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ABSTRACT 

Heating, ventilating and air-conditioning (HVAC) system is a complex non-linear system 

with multi-variables simultaneously contributing to the system process. It poses challenges for 

both system modeling and performance optimization. Traditional modeling methods based on 

statistical or mathematical functions limit the characteristics of system operation and 

management.  

Data-driven models have shown powerful strength in non-linear system modeling and 

complex pattern recognition. Sufficient successful applications of data mining have proved its 

capability in extracting models that accurately describe the relation of inner system. The heuristic 

techniques such as neural networks, support vector machine, and boosting tree have largely 

expanded to the modeling process of HVAC system.  

 Evolutionary computation has rapidly merged to the center stage of solving the multi-

objective optimization problem. Inspired from the biology behavior, it has shown the tremendous 

power in finding the optimal solution of complex problem. Different applications of evolutionary 

computation can be found in business, marketing, medical and manufacturing domains. The 

focus of this thesis is to apply the evolutionary computation approach in optimizing the 

performance of HVAC system. Energy saving can be achieved by implementing the optimal 

control setpoints with IAQ maintained at an acceptable level. A trade-off between energy saving 

and indoor air quality maintenance is also investigated by assigning different weights to the 

corresponding objective function. The major contribution of this research is to provide the 

optimal settings for the existing system to improve its efficiency and different preference-based 

operation methods to optimally utilize the resources.   
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CHAPTER 1  

INTRODUCTION 

HVAC system is designed to provide a comfortable and desired environment for the 

occupants, in addition to meeting any special process requirements, such as indoor air quality. 

The maintenance of a healthy indoor condition of HVAC system is significant since people 

spend more than half of their time indoors. The issue of growing energy use has merged to the 

stage which draws sufficient attentions of not only commercial managers, but also researchers. 

According to the published statistics, HVAC system frequently consumes over 60% of the 

energy use in buildings [1, 2]. Therefore, the operation effectiveness and efficiency of HVAC 

system has become a focus.  

The operation of HVAC system is a multi-angle problem. Simply minimizing the energy 

consumption without considering the indoor air quality control is not acceptable. The optimal 

control strategies should reduce the system cost and energy use while maintaining the thermal 

comfort at an allowable level. With both economic cost and occupancy comfort involved, a 

comprehensive way of system modeling and performance optimization is addressed in this paper. 

1.1. Review of analytical approaches in modeling and optimization 

The analytical approaches for modeling HVAC system depend on the physics-based 

models or simulation software. Wang et al [3] presented a simple hybrid model based on the heat 

transfer mechanism and the energy balance principle to predict the performance of chilled water 

cooling coils in a static state. Yu et al [4] developed and evaluated the simulation model for 

dynamic performance of both dry and wet cooling coils based on energy equations and mass 

balance equations. Yao et al [5] proposed a dynamic model describing the cooling coils’ heat and 

mass exchange using classical control theory. Such analytical models are reliable once certain 

basic assumptions and simplifications are achieved. However, detailed physics-based models are 

always computationally expensive due to their complexity and non-linearity, which results in the 
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troubles in practical application [6]. To overcome the barrier, simulation-based models have been 

widely investigated. Sufficient surveys and summaries have been addressed regarding the 

different simulation programs [7-10]. Wang [11] developed dynamic models including multiple 

components to simulate the realistic performances of the chilling system. The simulation 

exercises were tested and evaluated by the on-line control of EMCS local strategy and 

supervisory strategy in different seasons. Crawley et al [12] broadly introduced twenty 

simulation programs applied nowadays and a basic comparison was made to show the 

corresponding features and capabilities.  Although the merits in simulation-based modeling exist, 

one restriction is that many components models are steady state which is not suitable for 

handling high frequency disturbances [13].  

To solve optimization problems formulated by analytical models, many nonlinear local 

optimization techniques can be used. Sun et al [14] developed a comprehensive simulation-based 

sequential quadratic programming (CSB-SQP) algorithm to optimally control the HVAC system. 

Rink et al [15] applied the state increment dynamic programming to solve the optimization 

problem of multi-zone HVAC system which was demonstrated to be efficient in saving energy. 

Kota et al [16] presented the DDP (differential dynamic programming) technique of optimal 

control in HVAC systems and they compared its performances with sequential quadratic 

programming method.  

1.2. Review of data-driven approaches in modeling  

Be different from analytical approaches, a data-driven approach is derived from empirical 

behavior and heuristic searching process of the system. The modeling approach that has drawn 

the most attention in the last few years seems to be the neural networks [17, 18]. It has a 

tremendous power in deriving and extracting the accurate patterns from complicated, noisy, and 

imprecise data. A lot of applications have been achieved by using neural networks to construct 

the non-linear energy consumption model in HVAC system. A typical application of data driven-

methods is predicting steam load in buildings [19]. Another example includes the use of a neural 
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network to predict heating energy consumption [20].  Kalogirou [21-23] applied neural networks 

to modeling solar water heating systems, and HVAC system. Kreider and Wang [24] used neural 

networks to predict the rate of energy use in commercial buildings. One shortcoming of data-

driven models is that insufficient data will result in the decrease of model accuracy since the 

training data may only cover a small range of data patterns. 

 1.3. Review of evolutionary computation in system optimization 

The operation of HVAC system is a critical activity in terms of optimizing the control 

settings to reduce the energy consumption, improving the system efficiency, and preserving the 

thermal comfort for the occupants. The performance of the existing HVAC system can be largely 

improved by adjusting the control set points to maximize the overall system capacity and 

efficiency. Ke and Mumma [25] studied the impact on energy consumption of tuning the supply 

air temperature set point in a VAV system and found that an optimal supply air temperature 

setting existed for minimizing the energy cost.  Wang et al. [26] proposed a systematic approach 

for an on-line control strategy of air-conditioning systems. A cost function was formed to weight 

the energy consumption of the entire system containing fan, pump, and chiller, the indoor 

thermal comfort, indoor air quality, and the total ventilation rate. The genetic algorithm was 

applied to search the optimal control settings resulting in reduction of energy based on the 

incremental dynamic models with self-tuning of the VAV system. Nassif et al. [27, 28] applied 

the multi-objective evolutionary algorithms to optimize a multi-zone HVAC system, and 

supervisory control settings were found to reduce the energy consumption as well as maintaining 

the thermal comfort.  Mossolly et al. [29] examined three control strategies on the system 

component models solved by the genetic algorithm, which is implemented in Matlab. It was 

proven that huge energy saving could be achieved by varying the system parameters. Magnier 

and Haghighat [30] used a simulation-based artificial neural network (ANN) to capture the 

mapping of building behavior, and implemented the ANN model into genetic algorithm for 

optimization. By doing so, significant improvements regarding energy performance and thermal 
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comfort were achieved and a large number of potential designs for operating the HVAC system 

were revealed.  

1.4. Thesis structure 

Figure 1.1 illustrates the structure of the thesis. Chapter 1 introduces a clustering-based 

HVAC system modeling and short-term prediction. In Chapter 2, an evolutionary computation 

algorithm is applied to solve a multi-objective optimization problem in HVAC system. Energy 

related components such as heat, fan, pump and reheat are optimized by a single objective 

optimization algorithm, respectively in Chapter 3. Finally, Chapter 5 presents an optimal control 

strategy for HVAC system energy management.   
 
 
 

 

Figure 1.1 Structure of the thesis. 
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CHAPTER 2 

SHORT-TERM PREDICTION OF HVAC ENERGY WITH A CLUSTERING 

APPROACH 

2.1. Introduction 

The energy used for heating, ventilating, and air-conditioning has become a concern, as it 

constitutes over 50% of the energy consumed by office buildings in the US [1, 2]. Such energy 

can be optimized if the underlying model is known. In this research, the energy needed to 

maintain thermal comfort in an office-type building is studied. This energy is supplied by a 

heating, ventilating, and air-conditioning (HVAC) system. For the best optimization results, a 

short-term prediction model is developed. This model is referred to in this section as the HVAC 

energy model. The HVAC energy model is complex, non-linear, and depends on a number of 

parameters, e.g., weather, fan speed, and chilled water valve position. Consequently, it is not 

easy to capture the relationship between the input and output parameters. 

As mentioned in the Chapter 1, neural network has shown tremendous power in HVAC 

system modeling. In addition to the single neural network model, a different type of model 

combining the data partitioning techniques with neural network algorithm shows a good potential 

in improving the existing data-driven models. Sfetsos [31] introduced a hybrid clustering model 

for short-term load forecasting. Sub-models were constructed based on the clusters using neural 

network. Prediction error was reduced by approximately 7.5% compared with single neural 

network model. Hiroyuki and Atsushi [32, 33] applied the deterministic annealing clustering 

model combined with neural networks to predict short-term load of power system. Kusiak and Li 

[34] applied the clustering method for short-term prediction of wind power. The clustering-based 

neural network model was developed and it produced accurate prediction even using a small 

number of inputs. 
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A four-phase method for the short-term prediction of HVAC energy is presented. In 

Phase 1, the most important parameters are selected, and a parameter sensitivity analysis is 

performed. The input data is grouped into clusters in Phase 2. In Phase 3, a multi-layer 

perceptron (MLP) is constructed in each cluster. In Phase 4, the effectiveness of the proposed 

clustering approach is tested. The performance of the cluster-based HVAC energy model is 

discussed and a conclusion is drawn based on the results. 

2.2. HVAC system structure description 

The investigated HVAC system is installed at Energy Resource Station (ERS) in Ankeny, 

Iowa. It consists of two independent air-handling units (AHU-A and AHU-B) providing the 

loads for 20 interior zones in the whole building. Each air-handling unit serves 4 test rooms, 

which are used to collect the original data in this experiment, located in all the directions of the 

building. For each zone, a variable air volume (VAV) box is connected to the air-handling unit to 

meet the load of the room thermal comfort. The outside weather conditions are also recorded by 

the sensors implemented around the building. The experiment in ERS is designated to investigate 

the impacts of different parameters on the total energy consumption for commercial buildings. 

Figure 2.1 shows the floor plan of the building served by AHU-A and AHU-B. Figure 2.2 shows 

the schematic of AHU-B of the HVAC system. 
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Figure 2.1. Schematic of zones in the building served by AHU-A and AHU-B. 

 

Figure 2.2. Schematic of AHU-B of HVAC system. 
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2.3. Data description  

The data collected in this research was obtained from an experiment performed at the 

ERS of the Iowa Energy Center. Two setpoints, namely the AHU supply air temperature setpoint 

and static pressure setpoint were adjusted in both AHU-A and AHU-B systems. The supply air 

temperature (SAT) setpoint varied from 50 °F (10°C) to 65 °F (18.33°C) with 1 °F (0.55°C) 

increments. The supply air static pressure (SASP) setpoint varied from 1.2 in WG (0.3 kPa) to 

1.8 in WG (0.45 kPa) with 0.2 in WG (0.05 kPa) increments. Data on more than 500 parameters 

was collected at 1 min sampling intervals. Sensors measured air temperature, air humidity, and 

CO2 concentration in each thermal zone of HVAC system. Weather patterns such as outside air 

temperature, humidity, solar normal flux, were also recorded.  

The original data was recorded over three different time periods covering summer, winter, 

and a transient season. In the summer season, data was collected from two experiments 

performed from August 1 to August 16, 2009 and from September 22 to October 6, 2009. For the 

winter and transient season, the data was collected from February 3 to February 15, 2010 and 

from April 1 to April 14, 2010, respectively. A three-day validation experiment was conducted 

from April 15 to April 17, 2010 with the AHU SAT setpoint set at 55°F and the SASP setpoint 

set at 1.4 WG. The data collected from the three seasons was combined to obtain the joint data 

set of 2688 instances from AHU-A and AHU-B. Figure 2.3 illustrates the outside air temperature 

change during all three time periods. To reduce the error produced by time delay and system 

error, the original 1 min data was aggregated to 1 h interval data by averaging the values of all of 

the parameters. After preprocessing, The joint data set of 2688 instances was randomly sampled 

to produce a training set of 1882 instances (70% of the data) and a test set of 806 instances (30% 

of the data). Table 2.1 summarizes the data collected in ERS experiment in detail.     
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Table 2.1. Data description. 

Data set Data Type Time Period No. of Instances
1 Summer season 08/01/2009-08/16/2009 & 09/22/2009-10/06/2009 1488 
2 Winter season 02/03/2010-02/15/2010 576 
3 Transient season 04/02/2010-04/14/2010 624 
4 The whole year cumulating the three separate seasons 2688 
5 Prediction 04/15/2010-04/17/2010 144 

 
 
 

 -20

0

20

40

60

1
10

0
19

9
29

8
39

7
49

6
59

5
69

4
79

3
89

2
99

1
10

90
11

89
12

88
13

87
14

86
15

85
16

84
17

83
18

82
19

81
20

80
21

79
22

78
23

77
24

76
25

75
26

74

O
ut

sid
e 

ai
r t

em
pe

ra
tu

re
 [F

]

80

100

OA-TEMP

Figure 2.3. Outside air temperature of the data collected in the whole period. 

2.4. Modeling of AHU system and AQI sensors  

2.4.1. Parameter selection 

Parameter selection is critical in the construction of models. A typical HVAC system may 

contain hundreds of parameters. Some of the parameters collected are relevant to the output, 

while others could be irrelevant or redundant. The presence of irrelevant or redundant parameters 

may mask the primary patterns discovered in data mining. Redundant parameters duplicate the 

information contained in other parameters, making the model more complex than it should be. 

Eliminating redundant or less important parameters may improve the accuracy, scalability, and 

comprehensibility of the resulting model [35]. 
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Based on the domain knowledge, the twenty-one originally selected parameters were 

divided into four groups: performance parameters, controllable parameters, uncontrollable 

parameters, and target parameters. Two setpoints, the AHU supply air temperature and the 

supply air duct static pressure, were selected as the performance parameters to be adjusted for 

energy optimization. The controllable parameters (e.g., fan speed, chilled water coil valve 

position (CHWC-VLV), and mixed air temperature (MA-Temp)) were highly correlated to the 

AHU energy and AQI (air quality index) values, and thus had a large effect on the output results. 

The weather data represent uncontrollable parameters. Four outputs, the AHU energy 

consumption, indoor air temperature, indoor air humidity, and indoor CO2 concentration, were 

the target parameters to be predicted by the model. Table 2.2 lists all of the parameters and their 

definitions.  
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Table 2.2. Parameter description. 

Parameter Type Parameter 
Name 

Description Unit

Performance Parameter SAT setpoint AHU supply air temperature set point Deg F 
SASP setpoint Supply air duct static pressure set point kPa 

Controllable Parameter CHWC-VLV Chilled water coil valve position %Open
SA-Humd Supply air humidity % RH 
MA-Temp Mixed air temperature Deg F

CHWC-EWT Chilled water coil entering water 
temperature

Deg F

SA-CFM Supply air fan speed CFM
RA-CFM Return air fan speed CFM

Uncontrollable 
Parameter 

OA-Temp Outside air humidity Deg F 
OA-Humd Outside air temperature % RH
OA- CO2 Outside air CO2 concentration PPM
IR-Radia Infrared Radiation B/HFt2

SOL-Horz Solar normal flux B/HFt2 
SOL-Beam Solar beam B/HFt2
BAR-Pres Barometric Pressure (normalized to sea 

level)
mBar

WIND-Vel Outside wind velocity MPH
WIND-Dir Outside wind direction Degn=0

Target Parameter AHU-Energy Energy consumption of AHU system kJ
Indoor-Temp Indoor temperature Deg F 
Indoor-Humd Indoor humidity % RH 
Indoor- CO2 Indoor CO2 concentration PPM

 
 
 

To analyze the sensitivity of the parameters and select the most important parameters for 

the prediction of the target values, the selection of controllable and uncontrollable parameters 

was performed using the boosting tree algorithm [36]. Because of the different characteristics of 

the outputs, the input parameters used to build predictive models were ranked. The boosting tree 

algorithm was applied four times with the corresponding output as the target value. The results 

are shown in Table 2.3.   
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Table 2.3. Parameter selection result of the                                                                  
corresponding target value by boosting tree algorithm. 

Energy Consumption Indoor Temperature 
Variable Importance Variable Importance 

CHWC-VLV 1.00 SA-CFM 1.00 
OA-Temp 0.95 RA-CFM 0.98 
MA-Temp 0.93 MA-Temp 0.82 

CHWC-EWT 0.92 SA-Humd 0.75 
RA-CFM 0.78 OA-Temp 0.71 
SA-Humd 0.77 IR-Radia 0.68 
IR-Radia 0.76 OA- CO2 0.68 
OA- CO2 0.73 SOL-Horz 0.60 
SA-CFM 0.69 SOL-Beam 0.58 

SOL-Beam 0.69 OA-Humd 0.50 
SOL-Horz 0.56 CHWC-VLV 0.49 
OA-Humd 0.40 CHWC-EWT 0.47 
WIND-Dir 0.19 WIND-Dir 0.43 
BAR-Pres 0.13 BAR-Pres 0.36 
WIND-Vel 0.12 WIND-Vel 0.23 

Indoor Humidity Indoor CO2 Concentration 
Variable Importance Variable Importance 

SA-Humd 1.00 BAR-Pres 1.00 
OA-Temp 0.88 IR-Radia 0.83 
IR-Radia 0.81 SA-CFM 0.83 

CHWC-VLV 0.80 CHWC-EWT 0.79 
CHWC-EWT 0.78 MA-Temp 0.78 

OA- CO2 0.75 WIND-Vel 0.77 
MA-Temp 0.71 CHWC-VLV 0.76 
SOL-Beam 0.65 RA-CFM 0.72 
RA-CFM 0.44 OA-Temp 0.71 

WIND-Vel 0.43 OA-Humd 0.69 
BAR-Pres 0.43 SA-Humd 0.65 
SA-CFM 0.39 WIND-Dir 0.56 
SOL-Horz 0.38 SOL-Horz 0.55 
WIND-Dir 0.36 SOL-Beam 0.53 
OA-Humd 0.26 OA- CO2 0.51 
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Based on the data shown in Table 2.3, the eight parameters with the largest importance 

metric values were selected. Therefore, two performance parameters, along with the eight 

controllable and uncontrollable parameters, were ultimately used to build the energy 

consumption and AQI models.  

2.4.2. Algorithm selection 

After parameter selection, the predictive models of the AHU system and AQI are 

expressed in equation (2.1) to (2.4).      

2_ _ _ _ _ _ _ _ _ _ ( )   ( ,  ,  ,  ,  ,  ,  ,  ,  ,  ) 2.1Energy SAT SPT SASP SPT CHWC VlV OA Temp MA Temp CHWC EWT RA CFM SA Humd IR Radia OA COy t f x x x x x x x x x x= （ ）

2_ _ _ _ _ _ _ _ _ _ ( )   ( ,  ,  ,  ,  ,  ,  ,  ,  , )   2.2Humd SAT SPT SASP SPT SA Humd OA Temp IR Radia CHWC VlV CHWC EWT OA CO MA Temp SOL Beamy t f x x x x x x x x x x= （ ）

2_ _ _ _ _ _ _ _ _ _ ( )   ( ,  , ,  ,  ,  ,  ,  ,  , )  2.3Temp SAT SPT SASP SPT SA CFM RA CFM MA Temp SA Humd OA Tmep IR Radia OA CO SOL Horzy t f x x x x x x x x x x= （ ）

2 _ _ _ _ _ _ ( )  ( ,    ,  ,  ,  ,  ,  )   2.4CO SA P EWT MA Temp WIND Vel CHWC VlV RA CFMy t f x x x x x x x x= （ ）_ _ _ Pr _, , ,  T SPT SASP S T BAR es IR Radia SA CFM CHWCx x

 Where yE  t , yH  t , yT  t ,  yCO₂ t  denote the total energy consumption of 

AHU system, average indoor temperature, average indoor humidity, and the average indoor CO2 

concentration during 1 hour time period, respectively.  

Five data-mining algorithms were used to extract the mapping between inputs and the 

corresponding outputs: Boosting Tree [36], Random Forest [37], Support Vector Machine (SVM) 

[38], Multi-layer Perceptron (MLP) [39] and MLP Ensemble [40]. 

Boosting tree is a machine learning meta-algorithm for supervised learning. Boosting is 

an iterative procedure used to adaptively modify the distribution of training examples so that the 

base predictors focus on learning instances misclassified by the previous biased examples. 

Random forest is a class of ensemble methods consisting of multiple decision trees, 

where each tree is generated based on the values of an independent set of random variables. 

Unlike the adaptive approach used in the boosting tree algorithm, the random variables are 

generated from a fixed probability distribution.  

SVM is a supervised learning algorithm that uses kernel functions. It is used in binary 

classification and regression. Using specific kernel functions, the original vector space is 
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transformed into a higher-dimensional space where a separated hyperplane is constructed with 

the maximum margin. 

MLP is also a non-parametric algorithm modeled after cognitive learning for the 

prediction of patterns that are not part of the training data set. MLP derives relations from 

complex, noisy, and imprecise data, which are often impossible to model with analytical or 

parametric techniques. Recognizing that each single MLP may make different and perhaps 

complementary errors, MLP ensembles are used to pool the results from different MLPs to find a 

composite system that outperforms any individual classifier. 

The five different data-mining algorithms were tested using the joint data set for the 

construction of predictive models. To evaluate the performance of the different algorithms, the 

following four metrics (see equations (2.5)-(2.8)) have been used to measure the prediction 

accuracy of the model: the mean absolute error (MAE), the standard deviation of absolute error 

(Std_AE), the mean absolute percentage error (MAPE) and the standard deviation of absolute 

percentage error (Std_APE) [41]:  
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where  is the predicted value obtained from the predictive model, y is the observed 

target value measured, and N is the number of data points used for training or testing. 
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The prediction accuracies of the predictive models in terms of energy consumption, 

indoor temperature, indoor humidity, and indoor CO2 concentration are presented in Table 2.4. 

Both the training and test errors are compared. The MLP ensemble outperformed the other four 

algorithms. Therefore, it was selected to construct the predictive models. 

Table 2.4. Training and testing results for models extracted from different data-mining 
algorithms. 

Algorithm Data set 
Energy model Temperature model 

MAE Std of 
AE MAPE Std of 

APE MAE Std of 
AE MAPE Std of 

APE

MLP 
Training 451.91 381.09 3.80% 4.29% 0.34 0.31 0.48% 0.43% 
Testing 450.27 387.19 3.79% 4.29% 0.42 0.40 0.59% 0.56% 

MLP 
Ensemble 

Training 402.75 339.94 3.44% 4.04% 0.32 0.30 0.44% 0.42% 
Testing 412.96 364.02 3.62% 4.80% 0.37 0.37 0.52% 0.52% 

Boosted 
Tree  

Training 1053.28 950.93 8.71% 10.11% 0.55 0.51 0.77% 0.73% 
Testing 1091.68 978.15 8.55% 9.19% 0.57 0.55 0.80% 0.78% 

Random 
Forest  

Training 980.25 1025.77 7.15% 7.67% 0.49 0.50 0.69% 0.72% 
Testing 1031.50 1090.47 7.63% 8.06% 0.52 0.56 0.74% 0.78% 

SVM  
Training 840.57 634.81 7.25% 6.83% 0.77 0.58 1.08% 0.83% 
Testing 835.56 650.25 7.01% 7.08% 0.72 0.57 1.02% 0.81% 

Algorithm Data set 
Humidity model CO₂ model 

MAE Std of 
AE MAPE Std of 

APE MAE Std of 
AE MAPE Std of 

APE

MLP 
Training 0.69 0.63 2.19% 2.07% 7.88 7.31 1.95% 1.76% 
Testing 0.72 0.65 2.29% 2.26% 9.35 8.91 2.32% 2.19% 

MLP 
Ensemble 

Training 0.69 0.63 2.17% 2.03% 6.23 6.32 1.55% 1.54% 
Testing 0.73 0.63 2.29% 2.19% 7.54 7.74 1.86% 1.84% 

Boosted 
Tree  

Training 2.78 2.25 8.69% 7.93% 11.55 11.08 2.84% 2.52% 
Testing 2.86 2.31 9.00% 8.55% 11.96 12.17 2.92% 2.74% 

Random 
Forest 

Training 1.69 1.56 5.16% 5.28% 15.05 12.88 3.74% 2.98% 
Testing 1.80 1.59 5.78% 6.28% 17.17 14.99 4.23% 3.37% 

SVM 
Training 1.40 1.02 4.96% 5.51% 16.27 14.62 3.97% 3.25% 
Testing 1.43 1.09 4.78% 5.28% 15.98 12.64 3.92% 2.96% 
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2.4.3. Model construction and validation 

The construction of neural network models is a self-adaptive process for minimizing the 

prediction errors. The total squared error is considered as the cost function. During the training 

process, the weights of the hidden units are modified to minimize the cost function. For each 

individual ensemble model, one hundred networks were trained with the number of hidden 

neurons in the network varying from 10 to 35. The best five networks were then selected. 

Detailed characterizations of the four MLP ensemble models with five MLPs are shown in Table 

2.5.  

Table 2.5. Characterization of the four MLP Ensemble models. 

Energy Model Temperature Model 
Hidden 
units 

Hidden activation 
function 

Output activation 
function

Hidden 
units

Hidden activation 
function

Output activation 
function

30 Exponential Identity 27 Hyperbolic 
function Identity 

23 Hyperbolic 
function Logistic 28 Exponential Logistic 

32 Hyperbolic 
function Exponential 30 Exponential Exponential 

27 Logistic Exponential 35 Hyperbolic 
function Logistic 

18 Exponential Logistic 34 Exponential Exponential 
Humidity Model CO2 Concentration Model 

Hidden 
units 

Hidden activation 
function 

Output activation 
function

Hidden 
units

Hidden activation 
function

Output activation 
function

17 Hyperbolic 
function Logistic 31 Hyperbolic 

function Exponential 

27 Exponential Exponential 22 Logistic Hyperbolic 
function

21 Exponential Hyperbolic 
function 33 Logistic Logistic 

21 Hyperbolic 
function Identity 22 Hyperbolic 

function Exponential 

27 Hyperbolic 
function Logistic 21 Hyperbolic 

function Identity 
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The observed and predicted values obtained from the four models of Table 2.5 are shown 

in Figure 2.4 through Figure 2.7.  
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Figure 2.4. Test results obtained from the energy consumption model. 
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Figure 2.6. Test results obtained from the indoor humidity model. 
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Figure 2.7. Test results obtained from the CO2 concentration model. 

As shown in Figure 2.4 through Figure 2.7, the predicted values of energy consumption 

and indoor humidity were highly correlated to their observed values. The predicted values of the 

indoor air temperature and CO2 concentration were scattered because their thermal 

characteristics were easily affected by events in the room. Table 6 shows the correlation between 
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the observed and predicted values for the four prediction models.  Table 2.6 shows the 

correlation between the observed and predicted values for the four prediction models. 

Table 2.6. Correlation coefficients between observed                                                           
and predicted values of the four models. 

Variable Means Std. Dev. Correlation Coefficient 
Observed Total Energy 14968.42 8584.58 

99.79% 
Predicted Total Energy 14967.97 8560.55 
Observed Indoor Temp 71.36 1.27 

91.29% 
Predicted Indoor Temp 71.32 1.20 
Observed Indoor Humd 37.32 15.58 

99.81% 
Predicted Indoor Humd 37.35 15.54 
Observed Indoor CO  ₂ 400.56 32.31 

94.26% 
Predicted Indoor CO₂ 400.03 30.10 

 

2.5. Clustering-based model of AHU energy  

2.5.1. The modeling architecture of the AHU energy 

Figure 2.8 illustrates a clustering scheme, where P is a subset of N parameters 

representing the controllable and uncontrollable parameters of an AHU. The parameters in set P 

are denoted as P1, P2, … , PN and are selected as potential candidates to build the model using 

domain knowledge. Machine learning algorithms (boosting tree, wrapper, and neural network) 

were applied to select M out of N parameters. The cluster-based scheme for model building 

involves four phases, as shown in Figure 2.8.  
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Figure 2.8. Cluster-based scheme for model building 

Some machine learning techniques such as boosting tree, wrapper, and neural networks 

can be conducted for parameter selection. All the parameters will be ranked by a value of 

importance to the corresponding target. Not all the parameters have significant impact on the 

target value. Some may be little relevant or even not related. Considering the exhausted 

computation time of building separate clusters for each parameter, the top parameters with the 

highest importance are selected to be clustered. For each parameter selected for clustering, 

several clusters were constructed. The clusters resulting for the most important parameters are as 

follows: 
C1 = {C1

1, C1
2,…, C1

a}    

C2 = { C2
1, C2

2,… , C2
b }                     

...                                                                                         (2.9) 

CM = { CM
1, CM

2,… , CM
c }  

where 1, 2, … , M are the most significant parameters in the input space and a, b, … , c 

denote the numbers of clusters produced for each parameter.  

Building a model for each cluster is computationally less expensive than constructing a 

model from the original data. 
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2.5.2. Clustering algorithm 

Clustering the data set results in the clusters C1, C2, … , CM with the corresponding 

centroids y1, y2, …,  yM. The clusters are created by grouping data points so that the distance 

between a centroid and the  data in the cluster is minimized. The distance function is expressed 

as a squared error function (2.10): 
2k n

1 1

( )
j i

jD i jx y
= =

= −∑∑                                                                                    (2.10)  

where 2( )j
i jx y−  is the distance between a data point, ( )j

ix , and the cluster centre,
jy . 

The K-means algorithm is widely used in data mining. A version of the K-means algorithm with a bounded 

number of clusters (see Step 1) is presented next: 

Step 1: Set the range of the initial clusters as [a,b]. 

Step 2: Classify data into clusters with the closest distance between the center (centroid) 

and the data for each specified number of clusters. 

Step 3: When all objects have been assigned, recalculate the positions of the K centroids. 

Step 4: Stop if the convergence criterion is satisfied. Otherwise, return to Step 2. 

Step 5: Calculate the cost function of clusters with different initial clusters. 

Step 6: Choose the optimal clusters when the difference of cost functions between the 

current and the following clusters reach the threshold.    

2.6. Case study  

2.6.1. Clustering 

To validate the clustering algorithm of Section 2.5.1, the energy consumption model from 

Section 2.3 was used.  As shown in Table 2.3, two parameters, CHWC-VLV and OA-Temp, 

were ranked as the most important by the boosting tree algorithm. Figure 2.9 (a) and (b) map the 

relationships between the AHU energy consumption and the two parameters. 
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 (a) CHWC-VLV and energy consumption 
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(b) OA-Temp and energy consumption 

Figure 2.9. Scatter plots showing relationships between energy consumption and selected 
parameters. 

The initial range of clusters was varied from 2 to 25, and the maximum iteration number 

was 100. Applying the method presented in Section 4.2, the optimal clusters for CHWC-VLV 
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and OA-Temp were 8 and 6, respectively. The clusters corresponding to the two inputs are 

shown in in Figure 2.10 and Figure 2.11.  
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Figure 2.10. Graphical interpretation of clustering based on CHWC-VLV. 
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Figure 2.11. Graphical interpretation of clustering based on OA-Temp. 

The characteristics of all of the clusters are provided in Table 2.7 and Table 2.8.  
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Table 2.7. Clusters based on CHWC-VLV. 

Clusters CHWC-VLV (mean) AHU-Energy (mean) Number of cases Percentage (%)

1 18.63 13332.55 520 19.35 
2 9.91 11056.69 273 10.16 
3 25.28 26117.52 259 9.64 
4 0.06 5958.75 762 28.35 
5 21.17 18028.55 292 10.86 
6 37.10 27603.71 97 3.61 
7 27.13 36434.46 182 6.77 
8 27.33 16941.22 303 11.27 

Table 2.8. Clusters based on OA-Temp. 

Clusters OA-Temp (mean) AHU-Energy (mean) Number of cases Percentage(%)

1 73.07 25764.30 381 14.17 
2 70.98 16055.34 593 22.06 
3 78.82 36177.72 196 7.29 
4 21.36 6459.12 575 21.39 
5 55.17 14110.56 580 21.58 
6 48.58 7263.33 363 13.50 

 

2.6.2. Modeling based on clusters 

To evaluate the effectiveness of using clusters, four scenarios were defined. The MLP 

ensemble was used to build the models. These four scenarios are as follows:  

Scenario 1: Model based directly on the joint data set. 

Scenario 2: Model based on the three season data sets. 

Scenario 3: Model based on clustering CHWC-VLV. 

Scenario 4: Model based on clustering OA-Temp. 

Scenario 1 involved the use of only one model based on a training data set (70%) and a 

test data set (30%). In Scenario 2, three models were built based on the three seasons. Scenario 3 
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and Scenario 4 involved clustering, with eight and six models derived for the two scenarios, 

respectively.  

Figure 2.12 and Figure 2.13 illustrate the mean absolute error and mean absolute 

percentage error of the training and test results for each model. It can be seen that the models 

based on clustering outperformed the single model of Scenario 1 and the season-based model of 

Scenario 2. This confirmed that clustering improves prediction accuracy. Scenario 4, with the 

input space clustered on the OA-Temp, offered better prediction results than Scenario 3, where 

CHWC-VLV was clustered. The outside air temperature impacted the energy demand of the 

AHU system. Compared with Scenario 1, in Scenario 4, the mean absolute percentage error was 

reduced by 20.35% for training and 11.05% for testing.  
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Figure 2.12. Mean absolute error for four scenarios. 
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Figure 2.13. Mean absolute percentage error for four scenarios. 

Table 2.9 summaries the prediction results for Scenario 1 through Scenario 4.  

Table 2.9. Prediction results for four scenarios. 

Model set Data set MAE Std of AE MAPE Std of APE 

Scenario 1 
Training 402.75 339.94 3.44% 4.04% 
Testing 412.96 364.02 3.62% 4.80% 

Scenario 2 
Training 369.69 321.37 2.99% 2.96% 
Testing 438.10 391.58 3.64% 4.19% 

Scenario 3 
Training 354.49 310.39 2.90% 2.78% 
Testing 411.18 356.70 3.33% 3.21% 

Scenario 4 
Training 332.97 289.24 2.74% 2.80% 
Testing 405.21 353.96 3.22% 3.05% 

 

2.7. Clustering-based short-term prediction of AHU energy  

The prediction data set in Table 2.1 is used for the short term prediction of the AHU 

energy. Because Scenario 4 performed the best, it was selected to construct a prediction model. 

Figure 2.14 shows the architecture of clustering-based short-term prediction. The raw data set 

was first clustered using the clustering algorithm constructed in Scenario 4. Each point was 

 
 



27 
 

assigned to the corresponding cluster by minimizing the distance to the nearest cluster center. A 

model representing each cluster was used to validate the prediction results. Table 2.10 shows the 

prediction results for Scenario 1 and Scenario 4. Table 2.10 shows the prediction results of the 

two models. 
 
 
 

 

Figure 2.14. The architecture of clustering-based short-term prediction of AHU energy. 

Table 2.10. Short-term prediction results                                   
for Scenario 1 and Scenario 4. 

Model set MAE Std of AE MAPE Std of APE
Scenario 1 818.71 606.84 9.83% 8.97% 
Scenario 4 792.58 731.12 8.63% 8.34% 

 
 
 

The results in Table 2.10 show that the clustering-based model outperformed the single 

model (original data) in the prediction of the AHU energy. Compared to Scenario 1, Scenario 4 
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reduced the mean absolute percentage error by 12.21%. Figure 2.15 and Figure 2.16 show the 

prediction results for Scenario 1 and Scenario 4. 
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Figure 2.15. Short-term prediction of AHU energy for Scenario 1. 
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Figure 2.16. Short-term prediction of AHU energy for Scenario 4. 
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2.8. Summary 

Data-mining algorithms were used to model the energy consumption of an AHU, as well 

as the indoor temperature, indoor humidity, and indoor CO2 concentration. Of the many 

parameters available in this research, the most relevant parameters with respect to the target 

output were selected. The AHU energy model and the AQI models derived with the MLP 

Ensemble method outperformed the models derived using the other data mining algorithms 

considered in this research. To reduce the prediction errors and computation cost, a clustering 

scheme was applied. The MLP Ensemble algorithm applied to the clustered data provided the 

most accurate results. Data clustering reduced the mean absolute percentage error by 11.05% 

compared with the single model derived from the original data. The short-term prediction model 

derived from the clustered data offered improved prediction accuracy and reduced computation 

time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



30 
 

CHAPTER 3 

MULTI-OBJECTIVE OPTIMIZATION OF HVAC SYSTEM WITH AN 

EVOLUTIONARY COMPUTATION ALGORITHM 

3.1. Introduction 

With regard to the strategic management of HVAC system, one of the major focuses is on 

effective and efficient energy management. The operation of HVAC system is a critical activity 

in terms of optimizing the control settings to reduce the energy consumption, improving the 

system efficiency, and preserving the thermal comfort for the occupants. The performance of the 

existing HVAC system can be largely improved by adjusting the control set points to maximize 

the overall system capacity and efficiency.  

Zheng et al. [42] formulated the thermal process in a variable air volume (VAV) box with 

constraints on zone humidity. This provided daily operating strategies achieving optimal outdoor 

air-flow rates and energy savings. Fong et al. [43] discussed energy reduction by using an 

evolutionary programming approach to suggest optimal settings in response to the dynamic 

cooling loads and changing weather conditions. Nassif et al. [27, 28] applied evolutionary 

algorithms to one-objective and two-objective optimization of an HVAC system, and the 

supervisory control strategies resulted in energy savings. Kusiak and Li [44] applied an 

evolutionary strategy algorithm to solve a bi-objective optimization model to minimize the 

cooling output while maintaining the corresponding thermal properties.  

The objective of this work is to investigate the effects of different control settings on 

energy consumption in an existing multi-zone office building while thermal comfort is sustained. 

The models built with data-mining algorithms were implemented inside an optimization model. 

Considering the specific requirements and effects of the thermal comfort, a weight-based 

constraints function was formed to satisfy the preferences. A strength Pareto evolutionary 

algorithm (SPEA) was employed to search for the optimal control settings of the HVAC system. 
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A preference function was formed for operators to find the local optimal solutions. According to 

the preference function, the operations of control strategies could largely affect the system 

performance by finding a trade-off between energy saving and the maintenance of indoor 

thermal comfort. Energy usage of the overall system regarding different preference settings were 

also compared and discussed.       

3.2. Data description and optimization methodology 

3.2.1 Data description   

The data set 3 in Table 2.1 is used. During this particular period of the year, cooling coils 

and heating coils in the AHU system work simultaneously to provide the essential loads on 

account of the dramatic variability of outside weather temperature. The AHU supply air 

temperature set point and static pressure set point were adjusted for both air handling units, 

AHU-A and AHU-B as described in Section 2.3. To simulate the impact of people and the 

lighting in the thermal zones, the internal load was divided into four stages reflecting the 

different thermal states at different time. Figure 3.1 shows the daily schedule of the internal load 

and supply air static pressure. The purpose of this experiment was to find the optimal set points 

minimizing the energy consumption while maintaining an acceptable level of thermal comfort.     
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Figure 3.1. The daily schedule of supply air static pressure and internal load. 

The total energy consumption in the HVAC system of the building was composed of four 

major parts: the energy consumption of AHUs EH , the energy consumption of water pump 

EP , the energy consumption of supply fan and return fan EF , and the reheating process in 

VAV box QR . Energy consumption for domestic hot water, appliances, and lighting were 

not counted because they were not expected to significantly change throughout the optimization. 

The complete y c mp objec could thus be described as follows: energ onsu tion tive 

ET EH EF EP QR                                                                (3.1) 

The energy consumption of AHUs, water pump, and fans could be calibrated by the 

meters originally installed in the system. In the VAV box, the reheat load, which supplies 

conditioned air for a specific thermal zone to meet the comfort temperature of the zone envelope, 

accounts for the total energy consumption. By tuning the valve position and the dampers in the 

VAV box, the hot water flows through the coils adjusted to the actual requirements of the zone 

comfort. The reheat load is comp  from equation (3.2) [45]. uted

QR cm TVAV_EAT TVAV_DAT                                                                        (3.2)      

The metrics used to access thermal comfort in this experiment is evaluated by the indoor 

temperature and humidity. Based on the requirement of management, the room temperature 
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should be maintained between 70 Deg °F (21.11 Deg °C) and 72 Deg °F (22.22 Deg °C), and the 

room humidity should be ranged from 30% to 60%. The practical system sometimes runs out of 

control and creates discomfort. Since discomfort should never occur inside the zones, the 

objective of yR   and yR   were taken as constraints. The penalty function in the 

optimization algorithm successfully handled the constraints in this study. 

3.2.2 Optimization approach  

The optimization framework of this study is summarized in Figure 3.2. It is divided into 

three sequential steps. First the data reflecting all the characteristics of the building was collected 

from ERS in time series. The original data should be preprocessed and transformed into available 

format for analysis. Then parameter selection and algorithm selection were conducted to choose 

the suitable parameters for building the energy model. Different data mining algorithms were 

investigated and the one with highest accuracy was selected as the optimal algorithm. Finally, 

SPEA [46] implemented with the optimal algorithm was run to evaluate potential solutions and 

the best was selected by weighing the preference of management.  
 
 
 

 

Figure 3.2. Optimization framework. 
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3.3. HVAC system modeling 

The performance of HVAC system becomes much more complex and diverse in the 

transient season than any other single season (either cooling or heating season). Considering both 

AHU-A and AHU-B systems, there are totally 672 (fourteen-day data, 1 h interval data from 

April 1 to April 14, 2010) observations recorded in this period. After the preprocessing of the 

whole data, the dataset was randomly sampled and roughly divided into a training set (85% of 

data) and a testing set (15% of data). The data description is presented in Table 3.1. 

Table 3.1. Data description. 

Data Set Description No. of Instances

1 Model training; a random sample of 85% of the preprocessing data 572 

2 Model test; the remaining 15% of the preprocessing data 100 

 

3.3.1Parameter selection 

Based on domain knowledge and the requirement of experiment, 15 parameters were 

selected as candidates for parameter selection including both internal loads and outside weather 

conditions. Besides the two control parameters and the internal load, 3 important parameters 

inside the AHU system namely, chilled water coil valve position (CHWC-VAV), supply air 

humidity (SA-Humd), and mixed air temperature (MA-Temp) and 9 parameters with respect to 

the outside weather patterns were chosen for further parameter selection. Due to the PI control 

implemented in the AHU system, the CHWC-VLV can roughly represent the control mode of 

the system by tuning the valve position. When the outside temperature is above the supply air 

temperature set point, the cooling mode will be turned on, otherwise, the heating mode will be 

operated. Figure 3.3 explains the control process of AHU system.   
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Figure 3.3. Change of CHWC-VLV position on 04/06/2010. 

Wrapper algorithms [47, 48] that use induction learning as evaluation functions were 

applied to select the most important parameters. A wrapper algorithm searches the space of all 

the possible attributes and evaluates each subset by building a model on this subset. The subset 

with highest estimation accuracy is chosen as the optimal solutions after a number of iterative 

processes. Due to the high computational cost of iterations, wrapper algorithms are always more 

valuable to a small amount of data. Three different classifiers, namely pace regression, support 

vector machine (SVM) regression, and linear regression were used with the uniform genetic 

searching method.   

Since a single wrapper algorithm might dominate the features in some aspects, different 

combinations of the classifiers and searching method in wrapper will provide more robust results 

than a single method. Each wrapper algorithm was performed with 10-fold cross-validation to 

eliminate the errors in the heuristic searching process. The total number of each candidate 

selected within 10-fold cross-validation represents the importance to the target output. Table 3.2 

shows the selection results of different wrapper algorithms.  
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Table 3.2. Results of different wrapper algorithms. 

Pace Regression+Genetic SMO Regression+Genetic Linear Regression+Genetic
10(100 %) CHWC-VLV 10(100 %) CHWC-VLV 10(100 %) CHWC-VLV 
10(100 %) SA-Humd 10(100 %) SA-Humd 10(100 %) SA-Humd 
6( 60 %)  MA-Temp 4( 40 %)  MA-Temp 4( 40 %)  MA-Temp 
4( 40 %)  BAR-Pres 3( 30 %)  BAR-Pres 2( 20 %)  BAR-Pres 
3( 30 %) IR-RADIA 6( 60 %) IR-RADIA 1( 10 %) IR-RADIA 

10(100 %) OA-Humd 10(100 %) OA-Humd 10(100 %) OA-Humd 
10(100 %)  OA-Temp 10(100 %)  OA-Temp 10(100 %)  OA-Temp 
0(  0 %) OA-CO2 2( 20 %) OA-CO2 1( 10 %) OA-CO2 
7( 70 %)  SOL-Beam 10(100 %)  SOL-Beam 8( 80 %)  SOL-Beam 

10(100 %)  SOL-Horz 10(100 %)  SOL-Horz 10(100 %)  SOL-Horz 
2( 20 %)  WIND-Dir 1( 10 %)  WIND-Dir 2( 20 %)  WIND-Dir 
5( 50 %)  WIND-Vel 5( 50 %)  WIND-Vel 3( 30 %)  WIND-Vel 

 
 
 

From the results, 5 parameters out of 12 namely CHWC-VLV, SA-Humd, OA-Humd, 

OA-Temp, and SOL-Horz were chosen 10 times during the 10-fold cross-validation for the 

different combinations of wrapper algorithms. Therefore 5 uncontrollable variables along with 3 

controllable variables were finally chosen for building the energy consumption model. The 

previous time stamp of internal load was also involved because of the effect of memory and 

system delay. The parameter description is shown in Table 3.3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



37 
 

Table 3.3. Parameter description. 

Parameter Type Parameter Name Description Unit
Controllable Variables SAT set point AHU supply air temperature set point  Deg C 

SASP set point Supply air duct static pressure set point kPa 
Uncontrollable Variables Internal load (t) System internal load /

Internal load(t-1) The previous state of system internal load /
CHWC-VLV Chilled water coil valve position %Open

SA-Humd Supply air humidity  % RH 
SOL-Horz Solar normal flux  B/HFt2 
OA-Humd Outside air humidity  % RH
OA-Temp Outside air temperature  Deg C

 

3.3.2. Construction and validation of the predictive model 

After parameter selection and dimensionality reduction, the predictive model of the 

HVAC system is expressed in equation (3.3)—(3.5). 

_ _ ( ) ( -1) _ _ _ _ _ ( )   ,  ,   , ,  ,  ,  ,  ,  )Energy SAT Spt SASP Spt Load t Load t CHWC VLV SA Humd SOL Horz OA Humd OA TEMPy t f x x x x x x x x x=

emp _ _ ( ) ( -1) _ _ _ _ _ ( )   ,  ,   , ,  ,  ,  ,  ,  )T SAT Spt SASP Spt Load t Load t CHWC VLV SA Humd SOL

      (3.3) 

Horz OA Humd OA TEMPy t f x x x x x x x x x=

_ _ ( ) ( -1) _ _ _ _ _ (  ,  ,   , ,  ,  ,  ,  ,  )Humd SAT Spt SASP Spt Load t Load t CHWC VLV SA Humd SOL Horz OA Humd OA TEMPy t x x x x x x x x x

        (3.4) 

)  f=

where y t  is the output to be optimized; x represents all the inputs of this predictive model. 

       (3.5) 

Five data-mining algorithms were used to extract the mapping between inputs and 

outputs: standard Chi-square Automatic Interaction Detector (CHAID) [49], Boosting Tree [36], 

Random Forest [37], Multivariate Adaptive Regression Splines (MARSplines) [50], and Neural 

Networks (NN) [39].  

The standard CHAID is one of the oldest tree classification methods originally proposed 

by Kass, which will build non-binary trees allowing multiple splits of nodes and can be used for 

detection of interaction between variables in regression and classification analysis.  

MARSplines is a non-parametric regression procedure that makes no assumption about 

the underlying functional relationship between the dependent and independent variables. 

Motivated by the recursive partitioning approach, MARSplines builds the relation from a set of 
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coefficients and functions that are entirely derived from the regression data, making it 

particularly suitable for problems with higher input dimensions.   

The five different data-mining algorithms have been tested for the construction of 

predictive models. The prediction performances of three predictive models regarding energy 

consumption, room humidity, and room temperature are presented from Table 3.4 to Table 3.6. 

Both training and validation errors are compared by the five different data mining algorithms. 

The NN outperform other four algorithms and therefore it is selected as the optimal solution to 

construct the predictive models. 

Table 3.4. Prediction results of energy consumption model. 

Algorithm  Data set MAE  MAPE Std_AE Std_MAPE  

Stand CHAID 
Training 3344.51 0.26 2997.46 0.24 

Validation 3331.03 0.27 2391.07 0.17 

Boosted Tree  
Training 2537.49 0.20 2119.52 0.17 

Validation 2323.96 0.20 1809.40 0.17 

Random Forest  
Training 2145.67 0.17 1755.75 0.14 

Validation 2189.19 0.18 1752.73 0.14 

MARSplines  
Training 2745.52 0.25 2026.13 0.25 

Validation 2694.88 0.27 1921.01 0.29 

Neural Networks  
Training 743.71 0.07 690.33 0.07 

Validation 1094.35 0.10 870.47 0.10 
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Table. 3.5. Prediction results of room humidity model. 

Algorithm  Data set MAE MAPE Std_AE Std_MAPE  

Stand CHAID 
Training 3.320 0.104 2.933 0.099 

Validation 3.361 0.105 2.784 0.092 

Boosted Tree  
Training 1.396 0.042 1.191 0.038 

Validation 1.488 0.046 1.383 0.046 

Random Forest  
Training 1.436 0.044 1.218 0.042 

Validation 1.521 0.048 1.383 0.047 

MARSplines  
Training 0.870 0.026 0.709 0.020 

Validation 1.093 0.037 1.212 0.071 

Neural Networks  
Training 0.352 0.011 0.303 0.011 

Validation 0.606 0.019 0.760 0.028 

Table. 3.6. Prediction results of room temperature model. 

Algorithm  Data set MAE MAPE Std_AE Std_MAPE  

Stand CHAID 
Training 0.4981 0.0070 0.4671 0.0065 

Validation 0.5664 0.0079 0.4901 0.0069 

Boosted Tree  
Training 0.4180 0.0058 0.3305 0.0046 

Validation 0.3857 0.0054 0.2956 0.0041 

Random Forest  
Training 0.3551 0.0049 0.3663 0.0050 

Validation 0.3791 0.0053 0.3760 0.0052 

MARSplines  
Training 0.5382 0.0075 0.3923 0.0054 

Validation 0.5003 0.0070 0.3791 0.0053 

Neural Networks  
Training 0.2288 0.0032 0.2176 0.0030 

Validation 0.3305 0.0046 0.3647 0.0050 
 

3.4. Optimization Algorithm 

3.4.1. Model formulation  

The total energy consumption was minimized by implementing the optimal control 

settings achieved by optimization algorithm. Considering the thermal comfort, the constraints of 

control parameters were addressed and a constraint function with penalty was formed to optimize 

the objectives. In order to save the computation time, the NN algorithm was implemented into 
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the SPEA prior to solving the optimization model. The optimization model is formed through the 

identification of the model parameters, the objective functions, and the constraints.  

Model parameters 

The model parameters of the HVAC system have been determined by the wrapper 

algorithm described above. Table 3 lists each parameter used for the optimization process. The 

two controllable parameters---the AHU supply air temperature and the supply air duct static 

pressure set points, are to be varied to obtain the optimal solutions. As uncontrollable input 

parameters are essentially independent of the controllable ones, the values of uncontrollable 

variables, such as supply air humidity, outside air temperature and other outside weather patterns, 

can be fixed in seeking the optimal control settings at each time stamp.   

Objective functions 

The objective of the optimization model is to minimize the energy use as well as maintain 

the thermal comfort at an acceptable level. The total energy consumption, including the fan, 

pump, and reheat power, is computed from equation (3.1). The input-output relationship was 

expressed by the HVAC system model presented above in equations (3.3), (3.4) and (3.5). The 

energy objective function is to be minimized while the other two - temperature and humidity 

objective functions - are treated as constraints to satisfy the indoor air quality of the AHU system.  

Constraints 

The constraints in the model are identified by assigning the lower and upper bounds of 

control parameters and set up an acceptable range of room humidity and temperature objectives. 

The value of the supply air temperature set point, the supply air duct static pressure set point, 

indoor room temperature, and room humidity are restricted within the limits: 

Supply air temperature must vary between 51 Deg °F (10.56 °C) to Deg 64 °F (17.78°C).  

Supply air static pressure must vary between 1.2 WG (0.3 kPa) to 1.8 WG (0.45 kPa). 

Room temperature must be maintained between 70 Deg °F (21.11 Deg °C) and 72 Deg °F 

(22.22 Deg °C). 

Room humidity must be controlled between 30%--60% according to the comfort. 
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Consequently, the optimization model can be expressed as minimizing the objective 

function (3.3) with control parameters varying within their bounds, meanwhile maintaining the 

room temperature and humidity. The model is presented as follows:  

_ _, 

_ _ _ _ _( ) ( -1) _ _

_ _ ( )

min(  ( ))

 :
 ( )   , ,  , ,  , , ,  , )
 ( )   , ,   ,

SAT Spt SASP Spt
Energy

x x

Energy SAT Spt SASP Spt CHWC VLV SOL Horz OA TEMPLoad t Load t SA Humd OA Humd

Temp SAT Spt SASP Spt Load t

y t

subject to
y t f x x x x x x x x x
y t f x x x x

=

= _ _( -1) _ _

_ _ _ _ _( ) ( -1) _ _

_

_

, ,  ,  ,  , )
 ( )   , ,   , , ,  ,  ,  , )

10.56 17.78
0.3

CHWC VLV SOL Horz OA TEMPLoad t SA Humd OA Humd
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_

intConstra s Temp Temp Humidity Humidity

(3.6) 

For such a nonlinear multi-objective optimization problem, it is challenging for large data 

sets to get the results, since the procedure of computation is complicated and time consuming.  

Due to the variability of room humidity and temperature, a constraint function can be established 

by assigning the two objective functions into one objective function, which is also to be 

minimized. The transformed constraint function can be described in equation (3.7).  

 ( ) max{0, 20.56 - ( )} max{0, ( ) - 22.78} max{0,30 - ( ) } max{0, ( ) - 60}y t y t y t y t y t= + + +

(3.7) 

As the constraints are satisfied, each of the four terms in equation (3.7) will remain 0 and 

the sum equals 0. However, since room humidity and temperature are not at the same scale, the 

constraint function may not accurately reflect the influences of them. It is possible room 

humidity may dominate the result because of its high value. The values of room humidity and 

temperature are then normalized to eliminate the deviation. The revised function is shown in 

equation (3.8). 
int Temp_upperbound Temp_lowerbound

Humidity_upperbound Humidity_lowerbound

 ( )={max{0,20.56 - ( )} max{0, ( ) - 22.78}} / (y -y )+

{max{0,30 - ( ) } max{0, ( ) - 60}} / (y -y )
Constra s Temp Temp

Humidity Humidity

y t y t y t

y t y t

+

+                 (3.8) 
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In the practical operation of HVAC system, it is possible that some constraint is of more 

importance or at least over than some other constraint. In different time period of the year, 

managers may emphasize on different objectives. Room temperature should be paid more 

attention to room humidity in winter since the air humidity is really low and is not a big issue. 

Taking the effects of different constraints, weights should be assigned to each constraint to meet 

the specific preference of HVAC system. The final constraint function is presented below: 
int 1 Temp_upperbound Temp_lowerbound

2 Humidity_upperbound Humidity_lowerbound

 ( )=w *{max{0,20.56 - ( )} max{0, ( ) - 22.78}} / (y -y )+

w *{max{0,30 - ( ) } max{0, ( ) - 60}} / (y -y
Constra s Temp Temp

Humidity Humidity

y t y t y t

y t y t

+

+ )            (3.9) 

  w1 + w2 = 1                                                                                                                           (3.10) 

Based on discussion above, the optimization problem was transformed into a bi-objective 

model. Finally the optimization can be modified to equation (3.11): 
min(  ( ))

,  _ _
 :

 ( )   ,  ,   , ,  ,  ,  ,  ,  )_ _ ( ) ( -1) _ _ _ _ _
 ( )=w *{max{0, 20.56 - ( )} maint 1

y tEnergy
x xSAT Spt SASP Spt

subject to
y t f x x x x x x x x xEnergy SAT Spt SASP Spt Load t Load t CHWC VLV SA Humd SOL Horz OA Humd OA TEMP

y t y tConstra s Temp

=

+ x{0, ( ) - 22.78}} / (y -y )+Temp_upperbound Temp_lowerbound
w *{max{0,30 - ( ) } max{0, ( ) - 60}} / (y -y )2 Humidity_upperbound Humidity_lowerbound

10.56 17.78_
0.3 0.45_

y tTemp
y t y tHumidity Humidity

xSAT Spt
x SASP Spt

+

≤ ≤

≤ ≤

                                                                                                                                       (3.11) 

3.4.2. Optimization 

In this research, a genetic algorithm search method named Strength Pareto Evolutionary 

Algorithm (SPEA) was used to solve the model (3.11). Considering that energy consumption and 

thermal constraints are two objectives aimed to be both minimized, non-dominated results were 

found at each time stamp. Figure 3.4 shows the feasible elitist optimization results of the model 

at some time stamp.   
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Figure 3.4. Feasible solutions solved by SPEA at some time stamp. 

Since a penalty function was implemented in the optimization algorithm in terms of 

finding out the optimal solutions, the bounds set for supply air temperature and static pressure set 

points may be slightly violated. Because of the contradiction between energy saving and 

maintenance of air quality, a decrease in constraints indicating better air quality results in an 

increase in energy demand. When the operation of HVAC is aim to maximize the energy saving 

(the bottom right point), the thermal discomfort will arise. If the decision is to minimize the 

thermal discomfort (the up left point), more energy are consumed to meet the demand. 

According to the different preferences of management, a preference-based objective function can 

be built with different weights assigning to individual objective. The following two equations 

show the process. 
 Objective w   w  M              (3.12) 

w1 + w2 = 1                                                                                                                           (3.13)               

where w1 and w2 represent the weight given to objective1 and objective2, respectively; 

objective1 represents the energy use and objective2 represents the violation of thermal comfort. 
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After assigning the weights, the optimal result is found by minimizing the final objective. 

Table 7 lists the results of different decisions made by their preferences. The preference-based 

optimization algorithm provides more flexibility for the management of HVAC system and 

accurately meets the requirements of different operation strategy. The adjustment of HVAC 

system optimization makes it more robust in dealing with the outside weather change than the 

traditional control strategy.  

Table 3.7. Results of different decisions made by their preferences. 

Strategy W hteig   SAT_spt  SASP_spt Energy 
consumption Constraints Room 

temperature  
Room 

humidity 
A w₁=0 w₂=1  52.72 1.48 11583.1 0.000 71.998 43.603 

B w
w

₁=0.5 
₂=0.5  52.08 1.46 11102.7 0.027 72.090 42.713 

C w₁=1 w₂=0  51.52 1.34 10667.5 0.065 69.784 58.054 
 
 
 

Strategy A and C are the two extrema of preference-based optimization which entirely 

focus on minimizing the energy consumption and thermal discomfort, respectively.  A trade-off 

can be found between the two situations balancing the energy use and thermal comfort. A brief 

description of weights assignment of the two objectives is shown in equation (3.14).  
1 2

1 2

1 2

w =0 w =1, Minimize constraints to strictly maintain thermal comfort
w= w =a w =1-a, Find tradeoff to balance energy use and thermal comfort

w =1 w =0, Minimize energy use without considering the thermal comfort

⎧
⎪
⎨
⎪
⎩                              (3.14) 

To compare the optimal results with different preference settings to the actual energy 

consumption, two extrama (Strategy A and C) were picked which represented minimizing 

thermal discomfort and energy use, respectively. Figure 3.5 shows the actual and optimal energy 

demand after optimization. The energy saving by applying the optimization algorithm is roughly 

ranged from 12% (Strategy A) to 30% (Strategy C). In the process of finding the optimal 

solutions, the thermal comfort was more or less violated to meet the system demand. Figure 3.6 
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shows the values of thermal constraints of the two extrama. Strategy A emphasizing on 

minimization of thermal discomfort, had a very low violation of indoor air quality. The 

constraints mostly were obtained during the optimization process. Strategy C saved more energy 

based on the sacrifice of thermal comfort.  
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The optimized room temperature and humidity are presented in Figure 3.7 and Figure 3.8. 

According to the Figures, the room temperature is optimized by forcing the uncontrollable points 

to the restricted range, although strategy C has more points out of bound than strategy A. The 

indoor air quality is improved after optimization algorithm.  
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Figure 3.7. Test results of optimized room temperature. 
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Figure 3.9 and Figure 3.10 show the recommended control settings of supply air 

temperature and static pressure set points. Based on the observation of test results, the system is 

out of control when the supply air temperature set point is above 60 Deg °F (15.56 °C). The 

control strategy C is more fluctuant compared with strategy A. Taking the system delay into 

consideration, strategy A is more robust for realization in practice.   
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What is interesting to note from Figure 3.5 to Figure 3.10 is the relation between the 

thermal comfort and the energy consumption. The increase of energy consumption can lead to 

relative reductions in thermal comfort, otherwise, the inverse situation occurs. This case 

highlights the major advantage of a true multi-objective optimization algorithm, which help the 

decision makers find out a balance between the two contradictive objectives.  A comprehensive 

understanding of the operation system is achieved as well as the potentiality of each preference.     

3.5. Summary 

This chapter presented an optimization methodology based on a data-driven method, 

which combined Neural Network and a multi-objective evolutionary algorithm. First, the 

experimental data was studied and some important parameters were chosen as the inputs. Several 

data-mining algorithms were then discussed and finally NN outperform other algorithms and was 

selected for building the predictive models. The NN proved to be able to accurately construct the 

mapping of the actual data between inputs and outputs. The optimal control settings were 

achieved by SPEA with the implementation of NN inside, resulting in large energy saving of 

observed HVAC system.  

Regarding the optimization results, the recommended control settings could lead to 

significant improvements of the energy use and the performance of thermal comfort of the 

building. The optimal solutions also revealed a large number of potential control strategies which 

could be used as a tool for decision makers to find a suitable balance between energy and 

thermal comfort. It would be an interesting research for future to deeply study the accuracy of 

data-driven models. The implementation of human intelligence in the preference function to 

simulate the thoughts of decision makers will be also further investigated. Further and more 

systematic studies are required to evaluate the performance of optimization, especially with 

multi-constraints problems. 
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CHAPTER 4 

MODELING AND OPTIMIZATION OF ENERGY RELATED COMPONENTS IN 

HVAC SYSTEM 

4.1. Introduction 

The body of literature on improving the operation and efficiency of HVAC systems is 

extensive. Numerous models developed based on the first principles, simulation, and 

optimization, have been published. Ma et al. [51] developed pressure-drop models for different 

water networks in a central air-conditioning system and proposed an optimal sequence control of 

a pump to reduce the energy consumption. A simple yet accurate model for a cooling coil unit 

for real-time control and optimization was presented by Wang et al. [5]. Fong et al. [43] used the 

simulation program TRNSYS [52] to determine optimum settings of chilled water and supply air 

temperature to save energy. Lu et al. [53] formulated a mix-integer nonlinear constrained model 

to optimize setpoints for differential pressure of ducts. A methodology for optimizing setpoints 

of the VAV (variable air volume) box was presented in Huang et al. [2].  

In this chapter energy consumption is optimized with data-driven models derived with 

data-mining algorithms. The energy models built by the data-mining algorithms are integrated 

into an energy optimization model. To minimize the energy consumption, a Particle Swarm 

Optimization (PSO) algorithm is employed to find the near optimal solutions for control settings 

in response to different internal loads and other uncontrollable variables. Energy usage of the 

overall system and each individual component are also compared and discussed in detail.  

4.2. Data description 

The data set 1 in table 2.1 is used in this research. In the ERS facility, sensors measure air 

temperature, humidity, and air flow rate at different locations of the HVAC system. Energy 

consumption of devices like pumps and fans is also recorded. Since at each day a selected 

combination of setpoints was implemented, arbitrarily dividing all data into training and test sets 
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based solely on time could distort the models extracted with data-mining algorithms. Therefore, 

sampled data is used in parameter and algorithm selection as well as model building. The data set 

description is presented in Table 4.1.  

Table 4.1. Data description. 

Data 
Set Description No. of 

Instances

1 Parameter  selection; algorithm selection; random sampling from 
preprocessed data

129 
observations

2 Model training; a random sample of 85% of the preprocessed data 658 
observations

3 Model test; the remaining 15% of the data (excluding the training data) 116 
observations

 

4.3. Parameter and algorithm selection  

The total energy consumption from four major sources, namely the chillers, fans, pumps, 

and VAV box, is computed every hour. Besides the controllable variables mentioned above, 

some uncontrollable parameters may impact the hourly energy consumption. Based on the 

domain knowledge, such candidate variables are as follows: cooling coil entering air temperature, 

chilled water entering water temperature, infrared radiation, solar normal flux, and the outside air 

temperature. To derive the patterns from high resolution data (1-min data), two commonly used 

statistical measures of mean and standard deviation are employed. Thus, ten additional 

parameters are selected for the additional possible inputs of the energy model. Among the ten 

variables, some may be redundant or even irrelevant to the energy consumption. Therefore, 

parameter selection is performed to eliminate uncontrollable parameters of lesser importance. In 

this section, the boosting tree algorithm [36] and wrapper [47, 48] are used in performing the 

parameter selection on date set 1 shown in Table 4.1. Table 4.2 lists the predictor importance 

produced by the boosting tree algorithm. 

 
 



51 
 

Table 4.2. Predictor importance produced                                  
by the boosting tree algorithm. 

Parameter Importance
Chilled water entering 

temperature (stdev) 100 

Chilled water entering 
temperature (mean) 77 

Solar normal flux (mean) 68 
Solar normal flux (stdev) 57 

Outside air temperature (mean) 56 
Cooling coil entering air 

temperature (mean) 51 

Infrared radiation (stdev) 43 
Cooling coil entering air 

temperature (stdev) 42 

Outside air temperature (stdev) 40 
Infrared radiation (mean) 37 

 
 
 

Considering the expensive computational cost, pace regression is used as the evaluator, 

and a genetic algorithm is used as the search algorithm in this section. The population size is set 

at 20, and the maximum number of iterations is 20. The crossover probability is 0.6, and the 

mutation probability is 0.033. The 10-fold cross validation results of the wrapper approach are 

presented in Table 4.3.   
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Table 4.3. The results of parameter selection                                 
by the wrapper approach. 

Number of Folders Parameter 
10 Chilled water entering temperature (mean) 
10 Chilled water entering temperature (stdev) 
10 Outside air temperature (mean) 
10 Solar normal flux (mean) 
10 Solar normal flux (stdev) 
8 Infrared radiation (mean) 
4 Cooling coil entering air temperature (mean) 
4 Cooling coil entering air temperature (stdev) 
2 Infrared radiation (stdev) 
1 Outside air temperature(stdev) 

 
 
 

Five parameters are selected ten times during the 10-fold cross validation. They match 

the five most significant predictors selected by the boosting tree algorithm. Therefore, 

considering the parameter selection results of two methods, five uncontrollable variables along 

with three controllable variables are selected in building the total energy model. Note that the 

internal load at the previous time interval is also considered. Table 4.4 shows the parameter 

descriptions of inputs selected for building the energy model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



53 
 

Table 4.4. Parameter description. 

Parameter Description Unit 
 1x  Internal load  Discrete 

 2x  Internal load at previous time 
interval Discrete 

 3x  Supply air temperature setpoint F 

 4x  Supply air static pressure 
setpoint WG 

1   v Chilled water entering 
temperature (mean) F 

  2v Chilled water entering 
temperature (stdev) F 

 v  3 Outside air temperature (mean) F 
   4v Solar normal flux (mean) B/HFt2 

5v   Solar normal flux (stdev) B/HFt3 
 
 
 

After parameter transformation and selection, the total energy model can be expressed as: 

                                                    1 2 3 4 1 2 3 4 5( , , , , , , , , )y f x x x x v v v v v=        (4.1) 

To construct a mapping among these variables, six data-mining algorithms, namely 

CHAID, boosting tree, random forest, MARSplines, MLP, MLP Ensemble and SVM, have been 

applied. As shown in Table 4.1, date set 1 is used for selecting the most appropriate algorithm in 

building the model. Table 4.5 shows the prediction accuracy of models built by different data-

mining techniques.  

Table 4.5. Algorithms selection for building the total energy model. 

Algorithm MAE Std of MAE MAPE Std of MAPE 
CHAID 2292.1561 2438.1754 11.23% 11.30% 

Boosting tree 1943.2698 1658.7942 9.75% 7.60% 
Random forest 1864.6265 1983.4052 9.46% 8.36% 
MARSplines 1702.8106 1464.0291 8.67% 6.54% 

MLP 915.0163 977.6062 4.66% 4.20% 
MLP Ensemble 719.1084 689.6606 3.77% 3.50% 

SVM 1531.7237 1297.2686 7.62% 5.61% 
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The MLP ensemble over-performs other data-mining algorithms and produces the most 

accurate total energy model. Therefore, the MLP ensemble is selected for building energy 

models.  

4.4. Modeling building and validating  

In Section 4.3, nine variables have been selected for building the total energy model by 

the MLP ensemble. Since the total energy consumption involves four sources, namely chillers, 

fans, pumps, and the VAV reheat device, building four separate models will benefit analysis of 

optimization results. The total energy model can be simplified as the sum of four sub-models. 

Data sets 2 and 3 shown in Table 4.1 are used for training and testing the model.  Table 4.6 

shows the training and test results of the four models.  

Table 4.6. Training and test results                                      
of the four models. 

Chiller Energy Model 
  MAE Std of AE MAPE Std of APE 

Training 541.0405 513.6529 5.03% 5.23% 
Testing 645.0991 539.3706 5.99% 5.79% 

Fan Energy Model 
  MAE Std of AE MAPE Std of APE 

Training 286.9700 305.8468 5.49% 6.90% 
Testing 383.2912 488.5904 7.21% 12.62% 

Pump Energy Model 
  MAE Std of AE MAPE Std of APE 

Training 6.9087 20.6677 0.23% 0.80% 
Testing 6.2690 5.1443 0.21% 0.17% 

Reheat Energy Model 
  MAE Std of AE     

Training 53.3107 113.6242     
Testing 49.1659 112.1540     
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For reheat energy, some of the observed values are zero, which is due to the fact that the 

reheating valve is open only when the room temperature is below the heating setpoint of 70°F. 

The absolute percentage error is meaningless for those instances. Therefore, only one statistical 

measure, the absolute error, is provided for the reheat energy model. Detailed test results of the 

four models are presented in Figures 4.1 to 4.4.  
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Figure 4.1. Test results for the chiller energy model. 

   

1000

3000

5000

7000

9000

11000

1 11 21 31 41 51 61 71 81 91 101 111

En
er

gy
 (K

J)

13000

15000

17000

19000

Observed fan energy Predicted fan energy  

Figure 4.2. Test results for the fan energy model. 
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Figure 4.3. Test results for the pump energy model. 
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Figure 4.4. Test results for the reheat energy model. 

As demonstrated in Figures 4.1 to 4.3, estimates obtained from the four sub-models are 

very close to the actual values of the specific energy usage. The MLP ensemble algorithm can 
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successfully identify the nonlinear relationship among the energy consumption, controllable 

variables, and uncontrollable parameters.  

4.5. Optimization model formulation and solving  

The sub-models learned by the MLP ensemble are used to construct the overall 

optimization model. To minimize the total energy consumption, the single objective is expressed 

as the sum of the chiller energy, fan energy, pump energy, and reheat energy. The decision 

variables are the supply air temperature setpoint and the static pressure setpoint. The supply air 

temperature setpoint is constrained from 50°F to 65°F, and the static pressure setpoint is 

constrained from 1.2 WG to 1.8 WG. The single objective optimization problem is presented in 

(4.2): 

1 2,
min
x x

Obj

4

1 2 3 4 1 2 3 4 5
1

1

2

. .  ( , , , , , , , , )

      50 65
      1.2 1.8

i
i

s t Obj f x x x x v v v v v

x
x

=

=

≤ ≤
≤ ≤

∑

                                   (4.2)                                                                              

where f ( )i ⋅  refers to the energy model, room temperature model, room humidity model 

and CO2 model, respectively.  

The nonlinearity, complexity and opaqueness of the energy models built in this section 

pose a challenge for solving by traditional mathematical programming methods. Particle Swarm 

Optimization (PSO) [54] is a stochastic optimization technique inspired by flocks of birds. As 

one of the swarm intelligence algorithms, it has a well-balanced mechanism to enhance and 

adapt global and local exploration abilities. PSO excels in solving single objective optimization 

[55, 56] with its fast convergence advantage. Therefore, the PSO algorithm is used in this paper 

to solve model (4.2).  

The standard canonical PSO algorithm is presented next: 
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i i

i

i i i

Step 1: Initialize n particles positions p and velocities q
ˆ ˆStep 2: Find current best position p  of each particle and let g be the global best

ˆ ˆ           p p , g arg  min(f(p ))
Step 3: For e

m mR R∈ ∈

← ←

i i 1 i i 2 i

i i i

ach particle, update the particle velocities and positions
ˆ ˆ           q q c ()(p -p ) c ()(g-p )

           p p q
Step 4: Update the local bests and the global best
Step 5: If the stop cri

rand rand← + +
← +

ω

ˆterion is satified, global best g is the final optimal solution with 
ˆ           fitness f(g); otherwise, return to Step 3.  

Here, the dimension for each particle’s position  and velocity is 2. The first element 

of refers to the decision variable of the temperature setpoint and is drawn from uniform 

distribution . The second element of refers to the decision variable of the static 

pressure setpoint and is drawn from uniform distribution . Initial values for elements of 

the velocity vectors are set as 0. For the velocity updating part, 

ip

U

iq

ip

U(50,65) ip

(1.2,1.8)

ω is the inertia factor, which is 

used to balance the global and local search. Two randomly generated coefficients are drawn from 

uniform distribution U( . are learning factors which control the influence of the social and 

cognitive components. Here, set 

0,1) 1 2c , c

0.95ω = and 1 2c 2c , = . When the updated particle’s position is out 

of bound, its corresponding speed changes towards the opposite direction, and its position is 

recomputed. For example, assume that the position vector and the velocity vector of one particle 

is [ and [ , respectively, before updating. The updated position vector is 

, and both elements are out of their decision boundaries. The velocity vector is set to 

the opposite direction, and the updated velocity and position vectors are [ and[ , 

respectively.  

65,

6.5,

1.25]T

1.15]T

1.5,−0.1]T

[6

63.5,1.35]T 1.5,0.1]T−

4.6. Optimization results and discussion  

To demonstrate the energy saving potential, 50 consecutive points (50 h long period) from 

the training data set have been selected to illustrate the optimization process. For each instance, 

an optimization model (4.2) is formulated and solved by the PSO algorithm. After tuning the 

related parameters in PSO, the initial population size is set of 40, while the maximum number of 
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iterations is set of 20 to find the near optimal solution. Figure 4.5 shows the results for the total 

energy optimization.  
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Figure 4.5. The total energy before and after optimization. 

The confidence in the optimization results depends to a large degree on the accuracy of 

the models built. In Figure 4.5, the predicted total energy suitably matches the observed total 

energy. The optimization approach presented in this paper reduces the total energy consumption 

by 7.66%. Since the percentage error of the total energy consumption of the simulated points is 

0.04%, the model prediction error does not diminish the quality of the optimization results. The 

peak energy usage corresponds to the high stage of the simulated internal load. It is 

understandable from the heat balance perspective that the more internal heat generated the more 

energy required to remove this extra heat. The control settings of the air temperature and the 

supply air static pressure are shown in Figures 4.6 and 4.7, respectively.  
 
 
 

 
 



60 
 

48

50

52

54

56

58

60

62

64

66

1 6 11 16 21 26 31 36 41 46

Te
m

pe
ra

tu
re

 (°
F)

Original supply air temperature setpoint Recommended supply air temperature setpoint  

Figure 4.6. The air temperature setpoint before and after optimization. 

1.1

1.2

1.3

1.4

1.5

1.6

1 6 11 16 21 26 31 36 41 46

St
at

ic
 p

re
ss

ur
e 

(W
G

)

1.7

1.8

1.9

Original supply air static pressure setpoint Recommended  supply air static pressure setpoint  

Figure 4.7. The supply air static pressure setpoint before and after optimization. 

Compared to the original temperature setpoint, the optimized setpoint has a higher value 

when the internal load is low, and lower when the internal load is high. A higher setpoint 

involves less cooling output in the air handling unit and less energy usage from the chiller side. 

For the static pressure setpoint, most of the optimized points are higher than the original ones. A 

combination of the recommended setpoints results in minimization of the total energy. However, 
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the change of energy consumption in each sector differs. Figures 4.8 to 4.11 express the energy 

usage of the fan, pump, reheat device, and chiller before and after optimization.  
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Figure 4.8. The fan energy before and after optimization. 
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Figure 4.9. The pump energy before and after optimization. 
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Figure 4.10. The reheat device energy before and after optimization. 
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Figure 4.11. The chiller energy before and after optimization. 

The optimized fan energy in Figure 4.8 is generally higher than the observed (measured) 

one because the optimized setpoint of the static pressure for the corresponding points is higher. 

The higher static pressure in the duct is due to the increased flow rate of the supply air. The 
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pump energy in Figure 4.9 shows minor changes before and after optimization. The reheat device 

energy illustrated in Figure 4.9 is minimized to 0 because a higher supply air temperature in the 

air handling unit decreases the chance that the room temperature drops below the heating 

setpoint. Thus, the reheat does not take place frequently compared to the original case. The total 

energy reduction is attributed mainly to the chiller energy reduction. As shown in Figures 4.5 

and 4.11, energy changes are similar due to the correlation coefficient of 0.95 between observed 

chiller energy and total energy. Since the chiller’s energy accounts for about 60% of the total 

energy, reducing the chiller’s energy contributes to most of the total energy savings in spite of 

the increase in energy consumption by the pump and the fan. To investigate further the reason 

for the chiller energy reduction after adjusting the AHU control settings, Figure 4.12 presents the 

cooling output of the air handling unit before and after optimization.  
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Figure 4.12. The cooling output before and after optimization. 

The data set used in this paper has been collected in an experiment performed during the 

cooling season, and the average outside air temperature was higher than the supply air 

temperature. Higher values of the recommended supply air temperature setpoints reduced the 
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heat exchange between the chilled water side and the supply air side. Therefore, the cooling 

output of the air handling unit was reduced. Less cooling output decreased the chiller energy 

consumption due to the high linearity between these two parameters. For example, the 

correlation coefficient between the observed cooling output and the chiller energy for the 

selected 50 training points (50-h period) is 0.96. A decrease in cooling output results in energy 

reduction in the chiller energy consumption and further minimization of the total energy. Figure 

4.13 illustrates the corresponding indoor air quality indexes in the thermal zone. Three indoor air 

quality models are built in the same fashion as described in Section 4.4. Average values of the 

indoor air quality (IAQ) metrics, i.e., the room temperature, the relative humidity, and the CO2 

concentration, computed from 50 training points, are displayed in Figure 4.13. 
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Figure 4.13. Comparison of the IAQ metrics before and after optimization. 

The observed (original) and predicted values prove the three IAQ models are accurate. 

By modifying the control settings of the air handling unit, the room temperature remains about 

the same. A slight raise in humidity is observed, while CO2 slightly decreases. The overall indoor 
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air quality is maintained at an acceptable level given the recommended control settings to save 

total energy.  

The results discussed above represent optimal combinations of the supply air temperature 

and the static pressure setpoints for data points updated every hour. These setpoints can be 

adjusted at less frequent intervals, producing lfewer energy savings, as shown in Table 4.7. Table 

4.7 presents the total energy savings for four different setpoint adjustment scenarios, ranging 

from every hour change (1 period) to one change per 50 hours (50 periods). 

Table 4.7. Energy savings with varied adjustment length of setpoints. 

Setpoint  
Adjustment 
Time Period 

Reduction of 
Chiller Energy 

Reduction of 
Fan Energy 

Reduction of 
Pump Energy 

Reduction of 
Reheat Device 

Energy 
Reduction of 
Total Energy 

1 period 6.58% 3.12% -0.77% 92.55% 7.66% 
2 periods 5.52% -0.20% -0.75% 80.18% 5.95% 
5 periods 4.22% -2.88% -0.73% 35.52% 3.12% 

50 periods 3.75% -7.50% -0.91% 3.58% 0.83% 
 
 
 

As the setpoints are adjusted less frequently, more energy is consumed. In an extreme 

case, even when the optimal combination of setpoints is kept for 50 h (50 periods), less than 1% 

of total energy is saved. The increased energy savings are due to the timely optimization of 

control settings based on the changing internal load, the outside weather temperature, and other 

uncontrollable parameters.   

4.7. Summary 

In this chapter, a data-driven approach to deriving energy models has been presented. 

Data-mining algorithms were employed to select significant parameters and construct four 

models of energy consumption. To minimize the total energy consumption by a facility, a single-

objective optimization model was formulated and solved by the particle swarm optimization 

 
 



66 
 

algorithm. The particle swarm optimization algorithm searches the near optimal solutions of 

supply air temperature and static pressure setpoints in the air handling unit. Optimal control 

settings of the air handling unit were generated every hour to minimize the total energy usage in 

response to different patterns of the internal load and other uncontrollable parameters. The 

optimization results demonstrated a 7.66% savings of the total energy in spite of an energy 

increase in certain individual components (pumps or fans). The analysis and discussion of IAQ 

metrics and the setpoint adjustment time frequency were also included.     
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CHAPTER 5 

MULTI-OBJECTIVE OPTIMIZATION OF HVAC SYSTEM ENERGY MANAGEMENT 

5.1. Introduction 

In this chapter, data-driven models of energy consumption are proposed. Data mining 

algorithms establish mappings between input and output variables without requiring detailed 

prior knowledge of the modeled process. Data collected from experiments conducted in an 

energy research facility has been used to investigate the relationships between control settings 

and energy consumption as well as facility indoor air quality index (AQI). Rather than 

minimizing the energy in a single objective, a trade-off between the energy consumption and 

AQI is considered. The total energy model and the AQI models built by data-mining algorithms 

are transformed into a multiple objective optimization model. To solve this four objective 

optimization problem, a particle swarm optimization (PSO) algorithm based on two-level non-

dominated solutions is used. The PSO algorithm generates control settings in response to the 

changing different internal load and uncontrollable variables, including the energy consumption 

of the total system and the facility. The air quality metrics are assigned different weights 

reflecting preferences of the occupants.   

5.2. Data description and parameter selection 

The data set 1 in Table 2.1 is used for this research. The experiment period was from 

August 1 2009 to August 16 2009. Since each day of the experiment covered a specific 

combination of setpoints, an arbitrary partitioning of the data into training and testing parts based 

on time could not produce a valid model. Therefore, the sampled data is used for parameter 

selection, algorithm selection, and model construction. The data collected in the ERS experiment 

is described in Table 5.1. 
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Table 5.1. Data description 

Data 
Set Description No. of 

Instances

1 Parameter selection and algorithm selection, random sampled from original 
data set 129  

2 Modeling training, random sampling;  85% of original data set 658 
3 Modeling testing; The data (15%) excluded from model training 116  
4 Optimization data set 77  
 
 
 

Based on the domain knowledge and parameter selection algorithms like boosting tree 

and wrapper, eleven  parameters have been selected for building the energy and AQI models. 

Table 5.2 lists the parameters selected for building the AQI models and the total energy model.  

Table 5.2. Parameter description 

Parameter Description Unit 
 1x ( )t  Internal load at current time interval Discrete

 1x ( 1)t −  Internal load at previous time interval Discrete
 x ( )2 t  Supply air temperature setpoint at current time interval °F 
 3x ( )t  Supply air static pressure setpoint at current time interval  WG 

( )1v t   Chilled water entering temperature (mean) at current time interval °F 
 2 ( )v  t Chilled water entering temperature (standard deviation) at current time interval °F 
 3 ( )v t  Outside air temperature (mean) at current time interval °F 
 4 ( )v   t Solar normal flux (mean) at current time interval B/HFt2 

5 ( )v t  Solar normal flux (standard deviation) at current time interval B/HFt3 
6 ( )v t  Outside air relative humidity (mean) at current time interval RH 
7 ( )v t  Outside air CO2 concentration (mean) at current time interval ppm 

 

5.3. Algorithm selection  

The parameters listed in Table 5.1 are used to build the total energy model and the AQI 

models expressed in (5.1) to (5.4). 

1 1 1 1 2 3 1 2 3 4 5( ) ( ( ), ( 1), ( ), ( ), ( ), ( ), ( ), ( ), ( ))y t f x t x t x t x t v t v t v t v t v t= −                    (5.1) 
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                        (5.2) 2 2 1 1 2 3 1 2 3 4 5

3 3 1 1 2 3 1 2 3 4 5 6

4 4 1 1 2 3 1 2 3 4 5 7

1 2 3 4

( ) ( ( ), ( 1), ( ), ( ), ( ), ( ), ( ), ( ), ( ))y t f x t x t x t x t v t v t v t v t v t= −

            (5.3) ( ) ( ( ), ( 1), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ))y t f x t x t x t x t v t v t v t v t v t v t= −

                                  (5.4) ( ) ( ( ), ( 1), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ))y t f x t x t x t x t v t v t v t v t v t v t= −

where denote the total energy consumption, average facility 

temperature, average facility humidity, and the average facility CO2 concentration during 1 hour 

time period, respectively.  

( ), ( ), ( ), ( )y t y t y t y t

To extract the mapping among the variables involved in models (5.1) – (5.4), several 

data-mining algorithms are used, namely Chi-squared Automatic Interaction Detector (CHAID), 

Boosting tree, Random Forest, Multi-layer Perceptron (MLP), MLP Ensemble, Multivariate 

Adaptive Regression Splines (MARSplines), and Support Vector Machine (SVM).  

As indicated in Table 4.1, data set 2 is used to build a model, while the data set 3 is used 

to validate it. Table 5.3 presents the training and test accuracy results of models built with eight 

different data-mining algorithms. 
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Table 5.3. Training and testing accuracy results for models extracted with different data-mining 
algorithms 

Algorithm Data Set 
Energy Model Temperature Model 

MAE Std of 
AE MAPE Std of 

APE MAE Std of 
AE MAPE Std of 

APE
MLP 

Ensemble 
Training 758.28 712.03 3.73% 3.73% 0.19 0.18 0.27% 0.25% 
Testing 967.19 904.01 4.98% 5.35% 0.23 0.21 0.32% 0.29% 

MLP  
Training 827.55 709.88 4.06% 3.81% 0.23 0.23 0.32% 0.32% 
Testing 1098.07 965.86 5.66% 5.85% 0.28 0.22 0.39% 0.30% 

Standard 
CHAID  

Training 2147.70 1994.14 10.53% 9.53% 0.32 0.41 0.44% 0.56% 
Testing 2549.66 2316.78 12.17% 10.16% 0.29 0.33 0.40% 0.46% 

Boosting 
Trees  

Training 2249.46 2018.83 10.52% 9.06% 0.48 0.38 0.67% 0.52% 
Testing 2650.68 2111.67 13.11% 10.83% 0.45 0.35 0.63% 0.49% 

Random 
Forest  

Training 2387.45 1831.75 11.33% 8.49% 0.48 0.51 0.67% 0.70% 
Testing 2399.21 1892.64 12.28% 11.01% 0.47 0.45 0.65% 0.62% 

MARSplines  
Training 2309.03 2090.62 11.05% 10.81% 0.48 0.39 0.67% 0.53% 
Testing 2508.17 2003.36 13.09% 12.98% 0.48 0.36 0.66% 0.50% 

SVM  
Training 1290.65 1096.04 6.13% 5.13% 0.34 0.29 0.46% 0.39% 
Testing 1363.01 1138.10 6.88% 6.65% 0.35 0.25 0.48% 0.35% 

Algorithm Data set 
Humidity Model CO2 Model 

MAE Std of 
AE MAPE Std of 

APE MAE Std of 
AE MAPE Std of 

APE
MLP 

Ensemble 
Training 0.59 0.58 1.10% 1.02% 6.56 5.41 1.64% 1.34% 
Testing 0.65 0.76 1.15% 1.24% 7.34 6.33 1.81% 1.51% 

MLP  
Training 0.63 0.63 1.16% 1.11% 8.82 6.61 2.21% 1.63% 
Testing 0.73 0.87 1.28% 1.42% 8.98 7.74 2.22% 1.87% 

Standard 
CHAID  

Training 1.71 1.57 3.15% 2.93% 11.31 9.82 2.81% 2.32% 
Testing 2.20 2.08 3.93% 3.87% 11.95 11.91 2.91% 2.69% 

Boosting 
Trees  

Training 1.24 1.05 2.30% 1.93% 9.44 7.89 2.34% 1.83% 
Testing 1.26 1.06 2.22% 1.79% 11.56 10.61 2.82% 2.36% 

Random 
Forest  

Training 3.25 2.35 6.22% 4.66% 12.60 10.94 3.14% 2.59% 
Testing 4.09 2.79 7.38% 4.91% 14.55 14.54 3.56% 3.25% 

MARSplines  
Training 1.23 1.08 2.28% 1.89% 10.27 9.04 2.55% 2.15% 
Testing 1.33 1.08 2.38% 1.84% 11.41 11.12 2.79% 2.52% 

SVM  
Training 0.95 0.82 1.77% 1.44% 10.87 8.90 2.71% 2.10% 
Testing 1.02 1.03 1.86% 1.77% 12.08 10.37 2.97% 2.32% 

 
 
 

Based on the training and testing error, the computational results reported in Table 4.3 

show that the MLP Ensemble with 5 MLPs performs best on the MAE and MAPE metrics for 
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four models. Therefore, it is selected as the algorithm for building the total energy model and 

AQI models discussed in the section 5.4. 

5.4. Modeling building and validation 

In developing the neural network models, the total squared error can as the cost function, 

and the weights can be modified to minimize that cost function accordingly. For each model 100 

neural networks are trained, each with 10 to 40 hidden neurons. The best five networks with 

lowest squared error are selected for testing. The observed and predicted values obtained from 

the four models are shown in Figure 5.1 through Figure 5.4.  
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Figure 5.1. Test results from the total energy model 
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Figure 5.3. Test results from the facility relative humidity model 
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Figure 5.4. Test results from the facility CO2 concentration model 

As shown in the Figure 5.1 through 5.4, the predicted values follow relatively close the 

observed ones. Table 5.4 shows the correlation coefficients between the observed and predicted 

values. Therefore, the four models are used to formulate the total energy optimization model.  

Table 5.4. Correlation coefficient of the observed                                                               
and predicted values of the four models 

Variable Means Std. Dev. Correlation Coefficient 
Observed Total Energy 21559.53 7543.02 1.00 0.98 
Predicted Total Energy 21647.74 7466.96 0.98 1.00 
Observed Room Temp 71.93 0.91 1.00 0.94 
Predicted Room Temp 71.93 0.95 0.94 1.00 
Observed Room Humd 55.41 8.51 1.00 0.99 
Predicted Room Humd 55.33 8.32 0.99 1.00 
Observed Room CO2 401.54 27.32 1.00 0.94 
Predicted Room CO2 401.41 24.12 0.94 1.00 
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5.5. Model formulation and solving  

5.5.1 Single-objective optimization model formulation and solving  

A single-objective optimization model minimizing the total energy is formulated in (5.5). 

The decision variables are supply air temperature setpoint and static pressure setpoint.  

                                                                                                                     (5.5) 

2 3( ), ( )
min

subject to: 
x t x t

Obj

1 ( )Obj y t= 1 ( )y t

1

2

3

      50 ( ) 65
      1.2 ( ) 1.8

x t
x t

≤ ≤
≤ ≤

where , is the total energy model built in the Section 5.4. The canonical 

particle swarm optimization (PSO) algorithm mentioned in Chapter 4.5 is conducted. Table 5.5 

illustrates an instance of the single-objective optimization model. 

Table 5.5. Instance used in single-objective optimization 

xParameter ( 1)t − 1 x ( )t 2 x ( )t 3 x ( )t 1 ( )v t 2 ( )v t 3 ( )v t 4 ( )v t 5 ( )v t 6 ( )v t 7 ( )v t  

Value Stage 1 Stage 
4 63.00 1.40 42.20 2.65 81.47 204.01 13.77 66.89 308.11

 
 
 

To solve this single-objective model, the initial population size is set at 100 and the 

maximum number of iterations at 50, which is sufficient to converge. The optimal values of x2 ( )t

3 ( )and x t in this instance are 54.65 and 1.20, respectively. The minimal total energy is 17167.44 

kJ. Since the models of facility temperature, relatively humidity, and CO2 concentration have 

been constructed in Section 5.4, the corresponding AQI indexes can be obtained by replacing the 

original control settings with the optimal ones. The facility temperature is 77.85 °F (25.47°C), 

facility relative humidity is 46.29%, and CO2 concentration is 454.06 ppm. In the experiment, 

the facility temperature cooling setpoint was 72 °F (22.22°C), and heating setpoint was 70 °F 

(21.11°C). Using the optimized control settings, the total energy is minimized while the facility 

temperature is outside the acceptable level. Therefore, a trade-off between the energy 
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consumption and the AQI index needs to be accomplished by constructing a multiple objective 

optimization model.    

5.5.2 Formulation and solving of the quad-objective optimization 
model  

The generalized multi-objective optimization model is presented in (5.6) [57]: 

jg ( ) 0   1,...,
subject to: 

( ) 0   1,...,

i o

k

                  min ( ) 1,..., bjf x i N

x j M

h x k K

                          

=

= =⎧⎪
⎨

≤ =⎪⎩                                                           (5.6) 

 where if  refers to the objective function, thi x is the decision variable, and indicates the 

number of objectives. Several objectives are optimized simultaneously while decision variables 

should satisfy the equality and inequality constraints.  

objN

In the multi-objective optimization model constructed in this section, the AQI constraints 

are considered and then the original non-constrained optimization model is transformed into a 

constrained optimization model in (5.7).  

                                           (5.7) 

2 3

1
( ), ( )

1 1 1 1 2 3 1 2 3 4 5

2 2 1 1 2 3 1 2 3 4 5

3 3 1 1 2 3 1

subject to:
( ) ( ( ), ( 1), ( ), ( ), ( ), ( ), ( ), ( ), ( ))
( ) ( ( ), ( 1), ( ), ( ), ( ), ( ), ( ), ( ), ( ))

( ) ( ( ), ( 1), ( ), ( ), ( )

x t x t

y t f x t x t x t x t v t v t v t v t v t
y t f x t x t x t x t v t v t v t v t v t

y t f x t x t x t x t v t

= −

= −
= − 2 3 4 5 6

4 4 1 1 2 3 1 2 3 4 5 7

2

3

2

3

4

, ( ), ( ), ( ), ( ), ( ))
( ) ( ( ), ( 1), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ))

50 ( ) 65
1.2 ( ) 1.8

70.5 ( ) 71.5
49 ( ) 51

395 ( ) 405

v t v t v t v t v t
y t f x t x t x t x t v t v t v t v t v t v t

x t
x t
y t
y t
y t

= −

≤ ≤
≤ ≤

≤ ≤
≤ ≤

≤ ≤

min ( )y t

Let Ob , ,

and

11 (j y t=

max[0,49 y= −

) 2 22 max[0,70.5 ( )] max[0, ( ) 71.5]Obj y t y t= − + −

3 3( )] max[0, ( ) 51]t y t+ − 4 max[0,395Obj y3Obj 4 4( )] max[0, ( ) 405]t y t= − + − , the 

constrained optimization model (13) is transformed into an unconstrained quad-objective 

optimization model (5.8). 
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                                                       (5.8) 

2 3( ), ( )

1

2 2

3 3

4 4

2

3

min( 1, 2, 3, 4)

where:
1 ( )

2 max[0,70.5 ( )] max[0, ( ) 71.5]
3 max[0, 49 ( )] max[0, ( ) 51]

4 max[0,395 ( )] max[0, ( ) 405]
50 ( ) 65
1.2 ( ) 1.8

x t x t
Obj Obj Obj Obj

Obj y t
Obj y t y t

Obj y t y t
Obj y t y t

x t
x t

=
= − + −
= − + −

= − + −
≤ ≤
≤ ≤

 

Evolutionary computation algorithms are natural candidates for solving multi-objective 

optimization models [58]. Fonsecan et al. [59] classified them into three categories: aggregation-

based, non-Pareto, and Pareto-based approaches. Unlike other evolutionary computational 

algorithms, Particle Swarm Optimization (PSO) algorithm is a stochastic optimization technique 

inspired by bird flocks. As one of the swarm intelligence algorithms, PSO is able to search for 

global and local solutions. The canonical PSO is usually applied for solving single-objective 

optimization models. In this paper, a modified PSO based on two levels of non-dominated 

solutions is used. In contrast to the canonical PSO usually used for solving the single-objective 

models, the Pareto-optimality concept is incorporated into the algorithm to expand its capability 

to handle models with several conflicting objectives.  

Pareto optimality is defined next [25]. Assume 1( ) ( ( ),... ( ))
objNF x f x f x= . A decision variable ux is 

said to be Pareto-optimal, if and only if, there is no vx for which 1) ( ,..., )
objvx v v(v F N= =  dominates 

. In other words, there is no 1( ) ( ,..., )uu F x u u= = vx such that 
objN

{1,..., },obj i ii N v∀ ∈ < u                                                                    (5.9) 

The set of all Pareto-optimal decision vectors is called the Pareto-optimal, while the 

corresponding set of objective vectors is called the non-dominated set.  

The canonical PSO algorithm has been modified to make it applicable for solving the 

multi-objective optimization model.  

Modification I: Generation of non-dominated solutions  
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Establish a storage set for each particle to store the non-dominated solutions at every 

iteration. Establish a storage set G  to store the non-dominated solutions of  produced at every 

iteration. Create an external set 

iS ix

iS

E to store the non-dominated solutions ofG produced at every 

iteration. 

Modification II: Update of non-dominated solutions 

At each iteration, for every local non-dominated set , compare the current iteration 

particle solution and the solutions from in the previous iterations. Remove the dominated 

solutions and store the non-dominated. At each iteration, for the global non-dominated set G , 

copy all local non-dominated sets into the global non-dominated set. Select and keep the non-

dominated solutions only.  At each iteration, for external non-dominated set 

iS

E , copy the global 

non-dominated set G to E . Compare the solutions and keep the non-dominated ones only. 

Modification III: Generation of local and global best solutions  

At each iteration, for each particle, compute the Euclidean distance between every pair of 

local non-dominated and global non-dominated solution. The pair with minimum distance in the 

objective value space is selected as the local and global best. For the corresponding particle 

velocity and position are updated. 

The MOPSO algorithm determines a set of non-dominated solutions of the quad-

objective model (14). Figure 5.5 illustrates the solution generation process in two dimensions 

(the objective values), rather than the original four dimensional space which is not able to be 

graphically interpreted. The solutions can be interpreted from the plots in Figure 5.5. For 

example, in the upper left corner of Figure 5, solutions having both small values of and 

are included. However, in the  and  space, the corresponding value of  is much 

larger.  

1Obj 2Obj

1Obj 3Obj 3Obj
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Figure 5.5. Two dimensional solution spaces  

 

Figure 5.6. The solution process 

Figure 5.6 illustrates the search process. The asterisks are the elite set solutions at early 

iterations. The circles are the elite set solutions at a later stage of the search process. As the 

number of iterations has increased, most asterisks and dots tend to move towards the bottom-left 
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corner. This indicates that the many newly generated solutions dominate the old ones in the 

space of objective values.  

5.5.3 Weight assignment and solution selection 

The optimal solution is selected from the final elite set by the weighted normalized 

objective function (5.10). 

    
min min min min

1 2 3 4
max min max min max min max min1 1 2 2 3 3 4 4

Obj w w w w
Obj Obj Obj Obj Obj Obj Obj Obj

= + + +
− − −

1 1 2 2 3 3 4 4Obj Obj Obj Obj Obj Obj Obj Obj− − − −
−

4

4

   (5.10) 

where are the user-defined weights indicating the importance of the corresponding 

objective, and  and are the maximum and the minimum values of in the final 

elite set. Similar notation is used for and Ob . Note that

, with being either constants or functions of other objectives. 

1 2 3, , ,w w w w

1Obj

1= w w

max

1 2, ,

min1Obj

4

1Obj

min4jmax2Obj min2Obj max3Obj min3Obj max4Obj

1
m

m

w
=
∑ 3 ,w w

Table 5.6 presents eight scenarios representing different assignments of weights to the 

objectives. Weights vary within different preference bounds associated with the AQI indexes, 

, , . Scenario 1 is equivalent to the single objective 

optimization problem without considering the AQI constraints. Scenario 2-4 represent that each 

factor in the AQI constraints has equal importance of energy. The original problem is 

transformed into a bi-objective optimization problem. Scenario 5-7 assigns equal weights to the 

two components of the AQI constraints and the energy, which result in a three-objective 

optimization model. In Scenario 8, a four-objective optimization model is constructed by 

assigning equal weights to each objective. 

[70.5,71.5]AΘ = [49,51]BΘ = [395, 405]CΘ =
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Table 5.6. Description of the eight weight assignment scenarios. 

Scenario Weights of four objectives Description

1 1 2 3 41, 0, 0, 0w w w w= = = =  No AQI constraints 

2    
1 2 3 4

1       obj2 0       obj2
, , 0, 0

0.5    obj2 0.5    obj2
A A
c c
A A

w w w w
∈Θ ∈Θ⎧ ⎧⎪ ⎪= = = =⎨ ⎨
∈Θ ∈Θ⎪ ⎪⎩ ⎩

Preference bound for 
facility temperature 

3    
1 2 3, 0, ,

0.5    obj3 0.5    obj3
B
c
B

w w w
⎧ ⎧⎪ ⎪= = =⎨ ⎨

∈Θ ∈Θ⎪ ⎪⎩ ⎩
4

1       obj3 0       obj3
0B

c
B

w
∈Θ ∈Θ

= Preference bound for 
facility humidity 

4    
1 2 3 4, 0, 0,

0.5    obj4 0.5    obj4
C C
c
C C

w w w w
⎧ ⎧⎪ ⎪= = = =⎨

∈Θ ∈Θ⎪⎩

1       obj4 0       obj4
c

∈Θ ∈Θ
⎨
⎪⎩

Preference bound for 
facility CO2 

5 

1 2

1         obj2 ,obj3 0        obj2 ,obj3

0.5      obj2 ,obj3 0        obj2 ,obj3
,

0.5      obj2 ,obj3 0.5     obj2 ,obj3

A B

A B
c c
A B

w w

∈Θ ∈Θ ∈Θ ∈Θ⎧
⎪

∈Θ ∈Θ ∈Θ ∈Θ⎪= =⎨
∈Θ ∈Θ ∈Θ ∈Θ⎪

⎧
⎪
⎪
⎨
⎪

0.33    obj2 ,obj3 0.33    obj2A B∈Θ ∈Θ ∈⎩

3 4

, obj3

0         obj2 ,obj3

0.5      obj2 ,obj3
, 0

0         obj2 ,obj3

0.33     obj2 ,obj3

A

A B
c

A B
c
A B
c c
A B

w w

A B
c c

A B

A B
c c⎪ c c

B
⎪ Θ ∈Θ⎩

∈Θ ∈Θ⎧
⎪

∈Θ ∈Θ⎪= =⎨
∈Θ ∈Θ⎪

⎪ ∈Θ ∈Θ⎩  

Preference bound for 
facility temperature and 

preference bound for 
facility humidity  

6 

1 2

1         obj3 ,obj4

0.5      obj3 ,obj4
, 0

B C
c

B C

cw w

∈Θ ∈Θ⎧
⎪

∈Θ ∈Θ⎪= =⎨

3

0        obj3 ,obj4

0        obj3 ,obj4

0.5     obj3 ,obj4

0.33    o

B C

B C
c

B C

c
B C

w

⎩
∈Θ ∈Θ

∈Θ ∈Θ
=

∈Θ ∈Θ 4

0         obj3 ,obj4

0.5      obj3 ,obj4
,

0         obj3 ,obj4

bj3 ,obj4 0.33     obj3 ,obj4

0.5      obj3 ,obj4

0.33    obj3 ,obj4
B C

c c

∈Θ ∈Θ⎪
⎪ ∈Θ ∈Θ

B C
c

B C

c
B C

c c c c
B C B

w

C

∈Θ ∈Θ⎧ ⎧
⎪ ⎪

∈Θ ∈Θ⎪ ⎪=⎨ ⎨
∈Θ ∈Θ⎪ ⎪

⎪ ⎪∈Θ ∈Θ ∈Θ ∈Θ⎩ ⎩   

Preference bound for 
facility temperature and 

preference bound for 
facility CO2 
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Table 5.6. --continued 
 

7 

1 2

1         obj2 ,obj4 0        obj2 ,obj4

0.5      obj2 ,obj4 0        obj2 ,obj4
,

0.5      obj2 ,obj4 0.5     obj2 ,obj4

0.33    obj2 ,obj4 0.33    obj2

A C A

c c
A C A C

c c
A C A C

c c
A C

w w

∈Θ ∈Θ ∈Θ ∈Θ⎧
⎪

∈Θ ∈Θ ∈Θ ∈Θ⎪= =⎨
∈Θ ∈Θ ∈Θ ∈Θ⎪

⎪ ∈Θ ∈Θ ∈⎩

3 4

,obj4

0         obj2 ,obj4

0.5      obj2 ,obj4
0,

0         obj2 ,obj4

0.33     obj2 ,obj4

c
A

A C

c
A C

c
A C

c c
A C

w w

⎧
⎪
⎪
⎨
⎪
⎪

C

c
CΘ ∈Θ⎩

∈Θ ∈Θ⎧
⎪

∈Θ ∈Θ⎪= = ⎨
∈Θ ∈Θ⎪

⎪ ∈Θ ∈Θ⎩   

Preference bound for 
facility humidity and 
preference bound for 

facility CO2 

8 

1

1         obj2 ,obj3 ,obj4

0.33    obj2 ,obj3 ,obj4

0.33    obj2 ,obj3 ,obj4

0.33    obj2 ,obj3 ,obj4

0.5      obj2 ,obj3 ,obj4

0.5      obj2 ,obj3 ,obj4

A B C
c c

A B C

c c
A B C
c c
A B C

c
A B C

c
A B

w

∈Θ ∈Θ ∈Θ

∈Θ ∈Θ ∈Θ

∈Θ ∈Θ ∈Θ

∈Θ ∈Θ ∈Θ
=

∈Θ ∈Θ ∈Θ

∈Θ ∈Θ ∈Θ

2
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The solutions at some time stamp for each of the eight scenarios are shown in the Table 

5.7. After assigning different weights to the objectives, the multi-objective optimization model is 

transformed into a single objective model to be minimized with the objective function shown in 

(5.10). Scenario 1 has the lowest total energy consumption as the AQI constraints are not 

considered. As additional constraints are included, the total energy consumption is affected.    
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Table 5.7. Solutions for the eight scenarios at some time stamp 

Scenario 1 2 3 4 5 6 7 8 

Total energy 25449.
47 

26053.
00

26822.
61

25865.
57

26833.
86

26822.
61 

26391.
62 

26833.
86

Recommended SA settings 51.21 50.67 54.56 52.59 52.99 54.56 52.47 52.99 
Recommended SP settings 1.77 1.55 1.75 1.78 1.56 1.75 1.61 1.56 

Corresponding facility 
temperature 72.12 72.01 72.10 72.12 72.02 72.10 72.03 72.02 

Corresponding facility 
humidity 43.74 42.84 48.46 45.39 45.82 48.46 45.27 45.82 

Corresponding facility CO2 
concentration 375.72 364.89 406.45 401.85 402.85 406.45 395.35 402.85

 

5.6. Optimization results and discussion  

Data set 4 in Table 5.1 is used for optimization since most of the points are out of control. 

The room temperature and room humidity in the optimization data set can be maintained in the 

restricted range to meet the system load. The MOPSO algorithm of Section 5.5.2 is employed to 

solve the quad-objective optimization model (5.8). The initial population size is set to 100 while 

the maximum number of iterations is set at 50. The recommended control settings are Scenario 8 

described in Table 5.7. Figures 5.7 and 5.8 compare the original and recommended control 

settings of the supply air temperature and the static pressure.  
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Figure 5.8. The original and recommended setpoints of the supply air static pressure  

Based on the optimal control settings, the corresponding total energy consumption and 

the facility air quality metrics are estimated using the energy and the AQI models of Section 5.4. 

Figures 5.9 to 5.12 compare the original and optimized energy as well as the AQI indexes.   
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Figure 5.9. The original and the optimized total energy 

 

 
 



84 
 

71

72

73

74

75

76

77

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

R
oo

m
 te

m
pe

ra
tu

re
 [°

F]

Optimized room temperature (senario 8) Original room temperature  

Figure 5.10. The original and the optimized facility temperature 

40

45

50

55

60

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

R
oo

m
 re

la
tiv

e h
um

id
ity

 [R

 

65

70

H
]

Optimized room relative humidity (senario 8) Original room relative humidity

Figure 5.11. The original and the optimized facility relative humidity 

 
 



85 
 

 

350

370

390

410

430

450

470

490

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

R
oo

m
 C

O
2 

co
nc

en
tra

tio
n 

[p
pm

]

Optimized room CO2 concentration (senario 8) Original room CO2 concentration

Figure 5.12. The original and the optimized facility CO2 concentration 

Figure 5.9 demonstrates that the optimized total energy consumption is relatively stable. 

It is not uniformly smaller than original energy due to the fact that the total energy is minimized 

in one objective. The corresponding values of the AQI indexes (within the allowable ranges) are 

presented in Figure 5.10 through 5.12. At times, the energy minimization objective is 

compromised in order to maintain the required values of AQI. Consider all three AQI constraints, 

the total energy saved for the 77 out-of-control points is 12.4% compared to 17.4% with no AQI 

constraints included.  

5.7. Summary 

Data-mining algorithms were applied to model the nonlinear relationship among the 

energy consumption, AQI indexes, control settings, and uncontrollable variables.  The Multilayer 

Perceptron (MLP) ensemble algorithm performed better than any of the seven algorithms and it 

was selected to build the total energy model and three AQI models. To minimize the total energy 

consumption while maintaining AQI indexes within acceptable ranges, a single-objective 

optimization model was generalized to a quad-objective optimization model. A modified 

Multiple Objective Particle Swarm Optimization (MOPSO) algorithm was employed to optimize 
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control settings of the supply air temperature and the static pressure. A trade-off between the 

total energy consumption and preserving AQI indexes was optimized in response to different 

patterns of the internal load and uncontrollable variables. The total energy savings for the data 

set considered in this paper was 17.4% in the case where the AQI constraints were not 

considered and 12.4% when the AQI constraints were applied for one of the eight user 

preference scenarios (Scenario 8). Optimization results demonstrated that that a proper balance 

between the energy savings and the AQI indexes can be accomplished in by representing the 

preference of occupants with the weights used in the objective function.  
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CHAPTER 6 

CONCLUSION 

The thesis is focused on the evolutionary computation in HVAC system modeling and 

optimization. Chapter 2 mainly introduces a clustering-based model to construct the predictive 

models. Neural network is applied to establish the relation between inputs and outputs. The 

proposed model is demonstrated to be both effective in modeling and short-term prediction. The 

computational cost is reduced by applying the clustering method.  

Chapter 3 applies the evolutionary computation on a multi-objective optimization 

problem. A bi-objective problem is transformed from a three-objective function and solved by 

the SPEA. The results show that the HVAC system can be optimized by implementing the 

optimal control settings and a large amount of energy can be saved with the IAQ maintained at 

an acceptable level. 

In Chapter 4, a single objective optimization algorithm is employed to optimize the 

HVAC components separately. The energy consumption of each component is shown. Although 

the energy use increases for some components (fan, pump), the overall performance is improved 

by using the optimized settings. The analysis and discussion of IAQ metrics and the setpoint 

adjustment time frequency are also discussed. 

Chapter 5 employs a multi-objective particle swarm optimization algorithm to optimize 

the overall performance of the existing HVAC system. A trade-off between energy saving and 

AQI maintenance is addressed in detail. A linear operation strategy is presented for the 

management of the system. It is demonstrated that a proper balance between the energy savings 

and the AQI indexes can be accomplished by representing the preference of occupants with the 

weights used in the objective function. 
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The future research will try to construct an adaptive dynamic model of the HVAC system. 

Some statistical components will involve in the integration of existing data-driven models. The 

practical application, computation cost, and lean management will be also considered.   
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