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ABSTRACT

The primary objective of this study is to develop new computational methods

for solving a general random eigenvalue problem (REP) commonly encountered in

modeling and simulation of high-dimensional, complex dynamic systems. Four major

research directions, all anchored in polynomial dimensional decomposition (PDD),

have been defined to meet the objective. They involve: (1) a rigorous comparison

of accuracy, efficiency, and convergence properties of the polynomial chaos expan-

sion (PCE) and PDD methods; (2) development of two novel multiplicative PDD

methods for addressing multiplicative structures in REPs; (3) development of a new

hybrid PDD method to account for the combined effects of the multiplicative and

additive structures in REPs; and (4) development of adaptive and sparse algorithms

in conjunction with the PDD methods.

The major findings are as follows. First, a rigorous comparison of the PCE

and PDD methods indicates that the infinite series from the two expansions are

equivalent but their truncations endow contrasting dimensional structures, creating

significant difference between the two approximations. When the cooperative effects

of input variables on an eigenvalue attenuate rapidly or vanish altogether, the PDD

approximation commits smaller error than does the PCE approximation for identical

expansion orders. Numerical analysis reveal higher convergence rates and significantly

higher efficiency of the PDD approximation than the PCE approximation. Second,

two novel multiplicative PDD methods, factorized PDD and logarithmic PDD, were

v



developed to exploit the hidden multiplicative structure of an REP, if it exists. Since

a multiplicative PDD recycles the same component functions of the additive PDD, no

additional cost is incurred. Numerical results show that indeed both the multiplica-

tive PDD methods are capable of effectively utilizing the multiplicative structure of

a random response. Third, a new hybrid PDD method was constructed for uncer-

tainty quantification of high-dimensional complex systems. The method is based on

a linear combination of an additive and a multiplicative PDD approximation. Nu-

merical results indicate that the univariate hybrid PDD method, which is slightly

more expensive than the univariate additive or multiplicative PDD approximations,

yields more accurate stochastic solutions than the latter two methods. Last, two novel

adaptive-sparse PDD methods were developed that entail global sensitivity analysis

for defining the relevant pruning criteria. Compared with the past developments,

the adaptive-sparse PDD methods do not require its truncation parameter(s) to be

assigned a priori or arbitrarily. Numerical results reveal that an adaptive-sparse PDD

method achieves a desired level of accuracy with considerably fewer coefficients com-

pared with existing PDD approximations.
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CHAPTER 1
INTRODUCTION

1.1 Background and Motivation

Random eigenvalue problems (REPs) are concerned with determining the

probabilistic characteristics of eigenvalues and eigenvectors of random matrices [2].

First introduced by Wishart [3] in 1928, random matrices are the matrices that are

completely defined by statistical distributions. The study of random matrices gained

prominence in the 1950s, spurred by Wigner’s [4] pioneering work in nuclear physics.

The mathematical foundation of the random matrix theory was later established in

a series of landmark papers by Wigner [5], Mehta [6], and Dyson [7]. A comprehen-

sive account of random matrices can be found in Mehta’s seminal work [8]. Random

matrices have far-reaching applications in fields as diverse as quantum physics [9–11],

number theory [12–14], multivariate statistics [15–17], graph theory [18, 19], signal

processing and communication [20, 21], finance [22, 23], computational biology [24],

and, of course, mechanics [25–38].

In mechanics, random matrices prominently appear in structural dynamics and

structural stability, among others. The solutions may represent oscillatory modes of a

mechanical system, bifurcation and instability of a structure, disposition of electrons

around an atom or a molecule, acoustic modes of a concert hall, and numerous other

physical quantities of interest. The evaluation of modal frequencies and buckling

capacity of mechanical systems involves solution of eigenvalue problems for stochastic



2

differential operators and stochastic matrices. The randomness in these operators or

matrices comes from the statistical variability of material properties, system geometry,

and boundary conditions. The texts by Boyce [29] and Scheidt and Purkert [26], as

well as the papers by Ibrahim [32], Benaroya [27], Manohar and Ibrahim [34], and

others [28, 37, 38], are useful information sources on early work in this research area

and also provide a systematic account of various approximate methods for solving

REPs. Some later works, for example those by Nair and Keane [36], Pradlwarter

and Schuëller [39], Adhikari [25] and Rahman [40–42], summarize current progress,

including developments of new computational methods. Indeed, studying REP has

been identified as an important research topic in the field of stochastic mechanics [43].

For practical problems, an REP may encounter very large matrices. Due to

domain discretization by the finite element method (FEM), random matrices contain-

ing millions to billions of degrees of freedom are not uncommon. Such systems also

depend on a very large number, say 100 or 1000, of random input parameters. Dealing

with such large-dimensional input parameters involves encountering the curse of di-

mensionality, the phenomenon in which the computational effort grows exponentially

with respect to the dimension. Most of the existing methods for solving REPs have

major limitations in handling such large and complex systems. Taylor series or per-

turbation methods [29,37,38] and the polynomial chaos expansion (PCE), introduced

by Wiener [44], are the two most popular methods among the existing approximation

methods for solving REPs. The perturbation methods involve first- or second-order

Taylor series expansions of the eigenvalue or eigenvector in terms of the input random
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parameters. These methods have two major limitations: the variability or random-

ness in the input parameters should be small, and the non-linearity of the random

eigenvalues and eigenvectors with respect to the input parameters must also be small.

These two limitations pose a major hurdle in applying the perturbation method to

large-scale REPs, since the engineering problems could have both: input parameters

with large variability and a system with high non-linearity. The PCE method is a

promising method available today for dealing with engineering REPs. This method

is based on the expansion of the eigenvalue and eigenvector with respect to the in-

put parameters with increasing order. For a high-dimensional problem, again, this

method succumbs to the curse of dimensionality, as its computational requirements

increase at a prohibitively fast pace with respect to the dimension. Furthermore,

most existing methods, including the Taylor expansion and PCE method, delve into

calculating only the second moment statistics of eigensolutions. The resultant tail

probabilistic characteristics, highly important for reliability analysis and design, have

not been adequately scrutinized. The major motivation for this work is to develop

methods of solving REPs that can address the two biggest limitations of the present

methods: (1) countering the curse of dimensionality to some extent, and (2) calcu-

lating the statistical moments as well as rare event probabilities of eigenvalues and

eigenvectors with high accuracy and/or high efficiency.
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1.2 Objective of the Study

The primary objective of this study is to develop new computational meth-

ods for solving a general REP commonly encountered in modeling and simulation of

high-dimensional complex dynamic systems. Four major research directions, all an-

chored in polynomial dimensional decomposition (PDD), have been defined to meet

the objective. They involve: (1) a rigorous comparison of accuracy, efficiency, and

convergence properties of the PCE and PDD methods; (2) development of two novel

multiplicative PDD methods for addressing multiplicative structures in REPs; (3)

development of a new hybrid PDD method to account for the combined effects of the

multiplicative and additive structures in REPs; and (4) development of adaptive and

sparse algorithms in conjunction with the PDD methods.

1.3 Overview of the Thesis

The thesis proposal is organized as follows. Chapter 2 presents the prelimi-

naries of probability theory. This chapter also discusses the state-of-the-art review of

the existing methods for solving REPs. A brief review of the cutting-edge numerical

algorithms of eigenvalue analysis is also presented. Finally, the needs for fundamental

research are outlined.

Chapter 3 presents a rigorous comparison of the PCE and PDD methods for

solving REPs. Five numerical examples are presented to illustrate the differences in

accuracy, efficiency, and convergence properties of the two methods.

Chapter 4 introduces two novel multiplicative decomposition methods for solv-
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ing REPs. Two variants of the multiplicative decomposition were developed: the

factorized PDD (F-PDD) method and the logarithmic PDD (L-PDD) method. Three

numerical examples were solved by the proposed methods, and the results are com-

pared with the existing additive PDD (A-PDD) method. The proposed method was

applied to obtain random eigensolutions of a high-dimensional vehicle dynamics prob-

lem.

Chapter 5 presents a new hybrid PDD method, developed as a linear combina-

tion of additive PDD and multiplicative PDD. Two numerical examples were solved by

the proposed method, and the performance of hybrid PDD in determining the prob-

abilistic characterisitics of random functions was compared with the performance of

additive and multiplicative PDD methods. The proposed method was applied for

stochastic eigenvalue analysis entailing high-dimensional coupled acoustic-structural

behavior of a pickup truck.

Chapter 6 presents a new adaptive-sparse PDD method. This chapter also

presents an efficient sparse-grid integration technique for performing high-dimensional

numerical integrations encountered in calculating the PDD expansion coefficients.

Three numerical examples were solved to illustrate the accuracy, efficiency, and cover-

gence of the new method. The proposed method was applied for stochastic eigenvalue

analysis of a high-dimensional disk brake system.

Finally, conclusions are drawn and future research directions are suggested in

Chapter 7.



6

CHAPTER 2
STATE-OF-THE-ART REVIEW

This chapter presents existing mathematical theories, methods, and algo-

rithms, elucidating those widely employed for solving REPs, and then discusses the

need for fundamental research. Section 2.1 presents the preliminaries of probability

theory. The REP is defined along with its applications in dynamical systems in Sec-

tion 2.2. Section 2.3 contains the state-of-the-art review of the existing methods for

solving REPs. A brief review of the cutting-edge numerical algorithms of eigenvalue

analysis is presented in Section 2.4. Finally, the needs for fundamental research are

outlined in Section 2.5.

2.1 Mathematical Preliminaries

Modeling of any engineering phenomenon while incorporating the inherent

randomness requires a thorough understanding of probability theory. This section

presents some fundamentals of probability theory that are imperative and relevant

for solving any REP.

2.1.1 Probability space

Each time a random experiment is performed, there are a number of possible

outcomes. The sample space Ω of a random experiment is a collection of all possible

outcomes of the random experiment. The σ-field (or σ-algebra) F is a non-empty

collection of subsets of Ω that satisfy the following:
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1. The empty set ∅ ∈ F .

2. Any event A ∈ F , then AC ∈ F .

3. If Ai ∈ F is a countable sequence of sets, then ∪iAi ∈ F .

The probability measure P is a set function defined on F that has the following

properties:

1. For any event A in F , 0 ≤ P (A) ≤ 1.

2. P (Ω) = 1, and P (φ) = 0, where φ denotes the empty set.

The probability space is defined as a triple (Ω,F , P ) where Ω is the set of outcomes,

F is the set of events, and P : F → [0, 1] is a function that assigns probabilities to

the events. A special case of σ-field F is the Borel σ-field B that is generated by the

collection of open sets of a space Ω [31].

2.1.2 Random variable

Consider a probability space (Ω,F , P ); then every elementary event ω ∈ Ω

has an associated real number X(ω) called the random variable in (Ω,F , P ). For

a continuous random variable X, the cumulative distribution function (CDF), or

just the distribution function, denoted by FX (x), describes the probability that the

real-valued random variable X will be found at a value less than or equal to x,

i.e., FX (x) := P (X ≤ x), and the probability density function (PDF) fX (x) :=

dFX (x) /dx. The probability for the random variable to fall within a particular

region is given by the integral of this variable’s PDF over the region, i.e., P [a ≤ X ≤

b] =
∫ b
a
fX(x) dx where a ∈ R, b ∈ R, b > a. The probability density function is
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nonnegative everywhere, and its integral over the entire space is equal to one. The

lth statistical moment of a random variable is defined as

ml = E
[
X l
]

=

∫
R
xl fX(x) dx, (2.1)

where E is the expectation operator, and the integral is a definite integral taken for

x over the range of X. The first moment m1 of a random variable X is called its

mean µX := E [X] :=
∫
R x fX(x) dx. The variance of X, σ2

X is its second moment

about the mean µX and is defined as σ2
X := E

[
(X − µx)2] :=

∫
R (x− µx)2 fX(x) dx;

here σX is called the standard deviation of X. Generally, the first two moments along

with the PDF define the probability distribution of a random variable. This research

involves systems with random input parameters following a variety of probability

distributions like uniform, normal, lognormal, beta, etc., details of which can be

found in the literature [45].

2.1.3 Random vectors

A random vector, also known as a multivariate random variable, is a column

vector X = {X1, . . . , XN}T, whose components X1, . . . , XN are scalar-valued random

variables on the same probability space (Ω,F , P ). The joint CDF, denoted by FX(x),

of X is defined by the mapping X : Ω → RN and the probability measure P , i.e.,

FX (x) := P
(
∩Ni=1 {Xi ≤ xi}

)
. If FX(x) is such that fX(x) = ∂NFX(x)/∂x1 · · · ∂xN

exists, then fX is called the joint PDF of X. The random variables belonging to a

random vector are said to be independent when their joint PDF fX(x) is a product

of their marginal PDFs, i.e., fX(x) =
∏N

i=1 fXi
(xi). The expected value or mean µX
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of a random vector X is a fixed vector E(X) whose elements are the expected values

of the respective random variables.

The covariance matrix, ΣX := E
[
(X − µX) (X − µX)T

]
, of a random vector

is an N × N matrix whose i, j element is the covariance between the ith and the

jth random variables. The covariance between the ith and the jth random variables

is defined as Cov(Xi, Xj) := E [(Xi − µi) (Xj − µj)]. The variance of Xi is the ith

diagonal element of ΣX . The correlation coefficient, ρij := Σij/(σiσj), where σi 6= 0,

σj 6= 0, between two random variables Xi and Xj measures the extent to which, as

one variable increases, the other variable tends to increase. When Xi and Xj are

independent, then Xi and Xj are uncorrelated, i.e., ρij = 0. But if Xi and Xj are

uncorrelated, then Xi and Xj are not necessarily independent.

2.1.4 Hilbert space

A Hilbert space is an abstract vector space possessing the structure of an

inner product that allows length and angle to be measured. Hilbert spaces arise nat-

urally and frequently in mathematics, physics, and engineering, typically as infinite-

dimensional function spaces. A particular type of Hilbert space is the L2-space, which

is defined as the set of all functions f : RN → R such that the integral of the square of

the absolute value of the function is finite, i.e.,
∫

Ω
|f(x)|2 fX(x)dx <∞. In this case,

the inner product 〈f, g〉 :=
∫

Ω
f(x)g(x)fX(x)dx exists and is finite. In other words,

in vectorial space L2(Ω,F , P ), the real random variables X ∈ L2 exist with a finite

second moment, i.e., E[X2
i ] <∞, i = 1, . . . , N , and E[XiXj] <∞, i, j = 1, . . . , N .
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2.1.5 Random field

Consider a probability space (Ω,F , P ), where Ω is the sample space, F is the

σ-field of subsets of Ω, and P is the probability measure. A random field α(x) on

the probability space (Ω,F , P ), is a collection of random variables indexed by a k-

dimensional continuous parameter x ∈ D ⊂ Rk, where D is an open set describing the

system geometry. For a given point x in D, α(x) is a random variable. A random field

is called weakly homogeneous if the mean and the standard deviation are constant

and the covariance function is only a function of the difference, x2−x1, between two

points x1 and x2.

One of the major requirements for incorporating a random field in a discrete

model like the finite element (FE) model is to discretize the continuous random field.

Such discretization is commonly achieved by the Karhunen-Loève (K-L) represen-

tation of the random field. Let (Ω,F , P ) be a probability space. Defined on the

probability space and indexed by a spatial coordinate x ∈ D ⊂ RK , K = 1, 2, or

3, consider a real-valued random field α(x) with mean zero and covariance function

Γ(x1,x2) ≡ E[α(x1)α(x2)], which is continuous over D. Denote by L2(Ω,F , P ), or

simply L2, a collection of random variables α for each x ∈ D such that E[|α|2] <∞.

If α is in L2, then Γ(x1,x2) is a square integrable and hence a bounded function.

Let {βi, gi(x)}, i = 1, 2, . . . ,∞, be the eigenvalues and eigenfunctions of Γ(x1,x2),

which satisfy the integral equation

∫
D

Γ(x1,x2)gi(x2)dx2 = βigi(x1), ∀i = 1, 2, . . . ,∞. (2.2)
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The eigenfunctions are orthogonal in the sense that

∫
D
gi(x)gj(x)dx = δij, ∀i, j = 1, 2, . . . ,∞, (2.3)

where δij is the Kronecker delta. The K-L representation of α(x) is

α(x) =
∞∑
i=1

Vi
√
βigi(x), (2.4)

where Vi, i = 1, . . . ,∞ is an infinite sequence of uncorrelated random variables, each

of which has zero mean and unit variance. In practice, the infinite series of Equation

(2.4) must be truncated, yielding a K-L approximation or expansion

α̂N(x) =
N∑
i=1

Vi
√
βigi(x), (2.5)

which approaches α(x) in the mean square sense for x ∈ D as N →∞. According to

Equation (2.5), the K-L expansion provides a parametric representation of a random

field with N random variables.

The K-L expansion requires solution of an integral eigenvalue problem (Equa-

tion (2.2)), which is not an easy task in general. Closed-form solutions are only avail-

able when the covariance kernel has simpler functional forms, such as exponential and

linear functions, or when domain D is rectangular [46–48]. Appendix A, for instance,

describes the analytical solution for univariate random field and exponential covari-

ance function. For arbitrary covariance functions or arbitrary domains, the FEM is

often used to solve the eigenvalue problem. More recently, mesh-free and wavelet

methods have been exploited in solving the integral eigenvalue problem [47,48].
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2.2 What is an REP?

Let (Ω,F , P ) be a complete probability space, where Ω is a sample space, F is a

σ-field on Ω, and P : F → [0, 1] is a probability measure. Let RN and CN be

N -dimensional real and complex vector spaces, respectively, and RN×N a set of all

N × N , real-valued matrices. With BN representing a Borel σ-field on RN and E

the expectation operator on (Ω,F , P ), consider an RN -valued, independent, input

random vector {X = {X1, · · · , XN}T : (Ω,F)→ (RN ,BN)}, which has mean vector

µX := E[X] ∈ RN , covariance matrix ΣX := E[(X −µX)(X −µX)T ] ∈ RN×N , and

joint probability density function fX(x) = Πi=N
i=1 fi(xi), where fi(xi) is the marginal

probability density function of Xi defined on the probability triple (Ωi,Fi, Pi). In

most dynamic systems, the vector X represents uncertainties in material parameters

(e.g., mass, damping, stiffness), geometry (e.g., size, shape, topology), and constraints

(e.g., initial and boundary conditions). If some or all input variables are modeled as

random fields, then X includes random variables due to their discretization.

Consider a family of L×L, real-valued, random coefficient matrices Aj(X) ∈

RL×L, j = 1, · · · , J , where J is a positive integer and a general nonlinear function f .

The probabilistic characteristics of Aj(X) can be derived from the known probability

law of X. A non-trivial solution of

f (λ(X);A1(X), · · · , AJ(X))φ(X) = 0, (2.6)

if it exists, defines the random eigenvalue λ(X) ∈ R or C and the random eigenvector

φ(X) ∈ RL or CL of a general eigenvalue problem. Depending on the type of

application, a wide variety of functions f and, hence, eigenvalue problems exist.
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Table 2.1 lists a few examples of REPs frequently encountered in dynamic systems.

Table 2.1: Random eigenvalue problems in stochastic dynamical systems

Eigenvalue problem(a) Problem type

and application(s)

[−λ(X)M(X) +K(X)]φ(X) = 0

Linear ;

undamped or

proportionally damped

systems [49–53]

[
λ2(X)M(X) + λ(X)C(X) +K(X)

]
φ(X) = 0

Quadratic;
non-proportionally
damped systems,
singularity problems
[54–62]

[
λ(X)M1(X) +M0(X) +MT

1 (X)/λ(X)
]
φ(X) = 0

Palindromic;
acoustic emissions
in high-speed
trains [63–66]

[∑
k

λk(X)Ak(X)

]
φ(X) = 0

Polynomial ;
control and dynamics
problems [56,66–68]

[
λ(X)M(X)−K(X) +

∑
k

λq(X)Ck(X)

ak − λ(X)

]
φ(X) = 0

Rational ;
plate vibration (q=1),
fluid-structure
vibration (q=2),
vibration of
viscoelastic
materials [69–74]

(a) M(X), C(X), and K(X) are mass, damping, and stiffness matrices, respec-
tively; M0(X), M1(X), Ak(X), and Ck(X) are various coefficient matrices.

In general, the eigensolutions depend on the random input X via solution of
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the matrix characteristic equation

det [f (λ(X);A1(X), · · · ,AJ(X))] = 0, (2.7)

and subsequent solution of Equation (2.6). A major objective in solving an REP,

linear or nonlinear, is to find the probabilistic characteristics of eigenpairs {λi(X),

φi(X)}, i = 1, · · · , L, when the probability law of X is arbitrarily prescribed.

2.3 Methods of Random Eigenvalue Analysis

Existing methods for solving REPs can be grouped into five major classes:

(1) asymptotic methods; (2) classical or elementary approximate methods; (3) di-

mensional decomposition methods; (4) polynomial chaos expansion methods; and (5)

simulation and sampling methods. A brief review of each class of methods is presented

as follows.

2.3.1 Asymptotic methods

Ever since the publication of Dyson’s paper, the physics community has de-

voted much attention to three important Gaussian (also known as Hermite) ensembles:

orthogonal, unitary, and symplectic [9]. If an L × L random matrix G, comprising

independent and identically distributed standard Gaussian elements [Gij], defines a

Gaussian random matrix, then the symmetric L×L random matrixA = (G+GT )/2 is

called the Gaussian orthogonal ensemble. There are complex and quaternion analogs

of the Gaussian orthogonal ensemble, known as Gaussian unitary ensemble and Gaus-

sian symplectic ensemble, respectively. For all three Gaussian ensembles, the joint

probability density of eigenvalues can be derived asymptotically when L → ∞ [8].
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Asymptotic solutions also exist for other classical ensembles associated with the

Wishart (or Laguerre) and the multivariate analysis of variance (or Jacobi) random

matrices [75]. These important ensembles, also known as β-Hermite, β-Laguerre,

β-Jacobi ensembles, are identified with discrete values of β = 1 (real), β = 2 (com-

plex), and β = 3 (quaternion), respectively. Moreover, Dumitriu and Edelman [75]

have advanced the idea that a unified, general β-theory exists from which discrete

β-ensembles can be generated as special cases, a theory which researchers are only

beginning to explore.

The success of the random matrix theory is due to the breakthrough discovery

that the statistical properties of eigenvalues and eigenvectors are to a large extent

independent of the underlying distribution of input random parameters X when the

matrix has a special structure and the size of the matrix is large, and are depen-

dent only on global symmetry properties of the random matrix. It appears that

there is a “central limit theorem” for large random matrices defined by classical en-

sembles. While these classical solutions provide significant insight, random matrices

encountered in engineering unfortunately do not follow specific matrix structures or

probability distributions of classical β-ensembles. For example, the matrices M (X),

K(X), and C(X) in solving mechanical vibration problems [49–56] can be sym-

metric, skew-symmetric or non-symmetric, can be positive-definite or semi-positive

definite, can include random parameters that come from a variety of sources, and can

have a wide range of probability distributions. Classical methods of random matrix

theory are either inapplicable or highly nontrivial to apply in solving REPs addressed
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in this work. Therefore, approximate methods involving a sound theoretical foun-

dation and advanced computational techniques are required to solve a general REP

addressed in this study.

2.3.2 Classical or elementary approximate methods

Current approximate methods for solving REPs in dynamics are heavily domi-

nated by perturbation methods [26–29,31,32,34,37,38]. These methods involve either

first- or second-order Taylor series expansions of the eigenvalue or eigenvector in terms

of basic input random parameters and application of standard stochastic operators to

obtain second-moment properties and probability density functions of eigensolutions.

The popular use of perturbation methods is primarily attributed to the ease of imple-

mentation and computational efficiency. However, there are two major limitations of

these methods – both the uncertainty of the random input and the nonlinearity of the

random eigenvalue or eigenvector with respect to the random input must be small.

The errors in these methods can be bounded if higher-order partial derivatives of

the eigenvalue or eigenvector variable exist and are available. However, such bounds

are rarely used in engineering applications since they require expensive calculation of

higher-order partial derivatives. Methods other than perturbation methods include

the iteration method [29], a direct matrix product [33], the Ritz method [35], the

crossing theory [30], a stochastic reduced basis [36], and an asymptotic method [25].

The iteration method invokes a heuristic assumption of local independence to provide

statistical moments of eigenvalues and eigenvectors. The direct matrix product, pro-
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posed by Lee and Singh [33], has been demonstrated to accurately calculate only the

first two moments of eigenvalues for simple structures. Mehlhose et al. [35] applied

the Ritz approximation to obtain probability densities of eigenvalues of a continu-

ous vibrating beam under bending. Applications of the direct matrix product or the

Ritz method in solving large-scale REPs have yet to be demonstrated. Grigoriu [30]

evaluated zeros of random polynomials and employed the well-established crossing

theory of stochastic processes to determine probability densities of eigenvalues for

real-valued symmetric matrices. The stochastic reduced basis formulation, developed

by Nair and Keane [36], involves discretization of the governing equation in space

together with the random dimension leading to a linear algebraic system of equations

with random coefficients. The numerical results of large-scale systems indicate that

more accurate statistics are obtained by the stochastic reduced basis formulation than

those obtained by low-order perturbation methods. However, the method loses accu-

racy for systems with large uncertainties of random input. Recently, a method based

on asymptotics of multi-dimensional integral analysis was developed by Adhikari [25],

but it requires expensive calculation of eigenvalue derivatives, similar to perturbation

methods, and has been illustrated to solve both moments and probability densities

of eigenvalues of simple dynamic systems.

2.3.3 Dimensional decomposition methods

Dimensional decomposition of a multivariate function is a finite sum of simpler

component functions of input variables with increasing dimensions. This decomposi-
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tion, first presented by Hoeffding [76] in relation to his seminal work on U -statistics,

has been studied by many other researchers [77]: Sobol [78] used it in the study of

quadrature methods, calling it the “decomposition into summands of different dimen-

sions,” and also for analysis of variance (ANOVA) [79]; Efron and Stein [80] applied it

to prove their famous lemma on jackknife variances; Owen [81] presented a continuous

space version of the nested ANOVA; Hickernell [82] developed a reproducing kernel

Hilbert space version; and Rabitz and Alis [83] made further refinements, referring to

it as high-dimensional model representation (HDMR). More recently, Rahman and

his associates introduced this decomposition from the perspective of Taylor series

expansion, solving a number of stochastic-mechanics problems [84–86].

Consider a continuous, differentiable, real-valued eigenvalue λ (X) : RN 7→ R

that depends on random input vector X = {X1, . . . , XN}T ∈ RN . A dimensional

decomposition of λ (X) is described as

λ (X) = λ0 +
N∑
i=1

λi (Xi) +
N∑

i1, i2 = 1
i1 < i2

λi1i2 (Xi1 , Xi2)

+ · · ·+
N∑

i1, . . . , iS = 1
i1 < · · · < iS

λi1···iS (Xi1 , . . . , XiS)

+ · · ·+ λ12···N (X1, . . . , XN) . (2.8)

This decomposition is a finite hierarchical expansion of an output function in terms of

its input random variables with increasing dimension. Here λ0 is a constant, λi (Xi)

: R 7→ R is a univariate component function representing individual contribution to

λ (X) by the input variable Xi acting alone, λi1i2 (Xi1 , Xi2) : R2 7→ R is a bivariate
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component function representing combined influence on λ (X) of two input variables

Xi1 and Xi2 , and λi1···iS (Xi1 , . . . , XiS) : RS 7→ R is an S-variate component function

describing cooperative effects on λ (X) of S input variables Xi1 , . . . , XiS , and so on.

The last term λ12···N (X1, . . . , XN) represents the residual cooperative effect of all the

N input variables acting together on the multivariate function λ (X). There exist two

prominent variants of dimensional decomposition, described as follows.

2.3.3.1 Referential dimensional decomposition

Based on the dimensional decomposition of λ (x) in Equation (2.8), Rahman

[40] defined univariate and bivariate approximations of λ (x), respectively, as

λ̂1 (x) :=
N∑
i=1

λ (c1, . . . , ci−1, xi, ci+1, . . . , cN)︸ ︷︷ ︸
=λi(xi)

− (N − 1)λ (c)︸ ︷︷ ︸
=λ0

, (2.9)

and

λ̂2 (x) :=
N∑

i1, i2 = 1
i1 < i2

λ (c1, . . . , ci1−1, xi1 , ci1+1, . . . , ci2−1, xi2 , ci2+1, . . . , cN)︸ ︷︷ ︸
=λi1i2(xi1 ,xi2)

+
N∑
i=1

− (N − 2)λ (c1, . . . , ci−1, xi, ci+1, . . . , cN)︸ ︷︷ ︸
=λi(xi)

+
(N − 1) (N − 2)

2
λ (c)︸ ︷︷ ︸

=λ0

, (2.10)

where c = {c1, . . . , cN}T is a reference point in the input domain, λ (c) := λ (c1, . . . , cN).

The constant, univariate, and bivariate component functions λ0, λi (xi), and λi1i2

(xi1 , xi2), respectively, of the dimension decomposition in Equation (2.8) are indi-

cated through the underbraces in Equations (2.9) and (2.10). Further, a generalized
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S-variate referential dimensional decomposition (RDD), for any integer 1 ≤ S ≤ N ,

is given by

λ̂S (x) :=
S∑
i=0

(−1)i
(
N − S + i− 1

i

)

×
N∑

k1, . . . , kS−i = 1
k1 < · · · < kS−i

λ
(
c1, . . . , ck1−1, xk1 , ck1+1, . . . , xkS−i

, . . . , cN
)
. (2.11)

When S = 1 and 2, Equation (2.11) degenerates to univariate (Equation (2.9)) and

bivariate (Equation (2.10)) approximations, respectively.

When S = N , λ̂S (x) converges to the exact function λ (x). In other words,

Equation (2.11) generates a hierarchical and convergent sequence of approximations of

λ (x). By replacing the eigenvalue by its S-variate RDD, the lth moment of eigenvalue

λl(X) is approximated as

ml
∼= E

[
λ̂lS (X)

]
=

S∑
i=0

(−1)i
(
N − S + i− 1

i

)

×E


N∑

k1, . . . , kS−i = 1
k1 < · · · < kS−i

λl
(
c1, . . . , ck1−1, Xk1 , ck1+1, . . . , ckS−i−1, XkS−i

, ckS−i+1, . . . , cN
)
 .

(2.12)

As in an S-variate decomposition given by Equation (2.8), the expectation E
[
λ̂lS (X)

]
for S = 1, 2, . . . , N also represents a hierarchical sequence of approximations of the

lth moment of an eigenvalue. The advantage of using Equation (2.12) over Equation

(2.8) lies in evaluating only up to S-dimensional deterministic integrations, compared
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to the full N -dimensional required in Equation (2.8). For independent random vector

X, the S-variate approximation of moments is evaluated using standard numerical

quadratures, leading to

ml = E
[
λ̂lS (X)

]
∼=

S∑
i=0

(−1)i
(
N − S + i− 1

i

)

×
N∑

k1, . . . , kS−i = 1
k1 < · · · < kS−i

n∑
jS−i=1

· · ·
n∑

j1=1

w
(j1)
k1
· · ·w(jS−i)

kS−i

×λl
(
c1, . . . , ck1−1, x

(j1)
k1
, ck1+1, . . . , ckS−i−1, x

(jS−i)
kS−i

, ckS−i+1, . . . , cN

)
,(2.13)

where x
(j)
i is the jth integration point of the ith variable, w

(j)
i is the associated weight,

and n is the order of integration.

In order to approximate other probabilistic characteristics like the probability

density functions of eigenvalues, or the correlation coefficients between two eigenval-

ues, Lagrange interpolation is used in evaluating the component functions and creat-

ing the RDD expansion. Consider the univariate component function λ(c1, . . . , ci−1, xi,

ci+1, . . . , cN) in Equations (2.9) and (2.10). If for sample points xi = x
(j)
i ; j = 1, . . . , n,

n distinct eigenvalues λ
(
c1, . . . , ci−1, x

(j)
i , ci+1, . . . , cN

)
are given, the eigenvalue for

an arbitrary xi can be obtained by the Lagrange interpolation

λ(c1, . . . , ci−1, xi, ci+1, . . . , cN) =
n∑
j=1

φj (xi)λ
(
c1, . . . , ci−1, x

(j)
i , ci+1, . . . , cN

)
, (2.14)

where

φj (xi) =

∏n
k=1,k 6=j

(
xi − x(k)

i

)
∏n

k=1,k 6=j

(
x

(j)
i − x

(k)
i

) (2.15)

is the shape function. The same idea can be applied to obtain higher-variate compo-
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nent functions. The generalized S-variate approximation is given as

λ̂S (x) =
S∑
i=0

(−1)i
(
N − S + i− 1

i

)

×
N∑

k1, . . . , kS−i = 1
k1 < · · · < kS−i

n∑
jS−i=1

· · ·
n∑

j1=1

φj1 (Xk1) · · ·φjS−i

(
XkS−i

)

×λ
(
c1, . . . , ck1−1, x

(j1)
k1
, ck1+1, . . . , ckS−i−1, x

(jS−i)
kS−i

, ckS−i+1, . . . , cN

)
.(2.16)

Once the Lagrange shape function φj (xi) and the deterministic coefficients λ (c) to

λ
(
c1, . . . , ck1−1, x

(j1)
k1
, ck1+1, . . . , ckS−i−1, x

(jS−i)
kS−i

, ckS−i+1, . . . , cN

)
are generated, Equa-

tion (2.16) provides explicit approximation of random eigenvalues
{
λ(i) (X)

}
, i =

1, . . . , L in terms of random input X. Any probabilistic characteristics of eigenvalues

can be easily evaluated by performing Monte Carlo simulation on Equation (2.16).

Since Equation (2.16) does not require solving additional matrix equations, the em-

bedded Monte Carlo simulation can be efficiently performed for any sample size.

2.3.3.2 Polynomial dimensional decomposition

Rahman [87] introduced a novel PDD method for solving stochastic prob-

lems encountered in engineering and science disciplines. The method is based on

the dimensional decomposition in Equation (2.8) where the component functions are

Fourier-polynomial expansions in terms of orthornormal polynomial bases consistent

with the probability measure of input.

Let L2(Ωi,Fi, Pi) be a Hilbert space that is equipped with a set of complete

orthonormal bases {ψij(xi); j = 0, 1, · · · }, which is consistent with the probability

measure of Xi. For example, classical orthonormal polynomials, including Hermite,
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Legendre, and Jacobi polynomials, can be used when Xi follows Gaussian, uniform,

and Beta probability distributions, respectively [88]. For an arbitrary measure, ap-

proximate methods based on the Stieltjes procedure can be employed to obtain the

associated orthonormal polynomials [42,88]. If E is the expectation operator with re-

spect to the probability measure of X, then two important properties of orthonormal

polynomials are as follows [42,89].

Property 2.1: The orthonormal polynomial basis functions have a unit mean for

j = 0 and zero means for all j ≥ 1, i.e.,

E[ψij(Xi)] :=

∫
R
ψij(xi)fi(xi)dxi =

{
1 if j = 0,
0 if j ≥ 1.

(2.17)

Property 2.2: Any two orthonormal polynomial basis functions ψij1(Xi) and ψij2(Xi),

where j1, j2 = 0, 1, 2, · · · , are uncorrelated, and each has unit variance, i.e.,

E[ψij1(Xi)ψij2(Xi)] :=

∫
R
ψij1(xi)ψij2(xi)fi(xi)dxi =

{
1 if j1 = j2,
0 if j1 6= j2.

(2.18)

Using Fourier-polynomial expansions of all component functions of λ(X) in Equation

(2.8) and invoking Properties 2.1 and 2.2, the PDD of a random eigenvalue λ(X)

represents a finite, hierarchical expansion [42,90]

λPDD(X) := λ0 +
N∑
i=1

∞∑
j=1

Cijψij(Xi)︸ ︷︷ ︸
=λi(xi)

+
N−1∑
i1=1

N∑
i2=i1+1

∞∑
j2=1

∞∑
j1=1

Ci1i2j1j2ψi1j1(Xi1)ψi2j2(Xi2)︸ ︷︷ ︸
=λi1i2(xi1 ,xi2)

+ · · ·+
∞∑

jN=1

· · ·
∞∑
j1=1

Ci1···iN j1···jN

N∏
q=1

ψiqjq(Xiq)︸ ︷︷ ︸
=λ12···N (X1,...,XN )

(2.19)
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in terms of random orthonormal polynomials ψij(Xi), i = 1, · · · , N ; j = 1, · · · ,∞ of

input variables X1, · · · , XN with increasing dimensions, where

λ0 :=

∫
RN

λ(x)fX(x)dx, (2.20)

and

Ci1···isj1···js :=

∫
RN

λ(x)
s∏
q=1

ψiqjq(xiq)fX(x)dx, (2.21)

for s = 1, · · · , N , 1 ≤ i1 < · · · < is ≤ N , j1, · · · , js = 1, · · · ,∞, are the associated ex-

pansion coefficients, which require calculating various high-dimensional integrals when

N is large. In Equation (2.19), the term
∑∞

js=1 · · ·
∑∞

j1=1Ci1···isj1···js
∏s

q=1 ψiqjq(Xiq)

represents the s-variate component function, quantifying the cooperative effect of s

input variables Xi1 , · · · , XiS on λ.

When the right side of Equation (2.19) is truncated by retaining at most

S-variate interactive effects of input variables and at most mth-order orthonormal

polynomials, the result is an S-variate, mth-order PDD approximation

λ̃S,m(X) = λ0 +
N∑
i=1

m∑
j=1

Cijψij(Xi)

+
N−1∑
i1=1

N∑
i2=i1+1

m∑
j2=1

m∑
j1=1

Ci1i2j1j2ψi1j1(Xi1)ψi2j2(Xi2)

...

+
N−S+1∑
i1=1

· · ·
N∑

iS=iS−1+1

m∑
jS=1

· · ·
m∑
j1=1

Ci1···iSj1···jS

S∏
q=1

ψiqjq(Xiq) (2.22)

of λ(X). Once the coefficients are calculated, any probabilistic characteristics of

eigenvalues can be evaluated by performing Monte Carlo simulation on Equation

(2.22). In his work [87], Rahman employs the dimension-reduction scheme [85] for
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calculating the coefficients. This scheme is discussed in Chapter 3. Similar to RDD,

Equation (2.22) does not require solving additional matrix equations; the embedded

Monte Carlo simulation can be efficiently performed for any sample size. However,

unlike RDD, this decomposition method does not require a reference point and sample

points around the reference point to approximate the component functions.

2.3.4 Polynomial chaos expansion method

The PCE of a random eigenvalue λ(X), a function of a finite number of random

variables X1, · · · , XN , has a representation [44,46,91]

λPCE(X) := a0Γ0 +
N∑
i=1

aiΓ1(Xi) +
N∑
i1=1

N∑
i2=i1

ai1i2Γ2(Xi1 , Xi2)

+ · · ·+
N∑
i1=1

· · ·
N∑

ip=ip−1

ai1···ipΓp(Xi1 , · · · , Xip) + · · ·
(2.23)

in terms of random multidimensional polynomial chaoses, Γp(Xi1 , · · · , Xip), p =

0, · · · ,∞, 1 ≤ i1 ≤ · · · ≤ ip ≤ N , of input variables Xi1 , · · · , Xip with increasing

orders, where

a0 :=

∫
RN

λ(x)Γ0fX(x)dx, (2.24)

and

ai1···ip :=

∫
RN

λ(x)Γp(Xi1 , · · · , Xip)fX(x)dx, (2.25)

for p = 1, · · · ,∞, 1 ≤ i1 ≤ · · · ≤ ip ≤ N , are the corresponding expansion coeffi-

cients that also require evaluating high-dimensional integrals. When the right side of

Equation (2.23) is truncated by retaining at most pth-order polynomial chaoses, the
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result is pth-order PCE approximation

λ̄p(X) := a0Γ0 +
N∑
i=1

aiΓ1(Xi) +
N∑
i1=1

N∑
i2=i1

ai1i2Γ2(Xi1 , Xi2)

+
N∑
i1=1

N∑
i2=i1

N∑
i3=i2

ai1i2i3Γ3(Xi1 , Xi2 , Xi3)

...

+
N∑
i1=1

· · ·
N∑

ip=ip−1

ai1···ipΓp(Xi1 , · · · , Xip)

(2.26)

of λ(X). Ghanem [46] has constructed the polynomial chaoses Γp(Xi1 , · · · , Xip),

p = 0, · · · ,∞, 1 ≤ i1 ≤ · · · ≤ ip ≤ N , starting with the zeroth order polynomial

Γ0 as a constant and chosen to be Γ0 = 1, and proceeded through a sequence of

orthogonalization procedures with respect to Gaussian probability measure. Recently,

Ghosh [92] developed a new efficient method for estimating the coefficients of the PCE

for solving REPs. Ghosh further developed an enriched version of PCE that can be

used to approximate non-smooth functions efficiently [93].

2.3.5 Simulation and sampling methods

Finally, simulation and sampling methods, such as crude Monte Carlo simula-

tion [94], quasi-Monte Carlo simulation [95–97], importance sampling [98, 99], direc-

tional simulation [100,101], and others [18,102–104], are well known in the probability

and statistics literature. They can be applied, at least in theory, to solve any REP

described in Table 2.1. For example, the solution of an REP by crude Monte Carlo

simulation comprises the following steps:

1. generate samples Aj(x
(k)); j = 1, . . . , J , k = 1, . . . , NS from NS input samples

x(k); k = 1, . . . , NS;
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2. solve the corresponding characteristic and governing equations,

det
[
f
(
λ(x(k));A1(x(k)), · · · ,AJ(x(k))

)]
= 0, (2.27)

and

f
(
λ(x(k));A1(x(k)), · · · ,AJ(x(k))

)
φ(i)(x(k)) = 0, (2.28)

to find samples of the eigenpairs
{
λ

(k)
i ,φ

(k)
i

}
; i = 1, . . . , L; k = 1, . . . , NS; and

3. develop statistics of {Λi,Φi}; i = 1, . . . , L from
{
λ

(k)
i ,φ

(k)
i

}
; i = 1, . . . , L;

k = 1, . . . , NS.

The simulation can also provide full probabilistic description of the eigenvalues and

eigenvectors, but it is computationally inefficient when the coefficient matricesAj(X);

j = 1, . . . , J , are large because it requires solving the matrix equations for every set

of realizations of Aj(X); j = 1, . . . , J . Consequently, the simulation methods are

useful only when alternative methods are inapplicable or inaccurate, and have been

traditionally employed as a yardstick for evaluating approximate methods.

2.4 Numerical Algorithms for Eigenvalue Analysis

A special case of REPs listed in Table 2.1 is a linear problem of the type

Aφ = λφ. Analytical solution of such a problem using a characteristic polynomial is

not feasible for systems with more than two or three degrees of freedom. Particularly

large-scale complex engineering systems require highly efficient numerical algorithms

for extracting eigenvalues and eigenvectors. This research work involves solution

of REPs of varied sizes. Three numerical algorithms: the LR-QR algorithm [105–

107], the Lanczos transformation [108,109], and automatic multi-level substructuring
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(AMS) [109–112] are employed for solution of matrix eigenvalue equations. The LR-

QR algorithm was used for relatively small systems, of up to seven degrees of freedom.

The Lanczos transformation and AMS algorithm were employed for eigenvalue and

eigenvector extraction of large systems involving finite element models. These three

methods are briefly discussed in this section.

2.4.1 LR-QR algorithm

The LR-QR algorithm is one of the most preferred methods for computing

the eigenvalues of matrices of size L ≤ 25. Before the LR-QR algorithm can be

implemented to compute eigenvalues, the matrix is first balanced. The process of

producing a matrix that is diagonally similar to a given matrix and that reduces the

matrix norm is called balancing the matrix. Having a low matrix norm is desirable, as

the errors in calculating the eigenvalues of a matrix are proportional to the Frobenius

norm of the matrix. Gauss similarity transformations with partial pivoting is used

to reduce this balanced matrix to a real upper Hessenberg matrix. A matrix H is

an upper Hessenberg matrix if its elements below the lower off-diagonal are zero, i.e.,

Hij = 0, i > j + 1. The LR-QR algorithm is then used to compute the eigenvalues of

the Hessenberg matrix.

The LR-QR algorithm is based on the LR transformation proposed by Rutishauser

[113]. The LR transformation is based on repeated LU factorization of a matrix A

such that

Ak = LR (2.29)
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for any step k of the iterative transformation. Here, L is a lower triangular matrix,

and R is an upper triangular matrix. The step is completed by remultiplying the

factors in reverse order, i.e.,

Ak+1 = RL. (2.30)

From R = L−1Ak, the (k + 1)th iteration of matrix A is

Ak+1 = L−1AkL. (2.31)

As transformation proceeds, the transformed matrix Ak tends to an upper triangular

matrix whose eigenvalues are equal to the diagonal terms. Wilkinson [114] showed

that the stability of triangular decomposition in the LR algorithm cannot be guaran-

teed unconditionally, since as the diagonal elements tend to approach the eigenvalues

the sub-diagonal elements tend to approach zero. These limitations of the LR algo-

rithm led to the replacement of elementary transformation by the elementary unitary

transformation. Francis [106, 107] and Kublanovskaya [115] proposed that L be re-

placed by a unitary matrix Q. This replacement gives the QR algorithm, now known

as the LR-QR algorithm.

2.4.2 Lanczos method

The Lanczos method is particularly useful in situations when a few of the

largest or the smallest eigenvalues of a matrix are desired. For instance, for deter-

mining the first J number of natural frequencies of vibration of a structure, only its

smallest J eigenvalues are required to be extracted. This method involves partial

tridiagonalization of the matrix. The algorithm transforms the matrix A into a tridi-
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agonal matrix T = V TAV similar to A, where V is a block of Lanczos vectors with

J number of columns, and J is equal to the number of eigenvalues desired. The num-

ber of rows of V is the number of variables in the FE model, or the size of the matrix

A. The tridiagonal matrix T of size J is then used to solve the reduced eigenvalue

problem TΦ = Φλ, where Φ is the matrix containing the eigenvectors, and λ is the

vector containing the eigenvalues of the reduced eigenproblem.

In this work, the Lanczos method was used through the Abaqus [109] finite

element computer software. The Lanczos procedure in Abaqus consists of a set of

Lanczos runs, in each of which a set of iterations is performed. Each Lanczos run

applies the transformation M (K − σM)−1Mφ = λMφ on the mass matrix M

and the stiffness matrix K, where σ is the shift, λ is the eigenvalue, and φ is the

eigenvector. This transformation allows rapid convergence to the desired eigenvalues.

In general, only tens of eigenvalues closest to the shift value are computed in a single

Lanczos run. The possibility of computing many eigenmodes by carrying out several

runs with different shift values is an important feature of the Lanczos eigensolver.

Within each run, a sequence of Krylov subspaces is created. A jth-order Krylov

subspace Kj is defined as Kj (A,v) = span
{
v,Av,A2v, . . . ,Aj−1v

}
for an L × L

matrix A and an L-dimensional vector v. The best possible approximation of the

eigenvectors on each subspace is computed in a series of iterations. In each Lanczos

iteration, the dimension of the subspace grows, allowing better approximation of

the desired eigenvectors. The basic Lanczos process with no shifting is unable to

determine repeated eigenvalues. The shifting strategy detects missing modes and
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enforces computation of all the modes during the subsequent Lanczos runs. However,

this strategy is expensive if the multiplicity of certain eigenvalues is high. Therefore,

a blocked version of the Lanczos algorithm is implemented in Abaqus. This technique

starts with a block of orthogonal vectors and increases the dimension of the Krylov

subspaces by the block size at each Lanczos step. This approach allows automatic

computation of all multiple eigenvalues if the largest multiplicity does not exceed the

block size.

2.4.3 Automatic multi-level substructuring method

The Lanczos method has a very significant limitation in that it involves the

solution of a set of linear equations in every iteration. Dynamic analysis of structures

involves developing finite element discretization with even millions of degrees of free-

dom. Modal superposition is the method of choice for dynamic analysis of such large

systems. Modal superposition requires a very large number (1000s) of eigenvalues

and eigenvectors to be extracted. The Lanczos method proves to be prohibitively

inefficient for solving problems of such large scale. Bennighof et al. [110–112] intro-

duced the efficient AMS method for eigenvalue analysis of large engineering systems

involving FE model with even millions of degrees of freedom. In the AMS method,

the FE model is transformed so that the response is represented in terms of substruc-

ture modes. In the first step of this method, the model is partitioned automatically

into substructures on a number of levels based on the sparsity structure of the sys-

tem matrices. The substructures on the lowest level consist of a small number of
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finite elements. These child substructures are assembled together to form parents,

which are assembled together to form grandparents, and so on, until the model of the

complete structure has been assembled. The partial eigensolutions are economical

because substructure eigenvalue problems are very small.

2.5 Needs for Fundamental Research

Based on the literature review of existing works on REPs, four research direc-

tions are proposed, as follows.

2.5.1 A rigorous comparison of PDD and PCE methods

Recent developments on solving REPs include the stochastic expansion meth-

ods, notably, the PCE and PDD methods, both employing Fourier expansions in

terms of orthogonal polynomials for approximating eigensolutions. These methods

also provide the probability distributions of eigensolutions, although the concomitant

approximations are guaranteed to converge only in the mean-square sense, provided

that the eigensolutions are square-integrable functions of the random input with re-

spect to its probability measure. However, due to the contrasting dimensional struc-

tures of PDD and PCE, the convergence properties of their truncations are not the

same and may differ significantly, depending on the eigensolution and dimension of

the problem. Therefore, uncovering their mathematical properties, which have rami-

fications in stochastic computing, including solving REPs, is a major motivation for

this current work. Is PDD superior to PCE or vice versa? It is also desirable to

compare the errors from the PDD and PCE approximations and thereby establish



33

appropriate criteria for grading these two methods.

2.5.2 Multiplicative PDD

The existing PDD method for solving REPs is predicated on the additive

nature of a function (eigenvalue or eigenvector). This is pertinent as long as the di-

mensional hierarchy of a stochastic response (eigensolution) is also additive. In which

case, a truncation of existing PDD, referred to as the additive PDD (A-PDD), pre-

serving at most S-variate component functions, generates stochastic solutions with

Sth-order polynomial computational complexity. However, the dimensional hierarchy

of a stochastic response, in general, is not known a priori. Therefore, indiscriminately

using A-PDD for general stochastic analysis is not desirable. When a response is dom-

inantly of multiplicative nature, the A-PDD approximation for a chosen truncation

parameter S may not predict sufficiently accurate probabilistic characteristics of a

complex system. Therefore, alternative decompositions suitable for multiplicative-

type response functions and measure-consistent orthogonal polynomials should be

explored. For such a decomposition, it is unknown which truncation parameter S

should be selected when compared with that for the additive decomposition. Is it

possible to solve a stochastic problem by selecting a smaller value of S for the alter-

native decomposition than for the additive decomposition? If yes, then a significant,

positive impact on uncertainty quantification of high-dimensional complex systems,

including REPs, is anticipated.
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2.5.3 Hybrid PDD

While the multiplicative PDD, discussed in the preceding section, may elim-

inate the shortcomings of the additive PDD, further complications may arise when

a dynamic system exhibits an eigensolution that is dominantly neither additive nor

multiplicative. In which case, a hybrid approach coupling both additive and multi-

plicative decompositions in the spirit of PDD should be developed by selecting any

hybridity parameters involved optimally. These enhancements should be pursued

without incurring significant additional cost, if any. In addition, theoretical error

analyses of both the multiplicative PDD and hybrid PDD methods should be con-

ducted to evaluate their improvements over the additive PDD approximation.

2.5.4 Adaptive-sparse PDD

The existing approach for creating a PDD approximation involves arbitrar-

ily setting the truncation parameter S for the degree of interaction between input

variables, and the truncation parameter m for the order of orthogonal polynomials,

followed by calculation of the PDD coefficients for this truncation. Such an approach

may not be the most efficient, as there may exist some coefficients that are not mak-

ing significant contributions to the approximation and thus need not be calculated

at all. Thus an adaptive approach of creating the PDD approximation is desired

that preferably does not pre-select the truncation parameters S and m, but is based

on identifying and employing only those PDD coefficients that make a significant

contribution to the approximation.
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CHAPTER 3
A RIGOROUS COMPARISON OF PDD AND PCE

3.1 Introduction

This chapter presents a rigorous comparison of the PDD and PCE methods

for calculating the statistical moments and tail probability distributions of random

eigenvalues commonly encountered in dynamics of mechanical systems. The PDD

and PCE methods are discussed in detail in Section 2.2. In the current chapter,

Section 3.2 provides a brief exposition of PDD and PCE, including establishing the

relationship between the two expansions. Section 3.3 discusses PDD and PCE ap-

proximations resulting from series truncations, where an alternative form of the PCE

approximation has been derived, leading to approximate probabilistic solutions from

both methods in terms of the PDD expansion coefficients. Section 3.3 also presents

an error analysis due to PDD and PCE approximations. Section 3.4 describes the

dimension-reduction integration for estimating the PDD expansion coefficients, in-

cluding the computational efforts required. Five numerical examples illustrate the

accuracy, convergence, and computational efficiency of the PDD and PCE methods

in Section 3.5. Finally, conclusions are drawn in Section 3.6.
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3.2 Relationship between PDD and PCE

The PDD of a random eigenvalue λ(X) represents a finite, hierarchical expan-

sion [42,90]

λPDD(X) := λ0 +
N∑
i=1

∞∑
j=1

Cijψij(Xi)

+
N−1∑
i1=1

N∑
i2=i1+1

∞∑
j2=1

∞∑
j1=1

Ci1i2j1j2ψi1j1(Xi1)ψi2j2(Xi2)

+
N−2∑
i1=1

N−1∑
i2=i1+1

N∑
i3=i2+1

∞∑
j3=1

∞∑
j2=1

∞∑
j1=1

Ci1i2i3j1j2j3

×ψi1j1(Xi1)ψi2j2(Xi2)ψi3j3(Xi3)

+ · · ·+
1∑

i1=1

· · ·
N∑

iN=iN−1+1

∞∑
jN=1

· · ·
∞∑
j1=1

Ci1···iN j1···jN

N∏
q=1

ψiqjq(Xiq)

= λ0 +
N∑
s=1

[
N−s+1∑
i1=1

· · ·
N∑

is=is−1+1︸ ︷︷ ︸
s sums

∞∑
j1=1

· · ·
∞∑
js=1︸ ︷︷ ︸

s sums

Ci1···isj1···js

s∏
q=1

ψiqjq(Xiq)

]

(3.1)

in terms of random orthonormal polynomials ψij(Xi), i = 1, · · · , N ; j = 1, · · · ,∞ of

input variables X1, · · · , XN with increasing dimensions, where

λ0 :=

∫
RN

λ(x)fX(x)dx (3.2)

and

Ci1···isj1···js :=

∫
RN

λ(x)
s∏
q=1

ψiqjq(xiq)fX(x)dx, (3.3)

for s = 1, · · · , N , 1 ≤ i1 < · · · < is ≤ N , j1, · · · , js = 1, · · · ,∞ are the associated

expansion coefficients. The PCE of a random eigenvalue λ(X), a function of a finite
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number of random variables X1, · · · , XN , has a representation [44,46,91]

λPCE(X) := a0Γ0 +
N∑
i=1

aiΓ1(Xi) +
N∑
i1=1

N∑
i2=i1

ai1i2Γ2(Xi1 , Xi2)

+
N∑
i1=1

N∑
i2=i1

N∑
i3=i2

ai1i2i3Γ3(Xi1 , Xi2 , Xi3)

+ · · ·+
N∑
i1=1

· · ·
N∑

ip=ip−1

ai1···ipΓp(Xi1 , · · · , Xip) + · · ·

(3.4)

in terms of random polynomial chaoses, Γp(Xi1 , · · · , Xip), p = 0, · · · ,∞, 1 ≤ i1 ≤

· · · ≤ ip ≤ N , of input variables Xi1 , · · · , Xip with increasing orders, where

a0 :=

∫
RN

λ(x)Γ0fX(x)dx (3.5)

and

ai1···ip :=

∫
RN

λ(x)Γp(Xi1 , · · · , Xip)fX(x)dx, (3.6)

for p = 1, · · · ,∞, 1 ≤ i1 ≤ · · · ≤ ip ≤ N , are the corresponding expansion coefficients.

Using the orthonormality property of the polynomials ψij(Xi), i = 1, · · · , N ; j =

1, · · · ,∞ of input variables X1, · · · , XN (Properties 2.1 and 2.2), it is elementary to

show that the second-moment properties of any square integrable function λ(X),

its PDD λPDD(X), and its PCE λPCE(X) are identical. In other words, λ(X),

λPDD(X), and λPCE(X) are equivalent in the mean-square sense. Indeed, there ex-

ists a striking theorem, as follows.

Theorem 3.1: If λPDD(X) and λPCE(X) are two infinite series defined in Equa-

tions (3.1) and (3.4), respectively, then one series can be rearranged to derive the

other series, for instance, λPCE(X) = λPDD(X).

Proof. The polynomial chaoses Γp(Xi1 , · · · , Xip), p = 0, · · · ,∞, 1 ≤ i1 ≤ · · · ≤ ip ≤
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N in Equation (3.4) can be more explicitly written as

Γ0 = 1
Γ1(Xi) = ψi1(Xi)

Γ2(Xi1 , Xi2) = ψi12(Xi1)δi1i2 − ψi11(Xi1)ψi21(Xi2)(δi1i2 − 1)
Γ3(Xi1 , Xi2 , Xi3) = ψi13(Xi1)δi1i2δi1i3δi2i3

−ψi11(Xi1)ψi22(Xi2)δi2i3(δi1i2 − 1)
−ψi22(Xi2)ψi31(Xi3)δi1i2(δi2i3 − 1)
−ψi11(Xi1)ψi21(Xi2)ψi31(Xi3)
×(δi1i2δi1i3δi2i3 − 1)(δi1i2 − 1)(δi2i3 − 1)

· · · = · · · ,

(3.7)

which represents various combinations of tensor products of sets of univariate or-

thonormal polynomials with δikil , k, l = 1, · · · , p, denoting various Kronecker deltas,

i.e., δikil = 1 when ik = il and zero otherwise. Inserting Equation (3.7) into Equations

(3.5) and (3.6) with Equations (3.2) and (3.3) in mind, the PCE coefficients,

a0 = λ0

ai = Ci1
ai1i2 = Ci12δi1i2 − Ci1i211(δi1i2 − 1)
ai1i2i3 = Ci13δi1i2δi1i3δi2i3 − Ci1i212δi2i3(δi1i2 − 1)

−Ci2i321δi1i2(δi2i3 − 1)
−Ci1i2i3111(δi1i2δi1i3δi2i3 − 1)(δi1i2 − 1)(δi2i3 − 1)

· · · = · · · ,

(3.8)

provide explicit connections to the PDD coefficients. Using the polynomial chaoses

and PCE coefficients from Equation (3.7) and Equation (3.8), respectively, and after
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some simplifications, the zero- to higher-order PCE terms become

a0Γ0 = λ0
N∑
i=1

aiΓ1(Xi) =
N∑
i=1

Ci1ψi1(Xi)

N∑
i1=1

N∑
i2=i1

ai1i2Γ2(Xi1 , Xi2) =
N∑
i=1

Ci2ψi2(Xi)

+
N∑

i1,i2=1;i1<i2

Ci1i211ψi11(Xi1)ψi21(Xi2)

N∑
i1=1

N∑
i2=i1

N∑
i3=i2

ai1i2i3Γ3(Xi1 , Xi2 , Xi3) =
N∑
i=1

Ci3ψi3(Xi)

+
N∑

i1,i2=1;i1<i2

Ci1i212ψi11(Xi1)ψi22(Xi2)

+
N∑

i1,i2=1;i1<i2

Ci2i321ψi12(Xi1)ψi21(Xi2)

+
N∑

i1,i2,i3=1;i1<i2<i3

Ci1i2i3111

×ψi11(Xi1)ψi21(Xi2)ψi31(Xi3)

· · · = · · · ,
(3.9)

revealing constituents comprising constant, univariate functions, bivariate functions,

and so on. Collecting all univariate terms, all bivariate terms, etc., from each appro-
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priate line of Equation (3.9) leads to

λPCE(X) = lim
p→∞

[
λ0 +

N∑
i=1

p∑
j=1

Cijψij(Xi)

+
N−1∑
i1=1

N∑
i2=i1+1

p−1∑
j2=1

p−1∑
j1=1︸ ︷︷ ︸

j1+j2≤p

Ci1i2j1j2ψi1j1(Xi1)ψi2j2(Xi2)

+
N−2∑
i1=1

N−1∑
i2=i1+1

N∑
i3=i2+1

p−2∑
j3=1

p−2∑
j2=1

p−2∑
j1=1︸ ︷︷ ︸

j1+j2+j3≤p

Ci1i2i3j1j2j3

×ψi1j1(Xi1)ψi2j2(Xi2)ψi3j3(Xi3)

+ · · ·+
1∑

i1=1

· · ·
N∑

iN=iN−1+1

p−N+1∑
jN=1

· · ·
p−N+1∑
j1=1︸ ︷︷ ︸

j1+···+jN≤p

Ci1···iN j1···jN

N∏
q=1

ψiqjq(Xiq)

]

= λ0 +
N∑
i=1

∞∑
j=1

Cijψij(Xi)

+
N−1∑
i1=1

N∑
i2=i1+1

∞∑
j2=1

∞∑
j1=1

Ci1i2j1j2ψi1j1(Xi1)ψi2j2(Xi2)

+
N−2∑
i1=1

N−1∑
i2=i1+1

N∑
i3=i2+1

∞∑
j3=1

∞∑
j2=1

∞∑
j1=1

Ci1i2i3j1j2j3

×ψi1j1(Xi1)ψi2j2(Xi2)ψi3j3(Xi3)

+ · · ·+
1∑

i1=1

· · ·
N∑

iN=iN−1+1

∞∑
jN=1

· · ·
∞∑
j1=1

Ci1···iN j1···jN

N∏
q=1

ψiqjq(Xiq)

= λ0 +
N∑
s=1

[
N−s+1∑
i1=1

· · ·
N∑

is=is−1+1︸ ︷︷ ︸
s sums

∞∑
j1=1

· · ·
∞∑
js=1︸ ︷︷ ︸

s sums

Ci1···isj1···js

s∏
q=1

ψiqjq(Xiq)

]

=: λPDD(X),
(3.10)

which proves the theorem for any square integrable function λ : RN → R, 1 ≤ N <∞,

and probability distribution of X. �
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3.3 Series Truncations and Approximate Solutions

Although Equations (3.1) and (3.4) provide an exact PDD and an exact PCE

representation, respectively, they contain an infinite number of coefficients, emanat-

ing from infinite numbers of orthonormal polynomials. In practice, the number of

coefficients must be finite, say, by retaining at most mth-order polynomials in each

variable. Due to the contrasting dimensional structures of PDD and PCE, the con-

vergence properties of their truncations are not the same and may differ significantly,

depending on the eigensolution and dimension of the problem. This section presents

the PDD and PCE approximation and an error analysis due to the approximations.

3.3.1 PDD approximation

The function λ can be approximated by a sum of at most S-variate component

functions, where 1 ≤ S ≤ N is a truncation parameter, resulting in the S-variate,

mth-order PDD approximation

λ̃S,m(X) = λ0 +
S∑
s=1

[
N−s+1∑
i1=1

· · ·
N∑

is=is−1+1︸ ︷︷ ︸
s sums

m∑
j1=1

· · ·
m∑
js=1︸ ︷︷ ︸

s sums

Ci1···isj1···js

s∏
q=1

ψiqjq(Xiq)

]
,

(3.11)

containing

QS,m =
S∑
k=0

(
N

S − k

)
mS−k (3.12)

number of PDD coefficients and corresponding orthonormal polynomials. The PDD

approximation in Equation (3.11) includes cooperative effects of at most S input vari-

ables Xi1 , · · · , XiS , 1 ≤ i1 ≤ · · · ≤ iS ≤ N , on λ. For instance, by selecting S = 1 and
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2, the functions λ̃1,m(X) and λ̃2,m(X), provide univariate and bivariate mth-order ap-

proximations, respectively, contain contributions from all input variables, and should

not be viewed as first- and second-order approximations; they also do not limit the

nonlinearity of λ(X). Depending on how the component functions are constructed,

arbitrarily high-order univariate and bivariate terms of λ(X) could be lurking inside

λ̃1,m(X) and λ̃2,m(X). The fundamental conjecture underlying this decomposition

is that the component functions arising in the function decomposition will exhibit

insignificant S-variate effects cooperatively when S → N , leading to useful lower-

variate approximations of λ(X). When S → N and m → ∞, λ̃S,m(X) converges

to λ(X) in the mean-square sense, i.e., Equation (3.11) generates a hierarchical and

convergent sequence of approximations of λ(X).

Applying the expectation operator on Equation (3.11) and noting Property

1, the mean E
[
λ̃S,m(X)

]
= λ0 of the S-variate, mth-order approximation of the

eigenvalue matches the exact mean of the eigenvalue in Equation (3.2), regardless

of S or m. Applying the expectation operator again, this time on
[
λ̃S,m(X)− λ0

]2

,

results in the approximate variance

E
[
λ̃S,m(X)− λ0

]2

=
S∑
s=1

S∑
t=1

(
N−s+1∑
i1=1

· · ·
N∑

is=is−1+1

m∑
j1=1

· · ·
m∑
js=1︸ ︷︷ ︸

2s sums

×
N−t+1∑
k1=1

· · ·
N∑

kt=kt−1+1

m∑
l1=1

· · ·
m∑
lt=1︸ ︷︷ ︸

2t sums

Ci1···isj1···js

×Ck1···ktl1···ltE

[
s∏
q=1

ψiqjq(Xiq)
t∏

q=1

ψkqlq(Xkq)

])
(3.13)

of the eigenvalue, which depends on S and m. The number of summations inside
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the parenthesis of the right side of Equation (3.13) is 2(s + t), where s and t are

the indices of the two outer summations. By virtue of Property 2 and independent

coordinates of X,

E

[
s∏
q=1

ψiqjq(Xiq)
t∏

q=1

ψkqlq(Xkq)

]
=

s∏
q=1

E
[
ψ2
iqjq(Xiq)

]
= 1 (3.14)

for s = t, iq = kq, jq = lq and zero otherwise, leading to

E
[
λ̃S,m(X)− λ0

]2

=
S∑
s=1

(
N−s+1∑
i1=1

· · ·
N∑

is=is−1+1︸ ︷︷ ︸
s sums

m∑
j1=1

· · ·
m∑
js=1︸ ︷︷ ︸

s sums

C2
i1···isj1···js

)
(3.15)

as the sum of squares of the expansion coefficients from the S-variate, mth-order

PDD approximation of λ(X). Clearly, the approximate variance in Equation (3.15)

approaches the exact variance

E [λ(X)− λ0]2 = E [λPDD(X)− λ0]2

=
N∑
s=1

(
N−s+1∑
i1=1

· · ·
N∑

is=is−1+1︸ ︷︷ ︸
s sums

∞∑
j1=1

· · ·
∞∑
js=1︸ ︷︷ ︸

s sums

C2
i1···isj1···js

)
(3.16)

of the eigenvalue when S → N and m → ∞. The mean-square convergence of λ̃S,m

is guaranteed as λ, and its component functions are all members of the associated

Hilbert spaces.

Remark 3.1: The expansion order m, which is a positive integer, should be inter-

preted as the largest exponent of a single variable from the monomials (terms) of the

PDD approximation. Based on the traditional definition, the total order of the multi-

variate polynomial in the right side of Equation (3.11) is Sm, although all monomials

with total degrees equal to or less than Sm are not present.
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3.3.2 PCE approximation

The pth-order PCE approximation

λ̄p(X) := a0Γ0 +
N∑
i=1

aiΓ1(Xi) +
N∑
i1=1

N∑
i2=i1

ai1i2Γ2(Xi1 , Xi2)

+
N∑
i1=1

N∑
i2=i1

N∑
i3=i2

ai1i2i3Γ3(Xi1 , Xi2 , Xi3)

+ · · ·+
N∑
i1=1

· · ·
N∑

ip=ip−1

ai1···ipΓp(Xi1 , · · · , Xip),

(3.17)

obtained directly by truncating the right side of Equation (3.4), requires (N+p)!/(N !p!)

number of the PCE coefficients. However, since PDD and PCE are related, the terms

of Equation (3.17) can be rearranged following similar derivations in proving Theorem

3.1, resulting in

λ̄p(X) = λ0 +
N∑
i=1

p∑
j=1

Cijψij(Xi)

+
N−1∑
i1=1

N∑
i2=i1+1

p−1∑
j2=1

p−1∑
j1=1︸ ︷︷ ︸

j1+j2≤p

Ci1i2j1j2ψi1j1(Xi1)ψi2j2(Xi2)

+
N−2∑
i1=1

N−1∑
i2=i1+1

N∑
i3=i2+1

p−2∑
j3=1

p−2∑
j2=1

p−2∑
j1=1︸ ︷︷ ︸

j1+j2+j3≤p

Ci1i2i3j1j2j3

×ψi1j1(Xi1)ψi2j2(Xi2)ψi3j3(Xi3)

+ · · ·+
N−s+1∑
i1=1

· · ·
N∑

is=is−1+1

p−N+1∑
jN=1

· · ·
p−N+1∑
j1=1︸ ︷︷ ︸

j1+···+jN≤p

Ci1···iN j1···jN

N∏
q=1

ψiqjq(Xiq)

(3.18)
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with the generic (s+ 1)th term, s = 1, · · · , p, shown or its abbreviated form

λ̄p(X) = λ0 +
N∑
s=1

[
N−s+1∑
i1=1

· · ·
N∑

is=is−1+1︸ ︷︷ ︸
s sums

p−s+1∑
j1=1

· · ·
p−s+1∑
js=1︸ ︷︷ ︸

s sums;j1+···+js≤p

Ci1···isj1···js

s∏
q=1

ψiqjq(Xiq)

]
,

(3.19)

involving solely

Qp =
N∑
k=0

(
N

N − k

)(
p

N − k

)
(3.20)

number of PDD coefficients and corresponding orthonormal polynomials, where
(

p
N−k

)
should be interpreted as zero when p < N − k. It is elementary to show that Qp

matches (N + p)!/(N !p!), the original number of PCE coefficients from Equation

(3.17). The advantage of Equation (3.19) over Equation (3.17) is that the PDD

coefficients, once determined, can be reused for the PCE approximation, thereby

sidestepping calculations of the PCE coefficients.

Applying the expectation operator on Equation (3.19) and noting Property

1, the mean E
[
λ̄p(X)

]
= λ0 of the pth-order PCE approximation of the eigenvalue

also matches the exact mean of the eigenvalue for any expansion order. Applying the

expectation operator on
[
λ̄p(X)− λ0

]2
and following similar arguments as before,

the variance of the pth-order PCE approximation of the eigenvalue is

E
[
λ̄p(X)− λ0

]2
=

N∑
s=1

(
N−s+1∑
i1=1

· · ·
N∑

is=is−1+1︸ ︷︷ ︸
s sums

p−s+1∑
j1=1

· · ·
p−s+1∑
js=1︸ ︷︷ ︸

s sums;j1+···+js≤p

C2
i1···isj1···js

)
, (3.21)

another sum of squares of the PDD expansion coefficients such that j1 + · · ·+ js ≤ p,

which also converges to E [λ(X)− λ0]2 as p→∞.

Remark 3.2: Two important observations can be made when comparing the PDD
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and PCE approximations expressed by Equations (3.11) and (3.17), respectively.

First, the terms in the PCE approximation are organized with respect to the or-

der of polynomials. In contrast, the PDD approximation is structured with respect

to the degree of cooperativity between a finite number of random variables. Therefore,

significant differences may exist regarding the accuracy, efficiency, and convergence

properties of their truncated sum or series. Second, if an eigenvalue response is highly

nonlinear, but contains rapidly diminishing cooperative effects of multiple random

variables, the PDD approximation is expected to be more effective than the PCE

approximation. This is because the lower-variate (univariate, bivariate, etc.) terms

of the PDD approximation can be just as nonlinear by selecting appropriate values of

m in Equation (3.11). In contrast, many more terms and expansion coefficients are

required to be included in the PCE approximation to capture such high nonlinearity.

Remark 3.3: Depending on the problem size (N) and truncation parameters (S,m, p),

there exist a few special cases where the PDD and PCE approximations coincide: (1)

when N = 1, the univariate, mth-order PDD and mth-order PCE approximations

are the same, i.e., λ̃1,m(X) = λ̄m(X) for any 1 ≤ m <∞; (2) for any arbitrary value

of N , the univariate, first-order PDD, and first-order PCE approximations are the

same, i.e., λ̃1,1(X) = λ̄1(X).

Remark 3.4: The PDD and PCE approximations, regardless of the truncation pa-

rameters, predict the exact mean of an eigenvalue. However, the calculated variances

of an eigenvalue from Equations (3.15) and (3.21) for S < N , m < ∞, and p < ∞

are neither the same nor exact in general. Therefore, an error analysis, at least per-
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taining to the second-moment properties of eigensolutions, is required for comparing

the PDD and PCE approximations.

3.3.3 Error analysis

Define two errors,

eS,m := E
[
λ(X)− λ̃S,m(X)

]2

= E
[
λPDD(X)− λ̃S,m(X)

]2

=
∫
RN

[
λPDD(x)− λ̃S,m(x)

]2

fX(x)dx

(3.22)

and

ep := E
[
λ(X)− λ̄p(X)

]2
= E

[
λPDD(X)− λ̄p(X)

]2
=
∫
RN

[
λPDD(x)− λ̄p(x)

]2
fX(x)dx,

(3.23)

owing to S-variate, mth-order PDD approximation λ̃S,m(X) and pth-order PCE ap-

proximation λ̄p(X), respectively, of λ(X). Replacing λPDD, λ̃S,m, and λ̄p in Equa-

tions (3.22) and (3.23) with the right sides of Equations (3.1), (3.11), and (3.19),

respectively, and invoking Properties 1 and 2 yields the PDD error

eS,m =
S∑
s=1

(
N−s+1∑
i1=1

· · ·
N∑

is=is−1+1︸ ︷︷ ︸
s sums

∞∑
j1=m+1

· · ·
∞∑

js=m+1︸ ︷︷ ︸
s sums

C2
i1···isj1···js

)

+
N∑

s=S+1

(
N−s+1∑
i1=1

· · ·
N∑

is=is−1+1︸ ︷︷ ︸
s sums

∞∑
j1=1

· · ·
∞∑
js=1︸ ︷︷ ︸

s sums

C2
i1···isj1···js

) (3.24)

and the PCE error

ep =
N∑
s=1

(
N−s+1∑
i1=1

· · ·
N∑

is=is−1+1︸ ︷︷ ︸
s sums

∞∑
j1=1

· · ·
∞∑
js=1︸ ︷︷ ︸

s sums;j1+···+js>p

C2
i1···isj1···js

)
, (3.25)
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both consisting of the eliminated PDD coefficients as a result of truncations. In

Equation (3.24), the first term of the PDD error is due to the truncations of polyno-

mial expansion orders involving main and cooperative effects of at most S variables,

whereas the second term of the PDD error is contributed by ignoring the coopera-

tive effects of larger than S variables. In contrast, the PCE error in Equation (3.25)

derives from the truncations of polynomial expansion orders involving all main and

cooperative effects. By selecting 1 ≤ S ≤ N , 1 ≤ m < ∞, and 1 ≤ p < ∞, the

errors can be determined for any PDD and PCE approximations, provided that all

coefficients required by Equations (3.24) and (3.25) can be calculated.

For a general REP, comparing the PDD and PCE errors theoretically based

on Equations (3.24) and (3.25) is not simple, as it depends on which expansion coeffi-

cients decay and how they decay with respect to the truncation parameters S, m, and

p. However, for a class of problems where the cooperative effects of S input variables

on an eigenvalue get progressively weaker as S → N , the PDD and PCE errors for

identical expansion orders can be weighed against each other. For this special case,

m = p, assume that Ci1···isj1···js = 0, where s = S + 1, · · · , N , 1 ≤ i1 < · · · < is ≤ N ,

j1, · · · js = 1, · · · ,∞, for both the PDD and PCE approximations. Then, the second
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term on the right side of Equation (3.24) vanishes, resulting in the PDD error

eS,m =
S∑
s=1

(
N−s+1∑
i1=1

· · ·
N∑

is=is−1+1︸ ︷︷ ︸
s sums

∞∑
j1=m+1

· · ·
∞∑

js=m+1︸ ︷︷ ︸
s sums

C2
i1···isj1···js

)

=
S∑
s=1

(
N−s+1∑
i1=1

· · ·
N∑

is=is−1+1︸ ︷︷ ︸
s sums

∞∑
j1=1

· · ·
∞∑
js=1︸ ︷︷ ︸

s sums

C2
i1···isj1···js

)

−
S∑
s=1

(
N−s+1∑
i1=1

· · ·
N∑

is=is−1+1︸ ︷︷ ︸
s sums

m∑
j1=1

· · ·
m∑
js=1︸ ︷︷ ︸

s sums

C2
i1···isj1···js

)
,

(3.26)

while the PCE error can be split into

em =
S∑
s=1

(
N−s+1∑
i1=1

· · ·
N∑

is=is−1+1︸ ︷︷ ︸
s sums

∞∑
j1=1

· · ·
∞∑
js=1︸ ︷︷ ︸

s sums

C2
i1···isj1···js

)

−
S∑
s=1

(
N−s+1∑
i1=1

· · ·
N∑

is=is−1+1︸ ︷︷ ︸
s sums

m−s+1∑
j1=1

· · ·
m−s+1∑
js=1︸ ︷︷ ︸

s sums;j1+···+js≤m

C2
i1···isj1···js

)

≥
S∑
s=1

(
N−s+1∑
i1=1

· · ·
N∑

is=is−1+1︸ ︷︷ ︸
s sums

∞∑
j1=1

· · ·
∞∑
js=1︸ ︷︷ ︸

s sums

C2
i1···isj1···js

)

−
S∑
s=1

(
N−s+1∑
i1=1

· · ·
N∑

is=is−1+1︸ ︷︷ ︸
s sums

m∑
j1=1

· · ·
m∑
js=1︸ ︷︷ ︸

s sums

C2
i1···isj1···js

)

= eS,m,

(3.27)

demonstrating larger error from the PCE approximation than from the PDD approx-

imation. In the limit, when S = N , similar derivations show em ≥ eN,m, regardless

of the values of the expansions coefficients. In other words, the N -variate, mth-order

PDD approximation cannot be worse than the mth-order PCE approximation. When

S < N and Ci1···isj1···js , s = S+1, · · · , N , 1 ≤ i1 < · · · < is ≤ N , j1, · · · js = 1, · · · ,∞,
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are not negligible and arbitrary, numerical convergence analysis is required for com-

paring these two errors.

Remark 3.5: The stochastic and error analyses aimed at higher-order moments or

probability distribution of λ can be envisioned, but no closed-form solutions or sim-

ple expressions are possible. However, if λ is sufficiently smooth with respect to X

− a condition fulfilled by many realistic eigenvalue problems − then Monte Carlo

simulation of both the PDD and PCE approximations can be efficiently conducted

for estimating the tail probabilistic characteristics of eigensolutions as well.

3.4 Expansion Coefficients

The determination of the expansion coefficients required by the PDD or PCE

approximation involves various N -dimensional integrals over RN and is computa-

tionally prohibitive to evaluate when N is arbitrarily large. Instead, a dimension-

reduction integration, presented as follows, was applied to estimate the coefficients

efficiently [87].

3.4.1 Dimension-reduction integration

Let c = {c1, · · · , cN}T be a reference point of input X and λ(c1, · · · , ci1−1, Xi1 ,

ci1+1, · · · , ciR−k−1, XiR−k
, ciR−k+1, · · · , cN) represent an (R − k)th dimensional com-

ponent function of λ(X), where 1 ≤ R < N is an integer, k = 0, · · · , R, and

1 ≤ i1 < · · · < iR−k ≤ N . For example, when R = 1, the zero-dimensional com-

ponent function, which is a constant, is λ(c) and the one-dimensional component

functions are λ(X1, c2, · · · , cN), λ(c1, X2, · · · , cN), · · · , λ(c1, c2, · · · , XN). Using Xu
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and Rahman’s multivariate function theorem [85], it can be shown that the R-variate

approximation of λ(X), defined by

λ̂R(X) :=
R∑
k=0

(−1)k
(
N −R + k − 1

k

)
×

N−R+k+1∑
i1=1

· · ·
N∑

iR−k=iR−k−1+1︸ ︷︷ ︸
(R−k) sums

y(c1, · · · , ci1−1, Xi1 , ci1+1, · · · , ciR−k−1, XiR−k
, ciR−k+1, · · · , cN),

(3.28)

consists of all terms of the Taylor series of λ(X) that have less than or equal to R

variables. The expanded form of Equation (3.28), when compared with the Taylor

expansion of λ(X), indicates that the residual error in λ̂R(X) includes terms of

dimensions R + 1 and higher. All higher-order R- and lower-variate terms of λ(X)

are included in Equation (3.28), which should therefore generally provide a higher-

order approximation of a multivariate function than equations derived from first- or

second-order Taylor expansions. Therefore, for R < N , an N -dimensional integral can

be efficiently estimated by at most R-dimensional integrations, if the contributions

from terms of dimensions R + 1 and higher are negligible.

Substituting λ(x) in Equations (3.2) and (3.3) by λ̂R(x), the coefficients can

be estimated from

λ0
∼=

R∑
k=0

(−1)k
(
N −R + k − 1

k

) N−R+k+1∑
i1=1

· · ·
N∑

iR−k=iR−k−1+1︸ ︷︷ ︸
(R−k) sums

×

∫
RR−k λ(c1, · · · , ci1−1, xi1 , ci1+1, · · · , ciR−k−1, xiR−k

, ciR−k+1, · · · , cN)×
R−k∏
q=1

fkq(xkq)dxkq

(3.29)
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and

Ci1···isj1···js
∼=

R∑
k=0

(−1)k
(
N −R + k − 1

k

) N−R+k+1∑
i1=1

· · ·
N∑

iR−k=iR−k−1+1︸ ︷︷ ︸
(R−k) sums

×

∫
RR−k λ(c1, · · · , ci1−1, xi1 , ci1+1, · · · , ciR−k−1, xiR−k

, ciR−k+1, · · · , cN)×
s∏

p=1

ψipjp(xip)
R−k∏
q=1

fkq(xkq)dxkq ,

(3.30)

which require evaluating at most R-dimensional integrals. Equations (3.29) and

(3.30), which facilitate calculation of coefficients approaching their exact values as

R → N , are more efficient than performing one N -dimensional integration, as in

Equations (3.2) and (3.3), particularly when R� N . Hence, the computational effort

in calculating the coefficients is significantly lowered using the dimension-reduction

integration. When R = 1, 2, or 3, Equations (3.29) and (3.30) involve one-, at

most two-, and at most three-dimensional integrations, respectively. Nonetheless, nu-

merical integration is still required for a general function λ. The integration points

and associated weights depend on the probability distribution of Xi. They are read-

ily available as Gauss-Hermite, Gauss-Legendre, and Gauss-Jacobi quadrature rules

when a random variable follows Gaussian, uniform, and Beta distributions, respec-

tively [88]. In performing the dimension-reduction integration, the value of R should

be selected in such a way that it is either equal to or greater than the value of s.

Then the expansion coefficient Ci1···isj1···js will have a non-trivial solution [87].
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3.4.2 Computational efforts

The S-variate, mth-order PDD approximation requires evaluations of QS,m =∑k=S
k=0

(
N
S−k

)
mS−k number of PDD coefficients: λ0 and Ci1···isj1···js , s = 1, · · · , S,

1 ≤ i1 < · · · < is ≤ N , j1, · · · , js = 1, · · · ,m. If these coefficients are estimated

by dimension-reduction integration with R = S < N and, therefore, involve at most

S-dimensional tensor product of an n-point univariate quadrature rule depending on

m in Equations (3.29) and (3.30), then the following deterministic responses (eigen-

value or function evaluations) are required: λ(c), λ(c1, · · · , ci1−1, x
(k1)
i1

, ci1+1, · · · , cis−1,

x
(ks)
is

, cis+1, · · · , cN) for k1, · · · , ks = 1, · · · , n(m), where the superscripts on vari-

ables indicate corresponding integration points. Therefore, the total cost for the

S-variate, mth-order PDD approximation entails a maximum of
∑k=S

k=0

(
N
S−k

)
nS−k(m)

eigenvalue evaluations. If the integration points include a common point in each

coordinate − a special case of symmetric input probability density functions and

odd values of n (see Examples 2-5) − the number of eigenvalue evaluations reduces

to
∑k=S

k=0

(
N
S−k

)
(n(m) − 1)S−k. In other words, the computational complexity of the

PDD approximation is Sth-order polynomial with respect to the number of random

variables or integration points.

In contrast, the pth-order PCE approximation requires evaluations of Qp =∑N
k=0

(
N

N−k

)(
p

N−k

)
number of PDD coefficients λ0 and Ci1···isj1···js , s = 1, · · · , N ,

1 ≤ i1 < · · · < is ≤ N , j1 + · · · + js ≤ p, which can again be estimated by

dimension-reduction integration by selecting R = p < N , and therefore involving

at most p-dimensional tensor product of an n-point univariate quadrature rule, where
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Figure 3.1: Ratio of eigenvalue evaluations by the PCE and PDD approximations for
two identical polynomial expansion orders; (a) m = p = 3; (b) m = p = 5. Note: a
ratio greater than one indicates higher computational cost of the PCE approximation
than the PDD approximation

n depends on p. As a result, the total cost for the pth-order PCE approximation

consists of a maximum of
∑k=p

k=0

(
N
p−k

)
np−k(p) eigenvalue evaluations in general, or∑k=p

k=0

(
N
p−k

)
(n(p)−1)p−k eigenvalue evaluations for a particular case discussed earlier.

In either case, the computational complexity of the PCE approximation is a pth-order

polynomial with respect to the number of random variables or integration points.

Figures 3.1(a) and 3.1(b) present plots of the ratio of numbers of eigen-

value evaluations by the PCE and PDD approximations,
∑k=p

k=0

(
N
p−k

)
× np−k(p)/∑k=S

k=0

(
N
S−k

)
× nS−k(m), as a function of the dimension N for two cases of identical

expansion orders m = p = 3 and m = p = 5, respectively, where n = m + 1 = p + 1.

The plots in each figure were developed separately for S = 1 (univariate), S = 2
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(bivariate), and S = 3 (trivariate) PDD approximations. From the results of Fig-

ures 3.1(a) and 3.1(b), regardless of the plot, the ratios are mostly larger than one,

indicating greater computational need by the PCE approximation than by the PDD

approximation. When S � N and m = p � 1, the PCE approximation is expected

to be significantly more expensive than the PDD approximation.

Remark 3.6: When S = N in PDD or p ≥ N in PCE, Equations (3.28)-(3.30)

are irrelevant, eliminating the possibility of any dimension reduction. However, these

special cases, evoking merely academic interest, are rarely observed for practical ap-

plications with moderate to large numbers of random variables. Nonetheless, the

expansion coefficients for these cases can be calculated using the full N -dimensional

tensor product of the univariate quadrature formulae, consequently demanding nN

eigenvalue evaluations, where n depends on m or p, for both the PDD and PCE

approximations.

3.5 Numerical Examples

Five numerical examples involving two well-known mathematical functions and

three eigenvalue problems are presented to illustrate the performance of the PDD and

PCE approximations for calculating the statistical moments of output functions or

eigenvalues, including tail probability distributions of natural frequencies. In Ex-

amples 1 and 2, the classical Legendre polynomials and associated Gauss-Legendre

quadrature formulae were employed to evaluate the expansion coefficients. However,

in Examples 3-5, all original random variables were transformed into standard Gaus-
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sian random variables, employing Hermite orthonormal polynomials as bases and the

Gauss-Hermite quadrature rule for calculating the expansion coefficients. The ex-

pansion coefficients in Example 1 were calculated by full N -dimensional integrations.

However, in Examples 2 through 5, the coefficients were estimated by dimension-

reduction integration when S = p < N , so that an S-variate, mth-order PDD or

pth-order PCE approximation requires at most S- or p-dimensional numerical inte-

gration. For the third and fourth examples, the eigenvalues were calculated by a

hybrid double-shifted LR-QR algorithm [105]. A Lanczos algorithm embedded in the

commercial code Abaqus (Version 6.9) [108] was employed for the fifth example. In

Examples 3 and 4, the sample sizes for crude Monte Carlo simulation and the em-

bedded Monte Carlo simulation of the PDD and PCE methods are both 106. The

respective sample sizes are 50, 000 and 106 in Example 5. The expansion orders m

and p vary depending on the example, but in all cases the number of integration

points n = m+ 1 or n = p+ 1.

3.5.1 Polynomial function

Consider the polynomial function

λ(X) =
1

2N

N∏
i=1

(3X2
i + 1) (3.31)

studied by Sudret [116], whereXi, i = 1, · · · .N , are independent and identical random

variables, each following standard uniform distribution over [0,1]. From elementary

calculations, the exact mean E [λ(X)] = 1 and the exact variance σ2 = (6/5)N − 1.

The second-moment analysis in this example was conducted for two problem
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sizes (dimensions): (1) N = 3; and (2) N = 5. For N = 3, Equation (3.31) represents

a sixth-order, trivariate, polynomial function, which is a product of three quadratic

polynomials in each variable. Therefore, a trivariate, second-order PDD approxima-

tion (S = 3, m = 2) with second-order Legendre polynomials (interval = [−1,+1])

in Equation (3.11) should exactly reproduce λ. Since X1, X2, and X3 are indepen-

dent, the highest order of integrands for calculating the expansion coefficients is four.

A three-point Gauss-Legendre quadrature should then provide the exact values of

all coefficients. Therefore, if the expansion coefficients are calculated using m ≥ 2

in Equation (3.11), and Equations (3.2) and (3.3) are numerically integrated with

n ≥ m+ 1, then the only source of error in a truncated PDD is the selection of S.

For N = 3, Table 3.1 presents the relative errors, defined as the ratio of

the absolute difference between the exact and approximate variances of λ(X) to

the exact variance of λ(X), from the univariate (S = 1), bivariate (S = 2), and

trivariate (S = 3) PDD approximations. They were calculated for m varying from

one to six, involving eight to 343 function evaluations, respectively, when estimating

the expansion coefficients by full N -dimensional integrations. The errors from all

three PDD approximations drop as m increases, but they level off quickly at their

respective limits for the univariate and bivariate PDD approximations. When m = 2,

the error due to the trivariate PDD approximation is zero as the PDD approximation

coincides with λ(X) in Equation (3.31), as expected. For comparison, the same

problem was solved using the PCE approximation with p varying from one to six

and correspondingly requiring eight to 343 function evaluations. The relative errors
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by the PCE approximation enumerated in Table 3.1 also converge to zero, but at

an expansion order p = 6, which is three times larger than the order of univariate

polynomials required by the PDD method. At exactness, the PDD method is more

efficient than the PCE method by a factor of 343/27 ∼= 13.

Table 3.1: Relative errors in calculating the variance of the polynomial function
for N = 3 by the PDD and PCE approximations (Example 1)

PDD(a)

m or p S = 1 S = 2 S = 3 PCE(a) No. of function
evaluations(b)

(×10−1) (×10−2) (×10−2)
1 2.273 8.246 7.341 2.273× 10−1 8
2 1.758 1.099 0 3.095× 10−2 27
3 1.758 1.099 −(c) 2.578× 10−3 64
4 1.758 1.099 −(c) 1.234× 10−4 125
5 1.758 1.099 −(c) 2.683× 10−6 216
6 1.758 1.099 −(c) 0 343

(a) The variances from trivariate PDD for m = 2 and PCE for p = 6 coincide with
the exact solution: σ2 = (6/5)N − 1, where N = 3.

(b) The number of function evaluations by all three PDD and PCE methods
employing a full N -dimensional numerical integration and n-point univariate
Gauss-Legendre rule is nN , where N = 3, n = m+ 1, and 1 ≤ m ≤ 6.

(c) Not required.

The function in Equation (3.31) was also studied for a slightly larger dimension:

N = 5. The associated errors of the pentavariate (S = 5) PDD approximation and

PCE approximation with several polynomial expansion orders are displayed in Table

3.2. Again, both the PDD and PCE methods produce zero errors, but, at the cost of

second- and 10th-order expansions, respectively. As a result, the factor of efficiency



59

Table 3.2: Relative errors in calculating the variance of the poly-
nomial function for N = 5 by the PDD and PCE approximations
(Example 1)

m or p
Pentavariate PDD

(S = 5)(a) PCE(a) No. of function
evaluations(b)

1 8.528× 10−1 3.700× 10−1 32
2 0 9.189× 10−2 243
3 −(c) 1.610× 10−2 1024
4 −(c) 2.042× 10−3 3125
5 −(c) 1.882× 10−4 7776
6 −(c) 1.240× 10−5 16,807
7 −(c) 5.590× 10−7 32,768
8 −(c) 1.558× 10−8 59,049
9 −(c) 2.050× 10−10 100,000
10 −(c) 0 161,051

(a) The variances from trivariate PDD for m = 2 and PCE for p = 10
coincide with the exact solution: σ2 = (16/15)N − 1, where N = 5.

(b) The number of function evaluations by all three PDD and PCE
methods employing a full N -dimensional numerical integration
and n-point univariate Gauss-Legendre rule is nN , where N = 5,
n = m+ 1, and 1 ≤ m ≤ 10.

(c) Not required.

of the PDD method jumps to 161051/243 ∼= 663, even for such a small increase in the

dimension. The higher efficiency of the PDD approximation for both problem sizes

is attributed to its dimensional hierarchy, favorably exploiting the structure of λ.

3.5.2 Non-polynomial function

The second example involves second-moment analysis of the Ishigami and

Homma function [117]

λ(X) = sinX1 + a sin2X2 + bX4
3 sinX1, (3.32)
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where Xi, i = 1, 2, 3, are three independent and identically distributed uniform ran-

dom variables on [−π,+π], and a and b are real-valued deterministic parameters. This

function also permits the exact solution of the variance: σ2 = a2/8+bπ4/5+b2π8/18+

1/2. Note that λ is a non-polynomial function; therefore, neither the PDD nor the

PCE approximation will provide the exact solution, but their respective errors can

be reduced to an arbitrarily low value by increasing the polynomial expansion orders

successively. In this example, the following deterministic parameters were selected:

a = 7, b = 0.1.

Since the right side of Equation (3.32) includes the cooperative effects of at

most two variables, the bivariate PDD approximation is adequate for convergence

analysis. In this example, the PDD expansion coefficients of the bivariate approxima-

tion were estimated using the Legendre polynomials (interval = [−1,+1]) of a specified

order m and dimension-reduction integration (Gauss-Legendre quadrature rule) with

R = S = 2, and n = m + 1. Several even orders, m = 2, 4, 6, 8, 10, 12, 14, 16, 18,

were chosen in such a way that n remained an odd integer. In so doing, the cor-

responding number of function evaluations by the PDD method for a given m is

3m2 + 3m + 1. For the PCE approximation, the PDD expansion coefficients for a

specified order 2 ≤ p ≤ 18 and n = p + 1 were calculated by dimension-reduction

integration when p < 3 involving
∑k=p

k=0

(
3

p−k

)
(n−1)p−k function evaluations for even p

and full three-dimensional integration when p ≥ 3 involving n3 function evaluations.

Figure 3.2 shows how the relative errors in the variances of λ(X) from the

bivariate PDD and PCE approximations vary with respect to the number (L) of
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function evaluations. The data points of these plots were generated by calculating the

approximate variances for the selected values ofm or p and counting the corresponding

number of function evaluations. Ignoring the first three data points in Figure 3.2,

the errors of the PDD and PCE solutions decay proportionally to L−17.5 and L−12.1,

respectively. Clearly, their convergence rates − the absolute values of the slopes of

the trend lines in the log-log plots − are much higher than unity. The sampling-

based methods, crude Monte Carlo and quasi-Monte Carlo, which have theoretical

convergence rates in the range of 0.5 to 1, are no match for the PDD and PCE

methods, which are endowed with significantly higher convergence rates, mostly due

to the smoothness of λ. Furthermore, the PDD approximation converges markedly

faster than the PCE approximation. Although a similar observation was made in

Example 1, the validity of this trend depends on the function examined.

3.5.3 Two-degree-of-freedom, undamped, spring-mass system

Consider a two-degree-of-freedom, undamped, spring-mass system, shown in

Figure 3.3, with random or deterministic mass and random stiffness matrices

M =

[
M1(X) 0

0 M2(X)

]
and K(X) =

[
K1(X) +K3(X) −K3(X)
−K3(X) K2(X) +K3(X)

]
,

(3.33)

respectively, where K1(X) = 1000X1 N/m, K2(X) = 1100X2 N/m, K3(X) = 100X3

N/m, M1(X) = X4 kg, andM2(X) = 1.5X5 kg. The inputX = {X1, X2, X3, X4, X5}T

∈ R5 is an independent lognormal random vector with the mean vector µX = 1 ∈ R5

and covariance matrix ΣX = diag(v2
1, v

2
2, v

2
3, v

2
4, v

2
5) ∈ R5×5, where vi represents the
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Figure 3.2: Relative errors in calculating the variance of the the Ishigami and Homma
function by the PDD and PCE approximations (Example 2). Note: The parenthetical
values denote slopes of the trend lines

coefficient of variation of Xi. Two cases of the problem size based on the coefficients

of variations were examined: (1) N = 2 with v1 = v2 = 0.25, v3 = v4 = v5 = 0;

and (2) N = 5 with v1 = v2 = 0.25, v3 = v4 = v5 = 0.125. The first case comprises

uncertain stiffness properties of the first two springs only, whereas the second case

includes uncertainties in all mass and stiffness properties. In both cases, there ex-

ist two real-valued random eigenvalues, λ1(X) and λ2(X), which are sorted into an

ascending order.

Since the eigenvalues are in general non-polynomial functions of input, a con-
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Figure 3.3: A two-degree-of-freedom, undamped, spring-mass system

vergence study with respect to the truncation parameters of PDD and PCE is required

to calculate the probabilistic characteristics of eigensolutions accurately. Figures

3.4(a) and 3.4(b) depict how the normalized errors of the second-moment properties,

eS,m/E [λ(X)− λ0]2 and ep/E [λ(X)− λ0]2, of the the first and second eigenvalues,

respectively, decay with respect to m or p for N = 2. The normalized errors were

calculated using Equations (3.16), (3.24), and (3.25) and employing the value of 80, a

sufficiently large integer, for replacing the infinite limits of the summations. For any

identical expansion orders (m = p), the bivariate PDD approximation (S = N = 2)

yields smaller errors than the PCE approximation, consistent with the theoretical

finding described in section 4.3. As soon as m or p becomes larger than three, the

difference in the errors by the PDD and PCE approximations grows by more than an

order of magnitude.

For a case of larger dimension (N = 5), calculating the normalized errors in

the same way described above requires an enormous number of PDD coefficients.

In addition, the determination of these coefficients is computationally taxing, if not
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freedom oscillator by the PDD and PCE approximations (Example 3): (a) first eigen-
value (N = 2); (b) second eigenvalue (N = 2); (c) first eigenvalue (N = 5); (d) second
eigenvalue (N = 5)

prohibitive, considering infinite limits in Equations (3.16), (3.24), and (3.25). To

circumvent this problem, another relative error, defined as the ratio of the absolute

difference between the numerically integrated and approximate variances of λ(X)

to the numerically integrated variance of λ(X), employing the pentavariate (S = 5)

PDD (Equation (3.15)) or PCE (Equation (3.21)) approximation, was evaluated. The

variance estimated by numerical integration involved a full five-dimensional tensor
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product of a 25-point univariate quadrature rule, where the number of integration

points was ascertained adaptively. The plots of the relative error versus m or p in

Figure 3.4(c) and 3.4(d) for the first and second eigenvalues, respectively, display a

trend similar to that observed when N = 2, verifying once again that the errors from

the PDD approximation are always smaller than those from the PCE approximation.

In other words, the PDD method is expected to predict more accurate second-moment

properties of random eigensolutions than the PCE method for, at least, the simple

dynamic systems examined in this work.

3.5.4 Free-standing beam

The fourth example involves free vibration of a tall, free-standing beam shown

in Figure 3.5(a) [41]. Figure 3.5(b) represents a lumped-parameter model of the

beam, which comprises seven rigid, massless links hinged together. The mass of the

beam is represented by seven random point masses located at the center of each

link. No damping was assumed, except at the bottom joint, where the random, ro-

tational, viscous damping coefficient due to the foundation pad is C. The random

rotational stiffness at the bottom of the beam, controlled by the lower half of the

bottom link and the flexibility of the foundation pad, is K. The independent random

variables M , C, and K are lognormally distributed with respective means of 3000

kg, 2 × 107 N-m-s/rad, and 2 × 109 N-m/rad and have a 20 percent coefficient of

variation. The flexural rigidity of the beam is represented by six rotational springs

between links with stiffnesses k(x) = k(xi), i = 1, · · · , 6, where xi = il i = 1, · · · , 6,
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and l = 6 m. The spatially varying spring stiffness k(x) = cα exp[α(x)] is an

independent, homogeneous, lognormal random field with mean µk = 2 × 109 N-

m/rad and coefficient of variation vk = 0.2, where cα = µk/
√

1 + v2
k and α(x) is

a zero-mean, homogeneous, Gaussian random field with variance σ2
α = ln(1 + v2

k)

and covariance function Γα(u) := E[α(x)α(x + u)] = σ2
α exp(− |u| /l). A discretiza-

tion of α(x) yields the zero-mean Gaussian random vector α = {α1, · · · , α6}T :=

{α(l), · · · , α(6l)}T ∈ R6 with covariance matrix Σα := [E(αuαv)], u, v = 1, · · · , 6,

where E(αuαv) = E(α(ul)α(vl)) = Γα((u − v)l), providing complete statistical char-

acterization of spring stiffnesses ki = cα exp(αi). Therefore, the input random vector

X = {M,C,K, α1, · · · , α6}T ∈ R9 includes nine random variables in this example.

Further details of the dynamic system, including mass, damping, and stiffness matri-

ces, are available in a prior work of Rahman [41].

Due to non-proportional damping, the discrete beam model yields 14 complex

eigenvalues λi(X) = λR,i(X) ±
√
−1λI,i(X), i = 1, · · · , 7 in conjugate pairs, where

the real parts λR,i(X) and imaginary parts λI,i(X) are both stochastic. Using the

PDD method, Figure 3.6 presents the marginal probability distributions FI,i(λI,i)

and the complementary probabilities 1−FI,i(λI,i), i = 1, · · · , 7 of all seven imaginary

parts, which also represent the natural frequencies of the beam. The distributions

FI,i(λI,i) and 1−FI,i(λI,i) at low probabilities describe tail characteristics of λi at the

left and right ends, respectively. Each subfigure of Figure 3.6 contains four plots: one

obtained from crude Monte Carlo simulation and the remaining three generated from

the univariate (S = 1), bivariate (S = 2), and trivariate (S = 3) PDD approxima-
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tions, employing m = 3, n = 4. In contrast, Figure 3.7 displays the same probability

distributions of all seven imaginary parts of the eigenvalues calculated using the PCE

method. Each subfigure of Figure 3.7 also contains four plots: one obtained from

crude Monte Carlo simulation and the remaining three derived from the first-order

(p = 1), second-order (p = 2), and third-order (p = 3) PCE approximations, employ-

ing n = p+ 1. From Figure 3.6 or 3.7, the tail probability distributions at both ends

converge rapidly with respect to S or p, regardless of the oscillatory mode. Therefore,

both the PDD and PCE methods can be applied to solve this REP accurately.

To determine the computational efficiency of the PDD and PCE methods,

Figures 3.8(a) and 3.8(b) portray enlarged views of the tail probability distributions

of the first and seventh natural frequencies, respectively, of the beam calculated by

all three variants of the PDD or PCE methods, including crude Monte Carlo simula-

tion. Compared with crude Monte Carlo simulation, the bivariate, third-order PDD

approximation; trivariate, third-order PDD approximation; and third-order PCE ap-

proximation provide excellent estimates of the tail distributions. The results further

indicate that the bivariate, third-order PDD and third-order PCE approximations,

both in consilience with the Monte Carlo solution, demand 613 and 5989 eigenvalue

evaluations. Therefore, the PDD approximation is about 5989/613 ∼= 10 times more

economical than the PCE approximation.
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3.5.5 Piezoelectric transducer

The final example entails eigenspectrum analysis of a piezoelectric transducer

commonly used for converting electrical pulses to mechanical vibrations, and vice

versa. Figure 3.9(a) shows a 25 mm diameter cylinder made of a piezoelectric ceramic

PZT4 (lead zirconate titanate) with brass end caps. The thicknesses of the transducer

 

 

 

 

 

 

 

 

 

Brass cap 

Brass cap 

11 mm 11 mm1.5 mm 

(a) 

Electroded 
surfaces

Ceramic 

(a) 

3 mm 

12.5 mm 

3 mm 

12.5 mm 

11 mm 1.5 mm 

Electroded 
surfaces 

Brass cap  

Ceramic 

(b) 

Figure 3.9: A piezoelectric transducer: (a) geometry; (b) finite-element discrete model

and end caps are 1.5 mm and 3 mm, respectively. The cylinder, 25 mm long, was

electroded on both the inner and outer surfaces. The random variables include:

(1) ten non-zero constants defining elasticity, piezoelectric stress coefficients, and

dielectric properties of PZT4; (2) elastic modulus and Poisson’s ratio of brass; and

(3) mass densities of brass and PZT4 [90]. The statistical properties of all 14 random
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variables are listed in Table 3.3. The random variables are independent and follow

lognormal distributions. Due to axisymmetry, a 20-noded finite-element model of a

slice of the transducer, shown in Figure 3.9(b), was created. The model was considered

to be open-circuited. All natural frequencies calculated correspond to antiresonant

frequencies. The governing equations of a piezoelectric analysis are described in

Appendix A.

Table 3.3: Statistical properties of the random input for the piezo-
electric cylinder

Random variable Property(a) Mean
Coefficient of

variation
X1, GPa D1111 115.4 0.15
X2, GPa D1122, D1133 74.28 0.15
X3, GPa D2222, D3333 139 0.15
X4, GPa D2233 77.84 0.15
X5, GPa D1212, D2323, D1313 25.64 0.15
X6, Coulomb/m2 e111 15.08 0.1
X7, Coulomb/m2 e122, e133 -5.207 0.1
X8, Coulomb/m2 e212, e313 12.71 0.1
X9, nF/m D11 5.872 0.1
X10, nF/m D22, D33 6.752 0.1
X11, GPa Eb 104 0.15
X12 νb 0.37 0.05
X13, g/m3 ρb 8500 0.15
X14, g/m3 ρc 7500 0.15
(a) Dijkl are elastic moduli of ceramic; eijk are piezoelectric stress coef-

ficients of ceramic; Dij are dielectric constants of ceramic; Eb, νb, ρb
are elastic modulus, Poisson’s ratio, and mass density of brass; ρc is
mass density of ceramic.

Figure 3.10 presents the marginal probability distributions of the first six nat-

ural frequencies, Ωi, i = 1, · · · , 6, of the transducer by the bivariate (S = 2), third-
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order (m = 3) PDD and third-order (p = 3) PCE methods, respectively. These

probabilistic characteristics, obtained by setting n = m + 1 = p + 1 = 4, are judged

to be converged responses, as their changes due to further increases in m and p are

negligibly small. Therefore, the PDD and PCE methods require 1513 and 24,809

Abaqus-aided finite element analysis, respectively − a significant mismatch in com-

putational efforts − in generating all six probability distributions. Due to expensive

FEA, crude Monte Carlo simulation was conducted only up to 50,000 realizations,

producing only rough estimates of the distributions. Given the low sample size, the

distributions from crude Monte Carlo simulation, also plotted in Figure 3.10, are not

expected to provide very accurate tail characteristics. Nonetheless, the overall shapes

of all six probability distributions generated by both expansion methods match these

Monte Carlo results quite well. However, a comparison of their computational efforts

once again finds the PDD method wringing more computational savings than the

PCE method by an order of magnitude in solving this practical eigenvalue problem.

3.6 Conclusions

Two stochastic expansion methods originating from PDD and PCE were inves-

tigated for solving REPs commonly encountered in stochastic dynamic systems. Both

methods comprise a broad range of orthonormal polynomial bases consistent with the

probability measure of the random input and an innovative dimension-reduction in-

tegration for calculating the expansion coefficients. A new theorem, proven herein,

demonstrates that the infinite series from PCE can be reshuffled to derive the infinite
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series from PDD and vice versa. However, compared with PCE, which contains terms

arranged with respect to the order of polynomials, PDD is structured with respect

to the degree of cooperativity between a finite number of random variables. There-

fore, significant differences exist regarding the accuracy, efficiency, and convergence

properties of their truncated series.

An alternative form of the PCE approximation expressed in terms of the PDD

expansion coefficients was developed. As a result, the probabilistic eigensolutions from

both the PDD and PCE methods can be obtained from the same PDD coefficients,

leading to closed-form expressions of the second-moment properties of eigenvalues and

respective errors. For a class of REPs, where the cooperative effects of input variables

on an eigenvalue get progressively weaker or vanish altogether, the error perpetrated

by the PCE approximation is larger than that committed by the PDD approximation,

when the expansions orders are equal. Given the same expansion orders, the PDD

approximation including main and cooperative effects of all input variables cannot be

worse than the PCE approximation, although the inclusion of all cooperative effects

undermines the salient features of PDD.

The PDD and PCE methods were employed to calculate the second-moment

properties and tail probability distributions in five numerical problems, where the

output functions are either mathematical functions involving smooth polynomials or

non-polynomials or real- or complex-valued eigensolutions from dynamic systems,

some requiring finite element analysis (FEA). The second-moment errors from the

mathematical functions indicate rapid convergence of the PDD and PCE solutions,
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easily outperforming the sampling-based methods. Moreover, for the functions ex-

amined, the convergence rates of the PDD method are noticeably higher than those

of the PCE approximation. The same trend was observed when calculating the vari-

ance of a two-degree-of-freedom linear oscillator regardless of the number of random

variables. A comparison of the numbers of eigenvalue evaluations (numbers of FEA),

required for estimating with the same accuracy the frequency distributions of a free-

standing beam and a piezoelectric transducer, finds the PDD approximation to be

more economical than the PCE approximation by an order of magnitude or more. The

computational efficiency of the PDD method is attributed to its dimensional hierar-

chy, favorably exploiting the hidden dimensional structures of stochastic responses,

including random eigensolutions, examined in this work.
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CHAPTER 4
MULTIPLICATIVE POLYNOMIAL DIMENSIONAL

DECOMPOSITION

4.1 Introduction

The central theme of this chapter is multiplicative PDD methods for solv-

ing high-dimensional stochastic problems. When a stochastic response is dominantly

of multiplicative nature, the standard PDD approximation, predicated on additive

function decomposition, may not provide sufficiently accurate estimates of the prob-

abilistic characteristics of a complex system. To circumvent this problem, two mul-

tiplicative versions of PDD, referred to as factorized PDD (F-PDD) and logarithmic

PDD (L-PDD), were developed to examine if they provide improved stochastic so-

lutions. Both versions involve a hierarchical, multiplicative decomposition of a mul-

tivariate function in terms of variables with increasing dimensions, a broad range

of orthonormal polynomial bases consistent with the input probability measure for

Fourier-polynomial expansions of component functions, and a dimension-reduction

integration or sampling technique for estimating the expansion coefficients.

The ANOVA dimensional decomposition (ADD) of a multivariate function is

discussed in Section 4.2. Section 4.3 briefly explains how ADD leads up to A-PDD

approximation, an existing stochastic method. A multiplicative dimensional decom-

position, including a proof of existence and uniqueness, is presented in Section 4.4.

In addition, the section reveals the relationship or similarity among A-PDD, F-PDD,

and L-PDD, establishing how the latter two methods can exploit a hidden multiplica-
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tive structure, if it exists, of a stochastic response. The calculation of the expansion

coefficients by dimension-reduction integration and sampling techniques are described

in Section 4.5. Section 4.6 presents three numerical examples involving mathemati-

cal functions or random eigenvalue problems, contrasting the accuracy, convergence

properties, and computational efforts of the proposed and existing methods. A large-

scale stochastic-dynamics problem, solved using the new PDD methods, is reported

in Section 4.7. Finally, conclusions are drawn in Section 4.8.

This chapter introduces a compact notation for describing various dimensional

decompositions, including ADD, A-PDD, F-PDD, and L-PDD. They lead to succinct

expressions of stochastic solutions.

4.2 ANOVA Dimensional Decomposition

Let N, N0, R, and R+
0 represent the sets of positive integer (natural), non-

negative integer, real, and non-negative real numbers, respectively. For k ∈ N, denote

by Rk the k-dimensional Euclidean space, by Nk
0 the k-dimensional multi-index space,

and by Rk×k the set of k × k real-valued matrices. These standard notations will be

used throughout the thesis.

Let (Ω,F , P ) be a complete probability space, where Ω is a sample space,

F is a σ-field on Ω, and P : F → [0, 1] is a probability measure. With BN rep-

resenting the Borel σ-field on RN , N ∈ N, consider an RN -valued random vector

X := (X1, · · · , XN) : (Ω,F) → (RN ,BN), which describes the statistical uncertain-

ties in all system and input parameters of a high-dimensional stochastic problem.
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The probability law of X is completely defined by its joint probability density func-

tion fX : RN → R+
0 . Assuming independent coordinates of X, its joint probability

density fX(x) = Πi=N
i=1 fi(xi) is expressed by a product of marginal probability density

functions fi of Xi, i = 1, · · · , N , defined on the probability triple (Ωi,Fi, Pi) with a

bounded or an unbounded support on R. For a given u ⊆ {1, · · · , N}, fX−u(x−u) :=∏N
i=1,i/∈u fi(xi) defines the marginal density function of X−u := X{1,··· ,N}\u.

Let y(X) := y(X1, · · · , XN), a real-valued, measurable transformation on

(Ω,F), define a high-dimensional stochastic response of interest and L2(Ω,F , P ) a

Hilbert space of square-integrable functions y with respect to the induced generic

measure fX(x)dx supported on RN . The ADD, expressed by the recursive form

[79,118,119]

y(X) =
∑

u⊆{1,··· ,N}

yu(Xu), (4.1)

y∅ =

∫
RN

y(x)fX(x)dx, (4.2)

yu(Xu) =

∫
RN−|u|

y(Xu,x−u)fX−u(x−u)dx−u −
∑
v⊂u

yv(Xv), (4.3)

is a finite, hierarchical expansion in terms of its input variables with increasing di-

mensions, where u ⊆ {1, · · · , N} is a subset with the complementary set −u =

{1, · · · , N}\u and cardinality 0 ≤ |u| ≤ N , and yu is a |u|-variate component

function describing a constant or the interactive effect of Xu = (Xi1 , · · · , Xi|u|),

1 ≤ i1 < · · · < i|u| ≤ N , a subvector of X, on y when |u| = 0 or |u| > 0. The

summation in Equations (4.1) comprises 2N terms, with each term depending on a

group of variables indexed by a particular subset of {1, · · · , N}, including the empty
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set ∅. In Equation (4.3), (Xu,x−u) denotes an N -dimensional vector whose ith com-

ponent is Xi if i ∈ u and xi if i /∈ u. When u = ∅, the sum in Equation (4.3) vanishes,

resulting in the expression of the constant function y∅ in Equation (4.2). When

u = {1, · · · , N}, the integration in Equation (4.3) is on the empty set, reproducing

Equation (4.1) and hence finding the last function y{1,··· ,N}. Indeed, all component

functions of y can be obtained by interpreting literally Equation (4.3). On inversion,

Equations (4.1)-(4.3) result in [118,119]

y(X) =
∑

u⊆{1,··· ,N}

∑
v⊆u

(−1)|u|−|v|
∫
RN−|v|

y(Xv,x−v)fX−v(x−v)dx−v, (4.4)

providing an explicit form of the same decomposition.

Remark 4.1: The ANOVA component functions yu, u ⊆ {1, · · · , N}, are uniquely

determined from the annihilating conditions [79,118,119],

∫
R
yu(xu)fi(xi)dxi = 0 for i ∈ u, (4.5)

resulting in two remarkable properties: (1) the component functions, yu, ∅ 6= u ⊆

{1, · · · , N}, have zero means; and (2) two distinct component functions yu and yv,

where u ⊆ {1, · · · , N}, v ⊆ {1, · · · , N}, and u 6= v, are orthogonal. Further details

are available elsewhere [119].

Remark 4.2: Traditionally, Equations (4.1)-(4.3) or (4.4) with Xj, j = 1, · · · , N ,

following independent, standard uniform distributions, are identified as the ADD

[79, 118]; however, recent works reveal no fundamental requirement for a specific

probability measure of X, provided that the resultant integrals in Equations (4.1)-

(4.3) or (4.4) exist and are finite [87, 90, 119]. In this work, the ADD should be
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interpreted with respect to an arbitrary but product type probability measure for

which it is always endowed with desirable orthogonal properties.

4.3 Additive PDD

Let {ψij(Xi); j = 0, 1, · · · } be a set of orthonormal polynomial basis functions

in the Hilbert space L2(Ωi,Fi, Pi) that is consistent with the probability measure Pi

of Xi. For a given ∅ 6= u = {i1, · · · , i|u|} ⊆ {1, · · · , N}, 1 ≤ |u| ≤ N , 1 ≤ i1 < · · · <

i|u| ≤ N , denote a product probability triple by (×p=|u|p=1 Ωip ,×
p=|u|
p=1 Fip ,×

p=|u|
p=1 Pip), and

the associated space of square integrable |u|-variate component functions of y by

L2(×p=|u|p=1 Ωip ,×
p=|u|
p=1 Fip ,×

p=|u|
p=1 Pip) := {yu :

∫
R|u| y

2
u(xu)fXu(xu)dxu < ∞}, which is a

Hilbert space. Since the joint density of (Xi1 , · · · , Xi|u|) is separable (independence),

i.e., fXu(xu) =
∏|u|

p=1fip(xip), the product polynomial ψuj|u|(Xu) :=
∏|u|

p=1 ψipjp(Xip),

where j|u| = (j1, · · · , j|u|) ∈ N|u|0 , a |u|-dimensional multi-index with∞-norm
∥∥j|u|∥∥∞ =

max(j1, · · · , j|u|), constitutes an orthonormal basis in L2(×p=|u|p=1 Ωip ,×
p=|u|
p=1 Fip ,×

p=|u|
p=1 Pip).

Two important properties of these product polynomials from the tensor product of

Hilbert spaces are as follows.

Proposition 4.1: The product polynomials ψuj|u|(Xu), ∅ 6= u ⊆ {1, · · · , N}, j1, · · · , j|u| 6=

0, have zero means, i.e.,

E
[
ψuj|u|(Xu)

]
= 0. (4.6)

Proposition 4.2: Two distinct product polynomials ψuj|u|(Xu) and ψvk|v|(Xv), where

∅ 6= u ⊆ {1, · · · , N}, ∅ 6= v ⊆ {1, · · · , N}, j1, · · · , j|u| 6= 0, k1, · · · , k|v| 6= 0, are
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uncorrelated, and each has unit variance, i.e.,

E
[
ψuj|u|(Xu)ψvk|v|(Xv)

]
=

{
1 if u = v; j|u| = k|v|,
0 otherwise.

(4.7)

Proof. The results of Propositions 4.1 and 4.2 follow by recognizing independent coor-

dinates of X and using the second-moment properties of univariate orthonormal poly-

nomials: (1) E[ψij(Xi)] = 1 when j = 0 and zero when j ≥ 1; (2) E[ψij1(Xi)ψij2(Xi)] =

1 when j1 = j2 and zero when j1 6= j2 for an arbitrary random variable Xi, where E

is the expectation operator with respect to the probability measure fX(x)dx. �

As a result, the orthogonal polynomial expansion of a non-constant |u|-variate

component function becomes [87,90]

yu(Xu) =
∑

j|u|∈N
|u|
0

j1,··· ,j|u| 6=0

Cuj|u|ψuj|u|(Xu), ∅ 6= u ⊆ {1, · · · , N}, (4.8)

with

Cuj|u| :=

∫
RN

y(x)ψuj|u|(xu)fX(x)dx (4.9)

representing the corresponding expansion coefficient. For instance, when u = {i},

i = 1, · · · , N , the univariate component functions and expansion coefficients are

y{i}(Xi) =
∑N

i=1

∑∞
j=1Cijψij(Xi) and Cij := C{i}(j), respectively. Using Propositions

4.1 and 4.2, all component functions yu, ∅ 6= u ⊆ {1, · · · , N}, are found to satisfy

the annihilating conditions of the ADD. The end result of combining Equations (4.1)

and (4.8) is the additive PDD [87,90],

y(X) = y∅ +
∑

∅6=u⊆{1,··· ,N}

∑
j|u|∈N

|u|
0

j1,··· ,j|u| 6=0

Cuj|u|ψuj|u|(Xu), (4.10)
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providing an exact, hierarchical expansion of y in terms of an infinite number of

coefficients or orthonormal polynomials. In practice, the number of coefficients or

polynomials must be finite, say, by retaining at most mth-order polynomials in each

variable. Furthermore, in many applications, the function y can be approximated by

a sum of at most S-variate component functions, where 1 ≤ S ≤ N , resulting in the

S-variate, mth-order A-PDD approximation

ỹS,m(X) = y∅ +
∑

∅6=u⊆{1,··· ,N}
1≤|u|≤S

∑
j|u|∈N

|u|
0 ,‖j|u|‖∞≤m
j1,··· ,j|u| 6=0

Cuj|u|ψuj|u|(Xu), (4.11)

containing
∑S

k=0

(
N
S−k

)
mS−k number of PDD coefficients and corresponding orthonor-

mal polynomials. Due to its additive structure, the approximation in Equation

(4.11) includes degrees of interaction among at most S input variables Xi1 , · · · , XiS ,

1 ≤ i1 ≤ · · · ≤ iS ≤ N . For instance, by selecting S = 1 and 2, the functions, ỹ1,m

and ỹ2,m, respectively, provide univariate and bivariate mth-order approximations,

contain contributions from all input variables, and should not be viewed as first- and

second-order approximations, nor do they limit the nonlinearity of y. Depending on

how the component functions are constructed, arbitrarily high-order univariate and

bivariate terms of y could be lurking inside ỹ1,m and ỹ2,m. When S → N and m→∞,

ỹS,m converges to y in the mean-square sense, permitting Equation (4.11) to generate

a hierarchical and convergent sequence of approximations of y.

Applying the expectation operator on ỹS,m(X) and (ỹS,m(X)−y∅)2 and noting

Propositions 4.1 and 4.2, the mean [89]

E [ỹS,m(X)] = y∅ (4.12)
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of the S-variate, mth-order PDD approximation matches the exact mean E [y(X)],

regardless of S or m, and the approximate variance [89]

E
[
(ỹS,m(X)− E [ỹS,m(X)])2] =

∑
∅6=u⊆{1,··· ,N}

1≤|u|≤S

∑
j|u|∈N

|u|
0 ,‖j|u|‖∞≤m
j1,··· ,j|u| 6=0

C2
uj|u|

(4.13)

is calculated as the sum of squares of the expansion coefficients from the S-variate,

mth-order A-PDD approximation of y(X). A recent work proved that the approxi-

mate variance in Equation (4.13) approaches the exact variance of y when S → N

and m → ∞ [89]. The mean-square convergence of ỹS,m is guaranteed as y, and its

component functions are all members of the associated Hilbert spaces.

For the special case of S = 1, the univariate A-PDD approximation

ỹ1,m(X) = y∅ +
N∑
i=1

m∑
j=1

Cijψij(Xi) (4.14)

of y(X) yields the exact mean

E [ỹ1,m(X)] = y∅, (4.15)

and an approximate variance

E
[
(ỹ1,m(X)− E [ỹ1,m(X)])2] =

N∑
i=1

m∑
j=1

C2
ij (4.16)

that depends on m <∞.

4.4 Proposed Multiplicative PDDs

Consider a general multiplicative form,

y(X) =
∏

u⊆{1,··· ,N}

[1 + zu(Xu)], (4.17)
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of the dimensional decomposition of y, where zu, u ⊆ {1, · · · , N}, are various compo-

nent functions of input variables with increasing dimensions. Like the sum in Equation

(4.1), the product in Equation (4.17) comprises 2N terms, with each term depending

on a group of variables indexed by a particular subset of {1, · · · , N}, including the

empty set ∅. Tunga and Demiralp [120] originally proposed this decomposition, call-

ing it factorized high-dimensional model representation. However, it is not obvious if

such decomposition exists uniquely for a general multivariate function y. Lemma 4.3

and Theorem 4.4 demonstrate that, indeed, it does with some restrictions.

Lemma 4.3: The ANOVA component functions yv, v ⊆ {1, · · · , N}, of a square in-

tegrable function y : RN → R, when integrated with respect to the probability measure

fX−u(x−u)dx−u =
∏N

i=1,i/∈u fi(xi)dxi, u ⊆ {1, · · · , N}, satisfy

∫
RN−|u|

yv(xv)fX−u(x−u)dx−u =


yv(xv) if v ⊆ u,

0 if v * u.

(4.18)

Proof. For any two subsets v ⊆ {1, · · · , N}, u ⊆ {1, · · · , N}, (v ∩ −u) ⊆ −u and

−u = (−u \ (v ∩ −u)) ∪ (v ∩ −u). If v ⊆ u, then yv(xv) does not depend on x−u,

resulting in

∫
RN−|u|

yv(xv)fX−u(x−u)dx−u = yv(xv)

∫
RN−|u|

fX−u(x−u)dx−u = yv(xv), (4.19)
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the non-trivial result of Equation (4.18). When v * u, consider an integer k ∈

(v ∩ −u), so that k ∈ v. Then,∫
RN−|u|

yv(xv)fX−u(x−u)dx−u =

∫
RN−|u|−|v∩−u|

∫
R|v∩−u|

yv(xv)fX−u(x−u)dxv∩−udx−u\(v∩−u)

=

∫
RN−|u|−|v∩−u|−1

(∫
R
yv(xv)fk(xk)dxk

)
×

∏
j∈(v∩−u),j 6=k

fj(xj)dx(v∩−u)\{k}dx−u\(v∩−u)

= 0,

(4.20)

where the equality to zero in the last line follows from using Equation (4.5). �

Theorem 4.4: A square integrable function y : RN → R for a given probability

measure fX(x)dx = Πi=N
i=1 fi(xi)dxi admits a unique multiplicative dimensional de-

composition expressed by Equation (4.17).

Proof. Changing the dummy index from u to v, replacing X with x, and integrating

both sides of Equation (4.1) with respect to the measure fX−u(x−u)dx−u, that is, over

all variables except xu, yields∫
RN−|u|

y(x)fX−u(x−u)dx−u =
∑

v⊆{1,··· ,N}

∫
RN−|u|

yv(xv)fX−u(x−u)dx−u. (4.21)

Using Lemma 4.3, Equation (4.21) simplifies to∫
RN−|u|

y(x)fX−u(x−u)dx−u =
∑
v⊆u

yv(xv) = yu(xu) +
∑
v⊂u

yv(xv), (4.22)

with⊂ representing proper subset (strict inclusion). Therefore, for any u ⊆ {1, · · · , N},

including ∅,

yu(xu) =

∫
RN−|u|

y(x)fX−u(x−u)dx−u −
∑
v⊂u

yv(xv), (4.23)
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proving the existence and uniqueness of ANOVA component functions for a square

integrable function. To do the same for the multiplicative component functions,

expand the right side of Equation (4.17) to form

y(X) = z∅+
∑

u⊆{1,··· ,N}
|u|=1

ru (zv(Xv); v ⊆ u) +
∑

u⊆{1,··· ,N}
|u|=2

ru (zv(Xv); v ⊆ u) + · · ·+

r{1,··· ,N} (zv(Xv); v ⊆ {1, · · · , N})

=
∑

u⊆{1,··· ,N}

ru (zv(Xv); v ⊆ u) ,

(4.24)

where ru (zv(Xv); v ⊆ u) is a function of at most |u|-variate multiplicative component

functions of y. For instance, when u = ∅, u = {i}, and u = {i1, i2}, i, i1, i2 =

1, · · · , N , i2 > i1, the corresponding ru-functions are r∅ = z∅, r{i}(z∅, z{i}(Xi)), and

r{i1,i2}(z∅, z{i1}(Xi1), z{i2}(Xi2), z{i1,i2}(Xi1 , Xi2)), respectively. Comparing Equations

(4.1) and (4.24) yields the recursive relationship,

ru (zv(Xv); v ⊆ u) = yu(Xu), (4.25)

which, on inversion, expresses zu, u ⊆ {1, · · ·N}, in terms of the additive ANOVA

component functions yv, v ⊆ u. Therefore, given a probability measure of X, the

functions ru and zu, u ⊆ {1, · · ·N}, also exist and are unique. �

In this work, two new multiplicative PDDs, referred to as factorized PDD and

logarithmic PDD, were developed in the spirit of additive PDD for tackling high-

dimensional stochastic response functions endowed with multiplicative dimensional

hierarchies. Both decompositions, rooted in Equation (4.17), exploit the smoothness

properties of a stochastic solution, if they exist, by measure-consistent orthogonal

polynomials, and are described in the following subsections.
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4.4.1 Factorized PDD

The F-PDD is built on two principal steps: (1) finding the explicit relationships

between the component functions of the ANOVA and the multiplicative dimensional

decompositions of a multivariate function y, and (2) expanding the ANOVA com-

ponent functions in terms of the measure-consistent orthonormal polynomial basis

functions. Theorem 4.5 reveals the desired relationships in the first step.

Theorem 4.5: The recursive relationships between component functions of the ANOVA

and multiplicative dimensional decompositions of a square integrable function y :

RN → R, represented by Equations (4.1) and (4.17), respectively, are

1 + zu(Xu) =

∑
v⊆u

yv(Xv)∏
v⊂u

[1 + zv(Xv)]
, u ⊆ {1, · · · , N}. (4.26)

Proof. Since Equations (4.1) and (4.17) represent the same function y,

∑
u⊆{1,··· ,N}

yu(Xu) =
∏

u⊆{1,··· ,N}

[1 + zu(Xu)] , (4.27)

which, as is, is unwieldy when solving for zu. However, from Equation (4.25), the

solution zu for u ⊆ {1, · · · , N} depends only on functions yv such that v ⊆ u. There-

fore, all remaining additive or multiplicative component functions not involved can be

assigned arbitrary values. In particular, setting yv = zv = 0 for all v * u in Equation

(4.27) results in

∑
v⊆u

yv(Xv) =
∏
v⊆u

[1 + zv(Xv)] = [1 + zu(Xu)]
∏
v⊂u

[1 + zv(Xv)] , (4.28)

which, on inversion, yields Equation (4.26), completing the proof. �

Corollary 4.1: Recursive evaluations of Equation (4.26) eliminate 1 + zv, v ⊂ u,
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leading to an explicit form of

1 + zu(Xu) =

∑
w|u|⊆u

yw|u|

(
Xw|u|

)

∏
w|u|⊂u

∑
w|u|−1⊆w|u|

yw|u|−1

(
Xw|u|−1

)

∏
w|u|−1⊂w|u|

. . .

. . .
∏

w2⊂w3

∑
w1⊆w2

yw1 (Xw1)

∏
w1⊂w2

∑
w0⊆w1

yw0 (Xw0)

1

(4.29)

for any u ⊆ {1, · · · , N}, solely in terms of the ANOVA component functions.

Corollary 4.2: The multiplicative constant, univariate, and bivariate component

functions of a square integrable function y : RN → R, obtained by setting u = ∅,

u = {i}; i = 1, · · · , N , and u = {i1, i2}; i1 < i2 = 1, · · · , N , respectively, in Equation

(4.26) or (4.29) are

1 + z∅ = y∅, (4.30)

1 + z{i}(Xi) =
y∅ + y{i}(Xi)

y∅
, (4.31)

and

1 + z{i1,i2}(Xi1 , Xi2) =
y∅ + y{i1}(Xi1) + y{i2}(Xi2) + y{i1,i2}(Xi1 , Xi2)

y∅

[
y∅ + y{i1}(Xi1)

y∅

][
y∅ + y{i2}(Xi2)

y∅

] . (4.32)

Remark 4.3: Equations (4.30), (4.31), and (4.32) can also be obtained employing

the identity and first- and second-degree idempotent operators [120]. However, to

obtain similar expressions for trivariate and higher-variate multiplicative component
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functions, an extensive amount of algebra associated with third- and higher-degree

idempotent operators will be required. This is a primary reason why component

functions with variables equal to three or greater have yet to be reported in the current

literature. Theorem 4.5, in contrast, is simpler and, more importantly, provides a

general expression − Equation (4.26) or (4.29) − that is valid for a multiplicative

component function of an arbitrary number of variables.

The next step entails representing the ANOVA component functions by their

Fourier-polynomial expansions, that is, applying Equation (4.8) into Equation (4.26),

which results in expressing the multiplicative component functions

1 + zu(Xu) =

y∅ +
∑
∅6=v⊆u

∑
j|v|∈N

|v|
0

j1,··· ,j|v| 6=0

Cvj|v|ψvj|v|(Xv)

∏
v⊂u

[1 + zv(Xv)]
, u ⊆ {1, · · · , N}, (4.33)

in terms of orthonormal polynomials as well. Finally, combining Equations (4.17)

and (4.33) creates the F-PDD of

y(X) = y∅
∏

∅6=u⊆{1,··· ,N}



y∅ +
∑
∅6=v⊆u

∑
j|v|∈N

|v|
0

j1,··· ,j|v| 6=0

Cvj|v|ψvj|v| (Xv)

∏
v⊂u

[1 + zv(Xv)]


, (4.34)

also an exact representation of y(X), where infinite orthonormal polynomials of in-

creasing dimensions are structured with a multiplicative hierarchy, as opposed to the

additive hierarchy in Equation (4.10). Consequently, an S-variate, mth-order L-PDD

approximation, retaining at most S-variate component functions and mth-order or-
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thogonal polynomials, becomes

ŷS,m(X) = y∅
∏

∅6=u⊆{1,··· ,N}
1≤|u|≤S



y∅ +
∑
∅6=v⊆u

∑
j|v|∈N

|v|
0 ,‖j|u|‖∞≤m
j1,··· ,j|v| 6=0

Cvj|v|ψvj|v| (Xv)

∏
v⊂u

[1 + zv(Xv)]


, (4.35)

which converges to y(X) in the mean-square sense when S → N and m → ∞. It is

worth noting that Equations (4.33)-(4.35) can also be expressed explicitly, solely in

terms of orthonormal polynomials exploiting Equation (4.29). However, they are not

reported here because of their more complicated form.

Although the right side of Equation (4.35) contains products of at most S

univariate polynomials, no simple expressions are available for the second-moment

properties of ŷS,m(X) if S and m are selected arbitrarily. However, any probabilistic

characteristic of y(X) is easily estimated by the MCS of ŷS,m(X) in Equation (4.35).

When S = 1, the univariate F-PDD approximation,

ŷ1,m(X) = y∅

[
N∏
i=1

{
1 +

1

y∅

m∑
j=1

Cijψij(Xi)

}]
, (4.36)

forms a product of univariate polynomials, guiding to closed-form expressions of its

second-moment properties. Indeed, it is elementary to show that Equation (4.36)

results in the exact mean

E [ŷ1,m(X)] = y∅, (4.37)

but an approximate variance

E
[
(ŷ1,m(X)− E [ŷ1,m(X)])2] = y2

∅

[
N∏
i=1

(
1 +

1

y2
∅

m∑
j=1

C2
ij

)
− 1

]
, (4.38)

that are valid for an arbitrary m <∞.
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4.4.2 Logarithmic PDD

The L-PDD is constructed by invoking the ADD of the logarithmic transfor-

mation of a stochastic response, followed by the Fourier-polynomial expansions of

the ANOVA component functions in terms of the measure-consistent orthonormal

polynomial basis functions.

The ADD of the logarithm of a stochastic response w(X) := ln y(X), if it

exists, is

w(X) =
∑

u⊆{1,··· ,N}

wu(Xu), (4.39)

w∅ =

∫
RN

ln y(x)fX(x)dx, (4.40)

wu(Xu) =

∫
RN−|u|

ln y(Xu,x−u)fX−u(x−u)dx−u −
∑
v⊂u

wv(Xv), (4.41)

where wu is a |u|-variate component function describing a constant or the interactive

effect of Xu on w when |u| = 0 or |u| > 0. On exponentiation, Equation (4.39) reverts

to

y(X) =
∏

u⊆{1,··· ,N}

exp [wu(Xu)], (4.42)

an expansion of the original function. Compared with Equation (4.17), Equation

(4.42) represents another multiplicative dimensional decomposition when exp [wu(Xu)] =

1 + zu(Xu) for all u ⊆ {1, · · · , N}. Expanding the non-constant component functions

of w(X) in terms of measure-consistent orthonormal polynomials yields

wu(Xu) =
∑

j|u|∈N
|u|
0

j1,··· ,j|u| 6=0

Duj|u|ψuj|u|(Xu), ∅ 6= u ⊆ {1, · · · , N}, (4.43)



94

with

Duj|u| :=

∫
RN

ln y(x)ψuj|u|(xu)fX(x)dx (4.44)

defining a distinct but similar set of expansion coefficients. Finally, combining Equa-

tions (4.42) and (4.43) leads to the L-PDD of

y(X) = exp(w∅)
∏

∅6=u⊆{1,··· ,N}

exp


∑

j|u|∈N
|u|
0

j1,··· ,j|u| 6=0

Duj|u|ψuj|u|(Xu)

, (4.45)

which is yet another exact representation of y(X), where infinite orthonormal poly-

nomials of increasing dimensions are structured with a multiplicative hierarchy, as

opposed to an additive hierarchy in Equation (4.10). Consequently, an S-variate,

mth-order F-PDD approximation, retaining at most S-variate component functions

and mth-order orthogonal polynomials, becomes

ȳS,m(X) = exp(w∅)
∏

∅6=u⊆{1,··· ,N}
1≤|u|≤S

exp


∑

j|u|∈N
|u|
0 ,‖j|u|‖∞≤m
j1,··· ,j|u| 6=0

Duj|u|ψuj|u|(Xu)

, (4.46)

which also converges to y(X) in the mean-square sense when S → N and m→∞.

Similar to F-PDD, no simple expressions are available for the second-moment

properties of ȳS,m(X) when S and m are arbitrary. However, a probabilistic charac-

teristic of y(X) is also easily estimated by the MCS of ȳS,m(X) in Equation (4.46).

When S = 1, the univariate L-PDD approximation with Dij := D{i}(j) becomes

ȳ1,m(X) = exp(w∅)
N∏
i=1

exp

[
m∑
j=1

Dijψij(Xi)

]
, (4.47)



95

forming a product of exponential functions of univariate polynomials. In this case,

the approximate mean and variance of ȳ1,m(X) are readily calculated from

E [ȳ1,m(X)] = exp(w∅)
N∏
i=1

E

[
exp

{
m∑
j=1

Dijψij(Xi)

}]
, (4.48)

and

E
[
(ȳ1,m(X)− E [ȳ1,m(X)])2] = exp(2w∅)

N∏
i=1

E

[
exp

{
2

m∑
j=1

Dijψij(Xi)

}]

− exp(w∅)
N∏
i=1

E

[
exp

{
m∑
j=1

Dijψij(Xi)

}]
,

(4.49)

respectively, that are valid for an arbitrary m < ∞, provided that the expectations

exist and are finite. It is important to note that the expectations in Equations (4.48)

and (4.49) require at most univariate integrals regardless of N or m, and involve the

expansion coefficients Dij, i = 1, · · · , N and j = 1, · · · ,m, stemming from the uni-

variate L-PDD approximation in Equation (4.47).

Remark 4.4: The A-PDD approximation ỹ1,m(X) is called univariate because Equa-

tion (4.14) comprises a sum of at most univariate component functions, describing

only the main effect of X. In contrast, the F-PDD approximation ŷ1,m(X) in Equation

(4.36) and the L-PDD approximation ȳ1,m(X) in Equation (4.47) contain products

of various univariate functions. Therefore, some effects of interactions between two

input variables Xi and Xj, i 6= j, subsist in ŷ1,m(X) or ȳ1,m(X). As an example, con-

sider a function, y = y∅+ y{1}(X1) + y{2}(X2) + y{1}(X1)y{2}(X2)/y∅, of two variables,

containing a sum and a product of its univariate ANOVA component functions. The

univariate A-PDD approximation, ỹ1,m = y∅+ y{1}(X1) + y{2}(X2), captures only the

main effects of X1 and X2, and may produce non-negligible errors if the product term
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of y is significant. On the other hand, the univariate F-PDD approximation, ŷ1,m =

(1 + z∅)[1 + z{1}(X1)][1 + z{2}(X2)] = y∅ + y{1}(X1) + y{2}(X2) + y{1}(X1)y{2}(X2)/y∅,

obtained using the relationships in Equations (4.30) and (4.31), exactly reproduces

y, thereby capturing not only the main effects, but also the interactive effect of input

variables. Therefore, the term “univariate” used in this thesis for the multiplica-

tive PDD approximations should be interpreted in the context of including at most

univariate component functions, not necessarily preserving only the main effects. It

would be intriguing to study if a univariate approximation from a multiplicative PDD

results in more accurate stochastic solutions of real-life problems than from the ad-

ditive PDD.

Remark 4.5: When y∅ is zero or is close to zero, Equations (4.30)-(4.38) may fail

or become ill-conditioned, raising questions about the suitability of the F-PDD ap-

proximation in such conditions. The L-PDD approximation faces a similar situation

when a stochastic response is non-positive or close to zero, as the logarithmic transfor-

mation employed in Equations (4.39)-(4.49) is invalid or highly nonlinear. However,

they do not necessarily imply that the L-PDD or F-PDD cannot be used. Indeed,

all of these problems can be remedied by appropriately conditioning the stochastic

response y. For instance, by adding a non-zero constant to y or multiplying y with

a non-zero constant, Equations (4.30)-(4.38) for the pre-conditioned y remain valid

and well-behaved. Similarly, by adding a non-negative constant to y or multiplying

y with a non-zero constant, the pre-conditioned y can be made to always remain

positive or well-behaved. The Application section (Section 4.7) describes how such
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problems may arise in a practical situation and includes simple adjustments to work

around them.

Remark 4.6: The MCS of PDD approximations, ỹS,m(X), ŷS,m(X), or ȳS,m(X),

referred to as embedded MCS in this thesis, entail evaluations of simple analytical

functions. Hence, an arbitrarily large sample size can be accommodated in an em-

bedded MCS for estimating rare-event probabilities. In contrast, the MCS of y(X),

referred to as crude MCS in this thesis, requires expensive numerical calculations and

can, therefore, be prohibitive when estimating such probabilities.

4.5 Calculation of Expansion Coefficients

The determination of the expansion coefficients, y∅, Cuj|u| , w∅, and Duj|u| in

Equations (4.2), (4.9), (4.40), and (4.44), respectively, involves various N -dimensional

integrals over RN . For largeN , a full numerical integration employing anN -dimensional

tensor product of a univariate quadrature formula is computationally prohibitive.

Instead, a dimension-reduction integration scheme and a sampling technique were

applied to estimate the coefficients efficiently.

4.5.1 Dimension-reduction integration

The dimension-reduction integration, developed by Xu and Rahman [85], en-

tails approximating a high-dimensional integral of interest by a finite sum lower-

dimensional integrations. For calculating the expansion coefficients, y∅, Cuj|u| , w∅,

and Duj|u| , this is accomplished by replacing the N -variate function y or ln y in Equa-

tions (4.2), (4.9), (4.40), and (4.44) with an R-variate truncation, where R < N , of
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its referential dimensional decomposition at a chosen reference point [86,119]. The re-

sult is a reduced integration scheme, requiring evaluations of at most R-dimensional

integrals. The scheme facilitates calculation of the coefficients approaching their

exact values as R → N , and is significantly more efficient than performing one N -

dimensional integration, particularly when R � N . Hence, the computational effort

is significantly decreased using the dimension-reduction integration. When R = 1 or

2, the scheme involves one-, or at most, two-dimensional integrations, respectively.

Nonetheless, numerical integration is still required for a general integrand. The inte-

gration points and associated weights, which depend on the probability distribution

of Xi, are readily available when the basis functions are polynomials [88, 90].

The S-variate, mth-order A-PDD, F-PDD, and L-PDD approximations require

evaluations of QS,m =
∑k=S

k=0

(
N
S−k

)
mS−k number of expansion coefficients, including y∅

or w∅. If these coefficients are estimated by dimension-reduction integration with R =

S < N and, therefore, involve at most an S-dimensional tensor product of an n-point

univariate quadrature rule depending on m, then the total cost for the S-variate, mth-

order approximation entails a maximum of
∑k=S

k=0

(
N
S−k

)
nS−k(m) function evaluations.

If the integration points include a common point in each coordinate − a special case

of symmetric input probability density functions and odd values of n (see Example 3)

− the number of function evaluations reduces to
∑k=S

k=0

(
N
S−k

)
(n(m)− 1)S−k. In other

words, the computational complexity of the PDD approximations is an Sth-order

polynomial with respect to the number of random variables or integration points.
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4.5.2 Crude MCS

Sampling techniques, including crude MCS or quasi MCS, for estimating the

expansion coefficients comprise two simple steps: (1) generate a point set PL :=

{x(l) ∈ RN , l = 1, · · · , L} of size L ∈ N consistent with the probability measure of

the random input X; (2) approximate the integrals in Equations (4.2), (4.9), (4.40),

and (4.44) as the averages of y, yψuj|u| , ln y, and ln yψuj|u| evaluated at all points of

PL. In crude MCS, PL contains a sequence of pseudo-random numbers, following

the probability distributions of X. In quasi MCS, PL is a set of a low-discrepancy

sequence. The advantage of one MCS over the other depends on the smoothness

properties of the integrand and the dimension of the integral [121].

It is important to emphasize that the F-PDD and L-PDD approximations in-

volve the same or similar expansion coefficients as those defined in the additive PDD

approximation. Therefore, the computational effort of the additive PDD approxi-

mation is recycled for generating both the F-PDD and L-PDD approximations. No

additional computational cost is incurred by either variant of the PDD approximation.

4.6 Numerical Examples

Three numerical examples are presented to illustrate the performance of the

additive and multiplicative PDD approximations in calculating the statistical mo-

ments of random mathematical functions or random eigenvalues, including the tail

probability distributions of natural frequencies. In Example 1, classical Legendre or

Hermite polynomials were used to define the orthonormal polynomials, and all ex-
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pansion coefficients were determined analytically. In Examples 2 and 3, all original

random variables were transformed into standard Gaussian random variables, facili-

tating the use of Hermite orthonormal polynomials as bases and the Gauss-Hermite

quadrature rule for calculating the expansion coefficients. The expansion order m

varies depending on the example, but in all cases the number of integration points

n = m + 1. In Example 2, the sample sizes for crude MCS and the embedded MCS

of all three PDD methods are 107. The respective sample sizes are 50, 000 and 106 in

Example 3.

4.6.1 Two mathematical functions

Consider a polynomial function and an exponential function, expressed by

y1(X) =
1

2N

N∏
i=1

(
3X2

i + 1
)

and (4.50)

y2(X) =
1

(4/5)N/2

N∏
i=1

[
exp

(
X2
i

10

)]
, (4.51)

respectively, where Xi, i = 1, · · · .N , are independent and identical random variables.

Each variable follows standard uniform distribution over [0,1] for the polynomial func-

tion and standard Gaussian distribution with zero mean and unit variance for the

exponential function. From elementary calculations, the exact mean and variance of

y1 are 1 and (6/5)N −1, respectively, and of y2 are 1 and (16/15)N/2−1, respectively.

The purpose of this example is to compare the second-moment statistics of both

functions for N = 5 obtained using A-PDD (Equations (4.12) and (4.13)), F-PDD

(Equations (4.37) and (4.38)), and L-PDD (Equations (4.48) and (4.49)) approxima-

tions. The integrals in Equations (4.48) and (4.49) were evaluated by m + 1-point
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Gauss-Legendre rule for y1, but analytically for y2.

Table 4.1 presents relative errors, defined as the ratio of the absolute difference

between the exact and approximate variances of y1 to the exact variance, committed

by the additive and multiplicative PDD approximations for various combinations of

the truncation parameters 1 ≤ S ≤ 5 and 1 ≤ m ≤ 8. The errors from A-PDD ap-

proximations drop as m increases, but they level off quickly at their respective limits

for the univariate to quadrivariate A-PDD approximations. When m = 2, the er-

ror due to the pentavariate, second-order A-PDD approximation reaches zero, as the

approximation coincides with y1. The error remains zero for the univariate, second-

order F-PDD approximation, as y1 is a product of univariate quadratic polynomials.

For the same reason, there is no need to employ higher-variate or higher-order F-

PDD approximations. In contrast, the univariate L-PDD approximation also yields

progressively smaller errors as m increases, but unlike in F-PDD, the error does not

vanish. This is because the logarithmic transformation inducing additional nonlinear-

ity to y1 creates a non-polynomial that cannot be exactly reproduced by a polynomial,

regardless of how large m <∞ becomes. Nonetheless, the L-PDD, which also requires

only univariate approximation, is more accurate than the univariate to quadrivariate

A-PDD approximations when m ≥ S. Both the F-PDD and L-PDD approximations

favorably exploit the multiplicative structure of y1, but the former approximation is

superior to the latter approximation when dealing with multiplicative polynomials.

Table 4.2 displays the results from similar error analysis performed for y2, a

product of univariate functions, although not polynomials. As expected, the errors
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Table 4.1: Relative errors in calculating the variance of y1 by various PDD approx-
imations.

A-PDD
(a)

F-PDD
(a)

L-PDD

m S = 1 S = 2 S = 3 S = 4 S = 5 S = 1 S = 1

(×10−1) (×10−2) (×10−3) (×10−4) (×10−2) (×10−2)
1 3.7 13.0 90.0 850.0 8.5 8.5 5.9× 10−2

2 3.3 5.9 5.6 2.2 0 0 3.7× 10−2

3 3.3 5.9 5.6 2.2 -(b) -(b) 3.5× 10−4

4 3.3 5.9 5.6 2.2 -(b) -(b) 8.3× 10−7

5 3.3 5.9 5.6 2.2 -(b) -(b) 1.1× 10−6

6 3.3 5.9 5.6 2.2 -(b) -(b) 1.6× 10−7

7 3.3 5.9 5.6 2.2 -(b) -(b) 3.3× 10−7

8 3.3 5.9 5.6 2.2 -(b) -(b) 3.3× 10−7

(a) The variances from the pentavariate, second-order A-PDD and univariate, second-
order L-PDD approximations coincide with the exact solution: (6/5)N − 1, where
N = 5.

(b) Not required.

emanating from A-PDD approximations decline as S or m rises. Since the pentavari-

ate A-PDD and the univariate F-PDD of y2 are identical polynomials, the respective

errors coincide regardless of m. Again, due to the multiplicative nature of y2, the

F-PDD approximation is more appropriate to use than the A-PDD approximation.

However, neither converges to exactness, as y2 is a non-polynomial function to be-

gin with. In contrast, the logarithmic transformation, not beneficial to y1, creates a

polynomial image of y2, which is, therefore, exactly reproduced by an L-PDD approx-

imation. Indeed, the univariate, second-order L-PDD approximation yields the exact

variance of y2, turning the tables on the F-PDD approximation for tackling multi-

plicative non-polynomials. In summary, both functions y1 and y2, although simple

and somewhat contrived, demonstrate a clear advantage of multiplicative PDD over
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additive PDD approximations.

Table 4.2: Relative errors in calculating the variance of y2 by various PDD
approximations.

A-PDD F-PDD L-PDD
(a)

m S = 1 S = 2 S = 3 S = 4 S = 5 S = 1 S = 1

(×10−1) (×10−2) (×10−3) (×10−4) (×10−5) (×10−5)
1 -(b) -(b) -(b) -(b) -(b) -(b) -(b)

2 1.1 5.2 51 500 5000 5000 0

3 1.1 5.2 51 500 5000 5000 -(c)

4 0.6 0.47 2.7 26 260 260 -(c)

5 0.6 0.47 2.7 26 260 260 -(c)

6 0.6 0.02 0.18 1.5 15 15 -(c)

7 0.6 0.02 0.18 1.5 15 15 -(c)

8 0.6 0.02 0.06 0.3 2.6 2.6 -(c)

(a) The variance from the univariate, second-order L-PDD approximation coincides
with the exact solution: (16/15)N/2 − 1, where N = 5.

(b) 100% error.

(c) Not required.

4.6.2 Two-degree-of-freedom, undamped, spring-mass system

Consider a two-degree-of-freedom, undamped, spring-mass system, shown in

Figure 4.1, with random mass and random stiffness matrices

M (X) =

[
M1(X) 0

0 M2(X)

]
and K(X) =

[
K1(X) +K3(X) −K3(X)
−K3(X) K2(X) +K3(X)

]
,

(4.52)

respectively, where K1(X) = 1000X1 N/m, K2(X) = 1100X2 N/m, K3(X) = 100X3

N/m, M1(X) = X4 kg, andM2(X) = 1.5X5 kg. The input X = {X1, X2, X3, X4, X5}T ∈

R5 is an independent lognormal random vector with its mean vector µX = 1 ∈ R5
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and covariance matrix ΣX = diag(v2
1, v

2
2, v

2
3, v

2
4, v

2
5) ∈ R5×5, where vi, i = 1, · · · , 5,

representing the coefficients of variation of Xi, are as follows: v1 = v2 = 0.25,

v3 = v4 = v5 = 0.125. There exist two real-valued random eigenvalues, λ1(X) and

λ2(X), which are sorted into an ascending order.

M1 M2 

K2 K3 K1 

Figure 4.1: A two-degree-of-freedom, undamped, spring-mass system. (Repeat of
Figure 3.3)

Since the eigenvalues are in general non-polynomial functions of input, a con-

vergence study with respect to the truncation parameters of PDD approximations

is required to calculate the probabilistic characteristics of eigensolutions accurately.

The expansion coefficients were calculated by a full five-dimensional tensor product

of an m + 1-point, univariate Gauss-Hermite quadrature formula. Figures 4.2(a)

and 4.2(b) depict how the relative errors in the probabilities, P [λ1(X) ≤ λ01] and

P [λ2(X) ≤ λ02], of the two random eigenvalues decay with respect to S for m = 15

when the thresholds λ01 = 780 (rad/s)2; λ02 = 1200 (rad/s)2 and λ01 = 300 (rad/s)2;

λ02 = 565 (rad/s)2, respectively. The relative error is defined as the ratio of the ab-
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solute difference in the probabilities estimated by crude MCS and embedded MCS of

PDD approximations to the probability calculated by crude MCS. When λ01 = 780

(rad/s)2; λ02 = 1200 (rad/s)2, the probabilities are relatively large, for which, accord-

ing to Figure 4.2(a), there is no notable difference in the errors from the A-PDD,

F-PDD, and L-PDD approximations. Therefore, any of the three approximations can

be a method of choice. However, when λ01 = 300 (rad/s)2; λ02 = 565 (rad/s)2, the

probabilities are relatively small, in which case, the lower-variate (S = 1 or 2) F-PDD

and L-PDD approximations, shown in Figure 4.2(b), commit smaller errors than do

the corresponding A-PDD approximations. Therefore, a multiplicative PDD approx-

imation may be preferred over an additive PDD approximation when calculating the

tail distributions of a stochastic response.

4.6.3 Modal analysis of a functionally graded cantilever plate

The third example involves free vibration analysis of a 2 m×1 m× 10mm can-

tilever plate, shown in Figure 4.3(a), made of a functionally graded material (FGM)1,

where silicon carbide (SiC) particles varying along the horizontal coordinate ξ are ran-

domly dispersed in an aluminum (Al) matrix. The result is a random inhomogeneous

plate, where the effective elastic modulus E(ξ), effective Poisson’s ratio ν(ξ), and ef-

fective mass density ρ(ξ) are random fields. They depend on two principal sources of

uncertainties: (1) randomness in the volume fraction of SiC particles φSiC(ξ), which

1Functionally graded materials are two- or multi-phase particulate composites in which
material composition and microstructure vary spatially in the macroscopic length scale to
meet a desired functional performance.
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A−PDD F−PDD L−PDD

P (λ1 ≤ λ01) = 0.6
      (Crude MCS)

P (λ2 ≤ λ02) = 0.6
      (Crude MCS)

P (λ1 ≤ λ01) = 8.6 x 10−5

                (Crude MCS)
P (λ2 ≤ λ02) = 8.6 x 10−5

                (Crude MCS)

(a)

(b)

Figure 4.2: Relative errors in P [λ1(X) ≤ λ01], P [λ2(X) ≤ λ02] of the spring-mass
system by various PDD methods: (a) λ01 = 780 (rad/s)2, λ02 = 1200 (rad/s)2; (b)
λ01 = 300 (rad/s)2, λ02 = 565 (rad/s)2.
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Figure 4.3: An FGM cantilever plate: (a) geometry; (b) a 20×40 FEA mesh.
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varies only along ξ, and (2) randomness in constituent material properties, comprising

elastic moduli ESiC and EAl, Poisson’s ratios νSiC and νAl, and mass densities ρSiC and

ρAl of SiC and Al material phases, respectively. The particle volume fraction φSiC(ξ) is

a one-dimensional, inhomogeneous, Beta random field with mean µSiC(ξ) = 1− ξ/L,

standard deviation σSiC(ξ) = (ξ/L)(1 − ξ/L), where L is the length of the plate.

Assuming an appropriately bounded covariance function of φSiC(ξ), the standardized

volume fraction, φ̃SiC(ξ) := [φSiC(ξ) − µSiC(ξ)]/σSiC(ξ), was mapped to a zero-mean,

homogeneous, Gaussian image field α(ξ) with an exponential covariance function

Γα(t) := E[α(ξ)α(ξ + t)] = exp(− |t| /0.125L) via φ̃SiC(ξ) = F−1
SiC [Φ(α(ξ))], where Φ

is the distribution function of a standard Gaussian random variable and FSiC is the

marginal distribution function of φ̃SiC(ξ). The K-L approximation [122] was employed

to discretize α(ξ) and hence φSiC(ξ) into 28 standard Gaussian random variables. Fur-

ther details of the K-L approximation are provided in Appendix B. In addition, the

constituent material properties, ESiC, EAl, νSiC, νAl, ρSiC, ρAl, were modeled as in-

dependent lognormal random variables with their means and coefficients of variation

described in Table 4.3. Therefore, a total of 34 random variables are involved in

this example. Employing a rule of mixture, E(ξ) ∼= ESiCφSiC(ξ) + EAl[1 − φSiC(ξ)];

ν(ξ) ∼= νSiCφSiC(ξ) + νAl[1− φSiC(ξ)]; and ρ(ξ) ∼= ρSiCφSiC(ξ) + ρAl[1− φSiC(ξ)]. Using

these spatially variant effective properties, a 20 × 40 mesh consisting of 800 eight-

noded, second-order shell elements, shown in Figure 4.3(b), was constructed for finite-

element analysis (FEA), to determine the natural frequencies of the FGM plate. No

damping was included. A Lanczos algorithm [123] was employed for calculating the
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eigenvalues.

Table 4.3: Statistical material properties of constituents in SiC-Al FGM.

Material properties(a) Mean Coefficient of variation, %
ESiC, GPa 419.2 15

νSiC 0.19 5
ρSiC, kg/m3 3210 15
EAl, GPa 69.7 15

νAl 0.34 5
ρAl, kg/m3 2520 15

(a) ESiC = elastic modulus of SiC, νSiC = Poisson’s ratio of SiC,
ρSiC = mass density of SiC, EAl = elastic modulus of Al,
νAl = Poisson’s ratio of Al, ρAl = mass density of Al.

The probability distributions of natural frequencies of the FGM plate were

evaluated using the univariate, fourth-order A-PDD, F-PDD, and L-PDD approxi-

mations, including crude MCS. The expansion coefficients of the PDD approximations

were estimated using dimension-reduction integration with R = S = 1 and n = 5.

Figure 4.4 presents the marginal probability distributions Fi(ωi) := P [Ωi ≤ ωi] of the

first six natural frequencies Ωi, i = 1, · · · , 6, where the PDD solutions were obtained

from embedded MCS. The plots are made over a semi-logarithmic scale to delineate

the distributions in the tail regions. For all six frequencies, the probability distribu-

tions obtained from the F-PDD and L-PDD approximations are much closer to the

crude Monte Carlo results compared with those obtained from the A-PDD approxi-

mation. Each PDD approximation requires only 127 FEA, which is significantly lower

than the 50,000 FEA employed by crude MCS, to generate the small probabilities in
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Figure 4.4: Marginal probability distributions of the first six natural frequencies of
the FGM plate by various PDD approximations and crude MCS.
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Figure 4.4.

Figure 4.5 displays the joint probability density function f12(ω1, ω2) of the

first two natural frequencies Ω1 and Ω2 obtained by crude MCS and the univari-

ate, fourth-order A-PDD, L-PDD, and F-PDD approximations. Although visually

Figure 4.5: Joint probability density function of the first and second natural frequen-
cies of the FGM plate by various PDD approximations and crude MCS.

comparing these three-dimensional plots is not simple, the joint distributions from
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all three PDD approximations and the crude Monte Carlo method seem to match

reasonably well. Indeed, the contours evaluated at a relatively high level, for in-

stance f12 = 0.005, and exhibited in Figure 4.6(a), confirm a fairly good agreement

among all four distributions. However, when examined at a relatively low level, for

instance f12 = 0.0005, the contours in Figure 4.6(b) reveal the F-PDD or L-PDD

approximation to be more accurate than the A-PDD approximation. These findings
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Figure 4.6: Contours of the joint density function of the first and second natural
frequencies of the FGM plate by various PDD approximations and crude MCS: (a)
f12 = 0.005; (b) f12 = 0.0005.

are consistent with the marginal distributions of natural frequencies discussed in the

preceding section. It appears that a lower-variate multiplicative PDD approximation,

in this case a univariate F-PDD or L-PDD approximation, may provide more accu-
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rate probabilistic characteristics of a stochastic response than a univariate additive

PDD approximation. This is because a univariate multiplicative PDD approximation

subsumes some interactive effects of input variables, as alluded to in Remark 4.4.

4.7 Application: An SUV Body-in-White

This section illustrates the effectiveness of the proposed multiplicative PDD

methods in solving a large-scale practical engineering problem. The application in-

volves predicting the dynamic behavior of a sport utility vehicle (SUV) in terms of the

statistical properties of mode shapes and frequency response functions. Figure 4.7(a)

presents a computer-aided design (CAD) model of an SUV body-in-white (BIW),

referring to the automotive design stage where a car body’s sheet metal components

have been welded together, before moving parts, motor, chassis sub-assemblies, and

trim have been added. The BIW consists of the bare metal shell of the frame body,

including fixed windshields. A finite-element mesh of the model, comprising 127,213

linear shell elements and 794,292 active degrees of freedom, is displayed in Figure

4.7(b). Portrayed in Figure 4.7(a), the CAD model contains 17 distinct materials

having random properties, including 17 Young’s moduli and 17 mass densities. In

addition, six of these materials, which are used in ceiling, floor, hood, and side body

of the vehicle, have random structural damping factors. In aggregate, there exist

40 random variables Xi, i = 1, · · · , 40, as follows: X1 to X17 = Young’s moduli of

materials 1 to 17; X18 to X34 = mass densities of materials 1 to 17; and X35 to X40 =

damping factors of materials 1 to 6. Their means, µi := E [Xi] , i = 1, . . . , 40, are listed
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Figure 4.7: An SUV BIW: (a) a CAD model; (b) an FEA mesh.

in Table 4.4. Each variable follows an independent, truncated Gaussian distribution

with lower limit ai = 0.55µi, upper limit bi = 1.45µi, and coefficient of variation vi=

0.15. The deterministic Poisson’s ratios are as follows: 0.28 for materials 1 to 13; 0.2

for materials 14 and 15; and 0.3 for materials 16 and 17.

4.7.1 Steady-state dynamic analysis

A mode-based steady-state dynamic analysis consists of two steps: an eigenso-

lution extraction, followed by a frequency response calculation. For obtaining eigenso-

lutions, the upper bound of the frequency extraction range was chosen as 300 Hz, and

the frequency response functions were computed up to 150 Hz. The AMS method [124]

embedded in Abaqus (Version 6.11) [109] was employed for extracting natural frequen-
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Table 4.4: Mean values of the random input variables for an SUV BIW.
Material Young’s modulus, GPa Mass density, kg/m3 Damping factor, %

1 207 9500 1
2 207 9500 1
3 207 8100 1
4 207 29,260 1
5 207 29,260 1
6 207 37,120 1
7 207 9500 −(a)

8 207 8100 −(a)

9 207 8100 −(a)

10 207 29,260 −(a)

11 207 30,930 −(a)

12 207 37,120 −(a)

13 207 52,010 −(a)

14 69 2700 −(a)

15 69 2700 −(a)

16 20 1189 −(a)

17 200 1189 −(a)

(a) The damping factors for materials 7-17 are equal to zero (deterministic).

cies and mode shapes. The AMS eigensolver approximates global eigenmodes below

the global cutoff frequency of 300 Hz, and the frequency response solutions below

150 Hz were calculated at 1 Hz increments. Since the BIW model is not constrained,

there exist six rigid body modes.

For the steady-state dynamic analysis, the rolling motion of the vehicle was

simulated by applying two harmonic loads with concentrated vertical force of unit

amplitude at the nodes, called drive points, located at the two pivot points on the

bottom of the vehicle floor. The frequency response functions were calculated at a

node, called the transfer point, under the driver’s seat. The drive and transfer points

are marked in Figure 4.7(b).
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Due to the uncertainty in material properties, the eigensolutions or frequency

response functions are stochastic. The univariate, second-order multiplicative PDD

approximations were employed to find their second-moment characteristics and var-

ious response probabilities. The associated expansion coefficients of PDD were esti-

mated by crude MCS with 500 samples. The sample size for the embedded MCS of

the PDD approximations varies from 500 to 106, depending on the response desired.

4.7.2 Results

4.7.2.1 Moments of mode shapes

The univariate, second-order F-PDD and L-PDD approximations were em-

ployed to calculate the second-moment statistics of each nodal displacement compo-

nent of an eigenvector describing the associated mode shape of the BIW structure.

All input random variables were transformed into standard Gaussian random vari-

ables, permitting the use of Hermite orthonormal polynomials as basis functions.

For F-PDD, the statistics were calculated directly using Equations (4.37) and (4.38).

However, for L-PDD, the statistics were estimated from the embedded MCS of Equa-

tion (4.47), sidestepping the need to evaluate the integrals in Equations (4.48) and

(4.49) for each displacement component at all nodes. When a displacement y is

non-positive, the mean plus ten times the standard deviation of y, estimated from

crude MCS used in obtaining the coefficients, was added, resulting in a positive dis-

placement required by L-PDD. No conditioning was needed or performed for F-PDD.

These simple modifications aid in calculating the means and variances of displace-
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ment components at all nodes. Based on these statistics, the L2-norms (square root

of sum of squares) of the mean and variance of a nodal displacement were calculated.

Figures 4.8(a) and 4.8(b) present contour plots of the L2-norms of the means and

variances, respectively, of an arbitrarily selected 21st mode shape, calculated using

the F-PDD and L-PDD approximations. Both approximations yield reasonably close

Figure 4.8: Contour plots of the L2-norm of 21st mode shape of an SUV BIW by two
multiplicative PDD approximations: (a) mean; (b) variance.

statistical moments, including the variances of the mode shape. Similar results can

be generated for other mode shapes if desired.

4.7.2.2 Percentile functions of receptance, mobility, and inertance

For mode-based steady-state dynamic analysis, three types of frequency re-

sponse functions were examined: receptance, mobility, and inertance. They are ap-
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proximated by

up,d1d2t(ω) ' (iω)p
K∑
k=1

[φk,d1 + φk,d2 ]φk,t
[Ω2

k (1 + isk)− ω2]
, (4.53)

where i =
√
−1, K is the number of eigenmodes retained, φk,d1 and φk,d2 are the

two drive point vertical components of the kth eigenmode, φk,t is the transfer point

vertical component of the kth eigenmode, Ωk is the kth eigenfrequency, sk is its cor-

responding structural damping factor, and ω is the excitation frequency over which

the frequency response function is desired. The exponent p corresponds to the type

of frequency response calculated: p = 0 for receptance, p = 1 for mobility, and p = 2

for inertance. All three frequency response functions are commonly used in the auto-

motive industry to evaluate the dynamic performance of vehicle designs. For random

input, it is insightful to study the probabilities of receptance and mobility for a vehicle

subjected to a range of excitation frequency. When a frequency response function y

was positive, but very close to zero, it was multiplied by a factor of 10− log y, creating

a well-behaved function in L-PDD. No such conditioning was required in F-PDD.

Figures 4.9(a), 4.9(b), and 4.9(c) show various percentiles of real parts of receptance,

mobility, and inertance under the driver’s seat, respectively, obtained from the two

univariate multiplicative PDD approximations. The respective results for imaginary

parts are depicted in Figures 4.10(a), 4.10(b), and 4.10(c). In both sets of figures, the

percentiles were calculated from 104 embedded MCS of each PDD approximation at

an increment of 1 Hz for the excitation frequency range of 1 Hz to 150 Hz. Again, both

the F-PDD and L-PDD approximations produce similar results. Therefore, either of

the multiplicative PDD methods can be used for stochastic dynamic analysis.
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Figure 4.9: Percentiles of frequency response functions at the driver’s seat of an SUV
BIW by two multiplicative PDD approximations: (a) receptance; (b) mobility; (c)
inertance.



120

Figure 4.10: Percentiles of imaginary parts of frequency response functions at the
driver’s seat of an SUV BIW by two multiplicative PDD approximations: (a) recep-
tance; (b) mobility; (c) inertance.
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4.7.2.3 Acceleration probabilities

Finally, Table 4.5 presents the probabilities of a weighted root mean square

(RMS) value of the vertical component of the acceleration under the driver’s seat ly-

ing within the following intervals: [0, 0.315] (not uncomfortable), [0.315, 0.63] (a little

uncomfortable), [0.5, 1] (fairly uncomfortable), [0.8, 1.6] (uncomfortable), [1.25, 2.5]

(very uncomfortable), and [2,∞) (extremely uncomfortable). These intervals, devel-

oped and calibrated by the International Standard ISO 2631 [1], define acceptable

values of accelerations inside a vehicle for various levels of passenger comfort. The

higher the interval endpoints, the harsher the level of passenger experience. The

weighted RMS acceleration, obtained for an assumed applied load of 1000 N, was

calculated from [(1/150)
∑150

j=1{1000αju2,d1d2t(ωj)}2]1/2, where αj and ωj are the jth

weight and excitation frequency, respectively, described in Appendix C [1].

Table 4.5: Probability of acceleration under the driver’s seat of an SUV BIW.
Interval of acceptable accelerations (m/s2)(a)

Method

[0, 0.315] [0.315, 0.63] [0.5, 1] [0.8, 1.6] [1.25, 2.5] [2,∞)

(×10−1) (×10−1) (×10−2) (×10−3) (×10−3) (×10−4)
A-PDD 7.4 2.6 0.3 0 0 0
F-PDD 6.9 2.7 3.6 3.2 0.7 4.1
L-PDD 8.4 1.1 3.4 8.8 2.1 4.3

(a) From International Standard ISO 2631 [1].

The probabilities were calculated by the univariate, second-order A-PDD, F-

PDD, and L-PDD approximations and 106 embedded MCS. The acceleration prob-
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abilities in Table 4.5 predicted by both versions of the multiplicative PDD approx-

imations have the same order and are reasonably close to each other, considering

their low values. In contrast, the additive PDD approximation either significantly

underpredicts or fails altogether in calculating the probabilities for all intervals ex-

amined. Therefore, the multiplicative PDD methods provide stochastic solutions that

are unattainable by the additive PDD method, at least in this problem. It is impor-

tant to emphasize that the probabilistic characteristics of eigensolutions or frequency

response functions reported here were generated using only 500 FEA, representing

the computational effort by the multiplicative PDD methods. Obtaining percentile

functions or acceleration probabilities employing 104 or 106 crude MCS would be com-

putationally prohibitive in today’s desktop computing environment, illustrating the

efficacy of the PDD methods. Furthermore, the methods developed are non-intrusive

and can be easily adapted to solving complex stochastic problems requiring external

legacy codes.

4.8 Conclusions

Two new multiplicative variants of PDD, namely, factorized PDD and logarith-

mic PDD, were developed for uncertainty quantification of high-dimensional complex

systems. They are based on hierarchical, multiplicative decompositions of a multi-

variate function in terms of lower-variate component functions, Fourier-polynomial

expansions of lower-variate component functions by measure-consistent orthonormal

polynomial bases, and a dimension-reduction integration or sampling technique for
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estimating the expansion coefficients. Compared with the existing, additive PDD,

the factorized and logarithmic PDDs exploit the multiplicative dimensional hierarchy

of a stochastic response when it exists. Since both PDDs are rooted in the ADD,

their existence and uniqueness are guaranteed for a square integrable function. A

theorem, proven herein, reveals the relationship between all component functions

of factorized PDD and ADD, so far available only for the univariate and bivariate

component functions. Similar to the additive PDD, truncations of a multiplicative

PDD lead to a convergent sequence of lower-dimensional estimates of the probabilistic

characteristics of a general stochastic response. Using the properties of orthogonal

polynomials, explicit formulae were derived for calculating the response statistics by

the univariate factorized PDD and univariate logarithmic PDD approximations in

terms of the expansion coefficients. Unlike the univariate additive PDD approxima-

tion, which captures only the main effects of input variables, a univariate truncation

of multiplicative PDD includes some effects of interactions among input variables.

The additive and multiplicative PDD methods were employed to calculate the

second-moment properties and tail probability distributions in three numerical prob-

lems, where the output functions are either simple mathematical functions or eigen-

values of dynamic systems, including natural frequencies of an FGM plate. When a

function is purely multiplicative, the factorized or logarithmic PDD requires at most

univariate approximation, resulting in a much faster convergence than the additive

PDD approximation. However, the relative superiority of one multiplicative PDD

approximation over the other depends on the nature of the function and whether a
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logarithmic transformation enhances or reduces the nonlinearity of the function. A

similar trend was observed when calculating small probabilities of eigenvalues of a

linear oscillator, where the multiplicative PDDs commit lower errors than does the

additive PDD. Given the same computational effort of univariate approximations,

both variants of the multiplicative PDD yield more accurate tail probabilistic char-

acteristics of natural frequencies of an FGM plate than the additive PDD. Finally,

a successful evaluation of random eigensolutions of a SUV represents a significant

advance in the ability of the new methods in solving practical engineering problems.

Neither variant of the multiplicative PDD approximation encounters additional

cost to that required by the additive PDD approximation. Indeed, the computational

complexities of all three variants of the PDD approximation are identical and poly-

nomial, as opposed to exponential, with respect to the number of input variables.

Therefore, a PDD approximation, whether additive or multiplicative, mitigates the

curse of dimensionality to some degree.
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CHAPTER 5
HYBRID POLYNOMIAL DIMENSIONAL DECOMPOSITION

5.1 Introduction

When a stochastic response is neither dominantly additive nor dominantly

multiplicative in its structure, then a mixed approach comprising the best combina-

tion of additive and multiplicative PDD is required for estimating the probabilistic

characteristics of the response. The major limitation of the additive PDD method is

that it can not be successfully applied to responses that lack an additive structure.

This limitation of additive PDD was the motivation for developing the multiplicative

PDD methods earlier in this work. It can be argued that the multiplicative PDD

methods also face a limitation similar to that of the additive PDD: that it cannot be

successfully applied for solving responses that lack a multiplicative structure. The

corresponding limitations of both additive and multiplicative PDD methods are the

motivation for developing a novel hybrid PDD method. Not losing sight of the objec-

tive of developing highly efficient computational methods for solving high-dimensional

REPs, a hybrid PDD method is developed that is based on a linear combination of

additive PDD and a variant of multiplicative PDD: factorized PDD.

This chapter presents a new hybrid PDD method for solving high-dimensional

stochastic problems. The method is presented in Section 5.2 along with the second

moment properties of the resultant approximation. Section 5.3 presents the univari-

ate hybrid PDD. The methods for calculating the hybrid model parameters are also
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discussed. Section 5.4 describes the quasi MCS method for calculating the PDD

expansion coefficients. Section 5.5 presents two numerical examples illustrating the

accuracy, efficiency, and convergence properties of the hybrid PDD method and com-

pares results with those obtained from additive and factorized PDD methods. In Sec-

tion 5.6 a large, complex engineering problem, entailing coupled acoustic-structural

analysis of a pickup truck, is solved using the hybrid PDD method. Finally, conclu-

sions are drawn in Section 5.7.

5.2 Proposed Hybrid PDD

Two new hybrid approximations, which are based on a linear mixture of the

additive PDD and factorized PDD described in Sections 4.3 and 4.4.1, respectively,

are proposed.

5.2.1 Hybrid approximations

Given S-variate, mth-order additive PDD and factorized PDD approximations

ỹS,m (X) and ŷS,m (X), let

ȳS,m (X;αS,m, βS,m, . . .) :=



y∅ if S = 0,

h (ỹS,m (X) , ŷS,m (X) ;αS,m, βS,m, . . .) if 1 ≤ S < N,

y (X) if S = N, m→∞,
(5.1)

define a general, S-variate, mth-order hybrid PDD approximation of y (X), where h

is a chosen linear model function such that E [ȳS,m (X;αS,m, βS,m, . . .)] = y∅ and αS,m,
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βS,m, . . . are the associated model parameters. Define the zero-mean functions

w (X) := y (X)− y∅, (5.2)

w̃S,m (X) := ỹS,m (X)− y∅, (5.3)

ŵS,m (X) := ŷS,m (X)− E [ŷS,m (X)] , (5.4)

and

w̄S,m (X;αS,m, βS,m, . . .) := ȳS,m (X;αS,m, βS,m, . . .)− y∅, (5.5)

that will be used throughout this section. Theorem 5.1 and Corollary 5.2 describe two

optimal hybrid approximations ȳS,m (X;αS,m, βS,m) and ȳ′S,m
(
X;α′S,m, β

′
S,m

)
for 1 ≤

S < N , m <∞, both producing the exact mean y∅. The two hybrid approximations

have their zero-mean counterparts defined as

w̄S,m (X;αS,m, βS,m) := ȳS,m (X;αS,m, βS,m)− y∅ (5.6)

and

w̄′S,m
(
X;α′S,m

)
:= ȳ′S,m

(
X;α′S,m

)
− y∅. (5.7)

Theorem 5.1: Given integers 1 ≤ S < N < ∞ and 1 ≤ m < ∞, let w̃S,m (X)

and ŵS,m (X) represent zero-mean, S-variate, mth-order additive PDD and factorized

PDD approximations with variances σ̃2
S,m := E [ỹS,m (X)− y∅]2 = E

[
w̃2
S,m (X)

]
and

σ̂2
S,m := E [ŷS,m (X)− y∅]2 = E

[
ŵ2
S,m (X)

]
, respectively, of a real-valued, zero-mean,

square-integrable function w (X). Then there exists an optimal, linear, S-variate,

mth-order hybrid PDD approximation

w̄S,m (X;αS,m, βS,m) = αS,mw̃S,m (X) + βS,mŵS,m (X) (5.8)
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of w (X), where

αS,m =
σ̂2
S,mE [w (X) w̃S,m (X)]− E [w̃S,m (X) ŵS,m (X)]E [w (X) ŵS,m (X)]

σ̃2
S,mσ̂

2
S,m − (E [w̃S,m (X) ŵS,m (X)])2 , (5.9)

βS,m =
σ̃2
S,mE [w (X) ŵS,m (X)]− E [w̃S,m (X) ŵS,m (X)]E [w (X) w̃S,m (X)]

σ̃2
S,mσ̂

2
S,m − (E [w̃S,m (X) ŵS,m (X)])2 . (5.10)

Proof. For a square-integrable function w (X), define a second-moment error

ēS,m := E [w (X)− w̄S,m (X;αS,m, βS,m)]2 (5.11)

committed by its S-variate, mth-order hybrid PDD approximation w̄S,m (X;αS,m, βS,m).

For ēS,m to be minimum, set

∂ēS,m
∂αS,m

= 0,

∂ēS,m
∂βS,m

= 0.

(5.12)

Exchanging the orders of differential and expectation operators, and substituting the

expression of w̄S,m (X;αS,m, βS,m) from Equation (5.8) yields

αS,mE
[
w̃2
S,m (X)

]
+ βS,mE [w̃S,m (X) ŵS,m (X)] = E [w (X) w̃S,m (X)] ,

αS,mE [w̃S,m (X) ŵS,m (X)] + βS,mE
[
ŵ2
S,m (X)

]
= E [w (X) ŵS,m (X)] .

(5.13)

Noting σ̃2
S,m = E

[
w̃2
S,m (X)

]
, and σ̂2

S,m = E
[
ŵ2
S,m (X)

]
, the solution Equations (5.13)

produces the expressions of αS,m and βS,m as in Equations (5.9) and (5.10), proving

the theorem. �

Corollary 5.2: Constraining the sum of two model parameters to be unity in Equation

(5.8) through (5.13) creates another optimal, linear, S-variate hybrid approximation

w̄′S,m
(
X;α′S,m

)
= α′S,mw̃S,m (X) +

(
1− α′S,m

)
ŵS,m (X) (5.14)
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of w (X), 1 ≤ S < N <∞, m <∞, where the optimal model parameter

α′S,m =
E [{w (X)− ŵS,m (X)} {w̃S,m (X)− ŵS,m (X)}]

E [w̃S,m (X)− ŵS,m (X)]2
. (5.15)

Proof. For a square-integrable function w (X), define another second-moment error

ē′S,m := E
[
w (X)− w̄′S,m

(
X;α′S,m

)]2
(5.16)

owing to its S-variate, mth-order hybrid PDD approximation w̄′S,m
(
X;α′S,m

)
. For

ē′S,m to be minimum, set

∂ē′S,m
∂α′S,m

= 0. (5.17)

Again, swapping the orders of differential and expectation operators, and substitut-

ing the expression of w̄′S,m
(
X;α′S,m

)
from Equation (5.14) results in the expression of

α′S,m as in Equation (5.15), proving the corollary. �

Remark 5.1: The linear hybrid PDD approximations, w̄S,m (X;αS,m, βS,m) and

w̄′S,m
(
X;α′S,m

)
, for a given 1 ≤ S < N <∞, and 1 ≤ m <∞, can exactly reproduce

the original zero-mean function w (X) under the following two conditions: (1) If the

original function is endowed with a purely additive structure, i.e., w (X) = w̃S,m (X),

then Equations (5.9), (5.10), and (5.15) yield αS,m = α′S,m = 1, and βS,m = 0, which in

turn results in w̄S,m (X) = w̄′S,m (X) = w̃S,m (X) = w (X); (2) If the original function

possesses a purely multiplicative structure, i.e., w (X) = ŵS,m (X), then Equations

(5.9), (5.10), and (5.15) produce αS,m = α′S,m = 0 and βS,m = 1, and therefore

w̄S,m (X) = w̄′S,m (X) = ŵS,m (X) = w (X).
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5.2.2 Second-moment properties

Applying the expectation operator on Equations (5.8) and (5.14) yields the

exact mean

E [ȳS,m (X;αS,m, βS,m)] = E
[
ȳ′S,m

(
X;α′S,m

)]
= y∅, (5.18)

by both the hybrid approximations. However, their respective variances, obtained by

applying the expectation operator on w̄S,m (X;αS,m, βS,m)2 and w̄′S,m
(
X;α′S,m, β

′
S,m

)2

respectively, vary according to

σ̄2
S,m := E

[
w̄2
S,m (X;αS,m, βS,m)

]
= α2

S,mσ̃
2
S,m + β2

S,mσ̂
2
S,m + 2αS,mβS,mE [w̃S,m (X) ŵS,m (X)] (5.19)

and

σ̄′2S,m:=E
[
w̄′2S,m

(
X;α′S,m

)]
=α′2S,mσ̃

2
S,m +

(
1− α′S,m

)2
σ̂2
S,m + 2α′S,m

(
1− α′S,m

)
E [w̃S,m (X) ŵS,m (X)] .(5.20)

Compared with the additive and factorized PDD approximations, the hybrid PDD

approximations proposed require expectation of product of w̃S,m (X) and ŵS,m (X) to

calculate the variance.

5.3 Univariate Hybrid PDD Approximation

In the root of developing the factorized PDD method lies the principal mo-

tive of achieving high accuracy in calculating probabilistic characteristics of high-

dimensional random responses while keeping the computational efforts to a minimum.

This objective was attained through applying univariate factorized PDD approxi-
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mations in solving high-dimensional stochastic problems. The numerical examples

(Section 4.6) and application (Section 4.7) in Chapter 4 illustrate remarkably higher

efficiency of univariate factorized PDD methods in obtaining results comparable to

the expensive higher-variate additive PDD methods. Considering the key advantage

of high efficiency of a univariate additive and factorized PDD approximations, only

the univariate hybrid PDD method was employed in this work. Proposition 5.3 for-

mally describes the univariate hybrid PDD approximation.

Proposition 5.3: A linear, univariate, mth-order hybrid PDD approximation of

w (X), obtained by setting S = 1 in Equations (5.8)-(5.10), is

w̄1,m (X;α1,m, β1,m) = α1,mw̃1,m (X) + β1,mŵ1,m (X) (5.21)

where the model parameters

α1,m =
σ̂2

1,m − E [w (X) ŵ1,m (X)]

σ̂2
1,m − σ̃2

1,m

(5.22)

and

β1,m =
E [w (X) ŵ1,m (X)]− σ̃2

1,m

σ̂2
1,m − σ̃2

1,m

. (5.23)

Proof. Consider the univariate, mth-order additive and factorized PDD approxima-

tions

w̃1,m (X) =
N∑
i=1

m∑
j=1

Cijψij(Xi), (5.24)

ŵ1,m (X) = y∅

[
N∏
i=1

{
1 +

1

y∅

m∑
j=1

Cijψij(Xi)

}]
− y∅ (5.25)

of

w (X) =
∑

∅6=u⊆{1,··· ,N}

∑
j|u|∈N

|u|
0

j1,··· ,j|u| 6=0

Cuj|u|ψuj|u|(Xu). (5.26)
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From Propositions 4.1 and 4.2,

E [w (X) w̃1,m (X)] = E [w̃1,m (X) ŵ1,m (X)]

=
N∑
i=1

m∑
j=1

C2
ij = σ̃2

1,m. (5.27)

Applying Equation (5.27) to Equations (5.9) and (5.10), the model parameters for

S = 1 and m <∞ are obtained as in Equations (5.22) and (5.23). �

Remark 5.2: The two parameters α1,m and β1,m of the hybrid model described

by Equation (5.21) add up to one. This is due to special properties of w̃1,m (X)

and ŵ1,m (X) expressed in Equations (5.24) and (5.25). Therefore, the hybrid model

described by Equation (5.14) at univariate truncation (S = 1), is redundant, as it

leads to the same solution of the first model described by (5.21).

Since β1,m = 1− α1,m, let

w̄1,m (X;α1,m) := ȳ1,m (X;α1,m)− y∅

= α1,mw̃1,m (X) + (1− α1,m) ŵ1,m (X) (5.28)

denote the univariate hybrid PDD approximation of w (X). The mean of w̄1,m (X;α1,m)

is zero and, therefore, E [ȳ1,m (X;α1,m)] = y∅, matching the exact mean of y (X). The

variance of w̄1,m (X;α1,m) or ȳ1,m (X;α1,m) is

σ̄2
1,m := E

[
w̄2

1,m (X;α1,m)
]

=
(
2α1,m − α2

1,m

)
σ̃2

1,m + (1− α1,m)2 σ̂2
1,m, (5.29)

which is a linear combination of the variances from univariate additive PDD and

univariate factorized PDD approximations. The variances σ̃2
1,m and σ̂2

1,m, expressed

by Equations (4.16) and (4.38), are obtained from the univariate PDD expansion
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coefficients. However, determining the model parameter α1,m involves evaluation of

an N -dimensional integral that will incur additional computational expense in excess

of the computations performed for estimating the PDD expansions coefficients. A

quasi MCS was employed for estimating the model parameters, described as follows.

5.3.1 Calculation of the hybrid model parameter

The basic idea of a quasi MCS is to replace the random or pseudo-random

samples in crude MCS by well-chosen deterministic samples that are highly equidis-

tributed [125]. The qausi MCS samples are often selected from a low-discrepancy

sequence [125–128] or by lattice rules [129] to minimize the integration errors. The

estimation of the expectation of the multi-variate function w (X) ŵ1,m (X), which

is a high-dimensional integral, comprises three simple steps: (1) generate a low-

discrepancy point set PL := {u(k) ∈ [0, 1]N , k = 1, · · · , L} of size L ∈ N; (2) map

each sample from PL to the sample x(k) ∈ RN following the probability measure of

the random input X; and (3) approximate the expectation as E [w (X) ŵ1,m (X)] ∼=

1
L

∑L
k=1

[
w
(
x(k)
)
ŵ1,m

(
x(k)
)]

. Thus, using quasi MCS, the model parameter is given

by

α1,m
∼=

σ̂2
1,m −

1

L

L∑
k=1

[
w
(
x(k)
)
ŵ1,m

(
x(k)
)]

σ̂2
1,m − σ̃2

1,m

, (5.30)

where σ̂2
1,m, and σ̃2

1,m are obtained from Equations (4.16) and (4.38). However, when

σ̂2
1,m = E

[
ŵ2

1,m (X)
]

and σ̃2
1,m = E

[
w̃2

1,m (X)
]

are also estimated from a quasi MCS
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method, then the model parameter can also be obtained from

α1,m
∼=

1

L

L∑
k=1

[
ŵ2

1,m

(
x(k)
)]
− 1

L

L∑
k=1

[
w
(
x(k)
)
ŵ1,m

(
x(k)
)]

1

L

L∑
k=1

[
ŵ2

1,m

(
x(k)
)]
− 1

L

L∑
k=1

[
w̃2

1,m

(
x(k)
)] . (5.31)

Both Equations (5.30) and (5.31) were employed for estimating α1,m in this work.

Further details, clarifying which equation is used, are given in the numerical examples

section.

5.3.2 Error analysis

Given the univariate truncation (S = 1), which approximation stemming ad-

ditive PDD, factorized PDD, and hybrid PDD is more accurate? Lemma 5.4 and

Theorem 5.5 address this question.

Lemma 5.4: Let y (X) be a real-valued, square integrable function with ỹ1,m (X)

and ŷ1,m (X) denoting its univariate additive PDD and univariate factorized PDD

approximations, respectively. Let

σ̃2
1,m =

N∑
i=1

m∑
j=1

C2
ij (5.32)

and

σ̂2
1,m = y2

∅

[
N∏
i=1

(
1 +

1

y2
∅

m∑
j=1

C2
ij

)
− 1

]
(5.33)

be the variances of ỹ1,m (X) and ŷ1,m (X), respectively. Then

σ̂2
1,m ≥ σ̃2

1,m.
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Proof. From Equation (5.33) the variance from a univariate factorized PDD is

σ̂2
1,m =

N∑
i=1

m∑
j=1

C2
ij +

1

y2
∅

N∑
i1<i2

m∑
j=1

C2
i1j

m∑
j=1

C2
i2j

+
1

y3
∅

N∑
i1<i2<i3

m∑
j=1

C2
i1j

m∑
j=1

C2
i2j

m∑
j=1

C2
i3j

+ · · ·+ 1

yN∅

N∏
i=1

(
m∑
j=1

C2
ij

)

= σ̃2
1,m +

1

y2
∅

N∑
i1<i2

m∑
j=1

C2
i1j

m∑
j=1

C2
i2j

+
1

y3
∅

N∑
i1<i2<i3

m∑
j=1

C2
i1j

m∑
j=1

C2
i2j

m∑
j=1

C2
i3j

+ · · ·+ 1

yN∅

N∏
i=1

(
m∑
j=1

C2
ij

)
≥ σ̃2

1,m, (5.34)

where the second equality uses Equation (5.32). �

Theorem 5.5: Let y (X) be a real-valued, square integrable function with ỹ1,m (X),

ŷ1,m (X) and ȳ1,m (X) denoting its univariate additive PDD, univariate factorized

PDD, and univariate hybrid PDD approximations, respectively, with σ̃2
1,m, σ̂2

1,m and

σ̄2
1,m as the variances obtained from respective approximations. If

ẽ1,m := E [y (X)− ỹ1,m (X)]2 = E [w (X)− w̃1,m (X)]2 (5.35)

ê1,m := E [y (X)− ŷ1,m (X)]2 = E [w (X)− ŵ1,m (X)]2 (5.36)

and

ē1,m := E [y (X)− ȳ1,m (X)]2 = E [w (X)− w̄1,m (X)]2 (5.37)

are the errors committed by univariate additive PDD, univariate factorized PDD and

univariate hybrid PDD, respectively, in calculating σ2, the variance of y (X), then,

ē1,m ≤ ẽ1,m
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and

ē1,m ≤ ê1,m.

Proof. From Equations (5.35) and (5.37),

ẽ1,m = σ2 − σ̃2
1,m (5.38)

and

ē1,m = E
[
w2 (X)

]
+ E

[
w̄2 (X)

]
− 2E [w (X) w̄1,m (X)]

= σ2 + σ̄2
1,m − 2E [w (X) w̄1,m (X)] . (5.39)

Subtracting Equation (5.38) from Equation (5.39) yields

ē1,m − ẽ1,m = σ̄2
1,m − 2E [w (X) w̄1,m (X)] + σ̃2

1,m

=
(
2α1,m − α2

1,m

)
σ̃2

1,m + (1− α1,m)2 σ̂2
1,m + σ̃2

1,m

−2E [w (X) {α1,mw̃1,m (X) + (1− α1,m) ŵ1,m (X)}]

= 2 (1− α1,m)
(
σ̃2

1,m − E [w (X) ŵ1,m (X)]
)

+ (1− α1,m)2 (σ̂2
1,m − σ̃2

1,m

)
= − (1− α1,m)2 (σ̂2

1,m − σ̃2
1,m

)
≤ 0, (5.40)

following Lemma 5.4, where the second equality uses Equations (5.29) and (5.28) and

the last equality uses Equation (5.23).

Similarly, from Equation (5.36),

ê1,m = σ2 + σ̂2
1,m − 2E [w (X) ŵ1,m (X)] . (5.41)



137

Subtracting Equation (5.41) from Equation (5.39) yields

ē1,m − ê1,m = σ̄2
1,m − 2E [w (X) w̄1,m (X)]− σ̂2

1,m + 2E [w (X) ŵ1,m (X)]

=
(
2α1,m − α2

1,m

)
σ̃2

1,m + (1− α1,m)2 σ̂2
1,m

−2E [w (X) {α1,mw̃1,m (X) + (1− α1,m) ŵ1,m (X)}]

−σ̂2
1,m + 2E [w (X) ŵ1,m (X)]

= σ̃2
1,m − σ̂2

1,m − 2α1,m

(
σ̃2

1,m − E [w (X) ŵ1,m (X)]
)

+ (1− α1,m)2 (σ̂2
1,m − σ̃2

1,m

)
= −α2

1,m

(
σ̂2

1,m − σ̃2
1,m

)
≤ 0, (5.42)

following Lemma 5.4, where, again, the second equality uses Equations (5.29) and

(5.28) and the last equality uses Equation (5.23). �

The significance of Theorem 5.5 lies in providing analytical relations compar-

ing the errors committed in calculating the variances by univariate additive PDD,

factorized PDD and hybrid PDD approximations. It is clear from Theorem 5.5 that

the error committed by univariate hybrid PDD can never be greater than the error

committed by either univariate additive PDD or univariate factorized PDD.

5.4 Calculation of Expansion Coefficients by Quasi MCS

The calculation of PDD expansion coefficients involves evaluating various N -

dimensional integrals. In the preceding chapters of this thesis, the expansion coeffi-

cients have been calculated using the efficient dimension reduction integration tech-
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nique and the crude MCS method, discussed in Sections 4.5.1 and 4.5.2, respectively.

For the high-dimensional problems handled in this chapter, the PDD coefficients were

calculated using dimensional reduction integration and quasi MCS method, described

as follows.

Section 5.3.1 gives a brief overview of the quasi MCS method. Employing the

quasi MCS method for the estimation of the PDD expansion coefficients, which are

high-dimensional integrals defined in Equations (4.2) and (4.9), again comprises three

simple steps: (1) generate a low-discrepancy point set PL := {u(k) ∈ [0, 1]N , k =

1, · · · , L} of size L ∈ N; (2) map each sample from PL to the sample x(k) ∈ RN

following the probability measure of the random input X; and (3) approximate the

coefficients by

y∅ ∼=
1

L

L∑
k=1

y
(
x(k)
)
, (5.43)

Cuj|u|
∼=

1

L

L∑
k=1

y
(
x(k)
)
ψuj|u|

(
x(k)
u

)
. (5.44)

The well-known Koksma–Hlawka inequality reveals that the error committed by a

quasi MCS is bounded by the variation of the integrand in the sense of Hardy and

Krause and the star-discrepancy, a measure of uniformity, of the point set PL [125].

Therefore, constructing a point set with star-discrepancy as small as possible and

seeking variance reduction of the integrand are vital for the success of the quasi MCS.

It should be mentioned here that many authors, including Halton [126], Faure [127],

Niederreiter [125], Sobol [128], and Wang [130], have extensively studied how to

generate the best low-discrepancy point sets and sequences and to engender variance
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reduction. For a bounded variation of the integrand, the quasi MCS has a theoretical

error bound O(L−1(logL)N compared with the probabilistic error bound O(N−1/2) of

crude MCS, indicating significantly faster convergence of the quasi MCS than crude

MCS.

5.5 Numerical Examples

Two numerical examples are presented to illustrate the hybrid PDD method

developed in calculating the second-moment statistics and tail probability distri-

butions of random mathematical functions and random eigensolutions of a simple

stochastic dynamical system. Classical Legendre polynomials were used to define the

orthonormal polynomials in Example 1, and all PDD expansion coefficients and the

hybrid model parameter were determined analytically. In Example 2 all original ran-

dom variables were transformed into standard Gaussian random variables, facilitating

the use of classical Hermite orthonormal polynomials as bases. The expansion coeffi-

cients in Example 2 were calculated using dimensional-reduction integration (R = 1)

involving five-point univariate Gauss-Hermite quadrature rule. The hybrid model

parameter was estimated by quasi MCS using Sobol’s low-discrepancy sequence of

100 and 500 points and Equation (5.30). The sample size for the embedded MCS in

Example 2 is 106.

5.5.1 Polynomial function

Consider a polynomial function
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y (X) =

[
2

N

N∑
i=1

Xi

]q
where N = 5, Xi, i = 1, . . . , N , are independent and identical random variables, each

following the standard uniform distribution over [0, 1], and q ∈ N is an exponent.

The function y (X) has a purely additive structure when q = 1, but as the value of q

increases, the function y (X) evolves from strongly additive to strongly multiplicative.

The objective of this example is to compare univariate additive PDD, univariate fac-

torized PDD, and univariate hybrid PDD approximations in calculating the variance

of y (X) for q = 2, 3, 4, 5, 6, 7, 8.

Since y is a multivariate polynomial of degree q, the truncation parameter m

for a PDD approximation, whether additive, factorized, or hybrid, was set equal to q.

Figure 5.1 shows how the hybrid model parameter α1,m varies with respect to q, where

σ̃2
1,m, σ̂2

1,m, and the expectation in Equation (5.22) of α1,m are calculated exactly. The

parameter α1,m is relatively close to one when q = 2, and decreases monotonically

as q increases, indicating the diminishing additive structure of the function y. When

q = 8, α1,m is relatively close to zero, that is, y is dominantly multiplicative.

Figure 5.2 presents the relative errors, defined as the ratio of the absolute dif-

ference between the exact and approximate variances of y (X) to the exact variance,

committed by the univariate additive PDD, univariate factorized PDD, and univari-

ate hybrid PDD methods. The second-moment properties of y (X), given q, were

calculated exactly. The function y (X) is strongly additive when q = 2 or 3, there-

fore, the univariate additive PDD approximation has lower error than the factorized
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Figure 5.1: Variation of α1,m with respect to q (Example 1).

PDD approximation. But the trend reverses for 4 ≤ q ≤ 8, the range of higher values

examined. This is because the function switches from dominantly additive (q ≤ 3)

to dominantly multiplicative (q > 3) as q increases. Nonetheless, for all the values of

q considered, the univariate hybrid PDD approximation commits lower errors than

either univariate additive PDD or univariate factorized PDD approximation. These

results are consistent with the findings of Theorem 5.5.

5.5.2 Three-degree-of-freedom, undamped, spring-mass system

Consider a three-degree-of-freedom, undamped, spring-mass system, shown in

Figure 5.3, with random mass and random stiffness matrices

M (X) =

 M1 (X) 0 0
0 M2 (X) 0
0 0 M3 (X)

 (5.45)
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Figure 5.2: Error in variance calculation from additive PDD, factorized PDD, and
hybrid PDD approximations (Example 1).

and

K (X) =

 K11 (X) K12 (X) K13 (X)
K22 (X) K23 (X)

(sym.) K33 (X)

 , (5.46)

respectively, where K11 (X) = K1 (X) + K4 (X) + K6 (X), K12 (X) = −K4 (X),

K13 (X) = −K6 (X), K22 (X) = K4 (X) + K5 (X) + K2 (X), K23 (X) = −K5 (X),

and K33 (X) = K5 (X) +K3 (X) +K6 (X); the masses Mi (X) = µiXi; i = 1, 2, 3 with

µi = 1.0 kg; i = 1, 2, 3, and spring stiffnesses Ki (X) = µi+3Xi+3; i = 1, · · · , 6 with

µi+3 = 1.0 N/m; i = 1, · · · , 5 and µ9 = 3.0 N/m. The input X = {X1, · · · , X9}T ∈ R9

is an independent lognormal random vector with mean µX = 1 ∈ R9 and covariance

matrix ΣX = ν2I ∈ R9×9 with coefficient of variation ν = 0.3.

The primary objective of this example is to demonstrate high accuracy of uni-

variate hybrid PDD approximation in calculating cumulative distribution functions of
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Figure 5.3: A three-degree-of-freedom, undamped, spring-mass system (Example 2).

the three eigenvalues of the three-degree-of-freedom system. The secondary, although

significant, objective of this example is to show that the quasi MCS method, with a

relatively small sample size for calculating the model parameter of univariate hybrid

PDD approximation, is capable of delivering results comparable to those obtained

from the expensive bivariate additive PDD approximation.

The probability distributions of three eigenvalues of the three-degree-of-freedom

system were calculated using the benchmark solution of 106 crude MCS method, and

five different fourth-order (m = 4) PDD methods: (1) univariate additive PDD, (2)

bivariate additive PDD, (3) univariate factorized PDD, (4) univariate hybrid PDD

with α1,4 estimated using 500 quasi MCS samples, and (5) univariate hybrid PDD

with α1,4 estimated using 100 quasi MCS samples. Figure 5.4 presents the marginal

probability distributions Fi(λi) := P [Λi ≤ λi] of three eigenvalues λi, i = 1, 2, 3,

where all the PDD solutions were obtained from the embedded MCS; the parenthet-

ical values reflect the total number of function evaluations required by the respective
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methods. The plots are made over a semi-logarithmic scale to delineate the dis-

tributions in the tail regions. For all three eigenvalues, the probability distributions

obtained from the univariate additive PDD method is far from the crude MCS results,

divulging the clear inadequacy of the univariate additive PDD approximation in cal-

culating tail probabilities. The univariate factorized PDD method performs relatively

better than its additive counterpart, indicating dominantly multiplicative structure of

the functions; however, it still leaves wide room for improvement compared with the

benchmark crude MCS results. The univariate hybrid PDD method requires addi-

tional computational effort owing to quasi MCS for estimating α1,4 in Equation (5.30),

but the improved results obtained clearly justify the additional cost. To put the re-

sults of the univariate hybrid PDD method in perspective, the results from bivariate

(S = 2) additive PDD method, also obtained, show dramatic improvement over the

univariate additive PDD method, as expected. However, the bivariate additive PDD

method also leads to a significantly larger number of function evaluations compared

with the univariate hybrid PDD with quasi MCS (100 samples). Therefore, a hybrid

PDD approximation in desirable, where only univariate truncations are feasible, but

not necessarily rendering adequate accuracy in stochastic solutions by either additive

or factorized PDD approximation alone.

5.6 Application: A Pickup Truck

This section illustrates the effectiveness of the proposed hybrid PDD method in

solving a large-scale practical engineering problem. The application involves predict-
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Figure 5.4: Tail probabilities of three eigenvalues of the three-degree-of-freedom, un-
damped, spring-mass system by various PDD approximations and crude MCS
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ing probabilistic characteristics of sound pressure levels inside the cabin of a pickup

truck. The acoustics, measured through sound pressure levels, inside a vehicle are

widely considered a prominent parameter revealing the overall quality and build of

the vehicle. In which case, a coupled acoustic-structural analysis is critically impor-

tant in the automotive industry as it paves the way towards designing vehicles for

ride comfort and quietness. Figure 5.5(a) presents a computer-aided design (CAD)

cabin-air-chassis model of a pickup truck [131]. A finite-element mesh of the model,

comprising 43,663 structural elements used to model the cabin and the chassis and

12,171 acoustic elements used to model the air interior, with a total of 207,994 degrees

of freedom, is displayed in Figure 5.5(b). Figure 5.6(a) depicts the cabin model with-

out air mesh and doors to show the space occupied by the air mesh, and Figure 5.6(b)

displays the air mesh that fills the cabin interior. A tie constraint was employed to

connect the air mesh to the structural parts inside the cabin surface or onto the seat

surface.

Portrayed in Figure 5.5(a), the CAD model contains 24 distinct materials, with

22 structural materials and two non-structural materials, representing the air inside

the cabin, and the carpet on the cabin floor. Twenty-one of the structural materials

are modeled as shell elements, and the remaining material as beam elements defining

the circular beam used for headrest mounting. The Young’s moduli of 22 structural

materials are random variables. The mass densities of the 21 materials modeled as

shell elements are also random variables. Seven elastic-plastic materials forming the

interior of the cabin and doors have random yield stress. Apart from the structural
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Figure 5.5: Cabin-air-chassis model of pickup truck: (a) a CAD model, (b) an FEA
mesh

material properties, the bulk modulus and mass density of the air inside the cabin

are also random variables. Finally, the proportionality factor between the pressure

and velocity of the carpet surface in the normal direction is also a random variable.

This proportionality constant defines the acoustic admittance of the carpet surface

on the cabin floor. In aggregate, there exist 53 random variables Xi = 1, . . . , 53,

as follows: X1 to X22 = Young’s moduli of materials 1 to 22; X23 to X43 = mass

densities of materials 1 to 21; X44 to X50 = yield stress of materials 1 to 7; X51 =

bulk modulus of air inside the cabin; X52 = mass density of air inside the cabin; and

X53 = acoustic admittance of the carpet surface on the cabin floor. All 53 random

variables are independent and uniformly distributed with the coefficient of variation
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Figure 5.6: Cabin model of pickup truck with air mesh: (a) cabin model with doors
removed for clearer illustration; (b) the air mesh inside the cabin
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equal to 0.2. The means of random variables corresponding to the 22 structural

materials, µi := E [Xi], i = 1, . . . , 50, are listed in Table 5.1. The means of the bulk

modulus and mass density of air inside the cabin are µ51 = 0.139 GPa and µ52 =

1.2 × 10−12 kg/mm3. The mean of the acoustic admittance of the carpet surface on

the cabin floor is µ53 = 0.5×106 mm2s/kg. All structural materials, except materials

8, 9, and 10, have a deterministic Rayleigh stiffness proportional damping defined by

the parameter βR = 0.4 × 10−6 s. For a given value of βR, the damping fraction ξi

for a mode i with natural frequency ωi is given by the formula ξi = βRωi/2. The

value of βR chosen in this model is to give approximately 1 percent critical damping

for the modes whose natural frequencies are in the middle of the range of excitation,

i.e., at about 80 Hz at mean input. The Poisson’s ratios of all structural materials

are deterministic and are equal to 0.3.

5.6.1 Coupled acoustic-structural analysis

A mode-based coupled acoustic-structural analysis consists of two steps: an

eigensolution extraction, followed by a steady-state dynamic analysis involving sound

pressure level calculations. For obtaining eigensolutions, the first 200 eigenfrequencies

were extracted. The Lanczos method (Section 2.4.2) embedded in Abaqus (Version

6.12) [131] was employed for extracting natural frequencies and mode shapes. For

steady-state dynamic analysis, the airborne load originating from engine vibration was

modeled as a diffuse field incident wave loading on the bulkhead below the dashboard.

In the steady-state dynamic analysis, the sound pressure level at a location in the
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Table 5.1: Mean values of the random input variables for structural materials
in pickup truck

Material Young’s modulus Mass density Yield stress
GPa kg/m3 GPa

1 210 7890 0.27
2 210 7890 0.27
3 210 7890 0.27
4 210 7890 0.35
5 2.8 1200 0.045
6 76 2500 0.14
7 3.4 1100 0.10
8 210 7890 -(a)

9 210 20900 -(a)

10 210 6910 -(a)

11 250 8060 -(a)

12 210 7890 -(a)

13 2.0 253 -(a)

14 2.0 169 -(a)

15 2.0 755 -(a)

16 210 2500 -(a)

17 200 7800 -(a)

18 210 1960 -(a)

19 120 3890 -(a)

20 21 1820 -(a)

21 210 7890 -(a)

22 200 -(b) -(a)

(a) Materials 8 to 22 are not elastic-plastic and do not require yield stress to be
defined.

(b) Not required.

vicinity of the driver’s ear was calculated. The location of the driver’s ear was defined

through a node in the air mesh inside the cabin, in accordance with the specifications

of location for measurement of noise inside motor vehicles defined in International

Standard ISO-5128 [132]. The values of the sound pressure level were calculated at

200 evenly spaced points in the excitation frequency range of 35 Hz to 120 Hz. This
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frequency range corresponds to engine-induced vibrations in the range of 2100-7200

rpm. The governing equations of a coupled acoustic-structural analysis are described

in Appendix D.

Due to the uncertainty in material properties, the eigensolutions and sound

pressure level values are random functions. The univariate, second-order hybrid PDD

approximation was employed to determine their second-moment characteristics and

various response probabilities. The associated expansion coefficients of PDD and the

hybrid model parameter were estimated by quasi MCS method with 500 samples.

The sample size for the embedded MCS of the PDD approximation is 5000.

5.6.2 Results

5.6.2.1 Moments of mode shapes

The univariate, second-order hybrid PDD method was employed to calculate

the second-moment statistics of each nodal pressure component of an eigenvector de-

scribing the associated mode shape of the air inside the cabin. All input random

variables were transformed into uniform random variables, permitting the use of Leg-

endre orthonormal polynomials as basis functions. The second-moment statistics were

calculated from Equations (5.43) and (5.29), where the hybrid model parameter was

estimated from Equation (5.31). Based on these statistics, the L2-norms (square root

of sum of squares) of the mean and variance of a nodal pressure were calculated. Fig-

ures 5.7(a) and (b) present contour plots of the L2-norms of the mean and variances,

respectively, of an arbitrarily selected 35th mode shape, calculated using hybrid PDD
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approximation. Similar results can be generated for other mode shapes if desired.

5.6.2.2 Sound pressure level: probabilistic characteristics

The sound pressure level in decibels (dB) is calculated in the vicinity of the

driver’s ears as SPL = 20 log10

[
p/
(
pref
√

2
)]

, where p is the pressure in Pa obtained in

mode-based steady-dynamic analysis, and pref = 2× 10−5 Pa is the zero or reference

sound pressure, which is considered the threshold of human hearing.

Figure 5.8 shows various percentiles of sound pressure level in the vicinity of

driver’s ear calculated from the univariate, second-order hybrid PDD approximation.

The percentiles were calculated from 5000 embedded MCS of the hybrid PDD ap-

proximation at 200 evenly spaced points in the excitation frequency range of 35 Hz to

120 Hz. Figure 5.9 presents the probability density function of the maximum sound

pressure level in the excitation frequency range of 35 Hz to 120 Hz, as calculated from

5000 embedded MCS of the hybrid PDD approximation. These results provide vital

information pertaining to the acoustic performance of the vehicle operating under

several random input parameters. A designer can utilize these valuable results for

optimizing the vehicle design to achieve a desired acoustic performance.

5.7 Conclusion

A univariate hybrid PDD method was developed for uncertainty quantification

of high-dimensional complex systems. The method is built from a linear combination

of an additive and a multiplicative PDD approximation, both obtained from lower-

dimensional ANOVA component functions of a general, square-integrable multivariate
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Figure 5.7: Contour plots of the L2-norms of 35th mode shape of air inside the cabin
of a pickup truck by the hybrid PDD approximation: (a) mean, (b) variance
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Figure 5.8: Percentiles of sound pressure levels in the vicinity of the driver’s ear in a
pickup truck by the hybrid PDD approximation
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Figure 5.9: Probability density function of the maximum sound pressure level in
excitation frequency range of 35 Hz to 120 Hz, estimated by the hybrid PDD approx-
imation
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function. When a stochastic response is not endowed with a specific dimensional hi-

erarchy, the hybrid PDD approximation, optimally blending the additive PDD and

multiplicative PDD approximations, is the best choice. A theorem and a corollary

proven herein give analytical expressions for the model parameters that form the lin-

ear combinations of additive PDD and multiplicative PDD approximations, resulting

in the hybrid PDD method. Using properties of orthonormal polynomials, explicit

formulae were derived for calculating the response statistics by the univariate hybrid

PDD approximation.

The new hybrid PDD method along with univariate additive PDD and multi-

plicative PDD approximations were employed to calculate the second-moment prop-

erties and tail probability distribution in two numerical problems, where the output

functions are either simple mathematical functions or eigenvalues of a simple linear

oscillator. For a function with a mixed additive and multiplicative structure, the

univariate hybrid PDD approximation commits remarkably lower errors in calculat-

ing the variance compared with both univariate additive and multiplicative PDD

approximations. The univariate hybrid PDD approximation is also more accurate

than either the univariate additive or multiplicative PDD methods, and is more ef-

ficient than the bivariate additive PDD method in determining the tail probabilistic

characteristics of eigenvalues of the dynamic system examined. Finally, a successful

evaluation of random eigensolutions of a pickup truck, subjected to 53 input random

variables, involving coupled acoustic-structure analysis demonstrates the ability of

the new method in solving large-scale practical engineering problems.
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CHAPTER 6
ADAPTIVE-SPARSE POLYNOMIAL DIMENSIONAL

DECOMPOSITION

6.1 Introduction

For practical applications, the PDD must be truncated with respect to S and

m, defining the largest degree of interactions among input variables and the largest

order of orthogonal polynomials retained in the concomitant approximations. These

truncation parameters depend on the dimensional structure and nonlinearity of a

stochastic response. The higher the values of S and m, the higher the accuracy, but

also the computational cost that is endowed with an Sth- or mth-order polynomial

computational complexity. However, the dimensional hierarchy or nonlinearity, in

general, is not known a priori. Therefore, indiscriminately assigning the truncation

parameters is not desirable, nor is it possible to do so when a stochastic solution is

obtained via complex numerical algorithms. In which case, one must perform these

truncations automatically by progressively drawing in higher-variate or higher-order

contributions as appropriate. Furthermore, all S-variate components functions of

PDD may not contribute equally or even appreciably to be considered in the result-

ing approximation. Hence, a sparse approximation, expelling component functions

with negligible contributions, should be considered as well. Indeed, addressing some

of these concerns have led to adaptive versions of the cut-high-dimensional model

representation (cut-HDMR) [133] and the anchored decomposition [134], employed in

conjunction with the sparse-grid collocation methods, for solving stochastic problems
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in fluid dynamics. It is important to clarify that the cut-HDMR and anchored de-

compositions are the same as the RDD [119, 135, 136], which was initially presented

as “dimension-reduction” [85] or “decomposition” [86] methods by Xu and Rahman

for statistical moment and reliability analyses, respectively. Therefore, both adaptive

methods essentially employ RDD for multivariate function approximations, where

the mean values of random input are treated as the reference or anchor point − a

premise originally proposed by Xu and Rahman [86]. The developments of these

adaptive methods were motivated by the fact that an RDD approximation requires

only function evaluations, as opposed to high-dimensional integrals required for an

ADD approximation. However, recent error analysis [119] reveals the sub-optimality

of RDD approximations, meaning that an RDD approximation, regardless of how the

reference point is chosen, cannot be better than an ADD approximation for identical

degrees of interaction. The analysis also finds ADD approximations to be exceedingly

more precise than RDD approximations at higher-variate truncations. In addition,

the criteria implemented in existing adaptive methods are predicated on retaining

higher-variate component functions by examining the second-moment properties of

only univariate component functions, where the largest degree of interaction and

polynomial order in the approximation are still left to the user’s discretion, instead of

being determined automatically based on the problem being solved. Therefore, more

intelligently derived adaptive-sparse approximations and decompositions rooted in

ADD or PDD should be explored by developing relevant criteria and acceptable error

thresholds. These enhancements, some of which are indispensable, should be pursued
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without sustaining significant additional cost.

This chapter presents two new adaptive-sparse versions of the PDD method

for solving high-dimensional stochastic problems commonly encountered in computa-

tional science and engineering. The methods are based on (1) variance-based global

sensitivity analysis for defining pruning criteria for retaining PDD component func-

tions; (2) a unified computational algorithm for retaining PDD component functions

and determining the largest orders of their orthogonal polynomial expansions; (3)

two distinct ranking schemes for grading PDD component functions; and (4) a full-

or sparse-grid dimension-reduction integration and quasi MCS for estimating the ex-

pansion coefficients. Section 6.2 briefly describes the existing dimensional decompo-

sitions, including PDD and its S-variate, mth-order approximation, to be contrasted

with the proposed methods. Two adaptive-sparse PDD methods are formally pre-

sented in Section 6.3, along with a computational algorithm and a flowchart for

numerical implementation of the method. Two different approaches for calculating

the PDD coefficients, one emanating from dimension-reduction integration and the

other employing quasi MCS, are explained in Section 6.4. Section 6.5 presents three

numerical examples for probing the accuracy, efficiency, and convergence properties

of the proposed methods, including a comparison with the existing PDD methods.

Section 6.6 reports a large-scale stochastic dynamics problem solved using a proposed

adaptive-sparse method. Finally, conclusions are drawn in Section 6.7.
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6.2 Truncated Dimensional Decompositions

The three dimensional decompositions - ADD (Section 4.2), RDD (Section

2.3.3.1), and PDD (Section 2.3.3.2) - are grounded on a fundamental conjecture known

to be true in many real-world applications: given a high-dimensional function y, its

|u|-variate component functions decay rapidly with respect to |u|, leading to accurate

lower-variate approximations of y. Indeed, given the integers 0 ≤ S < N , 1 ≤ m <∞

for all 1 ≤ |u| ≤ S, the truncated dimensional decompositions

ỹS(X) =
∑

u⊆{1,··· ,N}
0≤|u|≤S

yu(Xu), (6.1)

ŷS(X; c) =
∑

u⊆{1,··· ,N}
0≤|u|≤S

wu(Xu; c), (6.2)

and

ỹS,m(X) = y∅ +
∑

∅6=u⊆{1,··· ,N}
1≤|u|≤S

∑
j|u|∈N

|u|
0 ,‖j|u|‖∞≤m
j1,··· ,j|u| 6=0

Cuj|u|ψuj|u|(Xu), (6.3)

respectively, describe S-variate ADD, RDD, and PDD, approximations, which for

S > 0 include interactive effects of at most S input variables Xi1 , · · · , XiS , 1 ≤ i1 <

· · · < iS ≤ N , on y. It is elementary to show that when S → N and/or m→∞, ỹS,

ŷS, and ỹS,m converge to y in the mean-square sense, generating a hierarchical and

convergent sequence of approximation of y from each decomposition.

6.2.1 ADD and RDD Errors

For ADD or RDD to be useful, what are the approximation errors committed

by ỹS(X) and ŷS(X; c) in Equations (6.1) and (6.2)? More importantly, for a given

0 ≤ S < N , which approximation between ADD and RDD is better? A recently
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obtained theoretical result provides the answer.

Theorem 6.1: Let c = (c1, · · · , cN) ∈ RN be a random vector with the joint prob-

ability density function of the form fX(c) =
∏j=N

j=1 fj(cj), where fj is the marginal

probability density function of its jth coordinate of X = (X1, · · · , XN). Define two

second-moment errors

eS,A := E
[
(y(X)− ỹS(X))2] :=

∫
RN

[y(x)− ỹS(x)]2 fX(x)dx, (6.4)

and

eS,R(c) := E
[
(y(X)− ŷS(X; c))2] :=

∫
RN

[y(x)− ŷS(x; c)]2 fX(x)dx, (6.5)

committed by the S-variate ADD and RDD approximations, respectively, of y(X).

Then the lower and upper bounds of the expected error E [eS,R] :=
∫
RN eS,R(c)fX(c)dc

from the S-variate RDD approximation, expressed in terms of the error eS,A from the

S-variate ADD approximation, are

2S+1eS,A ≤ E [eS,R] ≤

[
1 +

S∑
k=0

(
N − S + k − 1

k

)2(
N

S − k

)]
eS,A. (6.6)

where 0 ≤ S < N, S + 1 ≤ N <∞.

Proof. See Theorem 4.12 and Corollary 4.13 presented by Rahman [119].

Remark 6.1: Theorem 6.1 reveals that the expected error from the univariate

(S = 1) RDD approximation is at least four times larger than the error from the

univariate ADD approximation. In contrast, the expected error from the bivariate

(S = 2) RDD approximation can be eight or more times larger than the error from
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the bivariate ADD approximation. Given an arbitrary truncation, an ADD approx-

imation is superior to an RDD approximation. In addition, RDD approximations

may perpetrate very large errors at upper bounds when there exist a large number of

variables and appropriate conditions. Therefore, existing adaptive methods [133,134]

anchored in RDD approximations should be used with a caveat. Furthermore, us-

ing PDD for adaptivity is advocated, but doing so engenders its own computational

challenges, to be explained in the forthcoming sections.

6.2.2 Statistical moments of PDD

The S-variate, mth-order PDD approximation ỹS,m(X) in Equation (6.3) in-

cludes degrees of interaction among at most S input variables Xi1 , · · · , XiS , 1 ≤ i1 ≤

· · · ≤ iS ≤ N . For instance, by selecting S = 1 and 2, the functions ỹ1,m and ỹ2,m, re-

spectively, provide univariate and bivariate mth-order PDD approximations, contain

contributions from all input variables, and should not be viewed as first- and second-

order approximations, nor do they limit the nonlinearity of y. Depending on how the

component functions are constructed, arbitrarily high-order univariate and bivariate

terms of y could be lurking inside ỹ1,m and ỹ2,m. A recent work by Rahman reveals

that the measure-consistent PDD leads to faster convergence of stochastic solutions,

when compared with the classical ADD employing uniform probability measure [90].

Applying the expectation operator on ỹS,m(X) and (ỹS,m(X)−y∅)2 and noting

Propositions 4.1 and 4.2, the mean [135]

E [ỹS,m(X)] = y∅ (6.7)
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of the S-variate, mth-order PDD approximation matches the exact mean E [y(X)],

regardless of S or m, and the approximate variance [89]

σ2
S,m := E

[
(ỹS,m(X)− E [ỹS,m(X)])2] =

∑
∅6=u⊆{1,··· ,N}

1≤|u|≤S

∑
j|u|∈N

|u|
0 ,‖j|u|‖∞≤m
j1,··· ,j|u| 6=0

C2
uj|u|

(6.8)

is calculated as the sum of squares of the expansion coefficients from the S-variate,

mth-order PDD approximation of y(X). Clearly, the approximate variance approaches

the exact variance [89]

σ2 := E
[
(y(X)− E [y(X)])2] =

∑
∅6=u⊆{1,··· ,N}

∑
j|u|∈N

|u|
0

j1,··· ,j|u| 6=0

C2
uj|u|

(6.9)

of y when S → N and m→∞ for all 1 ≤ |u| ≤ S. The mean-square convergence of

ỹS,m is guaranteed as y, and its component functions are all members of the associated

Hilbert spaces.

The S-variate, mth-order PDD approximation ỹS,m(X) in Equation (6.3) con-

tains

K̃S,m = 1 +
∑

∅6=u⊆{1,··· ,N}
1≤|u|≤S

∑
j|u|∈N

|u|
0 ,‖j|u|‖∞≤m
j1,··· ,j|u| 6=0

1 =
S∑
k=0

(
N

k

)
mk (6.10)

number of PDD coefficients and corresponding orthonormal polynomials. Therefore,

the computational complexity of a truncated PDD is polynomial, as opposed to ex-

ponential, thereby alleviating the curse of dimensionality to some extent.

Remark 6.2: Constructing a PDD approximation by pre-selecting S and/or m,

unless they are quite small, is computationally intensive, if not impossible, for high-

dimensional uncertainty quantification. In other words, the existing PDD is neither
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scalable nor adaptable, which is crucial for solving industrial-scale stochastic prob-

lems. A requisite theoretical basis and innovative numerical algorithms for overcoming

these limitations are presented in Section 6.3.

Remark 6.3: The PDD approximation and its second-moment analysis require the

expansion coefficients Cuj|u| , which, according to their definition in Equation (4.9),

involve variousN -dimensional integrals over RN . For largeN , a full numerical integra-

tion employing an N -dimensional tensor product of a univariate quadrature formula

is computationally prohibitive. This is one drawback of ADD and PDD, since their

component functions entail calculating high-dimensional integrals. Therefore, novel

dimension-reduction integration schemes or sampling techniques, to be described in

Section 6.4, are needed to estimate the coefficients efficiently.

6.3 Proposed Adaptive-Sparse PDD Methods

6.3.1 Global sensitivity indices

The global sensitivity analysis quantifies how an output function of interest is

influenced by individual or subsets of input variables, illuminating the dimensional

structure lurking behind a complex response. Indeed, these sensitivity indices have

been used to rank variables, fix unessential variables, and reduce dimensions of large-

scale problems [137, 138]. These indices, developed in conjunction with PDD, are

exploited for adaptive-sparse PDD approximations as follows.

The global sensitivity index of y(X) for a subset Xu, ∅ 6= u ⊆ {1, · · · , N}, of
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input variables X, denoted by Gu, is defined as the non-negative ratio [137,138]

Gu :=
E [y2

u(X)]

σ2
, 0 < σ2 <∞, (6.11)

representing the fraction of the variance of y(X) contributed by the ADD component

function yu. Since ∅ 6= u ⊆ {1, · · · , N}, there exist 2N − 1 such indices, adding up to∑
u⊆{1,··· ,N}Gu = 1. Applying the Fourier-polynomial approximation of yu(X), that

is, Equation (4.8), and noting Propositions 4.1 and 4.2, the component variance

E
[
y2
u(Xu)

]
=

∑
j|u|∈N

|u|
0

j1,··· ,j|u| 6=0

C2
uj|u|

(6.12)

of yu is the sum of squares of its PDD expansion coefficients. When the right side

of Equation (6.12) is truncated at
∥∥j|u|∥∥∞ = mu , where mu ∈ N, and then used to

replace the numerator of Equation (6.11), the result is an muth-order approximation

G̃u,mu :=
1

σ2

∑
j|u|∈N

|u|
0 ,‖j|u|‖∞≤mu

j1,··· ,j|u| 6=0

C2
uj|u|

, (6.13)

which approaches Gu as mu → ∞. Given 2 ≤ mu < ∞, consider two approximate

global sensitivity indices G̃u,mu−1 and G̃u,mufor Xu such that G̃u,mu−1 6= 0. Then the

normalized index, defined by

∆G̃u,mu :=
G̃u,mu − G̃u,mu−1

G̃u,mu−1

, G̃u,mu−1 6= 0, (6.14)

represents the relative change in the approximate global sensitivity index when the

largest polynomial order increases from mu − 1 to mu. The sensitivity indices G̃u,mu

and ∆G̃u,mu provide an effective means to truncate the PDD in Equation (4.10) both

adaptively and sparsely.
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6.3.2 The fully adaptive-sparse PDD method

Let ε1 ≥ 0 and ε2 ≥ 0 denote two non-negative error tolerances that specify

the minimum values of G̃u,mu and ∆G̃u,mu , respectively. Then a fully adaptive-sparse

PDD approximation

ȳ(X) := y∅ +
∑

∅6=u⊆{1,··· ,N}

∞∑
mu=1

∑
‖j|u|‖∞=mu, j1,··· ,j|u| 6=0

G̃u,mu>ε1,∆G̃u,mu>ε2

Cuj|u|ψuj|u|(Xu) (6.15)

of y(X) is formed by the subset of PDD component functions, satisfying two inclusion

criteria: (1) G̃u,mu > ε1, and (2) ∆G̃u,mu > ε2 for all 1 ≤ |u| ≤ N and 1 ≤ mu < ∞.

The first criterion requires the contribution of an mu-th order polynomial approxima-

tion of yu(X) towards the variance of y(X) to exceed ε1 in order to be accommodated

within the resultant truncation. The second criterion identifies the augmentation in

the variance contribution from yu(X) evoked by a single increment in the polynomial

order mu and determines if it surpasses ε2. In other words, these two criteria ascer-

tain which interactive effects between two input random variables are retained and

dictate the largest order of polynomials in a component function, formulating a fully

adaptive-sparse PDD approximation.

When compared with the PDD in Equation (4.10), the adaptive-sparse PDD

approximation in Equation (6.15) filters out the relatively insignificant component

functions with a scant compromise on the accuracy of the resulting approximation.

Furthermore, there is no need to pre-select the truncation parameters of the existing

PDD approximation. The level of accuracy achieved by the fully adaptive-sparse PDD

is meticulously controlled through the tolerances ε1 and ε2. The lower the tolerance
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values, the higher the accuracy of the approximation. Proposition 6.3 shows that the

mean-squared error in the fully adaptive-sparse PDD approximation disappears when

the tolerances vanish.

Proposition 6.3: If ε1 → 0 and ε2 → 0, then ȳ(X) → y(X) in the mean-square

sense.

Proof. From Equation (6.15),

lim
ε1→0,ε2→0

ȳ(X) = y∅ +
∑

∅6=u⊆{1,··· ,N}

∞∑
mu=1

∑
‖j|u|‖∞=mu

j1,··· ,j|u| 6=0

Cuj|u|ψuj|u|(Xu)

= y∅ +
∑

∅6=u⊆{1,··· ,N}

∑
j|u|∈N

|u|
0

j1,··· ,j|u| 6=0

Cuj|u|ψuj|u|(Xu)

= y(X),

(6.16)

where the last line follows from Equation (4.10). �

6.3.3 A partially adaptive-sparse PDD method

Based on the past experience, an S-variate PDD approximation, where S �

N , is adequate, when solving real-world engineering problems, with the computational

cost varying polynomially (S-order) with respect to the number of variables [87, 90].

As an example, consider the selection of S = 2 for solving a stochastic problem in

100 dimensions by a bivariate PDD approximation, comprising 100 × 99/2 = 4950

bivariate component functions. If all such component functions are included, then

the computational effort for even a full bivariate PDD approximation may exceed the

computational budget allocated to solving this problem. But many of these compo-

nent functions contribute little to the probabilistic characteristics sought and can be

safely ignored. Similar conditions may prevail for higher-variate component functions.
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Henceforth, define an S-variate, partially adaptive-sparse PDD approximation

ȳS(X) := y∅ +
∑

∅6=u⊆{1,··· ,N}
1≤|u|≤S

∞∑
mu=1

∑
‖j|u|‖∞=mu, j1,··· ,j|u| 6=0

G̃u,mu>ε1,∆G̃u,mu>ε2

Cuj|u|ψuj|u|(Xu) (6.17)

of y(X), which is attained by subsuming at most S-variate component functions, but

fulfilling two relaxed inclusion criteria: (1) G̃u,mu > ε1 for 1 ≤ |u| ≤ S ≤ N , and (2)

∆G̃u,mu > ε2 for 1 ≤ |u| ≤ S ≤ N . Again, the same two criteria are used for the

degree of interaction and the order of orthogonal polynomials, but the truncations

are restricted to at most S-variate component functions of y.

An S-variate, partially adaptive-sparse PDD approximation behaves differ-

ently from the S-variate, mth-order PDD approximation. While the latter approxi-

mation includes a sum containing at most S-variate component functions, the former

approximation may or may not include all such component functions, depending on

the tolerance ε1. For ε1 > 0, an S-variate, partially adaptive-sparse PDD will again

trim the component functions with meager contributions. However, unlike ȳ con-

verging to y, ȳS converges to the S-variate, mth-order PDD approximation ỹS,m (see

Proposition 6.4), when ε1 → 0, ε2 → 0, m → ∞, and S < N . If S = N , then

both partially and fully adaptive-sparse PDD approximations coincide for identical

tolerances.

Proposition 6.4: If ε1 → 0 and ε2 → 0, then ȳS(X) → ỹS,m(X) as m → ∞ in the

mean-square sense.
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Proof. From Equation (6.17),

lim
ε1→0,ε2→0

ȳS(X) = y∅ +
∑

∅6=u⊆{1,··· ,N}
1≤|u|≤S

∞∑
mu=1

∑
‖j|u|‖∞=mu

j1,··· ,j|u| 6=0

Cuj|u|ψuj|u|(Xu)

= y∅ +
∑

∅6=u⊆{1,··· ,N}
1≤|u|≤S

∑
j|u|∈N

|u|
0

j1,··· ,j|u| 6=0

Cuj|u|ψuj|u|(Xu)

= lim
m→∞

y∅ +
∑

∅6=u⊆{1,··· ,N}
1≤|u|≤S

∑
j|u|∈N

|u|
0 ,‖j|u|‖∞≤m
j1,··· ,j|u| 6=0

Cuj|u|ψuj|u|(Xu)


= lim

m→∞
ỹS,m(X),

(6.18)

where the last line follows from Equation (6.3). �

6.3.4 Stochastic Solutions

6.3.4.1 Second-moment properties

Applying the expectation operator on ȳ(X) and ȳS(X) and recognizing Propo-

sition 4.1, the means

E [ȳ(X)] = E [ȳS(X)] = y∅ (6.19)

of fully and partially adaptive-sparse PDD approximations both also agree with the

exact mean E [y(X)] = y∅ for any ε1, ε2, and S. However, the respective variances,

obtained by applying the expectation operator on (ȳ(X)−y∅)2 and (ȳS(X)−y∅)2 and

noting Propositions 4.1 and 4.2, vary according to

σ̄2 := E
[
(ȳ(X)− E [ȳ(X)])2] =

∑
∅6=u⊆{1,··· ,N}

∞∑
mu=1

∑
‖j|u|‖∞=mu, j1,··· ,j|u| 6=0

G̃u,mu>ε1,∆G̃u,mu>ε2

C2
uj|u|

(6.20)
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and

σ̄2
S := E

[
(ȳS(X)− E [ȳS(X)])2] =

∑
∅6=u⊆{1,··· ,N}

1≤|u|≤S

∞∑
mu=1

∑
‖j|u|‖∞=mu, j1,··· ,j|u| 6=0

G̃u,mu>ε1,∆G̃u,mu>ε2

C2
uj|u|

,

(6.21)

where the squares of the expansion coefficients are summed following the same two

pruning criteria discussed in the preceding subsections. Equations (6.19)-(6.21) pro-

vide closed-form expressions of the approximate second-moment properties of any

square-integrable function y in terms of the PDD expansion coefficients.

When ε1 = ε2 = 0, the right sides of Equation (6.20) and (6.9) coincide,

whereas the right side of (6.21) approaches that of (6.8) for mu → ∞. As a conse-

quence, the variance from the fully adaptive-sparse PDD approximation ȳ(X) con-

verges to the exact variance of y(X) as ε1 → 0 and ε2 → 0. In contrast, the variance

from the S-variate, partially adaptive-sparse PDD approximation ȳS(X) does not

follow suit, as it converges to the variance of the S-variate, mth-order PDD approx-

imation ỹS,m(X) as ε1 → 0 and ε2 → 0, provided that m → ∞. Therefore, the fully

adaptive-sparse PDD approximation is more rigorous than a partially adaptive-sparse

PDD approximation, but the latter can be more useful than the former when solving

practical engineering problems and will be demonstrated in the Numerical Examples

and Application sections.

6.3.4.2 Probability distribution

Although the PDD approximations are mean-square convergent, Equations

(6.15) and (6.17) can also be used to estimate higher-order moments and probabil-
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ity distributions, including rare-event probabilities, of sufficiently smooth stochastic

responses. In this work, the probability distribution of y(X) was approximated by

performing Monte Carlo simulation of ȳ(X) and/or ȳS(X). This simulation of the

PDD approximation should not be confused with crude Monte Carlo simulation. The

crude Monte Carlo method, which commonly requires numerical calculations of y for

input samples, can be expensive or even prohibitive, particularly when the sample

size needs to be very large for estimating small failure probabilities. In contrast,

the Monte Carlo simulation embedded in a PDD approximation requires evaluations

of simple analytical functions. Therefore, an arbitrarily large sample size can be

accommodated in the PDD approximation.

It is also possible to estimate the probability distribution of y(X) from the

knowledge of the cumulant generating function of a PDD approximation, provided

that it exists, and then exploit the saddle point approximation for obtaining an ex-

ponential family of approximate distributions. Readers interested in this alternative

approach are referred to the recent work on stochastic sensitivity analysis by Xuchun

and Rahman [139].

6.3.5 Numerical Implementation

The application of fully and partially adaptive-sparse PDD approximations

described by Equations (6.15) and (6.17) requires selecting PDD component functions

yu(Xu), ∅ 6= u ⊆ {1, · · · , N} and assigning the largest orders of their orthogonal

polynomial expansions 1 ≤ mu <∞ efficiently such that G̃u,mu > ε1 and ∆G̃u,mu > ε2.
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This section presents a unified computational algorithm and an associated flowchart

developed to accomplish numerical implementation of the two proposed methods.

6.3.5.1 A unified algorithm

The iterative process for constructing an adaptive-sparse PDD approxima-

tion, whether full or partial, comprises two main stages: (1) continue incrementing

the polynomial order mu for a chosen component function yu(Xu) unless the crite-

rion ∆G̃u,mu > ε2 fails; and (2) continue selecting the component functions yu(Xu),

∅ 6= u ⊆ {1, · · · , N}, unless the criterion G̃u,mu > ε1 fails. These two stages are

first executed over all univariate PDD component functions yu(Xu), |u| = 1, before

progressing to all bivariate component functions yu(Xu), |u| = 2, and so on, until

|u| = N for the fully adaptive-sparse PDD approximation or until |u| = S for a

partially adaptive-sparse PDD approximation, where S is specified by the user. The

implementation details of the iterative process are described in Algorithm 6.1 and

through the flowchart in Figure 6.1.

The first stage of the algorithm presented is predicated on accurate calculations

of the sensitivity indices G̃u,mu and ∆G̃u,mu , which require the variance σ2 of y(X)

as noted by Equations (6.13) and (6.14). Since there exist an infinite number of

expansion coefficients emanating from all PDD component functions, calculating the

variance exactly from Equation (6.9) is impossible. To overcome this quandary, it is

proposed to estimate the variance by utilizing all PDD expansion coefficients available

at a juncture of the iterative process. For instance, let v ∈ V be an element of the
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Figure 6.1: A flowchart for constructing an adaptive-sparse polynomial dimensional
decomposition.
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index set V ⊆ {1, · · · , N}, which comprises the subsets of {1, · · · , N} selected so far

at a given step of the iterative process. Then the approximate variance

σ̃2
V =

∑
∅6=v∈V⊆{1,··· ,N}

∑
j|v|∈N

|v|
0 ,‖j|v|‖∞≤mv

j1,··· ,j|v| 6=0

C2
vj|v|

(6.22)

replacing the exact variance σ2 in Equations (6.13) and (6.14) facilitates an effec-

tive iterative scheme for estimating G̃u,mu and ∆G̃u,mu as well. Equation (6.22) was

implemented in the proposed algorithm, as explained in Algorithm 6.1 and Figure

6.1.

The second stage of the algorithm requires an efficient procedure for selecting

appropriate PDD component functions that are retained in an adaptive-sparse PDD

approximation. For a given 1 ≤ |u| ≤ N, let yu(Xu), ∅ 6= u ⊆ {1, · · · , N} denote all

|u|-variate non-constant PDD component functions of y. It is elementary to count the

number of these component functions to be L|u| =
(
N
|u|

)
. Depending on the tolerance

criteria specified, some or none of these component functions may contribute towards

the resultant PDD approximation. Since the component functions are not necessarily

hierarchically arranged, determining their relative significance to PDD approximation

is not straightforward. Therefore, additional efforts to rank the component functions

are needed, keeping in mind that the same efforts may be recycled for the PDD ap-

proximation. For this purpose, two distinct ranking schemes are proposed: (1) a

full ranking scheme, and (2) a reduced ranking scheme, both exploiting the global

sensitivity index Gu as a measure of the significance of yu(Xu). However, since Gu

is estimated by its muth-order polynomial approximation G̃u,mu , any ranking system
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Algorithm 6.1 Numerical implementation of fully and partially adaptive-sparse
PDD approximations
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based on G̃u,mu , where mu is finite, may be in a flux and should hence be carefully

interpreted. This implies that a ranking scheme resulting from G̃u,mu , whether full

or reduced, must be iterated for increasing values of mu until the ranking scheme

converges according to a specified criterion. In the full ranking scheme, all |u|-variate

component functions are re-ranked from scratch for each increment of mu until a

converged ranking scheme emerges. Consequently, the full ranking scheme affords

any component function to contribute to the resultant PDD approximation, provided

that the criterion G̃u,mu > ε1 is satisfied only at convergence. In contrast, a subset

of |u|-variate component functions, determined from the previous ranking results and

truncations set by the tolerance criterion, are re-ranked for each increment of mu in

the reduced ranking scheme until convergence is achieved. Therefore, for a compo-

nent function from the reduced ranking scheme to contribute to the resultant PDD

approximation, the criterion G̃u,mu > ε1 must be satisfied at all ranking iterations

including the converged one. Therefore, the full ranking scheme is both meticulous

and exhaustive, but it may rapidly become inefficient or impractical when applied

to high-dimensional stochastic responses. The reduced ranking scheme, obtained less

Algorithm 6.2 Ranking of PDD component functions
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rigorously than the former, is highly efficient and is ideal for solving industrial-scale

high-dimensional problems. A ranking system obtained at mu = m, 2 ≤ m < ∞,

for all |u|-variate component functions is considered to be converged if the ranking

discrepancy ratio, defined as the ratio of the number of ranked positions changed

when mu increases from m − 1 to m to the number of component functions ranked

at mu = m − 1, does not exceed the ranking tolerance 0 ≤ ε3 ≤ 1. The number

of component functions ranked in the full ranking scheme is L|u|, the total number

of |u|-variate component functions, and is the same for any mu or function y. In

contrast, the number of component functions ranked in the reduced ranking scheme,

which is equal to or less than L|u|, depends on mu, y, and ε1. Both ranking schemes

are described in Algorithm 6.2.

6.3.5.2 Computational effort

For uncertainty quantification, the computational effort is commonly deter-

mined by the total number of original function evaluations. Consequently, the efforts

required by the proposed methods are proportional to the total numbers of the PDD

expansion coefficients retained in the concomitant approximations and depend on the

numerical techniques used to calculate the coefficients. The numerical evaluation of

the expansion coefficients are discussed in Section 6.4.

The numbers of coefficients by the fully and partially adaptive-sparse PDD
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methods are

K̄ = 1 +
∑

∅6=u⊆{1,··· ,N}

∞∑
mu=1

∑
‖j|u|‖∞=mu, j1,··· ,j|u| 6=0

G̃u,mu>ε1,∆G̃u,mu>ε2

1

= 1 +
∑

∅6=u⊆{1,··· ,N}

∞∑
mu=1

∑
G̃u,mu>ε1,∆G̃u,mu>ε2

[
m
|u|
u − (mu − 1)|u|

] (6.23)

and

K̄S = 1 +
∑

∅6=u⊆{1,··· ,N}
1≤|u|≤S

∞∑
mu=1

∑
‖j|u|‖∞=mu, j1,··· ,j|u| 6=0

G̃u,mu>ε1,∆G̃u,mu>ε2

1

= 1 +
∑

∅6=u⊆{1,··· ,N}
1≤|u|≤S

∞∑
mu=1

∑
G̃u,mu>ε1,∆G̃u,mu>ε2

[
m
|u|
u − (mu − 1)|u|

]
,

(6.24)

respectively. It is elementary to show that K̄S ≤ K̄ when S ≤ N for identical

tolerances, as expected, with equality when S = N . Therefore, a partially adaptive-

sparse PDD method in general is more economical than the fully adaptive-sparse

PDD method.

What can be inferred from the numbers of coefficients required by a partially

adaptive-sparse PDD method and the existing truncated PDD method? The following

two results, Proposition 6.5 and 6.6, provide some insights when the tolerances vanish

and when the largest orders of polynomials are identical.

Proposition 6.5: If ε1 → 0, and ε2 → 0, then K̄S → K̃S,m as m→∞.
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Proof. From Equation (6.24),

lim
ε1→0,ε2→0

K̄S = 1 +
∑

∅6=u⊆{1,··· ,N}
1≤|u|≤S

∞∑
mu=1

∑
‖j|u|‖∞=mu

j1,··· ,j|u| 6=0

1

= 1 +
∑

∅6=u⊆{1,··· ,N}
1≤|u|≤S

∑
j|u|∈N

|u|
0

j1,··· ,j|u| 6=0

1

= lim
m→∞

1 +
∑

∅6=u⊆{1,··· ,N}
1≤|u|≤S

∑
j|u|∈N

|u|
0 ,‖j|u|‖∞≤m
j1,··· ,j|u| 6=0

1


= lim

m→∞

[
S∑
k=0

(
N
k

)
mk

]
= lim

m→∞
K̃S,m,

(6.25)

where the last line follows from Equation (6.10). �

Proposition 6.6: If

m = max
∅6=u⊆{1,··· ,N},1≤|u|≤S
G̃u,mu>ε1,∆G̃u,mu>ε2

mu <∞ (6.26)

is the largest order of polynomial expansion for any component function yu(Xu), ∅ 6=

u ⊆ {1, · · · , N}, 1 ≤ |u| ≤ S, such that G̃u,mu > ε1,∆G̃u,mu > ε2, then K̄S ≤ K̃S,m.

Proof. From Equation (6.24),

K̄S = 1 +
∑

∅6=u⊆{1,··· ,N}
1≤|u|≤S

∞∑
mu=1

∑
‖j|u|‖∞=mu, j1,··· ,j|u| 6=0

G̃u,mu>ε1,∆G̃u,mu>ε2

1

≤ 1 +
∑

∅6=u⊆{1,··· ,N}
1≤|u|≤S

∑
j|u|∈N

|u|
0 ,‖j|u|‖∞≤m
j1,··· ,j|u| 6=0

1

=
S∑
k=0

(
N
k

)
mk

= K̃S,m,

(6.27)

where the last line follows from Equation (6.10). �
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According to Proposition 6.6, the partially adaptive-sparse PDD approxima-

tion for non-trivial tolerances should be computationally more efficient than the trun-

cated PDD approximation. This issue will be further explored in the Numerical

Examples section.

6.4 Calculation of Expansion Coefficients

The determination of the expansion coefficients y∅ and Cuj|u| in Equations

(4.2) and (4.9) involves various N -dimensional integrals over RN . For large N , a

full numerical integration employing an N -dimensional tensor product of a univariate

quadrature formula is computationally prohibitive and is, therefore, ruled out. In this

work, the expansion coefficients are estimated using the quasi MCS method (Section

5.3) and the Dimension-Reduction Integration (Section 3.4.1) in conjunction with

the full-grid integration and with the sparse-grid integration. Following subsections

describe employing the Dimension-Reduction Integration with the full-grid integra-

tion and the sparse-grid integration, followed by a comparison of computational effort

required by the two techniques.

The dimension-reduction integration, developed by Xu and Rahman [85], en-

tails approximating a high-dimensional integral of interest by a finite sum of lower-

dimensional integrations. For calculating the expansion coefficients y∅ and Cuj|u| ,

this is accomplished by replacing the N -variate function y in Equations (4.2) and

(4.9) with an R-variate RDD approximation at a chosen reference point, where

R ≤ N [85, 86]. The result is a reduced integration scheme, requiring evaluations



180

of at most R-dimensional integrals.

Given a reference point c = (c1, · · · , cN) ∈ RN and RDD component functions

w∅ and wu(Xu; c), let ŷR(X; c) denote an R-variate RDD approximation of y(X).

Replacing y(x) with ŷR(x; c) in Equation (6.2), the coefficients y∅ and Cuj|u| are

estimated from [85]

y∅ ∼=
R∑
i=0

(−1)i
(
N −R + i− 1

i

) ∑
v⊆{1,··· ,N}
|v|=R−i

∫
R|v|

y(xv, c−v)fXv(xv)dxv (6.28)

and

Cuj|u|
∼=

R∑
i=0

(−1)i
(
N −R + i− 1

i

) ∑
v⊆{1,··· ,N}
|v|=R−i,u⊆v

∫
R|v|

y(xv, c−v)ψuj|u|(xu)fXv(xv)dxv

(6.29)

respectively, requiring evaluation of at most R-dimensional integrals. The reduced

integration facilitates calculation of the coefficients approaching their exact values as

R → N , and is significantly more efficient than performing one N -dimensional inte-

gration, particularly when R � N . Hence, the computational effort is significantly

decreased using the dimension-reduction integration. For instance, when R = 1 or 2,

Equations (6.28) and (6.29) involve one-, or at most, two-dimensional integrations,

respectively. Nonetheless, numerical integrations are still required for performing

various |v|-dimensional integrals over R|v|, where 0 ≤ |v| ≤ R|. When R > 1, the

multivariate integrations can be conducted using full or sparse grids, as follows.
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6.4.1 Full-grid integration

The full-grid dimension-reduction integration entails constructing a tensor

product of underlying univariate quadrature rules. For a given v ⊆ {1, · · · , N},

1 < |v| ≤ R, let v = {i1, · · · i|v|}, where 1 ≤ i1 < · · · < i|v| ≤ N . Denote by

{x(1)
ip
, · · · , x(nv)

ip
} ⊂ R a set of integration points of xip and by {w(1)

ip
, · · · , w(nv)

ip
} the

associated weights generated from a chosen univariate quadrature rule and a positive

integer nv ∈ N. Denote by P (nv) = ×p=|v|p=1 {x
(1)
ip
, · · · , x(nv)

ip
} a rectangular grid consist-

ing of all integration points generated by the variables indexed by the elements of v.

Then the coefficients using dimension-reduction numerical integration with a full-grid

are approximated by

y∅ ∼=
R∑
i=0

(−1)i
(
N −R + i− 1

i

) ∑
v⊆{1,··· ,N}
|v|=R−i

∑
k|v|∈P (nv)

w(k|v|)y(x
(k|v|)
v , c−v) (6.30)

Cuj|u|
∼=

R∑
i=0

(−1)i
(
N −R + i− 1

i

)
∑

v⊆{1,··· ,N}
|v|=R−i,u⊆v

∑
k|v|∈P (nv)

w(k|v|)y(x
(k|v|)
v , c−v)ψuj|u|(x

(k|u|)
u )

(6.31)

where x
(k|v|)
v = {x(k1)

i1
, · · · , x(k|v|)

i|v|
} and w(k|v|) =

∏p=|v|
p=1 w

(kp)
ip

is the product of integra-

tion weights generated by the variables indexed by the elements of v. For independent

coordinates of X, as assumed here, a univariate Gauss quadrature rule is commonly

used, where the integration points and associated weights depend on the probability

distribution of Xi. They are readily available, for example, as the Gauss-Hermite

or Gauss-Legendre quadrature rule, when Xi follows Gaussian or uniform distribu-

tion [88]. For an arbitrary probability distribution of Xi, the Stieltjes procedure [88]
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can be employed to generate the measure-consistent Gauss quadrature formulae [90].

An nv-point Gauss quadrature rule exactly integrates a polynomial of total degree at

most 2nv − 1.

The calculation of y∅ and Cuj|u| from Equations (6.30) and (6.31) involves at

most R-dimensional tensor products of an nv-point univariate quadrature rule, requir-

ing the following deterministic responses or function evaluations: y(c), y(x
(j|v|)
v , c−v)

for i = 0, · · · , R, v ⊆ {1, · · · , N}, |v| = R− i, and j|v| ∈ P (nv). Accordingly, the total

cost for estimating the PDD expansion coefficients entails

LFG =
R∑
i=0

∑
v⊆{1,··· ,N}
|v|=R−i

n|v|v (6.32)

function evaluations, encountering a computational complexity that is Rth-order

polynomial − for instance, linear or quadratic when R = 1 or 2 − with respect

to the number of random variables or integration points. For R < N , the technique

alleviates the curse of dimensionality to an extent determined by R.

6.4.2 Sparse-grid integration

Although, the full-grid dimension-reduction integration has been successfully

applied to the calculation of the PDD expansion coefficients in the past [87,89,90,135],

it faces a major drawback when the polynomial order mu for a PDD component func-

tion yu needs to be modulated for adaptivity. As the value of mu is incremented

by one, a completely new set of integration points is generated by the univariate

Gauss quadrature rule, rendering all expensive function evaluations on prior inte-

gration points as useless. Therefore, a nested Gauss quadrature rule, such as the
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fully symmetric interpolatory rule, that is capable of exploiting dimension-reduction

integration is proposed.

6.4.2.1 Fully symmetric interpolatory rule

The fully symmetric interpolatory (FSI) rules developed by Genz and his asso-

ciates [140,141], is a sparse-grid integration technique for performing high-dimensional

numerical integration. Applying this rule to the |v|-dimensional integrations in Equa-

tions (6.28) and (6.29), the PDD expansion coefficients are approximated by

y∅ ∼=
R∑
i=0

(−1)i
(
N −R + i− 1

i

) ∑
v⊆{1,··· ,N}
|v|=R−i

∑
p|v|∈P (ñv,|v|)

wp|v|

∑
q|v|∈Πp|v|

∑
t|v|

y
(
ti1αqi1 , · · · , ti|v|αqi|v| , c−v

)
,

(6.33)

Cuj|u|
∼=

R∑
i=0

(−1)i
(
N −R + i− 1

i

) ∑
v⊆{1,··· ,N}
|v|=R−i,u⊆v

∑
p|v|∈P (ñv,|v|)

wp|v|

∑
q|v|∈Πp|v|

∑
t|v|

y
(
ti1αqi1 , · · · , ti|v|αqi|v| , c−v

)
ψuj|u|

(
ti1αqi1 , · · · , ti|u|αqi|u|

)
,

(6.34)

where v = {i1, · · · i|v|}, t|v| = (ti1 , · · · , ti|v|), p|v| = (pi1 , · · · , pi|v|),

P (ñv ,|v|) = {p|v| : ñv ≥ pi1 ≥ · · · ≥ pi|v| ≥ 0,
∥∥p|v|∥∥ ≤ ñv} (6.35)

where
∥∥p|v|∥∥ =

∑|v|
r=1 pir is the set of all distinct |v|-partitions of the integers 0, 1, · · · , ñv,

and Πp|v| is the set of all permutations of p|v|. The innermost sum over t|v| is taken

over all of the sign combinations that occur when tir = ±1 for those values of ir with
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generators αqir 6= 0 [141]. The weight

wp|v| = 2−K
∑

‖k|v|‖6ñv−‖p|v|‖

|v|∏
r=1

akir+pir

kir+pir∏
j=0,j 6=pir

(
α2
pir
− α2

j

) , (6.36)

where K is the number of nonzero components in p|v| and ai is a constant that depends

on the probability measure of Xi, for instance,

ai =
1√
2π

∫
R

exp

(
−ξ

2

2

) i−1∏
j=0

(
ξ2 − α2

j

)
dξ (6.37)

for i > 0 and a0 = 1 when Xi follows the standard Gaussian distribution [141]. An

ñv-parameter FSI rule exactly integrates a polynomial of degree at most 2ñv + 1.

6.4.2.2 Extended fully symmetric interpolatory rule

The number of function evaluations by the original FSI rule [140] increases

rapidly as |v| and ñv increase. To enhance the efficiency, Genz and Keister [141]

proposed an extended FSI rule in which the function evaluations are significantly

reduced if the generator set is chosen such that some of the weights wp|v| are zero.

The pivotal step in constructing such an FSI rule is to extend a (2β+1)-point Gauss-

Hermite quadrature rule by adding 2γ points or generators ±αβ+1,±αβ+2, . . . ,±αβ+γ

with the objective of maximizing the degree of polynomial exactness of the extended

rule, where β ∈ N and γ ∈ N. Genz and Keister [141] presented a special case

of initiating the FSI rule from the univariate Gauss-Hermite rule over the interval

(−∞,∞). The additional generators in this case are determined as roots of the

monic polynomial ζ2γ + tγ−1ζ
2γ−1 + · · · + t0, where the coefficients tγ−1, · · · , t0 are
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obtained by invoking the condition

1√
2π

∫
R

exp

(
−ξ

2

2

) β∏
j=0

ξ2b
(
ξ2 − α2

j

)
dξ = 0, (6.38)

where γ > β. A new set of generators is propagated based on the prior rule and,

therefore, as the polynomial degree of exactness of the rule increases, all the previous

points and the expensive function evaluations over those points are preserved. A

remarkable feature of the extended FSI rule is that the choice of generators is such that

some of the weights wp|v| = 0 in each step of the extension [141], thus eliminating the

need for function evaluations at the integration points corresponding to zero weights,

making the extended FSI rule significantly more efficient than its earlier version.

6.4.3 Integration points

The number of integration points determines the computational expense in-

curred in calculating the PDD expansion coefficients. Therefore, it is instructive to

compare the numbers of integration points required by full- or sparse-grid dimension-

reduction integrations. To do so, consider the efforts in performing a |v|-dimensional

integration in Equation (6.28) or (6.29) over the interval (−∞,∞) by three differ-

ent numerical techniques: (1) the full-grid integration technique; (2) the sparse-grid

integration technique using the extended FSI rule; and (3) the sparse-grid integra-

tion technique using Smolyak’s algorithm [142]. The Smolyak’s algorithm is included

because it is commonly used as a preferred sparse-grid numerical technique for ap-

proximating high-dimensional integrals. Define an integer l ∈ N such that all three

techniques can exactly integrate a polynomial function of total degree 2l − 1. For
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instance, when l = 3, all three techniques exactly integrate a quintic polynomial.

Figure 6.2 presents a comparison of the total numbers of integration points in a two-

dimensional grid, that is, when |v| = 2, for l ranging from one through five by the

three distinct multivariate integration techniques. Each plot illustrates two numbers:

the first number indicates the number of integration points required at the given

value of l; the second number, inside the parenthesis, indicates the total number of

cumulative integration points added up to the value of l. It is imperative to add the

integration points from all the previous values of l as it reflects the total number of

function evaluations required in an adaptive algorithm. For the full-grid integration,

the two numbers are different for all l > 1, indicating a lack of nesting of the inte-

gration points. Whereas in the sparse-grid with extended FSI rule, the two numbers

are equal for all l, reflecting the fully nested integration points in this rule. As l

increments, a completely new set of points is introduced in the full-grid integration,

rendering the prior points useless. However, for fairness in comparison, it is necessary

to consider all points from prior values of l as the expensive function evaluations have

already been performed. Therefore, Figure 6.2 captures the cumulative numbers of

integration points as l increases steadily. For values of l up to two, all three tech-

niques require the same number of integration points. However, differences in the

numbers of points start to appear in favor of the extended FSI rule when l exceeds

two, making it the clear favorite among all three techniques for high-order numerical

integration. The Smolyak’s algorithm, which is not nested, is the least efficient of the

three techniques. The extended FSI rule, in contrast, is fully nested, establishing a
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Figure 6.2: Gauss-Hermite integration points in a two-dimensional grid by the full-
grid technique, sparse-grid with the extended FSI rule, and sparse-grid with Smolyak’s
algorithm for various levels. Each grid is plotted over a square axis from −5 to 5.
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principal advantage over Smolyak’s algorithm for adaptive numerical integration.

Table 6.1 lists the number of integration points required at the integration rule

corresponding to a given value of l, for 2 ≤ |v| ≤ 10 and 2 ≤ l ≤ 5. It is important

to note that the number of integration points listed is not cumulative. It appears

that for higher-dimensional integrations, that is, for |v| > 2, the extended FSI rule

is markedly more efficient than full-grid or other sparse-grid techniques even for the

non-cumulative points. The efficiency of extended FSI rule is more pronounced for

cumulative number of integration points. For further details, the reader is referred

to the work of Genz and Keister [141], who examined the extended FSI rule for

dimensions up to 20.

Table 6.1: Number of integration points in various |v|-dimensional inte-
gration techniques, each technique exactly integrates polynomials of total
order 2l − 1.

|v|
l 2 3 4 5 6 7 8 9 10

(a) Full-grid
2 4 8 16 32 64 128 256 512 1024
3 9 27 81 243 729 2187 6561 19683 59049
4 16 64 256 1024 4096 16384 65536 262144 1048576
5 25 125 625 3125 15625 78125 390625 1953125 9765625

(b) Sparse-grid (Smolyak)
2 5 7 9 11 13 15 17 19 21
3 13 25 41 61 85 113 145 181 221
4 29 69 137 241 389 589 849 1177 1581
5 53 165 385 781 1433 2437 3905 5965 8761

(c) Sparse-grid (extended FSI rule)
2 5 7 9 11 13 15 17 19 21
3 9 19 33 51 73 99 129 163 201
4 17 39 81 151 257 407 609 871 1201
5 37 93 201 401 749 1317 2193 3481 5301
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6.5 Numerical Examples

Three numerical examples are put forward to illustrate the adaptive-sparse

PDD methods developed in calculating various probabilistic characteristics of random

mathematical functions and random eigensolutions of stochastic dynamical systems.

Classical Legendre polynomials were used to define the orthonormal polynomials in

Example 1, and all expansion coefficients were determined analytically. In Exam-

ples 2 and 3, all original random variables were transformed into standard Gaussian

random variables, facilitating the use of classical Hermite orthonormal polynomials

as bases. Since Example 2 consists of only nine input random variables, the ex-

pansion coefficients were estimated using a nine-dimensional tensor product of the

five-point univariate Gauss-Hermite quadrature rule. The expansion coefficients in

Example 3 were approximated by both the full-grid dimension-reduction integration

and sparse-grid dimension-reduction integration with a fully symmetric interpolatory

rule. The sample size for crude MCS in Example 2 is 106. In Example 3, the sample

size for crude MCS is 50, 000, and for the embedded MCS, whether the truncated or

adaptive-sparse PDD method, the sample size is 106.

6.5.1 Polynomial function

Consider a polynomial function

y (X) =

N∏
i=1

(
3

i
X5
i + 1

)

E

[
N∏
i=1

(
3

i
X5
i + 1

)] (6.39)
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where Xi, i = 1, · · · , N , are independent and identical random variables, each fol-

lowing the standard uniform distribution over [0, 1]. Since the coefficient of X5
i is

inversely proportional to i, the first and last random variables have the largest and

least influence on y. From elementary calculations, the exact mean and variance of y

are 1 and
N∏
i=1

(
9

11i2
+

1

i
+ 1

)
{
E

[
N∏
i=1

(
9

11i2
+

1

i
+ 1

)]}2

respectively. All PDD expansion coefficients were calculated analytically. Therefore,

the ranking of component functions was performed once and for all, avoiding any role

of the ranking scheme in this particular example. The numerical results that follow

in the remainder of this subsection were obtained for N = 5.

Figure 6.3 shows how the relative errors, defined as the ratio of the abso-

lute difference between the exact (Equation (6.9)) and approximate (Equation (6.8))

variances of y to the exact variance, committed by S-variate, m-th order PDD ap-

proximations, vary with increasing polynomial order m. The five plots of univariate

(S = 1) to pentavariate (S = 5) PDD approximations clearly show that the error

drops monotonically with respect to m regardless of S. When m reaches five, the

pentavariate PDD approximation does not perpetrate any error, producing the exact

variance of y as expected. In contrast, the relative errors in variance caused by fully

adaptive-sparse PDD approximations (Equation (6.20)), also illustrated in Figure 6.3

for specified tolerances ranging from 10−9 to 10−3, do not rely on S or m, as the

degrees of interaction and polynomial orders are adaptively modulated in the con-
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Figure 6.3: Relative error in calculating the variance of a mathematical function by
fully adaptive-sparse and truncated PDD methods (Example 1).
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comitant approximations. The adaptive-sparse PDD approximations with tolerances

equal to 10−3 and 10−4 yield relative errors in variance marginally higher than the

tolerance values; however, the relative errors achieved are invariably smaller than all

respective values of the subsequent tolerances, demonstrating a one-to-one relation-

ship between the tolerance and relative error attained in calculating the variance.

While a traditional truncated PDD approximation provides options to increase the

values of S and/or m for reducing the relative error, the user remains blinded to the

outcome of such an action. The adaptive-sparse PDD method, in the form of toler-

ances, provides a direct key to regulate the accuracy of the resultant approximation.

Figure 6.4 displays the increase in the number of PDD expansion coefficients

required by truncated (Equation (6.10)) and fully adaptive-sparse (Equation (6.23))

PDD methods in order to achieve a user-specified relative error in variance ranging

from 10−1 to 10−12. The relative error decreases from left to right along the horizontal

axis of the plot. The plot of the truncated PDD approximation is generated by trial-

and-error, increasing the value of either S or m until the desired relative error is

achieved and then counting the total number of coefficients required to attain that

relative error. For obtaining the plot of the adaptive-sparse PDD approximation, the

tolerance values were reduced monotonically, and the corresponding total number of

coefficients was noted for each value of relative error. Ignoring the two lowest relative

errors, the comparison of the plots from these two methods clearly demonstrates

how the adaptive-sparse PDD method requires fewer expansion coefficients than the

truncated PDD method to achieve the desired level of relative error. While the
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Figure 6.4: Minimum number of coefficients required to achieve a desired relative error
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adaptive-sparse PDD method intelligently calculates only those coefficients that are

making significant contribution to the variance, the truncated PDD method ends

up calculating more coefficients than required. Therefore, the adaptive-sparse PDD

approximation represents a more scientific and efficient method than the truncated

PDD methods.

6.5.2 Three-degree-of-freedom, undamped, spring-mass system

Consider a three-degree-of-freedom, undamped, spring-mass system, shown in

Figure 6.5, with random mass and random stiffness matrices

M (X) =

 M1 (X) 0 0
0 M2 (X) 0
0 0 M3 (X)

 (6.40)

and

K (X) =

 K11 (X) K12 (X) K13 (X)
K22 (X) K23 (X)

(sym.) K33 (X)

 , (6.41)

respectively, where K11 (X) = K1 (X) + K4 (X) + K6 (X), K12 (X) = −K4 (X),

K13 (X) = −K6 (X), K22 (X) = K4 (X) + K5 (X) + K2 (X), K23 (X) = −K5 (X),

and K33 (X) = K5 (X) +K3 (X) +K6 (X); the masses Mi (X) = µiXi; i = 1, 2, 3 with

µi = 1.0 kg; i = 1, 2, 3, and spring stiffnesses Ki (X) = µi+3Xi+3; i = 1, · · · , 6 with

µi+3 = 1.0 N/m; i = 1, · · · , 5 and µ9 = 3.0 N/m. The input X = {X1, · · · , X9}T ∈ R9

is an independent lognormal random vector with mean µX = 1 ∈ R9 and covariance

matrix ΣX = ν2I ∈ R9×9 with coefficient of variation ν = 0.3.

Three partially adaptive-sparse PDD methods with S = 1, 2, and 3 were ap-

plied to calculate the variances (Equation (6.21)) of the three random eigenvalues of

the dynamic system. The tolerance values are as follows: ε1 = ε2 = 10−6 and ε3 = 0.7.
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Figure 6.5: A three-degree-of-freedom undamped, spring-mass system (Example 2).
(Repeat of Figure 5.3)

Table 6.2 presents the variances of eigenvalues from various partially adaptive-sparse

PDD methods calculated according to Algorithms 6.1 and 6.2. The results of both

full and reduced ranking systems are tabulated. Also included in Table 6.2 are the

variance calculations from crude MCS. The variances obtained using the univariate

(S = 1) partially adaptive-sparse PDD approximation are relatively far from the

benchmark results of crude MCS since the univariate approximation is unable to cap-

ture any interactive effects of the input variables. However, the bivariate (S = 2) and

trivariate (S = 3) partially adaptive-sparse PDD approximations achieve very high

accuracy in calculating the variances of all three random eigenvalues. Remarkably,

the reduced ranking scheme delivers the same level of accuracy, at least up to three

decimal places shown, of the full ranking scheme in calculating the variances.

In order to study the efficiency of the reduced ranking scheme vis-a-vis the

full ranking scheme in a trivariate partially adaptive-sparse PDD approximation, the

corresponding total numbers of coefficients (Equation (6.24)) required were compared,
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Table 6.2: Variances of three eigenvalues of a three-degree-of-freedom linear oscillator
by three partially adaptive-sparse PDD methods and crude MCS

S = 1 S = 2 S = 3 MCS

λ
Full Reduced Full Reduced Full Reduced

106
ranking ranking ranking ranking ranking ranking

1 0.057 0.057 0.060 0.060 0.060 0.060 0.060
2 1.152 1.152 1.204 1.204 1.215 1.215 1.219
3 7.289 7.289 7.576 7.576 7.585 7.585 7.585

along with the total number of coefficients (Equation (6.10)) required in a trivariate,

fifth-order truncated PDD approximation, in Figure 6.6. While the partially adaptive-

sparse PDD method with either ranking scheme requires fewer coefficients than does

the truncated PDD method, it is the reduced ranking scheme that is the clear winner

in efficiency with the least number of coefficients. The largest reduction in the number

of coefficients achieved by the reduced ranking system is approximately sixty-eight

percent when calculating the variance of the third eigenvalue. These results are in

agreement with Proposition 6.6.

6.5.3 Modal analysis of a functionally graded cantilever plate

The third example involves free vibration analysis of a 2 m×1 m× 10mm can-

tilever plate, shown in Figure 6.7(a), made of a functionally graded material (FGM)1,

where silicon carbide (SiC) particles varying along the horizontal coordinate ξ are

randomly dispersed in an aluminum (Al) matrix [143]. The result is a random inho-

mogeneous plate, where the effective elastic modulus E(ξ), effective Poisson’s ratio

1Functionally graded materials are two- or multi-phase particulate composites in which
material composition and microstructure vary spatially in the macroscopic length scale to
meet a desired functional performance.
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Figure 6.6: Number of coefficients required for calculating the variance of a three-
degree-of-freedom linear oscillator by trivariate partially adaptive-sparse PDD ap-
proximations using full and reduced ranking schemes.
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Figure 6.7: An FGM cantilever plate: (a) geometry; (b) a 20×40 FEA mesh. (Repeat
of Figure 4.3)
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ν(ξ), and effective mass density ρ(ξ) are random fields. They depend on two princi-

pal sources of uncertainties: (1) randomness in the volume fraction of SiC particles

φSiC(ξ), which varies only along ξ, and (2) randomness in constituent material prop-

erties, comprising elastic moduli ESiC and EAl, Poisson’s ratios νSiC and νAl, and

mass densities ρSiC and ρAl of SiC and Al material phases, respectively. The particle

volume fraction φSiC(ξ) is a one-dimensional, inhomogeneous, Beta random field with

mean µSiC(ξ) = 1− ξ/L, and standard deviation σSiC(ξ) = (ξ/L)(1− ξ/L), where L

is the length of the plate. Assuming an appropriately bounded covariance function

of φSiC(ξ), the standardized volume fraction, φ̃SiC(ξ) := [φSiC(ξ) − µSiC(ξ)]/σSiC(ξ),

was mapped to a zero-mean, homogeneous, Gaussian image field α(ξ) with an ex-

ponential covariance function Γα(t) := E[α(ξ)α(ξ + t)] = exp(− |t| /0.125L) via

φ̃SiC(ξ) = F−1
SiC [Φ(α(ξ))], where Φ is the distribution function of a standard Gaus-

sian random variable and FSiC is the marginal distribution function of φ̃SiC(ξ). The

Karhunen-Loève approximation [122] was employed to discretize α(ξ) and hence

φSiC(ξ) into 28 standard Gaussian random variables. In addition, the constituent

material properties, ESiC, EAl, νSiC, νAl, ρSiC, and ρAl, were modeled as indepen-

dent lognormal random variables with their means and coefficients of variation de-

scribed in Table 6.3. Therefore, a total of 34 random variables are involved in

this example. Employing a rule of mixture, E(ξ) ∼= ESiCφSiC(ξ) + EAl[1 − φSiC(ξ)],

ν(ξ) ∼= νSiCφSiC(ξ) + νAl[1− φSiC(ξ)], and ρ(ξ) ∼= ρSiCφSiC(ξ) + ρAl[1− φSiC(ξ)]. Using

these spatially variant effective properties, a 20 × 40 mesh consisting of 800 eight-

noded, second-order shell elements, shown in Figure 6.7(b), was constructed for finite-



200

element analysis (FEA), to determine the natural frequencies of the FGM plate. No

damping was included. A Lanczos algorithm [123] was employed for calculating the

eigenvalues.

Table 6.3: Statistical material properties of constituents in SiC-Al FGM.

Material properties(a) Mean Coefficient of variation, %
ESiC, GPa 419.2 15

νSiC 0.19 5
ρSiC, kg/m3 3210 15
EAl, GPa 69.7 15

νAl 0.34 5
ρAl, kg/m3 2520 15

(a) ESiC = elastic modulus of SiC, νSiC = Poisson’s ratio of SiC,
ρSiC = mass density of SiC, EAl = elastic modulus of Al,
νAl = Poisson’s ratio of Al, ρAl = mass density of Al.

The probability distributions of the first six natural frequencies of the function-

ally graded material plate were evaluated using four different PDD methods: (1) the

bivariate partially adaptive-sparse PDD method with full-grid dimension-reduction

integration; (2) the bivariate partially adaptive-sparse PDD method with sparse-grid

dimension-reduction integration with a fully symmetric interpolatory rule; (3) the

univariate, fifth-order PDD method; and (4) the bivariate, fifth-order PDD method;

and the crude MCS. The tolerances used for adaptive and ranking algorithms are

ε1 = ε2 = 10−6 and ε3 = 0.9. Figure 6.8 presents the marginal probability distribu-

tions Fi(ωi) := P [Ωi ≤ ωi] of the first six natural frequencies Ωi, i = 1, · · · , 6, where

all the PDD solutions were obtained from embedded MCS. The plots are made over
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a semi-logarithmic scale to delineate the distributions in the tail regions. For all six

frequencies, the probability distributions obtained from a bivariate partially adaptive-

sparse PDD method, whether using either full-grid or sparse-grid, and the bivariate

fifth-order PDD method are much closer to the crude Monte Carlo results compared

with those obtained from the univariate, fifth-order PDD method. While all PDD

approximations require fewer function evaluations than the crude MCS, both vari-

ants of the partially adaptive-sparse PDD approximations remit exceptionally high

efficiency by a average factor of six when compared with the bivariate fifth-order PDD

approximation. However, the advantage of the sparse-grid integration over the full-

grid integration employed in the adaptive-sparse approximation is modest in terms

of computational efficiency.

The efficient reduced ranking algorithm was employed in this example. When

the bivariate component functions were ranked for mu = 1, the coefficient calculation

for both full-grid and sparse-grid involved function evaluation at the point (0, 0) as

shown for l = 1 in Figure 6.2. The function evaluations at this point return only the

functions already evaluated at the point (c), i.e., response at mean y (c), thus the

bivariate component functions could not be ranked for mu = 1. When the polynomial

order was incremented to mu = 2, the full-grid for l = 2 comprises of four non-

zero integration points, resulting in non-trivial bivariate function evaluations at those

points. However, the sparse-grid consists of four new points lying on the axes, failing

to capture the interaction effect of two variables. This results in bivariate function

evaluations that are not useful in creating a ranking. Thus, for mu = 2, full-grid
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Figure 6.8: Marginal probability distributions of the first six natural frequencies of
an FGM plate by various PDD approximations and crude MCS
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involves ranking all the 28×27/2 = 378 bivariate component functions, with 378×4 =

1512 new function evaluations, while the sparse-grid was still lacking any ranking.

Moving to mu = 3, full-grid can afford to exploit the efficient reduced-ranking by

truncating the ranking from mu = 2 and calculating coefficients only for fewer than

378 component functions. However, the sparse-grid is forced to evaluate all 378

component functions for mu = 3, resulting in 378× 4 = 1512 function evaluations at

four new integration points, depriving this efficient technique of any initial advantage.

The modest advantage in computational efficiency that the sparse-grid eventually

achieves was obtained only after ranking at mu = 4 and onwards.

Figure 6.9 displays the joint probability density function f12(ω1, ω2) of the

first two natural frequencies Ω1 and Ω2 obtained by the two variants of the bivariate

partially adaptive-sparse PDD method, the bivariate, fifth-order PDD method, and

crude MCS. Although visually comparing these three-dimensional plots is not simple,

the joint distributions from all PDD approximations and the crude Monte Carlo

method seem to match reasonably well. The contours of these three-dimensional plots

were studied at two notably different levels: f12 = 0.005 (high level) and f12 = 0.0005

(low level), as depicted in Figures 6.10(a) and 6.10(b), respectively. For both levels

examined, a good agreement exists among the contours from all four distributions.

These results are consistent with the marginal distributions of the natural frequencies

discussed in the preceding paragraph.
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Figure 6.9: Joint probability density function of the first and second natural frequen-
cies of the FGM plate by various PDD approximations and crude MCS
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f12 = 0.005; (b) f12 = 0.0005.
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6.6 Application: A Disk Brake System

This section demonstrates the capabilities of the proposed partially adaptive-

sparse PDD method in solving a large-scale practical engineering problem. The ap-

plication comprises of determining instabilities in a disk brake system in terms of

statistical analysis of complex frequencies and corresponding mode shapes. The dy-

namic instabilities in a braking system, emanating from complex frequencies, give rise

to the highly undesired phenomenon of brake squeal. When a braking system is sub-

jected to random input parameters, it is imperative to perform a random brake-squeal

analysis in order to identify, quantify, and minimize the random dynamic instabilities.

6.6.1 Brake-squeal analysis

A disk brake system, illustrated in Figure 6.11, slows motion of the wheel by

pushing brake pads against a rotor with a set of calipers. The brake pads mounted

on a brake caliper are forced mechanically, hydraulically, pneumatically, or electro-

magnetically against both sides of the rotor. Friction causes the rotor and attached

wheel to slow or stop. Figure 6.12 presents a simplified FEA model of a disk brake

system commonly used in domestic passenger vehicles. The system consists of a rotor

of diameter 288 mm and thickness 20 mm. Two pads are positioned on both sides

of the rotor. Assembled behind the pads are back plates and insulators. The FEA

mesh of the model consists of 26,125 elements and 111,129 active degrees of freedom

and was generated using C3D6 and C3D8I elements in the Abaqus computer software

(Version 6.12) [131]. The rotor is made of cast iron, and the back plates and insula-
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Figure 6.11: Close-up on disk brake system in a passenger vehicle.
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Figure 6.12: A simplified FEA model of a disk brake system with various mechanical
components.
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tors are made of steel. The two brake pads are made of organic frictional material,

which is modeled as an orthotropic elastic material. The mass densities and Young’s

moduli of the rotor, back-plates, insulators, and pads, along with the shear moduli

of the pads, are modeled as random variables with uniform distribution. Along with

the random material properties, the brake pressure, the radial velocity of the rotor,

and the coefficient of friction between the rotor and pads are modeled as uniform

random variables, constituting a total of 16 random variables in this problem. The

statistical properties of all random variables are listed in Table 6.4. Apart from the

random material properties, the deterministic Poisson’s ratio of rotor, back-plates

and insulators are 0.24, 0.28, and 0.29, respectively. The three Poisson’s ratios of the

orthotropic material of pads are ν12 = 0.06, ν23 = 0.41, and ν31 = 0.15.

6.6.2 Results

The dynamic analysis was performed in four steps. In the first step, contact

was established between the rotor and the pad by applying brake pressure to the

external surfaces of the insulators. Braking at low velocity was simulated in the

second step by imposing a rotational velocity on the rotor, accompanied with an

introduction of a non-zero friction coefficient between rotor and pad. In the third

step, natural frequencies up to 20 kHz were extracted by the eigenvalue extraction

procedure in the steady-state condition using the automatic multilevel substructuring

method with subspace projection in Abaqus. Finally, in the fourth step a complex

eigenvalue analysis was performed up to the first 55 modes.
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Table 6.4: Random input variables in disk-brake system with the minimum
(ai) and maximum (bi) values of their uniform distributions.

Random variables(a) ai bi
ρrotor, kg/mm3 5.329× 10−6 9.071× 10−6

ρback plate, kg/mm3 5.788× 10−6 9.851× 10−6

ρinsulator, kg/mm3 5.788× 10−6 9.851× 10−6

ρpad, kg/mm3 1.858× 10−6 3.162× 10−6

Erotor, GPa 92.52 157.5
Eback plate, GPa 153.2 260.8
Einsulator, GPa 153.2 260.8
E1,pad, GPa 4.068 6.924
E2,pad, GPa 4.068 6.924
E3,pad, GPa 1.468 2.498
G12,pad, GPa 1.917 3.263
G13,pad, GPa 0.873 1.486
G23,pad, GPa 0.873 1.486
P , kg/mm2 370.1 629.9
ω, rad/s 3.701 6.299
µ 0.50 0.70
(a) ρrotor, ρback plate, ρinsulator, ρpad: mass densities of corresponding materials,
Erotor, Eback plate, Einsulator: elastic modulus of corresponding materials,
E1,pad, E2,pad, E3,pad: elastic modulus associated with the normal directions
of pad material,
G12,pad, G13,pad, G23,pad: shear modulus associated with the principal direc-
tions of pad material,
P : brake pressure, ω: radial velocity, µ: friction coefficient.
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The bivariate partially adaptive-sparse PDD method with tolerances ε1 =

ε2 = 10−6, ε3 = 0.9 was applied to determine the probabilistic characteristics of

the dynamic instabilities caused by the first two unstable modes of the disk brake

system. Since all input random variables are uniformly distributed, classical Legendre

orthonormal polynomials were used as basis functions. The PDD coefficients were

calculated using the quasi MCS with 500 samples generated from a 16-dimensional

low-discrepancy Sobol sequence. Figure 6.13 displays the first four unstable modes

obtained in each quasi Monte Carlo sample. These unstable modes, conveyed by

complex frequencies with positive real parts, reflect the dynamic instability caused in

the brake system. Each occurrence of the unstable frequency may cause the brake to

squeal.

Equations (6.19) and (6.21) were employed to calculate the second-moment

statistics of each nodal displacement component of an eigenvector describing the

associated mode shape of the disk brake system. Based on these statistics, the L2-

norms, that is, the square root of sum of squares, of the mean and variance of a nodal

displacement were calculated. Figures 6.14(a) and 6.14(a) present contour plots of

theL2-norms of the means and variances, respectively, of the first two unstable mode

shapes of the disk brake system. Similar results can be generated for other mode

shapes, stable or unstable, if desired.

For a disk brake system with complex frequencies, the ith effective damping

ratio is defined as −2Re
[
λ

(i)
u (X)

]
/Im|λ(i)

u (X) |, where Re
[
λ

(i)
u (X)

]
and Im|λ(i)

u (X) |

are the real part and the imaginary part, respectively, of the ith unstable frequency
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Figure 6.13: Complex eigenvalues of a disk brake system for first four unstable modes
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Figure 6.14: Contour plots of the L2-norm of the first two unstable mode shapes of a
disk brake system by the bivariate partially adaptive-sparse PDD method: (a) mean;
(b) variance
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λ
(i)
u (X). The magnitude of the damping ratio represents the harshness of brake

squeal. The larger the magnitude of the damping ratio, the higher the propensity

for brake squeal. Figure 6.15 illustrates the marginal probability density functions

of the effective damping ratios corresponding to the first two unstable modes λ
(1)
u ,

and λ
(2)
u . These probability densities provide a measure of the effect of random input

parameters on the dynamic instabilities caused in the disk brake system.

Figure 6.15: Marginal probability density functions of the effective damping ratios of
first two unstable modes of a disk brake system by the bivariate partially adaptive-
sparse PDD method
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It is worth mentioning that a similar brake-squeal analysis with only five input

random variables was performed using a univariate RDD method [41]. However,

verification or improvement of the univariate solution was not possible due to the

inherent limitations of the method used. The adaptive-sparse PDD approximations

developed in this work have overcome this quandary even for significantly more input

variables.

6.7 Conclusions

Two new adaptive-sparse PDD methods were developed for uncertainty quan-

tification of high-dimensional complex systems commonly encountered in applied sci-

ences and engineering. The methods are based on global sensitivity analysis for

defining the relevant pruning criteria, a unified computational algorithm for retaining

component functions with largest orders of their orthogonal polynomial expansions,

two distinct ranking schemes for grading component functions, and a full- or sparse-

grid dimension-reduction integration and quasi Monte Carlo simulation for estimating

the expansion coefficients. In the fully adaptive-sparse PDD approximation, PDD

component functions of an arbitrary number of input variables are retained by trun-

cating the degree of interaction among input variables and the order of orthogonal

polynomials according to specified tolerance criteria. In a partially adaptive-sparse

PDD approximation, PDD component functions with a specified degree of interac-

tion are retained by truncating the order of orthogonal polynomials, fulfilling relaxed

tolerance criteria. The former approximation is comprehensive and rigorous, leading
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to the second-moment statistics of a stochastic response that converges to the exact

solution when the tolerances vanish. The latter approximation, obtained through

regulated adaptivity and sparsity, is more economical than the former approximation

and is, therefore, expected to solve practical problems with numerous variables. A

unified computational algorithm was created for solving a general stochastic prob-

lem by the new PDD methods. Two distinct ranking schemes − full ranking and

reduced ranking − were also developed for grading PDD component functions in

the unified algorithm. Compared with past developments, the adaptive-sparse PDD

methods do not require truncation parameter(s) to be assigned a priori or arbitrarily.

In addition, two numerical techniques, one employing a nested sparse-grid dimension-

reduction integration and the other exploiting quasi MCS, were applied for the first

time to estimate the PDD expansion coefficients both accurately and efficiently.

The adaptive-sparse PDD methods were employed to calculate the second-

moment properties and tail probability distributions in three numerical problems,

where the output functions are either simple mathematical functions or eigenvalues

of dynamic systems, including natural frequencies of a three-degree-of-freedom linear

oscillator and an FGM plate. The mathematical example reveals that the user-defined

tolerances of an adaptive-sparse PDD method are closely related to the relative er-

ror in calculating the variance, thus providing an effective tool for modulating the

accuracy of the resultant approximation desired. Since the adaptive-sparse PDD ap-

proximation retains only the component functions with significant contributions, it

is also able to achieve a desired level of accuracy with considerably fewer coefficients
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than required by existing truncated PDD approximations. The results of the linear

oscillator display a distinct advantage of the reduced ranking system over the full

ranking system, as the former requires significantly fewer expansion coefficients to

achieve results nearly identical to those of the latter. For a required level of accuracy

in calculating the tail probabilistic characteristics of natural frequencies of an FGM

plate, the new bivariate adaptive-sparse PDD method is more economical than the

existing bivariately truncated PDD method by almost an order of magnitude. Finally,

the new PDD method was successfully applied to solve a stochastic dynamic insta-

bility problem in a disk brake system, demonstrating the ability of the new method

in handling industrial-scale problems.
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CHAPTER 7
CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The research conducted in this study analyzed and developed innovative com-

putational methods for solving REPs commonly encountered in high-dimensional,

complex dynamic systems. The major conclusions are summarized as follows:

1. A Rigorous Comparison of PDD and PCE Approximations: Two

stochastic expansion methods stemming from PDD and PCE were investigated

for solving REPs. Although the infinite series from PCE and PDD are equiva-

lent, their truncations endow contrasting dimensional structures, creating signif-

icant differences between the resulting PDD and PCE approximations in terms

of accuracy, efficiency, and convergence properties. When the cooperative effects

of input variables on an eigenvalue attenuate rapidly or vanish altogether, the

PDD approximation commits smaller error than does the PCE approximation

for identical expansion orders. Numerical analyses of mathematical functions or

simple dynamic systems reveal markedly higher convergence rates of the PDD

approximation than the PCE approximation. From the comparison of com-

putational efforts, required to estimate with the same precision the frequency

distributions of dynamic systems, including a piezoelectric transducer, the PDD

approximation is significantly more efficient than the PCE approximation.
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2. Multiplicative PDD Methods: Two new multiplicative versions of PDD,

referred to as factorized PDD and logarithmic PDD, were developed for solv-

ing high-dimensional stochastic problems. Both versions involve a hierarchical,

multiplicative decomposition of a multivariate function, a broad range of or-

thonormal polynomial bases for Fourier-polynomial expansions of component

functions, and a dimension-reduction or sampling technique for estimating the

expansion coefficients. Numerical problems involving mathematical functions

or uncertain dynamic systems were solved to corroborate how and when a mul-

tiplicative PDD is more efficient or accurate than the additive PDD. The results

show that, indeed, both the factorized and logarithmic PDD approximations can

effectively exploit the hidden multiplicative structure of a stochastic response

when it exists. Since a multiplicative PDD recycles the same component func-

tions of the additive PDD, no additional cost is incurred. Finally, the random

eigensolutions of a sport utility vehicle comprising 40 random variables were

evaluated, demonstrating the ability of the new methods to solve industrial-

scale problems.

3. A Hybrid PDD Method: A new hybrid PDD method was constructed for

uncertainty quantification of high-dimensional complex systems. The method is

based on a linear combination of an additive and a multiplicative PDD approxi-

mation. When a stochastic response is not endowed with a specific dimensional

hierarchy, the hybrid PDD approximation is more appropriate than either the

additive or multiplicative PDD approximation. Numerical results indicate that
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the univariate hybrid PDD method, which is slightly more expensive than the

univariate additive or multiplicative PDD approximations, yields more accurate

stochastic solutions than the latter two methods. A successful evaluation of a

random eigensolution of a pickup truck, involving coupled acoustic-structural

analysis and 53 random variables, illustrates the practical capability of the hy-

brid PDD method.

4. Adaptive-Sparse PDD Methods: Two novel adaptive-sparse PDD methods

were developed for solving high-dimensional uncertainty quantification problems

in computational science and engineering. The methods entail global sensitivity

analysis for defining the relevant pruning criteria, a unified computational algo-

rithm for retaining component functions with largest orders of their orthogonal

polynomial expansions, two distinct ranking schemes for grading component

functions, and a full- or sparse-grid dimension-reduction integration and quasi

Monte Carlo simulation for estimating the expansion coefficients. The fully

adaptive-sparse PDD method is comprehensive and rigorous, leading to the

second-moment statistics of a stochastic response that converges to the exact

solution when the tolerances vanish. A partially adaptive-sparse PDD method,

obtained through regulated adaptivity and sparsity, is economical and is, there-

fore, expected to solve practical problems with numerous variables. Compared

with past developments, the adaptive-sparse PDD methods do not require its

truncation parameter(s) to be assigned a priori or arbitrarily. The numerical

results reveal that an adaptive-sparse PDD method achieves a desired level
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of accuracy with considerably fewer coefficients compared with existing PDD

approximations. For a required accuracy in calculating the tail probabilistic

characteristics of natural frequencies of a functionally graded plate, the new

bivariate adaptive-sparse PDD method is more efficient than the existing bi-

variately truncated PDD method by almost an order of magnitude. Finally,

stochastic dynamic analysis of a disk brake system was performed, demonstrat-

ing the ability of the new method to tackle practical engineering problems.

7.2 Recommendations for Future Work

Based on the research and development in this study, the following activities

are recommended for future efforts:

1. The decomposition methods developed in this work are all based on the funda-

mental requirement that input random variables be statistically independent.

The analytical expressions for determining the PDD component functions, the

PDD expansion coefficients, and the second-moment properties are all rooted

in a product-type joint PDF of input variables. Further research is required to

develop PDD of a stochastic response function for a general non-product type

joint PDF, that is, when the input random variables are statistically dependent.

2. The new adaptive-sparse PDD methods developed in this work are limited to

additive PDD expansions. The efficient global-sensitivity-based approach to

creating a smart PDD method can be naturally applied to multiplicative and

hybrid PDD approximations as well. With a modest devotion of resources,



222

an adaptive-sparse PDD method stemming from the multiplicative and hybrid

PDD can also take shape in the near future.

3. A major assumption prior to creating any PDD approximation of a response

function is that the function must be continuous and differentiable. However,

encountering discontinuity and non-smoothness in random functions is a distinct

possibility in engineering and applied sciences. Further research is needed to

extend PDD methods for discontinuous and non-smooth functions.
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APPENDIX A
PIEZOELECTRIC ANALYSIS: GOVERNING EQUATIONS

The piezoelectric effect is governed by coupled stress and electrical field and

requires the solution of the mechanical equilibrium

∫
V

σ : δεdV =

∫
S

t · δudS +

∫
V

f · δudV (A.1)

and the electric flux equation

∫
V

q : δEdV =

∫
S

qS · δϕdS +

∫
V

qV · δϕdV (A.2)

simultaneously, where σ is the Cauchy stress tensor, t is the traction vector with

surface area S, f = −ρü is the d’Alembart force vector with ρ denoting mass density

of the body with volume V , δu is the virtual displacement, δε is the virtual strain,

q is the electric flux (electrical displacement) vector, qS is the electric flux per unit

area entering the body, qV is the electric flux per unit volume entering the body, δϕ

is the virtual electric potential, and δE is the virtual potential gradient (electrical

field). The constitutive behavior of the piezoelectric media is described by

σij = Dijklεkl − emijEm (A.3)

and

qi = eijkεjk +DijEj (A.4)

where Dijkl, emij, and Dij are the elastic moduli, piezoelectric stress coefficients, and

dielectric constants, respectively, and the subscripts indicate appropriate components.



224

Consider a finite element discretization, where U and Φ denote vectors of

displacements and electric potentials at the nodal locations. Then, the approximate

system of matrix equations becomes

MÜ +KuuU +KϕuΦ = P (A.5)

and

KϕuU −KϕϕΦ = −Q (A.6)

where M is the mass matrix, Kuu is the displacement stiffness matrix, Kϕu is the

piezoelectric coupling matrix, Kϕϕ is the dielectric stiffness matrix, P is the me-

chanical force vector, and Q is the electrical charge vector. These coefficient ma-

trices, which comprise elastic moduli, coupling constants, and dielectric constants,

also depend on the shape function of an element. Further details are available else-

where [144].



225

APPENDIX B
AN EIGENSOLUTION FOR K-L EXPANSION

Consider a homogeneous Gaussian random field α(x) defined on 0 ≤ x ≤

L, such that it has zero mean and exponential autocovariance function Γ(ξ) =

E[α(x)α(x+ ξ)] = exp[−c|ξ|], where ξ = x2 − x1, and c is the correlation parameter.

The K-L representation of α(x) is [122]

α(x) =
∞∑
i=1

Vi
√
βigi(x), (B.1)

where Vi, i = 1, . . . ,∞ is an infinite sequence of uncorrelated random variables, each

of which has zero mean and unit variance, and {βi, gi(x)}, i = 1, 2, . . . ,∞, are eigen-

values and eigenfunctions of Γ(x, x + ξ) satisfying the following integral eigenvalue

problem:

βigi(x) =

∫ L

0

Γ(x, x+ ξ)gi(x+ ξ)dξ, ∀i = 1, 2, . . . ,∞. (B.2)

Differentiating Equation B.2 twice, with respect to x, the integral equation can be

transformed into the following ordinary differential equation (ODE)

g
′′

i (x) + ω2
i gi(x) = 0, 0 ≤ x ≤ L, (B.3)

and the associated boundary conditions (BCs)

cgi (L) + g′i (L) = 0,

cgi (0)− g′i (0) = 0, (B.4)
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where ω2
i = (2c − c2λi)/λi. The solution of ODE in Equation B.3 subject to BCs in

Equation B.4 is [46]:

gi(x) =



cos(ωix)√
L

2
+

sin(ωiL)

2ωi

, i is odd,

sin(ωix)√
L

2
− sin(ωiL)

2ωi

, i is even.

(B.5)

The corresponding eigenvalues are

βi =
2c

ω2
i + c2

. (B.6)

The parameter ωi is determined by solving the transcendental equations

c− ωi tan(ωiL/2) = 0, i is odd,

ωi + c tan(ωiL/2) = 0, i is even. (B.7)



227

APPENDIX C
WEIGHTS AND EXCITATION FREQUENCIES

Table C.1 presents weights and excitation frequencies for calculating the ver-

tical component of the weighted RMS acceleration.

Table C.1: Frequencies and weights as listed in International Standard ISO
2631 [1].

Frequency (ωj), Hz
Weight (αj)
×1000

Frequency (ωj), Hz
Weight (αj)
×1000

0.1 31.2 6.3 1054
0.125 48.6 8 1036
0.16 79.0 10 988
0.2 121 12.5 902
0.25 182 16 768
0.315 263 20 636
0.4 352 25 513
0.5 418 31.5 405
0.63 459 40 314
0.8 477 50 246
1 482 63 186

1.25 484 80 132
1.6 494 100 88.7
2 531 125 54

2.5 631 160 28.5
3.15 804 200 15.2

4 967 250 7.90
5 1039 315 3.98
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APPENDIX D
COUPLED ACOUSTIC-STRUCTURAL ANALYSIS: GOVERNING

EQUATIONS

A coupled acoustic-structural analysis involves solution of the acoustic varia-

tional equation

∫
Vf

[
δp

(
1

Kf

p̈+
γ

ρfKf

ṗ

)
+

1

ρf

∂δp

∂x
· ∂p
∂x

]
dV −

∫
Sft

δpT0dS

+

∫
Sfr

δp

(
γ

ρfc1

p+

(
γ

ρfk1

+
1

c1

)
ṗ+

1

k1

p̈

)
dS

+

∫
Sfi

δp

(
1

c1

ṗ+
1

a1

p

)
dS −

∫
Sfs

δpn− · ümdS

+

∫
Sfrs

δp

(
γ

ρfc1

p+

(
γ

ρfk1

+
1

c1

)
ṗ+

1

k1

p̈− n− · üm
)
dS = 0, (D.1)

and the structural virtual work equation

∫
V

δε : σdV +

∫
V

αcρδu
m · u̇mdV +

∫
V

ρδum · ümdV

+

∫
Sfs

pδum · ndS −
∫
St

δum · tdS = 0 (D.2)

simultaneously for the structural displacement um and the acoustic “displacement”

or pressure p. In Equations (D.1) and (D.2) Kf is the bulk modulus of the fluid

acoustic medium of volume Vf ; γ is the volumetric drag, or force per unit volume per

velocity, in the fluid; ρf is the mass density of the fluid; δp is the pressure variation

in the fluid; x is spatial position of the fluid particle; T0 is the prescribed boundary

traction over Sft, the acoustic boundary subregion where the normal derivative of

the acoustic medium is prescribed; 1/c1 and 1/k1 are the proportionality coefficients

between the pressure and velocity, and the pressure and displacement, respectively,
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normal to the surface of the fluid; Sfr is the reactive acoustic boundary subregion; Sfi

is the radiating acoustic boundary subregion; Sfrs is the acoustic boundary subregions

where the displacements are linearly coupled but not necessarily identically equal due

to the presence of a compliant or reactive intervening layer; n− is the outward normal

to the structure; σ is the stress at a point on the structure; δε is the strain variation

in structure; αc is the mass proportional damping factor; ρ is mass density of the

structure, and t is the surface traction applied over the surface St of the structure.

Further details are available elsewhere [145,146].
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1981.

[128] I. M. Sobol. On the distribution of points in a cube and the approximate
evaluation of integrals. U.S.S.R. Comput. Math. Math. Phys., 7:86–112, 1967.



240

[129] I.H. Sloan and S. Joe. Lattice Methods for Multiple Integration. Oxford science
publications. Clarendon Press, 1994.

[130] Xiaoqun Wang. Improving the rejection sampling method in quasi-monte carlo
methods. Journal of Computational and Applied Mathematics, 114(2):231 –
246, 2000.

[131] Dassault Systems Simulia Corp. ABAQUS Standard, Version 6.12, 2012.

[132] ISO-5128. Acoustics - Measurement of noise inside motor vehicles. International
Organization for Standardization, Geneva, Switzerland, 1980.

[133] Xiang Ma and Nicholas Zabaras. An adaptive high-dimensional stochastic
model representation technique for the solution of stochastic partial differential
equations. Journal of Computational Physics, 229(10):3884 – 3915, 2010.

[134] Xiu Yang, Minseok Choi, Guang Lin, and George Em Karniadakis. Adap-
tive anova decomposition of stochastic incompressible and compressible flows.
Journal of Computational Physics, 231(4):1587 – 1614, 2012.

[135] S. Rahman and V. Yadav. Orthogonal polynomial expansions for solving ran-
dom eigenvalue problems. International Journal for Uncertainty Quantification,
1:163–187, 2011.

[136] Sharif Rahman. Decomposition methods for structural reliability analysis re-
visited. Probabilistic Engineering Mechanics, 26(2):357 – 363, 2011.

[137] I.M. Sobol. Global sensitivity indices for nonlinear mathematical models
and their monte carlo estimates. Mathematics and Computers in Simulation,
55(13):271 – 280, 2001.

[138] Sharif Rahman. Global sensitivity analysis by polynomial dimensional decom-
position. Reliability Engineering & System Safety, 96(7):825 – 837, 2011.

[139] Xuchun Ren and Sharif Rahman. Polynomial dimensional decomposition for
stochastic sensitivity analysis. submitted to International Journal of Numerical
Methods in Engineering, 2013.

[140] Alan Genz. Fully symmetric interpolatory rules for multiple integrals. SIAM
Journal on Numerical Analysis, 23(6):pp. 1273–1283, 1986.

[141] Alan Genz and B.D. Keister. Fully symmetric interpolatory rules for multiple
integrals over infinite regions with gaussian weight. Journal of Computational
and Applied Mathematics, 71(2):299 – 309, 1996.



241

[142] Erich Novak and Klaus Ritter. Simple cubature formulas with high polynomial
exactness. Constructive Approximation, 15(4):499–522, 1999.

[143] Vaibhav Yadav and Sharif Rahman. Uncertainty quantification of high-
dimensional complex systems by multiplicative polynomial dimensional de-
compositions. International Journal for Numerical Methods in Engineering,
94(3):221–247, 2013.

[144] T. Ikeda. Fundamentals of piezoelectricity. Oxford science publications. Oxford
University Press, Incorporated, 1996.

[145] H. Allik. The application of finite and infinite elements to problems in structural
acoustics. In Computational Mechanics ’91: Proceedings of the International
Conference on Computational Engineering Science. ICES Publications, 1991.

[146] P. Morse and K. Ingard. Theoretical Acoustics. McGraw-Hill, 1968.

[147] D. Ghosh and R. G. Ghanem. Analysis of eigenvalues and modal interaction of
stochastic systems. AIAA Journal, 43(10):2196–2201, 2005.

[148] S. Adhikari. Random eigenvalue problems revisited. Sadhana, 31:293–314, 2006.
10.1007/BF02716778.

[149] R. Bellman. Dynamic Programming. Princeton University Press: Princeton,
NJ, 1957.

[150] D. Brendan and McKay. The expected eigenvalue distribution of a large regular
graph. Linear Algebra and its Applications, 40(0):203 – 216, 1981.

[151] Michael Griebel and Markus Holtz. Dimension-wise integration of high-
dimensional functions with applications to finance. J. Complex., 26(5):455–489,
October 2010.

[152] M. Griebel. Sparse Grids and Related Approximation Schemes for Higher Di-
mensional Problems. Sonderforschungsbereich 611, Singuläre Phänomene und
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