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ABSTRACT 

Data mining is emerging as an important tool in many areas of research and 

industry.  Companies and organizations are increasingly interested in applying data 

mining tools to increase the value added by their data collections systems.  Nowhere is 

this potential more important than in the healthcare industry.  As medical records systems 

become more standardized and commonplace, data quantity increases with much of it 

going unanalyzed.   

Data mining can begin to leverage some of this data into tools that help clinicians 

organize data and make decisions.  These modeling techniques are explored in the 

following text.  Through the use of clustering and classification techniques, accurate 

models of a dialysis patient’s current status are derived.  The K-Means and Expectation 

Maximization clustering algorithms are utilized to generate homogeneous patient 

populations.  Classification techniques, such as decision trees, neural networks, and the 

Naïve Bayes classifier are evaluated in terms of their accuracy performance.  Time series 

aspects are also considered utilizing system identification techniques from control theory.  

Finally, cluster-derived classification models are tested for their cross-validation 

accuracy, as well as the generalizability to unseen testing sets. 
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INTRODUCTION 

A new and important paradigm shift is emerging in all fields of medicine.  

Research is becoming more focused on tailoring treatment to the individual patient.  

Identification of patient specific factors for successful treatment has focused on the 

genomic characteristics of the individual.  It may be impractical to capture the genomes 

of each patient in a subgroup receiving a specific therapy, particularly ones with large 

populations such as hemodialysis patients.  Of interest is whether these patient specific 

factors manifest themselves in more measurable characteristics.  The complexity of 

treatment and therapy interaction may elude the abilities of traditional statistical analysis.  

A more robust method of modeling is necessary to test this hypothesis. 

The potential benefits of individualized medicine are many.  Drug dosages could 

be more tightly controlled on a patient by patient basis.  Not only would this approach 

save money by reducing unnecessary dosage, but treatment could be improved as well.  

An approach based on data already collected would have certain unique benefits also.  

The cost of capturing an individual’s genotype could be avoided if it could be 

demonstrated that advanced modeling techniques perform as well as treatment based on 

genotype information.  Staff may be more inclined to ensure data quality if there are 

directly observable benefits to using data historians and medical records in this fashion.  

As decision support systems become more prevalent, clinicians would become more 

trusting in analysis and modeling technologies to help them do their jobs more efficiently. 

As previously mentioned, new tools are necessary to capture more complex 

relationships between treatment, medications, and other patient-specific factors.  

Methodologies that require assumptions and controls may be confounded simply by the 

unpredictable nature of the human body.  Data mining technologies build robust models 

that can capture these complexities using real data that is already being captured from a 

real process.   
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While individualized medicine is the overall goal, it is important to note the 

similarities between patients.  By considering patients to be part of a homogeneous sub-

population, the collective information from the sub-population can be used to enhance the 

treatment of the individual.  Using a number of data mining methodologies, current 

grouping of patients can be improved.  Chapter 1 deals with implementing techniques 

that automatically detect subgroups among patients – a data mining technique known as 

clustering.  Two methodologies are contrasted in terms of their final output – the 

distribution of clustering parameters within the clustered populations. 

Improvement of the state of the patient is of primary concern, and is the purpose 

behind treatment.  In order to improve the state, one must first be able to accurately 

predict the state given past and current data.  Theoretical response to a treatment may not 

hold true for much of a population.  Therefore, data mining techniques are explored to 

test the accuracy with which they predict the current hemoglobin state in Chapter 2.  

Several techniques are presented, including decision trees, artificial neural networks 

(ANN), and the Naïve Bayes classifier.  Feature selection with the genetic algorithm 

(GA) is also introduced as an important strategy to determine the optimal mix of 

attributes from a subset.  Lastly, time-series data analysis techniques are reviewed, 

including temporal data mining and system identification techniques. 

Finally, in Chapter 3, the implications of creating classification models based on 

clustered populations are analyzed.  Using the clustered population derived in Chapter 1 

and the feature selection and classification algorithms from Chapter 2, models are derived 

again to predict the current state of a patient’s hemoglobin.  A notion of the 

generalizability of the classification models is discovered when they are tested on a 

validation set and a randomly selected cluster population. 
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MOTIVATION 

Data Mining 

For medical purposes it is important to be able to interpret patient information and 

categorize similar people together.  Mass production, economies of scale and 

standardization lead to the development of treatments, medicines, and processes that will 

have the best effects for numerous people.  However, patients will still react differently to 

similar treatments.  Personalized medicine seeks to match the right treatment to the right 

patient.  Much research has focused on the effects of specific genes within a patient’s 

DNA on their disposition to a treatment ([32],[33]). While this methodology has many 

merits, genetic data is unavailable for most patients.  What is becoming more and more 

available is treatment and diagnosis data that can be utilized to extract hidden knowledge.  

This process is known as data mining. 

Data mining was born from machine learning concepts in artificial intelligence.  

Figure 1 illustrates the iterative nature of deriving knowledge from a data set using this 

process.  Data mining techniques have the ability to observe the complex nature in data 

processes.  The key to utilizing the power of data mining techniques is to interpret and 

represent the derived knowledge in a meaningful way.  Also key to any data mining 

project is the data preparation steps involved, which can influence the final outcome. 

 

Figure 1: Mining for data mining gold 
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Data Mining Methodology 

The basic approach follows the Knowledge Discovery in Databases (KDD) 

methodology outlined by Fayyad et al. [1]. Data mining is shown as only one step of the 

iterative KDD process: 

1) Data selection: Choosing the proper subset of data to fit the data mining task. 

2) Data preprocessing: Data cleansing, filling missing values, denoising. 

3) Transformation: Further subset reduction, or change of representation. 

4) Data mining: Applying a proper algorithm (based on the overall goal) to the 

data set. 

5) Interpretation/Evaluation: Representing results in a useful way, assess validity 

of derived patterns. 

An important step that coincides with data set selection is the formulation of a 

hypothesis.  Can we predict the emergence of anemia in individual patients by using 

patient information stored in a database?  Can we more tightly control the dosage of 

erythropoietin and iron, giving a proper dosage each dialysis and potentially reducing 

waste?  This step is critical in order to understand the needs in forming a proper data set, 

as well as choosing representation and data mining algorithms. 

Data feature selection is an initial reduction that typically occurs with the use of 

expert knowledge of someone within the domain.  Domain experts have years of acquired 

knowledge that leads data miners in the right direction.  For the purposes of this domain, 

expert knowledge of the dialysis process as well as important medications and 

complications (i.e., inflammations, comorbidities, and hospitalizations) helps narrow 

down the target data set. 

Data preprocessing is extremely important and can effect the ultimate outcome of 

the data mining.  Data sets must be in the proper format for the algorithm and software 

tools that will be used for the analysis.  Missing data must be handled in some fashion.  

Some algorithms may require that continuous data be scaled between 0 and 1. 
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Transformation can involve some further steps in preprocessing.  This can 

typically include the development of some derived features from the target data set, such 

as separating blood pressure into its systolic and diastolic portions.  Ratios of inputs and 

outputs are common, as well as differences between measures.  Another example of a 

common transformation will use some mathematical combination of features in order to 

determine a linearly separable decision boundary that may be non-linear in nature in a 

lower dimensional space.  This technique forms the basis of the support vector machines 

(SVM) kernel function. SVM is a popular algorithm that requires a linearly separable 

decision boundary, which is not always inherent to many datasets. 

Once the data set is prepared in the proper format for the chosen algorithm, the 

training of the model is undertaken.  A sampling of the data set is typically used to form 

the model, and several methods of sampling are employed.  A hold out method, typically 

1/3 of the data, is used to differentiate a testing set. 

Building classification models will yield classification accuracy - a percentage of 

properly classified instances from the test set.  A confusion matrix shows the specific 

errors of the classification model.  The model has classified four instances correctly as 

Low, and classified three instances as medium that should have been classified as low. 

Table 1: Confusion matrix 

 
Low Medium High <=Classified as 

4 3 0 Low 

0 5 0 Medium 

0 0 10 High 

 

Figure 2 illustrates the specifics of the proposed methodology.  From raw patient 

data the records are parsed into the static and dynamic groupings and perform the 

clustering algorithm to derive homogenous groupings.  Further preprocessing must be 
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performed on the dynamic data to derive a standard representation for the data mining 

algorithm.  This may involve further transformation of features, such as the condensing 

of erythropoietin or iron into a weekly dose.  Once the dynamic data is prepared for 

mining, all patient records are gathered for a specific cluster and subjected to a rule-

generating or data mining algorithm.  These rules are then evaluated and tested for their 

generalizability to other data sets. 

Testing for generalizability would involve the assignment of new patients to 

existing clusters and evaluating the patient with that clusters’ rule base.  Rule bases from 

one cluster may not apply well to patients of a different cluster, but in this thought, a new 

method of testing the validity of the clustering is derived.  If rules for one cluster apply 

equally to the patients of another cluster, it may be concluded that the clustering was 

unnecessary and the clusters themselves may be superficial. 

Cross-Validation 

This testing technique makes maximum usage of the whole dataset.  Each data 

record in this technique is used the same number of times for training and exactly once 

for testing.  The dataset is typically partitioned into a certain number of “folds” of equal 

size.  In the general case, k-1 folds are used for training and the kth fold is used for 

testing.  This process is repeated until all folds have been using for testing exactly once.  

As k increases, the process becomes increasingly computationally expensive.  Therefore, 

for most datasets, a 10-fold cross validation is typically sufficient. 
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Figure 2: Flow chart of a proposed method for mining dialysis data 
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BACKGROUND 

Kidney Function 

The kidneys are part of the urinary system and are charged with removing waste 

from the bloodstream.  They regulate chemical pH levels, as well as produce a number of 

important hormones that regulate other processes.  Kidneys produce erythropoietin that 

allows the body to produce more red blood cells in conjunction with iron [30]. 

The process by which waste products and excess water leave your blood stream 

involves a complex chemical exchange.  Once these products are filtered from the blood, 

they enter the urinary system and are stored in the bladder until they are removed through 

urination.  A healthy human with both functioning kidneys is said to have 100% of their 

kidney function.  As age or disease sets in, humans can function normally with more than 

25% of their kidney function.  As kidney function approaches 10% to 15%, renal 

replacement therapy is required.  Renal replacement therapy is typically categorized into 

transplantation and dialysis [30]. 

End Stage Renal Disease 

Kidney failure is defined as the short-term or long-term damage of the kidneys.  

This condition leads to the loss of normal functioning of the kidneys.  Failure can be 

abrupt in onset, or chronically degrade over time.  Acute renal failure can be caused by 

heart attacks, kidney damage, decreased blood flow, and complications from certain 

medications.  Chronic renal failure is brought on by diabetes, chronic high blood pressure 

(hypertension), lupus, and kidney disease.  When the kidneys finally fail completely, the 

condition is known as end stage renal disease (ERSD).  Many symptoms accompany this 

final condition, and it is typically diagnosed through blood tests, urine tests, and many 

other examinations.  Treatment is typically rigorous, including diet monitoring, 

hospitalizations, and most notably transplantation or dialysis.  Candidates for 

transplantation must meet certain criterion in order to undergo the operation [28]. 
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Kidney Dialysis 

There are many variables that make up a dialysis treatment.  There are several 

types of dialysis apparatus utilized to filter the blood, along with different types of 

accesses.  Dialysis essentially mimics the function of the healthy kidney, and medications 

are substituted in the cases where the kidneys have also stopped producing certain 

hormones. 

Anemia is defined as a deficiency of red blood cells or hemoglobin, which 

translates to a decreased ability of the body to transfer oxygen to the cells.  Anemia can 

occur in one of three ways: excessive blood loss, excessive cell destruction, or deficient 

cell production [27]. 

Iron supplementation is common for dialysis patients as blood loss generally 

occurs during the course of treatment. Oral iron is not as easily absorbed as iron delivered 

intravenously, though complications from some forms of intravenous (IV) iron have been 

discovered in a small percentage of patients (<0.1%) [26]. Iron is required by new red 

blood cells, along with erythropoietin in a process known as erythropoiesis.  Red blood 

cell production occurs mostly in the bone marrow, specifically in the leg bones until 

about the age of 25, and life-long production occurs in the vertebrae, sternum, and ribs 

[31]. Erythropoietin is produced in the kidneys, but production can be slowed or stopped 

completely in patients with kidney disease.  A synthetic replacement is available in the 

form of Epoetin, and is administered to patients suffering from a variety of diseases that 

may cause anemia 

Best Treatment Practices 

Controversy abounds in relation to the development of guidelines for controlling 

hemoglobin levels within certain ranges.  For most of the 1990s, guidelines stated that the 

target hemoglobin range for patients should be between 11 and 12 g/dl for all patients 

with chronic kidney disease.  This was range was increased to 11 to 13 g/dl following the 
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2006 Kidney and Dialysis Outcomes Quality Initiative (KDOQI) anemia guidelines 

release.  Mean weekly usage of erythropoietin has been on the rise and is expected to 

continue to do so with an accompanying increase in hemoglobin levels.  However, this 

increase has led to no significant effect on the numbers of hemodialysis deaths.   

Drüeke et al. [5] found that while general health and physical function are 

improved, normalizing hemoglobin levels (13.0 to 15.0 g/dl) does not decrease the risks 

of cardiovascular disease in patients.  The population included patients from 94 dialysis 

centers in 22 countries.  Clinicians were instructed to follow current clinical practices.  

The patients were split into two groups, with the second group receiving only partial 

correction (10.5 to 11.5 g/dl hemoglobin).  Complete correction did not decrease the 

likelihood of a first cardiovascular event and more patients in group 1 required dialysis.  

Hypertension and headaches occurred more frequently in group 1. 

Treatment of anemia is certainly complex, and a prime candidate for the 

beneficial analysis that data mining has to offer.  Capturing the interaction between 

medication, dialysis treatment, and patient condition complicates many studies 

attempting to isolate independent variables.  This contributes to the inconclusive nature 

of the results of many studies, and the subsequent difficultly in determining proper 

treatment practices. 

According to the National Kidney Foundation’s KDOQI anemia guidelines, target 

hemoglobin/hematocrit should fall in the low normal range.  This happens to be 11 g/dl 

(33%) and 12 g/dl (36%) hemoglobin (hematocrit).  This guideline is based on evidence, 

but does not take into account the differences in physiology of men and women.  Survival 

is found to be lower in patients that have a lower hematocrit level (30% to 33%).  

According to Besarab et al. [7], mortality decreased in patients that maintained normal 

hematocrit as compared to a control group that did not attain and maintain a normal 

hematocrit level.  According to Xia et al. [8], hospitalizations were fewer in patients with 

hematocrit levels between the target range.   
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CLUSTER ANALYSIS 

One of the common tasks in patient care is to identify what differences exist 

between patients that cause varying results.  Categorizing of patients already occurs, but 

may focus only on a limited number of factors to determine proper treatment, or may 

focus too heavily on population-based statistics.  An alternative approach would be to 

utilize data mining techniques in order to properly group patients together based on 

similarity metrics over a wide variety of historical treatment data.  Categorization can be 

accomplished using many types of data including demographics, test results, diagnoses, 

etc.  Consider the following treatment model: 

 

Figure 3: Treatment Information Flow diagram 

A patient receiving dialysis has accumulated a data record consisting of many 

items including medications, previous treatment history, demographics, etc.  These 

factors and countless others all have an influence on the success of a medical treatment, 

and also implies that patients will react differently to similar treatments.   
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Data mining analysis can be very sensitive to noise and erroneous data.  Rules and 

patterns derived from large, heterogeneous data sets may be plentiful, but the quality of 

these rules may be suspect.  Human data is a prime example.  Each person in a database 

can be viewed as their own system – taking in a set of inputs (such as medications, diet, 

sleep, etc) and producing unique outputs such as vital signs and test measurements.  Data 

mining using only single patient data may not contain enough information to draw 

generalizable outcomes.  On the other hand, taking information from a large number of 

patients may overwhelm important patterns. 

 Utilizing an entire population of kidney dialysis patients for analysis may not 

address these differences.  Often when an excessive amount of data is utilized, excessive 

meaningless patterns are inferred [2]. Through clustering we can understand how each 

patient relates to one another, assigning them to groups of similar patients.  Clustering is 

a data mining technique that automatically assigns instances (in this application - 

patients) of a data set to groups of similar instances.  This assignment can be made 

according to any number of parameters including categorical and numeric data.  Static 

parameters such as demographics can be utilized to derive these groupings.  

Demographics are often analyzed to determine if ethnicity, race, or gender predispose 

patients to a particular disease.   

Related Literature 

Albayrak and Amasyali [15] implemented a clustering method to assign patients 

to different clusters of thyroid disease.  The researchers contrasted the cluster 

assignments made by a fuzzy c-means clustering with that of a hard k-means clustering.  

The clustering served as an unsupervised classification method, labeling the patients 

according to their particular characteristics. 

Bensmail and Meulman [19] proposed a methodology very similar to the EM 

algorithm that utilized Bayesian theory to construct clustering-based classifiers in a 



 

 

13

number of domains, including categorization of diabetes patients. The mixture-models 

were evaluated using a Bayes factor to simultaneously evaluate multiple models. 

Clustering is a commonly used term in medical studies [20]. It should be pointed 

out that though the concepts described here are inherently similar, there is a difference 

between clustering based on statistical distribution of patients in a certain population and 

automatic cluster detection.  Though some cluster detection methods make use of the 

underlying distributions (EM algorithm, which is discussed in depth later), cluster 

assignments are not dependent on a single parameter alone.   

Clustering Analysis – K-Means Algorithm 

One of the most common clustering implementations involves the K-Means 

Algorithm.  This algorithm follows the following steps: 

Equation 1: K-Means Algorithm 

1. Place K points into the space represented by the objects that are being clustered. 

These points represent initial group centroids. 

2. Assign each object to the group that has the closest centroid. 

3. When all objects have been assigned, recalculate the positions of the K centroids. 

4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a 

separation of the objects into groups from which the metric to be minimized can 

be calculated. 

 

This random initialization is rather important, as the clusters will not always 

converge to similar positions over a number of trials.  Choosing the number of clusters 

can also be an issue.  Successive trials can be run to keep track of the sum of squared 
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errors between centroids.  The value of k that minimizes this value can be selected as the 

proper number of initial centroids. 

Two-feature examples of k-means algorithm implementations are useful to 

understand the movement and path of the centroids from one step to the next.  Being easy 

to visualize, the reevaluation steps are illustrated as follows: 

 

Figure 4: Iterative steps of K-Means Clustering 

Figure 4 illustrates the simplicity of the algorithm, as the centroids converge to their final 

values in Iteration 6.  This may not always be the case 

 In higher dimensional space, the clustering becomes more difficult to visualize.  

The key to accomplishing the clustering task is to choose an appropriate distance metric.  

The proper metric depends on the type of data in the dataset.  Euclidean distance is a 

typical distance metric when dealing with numeric variables on defined ranges.  
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Hamming distance is a good measure when dealing with Boolean data as it simply counts 

the number of bits that are dissimilar. 

Initial Clustering Analysis – Feature Selection 

The overall goal of the clustering analysis is to define groups of similar patients.  

How these grouping ultimately affect the classification outcome must also be considered.  

To this end, a feature could be derived from the data that defines the patients in terms of 

how well they respond to EPO therapy.  According to the literature and clinician 

experience, race and ethnicity play an important role in determining a patient’s genetic 

predisposition to survival and certain treatments [12].  Certainly the response between 

male and female will be different and must be accounted for.  It has been demonstrated 

that females are prone to developing higher erythropoietin resistance than men [13].  

Patients will fall along some sort of continuum of response.  The patient’s age and 

number of years on dialysis will also be considered important.  Younger patients may be 

overall healthier than older patients, or patients whom have been on dialysis for a number 

of years. 

Table 2: Clustering features 

Parameter Description 
ClinicIDNumber ID number of treatment clinic 
Ethnicity Ethnic decent of patient (Hispanic, Non-Hispanic) 
Race Racial group (i.e. White, Asian, Indian) 
Gender Male or Female 
CurrentAge Age at time of analysis 
YearsOnDialysis Number of years on dialysis 

 

Some important questions to answer by performing this cluster analysis are: 

1) How important will the clustering consider gender, ethnicity, and race when 

determining the similarity between patients? 
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2) How will age and years on dialysis interact with the other features, 

specifically gender and race? 

3) How will different centroid initializations affect the resulting clusters and 

what strategy can be employed to avoid these affects? 

Clustering Results 

As k is increased, a trade-off occurs between sum of squared error and 

significance of the size of the clusters.  The final size of the total dataset after all patients 

were eliminated from consideration was 1,057 patients (596 male, 461 female).   

Table 3: Sum of squared error between clusters for different values of k 

k SSE Largest Cluster 
2 3441.81 55% 
3 3337.95 38% 
4 2699.44 37% 
5 2483.87 35% 
6 2472.91 35% 
7 2296.03 35% 
8 2237.51 35% 
9 2138.63 35% 

10 2019.16 24% 
12 1674.79 27% 
14 1610.42 20% 
16 1398.22 18% 
18 1378.82 18% 
20 1342.1 18% 
22 1315.38 19% 
24 1218.88 17% 
26 1145.05 17% 
28 1139.72 17% 
30 1064.29 13% 
40 760.03 8% 
50 707.07 6% 

 

Significant cluster size is desirable – one should contain at least 10% of the total 

population (100 patients).  Using this size metric, the derived patient clusters will have a 
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sufficiently large population to build data mining models.  Table 3 shows the trade-off 

between SSE and largest cluster size as k is increased.  When k = 10, we reach a 

sufficient point of significance for SSE and cluster size.  The clusters for k = 10 show 

some very interesting characteristics. For this particular clustering of patients, Table 4 

shows the purity of the clusters in terms of the percentage of males.  For the most part, 

the clusterings are fairly pure in terms of gender, with the exception being cluster 8.  

Cluster 8 is a small cluster, containing only 20 patients of mostly Mexican descent.  

These patients are of a diverse age range, and vary greatly in terms of how long they have 

been on dialysis.  It would appear that the k-means algorithm chose to group these 

patients primarily on their ethnicity.   

Table 4: k = 10 Cluster Purity in terms of Gender 

Cluster % Male 
Cluster0 0.086666667 
Cluster1 0.960227273 
Cluster2 0 
Cluster3 0 
Cluster4 1 
Cluster5 0 
Cluster6 1 
Cluster7 1 
Cluster8 0.45 
Cluster9 1 

 
 

 For most of the clusters, age and the number of years on dialysis are not 

important parameters in terms of highly defining the overall cluster.  Figure 5 

shows a typical age distribution, it is fairly representative of the clusters overall, 

with the exception of Cluster 7.  Figure 6 shows the distribution of cluster 7 

patient ages.  The mean for this sub-population is approximately 44 years (mean 

of overall population is 66 years).  From the information in Table 4, cluster 7 is 
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pure in terms of gender with 100% males.  The vast majority of patients comes 

from clinic 1 and has been in treatment for less than 2 years.  This cluster is also 

quite diverse, with seven different ethnicities represented. 
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Figure 5: Typical Age distribution for most k=10 Clusters 
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Figure 6: Cluster 7 age distribution 
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Clearly there is potential for interesting groupings that may have a significant 

affect on the nature of classification models derived from these particular subgroups.  

Figure B.1 though Figure B.40 illustrate the remaining distributions for the k-Means 

clusters. 

Initialization of the K-Means algorithm can have a significant effect on the 

resulting clusters.  It can be just as important to properly initialize the clusters as 

choosing the number of clusters.  Several strategies can be used to overcome this 

disadvantage.  Studying the cluster assignments of several trials of the algorithm using 

varying random seeds is a viable and often implemented strategy.  Another alternative is 

using an algorithm such as the EM algorithm that is not subject to this disadvantage. 

Expectation Maximization Algorithm 

Instead of choosing k in such a subjective manner, the expectation maximization 

(EM) algorithm can be used to automatically choose the number of clusters based on 

probability distribution estimation.  The EM algorithm form what are known as mixture 

models – models that describe the data using statistical distributions.  The steps of the 

algorithm are as follows: 

1. Select an initial set of model parameters (randomly or otherwise) 

2. repeat: 

3. Expectation Step: For each object, calculate the probability that each object 

belongs to each distribution, i.e., calculate prob(distribution j|xi,Θ). 

4. Maximization Step: Given the probabilities from the expectation step, find the 

new estimates of the parameters that maximize the expected likelihood. 

5. until: The parameters do not change (or change below some threshold) 

In practical terms, the distributions for the features in the dialysis patient set are 

unknown, thus we cannot directly calculate the probability of each data point.  Step 1 of 

the EM algorithm overcomes this fact by estimating the parameters of the distributions. 
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Consider a set of points generated from a Normal distribution.  The probability of 

obtaining this particular set of points is the product of their individual probabilities.  

Using the probability density function for a Normal Distribution, this function would be 

defined as: 
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Given a data set, we could instead estimate the model parameters using a likelihood 

function: 
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This likelihood function is typically transformed using the log function in order to work 

with numbers on a much higher order to magnitude, since the probability will likely be 

very small.  The solution of this equation is the parameters μ and σ that maximize the 

likelihood function. 

EM Algorithm Results 

The EM clustering algorithm chose to partition the data set into six clusters of 

varying size and composition.  Most clusters contained over 100 patients except for 

cluster 2, which only consisted of five very particular patients. 

The resulting clusters are much less pure in terms of gender than the clusters 

derived from the k-Means algorithm.  Interestingly, the clusters were mostly comprised 

of approximately 50% men and women.  Men and women are known to react quite 

differently to numerous drugs and treatments, but these clusters are unaware of the 

ultimate goal of finding a pure sample population with which to derive highly accurate 

classification models.   
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Table 5: EM Algorithm gender cluster purity 

ClusterID % Male 
0 0.660714 
1 0.503425 
2 0.6 
3 0.598253 
4 0.396552 
5 0.590909 

 

 An interesting result of the EM clustering was an emphasis on the continuous 

attributes – age and number of years on dialysis.  The clusters appeared to emphasize 

some of the differences between groupings on these two particular parameters.  Cluster 2, 

as mentioned previously, was quite an anomaly.  The following figures show the 

distributions of the continuous variables for this subgroup. 
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Figure 7: Number of years on dialysis for EM Cluster 2 
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Figure 8: Age of patients for EM Cluster 2 

These five patients have been receiving dialysis longer than any other patient in 

the dataset.  Median patient do not survive on dialysis much longer than two to three 

years (see Figure A.1).  It is a quite interesting result and may show the inherent bias in 

using the EM algorithm when confronted with both categorical and numeric attributes.  

This is intuitive, as the Weka implementation of the algorithm converts categorical values 

to separate binary attributes.  This type of bias may be of clinical importance to recognize 

the significance of continuous attributes.  Figure C.1 through Figure C.15 (Em Clustering 

Distributions) illustrate the remaining age distributions for the EM clusters. 

Implications of Adding Additional Features 

Of primary importance in deriving an efficient and meaningful clustering is 

incorporating some metric that is an indication of the patient’s reactivity to the drug 

therapy.  More specifically, it is of interest to understand each patient’s response in 

hemoglobin to a change in EPO and its equivalents.  This goal can be achieved in 

numerous ways.  Simple metrics would use as a clustering feature the degree of 
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variability in the patient’s dosage of EPO over the course of treatment.  This is only 

practical when EPO and its equivalents have already been delivered, and cannot be 

evaluated on patients that do not have a treatment record with the particular drug.   

This is an issue in data mining in general – how to build useful models when there 

is a lack of historical data.  Generally there is not clear answer for this problem, but in a 

clinical setting, inferences can be drawn from the patterns of other patients.  This is done 

on a very regular basis in current practice. 

In general, there are few objective methodologies to evaluate the “goodness” of 

one clustering over another.  Purity and other measures are only applicable if those 

attributes are desirable.  The potential usefulness of the clusters, in this particular 

application, will be explored further in Chapter 3.  Future studies may make better use of 

techniques to optimize the feature set used in clustering, but some benchmark of cluster 

usefulness must first be established. 

Clinical Applicability 

This application of clustering algorithms to efficiently and automatically group 

patients can have far reaching implications.  Feature selection and data type was shown to 

be important in conjunction with the algorithm applied.  Patient populations such as 

hemodialysis patients are receiving treatment for a very diverse set of reasons.  These 

algorithms can be applied to more accurately group them together for common “treatment 

pools”.  This combined with modeling of dynamic patient outcomes can lead to better 

treatment overall.  K-Means algorithm is an extremely efficient choice for performing 

rapid clustering applications with a variety of datasets.  Though this knowledge would 

still not move treatment completely towards individualization, there would be a strong 

potential to increase treatment efficiency simply by considering a more complex notion 

of similarity.  As the number of treatment pools discovered amongst the total population 

increases, the number of patients in each pool would decrease.   
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MODELING HEMOGLOBIN RESPONSE 

The dialysis data set can be separated into static and dynamic portions.  

Demographics and other patient information such as diagnoses can be considered static, 

while test results, dialysis run information, and vitals are considered dynamic.  Using the 

static parameters to derive groupings, we can then generalize a treatment pattern for these 

patients based on their changing responses.  The number and size of clusters can be 

manipulated to an optimal number, and results from different modeling can be compared 

using prediction accuracy. 

 

 

 

  

Figure 9: Patient record can be divided into different parameter types 

Many tools are available to derive the expert rules using data mining.  The 

knowledge discovery field has borrowed many tools not only from artificial intelligence, 

but also information theory and statistics.  The decision tree algorithm is a common 

method used to derive rules.  The final output is also rather intuitive and easy to interpret.  

A common implementation of the decision tree algorithm uses a concept from 

information theory known as “information gain” to evaluate each parameter in a data set 

in terms of its importance in predicting the final outcome.  The following image is an 

example tree developed from a small analysis of a single patient’s kidney dialysis 

treatment data.  The tree was derived using the Weka data mining environment. 
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Figure 10: Weka Decision Tree 

This model for this patient was built to predict the outcome of the hematocrit test 

for this particular patient.  Hematocrit is the ratio of the volume of red blood cells to the 

total blood volume.  Dialysis run data was incorporated along with the dosages of Epogen 

and iron to predict a hematocrit test result that occurred approximately every two weeks.  

The test results were discretized to intervals of three starting above 30 and below 39.  

Each box is known as a leaf node in the decision tree.  The circles are parameters of the 

dataset 

The results of this analysis may be spurious at best, but it can be used as an 

example of the potential output.  Indeed, the formulation of such results may be one of 

the other challenges to the application of data mining in many other domains.  The hope 
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is that implementation of the clustering analysis preprocessing step may lead to better 

rules, and this can be verified in contrast to rules generated without clustering. 

Clinical trials seek to establish a relationship between a given treatment and a 

specific response, such as the dosage of erythropoietin and the level of hemoglobin.    

Guidelines are set out by the National Kidney Foundation on how best to treat the 

emergence of anemia in patients.  It is of definite importance to contrast the generated 

rules with the set guidelines used by clinicians.  Most of the generated rules, however, 

will be more complex and may include parameters that may not make intuitive sense in 

clinical terms. 

Decision Tree Classification 

Induction using decision trees is particularly popular for domains that require an 

easily expressible output of rule sets.  Decision tree algorithms are supervised learning 

techniques (i.e. the outcome is known while training) that typically use binary splits of 

data set features.  Figure 4 illustrates a decision tree that would be used to decide to play 

tennis or not based on the temperature and the outlook. 

 

Figure 11: Decision tree for playing tennis 
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Implementations of the decision tree algorithms use many methods to determine 

the optimal feature to split and the number of splits to make.  The number of splits may 

depend on the variable type, such as nominal attributes.  Continuous attributes can use a 

binary comparison according to some split value that is determined in a similar fashion to 

automatically determining the optimal splitting feature.  The optimal split value can be 

evaluated in a similar manner to the attributes.  A metric for doing so is presented next. 

Several methods for evaluating feature impurity exist and are implemented in 

decision tree algorithms.  The metric that typically produces the best results is entropy. 
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Entropy measures the randomness of a feature in comparison to a given class.  The 

measure is akin to the entropy measures of thermodynamics, but is mainly used as an 

implementation from information theory, a branch of computer science [2]. The impurity, 

in this case entropy, is then compared to the impurity of the parent node.  The feature that 

has the largest difference from the parent node is greedily chosen as the best splitting 

feature.   

Dataset Description 

A comprehensive dataset with over 3,000 patients was used for this research.  

This dataset included dialysis run information, HIPAA compatible demographic 

information, medications, and hospital visits.  Dialysis treatment was performed in a 

number of clinics across the country, but the clinics are identified only by an ID number 

in the dataset.  Data quality issues reduced the usable number of patients over a number 
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of iterations.  The number of patients is still quite large in comparison to most clinical 

trials.   

Data quality is a large issue in data sets of this nature.  Standardization of fields 

may be minimal, and the different clinics that enter data into the common database may 

place a higher value on different data.  Many fields are sparsely populated, making it 

difficult to estimate missing values.  Missing values must be handled in some manner for 

most algorithms. 

Patient Population 

For the total patient database population, average age for the dialysis patients is 

66 years with a standard deviation of 15.6 years.  Figure 5 illustrates the distribution of 

the patient age.  The median for this particular population is 68 years. 

 

 

Figure 12: Age distribution of total dialysis database population 
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Mortality is high in patients with end stage renal disease; many patients do not 

survive more than a few years on dialysis.  An important feature of this dataset is the date 

of first dialysis.  Dialysis run data is not comprehensive from this initial date, so an 

assumption will be made that dialysis is performed consistently through the years. 

 

Figure 13: Distribution of the number of years on dialysis 

The date of first dialysis figure was not available for all patients.  Figure 6 is 

based on nearly 1,400 patients.  90% of these patients have received dialysis treatment for 

less than seven years (see Figure A.1).  Mortality data is not available for any patients in 

the database.  This subgroup of patients is described by a mean of 3.00 with a standard 

deviation of 3.14 and a median of 2 years. 
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Attribute Selection using Expert Knowledge 

Insight from a domain expert is essential, as the expertise in the treatment of 

dialysis patients is not trivial to acquire.  Candidate variables were selected on the basis 

of their influence on some biological factor.  These biological factors were determined 

through discussions with Nephrologist Dr. Bradley Dixon and through review of the 

hemodialysis literature. In some cases, these variables would need to be transformed, as 

was the case with Epogen dosage (See Derived Variables).  Many important factors 

influence the uptake of erythropoietin, including gender, ethnicity, inflammation, 

comorbidities, etc.  Gender, in particular, appears to modify the receptiveness to EPO.  

(Ifudu, 2001)  One particular benefit of working with such a large data set is the freedom 

to also include variables that may not be considered important factors in the classical 

clinical setting. 

Derived Variables 

Epogen dosage changes in response to lab values of hemoglobin and hematocrit.  

However, the effectiveness of Epogen dosage and other medications may be influenced 

by the fluctuation of the patient’s weight.  An important concept is the patient’s dry 

weight. 

 

Definition 1: Dry weight is the “ideal weight” of the patient when excess fluid has been 
removed 

 

This target weight can fluctuate based on weight gain or loss of the patient, but it 

gives the clinician a target to shoot for.  Depending on the effectiveness of the dialysis 

treatment, there will be a degree of variability of the actual weight difference between 

pre- and post-dialysis.  The post-dialysis weight is then used to derive the ratio of dosage 

in terms of the patient’s weight: 
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Definition 2: The Epogen/weight ratio is defined as the quotient of the weekly Epogen 
dosage divided by post-dialysis weight.  (ex. 50 units/kilogram) 

 

Practical reasons existed as well for choosing post-dialysis weight as opposed to 

dry weight.  Post-dialysis weight was collected on a much more consistent basis.  Much 

more variability was found in post-dialysis weight as well.  Dry weight is more 

prevalently used as a metric for determining the dosage of Epogen, but it would be 

valuable to study the effect of actual weight removed. 

Time on dialysis is simply duration of time the patient was treated with dialysis.  

This attribute was not measured directly, but estimation was made based on the starting 

and ending times recorded in the database.  This process of recording these times may not 

have been automated in some cases, and therefore there may be a degree of error in the 

time on dialysis measures. 

Lab Result Values 

An important preprocessing step was undertaken to rectify the periodicity of 

certain measures in the dataset.  Dialysis runs are performed three or four times per week 

with a mostly constant Epogen dosage.  Lab values, such as the results of blood tests that 

check for the concentration of hemoglobin and hematocrit, are taken at different intervals, 

sometimes once or twice a month.  These values are utilized for the following dialysis 

runs, so for the purposes of the dataset they will be held constant until a new lab value is 

found in the database. 

Decision Variable 

The techniques utilized for building our models were categorized as “supervised” 

learning methods.  Ultimate outcomes of test sets are known; therefore classification 

accuracy can be measured.  This is the distinction between supervised and unsupervised 
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learning.  The most prevalent measure of anemia in a patient is the laboratory 

hemoglobin test; therefore this was chosen as our decision variable.  As previously 

mentioned, National Kidney Foundation guidelines have set a target value of between 11 

g/dl and 12 g/dl, regardless of sex.  Values that lie in this interval are hereafter considered 

in the “normal” range.  Values below 11 are to be considered “Low”, and values above 

12 are to be considered “High”.  This discretization is necessary for most classification 

algorithms.  Alternative discretizations could choose any size granularity over the 

continuous range of values.  However; as the number of bins increases, the population in 

each bin decreases and training and testing accuracy may decrease.  This will be taken 

into account when deciding what level of discretization will be used, and what the 

clinical ramifications will be. 

Genetic Algorithm Feature Selection 

A test set is derived based on the information from the dialysis runs of twenty-two 

patients.  This set includes approximately 3,600 instances (runs) over seventeen features 

and the hemoglobin outcome.  These patients were selected at random from the entire 

population, and do not contain any overriding similar characteristics. 

Table 6 shows the input variables initially selected. “AccessType” refers to the 

vascular dialysis access employed in a particular patient.  This variable is not static: a 

new access can be placed and used for treatment while an older access is phased out.  

“TimeOnDialysis” is the length of time in minutes of a particular dialysis run.  

“InfedDose” is the dose of intravenous iron given to the patient.  Like EPO, it is 

associated with a unique dialysis run.  “FerritinLabResult” is an indicator for the amount 

of iron in the blood stream, an important predictor of anemia.  “MCVLabResult” is the 

results of the mean corpuscular volume test, which indicates the average volume of single 

red blood cells, also an indicator of anemic condition [21]. “AlbuminLabResult” is the 

result of the lab test for albumin, an indicator of inflammation. 
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Table 6: Genetic Search Initial Features 

 
AccessType {AVfistula, GortexGraft, PermCatheter, TessioCatheter, VectraGraft} 

TimeOnDialysis Continuous Number 
InfedDose Continuous Number 

FerritinLabResult Continuous Number 
MCVLabResult Continuous Number 

AlbuminLabResult Continuous Number 
WBCLabResult Continuous Number 

StartSittingBP_systolic Continuous Number 
StartSittingBP_diastolic Continuous Number 

StartSittingBP_difference Continuous Number 
EndSittingBP_systolic Continuous Number 
EndSittingBP_diastolic Continuous Number 

EndSittingBP_difference Continuous Number 
EPO/KG Continuous Number 
Gender {Male, Female} 

Ethnicity {1, 16, Non-Hispanic} 
Race {1, 16, 3, 4, 5, White} 

 

“WBCLabResult” is the results of a patients white blood cell count.  In 

terms of a biological indicator of anemia, an increased white blood cell count is 

an indicator of an inflammatory condition as well [16]. Also included as attributes 

are several indicators of the patient’s blood pressure, both before and after the 

procedure has taken place.  “EPO/KG” is the dosage of Epogen divided by the 

patient’s post-dialysis weight.  “Gender” is the patient’s sex – male or female.   

Ethnicity in this data set typically refers to whether a patient is from 

Hispanic or non-Hispanic background, while “Race” is defined as a particular 

subgroup within an ethnicity group.  Some of these categories are defined by 

numbers, but the mapping of these attributes to their real world counter-parts is 

unavailable at this time.  These patients were still considered in the data set in 

order to evaluate a larger population for both clustering and classification tasks. 

These attributes were chosen based on the clinical knowledge of a staff 

nephrologist at the Veteran’s Administration Hospital in Iowa City.  This 
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particular selection is not all-inclusive: there are many attributes that were not 

selected that could be chosen as viable candidates as well.  Luckily, data mining 

offers tools to evaluate candidate variables under some specific frameworks. 

A wrapper is defined as a data mining attribute selection tool that 

considers the classification tool in making its selection.  Typically defined as a 

heuristic search, a wrapper feature selection tool can use as its evaluating criteria 

the classification accuracy of a particular applied algorithm in evaluating 

combinations of features.  One particularly powerful tool incorporates the Genetic 

Algorithm to derive an optimal combination of feature subsets. 

Genetic Algorithms (GA) mimic the mechanisms of gene combination 

over generations of evolution.  Parents (an initial population of individuals) 

combine their genes to produce children in a new generation. The children’s 

ability to pass on their genes to subsequent generations is termed “fitness”.  The 

fitness of an individual is typically some relevant heuristic – in the case of the 

wrapper feature selection tool, the fitness function is the classification accuracy of 

a decision tree derived from a particular subset of features.  Consider the 

following example. 

A dataset with ten input features is selected for evaluation with a GA 

wrapper using the C4.5 decision tree algorithm for the fitness function.  An initial 

population is generated at random with the following format: 

1011000011 :4 Individual
1000100111 :3 Individual
0101110110 :2 Individual

1001011011 :1 Individual

 

 Each bit represents a one of the 10 features from the input data set.  A bit is set to 

one if that feature is to be included in the subset, zero is not.  At this point features are 

randomly chosen to be combined: 
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1011000011 :4 Individual
0101110110 :2 Individual

--------------------
1000100111 :3 Individual
1001011011 :1 Individual

 

 For each pair, a cross-over point is also randomly chosen.  The relationships will 

produce two offspring each.  There is also a small chance of mutation – selecting a bit to 

change value.  Child 42 contains one mutation.  At this point each of these children will 

have their fitness evaluated as well: 

40% :Fitness     1011010110 :42 Child    000011|1011 :4 Individual
80% :Fitness     0101000011 :24 Child    110110|0101 :2 Individual

---------------------
67% :Fitness     1000101011 :31 Child    0111|100010 :3 Individual
20% :Fitness     1001010111 :13 Child     1011|100101 :1 Individual

 

Once the new children have been evaluated, the top candidates can replace the 

lowest rank candidates from the original population.  The Genetic Algorithm should 

converge to at least a local minimum, that being the main complaint against the 

algorithm.  Many alternative implementations have been formulated in order to help the 

GA to converge to an optimal solution.  The wrapper feature selection algorithm should 

converge to the highest classification accuracy possible for the given feature set given a 

high initial population and number of generations. 

GA Feature Selection Results 

Several wrappers were constructed using alternative settings to compare the 

outcome of feature selection.  The wrapper was constructed not only with the J48 

decision tree, but also with an artificial neural network classifier. 

Training time for these feature selection methods varies depending on the 

classifier and the number of cross-validation folds that will be used to train the classifier 

based on the selected features.  The initial setting for the population size is also a large 
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determining factor.  An efficient implementation would not evaluate children derived 

from a parent population that is present in the parent population and has already been 

evaluated.  At maximum, each new generation would have as many new children to 

evaluate as the parent population. 

Table 7: GA neural network result 

Number of 
folds  (%)   Attribute 

2 (100%) 1 AccessType 
1 (50%) 2 TimeOnDialysis 
1 (50%) 3 InfedDose 
2 (100%) 4 FerritinLabResult 
2 (100%) 5 MCVLabResult 
2 (100%) 6 AlbuminLabResult 
2 (100%) 7 WBCLabResult 
0 (0%) 8 StartSittingBP_systolic 
1 (50%) 9 StartSittingBP_diastolic 
0 (0%) 10 StartSittingBP_difference 
0 (0%) 11 EndSittingBP_systolic 
1 (50%) 12 EndSittingBP_diastolic 
0 (0%) 13 EndSittingBP_difference 
2 (100%) 14 EPO/KG 
2 (100%) 15 Gender 
2 (100%) 16 Ethnicity 
2 (100%) 17 Race 

 

The results of Table 7 are interpreted in the following manner: any attribute that 

was utilized for any number of folds greater than zero was selected by the GA wrapper.  

This wrapper using an ANN for its subset evaluator eliminated several blood pressure 

measures, both before and after the dialysis run.  All other measures were evaluated as 

being significant.  This feature subset (14 attributes) was then evaluated for classification 

accuracy using the ANN and the J48 (the GA wrapper does not report the final fitness 
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values).  Final accuracies for the J48 and ANN after feature subset reduction was 77.74% 

and 53.58%. 

Table 8: Results of the GA J48 wrapper 

Number of 
folds  (%)   Attribute 

0 (0%) 1 AccessType 
0 (0%) 2 TimeOnDialysis 
1 (50%) 3 InfedDose 
2 (100%) 4 FerritinLabResult 
2 (100%) 5 MCVLabResult 
2 (100%) 6 AlbuminLabResult 
2 (100%) 7 WBCLabResult 
0 (0%) 8 StartSittingBP_systolic 
0 (0%) 9 StartSittingBP_diastolic 
0 (0%) 10 StartSittingBP_difference 
1 (50%) 11 EndSittingBP_systolic 
0 (0%) 12 EndSittingBP_diastolic 
0 (0%) 13 EndSittingBP_difference 
2 (100%) 14 EPO/KG 
2 (100%) 15 Gender 
1 (50%) 16 Ethnicity 
0 (0%) 17 Race 

 

The J48 wrapper and the ANN wrapper both selected the following attributes: 

InfedDose, FerritinLabResult, MCVLabResult, AlbuminLabResult, WBCLabResult, 

EPO/KG, Gender, and Ethnicity.  This result is encouraging given the clinical knowledge 

used to derive the baseline dataset.  Blood pressures are typically more random, and 

therefore not necessarily a good predictor.  The accuracies of the J48 and ANN were 

determined to be 76.40% and 44.10%, respectively.  Though the accuracies for both 

datasets are very similar, J48 selected variables will be selected based on the simplicity of 

the model.  This will also help to reduce training time. 
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Classification Experimentation 

Data Preprocessing 

Data preprocessing is an extremely important step in any data mining experiment.  

The following sections outline some of the major tasks. 

Handling Missing Values 

Several strategies are employed to handle missing data for the kidney dialysis 

patients.  Parameters such as weight and blood pressure were estimated using an average 

of the previous twenty (if available) dialysis runs.  The patient’s weight would typically 

fluctuate very little from session to session, whereas the blood pressures typically take on 

a value less correlated with previous data and appear much more random. 

Medication dosages are associated with a particular dialysis run identification 

number.  Therefore, if no medication dosage is found for a particular run ID, a zero 

dosage is associated with that run.  Unfortunately, recorded medication administrations 

did not record the value of the drug being administered, simply that the drug was 

administered.  These runs were eliminated from the dataset due to the fact that there is no 

certainty in estimating any value for these instances. 

Records for lab values (such as hemoglobin and white blood cell counts) had far 

fewer data entry errors than the medications administered.  The major obstacle for these 

data fields were large periods of time were not available in the data base.  The omissions 

for the features were not mutually exclusive – if one value was missing, it was highly 

likely that all lab values were unable for that time period.  These runs were eliminated 

due to the high amounts of estimating that would be necessary to complete the patient’s 

record. 
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Hemoglobin Discretization 

The majority of classification algorithms require that the decision variable be 

categorical in nature.  The size of the bins and the number of examples associated with 

the bins can affect the ultimate accuracy of the model.  To illustrate, the validation set 

was used with different levels of discretization to study the classification accuracy of the 

J48 decision tree algorithm. 

Table 9: Discretization experiment illustrates affects of bin size 

Discretization Level Classification Accuracy 

0.5 g/dL 74.47% 

1.0 g/dL 81.18% 

1.5 g/dL 86.22% 

{Low, Normal, High} 85.99% 

 

As the granularity of discretization decreases (i.e. smaller number of bins), the 

classification accuracy increases.  While this increase in accuracy is desirable, in practice 

models and rules generated from data mining should help clinicians move a patient from 

one adjacent state to the next.  The differences between patients at adjacent levels should 

be fewer when the granularity in outcomes is highest.   

Validation Set – Classification Accuracy Experiments 

Utilizing the features from  

Table 6 and data from twenty two randomly selected patients, classification 

models of the hemoglobin test result were constructed.  Several algorithms were chosen 
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to evaluate their ability to correctly classify the test outcome.  A support vector machine 

classifier was not used because of the categorical nature of several of the features.  The 

test result outcome was discretized to intervals of 0.5 g/dl from 8.5 to 14 g/dl.   

Table 10: Classification Accuracy of Various Classifiers 

Classifier Classification Accuracy 
Artificial Neural Network 53.71% 

C4.5 Decision Tree 76.24% 
PART algorithm 56.74% 

Naïve Bayes 19.66% 

 

The PART algorithm utilizes the C4.5 algorithm in building a rule base, but there 

are differences between PART and J48 (a Java working of an updated C4.5) in terms of 

pruning.  Table 11 illustrates the confusion matrix for the PART algorithm results from 

the validation set.  Cells highlighted in red are perfectly predicted by the algorithm.  Cells 

highlighted in orange are what could be considered “neighborhood accuracy”.  This term 

essentially means that if we consider the adjacent categories in an ordinal list to be 

similar, a misclassification to one of these adjacent bins can be considered “in the 

neighborhood” of accuracy.  The ability to draw inference from neighborhood accuracy 

must be defined by the categories themselves – if the split points between categories are 

not significant, then we can consider neighborhood accuracy to be important. 

An additional aspect of analyzing confusion matrices is how well a particular 

classifier predicts certain classes.  This particular algorithm performs slightly better than 

a coin toss overall – but does it predict certain classes better than others?  Classes that do 

not contain many examples are typically predicted worse than classes that have many 

examples.  This certainly holds true for the lowest and highest classes in the validation 
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set.  Lack of data for the high categories makes clinical sense – when patients approach a 

high level of hemoglobin, administration of EPO is scaled back or not administered at all.   

Table 11: PART Algorithm confusion matrix 

 
 

This guideline is set forth by many insuring agencies – they are unwilling to pay 

for treatment above and beyond the target range of hemoglobin.  As for the lowest 

categories, the body produces erythropoietin in areas other than the kidneys.  Therefore, 

at extremely low kidney function, there will be a natural floor for the body’s production 

of erythropoietin and therefore hemoglobin would not fall below a certain level under 

normal circumstances. 

Artificial neural networks (ANN) have been popular in many fields for a number 

of years.  They have the unique distinction of being known as a “universal approximator” 

– having the ability to model any type of function.  ANNs mimic the neural pathways of 

the human brain and are trained by a method called error back-propagation. ANNs are 

mostly described as a “black box” algorithm – the form of the model is difficult to 

discern.  Researchers concerned with the overall form of the model describing a process 

a b c d e f g h i j k l m <-- classified as
0 0 1 12 1 0 0 0 0 0 0 0 0 | a = LT_8.5
0 0 2 0 1 0 0 2 1 0 0 0 0 | b = 8.5_9
0 0 32 0 7 3 0 6 1 2 0 0 0 | c = 9_9.5
0 0 7 104 8 28 17 4 5 12 2 0 0 | d = 9.5_10
0 0 11 10 84 37 24 8 9 6 2 0 0 | e = 10_10.5
0 0 0 12 30 297 34 33 33 8 1 0 0 | f = 10.5_11
0 0 2 16 16 63 279 76 51 17 3 3 0 | g = 11_11.5
0 0 1 7 13 53 71 368 80 32 9 3 0 | h = 11.5_12
0 0 0 4 9 23 40 89 435 64 14 0 0 | i = 12_12.5
0 0 0 1 4 19 26 55 85 355 27 8 10 | j = 12.5_13
0 0 0 0 2 6 7 20 36 34 99 4 0 | k = 13_13.5
0 0 0 0 2 3 2 11 19 17 16 15 5 | l = 13.5_14
0 0 0 1 1 1 2 0 0 21 3 1 15 | m = HT_14
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should shy away from this form of prediction.  Data mining is typically more concerned 

with outcomes, and having such a large number of tools at disposal, the final algorithm 

chosen can be affected by personal preference or the characteristics of the dataset. 

Naïve Bayes classifiers use Bayes’s rule relating joint probabilities to conditional 

probabilities, along with the conditional independence of individual features, to build a 

classification model.  Performance of such classifiers is degraded by correlated features 

that violate the conditional independence assumption.  Also, continuous features must 

either be discretized or assumed to follow a probability distribution – typically assumed 

to be Gaussian in most implementations.  Many attributes from the data set would be 

nicely approximated by a Normal distribution – patient blood pressure or dialysate 

temperature variables are good examples.  Lab results and medication doses may not 

follow such a distribution.  These assumptions typically lead the Naïve Bayes classifier to 

perform poorly in relation to other classifiers such as neural networks and decision trees 

that need not make such assumptions about the structure of the source data. 

PART Rule Evaluation 

Domain knowledge is essential to validate the validity of rules derived from the 

sample population.  What can be defined as a “good” rule can vary, but typically a rule 

that covers a significant portion of the data instances are most suitable for evaluation.  

Many rules are typically generated that may only apply to a handful of instances 

(between 1 and 10).  Some of the interesting rules generated are presented next.  All are 

selected on the basis of the number of instances in the dataset they cover.  The rules 

represent the highest coverage of the validation set population. 

• Rule 1: IF AlbuminLabResult > 4.1 AND TimeOnDialysis <= 269 AND 
FerritinLabResult <= 150: High (107.0/1.0) 

• Rule 2: IF AlbuminLabResult > 4.1 AND EPO/KG > 43.2 AND 
WBCLabResult <= 7.8: Low (15.0) 
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• Rule 3: IF MCVLabResult > 85.599998 AND AlbuminLabResult > 4.1 
AND AccessType = TessioCatheter: High (65.0) 

• Rule 4: IF AlbuminLabResult > 4.2 AND Ethnicity = 1: Normal (15.0) 

 

The emergence of time on dialysis in Rule 1, and specifically at such a break 

point, appears to be a little misleading.  In practice, most patients are dialyzed for 

approximately three hours, making a break point of 270 minutes (4.5 hours) meaningless.  

One would be hard pressed to find many patients within the entire dataset that received 

treatment for over this length of time.  This is just one example of the spurious 

connections that can be made when implementing data mining.  Other rules regarding the 

split values of lab results or medications require domain expertise in order to fully 

evaluate them for clinical validity. 

Medication Dose Response: Time Series Analysis 

Medications are delivered to patients in order to elicit some sort of positive 

biological response.  An increased dose of erythropoietin should elicit a positive change 

in hemoglobin (holding all other factors constant) some time in the future.  This 

receptiveness can be defined as a dose-response curve – the amount of time required to 

see a target change in hemoglobin based on a change in erythropoietin dose.  For typical 

patient, hemoglobin is measured approximately every two weeks.  The fluctuation 

between measurements for each patient is unknown, but is highly patient dependent.  

Patients will have varying degrees of renal function producing varying quantities of 

erythropoietin.   
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Figure 14: Scaled Epogen dose (units/kg/week) and Hemoglobin for a single patient 

Figure 14 shows the treatment of a single patient over the course of thirty-nine 

weeks.  Hemoglobin is held constant until a new value is determined through laboratory 

results.  The target range for most patients is between 11 g/dl and 12 g/dl.  As the graph 

indicates, this value is rarely maintained for long.  As hemoglobin approaches 13 g/dl, 

erythropoietin is no longer administered in some patients.  This approach is supported by 

Phrommintikul et. al.: higher hemoglobin levels are associated with all-causes mortality.  

Drastic changes in hemoglobin can be attributed to blood loss, hospitalizations, 

infections, or inflammation.  As hemoglobin peaks in Figure 14, erythropoietin dose is 

being decreased. 

Time-series analysis is a very important field of research, and there are many 

approaches to dealing with this type of data.  Temporal data mining enhances this field 

past simple statistical analysis to determine the optimal set of features to predict some 

value given past states. 
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Allen (1984) is an oft referenced paper dealing with the abstraction of temporal 

events using first-order logical statements.  Temporal data mining researchers use these 

abstractions to define regions or states in time-series data.  A direct application in this 

field is the research conducted by Bellazzi et al. [24] with quality assessment of 

hemodialysis services.  Their research involved vast preprocessing using reduction 

methods, multi-scale filtering, along with temporal abstractions.  They were able to 

define Apriori association rules making extensive use of the temporal operator 

PRECEDES to identify scenarios that predicted the emergence of a failure event.  The 

resulting rules were an affirmation of clinical domain knowledge, but also generated 

some unexpected results, which is typical of many data mining applications. 

Dynamic control modeling uses techniques known as “system identification” to 

determine mathematical models that describe a process [22]. The dynamic system is 

identified by a dataset with an output y(t) at some time t and also with inputs defined by 

u(t). 

)}(),(),....,1(),1({ tutyuyZ t =  

Espinosa et al. [22] state that a model can be formulated to predict the next output 

using historical data.  This model would take the following form. 

)()(ˆ 1−= tZfty  

 

This simple function can be defined in any number of ways using any number of 

algorithms or functions.  Data mining algorithms would lend themselves quite well to 

training these functions.  The authors propose a set of pertinent questions, including how 

to choose the predictors and the optimal time delay for this function.  Fuzzy logic, 

correlation, or other statistical methods (like principal component analysis) are typical 

methods of choosing predictors.  Feature selection searches (such as greedy, entropy-
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based searches or genetic algorithm wrapper methods) can find the optimal combination 

of predictors. 

The system identification approach can be applied to modeling the response of a 

patient to hemoglobin treatment.  As an example of how this would be accomplished, 

consider a feature set that contains the weekly dosage of erythropoietin and the latest 

result of the patient’s hemoglobin test.  A delay of five weeks is arbitrarily defined for 

analysis.  A sampling of the constructed dataset is shown below. 

Table 12: Predictor data for current hemoglobin using previous weeks data 

Hgb-1 Hgb-2 Hgb-3 Hgb-4 Hgb-5 EPO EPO-1 EPO-2 EPO-3 EPO-4 EPO-5 
Curr 
Hgb 

11.50 11.50 11.50 9.90 9.90 10000 12200 10800 12000 8400 4200 11.10 

11.10 11.50 11.50 11.50 9.90 16000 10000 12200 10800 12000 8400 10.40 

10.40 11.10 11.50 11.50 11.50 18000 16000 10000 12200 10800 12000 10.40 

10.40 10.40 11.10 11.50 11.50 18000 18000 16000 10000 12200 10800 8.80 

8.80 10.40 10.40 11.10 11.50 24000 18000 18000 16000 10000 12200 9.10 

9.10 8.80 10.40 10.40 11.10 24000 24000 18000 18000 16000 10000 9.10 

 

The Epogen dosages are the summation of the dosages administered during the 

dialysis runs that occur during a weekly basis.  This summation may be more comfortable 

for clinicians considering that is how the dose is typically prescribed.  “Hgb-1” refers to 

the previous weeks Hgb lab value, and a similar notation is used for the previous five 

weeks of both Epogen and Hgb.  This data comes from a single patient, and there were 

over 40 weeks of data available where Epogen was administered.  The outcome 

“CurrHgb” was discretized to the categories “Low, Normal, High” as before because of 

the small size of the data set, and so the J48 algorithm could be utilized. 

Can we accurately predict the current value of hemoglobin given previous 

hemoglobin information and erythropoietin dose?  At first glance, and knowing how the 

dataset was constructed, the previous week’s Hgb value would be intuitively selected to 
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predict the current state of Hgb.  The majority of previous values will be the same as the 

current values, and there are typically no wild swings in Hgb unless some other traumatic 

event has occurred (i.e. blood loss).  Which parameters will the J48 algorithm select as 

accurate predictors of the patient’s Hgb status? 

 

Figure 15: Time-series predicator analysis with J48 decision tree 

This very simple tree, though not generalizable to the entire population, does 

provide a very interesting result.  In this particular patient with this particular 

discretization of Hgb, the only important predictors of the current Hgb status were the 

EPO dose from 5 weeks ago and the current EPO dosage.  A simple transformation of the 

decision tree results in the following decision rules: 
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Rule 1: IF EPO-5 <= 18000 THEN CurrentHgb = Low (16.0/1.0) 

Rule 2: IF EPO-5 > 18000 AND CurrentEPO <= 28000 THEN CurrentHgb = High 
(10.0/0.0) 

Rule 3: IF EPO-5 > 18000 AND CurrentEPO > 28000 THEN CurrentHgb = Normal 
(8.0/1.0) 

The values in the parentheses are the correctly classified and misclassified 

instances.  For Rule 1 there are 16 instances correctly classified and 1 incorrectly 

classified. 

Transferring these rules into clinical knowledge for this patient would indicate 

that if in 5 weeks the desired Hgb will fall in a “Normal” or above range, the patient 

should be given at least 18,000 units per week of EPO in order to achieve this goal, all 

else being equal.  Split points for each attribute are determined by using the entropy 

calculation over a number of potential split points and greedily selecting the best choice.  

Looking at the data, the EPO-5 doses that were associated with normal or high Hgb were 

typically much higher than 18000 units (see Table 12) 

Being able to define the predictive function f using data mining has distinct 

advantages over current approaches.  Most notably this function can be retrained in order 

to more accurately reflect a systems current behavior.  Another benefit arises from the 

inherent ability to accurately learn and describe complex systems.  Using system 

identification in such a way allows you to formulate the problem mathematically in order 

to optimize a specific future outcome.  This optimization can be formulated in such a way 

as to explore the unknown regions of the current control (treatment) space.  Padmanabhan 

and Tuzhilin [25] have demonstrated how data mining can be used to specify the three 

most important aspects of any optimization problem: the state space, objective function, 

and the system constraints.  Being able to use data mining in such a way also provides a 

framework to find a proper treatment to elicit a desired outcome (i.e. drug administration 

to control anemia) 
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CLUSTERING-DERIVED POPULATIONS – CLASSIFICATION 

IMPLICATIONS 

What is the ultimate affect of collecting the dialysis run information and building 

classifiers based on a cluster assignment of a patient?  If these patients are considered 

similar by a clustering algorithm, will decision trees and rules be more or less accurate?  

Will the clustering increase the coverage of derived rules, making them an overall better 

predictor of clinical behavior/patient response?  How will the prediction accuracy 

compare to randomly generated patient datasets. 

Having created a collection of patients using clustering that can now be 

considered a homogeneous population, predictive modeling techniques may be 

implemented more accurately.  Taking the collection of time series data for all the 

patients within a specific subgroup, we can explore the various factors leading to the 

onset of anemia in the dialysis patients.  There are many data mining algorithms that 

feature rule sets as output including association rules and decision tree algorithms.  

Algorithms featuring rule set generation may be preferred over other techniques, such as 

neural networks, that do not produce such an output. 

Related Literature 

This methodology of employing clustering to enhance the classifications made by 

decision trees was employed by Gaddam et al. [14] in an anomaly detection domain.  

Their study employed K-Means clustering to group objects into normal or anomalous 

classes in multiple domains (computer network traffic, electronic circuitry, and a 

mechanical mass-beam system).  The ID3 decision tree algorithm is then employed to 

further understand the particular patterns within the normal and anomalous classes. 

Pedrycz and Sosnowski [17] implemented a fuzzy c-means algorithm to grow 

decision trees with a radical new geometry.  These non-linear trees consider 

heterogeneous subsets of data to build diverse C-decision trees.  In contrast to more 
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common implementations, however, the C-fuzzy decision trees consider many features at 

a node as opposed to the single node considered in C4.5. 

Common medical studies resemble the research paper by Hernándex-Garduño et 

al. [20]: identifying a group of patients according to a test value or procedure and 

evaluating the risk factors associated with a condition.  In this case, the medical team 

clustered patients using the identification of DNA patterns in Mycobacterium 

tuberculosis.  Using DNA pattern recognition software, patients were established as 

either having the disease or not.  Combining principal component analysis with 

multivariate logistic regression, the researchers were able to determine the strongest 

predictors of having the condition.  An interesting extension of this study would be to 

determine how well data mining algorithms such as a decision tree would predict the 

cluster assignment. 

Experimentation 

The clustering accomplished in the first section and the decision tree analyses 

from section two are combined.  Decision trees are constructed based on the cluster 

assignment from k-means clustering and EM algorithm clustering.  If clustered patients 

are to be considered similar, decision trees constructed based on run information should 

be more accurate than data sets constructed from random samples. 

Clusters were not constructed on the basis that the patients were of similar 

hemoglobin distribution.  Nor were patients clustered on the basis of distribution of any 

medication dosages. 

Section two established the supremacy of classifiers based on the C4.5 algorithm 

in terms of classification accuracy for the validation set.  These classifiers did consider 

the administration of the important drug erythropoietin, which was confirmed to be of 

importance using both the C4.5 decision tree and the multi-layer perceptron neural 

network genetic algorithm wrappers.  To decrease training time, the feature subset used 
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to train the clustered classification models was derived from the two-fold decision tree 

selection.  While C4.5 classifiers performed most accurately, the validation set was too 

small to derive any general conclusions.  Therefore, cross-validation accuracy was 

evaluated for all K-Means clusters using J48 and ANN. The PART algorithm was also 

used to verify any discrepancies in implementation. 

Table 13: 10-fold cross validation accuracy for various algorithms 

Dataset J48 ANN PART J48 Top 
Node Instances

KMeansCluster0 95.99% 55.021% 96.03% Ethnicity 14051 
KMeansCluster1 83.63% 53.13% 83.58% WBC 11711 
KMeansCluster2 77.00% 26.43% 76.91% Ferritin 7910 
KMeansCluster3 88.73% 27.26% 88.67% Alb 12059 
KMeansCluster4 78.33% 37.83% 77.72% WBC 4713 
KMeansCluster5 73.27% 27.44% 73.33% Alb 12263 
KMeansCluster6 74.32% 30.52% 74.48% Alb 11526 
KMeansCluster7 68.89% 32.28% 69.08% Alb 5641 
KMeansCluster8 84.67% 72.15% 84.49% Alb 1070 
KMeansCluster9 86.11% 22.96% 85.71% Alb 18757 

 

As indicated in Table 13, the C4.5 algorithm performs much better than the 

artificial neural network.  At maximum, the J48 algorithm (based on C4.5) classifies the 

hemoglobin of cluster 0 patients at nearly 96% accuracy.  The model performs the most 

poorly on the data derived from patients determined to be in cluster 7 – 69% accurate.  

Accuracy for the PART algorithm should and is extremely closely correlated to the 

accuracy for the J48 algorithm.  The neural network performs best for cluster 8 (72.15%) 

and worst for cluster 9 (23%). 

An important feature of the J48 algorithm, particularly for clinicians, is which 

parameter was chosen to be the most important parameter to initially split the data.  In 

general, Albumin was selected as the most important split point for the entire dataset. 
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Classification Accuracy vs. Training Instances
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Figure 16: Classification Accuracy is not affected by the number of training instances 

There is not a noticeable increase in classification accuracy among the datasets as 

the number of training instances increase, as is sometimes expected.  However, larger 

datasets will typically generalize better to unseen testing instances.  This hypothesis can 

be tested on the validation set, which follows in the next section. 

Training of the EM generated clusters used only the J48 algorithm and ANN, as 

the PART algorithm was (and should) be highly correlated with the J48 output.  The 

results of the 10-fold cross-validation follow.  Cluster 2 was eliminated from analysis due 

to a lack of data for many of the laboratory values, including hemoglobin. 
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Table 14: EM generated clusters - Classification Accuracy 

Dataset J48 MLP J48 Top 
Node Instances 

EMCluster0 89.06% 22.08% Alb 22317 
EMCluster1 78.71% 21.61% Alb 31395 
EMCluster3 72.58% 24.61% Alb 29319 
EMCluster4 77.45% 27.88% Ferritin 9931 
EMCluster5 91.86% 33.29% EPO/KG 5578 

 

The classification accuracy for the J48 algorithm is very comparable to the K-

Means clusters.  The accuracy for the ANN is still very poor, but makes intuitive sense 

considering the use of the J48 selected feature set.  The role of the number of training 

instances does not appear to have much effect again with the EM clusters.  Interestingly, 

cluster 5 produced the highest cross-validation accuracy with the fewest training 

instances.  This dataset also selected the Epogen dosage as its most important predictor to 

initially split the dataset.   

Testing Accuracy – Validation Sets 

The validation set consists of information from 21 randomly selected patients.  20 

of these patients were included in the clustering dataset.  The cluster assignment for these 

patients is indicated in the table below. 
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Table 15: Cluster assignments for validation set members 

PatientID KMeansCluster EMCluster 
89007 cluster0 cluster1 

242023 cluster9 cluster2 
247022 cluster4 cluster4 
252023 cluster9 cluster0 
296024 cluster1 cluster5 
380023 cluster3 cluster0 
476001 cluster5 cluster3 
492001 cluster6 cluster3 
506001 cluster6 cluster3 
511001 cluster6 cluster3 
529001 cluster6 cluster3 
544001 No Cluster No Cluster 
546001 cluster7 cluster3 
572001 cluster6 cluster3 
577001 cluster6 cluster3 
600001 cluster9 cluster1 
612001 cluster5 cluster3 
672003 cluster9 cluster0 
674005 cluster7 cluster3 
781015 cluster0 cluster1 
961001 cluster6 cluster3 

 

Seven of the 21 patients were included in cluster 6, which should indicate that 

classification for the validation set should be above normal when compared to the rest of 

the population.  Eleven patients were included in cluster 3 of the EM clusters.  To 

overcome the bias inherent in testing a model with essentially resampled data, testing 

accuracy will also be observed for a randomly selected K-Means cluster (cluster 7).  With 

these two validation sets, a measure for the generalizability of the models should be 

observed. 
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Table 16: Testing Accuracy of validation set and cluster 7 

Dataset Validation Set Accuracy Cluster 7 Accuracy 
KMeansCluster0 19.31% 17.07% 
KMeansCluster1 15.80% 10.85% 
KMeansCluster2 10.32% 12.50% 
KMeansCluster3 14.41% 11.20% 
KMeansCluster4 18.31% 13.28% 
KMeansCluster5 20.02% 13.19% 
KMeansCluster6 41.43% 11.84% 
KMeansCluster7 17.24% 83.42% 
KMeansCluster8 9.56% 10.81% 
KMeansCluster9 20.43% 12.99% 

 
 

The J48 algorithm was used to evaluate the testing accuracy, and the results are 

reported in Table 16.  The testing accuracies for these two validation sets are very poor.  

This would appear to infer that constructing datasets according to clustering assignment 

will lead to a very low generalizability, which is an intuitive outcome.  This must be 

considered in any optimization strategy that includes this type of data sampling. 

Being that the EM clusters appear to be slightly more random in composition, 

they may generalize better than the K-Means clusters.  The EM clusters shifted the focus 

from the categorical parameters to the continuous parameters, which are more randomly 

distributed in terms of ethnicity, race, and gender. 

Table 17: Testing Accuracy for EM Clusters 

Dataset Validation Set Accuracy Cluster 7 Accuracy 
EMCluster0 19.15% 10.12% 
EMCluster1 21.14% 13.81% 
EMCluster3 48.79% 79.26% 
EMCluster4 16.13% 11.65% 
EMCluster5 13.29% 11.85% 
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The EM cluster performed just as poorly on both testing sets.  As can be inferred 

from the results, but proven from the data, EM cluster 3 and K-Means cluster 7 contained 

many of the same data points.  As previously mentioned, half the validation set consisted 

of patients assigned to EM cluster 3. 

Discussion 

The poor testing accuracy of the cluster-derived models is not unexpected.  In fact 

this result is quite intuitive – if the cluster populations are to be considered homogeneous, 

then the models derived should apply most accurately to similar patients.  The subsets do 

appear to be somewhat exclusive in-so-far as not being able to accurately predict the 

states of either randomly formed subgroups or clustered subgroups.  Generalizability 

could be improved by fully optimizing the feature subset for both clustering and 

classification applications.   As discussed at the end of Chapter 1, these goals are 

inherently dependent upon each other – the clustering must be subjectively evaluated 

using the outcomes of the classification, which are in turn dependent on the population 

derived from the clustering.  This could be accomplished iteratively in the form of a 

search – of which there are many fine choices for methodologies. 
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CONCLUSION 

Chapter 1 determined the usefulness of automated clustering algorithm to detect 

the presence of clusters of patients using static parameters.  Two basic clustering 

algorithms were implemented – the K-Means algorithm and the Expectation 

Maximization (EM) algorithm.  The clusters for k value equal to ten were evaluated for 

their purity based on the particular features of the datasets.  Gender appeared to be a 

particularly important parameter in determining cluster membership, as the K-Means 

clusters were typically very pure gender-wise.  Factors such as the age of the patient and 

the number of years that patient had been receiving dialysis were not considered to be as 

important.  Several clusters were very pure in terms of ethnicity and race, while most 

contained a variety. 

The EM algorithm determined that the optimal number of clusters based on the 

data set to be six.  The resulting clusters were far less pure in terms of most of the 

categorical variables, which are converted automatically to individual features and 

indicated by a 1 or 0.  This conversion is not optimal for these features, as they may 

become sparse in the conversion process.  The six EM clusters were predominately 50% 

male and female, with other variables having varying distributions. 

The inferences that can be drawn from these two vastly different clustering is that 

the results will depend on a number of factors.  The algorithm, feature set, and data types 

all seem to influence the resulting clusters.  The clustering analysis proposed here is by 

no means exhaustive, as only a limited number of factors were utilized.  Future 

clusterings can be set up in a vast number of configurations, depending on the ultimate 

goal.  Deriving some sort of class label for groups of patients based on their time-series 

characteristics would be of interest to improve the quality of population-based treatment 

Chapter 2 described the processes of deriving a model based on time-series data 

to predict the current status of a patient’s hemoglobin test outcome.  Feature subsets were 
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defined, and subsequently refined to facilitate more efficient training time for 

classification models.  The method employed was a genetic algorithm feature selection 

wrapper, incorporating both neural networks and J48 decision trees to evaluate potential 

subsets.  The result of this analysis resulted in more compact datasets of comparable 

cross-validation accuracy. 

A key limitation of this study was the lack of some very important information in 

the data set regarding Epogen dosages over a longer period of time.  As a result, many 

instances of data needed to be eliminated as it would be difficult to estimate these 

parameters.  This is also true of many of the lab values (Hgb, Ferritin, WBC, etc).  

Feature selection appeared to indicate less of an influence on parameters specifically 

associated with run information (blood pressure, time on dialysis).  Future studies may 

ignore this data and focus on weekly measurements, which seem to have more 

applicability to clinicians. 

Of vast clinical importance is the ability to forecast a future state of the patient’s 

condition based on current and past information.  Temporal data mining techniques and 

system identification methodologies are introduced.  Temporal data mining involves the 

abstraction of first-order logical concepts to time periods of data.  The process proposed 

by Bellazzi et al. [24] involves significant data transformation and denoising in order to 

apply the abstraction.  This method has advantages and disadvantages, but mainly the 

application of denoising in conjunction with abstractions of real data may reduce the 

amount of real variability of the process.  Depending on the application, this may not be 

desirable.  Patient lab results are typically very stable and highly correlate between 

periods – an artifact generally ascribed to the fact that some lab values are only collected 

every three months. 

Applying the control theory methodology of system identification appears to have 

significant clinical merit.  Combining this modeling technique with data mining 

technologies to form a more robust prediction function could advance many areas of 
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research.  This is true particularly in the healthcare domain where treatment outcomes are 

not immediately known – medications take time to react, the body requires time to 

recover. 

Knowledge derived from a subset of decreasing size but increasing homogeneity 

is a first step towards treatment individualization.  Naturally, the inferences made from 

these subsets do not transfer as well to related subgroups, as was demonstrated in Chapter 

3.  As there are a vast number of ways to group patients, there is substantial room for 

optimization – both in the way patients are grouped and the manner in which the 

treatment outcome is predicted.   However, the capability to use data mining in such a 

manner has proven that it is worthy of further exploration. 
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APPENDIX A: DIALYSIS POPULATION 

 

 

 

 

 

 

 

 

 

Figure A.1: Cumulative percentage of years on dialysis 
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APPENDIX B: K-MEANS CLUSTERING DISTRIBUTIONS  
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Figure B.1: K-Means Cluster0 ClinicID Number 
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Figure B.2: K-Means Age of Patients in Cluster0 



 

 

65

Cluster0 - YearsOnDialysis

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14
More

YearsOnDialysis

 

Figure B.3: K-Means Number of Years of Dialysis for Patients in Cluster0 

Cluster0 - Race

0
20
40
60
80

100
120
140

Whit
e

Mult
ira

cia
l

Alas
ka

nN
ati

ve 1 2 3

Race

 

Figure B.4: K-Means Race Distribution from Cluster0 
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Figure B.5: K-Means Cluster 1 ClinicID Number 
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Figure B.6: K-Means Age Distribution of Cluster 1 Patients 
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Figure B.7: K-Means Years on Dialysis Distribution for Cluster 1 Patients 
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Figure B.8: K-Means Distribution of Races in Cluster 1 
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Figure B.9: K-Means Cluster 2 Clinic ID 
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Figure B.10: K-Means Cluster 2 Age Distribution 
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Figure B.11: K-Means Cluster 2 Race Distribution 
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Figure B.12: K-Means Cluster 2 Years on Dialysis Distribution 
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Figure B.13: K-Means Cluster 3 Clinic ID Number 
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Figure B.14: K-Means Cluster 3 Age Distribution 
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Figure B.15: K-Means Cluster 3 Race Distribution 
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Figure B.16: K-Means Cluster 3 Years on Dialysis 
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Figure B.17: K-Means Cluster 4 Clinic ID Number 
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Figure B.18: K-Means Cluster 4 Age Distribution 
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Figure B.19: K-Means Cluster 4 Race 
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Figure B.20: K-Means Cluster 4 Years on Dialysis 

Cluster5 -YearsOnDialysis

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14
More

YearsOnDialysis

 

Figure B.21: K-Means Cluster 5 Years on Dialysis 
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Figure B.22: K-Means Cluster 5 Age Distribution 
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Figure B.23: K-Means Cluster 5 Race 
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Figure B.24: K-Means Cluster 5 Clinic ID 
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Figure B.25: K-Means Cluster 6 Race 
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Figure B.26: K-Means Cluster 6 Years on Dialysis 
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Figure B.27: K-Means Cluster 6 Clinic ID 
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Figure B.28: K-Means Cluster 6 Age Distribution 
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Figure B.29: K-Means Cluster 7 Years on Dialysis 
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Figure B.30: K-Means Cluster 7 Age Distribution 

Cluster7 -Race

0
5

10
15
20
25
30

Mult
ira

cia
l
Blac

k

Alas
ka

nN
ati

ve 3 1
Whit

e 2 4 6

Pac
ific

Isl
an

de
r 7 5

Asia
n

Race

 

Figure B.31: K-Means Cluster 7 Race 
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Figure B.32: K-Means Cluster 7 Clinic ID 
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Figure B.33: K-Means Cluster 8 Years on Dialysis 
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Figure B.34: K-Means Cluster 8 Age Distribution 
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Figure B.35: K-Means Cluster 8 Race 
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Figure B.36: K-Means Cluster 8 Clinic ID 
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Figure B.37: K-Means Cluster 9 Years on Dialysis 
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Figure B.38: K-Means Cluster 9 Age Distribution 
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Figure B.39: K-Means Cluster 9 Race 
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Figure B.40: K-Means Cluster 9 Clinic ID 
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APPENDIX C: EM CLUSTERING DISTRIBUTIONS 

Table C.1: EM cluster assignment table (sample) 

ClinicIDNumber Ethnicity Race Gender Age YearsOnDialysis ClusterAssignment 
5 9 3 Male 18 0 cluster3 
3 Non-Hispanic White Male 20 0 cluster0 
3 Non-Hispanic White Male 20 2 cluster0 
1 16 1 Male 20 1 cluster3 
8 Hispanic-Mexican White Male 21 3 cluster1 
0 Non-Hispanic AlaskanNative Female 21 2 cluster0 
3 Non-Hispanic White Female 21 0 cluster0 
6 Non-Hispanic White Male 21 1 cluster0 
1 16 2 Male 21 2 cluster3 
3 Non-Hispanic Asian Male 22 2 cluster0 
2 Hispanic-Other 3 Female 23 2 cluster4 
1 1 1 Male 23 4 cluster3 
3 Non-Hispanic White Male 24 1 cluster0 
4 Non-Hispanic White Male 24 0 cluster0 
9 Non-Hispanic White Female 24 4 cluster1 
4 Non-Hispanic PacificIslander Female 25 1 cluster4 
4 Non-Hispanic 3 Male 27 3 cluster4 
4 Non-Hispanic White Male 27 3 cluster0 
1 Non-Hispanic White Male 27 1 cluster0 
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Figure C.1: EM cluster 0 Clinic ID 
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Figure C.2: EM cluster 0 Age Distribution 
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Figure C.3: EM cluster 0 Race 
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Figure C.4: EM cluster 0 Years on Dialysis 
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Figure C.5: EM cluster 1 Years on Dialysis 
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Figure C.6: EM cluster 1 Age Distribution 
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Figure C.7: EM cluster 1 Clinic ID 
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Figure C.8: EM cluster 1 Race 
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Figure C.9: EM Cluster 2 – Race 
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Figure C.10: EM Cluster 3 - Years on Dialysis 
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Figure C.11: EM Cluster 3 - Age Distribution 
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Figure C.12: EM Cluster 4 - Years on Dialysis 
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Figure C.13: EM Cluster 4 – Age 
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Figure C.14: EM Cluster 5 - Years on Dialysis 
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Figure C.15: EM Cluster 5 - Age 
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APPENDIX D: TIME-SERIES ANALYSIS 

Table D.1: Full regressors set 

Hgb-1 Hgb-2 Hgb-3 Hgb-4 Hgb-5 CurrEPO EPO-1 EPO-2 EPO-3 EPO-4 EPO-5 CurrHgb 
11.50 11.50 11.50 9.90 9.90 10000 12200 10800 12000 8400 4200 Normal 
11.10 11.50 11.50 11.50 9.90 16000 10000 12200 10800 12000 8400 Low 
10.40 11.10 11.50 11.50 11.50 18000 16000 10000 12200 10800 12000 Low 
10.40 10.40 11.10 11.50 11.50 18000 18000 16000 10000 12200 10800 Low 
8.80 10.40 10.40 11.10 11.50 24000 18000 18000 16000 10000 12200 Low 
9.10 8.80 10.40 10.40 11.10 24000 24000 18000 18000 16000 10000 Low 
9.10 9.10 8.80 10.40 10.40 24000 24000 24000 18000 18000 16000 Low 
9.50 9.10 9.10 8.80 10.40 24000 24000 24000 24000 18000 18000 Low 
9.50 9.50 9.10 9.10 8.80 26000 24000 24000 24000 24000 18000 Low 
9.80 9.50 9.50 9.10 9.10 30000 26000 24000 24000 24000 24000 Low 
9.80 9.80 9.50 9.50 9.10 30000 30000 26000 24000 24000 24000 Normal 

11.00 9.80 9.80 9.50 9.50 30000 30000 30000 26000 24000 24000 Normal 
11.00 11.00 9.80 9.80 9.50 30000 30000 30000 30000 26000 24000 Normal 
11.10 11.00 11.00 9.80 9.80 30000 30000 30000 30000 30000 26000 Normal 
11.10 11.10 11.00 11.00 9.80 30000 30000 30000 30000 30000 30000 Normal 
11.70 11.10 11.10 11.00 11.00 30000 30000 30000 30000 30000 30000 Normal 
11.70 11.70 11.10 11.10 11.00 30000 30000 30000 30000 30000 30000 Normal 
11.70 11.70 11.70 11.10 11.10 28000 30000 30000 30000 30000 30000 High 
12.50 11.70 11.70 11.70 11.10 24000 28000 30000 30000 30000 30000 High 
12.50 12.50 11.70 11.70 11.70 24000 24000 28000 30000 30000 30000 High 
12.50 12.50 12.50 11.70 11.70 24000 24000 24000 28000 30000 30000 High 
12.50 12.50 12.50 12.50 11.70 22000 24000 24000 24000 28000 30000 High 
12.50 12.50 12.50 12.50 12.50 18000 22000 24000 24000 24000 28000 High 
12.50 12.50 12.50 12.50 12.50 18000 18000 22000 24000 24000 24000 High 
12.30 12.50 12.50 12.50 12.50 18000 18000 18000 22000 24000 24000 High 
12.30 12.30 12.50 12.50 12.50 16000 18000 18000 18000 22000 24000 High 
12.90 12.30 12.30 12.50 12.50 12000 16000 18000 18000 18000 22000 High 
12.90 12.90 12.30 12.30 12.50 13000 12000 16000 18000 18000 18000 Low 
10.80 12.90 12.90 12.30 12.30 15000 13000 12000 16000 18000 18000 Low 
9.80 10.80 12.90 12.90 12.30 24000 15000 13000 12000 16000 18000 Low 
9.80 9.80 10.80 12.90 12.90 26000 24000 15000 13000 12000 16000 Low 
9.70 9.80 9.80 10.80 12.90 30000 26000 24000 15000 13000 12000 Low 
9.70 9.70 9.80 9.80 10.80 30000 30000 26000 24000 15000 13000 Low 
9.90 9.70 9.70 9.80 9.80 30000 30000 30000 26000 24000 15000 Low 
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