frequency for (a)

Long Airfoil, (b) Short Airfoil and (c) Rigid Airfoil.
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CHAPTER 5
CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

PIV and time resolved force measurements were performed on two flexible air-

foils whose leading edges were oscillated in a pure plunge motion, and the results were

compared to those of a rigid airfoil [4]. Experiments were performed over a parameter

space designed to characterize the effects of plunge depth and oscillation frequency.

At low frequencies, the flexible airfoils underwent minimal deformation, thus mim-

icking the behavior of a rigid airfoil. Throughout most of the parameter space, the

airfoils moved according to their first vibration mode. However, the parameter space

also included several cases where the oscillation frequency became higher than the

natural frequency of the system, thus activating the next mode. For this reason it is

concluded that airfoils of appropriate stiffness had been chosen to provide insight into

the response of the first mode over a range of forcing parameters. However, it should

be noted that, by further reducing the stiffness parameter, additional insight could

be obtained on the behavior of the first bending mode at lower range of the frequency

parameters considered, where the panel deflection would then be larger than in the

present study.

The wake classification scheme used by Eslam Panah and Buchholz [4] was

successfully applied to the flexible airfoil cases, and four patterns emerged. First, the

wake classification scheme developed for rigid plunging airfoils was found to apply
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to the flexible airfoils as well. Second, the short airfoil appeared to produce wake

patterns that were almost identical to the rigid airfoil. Third, the LEV of the long

airfoil was consistently strained about the trailing edge, but despite this the rest of

the wake structure looked similar to the other two airfoils. Finally, obliteration of the

LEV (either by the airfoil or the area of opposite-sign vorticity) was delayed in the

case of the long airfoil, which allowed the LEV to pass into the wake and create more

Category 3 wakes. In general, if a given case was right on the border between one

wake and the other, increasing flexibility tended to cause the wake category number

to decrease.

Important observations were made about the transition between advection and

dissipation of the LEV. If the leading edge shear layer is weak enough (which appeared

to be a result of the LEV detaching earlier) so that it completely dissipates before

the end of the downstroke, once the upstroke begins the shear layer generated on the

underside of the airfoil is able to connect to the opposite-sign vorticity created on

the top of the airfoil by the no-slip condition. This connection appears to strengthen

the LEV and cause the induced velocity of the LEV and opposite-sign vorticity to

be directed upstream, thereby stopping the advection of the LEV. Once the LEV is

stagnated, it undergoes massive dissipation and no part of it travels into the wake.

This behavior always occurred at St = 0.6, suggesting that the phenomenon is based

on the transverse velocity, and not plunge frequency. Alternatively, if the shear layer

remains intact during the entirety of the downstroke, there is an eruption of the

opposite-sign vorticity that pushed away from the airfoil to produce a vortex pair
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with the LEV. This pair advects downstream while also inducing an upwards velocity

on each other that drives them away from the airfoil, thereby reducing the amount

of obliteration the LEV experience on the airfoil’s surface. The transition between

the LEV advection and dissipation modes took place over several Strouhal numbers,

during which the LEVs behavior would vary from cycle to cycle.

A scaling parameter was developed for the circulation of the LEVs, which

provided excellent collapse of the data into an approximately single value for each of

the three airfoils investigated. This parameter is similar to a form of the parameter

proposed by Sattari et al. [18], in that they modeled the integration of the LEV’s

area in the same manner presented in Section 4.4, but they went on to correlated the

vortex radius with the shear layer thickness.

There were not very many distinguishing features in the thrust and lift mea-

surements that could be correlated to the wake structure, except that when a deflected

wake was present the lift readings became asymmetric, with one half of the cycle pro-

ducing almost twice the amount of lift as the subsequent half. The maximum power

coefficient of the rigid airfoil also tended to drop below zero, indicating energy extrac-

tion from the flow, while those of the flexible airfoils remained positive throughout

the whole cycle.

The average thrust coefficient, maximum lift coefficient and maximum power

coefficient all scaled extremely well with Strouhal number based on the trailing edge

amplitude, which is thoroughly validated in the literature [22] [21] [15]. The lift

coefficient actually collapsed to a linear relationship when plotted with trailing edge
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Strouhal number. The results of the rigid airfoil did collapse somewhat, but not nearly

as well as the flexible airfoils. Even though the coefficients were scaled by trailing

edge Strouhal number, the propulsive efficiency scaled much better with reduced

frequency. This suggests that the plunge amplitude has the same effect on the thrust

coefficient as it does on the power coefficient, resulting in the ratio between the two

(corresponding to the propulsive efficiency) being independent of plunge-amplitude.

Kang et al.[10] proposed the idea that efficiency is not only dependent on

plunge frequency, but also the maximum efficiency occurs at 0.4 ∗ fnatural. Not only

was efficiency shown to be frequency dependent, the maximum value also occurred

right around 0.4 ∗ fnatural for both of the flexible airfoils. The rigid airfoil’s peak

efficiency was not observed, most likely because it takes place at Strouhal numbers

lower than 0.2.

The points of maximum efficiency are supposed to coincide with the time when

LEVs begin to be dissipated instead of shed[14] . The maximum efficiencies don’t fall

exactly on this line but they do fall in what could be considered the transition region,

which provides validation for a relationship between efficiency and wake structure,

especially since the peaks in efficiency are fairly broad.

5.2 Future Work

Pressure gradients have been cited as the main reason that flexibility increase

thrust and efficiency of an airfoil [9]. In order to gage the validity of this theory, pres-

sure measurement will be taken from multiple points along the airfoil’s chord length.
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Mapping out the pressure distribution should not only lead to a better understanding

of the effects pressure gradients have on thrust, but also inform the analysis of LEV

formation and modes of shedding.

Also, to better characterize the wake structures, flow visualization will be

performed further downstream of the airfoil so the entire form of the wake can be

captured. Finally, analysis of the vorticity flux through the shear layer should provide

a better idea of how the LEVs growth is being affected throughout the parameter

space.
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APPENDIX A
PARAMETER SPACE NON-DIMENSIONALIZATION

Dimensional analysis of the airfoil’s efficiency yielded the relevant parameters

listed in Table 3.1 along with their dimensional components. In order to keep the

study scalable, the varied parameters need to be dimensionless. The angle of attack

is unitless, so it does not need to be taken into account when trying to identify di-

mensionless groups. With nine relevant parameters remaining, and three dimensional

components, there should be six characteristic, non-dimensional terms that can be

identified using the Buckingham Pi-Theorem. The first step in doing so is selecting

three repeating variables that will be combined in turn with each of the other six non-

repeating variables to form a dimensionless group. Since the investigation at hand

concerns fluid dynamics, it should be safe to assume that Reynolds number should

be one of the terms resulting from this characterization, whether it it a PI term in

itself or a product of multiple PI terms. To simplify matters, three out of the four

terms making up Reynolds number will be selected as the repeating terms. Thus,

chord length (c), Free-stream velocity (U∞) and fluid density (ρf ) are selected as the

repeating terms. In the dimensional analysis performed below, four terms (three re-

peating and one non-repeating) are combined and the dimensions balanced. That is,

all the M’s, T’s and L’s are gathered together and their total product is set to zero.

The rest of the analysis involves determining the exponent to which each repeating

variable needs to be raised in order to get the all the components to all cancel out.
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Π1 = EcAUB
∞ρ

C
f

(ML−1T−2)(LA)(LBT−B)(MCL−3C) = 0

MMC = 0→ 1 + C = 0→ C = −1

T−2T−B = 0→ −2−B = 0→ B = −2

L−1LALBL−3C = 0→ A+B − 3C − 1 = 0→ A = 0

Π1 =
E

ρfU2
(A.1)

Π2 = ρbc
AUB
∞ρ

C
f

(M1L−3)(LA)(LBT−B)(MCL−3C) = 0

MMC = 0→ 1 + C = 0→ C = −1

T−B = 0→ B = 0

L−3LALBL−3C = 0→ A+B − 3C − 3 = 0→ A = 0

Π2 =
ρb
ρf

(A.2)

Π3 = µcAUB
∞ρ

C
f

(M1L−1T−1)(LA)(LBT−B)(MCL−3C) = 0

MMC = 0→ 1 + C = 0→ C = −1

T−1T−B = 0→ −1−B = 0→ B = −1
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L−1LALBL−3C = 0→ A+B − 3C − 1 = 0→ A = −1

Π3 =
µ

ρfcU
(A.3)

Π4 = fcAUB
∞ρ

C
f

(T−1)(LA)(LBT−B)(MCL−3C) = 0

MC = 0→ C = 0

T−1T−B = 0→ −1−B = 0→ B = −1

LALBL−3C = 0→ A+B − 3C = 0→ A = 1

Π4 =
fc

U
(A.4)

Π5 = AcAUB
∞ρ

C
f

(L)(LA)(LBT−B)(MCL−3C) = 0

MC = 0→ C = 0

T−B = 0→ B = 0

LLALBL−3C = 0→ A+B − 3C + 1 = 0→ A = −1

Π5 =
A

c
(A.5)

Π6 = wcAUB
∞ρ

C
f

(L)(LA)(LBT−B)(MCL−3C) = 0
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MC = 0→ C = 0

T−B = 0→ B = 0

LLALBL−3C = 0→ A+B − 3C + 1 = 0→ A = −1

Π6 =
w

c
(A.6)

Although the PI terms above sufficiently describe the motion, they are not

in their most intuitive form. These terms can be multiplied by each other, as well

as other constants, to create more meaningful parameters. This rearranging of the

parameters is done below. It should be noted that I ′ is the second moment of area

in the z-direction per unit span. I ′ = sw3

12
1
s
∝ w3. Also h0 is the plunge amplitude of

the oscillation that was given in Equation 3.1 and is equal to half the peak-to-peak

amplitude (A).

Π1 ∗
(

1

Π2

)
∗ Π3

6 ∗
(

1

Π5

)4

=

(
E

ρfU2

)
∗
(
ρf
ρb

)
∗
(
w3

c3

)
∗
(
A2

c2

)
=

Ew3

ρbU2A2c
=

EI ′

ρbU2A2c

Where EI′

ρbU2A2c
is referred to as the stiffness parameter.

1

Π3

=
ρfcU

µ
= Re

Where Re is Reynolds number.
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π ∗ Π4 =
πfc

U
= k

alternatively. (A.7)

Π4 ∗ Π5 =
fA

U
= St

Where k is reduced frequency and St is Strouhal number, both of which are methods

of scaling the plunge oscillation frequency.

1

2
Π5 =

h0
c

Where h0
c

is the dimensionless plunge amplitude.

Π3
6 =

w3

c3
=
I ′

c3
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[23] T. von Kármán and J. M. Burgers. General aerodynamic theory – perfect fluids.
In W. F. Durand, editor, Aerodynamic Theory: A General Review of Progress.
Springer, Berlin, 1943.

[24] M. L. YU, H. Hu, and Z. J. Wang. Experimental and numerical investigations
on the asymmetric wake vortex structures around an oscillating airfoil. In 50th
AIAA Aerospace Sciences Meeting, Nashville, TN, January 2012. AIAA Paper
2012-0299.


	University of Iowa
	Iowa Research Online
	Spring 2013

	Flow structure and performance of a flexible plunging airfoil
	James Marcus Akkala
	Recommended Citation


	tmp.1374266234.pdf.DwcH3

