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ABSTRACT 

The objective of this study is to develop new methods for modeling of input 

uncertainty of correlated variables and to carry out reliability-based design optimization 

(RBDO) using the identified input uncertainty model with associated confidence level. 

The proposed research involves: (1) use of copulas to model joint CDFs of input 

variables; (2) use of the Bayesian method to identify marginal cumulative distribution 

functions (CDF) and joint CDF of input variables using limited experimental data; (3) 

reduction of the transformation ordering effect on the inverse reliability analysis using the 

most probable point (MPP)-based dimension reduction method (DRM); and (4) 

assessment of the confidence level of the input model uncertainty, and implementation of 

the confidence level in RBDO to offset the inexact quantification of the input 

uncertainties due to limited data.  

It has been well documented that many random variables such as material 

properties are correlated, but the correlation has not been considered in RBDO because 

modeling the joint CDF of correlated variables is known to be difficult. In this study, a 

copula is introduced to model a joint CDF of input variables. The copula requires 

marginal CDFs and correlation parameters, which can be obtained in real applications, so 

it is possible to model a joint CDF. Once the joint input CDF is modeled using a copula, 

the input variables can be transformed to independent Gaussian variables using 

Rosenblatt transformation for the inverse reliability analysis.  

This study proposes a method to identify correct marginal and joint CDFs 

(copulas) of input variables. In practical applications, since only limited experimental 

data are available, it is challenging task to correctly identify the marginal and joint CDF 
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of input variables using the limited data. In this study, a Bayesian method is proposed to 

identify the marginal and joint CDFs of input variables that best describe given data 

among candidates. The performance of the proposed method is investigated and 

compared with an existing method, the goodness-of-fit (GOF) test.  

Using the identified input model, the transformation from original input variables 

into independent Gaussian variables is carried out, and then the first-order reliability 

method (FORM), which has been commonly used in reliability analysis, is carried out. 

However, when the input variables are correlated with non-elliptical copulas, the FORM 

may yield different reliability analysis results with some errors for different 

transformation orderings of input variables due to the nonlinearities of the transformed 

constraint functions. For this, the MPP-based DRM, which more accurately and 

efficiently calculates the probability of failure than the FORM and the second-order 

reliability method (SORM), respectively, is used to reduce the effect of transformation 

ordering in the inverse reliability analysis and, thus, RBDO.  

However, when the number of experimental data is limited, the estimated input 

joint CDF will be inaccurate, which will lead to inaccurate RBDO result. Thus, a method 

to assess the confidence level of the input model uncertainty in RBDO is developed, and 

the input model with confidence level is implemented for RBDO.   
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CHAPTER I  

INTRODUCTION 

This study presents new methods for identifying and quantifying an input model 

with correlated input variables and for carrying out reliability-based design optimization 

(RBDO) with associated confidence level. As shown in Figure 1.1, the input model 

uncertainty, consisting of statistical and physical uncertainty, is characterized by 

identifying and quantifying the input model. To identify the joint distribution, first, a 

copula is introduced to model a joint cumulative distribution function (CDF) of input 

variables, which is difficult to obtain in practical industrial applications where only 

limited experimental data are available. Second, a Bayesian method is proposed to 

correctly identify and quantify the input model, i.e., marginal CDFs and joint CDFs 

(copulas) from given experimental data. Third, if the input variables are multi-

dimensional and correlated, there exists a transformation ordering effect on RBDO. To 

reduce the transformation ordering effect, an accurate reliability analysis needs to be used 

as shown in Figure 1.1. In this study, the MPP-based dimension reduction method (DRM) 

is used. Finally, if the identified and quantified input model is inaccurate, the obtained 

RBDO results may not satisfy the required target reliability. Thus, the input model with a 

confidence level is developed in RBDO to obtain RBDO results with associated 

confidence level as shown in Figure 1.1. The simulation model uncertainty, which is 

related to verification and validation of surrogate models, is not considered in this study.  

 Section 1.1 presents background and motivation for the proposed research, 

Section 1.2 provides the objectives of the proposed research, and Section 1.3 describes 

the thesis proposal organization.  
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Figure 1.1 RBDO under Uncertainties 

1.1 Background and Motivation 

1.1.1 Identification of Input Model Uncertainty  

In many practical industrial applications, input random variables such as the 

material properties of the modern composite, nano, and micro materials; fatigue 

properties; etc. are correlated (Annis, 2004; Socie, 2003; Nikolaidis et al., 2005). 

However, only limited data are available in practical applications, so it is difficult to 

obtain a true joint CDF of the input variables, which requires infinite data to obtain. Due 

to this difficulty, it has been often assumed that the input variables are independent or 

correlated with a joint Gaussian CDF even though they may be correlated with a joint 

non-Gaussian CDF (Ditlevsen and Madsen, 1996; Liu and Der Kiureghian, 1986; 

Madsen et al., 1986; Melchers, 1999). Such erroneous assumptions of the input model 

lead to wrong RBDO results that could be quite different from true optimum designs 

(Noh, 2007). 
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To model the joint CDF of the correlated input random variables, the copula has 

been used in non-engineering disciplines such as biostatistics, finance, actuarial science, 

economics, and hydrology (Bouyé et al., 2000; Embrechts et al., 2003; Frees and Valdez, 

1998; Kolev et al., 2006; Pham, 2006; Wang, 2007), but it has not been used in the 

engineering discipline especially for the purpose of design. Since the copula only requires 

the marginal CDFs and correlation parameters (Nelson, 1999), which can be obtained in 

practical applications, the joint CDF can be readily obtained. In addition, the copula 

decouples the joint CDF and marginal CDFs, so that a joint CDF with various types of 

marginal CDFs, which often occurs in practical applications, can be obtained. Thus, it is 

proposed to use the copula to model a joint CDF of correlated input variables for RBDO. 

To obtain accurate RBDO results, the information of the input variables such as 

marginal and joint CDFs (copulas) needs to be correctly identified using given 

experimental data. If the marginal CDF types of the input variables are unknown and 

only the experimental data are given, then the marginal CDFs should be identified first. 

For the identification of the marginal CDFs, the goodness-of-fit (GOF) tests such as Chi-

square, Cramér-von Mises, and Kolmogorov-Smirnov (K-S) tests have been widely used 

(Haldar and Mahadevan, 2000; Sterne and Smith, 2000). However, the GOF test relies on 

the mean and standard deviation calculated from data, and thus if these parameters are 

incorrectly calculated, a wrong marginal CDF could be identified. Likewise, the GOF for 

the identification of the copula have been recently developed (Genest and Favre, 2007; 

Genest and Rémillard, 2005; Wang and Well, 2000). However, since the GOF test 

depends on the correlation coefficient estimated from data, if the correlation parameter is 

incorrectly estimated, then a wrong copula could be identified. 
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To overcome the shortcoming of the GOF test, the Bayesian method (Huard et al., 

2006) has been developed to identify the joint CDF (copula). Unlike the GOF test, the 

Bayesian method calculates the weights of candidate copulas by integrating the 

likelihood function over the correlation coefficient. Thus, the Bayesian method is 

independent of the choice of the parameter, and thus, it is preferred over the GOF test. 

However, since the Bayesian method has been developed only for identifying the copula, 

it is necessary to develop a Bayesian method for identifying marginal CDFs. 

 

1.1.2 Transformation Ordering Effect 

The RBDO aims to find an optimum design achieving the confidence in product 

reliability at a given probabilistic level. For this, the RBDO involves evaluation of 

probabilistic constraints such that the probability of failure for each constraint is less than 

the target probability of failure. However, since the probability of failure is obtained by a 

multiple integral of the joint probability density function (PDF) of the input variables 

over the failure region, it is difficult to analytically compute these multiple integrals. 

Hence, approximation methods such as the first-order reliability method (FORM) 

(Hasofer and Lind, 1974; Palle and Michael, 1982; Madsen et al., 1986; Haldar and 

Mahadevan, 2000) or the second-order reliability method (SORM) (Breitung, 1984; 

Hohenbichler and Rackwitz, 1988) are used.  The FORM or SORM computes the 

probability of failure by approximating the constraint function ( )G X  using the first- or 

second-order Taylor series expansion at MPP. Since FORM often provides adequate 

accuracy and is much easier to use than SORM, it is commonly used in RBDO. Since 

FORM and SORM are carried out in the standard Gaussian space, a transformation of the 
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correlated input random variables into the independent standard Gaussian variables is 

necessary. 

There are several methods to transform the correlated variables into independent 

standard normal variables: the Hermite polynomial transformation, the Winterstein 

approximation, the Rosenblatt transformation, the Nataf transformation, and orthogonal 

transformation (Ditlevsen and Madsen, 1996). The Hermite polynomial transformation 

expresses correlated variables as a linear combination of Hermite polynomials of the 

standard Gaussian variables using covariance and estimated moments such as mean, 

variance, skewness, and kurtosis. The Winterstein approximation is a specific type of the 

Hermite polynomial, which uses a linear combination of three Hermite polynomials. 

However, the accuracy of these two transformations is directly determined by accuracy of 

the estimated statistical moments, especially kurtosis and skewness, which are difficult to 

obtain accurately when the available data are limited. On the other hand, the input 

marginal CDFs and their parameters, which are required by the Rosenblatt, orthogonal, 

and Nataf transformations, can be more correctly determined using statistical methods 

based on samples than higher order moments.  

The Rosenblatt transformation (Rosenblatt, 1952) requires complete information 

about the input variables such as a joint CDF (Melchers, 1999; Ditlevsen and Madsen, 

1996). Unlike the Rosenblatt transformation, the Nataf transformation approximates the 

joint CDF using the Nataf model (Nataf, 1962), which is a Gaussian copula. Thus, the 

Nataf transformation can be used only for the correlation input variables with a Gaussian 

copula. Like the Nataf transformation, the orthogonal transformation is linear, so it can be 

used only if the input variables are correlated with Gaussian copula. If the true joint CDF 
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is different from the Gaussian copula, the Nataf and orthogonal transformation might 

yield erroneous reliability analysis results (Noh, 2007). Recently, a generalized Nataf 

transformation has been developed that can be applied for elliptical copulas, which 

include Gaussian and t copulas (Lebrun and Dutfoy, 2008). However, it is still limited to 

applications for the elliptical copula families. On the other hand, once the input joint CDF 

is obtained using copula, the Rosenblatt transformation method, which is analytically 

exact, can be used. 

In the Rosenblatt transformation, there are !n  ways of transforming from n  

correlated input random variables into n  independent Gaussian variables. The inverse 

reliability analysis results will be independent of the transformation ordering, if the 

probability of failure is calculated exactly in the independent standard Gaussian U-space 

(Noh, 2007). However, if the FORM is used for the inverse reliability analysis, certain 

orders of transformation could cause more errors than other orders of transformation 

according to the input joint CDF type. For example, if the input variables have a joint 

CDF modeled by a non-elliptical copula, which often occurs in industrial applications, 

then the Rosenblatt transformation becomes highly nonlinear for certain orders of 

transformation. This makes the transformed constraint functions become highly nonlinear. 

Thus, if the FORM is used, the inverse reliability analysis results could be very different 

for the different ordering since the FORM uses a linear approximation of the constraint 

function to estimate the probability of failure. This effect of transformation ordering in 

RBDO will be unacceptable and needs to be eliminated or reduced. 

Thus, a more accurate method than the FORM is necessary to be able to handle 

highly nonlinear constraint functions. Reliability analysis using the SORM might be more 
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accurate than the FORM because it uses the second-order approximation. However, since 

the second-order derivatives are very difficult and expensive to obtain, the SORM cannot 

be used practically. To achieve both the efficiency of the FORM and the accuracy of the 

SORM, the MPP-based DRM is developed (Lee, 2008). The MPP-based DRM is used to 

accurately calculate the probability of failure after finding the FORM-based MPP, which 

is then used to develop an enhanced inverse reliability analysis method (i.e., MPP search) 

that is accurate for highly nonlinear and multi-dimensional problems. Hence, the MPP-

based DRM, which yields accurate RBDO results without requiring the second-order 

sensitivity, can be used to reduce the effect of the transformation ordering on RBDO 

results. 

 

1.1.3 Reliability-Based Design Optimization with Associated Confidence Level 

In the RBDO design process, the input statistical uncertainty is modeled by 

identification of marginal CDFs and joint CDF using the Bayesian method (Noh et al., 

2009a); the input physical uncertainty is modeled by quantification of parameters of the 

identified marginal CDFs and joint CDF, such as the mean, standard deviation, and 

correlation coefficient (Noh et al., 2009b). To obtain accurate optimum results, the input 

model needs to be correctly identified and accurately quantified; if not, the optimum 

results might be significantly unreliable, no matter how accurate the reliability analysis 

method is. Research on the identification of marginal and joint distribution types for 

RBDO has been recently carried out (Noh et al., 2009), but the input model with 

confidence level has not been considered for RBDO.  



8 

 

 

To offset the incorrect identification and inexact quantification of the input model, 

the input model with a confidence level needs to be implemented for RBDO. For this, 

confidence intervals of the input parameters, i.e., the mean, standard deviation, and 

correlation coefficient, need to be considered in order to have a desirable confidence level 

of the input model. The confidence intervals of the mean and standard deviation are 

usually calculated from the normality assumption that an input random variable has 

Gaussian distribution (Haldar and Mahadevan, 2000). However, the calculation of 

confidence intervals using the normality assumption is not accurate for non-Gaussian 

distributions (Mooney and Duval, 1993).  

Thus, use of a bootstrap method, which does not require the normality assumption 

on the random variable, is necessary for non-Gaussian distribution. The bootstrap method 

first constructs a distribution of a random variable using given samples in either a 

nonparametric or parametric way. From the constructed distribution of the random 

variable, a distribution of a parameter such as mean or standard deviation is obtained 

using the normal approximation, percentile, bias corrected, bias corrected accelerated, or 

percentile-t methods (Mooney and Duval, 1993; Efron and Tibshirani, 1993). Using the 

distribution of the parameter constructed from those methods, the confidence interval of 

the parameter in which we are interested is obtained. 

Use of the upper bound of the confidence interval of the standard deviation yields 

more reliable design than use of the estimated standard deviation, so that it is used in 

order to obtain a desirable confidence level for the input model. On the other hand, either 

the lower or upper bounds of the confidence intervals of the mean and correlation 

coefficient cannot be directly used because they do not necessarily yield more reliable 
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design. Thus, it is necessary to develop some adjusted parameters involving the 

confidence intervals of all input parameters such that the adjusted parameters offset the 

inaccurate estimation of the parameters. Accordingly, it is desirable to use the input 

model using the adjusted parameters to have a desirable confidence level of the input 

model and output performance, i.e., target probability of failure at the optimum design.  

 

1.2 Objectives of the Proposed Study 

The first objective of this study is to develop a Bayesian method to identify (1) 

the marginal CDFs and (2) the joint CDF, which are the input information to carry out the 

RBDO, from experimental data. A copula is used to model the joint CDF of the input 

variables using limited information such as marginal CDFs and given test data. To 

accurately model the input joint CDF, the correct copula should be identified. For this, 

statistical methods such as the GOF test (Genest and Favre, 2007; Genest and Rémillard, 

2005; Wang and Well, 2000) and the Bayesian method (Huard et al., 2006) have been 

recently developed. To find which method more accurately identifies the correct joint 

CDF (copula), a comparison study will be carried out. Further, the performance of the 

Bayesian method will be tested for a different number of samples and different 

parameters such as correlation coefficients.  

Likewise, the identification of marginal CDFs is as important as the identification 

of the copula. The marginal CDFs are sometimes known, but if not, they should be 

identified from the experimental data. Thus, a Bayesian method is proposed for 

identification of a marginal CDF that best describes the data among candidates. To see 

advantages of the proposed method, comparison studies between the proposed Bayesian 
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method and the GOF test (Haldar and Mahadevan, 2000; Sterne and Smith, 2000) will be 

carried out. Using simulated data sets, the performance of the Bayesian method is tested 

for different numbers of samples and different parameters such as mean. Using the 

Bayesian method, it will be shown how the marginal CDFs and joint CDF of input 

variables are identified through numerical examples and fatigue problems. 

The second objective of the study is to reduce the effect of transformation 

ordering on RBDO results using the MPP-based DRM. Once the joint CDF is identified 

by the Bayesian method, the Rosenblatt transformation is utilized to transform the 

original random variables into the independent standard Gaussian variables for the 

inverse reliability analysis. In doing so, the order of the transformation can be arbitrary. If 

a different order of Rosenblatt transformation is used, even the mildly nonlinear 

constraint function in the original space could become highly nonlinear in the standard 

Gaussian space depending on the types of the joint input CDF.  

First, obviously, if the input variables are independent (i.e., the joint CDF is a 

simple multiplication of the marginal CDFs), there is no effect of transformation ordering. 

Second, if the input variables have the joint CDF modeled by an elliptical copula, the 

effect of transformation ordering still does not exist because the elliptical copula makes 

the Rosenblatt transformation become linear, which is independent of orderings. The 

proof that the Rosenblatt is independent of the transformation ordering for independent 

and elliptical copula will be illustrated. Finally, when the input variables are correlated 

with joint CDFs modeled by non-elliptical copulas, the constraint function in the original 

space could lead to a highly nonlinear constraint function in the Gaussian space. 

Accordingly, it becomes a significant challenge to accurately carry out the inverse 
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reliability analysis using the FORM, which cannot accurately estimate the probability of 

failure for nonlinear functions. In this study, the MPP-based DRM, which can accurately 

handle the nonlinear constraint function, is used for the RBDO of problems with 

correlated input variables having non-elliptical copulas.  

The third objective of this study is to develop an input model with a confidence 

level for RBDO to compensate the incorrect identification and inexact quantification of 

the input model uncertainty due to limited input data. For this, instead of using the 

estimated standard deviations of marginal CDFs, the adjusted standard deviation and 

correlation coefficient that compensate inaccurate estimation of all parameters are used 

because they provide more reliable optimum design with desired confidence level than 

the estimated parameters. In addition, the calculation of the adjusted standard deviation 

includes the confidence interval of the mean and upper bound of the confidence interval 

of standard deviation, which are usually obtained from a normality assumption that the 

input variable follows Gaussian distribution. If the input variable follows a non-Gaussian 

distribution, the confidence interval of the mean and the upper bound of the confidence 

interval of the standard deviation could be inaccurate. The confidence interval of the 

mean can be accurately calculated compared to the confidence interval of the standard 

deviation for the non-Gaussian distribution, so that a bootstrap method is proposed for 

accurate calculation of the confidence intervals of the standard deviation for both 

Gaussian and non-Gaussian distributions.  
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1.3 Organization of the Thesis Proposal 

Chapter 2 presents engineering applications with correlated variables, 

fundamental concepts of the copula, correlation measures related to the copula, and 

commonly used copulas, which are helpful for understanding why the copula is necessary 

to model a joint CDF of input variables.  

Chapter 3 presents Bayesian methods to identify marginal CDFs and joint CDF 

(copula) from experimental data. First, a Bayesian method and GOF test for identifying 

marginal CDFs are explained, and then the performances of the two methods are 

compared through simulated data sets. Second, a Bayesian method and GOF test for 

identifying the copula are explained. Likewise, comparison study of two methods is 

carried out in terms of which method identifies the copula more efficiently and correctly.  

Chapter 4 illustrates the fundamental concepts of reliability analysis, such as 

FORM and SORM, and RBDO. It describes how the identified joint CDF and marginal 

CDFs are used in the transformation of the original input variables into independent 

Gaussian variables for the reliability analysis. Further, the MPP-based DRM that 

overcomes the disadvantages of the FORM and SORM is presented. 

Chapter 5 presents the MPP-based DRM to alleviate the effect of the 

transformation ordering, especially when the input variables are correlated with non-

elliptical copulas.  Using numerical examples, the FORM and MPP-based DRM are 

compared in terms of how much the effect of transformation ordering is reduced.  

Chapter 6 presents a mathematical example, a coil spring, and the roadarm of an 

M1A1 tank to show how the copula, Bayesian method, and MPP-based DRM work 

together in these examples. 
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Chapter 7 illustrates RBDO with associated confidence level to offset the 

inaccurate estimation of the input model caused by insufficient data. The numerical 

examples presented in Chapter 6 will be used to show how the input model with 

confidence level yields a desirable input and output confidence level compared with the 

one without confidence level.  

Chapter 8 provides conclusions from the proposed work and suggestions for 

future work.  
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CHAPTER II 

AN INTRODUCTION TO COPULAS 

 

2.1 Introduction 

This chapter presents the fundamental concepts and basic properties of copulas. 

Section 2.2 illustrates engineering applications with correlated input variables to show 

why the copula is important for modeling a joint CDF of correlated input variables. 

Sections 2.3 and 2.4 explain the basic definition of the copula and various correlation 

measures related to the copula, respectively. Section 2.5 introduces commonly used 

copula families such as elliptical copulas and Archimedean copulas. Since the 

identification of the correct copula is important for correctly modeling a joint CDF of 

input variables, it will be shown how copulas are identified using experimental data and 

how the identified copulas are used in RBDO in Chapters 3 and 4, respectively.  

 

2.2 Engineering Application with Correlated Variables 

In many structural RBDO problems, the input random variables such as the 

material properties and fatigue properties are correlated (Annis, 2004; Socie, 2003; 

Nikolaidis et al., 2005).  For example, in fatigue problems, strain-life fatigue relationship 

is expressed as   

    
' '

'2 2
2

b cf f
f f fN N

E

 



   (2.1) 
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where '
f  is the strain amplitude, E  is the Young’s modulus, fN  is the crack initiation 

fatigue life, '
f  and b are the fatigue strength coefficient and exponent, and '

f  and c are 

fatigue ductility coefficient and exponent, respectively.  

Figure 2.1 shows 29 experimental data set of the fatigue strength coefficient '
f  

vs. fatigue strength exponent b, and fatigue ductility coefficient '
f  vs. fatigue ductility 

exponent c of the SAE 950X high strength low alloy (Socie, 2003). As shown in Figure 

2.1 (a) and (b), these variables are negatively highly correlated where the correlation 

coefficients between '
f  and b and the one between '

f  and c are calculated as � 0.828 

and � 0.906, respectively.  

 

 (a) '
f  and b           (b) '

f  and c 

Figure 2.1. 29 Paired Data Obtained from 950X Steel (Socie, 2003) 
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It is known that '
f  and '

f  follow lognormal CDF and b and c follow Gaussian 

CDF (Socie, 2003). However, since the marginal distribution types of two correlated 

variables are different, i.e., '
f  has a lognormal CDF and b has a Gaussian CDF, the joint 

Gaussian CDF, which is commonly used as a joint CDF of correlated variables, cannot be 

used because the joint Gaussian CDF means that the marginal CDFs of both random 

variables are Gaussian. Thus, when the marginal distribution types are mixed and random 

variables are correlated, a joint CDF that has different types of marginal CDFs needs to 

be used.  

In addition, it could happen in real applications that marginal CDFs are Gaussian, 

but the joint CDF is not Gaussian. The following example shows an exhaust manifold 

used on a Chrysler 5.2L engine, as shown in Figure 2.2. The paired data between two 

random variables X  and Y  are collected from a machine capability study performed on 

the machine builder’s floor at Chrysler Corporation (Pham, 2001).  Figure 2.3 (a) shows 

the scatter plot of the data. Using the data, the mean values and standard deviations of X  

and Y are obtained as 8.945X  , 0.817Y  , 1.569 3X E   , and 1.514 3Y E   , 

respectively, and the correlation coefficient between the two variables is calculated as 

0.401. As seen in Figure 2.3, the normality assumption for each margin seems to be 

acceptable from the normal Q-Q plots, which are graphical ways of diagnosing how well 

the Gaussian distribution describes given data (Pham, 2006). However, the joint PDF 

does not seem to fit the joint Gaussian PDF because the data are not symmetrically 

distributed. The data are densely distributed in the lower-left end, but they are widely 

spread out in the upper-right end. Based on the scatter plot of the data, a non-Gaussian 

joint PDF, which is modeled by a copula, might better describe the data than the joint 
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Gaussian PDF. Therefore, the copula needs to be used to model various types of joint 

CDFs of input random variables. 

 
Figure 2.2. Exhaust Manifold (Pham, 2001)  

 

(a) Scatter Plot                      (b) Gaussian PDF              (c) non-Gaussian PDF 

Figure 2.3. Scatter Plot of Data and PDF Contours between X and Y (Pham, 2006) 

 

2.3 Basic Definition of Copulas 

The word copula originates from a Latin word for “link” or “tie” that connects 

different things. In statistics, the definition of copula is stated by Nelson (1999): 
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“Copulas are functions that join or couple multivariate distribution functions to their one-

dimensional marginal distribution functions. Alternatively, copulas are multivariate 

distribution functions whose one-dimensional margins are uniform on the interval [0, 1].” 

According to Sklar’s theorem (Nelson, 1999), if the random variables 

 1, ,
T

nX XX   have marginal distributions    
1 1 , , and

nX X nF x F x , then there exists 

an n-dimensional copula C such that 

       
1 1,..., 1 1,..., ,...,

n nX X n X X nF x x C F x F x θ  (2.2) 

where   
1 ,..., 1,...,nX X nF x x  is the joint CDF of X  and θ  is the matrix of correlation 

parameters between 1,..., nX X . If marginal distributions are all continuous, then C is 

unique. Conversely, if C is an n-dimensional copula and marginal CDFs are given, then 

the joint distribution is an n-dimensional function of marginal CDFs (Nelson, 1999). By 

taking the derivative of Eq. (2.2), the joint PDF is obtained as 

         
1 1,..., 1 1

1

, , , ,
n n i

n

X X n X X n X i
i

f x x c F x F x f x


 θ   (2.3) 

where    1
1

1

, ,
, ,

n
n

n
n

C z z
c z z

z z




 

θ
θ





 is the copula density function with  

ii X iz F x , 

and  
iX if x  is the marginal PDF of iX  for  1, ,i n  . 

Since the joint CDF is expressed as a function of marginal CDFs, it is readily 

possible to model a joint CDF using marginal CDFs and correlation parameters θ  that 

can be obtained from the experimental data in real applications. Moreover, since the 

copula decouples marginal CDFs and the joint CDF, the joint CDF modeled by the 

copula can be expressed for any types of marginal CDFs. For example, Figure 2.4 shows 

PDF contours obtained from the Gaussian copula but with different types of marginal 
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distributions. Even though the same copula is used, various types of joint distributions 

can be generated according to the marginal distribution types. Thus, the copula can be 

used for constructing the joint CDF in real applications that have correlated input 

variables with a joint CDF but with different types of marginal CDFs of the input 

variables. 

  

(a) Gaussian Copula + Gaussian Margins       (b) Gaussian Copula + Weibull Margins 

Figure 2.4. PDF Contours of Gaussian Copula with Different Marginal Distributions 

To model the joint CDF using the copula, the matrix of correlation parameters θ  

needs to be obtained from the experimental data. Since various types of copulas have 

their own correlation parameters, it is desirable to have a common correlation measure to 

obtain the correlation parameters from the experimental data.  



20 
 

 

2.4 Correlation Measures  

Since the correlation parameters among random variables are used in a copula, a 

natural way to measure the correlation between random variables is through a copula. 

Many of the properties and correlation measures associated with copulas are scale 

invariant under monotonically increasing transformations of the marginal distributions 

because copulas are invariant under monotonically increasing transformation of the 

marginal distributions. This is a desirable property for correlation measures because if the 

correlation measure depends on the scale, it cannot be generally used to measure the 

dependence between random variables. For example, Pearson’s rho is most commonly 

used in practice as a correlation measure. However, since Pearson’s rho is not a copula-

based correlation measure and only measures a linear correlation between random 

variables, it needs to be limitedly used as a correlation measure for the joint elliptical 

distribution. On the other hand, copula-based correlation measures such as Spearman’s 

rho and Kendall’s tau, which are also called rank correlation coefficients, can be widely 

used for various types of copulas.  

The rank correlation coefficient was first introduced by Spearman, who was a 

psychologist, in 1904. In psychology, more than in any other science, it is hard to find a 

measure that estimates correlation between two variables because there are some cases 

where correlation cannot be measured quantitatively. For instance, the dependence 

between hereditary qualities of brothers cannot be quantitatively measured if Pearson’s 

rho, which requires specific values of two variables, is used. On the other hand, if 

children of a school are divided into conscientious and non-conscientious group, the 

correlation can be measured by counting how much brothers tend to be in the same 
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division. Thus, in that case, comparison (ranking) of two groups is a better way to 

measure the dependence rather than measuring Pearson’s rho. The rank does not change 

under strictly increasing function; hence it can be expressed as copulas. 

To measures the degree of correspondence between two variables, the 

correspondence should be mathematically defined. Concordance is one way of expression 

for correspondence. If large values of one tend to be associated with large values of the 

other and small values of one with small values of the other, two variables are said to be 

concordant. Likewise, if large values of one tend to be associated with small values of the 

other, two variables are called discordant. Since the copula plays an important role in 

concordance, and dependence measures are also associated with the concordance, a 

concordance function Q  needs to be introduced. The concordance is the difference 

between the probability of concordance and the probability of discordance for a pair of 

random vectors  1 1,X Y  and  2 2,X Y , and is defined as (Nelson, 1999) 

      1 2 1 2 1 2 1 20 0Q P X X Y Y P X X Y Y               (2.4) 

where  1 1,X Y  and  2 2,X Y  are independent vectors of continuous random variables 

with joint distributions       1 1 1
, ,H x y C F x G y   and     2 2 2,H C F x G y   , 

respectively, with same marginal distributions  u F x  and  v G y .  

Since the random variables are continuous, 

     1 2 1 2 1 2 1 20 1 0P X X Y Y P X X Y Y              . Thus, Eq. (2.4) can be 

rewritten as 

   1 2 1 22 0 1Q P X X Y Y        (2.5) 
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where       1 2 1 2 1 2 1 2 1 2 1 20 , ,P X X Y Y P X X Y Y P X X Y Y           , and  

 1 2 1 2,P X X Y Y   is obtained as (Nelsen, 1999) 

 
   

         2

1 2 1 2 2 1 2 1

2 2 1 1

, ,

, ,

P X X Y Y P X X Y Y

C F x G y dC F x G y 

    

 R
 (2.6) 

by integrating over the distribution of one of vectors, either  1 1,X Y  or  2 2,X Y with 

   2 , ,     R . Employing  u F x  and  v G y , Eq. (2.6) is written as 

      1 2 1 2 2 2 1 1, , ,
2I

P X X Y Y C u v dC u v      (2.7) 

where 2I = I × I  (  0,1I = ). Likewise,  

      1 2 1 2 2 2 1 1, 1 , ,
2I

P X X Y Y u v C u v dC u v          (2.8) 

Since  1 ,C u v   is the joint CDF of uniform variables U  and V ,      1

2
E U E V  . 

Thus, Eq. (2.8) becomes 

 
     

   
22 1 1 2 2 2 1 1

2 2 1 1

1 1
, 1 , ,

2 2

, ,
2I

P X X Y Y C u v dC u v

C u v dC u v

 

 

     






I  (2.9) 

Substituting Eq. (2.7) and (2.9) into Eq. (2.5), Eq. (2.5) can be expressed as  

      1 2 2 2 1 1, 4 , , 1
2I

Q Q C C C u v dC u v      (2.10) 

Using Eq. (2.10), correlation measures associated with copulas, Spearman’s rho and 

Kendall’s tau, can be expressed in terms of the concordance function. 
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2.4.1 Linear Correlation Coefficient (Pearson’s Rho)  

Pearson’s rho, which is also called a product moment correlation coefficient, was 

first discovered by Bravais (1846) and was developed by Pearson (1896). Pearson’s rho 

indicates the degree of linear relationship between two random variables as follows: 

 
 ,

X Y

Cov X Y


 
  (2.11) 

where X and Y  are standard deviations of X  and Y , respectively and  ,Cov X Y  is 

the covariance between X  and Y . Since Pearson’s rho only indicates the linear 

relationship between two random variables, it is not a good measure for nonlinear 

relationship between two random variables, which often occurs in practical engineering 

applications. If the given data follows a joint CDF modeled by a non-elliptical 

distribution, another measure needs to be introduced to estimate the dependency between 

random variables. Therefore, Pearson’s rho is only valid when the joint distribution is 

modeled by an elliptical. 

 

2.4.2 Spearman’s Rho  

The Spearman’s rho is the special case of the Pearson’s rho in which paired 

samples are converted to rankings before calculating Eq. (2.11). Thus, the sample version 

of the Spearman’s rho is given as (Spearman, 1904; Kendall, 1938) 

  

2

1
2

6
1

1

ns

i
i

s

d
r

ns ns
 




 (2.12) 

where id  is the difference of two rankings and ns is the number of samples. 
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Employing the concordance function shown in Eq. (2.4), the Spearman’s rho is 

defined to be proportional to the probability of concordance minus the probability of 

discordance between two random vectors  1 1,X Y  and  2 3,X Y  with same marginal 

distributions  u F x  and  v G y , but with different copulas,  

      1 , ,H x y C F x G y   of  1 1,X Y  and        2 , ,H x y x y F x G y    of 

 2 3,X Y  where   is an independent copula, uv  . Thus, the population version of 

Spearman’s rho is defined as (Nelsen, 1999) 

       1 2 1 3 1 2 1 33 0 0s P X X Y Y P X X Y Y                (2.13) 

Here, the multiplication of 3 is to make Spearman’s rho have ranges 1 to 1. Using Eq. 

(2.10), Eq. (2.13) can be rewritten in terms of a copula as 

      2 2
3 , 12 , 3 12 , 3s I I
Q C uvdC u v C u v dudv            (2.14) 

Using Eq. (2.14), the Spearman’s rho s  can be expressed as a function of the 

correlation parameter   if the copula type is known as shown in Table 2.1. Table 2.1 

shows Spearman’s rho expressed as a function of the correlation parameter,  s g  , 

for some copulas such as Frank, FGM (Farlie-Gumbel-Morgenstern), and Gaussian 

(Bacigál and Komorníková, 2006; Trevedi and Zimmer, 2007). In practical applications, 

since only samples are available, the Spearman’s rho is calculated using Eq. (2.12) and 

then the correlation parameter is estimated using Eq. (2.14) or explicit functions such as 

Table 2.1. Still, many other copulas do not have explicit functions or have complicated 

formulations as shown in Table 2.1. Thus, the correlation parameters of the copulas not 
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having explicit formulations of Spearman’s rho should be calculated by implicitly solving 

Eq. (2.14). 

Table 2.1. Spearman’s Rho and Its Domain 

Copula  s g   s s 
 

Clayton Complicated form  0,1

AMH* Complicated form  0.271064,0.478407

Gumbel No closed form  0,1  

Frank     ** **
1 2

12
1 D D 


      1,1 \ 0

 

FGM 
3


  1/ 3,1/ 3

 

Gaussian 
6

arcsin
2




  1,1
 

*AMH: Ali-Mikhail-Haq,
 

 **

0 1

kx

k k t

k t
D dt

e






 

 

2.4.3 Kendall’s tau  

The sample version of Kendall’s tau is defined in terms of concordance (Kruskal, 

1958; Hollander and Wolfe, 1973; Lehmann, 1975). Let ns  paired samples be 

     1 1 2 2, , , , , ,
T

ns nsx y x y x y    randomly generated from continuous random variables 

of X  and Y . Among 
2

ns 
 
 

 distinct paired samples, two paired samples  ,i ix y  and 

 ,j jx y  are concordant if i jx x  and i jy y  or if i jx x  and i jy y . Otherwise, those 

are discordant. Let c  denote the number of concordant pairs and d  denote the number of 
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discordant pairs. Since the Kendall’s tau is the probability of concordance minus the 

probability of discordance, the sample version of Kendall’s tau is defined as 

   /
2

nsc d
t c d

c d

 
      

 (2.15) 

The population version of Kendall’s tau for two continuous random variables X  

and Y  with a joint distribution is similarly defined as 

      1 2 1 2 1 2 1 20 0P X X Y Y P X X Y Y                (2.16) 

According to the definition of the Kendall’s tau, copulas of  1 1,X Y  and  2 2,X Y  have a 

common copula,     ,C F x G y  , the population version of the Kendall’s tau can be 

defined as 

      2
, 4 , , 1

I
Q C C C u v dC u v       (2.17) 

using the concordance function in Eq. (2.10).  

 If only the number of samples is available, the Kendall’s tau can be calculated 

using Eq. (2.15). If Kendall’s tau is known, then the correlation parameter of the copula 

can also be calculated by using the explicit function of Kendall’s tau as shown in Table 

2.2 or by using Eq. (2.17) implicitly. In most cases, Kendall’s tau can be expressed as a 

function of the correlation parameter as shown in Table 2.2. The domain of Kendall’s tau 

is defined according to the copula type. More detailed information on Spearman’s rho 

and Kendall’s tau is presented by Kruskal (1958). 
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Table 2.2. Kendall’s Tau and Its Domain 

Copula  g      

Clayton 
2

1
2 




  0,1  

AMH    2

2

1 ln 12
1

3

  


  
  0.181726,1/ 3  

Gumbel 11     0,1  

Frank 
0

4 1
1 1

1t

t
dt

e



 
         1,1 \ 0  

A12 
2

1
3

   1/ 3,1  

A14 
2

1
1 2




  1/ 3,1  

FGM 2 / 9   2 / 9, 2 / 9
 

Gaussian 
2

arcsin


  1,1
 

 

2.5 Commonly Used Copulas  

In this section, two commonly used copulas—the elliptical copulas and 

Archimedean copulas—are introduced. These copulas are the most popular because they 

can be extended to multivariate distributions and are easy to handle because of their 

tractable characteristics. For example, elliptical copulas provide a linear transformation 

from original variables to standard Gaussian variables, and thus it is easy to transform 

from one to another. In the case of Archimedean copulas, each copula has a unique 

generator function, and the generator is used to calculate the correlation measure, 

Kendall’s tau. Thus, Kendall’s tau can be easily obtained without using Eq. (2.17), which 

requires double integration on 2I , as will be explained in Section 2.5.2. 
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2.5.1 Elliptical Copulas 

Elliptical copulas are copulas of elliptical distributions. A random variable X  has 

an elliptical distribution, if and only if there exists S , R , and A  that satisfy 

 R X = μ+ AS μ+ AY  (2.18) 

where R  is a non-negative random variable, which is independent of k-dimensional 

uniformly distributed random vector S , and a d k  matrix A  with TAA = P  where P  

is covariance matrix, and d  and k  are the number of random variables in X  and S , 

respectively (Embrechts et al., 2003; Stander, 2006). It is only considered that rank (A) =

d k  and P  is a positive definite matrix with a full rank. When 2R  has a chi-square 

distribution with d  degree-of-freedom, Y  has a standard Gaussian distribution  N 0,1 , 

and, accordingly, X  has a Gaussian distribution  N μ,P  for d-dimensional variables. If 

2 /R d  has F distribution with d  and   degrees-of-freedom, Y  has a standard t 

distribution  ,T  0,1  and X  has a t distribution with  , ,T  P μ, P  for d  dimensional 

variables. The t distribution and Gaussian distribution originate the t copula and the 

Gaussian copula, respectively (Pham, 2006).  

 The Gaussian copula is defined as the joint Gaussian CDF of standard Gaussian 

variables 1
1( )z , ···, 1( )nz  as 

 1 1
1 1( , , ) ( ( ), , ( ) ), n

n nC z z z z I 
     PP P z   (2.19) 

where  
ii X iz F x

 
is the marginal CDF of iX  for 1, ,i n  , and P  is the covariance 

matrix consisting of correlation coefficients, Pearson’s rho, between correlated random 

variables.  1   represents the inverse of marginal standard Gaussian CDF defined as 
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  
21

exp
22

x t
x dt



 
   

 
  (2.20) 

 and   P is the joint Gaussian CDF, which is expressed as a multi-dimensional integral 

as 

  
 

     1

/ 2

1 1
exp

22

nx x T

n d
 

        
-1

P x t μ P t μ t  (2.21) 

for  1, ,
T

nx xx  with a mean vector  1, ,
T

n μ  . If the marginal CDFs are 

Gaussian, then the joint CDF modeled by the Gaussian copula is the joint Gaussian CDF 

as shown in Figure 2.4 (a). When the marginal CDFs are not Gaussian, various types of 

joint distributions can be generated using the Gaussian copula as seen in Figure 2.4 (b).  

The t copula can be constructed using t distribution like the Gaussian copula 

originated from the Gaussian distribution. The t copula is defined as a multivariate t 

distribution of standard t variables with  , ,T  P 0, P  where   is the degree of freedom. 

       1 1
1 , 1, , , , , ,T n nC z z T T z T z     PP P   (2.22) 

where P  is the covariance matrix and  1T
   is the inverse of the standard student t 

distribution with   degree of freedom defined as 

  
 

1
2 2

1
2

1
/ 2

x t
T x dt







 






       
  

  (2.23) 

where     is the gamma function, which is defined as  

   1

0

z tz t e dt
      (2.24) 

The joint t distribution is given by 
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     
 

   1
1 2

,

/ 2
1

/ 2

n

n
T

x x

n n

n
T d






  






 

       
   

 P

t μ P t μ
x t

P
  (2.25) 

Note that a Gaussian copula with Gaussian marginal CDFs is the same as a joint 

Gaussian CDF. However, a t copula with t marginal CDFs might not be a joint t 

distribution. A joint t distribution must have same degrees of freedom at all marginal 

CDFs. In contrast, the t copula with t marginal CDFs can have different degrees of 

freedom at each marginal CDF, which provides more flexibility in modeling heavily 

tailed data (Pham, 2006).  

Figure 2.5 shows the PDF contours obtained from t copula with marginal standard 

Gaussian distributions for different degrees of freedom,  =1 and  =5. The same copula 

and marginal distributions are used, but the shapes of the joint distributions can be quite 

different because of the different degrees of freedom.   

 

(a)  =1      (b)  =5 

Figure 2.5. PDF Contours of t Copula with Marginal Gaussian Distributions for Different 
Degrees of Freedom 
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2.5.2 Archimedean Copulas 

The Archimedean copula is constructed in a completely different way than the 

elliptical copula. An important component of constructing Archimedean copulas is a 

generator function, which is a complete monotone decreasing function. The function  

 t  is completely monotonic on an interval [0,1]I   if it is continuous and has 

derivatives of all orders that alternate in sign 

    1 0, 1,2,
k

k

d
t k

d      (2.26) 

If     is a continuous and strictly decreasing function from  0,1  to  0,  such 

that  0    and  1 0   and the inverse 1

  is completely monotonic on  0, , 

then an n-copula, which is called an Archimedean copula, for all 2n   can be defined as 

      1
1 1, , n nC z z z z            (2.27) 

Each Archimedean copula has a corresponding unique generator function, and the 

generator function provides copulas, as seen in Eq. (2.27). In case of the Archimedean 

copulas, once the generator is provided, Kendall’s tau can be obtained as 

 
 
 

1

'0
1 4

t
dt

t








    (2.28) 

Unlike Kendall’s tau, there is no explicit formulation that estimates Spearman’s rho using 

the generator. Table 2.3 presents copula functions, generator functions, and domains of 

correlation parameters for selected Archimedean copulas. FGM and Gaussian copulas are 

not shown in this table because those are not Archimedean copulas. Figure 2.6 shows 

PDF contours obtained from Clayton, Gumbel, Frank, A12, and A14 using marginal 

standard Gaussian distributions for  = 0.5 . 
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Table 2.3. Copula Functions, Generator Functions, and Domains of Correlation 
Parameters 

Copula  ,C u v    t     

Clayton   1/
1u v

       1
1t 


    0,  

AMH    / 1 1 1uv u v      ln 1 /t t     1,1  

Gumbel     1/

exp ln lnu v
         ln t

   1,  

Frank 
  1 11

ln 1
1

u ve e

e

 



 



  
  
  

 1
ln

1

te

e













  , 

A12    
11/

1 11 1 1u v
 


          

 
1

1
t


  
 

  1,  

A14    
1/

1/ 1/1 1 1u v
  


          
 1/ 1t

    1,  

 

 

Figure 2.6. PDF Contours of Selected Archimedean Copulas Using Marginal Standard 
Gaussian Distributions for 0.5   
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CHAPTER III 

IDENTIFICATION OF MARGINAL AND JOINT CUMULATIVE 

DISTRIBUTION FUNCTIONS 

 

3.1 Introduction 

To carry out the RBDO, marginal and joint distributions of input random 

variables need to be correctly identified and accurately quantified, which is challenging 

especially when the input variables are correlated and only limited data are available. In 

this study, a copula is utilized to model the joint CDF of the input variables using limited 

information such as marginal CDF types (if they are known) and given test data. Since 

the correct identification of the copula is necessary to model the correct joint CDF, two 

statistical methods, the goodness-of-fit test (GOF) and the Bayesian method, can be used 

to identify a copula that best describes given experimental data. In practical applications, 

certain input variables are known to follow specific marginal CDF types; for example, 

some fatigue material properties are known to follow lognormal CDFs. However, if the 

input marginal CDF type is not known, it is necessary to identify the marginal CDF type 

from given data. As the GOF test and the Bayesian method are used to identify the copula, 

they can also be used to identify the marginal CDFs.  

Section 3.2 illustrates the GOF test and the Bayesian method for the identification 

of marginal CDFs. Section 3.3 explains the GOF test and the Bayesian method for the 

identification of the copula. Section 3.4 compares the GOF test and the Bayesian method 

to show which method more effectively identifies correct marginal CDFs and copula 

from data sets generated from given true joint CDFs. Section 3.5 illustrates numerical 
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examples and a fatigue problem to show how the Bayesian method, which is proposed to 

be used in this study, works. 

 

3.2 Identification of Marginal CDFs 

The two most commonly used methods for determining marginal CDFs for the 

given data are the GOF test and the Bayesian method. The GOF test has been developed 

and widely used to identify the marginal CDF and calculate its parameters, such as mean 

and standard deviation. However, since the GOF test relies on those parameters estimated 

from samples, if the parameters are incorrectly estimated, then the wrong marginal CDF 

might be identified. On the other hand, since the Bayesian method calculates weights to 

identify the marginal CDF by integrating the likelihood function over one parameter, 

either mean or standard deviation, it is less dependent on the estimation of the parameter 

than the GOF test. Therefore, the Bayesian method is preferred over the GOF test. 

 

3.2.1 Goodness-of-fit Test 

The most natural way of checking the adequacy of a hypothesized CDF is to 

compare the empirical CDF and the hypothesized CDF. There are several types of GOF 

tests: Chi-square, Cramér-von Mises, Kolmogorov-Smirnov (K-S), etc. The Chi-square 

test, which compares the difference between the empirical PDF and the hypothesized 

PDF, requires sufficient data, so that it can be used only for a large number of data. The 

Cramér-von Mises test is based on the integrated difference between an empirical CDF 

and a hypothesized CDF, weighted by the hypothesized PDF. The Cramér-von Mises test 

is known as a more powerful method than the K-S test, but its application is limited to the 
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symmetric and right-skewed CDFs, unlike the K-S test, which is applicable to all types of 

CDFs (Cirrone et al., 2004). Thus, in this study, the K-S test is compared with the 

Bayesian method.  

The K-S test compares the empirical CDF and the hypothesized (or theoretical) 

CDF as 

    maxn X n
x

D F x G x    (3.1) 

where  XF x  and  nG x are the hypothesized CDF and the empirical CDF, respectively. 

Since nD  is a random variable, the CDF of nD  is related to a significance level   as 

   1n nP D D     (3.2) 

for the confidence level, 1  . nD  is a critical value obtained from a standard 

mathematical table presented by Haldar and Mahadevan (2000). The maximum 

difference between  X iF x  and  n iG x  of the ith sample ix  for 1, ,i ns   is calculated 

as 

    max

1
maxn X i n i

i ns
D F x G x

 
   (3.3) 

If the maximum difference max
nD  calculated from samples is smaller than nD , the null 

hypothesis that the given samples come from the hypothesized CDF is accepted; 

otherwise, it is rejected. Likewise, the p-value also can be used to test the null hypothesis. 

The p-value is a measure of how much evidence we have against the null hypothesis, and 

calculated as the CDF value of nD . If the p-value is larger than  , then the null 

hypothesis is accepted; otherwise, it is rejected. The larger the p-value, the more strongly 

the test accepts the null hypothesis. Much like the Bayesian method uses the calculated 
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weights of candidate marginal CDFs, which will be explain in Section 3.2.2, to identify a 

marginal CDF, the K-S test uses the calculated p-values of candidate marginal CDFs to 

identify a marginal CDF. In the K-S test, since nD  is known to follow the Kolmogorov 

distribution, the p-value is calculated from the Kolmogorov CDF at 
max
nD . Accordingly, 

using the calculated p-values, a marginal CDF with the highest p-value is selected as the 

best fitted marginal CDF in the K-S test. 

 

3.2.2 Bayesian Method 

The Bayesian method can be used to identify the best fitted marginal CDF among 

candidate CDFs by calculating the weights of the candidate CDFs to select the one with 

the highest weight. Consider a finite set  qs s  consisting of candidate marginal CDFs 

kM , 1, ,k q  , where s  is a set of all marginal CDFs and q is the number of the 

candidate marginal CDFs. The Bayesian method consists of defining q hypotheses: 

kh : The data come from marginal CDF kM , 1, ,k q  . 

The probability of each hypothesis kh  given the data D  is defined as 

      
 

Pr , Pr
Pr ,

Pr
k k

k

D h I h I
h D I

D I
  (3.4) 

where  Pr ,kD h I  is the likelihood function,  Pr kh I  is the prior on the marginal CDF, 

and  Pr D I  is the normalization constant with any relevant additional knowledge I . 

These terms will be explained in detail in the following. 
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First, consider the likelihood function,  Pr ,kD h I
 
in Eq. (3.4). Under the 

hypothesis kh  that the data D  come from the marginal CDF kM , the probability of 

drawing the data D  for the hypothesis on kM is expressed as a likelihood function as  

       
1

Pr , , , , , ,
ns

k k i
i

D h I f x a b     


  (3.5) 

where ix is the ith sample value. Since each marginal PDF kf  has its own parameters a 

and b, common parameters such as mean or standard deviation need to be used. For most 

marginal CDFs, their own parameters (a and b) are expressed as functions of mean and 

standard deviation as shown in Table 3.1, and thus the likelihood function can be 

expressed in terms of mean and standard deviation for given samples.  

Table 3.1. Mean, Variance, and Their Domains 

Distribution  and 2      

Gaussian 2,    ,    0,  

Weibull 2 2 21 2
1 , 1a a

b b
              

   
  0,   0,  

Gamma 2 2,ab ab     0,   0,  

Lognormal  2 2 2/ 2 2 2, 1a b b a be e e       0,   0,  

Gumbel 2 2 20.5772 , / 6a b b      ,    0,

Extreme 2 2 20.5772 , / 6a b b       0,   0,  

Extreme Type-II 2 2 21 2 1
1 , 1 1b b

a b b
                           

  ,    0,  
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Introducing the mean or standard deviation as the nuisance variable, Eq. (3.4) can 

be rewritten as 

 

   
     

 

Pr , Pr , , ,

Pr , , , Pr , Pr

Pr

k k

k k

h D I h D I d

D h I h I I
d

D I

  

   

















 (3.6) 

or 

 

   
     

 

0

0

Pr , Pr , , ,

Pr , , , Pr , Pr

Pr

k k

k k

h D I h D I d

D h I h I I
d

D I

  

   













 (3.7) 

In Eq. (3.6),  Pr , , ,kh D I   is a function of mean with the standard deviation 

calculated from samples. Conversely, in Eq. (3.7),  Pr , , ,kh D I   is a function of 

standard deviation with the mean calculated from samples. For Eqs. (3.6) and (3.7), Eq. 

(3.5) is used as the likelihood function. The candidate marginal CDFs in the set qs  are 

Gaussian, Weibull, Gamma, Lognormal, Gumbel, Extreme, and Extreme Type II in this 

study. The formulas of candidate marginal PDFs are shown in Table 3.2 with domains 

a  and b  of parameters a and b, respectively. 

Second, consider the prior on the marginal CDF,  Pr kh I , in Eq. (3.4). Let the 

additional information I  be as follows:  

1I : Mean or standard deviation belongs to the set   or  , respectively, and 

each estimated    or   is equally likely; 

2I : For given  or , all marginal CDFs satisfying k
   or k

  are equally 

probable, where k
  and k

  are domains of    and   for the marginal CDF kM . 
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Table 3.2. Marginal PDFs and Domains of Marginal Parameters 

Distribution  ,f x a b  aa  bb  

Gaussian 
2

1 1
exp

22

x a

bb 

    
   

  ,    0,  

Weibull 
1

exp
b b

b x x

a a a

         
     

  0,   0,  

Gamma 
 
 

1 exp /a
a

x b
x

a b
 


  0,   0,  

Lognormal 
2

1 1 ln
exp

22

x a

bbx 

    
   

  ,    0,  

Gumbel 
1

exp exp
x a x a

b b b

          
  ,    0,  

Extreme 
1

exp exp
x a x a

b b b

        
  ,    0,  

Extreme Type-II 
1

exp
a a

a b b

b x x

             
  ,    0,  

 

The set   or   provides information on the interval of mean or standard 

deviation, respectively, that the user might know. For example, if the user knows the 

specific domain of   or  , the domain can be used to integrate the likelihood 

function for calculation of the weights of each candidate marginal CDF. However, if 

information on specific domain of   or   is not known, it can be assumed that 

 ,    or  0,   . In that case, the infinite domain cannot practically be used 

to integrate the likelihood function, and thus a finite range of   or   needs to be 

determined from samples such that   or  cover the wide range of the parameter. 

Using the first additional information 1I , the prior on   and   can be defined as  
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    1

1
,

Pr

0,

I











   
 

 (3.8) 

or 

    1

1
,

Pr

0,

I











   
 

 (3.9) 

where     is the Lebesgue measure, which is the interval length of 
  or  . 

Likewise, since all marginal CDFs are equally probable for k
   or k

  , the prior 

on the marginal CDF is defined as 

  2

1,
Pr , ,

0,
k

k

k

h I





 


 

 


 (3.10) 

or 

  2

1,
Pr , ,

0,
k

k

k

h I





 


 

 


 (3.11) 

In this study, it is assumed that the prior follows a uniform distribution, which 

means there is no information on the distribution of   or  . If it is known that the prior 

of   or   follows a specific distribution,  Pr   or  Pr  might be expressed as a PDF 

and can be used as the prior instead of Eq. (3.8) or (3.9). However, since the prior of  or 

  is usually unknown and the effect of the prior is negligible when the number of 

samples is enough (larger than 100 samples), Eq. (3.8) or (3.9) are used in most cases.   

Finally, consider normalization constant,  Pr D I
 
in Eq. (3.4). Substituting Eqs. 

(3.5) and (3.8)  (3.11) into Eqs. (3.6) and (3.7), Eqs. (3.6) and (3.7) can be rewritten as 



41 
 

 

           
1

1 1
Pr , , , ,

Pr k

ns

k k i
i

h D I f x a b d
D I  

    
  




  

 (3.12) 

or 

           
1

1 1
Pr , , , ,

Pr k

ns

k k i
i

h D I f x a b d
D I  

    
  




  

 (3.13) 

In Eqs. (3.12) and (3.13),  Pr D I  can be expressed as 

      
1

Pr Pr , Pr
q

k k
k

D I D h I h I


   (3.14) 

Since  Pr D I  is a constant, for convenience, it is not included to calculate weights. 

Accordingly, Eqs. (3.12) and (3.13) can be expressed as  

 
      

1

1
, , ,

k

ns

k k i
i

W f x a b d
 

    
  




  

 (3.15) 

or 

 
      

1

1
, , ,

k

ns

k k i
i

W f x a b d
 

    
  




  

 (3.16) 

The normalized weight for the marginal CDF kM  is calculated as 

 

1

k
k q

i
i

W
w

W





 (3.17) 

To numerically calculate the integrals in Eq. (3.15) and (3.16), the MATLAB 

function “quad”, which is a recursive adaptive Simpson quadrature (Gander and Gautschi, 

2000), is used. The recursive adaptive Simpson quadrature integrates a function over an 

interval, say  ,a b , using a simple quadrature rule; and then calculates the error between 

the integral calculated over  ,a b  and the sum of two integrals calculated over 
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subdomains  , / 2a a b    and   / 2,a b b   . If the error is less than the user-specified 

tolerance, then the integral calculated over  ,a b  is accepted. If it is not, the integral is 

recalculated by subdividing the interval of integration in two and applying the adaptive 

Simpson’s quadrature to each subinterval in a recursive way. The tolerance that is used in 

this study is 1.0E-6.  

In the Bayesian method for identifying the marginal CDF, there are two 

approaches that use mean or standard deviation as variables for calculating normalized 

weights, and thus it might be necessary to select one method. To compare the 

performances of the two approaches, averaged normalized weights over 100 trials are 

used. Let “Mean” and “Std.” be the methods using mean and standard deviation, 

respectively, as variables for the calculation of weights. Table 3.3 shows the averaged 

normalized weights for different means and for different samples when Gaussian, 

Weibull, Gamma, Lognormal, Gumbel, Extreme, and Extreme Type II are the original 

CDFs. The larger the normalized weights, the better identified each original CDF is. 

When Gaussian, Weibull, Gamma, Lognormal, and Gumbel are the original CDFs, the 

normalized weights using “Mean” are slightly better than those using “Std.” On the other 

hand, when Extreme and Extreme Type II are the original CDFs, the normalized weights 

using “Std.” are slightly better than those using “Mean.” For all cases, since one method 

is not always better than the other and the normalized weights calculated from two 

approaches are similar, both approaches can be used. However, “Mean” is better than 

“Std.” in more cases, so “Mean” is used in this study. 
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Table 3.3. Averaged Weights over 100 Trials Using Two Approaches 

Original 
Distribution 

ns 
2   10   

Mean Std. Mean Std. 

Gaussian 
30 0.300 0.273 0.264 0.232 
100 0.462 0.454 0.347 0.308 
300 0.731 0.702 0.427 0.389 

Weibull 
30 0.328 0.261 0.300 0.310 
100 0.544 0.484 0.495 0.477 
300 0.706 0.705 0.636 0.573 

Gamma 
30 0.240 0.213 0.246 0.200 
100 0.410 0.322 0.339 0.301 
300 0.750 0.617 0.347 0.337 

Lognormal 
30 0.240 0.233 0.253 0.200 
100 0.362 0.362 0.332 0.291 
300 0.597 0.558 0.399 0.383 

Gumbel 
30 0.230 0.224 0.308 0.327 
100 0.395 0.388 0.465 0.440 
300 0.636 0.590 0.651 0.616 

Extreme 
30 0.552 0.602 0.374 0.403 
100 0.885 0.927 0.497 0.527 
300 0.993 1.000 0.584 0.565 

Extreme Type-II 
30 0.481 0.586 0.338 0.392 
100 0.778 0.787 0.465 0.516 
300 0.875 0.916 0.605 0.669 

 

3.2.3 Comparison of Two Methods 

It is stated that the Bayesian method performs better in identifying the correct 

marginal CDF than the GOF test, but it is still valuable to compare the two methods 

numerically. Consider a set of random data with a different number of samples: ns =30, 

100, and 300, given that the original distribution is Gamma with (400,0.025)GM . The 

Gaussian, Weibull, Gumbel, Lognormal, Extreme, and Extreme Type II are selected as 

candidate distributions. All parameters of each CDF are calculated from =10.0 and 
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=0.5 using Table 3.1. The PDF shapes of the candidate distributions are shown in 

Figure 3.1.  

 

Figure 3.1. Marginal PDFs for  =10.0 and  =0.5 

In the GOF test, p-values are calculated and used to test the null hypothesis of 

each candidate CDF. In the Bayesian method, normalized weights are calculated to 

identify a correct marginal CDF. To compare the two methods, the p-value and 

normalized weights should be comparable, but they are not. The p-value is the probability 

of obtaining a value of the test statistic ( nD ) at least as extreme as the actually observed 

value, given that the null hypothesis is true. On the other hand, it is not the probability of 

the hypothesis (Sterne and Smith, 2000) from which the normalized weights originate. 

Thus, instead of directly using two values, it might be better to observe how often p-
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values and normalized weights are assigned to correct marginal CDF or CDFs with 

shapes similar to the correct one. 

Table 3.4 shows the sum of p-values and normalized weights over 100 trials when 

both methods are used. For a small number of samples, such as 30, the Bayesian method 

assigns most normalized weights to Gaussian, Gamma, and Lognormal distributions 

because the PDF shapes of Gaussian and Lognormal are very close to Gamma for the 

given mean  =10, as shown in Figure 3.1. On the other hand, the GOF test assigns p-

values to all candidate distributions almost evenly, which means the GOF test does not 

identify correct CDFs for a small number of samples. Further, since the p-values of all 

distributions are larger than 5 for a given significance level of 5%, the GOF test accepts 

all distributions as correct even though the PDF shapes of Weibull, Gumbel, Extreme, 

and Extreme Type II are quite different from Gamma (original), as shown in Figure 3.1.  

Table 3.4. Comparison of GOF with Bayesian Method for Identification of Marginal 
Gamma CDF 

Distribution 
ns =30 ns =100 ns =300 

GOF Bay. GOF Bay. GOF Bay. 
Gaussian 16.3 24.1 21.9 32.9 29.3 31.0 
Weibull 13.1 8.59 10.4 1.12 3.29 0.00 
Gamma 16.4 24.6 22.0 33.0 30.8 34.2 

Lognormal 16.5 24.7 21.9 32.4 30.7 34.8 
Gumbel 13.4 7.46 9.78 0.42 3.01 0.00 
Extreme 12.2 6.08 8.01 0.20 1.56 0.00 

Extreme type II 12.0 4.45 5.97 0.00 1.39 0.00 
 

For a large number of samples, such as 300, the GOF test identifies Gaussian, 

Gamma, and Lognormal CDFs. Still, the Bayesian method shows better performance than 
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the GOF tests in this example. It might be of some concern that the normalized weight of 

the original distribution is still not high, even for a large number of samples. However, 

the PDF shapes are very close to each other even at the tail end, which lead to similar 

optimum design in RBDO. Thus, it does not matter which of the three distributions is 

selected.  

 

3.3 Identification of Joint CDFs (Copulas) 

Just as two methodsthe GOF test and the Bayesian methodare used to identify 

marginal CDFs, two methods can be used to identify the correct copula. Since the GOF 

test relies on the correlation coefficient calculated from samples, the identification of the 

copula might not be correct due to the incorrectly calculated correlation coefficient. On 

the other hand, the Bayesian method calculates weights to identify the copula by 

integrating the likelihood function over the correlation coefficient, so that it is 

independent of the estimation of the parameter. Thus, the Bayesian method is preferred 

over the GOF test. 

 

3.3.1 Goodness-of-fit Test 

The GOF test compares the empirical copula nsC  calculated from given ns  

samples and a theoretical copula 
ns

C  with some parameter ns  calculated from the data. 

The GOF test for the identification of copula can be carried out by using the parametric 

bootstrap (Genest and Rémillard, 2005). Using the Cramér-von Mises statistic nsS , the 

null hypothesis 0H (that is, the data follow a specific copula type kC ) can be tested by 
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     2

1

ˆ ˆ
ns

ns

ns ns i i
i

S C U C U


   (3.18) 

where  ˆ / 1 for 1, ,i iU R ns i ns     is the empirical marginal CDF, and 

 1, ,
T

i i inR R R   is the rank of the samples for 1, , nX X . The empirical copula is 

defined as 

      
1

1 ˆ1 , 0,1
ns

n

ns i
i

C u U u u
ns 

    (3.19) 

where  ˆ1 iU u indicates “1” if ˆ
iU u ; otherwise, “0”. After obtaining the Cramer-von 

Mises statistic nsS  from the samples, the empirical copula *
,ns kC  and Cramér-von Mises 

statistic *
,ns kS need to be repeatedly estimated for every 1, ,k N   where N  is a large 

number (e.g., 1,000 ~10,000).  

As a result, an approximate p-value for the test based on the Cramer-von Mises 

statistic nsS  is given by 

  *
,

1

1
1

ns

ns k ns
k

p S S
N 

   (3.20) 

where  *
,1 ns k nsS S indicates “1” if *

,ns k nsS S ; otherwise, “0”. For some significance 

level, such as 5%, according to the p-value, the null hypothesis 0H  might be accepted or 

rejected. When the number of random variables is larger than three, a two-level 

parametric boot strap similar to the previously described one-level boot strap needs to be 

used. The detailed algorithm was implemented by Genest and Rémillard (2005).  

In recent years, various other GOF tests have been developed. For Archimedean 

copulas, Genest and Favre (2007) and Genest and Rémillard (2005) proposed a GOF test 
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statistic that compares the one-dimensional empirical function nsK  and the theoretical 

function 
ns

K  as 

       
nsnst ns K t K t    (3.21) 

where     Pr ,
ns nsK t C u v t    and    ,

1

1
1

ns

ns k ns
k

K t V t
ns 

 
 
with 

 , 1 1 2 2
1

1
1 ,

ns

k ns j k j k
j

V R R R R
ns 

   . As in the previous parametric boot strap, using 

another type of the statistic  , the p-value can be calculated. 

The GOF tests suggest a way to identify the correct copula, but they depend on 

the estimation of the correlation parameter ns . Further, for the second method, since the 

function K  is explicitly expressed only for Archimedean copulas, it cannot be used for 

non-Archimedean copulas because the function K cannot be algebraically formulated for 

non-Archimedean copulas (Genest and Rémillard, 2005).  

 

3.3.2 Bayesian Method 

As the Bayesian method is used to identify the correct marginal CDFs, it can also 

be used to identify the correct copula by calculating the weights of the candidate copulas 

to select the one with the highest weight. To calculate the normalized weights, Kendall’s 

tau is used as the variable for integrating the likelihood function. 

 Let a finite set  QS S  consist of candidate copulas kC , 1, ,k Q   where S  is 

a set of all copulas and Q  is the number of the candidate copulas. The Bayesian method 

consists of defining Q  hypotheses (Huard, 2006): 



49 
 

 

kH : The data come from copula kC , 1, ,k Q  . 

The probability of each hypothesis kH  given the data D  is defined as 

      
 

Pr , Pr
Pr ,

Pr
k k

k

D H I H I
H D I

D I
  (3.22) 

where  Pr ,kD H I  is the likelihood function,  Pr kH I  is the prior on the copula 

family, and  Pr D I  is the normalization constant with any relevant additional 

knowledge I .  

Under the hypothesis kH  (that the data D  come from the copula kC ), the 

probability of drawing the data D  for the hypothesis on kC is expressed as a likelihood 

function as 

    
1

Pr , , ,
ns

k k i i
i

D H I c u v 


  (3.23) 

where  ,i iu v  are ns  mutually independent pairs of data and calculated as   i X iu F x  

and  i Y iv F y , where  X iF x  and  Y iF y  are the marginal CDF values obtained from 

the given paired data  ,i ix y . Since it is assumed that the data D  come from the copula 

kC , the probability of drawing  D  from the copula kC  (likelihood function) is expressed 

as a copula density function kc . The paired data are independent of each other, so the 

likelihood function is expressed as multiplications of the copula density function values 

evaluated at all the data. Since each copula kC  has its own correlation parameter  , a 

common correlation measure, Kendall’s tau, needs to be used. Using the relationship 
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between the parameter and Kendall’s tau  kg  , as shown in Table 2.2, the 

correlation parameter can be expressed as  1
kg  .  

Using the Kendall’s tau as the nuisance variable, Eq. (3.22) can be rewritten as 

(Huard, 2006) 

          
 

1 1

1 1

Pr , , Pr , Pr
Pr , Pr , ,

Pr
k k

k k

D H I H I I
H D I H D I d d

D I

  
  

 
   (3.24) 

where Eq. (3.23) is used as the likelihood function. 

Let the additional information I  on the copula be as follows:  

1I : Kendall’s tau belongs to the set  , and each estimated    is equally 

likely; 

2I : For a given  , all copula families satisfying k
   are equally probable, 

where k
  is the domain of   for kC .  

The set   provides information on the interval of Kendall’s tau that the user 

might know. For example, based on the user’s experience, it might be known that the 

range of Kendall’s tau estimated between two interesting variables can have only a 

positive range  0,1  . However, if information on the correlation parameter between 

variables is not known, it can be assumed as  1,1   . Using the first additional 

information 1I , the prior on   can be defined as (Huard, 2006) 

    1

1
,

Pr

0,

I











   
 

 (3.25) 
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where     is the Lebesgue measure, which is the interval length of  . Likewise, since 

all copula families are equally probable for k
  , the prior on the copula family is 

defined as 

  2

1,
Pr ,

0,
k

k

k

H I








 

 


 (3.26) 

If it is known that the prior distribution of   follows a certain distribution,  Pr   

might be expressed as a specific distribution and can be used as the prior instead of Eq. 

(3.25). However, the prior of  is usually unknown, so Eq. (3.25) is commonly used in 

practical applications. 

Substituting Eqs. (3.23), (3.25), and (3.26) into Eq. (3.24), Eq. (3.24) can be 

rewritten as 

         1

1

1 1
Pr , ,

Pr k

ns

k k i i k
i

H D I c u v g d
D I 

 




 



  

 (3.27) 

In Eq. (3.27),  Pr D I  is expressed as (Huard, 2006) 

      
1

Pr Pr , Pr
Q

k k
l

D I D H I H I


   (3.28) 

However, the problem is that Eq. (3.28) is only valid when the data come from the set of 

the candidate copulas, and the candidate copulas do not have similar shapes. A procedure 

to calculate  Pr D I  is explained by Huard (2006), although the procedure is tedious. In 

this study, since  Pr D I  is a constant, it is not included for convenience. Accordingly, 

the computation of Eq. (3.27) can be expressed as the computation of the weights as  

 
    1

1

1
,

k

ns

k k i i k
i

W c u v g d


 




 



  

 (3.29) 
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where the “quad” function in MATLAB, which is the recursive adaptive Simpson 

quadrature, is used to integrate the likelihood function. 

The normalized weight of kC  is calculated as 

 

1

k
k Q

k
i

W
w

W





 (3.30) 

Since the Bayesian method selects one marginal CDF or copula that best 

describes the given data among candidates, the identified marginal CDF, or copula might 

not be the correct one. On the other hand, since some commonly used marginal CDFs are 

known and the total number of marginal CDF types is not large, it is easy to determine 

the candidate marginal CDFs and identify a correct CDF among them. However, since 

there exist plenty of copula types, it might be possible that the data come from an 

unknown copula that is not among the given candidate copulas.  A way of solving this 

problem is presented by Bretthorst (1996). 

 

3.3.3 Comparison of Two Methods 

Just as the GOF test and Bayesian method were compared for identification of 

marginal CDFs, two methods for identification of copulas are compared in this section. 

Consider a set of random data with a different number of samples: ns =30, 100, and 300 

for the original copula as Clayton with =0.4 where Clayton, Gumbel, Gaussian, Frank, 

A12, and A14 are selected as candidate copulas.  

Table 3.5 shows the sum of p-values and normalized weights over 100 trials. As 

shown in the table, for a small number of samples, the Bayesian method assigns 39.7 to 

the Clayton copula (original copula) whereas the GOF test assigns only 17.5 to the 
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correct copula. Further, the Bayesian method assigns the normalized weights according to 

the similarity of the copula shape, i.e., A12 is the most similar with Clayton, A14 is the 

second, and so on. On the other hand, the GOF test accepts all candidate copulas as 

correct copulas on the average (p-values are larger than 5), even though some copulas 

such as Gumbel have very distinct shapes with the Clayton copula. As the number of 

samples is increased up to 300, the performance of the GOF test improves, but the 

Bayesian method is still better than the GOF test in identifying copula.  

Table 3.5. Comparison of GOF with Bayesian Method for Identification of Copula 

Copula 
ns =30 ns =100 ns =300 

GOF Bay. GOF Bay. GOF Bay. 
Clayton 17.5 39.7 34.8 53.4 41.7 68.0 
Gumbel 13.4 5.55 0.39 0.00 0.00 0.00 
Gaussian 16.3 9.95 0.07 2.13 0.00 0.00 

Frank 16.2 9.81 2.58 2.45 0.00 0.00 
A12 18.2 20.1 31.0 25.9 34.9 21.6 
A14 18.3 14.9 30.5 16.0 23.3 10.4 

 

3.4 Effectiveness of Bayesian Method 

In this section, the effectiveness of the Bayesian method in identifying marginal 

CDFs and copula is studied for different numbers of samples and parameters. 

 

3.4.1 Identification of Marginal CDFs 

Given Gaussian, Weibull, Gamma, Lognormal, Gumbel, Extreme, and Extreme 

type II CDFs, the Bayesian method is tested to identify original CDFs using normalized 

weights over 100 trials where the number of samples is 30, 100, and 300. Figure 3.2 
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shows the sum of normalized weights over 100 trials for different numbers of samples 

when original CDFs, indicated by boxes on the name of the marginal CDFs, are given 

with  =2.0 and  =0.5.  

 

Figure 3.2. Sum of Normalized Weights over 100 Trials for  =2.0 and  =0.5 

For example, when the Gaussian CDF is original, samples (ns=30, 100, and 300) 

are randomly generated from the Gaussian CDF 100 times. Using the Bayesian method, 

the normalized weights are calculated from the 100 data sets. Adding up the normalized 

weights over 100 trials, the sum of normalized weights is approximately 30 for Gaussian, 

25 for Weibull, and 45 for the rest of the CDFs when ns=30.  Since the PDF shapes of 

Gaussian and Weibull CDFs are similar, as shown in Figure 3.3, the Weibull distribution 

has the second highest sum of normalized weight among candidate marginal CDFs. 
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Likewise, when Weibull is the original CDF, the Gaussian distribution has the second 

highest sum of normalized weight. On the other hand, when the CDFs with distinct PDF 

shapes such as Extreme and Extreme Type II are original, it is much easier to identify the 

original CDF.   

 

Figure 3.3. Marginal PDFs for  =2.0 and  =0.5 

When  =2.0 is changed to 10 with the same  =0.5, the PDF shapes become 

different from Figure 3.3. Figure 3.4 shows the sum of normalized weights over 100 trials 

when  =10.0 and  =0.5. In this case, the Gaussian, Gamma, and Lognormal CDFs are 

very close to each other even at the tail end, as shown in Figure 3.1. Thus, when those 

three CDFs are original, it is difficult to identify the correct CDF among three CDFs, and 

the normalized weights of Gaussian, Gamma, and Lognormal are rather similar to each 

other even if the number of samples is increased to 300. Even though the original CDF 
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may not be identified, since similar PDF shapes provide similar RBDO results, it does not 

matter which of the three CDFs is selected. For the CDFs with distinct PDF shapes, such 

as Weibull, Gumbel, Extreme, and Extreme Type II, it is much easier to identify the 

correct CDF even for larger mean  =10.0. 

 

Figure 3.4. Sum of Normalized Weights over 100 Trials for  =10.0 and  =0.5 

On the other hand, since the identified distribution generally fits to the given data, 

its tail behavior might be different from the one of the original CDF particularly when the 

number of samples is small. If the tail behavior of the identified distribution is quite 

different from the one of the original distribution, different tail behaviors yield different 

t ‒contours with a target reliability index t , which lead to different RBDO results. In 

practical applications, since experimental data is very limited, it could be hard to select a 
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distribution that has the same tail as the original distribution. For this, RBDO with a 

confidence level of the input model uncertainty is currently being investigated so that 

reliable optimum designs can be obtained. 

  

3.4.2 Identification of Joint CDFs 

In this study, different values of Kendall’s tau, i.e.,  =0.2, and 0.7, are used to 

study the effect of Kendall’s tau on identification of the correct copulas. The candidate 

copulas are selected as Clayton, AMH, Gumbel, Frank, A12, A14, FGM, Gaussian, and 

an independent copula, which is expressed as the multiplication of marginal CDFs,

 ,C u v uv . For different Kendall’s tau,  =0.2, and 0.7, the sum of normalized weights 

over 100 trials are calculated when each original copula is given.  

For small correlation coefficients such as  =0.2, since the PDF contours of most 

copulas are similar to each other except Clayton and Gumbel, as shown in Figure 3.5, it is 

not simple to identify the correct one. For instance, even though the original copula is 

AMH, the normalized weights of incorrect copulas such as the independent copula are 

high, especially for a small number of samples, ns =30 as shown in Figure 3.6. Therefore, 

a large number of samples are generally required to identify the correct copula when 

Kendall’s tau is small.  

When the correlation between two variables is more significant, for example, 

0.7  , it is easier to identify the correct copula because the copula shapes are quite 

distinct from each other, as shown in Figure 3.7. Accordingly, the correct copula can be 

easily identified with the highest normalized weight seen in Figure 3.8. 
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Figure 3.5. PDF Contours and Scatter Plots of Samples ( ns =600) for 0.2   

 

Figure 3.6. Sum of Normalized Weights over 100 Trials for  = 0.2  

 



59 
 

 

 

Figure 3.7. PDF Contours and Scatter Plots of Samples ( ns =300) for 0.7   

 

Figure 3.8. Sum of Normalized Weights over 100 Trials for  = 0.7 

In RBDO problems, if the shape of the selected copula is significantly different 

from the true copula - especially for high correlation - a wrong RBDO result will be 
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obtained. For instance, if the Clayton copula is the original copula, and other copulas 

such as Frank or Gaussian are wrongly selected, the RBDO result will be very different 

from the true RBDO result (Noh et al., 2007). However, if the correlation between input 

variables is not high, copulas such as AMH, Frank, FGM, and Gaussian, which have 

similar copula shapes, might provide quite similar RBDO results. Thus, 300 samples 

could be acceptable to identify the right copula even for small correlation coefficients. 

For large correlation coefficients, 100, or even 30 samples could be enough to identify 

correctly for copulas such as Clayton, Gumbel, and Frank.   

Once the input models are estimated, the RBDO can be carried, which will be 

explained in Chapter 4. However, when the input variables are correlated with non-

elliptical copulas, different transformation orderings might yield different RBDO results. 

For this, the more accurate reliability analysis method, MPP-based DRM, is used in 

Chapter 5. In the Chapter 6, combining all proposed methods, several numerical 

examples are tested to show how the RBDO using the MPP-based DRM is carried out 

based on the input model estimated from the Bayesian method.  
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CHAPTER IV 

FUNDAMENTAL CONCEPTS IN RELIBABILITY-BASED DESIGN 

OPTIMIZATION  

 

4.1 Introduction 

This chapter explains fundamental concepts in reliability-based design 

optimization (RBDO). Sections 4.2 and 4.3 explain the basic ideas of reliability analysis 

and inverse reliability analysis. For reliability analysis and inverse reliability analysis, the 

first-order reliability method (FORM) and the second-order reliability method (SORM) 

have been used most frequently. However, the FORM is not accurate for approximating 

the highly nonlinear function, and while the SORM is more accurate than the FORM, it is 

expensive to use. Thus, Section 4.4 illustrates the most probable point (MPP)-based 

dimension reduction method (DRM), which yields efficient and accurate reliability 

analysis and design optimization. Section 4.5 explains the RBDO process, which uses 

inverse reliability analysis. 

 

4.2 Reliability Analysis 

A reliability analysis involves calculation of probability of failure. The probability 

of failure, FP , is estimated by a multi-dimensional integral (Madsen et al., 1986) as 

   
  0

0 ( )F G
P P G f d


    XX

X x x  (4.1) 
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where X  is an n-dimensional random vector and  G X  is a constraint function where 

  0G X  is defined as failure. x  is the realization of the random vector X  and ( )fX x  is 

a joint PDF of X . However, it is difficult to compute the multi-dimensional integral 

analytically. Thus, it is necessary to use analytical approximations of this integral that are 

simpler to calculate. The FORM and SORM estimate the probability of failure by 

approximating the constraint function  G X  by first-order Taylor series expansion and 

second-order Taylor series expansion, respectively. Since the FORM and SORM are 

carried out in standard Gaussian variables, a transformation of the random variables into 

standard Gaussian variables will be introduced in the next section.  

 

4.2.1 Transformation 

Given n-dimensional random vector X  with a joint CDF,  FX x , transformation 

from random variables X  into independent standard Gaussian variables U  is defined by 

the Rosenblatt transformation (Rosenblatt, 1952) as the following successive 

conditioning:  
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    

    





 (4.2) 

where n is the number of random variables and  1 2 1, ,...,
iX i iF x x x x   is the conditional 

CDF of  iX  conditional on 1 1 2 2 1 1, , , i iX x X x X x    , which is defined as 
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The inverse transformation from the independent Gaussian variables U  into the 

random variables X  can be obtained from Eq. (4.2) as 
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 (4.4) 

Thus, once the joint CDF is identified using the Bayesian method explained in Section 3, 

the transformation can be carried out because the conditional CDF can be analytically 

obtained from the joint CDF.  

For the joint CDF modeled by an elliptical copula, since the independent standard 

Gaussian variable U  corresponds to the uniformly distributed variable S  in Eq. (2.18), 

the transformation from the correlated standard elliptical variables into independent 

standard Gaussian variables is linear as  

 1u L e  (4.5) 

where e  represents correlated standard elliptical variables, defined as  1

ii X ie F x       

for 1, ,i n  .  1   is the inverse of the elliptical CDF. If the elliptical copula is 

Gaussian, e  represents correlated Gaussian variables, which is the same as X  in Eq. 

(2.18). If it is a t copula, e  is a standard t variables X  over a random variable R , defined 

as / RX  in Eq. (2.18) where 2R  has an inverse gamma distribution 
1 1

,
2 2

Ig   
 
 

.  L-1 is 

the inverse of a lower triangular matrix L obtained from the Cholesky decomposition of 
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reduced covariance matrix  ' '
ijP . That is, '  TP LL  and each entry of the matrix L is 

obtained as 
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


 (4.6) 

Since the reduced correlation coefficient '
ij  between iE  and jE   is different from 

the correlation coefficient ij  between iX  and jX , it needs to be calculated from ij . The 

reduced correlation coefficient '
ij  is obtained from the correlation coefficient ij  using 

the following equation: 

  ', ;ij i j i j i j ij i jE e e de de    
 

 
         (4.7) 

where   /
i ii i X XX      is the normalized random variable of iX , i  is the realization 

of i , and     represents the elliptical PDF. The reduced correlation coefficient '
ij  is 

obtained by implicitly solving Eq. (4.7) using a commercial program such as MATLAB.  

If the elliptical variable e  is the Gaussian variable, '
ij  can be approximated by 

 '
ij ij ijR   (4.8) 

where 
2 2 2

ij i i ij ij ij i j j ij j i jR a bV cV d e f V gV hV k V lVV             , iV  and jV  are 

the coefficients of variation  /V  
 
for each variable, and the coefficients depend on 

the marginal distribution types of input variables. When the marginal CDFs are Gaussian 

and the joint CDF is Gaussian, the reduced correlation coefficient is the same as the 

original correlation coefficient, which means 1ijR  . For various types of marginal 
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distribution types, the corresponding coefficients are given by Madsen (1986) and 

Ditlevsen (1996). The maximum error of the estimated correlation coefficient obtained 

from Eq. (4.8) is normally much less than 1%, and even if the marginal exponential CDF 

or negative correlation is involved, the maximum error in the correlation coefficient is at 

most up to 2% (Ditlevsen, 1996). Therefore, the approximation provides adequate 

accuracy with less computational effort. When e  is the Gaussian variable, Eq. (4.5) is 

called as Nataf transformation (Madsen et al., 1986; Ditlevsen, 1996). 

The linear transformation in Eq. (4.5) can be expressed in terms of the 

eigenvectors of the reduced covariance matrix  'ijP'  and is called an orthogonal 

transformation (Madsen, 1986). The linear transformation can be limitedly used for 

elliptical copulas. If the identified copulas are not elliptical, it yields significant errors. 

 

4.2.2 First-Order Reliability Method (FORM) 

To calculate the probability of failure of the constraint function using the FORM 

and SORM, it is necessary to find a contact point on the limit state function, which has 

the shortest distance between the limit state function and the origin in the independent 

Gaussian space (U-space), as shown in Figure 4.1. The limit state function is transformed 

from X-space to U-space using the Rosenblatt transformation, defined as 

( ) ( ( )) ( )g G G u x u x , and the contact point is called a MPP, denoted as *u . The MPP 

is obtained by solving the following optimization problem to 

 
 

minimize

subject to 0g 

u

u
 (4.9) 
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Figure 4.1. MPP and Reliability Index in U-space (Wei, 2006; Lee, 2008) 

The shortest distance from the MPP to the origin of U-space is called the Hasofer-

Lind reliability index (Hasofer and Lind, 1974), denoted as *
HL  u . Thus, using the 

reliability index HL , the probability of failure is approximated as a linear approximation 

of the constraint function, which is indicated as a dotted line in Figure 4.1,  

  FORM
F HLP     (4.10) 

 

4.2.3 Second-Order Reliability Method (SORM) 

The MPP obtained by solving Eq. (4.9) can be used to calculate the probability of 

failure using the SORM. Using the quadratic approximation of the constraint function 

and a transformation from U-space to rotated standard Gaussian space (V-space), the 
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probability of failure can be obtained using the SORM as (Breitung, 1984; Hohenbichler 

and Rackwitz, 1988; Rahman and Wei, 2006) 
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where 
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 
  ,  g u  is the gradient vector of  g u , H  

is the Hessian matrix evaluated at the MPP in X-space, R  is the rotation matrix such that 

u Rv , and ( )   is the PDF of a standard Gaussian random variable. 

 

4.3 Inverse Reliability Analysis 

The reliability analysis explained in Section 4.2 is called the reliability index 

approach (RIA) (Tu and Choi, 1999), in that the probability of failure is calculated by 

finding the reliability index HL  using Eq. (4.9). The RIA can calculate the probability of 

failure at a given design, but the RIA yields inefficiency and instability in the reliability 

analysis.  

To solve this shortcoming of the RIA, a performance measure approach (PMA) 

has been developed; it has been reported that the PMA is much more robust and efficient 

than the reliability analysis in the RIA (Tu and Choi, 1999; Tu et al., 2001; Choi et al., 

2001; Youn et al., 2003). Unlike the way the RIA directly calculates the probability of 

failure, the PMA judges whether a given design satisfies a probabilistic constraint for the 

given target probability of failure, Tar
FP . Using the FORM, the target reliability index t  



68 
 

 

can be calculated as  1 Tar
t FP   . Then, the feasibility of the given design can be 

checked by solving the following optimization problem to 

 
t

maximize    g( )

subject to    
u

u
 (4.12) 

Finding the optimum point (MPP) is called inverse reliability analysis in that Eq. 

(4.12) is an inverse formulation of (4.9). If the constraint function value at the MPP, 

*g( )u , is less than zero, then the feasibility of the design is satisfied for the given target 

probability of failure, Tar
FP . If not, it is violated. Just as the FORM is used in the inverse 

reliability analysis, it might be possible to use the SORM. However, since the inverse 

reliability analysis using the SORM is much more difficult than using the FORM and the 

SORM requires the second order sensitivity, it has not been developed. 

To find the MPP using the inverse reliability analysis, several methods have been 

developed: the mean value (MV) method, the advanced mean value (AMV) method (Wu 

et al., 1990; Wu, 1994), the hybrid mean value (HMV) method (Youn et al., 2003), and 

the enhanced hybrid mean value (HMV+) method (Youn et al., 2005). The MV method 

linearly approximates the constraint function using the function value and gradient at the 

mean value in the standard Gaussian space. The AMV method uses a gradient at the MPP 

obtained by the MV method to find the next MPP, and iteration continues until the 

approximate MPP converges to a correct MPP. The HMV method uses the AMV method 

for convex constraint function and the conjugate mean value (CMV) method for concave 

constraint function. The HMV+ method improved the HMV method by interpolating two 

previous MPP candidate points when the constraint function is concave instead of using 

the CMV method.  
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Since the gradient of the constraint function in standard Gaussian U-space is 

required to find the MPP in all methods, it needs to be calculated as 
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and each component of Jacobian matrix kjJ  can be calculated using derivatives of Eq. 

(4.2).  

If the input variables are independent, then the Jacobian matrix is simply 

expressed as only diagonal terms: 
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
  (4.14) 

If the input variables are correlated with an elliptical copula, the Jacobian matrix is given 
as 
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 (4.15) 

where kjl  is obtained from Eq. (4.6).  

When the input variables are correlated with a non-elliptical copula, it is hard to 

expand n-dimensional copula as mentioned in Chapter 2, so that bivariate copulas are 

considered in most copula applications. In this case, the Jacobian matrix can be 

simplified as  
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where u  and v  are marginal CDFs,  
1 1Xu F x  and  

2 2Xv F x . Once the explicit 

formulation of the joint CDF is given, Eq. (4.16) can be used to carry out the inverse 

reliability analysis. 

 

4.4 MPP-based Dimension Reduction Method 

MPP-based reliability analysis such as the FORM and the SORM has been 

commonly used for reliability assessment. However, when the constraint function is 

nonlinear or multi-dimensional, reliability analysis using the FORM could be erroneous 

because the FORM cannot handle the complexity of nonlinear or multi-dimensional 

functions. Reliability analysis using the SORM may be accurate, but the second-order 

derivatives required for the SORM are very difficult and expensive to obtain in practical 

industrial applications. On the other hand, the MPP-based DRM achieves both the 

efficiency of the FORM and the accuracy of the SORM (Lee, 2008).  

The DRM is developed to accurately and efficiently approximate a multi-

dimensional integral. There are several DRMs, depending on the level of dimension 

reduction: the univariate dimension reduction, bivariate dimension reduction, and 

multivariate dimension reduction. The univariate, bivariate, and multivariate dimension 

reduction indicate an additive decomposition of n-dimensional performance function into 
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one-, two-, and s-dimensional functions ( s n ), respectively. In this study, the univariate 

DRM is used for calculating probability of failure due to its simplicity and efficiency. 

The univariate DRM is carried out by decomposing an n-dimensional constraint 

function G(X) into the sum of one-dimensional functions at the MPP as (Rahman and 

Wei, 2006; Wei, 2006; Lee, 2008)  

 * * * * *
1 1 1

1

ˆ( ) ( ) ( , , , , , , ) ( 1) ( )
n

i i i n
i

G G G x x X x x n G 


   X X x   (4.17) 

where * * * T
1 2={ ,  , ,  }nx x x*x   is the FORM-based MPP obtained from Eq. (4.12) and n is 

the number of random variables.  

In the inverse reliability analysis, since the probability of failure cannot be 

directly calculated in U-space, a constraint shift in a rotated standard Gaussian space (V-

space) needs to be defined as 

 *( ) ( ) ( )sG G G v v v    (4.18) 

where * T{0, ,0, }v   is a MPP in V-space and ( ) ( ( ))G Gv x v . Then, using the 

shifted constraint function and the moment-based integration rule (Xu and Rahman, 

2003), that is, similar to Gaussian quadrature (Atkinson, 1989), the probability of failure 

using the MPP-based DRM is approximated as (Lee, 2008) 
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 (4.19) 

where 1 Ub g  , j
iv  represents the jth quadrature point for vi, wj denotes weights, and N 

is the number of quadrature points. The quadrature points and weights for the standard 

Gaussian random variables vi are shown in Table 4.1.  
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Table 4. 1. Gaussian Quadrature Points and Weights (Lee, 2008) 

n  Quadrature Points Weights 
1 0.0 1.0 

3 3  0.166667 
0.0 0.666667 

5 
2.856970  0.011257 
1.355626  0.222076 

0.0 0.533333 
 

Using the estimated DRM
FP  obtained from the MPP-based DRM for the shifted 

constraint function Gs(x), the corresponding reliability index DRM  can be defined as 

 1 DRM
DRM ( )FP    (4.20) 

which is not the same as the target reliability index 1( )Tar
t FP    because the 

nonlinearity of the constraint function is reflected in the calculation of DRM
FP .  Hence, 

using DRM , a new updated reliability index up  can be defined as (Lee, 2008) 

 up cur cur DRM( )t            (4.21) 

where cur  is the current reliability index. If the constraint function is concave, up  will 

be smaller than cur  because DRM t  , i.e., a smaller reliability index is used to 

correctly update MPP using DRM for the concave constraint function, and vice versa for 

the convex constraint function. If the FORM-based reliability analysis overestimates the 

probability of failure, then the constraint function is defined as concave near the MPP. 

Otherwise, the constraint function is defined as convex (Lee, 2008). 

Using this updated reliability index, the updated MPP satisfying the target 

probability of failure can be found through a new inverse reliability analysis. After 
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finding a new MPP, constraint shift is again used to calculate the probability of failure 

using DRM. After iteratively carrying out this procedure until converged, the DRM-

based MPP can be obtained in which DRM
FP  is the same as the target probability of failure, 

Tar
FP . A detailed explanation of the MPP-based DRM is presented by Lee et al. (2008).  

 

4.5 Reliability-Based Design Optimization 

In general, the RBDO model can be formulated to  

  
minimize      cost( )

subject to     ( ) 0 , 1, ,

, R and R

i

Tar
i F

L U ndv n

P G P i nc  

   

d

X

d d d d X

  (4.22) 

where X  is the vector of random variables;  d μ X  is the vector of design variables; 

( )iG X  represents the ith constraint functions; 
i

Tar
FP  is the given target probability of 

failure for the ith constraint; and nc, ndv, and n are the number of constraints, number of 

design variables, and number of random variables, respectively. 

Using the inverse reliability analysis, the ith probabilistic constraint can be written 

as 

   *( ) 0 0 ( ) 0
i

Tar
i F iP G P G    X x  (4.23) 

where *( )iG x  is the ith constraint function value evaluated at the MPP *x  in X-space. 

Using the FORM, Eq. (4.23) can be rewritten as 

     *( ) 0 0 ( ) 0
ii t iP G G     X x  (4.24) 
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where  
i i

Tar
F tP     and 

it
  is the target reliability index. Thus, Eq. (4.22) can be 

written as  

  
minimize      cost( )

subject to     ( ) 0 ( ), 1, ,

, R and R

i i

Tar
i F t

L U ndv n

P G P i nc     

   

d

X

d d d d X

  (4.25) 

where the probabilistic constraint, Eq. (4.24), is changed into 

   *
FORM( ) 0 ( ) 0 ( ) 0

ii t iP G G     X x  (4.26) 

where *
FORMx  is FORM-based MPP, which is obtained by solving Eq. (4.12) and 

transforming  *
FORMu in U-space  into *

FORMx  in X-space using Eq. (4.4).  

Similar to the FORM, using the DRM-based inverse reliability analysis, the 

RBDO formulation in Eq. (4.22) can be rewritten as  

 *
DRM

minimize      cost( )

subject to     ( ) 0, 1, ,

, R and R

i

L U ndv n

G i nc 

   

d

x

d d d d X

  (4.27) 

where *
DRMx  is the MPP obtained from the DRM.  
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CHAPTER V 

TRANSFORMATION ORDERING EFFECT 

 

5.1 Introduction 

 Once the copula is identified from the Bayesian method, the Rosenblatt 

transformation is utilized to transform the original random variables into the independent 

standard Gaussian variables for the inverse reliability analysis as explained in Chapter 4. 

However, depending on joint input CDF types, different transformation orderings of 

input variables might yield different RBDO results. For example, if the input variables 

are independent or have a joint CDF modeled by an elliptical copula, there is no effect of 

transformation ordering. However, if the input variables have a joint CDF modeled by a 

non-elliptical copula, which often occurs in industrial applications, since the Rosenblatt 

transformation becomes highly nonlinear, certain transformation orderings can 

significantly affect the nonlinearity of the transformed constraints. In this case, if the 

FORM is used, the inverse reliability analysis results could be very different for the 

different ordering since the FORM uses a linear approximation of the constraint to 

estimate the probability of failure. This effect of transformation ordering in RBDO will 

be unacceptable and make the user significantly concerned. 

To reduce the dependency of the inverse reliability analysis result and thus the 

RBDO result on the ordering of the Rosenblatt transformation, it is proposed to use the 

MPP-based DRM for the inverse reliability analysis in this study. Section 5.2 provides 

theoretical proofs to show that the independent and elliptical copulas are independent of 

transformation orderings, whereas the non-elliptical copula is not. Section 5.3 illustrates 
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numerical examples to show how much the transformation orderings affect RBDO results 

and how much the MPP-based DRM reduces the effect of the transformation orderings. 

 

5.2 Transformation Ordering for Various Joint CDF Types 

The joint CDFs of input random variables can be categorized as follows: 

independent joint CDF, a joint CDF modeled by an elliptical copula, and a joint CDF 

modeled by a non-elliptical copula. To study the effect of transformation ordering in the 

inverse reliability analysis for various input joint CDF types, it is necessary to investigate 

whether the same MPPs can be obtained for different transformation orderings. However, 

since the MPPs depend on constraint functions, it is not convenient to compare the MPPs 

for all constraint functions. Instead of comparing the MPPs, comparing t -contours in X-

space that are obtained by transforming the t -contour, 
it

u ,
 
in U-space for different 

transformation orderings is more appropriate. Obtaining the same t -contours means 

obtaining the same MPPs in X-space, which will lead to the same RBDO result.  

 

5.2.1 Transformation Orderings in Rosenblatt Transformation 

As explained in Section 4.2.1, the input random variables need to be transformed 

into the independent standard Gaussian variables using the Rosenblatt transformation, 

which is defined as the successive conditioning: 
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 (5.1) 

If the ordering of the variable ix  is changed into the variable jx , Eq. (5.1) can be 

rewritten as 
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 (5.2)  

Thus, if the number of variables is n, there are !n  ways of transforming the 

original variables into independent standard Gaussian variables. Even though there are 

many different ways to transform the original variables into independent standard 

Gaussian variables, since the Rosenblatt transformation is exact, if the inverse reliability 

analysis in the independent standard Gaussian space is exact, then we should obtain the 

same results. However, if the FORM is used for the inverse reliability analysis, certain 
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orders of transformation might yield more errors than other orders of transformation 

depending on the input joint CDF type. 

 

5.2.2 Independent and Elliptical Copula 

First, when the input variables are independent, the t -contour in U-space is 

transformed into X-space using the Rosenblatt transformation with a given ordering in Eq. 

(5.1) as  

        
22 2 22 1 1 1 1 2

1 i j n tz z z z                           u     (5.3) 

where  
kk X kz F x  for 1, ,k n   and t  is the target reliability index. 

When the order of the variable ix  is interchanged into the variable jx  for the 

second ordering, the t -contour in U-space is transformed into X-space using Eq. (5.2) as  

        
22 2 22 1 1 1 1 2

1 j i n tz z z z                           u     (5.4) 

which results in the same transformed t -contour, Eq. (5.3). Thus, there is no effect of 

transformation ordering for the independent variables. 
 

Second, consider correlated input variables with a joint CDF modeled by the 

elliptical copula. In the joint CDF modeled by the elliptical copula, each variable 

 1

iX iF x      for 1, ,i n   is the correlated standard elliptical variable with the 

covariance matrix  ' '
ijP , where  1   is the inverse of the elliptical CDF. Let 

 1

ii X ie F x      . Using the Rosenblatt transformation in Eq. (4.5), the t -contour is 

transformed from U- to X-space as 
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     11 1 'TT T T   u u e L L e e P e  (5.5) 

where 1, , , , , ,
T

i j ne e e e   e    , and 'P  is given as 
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  (5.6) 

If the order is changed, i.e., the order of the ith and jth variables are interchanged 

(i<j) in the Rosenblatt transformation, Eq. (4.5) is changed to 

 1
1 1
u = L e  (5.7) 

where the vector of the elliptical variable with the interchanged order represents 

1 1, , , , , ,
T

j i ne e e e   e    . 1L  is obtained from the Cholesky decomposition of '
1P  (i.e., 

'
1 1 1

TP L L ), where '
1P  is 
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 (5.8) 

and 
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Then, the transformed t -contour with the interchanged order is given by 

     11 1 '
1 1 1 1 1 1 1

TT T T   u u e L L e e P e  (5.10) 

To show that the interchanged ordering provides the same transformed t - 

contours, i.e., T Tu u u u  in Eqs. (5.5) and (5.10), Eq. (5.10) needs to be expressed in 

terms of e  instead of 1e . For this, another matrix 2L  is introduced. Because the vector of 

the elliptical variable e  with the original order can be obtained by interchanging the ith 

row with the jth row of 1L  such that 2e L u , the matrix 2L  cab be obtained as 
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 (5.11) 

The t -contours are given as  

      1 1' 1 1 '
1 1 1 2 2 2

TT T T T    u u e P e e L L e e P e  (5.12) 
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To show that T Tu u u u  in Eqs. (5.5) and (5.12), it needs to be shown that 

' '
2=P P  or 2 2

T T=LL L L . Consider two arbitrary correlation coefficients of '
1P . For any 

arbitrary kth column, the entry at the ith row of '
1P ,  '1 ik

P  and the one in the jth row of '
1P , 

 '1 jk
P  are '

jk  and '
ik , respectively, as shown in Eq. (5.8). Since '

jk  and '
ik  are the 

entries at the jth row and kth column of 'P  and at the ith row and kth column of 'P , 

respectively, all entries of 'P  are the same as those of '
2P , as follows: 

     ' ' th th th th '
1 1 1 2 2 2= row of col. of row of col. ofT T

ik jk jk
i k j k    P P L L L L P  (5.13) 

     ' ' th th th th '
1 1 1 2 2 2= row of col. of row of col. ofT T

jk ik ik
j k i k    P P L L L L P  (5.14) 

This means the transformed t -contours are the same, even for different transformation 

orderings of input variables. Therefore, the Rosenblatt transformation is independent of 

ordering for the joint CDF modeled by an elliptical copula. 

 

5.2.3. Non-elliptical Copula 

Consider correlated input variables with a joint CDF modeled by a non-elliptical 

copula. For example, let two random variables have a joint CDF modeled by the Clayton 

copula, which is one of the Archimedean copulas, with the marginal Gaussian CDFs 

 1 2

2, ~ 0,1X X N . The Clayton copula is defined as 

   1/

1 2 1 2, 1 , 0C z z z z for
  

        (5.15) 
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where the generator is    1
1t t 

 
   ,  1 1z x  ,  2 2z x  , and   is the 

correlation parameter of the Clayton copula. In the Clayton copula, using the Kendall’s 

tau   obtained from samples,   can be expressed as 

 
2

1







 (5.16) 

Using the Clayton copula, the Rosenblatt transformation can be carried out in two 

different ways as 

 
     

         
1

2

1 1 1

1/ 11

2 2 1 1 1 2 1

X

X

u F x x

u F x x x x x
       

   

        
 (5.17) 

and 

 
     

         
2

1

1 2 2

1/ 11

2 1 2 2 1 2 1

X

X

u F x x

u F x x x x x
       

   

        
 (5.18) 

Using Eqs. (5.17) and (5.18), the t -contour can be expressed in terms of 1x  and 2x  

      
1/ 112 2 2 1 2

1 2 1 1 1 2 1 tu u x x x x
   

                     
Tu u  (5.19) 

and 

      
1/ 112 2 2 1 2

1 2 2 2 1 2 1 tu u x x x x
   

                     
Tu u  (5.20) 

Figure 5.1 (a) shows the t -contour in U-space with an independent PDF where 

2.0t  . Figure 5.1 (b) shows two t -contours transformed from U-space to X-space 

indicated as dashed-dot ring (ordering 1) and dashed ring (ordering 2) with a PDF 

modeled by the Clayton copula. If input variables are independent or correlated with 

elliptical copula, the t -contour in U-space, which is a solid ring in Figure 5.1 (a), is 
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transformed into t -contours in X-space that are parallel to the X1-X2 plane. Therefore, 

the t -contours will be the same in X-space for different transformation orderings. 

However, when input variables are correlated with a non-elliptical copula, because of the 

nonlinear Rosenblatt transformation, the t -contour in U-space is differently transformed 

to X-space according to the transformation ordering, which are not parallel to the X1-X2 

plane, as shown by dashed and dashed-dot rings in Figure 5.1 (b). That is, the t -

contours projected on the X1-X2 plane are different from a t -contour with constant PDF 

values indicated as a solid ring in Figure 5.1 (b), whereas the independent PDF contour 

for a certain PDF value and the t -contours will coincide. However, note that the inverse 

reliability analysis is carried out in U-space, not X-space. 

 

 (a) U-space            (b) X-space 

Figure 5.1. Joint PDFs and t -contours in U-space and X-space 
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It might be possible that MPPs obtained from different transformation orderings 

could be the same even though the t -contours in X-space are different. However, 

because the MPPs depend on both the t -contour shapes and constraint functions, it is 

not easy to predict how the MPPs depend on the t -contour shape. As seen in Fig. 5.1 (b), 

the two t -contours in X-space have intersection points, where 1x  and 2x  values are the 

same. If both MPPs happen to be at the intersection point, then even if the t -contours in 

X-space are different, these MPPs will be the same. However, it will be extremely rare 

that both MPPs are at the same intersection point of two differently transformed t -

contours. 

Thus, for the joint CDF modeled by a non-elliptical copula, the Rosenblatt 

transformation becomes highly nonlinear, which cannot be handled accurately by the 

FORM. A more accurate method than the FORM for the estimation of the probability of 

failure in the reliability analysis is necessary to reduce the effect of the transformation 

ordering on the RBDO results. 

 

5.3 Examples 

To observe how the ordering of transformation affects the RBDO results for the 

joint CDFs modeled by elliptical copulas and non-elliptical copulas, two- and four-

dimensional mathematical problems are tested.    
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5.3.1 Two-Dimensional Example 

Suppose that two input variables are correlated with the Gaussian copula where 

Pearson’s rho is given as 0.5  . The RBDO formulation is defined as 

 

  

   
   

 

1 2

1 2

2

1 1 2 1 2

2 2

2 1 2 1 2

2
3 1 2

min.   cost( )

s. t.    0 , 1,2,3

0 , 10, 2.275%

( ) 1 0.4339 0.9010 1.5 0.9010 0.4339 2 / 20

( ) 1 2.8 / 30 12 /120

( ) 1 80 / 8 5

Tar
i F

Tar
F

d d

P G P i

d d P

G X X X X

G X X X X

G X X

 

  

  

     

      

   

d

X

X

X

X

 (5.21) 

where the marginal CDFs are Gaussian given by 2
1 2, ~ (5.0,0.3 )X X N . Denote the initial 

ordering as ordering 1 and the interchanged ordering ( 1 2x x ) as ordering 2.  

When input variables are correlated with the Gaussian copula (even if the MPPs 

are different in U-space for different orderings as shown in Figure 5.2 (a) and (b)), the t

-contours are the same, which means the MPPs are the same in X-space, as shown in 

Figure 5.2 (c). Thus, the same optimum design points are obtained even for different 

orderings, which confirms the theoretical proof that there is no transformation ordering 

effect for the joint CDF modeled by the Gaussian copula, one of the elliptical copula 

families. 

Even though there is no effect of transformation ordering, since the second 

constraint function is nonlinear, the FORM has some error in estimating the probability 

of failure for the second constraint, 
2FP . Using FORM and DRM with three and five 

quadrature points (FORM, DRM3, and DRM5, respectively, in Table 5.1), RBDO results 

including the cost and optimum design results are obtained. The probabilities of failure 
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1FP
 
and 

2FP
 
are calculated at the obtained optimum design points for active constraints 

1G  and 2G  using Monte Carlo simulation (MCS).  

 

(a) Ordering 1 in U-space   (b) Ordering 2 in U-space    (c) Two Orderings in X-space 

Figure 5.2. t -contours and Constraint Functions with Different Transformation 

Orderings Using Gaussian Copula 

Table 5.1. RBDO Results Using Gaussian Copula ( 2.275%Tar
FP  ) 

Case Cost Optimum design points
1FP  (%)

2FP (%) 

FORM 3.678 1.574, 2.104 2.342 1.722 

DRM3 3.653 1.548, 2.105 2.208 2.142 

DRM5 3.651 1.546, 2.105 2.256 2.276 

 

As shown in the second row of Table 5.1, 
2FP
 
is poorly estimated, i.e., less than 

the target probability of failure, 2.275% compared to . When the MPP-based DRM 

with three quadrature points is used, the probabilities of failure for both constraint 

1FP
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functions (
1FP
 
and ) are closer to the target probability of failure. When the MPP-

based DRM with five quadrature points is used, 
 
and  are almost the same as the 

target probability of failure. Thus, the FORM error can be reduced using the MPP-based 

DRM. 

Suppose that two input variables are correlated by a Clayton copula with 

Kendall’s tau 0.5  . The same RBDO problem in Eq. (5.21) is tested. As shown in 

Figures. 5.3 (a) and (b), the t -contours in U-space are the same, but the constraint 

functions are differently transformed from X-space into U-space according to the 

different transformation orderings. Since the transformation of the non-elliptical copula is 

highly nonlinear, some transformed constraint functions become highly nonlinear in U-

space. For ordering 1 (Figure 5.3 (a)), the first constraint function is mildly nonlinear 

near the MPP, *
1 1gu  , but the second constraint function is highly nonlinear near the 

corresponding MPP, *
2 1gu  , which yields a large FORM error.  

 

 (a) Ordering 1 in U-space    (b) Ordering 2 in U-space    (c) Two Orderings in X-space 

Figure 5.3. t -contours and Constraint Functions with Different Transformation 

Orderings Using Clayton Copula 

2FP

1FP
2FP
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On the other hand, for ordering 2 in Figure 5.3 (b), two constraint functions are 

mildly nonlinear near the MPPs , *
1 2gu   and *

2 2gu  , so that the FORM estimates the 

probability of failure more accurately than that of the second constraint function with the 

first ordering. The t -contours in Figure 5.3 (a) and (b) can be transformed as two 

different t -contours in X-space according to different orderings, as shown in Figure 5.3 

(c). These different t -contours provide different optimum design points, as shown in the 

FORM results of Table 5.2. 

Table 5.2. RBDO Results Using Clayton Copula ( 2.275%Tar
FP  ) 

Case Cost Optimum design points 1 2
opt optd d

1FP  (%) 
2FP  (%)

FORM-1 3.446 1.413, 2.032 
0.062 

2.531 1.031 

FORM-2 3.386 1.352, 2.034 2.354 2.108 

DRM3-1 3.417 1.380, 2.037 
0.034 

2.352 1.582 

DRM3-2 3.383 1.347, 2.036 2.280 2.257 

DRM5-1 3.400 1.364, 2.036 
0.016 

2.320 1.881 

DRM5-2 3.385 1.348, 2.037 2.276 2.266 

 

In Table 5.2, FORM-1 and FORM-2 indicate the FORM with orderings 1 and 2, 

respectively. The probability of failures 
1FP

 
and 

2FP
 
are calculated at the obtained 

optimum design points for active constraints  and  using the MCS. As expected, 

when the FORM is used for the ordering 1, FORM-1, the probability of failure for the 

second constraint 
2FP  is poorly estimated, i.e., much less than target probability of 

2.275%. As a result, the optimum design points obtained using the FORM with different 

1G 2G
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orderings are indeed different as shown in the third and fourth columns of Table 5.2. If 

the MPP-based DRM with three quadrature points, denoted as DRM3-1 and DRM3-2 for 

orderings 1 and 2, respectively, is used, the difference between optimum design results is 

reduced from 0.062 to 0.034 and the DRM provides a more accurate estimation of the 

probabilities of failure, i.e., closer to 2.275% for both orderings. If the number of 

quadrature points is five (DRM5-1 and DRM5-2), then the optimum design points are 

much closer to each other for both orderings and the probability of failure calculation also 

becomes more accurate. To estimate the probability of failures more accurately for highly 

nonlinear constraint functions such as the second constraint shown in Fig. 5.3(a), more 

than five quadrature points might be necessary. However, increasing the number of 

quadrature points means increasing computational effort. Therefore, three or five 

quadrature points for the MPP-based DRM are usually used.    

For the same problem in Eq. (5.21), assume that two input variables are now 

correlated with a Frank copula, which belongs to the Archimedean copula, with Kendall’s 

tau 0.5  . The Frank copula is given as 

     1 2

1 2

1 11
, ln 1

1

z ze e
C z z

e

 




 



  
   
  

 (5.22) 

The correlation parameter   can be calculated from Kendall’s tau by solving the 

following equation:  

 
0

4 1
1 1

1

t

t
dt

e


 
       (5.23) 

As observed in the previous example, when the joint CDF modeled by a non-elliptical 

copula is used, the MPPs obtained from differently transformed constraint functions 

provide different RBDO results according to the different ordering of input variables. 
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   (a) Ordering 1 in U-space     (b) Ordering 2 in U-space     (c) Two Orderings in X-space 

Figure 5.4. t -contours and Constraint Functions with Different Transformation 

Orderings Using the Frank Copula 

Due to the nonlinear transformation of the joint CDF modeled by a non-elliptical 

copula, the constraint functions in X-space are differently transformed into those in U-

space for different orderings, and some transformed constraint functions are highly 

nonlinear in Figures. 5.4 (a) and (b). If the t -contour is transformed from U-space to X-

space, it becomes two different t -contours in X-space for different transformation 

orderings, which result in different optimum design points as shown in Figure 5.4 (c).  

For ordering 1, the first constraint function is highly nonlinear near the MPP, *
1 1gu  , 

in Figure 5.4 (a), while for ordering 2, the second constraint function is highly nonlinear 

near the MPP, *
2 2gu   in Figure 5.4 (b). Therefore, for ordering 1, the FORM error is large 

for the first constraint (FORM-1), while for the second ordering, it is large for the second 

constraint (FORM-2). As shown in Table 5.3, probabilities of failure 
2FP  for ordering 1 
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and 
1FP  for ordering 2 are close to the target probability, 2.275%, whereas 

1FP  for 

ordering 1 and 
2FP  for ordering 2 are not.  

When the MPP-based DRM with three quadrature points is used, the probability 

of failure becomes closer to the target probability for both orderings (DRM3-1 and 

DRM3-2). The DRM with five quadrature points provides the most accurate calculation 

of the probability of failure (DRM5-1 and DRM5-2). The optimum design points 

obtained from the DRM are indeed similar to each other compared with those obtained 

from the FORM for different orderings. Thus, the DRM is necessary to reduce the effect 

of transformation ordering and to provide accurate RBDO results.  

If the number of correlated variables is larger than two, the effect of 

transformation ordering and inaccurate estimation of probability of failure might be more 

significant, and thus using the FORM in the reliability analysis might be more inaccurate. 

In the next section, this issue will be further addressed through a four-dimensional 

problem. 

Table 5.3. RBDO Results Using Frank Copula ( 2.275%Tar
FP  ) 

Case Cost Optimum design points 1 2
opt optd d

1FP  (%) 
2FP  (%)

FORM-1 3.590 1.477, 2.114 
0.036 

1.765 2.287 
FORM-2 3.572 1.491, 2.081 2.351 1.638 
DRM3-1 3.541 1.455, 2.086 

0.015 
2.171 2.255 

DRM3-2 3.551 1.469, 2.081 2.323 1.953 
DRM5-1 3.535 1.453, 2.082 

0.006 
2.242 2.270 

DRM5-2 3.539 1.459 2.080 2.285 2.093 
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5.3.2 Four-Dimensional Example 

This example is the four-dimensional modified Rosen-Suzuki problem 

(Schittkowski, 1987), and the RBDO is formulated to 

 

       

  

         
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 
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 (5.24) 

Assume that the first and second variables are correlated with the Gumbel copula 

and the third and fourth variables are correlated with the A12 copula, in which the 

Gumbel and A12 copula belong to the Archimedean copula. The Gumbel copula is 

defined as 

       1/

1 2 1 2, exp ln lnC z z z z
          (5.25) 

where  1 1z x   and  2 2z x   with 2
1 2, ~ (5.0,0.3 )X X N . Kendall’s tau 0.5   is 

assumed for both copulas, and the correlation parameter is obtained as 
 

1

1






. The 

A12 copula is defined as 

      
11/

1 1
3 4 3 4, 1 1 1C z z z z

 



           

 (5.26) 

Likewise,  3 3z x  ,  4 4z x   with 2
3 4, ~ (5.0,0.3 )X X N and 

 
2

3 1






. 
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Since the number of input variables is four and two pairs of variables are 

correlated, four different orderings are possible in the transformation. In Table 5.4, 

FORM-1 indicates FORM with the initial ordering, which means the ordering is not 

changed. FORM-2 is the case with the interchanged ordering of 1x  and 2x , and FORM-3 

is the one with interchanged ordering of 3x  and 4x . FORM-4 is the case where the 

orderings of all variables are interchanged, which means 1x  and 2x  are interchanged and 

3x  and 4x  are interchanged. As shown in Table 5.4, for all orderings, the probabilities of 

failure 
2FP

 
and 

3FP  are poorly estimated when the FORM is used. Even though the 

calculation of probability of failure for the fourth ordering is most accurate, 
2FP
 
and 

3FP
 
 

are still much larger than the target probability, 2.275%Tar
FP  . Compared with the two-

dimensional example, the FORM error for the four-dimensional case is more significant. 

When the MPP-based DRM with three quadrature points is used (DRM3-1, 2, 3, and 4), 

the difference between the probabilities of failure becomes smaller than when the FORM 

is used. When five quadrature points are used (DRM5-1, 2, 3, and 4), the MPP-based 

DRM estimates the probabilities of the failure more accurately than the case with three 

quadrature points. Thus, the MPP-based DRM is necessary to reduce the ordering effect 

on RBDO results. 

With the accuracy of the inverse reliability analysis using the DRM even for 

highly nonlinear constraint functions, it is shown that the RBDO results are becoming 

less dependent on the Rosenblatt transformation ordering of the input variables. 
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Table 5.4. RBDO Results Using Gumbel and A12 Copula 

Case Cost Optimum design points 
2FP  (%)  

3FP (%) 

FORM-1 – 0.144 4.620, 5.623, 6.618, 4.024 9.635 4.242 

FORM-2 – 0.144 4.644, 5.591, 6.618, 4.020 8.192 4.181 

FORM-3 – 0.145 4.634, 5.561, 6.639, 4.065 7.110 4.022 

FORM-4 – 0.145 4.644, 5.584, 6.646, 4.072 6.298 4.072 

DRM3-1 – 0.139 4.636, 5.586, 6.574, 4.119  3.000 2.605 

DRM3-2 – 0.139 4.636, 5.561, 6.582, 4.123 2.701 2.612 

DRM3-3 – 0.139 4.611, 5.564, 6.592, 4.131 3.109 2.472 

DRM3-4 – 0.139 4.619, 5.545, 6.590, 4.128 2.790 2.252 

DRM5-1 – 0.139 4.637, 5.584, 6.573, 4.124 2.903 2.605 

DRM5-2 – 0.139 4.640, 5.558, 6.582, 4.125  2.617 2.637 

DRM5-3 – 0.139 4.610, 5.554, 6.593, 4.149 2.468 2.306 

DRM5-4 – 0.138 4.612, 5.544, 6.591, 4.149 2.359 2.133 

Note: Method-1: Ordering 1 (original ordering). 

Method-2: Ordering 2 ( 1 2X X ). 

Method-3: Ordering 3 ( 3 4X X ). 

Method-4: Ordering 4 ( 1 2X X  and 3 4X X ). 
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CHAPTER VI 

APPLICATIONS OF COPULA, BAYESIAN METHOD, AND 

DIMENSION REDUCTION METHOD TO RELIABILITY-BASED 

DESIGN OTIMIZATION PROBLEMS 

 

6.1 Introduction 

A copula, which is used to model a joint distribution, was illustrated in Chapter 2. 

Using the copula concept, Chapter 3 explained how an input model, i.e., the marginal and 

joint distribution modeled by the copula, is identified using the Bayesian method. In 

Chapter 4, the basic concept of RBDO was introduced, and, for accurate reliability 

analysis, the MPP-based DRM was explained in Chapter 5. In this chapter, to test the 

proposed methods together, random samples are generated from a true input model. 

Using the generated samples, the input models are identified and quantified using the 

Bayesian method, and then MPP-based DRM for RBDO is carried out. Two examples 

will illustrate how the combined proposed methods work. 

 

6.2 Mathematical Example 

Suppose that true marginal distributions of two input random variables are 

Gaussian distributions, 1X  and  2
2 ~ 3,0.3X N  with a joint CDF modeled by the Frank 

copula. The Kendall’s tau is given as 0.8  . From the true input marginal and joint 

distribution, 100 random samples are generated. It is shown how the Bayesian method 

identifies the correct marginal and joint CDFs from the samples. 
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Using the samples, the likelihood functions for candidate marginal distributions 

for 1X  and 2X  are obtained. As shown in Figure 6.1 (a), the Gaussian distribution has 

the highest peak, and it is widely spread, which means the normalized weight of the 

Gaussian distribution is the highest among candidate marginal distributions, as shown in 

Table 6.1.  

 

(a) 1X          (b) 2X  

Figure 6.1. Likelihood Functions of   for Mathematical Example 

Table 6.1. Normalized Weights of Candidate Marginal CDFs for Mathematical Example 

Random 
Variables 

Gaussian Weibull Gamma Lognormal Gumbel Extreme 
Extreme 
type -II 

1X  0.480 0.081 0.277 0.160 0.000 0.001 0.000 

2X  0.405 0.163 0.258 0.167 0.000 0.001 0.000 
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Thus, the Bayesian method identifies the Gaussian distribution, which is the true 

marginal distribution type of 1X . Likewise, for the second variable 2X  in Figure 6.1 (b), 

the Gaussian distribution has the highest normalized weights in Table 6.1. Thus, the 

Bayesian method correctly identifies the true marginal distribution of 2X . 

Using the identified marginal CDFs, a copula can be identified using the Bayesian 

method. Figure 6.2 shows the likelihood function of   for candidate copulas. Since the 

Frank copula has a distinct shape among candidate copulas, the Frank copula has the 

highest weight among candidate copulas and the normalized weight is very high, 0.999 as 

shown in Table 6.2. Thus, the copula is correctly identified. According to the joint PDF 

contour modeled by the Frank copula shown in Figure 6.3, the Frank copula well 

describes the given data. 

 

Figure 6.2. Likelihood Functions of   for Mathematical Example 
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Table 6.2. Normalized Weights of Candidate Copulas for Mathematical Example 

Clayton  AMH Gumbel Frank A12 A14 FGM  Gauss 

0.000  0.000 0.000  0.999 0.000 0.001 0.000  0.000 

 

 

Figure 6.3. Scatter Plot of Data and PDF Contour of Frank Copula  

Once the marginal distributions and copula are identified, their parameters need to 

be calculated from the samples. The means and standard deviations values are calculated 

as 1 2.973   and 1 0.310   for 1X , and 2 2.985  and 2 0.298   for 2X , where the 

Kendall’s tau is obtained as 0.808 from the samples.   

To observe the effect of correlation on RBDO results, the estimated input model 

without considering the correlation, i.e. 0.0  , is first tested, and compared with the 

estimated model with considering the correlation, 0.808  , using the FORM. Second, 

using the estimated model with 0.808  , the FORM and MPP-based DRM are tested to 

see how the MPP-based DRM yields more accurate optimum design than the FORM does.   
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An RBDO formulation is defined to 
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 (6.1) 

Figure 6.4 shows the t ‐contours and optimum designs obtained from three input 

models – the estimated input models with and without correlation, and the true input 

model.  

 

Figure 6.4. t ‐contours Using Different Input Models for Mathematical Example 

 

First, the RBDO results for the estimated input models with and without 

considering correlation are compared using the FORM. As shown in Figure 6.4, the 
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estimated input model without correlation, 0.0  , yields a t ‐contour (dashed contour), 

which is rather different from the one using the true input model (solid contour). 

Accordingly, the obtained optimum design, ‘*’, is also very different from the true 

optimum, ‘·’. On the other hand, the estimated input model with correlation, 0.808  , 

yields a t ‐contour, (dashed-dotted contour), which is similar to the one using the true 

input model (solid contour). Thus, the obtained optimum design, ‘+’, is very close to the 

true optimum, ‘·’.  

Table 6.3 shows the obtained optimum designs and the probabilities of failure 

evaluated at those designs using MCS with the true input model. As explained in Figure 

6.4, the estimated input model without correlation yields the inaccurate optimum design 

with high cost while the one with correlation yields more accurate optimum design with 

the reduced cost. Further, the probabilities of failure for two active constraints (
1FP and 

2FP ) using the estimated input model without correlation are much smaller than the target 

probability of failure (2.275%), i.e., the optimum designs are much conservative. On the 

other hand, the probabilities of failure using the estimated input model with correlation 

are close to the target probability of failure, but still smaller than 2.275%. Thus, in this 

example, the estimated input model without correlation yields an unnecessarily 

conservative design, whereas the input model with correlation yields a reliable design, 

but with significant cost reduction. 

Second, since two input variables are correlated with Frank copula, which is non-

Gaussian copula, the Rosenblatt transformation might become highly nonlinear as 

explained in Chapter 5. In this case, if the FORM is used, the inverse reliability analysis 
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results could be erroneous. Thus, the RBDO results using FORM and DRM are compared 

for the estimated input model with 0.808  . As shown in Table 6.3, the optimum 

design using the DRM is closer to the true optimum than the one using the FORM. 

Accordingly, the probabilities of failure using the DRM , 
1

2.235%FP   and 

2
1.794%FP  for two active constraints, are closer to the target probability of failure, 

2.275%, than those using FORM, 
1

1.906%FP   and 
2

1.395%FP 
 
as displayed in Table 

6.3. Therefore, it is necessary to consider the correlation in RBDO and use a very 

accurate reliability analysis such as the MPP-based DRM.  

Table 6.3. RBDO Comparisons for Mathematical Example ( 2.275%Tar
FP  ) 

 
FORM DRM 

Independent Correlated (Est.) Correlated (Est.) True 

1d  2.233 2.051 2.023 2.026 

2d  1.835 1.222 1.175 1.163 

1FP  0.746% 1.906% 2.235% 2.245% 

2FP  0.019% 1.395% 1.794% 2.070% 

Cost 4.068 3.273 3.203 3.189 
 

6.3 Coil Spring Problem 

The design objective of the coil spring is to minimize the volume to carry a given 

axial load such that the design satisfies the minimum deflection and allowable shear 

stress requirement, and the surge wave frequency is above the lower limit (Arora, 2004). 

The volume of the spring is defined as 
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    2 21
volume ( )

4
N Q D d d     (6.2) 

where N  is the number of active coils; Q  is the number of inactive coils, given as 2Q  ; 

D  is the mean inner diameter; d  is the wire diameter as shown in Figure 6.5. 

 

Figure 6.5. Coil Spring 

The first constraint is that the deflection   under the applied load P  should be at 

least the minimum spring deflection,   as 

 
 3

4

8P D d N

d G



    (6.3) 

where 10P lb , 0.5 .in  , and G  is the shear modulus. The second constraint is that the 

shear stress in the wire should not be larger than the allowable shear stress, a , which is 

formulated as 

 3

8 ( ) 4( ) 0.615

4 a

P D d D d d d

d D D d
 


       

 (6.4) 

where 280,000 / .a lb in  . The third constraint requires that the surge wave frequency of 

the spring should be higher than the lower limit of surge wave frequency 0  as 
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where 0w =100Hz , and   is the mass density.  

In this example, the number of active coils  N , mean inner diameter  D , and 

wire diameter  d  are selected as random variables, and mass density of material    and 

shear modulus  G  are selected as random parameters. Using the constraints for the coil 

spring problem, the RBDO formulation is defined as 
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 (6.6) 

Table 6.4 shows statistical information of the random variables and parameters 

and their design bounds. The coefficient of variations (COVs), ratios of standard 

deviation to mean, for two material properties are referred to Schuëller (2007). Since 4X  

and 5X  are random parameters, the mean values of two parameters do not change during 

RBDO. In the manufacturing process, the coil inner diameter ( 2X ) and the wire diameter 

( 3X ) are correlated, and thus the correlation coefficient between those two variables is 

assumed to be 0.7   where Clayton copula is used to model the joint distribution of 

2X  and 3X . 
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Table 6.4. Properties of Random Variables and Parameters for Coil Spring Example 

Random Variables and 
Parameters 

Dist. Type Ld  d  Ud  Std. COV 

Variables 

1X  No. of active 
coils (no.) 

Gaussian 1.0 10.0 100.0 0.5 5% 

2X  Inner diameter 
(in.) 

Gaussian 0.1 1.0 5.0 0.05 5% 

3X  Wire diameter 
(in.) 

Gaussian 0.01 0.1 0.5 0.005 5% 

Parameters 
4X  Mass density 

(lb·sec2/in.4) 
Gaussian 7.38E-4 2.95E-5 4% 

5X  Shear modulus 
(lb/in.2) 

Gaussian 1.15E+7 1.38E+6 12% 

 

Suppose that the true model has the statistical data as shown in Table 6.4. Using 

the randomly generated 100 samples from the true model, marginal distributions are first 

identified using the Bayesian method. Table 6.5 shows the normalized weights of the 

candidate marginal distributions of all input variables. The marginal distributions of 1X , 

2X , 3X , and 5X  are correctly identified as Gaussian distribution, but the marginal 

distribution of 4X  is identified as a lognormal distribution because the lognormal 

distribution shape is similar to the Gaussian distribution shape for COV=4%. Therefore, 

the normalized weights of the Gaussian, Gamma, and lognormal distributions, which 

have similar PDF shapes, are relatively higher than those of other distributions. Likewise, 

a copula is identified as shown in Table 6.6. Since the Clayton copula has a very distinct 

shape among candidates, it is easy to identify, and as a result, the normalized weight for 

the Clayton copula is very high.  
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Table 6.5. Normalized Weights of Candidate Marginal CDFs for Coil Spring Example 

Random 
Variables 

Gaussian Weibull Gamma Lognormal Gumbel Extreme 
Extreme 
type -II 

1X  0.395 0.000 0.330 0.275 0.000 0.000 0.000 

2X  0.425 0.001 0.317 0.256 0.000 0.000 0.000 

3X  0.440 0.002 0.313 0.246 0.000 0.000 0.000 

4X  0.220 0.000 0.361 0.420 0.000 0.000 0.000 

5X  0.495 0.014 0.309 0.182 0.000 0.000 0.000 

 

Table 6.6. Normalized Weights of Candidate Copulas for Coil Spring Example 

Clayton  AMH Gumbel Frank A12 A14 FGM  Gauss 

1.000  0.000 0.000  0.000 0.000 0.001 0.000  0.000 

 

Once the marginal CDFs and copula are identified, the parameters of the 

estimated input model need to be estimated. The mean and standard deviations for all 

input variables are obtained from the 100 samples as shown in Table 6.7. In this case, the 

mean and standard deviations of the obtained input model are accurately estimated as 

compared them with those of the true input model in Table 6.4. Further, the estimated 

correlation coefficient between 2X  and 3X  is calculated as 0.808, which is also close to 

the true correlation coefficient, 0.8. 
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Table 6.7. Distribution Type and Parameters of Estimated Input Model for Coil Spring 
Example 

Random 
Variables 

Distribution 
Type 

Mean Std. 

1X  Gaussian 0.992E+1 0.541E+0 

2X  Gaussian 0.999E+0 0.539E-1 

3X  Gaussian 0.998E-1 0.530E-2 

4X  Lognormal 0.738E-3 0.262E-5 

5X  Gaussian 0.116E+8 0.134E+7 

 

To compare the input models with and without correlation, first, an estimated 

model without correlation 0.0   and the one with estimated correlation 0.808   are 

tested using the FORM as shown in Table 6.8. Similar to the mathematical example, the 

estimated input model with 0.0   yields a wrong optimum design. On the other hand, 

the estimated input model with 0.808   more approaches the true optimum than the 

one with 0.0  . Further, the estimated input model with 0.0   yields much 

conservative design with a high cost whereas the one with 0.808   yields a reliable 

optimum design with a reduced cost. 

Second, for the estimated input model with 0.808  , the RBDO results using 

the FORM and the DRM are compared. Since the Rosenblatt transformation becomes 

nonlinear for the non-Gaussian copula (Clayton), the obtained optimum design using the 

DRM is closer to the true optimum than the one using the FORM. In addition, the 

probabilities of failure using the DRM are closer to the target probability of failure 

(2.275%) than those using the FORM. Thus, for RBDO problems with correlated 
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variables, it is very important to consider the correlation and use the MPP-based DRM 

for reliable optimum design. 

Table 6.8. RBDO Comparisons for Coil Spring Example ( 2.275%Tar
FP  ) 

 
FORM DRM 

Independent Correlated (Est.) Correlated (Est.) True 

1d  0.556E+1 0.137E+2 0.147E+2 0.102E+2

2d  0.956E+0 0.460E+0 0.426E+0 0.522E+0

3d  0.820E-1 0.643E-1 0.631E-1 0.665E-1 

1FP  0.161% 1.025% 1.773% 2.151% 

2FP  0.218% 1.829% 1.703% 2.106% 

Cost 0.130E+0 0.845E-1 0.802E-1 0.785E-1 
 

6.4 Roadarm Example 

A roadarm of the army tracked vehicle, the M1A1 tank shown in Figure 6.6, is 

used to demonstrate the applicability of the Bayesian method and MPP-based DRM for 

RBDO. The roadarm is modeled using 1572 eight-node isoparametric finite elements 

(SOLID45) and four beam elements (BEAM44) of a commercial program, ANSYS 

(Swanson, 1989), as shown in Figure 6.7. The material of the roadarm is S4340 steel with 

Young’s modulus E=3.0×107 psi and Poisson’s ratio  =0.3. The durability analysis of 

the roadarm is carried out to obtain the fatigue life contour using Durability and 

Reliability Analysis Workspace (DRAW) (Center for Computer-Aided Design, 1999a; 

Center for Computer-Aided Design, 1999b). The fatigue lives at the critical nodes are 

selected as design constraints of the RBDO in Figure 6.8.  
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Figure 6.6. Army Tracked Vehicle 

 

Figure 6.7. Finite Element Model of Roadarm 

 

Figure 6.8. Fatigue Life Contour and Critical Nodes of Roadarm 

In Figure 6.9, the shape design variables consist of four cross-sectional shapes of the 

roadarm where the widths (x1-direction) of the cross-sectional shapes are defined as 
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design variables d1, d3, d5, and d7, at intersections 1, 2, 3, and 4, respectively, and the 

heights (x3-direction) of the cross-sectional shapes are defined as design variables d2, d4, 

d6, and d8. 

 

Figure 6.9. Shape Design Variables for Roadarm 

Table 6.9 shows the initial design point, and the lower and upper bounds of eight 

design variables. The eight random variables are assumed to be independent, and 5% of 

COV are used. For the input fatigue material properties, since the statistical information 

of S4340 steel is not available other than its nominal value, the statistical information of 

950X steel (Socie, 2003) is used to describe the properties of S4340 steel. The COV of 

SAE 950X is 115% for '
f  and 25% for other material properties (Socie, 2003). Since 

S4340 is a stronger material than SAE 950X, in this study, it is assumed that the COV of 

S4340 is 50% for '
f  and 25% for the other material properties as shown in Table 6.9. 
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Table 6.9. Random Variables and Fatigue Material Properties for Roadarm Example 

Random 
Variables 

Lower Bound 
Ld  

Initial Design
0d  

Upper Bound
Ud  

Std. Dist. Type 

1d  1.3500 1.7500 2.1500 0.0875 Gaussian 

2d  2.6496 3.2496 3.7496 0.1625 Gaussian 

3d  1.3500 1.7500 2.1500 0.0875 Gaussian 

4d  2.5703 3.1703 3.6703 0.1585 Gaussian 

5d  1.3563 1.7563 2.1563 0.0878 Gaussian 

6d  2.4377 3.0377 3.5377 0.1519 Gaussian 

7d  1.3517 1.7517 2.1517 0.0876 Gaussian 

8d  2.5085 2.9085 3.4085 0.1454 Gaussian 

Fatigue Material Properties 
Random Parameters Mean Std. COV Dist. Type 

Fatigue Strength Coefficient, f   177000 44250 25% Lognormal 
Fatigue Strength Exponent, b −0.073 0.018 25% Gaussian 

Fatigue Ductility Coefficient, f   0.410 0.205 50% Lognormal 

Fatigue Ductility Exponent, c −0.600 0.150 25% Gaussian 
 

From Socie’s study on 950X steel (Socie, 2003), it is shown that f   and b have 

highly negative correlation, −0.828, and that f   and c also have highly negative 

correlation, −0.976. Since the marginal distributions of those random parameters are 

known, copulas only need to be identified for '
f  and b, and for '

f  and c, respectively. 

However, the experimental data of S4340, which is used in the roadarm, is not available, 

so 29 experimental paired data obtained from SAE 950X steel are used to identify 

copulas for two pairs of variables, '
f  and b, and '

f  and c.   

Before identifying the copulas for two pairs of variables, candidate copulas need 

to be determined. In this example, since two pairs of variables are highly negatively 
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correlated, only the Frank and Gaussian are selected as candidate copulas because other 

copulas such as Clayton and Gumbel cannot have negative correlation and some copulas 

such as AMH and FGM can only have large negative correlation. Using the Bayesian 

method, the Gaussian copula for '
f  and b and the Frank copula for '

f  and c are 

identified based on given marginal CDFs and data as shown in Table 6.10. As shown in 

Figure 6.10, the PDF contours of two identified copulas well describe the given 

experimental data.  

Table 6.10 Normalized Weights of Candidate Copulas Using 29 Paired Data of SAE 
950X Steel 

Material Properties Frank  Gauss  

'
f , b 0.355  0.645  

'
f , c 0.607 0.393 

  

 (a) '
f  and b                   (b) '

f  and c 

Figure 6.10. Joint PDF Contours of Gaussian and Frank Copulas Identified from 29 
Paired Data of 950X Steel 
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Using the identified copulas and known marginal CDFs, the RBDO is carried out. 

The formulation of the roadarm is defined as 
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First, the input random variables are assumed to be independent to carry out 

RBDO. Second, the correlation of input fatigue material properties is used to test the 

applicability of the copula using the FORM. Finally, the MPP-based DRM with 

correlated input variables is carried out to obtain more accurate optimum design.  

As shown in Table 6.11, the FORM assuming that input variables are independent 

yields a wrong optimum design with increased weight of the roadarm, 592.22. When the 

correlation is considered, the weight of the roadarm is significantly reduced as, 519.70, 

compared to the independent case. Using the MPP-based DRM, the weight of the 

roadarm is further reduced to 514.02 while satisfying the target probability of failure. 

Therefore, RBDO results can be significantly improved by using copulas to obtain a 

better estimation of the joint CDFs; and MPP-based DRM to obtain a better optimum 

design. 

In the mathematical and coil spring example, the generated input data well 

describe the true input model; thus, the obtained optimum design is close to the true 

optimum design. However, when the number of samples is very limited, for example, 
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when the 29 paired data of 950X steel is only available in the roadarm, the identification 

and quantification error could be significant. In the next section, to offset inaccurate 

estimation of the input model, the input model with confidence level is implemented for 

RBDO using the adjusted parameters with confidence intervals of mean, standard 

deviation, and correlation coefficient.  

Table 6.11. RBDO Comparisons for Roadarm Example 

 Initial D.O* 
FORM 

DRM  
Independent Correlated 

1d  1.750 1.588 2.194 1.958 1.928 

2d  3.250 2.650 2.650 2.650 2.650 

3d  1.750 1.922 2.602 2.031 2.067 

4d  3.170 2.570 3.010 2.670 2.577 

5d  1.756 1.477 2.656 1.775 1.776 

6d  3.038 3.292 2.538 3.538 3.535 

7d  1.752 1.630 2.422 2.152 2.075 

8d  2.908 2.508 2.895 2.536 2.512 

Cost 515.09 464.56 592.22 519.70 514.02 
*D.O means deterministic optimum 
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CHAPTER VII 

RELIABILITY-BASED DESIGN OPTIMIZATION WITH 

CONFIDENCE LEVEL UNDER INPUT MODEL UNCERTAINTY 

 

7.1 Introduction 

The input model is a collection of marginal and joint distributions of input 

random variables with their associated parameters. When it is uncertain what types of 

marginal and joint distributions and parameters should be used for the input model, the 

input model uncertainties arise. Input model uncertainties consist of input statistical 

uncertainty and input physical uncertainty. The input statistical uncertainty is associated 

with identification of marginal and joint distribution; the input physical uncertainty is 

associated with quantification of input parameters of the identified marginal and joint 

distributions such as mean, standard deviation, and correlation coefficient. In industrial 

applications, since often limited data on input variables is available due to expensive 

experimental testing costs, it is difficult to correctly model the input model uncertainties. 

If the input model uncertainties are not correctly modeled from given data, the estimated 

input model will yield incorrect reliability-based optimum design.  

Therefore, to offset the inexact identification and quantification of the input 

model uncertainties, an input model with a confidence level is developed for use in 

RBDO. For this, instead of using the estimated parameters obtained from given limited 

data, adjusted parameters calculated using confidence intervals of the estimated 

parameters are proposed. For the calculation of the confidence intervals, a method using 

normality assumption on an input variable and bootstrap methods are described. To check 
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whether use of the adjusted parameters provides the desirable confidence level of the 

output performance, i.e., the target probability of failure, the t -contour with target 

reliability index is used to measure the confidence level of the input model. If the t -

contour covers the true t -contour, then it will yield a reliable optimum design 

regardless of the location of MPP on the estimated t -contour.  

Section 7.2 explains why the t -contour is used to measure input confidence 

levels in detail, and how confidence intervals of the input parameters affect the shape of 

the t -contour.  Section 7.3 illustrates how to calculate confidence intervals of the input 

parameters. In Section 7.4, the adjusted parameters using the confidence intervals of the 

input parameters are introduced to have desirable input confidence level. Section 7.5 

shows simulation results for the input confidence levels for different number of samples 

and parameters.  Section 7.6 provides numerical examples to show how the input model 

with adjusted parameters yields reliable optimum designs. 

 

7.2 Measure of Input Confidence Level 

When an input model is estimated from given limited data, we are concerned how 

much confidence level of output performance the estimated input model provides. 

However, it is difficult to predict the accurate confidence level of output performance of 

the RBDO result because the confidence level of output performance can be different for 

different RBDO problems according to the location of MPP on the t -contour at the 

optimum design even though the same input model is used. Thus, the confidence level of 

the input model needs to be first estimated before stepping into the estimation of the 
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confidence of output performance. Even though the confidence level of the input model is 

not necessarily equivalent to the output confidence level, if a conservative measure for 

calculating the input confidence level, i.e., a t -contour is used, then it can be assured 

that the confidence level of output performance is at least larger than the confidence level 

of input model.  

Figure 7.1 (a) shows an estimated t -contour (dashed contour) that fully covers a 

true t -contour (solid contour). For different shapes of constraint functions as shown in 

Figures 7.1 (b) and (c), the optimum designs using the estimated t -contour and the true 

t -contour are obtained as the triangular mark and the circular dot, respectively, where 

the gray region indicates the failure region, i.e.,   0G x . Since the obtained optimum 

(triangular mark) is farther away from the active constraint function than the true 

optimum as shown in Figures 7.1 (b) and 7.1 (c), the probabilities of failure evaluated at 

the obtained optimum designs are smaller than the one at the true optimum, which means 

that the estimated t -contour yields reliable optimum designs.  

However, when the estimated t -contour does not fully cover the true t -contour 

as shown in Figure 7.2 (a), it could yield a reliable optimum design, or not. In Figure 7.2 

(b), the optimum design for the estimated t -contour is reliable because it is farther away 

from the active constraint function than the true optimum. However, for the different 

shape of constraint function in Figure 7.2 (c), the optimum design for the estimated t -

contour is not reliable because it is closer to the active constraint than the true optimum. 
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Thus, the estimated t -contour that fully covers the true t -contour ensures that the 

obtained optimum design is always reliable.  

 

         (a) t -contours                 (b) Case 1                (c) Case 2 

Figure 7.1. Estimated t -contour Fully Covering True t -contour 

 

                (a) t -contours                 (b) Case 1                  (c) Case 2 

Figure 7.2. Estimated t -contours Partially Covering True t –contour 

To obtain the estimated t -contour covering the true t -contour, it is necessary 

to know how the input parameters affect the t -contour shapes. Figure 7.3 shows the t -

contours using the true parameters and upper and lower bounds of confidence intervals of 
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mean, standard deviation, and correlation coefficient, indicated as solid, dashed and 

dashed-dotted contours, respectively. In these figures, when the upper and lower bounds 

of one parameter are considered, the other two parameters are assumed to be exact.  

 

(a) Mean        (b) Standard Deviation   (c) Correlation Coefficient 

Figure 7.3. t -contours Using Lower and Upper Bounds of the Confidence Interval of 

Mean, Standard Deviation, and Correlation Coefficient 

In Figure 7.3 (a), the upper and lower bounds of the confidence interval of the 

mean are related to the position of the t -contour. As shown in the figure, neither the 

upper nor the lower bounds of the confidence interval of the mean makes the estimated 

t -contour fully cover the true t -contour. On the other hand, the upper bound of the 

confidence interval of the standard deviation makes the estimated t -contour fully covers 

the true t -contour as shown in Figure 7.3 (b). Figure 7.3 (c) shows the t -contours 

using the lower and upper bounds of the confidence interval of the correlation coefficient. 

Like the mean, neither the lower nor the upper bound of the confidence interval of the 

correlation coefficient makes the estimated t -contour fully covers the true t -contour. 
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Thus, the upper bound of the confidence interval of the standard deviation can be only 

used to obtain the t -contour covering the true t -contour, which will lead to the 

reliable optimum design. 

However, the prediction error in the mean and correlation coefficient still exists in 

the input model in which only insufficient data is available. Therefore, instead of using 

the estimated mean and correlation coefficient, adjusted parameters using the confidence 

intervals of the mean and correlation coefficient are proposed to enlarge the t -contour 

such that the t -contour with the adjusted parameters covers the true t -contour, which 

will lead to a desirable confidence level of input model. In the next section, it will be 

illustrated how the confidence intervals of the input parameters are calculated. 

 

7.3 Confidence Intervals of Mean, Standard Deviation, and 

Correlation Coefficient 

As stated earlier, the adjusted parameters are used to provide a desirable 

confidence level for the input model. Since the adjusted parameters are calculated using 

the confidence intervals of the mean, standard deviation, and correlation coefficient, the  

confidence intervals of those parameters are described in this section. 

 

7.3.1 Confidence Interval of Mean 

Once marginal and joint distribution types are identified using the Bayesian 

method, it is necessary to evaluate their parameters based on given limited data. To 

calculate the parameters of the marginal CDFs, the maximum likelihood estimate (MLE) 
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can be used. However, the MLE might be biased (Baxter, 1980), which means that the 

expected value of the parameter might not be the same as the parameter being estimated. 

For instance, the MLE is biased for estimating the variance 2 of a Gaussian distribution. 

On the other hand, a minimum variance unbiased estimator (MVUE), which is a 

commonly used estimator, is unbiased for estimating the variance 2 , and the variance of 

2 , 2Var    , is smaller than any other unbiased estimators. This estimator was derived 

by Likes (1969).  

The mean and variance that are estimated from given samples are called the 

sample mean   and variance 2 , respectively. The sample mean is calculated as 
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  (7.1) 

which is the same for the MLE and MVUE. The sample variance for the MLE is 

calculated as 
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and the sample variance for the MVUE is calculated as 
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 To calculate the confidence interval of the mean, suppose that X  is a normal 

random variable with a population mean   and standard deviation  . A random sample 

of size ns is collected, i.e.,  1, , nsx xx  , and then the sample mean can be calculated 

using Eq. (7.1). It is assumed that each sample 1 2, , , nsx x x  comes from a set of random 
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variables 1X , 2X , ···, nsX  where iX  follows the same distribution as X . Since the 

sample mean is a random variable, it can be stated as 
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1 ns

i
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X
ns 

    (7.4) 

The expectation of the sample mean becomes the population mean as 

  E    (7.5) 

The variance of the sample mean is calculated as 
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
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When the population standard deviation is unknown, which is the usual case, 

   / / ns    follows a student’s t-distribution (Haldar and Mahadevan, 2000). 

Thus, for the sample mean and standard deviation, the confidence interval for  1   

level is obtained as 

 /2, 1 /2, 1Pr 1ns nst t
ns ns

 
     

        

    (7.7) 

where /2, 1nst   is the value of a student’s t-distribution with (ns-1) degree of freedom 

evaluated at the probabilities of /2. For example, for the 95% confidence level,  = 0.05.  

Thus, the lower and upper bounds of the confidence interval of the mean, L  and  U , 

are obtained as 

 /2, 1 /2, 1andL U
ns nst t

ns ns
 

        
      (7.8) 

However, since Eq. (7.8) is calculated based on the assumption that the random 

variable follows a Gaussian distribution, it might be incorrect for a non-Gaussian 
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distribution. To circumvent this, the bootstrap method, which does not require the 

normality assumption on the input variable X , can be used. In this study, since the 

confidence interval of the mean is rather accurately calculated even for the non-Gaussian 

distribution (Shao and Tu, 1995; Bonate, 2005), only the confidence interval of the 

standard deviation is tested in this study. The bootstrap method will be further discussed 

in the next section. 

7.3.2 Confidence Interval of Standard Deviation 

Suppose that X  is a Gaussian random variable and ns samples, 1 2, , , nsx x x , are 

collected to estimate the population variance 2 , which is an unknown constant. To 

estimate the population variance 2 , it is assumed that the samples come from ns 

independent Gaussian random variables, 1X , 2X , ···, nsX . Using Eq. (7.3), the sample 

variance can be calculated as (Haldar and Mahadevan, 2000) 

  22
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X
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  
    (7.9) 

where   is the Gaussian random variable of the sample mean. Multiplying both sides of 

Eq. (7.9) by (ns-1), Eq. (7.9) can be rewritten as 

          2 222
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Dividing both sides of Eq. (7.10) by 2 , Eq. (7.10) is written as 
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 (7.11) 

Since   and 2  are constant, and the first term on the right side of Eq. (7.11) is a sum of 

the ns squared independent Gaussian variables, it thus has a chi-square distribution with 



123 
 

 

ns degrees of freedom (Ang and Tang, 1984), denoted as 2
ns . The second term on the 

right side has only one squared Gaussian variable and thus has a chi-square distribution 

with one degree of freedom. Since the sum of two chi-square distributions with i and j 

degrees of freedom is also the chi-square distribution with (i+j) degrees of freedom (Hoel, 

1962), the left side of Eq. (7.11) has a chi-square distribution with (ns1) degree of 

freedom, denoted as 2
1ns  . 

When the PDF of   2 21 /ns    has a chi-square distribution with (ns1) 

degrees of freedom, the two-sided (1) confidence interval of the population variance 

2  is given as 
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where /2, 1nsc   and 1 /2, 1nsc   are the critical values of the chi-square distribution evaluated 

at the probability levels of /2 and (1/2) with (ns1) degrees of freedom, respectively. 

Using the realization of 2 , denoted as 2 , Eq. (7.12) is rewritten as 
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Equation (7.13) indicates that the true standard deviation   is within this interval, 

which is calculated from given ns samples for a significance level , with  100 1 %   

of the probability. For two-sided (1), the lower and upper bounds of the confidence 

interval of the standard deviation,  L  and U , respectively, are calculated as 
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However, the confidence interval of the standard deviation in Eq. (7.13) is 

calculated based on an assumption that the input random variable follows a Gaussian 

distribution. If it does not, the estimated confidence interval could be erroneous. Thus, 

the bootstrap method, which does not require the normality assumption on the input 

variable, needs to be used.  

The bootstrap method calculates a confidence interval of an estimated parameter 

  by constructing a distribution of the parameter using a frequency distribution of * ’s 

obtained from randomly generated bootstrap samples based on given data. Table 7.1 

shows how to calculate the confidence interval of a parameter using the bootstrap method.  

Table 7.1. Bootstrap Procedures 

Bootstrap Procedures 

Step 1 Construct an empirical distribution  nsF x  from original data  1 2, , , nsx x xx  . 

Step 2 

Generate bootstrap samples * * * *
1 2, , , nsx x x   x   from 

empirical distribution  nsF x
 
for non-parametric approach or 

parametric distribution  ,F a bx  for parametric approach. 

Step 3 Calculate a statistic of interest   from bootstrap samples, yielding *
b . 

Step 4 Repeat Steps 2 and 3 B times (i.e., B=1000). 

Step 5 
Construct a probability distribution  * *G    from * * *

1 2, , , B     , and then 

calculate confidence interval of estimated parameter,   using  * *G   . 

 

The first step is to construct an empirical distribution  nsF x  generated from 

given samples  1 2, , , nsx x xx  . In the second step, if a random sample of size ns with 

replacement is drawn from the empirical distribution  nsF x , then this is called a non-
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parametric approach. If the re-sample is drawn from a specified model  ,F a bx  

determined from the given samples, this is called a parametric approach. In this study, the 

distribution type of the parametric model is identified using the Bayesian method, and its 

parameters, a and b , are quantified using Table 3.1. The third step is to calculate the 

statistic of interest   from the re-sample, drawn from either empirical or parametric 

distribution, yielding *
b . In the fourth step, the second and third steps are repeated B 

times (i.e., B=1000). Then, the fifth step is to construct a probability distribution from 

* * *
1 2, , , B     . This distribution is the bootstrap sampling distribution of  ,  * *G   , 

which is used to calculate the confidence interval of  . To obtain the bootstrap sampling 

distribution of  , the normal approximation, percentile, bias corrected (BC), percentile-t, 

and bias corrected accelerated (BCa) methods can be used.  

The normal approximation method assumes that the distribution of   is a 

Gaussian distribution. Using the assumption, the confidence interval of   is obtained as 

(Mooney and Duval, 1993) 

 * *
/2 /2z z          

    (7.15) 
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

  , and /2z  is the value of standard 

Gaussian distribution CDF with / 2 . This normal approximation assumes that the 

distribution of   is Gaussian, so that the confidence interval is not accurate for non-

Gaussian distribution that has a very different PDF shape from the Gaussian distribution. 
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The percentile method calculates the confidence interval of the parameter based 

on that the bootstrap sampling distribution  *G  
 
approximates the population 

distribution  G  . The basic idea of this method is that the confidence interval for 

 1   level includes all the values of *  between  / 2 and  1 / 2  percentiles of 

 * *G   . The sorting vector of *
b ’s obtained from each bootstrap sample for 1, ,b B  , 

the values of *
b  evaluated at  / 2 100  th and  1 / 2 100  th percentiles of  * *G    

are used as the lower and upper bounds of  , 

 * *
/2 1 /2        (7.16) 

Since the percentile method does not assume that the bootstrap sampling 

distribution follows a Gaussian distribution like the normal approximation method, it 

allows  * *G  
 
conforming to any shape that the data follow. For this reason, it is the 

most widely used bootstrap technique among applied statisticians (Liu and Singh, 1988). 

However, when the number of samples is small,  * *G  
 
might be a biased estimator of 

 G  , i.e., *  is a biased estimator of  . In that case, the percentile method can be 

inaccurate. 

The bias corrected (BC) method corrects the bias term by introducing an adjusted 

parameter 0z . Suppose that there exists some monotonic transformations of *  and  , 

say   and  , respectively. Instead of assuming that *    be centered at zero, the BC 

method assumes that    *
0z z        follows a standard Gaussian distribution. 
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Since   and   are monotonic functions, it holds that      *
0 0Pr Pr z z z      

 

(Efron, 1982). Accordingly, 0z  is calculated using (Mooney and Duval, 1993)  

   1 *
0 Prz       (7.17) 

where 0z  is a biasing constant that compensates for the bias between *
 
and  . Since 

 * *G    is invariant to the transformation, the transformation does not need to be known. 

Using 0z , the confidence interval of   is obtained as 

    0 /2 0 1 /2

* *
2 2z z z z 

  
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where  0 /2

*
2z z

 
  is the value of *  evaluated at the  0 /22 100z z   th percentile, and 

 0 1 /2

*
2z z 


 

  is the value of *  evaluated at the   0 1 /22 100z z     th percentile. The BC 

method corrects the bias term, but it still requires the parametric assumption that there 

exist monotonic transformations of *  and  . 

The bias corrected and accelerated (BCa) method generalizes the BC method. The 

BC method only corrects the bias, whereas the BCa method corrects both the bias and the 

skewness. The BCa method assumes that for some monotone transformations,   and  , 

some bias constant 0z  and acceleration constant a result in (Efron and Tibshirani, 1993) 
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where    is the constant standard error of  , and the acceleration a is defined as 
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where  i is the estimated parameter of    1 1 1, , , , ,i i nsi x x x x x  
 
without the ith point 

ix  and  
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/
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ns 
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  . Using Eq. (7.19), the BCa confidence interval is defined as 
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  1 *
0

ˆ ˆPrz     .  

However, since the BCa method highly depends on the acceleration a, if it is not 

accurate, the BCa method also might be inaccurate. 

The percentile-t method uses the distribution of a standardized estimator to 

calculate the confidence interval. The percentile-t interval is expected to be accurate to 

the extent that standardizing depends less on the boot sampling estimator *  than the 

percentile method. Transforming the estimated parameter *
b  to the standardized 

parameter *
bt  (Mooney and Duval, 1993),   

   *

* * /
b

b bt


    
    (7.22) 

where *
b  is the estimated parameter from each re-sampled data * * * *

1 2, , ,b b b nsbx x x   x   

for 1, ,b B  .    is the estimated parameter from the original data, 1 2, , , nsx x x   x  ; 

and *
b

   is the standard deviation of   obtained from a double bootstrap, which is 
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another level of re-sampling. That is, the double bootstrap sample * ** ** **
1 2, , ,d d d nsdx x x   x  ,  

1, ,d D   is re-sampled from the bootstrap samples * * * *
1 2, , ,b b b nsbx x x   x  , 1, ,b B  . 

Thus, the percentile-t method requires many bootstrap samples ( D B ). Using double 

bootstrap samples, *
b

   is obtained as 
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where ** **
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/
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d
d

D 


  .  

The confidence interval of the parameter   is obtained as 

 * *
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where *
/2t  and *

1 /2t   are the values of *t  evaluated at / 2 100  th and  1 / 2 100   th 

percentiles, respectively. In Eq. (7.24),    is the population standard deviation, which is 

calculated as  
2* *

1

/ 1
D

d
d

D  


    
   , where *

d  is the estimator obtained from re-

sampled data  * * * *
1 2, , , Dx x x   x   , which is randomly generated from the original data. 

The five bootstrap methods are combined with the nonparametric and the 

parametric approach as explained in Table 7.1. In this study, for the parametric approach, 

both the true CDF and the identified CDF using the Bayesian method are used. To test 

the bootstrap methods, the Gaussian marginal distribution is considered as a true model 

with 5.0  and 5.0   (COV=1.0) and 1000 data sets with ns=30, 100, 300 are 

generated from the true model. Note that COV of 1.0 seems too large, but it is still 
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observed in real engineering applications, such that the COV of the fatigue ductility 

coefficient of 950X steel is obtained as 1.15 from 29 data (Socie, 2003). Thus, it is 

valuable to test the problem with a large COV. 

The performance of the bootstrap method is assessed by the estimated confidence 

level of the standard deviation. The confidence level of the standard deviation is 

estimated by the probability that the upper bounds of the confidence interval of the 

standard deviation, calculated from 1000 data sets, are larger than the true standard 

deviation. Thus, it is the most desirable that the estimated confidence level is larger than 

the target confidence level. In this study, since 95% of the two-sided target confidence 

level corresponds to 97.5% of the upper side of the confidence interval, the 

corresponding target confidence level is 97.5%. On the other hand, unnecessarily large 

upper bound of the standard deviation is not good because it yields too conservative 

optimum design. Therefore, the most desirable confidence interval should include the 

true standard deviation with the target confidence level, but with an adequately size. 

Table 7.2 shows the estimated confidence level of the standard deviation using 

different bootstrap methods. The parametric approach using the true marginal CDF has 

the best performance, and the parametric approach with identified CDF is not as good as 

the one with true CDF due to the identification and quantification error. However, it is 

better than the nonparametric approach because it yields more desirable confidence level 

than the nonparametric approach when the identified CDFs are correct.  

Among the five bootstrap methods, the percentile-t has almost 97.5% confidence 

level even for ns=30 and the BCa method has the second best performance. As the 

number of samples increases, all methods converge toward 97.5%. In this case, since the 



131 
 

 

true distribution is Gaussian, the method using a normality assumption on the input 

variable X , i.e., Eq. (7.14), has 97.5% regardless of the number of samples. Notice that 

Eq. (7.14) uses the normality assumption on X , whereas the normal approximation 

(bootstrap) uses the normality assumption on the parameter  . 

Table 7.3 shows the mean values of the upper bound of the confidence intervals 

of standard deviation obtained from 1000 data sets using all the methods. Since the 

parametric approach has larger confidence levels than the nonparametric approach as 

shown in Table 7.2, the confidence intervals using the parametric approach are 

accordingly larger than those using the nonparametric approach as shown in Table 7.3.  

Since the obtained upper bounds using all bootstrap methods are adequately large 

corresponding to estimated confidence levels, all methods seem to have adequately sized 

confidence intervals. Thus, the percentile-t method, which has the most desirable 

confidence level, is the most preferred among five bootstrap methods, followed by the 

BCa method. 

Table 7.2. Estimated Confidence Levels of Standard Deviation (Gaussian, 5.0   and 
5.0  ) 

ns Approach Nor. Approx. Percentile BC BCa Percentile-t 

30 
Nonpar. 92.4 89.9 94.3 96.2 97.6 

Par. (Iden.) 93.0 93.1 94.4 96.0 96.7 
Par. (True) 94.0 94.1 95.9 97.1 97.7 

100 
Nonpar. 94.1 93.3 94.9 95.6 96.7 

Par. (Iden.) 96.4 96.5 97.0 98.0 98.1 
Par. (True) 95.5 95.4 96.3 96.8 97.4 

300 
Nonpar. 96.4 96.1 96.6 97.9 97.5 

Par. (Iden.) 97.0 96.7 97.0 97.5 97.7 
Par. (True) 96.8 96.9 97.1 97.8 97.6 

Note: Method Using Normality Assumption on X : 97.5% for ns=30, 100, 300 
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Table 7.3. Mean Values of Upper Bound of Confidence Interval of Standard Deviation 
(Gaussian, 5.0   and 5.0  ) 

ns Approach Nor. Approx. Percentile BC BCa Percentile-t 

30 
Nonpar. 6.133 6.001 6.213 6.407 6.901 

Par. (Iden.) 6.346 6.448 6.491 6.735 6.826 
Par. (True) 6.201 6.209 6.325 6.536 6.753 

100 
Nonpar. 5.662 5.633 5.708 5.779 5.843 

Par. (Iden.) 5.705 5.720 5.727 5.828 5.828 
Par. (True) 5.696 5.697 5.728 5.796 5.841 

300 
Nonpar. 5.389 5.381 5.406 5.430 5.442 

Par. (Iden.) 5.396 5.397 5.405 5.428 5.440 
Par. (True) 5.398 5.400 5.408 5.431 5.441 

Note: Method Using Normality Assumption on X :  6.680 for ns=30, 5.793 for ns=100, 
and 5.414 for ns=300 

Consider a non-Gaussian distribution, lognormal distribution with 5.0   and 

5.0  (COV=1.0). Since the distribution of the standard deviation is highly skewed due 

to the lognormal distribution with large COV, all methods have poor confidence levels of 

the standard deviation especially for ns=30 as shown in Table 7.4. However, as the 

number of samples increases, the obtained confidence levels approach the target 

confidence level whereas the method using the normality assumption on X  is nearly 

only 65% regardless of the number of samples. 

As shown in Table 7.4, when the nonparametric approach is used, the percentile-t 

has the highest confidence level, followed by the BCa method among five bootstrap 

methods. For the parametric approach using identified CDF, the percentile-t method is 

the best for ns=30 and 100, and the percentile method is the best for ns=300. When the 

parametric approach using the true CDF is used, the percentile method has the best 

performance for ns=30, 100, and 300.  
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Table 7.4. Estimated Confidence Levels of Standard Deviation (Lognormal, 
5.0   and 5.0  )  

ns Approach Nor. Approx. Percentile BC BCa Percentile-t 

30 
Nonpar. 64.9 61.3 64.8 70.4 83.7 

Par. (Iden.) 74.9 79.0 85.0 88.9 89.6 
Par. (True) 89.3 95.2 88.3 92.4 88.3 

100 
Nonpar. 76.0 75.1 78.1 83.1 88.8 

Par. (Iden.) 87.2         87.5 87.4 89.9 92.0 
Par. (True) 95.2 97.7 86.9 89.9 87.1 

300 
Nonpar. 82.3 82.7 84.5 87.9  91.3 

Par. (Iden.) 95.9 97.5 86.8 88.4 85.7 
Par. (True) 96.7 99.0 86.3 88.2 85.3 

Note: Method Using Normality Assumption on X : 65.8% for ns=30, 66.0% for ns=100, 
and 65.0% for ns=300 

 
Even though the percentile-t method provides more desirable confidence levels 

than other methods for the nonparametric approach, it provides unnecessarily large upper 

bounds of standard deviation. For example, the mean value of the upper bound of 

standard deviation using the nonparametric percentile-t method is 20.01, which is 

significantly larger than true standard deviation 5.0 as shown in Table 7.5. In addition, it 

has a large standard deviation, 32.78, of the upper bounds of confidence intervals for 

standard deviation as shown in Table 7.6. That is, the upper bounds of confidence 

intervals of the standard deviation are overestimated and widely spread over the wide 

range of the standard deviation. As the number of samples increases, the upper bound of 

the standard deviation approaches the true standard deviation and its variation is reduced, 

but it converges very slowly to the true standard deviation compared to other methods. 

Thus, the BCa method, which has second highest confidence level and adequate value of 

upper bound, is preferred for the nonparametric approach.  
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Table 7.5. Mean Values of Upper Bound of Confidence Interval of Standard Deviation 
(Lognormal, 5.0   and 5.0  ) 

ns Approach Nor. Approx. Percentile BC BCa Percentile-t 

30 
Nonpar. 6.900 6.458 6.803 7.379 20.01 

Par. (Iden.) 7.830 8.396 12.72 15.22 16.62 
Par. (True) 8.742 9.998 12.57 15.83 16.04 

100 
Nonpar. 6.482 6.367 6.604 7.144 10.78 

Par. (Iden.) 7.167 7.596 9.204 10.43 10.83 
Par. (True) 7.367 7.978 9.342 10.60 10.77 

300 
Nonpar. 6.088 6.078 6.219 6.571 7.810 

Par. (Iden.) 6.416 6.763 7.324 7.877 7.642 
Par. (True) 6.491 6.824 8.034 7.422 7.984 

Note: Method Using Normality Assumption on X : 6.451 for ns=30, 5.708 for ns=100, 
and 5.401 for ns=300 

Table 7.6. Standard Deviations of Upper Bound of Confidence Interval of Standard 
Deviation (Lognormal, 5.0   and 5.0  ) 

ns Approach Nor. Approx. Percentile BC BCa Percentile-t 

30 
Nonpar. 3.629 3.130 3.491 3.990 32.78 

Par. (Iden.) 3.873 4.316 11.62 12.96 20.66 
Par. (True) 3.587 3.958 10.18 11.81 21.21 

100 
Nonpar. 2.272 2.132 2.365 2.813 11.71 

Par. (Iden.) 1.977 2.019 4.725 5.373 12.34 
Par. (True) 1.917 1.663 4.790 5.520 12.77 

300 
Nonpar. 1.219 1.200 1.308 1.594 3.930 

Par. (Iden.) 0.971 0.873 2.728 2.978 4.692 
Par. (True) 0.929 0.815 2.598 2.946 4.695 

Note: Method Using Normality Assumption on X : 2.484 for ns=30, 1.488 for ns=100, 
and 0.834 for ns=300 

Likewise, for the parametric approach, the BC, BCa, and percentile-t methods 

have relatively higher confidence levels than other methods, but they have very large 

upper bounds and variations, as shown in Tables 7.5 and 7.6. Further, the estimated 

confidence levels using BC, BCa, and percentile-t methods do not converge to the target 
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confidence level even for a large number of samples. On the other hand, the percentile 

method yields somewhat less desirable confidence levels than the three methods, but it 

has adequate values of upper bounds for standard deviation and small variations as shown 

in Table 7.5 and 7.6. Figure 7.4 shows the histograms of the upper bounds of confidence 

interval of the standard deviation using the parametric percentile bootstrap method with 

identified CDF. The estimated upper bounds of standard deviations mostly centered at the 

true standard deviation, 5.0 even for ns=30. As the number of samples increases, a large 

amount of the upper bounds of standard deviation tends to be very close to the true 

standard deviation with a small variation.  

Since the parametric percentile method provides the better confidence levels than 

the best nonparametric approach, BCa, the parametric percentile method is preferred one 

for non-Gaussian distribution with high skewness. 

 

(a) ns=30        (b) ns=100        (b) ns=300 

Figure 7.4. Histograms of Upper Bound of Confidence Interval of Standard Deviation 

In summary, when the random variable has the Gaussian distribution, both the 

method using a normality assumption on X  and the percentile-t bootstrap method can be 
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used. When the input marginal distribution is not Gaussian and highly skewed, the 

parametric percentile method has the most desirable performance. Even though the 

bootstrap methods do not achieve the target confidence level for a small number of 

samples, as the number of samples increases, the obtained confidence levels converge to 

the target confidence level while the method using normality assumption on X does not. 

The bootstrap method has reasonably good performance for non-Gaussian distribution 

with small COV, i.e., less than 0.2. The bootstrap method can be applied to any types of 

distribution, and the test results for various types of distributions are presented by Shao 

and Du (1995). 

The upper bound of the confidence interval calculated from the method using a 

normality assumption on X  and the bootstrap method will be used to calculate the 

adjusted standard deviation, which is introduced in Section 7.4.  

     

7.3.3 Confidence Interval of Correlation Coefficient 

To calculate the confidence interval of the correlation coefficient, proposition 3.1 

from Genest and Rivest (1993) is used as 

  ~ 0,1
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 (7.25) 
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Let the correlation parameter be a function of the correlation coefficient, 

Kendall’s tau,  1g  . It is known that as ns approaches infinity, the sample 

correlation parameter follows a Gaussian distribution (Genest and Favre, 2007). 

 
  211

~ , 4
dg

N w
ns d


 



         




 (7.26) 

Thus, the confidence interval of the correlation parameter for  100 1    of the 

confidence level is obtained as 
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 

  
      

  

  
   (7.27) 

where /2z is the CDF value of Gaussian distribution evaluated at / 2 .  

Using the upper and lower bounds of the confidence interval of the correlation 

parameter  , the upper and lower bounds of confidence interval of the correlation 

coefficient   are calculated from  g   using Eq. (2.17) or explicit functions such as 

Table 2.2. 

 

7.4 Adjusted Parameters Using Confidence Intervals of Input Parameters 

As explained in the previous section, the upper bound of the confidence interval 

of the standard deviation yields a large t -contour, which leads to a reliable design, 

whereas upper and lower bounds of mean and correlation coefficient do not. Thus, the 

confidence intervals of the mean and correlation coefficient cannot be directly used for 

the input model, unlike the one for the standard deviation.  
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To resolve this problem, an adjusted standard deviation that includes the 

confidence interval of the mean and the upper bound of the confidence interval of the 

standard deviation is proposed to enlarge the t -contour, so that it covers the prediction 

errors of both the mean and standard deviation in estimating the input confidence level. 

Likewise, using the confidence interval of the correlation coefficient, the adjusted 

correlation coefficient is proposed. The adjusted correlation coefficient combined with 

the adjusted standard deviation yields a t -contour, which is large enough to cover the 

true t -contour.  

  

7.4.1 Adjusted Standard Deviation Using Confidence 

Intervals of Mean and Standard Deviation 

A small standard deviation indicates that the samples tend to be close to the mean 

while large standard deviation indicates that the samples are spread out with a large range 

of the sample values. Table 7.7 shows the expected values of the sample mean, the lower 

and upper bounds of the confidence intervals of the mean obtained from 1000 data sets 

where the true distribution is Gaussian with the true mean, 5.0  . To see the effect of 

standard deviation on the estimation of the mean, small and large standard deviations, 0.3 

and 5.0, are tested.  

As displayed in Table 7.7, the small standard deviation yields a small confidence 

interval of the mean because most of the samples center on the true mean. On the other 

hand, the large standard deviation yields a large confidence interval of the mean because 

the samples are widely spread on a large domain of X . Thus, for large standard deviation, 
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it is important to consider the prediction error of mean values in order to have a desirable 

confidence level for the input model. 

Table 7.7. Mean Values of Confidence Intervals of Mean 

True Mean and Std. ns Lower Bound Sample Mean Upper Bound

 =5,  =0.3 
30 4.887 4.999 5.112 
100 4.937 4.996 5.056 
300 4.965 4.999 5.033 

 =5,  =5.0 
30 3.121 5.000 6.879 
100 4.018 5.010 6.002 
300 4.430 5.000 5.570 

 

The adjusted standard deviation can be defined by adding the confidence intervals 

of the mean to the upper bound of the confidence intervals of the standard deviation as 

 A U        (7.28) 

where U  is the upper bound of the confidence interval of the standard deviation and 

U L              since the sample mean is the middle point of the confidence 

interval for the Gaussian distribution. 

However, since the confidence interval of the mean could yield an unnecessarily 

large effect on the adjusted standard deviation, the COV is used as a scale factor such that 

the effect of the mean is small for small COV and large for large COV. Thus, the 

adjusted standard deviation is defined as 

 A U   


  
  


 (7.29) 

Table 7.8 shows the mean values of the sample standard deviation and the lower 

and upper bounds of the confidence intervals of the standard deviation obtained from 
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1000 data sets where samples are generated from Gaussian distribution,  2~ 5.0,0.3X N  

and  2~ 5.0,5.0X N . Since the true distribution is Gaussian, the method using a 

normality assumption on X  is used.  

Table 7.8. Mean Values of Confidence Intervals of Standard Deviation and Adjusted 
Standard Deviation (Gaussian) 

 

For small standard deviation,  =0.3, due to small prediction error of the mean, 

the adjusted standard deviation is slightly larger than the upper bound of the confidence 

intervals of the standard deviation. On the other hand, for large standard deviation, 

5.0  , due to large prediction error of the mean, the adjusted standard deviation is 

fairly larger than the upper bound of the confidence interval of the standard deviation. As 

the number of samples increases, the adjusted standard deviation, lower and upper 

bounds of the confidence interval of standard deviation tend to converge to the true 

standard deviation.  

Suppose the samples are generated from lognormal with same mean, 5.0  , and 

two different standard deviations, 0.3   and 5.0  . As shown in Table 7.9, when the 

standard deviation is small,  =0.3, the lognormal distribution is almost identical to the 

Gaussian distribution, so that the estimated confidence interval (Table 7.9) is almost the 

True Std. ns Lower Bound Sample Std. Upper Bound Adjusted Std.

0.3 
30 0.239 0.300 0.404 0.410 
100 0.263 0.299 0.347 0.351 
300 0.277 0.299 0.325 0.327 

5.0 
30 3.998 5.020 6.748 8.698 
100 4.390 4.999 5.808 6.815 
300 4.645 5.017 5.454 6.028 
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same as the one for the Gaussian distribution (Table 7.8). When the standard deviation is 

large,  =5.0, the lognormal distribution becomes right skewed, which leads to a large 

confidence interval, as shown in Table 7.9, compared to the one for the Gaussian 

distribution in Table 7.8. Therefore, the use of the adjusted standard deviation covers the 

prediction error of both the mean and standard deviation whereas the use of the upper 

bound of confidence intervals of standard deviation only covers the prediction error of 

the standard deviation. 

Table 7.9. Mean Values of Confidence Intervals of Standard Deviation and Adjusted 
Standard Deviation (Lognormal) 

 

7.4.2 Adjusted Correlation Coefficient Using Confidence Intervals of Correlation 

Coefficient 

As shown in Figure 7.3 (c), the t -contours for the lower and upper bounds of the 

correlation coefficient do not yield reliable design when the sample standard deviation is 

not large enough to cover the true t -contour. To resolve this problem, the adjusted 

correlation coefficient is proposed in this study.  

Suppose that a true standard deviation   is 0.3 and the adjusted standard 

deviation A  is 0.33. If the small correlation coefficient ( 0.2  ) and the adjusted 

True Std. ns Lower Bound Sample Std. Upper Bound Adjusted Std.

0.3 
30 0.218 0.299 0.386 0.393 
100 0.257 0.299 0.343 0.355 
300 0.274 0.298 0.322 0.325 

5.0 
30 2.440 4.900 8.396 10.51 
100 3.236 4.950 7.596 8.784 
300 3.778 4.977 6.763 7.361 
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standard deviation ( 0.33A  ) are used, they enlarge both the width and length of the t

-contour, as shown in Figure 7.5 (a). On the other hand, if the large correlation coefficient 

( 0.8  ) and the adjusted standard deviation ( 0.33A  ) are used, they enlarge the 

length of the t -contour much more than the width of the t -contour, as shown in Figure 

7.5 (b). Thus, when the true correlation is large, 0.8  , if the sample correlation 

coefficient is estimated to be larger than 0.8, the adjusted standard deviation ( 0.33A  ) 

cannot cover the true t -contour. 

 
(a)  =0.2       (b)  =0.8 

Figure 7.5. t -contours for Small and Large Correlation Coefficient 

Suppose that two random variables follow Gaussian distributions, 

2
1 2and ~ (5,0.3 )X X N  . If samples are generated from the true model, the sample 

correlation coefficient might be underestimated or overestimated. Figure 7.6 (a) and (b) 

shows the t -contours with underestimated and overestimated correlation coefficients, 
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indicated as the dotted and dashed contours, respectively, for  =0.2 and 0.8. For  =0.2 

in Fig. 7.6 (a), if the adjusted standard deviation is 0.33, the obtained t -contour covers 

the true t -contour for both underestimated (  =0.1) and overestimated (  =0.3). 

However, for 0.8   in Fig. 7.6 (b), even though the same adjusted standard deviation is 

used ( 0.33A  ), the t -contour with underestimated correlation coefficient ( =0.7) 

covers the true t -contour, whereas the overestimated correlation coefficient ( =0.9) 

does not. Thus, the correlation coefficient needs to be adjusted such that the obtained t -

contour covers the true t -contour for both small and large correlation coefficients. 

 
(a)  =0.2      (b)  =0.8 

Figure 7.6. t -contours Using Underestimated and Overestimated Correlation Coefficient 

Since the underestimated correlation coefficient and large standard deviation yield 

a reliable design, the lower bound of the confidence intervals of the correlation 

coefficient, L , seems to be adequate. However, when the correlation coefficient is small 
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positive, for example, for  =0.2, its lower bound could be a negative correlation 

coefficient. In that case, the obtained t -contour shape will be very different from a true 

t -contour, which leads to an inaccurate optimum design.  

Therefore, when the correlation coefficient is small, the sample correlation 

coefficient can be used to obtain the desirable input confidence level because the 

underestimated or overestimated correlation coefficient combined with the adjusted 

standard deviation A  covers well the true t -contour as shown in Figure 7.6 (a). Still, 

the smaller correlation coefficient covers the true t -contour better, so that the adjusted 

correlation coefficient A  needs to be closer to the sample correlation coefficient  , but 

smaller than   as shown in Figure 7.7 (a). On the other hand, when the correlation 

coefficient is large, the sample correlation coefficient cannot be used to obtain the 

desirable input confidence level especially when it is overestimated. The overestimated 

correlation coefficient cannot cover the true t -contour even though the adjusted standard 

deviation is large as shown in Figure 7.6 (b). Thus, for the large correlation coefficient, 

the adjusted correlation coefficient A  needs to be closer to the lower bound of 

correlation coefficient, L , but larger than L  as shown in Figure 7.7 (b). 

                 

(a)  =0.2                                                  (b)  =0.8 

Figure 7.7. Adjusted Correlation Coefficient  
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As shown in Figure 7.7, the adjusted correlation coefficient A  is selected such 

that the ratio of A    to L  
 
is equivalent to the sample correlation coefficient   as  

 
A

L

 
 




 
 

 (7.30) 

Thus, using Eq. (7.30), the adjusted correlation coefficient A  can be obtained as 

  A L             (7.31) 

However, if a copula has an asymmetric shape such as Clayton or Gumbel, L  
 
might 

not be large enough to obtain the adequately small adjusted correlation coefficient that 

yields reliable designs. In that case, since the difference between the upper bound and the 

sample correlation coefficient A    is larger than L   , if the larger value of  A  
 
is 

used instead of L    in Eq. (7.31), it yields more appropriately small adjusted 

correlation coefficient than L   . Thus, for general cases, the maximum of A    and 

L    needs to be used instead of L    in Eq. (7.31) as 

  max ,A U L                  (7.32) 

Table 7.10 shows the mean values of the confidence intervals of the correlation 

coefficients using 1000 data sets obtained from the Frank copula. To calculate the 

confidence interval of the correlation coefficient, copulas are identified for each data set. 

When the true correlation coefficient is 0.2 and ns=30, since independent copulas are 

frequently identified, the mean of sample correlation coefficients is only 0.137, which is 

fairly smaller than 0.2, and the adjusted correlation coefficient is close to the sample 

correlation coefficient. For a large number of samples, ns=300, since the Frank copula is 

correctly identified and sample correlation coefficient is correctly estimated, the mean 

value of the sample correlation coefficient is close to 0.2, and the adjusted correlation 
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coefficient also approaches the true correlation coefficient. When the correlation 

coefficient is large ( 0.8  ), the adjusted correlation coefficient is close to the lower 

bound of the confidence intervals of the correlation coefficient. As the number of samples 

increases, it approaches the true correlation coefficient, 0.8.  

This adjusted correlation coefficient will be used combined with the adjusted 

standard deviation, and those adjusted parameters will be used to calculate confidence 

levels of input models in Section 7.5. 

Table 7.10. Confidence Intervals of Correlation Coefficient and Adjusted Correlation 
Coefficient (Frank Copula) 

True  ns Lower Bound Sample Upper Bound Adjusted 

0.2 
30 0.024 0.137 0.226 0.102 
100 0.071 0.179 0.275 0.155 
300 0.127 0.201 0.268 0.186 

0.5 
30 0.269 0.494 0.642 0.379 
100 0.393 0.499 0.580 0.446 
300 0.444 0.501 0.550 0.473 

0.8 
30 0.639 0.800 0.866 0.669 
100 0.747 0.799 0.833 0.758 
300 0.775 0.799 0.819 0.780 

 

7.5 Confidence Level of Input Model  

Once the adjusted standard deviation and correlation coefficient are obtained, the 

t -contour with the adjusted parameters can be generated to estimate the confidence level 

of the input model.  

Figure 7.8 shows a flowchart for assessment of the confidence level of the input 

model. When a true input model is given  for example, the Frank copula with Gaussian 
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marginal CDFs is the true joint CDF in this testing  different samples, ns=30, 100, and 

300, can be generated from the true input model for a sufficient number of trials, such as 

300. Based on the generated samples, mean and standard deviation are quantified, and the 

marginal distribution types of 1X  and 2X  are identified using the Bayesian method. 

Using the estimated marginal distributions, a copula that best describes the given data is 

identified, and the correlation coefficient is calculated. Using the estimated input model, 

the t -contour can be drawn. By comparing the estimated t -contour and the true t -

contour, the confidence level of the input model is assessed by calculating the probability 

that the obtained t -contour is larger than the true t -contour by testing 300 trials.  

 

 

Figure 7.8. Flow Chart of Assessment of Input Confidence Level 

Using the above procedure, two input models – one model with the upper bound 

of standard deviation and sample correlation coefficient (only with confidence level of 
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standard deviation) and another model with the adjusted parameters (with confidence 

level of all input parameters) – are tested. Figures 7.9 and 7.10 show the true t -contour 

and estimated t -contours using the two input models where the target confidence level 

is 97.5%. 

 

Figure 7.9. t -contours Using Obtained Input Models with Upper Bound of Standard 

Deviation and Sample Correlation coefficient 

First, consider the input model with the upper bound of standard deviation and the 

sample correlation coefficient. As expected, when the number of samples is small, ns=30, 

the obtained t -contour shapes vary significantly and sometimes do not cover the true 

t -contour due to wrong estimation of the input model as shown in Figure 7.9 (a), (d), 

and (g). When the true correlation coefficient is small,  =0.2, as shown in Figure 7.9 (a), 
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the obtained t -contour mostly covers the true t -contour even for a small number of 

samples. On the other hand, when the true correlation coefficient is large,  =0.8, as 

shown in Figure 7.9 (g), the obtained t -contours do not cover the true t -contour well, 

especially when the correlation coefficient is estimated as higher than 0.8. As the number 

of samples increases, since the correlation coefficient is accurately estimated, and copulas 

and marginal distributions are correctly identified in most cases, the obtained t -

contours mostly cover the true t -contour as shown in Figure 7.9 (c), (f), and (i). 

Figure 7.10 shows the true t -contour and obtained t -contours using the 

adjusted standard deviation and correlation coefficient. Consider a small number of 

samples, ns=30. For the small number of samples with 0.2  , the obtained t -contours 

using the adjusted parameters in Figure 7.10 (a) mostly cover the true t -contour like 

those using the upper bound of confidence intervals of standard deviation with the sample 

correlation coefficient as shown in Figure 7.9 (a). However, for the large correlation 

coefficient, 0.8  , the obtained t -contours with adjusted parameters in Figure 7.10 (g) 

cover the true t -contour better than those with the upper bound of standard deviation 

and the sample correlation coefficient in Figure 7.9 (g). As the number of samples 

increases, the obtained t -contours are close to the true t -contour as shown in Figure 

7.10 (c), (f), and (i).  

Thus, when the adjusted parameters are used, the obtained t -contours cover well 

the true t -contour regardless of correlation coefficient values, which lead to have a 
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more desirable input confidence level than using the upper bound for standard deviation 

and the sample correlation coefficient.   

 

Figure 7.10. t -contours Using Obtained Input Models with Adjusted Parameters 

Calculating the probability that the obtained t -contours in Figures 7.9 and 7.10 

are larger than the true t -contour for 300 data sets, the confidence levels of input 

models are estimated as shown in Tables 7.11 and 7.12, respectively.  

When the upper bound of standard deviation and the sample correlation 

coefficient are used as listed in Table 7.11, the input confidence level for 0.8   is much 

lower than for 0.2   because, as shown in Figure 7.9, the overestimated correlation 

coefficient for the high correlation coefficient makes the obtained t -contour often do 

not cover the true t -contour, whereas the ones for the small correlation coefficient do. 
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Using the adjusted standard deviation and correlation coefficient, the input confidence 

level is significantly increased especially for large correlation coefficient, as shown in 

Table 7.12. As the number of samples increases, the estimated confidence levels using 

the upper bound of standard deviation and the sample correlation coefficient are getting 

close to the target confidence level, 97.5%, but those are not as much close as confidence 

levels using the adjusted parameters.  

Table 7.11. Input Confidence Levels (%) Using Upper Bound of Standard Deviation and 
Sample Correlation Coefficient, 2(5,0.3 )N  

ns  =0.2  =0.5  =0.8 
30 88 77 52 
100 92 83 75 
300 95 94 93 

 

Table 7.12. Input Confidence Levels (%) Using Adjusted Standard Deviation and 
Correlation Coefficient, 2(5,0.3 )N  

ns  =0.2  =0.5  =0.8 
30 89 90 88 
100 92 92 92 
300 96 95 95 

 

To observe the effect of large standard deviation on the input confidence level, 

suppose that two random variables follow Gaussian distribution with large standard 

deviations, 1X  and 2X ~  25,5N  correlated with the Frank copula.  

Table 7.13 shows the input confidence levels using the upper bound of the 

confidence intervals of standard deviation and the sample correlation coefficient. As 
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expected, the input confidence level is very small especially for large correlation with a 

small number of samples. When the adjusted parameters are used, the input confidence 

level is significantly improved, as shown in Table 7.14. For the large standard deviation, 

the adjusted standard deviation becomes very large due to the large prediction error of the 

mean, which leads to offset the wrong identification and quantification of the parameter. 

Therefore, the obtained input confidence levels for the large standard deviation are very 

close to the target confidence level, 97.5% even for ns=30. However, as the number of 

samples increase, since confidence intervals of the mean and standard deviation for the 

large standard deviation are more slowly converged to the true mean and standard 

deviation than for small standard deviation, the obtained confidence levels are somewhat 

higher than the target confidence level.  

Table 7.13. Input Confidence Levels (%) Using Upper Bound of Standard Deviation and 
Sample Correlation Coefficient, 2(5,5 )N  

ns  =0.2  =0.5  =0.8 
30 85 80 50 
100 90 86 78 
300 95 94 95 

 

Table 7.14. Input Confidence Levels (%) Using Adjusted Standard Deviation and 
Correlation Coefficient, 2(5,5 )N  

ns =0.2 =0.5 =0.8 
30 92 97 97 
100 98 97 98 
300 99 99 99 
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As stated earlier, even if we use an input model with confidence level that is less 

than the target confidence level, the confidence level of the reliability-based optimum 

design meeting the target reliability t  should be higher than the input confidence level. 

In Section 7.6, it is shown how the confidence level of the reliability-based optimum 

design meeting the target reliability t , i.e., confidence level of output performance, is 

obtained through numerical examples. 

 

7.6 Numerical Examples 

A two-dimensional mathematical example and a coil spring example, which are 

used in Sections 6.2 and 6.3, will show how the input model with confidence level yields 

confidence levels of output performances. 

 

7.6.1 Two-dimensional Mathematical Example 

Consider a two-dimensional mathematical example where two input variables 

follow Gaussian distributions, 1X  and 2X  ~ 2(3,0.3 )N , as presented in Sections 6.2. It is 

assumed that  and  are correlated with the Frank copula with 0.8  . An RBDO 

formulation for this example is defined in Eq. (6.1). For the comparison study, three types 

of input models – one model with the estimated parameters (without confidence level of 

input parameters), another model with the upper bound for standard deviation and the 

sample correlation coefficient (only with confidence level of standard deviation), and the 

other model with the adjusted parameters (with confidence level of all input parameters) 

– are tested. 

1X 2X
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In Chapter 6, it is shown how the marginal distribution and copula are identified 

using a data set obtained from a true model, and then the MPP-based DRM is carried out. 

In this section, 100 data sets with ns=30, 100, and 300 are generated from the true input 

model. Then, the marginal distribution, and copula type, and their parameters are 

determined from each data set. Using the estimated input models from 100 data sets, the 

optimum designs are obtained using MPP-based DRM. Finally, using the true input 

model, the output confidence levels are estimated by calculating the probability that the 

probability of failure evaluated at the obtained optimum design using MCS is smaller 

than the target probability of failure 2.275%.  

Table 7.15 shows the minimum, mean, maximum values of the probabilities of 

failure for two active constraints 
1FP  and 

2FP , and the output confidence level of optimum 

designs, which are obtained from 100 data sets. As shown in Table 7.15, when the input 

model with the estimated parameters is used for ns=30, the mean values of 
1FP  and 

2FP  

(3.426% and 2.594%, respectively) are larger than the target probability of failure 

2.275%. In particular, notice that the maximum values of 
1FP  and 

2FP (14.29% and 

7.752%, respectively) are much larger than 2.275%. Thus, the confidence levels of the 

output performance are significantly lower than the target confidence level 97.5% as 

shown in Table 7.15. That is, the input model with the estimated parameters yields 

unreliable designs in most cases.   

On the other hand, when the input model with the upper bound of the standard 

deviation and sample correlation is used for ns=30, the mean values of 
1FP  and 

2FP  (1.074% 

and 1.562%, respectively) are smaller than 2.275%, which yield more reliable design than 

those using the estimated parameters. The maximum values of 
1FP  and 

2FP  (5.918% and 
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4.719%, respectively) are also much smaller than those using the estimated parameters. 

Accordingly, the obtained output confidence levels are much improved over those using 

estimated parameters.  

When the input model with the adjusted parameters is used, the output confidence 

levels using the adjusted parameters become much closer to the target confidence level. 

Still, the estimated output confidence levels are still smaller than the target confidence 

level due to the incorrect identification of the marginal distribution and copula for a small 

number of samples, ns=30. However, as the number of samples increases, the minimum, 

mean, and maximum values of 
1FP  and 

2FP  using the input model with the adjusted 

parameters approaches the target probability of failure from a more reliable side than 

those using other input models. Moreover, the input model with adjusted parameters 

provides better output confidence levels than other input models. 

Table 7.15. Probabilities of Failure and Output Confidence Levels for Mathematical 
Example ( 1 2 0.3   ) 

ns Parameters 
Estimated Par. Upper Bound for Std.  Adjusted Par. 

(%) (%) (%) (%) (%) (%) 

30 

Min 0.142 0.315 0.007 0.119 0.004 0.026 
Mean 3.426 2.594 1.074 1.562 0.908 0.444 
Max 14.29 7.752 5.918 4.719 5.082 2.595 

Conf. level 35 54 83 81 90 98 

100 

Min 0.640 0.516 0.231 0.393 0.192 0.255 
Mean 2.279 2.087 1.425 1.573 1.282 0.947 
Max 5.829 5.941 3.694 4.091 3.445 2.300 

Conf. level 37 65 89 88 93 99 

300 

Min 0.854 1.064 0.510 0.894 0.473 0.719 
Mean 2.394 1.924 1.615 1.624 1.518 1.262 
Max 3.835 3.599 2.846 3.150 2.732 2.285 

Conf. level 43 77 94 90 95 98 
Note: Optimum Design: (2.026, 1.163) ;

1FP = 2.245%,
2FP =2.070% 

1FP
2FP

1FP
2FP

1FP
2FP
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To test the effect of the large standard deviation on the output confidence level, 

consider a true input model with 1X  ~ 2(3,0.3 )N  and 2X ~ 2(3,1.5 )N . As shown in Table 

7.16, the input model with the estimated parameters still yields large probabilities of 

failure and small output confidence levels. The input model with the upper bound for 

standard deviation and the sample correlation coefficient provides better results than the 

one with the estimated parameters, but the output confidence levels are not as good as the 

one with the adjusted parameters especially for a small number of samples. For ns=300, 

the output confidence level using upper bound for standard deviation is larger than the 

target confidence level, 97.5%, which means it yields somewhat conservative optimum 

designs. This is because, for large standard deviation (i.e., 2 1.5  ), the upper bound for 

standard deviation is slowly converging to the true standard deviation rather than the one 

for small standard deviation. For the same reason, the input model with the adjusted 

parameters yields 100% for ns=300. Even though the output confidence levels are high, 

the minimum, mean, and maximum values of probabilities of failure tend to approach the 

target probability of failure, 2.275%, as the number of samples increases as shown in 

Table 7.16.  

In summary, the input model with the adjusted parameters has the most desirable 

confidence level of output performance comparing with input models with the estimated 

parameters and those with the upper bound for standard deviation and the sample 

correlation coefficient. For a large standard deviation, it yields somewhat conservative 

design due to slow convergence of confidence intervals of the mean and standard 

deviation, but the obtained probabilities of failure approach the target probability of 

failure as the number of samples increases. 
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Table 7.16  Probabilities of Failure and Output Confidence Levels for Mathematical 
Example ( 1 0.3   and 2 1.5  ) 

ns Parameters 
Estimated Par. Upper Bound for Std.  Adjusted Par. 

(%) (%) (%) (%) (%) (%) 

30 

Min 0.293 0.045 0.023 0.001 0.001 0.001 
Mean 2.583 2.895 0.992 1.256 0.313 0.380 
Max 10.92 9.732 6.961 4.723 4.324 4.457 

Conf. level 58 48 90 94 96 96 

100 

Min 1.035 0.871 0.507 0.296 0.196 0.121 
Mean 2.261 2.338 1.309 1.117 0.715 0.667 
Max 8.804 5.058 6.564 2.880 3.385 1.985 

Conf. level 66 56 95 96 99 100 

300 

Min 1.153 1.225 0.800 0.767 0.531 0.483 
Mean 2.006 2.154 1.496 1.444 1.058 1.074 
Max 2.989 3.383 2.344 2.449 1.744 1.904 

Conf. level 79 68 99 99 100 100 
Note: Optimum Design: (2.977, 4.280) ;

1FP =2.075%, 
2FP = 2.213% 

7.6.2 Coil Spring Problem 

Consider the coil spring problem, which was illustrated in Section 6.3. As stated 

earlier, in this example, the number of active coils, mean inner diameter of coil spring, 

and wire diameter are selected as random variables; mass density of material and shear 

modulus  are selected as random parameters for RBDO. All variables are assumed to 

follow the Gaussian distribution. The coil inner diameter and the wire diameter are 

assumed to be correlated with the Clayton copula and 0.7  . The statistical information 

of five random variables and parameters is presented in Table 6.4. Like the mathematical 

example, three input models – one model with the estimated parameters, another model 

with the upper bound of standard deviation and the sample correlation coefficient, and the 

other model with the adjusted parameters – are tested. The input models are obtained 

using 100 data sets, which are generated from the true input model. Using the three input 

1FP
2FP

1FP
2FP

1FP
2FP
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models obtained from 100 data sets, MPP-based DRM is carried out for RBDO where the 

RBDO formulation is given in Eq. (6.6).  

As displayed in Table 7.17, when the estimated parameters are used, the obtained 

output confidence levels are much lower than the target confidence level 97.5%. The 

output confidence levels using the upper bound for standard deviation and sample 

correlation coefficient are closer to 97.5%, but its performance is still not as satisfactory 

as those using adjusted parameters. As the number of samples increases, the input model 

with adjusted parameters still has the best performance. The minimum, mean, and 

maximum values of probabilities of failure using all three input models get closer to the 

target confidence level, but the input model with  the adjusted parameters approach it 

from more reliable side than other input models. 

Table 7.17  Probabilities of Failures and Output Confidence Levels for Coil Spring 
Example 

ns Parameters 
Estimated Par. Upper Bound for Std.  Adjusted Par. 

(%) (%) (%) (%) (%) (%) 

30 

Min 0.544 0.027 0.103 0.000 0.019 0.000 
Mean 3.011 3.566 0.927 0.933 0.251 0.686 
Max 15.46 14.17 9.115 7.172 1.328 4.049 

Conf. level 47 39 95 85 100 95 

100 

Min 1.179 0.116 0.588 0.016 0.365 0.020 
Mean 2.169 2.487 1.163 1.186 0.697 1.043 
Max 5.302 5.586 2.535 3.117 1.608 2.921 

Conf. level 62 46 99 91 100 95 

300 

Min 1.496 1.062 0.996 0.698 0.831 0.534 
Mean 2.116 2.376 1.523 1.542 1.171 1.480 
Max 3.119 4.634 2.481 3.270 2.108 3.148 

Conf. level 71 49 99 93 100 97 
Note: Optimum Design: (0.102E+2, 0.522E+0, 0.665E-1, 0.738E-3, 0.115E+8) ; 

1FP =2.151%, 
2FP = 2.106% 

1FP
2FP

1FP
2FP

1FP
2FP



159 
 

 

The input model with the adjusted parameters has the desirable input and output 

confidence levels, as shown in the two numerical examples. For future research, the input 

confidence level for non-Gaussian distributions needs to be tested using the bootstrap 

method. More RBDO problems with non-Gaussian distributions need to be tested to 

check whether the obtained output confidence level is close to the target confidence level.  
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CHAPTER VIII 

CONCLUSIONS AND FUTURE WORK 

 

8.1 Conclusions 

8.1.1 Identification of Input Model 

To carry out the RBDO, the information of the input variables such as marginal 

and joint CDFs need to be correctly identified and accurately quantified. In this study, a 

copula is utilized to model the joint CDF of the correlated input variables using limited 

information such as marginal CDF types and given test data. Since the correct 

identification of the copula is necessary to correctly model the joint CDF, the Bayesian 

method is proposed to identify a copula that best describes given experimental data. 

Likewise, the identification of marginal CDFs is as important as the identification of the 

copula, and thus a Bayesian method is proposed for the identification of correct marginal 

CDFs.  

Using simulated data sets, the performance of the Bayesian method is tested for 

different numbers of samples and is compared with the GOF test. It is shown that the 

performance of the Bayesian method is much better than the one of the GOF test in 

identifying the correct marginal distributions and copulas, even if the number of samples 

is small. As the number of samples is increased up to 300 samples, the performance of 

the GOF test improves, but the Bayesian method is still better than the GOF test. Several 

examples are used to demonstrate how the Bayesian method is carried out to identify best 

fitted marginal CDFs and the copula. 
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8.1.2 Reduction of Transformation Ordering Effect on 

Reliability Based Design Optimization (RBDO) 

In RBDO problems, once the joint CDFs are identified using the Bayesian method, 

they are used in the Rosenblatt transformation for the inverse reliability analysis. 

Incorporating the copula concept, the joint CDF can be categorized as an independent 

joint CDF, a joint CDF modeled by an elliptical copula, and a joint CDF modeled by a 

non-elliptical copula. It is found that the transformation ordering of input variables might 

have a significant effect on the reliability analysis according to joint CDF types. To test 

the effect of the transformation ordering on the inverse reliability analysis, t -contour 

with target reliability index, which are transformed from a standard Gaussian space (U-

space) to an original space (X-space) using the Rosenblatt transformation, are compared 

for different transformation orderings.  

When the input variables are independent or correlated with elliptical copulas, the 

t -contours are the same for different transformation orderings because the Rosenblatt 

transformation does not change nonlinearity of the constraint function. Accordingly, the 

inverse analysis results are the same for different transformation orderings of the input 

variables. However, when the correlated input variables have joint CDFs modeled by 

non-elliptical copulas, the transformed t -contours are different for different 

transformation orderings because of the nonlinear Rosenblatt transformation. In the 

inverse reliability analysis, the nonlinearities of the transformed constraint function from 

X-space to U-space become different for different transformation orderings, and, as a 

result, the different transformation orderings yield different RBDO results when an 

inaccurate method such as the FORM is used. Especially, the joint CDFs modeled by 
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non-elliptical copulas could lead to highly nonlinear constraint functions that the FORM 

cannot handle. Thus, in this study, it is proposed to use the MPP-based DRM. Numerical 

examples show that when the MPP-based DRM is used, the difference between the 

RBDO results using different transformation orderings is reduced and the accurate 

estimation of probability of failure is achieved. 

 

8.1.3 Reliability Based Design Optimization with 

Confidence Level under Input Model Uncertainty 

In broad industrial applications, only limited experimental data are usually 

available, so the input model obtained from the limited data might be inaccurate, which 

lead to inaccurate RBDO results. To offset the inaccurate estimation of the input model, 

an adjusted standard deviation and correlation coefficient involving confidence intervals 

of all input parameters (mean, standard deviation, and correlation coefficient) are 

proposed such that they offset the inaccurate estimation of the input parameters.  

The calculation of the adjusted standard deviation involves the upper bound of the 

confidence interval for standard deviation. In many cases, the method using the normality 

assumption on the input variable has been used, but it is not accurate for non-Gaussian 

distributions. Thus, the bootstrap method, which does not require the normality 

assumption, is used for calculation of the confidence interval of the standard deviation. 

Simulations results show that the method using the normality assumption on the input 

variable has a desirable confidence level of the standard deviation for Gaussian 

distribution, but it does not for non-Gaussian distribution. On the other hand, the 

bootstrap method yields the desirable confidence level of the standard deviation for both 
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Gaussian and non-Gaussian distributions. For the highly skewed non-Gaussian 

distribution, the obtained confidence level of the standard deviation is somewhat smaller 

than the target confidence level, but it approach the target confidence level for a large 

number of samples whereas the method on the normality assumption does not. 

To check whether use of the adjusted parameters provides the desirable 

confidence level of the output performance, i.e., the desired target probability of failure, 

the confidence level of the input model is estimated using the t -contour. Numerical 

results show that the input models without confidence level of input parameters and those 

only with confidence level of standard deviation do not yield desirable confidence levels 

for the input model and output performance on RBDO results. On the other hand, the 

input models with adjusted parameters, which include confidence level of all input 

parameters, yield desirable input confidence levels and the obtained RBDO results are 

considerably reliable, which leads to desirable confidence levels of the output 

performances. 

 

 8.2 Future Recommendation 

The bootstrap method has a good performance of calculating the confidence 

interval of standard deviation for non-Gaussian distributions. However, it has not been 

tested to obtain the input and output confidence level for problems with non-Gaussian 

distributions.  

For future research, the input and output confidence levels need to be tested 

through numerical examples with non-Gaussian distributions using the bootstrap method. 
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Further, a real engineering problem such as the M1A1 tank roadarm needs to be tested to 

show how the optimum design is changed when the confidence level is implemented in 

RBDO.  
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