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ABSTRACT 

Implementation of artificial subsurface drainage (tile drainage) for cultivation of row 

crops in poorly-drained areas of the Upper Midwest of the United States has enabled the 

region to be one of the most agriculturally productive areas of the world; but has also resulted 

in loss of wetland ecosystems, altered hydrology, and increased transport of nitrate-nitrogen 

(NO3-N) to surface water.  The direct link between subsurface tile drainage and transport of 

nonpoint-source pollutants, particularly NO3-N, to surface waters is a primary concern for 

downstream drinking water supplies and hypoxia in the Gulf of Mexico.  The studies 

described in this dissertation include evaluation of NO3-N export from small, tile-drained 

watersheds typical of agricultural drainage districts on the Des Moines Lobe ecoregion of 

Iowa, evaluation of watershed-scale simulation of hydrology and NO3-N transport at the 

daily interval using the Soil and Water Assessment Tool (SWAT), investigation of important 

nitrogen pathways and processes simulated in SWAT, and the evaluation and improvement 

of SWAT algorithms for simulating water quality treatment wetlands in this landscape. 

Specific objectives of the first study were to quantify hydrology and NO3-N export 

patterns  from  three  tile-drained  catchments and the downstream river over a 5-yr period, 

compare results to prior plot-, field-, and  watershed-scale studies,  and discuss implications 

for water quality improvement in these landscapes. The tile-drained catchments had an 

annual average water yield of 247 mm yr-1, a flow-weighted NO3-N concentration of 17.1 mg 

L-1, and an average NO3-N loss of nearly 40 kg ha-1 yr-1. Overall, water yields were 

consistent with prior tile drainage studies in Iowa and the upper Midwest, but associated 

NO3-N concentrations and losses were among the highest reported for plot studies and higher 

than those found in other small watersheds. More than 97% of the NO3-N export occurs 
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during the highest 50% of flows at both the small catchment and river basin scales. Findings 

solidified the importance of working at the drainage district scale to achieve NO3-N 

reductions necessary to meet water quality goals. They also point to the need for 

implementing strategies that address both hydrology and nitrogen supply in tile-drained 

landscapes. 

The objectives of the second study were to develop and calibrate SWAT models for 

small, tile-drained watersheds, evaluate model performance for pathway-specific flow and 

NO3-N simulation at monthly and daily intervals, and document important intermediate 

processes and N-fluxes.  For simulation in the KS and AL watersheds, Nash-Sutcliffe 

Efficiency (NSE) values were 0.79 and 0.71, respectively, for monthly water yield (WYLD); 

0.55 and 0.66 for monthly subsurface flow (SSF); and 0.72 and 0.60 for monthly NO3-N load 

(using the modified NO3-N lagging algorithms).  However, calibration efforts were extensive 

and detailed monitoring data allowing such efforts are not typically available.  Simulation of 

daily surface runoff (SURQ) and SSF proved more challenging and were generally not 

satisfactory (NSE < 0.50) with the exception of daily SURQ in the KS watershed, for which 

NSE was 0.55 and percent bias (PBIAS) was -10.0%.  Simulation of daily NO3-N 

concentration was not satisfactory even after modifying algorithms to lag NO3-N transport 

via tile flow.  For daily NO3-N concentration the KS watershed NSE was 0.20 and AL 

watershed NSE was -1.12, indicating that simulation in the AL model was less accurate than 

using the average concentration.   Important soil NO3-N processes such as mineralization, 

denitrification, and plant uptake are often overlooked in watershed modeling studies, but 

should be evaluated and reported as standard practice.  These processes are highly variable 
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and difficult to measure.  Better parameterization methods are needed, and related inputs and 

soil-N fluxes should be constrained within reasonable ranges.   

The objectives of the third study were to modify wetland algorithms in SWAT by 

adapting proven CREP wetland models, compare model performance using both original 

SWAT algorithms and modified wetland equations, and evaluate the ramifications of 

watershed and tile drain simulation errors on prediction of NO3-N in Iowa CREP wetlands.  

The modified equations improved simulation of hydrology and NO3-N in the wetlands, with 

NSE values of 0.88 to 0.99 for daily load predictions, and PBIAS values generally less than 

6%.  The applicability of the modified equations to wetlands without detailed monitoring 

data was improved over the original SWAT equations due to more objectively-informed 

parameterization, reduced need for hydrologic calibration, and incorporation of an irreducible 

nutrient concentration and temperature correction factor. The NO3-N removal rate 

(NSETLR) is the critical input parameter for NO3-N reduction and strongly influences model 

performance.  Isolating the KS wetland from the watershed resulted in an overall NSE of 

0.98 and PBIAS of 2.6% for NO3-N load at the wetland outlet.  When the wetland was 

integrated with the watershed simulation using existing soil and tile NO3-N algorithms, the 

NSE decreased to 0.30 and PBIAS increased to 53.3%, indicating that simulation of the BMP 

is limited by the ability of the model to reflect short-term fluctuations in flow and NO3-N 

concentration. 
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CHAPTER 1.  GENERAL INTRODUCTION 

1.1  Introduction 

1.1.1  Overview of tile drainage 

Alteration of the landscape of the Upper Midwest of the United States by the widespread 

installation of subsurface tile drainage infrastructure (Figure 1.1) and subsequent cultivation of 

wetland areas has enabled the region to become one of the most agriculturally productive areas 

in the world (McCorvie and Lant, 1993; Urban, 2005).  Common configurations of subsurface 

drainage infrastructure include privately owned field tiles (Figure 1.2), which drain to a system 

of increasingly larger tiles (subcollectors and collector mains) that eventually discharge to a ditch 

or stream.  Surface inlets are sometimes placed in poorly-drained depressions and ditches to 

 

Figure 1.1  Subsurface tile drainage in the Upper Midwest (Census of Agriculture). 
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drain surface ponding through the tile 

system.  The construction and 

maintenance of collector systems is 

facilitated by formation of agricultural 

drainage districts, which provide the 

financing and organization necessary to 

install drainage infrastructure across 

multiple tracts of land. 

Subsurface tile drainage systems 

enable row crop production and improve 

crop yields in poorly-drained soils by 

lowering the water table, thereby 

limiting prolonged saturation of the root 

zone to prevent root aeration stress (Hatfield et al., 1998; Goswami et al., 2008).  Drainage also 

increases the planting and harvesting windows by creating drier soil conditions for planting and 

harvesting equipment (Fipps and Skaggs, 1991).  In many areas of the Corn Belt, including 

north-central Iowa, cultivation of poorly-drained soils for corn (Zea mays L.) and soybean 

[Glycine max (L.) Merr.] would not be viable if not for the installation of subsurface tile 

drainage systems.  Unfortunately, artificial subsurface drainage has some unintended and 

undesirable ecological and environmental consequences, including altered hydrology, loss of 

wetland habitat and function, and contributions of nonpoint source pollutants to surface waters. 

 

Figure 1.2  Common subsurface field tile 

configurations (University of Minnesota Extension) 
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1.1.2  Water quality issues 

Streamflow and nutrient levels in watersheds with significant tile drainage are affected 

because tile drains alter the pathways and processes that govern hydrology and nutrient transport 

(Schilling and Helmers, 2008).  Relative importance and magnitude of water balance 

components such as runoff, lateral flow, shallow groundwater flow, and aquifer recharge differ 

in tiled versus non-tiled watersheds (Gentry, 2007; Goswami et al., 2008; Sui and Frankenberger, 

2008).  Similarly, water quality processes such as erosion, nitrification/denitrification, and 

leaching are impacted by the presence of tile drain systems (El-Sadek et al., 2003; Lemke et al., 

2011; Coelho et al., 2012).  The direct link between subsurface tile drainage and transport of 

nonpoint-source pollutants, particularly nitrate-nitrogen (NO3-N), to surface waters is a primary 

concern for drinking water systems using surface water supplies.  Additionally, hypoxia in the 

Gulf of Mexico is attributed largely to N and phosphorus (P) exports from the Upper Mississippi 

River basin (UMRB) (Goolsby et al., 2000; Alexander et al., 2008; David et al., 2010). Recently, 

contributions of dissolved P from tile drains to surface water (King et al., 2014; Smith et al, 

2014) and resulting eutrophication, particularly in Lake Erie, has received increased attention 

(Baker et al., 2014; Johnson et al., 2014). 

1.1.3  Wetlands and tile drainage 

During European settlement of the Midwest, “wet lands” were considered obstacles to 

settlement, a breeding ground for nuisance mosquitoes, and a hindrance to productive use of the 

landscape (Urban, 2005).  It is not surprising, then, that by the mid-1800s, government policies 

and programs evolved to establish wide-spread drainage projects to remove these “undesirable” 

landscape features and allow cultivation of the rich prairie soils of the Corn Belt region.  Because 
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drainage projects were expensive, states passed legislation that made possible the formation of 

drainage districts. The State of Iowa passed drainage district legislation in 1873, and by 1930, 

22% of all farmland in the state was drained and 18% of farmland (over 2.4 million ha) was 

included in a drainage district.   As a result, Iowa has lost over 95% of its wetland areas (Bishop 

et al., 1982; Miller et al., 2009) with similar losses in Indiana, Illinois, and Ohio (McCorvie and 

Lant, 1993).  These programs were immensely successful in accomplishing their planned 

objectives and contributed to the agricultural and economic success of the region.   

However, as scientists began to recognize the ecological, hydrological, and water quality 

benefits of wetlands, government policies began to reverse course in the 1970s, with provisions 

for wetland protection in the 1969 National Environmental Policy Act (NEPA) and 1972 Clean 

Water Act (CWA).  In 1989, President George H.W. Bush signed a policy of “no net loss” of 

wetlands, and the 1990 U.S. Farm Bill included subsidies to restore wetlands that government 

once paid to remove (McCorvie and Lant, 1993).  In addition to funding wetland mitigation 

programs for the purpose of ecosystem restoration, programs such as the Iowa Conservation 

Reserve Enhancement Program (CREP) have been initiated to strategically utilize wetland 

functions for water quality improvement in tile-drained landscapes (Crumpton et al, 2006).   

1.2  Justification of Research 

The central theme of this dissertation is the evaluation and simulation of hydrology and 

NO3-N transport in tile-drained watersheds in north-central Iowa.  While it is widely known that 

artificial subsurface drainage of land in agricultural production and loss of wetland ecosystems 

affects hydrology and nutrient transport, accurate prediction and simulation of these landscapes 

remains challenging.  The major biogeochemical processes and pathways involved have 
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generally been identified, but are often extremely complex, spatially and temporally variable, 

and therefore difficult to quantify.   Long-term water yields and nutrient losses from large land 

areas can be estimated at annual or even seasonal time-steps using a variety of regression 

approaches and available flow, water quality, and land use data (Goolsby et al., 2000; Crumpton 

et al., 2006; Alexander et al., 2008; Stenback et al., 2011).  Often, however, estimates of nutrient 

losses are desired when and where in-stream data is not available at the scale of interest.   

At smaller spatial scales and time steps, variation in hydrology and nutrient transport is 

often difficult to explain and more difficult to simulate.  Some uncertainty is caused by unknown 

differences in soil characteristics, such as particle size distribution, organic matter content, and 

pH (Cambardella et al., 1994).  Additionally, dynamic processes such as microbial activity and 

the development of preferential pathways (i.e., cracks and fissures), can have a dramatic effect 

on the movement of water and nutrients but these processes are difficult to incorporate into 

simulation models.  Agricultural practices specific to individual farms and fields (e.g., tillage, 

fertilizer type, and application rates) also impact hydrology and nutrient transport.  In most 

instances, an accurate and complete record of agricultural management decisions is not available 

for modeling purposes.   

In areas with tile drainage systems, the tile infrastructure itself is one of the most 

hydrologically dominant features of the landscape.  It is often necessary to use general design 

guidance to estimate local tile size, depth, and spacing characteristics.  In many cases, it is likely 

that modeling constructs and assumptions do not accurately reflect in situ drainage infrastructure.  

At large scales this variation is less important because general guidelines may reflect average 

conditions.  But variation in tile infrastructure characteristics may be critical for predicting 
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hydrology and nutrient losses in smaller watersheds (i.e., drainage district scale) and at shorter 

time intervals. 

These aforementioned uncertainties and variations in watershed characteristics, combined 

with simplifying model assumptions and limitations, confound efforts to accurately assess the 

impact of specific drainage catchments on stream flows, local water quality, and nutrient exports 

at smaller spatial and temporal scales.  This has several important consequences for watershed 

management.  First, it is often difficult to determine which drainage catchments contribute the 

highest water yields and nutrient losses without expensive and prolonged monitoring studies.   

This hinders timely and reliable prioritization of watersheds for the purpose of reducing nutrient 

losses to surface water.   Second, it hampers selection and targeting agricultural best 

management practices (BMPs) aimed at reducing nutrient-driven water quality problems.  

Different BMPs are more or less suitable for treating distinct nutrient pathways, and the 

performance of some BMPs is sensitive to characteristics of the inflow.  For example, wetlands 

should be placed where they have opportunity to intercept and treat the most NO3-N.  Models 

capable of accurately predicting differences in hydrology and nutrient export from specific 

watersheds would greatly benefit watershed management for water quality improvement. 

1.3  Organization of the Dissertation 

This research is focused on the evaluation and simulation of watershed-scale hydrology 

and NO3-N transport in tile-drained landscapes.  The challenges associated with predicting 

spatial and temporal variation in hydrology and NO3-N transport are investigated through the 

analysis of monitoring data and through modeling efforts.  Chapter 2: Nitrate-Nitrogen Export: 

Magnitude and Patterns from Drainage Districts to Downstream River Basins includes an 
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analysis of five years of flow and NO3-N data collected at the outlet of three adjacent, tile-

drained agricultural drainage districts and the downstream river basin.  This analysis sets the 

stage for the larger objective, which is to improve our ability to predict and simulate hydrology 

and nutrient transport at watershed scales in tile-drained landscapes.  Chapter 3:  Simulating 

short-term fluctuations in subsurface flow and nitrate-nitrogen in small, tile-drained watersheds 

using SWAT evaluates the ability of SWAT to simulate pathway-specific flow components, 

short-term fluctuations of NO3-N concentrations, and examines soil-N processes and fluxes.  

Chapter 4: Modification of SWAT to improve simulation of nitrate-nitrogen removal wetlands 

discusses an important water quality improvement strategy, constructed wetlands, and improves 

a widely-used watershed model to better reflect hydrology and NO3-N removal in wetlands. 

Ramifications of tile-drained watershed simulations on predicted wetland performance is also 

evaluated. Chapter 5 summarizes the key findings of Chapters 2 through 4, discusses 

implications of key findings, and makes recommendations for continued efforts to improve 

watershed-scale simulation of hydrology and nutrient transport in tile-drained landscapes. 

1.4  Research Hypotheses and Objectives 

Development of modeling tools capable of simulating small, tile-drained catchments 

typical of agricultural drainage districts is needed for water quality planning and cost-effective 

nutrient reduction.  The overall goal of this research is to improve understanding and prediction 

of hydrology and NO3-N transport in tile-drained watersheds and wetlands of the Corn Belt 

region, specifically north-central Iowa. To achieve this goal, the following hypotheses and 

objectives are presented for each chapter of the dissertation. 
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1.4.1  Chapter 2: Nitrate-nitrogen export: magnitude and patterns from drainage districts to 

downstream river basins. 

HYPOTHESES: 

• NO3-N losses from drainage district-scale catchments, typically between 200 and 

3,000 hectares in size, are critical source-areas for NO3-N exports from larger 

basins.   

• Trends and patterns in streamflow and NO3-N export from larger river basins (i.e., 

the Boone River) reflect those observed from small, tile-drained catchments in 

smaller, headwater streams (i.e., Lyons Creek). 

OBJECTIVES: 

• Quantify water yields, NO3-N concentrations, and NO3-N yields over a 5-yr 

period from three tile-drained catchments typical of drainage districts in north-

central Iowa 

• Assess spatial, temporal, and precipitation-driven patterns in hydrology and NO3-

N transport 

• Discuss implications for watershed management and water quality improvement 

in these landscapes. 
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1.4.2  Chapter 3:  Simulating short-term fluctuations in subsurface flow and nitrate-nitrogen in 

small, tile-drained watersheds using SWAT. 

HYPOTHESES: 

• The SWAT model’s ability to simulate pathway-specific flow components 

and short-term fluctuation of NO3-N transport is not thoroughly tested and 

documented in the literature despite its widespread use. 

• Watershed models used to predict effects of BMP implementation require 

more thorough performance assessment, including evaluation of pathway-

specific components and intermediate nutrient processes/fluxes. 

• These intermediate processes should be reported as standard procedure in 

watershed modeling studies, and improved parameterization methods and 

model algorithms may be required to improve model performance. 

OBJECTIVES: 

• Develop and calibrate SWAT models for small, tile-drained watersheds. 

• Evaluate model performance for pathway-specific flows and NO3-N 

simulation at monthly and daily intervals. 

• Document important intermediate model processes for assessment of model 

performance and make recommendations for model parameterization. 

 

 

 



10 

 

1.4.3  Chapter 4:  Modification of SWAT to improve simulation of nitrate-nitrogen removal 

wetlands. 

HYPOTHESES: 

• Simulation of wetlands using SWAT is largely untested and undocumented in the 

literature. 

• Current wetland algorithms in the SWAT model can be modified to better 

represent hydrology and NO3-N removal in water quality wetlands. 

• Parameterization of modified wetland algorithms using monitoring results from 

Iowa CREP wetlands can better inform simulation of wetlands that lack detailed 

monitoring data. 

• Reliable simulation of some nutrient reduction BMPs may be limited by the 

accuracy of short-term simulations of nutrient concentrations. 

OBJECTIVES: 

• Modify existing algorithms in SWAT by adapting proven CREP wetland models. 

• Compare model performance using original SWAT algorithms and modified 

wetland equations to simulate two Iowa CREP wetlands. 

• Evaluate the ramifications of watershed and tile simulations errors on prediction 

of NO3-N in Iowa CREP wetlands. 
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CHAPTER 2.  NITRATE-NITROGEN EXPORT: MAGNITUDE AND 

PATTERNS FROM DRAINAGE DISTRICTS TO DOWNSTREAM 

RIVER BASINS 

A modified version of this paper is published in the Journal of Environmental Quality1 

Charles D. Ikenberry, Michelle L. Soupir,  

Keith E. Schilling, Christopher S. Jones, Anthony Seeman. 

2.1  Abstract 

Alteration of the prairie pothole ecosystem through installation of subsurface tile drains has 

enabled the U.S. Corn Belt to become one of the most agriculturally productive areas in the 

world but has also led to increased nitrogen (N) losses to surface water. The literature 

contains numerous field plot studies but few in-depth studies of nitrate-nitrogen (NO3-N) 

exports from small, tile-drained catchments representative of agricultural drainage districts. 

The objectives of this study were to quantify hydrology and NO3-N  export  patterns  from  

three  tile-drained  catchments and the downstream river over a 5-yr period, compare results 

to prior plot-, field-, and  watershed-scale studies,  and discuss implications for water quality 

improvement in these landscapes. The tile-drained catchments had an annual average water 

yield of 247 mm yr-1, a flow-weighted NO3-N concentration of 17.1 mg L-1, and an average 

NO3-N loss of nearly 40 kg ha-1 yr-1. Overall, water yields consistent with prior tile drainage 

studies in Iowa and the upper Midwest, but associated NO3-N concentrations and losses were 

among the highest reported for plot studies and higher than those found in small watersheds. 

----------------------------------------------------------------------------------------------------------------

1 J. of Envir. Qual. 43:2024-2033. doi:10.2134/jeq2014.05.0242 
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More than 97% of the nitrate export occurs during the highest 50% of flows, at both the small 

catchment and river basin scale. Findings solidified the importance of working at the 

drainage district scale to achieve nitrate reductions necessary to meet water quality goals. 

They also point to the need for implementing strategies that address both hydrology and 

nitrogen supply in tile-drained landscapes. 

Keywords: tile drainage, hydrology, nitrate transport, drainage district, hypoxia 

2.2  Introduction 

Alteration of the prairie pothole ecosystem of the midwestern United States has 

enabled the region to become one of the most agriculturally productive areas in the world 

(McCorvie and Lant, 1993; Urban, 2005). One primary feature of this transformation is 

increased drainage capacity of poorly drained soils through installation of subsurface tile 

drains. Widespread agricultural drainage projects were facilitated by the federal Swamp Land 

Acts enacted in the middle of the 19th century to encourage drainage and development of 

wetlands for agricultural purposes. Because drainage projects were expensive, states passed 

legislation that made possible the formation of drainage districts, which provided the 

financing and organization necessary to install drainage infrastructure across multiple tracts 

of land. The State of Iowa passed drainage district legislation in 1873, and by 1930, 22% of 

all farmland in the state was drained and 18% of farmland (over 2.4 million ha) was included 

in a drainage district (McCorvie and Lant, 1993). Authors of the Iowa Nutrient Reduction 

Strategy, completed in 2013, estimated that 66.8% of row crop land in the Central Iowa and 

Minnesota Till Prairies Major Land Resource Area (MLRA) has subsurface tile drainage 

(Iowa State University, 2013). 
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Subsurface drainage infrastructure includes privately owned perforated pipes installed 

in parallel configurations at a field scale. These pipes drain to a system of increasingly larger 

tiles (subcollectors and collector mains) operated by a drainage district that eventually 

discharge to ditches or streams. Surface inlets are sometimes placed in poorly drained 

depressions to drain surface ponding through the tile system. Tile drains enable row crop 

production and improve crop yields in poorly drained soils by lowering the water table, 

thereby limiting saturation of the root zone to prevent root aeration stress (Hatfield et al., 

1998; Goswami et al., 2008). Drainage also improves trafficability for planting and 

harvesting equipment (Fipps and Skaggs, 1991). In many areas of the Corn Belt, including 

north-central Iowa, cultivation of poorly drained soils for corn (Zea mays L.) and soybean 

[Glycine max (L.) Merr.] would not be viable if not for the installation of subsurface tile 

drainage systems. 

Unfortunately, artificial subsurface drainage has some unintended and undesirable 

ecological and environmental consequences. From a water quality perspective, the direct link 

between subsurface tile drainage and increased transport of nonpoint-source pollution, 

particularly NO3-N, to surface waters is a primary concern (Dinnes et al., 2002). Des Moines 

Water Works (DMWW) treats and distributes the potable water supply for approximately 

500,000 people in the Des Moines, IA, metropolitan area. Due to nitrate levels at the surface 

water intakes that frequently exceed the maximum  contaminant level (MCL), DMWW 

constructed a nitrate removal system in 1992, which is said to be the largest of its kind in the 

world (DMWW, 2009). Even with multiple sources of raw water and the nitrate removal 

system, meeting the drinking water NO3-N MCL of 10 mg L-1 at the tap can be difficult when 

river nitrate concentrations are high. This challenge, combined with large- scale concerns 
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regarding nitrate transport from the Upper Mississippi River basin (UMRB) to the Gulf of 

Mexico, has increased the focus on nitrate exports from agricultural drainage districts in 

north-central Iowa. 

In a long-term study (1989–2004) correlating nitrate losses in tile drains to fertilizer 

application rates, Lawlor et al. (2008) observed average NO3-N yields approaching 40 kg ha-1 

yr-1 and maximum losses over 70 kg ha-1 in 0.05-ha research plots near Gilmore City, IA. 

Average annual losses of 10.3 kg ha-1 and flow-weighted concentrations of 16 mg L-1 were 

observed from 1993 to 1998 on field plots near Nashua, IA (Bakhsh et al., 2002). An 11-yr 

plot-scale study in southern Minnesota revealed average annual flow-weighted 

concentrations between 12.0 and 13.4 mg L-1 and associated losses of 41 and 43 kg ha-1 for 

0.02-ha plots with conventional tillage and no tillage, respectively (Randall and Iragavarapu, 

1995). A 4-yr study in northwest Ohio yielded average annual exports of 15.3 and 27.4 kg 

ha-1 (Logan et al., 1994). Hofmann et al. (2004) measured NO3-N concentrations of 17.7 and 

24.3 mg L-1 from plots with 20-m and 30-m spacing, respectively, resulting in annual average 

losses of 26.6 and 22.2 kg ha-1 over 6 yr. 

In larger field plots between 3.3 and 8.5 ha in east-central Illinois, Kalita et al. (2006) 

found flow-weighted NO3-N concentrations between 15 and 20 mg L-1 and losses between 23 

and 33 kg ha-1 yr-1 from 1991 to 2000. From 1995 to 1997, Gentry et al. (2000) observed 

concentrations of 10.2 and 13.1 mg L-1, and losses of 41.6 and 32.7 kg ha-1 yr-1, from 15- and 

5-ha field plots in the same region of Illinois. Jaynes et al. (2001) observed NO3-N yields 

between 13 and 61 kg ha-1 yr-1 from a 22-ha production field in central Iowa. At large 

watershed scales in central Iowa, NO3-N yields of 15 to 31 kg ha-1 yr-1 were estimated for the 

Des Moines and Raccoon River basins between 1980 and 1996 (Goolsby et al., 2000). A 
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NO3-N flux of 7.2 kg ha-1 yr-1 was calculated for the entire UMRB between 1997 and 2006 

(David et al., 2010). A trend of decreasing nitrate concentrations and yields in the 

downstream direction is prevalent in the literature; however, few publications report nitrate 

yields from small- to mid-sized watersheds. 

On the basis of 2 yr (2009 and 2010) of flow and NO3-N concentration data at tile 

outlets, NO3-N yields between 33.8 and 77.0 kg ha-1 yr-1 were estimated for drainage districts 

in the Lyons Creek watershed, a second-order HUC-12 watershed located in the Boone River 

basin within the UMRB (Schilling et al., 2012). Relationships between nitrate levels and 

drainage area were established, but limited years of data prevented a thorough analysis of 

spatial and temporal patterns in hydrology and nitrate export from these sites over time. 

Long-term flow and nitrate concentration data (1992–2000) were obtained at two tile outlets 

and the mouth of the 5,130-ha Walnut Creek watershed, another second-order stream in 

central Iowa (Jaynes et al., 1999; Tomer et al., 2003). Relationships between flow and nitrate 

flux were reported, with major findings being that nitrate concentrations and yields were 

lower at the watershed outlet than at tile outlets and that nitrate concentrations were typically 

not diluted by high flows except during highly infrequent, flooding conditions. Both studies 

determined that nitrate concentrations decrease in the downstream direction and highlighted 

the importance of addressing nitrate loads at the drainage district scale for realization of 

meaningful reductions in nitrate transport. 

Drainage district tile mains draining small catchments (typically between 200 and 

1,500 ha) discharge to drainage ditches and small headwater streams in the Des Moines Lobe 

upstream of the DMWW surface water intakes. Land within drainage districts accounts for 

75% of the total drainage area of the Boone River watershed (Figure 2.1). It is recognized 
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that nitrate losses from drainage districts are critical to nitrate transport at larger scales, but 

quantification of nitrate exports at this scale is lacking. The objectives of this study were (i) 

to quantify water yields, nitrate concentrations, and nitrate yields over a 5-yr period from 

three tile-drained catchments typical of drainage districts in north-central Iowa; (ii) to assess 

spatial, temporal, and precipitation-driven patterns in hydrology and nitrate transport; and 

(iii) to discuss implications for watershed management and water quality improvement in 

these landscapes. 

2.3  Materials and Methods 

2.3.1  Study area 

The study focused on three drainage districts discharging to Lyons Creek, a small 

headwater stream that flows into the Boone River, a major tributary to the Des Moines River 

upstream of the DMWW surface water intake (Figure 2.1). The confluence of Lyons Creek 

with the Boone River is located in Webster City, IA. Precipitation data were obtained from 

the National Weather Service weather station at Webster City, which is available for 

download from the Iowa Environmental Mesonet (Iowa State University, 2014). Flow and 

NO3–N data were collected at the tile outlet of each drained catchment, with monitoring 

stations identified as LCR3T, LCR4T, and LCR5T. The catchments are representative of 

drainage districts in the Des Moines Lobes ecoregion, with similar soils (silty loams in 

glacial till), topography (flat to rolling with pothole depressions), land cover (predominately 

corn and soybean), and subsurface tile drainage infrastructure (Table 2.1). Drainage in Lyons 

Creek includes surface inlets in some depressions and ditches (Schilling et al., 2012, 2013), 

which introduces some runoff into the tile drain system.  



19 

 

Table 2.1  Watershed characteristics for the Lyons Creek drainage districts. 

 

 
 

 

 

 

 

Characteristic LCR3T LCR4T LCR5T 
Drainage area, DA (ha) 309  227 
Row crop (% of DA) 93 92 90 
Poor drainage (% of DA)[a] 79 75 76 
Slope classification (% of DA)    

0-2% slope 46 44 42 
2-5% slope 51 49 53 
5-9% slope 3 7 6 

[a] Row crop areas with slopes < 5% and soils classified as somewhat poor to poorly-drained. 

Figure 2.1  Map of the Boone River and Lyons Creek watersheds. The Boone River 

watershed is a HUC-8 that lies within the Des Moines River basin upstream of Des Moines. 

Blue-shaded areas represent agricultural land in drainage districts that rely on subsurface 

tile drainage systems. The Lyons Creek Huc-12 watershed is outlined in red in the insert. 

Tile-drained catchments and tile outlet locations for LCR3T, LCR4T, and LCR5T are shown 

in the insert. 
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The monitored catchments encompass working-scale farms across multiple 

landowners, and a full accounting of agronomic practices (e.g., tillage and fertilizer 

application rates) is not available, unlike controlled, plot-scale studies. Catchments were 

delineated using a 3-m horizontal resolution digital elevation model (DEM) that was 

developed using Light Detection and Ranging (LiDAR) data (Iowa Department of Natural 

Resources, 2013b). The DEM required hydraulic reinforcement to account for culverts and 

bridges under roadways, as well as known locations of tile collector mains. Resulting 

drainage areas were 747 ha for LCR3T, 260 ha for LCR4T, and 1091 ha for LCR5T. Flow 

and nitrate concentration data were also obtained for the Boone River, a fifth-order stream 

and HUC-8 watershed that drains 2,350 km2 of the predominantly row-cropped agricultural 

land on the Des Moines Lobe. 

2.3.2  Data collection and analysis 

Tile discharge was measured using ISCO 2150 area-velocity flow modules. The 

sensors were placed in the tiles 2 m from the outlet and secured using expansion rings. The 

area-velocity modules include a pressure transducer to measure water depth, and they emit 

ultrasonic sound waves to measure water velocity. Measurements were recorded and stored 

at 5-min intervals but reduced to daily average discharge rates. Daily stream flow in the 

Boone River was obtained from the USGS gaging station (ID = 05481000) near Webster 

City, IA, approximately 7 km downstream from the mouth of Lyons Creek. 

Grab samples were collected at biweekly intervals from LCR3T, LCR4T, LCR5T, 

and the Boone River monitoring station from 2009 through 2013, with more frequent tile 

sampling during times of elevated flows. Samples were transferred from a dipper apparatus 

to a 500-mL polyethylene terephthalate bottle, stored on ice, and transported to the laboratory 
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for analysis on the day of collection. NO3-N concentration, in milligrams per liter, was 

quantified using USEPA Method 300.0 (Pfaff, 1993), with quality control procedures 

including blanks, spikes, replicates, and known-concentration samples. Additional grab 

samples were collected from the Boone River site by the Iowa Department of Natural 

Resources (DNR) and obtained from the DNR’s STORET (Iowa Department of Natural 

Resources, 2013a) database. During storm events, automated ISCO samplers (Teledyne 

ISCO Inc.) collected multiple samples at 1-h intervals from the tile outlets. These samples 

were collected in separate bottles and analyzed separately to assess possible distinctions in 

nitrate concentrations at different points on the storm event hydrograph. Little variation was 

observed between nitrate concentrations analyzed during the same storm event; therefore, 

daily average NO3-N concentrations were calculated from event samples for the purposes of 

this study. Concentrations were estimated for days on which no samples were collected by 

interpolating between measured concentrations from adjacent sample collection days. 

Daily NO3-N loads (kg d-1) from the Lyons Creek catchments (LCR3T, LCR4T, and 

LCR5T) and the Boone River were calculated by multiplying daily discharge and NO3-N 

concentration. Load duration curves (LDCs) were developed using daily discharge and 

measured (but not interpolated) nitrate concentrations. Daily discharges and nitrate loads at 

each monitoring location were converted to water yields (mm) and NO3-N yields (kg ha-1 d-

1). Precipitation, water yield, and NO3-N losses were also averaged by year and by month 

across the entire study period to assess temporal and seasonal patterns.    
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2.4  Results 

2.4.1  Hydrology 

Average annual precipitation in the Lyons Creek watershed during the 5-yr study 

period was 853 mm, 3.8% less than the 30-yr (1984–2013) average of 887 mm yr-1. The 

highest annual rainfall total occurred in 2010, with 1315 mm of precipitation (Table 2.2). 

Below-normal precipitation occurred in 2011, 2012, and 2013, but the timing of precipitation 

was notably different, with spring 2013 being exceptionally wet and the latter half of 2013 

being exceptionally dry (Figure 2.2a). 

Site-specific, annual water yields from the tile outlets ranged from 24 mm at LCR3T 

in 2012 to 693 mm at LCR4T in 2010, and averaged 248 mm. The corresponding ratio of 

annual water yield to precipitation, termed drainage ratio (DR), ranged between 3.7 and 

52.7% and averaged 29.1% across all three catchments (Table 2.2). Despite similar annual 

precipitation from 2011 to 2013, water yields in 2012 were only 14 and 12% of water yields 

in 2011 and 2013, respectively (Table 2.2). 

Table 2.2  Annual average data summary for tile-drained catchments and Boone River. 
Year 

Tile drain averages†  Boone River 
Prec.‡ WY‡ DR‡ FWC‡ NO3-N yield  WY FWC NO3-N yield 

 mm mm % mg L-1 kg ha-1  mm mg L-1 kg ha-1 
2009 938 265 28.3 12.9 34.2  232 8.8 20.4 
2010 1315 532 40.4 10.6 56.4  574 8.5 48.6 
2011 641 190 29.6 16.7 31.7  203 10.5 21.4 
2012 646 27 4.1 20.5 5.5  31 10.6 3.2 
2013 727 224 30.8 31.8 71.3  223 19.1 42.6 
Mean 853 248 29.11§ 17.1¶ 39.8  253 10.8¶ 27.2 
† Average of tile-drained catchments in the Lyons Creek watershed (LCR3T, LCR4T, and LCR5T). 
‡ Prec. = precipitation; WY = water yield; DR = drainage ratio; FWC = flow-weighted annual average 
concentration. 
§ Total water yield divided by total precipitation for the 5-yr study period. 
¶ Flow-weighted average nitrate concentration for the 5-yr study period. 
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 Figure 2.2  Monthly time series plots of (a) precipitation (Precip), water yield from 

monitored tile outlets, and water yields in the Boone River; (b) flow-weighted average 

(FWA) NO3-N concentrations in tile flow and the Boone River; and (c) NO3-N yields from 

the tiles and Boone River. Q4 = fourth quarter of calendar year. 



24 

 

2.4.2  Nitrate concentrations 

Sampled NO3-N concentrations from the Lyons Creek tile outlets ranged from 0.1 to 

77.4 mg L-1, with 74.2% of discrete samples exceeding the drinking water MCL of 10 mg L-

1. Flow-weighted annual concentrations varied from 9.8 mg L-1 at LCR3T in 2010 to 38.0 mg 

L-1 at LCR4T in 2013.  Concentrations at all three tile outlets were highest in 2013, with 

maximum concentrations ranging from 47.9 to 77.4 mg L-1 in the three drainage districts. 

Overall, the annual flow- weighted average for all three sites during the 5-yr study period 

was 17.1 mg L-1. Nitrate–N concentrations in the Boone River, which receives the tile 

drainage contributions, ranged from non-detectable to 30.0 mg L-1 in the spring of 2013, with 

24.4% of all samples exceeding 10 mg L-1. Flow-weighted average annual concentrations 

measured in the Boone River ranged from 8.5 mg L-1 in 2010 to 19.1 mg L-1 in 2013 and 

averaged 10.8 mg L-1 during the 5-yr study period. Both tile concentrations and those 

measured in the Boone River exhibited strong seasonality (Figure 2.2b). Average monthly 

flow-weighted concentrations in drainage districts were highest in May (25.5 mg L-1), June 

(19.9 mg L-1), and April (18.8 mg L-1). Average monthly flow-weighted concentrations in the 

Boone River ranged from 10.3 to 15.8 mg L-1 from April through June, and 4.4 to 9.4 mg L-1 

for all other months. It is noteworthy that concentrations remained extremely high in late 

2013, even when tile flow was minimal (Figure 2.2b). 

2.4.3  Nitrate loads and yields 

Nitrate–N exported from the Lyons Creek drainage districts from 2009 to 2013 

totaled 384.7 Mg, with 62% of the 5-yr total occurring in 2010 and 2013. Annual average 

loading was 76.9 Mg yr-1. Nitrate–N transported through the Boone River system averaged 

6,407 Mg yr-1 and totaled 32,036 Mg, with 67% of the total 5-yr load exported in 2010 and 
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2013, collectively. Analysis of NO3-N yields revealed that nitrate losses were highest from 

LCR4T and lowest from LCR3T, with the exception of the drought year of 2012 when nitrate 

yield was slightly higher from LCR5T than LCR4T. The 5-yr average NO3-N yields were 

28.9 kg ha-1 yr-1 from LCR3T, 52.2 kg ha-1 yr-1 from LCR4T, and 38.3 kg ha-1 yr-1 from 

LCR5T. Among all tile outlets, the range in annual NO3-N yields was quite large (3.2–104.4 

kg ha-1 yr-1), and the average annual yield from all three catchments was nearly 40 kg ha-1 yr-

1. Seasonal patterns in NO3-N export from each monitored site were evaluated by calculating 

monthly yields (Figure 2.2c). 

2.4.4  Cumulative analysis of nitrate yields 

Cumulative analysis of annual nitrate yields, when plotted with precipitation and 

water yield, reveals additional insights into temporal and spatial patterns and relationships 

(Figure 2.3).  
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In most years, water yields increase with precipitation early in the year but level off quickly 

after 1 July. This pattern did not hold in 2010, when late summer rainfall was extremely high. 

This pattern also deviated during October 2009 because of sustained, although low, tile flow 

through the summer followed by heavy rainfall in October of that year. The precipitation 

patterns in 2011 and 2012 were quite similar, but water yields and NO3-N losses in 2012 

were only 14 and 17% of those observed in the prior year, a result of the prolonged dry 

period that began in 2011. Spring rainfall in 2012 was not enough to overcome moisture 

and/or groundwater deficits created the prior year. Annual precipitation in 2013 was only 

Figure 2.3  Annual cumulative precipitation (prec), water yields (WY), and NO3-N yields 

(NY) for each drainage district. Black dotted line is precipitation; dashed colored lines 

represent water yields for each drainage district; and solid colored lines illustrate NO3-N 

yields. 
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slightly greater than in 2011 and 2012; however, intense spring rains resulted in a steep 

precipitation curve and an increase in NO3-N yields that exceeded 2012 losses by a factor of 

13. 

2.4.5  Nitrate and discharge relations 

In-stream nitrate loads calculated from observed flows and concentrations were 

plotted against the flow duration (i.e., the percentage of time a discharge rate is exceeded) at 

each monitoring site. The resulting LDCs (Figure 2.4) graphically compare in-stream nitrate 

loads to loads compliant with the drinking water MCL of 10 mg L-1, illustrate temporal 

loading patterns, and reveal effects of hydrologic conditions on nitrate transport. Seasonality 

is illustrated with distinct symbols representing observations made within each quarter of the 

calendar year. Flow conditions were split into five categories: high flow (0–10% 

exceedance), moist conditions (10–40% exceedance), mid-range conditions (40–60% 

exceedance), dry conditions (60–90% exceedance), and low flows (90–100% exceedance). 

Condition boundaries are commonly set at these intervals because it places the midpoint of 

each condition at the 5th, 25th 50th, 75th, and 95th percentiles (USEPA, 2007). Note that 

flow exceedance is the inverse of flow percentile. 
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The LDCs reveal NO3-N concentrations exceeding the drinking water MCL of 10 mg 

L-1 the vast majority of time that flow was measurable at all three tile outlets. At LCR3T, 

unlike the other tile outlets, concentrations decreased markedly at flows that were exceeded 

60% of the time (i.e., the 40th percentile flow and lower). Loads exceeding the MCL 

equivalent load in the Boone River were limited to mid-range and higher flow conditions, 

Figure 2.4  Load duration curves for (a) LCR3T, (b) LCR4T), (c) LCR5T, and (d) the Boone 

River. The curved line represents the NO3–N load that would result from the observed flow 

distribution and NO3–N concentrations equal to the drinking water maximum contaminant 

level of 10 mg L-1. Blue “+” symbols represent observations in the first quarter (Q1) of the 

calendar year. Red diamonds are observations from the second quarter (Q2), black “X” 

symbols are from the third quarter (Q3), and bold, black dashes are from the fourth quarter 

(Q4). 



29 

 

with no concentrations exceeding the MCL during dry and low-flow conditions. Yet even in 

the Boone, the MCL was exceeded more often than not during the highest 40% of flows. 

Nitrate–N levels at all four sites tend to exceed the MCL by the widest margins in the second 

quarter of the calendar year. Concentrations above the MCL commonly occur in the third 

quarter at the tile outlets, but not in the Boone River. 

The flow duration or flow-percentile concept is also useful for evaluating the 

importance of flow conditions to total nitrate exports over the 5-yr period. More than half the 

total nitrate exported from the tile outlets and through the Boone River occurs during the 

highest 10% of daily discharges, represented by the 90th percentile flow (Table 2.3). The 

importance of the upper 25% and upper 50% of flows is also significant, with 82.7% (tile 

outlets) and 88.6% (Boone River) of nitrate exports occurring at or above the 75th percentile 

flow and nearly all nitrate (97.1 and 98.8%) exported during the upper half of daily flows. It 

is noteworthy that nitrate exports closely mirror water yields on a percentile basis. 

Table 2.3  Percentage of total water yield and nitrate exported during various discharge        
conditions. 

Location  
% of yield/export† 

Q ≥ 90th percentile Q ≥ 75th percentile Q ≥ 50th percentile 

Tile outlets‡ Water 61.0 82.8 97.0 
 Nitrate-N 56.1 82.7 97.1 
     
Boone River Water 59.4 84.0 96.9 
 Nitrate-N 62.0 88.6 98.8 
† Q = daily flow. 
‡ Summarizes three tile-drained catchments in the Lyons Creek watershed (LCR3T, LCR4T, and LCR5T). 

2.5  Discussion 

2.5.1  Hydrologic patterns and relationships 

The tile-drained catchments monitored in the Lyons Creek watershed had an average 

annual water yield of 247 mm yr-1 and DR of 29.1%. During development of the Iowa 
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Nutrient Reduction Strategy, a water yield of 263 mm yr-1 was estimated for the entire Des 

Moines Lobe (Iowa State University, 2013). Lawlor et al. (2008) observed an annual average 

DR of 29% from tile-drained plots near Gilmore City between 1994 and 2004, and Thorp et 

al. (2007) measured an annual average DR of 24% for a plot-scale study near Story City from 

1996 to 2005. Similar water yields and DRs have been observed in plot studies in east-central 

Illinois (Kalita et al., 2006), southern Minnesota (Randall and Iragavarapu, 1995), west-

central Indiana (Hofmann et al., 2004), and northwest Ohio (Logan et al., 1994). Overall, 

based on 5-yr average values, water yields observed from the tile-drained catchments in 

Lyons Creek were consistent with prior tile drainage studies in Iowa and other tile-drained 

areas of the midwestern United States. 

On an annual basis, water yields varied substantially within the Lyons Creek 

watershed. Despite similar annual precipitation from 2011 to 2013, water yields and DRs in 

2012 were, at most, 14% of those observed in adjacent years. This is most likely due to the 

timing of precipitation. A prolonged dry period began in 2011, which created a moisture 

deficit and reduced tile flow in 2012. Summer 2010 was very wet, with 922 mm (70.1% of 

the annual) of rainfall falling from June to September. Rainfall in 2011 was below normal, 

and the second half of the year was dry, with only 290 mm of precipitation (27.7% below 

normal). This produced the large gap between cumulative precipitation and water yields at 

the beginning of 2012 (Figure 2.3), and continued dry weather resulted in very little tile flow 

that year. In spring 2013, heavy rainfall produced 355 mm (nearly half the annual 

precipitation) in April and May alone. This produced water yields in the first half of 2013 

that were comparable to annual water yields observed in 2009 and 2011. 
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The timing of precipitation and water yields were not always synchronous (Figure 

2.2a). Spikes in monthly precipitation were not always followed by major increases in tile 

flow, although peaks normally coincided when the timing and amount of precipitation was 

sufficient to cause subsurface tile flow. Both time series (Figure 2.2a) and cumulative 

analysis (Figure 2.3) illustrate that monthly precipitation typically peaks in June and 

decreases after 1 July, whereas water yields are very low after 1 July in most years. Jaynes et 

al. (2001) observed a similar temporal trend and relationship in a 22-ha field-scale study of 

tile drainage from 1996 to 1999. Increased evapotranspiration and decreased precipitation are 

both responsible for this seasonal pattern in tile flow. Flow in the Boone River followed the 

same pattern as water yield from the tile outlets (Figure 2.2a), indicating the importance of 

tile flow and drainage district hydrology to river basin hydrology. The average annual water 

yield of 253 mm in the Boone River is within 4% of the 1998 to 2003 average annual water 

yields in three large river basins in a heavily tile-drained region of Illinois (Royer et al., 

2006). 

2.5.2  Tile nitrate concentrations: magnitude and implications 

Although water yields from the Lyons Creek tile outlets were consistent with prior 

studies at various scales, NO3-N concentrations observed in this study were higher than those 

typically observed in the literature. Lawlor et al. (2008) observed flow-weighted annual NO3-

N concentrations ranging from 3.9 to 28.7 mg L-1 in tile flow beneath corn and soybean 

rotation field plots receiving 45 and 252 kg ha-1 of N fertilizer (in corn years only), 

respectively. Plots receiving 168 kg ha-1 of N application had annual average flow-weighted 

concentrations of 14.9 mg L-1, while plots receiving 252 kg N ha-1 had an annual average 

flow-weighted mean concentration of 23.3 mg L-1. Bakhsh et al. (2002) observed 6-yr 
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average flow-weighted NO3-N concentrations between 8.3 and 11.7 mg L-1 from 0.4-ha plots 

near Nashua, IA. Randall and Iragavarapu (1995) measured average flow-weighted NO3-N 

concentrations between 12.0 and 13.4 mg L-1 from continuous corn plots receiving 200 kg ha-

1 yr-1 of fertilizer N in southern Minnesota. 

At a larger scale, Tomer et al. (2003) documented 1992 to 2000 annual flow-weighted 

NO3-N concentrations ranging between non-detectable and 23.5 mg L-1 from two tiled 

catchments in the Walnut Creek watershed in central Iowa, with average annual flow-

weighted means of 11.3 and 13.4 mg L-1. Lyons Creek drainage districts in this study had 

higher maximum annual flow-weighted concentrations (38.0 mg L-1 at LCR4T in 2013) and 

an average annual flow-weighted concentration (17.1 mg L-1) between those observed in the 

highest two fertilizer rates of the Lawlor field plot study and notably higher than in 

concentrations observed at the field plots near Nashua or the Walnut Creek catchments. 

Based on controlled variations in fertilizer application rate (kg-N ha-1) and resulting 

subsurface tile NO3-N concentrations (mg L-1), Lawlor et al. (2008) developed a relationship 

between the two variables, as follows: 

 

NO3-N Concentration = 5.72 + 1.33 * exp [0.0104  × (N-application rate)]  (1) 

 

This relationship was compared with data collected from other tile-drained sites in Iowa and 

Minnesota as part of the science assessment of the Iowa Nutrient Reduction Strategy. 

Although the relationship does not account for differences in precipitation and other site-

specific factors, it was found to be useful across sites with similar soil, land use, and drainage 

characteristics (Iowa State University, 2013). Applying the equation to the average flow-
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weighted NO3-N concentration in the Lyons Creek tile outlets (17.1 mg L-1) implies an 

average N fertilizer rate of 206 kg ha-1 for corn in a corn–soybean rotation in the Lyons 

Creek catchments. This is slightly higher than the Des Moines Lobe average rate of 192 kg 

ha-1 estimated in the Iowa Nutrient Reduction Strategy (Iowa State University, 2013). There 

is certainly variation in this relationship, and applying it across sites and scales should be 

done cautiously. The analysis in the Iowa Nutrient Reduction Strategy indicates that 

application rates as low as 150 kg N ha-1 yr-1 have been associated with NO3-N 

concentrations of 17 mg L-1 in some studies. 

Because nitrate concentrations typically decrease with increasing drainage area in this 

study and others (Schilling et al., 2012; Tomer et al., 2003), this analysis may underestimate 

application rates in the Lyons Creek catchments, as it was developed at the plot, rather than 

catchment scale. If the relationship developed by Lawlor et al. (2008) holds true at the 

drainage district scale, it points to the limitations of decreasing in-stream nitrate 

concentrations solely by reducing fertilizer application. To meet a flow-weighted NO3-N 

concentration of 10 mg L-1, application rates to corn in a corn-soybean rotation could not 

exceed 113 kg N ha-1, far lower than what is customary on the Des Moines Lobe. Only two 

sites for which this relationship was evaluated in the Iowa Nutrient Reduction Strategy had 

flow-weighted concentrations less than the MCL, and the associated application rates were 

less than 70 kg N ha-1. 

2.5.3  Nitrate losses: magnitude and context 

Despite hydrology that was consistent with previous tile drain studies, NO3-N yields 

(i.e., losses) from the Lyons Creek catchments between 2009 and 2013 were higher most 

reported in literature. Tomer et al. (2003) observed losses approaching 60 kg ha-1 from one of 



34 

 

the tiled catchments in Walnut Creek in 1993, a year with extreme flood flow, but losses of 

20 kg ha-1 yr-1 were more typical. Similar maximum and typical losses were reported from a 

22-ha field site in central Iowa (Jaynes et al., 2001). Research plots receiving N application 

rates of 168 and 252 kg ha-1 had average NO3-N losses of 39 and 63 kg ha-1 from 2001 to 

2004, respectively, with a maximum loss of 86 kg ha-1 from high application rate plots in 

2001 (Lawlor et al., 2008). In contrast, annual NO3-N losses from the Lyons Creek 

catchments ranged from 3.2 kg ha-1 at LCR3T in 2012 to 104.4 kg ha-1 at LCR4T in 2013. 

The annual average loss from of all three catchments was extremely high in both 2010 (56.4 

kg ha-1) and 2013 (71.3 kg ha-1). The 5-yr average loss of 39.8 kg ha-1 from all three Lyons 

Creek drainage district tiles is consistent with plot-scale studies with high losses, including 

Lawlor et al. (2008), Randall and Iragavarapu (1995), and Gentry et al. (2000), but much 

higher than field- and catchment-scale losses reported by Jaynes et al. (2001) and Tomer et 

al. (2003). Even excluding the extreme year of 2013 from the Lyons Creek analysis, the 4-yr 

average annual NO3-N loss of 31.9 kg ha-1 yr-1 would still exceed most literature values, even 

at small-plot scales. This magnitude of nitrate loss, relative to water yields, implies a high N 

supply, possibly due to fertilizer application (rate and/or timing), manure application, high 

soil mineralization rates, or other natural and agronomic factors. Nitrate exports in the Boone 

River were more typical of those observed in other studies of tile-drained watersheds in the 

Upper Midwest (Royer et al., 2006; Goolsby et al., 2000). 

2.5.4  Scaling drainage district losses to river basin exports 

The monitored catchments in Lyons Creek occupy less than 1% of the Boone River 

watershed, and nitrate exports from the catchments equated to less than 1.2% of loads 

discharged from the Boone River. However, drainage districts similar to those monitored in 
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Lyons Creek dominate the landscape (Schilling et al., 2013) and comprise 75% of the total 

land area in the Boone River watershed. Scaling up average annual NO3-N yields from the 

Lyons Creek catchments suggests that drainage districts could easily account for all of the 

total nitrate export in the Boone River from 2009 to 2013 (Figure 2.5a). Scaled-up drainage 

district contributions were higher than actual Boone River loads in every year except 2010, 

which was by far the wettest year. On a monthly basis, the highest-scaled drainage districts 

loads, relative to Boone River loads, occurred in September.  This is indicative of warm- 

water, low-flow conditions when removal mechanisms (e.g., denitrification and biological 

uptake) are highest (Bernot et al., 2006; Royer et al., 2004) and nitrate concentrations are 

lowest. Potential contributions during the high export season (March–July) varied between 

77.2% in June and 157.1% in April (Figure 2.5b) but averaged over 100%. Scaling up losses 

in this manner is a simplification of the link between nitrate exports from small upland 

catchments to downstream river basins. In-stream processes and lag time affect this 

relationship, but this analysis affirms findings by others that in tile-drained landscapes, 

drainage districts dominate nitrate transport in downstream rivers and are the scale at which 

improvement strategies should be focused. 
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2.5.5 Nitrate Transport: Drivers and Timing 

Figure 2.5  Average (a) annual and (b) monthly NO3-N loads in the Boone River with the 

potential contributions from drainage districts. Black asterisks represent the potential 

drainage district contributions (percentage) after scaling up the average nitrate loss from 

Lyons Creek drainage districts across the entire area of land lying within drainage districts in 

the Boone River watershed. 
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The degree of subsurface drainage, indicated by DR and water yield, appears to be the 

primary driver of nitrate export from the Lyons Creek catchments and nitrate transport in the 

Boone River. In all years, the catchment with the largest DR also had the largest nitrate yield. 

Furthermore, annual nitrate losses were higher in years with higher DRs (Table 2.2). 

Cumulative annual nitrate yields follow similar patterns as water yields (Figure 2.3), and 

monthly time series plots generally show coincident peaks of flow and nitrate yields (Figure 

2.2). Summing exports by corresponding flow percentile revealed that 56.1% of nitrate 

exports from the tiled catchments and 62.0% of exports in the Boone River occur during the 

upper 10% of daily flows, and 97.1% of nitrate from the small catchments and 98.8% of 

Boone River export occur during the upper 50% of daily flows. These relationships are 

nearly identical to those observed in three riverine watersheds draining hundreds of square 

kilometers of tile-drained agricultural land in Illinois (Royer et al., 2006). It appears that in 

tile-drained landscapes, the lower half of daily flows have almost no impact on nitrate export, 

and relationships between flow and nitrate transport are quite similar across spatial scales in 

the midwestern Corn Belt area of the Prairie Pothole Region. Load duration curves (Figure 

2.4) also illustrate that nitrate levels are generally higher during high flow conditions. This is 

particularly true at larger scales, as shown in the Boone River data. To achieve NO3-N 

concentrations less than 10 mg L-1 at all times, loads would need to be reduced by 8.5% 

during moist conditions and by 34.9% during high flow conditions in the Boone River. In 

addition to underlining the importance of strategies that reduce nitrate transport during wet 

conditions and elevated flows, these findings also suggest that nitrate concentrations are not 

generally diluted by high flows, with the exception of infrequent, extreme flood events. 
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Despite the dominant influence of hydrology and transport limitations on nitrate loss, 

nitrate yields are not always explained solely by the corresponding water yields. The nitrogen 

supply in these landscapes also plays an important role in nitrate loss, as demonstrated by 

Lawlor et al. (2008) in the case of fertilizer application rates. In Lyons Creek catchments, 

cumulative nitrate yields tracked water yields closely in most years (Figure 2.3). However, 

the rapid increase in nitrate losses from 2012 to 2013 was greater than prior years’ 

relationships with tile hydrology would suggest. This is most likely due to the interrelated 

factors of drought and poor crop yields in 2012, which would both contribute to higher-than-

normal residual nitrate in the soil (Lucey and Goolsby 1993). 

Based on countywide yield estimates from 2011 (11.3 Mg ha-1) and 2012 (8.7 Mg ha-

1) and assuming a dry-basis N content of 1.2% (IPNI, 2012; Ciampitti and Vyn, 2012), it was 

estimated that 27 kg ha-1 less N was exported during corn harvest in 2012 than 2011. 

Countywide soybean yields (3.4 Mg ha-1 in 2011 and 3.0 Mg ha-1 in 2012) would result in 26 

kg ha-1 less N removed via harvest, assuming a dry-basis N content of 6.2% (IPNI, 2012; 

Ciampitti and Vyn, 2012). This potential carryover N is less than, but comparable in 

magnitude to annual NO3-N losses via subsurface drainage. The heavy spring rains of 2013 

flushed the residual nitrate from the soil, in addition to concurrent N inputs that typically 

contribute to annual nitrate leaching, leading to tile losses in 2013 that were significantly 

larger than would be expected based solely on annual water yield. While the estimate is 

coarse, and site-specific data may vary, the relative impact is consistent with previously 

demonstrated relationships between nitrate concentration and prior year flows in the Raccoon 

River of central Iowa (Lucey and Goolsby, 1993) and several large tributaries to the 
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Mississippi River (Murphy et al., 2013), and with agronomic studies of carryover soil nitrate 

following drought years (Sawyer, 2013). 

2.6  Conclusions 

Although annual precipitation and water yields from three tile-drained catchments in 

the Lyons Creek watershed were consistent with historical data and other tile drain studies, 

NO3-N concentrations and yields are among the highest reported in the literature. Typically, 

more drainage (as indicated by either water yield or DR) results in higher NO3-N losses when 

examining both annual and intercatchment variability. Relationships between flow percentile 

and nitrate export were virtually identical across scales. Nitrate–N exported from the Boone 

River was consistent with other studies of rivers in the upper Midwest, despite higher losses 

from the Lyons Creek tile drains. High NO3-N losses from these drainage districts relative to 

other small watershed-scale studies, and the overwhelming impact that drainage district 

exports have on the timing and magnitude of river-basin exports, confirm the importance of 

working at this scale to attain water quality goals downstream. Although nitrate exports from 

the catchments were primarily hydrology-driven, larger-than-expected NO3-N losses from 

tile outlets in Lyons Creek suggest that the nitrogen supply may be higher in this system than 

in most, whether from natural or agronomic influences. These findings confirm that strategies 

that address both hydrology and nitrogen supply will be necessary for meeting water quality 

objectives in tile-drained landscapes. 
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CHAPTER 3.  SIMULATING SHORT-TERM FLUCTUATIONS IN 

SUBSURFACE FLOW AND NITRATE-NITROGEN IN SMALL, TILE-

DRAINED WATERSHEDS USING SWAT 

 

3.1  Abstract 

Artificial subsurface drainage significantly alters hydrologic and nutrient pathways and 

processes in tile-drained landscapes.  Reliable prediction of hydrology and nutrient transport 

at the watershed scale is needed for effective watershed planning and implementation of 

water quality BMPs.  The Soil and Water Assessment Tool (SWAT) has been widely utilized 

in tile-drained landscapes, but few applications have thoroughly evaluated the model’s ability 

to simulate pathway-specific components or short-term fluctuations in small watersheds.  The 

objectives of this study were to develop and calibrate SWAT models for small, tile-drained 

watersheds, evaluate model performance for pathway-specific flow and nitrate-nitrogen 

(NO3-N) simulation at monthly and daily intervals, and document important intermediate 

processes and N-fluxes. 

Model calibration and evaluation revealed that it is possible to meet generally accepted 

performance criteria for simulation of monthly total flow (WYLD), subsurface flow (SSF), 

and NO3-N loads.  Nash-Sutcliffe Efficiency (NSE) values for the KS and AL watersheds 

were 0.79 and 0.71, respectively, for monthly WYLD; 0.55 and 0.66 for monthly SSF; and 

0.72 and 0.60 for monthly NO3-N load (using the modified NO3-N lagging algorithms).  

Simulation of daily surface runoff (SURQ) , SSF, and NO3-N concentration were generally 

not satisfactory (NSE < 0.50) with the exception of daily SURQ in the KS watershed, for 

which NSE was 0.55 and percent bias (PBIAS) was -10.0%.   

Keywords: tile drainage, hydrology, nitrate transport, drainage district, SWAT 
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3.2  Introduction 

Artificial subsurface drainage (i.e., tile drainage) allows row crop production and 

improves crop yields in poorly-drained soils by lowering the water table to limit saturation of 

the root zone and prevent root aeration stress (Hatfield et al., 1998), and by increasing 

planting and harvest windows during spring and fall, respectively.  Streamflow and nutrient 

transport is significantly impacted by subsurface drainage because tile drains alter the 

pathways and processes that govern hydrology and nutrient cycling (Schilling and Helmers, 

2008a).  The distribution of water balance components; runoff, lateral flow, shallow 

groundwater flow, and aquifer recharge; differ in tiled versus non-tiled watersheds (Goswami 

et al., 2008; Sui and Frankenberger, 2008).  The presence of tile drainage also impacts water 

quality processes such as sheet and rill erosion, nutrient mineralization and denitrification, 

and nitrate-nitrogen (NO3-N) leaching (Dinnes et al., 2002; El-Sadek et al., 2002; Lemke et 

al., 2011; Coelho et al., 2012).  Proper identification and quantification of these pathways 

and processes is critically important for reliable prediction of nonpoint source pollutant loads 

(Goolsby et al., 2000) and quantifying nutrient transport to downstream waterbodies (e.g., the 

Mississippi River and Gulf of Mexico (Alexander et al., 2008; David et al., 2010; Stenback et 

al., 2011)).  Additionally, design and simulation of best management practices and strategies 

to mitigate negative effects of tile drainage require thorough understanding of the underlying 

hydrologic and water quality processes (Rozemeijer et al., 2010; Yen et al., 2014).   

The need to predict tile drain hydrology and simulate drainage led to the development 

of DRAINMOD, a field-scale model upon which many subsurface drainage simulations are 

based (Skaggs, 1980).  DRAINMOD has been used to predict tile flow, water table depth, 

nitrate loss, and crop yields in artificially-drained row crop fields (El-Sadek et al., 2001; El-
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Sadek et al., 2002; Wang et al., 2006; Youssef et al., 2006).  Another field-scale model, the 

Root Zone Water Quality Model (RZWQM), has been used to develop long-term simulations 

of drainage water management on tile flow and NO3-N transport in tile-drained field plots in 

the midwestern United States (Thorp et al., 2008; Thorpe et al., 2009; Qi et al., 2012).  

Attempts to extend these field-scale algorithms to watershed-scale models have shown 

promise for prediction of hydrology and NO3-N transport (Fernandez et al., 2005; Singh et 

al., 2007; Sui and Frankenberger, 2008; Ale et al., 2012).  However, these models lack the 

ability to simulate other features of agricultural landscapes, including sources of nutrients not 

associated with tile drainage.  Accurate simulation of tile drainage within the framework of a 

more comprehensive, versatile, and widely-used watershed model would provide watershed 

managers and policy makers with a much-needed tool for evaluation of tile drainage within 

the context of land use change, best management practices (BMPs), and drainage water 

management scenarios (Kladivko et al., 2004; Bracmort et al., 2006; Sui and Frankenberger, 

2008; Ale et al., 2012). 

Many commonly used watershed-scale models, such as Hydrologic Simulation 

Program-FORTRAN (HSPF), Water Erosion Prediction Project (WEPP), and the Watershed 

Assessment Model (WAM), do not contain algorithms that explicitly account for artificial 

subsurface drainage (Migliaccio and Srivastava, 2007) and are limited in their ability to 

simulate other important aspects of an agricultural landscape, such as crop growth, fertilizer 

and manure application, and agricultural water quality BMPs.  Several watershed-scale 

models are available that do directly simulate subsurface tile drainage, such as MIKE-SHE 

and HydroGeoSphere.  These models are fully-distributed, mechanistic models with detailed 

input requirements.  They are capable of a more discrete and accurate spatial representation 
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of the landscape, provided that highly resolute input data are available and the added model 

complexity can justify more onerous development and parameterization requirements.  The 

soil-N cycle is not currently well-represented in MIKE-SHE (Jaber and Shukla, 2012), which 

is critical for NO3-N fate and transport modeling.  Further, there are few applications of 

complex models such as MIKE-SHE and HydroGeoSphere in tile-drained landscapes, which 

increases the difficulty of model parameterization. 

The Soil and Water Assessment Tool (SWAT) model is a well-established and widely 

utilized model for simulation of hydrology and pollutant transport in predominantly 

agricultural watersheds.  The model explicitly accounts for both tile drainage and soil 

nutrient cycling and is under continuous development/improvement by USDA-ARS.  

Gassman et al. (2007) prepared an exhaustive literature review summarizing over 250 

publications based on a wide range of SWAT applications.  Previous SWAT applications 

include development of Total Maximum Daily Loads (TMDLs) (Du et al., 2005; Borah et al., 

2006), assessment of agricultural BMPs (Bracmort et al., 2006; Van Liew et al., 2007; 

Chaubey et al., 2010), evaluation of land use scenarios (Jha et al., 2010) and simulation of 

large-scale river basins to study impacts of phenomena such as climate change (Stone et al., 

2001; Records et al., 2014), gulf hypoxia (Rabotyagov et al., 2010), sediment management 

(Betrie et al., 2011), impacts of alternative energy crops (Babcock et al., 2007; Baskaran et 

al., 2010), and surface water availability (Schuol et al., 2008).  Recognizing its extensive use, 

Arnold et al. (2012) published guidance on the use, calibration, and validation of SWAT 

models and detailed performance measures and evaluation criteria were set forth by Moriasi 

et al. (2015a).   
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Reliable models for simulating hydrology and nutrient transport in these landscapes at 

small watershed scales is critically needed but particularly challenging.  Calibration of 

SWAT and other watershed models often relies heavily on iterative adjustment of a large 

number of parameters during calibration.  Calibration is typically performed to minimize 

differences between predicted and observed flow and/or pollutant loads at large spatial and 

temporal scales.  This can lead to the problem of non-unique solutions, sometimes called 

equifinality, where many possible combinations of model inputs yield similar model 

performance statistics, making it difficult to discriminate between seemingly equally good 

simulations (Yen et al, 2014; Moriasi et al, 2015b).  A second problem frequently associated 

with this limited type of calibration process is that optimized parameter values are frequently 

not constrained within accepted ranges (Malone et al., 2015).   Additionally, while simulation 

criteria for non-pathway specific variables such as stream flow or nutrient loads may appear 

reasonable, underlying simulation of surface runoff (SURQ) and subsurface flow (SSF), 

nutrient transport, and N-dynamics (e.g., denitrification and soil-N levels) may be 

misrepresented (Yen et al, 2014; Arnold et al, 2015).  These challenges can limit the model’s 

utility for accurately forecasting flow and nutrient transport across spatial scales, through 

varying weather patterns, with land use changes, and with implementation of water quality 

improvement strategies. 

Because of its utility for simulating agricultural processes and practices, explicit tile-

drain algorithms, broad application history, and continuous support and improvement by 

USDA, this study takes a closer look at the use of SWAT for simulating hydrology and NO3-

N transport in small, tile-drained watersheds typical of agricultural drainage districts in 

north-central Iowa.  The goals of this study are to evaluate and improve simulation of flow 
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and NO3-N and to provide deeper insights into pathway-specific and short-term model 

performance.  Specific objectives were to (i) develop and calibrate SWAT models for small, 

tile-drained watersheds, (ii) evaluate model performance for pathway-specific flow and NO3-

N simulation at monthly and daily intervals, and (iii) document important intermediate 

processes and N-fluxes. 

3.3  Materials and Methods  

3.3.1  Study area 

The two watersheds simulated in this study each drain to Conservation Reserve Enhancement 

Program (CREP) located in the Des Moines Lobe ecoregion in north-central Iowa.  The 309-

ha KS Wetland watershed is located in Story County, Iowa, at the headwaters of a first-order 

tributary to Squaw Creek, a HUC-12 watershed in the Skunk River basin.  The AL Wetland 

watershed has a drainage area of 227 ha, and is located in Kossuth County approximately 120 

km northwest of the KS Wetland site (Figure 3.1).  The AL Wetland watershed drains to a 

first-order stream that enters Black Cat Creek, a HUC-12 that discharges to the Des Moines 

River. Watershed characteristics for both wetlands are reported in Table 3.1.    All soils in the 

watersheds are classified as somewhat poorly-drained to very poorly-drained, with the 

exception of Clarion soils, which are moderately well-drained.  Therefore, HRUs with 

Clarion soils were not parameterized with tile drainage, but all other HRUs include tile drain 

parameters.   
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Table 3.1  Watershed characteristics of simulated sites. 

 

 

 

 

 

Characteristic KS Wetland AL Wetland 
Drainage area, DA (ha) 309 227 
Row crop (% of DA) 93 80 
Continuous corn (% of row crop) 35 14 
Poor drainage (% of DA)[a] 62 77 
Annual rainfall (mm)[b] 1,081 906 
Annual water yield (mm)[c]  395 279 
[a] Row crop areas with slopes < 5% and soils classified as somewhat poor to poorly-drained. 
[b] Average annual rainfall during model simulation period (2008-2011 for KS Wetland, 2007-2010 
for AL Wetland). 
[c] Average annual water yield during model simulation period. 

Figure 3.1  Location of CREP wetland watersheds simulated in this study.  The shaded 

region is the Des Moines Lobe ecoregion.   
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Flow in both watersheds is predominantly subsurface (tile) flow, with some surface 

runoff reaching the wetlands during storm events.  Flows were measured using Doppler area-

velocity meters, which record water depth and velocity on a continuous basis during ice-free 

conditions (typically late March through November).  Flow rates were calculated using these 

data and a rating curve established for each site using manually measured flow rates. NO3-N 

concentrations entering and leaving the wetland were measured using automated samplers 

that collected daily composite samples during the flow-monitoring season.  Grab samples 

were collected approximately weekly at the inflow and outflow locations, and from the 

wetland itself during periods of zero discharge.  Flow was separated into pathway-specific 

components of SURQ and SSF using an end-member mixing analysis similar to one 

described by Schilling and Helmers (2008b).  The monitoring strategy was designed and 

implemented as part of the CREP wetland monitoring described by Crumpton et al. (2006). 

This study utilized four years of data at each site: 2008-2011 for the KS watershed, and 

2007-2010 for the AL watershed. 

3.3.2  SWAT Model development  

Watershed delineations were based on the Light Detection and Ranging (LiDAR) 

data developed for the State of Iowa in 2010.  The Iowa Department of Natural Resources – 

GIS Section aggregated local LiDAR data to a resolution of one square meter, and 

hydraulically reinforced the data to incorporate culverts and bridges that convey water 

through embankments (e.g., roadways).  Both watersheds have low topographic relief, with 

most slopes between zero and two percent and many enclosed depressions. 

Sources of climatic data include the National Climatic Data Center Weather Data 

Library database (NCDC, 2011) and the National Weather Service (NWS) COOP data 
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available through the Iowa Environmental Mesonet (Iowa State University, 2014).  Weather 

station data included daily rainfall and maximum and minimum daily temperature.  The 

closest weather station to the KS Wetland is located in Ames, Iowa, and data from the 

weather station in Algona, Iowa, was used for model input in the AL Wetland watershed.  

Solar radiation, wind speed, and relative humidity were simulated by the weather generator 

within SWAT. 

The USDA National Agricultural Statistics Service (NASS) cropland data layer 

(CDL) for the years 2005 through 2010 was obtained and used to assess land use and crop 

rotations.  The 2010 NASS land cover was verified by windshield surveys conducted in early 

spring, 2011.  Soils data are from the Soil Survey Geographic Data (SSURGO) database 

developed by NRCS.  Based on the area of land with soils being somewhat poorly, poorly, or 

very poorly drained, it is estimated that 62% of the KS watershed is tile-drained (Table 3.1).  

Hydrologic soil group B/D is dominant, with class B applied to HRUs with tile drainage.  

Soil data include three or four soil layers, depending on soil type, with layer-specific values 

for bulk density, saturated hydraulic conductivity, and percent sand/silt/clay.  Soils in the KS 

Wetland watershed include Canisteo, Clarion, Harps, Nicollet, and Webster.  Clarion and 

Webster soils together comprise 67% of the watershed.  The AL watershed is more intensely 

drained, with 77% of soils being at least somewhat poorly drained.  Soil classifications 

include Canisteo, Clarion, Nicollet, Okoboji, Storden, and Webster, with 90% of the 

watershed consisting of Canisteo, Nicollet, or Clarion soils. 

SWAT applications typically simulate a large watershed comprised of many 

subbasins, the size and number of which is determined by setting a stream threshold area and 

placement of desired subbasin outlets during model delineation.  Because this case study was 
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undertaken to improve tile flow predictions at the drainage-district scale, the watershed 

models each have only one subbasin.  Subbasins in SWAT are divided into hydrologic 

response units (HRUs) that have unique combinations of land use, soil type, and slope 

classification.  Although HRUs represent real-world locations, they are not spatially 

contiguous and are lumped at the subbasin level within the SWAT framework.  Water and 

pollutants generated in each HRU are aggregated at the subbasin outlet before being routed in 

the reach network of the SWAT model.   

During HRU development, threshold values were used to filter areas of land use, soil, 

and slope of negligible size.  Both watershed models included thresholds of 3 percent for 

land use, 5 percent for soil type, and 5 percent for slope classification.  As a result, land uses 

that comprise less than 3 percent of a subbasin are removed and the area is redistributed to 

the relative percentages of the remaining (non-filtered) land uses in each subbasin.  Similarly, 

soils comprising less than 5 percent of any land uses are filtered, as well as slopes that make 

up less than 5 percent of any soil group.  The filtering process resulted in 17 individual HRUs 

in the KS Wetland watershed with an average area of 18.2 ha.  The AL watershed model was 

filtered to 26 HRUs with an average size of 8.7 ha.  This level of resolution was selected to 

balance spatial detail and resolution with computational efficiency required for simulation of 

larger watersheds using SWAT. 

3.3.3  Crop rotation and fertilizer application 

The majority of row crop production consists of two-year rotations of corn (Zea mays 

L.) and soybeans [Glycine max (L.) Merr.], with some continuous corn.  Continuous corn 

was indicated by corn planted in two or more successive growing seasons per historical land 

use data.  Planting and harvest of crops was assumed to occur on May 1 and September 30, 
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respectively.  Seventy-five percent of fertilizer-N was applied in the spring prior to planting 

corn, with the remaining 25% applied in the fall after soybeans.  Fertilizer types consisted of 

anhydrous ammonia, constituting half of applied-N, urea ammonium nitrate (UAN), and 

diammonium phosphate (DAP).  Table 3.2 lists simulated application rates for each 

watershed, which are consistent with rates reported in the Iowa Nutrient Reduction Strategy 

(Iowa State University, 2013).  

Table 3.2  Simulated fertilizer-N application. 

 

 

3.3.4  Hydrologic parameterization and calibration 

 Input parameterization was guided by recommended ranges reported in previous 

SWAT applications (Douglas-Mankin, 2010; Arnold et al, 2012), with particular focus on 

efforts in tile-drained landscapes in the Upper Midwest of the United States (Green et al., 

2006; Sui and Frankenberger, 2008; Gassman et al., 2009; Moriasi et al., 2012; Moriasi et al., 

2013; Yen et al., 2014).  Selection of tile-drain related parameters was also informed by 

previous application of the DRAINMOD and RZWQM models to tile-drained field plots in 

Central Iowa (Thorpe et al, 2007; Thorpe et al, 2009).  Adjustment of objectively derived 

inputs, such as soil parameters, curve numbers (CN2), and tile drain characteristics, was 

minimized.  Instead, parameter adjustment focused on variables for which physical data is 

lacking and uncertainty is high.  Only four years of observed data is available for calibration 

in each watershed.  The purpose of this study was to evaluate model behavior and 

performance, rather than use the model for watershed planning.  Therefore, neither spatial 

nor temporal validation was performed.   

Crop Rotation Watershed  
KS AL Units 

Corn years of corn-soybean rotations 170 184  kg-N ha-1 
Each year of continuous corn 225 240 kg-N ha-1 
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Table 3.3 is a comprehensive list of input parameters that were adjusted during 

hydrologic calibration and evaluation.  Various combinations of hydrologic parameter 

adjustments were made using both manual calibration and the Sufi2 algorithm within the 

SWAT-CUP software program (Abbaspour, 2011).  Simulations were executed using SWAT 

Version 2012, Revision 634, which was obtained from USDA-ARS on November 20, 2014.  

All parameters shown in Table 3.3 were iteratively adjusted in at least one calibration 

attempt, but numeric values are reported only for variables utilized in the final hydrologic 

calibration, which provided the best model performance for each watershed.  Performance 

was assessed using graphical output and performance criteria established by Moriasi et al, 

(2015a) for Nash-Sutcliffe Efficiency (NSE) and percent bias (PBIAS) (Table 3.4).   

Calibration and assessment focused on simulation of daily SURQ, total flow 

(WYLD), and SSF.  SSF is the sum of tile flow, lateral flow, and groundwater flow, with tile 

flow being the largest component in most tile-drained watersheds.  Maximizing model 

agreement with observed data required calibration parameters unique to each watershed.  

Additionally, some parameters that were utilized in both watersheds had different calibrated 

values.    SWAT adjusts input CN2 values on a daily basis as a function of either soil 

moisture or plant evapotranspiration (ET).  Both methods have been utilized in previous 

SWAT applications in tile-drained watersheds, therefore both were evaluated in this study to 

determine if one provides better hydrologic simulations.  For both watersheds, better 

agreement between measured and predicted hydrologic output was obtained using the Plant 

ET method.  Similarly, model runs using the more recently-incorporated DRAINMOD-based 

tile equations (Moriasi et al., 2012; Moriasi et al, 2013) provided more accurate hydrologic 

predictions in both watersheds than the older TDRAIN-based algorithms.  Therefore, the 
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Plant ET curve number method and the DRAINMOD-based tile equations were used in final 

calibration. 

Table 3.3  Hydrologic input parameters considered during model calibration and assessment. 
Parameter Description Default Units Calibrated Values 

ID Value KS[a] AL[b] 

ICN Daily curve number calculation method 
(0 = Soil Moisture, 1 = Plant ET) 

0 -- 1 1 

CNCOEF Plant ET curve number coefficient 1.00 -- 0.85 0.50 

R2ADJ Retention parameter adjustment for low-
gradient, poorly-drained soils 

1.00 -- n/a[c] n/a[c] 

SURLAG Surface runoff lag coefficient 4.00 -- 1.08 0.27 

TIMP Snow pack temperature lag factor 1.00 -- 0.77 1.00[d] 

GW_DELAY Lag time between water that exits soil profile 
and enters shallow aquifer 31.0 d 76.8 50.6 

GW_REVAP Groundwater revap coefficient 0.02 -- 0.02[d] 0.02[d] 

GWQMN Threshold depth of water in shallow aquifer for 
required return flow to occur 1000 mm 987 1535 

REVAPMN Threshold depth of water in shallow aquifer for 
revap to occur 750 mm 1131 750[d] 

ALPHA_BF Baseflow recession constant 0.048 d-1 0.70 0.048[d] 
ESCO Soil evaporation compensation factor 0.95 -- 0.95 --[c] 
EPCO Plant uptake compensation factor 1.00 -- 0.96 --[c] 

DDRAIN Depth to tile drains 1200[f] mm 1446[e] 1012[e] 
DEP_IMP Depth to restrictive layer 2100[f] mm 1657[e] 1954[e] 

RE Effective radius of tile drains  50 mm 13[f] 13[f] 
DRAIN_CO Drainage coefficient 10 mm d-1 24.1 10 

LATKSATF Multiplier for lateral saturated hydraulic 
conductivity 1.00 -- 0.55 0.75 

SDRAIN Distance/spacing between tile drains/laterals 
(mm) 15000 mm 27928 23583 

TDRAIN Time required to drain soil above tiles to field 
capacity  0 hr --[c] --[c] 

[a]KS wetland watershed parameter values (final calibration) 
[b]AL wetland watershed parameter values (final calibration) 
[c] Parameter evaluated but not applicable to (i.e., not used) in final calibration 

[d]Parameter evaluated but default value used in final calibration 
[e]DDRAIN and DEP_IMP input only in HRUs with subsurface tile drains 
[f]Value based on physical data and best available guidance 
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Table 3.4  Performance evaluation criteria[a]. 
  Performance Criteria 

Statistic Output  Time 
Scale[b] Very Good Good Satisfactory Not 

Satisfactory 
NSE[c] Flow D-M-A NSE > 0.80 0.70 < NSE ≤ 0.80 0.50 < NSE ≤ 0.70 NSE ≤ 0.50 

 NO3-N M NSE > 0.65 0.50 < NSE ≤ 0.65 0.35 < NSE ≤ 0.50 NSE ≤ 0.35 

PB[d]  Flow D-M-A PB < ±5 ±5 < PB ≤ ±10 ±10 < PB ≤ ±15 PB ≥ ±15 
 NO3-N D-M-A PB < ±15 ±15 < PB ≤ ±20 ±20 < PB ≤ ±30 PB ≥ ±30 

[a] Adapted from Moriasi et al. (2015a) 
[b] D = daily, M = monthly, A = annual 
[c] NSE = Nash-Sutcliffe efficiency 
[d] PB = PBIAS = percent bias (%) 

3.3.5  Nitrogen input parameterization 

 After hydrologic simulations were calibrated and assessed, NO3-N-related variables 

reported in the top portion of Table 3.5 were adjusted during calibration to observed daily 

NO3-N concentrations.  Hydrologic and NO3-N calibrations were performed separately to 

avoid counter-acting parameter adjustments and provide more independent measures of 

model performance. The calibrated concentration represents the composite concentration of 

all flow pathways because pathway specific concentrations are not currently output in a 

manner convenient for calibration.  Calibration and assessment focused on the daily 

concentrations rather than monthly loads commonly reported in the SWAT literature.  This 

provides additional insights to the suitability of the model for simulation of water quality 

BMPs and for assessment of water quality standards, which are concentration-based.  

Furthermore, simultaneous calibration of flows and loads can mask performance deficiencies.  

For example, NO3-N concentrations could potentially be calibrated upwards during periods 

of flow underestimation in order to improve load predictions, but the appearance of 

improvement would be artificial and may worsen model performance and limit the model’s 

utility for its intended use. 
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After evaluating simulation of daily NO3-N concentrations using existing algorithms 

in SWAT, a revised executable version of SWAT (a modified version of Revision 636 

obtained from USDA-ARS on January 20, 2016) was utilized to try and improve model 

performance.  Hydrologic algorithms were not modified from Revision 634 and 636.  Code 

revisions included the addition of several NO3-N parameters relating to soil profile-N and 

NO3-N transport via tile drains.  New parameters were incorporated into the plant nutrient 

uptake algorithms (nup.f source code) and tile-NO3 transport algorithms (nlch.f source code).  

The parameter names, descriptions, and calibrated values, are listed in the lower section of 

Table 3.5, along with calibrated values of NO3-N-related parameters. 

Table 3.5  Nitrogen-related parameters considered during model calibration and assessment. 
Parameter Description Default Units[a] Calibrated Values 

ID Value KS[b] AL[c] 
 
NO3-N simulation using existing soil and tile NO3-N algorithms 

NPERCO Nitrate percolation coefficient 0.20 -- 0.20[d] 0.20[d] 

ANION_EXCL Fraction of porosity (void space) from which 
anions are excluded 0.50 fraction 0.11 0.27 

CDN Denitrification exponential rate coefficient 1.40 -- 1.26 1.24 
SDNCO Denitrification threshold water content 1.10 fraction 1.18 1.19 

 
NO3-N simulation using modified algorithms with lagging parameters 

N_REDUC New NO3-N plant uptake reduction factor 300 -- 300[d] 300[d] 

N_LAG New dimensionless lag coefficient for tile NO3-
N concentration 0.25 -- 0.25[d] 0.25[d] 

N_LN New dimensionless exponent for NO3-N 
lagging function 2.0 -- 1.5 1.5 

N_LNCO New dimensionless coefficient for NO3-N 
lagging function 2.0 -- 1.5 1.5 

 
NO3-N simulation using modified algorithms with lagging parameters (above) and re-calibration 

ANION_EXCL Fraction of porosity (void space) from which 
anions are excluded 0.50 fraction 0.40 0.50 

CDN Denitrification exponential rate coefficient 1.40 -- 0.46 0.21 
SDNCO Denitrification threshold water content 1.10 fraction 1.29 1.27 

[a]Units are dimensionless except ANION_EXCL (fraction of porosity) and SDNCO (fraction of field capacity) 
[b]KS wetland watershed parameter values (final calibration) 
[c]AL wetland watershed parameter values (final calibration) 
[d]Parameter evaluated but default value was used in final calibration 
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3.4  Results and Discussion  

3.4.1  Evaluation of hydrologic simulation 

Calibrating to pathway-specific flow components WYLD, SURQ, and SSF, proved more 

difficult than calibrating only to total flow.  All NSE and PBIAS values for both daily and 

monthly WYLD meet the evaluation criteria of satisfactory or better, as set forth by Moriasi 

et al. (2015a) (Table 3.6).  NSE values for daily SSF were not satisfactory for either 

watershed, although PBIAS is very good in the KS model and satisfactory for AL.  

Simulation of SURQ is not satisfactory at either time step for the AL model.  Average runoff 

in the AL watershed was only 30 mm yr-1 from 2007-2010, and SWAT was unable to 

replicate these extremely low runoff conditions.  The overall water balance of both models 

matched observed data reasonably well.  Observed SSF in the KS watershed accounted for 

75% of the measured flow, with simulated SSF equal to 73% of total WYLD.  Observed SSF 

in the AL watershed comprised 89% of total flow, whereas simulated SSF made up 85% of 

the simulated WYLD.  Simulations of monthly WYLD were good for both watersheds. 

Table 3.6  Performance statistics for pathway-specific flow components. 
  Daily  Monthly 
  NSE[a] PBIAS[b]  NSE[a] PBIAS[b] 

KS Watershed       
WYLD       0.68  [S]       -2.7  [VG]       0.79  [G]      -5.0  [G] 
SURQ       0.55  [S]     -10.0  [S]       0.87  [VG]    -11.1  [S] 

SSF       0.36  [NS]       -0.3  [VG]       0.55  [S]      -2.9  [VG] 
AL Watershed       

WYLD       0.51  [S]        9.2  [G]       0.71  [G]       9.2  [G] 
SURQ      -0.25  [NS]     -21.5  [NS]       0.10  [NS]    -21.5  [NS] 

SSF       0.46  [NS]      12.9  [S]       0.66  [S]     12.9  [S] 
[a] Nash-Sutcliffe efficiency.   
[b] Percent bias (negative indicates over-estimation) 
[a,b] VG=very good, G=good, S=satisfactory, NS=not satisfactory (Moriasi et al., 2015a) 

       
 



59 

 

Time series plots illustrate the challenges of accurately simulating daily SSF in 

SWAT.  The model captures the general trends/directions in SSF, but consistently under-

estimates peak flows and fails to reflect hydrograph recession in both the KS (Figure 3.2) and 

AL (Figure 3.3) watersheds.  Several instances of large disagreement between observed and 

simulated SSF likely stem from significant differences between local and weather station 

precipitation due to the distance of weather stations from the watersheds.  Other factors may 

include the influence of surface intakes, which is not captured in the model, uncertainty 

regarding characteristics of the local tile drainage infrastructure, and the lumped nature of 

HRUs, which does not allow mechanistic routing of subsurface flow through the watersheds. 

These results were not spatially or temporally validated due to limited years of data 

and the exploratory nature of this analysis.  Variation in hydrologic behavior between the two 

watersheds is largely unexplained by known inputs (i.e., soil, climate, etc.), which are similar 

for both watersheds.  Distinct hydrologic behavior and differences in calibrated parameters 

between watersheds indicate that spatial validation would be difficult to achieve.  This 

suggests that SWAT models applied and calibrated to large watersheds in tile-drained 

landscapes will not accurately simulate pathway-specific flows at the drainage district scale.  

Additionally, model performance will vary substantially between drainage-district scale 

watersheds.  The degree of variation in observed WYLD and NO3-N between drainage 

districts in this study was consistent with patterns observed in adjacent drainage districts 

within the same HUC-12 watershed in Hamilton County, Iowa (Ikenberry et al., 2014). 
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3.4.2  Evaluation of NO3-N simulation 

Simulation of NO3-N concentration was more problematic than prediction of daily 

flow components, with concentrations falling steeply in June/July and remaining near zero 

through the end of the growing season in both KS (Figure 3.4) and AL (Figure 3.5) models.  

Simulated NO3-N is depleted from the soil too quickly, possibly due to misrepresentation of 

soil-N cycle and/or NO3-N transport algorithms.  Prior to depletion of soil-N, simulated 

concentration varied with flow, showing more short-term fluctuation than observed 

concentration.  Additionally, there are several instances of sharp increases in simulated 

concentration concurrent with declines in observed concentration.  This occurs in June 2008 

in the KS watershed and AL watershed, and again in July 2010 for AL, at times when both 

SSF and SURQ increase.  Evaluation of pathway-specific flows and NO3-N concentrations 

revealed that the discrepancy stems from over-estimation of SSF NO3-N concentrations at 

these times.  Although model performance for NO3-N concentration was not satisfactory 

(Table 3.7), the proportion of NO3-N carried by SSF relative to SURQ was as expected, with 

SSF concentrations consistently far exceeding runoff concentrations.  Simulated flow-

weighted average (FWA) NO3-N concentrations in SURQ were less than 1 mg L-1 for both 

watersheds, while FWA NO3-N concentrations in SSF were over 10 mg L-1. 

Table 3.7  Performance statistics for initial daily NO3-N concentration calibration. 
Watershed  Daily Concentration  Daily Load  Monthly Load 

  NSE[a] PBIAS[b]  NSE[a] PBIAS[b]  NSE[a] PBIAS[b] 

KS  -1.90 50.6  -0.06 32.8  0.37 [S] 41.4 

AL  -2.70 71.7  -0.15 53.7  0.14 53.6 
[a] Nash-Sutcliffe efficiency.   
[b] Percent bias (negative indicates over-estimation) 
[a,b] All performance criteria are not satisfactory (NS) per Moriasi et al., (2015a) unless otherwise indicated. 
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Simulated soil-NO3 concentrations for a several soils in corn-soybean rotations are 

plotted for the KS (Figure 3.6) and AL (Figure 3.7) models, along with measured data for 

similar soils in Central Iowa (Cambardella et al., 1999).  The trend for simulated soil-NO3 is 

similar to the measured pattern with an important deviation: simulated soil-NO3 is fully 

depleted by mid-summer in both corn and soybean years, whereas measured mid-summer 

residual levels off at 30-40 kg-NO3 ha-1 in corn years and remains steady at approximately 45 

kg-NO3 ha-1 in soybean years.  The increase in soil-NO3 from fertilizer application is 

reflected by the models, as is post-harvest mineralization of organic-N to NO3-N.  Soil-NO3 

levels are much lower in the Canisteo soil than the Webster or Clarion soils in the KS 

watershed, but this difference is not observed in the AL model. 

Modeled corn yields for the 4-year simulations were 8,713 kg ha-1 (139 bu ac-1) in the 

KS watershed and 10,335 kg ha-1 (164 bu ac-1 ) in the AL watershed, which are about 16% 

and 10% lower than reported county-wide yield data, respectively (ISU, 2015).  The fact that 

simulated yields are higher in the AL watershed than KS is geographically consistent with 

the county-wide yield data.  Simulated depletion of soil-NO3 levels to zero in the middle of 

the growing season is responsible for lower than expected corn yields, indicated by the 

number of N-stress days reported in model output.  This depletion occurs even in dry years 

and in years in which simulated denitrification is zero.  Additional causes of this error may 

be related to crop growth processes such as N uptake and N use efficiency, as plant growth 

parameters for corn in the SWAT plant database are likely outdated and do not reflect current 

crop genetics. 
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Simulated soil-N dynamics are reported in Table 3.8.  Magnitude of simulated fluxes 

were generally within ranges reported in regional guidance and literature data, but fluxes are 

highly variable and our ability to estimate N-fixation and denitrification are limited 

(Christianson et al., 2012).  In Webster soil HRUs, average simulated denitrification was 28 

kg-N ha-1 yr-1 for the KS model and 20-N kg ha-1 yr-1 for AL.   

Table 3.8  Simulated soil-N dynamics for Webster and Clarion soil HRUs after calibration 
using existing NO3-N algorithms. 

  Soil/ 
Crop 

 [a]Positive Fluxes (kg-N ha-1)  [b]Negative Fluxes (kg-N ha-1) 
  Appl[c] Atmos Fix Min  Denit Uptake Runoff SSF Seep 

KS   Webster/            
2008  Soy  49 13 276 113  27 313 <1 22 0 
2009  Corn  122 9 0 109  55 205 <1 29 0 
2010  Soy  49 13 227 101  28 271 <1 6 0 
2011  Corn  122 8 0 134  0 239 <1 39 0 

  Clarion/            
2008  Soy  49 13 269 106  0 313   1 <1 36 
2009  Corn  122 9 0 107  0 232 <1 <1 47 
2010  Soy  49 13 211 101  0 271   1 <1 22 
2011  Corn  122 8 0 127  0 242 <1 <1 29 
AL   Webster/            
2007  Corn  135 10 0 121  12 254 <1 34 0 
2008  Soy  49 8 293 131  31 338 <1 27 0 
2009  Corn  135 8 0 155  0 302 <1 15 0 
2010  Soy  49 9 232 134  36 301 <1 20 0 

  Clarion/            
2007  Corn  135 10 0 116  0 260 <1 <1 33 
2008  Soy  49 8 274 126  0 337 <1 <1 35 
2009  Corn  135 8 0 146  0 298 <1 <1 12 
2010  Soy  49 9 226 125  0 301 <1 <1 39 

[a] Inputs: Appl = fertilizer-N, Atmos = rainfall-N, Fix = N-fixation, Min = mineralization of organic-N 
[b] Outputs: Denit = denitrification, uptake = plant uptake, Runoff  and SSF = N lost to surface water, Seep =  
    N lost to deep aquifer via seepage.  
[c] Fertilizer application occurs in fall after soybean harvest and in spring in corn years.  

 

David et al. (2009) simulated denitrification rates ranging from 3.8 to 21 kg-N ha-1 yr-1 using 

a variety of models to estimate denitrification rates in a tile-drained corn and soybean 

rotation in Illinois.  In well-drained Clarion soils in the KS and AL models, the simulated 

denitrification rate was zero and large magnitudes of NO3-N were lost to deep seepage 

because of the absence of a restrictive soil layer.  N-fixation by soybeans was somewhat 
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higher than reported in other studies in Iowa (Jaynes et al., 2001; Christianson et al., 2012), 

and N-uptake was near or above the high end of rates estimated for high yielding corn crops 

in Iowa (ISU, 2006). 

3.4.3  Simulation with modified NO3-N algorithms 

Due to problems simulating NO3-N concentrations modifications were made to the 

SWAT source code to improve NO3-N loss from the soil profile.  The modifications included 

additional lagging parameters for NO3-N in tile drainage.  The ANION_EXCL, CDN, and 

SDNCO parameters were left unchanged.  The NSE values for daily concentration and loads 

were improved using the modified lagging parameters; however values were still not 

satisfactory and PBIAS was not improved (Table 3.9). 

Simulated SSF concentrations did not drop as sharply in mid-summer months as with 

the original equations, peak concentrations were decreased (Figure 3.8 and Figure 3.9).  

Visual assessment suggests that the lagging parameters improved the pattern of NO3-N 

concentrations over time, but overall concentrations were still under-predicted and daily 

fluctuation of simulated concentrations exceeds fluctuation in the observed data.   

Table 3.9  Performance statistics for modified algorithm daily NO3-N concentration. 

Watershed 
 Daily Concentration  Daily Load  Monthly Load 
 NSE[a] PBIAS[b]  NSE[a] PBIAS[b]  NSE[a] PBIAS[b] 

KS  -0.75 [NS] 51.5 [VG]  0.34 [NS] 44.28 [NS]  0.29 [NS] 54.0 [NS] 
AL  -1.86 [NS] 67.9 [NS]  0.28 [NS] 58.6 [NS]  0.28 [NS] 58.6 [NS] 

[a] Nash-Sutcliffe efficiency.   
[b] Percent bias (negative indicates over-estimation) 
[a,b] VG=very good, G=good, S=satisfactory, NS=not satisfactory (Moriasi et al., 2015a) 
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Patterns in soil-NO3 concentrations were not significantly altered by the 

modifications (Figure 3.10 and Figure 3.11). Although the basis for the modifications is not 

well established and problems simulating fate and transport remain, results obtained using 

the lagging parameters provide insight to the possible causes of error and needed 

improvements in the simulation of NO3-N transport in tile-drained watersheds.  The lagging 

parameters increased denitrification (Table 3.10), likely due to increased time NO3-N 

remained in the soil profile.  Interestingly, NO3-N losses in SSF increased in some years and 

decreased in others (Table 3.10).  After evaluation of model performance using the modified 

algorithms, one addition simulation was performed using the lagging parameters and re-

calibrating the models by adjusting other NO3-N related variables (ANION_EXCL, CDN, 

and SDNCO). 

Table 3.10  Simulated soil-N dynamics for Webster and Clarion soil HRUs using modified 
soil NO3-N algorithms. 

  Soil/ 
Crop 

 [a]Positive Fluxes (kg-N ha-1)  [b]Negative Fluxes (kg-N ha-1) 
  Appl[c] Atmos Fix Min  Denit Uptake Runoff SSF Seep 

KS   Webster/            
2008  Soy  49 13 304 132  63 313 <1 34 0 
2009  Corn  122 9 0 108  72 197 <1 26 0 
2010  Soy  49 13 264 101  52 271 <1 21 0 
2011  Corn  122 8 0 135  0 255 <1 19 0 

  Clarion/            
2008  Soy  49 13 292 106  0 313   1 <1 56 
2009  Corn  122 9 0 104  0 223 <1 <1 57 
2010  Soy  49 13 243 100  0 271   1 <1 50 
2011  Corn  122 8 0 120  0 228 <1 <1 38 
AL   Webster/            
2007  Corn  135 10 0 125  18 262 <1 35 0 
2008  Soy  49 8 311 136  51 337 <1 21 0 
2009  Corn  135 8 0 159  0 311 <1 5 0 
2010  Soy  49 9 266 140  69 301 <1 27 0 

  Clarion/            
2007  Corn  135 10 0 113  0 252 <1 <1 54 
2008  Soy  49 8 296 124  0 338 <1 <1 40 
2009  Corn  135 8 0 146  0 298 <1 <1 16 
2010  Soy  49 9 251 127  0 301 <1 <1 59 

[a] Inputs: Appl = fertilizer-N, Atmos = rainfall-N, Fix = N-fixation, Min = mineralization of organic-N 
[b] Outputs: Denit = denitrification, uptake = plant uptake, Runoff  and SSF = N lost to surface water, Seep =  
    N lost to deep aquifer via seepage.   
[c] Fertilizer application occurs in fall after soybean harvest and in spring in corn years. 
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3.4.4  Re-calibration with modified NO3-N algorithms 

Due to problems simulating NO3-N concentrations that remained after modification 

of lagging parameters, the models were re-calibrated.  After calibration, the modifications 

provide better agreement between simulated and observed NO3-N concentrations, as seen in 

Figure 3.12 for the KS watershed and Figure 3.13 for the AL watershed, but there remained 

periods of significant divergence between simulated and observed NO3-N concentrations. 

Model performance statistics were improved significantly by slowing down the 

release of NO3-N from the soil profile, as can be seen by comparing Table 3.11 with Table 

3.9 and Table 3.7.  With modification and re-calibration, NSE remained unsatisfactory for 

daily concentrations, but were satisfactory for daily loads in both models.  PBIAS was very 

good for the KS model but not satisfactory for AL.  Simulated concentrations did not drop as 

sharply in mid-summer months as with the original equations, but short-term fluctuation 

continued to exceed fluctuations in observed concentration.  Despite challenges in simulating 

daily concentrations and loads, monthly statistics are categorized as “good” or better for all 

performance criteria except PBIAS in the AL model (Moriasi et al., 2015a).  Calibrating 

solely to monthly WYLD and loads (rather than to pathway-specific flows and NO3-N 

concentrations) may result in higher performance criteria for monthly statistics than obtained 

in this study.  However, this methodology would provide no insight to pathway-specific 

components and short-term fluctuations.  Furthermore, it may provide a false sense of 

security with respect to model performance and suitability for its intended use. 
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Table 3.11  Performance statistics for modified daily NO3-N concentration re-calibration. 

Watershed 
 Daily Concentration  Daily Load  Monthly Load 
 NSE[a] PBIAS[b]  NSE[a] PBIAS[b]  NSE[a] PBIAS[b] 

KS  0.20 [NS] 8.9 [VG]  0.41 [S] 2.5 [VG]  0.72 [VG] 17.3 [G] 
AL  -1.12 [NS] 48.1 [NS]  0.45 [S] 34.8 [NS]  0.60 [G] 34.8 [NS] 

[a] Nash-Sutcliffe efficiency.   
[b] Percent bias (negative indicates over-estimation) 
[a,b] VG=very good, G=good, S=satisfactory, NS=not satisfactory (Moriasi et al., 2015a) 
  

Soil-NO3 levels resulting from the re-calibrated, modified algorithms were evaluated 

in similar fashion to the previous simulations.  Simulated soil-NO3 was more representative 

of Central Iowa soil data (Cambardella et al., 1999), and NO3 levels were not fully depleted 

during summer months in either the KS model (Figure 3.14) or the AL model (Figure 3.15).  

Simulations using the calibrated, modified algorithms eliminated denitrification in these 

HRUs, which is not realistic and resulted in much higher NO3-N losses via seepage and deep 

seepage (Table 3.12).  While these modifications and subsequent calibration improved 

predictions of NO3-N concentrations and loads compared with the original algorithms, the 

basis for the modifications is not well established and problems simulating fate and transport 

remain.  Nevertheless, the modifications provide insight to the possible causes of error and 

may form the basis for needed improvements in the simulation of NO3-N transport in tile-

drained watersheds. 
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Table 3.12  Simulated soil-N dynamics for Webster and Clarion soil HRUs after re-
calibration using modified soil NO3-N algorithms. 

  Soil/ 
Crop 

 [a]Positive Fluxes (kg-N ha-1)  [b]Negative Fluxes (kg-N ha-1) 
  Appl[c] Atmos Fix Min  Denit Uptake Runoff SSF Seep 

KS   Webster/            
2008  Soy  49 13 274 129  0 313 <1 67 0 
2009  Corn  122 9 0 125  0 251 <1 43 0 
2010  Soy  49 13 230 116  0 271 <1 60 0 
2011  Corn  122 8 0 137  0 239 <1 29 0 

  Clarion/            
2008  Soy  49 13 305 93  0 313   1 <1 53 
2009  Corn  122 9 0 93  0 182 <1 <1 93 
2010  Soy  49 13 259 89  0 271   1 <1 52 
2011  Corn  122 8 0 104  0 194 <1 <1 70 
AL   Webster/            
2007  Corn  135 10 0 132  0 277 <1 55 0 
2008  Soy  49 8 291 142  0 338 <1 33 0 
2009  Corn  135 8 0 165  0 321 <1 8 0 
2010  Soy  49 9 224 143  0 301 <1 45 0 

  Clarion/            
2007  Corn  135 10 0 101  0 220 <1 <1 83 
2008  Soy  49 8 317 111  0 337 <1 <1 43 
2009  Corn  135 8 0 138  0 278 <1 <1 30 
2010  Soy  49 9 272 118  0 301 <1 <1 73 

[a] Inputs: Appl = fertilizer-N, Atmos = rainfall-N, Fix = N-fixation, Min = mineralization of organic-N 
[b] Outputs: Denit = denitrification, uptake = plant uptake, Runoff  and SSF = N lost to surface water, Seep =  
    N lost to deep aquifer via seepage.   
[c] Fertilizer application occurs in fall after soybean harvest and in spring in corn years. 
 

3.5  Conclusions 

Model calibration and evaluation revealed that it is possible to meet generally accepted 

performance criteria (Moriasi et al., 2015a) for simulation of monthly WYLD, SSF, and 

NO3-N loads in both case study watersheds.  For the KS and AL watersheds, NSE values 

were 0.79 and 0.71, respectively, for monthly WYLD; 0.55 and 0.66 for monthly SSF; and 

0.72 and 0.60 for monthly NO3-N load (using the modified NO3-N lagging algorithms).  

However, calibration efforts were extensive and detailed monitoring data allowing such 

efforts are not typically available.  Simulation of daily SURQ and SSF proved more 

challenging and were generally not satisfactory (NSE < 0.50) with the exception of daily 

SURQ in the KS watershed, for which NSE was 0.55 and PBIAS was -10.0%.  Simulation of 

daily NO3-N concentration was not satisfactory even after modifying NO3-N algorithms to 
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lag flushing from the soil profile, with the KS watershed NSE of 0.20 and AL watershed 

NSE value of -1.12, indicating that simulation in the AL model was less accurate than simply 

using the daily average concentration.   

Differences in hydrology and NO3-N transport between watersheds were not reflected by 

the model, as evidenced by distinct calibration parameters and parameter values.  This 

suggests that parameterization may not transferable across watersheds with similar 

characteristics, and also that models calibrated at larger scales may not accurately reflect 

hydrology and nutrient transport at small watershed (e.g., drainage district) scales, as noted 

by Baffaut et al. (2015) in an overview of spatial and temporal considerations in watershed 

modeling.  These limitations are especially important in cases where the model is intended to 

help locate, design, and/or estimate NO3-N removal capabilities of water quality BMPs.   

Investigation of internal N dynamics and transport processes reveal that SWAT has the 

capability to estimate N fixation, N mineralization, plant uptake, and denitrification with 

some success.  When calibrated to NO3-N concentration in flow, the model tracks soil-NO3 

levels reasonably well over time, but over-estimates depletion from the soil during summer 

months.  Attempts to correct this depletion resulted in the complete elimination of 

denitrification in several HRUs in corn-soybean rotations, which is also not realistic.  

Analysis of soil-N dynamics revealed that simulated mineralization and plant uptake rates are 

generally reasonable compared to literature values; however, these fluxes are highly variable 

in space and time and heavily influence NO3-N transport via tile drainage.  Soil-N fluxes 

should therefore be evaluated and reported as standard practice when applying the SWAT 

model for simulation of NO3-N transport.  This confirms recommendations by Arnold et al. 

(2015) on the incorporation of “soft” data into model calibration and suggestions by Saraswat 



83 

 

et al. (2015) for proper watershed model documentation and reporting.  Better 

parameterization methods and supporting data for model inputs related to these processes are 

needed, and if possible, related inputs and soil-N fluxes should be constrained within 

reasonable ranges.  Interdisciplinary studies involving agronomists and soil scientists would 

be helpful for model development and application, as improvements to soil-N algorithms 

may be needed to improve NO3-N simulation. 
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CHAPTER 4.  MODIFICATION OF SWAT TO IMPROVE 

SIMULATION OF NITRATE-NITROGEN REMOVAL WETLANDS  

4.1  Abstract 

Implementation of subsurface tile drainage infrastructure for cultivation of row crops in 

poorly-drained areas has resulted in loss of wetland ecosystems and increased transport of 

nitrate-nitrogen (NO3-N) to surface water.  The ability to accurately simulate flow and 

nutrient removal in treatment wetlands within an agricultural watershed model is needed to 

develop effective plans for meeting nutrient reduction goals associated with protection of 

drinking water supplies and reduction of the Gulf of Mexico hypoxic zone.  The objectives of 

this study were to modify existing algorithms in the Soil and Water Assessment Tool 

(SWAT) by adapting proven CREP wetland models, compare model performance using both 

original SWAT algorithms and modified wetland equations to simulate two Iowa CREP 

wetlands, and evaluate the ramifications of watershed and tile drain simulation errors on 

prediction of NO3-N in Iowa CREP wetlands. 

The modified equations improved simulation of hydrology and NO3-N in the 

wetlands, with Nash-Sutcliffe efficiency (NSE) values of 0.88 to 0.99 for daily load 

predictions, and percent bias (PBIAS) values generally less than 6%.  The NO3-N removal 

rate (NSETLR) is the critical input parameter for NO3-N reduction and strongly influences 

model performance.  The applicability of the modified equations to wetlands without detailed 

monitoring data was improved over the original SWAT equations due to more objectively-

informed parameterization, reduced need for hydrologic calibration, and incorporation of an 

irreducible nutrient concentration and temperature correction factor.   Model improvements 
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enhance the utility of SWAT for simulating flow and nutrients in wetlands and other 

impoundments. 

Simulation of NO3-N in the KS watershed CREP wetland revealed the impacts of errors 

in watershed/tile simulation on wetland simulations.  While isolating the wetland from the 

watershed resulted in an NSE of 0.98 and PBIAS of 2.6% for NO3-N load at the wetland 

outlet, integrating the wetland and watershed simulations decreased the NSE to 0.30 and 

PBIAS increased to 53.3%, indicating that simulation of wetlands is limited by the ability of 

the model to reflect short-term fluctuations in NO3-N concentration. 

Keywords: wetlands, tile drainage, nitrate transport, hypoxia, SWAT 

4.2  Introduction 

Alteration of the landscape of the Upper Midwest of the United States has enabled the 

region to become one of the most agriculturally productive areas in the world (Skaggs et al., 

1992; Urban, 2005).  This alteration was greatly facilitated by the formation of agricultural 

drainage districts, which provided the organization and financing necessary to drain wetlands 

and poorly-drained soils across multiple tracts of land (McCorvie and Lant, 1993).  

Unfortunately, the benefits of artificial subsurface drainage are accompanied by some 

unintended and undesirable ecological and environmental consequences. A primary 

ecological impact of tile drainage on the regional scale has been significant loss of prairie 

wetlands and associated wildlife habitat in the Corn Belt.  Iowa has lost at least 95% of its 

swamp and wetland areas (Bishop et al., 1982; Miller et al., 2009), with similar losses in 

Illinois, Indiana, and Ohio (McCorvie and Lant, 1993).  Prior to artificial drainage, wetlands 

comprised nearly half of the land area of the Des Moines Lobes ecoregion (Miller et al., 

2009).  From a water quality perspective, the direct link between subsurface tile drainage and 
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increased transport of nitrate-nitrogen (NO3-N) to surface waters is a primary concern, both 

for drinking water supplies and the hypoxic zone in the Gulf of Mexico (Dinnes, 2002; 

Alexander et al., 2008).  Loss of wetlands compounds water quality concerns related to tile 

drainage, because wetland ecosystems provide removal of nutrients, particularly NO3-N, 

from surface water. 

The environmental benefits of wetlands have long-been widely recognized, and the 

re-establishment of these ecosystems in the landscape has been practiced for decades.  The 

concept of designing and locating wetlands for water quality improvement gained 

momentum in the 1990s, with efforts to develop guidelines and document the feasibility of 

constructing wetlands for treatment of stormwater, municipal wastewater, (WPCF, 1990) and 

agricultural nonpoint source pollution (van der Valk and Jolly, 1992).  Kadlec and Knight 

(1996) compiled results from an already wide body of research to document performance and 

design guidelines for treatment wetlands.  Because of their high capacity for NO3-N removal 

via denitrification (Ingersoll and Baker, 1998; Xue et al, 1999; Lin et al., 2002), high NO3-N 

concentrations observed in agricultural subsurface drainage, and aforementioned concerns 

regarding drinking water supplies and Gulf of Mexico hypoxia, the use of wetlands for 

treating tile drainage water gained traction (Kovacic et al., 2000; Dinnes et al., 2002). 

Crumpton (2001) demonstrated the importance of strategically locating wetlands to 

maximize interception of tile drainage, thereby increasing NO3-N removal at watershed 

scales.  This concept is foundational to the construction/restoration of wetlands for treating 

tile drainage as part of the Iowa Conservation Reserve Enhancement Program (CREP). 

Because the CREP program targets wetland restoration for water quality improvement 

(particularly NO3-N removal) in tile-drained landscapes, there are several performance-based 
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eligibility requirements.  Potential wetlands must (1) be located below a tile drainage system 

with an area of at least 200 ha (500 ac), (2) have a wetland pool area that is between 0.5% 

and 2.0% of the contributing drainage area, (3) have 75% of the pool area be less than 0.9 m 

(3 ft) deep, and (4) be designed to maintain the drainage rights of landowners in the 

contributing drainage area (Crumpton et al, 2006).  The program includes funding for 

measuring the performance of CREP wetlands, which is assessed using flow and NO3-N data 

collected at the inlet and outlet of a subset of wetlands each year. 

The removal of NO3-N in wetlands is variable and dependent on many factors 

(Phipps and Crumpton, 1994), such as hydraulic loading rate (HLR), residence time, NO3-N 

loading rates, NO3-N concentration, water temperature, wetland shape (i.e., hydraulic 

efficiency), carbon concentrations (Ingersoll and Baker, 1998), and extent and density of 

vegetation (Lin et al., 2002).  Percent removal of NO3-N in CREP wetlands can be predicted 

using the annual HLR, with mass removal predictions requiring the incorporation of annual 

flow-weighted average (FWA) NO3-N concentration (Crumpton et al., 2006; Tomer et al., 

2013): 

%NR = 103 x AHL-0.33     (1)                                                                       

MNR = 10.3 x AHL0.67 x FWA    (2) 

where  

%NR = percent NO3-N removal (%) 

AHL = annual hydraulic loading rate (m yr-1) 

MNR = mass removal rate (kg-N ha-1 yr-1) 

  FWA = flow-weighted average NO3-N concentration (mg L-1). 
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These models have been used to estimate average annual removal potential of NO3-N by 

wetlands at various scales, from relatively small watersheds (Tomer et al., 2013), potential 

CREP sites in the Des Moines Lobe ecoregion (Crumpton et al., 2012), and across the Upper 

Mississippi and Ohio River basins (Crumpton et al., 2006).   

Reduction of NO3-N concentration in wetlands can be predicted at a daily interval 

using a temperature dependent, first-order process (Kadlec and Knight, 1996; Crumpton et al, 

1998; Crumpton, 2001): 

J = k20 x C x θ(T-20)      (3) 

where  

J = areal NO3-N loss rate (g-N m-2 day-1) 

k20 = rate coefficient for NO3-N at 20°C (m day-1) 

C = NO3-N concentration (g m-3 = mg L-1)  

θ = temperature coefficient 

T = water temperature (°C) 

This approach, in the context of a mass balance tanks-in-series model, parameterized with 

flow and NO3-N concentrations entering a wetland, has been successfully used to simulate 

the short-term variability of nitrate reduction in Iowa CREP wetlands (Crumpton et al, 2006).   

Although NO3-N removal in wetlands treating tile drainage has been accurately 

modeled at watershed scales, there is a lack of tools capable of simulating wetlands in 

conjunction with other water quality improvement practices in tile-drained watersheds.  

Several common, public-domain watershed models are not currently capable of simulating 

both tile drainage and NO3-N removal in wetlands.  For example, the Annualized 

Agricultural Nonpoint Source Pollution Model (AnnAGNPS) contains algorithms for 



94 

 

subsurface tile drainage and for sediment removal in wetlands, but further enhancements are 

needed to simulate nutrient reductions obtained by wetlands in AnnAGNPS (Bingner and 

Theurer 2005; Yuan et al, 2011).  Another widely-used model, the Hydrologic Simulation 

Program-Fortan (HSPF), lacks a mechanism for direct simulation of tile drainage (EPA, 

1998; Singh et al, 2005) and crop growth (EPA, 1998).  The Soil and Water Assessment Tool 

(SWAT) simulates a variety of agricultural activities and crop growth and also includes 

specific components for simulation of tile drainage and NO3-N removal in wetlands (Neitsch 

et al., 2011).  While SWAT has been utilized to facilitate design of constructed riverine 

wetlands (Arnold et al., 2001) and to assess impacts of wetlands on water quality (Records et 

al., 2014; Kalcic et al., 2015), performance of wetland simulations in SWAT have not been 

tested and reported against wetland monitoring data.    

The ability to reliably simulate tile drainage treatment wetlands integrated with other 

water quality improvement strategies in an agricultural watershed model would be valuable 

for watershed planning to meet nutrient reduction goals associated with protection of 

drinking water supplies and reduction of the Gulf of Mexico hypoxic zone.  Thus, the 

objectives of this study are to (i) modify existing algorithms in SWAT by adapting proven 

CREP wetland models, (ii) compare model performance using original SWAT algorithms 

and modified wetland equations to simulate two Iowa CREP wetlands, and (iii) evaluate the 

ramifications of errors in watershed and tile drain simulation on prediction of NO3-N in Iowa 

CREP wetlands.  Updates to the SWAT algorithms resulting from this work are incorporated 

into the public domain model maintained and disseminated by USDA-ARS and Texas A&M 

University.   
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4.3  Materials and Methods 

4.3.1  The SWAT model 

The SWAT model is a continuous, daily time step model used to simulate hydrology, 

crop growth, erosion, and pollutant transport in agricultural watersheds (Borah, 2006).  

SWAT was selected for the simulation of CREP wetlands in this study because it is a public 

domain model, actively supported by USDA-ARS, and commonly used for simulation of 

hydrology and pollutant transport in agricultural landscapes around the world.  Gassman et 

al. (2007) and Douglas-Mankin (2010) provided extensive reviews of the SWAT model, 

including discussions of its development, application history, and evolution.  SWAT has 

been extensively applied in tile-drained watersheds, with varying results.  Reliable 

application of SWAT in tile-drained landscapes is challenging, although progress has been 

made in recent attempts (Moriasi et al, 2012; Moriasi et al., 2013).  SWAT is a semi-

distributed model in the sense that it simulates unique combinations of land use, soil type, 

and slope – called hydrologic response units (HRUs) – that represent actual spatial locations 

in the landscape.  These HRUs and corresponding .hru files form the foundation of a SWAT 

model, as they represent the landscape areas for which most of the hydrologic and 

agricultural processes are simulated.  However, SWAT is a lumped model in the sense that 

simulated outputs from individual HRUs are aggregated at the subbasin level without regard 

to their connectivity to each other or position in the landscape (i.e., upland, lowland, etc.).  

Subbasin parameters are entered in into .sub files, and subbasin level outputs are then routed 

through a reach (stream) network, with each subbasin having its own reach and 

corresponding .rch file.   
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In addition to routing water and water quality constituents through streams, SWAT 

includes algorithms for simulating four other types of waterbodies: pothole depressions, 

ponds, wetlands, and reservoirs/impoundments (Neitsch et al., 2011).  Although pothole 

depressions are major features of the landscape in the study area, they are not representative 

of CREP-style NO3-N removal wetlands because they have very small drainage areas and do 

not intercept large volumes of subsurface flow.  This is reflected in the SWAT model 

structure by the fact that input parameters for pothole depressions are located in the .hru files.  

Therefore, modification of pothole algorithms was not considered in this study.   

Ponds and wetlands are simulated at the subbasin level in SWAT, and receive 

hydrologic and pollutant inputs from a user-specified fraction of the subbasin area.  

Simulation of ponds and wetlands within subbasins is nearly identical, with inputs for both 

included in the pond (.pnd) files.  Depending on whether a pond or wetland is specified, 

differing outflow (i.e., discharge) calculation options are utilized (Neitsch et al, 2011).  

Reservoirs in SWAT are impoundments located along the reach network.  They are placed at 

the outlet of the subbasin in which the impounded reach resides.  Therefore, reservoirs 

receive inflows from the subbasin they are located in as well as all upstream 

subbasins/reaches.   

In summary, the SWAT model structure can be summarized as a system of HRUs 

(.hru), aggregated at the subbasin (.sub) level, routed through a reach (.rch) network (Figure 

4.1).  Some portion of a subbasin may drain to a pond or wetland (.pnd).  The modified 

wetland equations were incorporated into the reservoir (.res) module of the SWAT code to 

take advantage of the model structure and give users the most flexibility in locating treatment 

wetlands.  This allows wetlands to be placed at the outlet of a subbasin, such as a drainage 
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district tile outlet, which is representative of the placement of NO3-N removal CREP 

wetlands in tile-drained regions.  Additionally, parameterization of wetlands in the .res file 

allows the option of intercepting water from multiple subbasins (e.g., drainage districts), 

which may be useful when trying to optimize NO3-N removal potential during watershed 

planning.  Another benefit of incorporating new algorithms into the reservoir code is that the 

improved outflow/discharge equations can be used in the simulation of non-wetland 

impoundments (e.g., lakes, reservoirs), giving this modification broader utility. 

  

sub 4

hru 000040001

res 4

res 5
res 3

res 6

pnd 4

res 2

 

 

 

Figure 4.1  SWAT model structure illustrating relationship between subbasins (.sub), 

reaches (.rch), hydrologic response units (.hru), ponds/wetlands (.pnd) and reservoirs (.res).   
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4.3.2  Case study wetlands 

The two wetlands simulated in this study were constructed as part of the Iowa CREP 

program, with a primary objective of reducing NO3-N exported from tile drainage to surface 

water in heavily row-cropped areas, particularly within the Des Moines Lobe ecoregion of 

north-central Iowa.  The KS Wetland is located in Story County, Iowa, and receives drainage 

from a 309-ha watershed before discharging to the headwaters of a first-order tributary to 

Squaw Creek, a HUC-12 watershed in the Skunk River basin.  The AL Wetland is located in 

Kossuth County and is approximately 120 km northwest of the KS Wetland site (Figure 4.2).  

The AL Wetland receives drainage from a 227-ha watershed and discharges to a first-order 

stream that enters Black Cat Creek, a HUC-12 watershed that discharges to the Des Moines 

River.  Both wetlands meet the Iowa CREP criteria and are representative of other sites in the 

CREP program in terms of land use, drainage intensity, and configuration.  One notable 

difference between sites is the larger wetland-to-drainage-area ratio of 1.1% for the AL 

wetland compared with only 0.5%, the minimum CREP requirement, for the KS Wetland.  

Watershed and wetland characteristics for both wetlands are reported in Table 4.1.     
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Table 4.1  Watershed and wetland characteristics of case study sites. 
 

 

 

 

 

 

 

Characteristic KS Wetland AL Wetland 
Drainage area, DA (ha) 309 227 
Row crop (% of DA) 93 80 
Poor drainage (% of DA)[a] 62 77 
Annual rainfall (mm)[b] 1,081 906 
Annual water yield (mm)[c]  395 279 
Normal pool area (ha) 1.45 2.45 
Mean depth (m) 0.67 0.60 
Wetland to DA ratio (%) 0.5 1.1 
[a] Row crop areas with slopes < 5% and soils classified as somewhat poor to poorly-drained. 
[b] Average annual rainfall during model simulation period (2008-2011 for KS Wetland, 2007-2010 
for AL Wetland. 
[c] Average annual water yield during model simulation period (2008-2011 for KS Wetland, 2007-
2010 for AL Wetland. 

Figure 4.2  Location of case study CREP wetland sites.  The shaded region is the Des 

Moines Lobe ecoregion.   
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Inflow to both wetlands is predominantly subsurface (tile) flow, with surface runoff 

reaching the wetlands during storm events.  Flows into and out of the wetlands were 

measured using Doppler area-velocity meters, which record water depth and velocity on a 

continuous basis during ice-free conditions (typically late March through November).  Flow 

rates were calculated using these data and a rating curve established for each site using 

manually measured flow rates. NO3-N concentrations entering and leaving the wetland were 

measured using automated samplers that collected daily composite samples during the flow-

monitoring season.  Grab samples were collected approximately weekly at the inflow and 

outflow locations, and from the wetland itself during periods of zero discharge.  Water levels 

and temperatures in wetlands were also measured continuously using data logging 

equipment.  The monitoring strategy was designed and implemented as part of the CREP 

wetland monitoring described by Crumpton et al. (2006). This study utilized four years of 

data at each site: 2008-2011 for the KS wetland, and 2007-2010 for the AL Wetland.   

4.3.3  Modified wetland equations 

This study was a focused effort to modify and test SWAT for the simulation of NO3-

N removal wetlands.  Measured flow and NO3-N concentrations entering the case study 

wetlands were input directly as draining watershed inlets, which are similar to point source 

inputs in SWAT.  Simulated watershed hydrology and water quality outputs were 

disconnected from the wetland by altering the hydrologic routing structure in the 

configuration (.fig) file.  This eliminated confounding errors associated with watershed and 

tile processes and allowed focused evaluation of the reservoir/wetland algorithms in SWAT.  

Three sets of equations were incorporated into the SWAT code to better simulate nutrient 
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removal wetlands: The first set describes the relationships between wetland area and volume 

with water level, as follows: 

SA = PSA x (1+ A x H)     (4)                                                                       

VOL = PVOL x (A + B x H + C x H2)   (5) 

where  

SA = wetland surface area at water level H (m2)  

PSA = wetland surface area at normal pool (m2) 

H = water level relative to normal pool (m) 

VOL = wetland volume at water level H (m3) 

PVOL = wetland water volume at normal pool (m3) 

A, B, and C = wetland shape coefficients 

H is positive when the wetland is above normal pool, zero when the wetland is at 

normal pool, and negative when the wetland is below full pool.  For CREP wetlands similar 

to those simulated in this study, the following default shape coefficients can be used: 1 m-1 

for the A coefficient, 1.75 m-1 for B, and 1 m-2 for C (William Crumpton, Iowa State 

University, personal communication, 28 May, 2013).  To simulate impoundments that do not 

conform to typical CREP wetlands, A, B, and C should be adjusted using GIS or other 

topographic tools to fit local conditions. 

An algorithm used to calculate discharge from wetlands using the equation for a non-

submerged horizontal weir was also added to the SWAT code.  This weir equation takes the 

following form (Gupta, 1989):   

Q = Cd x K x W x H1.5 for H > 0    (6)                                                                       

Q = 0 for H ≤ 0      (7) 
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where  

Q = wetland discharge (m3 day-1)  

Cd = weir discharge coefficient 

K = weir crest coefficient (m1/2 day-1) 

W = width of the weir (m) 

H = water level relative to normal pool 

The weir discharge coefficient (Cd) can be used to calibrate the discharge equation if 

sufficient flow data are available; however, a default value of 1.0 is usually appropriate.  The 

weir crest coefficient (K) value is derived from the energy equation, and can be set to 

147,000 m1/2 day-1 for a broad-crested weir, 153,000 m1/2 day-1 for a sharp-crested weir, or an 

average value used if weir crest is unknown (Gupta, 1989).  Weir width (W) can be measured 

for existing wetlands or taken from design guidelines for proposed wetlands.  Water level (H) 

is a product of wetland inflow and Equations 4 through 7 above.   

A parameter called NOSTEP was added to the model code, which represents the 

number of subdaily iterations used to calculate wetland outflow.  Subdaily iteration is 

necessary to reflect the dynamic nature of water level fluctuation in small impoundments.  

The required value of NOSTEP will vary with the size of the system being modeled and the 

degree of water level fluctuation.  The NOSTEP value should be set by assessing the stability 

of flow and volume predictions, and using the lowest value of NOSTEP that satisfactorily 

eliminates instability.   

To utilize the new wetland flow equations, the user must set the IRESCO parameter 

equal to 5.  These algorithms have been incorporated into the res.f module of the FORTRAN 

code, and input variables are available in the .res input file of SWAT. These modifications to 
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SWAT can be used to simulate discharge from any impoundment if water level-area-volume 

and weir equation parameters can be adequately defined.   

The following first-order, temperature-dependent, areal-based mass loss equation 

(Crumpton, 2001) was added to resnut.f file of the FORTRAN code, with required input 

variables defined in the reservoir (.lwq) input file: 

MLR = SA x (C-Co) x k20 x θ(T-20)    (8)                                                                       

where  

MLR = mass removal rate (g day-1)  

SA = wetland area (m2) 

C = NO3-N concentration in wetland (g m-3 = mg L-1) 

Co = irreducible NO3-N concentration (g m-3 = mg L-1) 

k20 = areal loss rate at 20°C (m day-1) 

θ = temperature coefficient (dimensionless) 

T = water temperature (°C) 

In a typical model application, the NO3-N concentration, C, on a given day will be 

determined by the simulated flows and NO3-N loads entering the wetland from the watershed 

and the mass balance resulting from the wetland algorithms.  For this study, however, the 

wetlands were isolated from their watersheds and C is determined using the measured inflow 

data and wetland algorithms.  For NO3-N the irreducible concentration, Co, is zero and the 

temperature coefficient, θ, will be between 1.04 and 1.20.  The loss rate, k20, is site-specific 

and if not known is treated as a calibration parameter, varying between 0.05 and 0.50 m day-1 

(17-184 m year-1).  Although this study evaluates performance of the modified nutrient 

equations using only observed NO3-N concentrations, the new equations can also be used to 
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simulate phosphorus.  To utilize the modified nutrient removal equations, model users must 

set IRES_NUT equal to 1 in the .res input file.  The new algorithms were incorporated into a 

modified version of Rev 636 of the FORTRAN code (obtained from USDA-ARS on June 12, 

2015), and are available in subsequent versions of the model. 

4.3.4  Hydrologic calibration 

The two case study wetlands were simulated using both existing and modified 

reservoir flow algorithms, with input parameters based on known wetland characteristics.  

The existing algorithms route flow through wetlands using a simplistic equation that sets 

outflow equal to the volume above normal pool volume minus normal pool volume divided 

by the number of days it takes to reach normal pool (NDTARGR).  The water level in CREP 

wetlands in Iowa typically returns to normal pool within 1-2 days after storm events in order 

to protect the drainage rights of upstream landowners, therefore, daily flow into the case 

study wetlands is a good proxy for outflow except during extended dry periods when water 

levels are below the outlet weir at the onset of rainfall and resulting inflow.  Because daily 

outflow data was not available, hydrologic simulations using the original equations were 

calibrated by varying NDTARGR, an integer value, in order to maximize model fit between 

observed inflows and simulated outflows.  Fit was assessed using linear regression of 

simulated and observed flows, Nash-Sutcliffe Efficiency (NSE), and percent bias (PBIAS).  

Performance criteria developed by Moriasi et al. (2015) and listed in Table 4.2 were used to 

assess performance. 
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Table 4.2  Performance evaluation criteria[a]. 
  Performance Criteria 

Statistic Output  Time 
Scale[b] Very Good Good Satisfactory Not 

Satisfactory 
NSE[c] Flow D-M-A NSE > 0.80 0.70 < NSE ≤ 0.80 0.50 < NSE ≤ 0.70 NSE ≤ 0.50 

 NO3-N M NSE > 0.65 0.50 < NSE ≤ 0.65 0.35 < NSE ≤ 0.50 NSE ≤ 0.35 

PB[d]  Flow D-M-A PB < ±5 ±5 < PB ≤ ±10 ±10 < PB ≤ ±15 PB ≥ ±15 
 NO3-N D-M-A PB < ±15 ±15 < PB ≤ ±20 ±20 < PB ≤ ±30 PB ≥ ±30 

[a] Adapted from Moriasi et al. (2015a) 
[b] D = daily, M = monthly, A = annual 
[c] NSE = Nash-Sutcliffe efficiency 
[d] PB = PBIAS = percent bias (%) 

 

The calibrated value of NDTARGR was 2 for the KS Wetland and 1 for the AL 

Wetland, which is consistent with typical CREP wetland drawdown times.  It should be noted 

that the default value of NDTARG for wetlands is 10 (Neitsch, et al., 2011), which would 

yield poor outflow simulations of the case study wetlands.  The modified routing equations 

did not require calibration because daily flow was simulated using the wetland area-volume 

relationships (Equations 4 and 5) and weir discharge equations (Equations 6 and 7), 

populated with known wetland characteristics.   

4.3.5  NO3-N calibration 

Nutrient reduction in ponds, wetlands, and reservoirs in SWAT has been simulated 

using a simple settling velocity equation (Neitsch, et al., 2011).  Although physical settling is 

not the removal mechanism for NO3-N in wetlands, it follows the same first-order process as 

the modified algorithms in defined in Equation 8, but lacks the temperature correction factor 

and irreducible background concentration.  The primary input is the nutrient removal rate (m 

year-1), which is defined as NSETLR for simulation of nitrogen.  SWAT allows for a high 

and low nutrient removal period (IRES1 and IRES2), which correspond to distinct removal 

rates, NSETLR1 and NSETLR2.  The incorporation of two removal rates into the model is 
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empirical and lacks a mechanistic basis.  Although this input option would likely result in 

better calibration statistics, simulations were performed using constant removal rates in both 

original and modified equations.  Removal rates were adjusted using the Iowa CREP wetland 

guidelines, with the goal of minimizing PBIAS and maximizing NSE between predicted and 

observed daily NO3-N concentrations in the wetlands.  Calibrated parameter values for the 

original nitrogen removal equations are reported in Table 4.3, with Table 4.4 showing 

parameter values for the modified equations.  Both original and modified NO3-N approaches 

had the same calibrated removal rates of 17 m yr-1 for the KS wetland and 40 m yr-1 for the 

AL Wetland. 

Table 4.3  Wetland parameters and calibration values using original SWAT equations. 
Characteristic SWAT ID KS Wetland AL Wetland 

Surface area at normal pool  (ha) PSA 1.45 2.45 
Volume at normal pool  (m3) PVOL 8,690 16,360 
Surface area at flood pool (ha) ESA 3.21 3.64 
Volume at flood pool  (m3) EVOL 21,190 34,214 
Drawdown to normal pool (days) NDTARGR 2[a] 1[a] 
Outflow simulation code IRESCO 2 2 
Begin high nitrate removal (month) IRES1 8[b] 7[b] 
End high nitrate removal (month) IRES2 10[b] 10[b] 
Nutrient simulation code IRES_NUT 0 0 
High removal rate (m year-1) NSETLR1 17[c] 40[c] 
Low removal rate (m year-1) NSETLR2 17[c] 40[c] 
[a] Hydrologic calibration parameter 

[b] Has no effect if NSETLR1 = NSETLR2 

[c] NO3-N calibration parameter value 
 

4.3.6  Integration of wetlands and watershed/tile drainage 

After calibration and performance evaluation of isolated simulation of the CREP 

wetlands, the KS wetland was integrated with the tile-drained watershed simulations.  

Watershed simulations were performed using existing soil and tile NO3-N algorithms 

(Section 3.4.2) as well as the algorithms modified and re-calibrated using additional NO3-N 

lagging parameters (Section 3.4.4).  Both simulations utilized the improved, modified 
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wetland algorithms and the wetland input parameters for the KS Wetland described in Table 

4.4. 

Table 4.4  Wetland parameters and calibration values using modified equations. 
Characteristic SWAT ID KS Wetland AL Wetland 

Surface area at normal pool  (ha) PSA 1.45 2.45 
Volume at normal pool  (m3) PVOL 8,690 16,360 
Wetland shape coefficient ACOEF 1.00 1.00 
Wetland shape coefficient BCOEF 1.75 1.75 
Wetland shape coefficient CCOEF 1.00 1.00 
Weir discharge coefficient WEIRC 1.00 0.25 
Weir crest coefficient (m1/2 day-1) WEIRK 150,000 150,000 
Weir width (m) WEIRW 6.1 13.0 
Number of subdaily flow iterations NOSTEP 144 96 
Outflow simulation code IRESCO 5 5 
Begin high nitrate removal (month) IRES1 1[a] 1[a] 
End high nitrate removal (month) IRES2 1[a] 1[a] 
High removal rate (m year-1) NSETLR1 17[b] 40[b] 
Nutrient simulation code IRES_NUT 1 1 
Low removal rate (m year-1) NSETLR1 17[b] 40[b] 
Temperature coefficient THETA_N 1.08[b] 1.08[b] 
Irreducible NO3-N conc. (mg L-1) CON_NIRR 0.0 0.0 
[a] Has no effect if NSETLR1 = NSETLR2 

[b] NO3-N calibration parameter value 

4.4  Results and Discussion 

4.4.1  Simulation of wetland hydrology 

The simulation period (2008-2011) for the KS Wetland was wetter than normal, with 

an average annual rainfall of 1.08 m yr-1.  The resulting annual hydraulic loading rate was 

84.3 m yr-1.  Average rainfall near the AL Wetland during the simulation period (2007-2010) 

was 0.90 m yr-1, resulting in an annual hydraulic loading rate of 31.4 m yr-1. 

The modified equations result in accurate predictions of wetland discharge across wet 

and dry conditions for the KS Wetland (Figure 4.3) and AL Wetland (Figure 4.4).  Although 

both original and modified equations produced daily outflows with NSE values near 1.0 and 

PBIAS values less than 1.0% , plots with simulated flows on the Y-axis and observed flows 

on the X-axis reveal improved flow prediction using the modified equations compared with 
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the original SWAT equations.  As illustrated for the KS wetland in Figure 4.5 and the AL 

wetland in Figure 4.6, flows predicted using the modified equations consistently match 

observed flows, while use of the original SWAT equations resulted in several instances of 

over and under prediction of wetland outflows, even with calibrated values of NDTARGR.  

Simulation of KS Wetland flows was more accurate than for the AL Wetland, with slightly 

improved performance using the modified equations in both wetlands.  Additionally, the 

modified equations offer significantly improved simulation of daily wetland volume 

compared with the original equations.  This would have major implications for applications 

in which wetland volume (and hence, depth and duration of inundation) were important.   

Evaluation of wetland hydrology in SWAT revealed poor performance of the original 

equations using the uncalibrated, default NDTARGR parameter value of 10.  Alteration of 

this parameter to represent the wetlands simulated in this study was made possible by 

utilizing the .reservoir (.res) file for wetland simulation.  SWAT applications using the 

pond/wetland (.pnd) files for wetland simulation are forced to use the default value of 10, 

which produced significant over and under estimates of wetland outflows for both the KS 

Wetland (Figure 4.5) and the AL Wetland (Figure 4.6).   
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4.4.2  Simulation of wetland NO3-N concentration 

The flow-weighted average (FWA) concentration measured in KS Wetland inflow 

was 10.9 mg L-1, with a FWA outflow concentration of 9.5 mg L-1.  The original SWAT 

equations produced a FWA outflow concentration of 8.9 mg L-1, while the modified wetland 

equations resulted in a FWA concentration of 9.2 mg L-1.  For the AL Wetland, which had a 

FWA inflow concentration of 12.4 mg L-1 and outflow concentration of 7.6 mg L-1, both 

original SWAT equations and modified equations produced a FWA outflow concentration of 

8.2 mg L-1.  Daily NO3-N simulations for the KS Wetland using the original equations are 

reported in Figure 4.7.  The original SWAT wetland equations produced very good 

simulations of daily NO3-N concentrations as indicated by time series plots and performance 

criteria (Table 4.2).  The Nash-Sutcliffe efficiency (NSE) for the calibration period (2008-

2009) was 0.84 with a percent bias (PBIAS) of 1.34%, indicating slight under-prediction of 

observed concentrations.  The validation period (2010-2011) resulted in a NSE of 0.87 and 

PBIAS of 12.11%  for daily NO3-N concentrations, the largest bias for either wetland or 

period.  Application of the modified equations to the KS Wetland improved predictions of 

NO3-N concentrations in terms of the overall FWA and short-term (i.e., daily) fluctuations 

(Figure 4.8).  The NSE for the calibration period using the modified equations was 0.85, with 

PBIAS of -2.76%.  The validation period NSE was 0.90 with a PBIAS of 8.29%, both 

improved compared with validation using the original equations. 
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Performance of the original SWAT equations (Figure 4.9) and modified wetland 

equations (Figure 4.10) simulating NO3-N concentration in the AL Wetland was nearly 

identical, with no discernible difference in calibration or validation statistics.  The calibration 

NSE was 0.84 and the validation NSE was 0.77 for both sets of equations.  Calibration period 

PBIAS was slightly better using the original equations (1.53%) than the modified equations 

(1.61%).  Conversely, validation PBIAS was slightly better using the modified equations (-

1.12%) compared with the original equation PBIAS of -1.21%.  All statistics meet the 

performance criteria established by Moriasi et al. (2015) as very good. 

4.4.3  Simulation of wetland NO3-N loads 

As illustrated by the overlapping time series plots of measured and simulated NO3-N 

loads in the KS wetland, both the original SWAT equations (Figure 4.11) and modified 

wetland equations (Figure 4.12) provided close agreement with daily loads.  Loads under 

both high and low flow conditions are well-represented with few exceptions, and model 

performance statistics are better for load predictions than concentration predictions in the KS 

Wetland (Table 4.5).  The modified wetland equations did outperform the original SWAT 

equations in terms of daily NO3-N load predictions, as indicated by lower PBIAS values 

(Table 4.5) and the XY scatter plot shown in Figure 4.13.  The relationship between 

simulated and observed loads more closely follows the 1:1 line in Figure 4.13, and deviations 

from observed loads are generally smaller when utilizing the modified equations (Figure 

4.14). 
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Similar to the KS Wetland, time series plots of measured and simulated NO3-N loads 

in the AL Wetland illustrate very good agreement between measured and predicted loads 

using both the original SWAT equations (Figure 4.15) and modified wetland equations 

(Figure 4.16).  However, there were periods where both equations produced noticeable errors 

in load predictions.  For example, in June of 2008 and May of 2009, the models over-

predicted NO3-N loads, while the large events in July of 2010 were under-estimated by the 

models.  Model performance in the AL Wetland was better for loads than concentrations, as 

implied by NSE values; however PBIAS was actually larger for loads (Table 4.5).  This 

indicates that daily load fluctuations are captured better despite a larger error in the overall 

load predictions. 

There was little difference in model performance between the original and modified 

equations for load prediction in the AL Wetland.  Both NSE and PBIAS values are nearly 

identical between versions (Table 4.5), and the XY scatter plot (Figure 4.17) and error plot 

(Figure 4.18) reveal significant overlap in deviations between predicted and measured loads 

using both algorithms.  Once exception is the approximately 20 kg day-1 larger error using 

the original equations when both models significantly over-predict an observed load of just 

over 100 kg day-1.  This large error occurred in June of 2008, when peak load in both models 

occurred the day after the measured peak.  The magnitude of error in the peak load for the 

event was not large but was shifted by a day, resulting in a large error for the daily load. 
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Table 4.5  Comparison of NO3-N simulation performance using original and modified 
equations. 

 KS Wetland NSE[a] AL Wetland NSE 
 Calibration 

(2008-2009) 
Validation 

(2010-2011) 
Calibration 
(2007-2008) 

Validation 
(2009-2010) 

NO3-N concentration     
Original equations 0.84 0.87 0.84 0.77 
Modified equations 0.85 0.90 0.84 0.77 

NO3-N load     
Original equations 0.98 0.96 0.91 0.87 
Modified equations 0.99 0.97 0.92 0.88 

     
 KS Wetland PBIAS[a] AL Wetland PBIAS[b] 

NO3-N concentration     
Original equations 1.34 12.11 1.53 -1.21 
Modified equations -2.76 8.29 1.61 -1.12 

NO3-N load     
Original equations 2.29 8.60 -4.45 -3.97 
Modified equations 0.03 5.41 -4.38 -3.92 

[a] Nash-Sutcliffe efficiency 
[b] Percent bias (negative indicates over-estimation) 
 

4.4.4 Sensitivity analysis using modified wetland equations 

A sensitivity analysis was also performed using the modified wetland equations.  The 

rate (NSETLR) was varied from 0.05 m day-1 to 0.50 m day-1 (17 to 184 m yr-1), with the 

temperature correction factor (THETA_N) held constant at 1.08.  This range of NSETLR 

was based on typical ranges observed in Iowa CREP wetlands (Crumpton, unpublished data).  

The resulting range of simulated NO3-N concentrations in KS Wetland outflow is illustrated 

in Figure 4.19.  For the KS Wetland, the range of simulated concentrations is large, with 

removal rates near the low-end of the allowable range required for accurate predictions.  

The sensitivity of NO3-N concentrations to the temperature correction factor was also 

assessed by varying THETA_N while holding NSETLR constant at the calibrated value of 17 

m yr-1 (Figure 4.20).  Predicted NO3-N concentrations in the KS Wetland are not as sensitive 

to changes in N_THETA as NSETLR, as indicated by narrow concentration bands 

throughout the simulation period.  Relatively minor sensitivity was observed in the summer 

months of each year, with almost no variation in predicted concentrations outside the 
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growing season.  However, there are several instances in which changes in N_THETA 

resulted in variations of NO3-N concentration exceeding 5 mg L-1, such as June and July of 

2011.  

The results of the sensitivity analyses using the modified wetland equations for the 

AL Wetland are illustrated in Figure 4.21 (NSETLR sensitivity) and Figure 4.22 (N_THETA 

sensitivity.  Sensitivities to both parameters were similar to the KS Wetland, with the 

exception that the AL Wetland is less sensitive to N_THETA, as indicated by a smaller band 

of NO3-N concentrations in Figure 4.22. 
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Simulation of NO3-N in wetlands using the SWAT model was improved using the 

modified wetland equations developed for Iowa CREP wetlands, but improvements were not 

as dramatic as expected due to the reasonably good simulations obtained using the original 

equations.  However, it is important to realize that the performance of the original SWAT 

model equations benefited from the availability of information used for parameterization not 

normally available for SWAT wetland applications.  The modified equations simulate flow 

based on established relationships between wetland size and volume combined with the use 

of weir discharge equations and known weir characteristics.  Hence, they did not require 

calibration.  Conversely, the original equations utilize the empirical NDTARGR parameter to 

predict wetland discharge, for which the default value is 10 days – too large for CREP 

wetlands – and required calibration. 

To illustrate the importance of this, the sensitivity of NO3-N dynamics to NDTARGR 

in the original equations was evaluated by comparing simulated concentrations in the KS 

Wetland using the calibrated value of NDTARGR and the default value of 10 days (Figure 

4.23).  With NDTARGR equal to 10, SWAT consistently significantly under-estimated NO3-

N concentration.  Calibrating to observed concentrations would have required using 

NSETLR values outside of the range recommended for Iowa CREP wetlands.  Further, 

because the default NDTARGR parameter affected concentration and outflow, subsequent 

errors in predicted NO3-N loads exported from the KS Wetland were quite large, especially 

during times of high flows (Figure 4.24). 
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4.4.5  Integrated watershed/wetland simulation 

The CREP wetland at the outlet of the KS watershed was integrated with KS 

watershed model (described in Chapter 3) using the modified and re-calibrated NO3-N 

parameters (best results) as well as the original NO3-N calibration results (worst results).  

The resulting NSE and PBIAS values for NO3-N loads exported from the wetland were 0.44 

(satisfactory) and 18.6 (good), respectively, for the best-case scenario.  These are 

significantly lower than the NSE value of 0.98 (very good) and PBIAS of 2.6 (very good) 

obtained when simulating only the wetland.  Percent NO3-N removal in the wetland was 

increased from 15.1% in the wetland-only simulation to 15.7% in the best-case integrated 

simulation, but mass removal of NO3-N was reduced by 1,221 kg over the 4-year simulation 

period (305 kg yr-1) due to underestimation of watershed NO3-N export.  For the worst-

performing KS model, integrated simulation of the watershed and CREP wetland (prior to 

modification of lagging parameters), the resulting NSE value was 0.30 (not satisfactory) and 

the PBIAS was 53.3 (not satisfactory), with predicted mass removal of NO3-N under-

predicted by 4,202 kg (1050 kg yr-1). 

Measured and simulated NO3-N loads leaving the wetland are illustrated in Figure 

4.25 (best-case) and Figure 4.26 (worst-case).  These results show the potential errors 

introduced to NO3-N prediction in wetlands arising from errors in watershed/tile simulation, 

with particularly large errors at times of high export (i.e., high flows). This finding validates 

the importance of evaluating short-term (i.e., daily) performance of models intended to 

simulate water quality improvement BMPs such as wetlands.   
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4.5  Conclusions 

Overall, both the original and modified wetland equations simulated wetland outflow, 

NO3-N concentrations, and NO3-N loads well at the daily time step.  The modified wetland 

equations provided better simulation of wetland hydrology and hence, NO3-N loads, 

compared with the original SWAT equations.  This is likely due to the introduction of 

physically-based weir discharge equations in the modified approach in lieu of the simplistic 

drawdown and mass balance approach in the original equations.  Simulation of wetland 

volume fluctuation was particularly improved, which may have significance for model 

applications in which volume, ET, and duration of inundation are of interest.  Perhaps more 

importantly, the modified equations are more physically-based and objectively informed, 

making them more readily applied to other wetlands.  Additionally, the modified wetland 

equations incorporated into the SWAT model have broad utility and are useful for simulating 

other impoundments in addition to CREP wetlands, provided that the stage-area-volume 

relationships of the impoundment of interest can be derived. 

The improvements in NO3-N simulation using the modified equations were not as 

dramatic due to reasonably good calibration of the original equations using observed flow 

and NO3-N data.  However, in the absence of such data, errors produced using the original 

equations may be much larger, since the NDTARGR parameter required calibration and 

concentration and load predictions were both influenced by this parameter.  Conversely, the 

modified equations did not require hydrologic calibration, which simplified the calibration 

process to adjustment of the NO3-N removal rate (NSETLR) and temperature correction 

factor (N_THETA).  For both equations, NSE values ranged from 0.77 to 0.90 for daily 
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concentrations, and 0.87 to 0.98 for daily loads.  PBIAS ranged from -2.76% to 12.11% for 

simulation of NO3-N concentration, and from -4.45 to 8.60 for NO3-N load simulations.   

Although this study evaluated wetland flow and NO3-N simulation, the new/modified 

equations are also available for phosphorus (P) simulation.  Further parameterization 

guidance is needed, since removal of P in wetlands is more variable and uncertain than NO3-

N reduction.  The primary limitation of the modified wetland equations that were 

incorporated into the SWAT model is the availability of site-specific topographic and weir 

outlet data.  These characteristics are needed to parameterize the new equations.  Selection of 

appropriate removal rates (NSETLR) is critical, given the sensitivity of model predictions to 

this parameter.   

Simulation of NO3-N in the KS watershed CREP wetland revealed the impacts of 

errors in watershed/tile simulation on wetland simulations.  Isolating the wetland from the 

watershed resulted in an NSE of 0.98 and PBIAS of 2.6% for NO3-N load at the wetland 

outlet.  When the wetland was integrated with the watershed simulations using the existing 

soil and tile NO3-N algorithms, the NSE decreased to 0.30 and PBIAS increased to 53.3%.  

Additionally, the mass removal of NO3-N in the wetland was under-predicted by 1,050 kg yr-

1 in the integrated watershed/wetland simulation.  These findings verify that simulation of 

NO3-N removal in wetlands is limited by the ability of the model to predict subsurface flow 

and NO3-N concentrations in tile drainage. 
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CHAPTER 5.  GENERAL CONCLUSIONS 

 
5.1  Review of central themes 

The central theme of this dissertation is the evaluation and simulation of hydrology 

and nitrate-nitrogen (NO3-N) in small watersheds in tile-drained landscapes.  Subsurface tile 

drainage systems have played a critical role in the agricultural and economic success of the 

Upper Midwest, but have also dramatically reduced wetland ecosystems and increased loss 

of NO3-N to surface water.  The watersheds evaluated in this dissertation are representative 

of agricultural drainage districts on the Des Moines Lobe ecoregion.  In recent years, the 

export of NO3-N from drainage districts such as these has garnered much attention, as 

nutrient transport has negatively impacted drinking water supplies and hypoxia in the Gulf of 

Mexico.   

Watershed management for nutrient reduction requires accurate and reliable 

information about NO3-N transport pathways and processes.  Models capable of simulating 

hydrology, nutrient fate and transport, and the effects of BMPs at watershed scales are 

needed to better support planning and implementation efforts.  This dissertation describes 

three studies undertaken to improve our ability to predict hydrology and nutrient transport in 

tile-drained watersheds.  The first study explored the magnitude and patterns of measured 

NO3-N exports from drainage districts to downstream river basins.  The second study 

evaluated the simulation of two drainage-district scale watersheds using SWAT and focused 

on model performance for pathway-specific flow and daily NO3-N concentrations.  The third 

study evaluated and improved the simulation of NO3-N removal in SWAT using detailed 

monitoring data collected at two Conservation Reserve and Enhancement Program (CREP) 

wetlands.   



146 

 

5.2  Review of the magnitude and patterns of NO3-N exports from drainage districts to 

downstream river basins 

The objectives of this study were to quantify hydrology andNO3-N export  patterns  

from  three  tile-drained  catchments and the downstream river over a 5-yr period, compare 

results to prior plot-, field-, and  watershed-scale studies,  and discuss implications for water 

quality improvement in these landscapes. The tile-drained catchments had an annual average 

water yield of 247 mm yr-1, a flow-weighted NO3-N concentration of 17.1 mg L-1, and an 

average NO3-N loss of nearly 40 kg ha-1 yr-1, with substantial spatial variation in NO3-N 

exports between watersheds.  Overall, water yields were consistent with prior tile drainage 

studies in Iowa and the upper Midwest, but associated NO3-N concentrations and losses were 

among the highest reported for plot studies and higher than those found in small watersheds. 

More than 97% of the nitrate export occurs during the highest 50% of flows at both the 

drainage district and river basin scales. Findings solidified the importance of working at the 

drainage district scale to achieve nitrate reductions necessary to meet water quality goals, and 

also indicate the importance of accurately predicting NO3-N transport at this scale for the 

purpose of watershed planning. 

5.3  Review of simulating short-term fluctuations in subsurface flow and NO3-N in 

small, tile-drained watersheds using SWAT 

The objectives of this study were to develop and calibrate SWAT models for small, tile-

drained watersheds, evaluate model performance for pathway-specific flow and NO3-N 

simulation at monthly and daily intervals, and document important intermediate processes 

and N-fluxes.  Model calibration and evaluation revealed that it is possible to meet generally 

accepted performance criteria (Moriasi et al., 2015a) for simulation of monthly total flow 
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(WYLD), subsurface flow (SSF), and NO3-N loads in both case study watersheds.  In the 

final calibration simulations for the KS and AL watersheds, Nash-Sutcliffe Efficiency (NSE) 

values were 0.79 and 0.71, respectively, for monthly WYLD; 0.55 and 0.66 for monthly SSF; 

and 0.72 and 0.60 for monthly NO3-N load (using the modified NO3-N lagging algorithms).  

Simulation of daily SURQ and SSF proved more challenging and were generally not 

satisfactory.  Simulation of daily NO3-N concentration was not satisfactory even after 

modifying NO3-N algorithms to lag flushing from the soil profile. 

Differences in hydrology and NO3-N transport between watersheds were not reflected by 

the model, which suggests that parameterization may not be transferable across watersheds 

and that models calibrated at larger scales may not accurately reflect hydrology and nutrient 

transport at drainage district scales.  These limitations are especially important for simulation 

of NO3-N removal wetlands.   

When calibrated to NO3-N concentration in flow, the model tracks soil-NO3 levels 

reasonably well over time, but over-estimates depletion from the soil during summer months.  

Analysis of soil-NO3-N fluxes revealed that simulated mineralization and plant uptake rates 

are generally reasonable compared to literature values; however, these fluxes are highly 

variable in space and time and heavily influence NO3-N transport via tile drainage.  Soil-N 

fluxes should therefore be evaluated and reported as standard practice when applying the 

SWAT model for simulation of NO3-N transport.  Better parameterization methods and 

supporting data for model inputs related these processes are needed, and if possible, related 

inputs and soil-N fluxes should be constrained within reasonable ranges.   
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5.4  Review of the modification of SWAT to improve simulation of NO3-N removal 

wetlands. 

The objectives of this study were to modify existing algorithms in SWAT by adapting 

proven CREP wetland models, compare model performance using original SWAT algorithms 

and modified wetland equations to simulate two Iowa CREP wetlands, and ramifications of 

watershed/tile simulation errors on prediction of NO3-N in Iowa CREP wetlands.  The 

modified equations improved simulation of hydrology and NO3-N in the wetlands, with NSE 

values of 0.88 to 0.99 for daily load predictions, and percent bias (PBIAS) values generally 

less than 6%.  The applicability of the modified equations to wetlands without detailed 

monitoring data was improved over the original SWAT equations due to more objectively-

informed parameterization, reduced need for hydrologic calibration, and incorporation of an 

irreducible nutrient concentration and temperature correction factor. The NO3-N removal rate 

(NSETLR) is the critical input parameter for NO3-N reduction and strongly influences model 

performance.   

Simulation of NO3-N in the KS watershed CREP wetland revealed that isolating the 

wetland from the watershed resulted in an NSE of 0.98 and PBIAS of 2.6% for NO3-N load 

at the wetland outlet.  When the wetland was integrated with the watershed simulation, the 

NSE decreased to 0.30 and PBIAS increased 53.3%, indicating that simulation of NO3-N 

removal wetlands is limited by the ability of the model to simulate NO3-N in subburface tile 

drainage. 

5.5  Implications/recommendations  

The findings of these studies reveal that manner in which watershed models are 

developed and calibrated may limit the utility of a model for its intended purpose, consistent 
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with recent hydrologic and water quality model calibration guidelines.  Parameterization 

methods and input values may not be transferrable across small watersheds and models 

calibrated at large watershed scales may not be suitable for predicting small watershed 

hydrology and NO3-N exports or optimizing BMPs placement at drainage-district outlets.   

Findings also indicate that model applications in which the impacts of water quality 

BMPs with removal rates driven by inflow concentrations (e.g., wetlands) will be simulated 

should include calibration and assessment of nutrient concentrations, not just nutrient loads.  

Accuracy of predicted nutrient simulation within the BMP will be only as accurate as 

simulation of concentrations entering the BMP.  Furthermore, the practice of calibrating flow 

and load simultaneously may actually worsen model reliability by masking deficiencies or 

errors in the simulation of concentration.  

A third key finding is that although the SWAT has the ability to estimate soil-N 

dynamics reasonably well, the processes are highly variable and significantly affect NO3-N 

transport to surface water.  This is particularly true of denitrification, which is highly 

sensitive to input parameters in SWAT.  This implication is that better parameterization 

methods are needed, and the development of appropriate parameter and N-flux constraints 

would facilitate improved model performance.  This will likely require the collaboration 

between model developers and agronomists and soil scientists. 

5.6  Recommendations for future research 

• Using all available CREP wetland monitoring data, a methodology should be 

developed to inform selection of nutrient removal rates in SWAT (NSETLR, 

PSETLR) based on known wetland and/or watershed characteristics to better inform 
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application of the new wetland algorithms to wetlands for which monitoring data do 

not exist. 

• The effect of the lumped nature of HRUs in SWAT on the simulation of tile flow 

should be further evaluated.  This could be done by applying to model to plot and/or 

field-scales for which detailed tile flow and NO3-N data are available.  Additionally, 

comparison of SWAT with DRAINMOD and/or RZWQM simulations at field or plot 

scales would be instructive. 

• Simulation of tile drainage in SWAT and other watershed models would benefit from 

more model applications in which detailed calibration data are available.  This type of 

monitoring is typically cost-prohibitive, therefore integrated monitoring and model 

improvement studies are needed so that model algorithms, parameterization methods, 

and constraints on model processes (such as intermediate nutrient fluxes) can be 

improved to address current model limitations.   

• Soil-N fluxes and process in SWAT need further evaluation using available 

agronomic research related to mineralization, denitrification, and plant uptake rates.  

Related algorithms may require modification/improvement, but at a minimum, better 

parameterization methods and parameter constraints are needed to assist with model 

calibration.  Crop growth parameters in SWAT may need updating to reflect current 

crop genetics related to things such as nitrogen use efficiency and drought tolerance. 
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APPENDIX  A 

FORTRAN CODE MODIFICATIONS FOR CHAPTER 3 
 

Modified nutrient uptake (NUP.F): 

unmx = uno3d * (1. - Exp(-n_updis * gx / sol_rd)) / uobn 
        uno3l = Min(unmx - nplnt(j), sol_no3(l,j)) 
        uno3l = up_reduc * uno3l   !! line in question  t hi s  l i ne  wa s  
commented 

 

Modified tile drain NO3-N transport (NUP.F): 

co_p(j) = co_p(j) * (1. - alph_e(j)) + vno3_c * alph_e(j) 
          tileno3(j) = co_p(j) * qtile     !Daniel 1/2012   or i gi na l l y c o( j ) 
          tileno3(j) = Min(tileno3(j), sol_no3(jj,j)) 
          sol_no3(jj,j) = sol_no3(jj,j) - tileno3(j)  
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APPENDIX  B 

FORTRAN CODE MODIFICATIONS FOR CHAPTER 4 

 

New wetland flow equations (RES.F): 

case (5) 
       resflwo = 0. 
       do jj = 1, nostep 
         !! solve quadratic to find new depth 
         !testing relationship res_vol(jres) = float(jj) * .1 * res_pvol(jres
) 
         x1 = bcoef(jres) ** 2 + 4. * ccoef(jres) * (1. -  
&                                  res_vol(jres) / res_pvol(jres)) 
         if (x1 < 1.e-6) then 
           res_h = 0. 
         else 
           res_h1 = (-bcoef(jres) - sqrt(x1)) / (2. * ccoef(jres)) 
           res_h = res_h1 + bcoef(jres) 
         end if 
         !! calculate water balance for timestep with new surface area 
         ressa = res_psa(jres) * (1. + acoef(jres) * res_h) 
         resev = 10. * evrsv(jres) * pet_day * ressa 
         ressep = res_k(jres) * ressa * 240. 
         respcp = sub_subp(res_sub(jres)) * ressa * 10. 
         if(res_h <= 1.e-6) then 
           res_qi = 0. 
           res_h = 0. 
         else 
           res_qi = weirc(jres) * weirk(jres) * weirw(jres) *  
&                                                    (res_h ** 1.5) 
         end  if 
         resflwo = resflwo + res_qi 
         res_vol(jres) = res_vol(jres) + (respcp + resflwi - resev  
&                                                - ressep) / nostep 
       enddo 
 

 

 

New wetland nutrient equations (RESNUT.F): 

!! settling rate/mean depth 
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 !! part of equation 29.1.3 in SWAT manual 
 if (iresco(jres) == 5) then 
   phosk = ressa * 10000. * (conc_p - con_pirr(jres)) *  
&    theta(psetlr(iseas,jres), theta_p(jres), tmpav(res_sub(jres))) 
   nitrok = ressa * 10000. * (conc_n - con_nirr(jres)) *  
&    theta(nsetlr(iseas,jres), theta_n(jres), tmpav(res_sub(jres))) 
 else 
   phosk = psetlr(iseas,jres) * ressa * 10000. /          
&                                       (res_vol(jres) + resflwo) 
   phosk = Min(phosk, 1.) 
   nitrok = nsetlr(iseas,jres) * ressa * 10000. /         
&                                       (res_vol(jres) + resflwo) 
   nitrok = Min(nitrok, 1.) 
 endif 
 !! remove nutrients from reservoir by settling 
 !! other part of equation 29.1.3 in SWAT manual 
 res_solp(jres) = res_solp(jres) * (1. - phosk) 
 res_orgp(jres) = res_orgp(jres) * (1. - phosk) 
 res_orgn(jres) = res_orgn(jres) * (1. - nitrok) 
 res_no3(jres) = res_no3(jres) * (1. - nitrok) 
 res_nh3(jres) = res_nh3(jres) * (1. - nitrok) 

 res_no2(jres) = res_no2(jres) * (1. - nitrok) 
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