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ABSTRACT 

 Mathematical and statistical modeling has been used extensively in fields relating to 

bio-renewables and biological systems. Modeling of this nature helps predict a variety of 

effects, such as environmental and economic impacts, that are incurred during the 

manufacturing of various bio-based products. Typical modeling methodologies include: 

techno-economic analysis (TEA); life-cycle impact assessment (LCIA); and statistical 

correlation matrix analysis. The use of these methodologies can potentially be harnessed to 

assess the environmental, economic, and indirect impacts related to the overall stages of a 

product’s cradle-to-grave life cycle, which includes the extraction of raw materials to pre-

processing, fabrication, transportation to consumer, and end-of-life treatment. Therefore, 

TEAs and LCAs can project the outlook of these impact parameters and highlight which unit 

operation(s) produce the largest impact throughout the entire life cycle. Using these 

projections, producers may potentially change their materials, fabrication methods, or any 

production parameter to round their operation to fit the needs, standards, and constraints of 

their environment.  

 This thesis is comprised of three separate research endeavors. The first study focused 

on a TEA of a hypothetical commercial conversion system which converts chicken blood to 

bio-based flocculant. A TEA was utilized to test the economic viability of commercializing 

the conversion process which was analytically successful during lab based scale. The study 

revealed that waste water surcharges, relative to specific pollutant characteristics (BOD, 

COD, TSS, and NH3) found prevalent in chicken blood, were shown to have an especially 

high economic impact on the overall process. Additionally, the overall results determined 

that the hypothesized conversion plant would be highly economic feasible.  
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 The second study utilized both TEA and LCA methodology to model the processing 

and overall cost(s) of poly(lactic acid) (PLA) composite production for both in-organic and 

organic filler material, which was compared over three product part weights and five end of 

life treatment options. The analysis discovered a high amount of variance in economic and 

environmental impacts produced, which resulted from the inclusion of organic or inorganic 

filler, different product part weight, and dissimilar end of life treatment selections. The 

inclusion of inorganic filler(s) (glass and talc) were shown to produce the largest volume of 

environmental burden, while organic filler(s) (wood, rice husks, and DDGS) were shown to 

maintain the least amount of environmental burden and economic impact. Therefore, it was 

suggested that when paired with PLA composite production organic fillers should be utilized 

over inorganic substitutes. 

 The third study utilized non-linear growth analysis and a linear correlation coefficient 

matrix to analyze and compare corn growth effects when three different nitrogen applications 

(low, medium, and high) and three dissimilar rotation applications (Corn-Corn (C-C), Corn-

Soybean (C-S), and Corn-Soybean-Grass-Legume (C-S-G-L)) were applied. This study was 

focused as a continuation of a previous research endeavor (Riedell, 2011) which analyzed the 

same data by different methodologies. The non-linear growth modeling was shown to 

confirm the data suggested in the previous study, which documented significant growth 

variances due to interactions between rotation treatment and nitrogen application under the 

C-C and C-S-G-L rotations. It was speculated that the inclusion (or lack of inclusion) of 

legumes with in rotation treatment played a significant role in how the corn grew the 

following year. The linear correlation mapping highlighted interesting interactions between 
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soil nutrient elements (NO3 and P) and grain yield and starch content, this was previously 

un-documented.
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CHAPTER I: 

GENERAL INTRODUCTION AND LITERATURE REVIEW 

General Introduction 

With the progression of energy initiatives to sequester the future oil demand of the U. S., 

an abundant amount of pathways for development of applied bio-renewable resources have 

become incentivized (Schell et al., 2008). These quick advances have produced a new demand 

for bio-based resources that can sustainably fit the needs of our expanding population. Due to its 

overwhelming production of bio-renewable material, The U. S. agriculture industry has 

consequentially become an integrated component of many bio-renewable and bio-based products 

and applications (Lin et al., 2006). Common bio-renewable manufacturing processes include (but 

are not limited to): production of agricultural bio-char (McHenry et al., 2009); conversion of 

feedstock into bio-ethanol (Sukumaran et al., 2009; Wong et al., 2014); the production of bio-oil 

via fast pyrolysis (Zhang et al., 2013). The rapid expansion of these relatively new processes has 

in-turn created concerns relating to the environmental, economic, and sustainability implications 

resulting from the utilization of U. S. agriculture supply. A prime example, the “food vs. fuel” 

argument, insinuated that producing bio-ethanol using corn produced in the U. S. will lead to 

water and food supply shortages due to the unsustainable increase in corn production and the 

indirect effects associated (i. e. depletion of feed for meat production; depletion of corn based 

food; depletion of water due to irrigation, etc.) (Laursen, 2007). To investigate these concerns, 

many government, academic, and commercial researcher undertakings have utilized a variety of 

different mathematical and statistically based tools, which project the environmental and 

economic responses of manufacturing bio-based products (Ross et. al, 2002). Typical modeling 

methodologies include: techno-economic analysis (TEA); life-cycle assessment (LCA); and 
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statistical correlation matrix analysis. The use of these methodologies can potentially be 

harnessed to assess the environmental, economic, and indirect impacts obtained from a product’s 

cradle-to-grave life cycle, i. e., including extraction of raw materials to pre-processing, 

fabrication, transportation to consumer, and end-of-life treatment (Ross et al., 2002). A 

correlation matrix is used to investigate the reliance between multiple data set variables which 

are affected during the same time period and exposed to the same environmental conditions. 

Through rigorous modeling efforts, the use of these tools has been shown, over numerous 

examples, to successfully impact and provide benefit to the agriculture and bio-renewables 

industries (Ning et al., 2013). 

 Techno-economic analysis (TEA) may be characterized as a systematic tool 

which is utilized to analyze the economic viability, opportunities, and negative economic effects 

of manufacturing processes, by accounting for the overall variable,  capital, and fixed costs 

(Simba et al., 2012). The utilization of TEAs have provided considerable benefit to the bio 

renewables industry; with the wide array of compatible bio-based materials, TEAs have played 

an integral part in determining which materials provide the greatest economic incentives for a 

particular product or process. Examples of bio-renewable processes where TEAs have been 

utilized include: the production of algae biodiesel (Nagarajan et al., 2012); production of 

extruded aquafeed (Ozoh et al., 2015); production of biofuel based on bio-oil gasification (Li et 

al; 2015).  

 Life-cycle assessment (LCA) is defined as a systematic approach to quantify the 

environmental consequences of a product or procedure; a LCA accomplishes this by quantifying 

energy, materials, and waste streams released into the environment through all stages of a 

products life cycle, i.e. cradle-to-grave (Roy et al., 2009; Walker et al., 2011; Corominas et al., 
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2013). Since the production of bio-renewable materials relies heavily on the acquisition of 

organic, usually plant based, resources, careless extraction of raw materials can pose heavy 

environmental burden and disruption on sensitive ecosystems (Ross et al., 2002). Further, many 

indirect effects of ecosystem manipulation are generally hard to predict. Therefore, the use of 

LCA as a prediction tool is widely applied by the bio-renewables industry in effort to reduce 

negative environmental effects of manufacturing products. Cases of applied LCAs include: 

conversion of lignocellulosic biomass into bio-based jet fuel (biojet) (Agusdinata et al., 2011); 

production of bio-based polymer composites (La Rosa et al., 2014); bio-ethanol production using 

straw derived substrates (Gabrielle and Gagnair, 2007).  

 Correlation matrix analysis is a statistically based tool used to analyze the 

interaction strength of multiple variables simultaneously. Although the use of this tool is widely 

applied in various fields of genetics (Kim et al., 2011), correlation matrixes have been applied to 

bio-renewable products and biological systems as well. Correlation analysis has been shown to 

be beneficial in many areas related to biological growth and soil enzyme activity. Applied 

instances relative to bio-renewables include: relationships between enzyme activity and 

microbial growth in soil (Frankenberger and Dick, 1983); drought monitoring and corn yield 

estimation (Unganai and Kogan, 1998); effects of wastewater irrigation on corn and sorghum 

plants (Al-Jaloud et al., 1995). 

 Through the methodologies described above, these research endeavors have produced a 

positive impact on the bio-renewable industry. The viability of utilizing chicken blood for 

synthesis of bio-based flocculant was determined, and the possibility of other renewable chicken 

blood derived products was highlighted. A detailed comparison of PLA composites produced 

with different manufacturing parameters was shown to produce unexpected, and previously 
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undocumented, results, which may lead to the inclusion of more bio-based materials in 

commercialized PLA composite production. Lastly, the correlation matrix analysis revealed 

interactions between soil nutrient elements (N, P, and K) and growth characteristics (grain yield, 

grain starch content, and plant dry weight). 

 

                                                 Literature Review 

 Chicken Blood Flocculant 

 Each year nine billion chickens are processed within the U.S. (USDA, 2011). When 

slaughtered, chickens release 4.2% of their total body weight as drainable blood (CKB) 

(Carawan et al., 1979). In many poultry slaughterhouses across the nation CKB is only partially 

utilized and sold to rendering plants, and the remaining, blood serum, is placed in the wastewater 

stream, which leads to significant cleanup costs (Del Nery, 2007). With the bio-renewable 

movement emerging, new eco-friendly ways to utilize CKB may provide environmental benefit 

by sequestering pollutant characteristics of wastewater; it may also provide a possible source of 

income for chicken processing plants. It has been demonstrated that CKB maintains specific 

properties and compatibility as a renewable flocculant. To specify, in many studies flocculation 

and coagulation can be considered synonymous, as the process may be one in the same for the 

relative application. For this study the nomenclature of flocculant is utilized since the application 

of the product is mainly utilized to organize suspended solids into clumps, or flocs, of mass. 

The CKB hemoglobin protein (hb), embedded in CKB red blood cells, has produced significant 

flocculant activity (Piazza et al., 2011). CKB flocculation performance has been investigated by 

viewing the influence CKB posed on the rate of settling of fine clay (kaolin) particles (Piazza et 

al., 2011). To quantify the efficiency of CKB flocculation it was tested against anionic 



5 

 

 

polyacrylamide (PAM), a commonly used flocculant today, both varying in concentrations 

between experiments (Piazza et al., 2011). CKB fraction concentrations of up to 3 g/L were 

tested for flocculant activity, with and without 0.2 mM calcium chloride. Calcium ions are 

required for PAM flocculation and create an electromagnetic bridge between negatively charged 

particles (Piazza et al., 2011). It was shown that at pH 5.5 buffer there was significant flocculant 

activity in small concentrations of CKB (>0.12 g/L) (Piazza et al., 2011). To achieve a pH buffer 

of 5.5 inexpensive acids were utilized; citric acid was shown to reduce the hydrogen ion 

concentration by 100-fold and produce complete sedimentation after a five hour period (Piazza et 

al., 2011). To fully understand the applicability of CKB flocculant an overview of the economic 

aspects must be considered. In a parallel study (Piazza, et al. 2011), a preliminary economic 

analysis was performed on production costs and resource and environmental impacts. Due to a 

much lower unit cost ($0.075/lb), sulfuric acid is the preferred pH treatment acid (Piazza et al., 

2011). Additionally, there is economic benefit to removing CKB from the wastewater stream by 

lowering the biological oxygen demand and cleanup costs (Piazza et al., 2011). Due to storage 

efficiency spray dried flocculant is proposed as a marketable material (Piazza et al., 2011). The 

highest costs of CKB flocculant production are confounded in: facility overhead, labor, utilities, 

and sulfuric acid. Capital costs related to dehydrating the CKB posed relatively high facility 

charges. It is projected that the cost of flocculant production will be $0.77 per pound (Piazza et 

al., 2011). After consideration of BOD removal, a total net cost of production is suggested at 

$0.33 per pound (Piazza et al., 2011). Compared to PAM, $1.20 per pound, CKB is effectively 

active at a 2:1 pound ratio, yielding a renewed CKB production cost of $0.66 per pound (Piazza 

et al., 2011). At half the cost of PAM, CKB may have a great economical/environmental effect in 

the poultry processing industry.  
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 Bio-based Plastic and Poly(lactic acid)  

 Currently, there is still much ambiguity as to what defines a bio-based plastic. The 

International Union of Pure and Applied Chemistry (IUPAC, 2009) defines bio-based plastics as 

“Bio-based polymer derived from the biomass or issued from monomers derived from the 

biomass and which, at some stage in its processing into finished products, can be shaped by 

flow”. Many industries consider bio-based plastics as plastics produced from biological sources, 

but bio-degradability is also a factor that shapes the definition. Almost all bio-based plastics can 

be considered bio-degradable under aerobic, or anaerobic, microbial conditions (Europe Plastics, 

2008). Bio-plastics and bio-degradability do not always go hand in hand; many bio-based 

plastics are considered non-bio-degradable by maintaining a particularly slow degradation 

process (Europe Plastics, 2008). Alternatively, many chemically synthesized plastics may be bio-

degraded, but chemical based plastics do fit the definition of a bio-based plastic (Europe Plastics, 

2008). To compensate for the large array of applications bio-based plastics are applied to, many 

feedstocks are utilized and chosen depending on a variety of different factors. Feedstock 

compatibility is based on a number of dynamics including: shape, form, quality, supply, cost, 

physical properties, and machinability of raw feedstock materials (Rosentrater et al., 2006). 

Table 1 lays out a detailed overview of many feedstocks bases for bio-based plastic production. 

These materials include plant fibers, cellulosic derivatives, and bio-based by-products procured 

from other bio-based applications. Bio-based plastic materials are not limited to only plant 

feedstocks, PLA and PHB plastic granules are acquired from cultivation of micro-bacteria such 

as Lactobacillus, or Sporolactobacillus laevolactius, and Alcaligenes eutrophus, or Bacillus 

subtilis respectively (Abel et al., 1998). 
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Table 1. Feedstock Materials and Properties (Rosentrater, 2006) 

 

 

PLA is a favorable bio-based plastic in the foreseeable future. PLA maintains a composition 

similar to petro-based plastics such as polypropylene and oil synthesized polyethylene. PLA has 

garnered much attention due to the ability to process granules through existing manufacturing 

infrastructure. Thus, eliminating the need for new equipment capital costs. Materials fabricated 

form PLA include: rigid packaging, cold drink cups, apparel, screws, medical equipment, and 

pharmaceutical capsules (Auras et al., 2010). PLA is formed directly from a condensation 

polymerization reaction using lactic acid. Figure 3 gives and in-depth look at the condensation 

polymerization reaction.  
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Figure 3. Lactic acid condensation reactions: lactic acid and lactide (Auras et al., 2010) 

 

 
 

Lactic acid is obtained by fermenting sugar substrates using sugar-starch rich bio-mass. 

Examples include corn, tapioca, sugar cane, and sweet potato. Under anaerobic conditions, lactic 

acid producing microbes, such as Lactobacillus, convert carbohydrates into lactic acid (Auras et 

al., 2010). Figure 5 shows a detailed step by step process of how lactic acid is produced through 

fermentation. 

 

 
 

 
 

Figure 5. Fermentation to Lactic Acid Flow Diagram (Auras et al., 2010) 
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The current commercialized method is to produce lactide instead of lactic acid. Lactide is 

shown in figure 3 as a cyclic dimer of lactic acid (Auras et al., 2010). Production of lactide 

includes de-polymerization of PLA chains in restrained pressure (Auras et al., 2010). After 

purification, lactide may be used for PLA. This is the favorable method due to the reduced unit 

operations in order to produce a PLA ready polymer. PLA sequesters, on average, 2.5 kg CO2 

per kg of PLA produced in the United States (Erwin et al., 2003). Also, it is shown that fossil 

energy use to produce PLA is 7 MJ/kg or PLA. PLA is a completely bio-degradable resource and 

can be recycled into same product life cycles with little refinement (Erwin et al., 2003). Life 

cycle analyses show many economic (carbon credits), environmental, and emission reducing 

capabilities to which fossil-based plastics fail to encompass (Erwin et al., 2003).  Due to highly 

sustainable characteristics, full recycle potential, and current commercial proficiency PLA is 

widely considered to be the bio-based plastic of the future. 

 

Rotation and Fertilization Treatment on Corn Growth 

American corn production has securely fastened its roots into many dynamic applications 

and has been constantly re-invented to fit into today’s society. Corn has not only become a main 

diet source for many Americans, but it has also crept into many diets as an artificial sweetener, 

high fructose corn syrup. Many food processors have begun utilizing pure cane sugar over high 

fructose corn syrup do to availability and economic incentives (Buck, 2001). Substantial corn 

production areas have used corn as a source for animal feed. In 2006, 30% of the corn produced 

in Iowa was fed to the local feed stock. During the 2006-2008 periods, the Iowa State University 

Animal Industry reported that 70% of the corn produced in Iowa was exported out of state to be 

processed into ethanol, pet/animal feed, and artificial sweeteners (Pelletier, 2009). In recent 



10 

 

 

years, corn has gained the national spotlight as the main bio-mass crop to be processed into bio-

ethanol. Although the overall effectiveness and energetic returns are widely debated, the 

production of fuel grade ethanol from corn cannot be denied. Currently, the U.S. produces 2.81 

billion gallons of ethanol each year (Pimentel, 2005). Consequentially, corn production in the 

United States has proven to be a vital component for many renewable energy pathways (bio-gas, 

bio-char, and bio-oil). To keep up with the increasing demand, researchers continually examine 

new, and more efficient, crop growth methods, many abstract ideas are examined. One method, 

free living bacteria inclusion, has been shown to promote plant growth when plotted parallel with 

crops. PGPR (Rhizobacteria) may form symbiotic relationships with plants and enables 

prevention of deleterious effects that a phytophathogenic organism can perform. Straight forward 

promotion of plant growth by PGPR is produced by the facilitation of nutrients from the 

environment which fortifies a plant’s nutrient pathway (Glick, 1994). Further, breakthroughs 

within molecular genetics have pushed the limits of annual crop yields within the last 10 to 20 

years. Molecular genetic studies have produced hybrid crops which promote genes enhancing: 

yield, pest tolerance, heat, and expression in heterosis (Hallauer, 2008).  

From 2001-2008 the average U.S. corn yield equaled 146 bushels/acre (2001) to 181 

bushels/acre (2004) (Hallauer, 2008). Researchers are now predicting a jump to 300 bushels/acre 

within the next 20 years (Hallauer, 2008). The value of growing crops in planned sequences has 

been revealed by low yields due to one-crop systems over same land spaces (Curl, 1963). During 

a 1984 study, the Crop Science Society of America (Hauck, 1984) found legumes planted in 

rotation were able to re-furnish the soil with a temporary supply of nitrogen. The study also 

suggests there is no amount of nitrogen fertilizer able to ameliorate with the 5 to 10% yield 

disadvantage produced using a back to back corn rotation (Hauck, 1984). A 1985 study (Dick 
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and Van Doren, 1985) suggested a negative response to no-tillage due to large decreases in yield 

(-880 kg/ha) obtained from continuous corn rotation. Even with a relatively expensive 

environmental impact, nitrogen applications have proven useful for many farmers intending to 

keep a consistent back to back corn planting cycle. Nitrogen has been shown to have a great 

overall impact when there is an absence of crop rotation (Hallauer, 2008). Also, studies have 

concluded that the timing of nitrogen application, and when tillage has been applied to the soil, 

can play a significant role in the amount of corn yield produced in a year (Vetsch, 2004). Where 

there is an uncertainty in yield response, farmers tend to add excess nitrogen to insure there are 

no nitrogen deficiencies and achieve yield increases in years with lower than normal yield 

efficiencies (Bock, 1984). To increase the overall nitrogen concentration in the soil, from year to 

year, farmers decrease the acreage and frequency of crops that receive nitrogen fertilizer in the 

crop rotation,  as well as maintaining crop cover on over the land as long as possible (Olsen, 

1970). Researchers have observed corn as an expensive nitrogen utilizer; high nitrogen root 

uptake and minimal nitrogen responses were shown in systems over a 9 year period due to low 

soil nitrogen capacity from corn-corn rotations (Zielke, 1986). 
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                                                        CHAPTER II: 

                                  OBJECTIVES AND HYPOTHESES 

The overall objective of the research undertakings provided in this thesis was to apply 

mathematical and statistical techniques on bio-based and/or bio-renewable product 

manufacturing. More specifically, the specific research objectives were: 

1. To determine the viability of commercializing the conversion of chicken blood to  

     bio-based flocculant, and determine which unit operations incur the largest economic          

     impact by utilizing TEA methodology; 

2. To compare the economic and environmental impact of producing PLA composites    

      with different bio-based and synthetic fillers, end-of-life treatments, and part sizes by   

      utilizing TEA and LCA methodology; 

3.  To further investigate interactions between soil element chemistry and corn growth     

      characteristics due to different nitrogen application (low, medium, and high) and        

      rotation treatment (C-C, C-S, and C-S-G-L) documented in a previous research study       

      (Riedell et. al, 2011), and carry out the analysis using new statistical methodology,  

     i.e. correlation matrix analysis and non-linear growth modeling. 

 

In addition to the main objectives, the hypotheses are provided as well: 

1. HA: The chicken blood-to-flocculant preliminary commercial projection is shown to 

be economically feasible; the waste water surcharge will make up a majority of the 

associated variable cost; 
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2. HA: Fabrication of PLA composites utilizing bio-based fillers will incur a lower 

economic and environmental impact compared to impacts associated with composites 

filled with petro-based fillers; 

3. HA: Nitrogen application and rotation treatment will have significant interactions in 

corn growth characteristics; soil nutrient elements (N, P, and K) will have significant 

interactions with yield and grain starch content.  

                                                  

                                      Thesis Organization 

Chapters 2, 3, and 4 correspond to the research goals outlined above. Specifically, 

Chapter 2 details the TEA analyzing the viability of converting chicken blood to bio-based 

flocculant. Chapter 3 is a TEA and LCA comparing the economic and environmental impact of 

PLA composites filled with synthetic and bio-based fillers. Chapter 4 is a statistical correlation 

and non-linear growth model of corn growth and soil nutrient elements, where interactions are 

analyzed due to different nitrogen applications and crop rotation treatments. Lastly, Chapter 4 

summarizes all conclusions achieved through the research and plans for future work in 

mathematical and statistical modeling of biological systems. 
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CHAPTER III: 

 

TECHNO-ECONOMIC ANALYSIS OF CHICKEN BLOOD-TO-FLOCCULANT 

PRODUCTION  

 

                                                         Abstract 

This research paper provides a Techno-Economic Analysis (TEA) of a theoretical 

chicken blood-to-bio-based flocculant conversion plant. Our hypothesis speculates that 

converting chicken blood to flocculant will produce a high profit margin due to the inexpensive 

and renewable inflow of chicken blood. To test our hypothesis, we modeled a base-line 

production scheme using TEA methodology. A 92,000 gallon per day chicken blood processing 

scenario was developed: the scenario utilized a centrifugation and ultrasonic processing pairing 

to isolate the erythrocyte hemoglobin embedded within the red blood cells. This research has 

revealed that construction expenditures and spray dryers have the highest economic impact on 

capital costs at 39% and 33% of overall costs, respectively. Further, sewage surcharge, materials 

(isotonic saline, EDTA, lab supplies, etc.), and utilities (tippage, gas, electricity,etc.) were shown 

to have the greatest impact on variable costs at 49%, 21%, and 20% overall, respectively. The 

modeling effort resulted in bio-based flocculant production rates of 10,400,000 kg of dry 

flocculant per year. Capital cost for this scenario amounted to approximately $4.1 million. 

Flocculant product value estimates are $1.00 per kg of flocculant. The projected annual revenue 

of this scenario was $2.34 million per year. Our research concluded that major economic 

incentives for production of facilities similar to this scenario are plausible and should be further 

explored. While competitive, calculated bio-based flocculant costs are preliminary, therefore, 

further research is advised to analyze the impact of raw material properties and production 

constraints on the overall yield of flocculant product.   
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                                                         Introduction 

Chicken blood is known to be the main pollutant contributor in poultry slaughter waste 

streams (EPA, 1975). With the absence of pre-treatment or removal of chicken blood, slaughter 

houses face expensive sewage surcharge rates and environmental damage fines. (Mercado et al., 

1995). To help sequester surcharges produced from blood comprised waste streams, many 

processors have been known to spray dry excess blood and sell it off as blood meal animal feed 

(Wisman et al,. 1957). Alternatively, many research endeavors have focused on pre-treatment 

methods which reduce poultry slaughter waste water pollutant loads, common pollutant 

characteristics include: biochemical oxygen demand (BOD), chemical oxygen demand (COD), 

total suspended solids (TSS), and ammonia (NH3). Pre-treatment research has analyzed, among 

many, up-flow anaerobic sludge blanket (UASB) reactors (Chavez et al., 2005), anaerobic filters 

(Ruiz et al., 1997), and anaerobic batch reactors (Masse et al., 2001). Although pre-treatment has 

been shown to be an effective method, over 92% COD removed and between 80%-96% TSS 

removed (Ruiz et al., 1997), many processors may opt out due to little or no economic incentive. 

In turn, there has been increased commercial interest in utilization of recovered chicken blood 

constituents. One example includes production of dried sludge from ferric sulfate poultry 

slaughter waste water treatment, which can be used for steam generation (Jayathilakan et al., 

2012). Another includes recovery of bio-based flocculant from poultry slaughter blood (Piazza et 

al., 2011; Garcia et al., 2014). A 2014 study (Garcia, 2014) documented significant evidence of 

bio-based flocculant preforming well against standard synthetic flocculants (polyacrylicamide). 

Flocculation and centrifugation pairing is just one of many purification methods used in today’s 

industries. THE IUPAC defines flocculation as, “a process of contact and adhesion whereby the 
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particles of dispersion form larger-size clusters” (Slomkowski et al., 2011). To help sequester 

harmful environmental impacts associated with standard flocculant production, bio-based 

flocculant material has become a suggested alternative. Consequently, researchers have begun to 

explore renewable bio-based flocculants produced from animal co-products (Garcia et al., 2014).  

Extracted from chicken blood, erythrocyte hemoglobin has been shown to be a competitive 

alternative to standard flocculants such as poly(diallydimethylammonium chloride) 

(PDADMAC) (Piazza et al., 2014). 

 Although promising on paper, there is still a wide gap of information analyzing 

the economic and commercial viability of these by-product production cycles. One methodology 

of economic impact evaluation is a Techno-economic analysis (TEA). TEA modeling is an 

economic forecast tool which analyzes and compiles the fixed capital and variable costs and 

projects the annual rate of economic return and is usually associated with a commercial 

production process. A TEA appears to be an appropriate methodology to analyze the economic 

viability of full scale chicken by-product conversion operations. This sort of analysis can play an 

important role in the translation of benchtop discoveries to commercial application. A precursor 

study (Piazza et al., 2010) to this research undertaking developed a baseline estimate of the 

economic feasibility of a chicken blood-to-flocculant conversion plant. The analytic results 

demonstrated that two pounds of chicken blood flocculant are required to replace one pound of 

polyacrylamide (PAM) flocculant. Further, a chicken blood floccullant value of $0.60 per pound 

was calculated. It was also speculated that chicken blood flocculant could potentially replace 

17% of the synthetic flocculant utilized annually in North America. Thus, insinuating that there 

are potential economic incentives and area for a commercial conversion process to start-up. 
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Since these conclusions were based on base-line assumptions, the need for further investigation 

of the economic viability of the proposed process is determined.      

 The objective of this study is to develop a TEA to determine the economic 

viability of our hypothetical chicken blood-to-flocculant operation. Further, the research focused 

on determining which unit operations, materials, and overall accompanying costs acquire the 

greatest economic impact. This analysis is set as precursor for future research endeavors looking 

to expand or refine the base process proposed. 

 

                                                 Materials and Methods 

Based on analytical data, contemporary production processes, and quoted equipment and 

supply values from industry representatives, a model of a flocculant production facility was 

produced, which estimated the capital, variable, and overall overhead costs for commercial 

conversion of bio-based flocculant from chicken blood. This model is designed to gauge the 

overall economic rationality of chicken blood to flocculant production. This model is not meant 

to replace a final design and construction of a plant, but for proof of concept relative to this 

theoretical scheme. 

 Certain aspects of this analysis were dependent on the location of the proposed 

facility. Specifically, the transportation costs, utilities, and sewer surcharges were directly related 

to the proposed location. This analysis is based on a plant located in Savannah, Georgia, and the 

location is the basis of the sewage surcharge formula, utility rates, and distance traveled for raw 

material acquisition. Savannah, Georgia is a major chicken production region (Bishop Jr. et al., 

2015), and the analysis makes the assumption that there are at least three poultry processing 

plants within a 20 mile driving distance. Using poultry processing statistics (250,000 average 
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sized chicken processed daily and total collected blood per head) documented in a 2009 study 

(Kiepper et al., 2009), the chicken blood conversion plant was calculated to processes 

approximately 92,000 gallons of blood per day and produces roughly 39,200 kg of flocculant 

daily. Main unit operations include: transportation, screening, washing blood cells, lysing blood 

cells, cell solid removal, dehydration, and packaging. A schematic of the extraction of 

hemoglobin to produce bio-based flocculant is shown in Fig. 1.1. 

Presently, information regarding design parameters and operating constraints is limited. 

Assumptions are presumed based off of lab scale analytical data and flow rates required to 

process the chicken blood amount received daily. To produce the daily amount proposed, a semi-

continuous process needs a minimum flow rate constraint of 192 gpm. The overall equipment 

processing and input-output diagram is shown in Fig. 1.2. This diagram helps illustrate where 

waste streams are produced and helps clarify the overall product flow throughout each stage of 

operation. Parallel to Fig. 1.2., a itemization of product mixture components throughout main 

process operations is detailed in Table 1.2. This table depicts where and how specific materials 

are (EDTA, saline, etc.) as well as detailing the steps needed for hemoglobin protein isolation. 

The hypothetical scheme begins with chicken blood acquisition from nearby processing plants. 

Before being transported to the flocculant production facility the chicken blood is mixed with 

ethylenediaminetetraacetic acid (EDTA) which prevents coagulation. The blood is then 

transported by tanker truck to the flocculant facility. Chicken blood is pumped and screened 

through a Rotary Vacuum Filtration Device (RVFD), which removes unwanted solids contained 

within the blood (e.g. feather, feces, and egg shell fragments). Once screened, the blood is stored 

in a surge tank, if immediately processed. Blood cells are washed utilizing two centrifugation 

and decantation cycles, which removes blood serum and leaves blood cells suspended in saline. 
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The decanted serum is disposed in the plants waste water stream. To extract hemoglobin the cells 

are lysed using a system of industrial size ultrasonic processors. Once lysed, unwanted cell solids 

are centrifuged out and a hemoglobin water solution remains. To achieve powdered flocculant 

product, a spray dryer dehydrates the hemoglobin to less than 1% w/v moisture. Dry bio-based 

flocculant is packaged and sold to the consumers. The machine process illustration is shown in 

Fig. 1.2.    

 

Transportation 

Chicken blood is acquired from a nearby processing plant and transported to the 

flocculant facility using a 33,000 gal semi-tractor trailer rig. Each day, three round trips to 

processing plants are hypothesized. Each trip yields roughly 30,700 gallons of blood, the 

estimated daily bleed out volume for a processing plant. Estimation of vehicle tax, insurance, and 

variable costs associated, on a per mile basis, were modeled using national average values, based 

on truck weight class, detailed in the American Transport Research Institute’s (ATRI) Analysis 

of Operation Costs of Trucking: 2010 (Trego et al., 2010). Total fuel consumption (gal.) was 

modeled using eq. (1) and (2). 

(1) Composite MPG =  1/(1/(MPG City)   ×  % City + 1/( MPG Highway)   ×  % Highway   

(2) Annual Fuel Consumption =  (Yearly Miles Driven)/(Composite MPG)     

Where: MPG City is the city fuel economy of a vehicle in miles per gallon (mpg), % City 

is the total percentage of driving done on city miles out of total miles driven (%), MPG Highway 

is the highway fuel economy of a vehicle in miles per gallon (mpg), % Highway is the total 

percentage of driving done on highway miles out of total miles driven (%). Annual fuel cost was 

estimated using the 2014 national diesel price per gal ($/gal). The fixed and variable costs 

associated with transportation were calculated on a per mile rate based on the U. S. national 
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average, which are detailed in ATRI’s 2010 catalog (ATRI, 2010) and shown in table 1.3. The 

fixed and variable costs include: vehicle taxes, vehicle insurance, license fees, fuel, oil, tire wear, 

maintenance, labor, and repair. The transportation is assumed to have a 10 year depreciation 

period, based on total useful life expectancy, as well as an assumed 9% interest rate on total 

capital. Additionally, the salvage value was assumed to be 15% of total transportation capital. 

 

Mixing and Screening 

When the blood arrives at the production facility it is pumped from a truck using a cutter 

pump, which will crush large solids left in the blood. The blood is then pumped through a 

RVFD, which extracts the large solids from the liquid. Once large solids have been removed the 

blood is pumped into a surge tank, where it is stored until processing. The cutter pump proposed 

was a Cornell 4NNTL Cutter Pump, and the RVFD was a Komline-Sanderson RVFD. Quoted 

equipment cost figures were obtained by consultation of company representatives. Equipment 

selection was based on these key constraints: specific gravity, flow rate, density, and viscosity. 

 

Washing Cells 

The blood is moved from the surge tank to the decanter centrifuge using a slurry pump. 

The decanter centrifuge removes the serum through decantation. After, the blood serum is 

replaced with and equal amount of PBS. To keep the process continuous, and efficient, the 

Blood-PBS mixture is pumped to a second centrifuge. The liquid is centrifuged and decanted out 

and the blood is suspended in a half volume of PBS relative to the original serum amount. The 

decanted serum and PBS is placed into the wastewater stream for removal. The slurry pump 

proposed was a Cornell 2SPR Slurry Pump, and the two decanter centrifuges suggested are 
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Hiller DecaPress Two-Phase Decanter Centrifuges (DP45-422). The quoted capital costs 

associated with these machines were obtained consultation with equipment manufacturer 

representatives.  

 

Lysing Cells and Cell Solid Removal 

After washing, the blood cells and PBS remain. The mixture is pumped into a holding 

tank before ultrasonic processing. A doughnut horn attachment, attached to the holding tank, is 

proposed for upholding the continuous operation. From the holding tank, blood is pumped into a 

matrix of six ultrasonic processors. Six ultrasonic processors were selected in order to meet the 

operation’s flow rate requirements. The ultrasonic processors lyse the red blood cells and uncase 

the hemoglobin protein. The lysed cell material and PBS mixture is pumped to a third centrifuge, 

where suspended cell solids are removed. The remaining mixture is comprised of hemoglobin 

protein and PBS solute. The ultrasonic processor chosen was a Hielscher Ultrasonics UIP1000 

processor. The proposed centrifuge was the same model stated in the washing cells section. 

Again, quoted capital costs were obtained through consultation with manufacturer 

representatives.     

 

Dehydration 

The left over PBS-hemoglobin slurry mixture is pumped to series of three spray dryers. 

The spray dryers dehydrate the hemoglobin to a moisture content of less than 1%. The left over 

material is a bio-based powder flocculant. The spray dryer utilized is a LPG800-10000 high-

speed centrifugal spray dryer. This particular spray dry was selected based off its variable flow 
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rate and wide array of application (ceramic, dairy, polymer, fertilizer, and organic compound 

products). 

 

Waste Stream Surcharge 

Due to the high water pollutant characteristics of blood, and high costs associated, 

sewage surcharge was an area of particular focus for this project. Online research of the 

Savannah, Georgia surcharge calculation methodology found that eq. (3) was utilized by a 

majority of waste water treatment processors.  

(3) Surcharge = V×(B-C)×8.34×Cost Factor  

Where: V is the gallons of water per million gallons, B is the total contribution from user 

in mg/L, C is the normal domestic sewage strength (allowable), 8.34 is the conversion of pounds 

per gallon, and Cost Factor is the cost factor for the surcharge characteristic considered in $/lb.  

 

Economics 

The economic model was developed using Microsoft Excel 2013 spreadsheet software. 

The software was used to compile the capital and variable costs throughout the process. An in-

depth analysis of all capital and variable costs considered is documented in Table 1.6. Capital 

costs included all equipment, trucks, and the initial cost of the building and land. Additionally, 

the variable costs included: wages, utilities, materials, administration, maintenance, repair, 

insurance, and depreciation costs, which accumulate during equipment and property use. A 10 

year depreciation period was assumed. A straight-line-depreciation method was used to calculate 

the consumption pattern of the capital over its intended useful life, and to generate salvage value 
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estimates. To estimate the selling price of flocculant produced, a break-even chart was developed 

and is shown in Fig. 1.5. To generate an estimate of annual revenue eq. (4) was used. 

    (4) Annualized Capital Cost =Total Annual Benefit-Total Annual Fixed Cost-Total  

  Annual Variable Cost 

Where: total annual benefit accounts for the income produced from product sale and 

equipment salvage, total annual fixed cost is the summation of annualized capital cost and 

depreciation, insurance, and taxes relative to the fixed capital, and total annual variable cost is 

the summation of all annual variable expenses. To annualize capital cost the total capital 

investment was multiplied by an annualization factor calculated using eq. (5). 

     (5)   A(r,n)  =  (r(1+r))^n/((1+r)^n-1) 

Where: r is the prevailing rate of interest (assumed to be 0.05), and n is the usable life 

time of the capital asset (assumed to be 10 years). To analyze the capital and variable costs that 

have the greatest economic impact, Microsoft Excel pie charts were developed. Further, 

sensitivity analyses, including theoretical economy scales (annual cost vs. production rate) and 

cash modeling (annualized cash flow vs. production rate), were produced to determine the most 

efficient flocculant price point. 

 

                                                 Results and Discussion 

Relative to the transportation scenario described above, a summarization of all 

transportation capital and variable costs are shown in Table 1.3. The cost of the trucks made up a 

majority of the transportation capital at 105,000 USD. The fuel and labor costs maintained the 

largest portion of annual transportation variable costs at 7,263 and 6,505 USD respectively. The 

vehicle insurance and vehicle taxes are relatively low. Since the model calculates these costs on a 
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per mile basis, and only one truck is assumed to travel 60 miles per day, these costs are not 

reflective of a real world process simulation, but are focused as attestation of the operation’s 

feasibility.  

 Due to diluted serum components retaining high wastewater pollutant 

characteristics, the economic impact of annual waste water surcharge was speculated to become 

a main, if not the, deciding factor of the feasibility of this process. Accordingly, calculation of 

annual sewage surcharge was based on rigorous analytical testing of chicken blood pollution 

characteristics (BOD, TSS, COD, and NH3). The calculated sewage surcharge cost may be 

viewed on Table 1.4. Naturally, chicken blood sustains high COD at 106,350 mg/L, thus, 

incurred roughly 70% of the annual surcharge cost at 197,421 USD of 285,550 USD overall. A 

majority of the remaining associated cost was due to BOD at 86,619 USD annually. Surprisingly, 

TSS and NH3 rate charges were the most expensive at 0.22 and 0.45 USD per pound, but their 

surcharge cost impact was extremely low due to chicken blood’s low inclusion of TSS and NH3 

at 223 and 300 mg/L respectively. The TSS had no impact on cost because the volume was lower 

than the maximum surcharge-free amount, 250 mg/L.  

 The overall equipment capital cost was compiled in Table 1.5. The spray dryers 

make up over half of the overall initial equipment cost, 1,350,000 USD of 2,376,304 USD. To 

process the liquid material at the processes constrained flow rate, 192 gpm, three separate spay 

dryers are considered. Further, the decanter centrifuge and RVFD incurred a relatively high price 

quote of 150,000 USD each, therefore, producing a large initial capital investment. Due to the 

relatively low flow rate of the ultrasonic processors, approximately 35 gpm, six separate 

processing reactor units are considered for this operation, and incurred an overall cost of 270,000 

USD. Variable costs associated (equipment maintenance (assumed 3% of capital), depreciation 
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(10 years), insurance (5%), and repair (2%)), which are not shown, produced a total annual cost 

of approximately 473,000 USD. 

 The pie chart analysis (Fig. 1.3-1.4) of total variable and capital costs produced 

results previously hypothesized. Sewage surcharge was shown to make up 49% of the total 

overall variable cost, which demonstrates the incentive for processing plants to dispose their 

excess chicken blood through other means than waste water streams. Surprisingly, the materials 

made up 21% of total variable costs. This is due to the relatively high volume of EDTA 

purchased, which is used to anti-coagulate the raw income of chicken blood. A majority of the 

capital cost was made up of initial construction costs, at 39%, and the initial investment on spray 

dryers, at 33% respectively. The overall cost analysis is detailed in Table 1.6. After annualizing 

the overall capital cost and summation of yearly fixed costs (depreciation, insurance, taxes) the 

annualized fixed cost of approximately 872,000 USD was calculated. Total annual variable costs 

incurred an overall cost of approximately 7,000,000 USD. To overcome the overhead of these 

two costs, the total annual benefit, consisting of economic benefit from salvaged equipment and 

packaged flocculant sold, had to equal the sum of the annualized variable and fixed costs.  At 

85% process efficiency assumed, the total flocculant capacity of approximately 10,000,000 kg/yr 

was calculated. Assumed to sell at a rate of 1 USD per kg, the total annual benefit produced 

roughly 10,000,000 dollars, including equipment salvage. Thus, the overall projected annual 

revenue resulted in roughly 2.4 million dollars. This value was calculated assuming that 100% of 

produced flocculant would be sold to consumers. The break-even point analysis (Fig. 1.5), which 

assessed the break-even unit (BEU) at a unit (flocculant) price of 1 USD per kg, resulted in a 

BEU of approximately 2,760,000. Consequently, to break even nearly 28% of product produced 
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would need to be sold before profit is obtained. From the current prospective, and all things 

considered, the process is projected to be highly economically feasible.   

 

Implications 

The relatively high profit margin projected resulted from acquiring the initial raw chicken 

blood at no cost, which is a consequence of chicken processers not wanting to dispose of the 

chicken blood, since it is an expensive procedure. Comparatively, a 2013 study (Anthony, 2013) 

documented the production of an algae derived flocculant, which incurs large raw material 

production costs since the algae culture must be grown and cultivated. The ethanol production 

industry must pay for raw substrate sources, which decreases the profit area substantially 

(Pimental and Patzeck, 2005; Kwiatkowski et al., 2006; Kazi et al., 2010). If the operation 

theorized becomes exceedingly profitable, the chicken processing plants will undoubtedly start to 

sell chicken blood for their own profit. This phenomenon has been documented in similar 

applications; a feasibility analysis focused on scrap tire to crumb rubber conversion 

(Sunthonpagasit et al., 2003) detailed the high demand for rubber raw materials (tires) causing 

increase in tipping fees and transportation costs within the acquisition territory. Future market 

consequences, such as described, may change the high profit rate currently predicted.  Further, 

the selling performance of packaged flocculant depends on a variety of factors: performance 

versus current commercial flocculant, product application, consumer, etc. Looking back at the 

precursor study (Piazza et al., 2011), areas of greatest economic impact presided in: facility 

overhead, labor, utilities, and sulfuric acid. Comparatively, the current study has concluded that 

initial equipment and building capital make up a majority of the costs, while labor making up a 

lower percentage of variable cost. The initial studied hypothesized that wastewater surcharge 
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may contribute to a large portion of the overall costs. It was found that this is indeed true for this 

study; the wastewater surcharge is roughly half of all variable costs. Next, the capital costs 

related to dehydrating the CKB posed relatively high facility charges. This study has shown this 

to be case as well; the utilities charge, especially from spray drying, was shown to be 20% of all 

overall variable costs.  One of the biggest considerations is the performance of the bio-flocculant 

and how selling point is affected. It was projected that the cost of flocculant production will be 

$0.77 per pound (Piazza et al., 2011). After consideration of BOD removal, a total net cost of 

production is suggested at $0.33 per pound (Piazza et al., 2011). Compared to PAM, $1.20 per 

pound, CKB is effectively active at a 2:1 pound ratio, yielding a renewed CKB production cost 

of $0.66 per pound (Piazza et al., 2011). At half the cost of PAM, CKB may have a great 

economical/environmental effect in the poultry processing industry. This study assumed a base-

line value of $0.45 per pound, which is lower than previously projected in the 2011 study. 

Therefore, since the assumed value is lower than previously projected, this study suggests that 

there may be even better economic feasibility if the selling point is increased to $0.66 per pound. 

Therefore, future research, using this study as a precursor, may benefit from in-depth analysis of 

selling point interactions, such as market response, transportation, and selling ability.  

 

                                                       Conclusion 

The techno-economic analysis evaluating the hypothetical chicken blood-to-flocculant 

operation suggests an economically feasible process with a high profit projection. The high profit 

projection is a result of free raw chicken blood acquisition and a surplus of product, which 

results large room for potential profit. The analysis has shown sewage surcharge has a dramatic 

effect on overall cost, therefore, future research may benefit from focusing on applications which 
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lowers the pollutant characteristics of chicken blood. While there is undoubted economic 

feasibility for new-entrant chicken blood conversion plants, there are also considerable market 

uncertainties, described above, which permit cautious analysis. While carrying out this analysis 

many new questions arose. Does centrifugation of cell solids and serum affect the overall 

performance of the flocculant produced? Is it economically beneficial to centrifuge the serum 

and cell solids out of the solution?  This underlying analysis provides an effective precursor for 

new research endeavors focusing on answering these uncertainties.    
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Figure 1.1. Basic process flow diagram 
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Figure 1.2. Equipment based input-output process diagram
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Figure 1.3. Economic impact distribution of variable costs 

 

 

Figure 1.4. Economic impact distribution of capital cost
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Figure 1.5. Break-even point analysis
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Table 1.1. Overall assumptions list 

Overall Assumptions

Initial Factors Amount Unit Source

# of chickens daily 750000.00 heads (Kiepper, 2009)

Average weight of chicken 5.92  lbs (Kiepper, 2009)

Blood percentage of total mass 0.08 Percent (Kiepper, 2009)

Amount Blood/Bird  0.44 lbs (Kiepper, 2009)

No. of Birds Processed Daily 750000.00 heads (Kiepper, 2009)

Total Weight of Blood daily 333000.00 lbs (Kiepper, 2009)

Total Bleed-Out Weight 166500.00 lbs (Kiepper, 2009)

Total Bleed-Out Volume 23735106.54 gal/year Calculated

Gallons per day 91288.87 gal/day Calculated

Gallons per hour 11411.11 gal/hr Calculated

Work days in year 260.00 days Assumed

Hours per day 8.00 hours Assumed

Blood Trandsportation Distance (round trip) 20.00 miles Assumed

Trips per day 3.00 trips/day Assumed

Labor 4.00 workers Assumed

Wage 15.00 $/hr Assumed

Process efficiency 85.00 % Assumed

Raw Materials Amount Unit Source

Blood 95238000.00 kg/yr Calculated

Water 125904064.57 gal/yr Analytical Data

EDTA 134770.66 kg/yr Analytical Data

Isotonic Saline 127047492.00 kg/yr Analytical Data

Serum 63523746.00 gal/yr Analytical Data

Hct 38095200.00 gal/yr Analytical Data

Cell Debris 5295232.80 kg/yr Analytical Data

Other Cell Pts 23815256.23 kg/yr Analytical Data

Hb 8984710.97 kg/yr Analytical Data

NaCl 1143427.43 kg/yr Analytical Data

(Blood+EDTA) 95372770.66 gal/yr Calculated

(Hct+1/2PBS) 101618946.00 kg/yr Calculated

(Hb+Water) 71936743.25 gal/yr Calculated

Water (kg/hr) 30265.40 kg/hr Calculated

Total Solid Cell Debris (metric ton) 29110.49 ton Calculated

Utilities Amount Unit Source

Gas Rate $12/million btuh $ Savannah, GA Utility Rate, 2015 

Electricity Rate 0.14501 cents/kWh cents Georgia Public Service Commission, 2015 

Water Rate $13.2 + $1.62*(cu ft used) $ Savannah, GA Utility Rate, 2015 

Tippage Rate $34.92/ton $ (van Haaren, 2010)

Transportation Amount Unit Source

Insurace 0.06 $/mile American Transport Research Institute, 2015 

Vehical Tax 0.03 $/mile American Transport Research Institute, 2015 

License Tax 0.02 $/mile American Transport Research Institute, 2015 

Oil 0.02 $/mile American Transport Research Institute, 2015 

Tire wear 0.04 $/mile American Transport Research Institute, 2015 

Maintenance 0.14 $/mile American Transport Research Institute, 2015 

Labor 0.42 $/mile American Transport Research Institute, 2015 

Repair 0.15 $/mile American Transport Research Institute, 2015 

Salvage Value 0.15 $/mile American Transport Research Institute, 2015 

Sewage Surcharge Amount Unit Source

Blood BOD Content 46725.00 mg/l Analytical results

Blood COD Content 223.00 mg/l Analytical results

Blood TSS Content 106350.00 mg/l Analytical results

Blood NH3 Content 300.00 mg/l (Hansen and West, 1992)

BOD Allowable 250.00 mg/l Savannah, GA  surcharge rates, 2015

TSS Allowable 225.00 mg/l Savannah, GA  surcharge rates, 2015

COD Allowable 425.00 mg/l Savannah, GA  surcharge rates, 2015

NH3 Allowable 12.00 mg/l Savannah, GA  surcharge rates, 2015

Materials Amount Unit Source

Isotonic Saline 0.75 $/kg molbase

Plastic Bags (50 lbs) 0.39 $/bag U-Line 50 lb bag

EDTA 3.00 $/kg molbase

Construction Amount Unit Source

Equipment freignt 6.79 % of Capital NYU Capital Cost by Sector

Installation 10.00 % of Capital NYU Capital Cost by Sector

Piping 7.00 % of Capital NYU Capital Cost by Sector

Instrumentation and Control 8.51 % of Capital NYU Capital Cost by Sector

Electrical 10.00 % of Capital NYU Capital Cost by Sector

Buildings 11.50 $/sq. ft Global,1994

Yard Improvement 2.30 % of Capital NYU Capital Cost by Sector

Land 109154.93 $/acre ASABE, 2008

Engineering 8.19 % of Capital NYU Capital Cost by Sector

Contingeacy 6.43 % of Capital NYU Capital Cost by Sector
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Table 1.2. Mass balance of liquid throughout the process 

% of mixture after process

Process Water Serum Cell Membrane Cell Organelles Hb EDTA NaCl

0. Raw Income - 66.61% 5.55% 24.97% 9.42% 0.14% -

1. Wash Cells 61.95% - 5.21% 23.44% 8.84% - 0.56%

2. Lyse Cells 61.95% - 5.21% 23.44% 8.84% - 0.56%

3. Remove Solids 87.51% - - - 12.49% - -

4. Dehydration - - - - 100.00% - -

Cell Solid Debris

 

 

Table 1.3. Economic distribution of transportation costs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Capital Costs ($) 
Trucks $105,000.00 

  Total Capital Cost =  $105,000.00 

  
  Fixed Costs  ($/yr)  
Insurance $982.80 
Vehicle Taxes $429.00 
License fees $343.20 
Total Fixed Cost = $1,755.00 

  Variable Costs ($/yr) 
Fuel  $7,263.01 
Oil $312.00 
Tire wear $686.40 
Maintenance $2,152.80 
Labor $6,505.20 
Repair $2,308.80 
Total Variable Cost =  $19,228.21 
    
Other Cost Considerations ($/yr) 
Depreciation (over 10 years) $8,925.00 
Interest (9% based on GMC 
website) $9,450.00 
Total Other Cost = $18,375.00 

  Equipment Salvage Value    
Salvage Value (Assuming 15%) $15,750.00 
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Table 1.4. Sewage surcharge cost analysis 

Whole Charge Variables Amount (mg/L) Rates ($/lb) Surcharge (Monthly Basis) ($) Surcharge (Daily Basis) ($)

SERUM : 

BOD = 46,725 $0.16 $86,619.31 $2,887.31

TSS = 223 $0.22 $0.00 $0.00

COD = 106,350 $0.16 $197,421.19 $6,580.71

NH3 = 300 $0.45 $1,509.66 $50.32

Total: $285,550.16 $9,518.34  

 

 

 

Table 1.5. Process equipment list  

Equipment Model Units Needed Single Unit Cost ($) Total Initial Cost ($)

Surge Tank 3500 Gallon DW Tank 2 $9,876.95 $19,753.90

Spray Dryer LPG800-10000 High-speed centrifugal Spray Dryer 3 $450,000.00 $1,350,000.00

Ultrasonic Processor Model UIP10000 - Ultrasonic Processor  with "donut" horn 6 $45,000.00 $270,000.00

Centrifuge Hiller DecaPress Two-Phase Decanter Centrifuge (DP45-422) 3 $150,000.00 $450,000.00

Cutter Pump Cornell 4NNTL Cutter Pump 1 $25,000.00 $25,000.00

Slurry Pump Cornell 2SPR Slurry Pump 5 $20,000 $100,000

Sealer HS-BII Rotary Sealer 1 $3,550.00 $3,550.00

Bagger Stand Pouch Packing machine 1 $5,000.00 $5,000.00

Conveyor SB/HD electric conveyor 20 ft 2 $1,000.00 $2,000.00

Filter KuoBao Same Design chemical liquid filter 1 $1,000.00 $1,000.00
Rotary Vacuum Filter Komline-Sanderson RDVF 1 $150,000.00 $150,000.00

Total = $2,376,303.90  
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Table 1.6. Overall cost analysis 

Scheme 1

 

Equipment lifetime [year] 10

Blood capacity [gal/hr] 11411.11

capacity for flocculant (85% Yield Efficiency) [kg/hr] 4898.71

Total Flocculant Capacity [kg/yr] 10189313.42

Total initial cost [$] 2,476,303.90$                                                

Equipment freignt [$] 168,141.03$                                                   

Installation [$] 247,630.39$                                                   

Piping [$] 173,341.27$                                                   

Instrumentation and Control [$] 210,733.46$                                                   

Electrical [$] 247,630.39$                                                   

Buildings [$] 69,000.00$                                                      

Yard Improvement [$] 56,954.99$                                                      

Land [$] 54,577.47$                                                      

Engineering [$] 202,809.29$                                                   

Contingeacy [$] 159,226.34$                                                   

Total fixed capital cost [$] 4,066,348.53$                                                

Annualized capital cost [$/yr] 526,610.74$                                                   

Equipment salvage value [$/yr] 39,513.04$                                                      

Benefits(Packaged Floc) [$/yr] 10,189,313.42$                                              

Benefits(Trans. Blood) [$/yr] -$                                                                  

Total annual Benefit [$/yr] 10,189,313.42$                                              

Depreciation [$/yr] $48,709.77

Insurance [$/yr] 123,815.20$                                                   

Taxes [$/yr] 173,341.27$                                                   

Total Annualized Fixed Costs [$/yr] 872,476.98$                                                   

Total annual variable costs [$/yr] 6,969,809.05$                                                

Projected Annual Revenue [$/yr] 2,347,027.38$                                                
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                                                        CHAPTER IV: 

        CRADLE-TO-GRAVE LIFE CYCLE IMPACT ASSESSMENT AND 

TECHNO-ECONOMIC ANALYSIS FOR POLY(LACTIC ACID) (BIO) COMPOSITES 

 

                                                            Abstract 

This research endeavor focused on a life cycle impact assessment (LCAI) and techno-

economic analysis (TEA) comparison LCA of poly(lactic acid) (PLA) composite production, 

using both organic and inorganic fillers. Organic fillers DDGS, flax, hemp, rice husks, and wood 

are compared against inorganic substitutes (glass and talc) for PLA plastics. This study utilized 

LCAI and TEA methodology to estimate and quantify costs, emissions, and energy intensity (EI) 

associated with material acquisition, processing, transport, and end of life treatment used during 

plastic composite production. Emission categories analyzed include Global Warming Potential 

(GWP), Air Acidification (AA), Air Eutrophication (AE), Water Eutrophication (WE), Ozone 

Layer Depletion (OLD), Air Smog (AS), High Carcinogens (HC), and High Non-Carcinogens 

(HNC). To achieve a “Cradle-to-Grave” perspective, two models were meshed, the Plastic 

Comparator (PC) and EIO-LCA (EIO), to simulate the EI and emissions associated over the 

entire life cycle. Based assumptions used, this research has shown that utilizing land fill end of 

life treatment and glass filler composite was the most environmentally harmful option, and 

maintained the highest economic impact, for all impact categories during PLA composite 

production. Alternatively, both DDGS and wood filler composites paired with recycling end of 

life treatment were shown to be the least environmentally damaging method and incurred the 

lowest cost of all PLA composites considered. This study also suggests that utilization of organic 

bio fillers produces a lower economic/environmental impact, and EI, compared to utilization of 
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inorganic fillers in PLA composites. Accordingly, this research has demonstrated the impact of 

LCA/TEA paired analysis when assessing the bioplastic and biocomposite processing, which 

may be utilized as a precursor for parallel research undertakings. 

 

                                                         Introduction 

Plastic production has become one of the leading industries in our modern society and 

has consistently been transformed to fit the needs of our growing population. Plastic materials 

maintain many assorted properties that out-compete materials composed of wood and metal, and, 

in turn, plastics have procured a hefty world demand (Rosato, 2003). Since the 1950s, there has 

been an increasing trend in demand for plastics and is anticipated to increase steadily within the 

next 50 years (Plastics Europe, 2008). As our world population exponentially lurks closer to our 

projected sustainable limit (Smith, 1999), increasing plastic sustainability has become a leading 

issue globally (Morris, 2001). To counter act the current petroleum-based dependence, the 

substitution of bio-based plastics as a replacement, and or drop-in resource, for petroleum-based 

plastics has been shown to be a favorable solution. Bio-based materials entail a diverse range of 

renewable resources that can be fully recycled, or composted, and has potential to create 

sustainable, energy proficient, plastic processing. 

Bio-based plastics come from a family of materials that can be extensively different from 

one another and are moderately or entirely based from natural resources (Erwin, 2003). Bio-

based plastics include, but are not limited to: bio-polyethylene (BPE), poly(lactic acid) or 

polylactide (PLA), polyamide 11 (PA 11), PHA derived poly-3-hydroxybutyrate (PHB), and 

thermoplastic starch (Erwin, 2003). Biodegradable plastics, considered non-bioplastics, include 

fossil based polybutylene terephthalate (PBT) and polycaprolactone (PCL) (Erwin, 2003). 
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Bioplastics are obtained from a variety of different sources. The bioplastic industry generally 

uses starch, cellulose, glucose, and biomass oils to develop the current generation of bio-based 

plastic. Since early production of bio-based plastic in 1926, natural fibers such as lignin and 

cellulose have been used as natural reinforcement materials used in composites (John, 2008). 

Bio-based composite material has been shown to decrease the amount of petro-based plastic 

produced, thus, lowering the environmental burden released during production. One research 

study (Alvarez-Chaves, 2012) has shown that starch, PLA, and PHA bio-based composites have 

potential to lower fossil fuel use and sequester harmful health and environmental impacts. One 

current drawback associated with some bio-based plastics is due to extra processing of biological 

materials. Since many organic fibers utilized are plant based, the moisture content must first be 

lowered through various drying techniques (Gander, 1995). To attempt to quantify 

environmental impacts linked to bio-composite production, many plastic fabrication companies 

utilize SimaPro modeling software to project the overall environmental impact of plastic 

production potentially covering an entire cradle-to-grave commercial operation (Madival, 2009; 

Erwin, 2003). Currently, there are very few publications which compare LCA results over 

different combinations of filler, end of life treatments, and production parameters. Recent 

publications are solely focused on a single plastic or product and are usually limited to plastic 

processing research divisions (Madival, 2009; Erwin, 2003). Many plastic processors may 

benefit from a comparison tool which draws SimaPro database results and compares 

environmental impacts on a per kg basis. While similar models have been produced (Erwin, 

2003), results are normalized to a single plastic production scheme, which makes comparison 

between alternative fillers and plastics difficult. 
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A LCAI approach involves the cradle-to-grave consideration for all operations in a 

functional unit’s development. Product development steps include: extraction of raw materials, 

the acquisition of energy for the procedures and the transportation between them; processing and 

fabrication of preliminary materials; manufacturing of final product and distribution, and end-of-

life treatments. The main purporse of an LCAI is to determine the overall energy, material, 

waste, and emission impact of a product’s full life cycle, as well as an   analysis to determine 

indirect environmental effects (Owens, 1997; Klopffer, 1997; Curran, 1994).  One 

methodology of economic impact evaluation is a Techno-economic analysis (TEA). TEA 

modeling is a market forecast tool which analyzes and compiles the fixed capital and variable 

costs and projects the annual rate of economic return and is usually associated with a commercial 

production process. For example, the United States government has utilized TEAs to assess the 

economic viability of biofuel production from a variety of raw materials (Kazi, 2010; US Dep. of 

Energy, 2009). A TEA appears to be a viable methodology to analyze the economic impact 

variations of composites filled with varying materials. If evaluated, this research study may 

reveal previously unknown filler and end-of-life combinations during PLA (bio)composite 

production. 

The objective of this study is to develop a LCA comparison to estimate the energy 

intensities environmental impacts during production of PLA (bio)composites, using different 

fillers, processing and material constraints, and end of life options. Further, a secondary 

objective is to quantify environmental and economic impact differences between plastics filled 

with bio-based and inorganic synthetic filler material.  
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                                               Materials and Methods 

The two models utilized for this project: (1) the Plastic Comparator (PC) model in which 

overall processing costs, energy intensities, and greenhouse gas emissions between 

petrochemical and bio-based plastics are calculated and compared utilizing the M Base database, 

and (2) EIO-LCA (EIO), an economic input-output life-cycle assessment method which 

estimates material, energy, and emissions resulting from economic activity. Using a combination 

of these models, arrangements between PLA and PP (bio) composites were compared over 

various fillers and end of life options. The fillers included: glass, talc, DDGS, flax, hemp, rice 

husks, and wood pulp filler. Five different end of life treatments were compared for each 

combination of plastic and filler, these comprise: recycling, incineration, landfill, landfill + 

methane extraction, and a base no end of life option. Utilizing the PC model, energy intensity 

and emission production was combined over five system boundary operations which include: 

Raw Material Acquisition, Transportation, Manufacturing and Processing, Consumption, and 

End of life treatment. The model calculates processing costs on a “per part” ($/part) and “per kg” 

($/kg) basis, using user entered, and data base, assumptions. “Per kg” ($/kg) basis is calculated 

using eq. (1) 

 

   (1)     Kunit = (Kequip + Kel  + Kmaint)/M               

 

Where: Kunit is the cost of pellet material on a “per kg” ($/kg) basis, Kequip is the cost 

of processing equipment including mixer, pelletizer, and extruder, Kel is the cost of electricity, 

Kmaint is the cost of maintenance, and M is the material amount processed. The overall part cost 

“per part’’ ($/part) is calculated using eq. (2) 
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(2)     Kpart = Kproc + Kmat + Ktool                           

 

Where: Kpart is the cost of a single part ($/part), Kproc is the processing cost of a single 

part including injection, molding, grinding, maintenance, and electricity, Ktool is the cost of 

injection molding, Kmat is the material cost. PC models were ran using one material size, 

100,000 kg, and three different part sizes, 0.01, 0.1, and 1 kg. A detailed assumption list for the 

PC model can be viewed on table 2.1.  

 Since many of the raw material price data ($/kg) researched was varied, a cost 

range for each filler was produced. Three separate pricing sources were used for each filler, high, 

average, and low values were utilized to create a sensitivity analysis for filler processing costs 

incurred. A grouping of all production pricing data collected is shown on Table 2.2. The raw 

material data was inserted into the EIO model and the results were graphically organized (Fig. 

2.2). Utilizing the EIO model, total overall production costs were collected relative to each end 

of life treatment, filler option, and part size. The total overall production costs were graphically 

modeled and compared by each separate part weight, this comparison is shown on Figure 2.13.   

 Utilizing the EIO model and researched filler pricing data, EPA TRACI impact 

categories and energy intensity was modeled on a “per dollar” basis. TRACI, or Tool for the 

Reduction and Assessment of Chemical and other environmental Impacts, is the standard 

environmental impact assessment developed by the Environmental Protection Agency developed 

specifically for United States industries. Using this standard, select impact categories were 

chosen for analysis. Impact categories include: Energy (J), Global Warming Potential (GWP), 

Air Acidification (AA), Air Eutrophication (AE), Water Eutrophication (WE), Ozone Layer 
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Depletion (OLD), Air Smog (AS), High Carcinogens (HC), and High Non-Carcinogens (HNC). 

Using the US Purchaser Price Model database developed for unlamented plastic profile shape 

manufacturing, each impact category was normalized to a “per dollar basis’’ (unit/$).  

 To normalize all comparison parameters, both models were mathematically 

combined to establish each impact category into a “per kg” basis (unit/kg). To achieve this eq. 

(3) was utilized as shown.  

  

   (3.1)            Ecat × Kunit = Xunit             

   (3.2)           Unit/$   ×   $/kg   =   Unit/kg               

 

Where: Ecat is the normalized EIO impact category on a “per dollar” (unit/$) basis, Kunit 

is the cost of pellet material described above, Xunit is the EIO impact category normalized to 

“per kg” (unit/kg) basis. The overall process methodology may be viewed in Figure 2.11. 

 For each impact category, graphic comparison matrix plots were developed using 

Microsoft Excel. Each graph compares all seven fillers for a specific end of life treatment and 

part weight. End of life treatments are compared vertically, while part weight is compared 

horizontally. Each impact category matrix can be shown in figures 2.2-2.11. To determine 

overall mechanical properties of PLA composites, a mechanical properties table was compiled 

from published documentations, this may be viewed in Table 2.3. Using the combination of 

results produced from TEA, LCA, and mechanical properties analysis, application 

recommendations were suggested. 
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                                                 Results and Discussion 

Before multiplying both model’s normalized values, the “per kg’’ ($/kg) PC model data 

was compiled and graphically compared for each part weight, filler, and end of life treatment 

(Fig. 2.2). The data suggested that glass filler composite production maintains the most 

expensive life cycle, while DDGS and wood filler are the lowest cost to produce per kg. This 

holds true over all end-of-life options. 0.1 kg and 1 kg part weight graphs showed the least 

amount of cost variance between filler options, and 0.01 kg showed a significant amount of cost 

variance between end-of-life options. Recycling was shown to have the greatest amount of cost 

impact by reducing the cost $1-$2 per kg for all fillers analyzed, while landfilling proved to be 

the most expensive option. When 1 kg part weight was implemented filler composite production 

was shown to be the most cost effective solution. Thus, suggesting a larger part weight will 

include a lower cost in pellet material production. The processing cost sensitivity analysis (Fig. 

2.12) produced expected results for all fillers. It was observe a direct relationship between 

processing costs and initial raw material price; i. e. if raw input is increased then the total 

processing costs should increase as well, as it should. Since raw input price directly affects the 

model and does not indirectly affect other variables, these results suggested the model is 

correctly evaluating these interactions.  The overall production cost models (Fig. 2.13) produced 

the most significant results economically. The model’s results show that recycling incurs and 

drastically lower overall end of life treatment options and for all filler materials. Alternatively, 

landfill treatment is shown to have the greatest economic impact over all parameters.  The 

overall production costs, relative to fillers specifically, are shown to be significantly lower for 

rice husks, wood, and DDGS, as compared to glass and wood fillers. Therefore, the results 
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suggested that it is more economically beneficial to produce PLA fillers with organic materials 

as compared to inorganics such as glass and talc. 

After multiplying each model’s normalized values using equation (3.1), the 

environmental impact categories could then be graphically compared. GWP generation 

(kgCO2eq/kg) was shown to follow a similar trend compared to cost (Fig. 2.3). Again, recycling 

end of life treatment paired with glass filler production produced the lowest amount of CO2eq 

generation over all part weights. DDGS, rice husks, and wood filler production produced the 

lowest amount of CO2eq when paired with recycling end of life option. Using 1 kg part weight 

was shown to produce the least, and lowest, amount of carbon emission for all filler and end of 

life treatments analyzed. Energy intensity (J/kg) comparison graphs followed a trend similar to 

other impact categories (Fig. 2.4). Most energy efficient method was shown to use 1 kg part 

weight, recycling end of life treatment , and utilize DDGS, rice husks, and wood filler composite 

production. The most energy intensive method utilized, 0.01 kg part weight, incineration end of 

life treatment, and glass filler composite production.  Air acidification (kg Ne/kg) comparison 

graphs followed a trend similar to other impact categories (Fig. 2.5). The most emission efficient 

method was shown to use 1 kg part weight, recycling end of life treatment , and utilize DDGS, 

rice husks, and wood filler composite production. The most environmentally harmful method, 

from an air acidification view utilized, 0.01 kg part weight, incineration end of life treatment, 

and glass filler composite production. Almost exact trends may be observed in: Air 

Eutrophication (Fig. 2.6), Water Eutrophication (Fig. 2.7), Ozone Layer Depletion (Fig. 2.8), Air 

Smog (Fig. 2.9), High Carcinogens (Fig. 2.10), and High Non-Carcinogens (Fig. 2.11). The most 

emission efficient method was shown as follows: 1 kg part weights, recycling end of life 

treatment, and utilize DDGS, rice husks, and wood filler composite production. The most 
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environmentally harmful method, from an air acidification view utilized, 0.01 kg part weight, 

incineration end of life treatment, and glass filler composite production. This is especially 

significant since these trends suggest that not only is it more environmentally beneficially to 

produce PLA filler with organic matter, but it is also more economically beneficial.    

 

Mechanical Properties  

Many polymer and composite applications utilize fillers to account for many unique and 

robust applications. This may include: thermal, chemical, electrical resistances, as well as 

increasing, or decreasing, strength, stiffness, and elasticity. This table 2.3 is a developed 

overview of mechanical strength characteristics for poly(lactic acid) composites. Data was 

compiled from previous studies examining different composite properties. Almost universally, 

data samples were performed three times to achieve standard deviation (n=3) ranges. Tensile 

strength, or the maximum stress withstood before failure, was shown to be diverse for each filler 

and filler composite percentage. Examining PLA values suggests a high TS (MPa) linked to 

glass, wood pulp, and flax compared to pure PLA. Talc and hemp composites show the weakest 

TS compared to average values shown by DDGS and high percentage flax (40%). It was noted 

that increasing filler percentage will usually reduce crystallinity and yield a lower TS for most 

composites (Huda, 2006). PLA talc (10%) composite(s) shows the greatest FS. Hemp PLA 

(40%) composites show the weakest values for the each group respectively. Young’s modulus 

accounts for a materials overall stiffness and is the ratio of stress to strain along an axis. Flax 

(30%-40%) and Glass (40%) composite for PLA drastically increased the YM (GPa) of the 

plastic material. Wood pulp, hemp, and DDGS show YM values between 1-2 GPa range and 

retrieved similar properties in this ratio. It should be noted that higher filler percentages showed 
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an inverse relationship with YM values. Elongation at break, or fracture strain, is the ratio 

comparing changed length and the initial length after failure has occurred. Talc filler was shown 

to elongate between 30%-70% between filler percentages in PLA composites. DDGS filler was 

shown to increase PLA EaB by a significant amount as well. If filler percentages become too 

high plastic to filler bonds decrease, thus, high decreases in EaB can be observed. From a general 

perspective, PLA was strengthened considerably by glass, flax, wood pulp, and high percentage 

talc (40%), but most bio-based fillers were observed to decrease overall PLA strength due to 

relatively weaker bonds. Therefore, it may be beneficial to use filler/plastic bond enhancer for 

PLA composites. Utilizing the mechanical properties, economic, and life cycle impact data 

produced in this study, compatible applications for PLA composites may be determined. For 

example, DDGS and hemp filled composites are relatively inexpensive to produce and maintain 

a high degree of strength and stress resistance, these specific fillers are recommended for 

strengthening and reinforcement applications, such as filler in plastic pipping or dynamic joints.      

 

                                                         Conclusion 

It is shown for both PLA composites that utilization of bio fillers is the more sustainable 

and economical method of production. Also, the use of organic fillers relinquishes many 

increases in environmental burdens which can be contributed to inorganic filler composite 

production. This is due to the ability to receive benefits from landfill and recycling end of life 

options, when utilizing organic bio fillers. Glass filler is consequently higher in both 

environmental impact category generation and energy intensity, while DDGS, wood, and rice 

husks maintain a relatively low environmental impact. Additionally, DDGS and hemp are shown 

to be the strongest most resistant fillers analyzed. Therefore, not only are bio-filled composites 
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shown to produce lower economic and environmental impact, but also are shown to have 

comparable or better performance with standard petro-based composites. The effects described in 

this study are only relative to PLA. Looking ahead, producing this model on different plastic 

composites such as PHA/PHB, polypropylene, and polyethylene (to name a few) may result in 

new findings. Additionally, utilization of statistical multivariate analysis to produce an in-depth 

analysis and test possible hidden interactions between variables and processing parameters 

would appear to be beneficial to this modeling process. 
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Table 2.1. Plastic Comparator model overall assumption list 

 

Step 1: Material Cost/Emission Data 

Users may define material composition, including fillers and additives. If material usage, over 

the production run, is known, the absolute energy usage, cost, and greenhouse emissions will be 

calculated.  

General Settings (user defined): 
 Material amount [kg] = 100,000 

 Electricity Cost [$/kWh] = 0.08 

 Fuel Average Admissions [kgCO2/MWh] = 825 

Material Properties (may be user defined): 
 Heat Capacity [kJ/kgk] = 1.48 

 Melt Temp. [°c] = 230 

 Base Cost [$/kg] = 3.12 

 Heat Value of Material [MJ/kg] = 43 

Material Acquisition, Monomer Production, and Polymerization (may be user defined): 
 Energy Consumed [MJ/kg] = 31 

 Emissions Produced [kgCO2/kg] = 5 

Step 2: Processing Cost/Emission Data 

The user may define the injection molding process. This entails the weight and runners 

associated with the product. Part weight is defined by shot weight divided by the number of 

cavities. Maintenance cost is defined as a percentage of the injection molding capitol cost. The 

user will also have to define the operator and overhead costs based from depreciation. 

Amount (user defined): 
 Part Weight [kg] = 0.01, 0.1, 1  

General Settings (user defined): 
 Factor for Transportation of Machine [%] = 0.2 

Injection Molding Machine (user defined): 
 Price [$] = 400,000 

 Depreciation Period [yr] = 5 

 Working Hours [hr/yr] = 2,200 

 Cycle Time [s] = 12 

 Process Yield [%] = 85 

 Machine Efficiency [dec.] = 0.6 

 Maintenance Cost [%] = 4 

Labor, Overhead of Injection Molding Machine (user defined): 
 Hourly Wage 1 [$/hr] = 25 

 Hourly Wage 2 [$/hr] = 25 
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Table 2.1. (Continued) 

 

 Overhead 1 [$] = 1,000 

 Overhead 2 [$] = 500 

Tool, Price to Make Mold (user defined): 
 Price [$] = 50,000 

 Maintenance Costs [%] = 2 

 Cavities = 4 

Step 3: Cost Comparison 

The cost to manufacture the product from two different plastic materials is compared using a 

graph as a function of number of parts produced. The price of the material may be user defined 

or taken from the database. Comparison is generated with the data of costs per part on Y axis and 

number of parts on X axis. 

 

Step 4: End of Product Treatment 

The user may define the end of life scenario for the product. The material may be fragmented 

into recycling, incineration, or landfill categories. Since many prices are described in wide 

ranges, the user has the option to define these variables. Once the parameters are set in place, 

energy, cost, and emissions are generated. 

Fragmentation of Material (user defined): 
 Recycling [%] = 100 

 Incineration [%] = 100 

 Landfill [%] = 100 

Recycling (user defined): 
 Recycling Factor [dec.] = 0.3 

Incineration (user defined): 
 Incineration Efficiency [dec.] = 0.5 

 Emissions During Incineration [kgCO2/kg] = 3.11 

Landfill 
 Landfill Costs [$/kg] = 0.24 

Landfill with Methane Recovery 
 Energy Recovery [MJ/kg] = 0.21 

 Financial Benefit [$/kg] = 0.0037 
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Table 2.2. Total production cost of material relative to part weight and end-of-life treatment 

 
Material Cost Data

0.01 kg Glass Talc DDGS Flax Hemp Rice Husks Wood

Recycling

PLA ($/kg) 9 8.8 8.68 8.78 8.77 8.71 8.68

Incineration

PLA ($/kg) 10.4 9.95 9.65 9.9 9.87 9.73 9.64

Landfill

PLA ($/kg) 10.8 10.3 10 10.3 10.2 10.1 10

Landfill + Methane

PLA ($/kg) 10.6 10.3 9.82 10.1 10 9.9 9.81

No End of Life 

PLA ($/kg) 10.6 10.1 9.82 10.1 10 9.91 9.82

0.1 kg Glass Talc DDGS Flax Hemp Rice Husks Wood

Recycling

PLA ($/kg) 2.41 2.22 2.09 2.2 2.18 2.13 2.09

Incineration

PLA ($/kg) 3.84 3.37 3.06 3.32 3.28 3.13 3.06

Landfill

PLA ($/kg) 4.22 3.74 3.44 3.7 3.66 3.52 3.43

Landfill + Methane

PLA ($/kg) 4.01 3.54 3.23 3.49 3.45 3.32 3.23

No End of Life 

PLA ($/kg) 4.02 3.54 3.23 3.49 3.46 3.32 3.23

1 kg Glass Talc DDGS Flax Hemp Rice Husks Wood

Recycling

PLA ($/kg) 1.75 1.56 1.43 1.54 1.52 1.47 1.43

Incineration

PLA ($/kg) 3.18 2.71 2.4 2.66 2.62 2.49 2.4

Landfill

PLA ($/kg) 3.56 3.09 2.78 3.04 3 2.86 2.78

Landfill + Methane

PLA ($/kg) 3.35 2.88 2.57 2.83 2.79 2.66 2.57

No End of Life 

PLA ($/kg) 3.36 2.88 2.57 2.83 2.8 2.66 2.57  
 



 

 

Table 2.3. Mechanical properties of poly(lactic acid) composites 
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Figure 2.1. Overall methodology process flow chart, EIO-LCA and PC stepwise layout
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Figure 2.2.    Unit cost [$/kg] comparison matrix plots, end of life treatments (I, L, LM, R, N) 

are compared vertically, while part  weight (0.01 kg, 0.1 kg, and 1 kg) is compared horizontally 



62 

 

 
 

Figure 2.3.  GWP [kgCO2eq/kg] comparison matrix plots, end of life treatments (I, L, LM, R, 

N) are compared vertically, while part  weight (0.01 kg, 0.1 kg, and 1 kg) is compared 

horizontally
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Figure 2.4.  Energy Intensity [J/kg] comparison matrix plots, end of life treatments (I, L, LM, R, 

N) are compared vertically, while part  weight (0.01 kg, 0.1 kg, and 1 kg) is compared 

horizontally
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Figure 2.5.  Air Acidification [kgSO2eq/kg] comparison matrix plots, end of life treatments (I, 

L, LM, R, N) are compared vertically, while part  weight (0.01 kg, 0.1 kg, and 1 kg) is compared 

horizontally
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Figure 2.6.  Air Eutrophication [kg Ne/kg] comparison matrix plots, end of life treatments (I, L, 

LM, R, N) are compared vertically, while part  weight (0.01 kg, 0.1 kg, and 1 kg) is compared 

horizontally
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Figure 2.7.  Water Eutrophication [kg Ne/kg] comparison matrix plots, end of life treatments (I, 

L, LM, R, N) are compared vertically, while part  weight (0.01 kg, 0.1 kg, and 1 kg) is compared 

horizontally
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Figure 2.8.  Ozone Layer Depletion [kg CFC-11eq/kg] comparison matrix plots, end of life 

treatments (I, L, LM, R, N) are compared vertically, while part  weight (0.01 kg, 0.1 kg, and 1 

kg) is compared horizontally



68 

 

 
 

Figure 2.9.  Air Smog [kg O3/kg] comparison matrix plots, end of life treatments (I, L, LM, R, 

N) are compared vertically, while part  weight (0.01 kg, 0.1 kg, and 1 kg) is compared 

horizontally
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Figure 2.10.  High Carcinogen [kg benzene/kg] comparison matrix plots, end of life treatments 

(I, L, LM, R, N) are compared vertically, while part  weight (0.01 kg, 0.1 kg, and 1 kg) is 

compared horizontally
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Figure 2.11.  High Non-Carcinogen [kg toluene/kg] comparison matrix plots, end of life 

treatments (I, L, LM, R, N) are compared vertically, while part  weight (0.01 kg, 0.1 kg, and 1 

kg) is compared horizontally
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Figure 2.12. Overall processing cost sensitivity analysis. Column 1 is relative to 0.01 kg part 

weight; column 2 is relative to 0.1 kg part weight; column 3 is relative to 1 kg part weight
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Figure 2.13. Overall cost per part compared over filler, end-of-life treatment, and part 

 weight 
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                                                     CHAPTER V: 

STATISTICAL CORRELATION AND GROWTH MODELING ANALYSIS OF  

CROP ROTATION AND NITROGEN APPLICATION EFFECTS ON SOIL 

CHEMISTRY AND PHYSICAL GROWTH 

 

                                                            Abstract 

Reducing the environmental footprint of corn production will assure the future 

sustainability of this important food and industrial crop.  Our hypothesis theorized that using new 

statistical analysis tools, we may observe new correlations, and trends, not originally 

documented in the initial forgoing study (Riedell, 2009).  To test this hypothesis, we statistically 

correlated corn growth data sets obtained during a two year experiment where corn plots under 

long-term crop rotation treatments [continuous corn (C-C), corn-soybean rotation (C-S), and 

corn-soybean-wheat-alfalfa (C-S-G-L)] were treated with fertilizer levels representing high (8.5 

Mg ha-1  yield goal) , intermediate (5.3 Mg ha-1), or no N inputs. We developed a linear 

correlation analysis to investigate soil minerals (N and P), corn growth variables (leaf area, leaf 

area index, stem length, leaf dry weight, stem dry weight, sheath dry weight, tassel dry weight, 

and total shoot dry weight), and grain yield interaction trends.  Comparing these trends with non-

linear growth modeling, we observed unique chemical trends that give insight as to how crop 

rotation and N application impact our most relevant variables, grain yield and seed starch 

content. In turn, dynamics between plant essential elements N and P were hypothesized. We 

conclude that, parallel with the initial study, a combination of legume rotation inclusion, nitrogen 

application, and soil N and P concentration played an especially significant role in growth 

changes documented. 
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                                                         Introduction 

Corn has proven to be a versatile and important ingredient in food, alcohol, feed, and bio-

renewable industries. With the U.S. being one of the world’s agricultural leaders there is a 

constant ambition to produce crops faster, bigger, and at a higher planting density. To fulfill the 

world’s food and energy needs, agronomic characteristics of agricultural crops must be fully 

understood in order to push the boundaries of how much and how fast they can be produced. 

Many farmers, through experience, have found better yields and soil capacity by diversifying 

crop rotations and experimenting with nitrogen applications. Crop rotation has been shown to 

increase growth and yield of corn from year to year. Crop rotations have also been shown to 

increase potential yields from 2 year, 5 year, and 10 year growth period during Corn-Corn C-C to 

C-S rotations (Stanger, 2008). During a 12 year study in Northeast Iowa, researchers displayed 

an average yield of 8.7 MG/ha for rotated corn compared to a 7.7 Mg/ha continuous corn rotation 

(Karlen, 1985-2003). 

The effects of crop rotation have not only resulted better crop yields but an ability to 

replenish the soil of essential nutrients, such as nitrogen. During a 1984 study (Gass et al.,1984), 

it was documented that legumes planted in rotation were able to re-furnish the soil with a 

temporary supply of nitrogen. Nitrogen has been considered as the primary input method for 

farmers to increase crop growth, but it is also an economically and environmentally expensive 

nutrient. Thus, many farmers are looking for a cheaper alternative method to increase yields by 

balancing rotation, nutrients, and planting and harvest periods (Stanger, 2008). Legumes, in 

rotation, are utilized to increase the soil’s nitrogen carrying capacity and promote root nitrogen 

uptake. Most increases in yields are due to high legume nitrogen contribution, which can be 

estimated using a Mitscherlich-Spillman nitrogen response model (Gallagher et al., 2013). 
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Modeling of corn growth is a desirable utility for many farm and industry based 

applications due to the high economic incentives an accurate prediction can yield. Modeling 

may, in turn, effect the management strategies of corn growth over an assortment of weather 

conditions and environmental changes (Mishoe et al., 1984). A variety of published studies focus 

modeling efforts on yield variability due to weather and environmental changes (Kiniry, 1996; 

Pang, 1997a; Jones; 2003; Ritchie, 1990). The CSM-CERES-Maize (CCM) (Kiniry and Jones, 

1986) model has garnered world wide application on estimation of corn response to different 

irrigation and nitrogen application strategies (Cui et al., 2008). The CCM model investigates 

corn yield response due to environment, genetic interactions and management strategies 

(Garrison, 1999).  In a 1998 study (Paz, 1998) the CSM-CERES model was utilized to optimally 

select the nitrogen prescription for a desired selection of land by calculating soil temperature, 

nitrate availability and variable crop growth within the plant and soil environments respectively. 

While many research endeavors focus on documentation of crop rotation and nitrogen 

application (Baldock, 1981; Karlen, 1985; Riedell, 2009), there is a lack of research investigating 

statistic correlation modeling of the effect nitrogen application and corn growth have on overall 

physical growth and soil chemistry. Our study looks to explore these interactions and document 

meaningful trends and correlations observed. 

The precursor to this study (Riedell, 2009), investigated the nitrogen and crop rotation 

effects on soil fertility, corn nutrition, yield, and seed characteristics.  Nitrogen fertilizer input 

and crop rotation treatment effects on soil minerals and their effect on shoot dry weight, grain 

yield and grain composition were investigated over multiple growth seasons in 1998 and 1999. 

This study documented lower corn shoot nitrogen concentration under C-C and C-S rotations, 

while under C-S-G-L rotation little to no change in nitrogen concentration was observed due to 
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different initial nitrogen application. Further, through multivariate analysis, many mineral 

elements, within the shoot, showed nitrogen input x rotation interaction significance. Mineral 

elements include: P with a P value of 0.05, K with a P value of 0.009, Ca with a P value of 0.006, 

Mg with a P value of 0.05, and Zn with a P value of 0.005. This study found that soil nitrogen 

and phosphorus played an especially significant role in corn growth differences observed. The 

study proposed a combination of nitrogen application, legume rotation inclusion, and legumes 

providing nitrogen rich substrates for soil nitrogen mineralization led to altered growth effects 

observed. When N fertilizer was reduced from maximum application to no application, corn 

growth after a C-C rotation was significantly inhibited. Further, when the same N applications 

were applied to corn growth after C-S and C-S-G-L the growth altercations were minimal. Last, 

it was concluded that under a 4 year C-S-G-L rotation the corn grain yield was stable over all 

nitrogen applications studied, and corn grain yield decreased over all nitrogen applications 

during C-C monoculture and C-S 2 year rotations.    

Through mathematical analysis and quantitative modeling of corn data sets, this study 

hopes to expand on key aspects of how corn growth responds to crop rotation and nitrogen 

application, which were first analyzed in the 2009 (Riedell, 2009). By utilizing a new set of 

computer modeling tools this study hopes to gain new comprehension of the interactions 

between crop rotation and nitrogen application that effect grain yield and physical growth 

characteristics. The goal is to answer the following questions; (i) Using the new statistical 

analysis techniques described, are new trends, or correlations, between the interactions of 

nitrogen application and crop rotation on corn growth and soil chemistry observed (ii) How do 

these observed changes in crop growth relate to differences in soil chemistry across different 

crop rotations and nitrogen inputs? By trying to answer these questions, this study may give 
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useful insight on the impacts crop rotation and nitrogen applications have on corn growth and 

grain yield. 

  

                                     Materials and Methods 

Initial Study  

This study analyzes and models the growth of corn under conditions common to the 

northern U.S. Corn Belt. Initial data, described below, for this project has been previously 

published (Riedell, 2009). The corn crop was grown at the Eastern South Dakota Soil and Water 

Research Farm near Brookings, SD (44º 19’ N, 96º 46’ W; 500 m elevation). Starting in 1990, 

the corn was grown on 3 different crop rotations and replicated three times. These rotations 

include continuous corn growth (C-C), a 2-year corn to soybean rotation (C-S), and a 4-year corn 

to soybean to wheat to alfalfa rotation (C-S-G-L). Each plot of corn growth was divided into 

three subplots and three different nitrogen applications were applied, one relative to each 

subplot. Nitrogen application rates were based upon yield goals of 0 (low Nitrogen), 5.3 

(medium N), and 8.5 (high N) Mg ha-1 (Riedell, 2009). The initial study documented that C-C 

rotation, high nitrogen application was shown to have the greatest impact on crop yield for all 

samples (5,000-7,600 kg/ha). Also, medium nitrogen application showed a relatively high impact 

(5,000-6,800 kg/ha) on grain yield compared to the low nitrogen impact (3,500-4,500 kg/ha), 

which showed the lowest grain yields of all samples taken. The C-S rotation was shown to have 

the highest average grain yield for all nitrogen applications, with high and medium nitrogen 

applications competing for the highest grain yield (6,000-9,000 kg/ha). Low nitrogen application 

was shown to have the smallest impact (5,200-7,100 kg/ha) but maintained values only relatively 

lower than the high and medium applications. Observation of the C-S-G-L rotation revealed 
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medium and low nitrogen application as the leading grain yield model (6,000-9,000 kg/ha). High 

nitrogen application showed the lowest relative values for grain yield (5,000-8,000 kg/ha), 

supporting a negative correlation between soil nitrogen and grain yield under C-S-G-L shown. 

 

Non-Linear Growth Modeling  

The data set contains a large collection of measurements of the corn plant during each 

rotation and nitrogen application applied. These measurement variables may be viewed on Table 

3.1. The modeling procedure began by selecting the measurement variables which quantify a 

corn plant’s physical growth. Modeled variables selected include: leaf area, leaf area index, stem 

length, leaf dry weight, stem dry weight, sheath dry weight, tassel dry weight, and total shoot dry 

weight. A quantitative plot model was used to analyze each measured variable over each rotation 

and nitrogen application. Data points for both years were combined and placed over a common 

time scale (days 0-220). Once plotted, each variable’s data points were fit with an exponential or 

linear curve and an R2 value was calculated. The exponential curve was suggested due to the 

resemblance to the Michaelis-Menten growth function and the high R2 value associated. There 

are three graphs for each variable analyzed (Fig. 3.2-3.8), the graphs present growth effects after 

each nitrogen application and shown over each crop rotation. The three plot approach provides 

an overall prospective of the independent variable growth effects. The graphic models were 

compared vertically by crop rotation and horizontally for nitrogen application. Models which 

maintain discrepancies between linear and exponential trends were fitted with both exponential 

and linear fit lines.  Visual observations were recorded and compared with hypothesis presented 

in the 2009 study. Relative to each growth data set, exponentially fit equation parameters (a, b) 

were collected and compared to observe any possible trends relative to different treatments 
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applied, which are shown on Tables 3.2 through 3.8. A compilation of coefficient of 

determination (R2) values (Table 3.9) was produced to suggest a proper growth model for each 

growth parameter. Many curves are shown to fit well, above 0.9, for both linear and 

exponentially fit curves; this analysis was used to determine which produced the strongest 

correlation between the two. 

 

Linear Correlation Analysis  

To identify the variance of growth effects between rotations and nitrogen applications, 

correlation tables were made for a direct cross comparison to observe variable relationship and 

growth impacts. Microsoft Excel 2013 correlation software package was utilized to correlate all 

variables relative to each nitrogen application and crop rotation treatment applied. To sort 

through the ample amount of data, Visual Basic (VBA) coding was utilized to produce a linear 

correlation value heat map between each soil variable (Fig. 3.8). A series of embedded if-then 

loops were coded to organize the correlation variables into a heat map. The variable heat map 

was used to compare which plant and soil variables correlate to aid or inhibit the growth and 

concentration of plant components and mineral elements, and allow for a cross comparison of 

rotation and nitrogen variable impacts. Each graph, relative to nitrogen application, is placed side 

by side to visually compare nitrogen effects throughout the growth cycle. To observe the 

nitrogen and rotation effect on grain yield, a bar plot was developed, which compares each crop 

rotation through each of the 6 measurement iterations. Each bar graph was developed for 

nitrogen applications low, medium, and high. 
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                                                  Results and Discussion 

 

Non-Linear Growth Modeling: 

Leaf Area, LAI, and Stem Length 

Leaf area, LAI, and stem length growth models were shown to be influenced by nitrogen 

application and crop rotation treatments. Growth curve analysis of the C-C rotation revealed a 

large impact due to the nitrogen applied as a side dress application at cultivation (Fig. 3.2, Fig. 

3.3, Fig. 3.4). The curves suggested the rate of growth was directly related to the amount of 

nitrogen applied: under the impacts of low nitrogen the highest value measured was obtained 

near 199-210 days, medium nitrogen near 200-207 days, and high nitrogen near 197-206 days. 

The highest measured value was shown to increase directly with increasing nitrogen application 

as well: C-C rotation and low nitrogen application pairing produced the lowest value ranges for 

all growth variables described above; medium and high nitrogen application produced 

significantly higher values for all growth characteristics. C-S rotation produced curves with little 

variation between each nitrogen application. Additionally, the C-S-G-L rotation produced little 

variation between growth values, and rate of growth, between nitrogen applications and 

converged to maximum growth in a similar fashion as C-S iterations. Relative to leaf area, LAI, 

and stem length, high nitrogen application produced the quickest growth, followed by medium, 

and low. When low amounts of nitrogen were applied, growth was increased, therefore, it was 

hypothesized that soil maintained a higher nitrogen concentration when crop rotations contained 

legumes. Therefore, the C-S-G-L and C-S rotations reached a greater area value and converged 

to the highest maximum value quicker than the C-C rotation. For all applications of nitrogen C-
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S-G-L and C-S rotations produced a higher growth value compared to C-C rotation, with 

exception of a few outlying cases. For exponential and linear fit curves, R2 values (Table 3.9) 

were consistently greater than 0.9 for both mathematical functions. The linear fit data showed a 

stronger coefficient of determination for each rotation and nitrogen application except the C-S-

G-L/medium nitrogen pairing, indicating a linear model should be used to describe leaf area 

growth and LAI. Alternatively, the coefficient of determination was stronger for the 

exponentially fit curve when describing stem length. A linear model suggested the observed 

growth trends may have occurred in multiple areas of corn’s growth phase for leaf area and LAI. 

Thus, the growth phase where these observations occurred was deemed inconclusive for these 

variables.  

 

Dry Weight Variables 

Leaf dry weight, stem dry weight, sheath dry weight, and tassel dry weight curves (Fig. 

3.5, Fig. 3.6, Fig. 3.7, Fig. 3.8) where observed to have a direct relationship with the amount of 

nitrogen initially applied: under the impacts of low nitrogen highest measured value was 

obtained near 203-210 days, medium nitrogen near 200-207 days, and high nitrogen near 198-

207 days. The C-C rotation and low nitrogen pairing was shown to produce the lowest weight 

recorded, while high nitrogen produced the highest amount weight documented. C-S rotation 

produced curves with little variation between each nitrogen application, and converged to these 

values in 197.5-203 days, for high, medium, and low nitrogen applications. Moreover, C-S-G-L 

rotation produced little variation between leaf dry weight values between nitrogen applications. 

High, medium, and low nitrogen applications produced maximum values within 197-202 days; 

high and medium applications, nearly identical, produced the quickest growth, followed by low. 
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For exponential and linear fit curves, R2 values were consistently greater than 0.9 for both 

mathematical functions. The exponentially fit data showed a stronger coefficient of 

determination for each rotation and nitrogen, indicating an exponential model should be used to 

describe weight growth parameters. Therefore, suggesting the growth data documented was 

relative to the log phase of growth.  

 

Growth Effects 

Determination of the growth phase where observations have been documented may 

indicate valuable data for farmers. Growth stages can be used to help growers make timely 

applications of herbicides and fungicides (Freeman, 2007). The gathering of coefficient of 

determination variables (Table 3.9), R2, suggested that the dry weight parameter growth was 

documented during the vegetative stage of growth due to the high relation to the exponential 

curve. Alternatively, leaf area, LAI, and stem length are strongly correlated for both linear and 

exponentially fit curves, therefore, there is ambiguity as to where the documented growth has 

occurred. It is hypothesized that the linear growth may have occurred during the inflection point, 

which occurs at the end of the vegetative phase(s) and into the beginning of the reproduction 

phase(s). The quantitative plot models show many trends between the variable growth effects 

(Fig. 3.2-3.8). For all data plots where nitrogen application is compared over rotation, the 

nitrogen effected growth substantially during the C-C rotation. The total growth rate and growth 

amplitude were both considerably affected when nitrogen application was increased. During the 

C-S and C-S-G-L crop rotations, the nitrogen applications showed only minimal growth rate 

effects, and the total growth amplitude showed only minimal changes between nitrogen 

applications. This is possibly due to the C-C rotation consuming large amounts of nutrients and 
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leaving soil nitrogen at minimal amounts for next year’s crops. Oppositely, the C-S and C-S-G-L 

crops may utilize the legume plant’s ability to produce nitrogen in their root nodules and in turn 

replenish the soil with nutrients for the next year’s rotation. These results are supported by the 

initial study (Riedell, 2009, Fig. 2) as well. In the study, C-S-G-L rotation was shown to produce 

to the lowest yield under high nitrogen treatment. Further, the C-C and C-S rotations produced 

the highest yields under high and medium nitrogen treatment, while producing significantly 

lower yields under low nitrogen input. A 2005 research study (Mallarino, 2005) conducted at 

Iowa State’s research farm produced similar results; “Crop rotation greatly increased corn yield 

compared with continuous corn without N or with low N rates, This rotation benefit in addition 

to N effects probably showed increased yields because of improved soil physical properties and 

fewer incidences of diseases and pests”. With the increasing concerns of soil degradation with 

continuous corn rotation, many studies have looked to address the possible use of legume 

rotations as a soil nutrient replenishing system. The results found are shown to confirm the 

findings of this study. A 1982 study (Ebelhar et al., 1982) documented similar outcomes; relative 

to corn growth, legumes were determined to be useful by providing biologically fixed nitrogen 

into non-legume rotation systems. The corn which was grown on ground covered in legume 

mulch was shown to produce 2.5 ha-1 more grain yield compared to when the plot was covered in 

corn residue. Additionally, a 1990 study (Fyson and Oaks, 1990) documented that corn 

inoculated with legume soils gave a 3 to 4 fold increase in growth relative to the controlled 

greenhouse sample inoculated with low nutrient sandy loam.   
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Linear Correlation  

The initial study (Riedell, 2009) documented soil nitrogen and phosphorus to maintain 

the largest canonical discriminant power for nitrogen input and crop rotation treatments, through 

canonical discriminant analysis. Thus, it was hypothesized that inclusion of legumes within 

rotation treatments likely resulted in providing high nitrogen substrates for soil mineralization as 

well as altering the levels of phosphorus which may have been extracted into the plant, which in 

turn effected the growth variances between rotation treatments and nitrogen applications. To 

substantiate, or further, these theories, the linear correlation analysis (Fig. 3.8) highlighted 

instances of high correlation between soil mineral nutrients and selected growth characteristics, 

yield and grain starch content. Over all levels of nitrogen application, soil nitrogen concentration 

was shown to have a significant negative correlation with yield during the C-S-G-L treatment. 

Alternatively, soil nitrogen concentration and yield displayed significant positive correlations for 

both C-C and C-S rotations when low, medium, and high nitrogen application was applied. 

Almost the exact relationship was shown for phosphorus as well, though, under low nitrogen 

application the C-C treatment displayed a negative correlation relationship. Grain starch content 

and soil nitrogen concentration correlation displayed a significant negative relationship was 

observed for C-C, C-S, and C-S-G-L treatment over all nitrogen application levels. Grain starch 

content soil phosphorus concentration and revealed a significant negative relationship during the 

C-S-G-L treatment and low nitrogen application iteration. Interestingly, this analysis expands on 

the relationships discussed in the 2009 study; the importance of nitrogen and phosphorus soil 

content was previously discussed while this analysis suggests the importance of where nitrogen 

and phosphorus were obtained. During the C-S-G-L rotation, soil nitrogen concentration is 

shown to universally have strong negative correlation with yield and grain starch content. It is 
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likely that the inclusion of additional soil nitrogen may alter, or disrupt, the contribution of 

nitrogen the legume crop contributes. It is theorized that new applications of nitrogen onto 

remaining legume components may disrupt the soils natural nitrogen fixation cycle. Thus, 

limiting the amount of nitrogen uptake to the plant and disrupting growth characteristics. Due to 

this, researchers have suggested to use legumes to replace a portion of nitrogen application 

applied during future corn rotations. A 1993 research study (Robinson, 1993) suggested that 

fertilization of C-C rotations produced a higher soil organic carbon level but increased CO2 

emissions into the atmosphere and suggested utilization of rotations with legumes and small 

grains to sequester full use of fertilization next C-C rotation period. Additionally, a high 

correlation between soil nitrogen content and oil concentration in the seed was observed under 

the C-S and C-S-G-L rotation treatments. Variables that show a similar correlation trend to the 

overall yield included plant dry weight, plant nitrogen content, and the plant’s starch content. 

Each of these variables showed a strong negative correlation during the C-S and C-S-G-L 

rotations for each nitrogen application. The C-C rotation surprisingly showed neither high nor 

low correlations for oil, yield, or plant dry weight due to soil nitrogen content for each nitrogen 

application. This was unexpected since corn grown under the C-C rotation had a direct 

relationship with nitrogen applied (Fig. 3.2). The C-C rotation may be indirectly effected by the 

impact nitrogen application plays on the other soil chemicals such as nitrogen and phosphorus. It 

was found that other related studies have produced similar results. A 1998 study (Eghball and 

Power, 1998) investigated the effects of P and N soil content on corn yield. The study found that 

both P and N had increased grain yield and that both had similar effects on the grain yield for 

each of the 4 years tested. Additionally, a 2005 study (Warman and Termeer, 2005) investigated 

the concentration of N, P, and K in sewage sludge, and documented the effects implementation 
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of sewage sludge as corn fertilizer. During this investigation it was documented that all three 

nutrient parameters had a positive correlation with corn yield. 

                                                 

                                                           Conclusion 

The most important findings for this study are observed in the developed correlation 

analysis and non-linear growth models. The trends observed support the previous research study 

and maintain that there are significant variances in growth characteristics occurring not only due 

to nitrogen application and crop rotation, but also due to how soil obtains nitrogen and 

phosphorus. Over the 2 years’ worth of growth data, nitrogen applications were shown to effect 

growth over all crop rotations. The nitrogen applied during the C-C rotation showed the greatest 

increase in growth amplitude and speed. During the C-S rotation the nitrogen showed a similar 

effect as applied to the C-C rotation, but the overall effect was not as great. Nitrogen applications 

during the C-S-G-L rotations were shown to have the least effect overall. For most plots 

observed, the C-S-G-L responded by a slight increase in growth during a high nitrogen 

application, but the mid to low nitrogen applications had produced minimal effects. Overall, the 

C-S rotation shows the most efficient grain yield production, but also uses higher nitrogen 

applications to achieve these values. C-C rotation was observed to need high nitrogen 

applications to get mid-range grain yield values (5000-7600 kg/ha). C-S-G-L rotation receives 

the highest grain yield values with the smallest use of nitrogen application. The soil linear 

correlation highlighted the negative effects additional nitrogen applications may have on soil 

including legume components. The inclusion of legumes as a natural manure source in cropping 

systems or as a rotation component is shown to  positively affect soil properties and increase 

nitrogen (N) supply; further, P supply is shown to be more prominent within the main 
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crop/following crop (Kabir and Koide, 2002). The plots comparing crop rotations over nitrogen 

applications show interesting rotational effects. During low nitrogen applications the crop 

rotations prove to greatly affect the rate and amplitude of the corn growth. The C-S-G-L rotation 

showed the greatest effect followed by C-S and the least with C-C rotations. The data suggests 

that the more diverse rotation will increase the corn growth the following year, and may enrich 

the soil with a unique blend of nutrients which the corn plants can thrive off of. Alternatively, 

when the corn is continuously planted over a C-C rotation, soil minerals may become expended 

and poor growth may follow. 
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Table 3.1. Variable Introduction 

Independent 
Variables 

   

Year Nitrogen Application (applied before growth) Rotation 
(CC,CS,CSGL) 

 

    

Dependent 
Variables 

Description Units  Abbreviation 

Plant 
Properties 

Plant dry weight g/plant pDWg 

 Nitrogen content per kg of plant g/kg pNgkg 

 Phosphorus content per kg of plant g/kg  pPgkg 

  Potassium content per kg of plant g/kg pKgkg 

  Calcium content per kg of plant g/kg pCAgkg 

  Magnesium content per kg of plant g/kg pMGgkg 

  Iron content per kg of plant mg/kg pFEmgkg 

  Manganese content per kg of plant mg/kg pMNmgkg 

  Zinc content per kg of plant mg/kg pZNmgkg 

    

 Grain 
Properties 

Yield   kg/ha   Yieldkgha 

  Oil content kg of grain g/kg Oilgkg 
 

  Starch content per kg of grain g/kg Starchgkg 

  Nitrogen content per kg of grain g/kg gNgkg 

  Phosphorus content per kg of grain g/kg  gPgkg 

  Potassium content per kg of grain g/kg gKgkg 

  Calcium content per kg of grain g/kg gCagkg 

  Magnesium content per kg of grain g/kg gMggkg 

  Iron content per kg of grain mg/kg gFemgkg 

  Manganese content per kg of grain mg/kg gMnmgkg 

  Zinc content per kg of grain mg/kg gZnmgkg 

  Sulfur content per kg of grain g/kg gSgkg 

    

 Soil 
Properties 

NO3 content per kg of soil mg/kg sNO3mgkg 

  Phosphorus per kg of soil mg/kg sPmgkg 

  Potassium content per kg of soil mg/kg SKmgkg 

  Calcium content per kg of soil mg/kg sCamgkg 

  Magnesium content per kg of soil mg/kg sMgmgkg 

  Iron content per kg of soil mg/kg sFemgkg 

  Manganese content per kg of soil mg/kg sMnmgkg 

  Zinc content per kg of soil mg/kg sZnmgkg 
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Dependent 
Variables 

Description  Units Abbreviation  

 Protein g/kg  - 

 Oil g/kg - 

 Starch g/kg - 

 B mg/kg - 

 Ca g/kg - 

 Fe mg/kg - 

 K g/kg - 

 Mg g/kg - 

 Mn  mg/kg - 

 Na g/kg - 

 P g/kg - 

 S g/kg - 

 Zn mg/kg - 

 Leaf Area cm2/plant leafarea 

 Leaf Area Index - Lai 

 Stem Length  cm/plant stemleng 

Total Weight 
Properties: 

Leaf Dry Weight  g/plant leafdw 

 Stem Dry Weight g/plant stemdw 

 Sheath Dry Weight g/plant sheathdw 

 Tassel Dry Weight g/plant tasseldw 

 Ear Dry Weight g/plant eardw 

 Total Shoot Dry 
Weight 

g/plant totshootdw 

Leaf Properties: Nitrogen content Percentage Lnpercent 

 Phosphorus 
content 

Percentage Lppercent 

 Potassium content Percentage Lkpercent 

 Sulfur content Percentage Lspercent 

 Calcium content Percentage Lcapercent 

 Magnesium content Percentage Lmgpercent 

 Zinc content µZn/Zn Lznppm 

 Iron content µFe/Fe Lfeppm 

 Manganese content µMn/Mn Lmnppm 

 Copper content µCu/Cu Lcuppm 

Sheath Properties: Nitrogen content Percentage SHnpercent 

 Phosphorus 
content 

Percentage SHppercent 

 Potassium content  Percentage SHkpercent 

 Sulfur content Percentage SHspercent 

 Calcium content Percentage SHcapercent 

 Magnesium content Percentage SHmgpercent 

 Zinc content µZn/Zn SHznppm 

 Iron content µFe/Fe SHfeppm 

 Manganese content µMn/Mn SHmnppm 

 Copper content µCu/Cu sHcuppm 

Stem Properties Nitrogen content Percentage STnpercent 
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 Phosphorus 
content 

Percentage STppercent 

 Potassium content Percentage STkpercent 

 Sulfur content Percentage STspercent 

 Calcium content Percentage STcapercent 

 Magnesium content Percentage STmgpercent 

 Zinc content µZn/Zn STznppm 

 Iron content µFe/Fe STfeppm 

 Manganese content µMn/Mn STmnppm 

 Copper content µCu/Cu STcuppm 

Tassel Properties: Nitrogen content Percentage Tnpercent 

 Phosphorus 
content 

Percentage Tppercent 

 Potassium content Percentage Tkpercent 

 Sulfur content Percentage Tspercent 

 Calcium content Percentage Tscapercent 

 Magnesium content Percentage Tmgpercent 

 Zinc content µZn/Zn Tznppm 

 Iron content µFe/Fe Tfeppm 

 Manganese content µMn/Mn Tmnppm 

 Copper content µCu/Cu Tcuppm 

Ear Properties: Nitrogen content Percentage Enpercent 

 Phosphorus 
content 

Percentage Eppercent 

 Potassium content Percentage Ekpercent 

 Sulfur content Percentage Espercent 

 Calcium content Percentage Ecapercent 

 Magnesium content Percentage Emgpercent 

 Zinc content µZn/Zn Eznppm 

 Iron content µFe/Fe Efeppm 

 Manganese content µMn/Mn Enppm 

 Copper content µCu/Cu Ecuppm 



 

 

Table 3.2. Regression parameters for leaf area, this is observed over all rotations (C-C, C-S, and C-S-G-L) and applications (High, 

Med, and Low). A, b, and R2 values are parameters of the respected fit exponential curve 

A parameter b parameter R2

Nitrogen Application Nitrogen Application Nitrogen Application

Figure Rotation Low Medium High Low Medium High Low Medium High

1 C-C 0.0424 0.0415 0.0361 0.0567 0.0583 0.0598 0.8983 0.9304 0.9406

C-S 0.0139 0.0197 0.0364 0.0646 0.063 0.06 0.922 0.9559 0.914

C-S-G-L 0.0257 0.0146 0.0195 0.0621 0.0654 0.0641 0.9423 0.9358 0.9396

2 C-C 4.24E-02 4.15E-02 3.61E-02 0.0569 0.0583 0.0598 0.8983 0.9304 0.9406

C-S 1.39E-02 3.64E-02 1.97E-02 0.646 0.06 0.063 0.922 0.914 0.9559

C-S-G-L 2.57E-02 1.46E-02 1.95E-02 0.621 0.0654 0.0641 0.9423 0.9358 0.9396  

 

 

Table 3.3. Regression parameters for leaf area index, this is observed over all rotations (C-C, C-S, and C-S-G-L) and applications 

(High, Med, and Low). A, b, and R2 values are parameters of the respected fit exponential curve 

A parameter b parameter R2

Nitrogen Application Nitrogen Application Nitrogen Application

Figure Rotation Low Medium High Low Medium High Low Medium High

1 C-C 0.00002 0.00002 0.00002 0.0571 0.0589 0.06 0.8307 0.9486 0.9311

C-S 0.000008 0.00002 0.00001 0.0645 0.0605 0.063 0.9045 0.9302 0.9418

C-S-G-L 0.00005 0.00003 0.00002 0.0553 0.0584 0.0615 0.9343 0.923 0.9094

2 C-C 2.00E-05 8.00E-06 5.00E-05 0.0571 0.0645 0.0553 0.8307 0.9045 0.9343

C-S 2.00E-05 2.00E-05 2.00E-05 0.0589 0.0605 0.0615 0.9486 0.9302 0.9094

C-S-G-L 2.00E-05 1.00E-05 3.00E-05 0.06 0.063 0.0584 0.9311 0.9418 0.923  
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Table 3.4. Regression parameters for stem length, this is observed over all rotations (C-C, C-S, and C-S-G-L) and applications (High, 

Med, and Low). A, b, and R2 values are parameters of the respected fit exponential curve 

A parameter b parameter R2

Nitrogen Application Nitrogen Application Nitrogen Application

Figure Rotation Low Medium High Low Medium High Low Medium High

1 C-C 0.000005 0.00000004 0.00000002 0.1051 0.1084 0.1135 0.9716 0.9845 0.9801

C-S 0.00000002 0.00000002 0.00000001 0.1131 0.1144 0.1153 0.9828 0.9809 0.9865

C-S-G-L 0.00000002 0.00000002 0.00000001 0.1129 0.1137 0.1168 0.9857 0.9797 0.9835

2 C-C 5.00E-08 2.00E-08 2.00E-08 0.1051 0.1131 0.1129 0.9716 0.9828 0.9857

C-S 4.00E-08 2.00E-08 2.00E-08 0.1084 0.1144 0.1137 0.9845 0.9809 0.9797

C-S-G-L 2.00E-08 1.00E-08 1.00E-08 0.1135 0.1168 0.1168 0.9801 0.9835 0.9835  

 

 

Table 3.5. Regression parameters for leaf dry weight, this is observed over all rotations (C-C, C-S, and C-S-G-L) and applications 

(High, Med, and Low). A, b, and R2 values are parameters of the respected fit exponential curve 

A parameter b parameter R2

Nitrogen Application Nitrogen Application Nitrogen Application

Figure Rotation Low Medium High Low Medium High Low Medium High

1 C-C 0.00003 0.00006 0.00004 0.0668 0.0653 0.068 0.88 0.8944 0.9296

C-S 0.00002 0.00004 0.00007 0.0728 0.0684 0.0658 0.9134 0.903 0.8901

C-S-G-L 0.00004 0.00003 0.00002 0.0691 0.0716 0.0731 0.9207 0.9281 0.9215

2 C-C 3.00E-05 2.00E-05 4.00E-05 0.0668 0.0728 0.0691 0.88 0.9134 0.9207

C-S 6.00E-05 7.00E-05 2.00E-05 0.0653 0.0658 0.0731 0.8944 0.8901 0.9395

C-S-G-L 4.00E-05 4.00E-05 3.00E-05 0.0684 0.068 0.0716 0.903 0.9296 0.9291  
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Table 3.6. Regression parameters for stem dry weight, this is observed over all rotations (C-C, C-S, and C-S-G-L) and applications 

(High, Med, and Low). A, b, and R2 values are parameters of the respected fit exponential curve 

A parameter b parameter R2

Nitrogen Application Nitrogen Application Nitrogen Application

Figure Rotation Low Medium High Low Medium High Low Medium High

1 C-C 2E-13 5E-13 5E-13 0.1594 0.1568 0.1586 0.9497 0.953 0.9646

C-S 3E-13 1E-12 2E-13 0.1607 0.1554 0.1646 0.9646 0.9539 0.9563

C-S-G-L 3E-13 5.00E-14 1.00E-14 0.1622 0.1726 0.1803 0.8585 0.9656 0.9563

2 C-C 2.00E-13 3.00E-13 3.00E-13 0.1594 0.1607 0.1622 0.9497 0.9646 0.9585

C-S 5.00E-13 1.00E-12 1.00E-14 0.1568 0.1554 0.1803 0.953 0.9539 0.9563

C-S-G-L 5.00E-13 2.00E-13 5.00E-14 0.1586 0.1646 0.1726 0.9646 0.9563 0.9556  

 

 

Table 3.7. Regression parameters for sheath dry weight, this is observed over all rotations (C-C, C-S, and C-S-G-L) and applications 

(High, Med, and Low). A, b, and R2 values are parameters of the respected fit exponential curve 

A parameter b parameter R2

Nitrogen Application Nitrogen Application Nitrogen Application

Figure Rotation Low Medium High Low Medium High Low Medium High

1 C-C 0.0000002 0.0000006 0.0000005 0.0886 0.0852 0.0874 0.9313 0.9598 0.9655

C-S 0.0000002 0.0000004 0.0000006 0.091 0.0884 0.0859 0.9596 0.9543 0.9387

C-S-G-L 5.00E-07 4.00E-07 2.00E-07 0.0869 0.0898 0.0931 0.9563 0.9698 0.9739

2 C-C 2.00E-07 2.00E-07 5.00E-07 0.0886 0.091 0.0869 0.9313 0.9596 0.9563

C-S 6.00E-07 6.00E-07 2.00E-07 0.0852 0.0859 0.0931 0.9598 0.9387 0.9739

C-S-G-L 5.00E-07 4.00E-07 4.00E-07 0.0874 0.0884 0.0898 0.9655 0.9543 0.9698  
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Table 3.8. Regression parameters for tassel dry weight, this is observed over all rotations (C-C, C-S, and C-S-G-L) and applications 

(High, Med, and Low). A, b, and R2 values are parameters of the respected fit exponential curve 

A parameter b parameter R2

Nitrogen Application Nitrogen Application Nitrogen Application

Figure Rotation Low Medium High Low Medium High Low Medium High

1 C-C 0.00000002 0.000000007 0.000000006 0.0923 0.0988 0.1008 0.918 0.9471 0.9578

C-S 0.000000005 0.000000007 0.000000005 0.1007 0.0995 0.1021 0.9184 0.9658 0.9431

C-S-G-L 8.00E-09 9.00E-09 8.00E-09 0.0991 0.0995 0.1058 0.9433 0.9518 0.9545

2 C-C 2.00E-08 5.00E-09 8.00E-09 0.0923 0.1007 0.0995 0.918 0.9184 0.9604

C-S 7.00E-09 7.00E-09 3.00E-09 0.0988 0.0995 0.1058 0.9471 0.9658 0.9545

C-S-G-L 6.00E-09 5.00E-09 9.00E-09 0.1008 0.1021 0.0995 0.9578 0.9431 0.9518  
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Table 3.9. Coefficient variables for exponentially and linearly fit curves, relative to each 

physical growth characteristic 
 

Leaf Area                       

(Rotation : Nitrogen)
R2 Value (Exponential) R2 Value (Linear)

Stem Dry Weight                      

(Rotation : Nitrogen)
R2 Value (Exponential) R2 Value (Linear)

C-C : Low 0.898 0.917 C-C : Low 0.949 -

C-C : Medium 0.93 0.954 C-C : Medium 0.953 -

C-C : High 0.94 0.9736 C-C : High 0.964 -

C-S : Low 0.922 0.954 C-S : Low 0.964 -

C-S : Medium 0.955 0.932 C-S : Medium 0.953 -

C-S : High 0.914 0.98 C-S : High 0.956 -

C-S-G-L : Low 0.942 0.956 C-S-G-L : Low 0.958 -

C-S-G-L : Medium 0.935 0.923 C-S-G-L : Medium 0.965 -

C-S-G-L : High 0.939 0.946 C-S-G-L : High 0.956 -

Leaf Area Index                      

(Rotation : Nitrogen)
R2 Value (Exponential) R2 Value (Linear)

Sheath Dry Weight                      

(Rotation : Nitrogen)
R2 Value (Exponential) R2 Value (Linear)

C-C : Low 0.83 0.889 C-C : Low 0.931 0.932

C-C : Medium 0.948 0.944 C-C : Medium 0.959 0.931

C-C : High 0.931 0.96 C-C : High 0.965 0.929

C-S : Low 0.904 0.927 C-S : Low 0.959 0.894

C-S : Medium 0.92 0.951 C-S : Medium 0.954 0.934

C-S : High 0.941 0.969 C-S : High 0.938 0.892

C-S-G-L : Low 0.934 0.931 C-S-G-L : Low 0.956 0.906

C-S-G-L : Medium 0.923 0.921 C-S-G-L : Medium 0.969 0.933

C-S-G-L : High 0.909 0.937 C-S-G-L : High 0.973 0.941

Stem Length                      

(Rotation : Nitrogen)
R2 Value (Exponential) R2 Value (Linear)

Sheath Dry Weight                      

(Rotation : Nitrogen)
R2 Value (Exponential) R2 Value (Linear)

C-C : Low 0.971 0.796 C-C : Low 0.918 -

C-C : Medium 0.984 0.827 C-C : Medium 0.947 -

C-C : High 0.98 0.867 C-C : High 0.957 -

C-S : Low 0.982 0.837 C-S : Low 0.918 -

C-S : Medium 0.98 0.852 C-S : Medium 0.965 -

C-S : High 0.986 0.858 C-S : High 0.943 -

C-S-G-L : Low 0.985 0.852 C-S-G-L : Low 0.943 -

C-S-G-L : Medium 0.979 0.855 C-S-G-L : Medium 0.951 -

C-S-G-L : High 0.983 0.833 C-S-G-L : High 0.954 -

Leaf Dry Weight                      

(Rotation : Nitrogen)
R2 Value (Exponential) R2 Value (Linear)

C-C : Low 0.88 -

C-C : Medium 0.894 -

C-C : High 0.929 -

C-S : Low 0.913 -

C-S : Medium 0.903 -

C-S : High 0.89 -

C-S-G-L : Low 0.92 -

C-S-G-L : Medium 0.929 -

C-S-G-L : High 0.931 -
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Figure 3.1. Effects of nitrogen application (High, Med, and Low) over time on leaf area for 

each crop rotation (C-C, C-S, and C-S-G-L) (R2: Linear on left, exponential on right)
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Figure 3.2. Effects of nitrogen (High, Med, and Low) over time on leaf area index for each 

crop rotation (C-C, C-S, and C-S-G-L) (R2: Linear on left, exponential on right)
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Figure 3.3. Effects of nitrogen application (High, Med, and Low) over time on stem length 

for each crop rotation (C-C, C-S, and C-S-G-L) (R2: Linear on left, exponential on right) 
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Figure 3.4. Effects of nitrogen application (High, Med, and Low) over time on leaf dry 

weight for each crop rotation (C-C, C-S, and C-S-G-L) 
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Figure 3.5. Effects of nitrogen application (High, Med, and Low) over time on stem dry 

weight for each crop rotation (C-C, C-S, and C-S-G-L) 
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Figure 3.6. Effects of nitrogen application (High, Med, and Low) over time on sheath dry 

weight for each crop rotation (C-C, C-S, and C-S-G-L) 
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Figure 3.7. Effects of nitrogen application (High, Med, and Low) over time on tassel dry 

weight for each crop rotation (C-C, C-S, and C-S-G-L) 
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Nitrogen : High Nitrogen : Medium Nitrogen : Low

X Y CC CS CSGL X Y CC CS CSGL X Y CC CS CSGL

sNO3mgkg sKmgkg 0.228 -0.018 0.500 sNO3mgkg sKmgkg 0.862 -0.126 0.245 sNO3mgkg sKmgkg 0.034 -0.549 0.062

sNO3mgkg sZnmgkg 0.757 0.016 -0.266 sNO3mgkg sZnmgkg 0.270 -0.097 0.156 sNO3mgkg sZnmgkg 0.538 -0.495 0.543

sPmgkg  sCamgkg 0.498 -0.281 0.384 sPmgkg  sCamgkg -0.701 -0.662 0.248 sPmgkg  sCamgkg -0.522 -0.612 -0.076

sPmgkg  sFemgkg -0.038 -0.131 0.127 sPmgkg  sFemgkg 0.544 0.858 -0.081 sPmgkg  sFemgkg 0.353 -0.234 -0.363

sPmgkg  sMnmgkg 0.070 0.026 0.226 sPmgkg  sMnmgkg 0.898 0.701 0.163 sPmgkg  sMnmgkg 0.120 0.354 0.039

sPmgkg  sZnmgkg 0.561 -0.967 0.489 sPmgkg  sZnmgkg 0.549 0.522 0.226 sPmgkg  sZnmgkg -0.274 -0.646 0.923

sKmgkg sCamgkg 0.821 0.080 0.045 sKmgkg sCamgkg -0.569 -0.565 -0.838 sKmgkg sCamgkg 0.299 0.473 0.597

sKmgkg sMnmgkg -0.541 -0.111 -0.519 sKmgkg sMnmgkg 0.264 0.537 0.889 sKmgkg sMnmgkg -0.312 -0.631 -0.161

sKmgkg sZnmgkg 0.713 0.337 -0.306 sKmgkg sZnmgkg 0.398 0.639 0.040 sKmgkg sZnmgkg -0.779 0.093 -0.376

sCamgkg sMgmgkg 0.162 0.656 0.829 sCamgkg sMgmgkg 0.350 0.190 0.287 sCamgkg sMgmgkg 0.693 0.911 0.786

sCamgkg sFemgkg -0.783 -0.772 -0.661 sCamgkg sFemgkg -0.620 -0.486 -0.471 sCamgkg sFemgkg 0.191 0.194 -0.269

sCamgkg sMnmgkg -0.789 -0.891 -0.663 sCamgkg sMnmgkg -0.786 -0.995 -0.699 sCamgkg sMnmgkg 0.488 -0.492 -0.500

sCamgkg sZnmgkg 0.255 0.504 0.013 sCamgkg sZnmgkg -0.780 -0.121 0.085 sCamgkg sZnmgkg -0.162 0.904 -0.107

sMgmgkg sFemgkg -0.094 -0.177 -0.697 sMgmgkg sFemgkg -0.907 0.736 0.388 sMgmgkg sFemgkg 0.112 0.270 0.243

sMgmgkg sMnmgkg 0.027 -0.649 -0.671 sMgmgkg sMnmgkg -0.782 -0.158 -0.145 sMgmgkg sMnmgkg 0.110 -0.578 -0.151

sMgmgkg sZnmgkg -0.425 0.745 -0.249 sMgmgkg sZnmgkg -0.739 0.642 0.383 sMgmgkg sZnmgkg -0.806 0.953 -0.604

sFemgkg sMnmgkg 0.978 0.801 0.956 sFemgkg sMnmgkg 0.853 0.518 0.731 sFemgkg sMnmgkg 0.878 0.597 0.810

sFemgkg sZnmgkg 0.139 -0.051 0.446 sFemgkg sZnmgkg 0.824 0.633 0.740 sFemgkg sZnmgkg -0.111 0.514 -0.396

sMnmgkg sZnmgkg 0.152 -0.249 0.600 sMnmgkg sZnmgkg 0.801 0.101 0.408 sMnmgkg sZnmgkg 0.112 -0.313 -0.149

pDWg sNO3mgkg -0.443 -0.723 -0.322 pDWg sNO3mgkg -0.277 -0.312 -0.871 pDWg sNO3mgkg 0.295 -0.367 -0.919

pDWg sPmgkg  -0.539 -0.143 -0.288 pDWg sPmgkg  -0.511 -0.169 -0.363 pDWg sPmgkg  0.752 -0.876 -0.795

pDWg sCamgkg 0.213 0.830 0.655 pDWg sCamgkg 0.632 0.590 -0.467 pDWg sCamgkg -0.249 0.362 0.326

pDWg sMgmgkg -0.326 0.818 0.417 pDWg sMgmgkg -0.344 0.439 0.112 pDWg sMgmgkg -0.303 0.557 0.440

pDWg sMnmgkg -0.386 -0.939 -0.724 pDWg sMnmgkg -0.293 -0.550 -0.042 pDWg sMnmgkg 0.384 -0.384 -0.512

pNgkg sNO3mgkg 0.462 -0.444 -0.268 pNgkg sNO3mgkg -0.865 -0.574 0.321 pNgkg sNO3mgkg -0.458 0.614 -0.073

pNgkg sKmgkg 0.410 0.303 -0.336 pNgkg sKmgkg -0.620 -0.082 -0.615 pNgkg sKmgkg -0.189 -0.501 -0.929

pNgkg sCamgkg 0.050 0.875 0.143 pNgkg sCamgkg 0.104 0.841 0.710 pNgkg sCamgkg 0.077 0.136 -0.295

pNgkg sMgmgkg -0.958 0.911 -0.170 pNgkg sMgmgkg -0.423 0.389 0.616 pNgkg sMgmgkg 0.253 0.444 -0.423

pNgkg sMnmgkg -0.094 -0.736 0.513 pNgkg sMnmgkg 0.233 -0.831 -0.343 pNgkg sMnmgkg -0.023 -0.209 -0.066

pNgkg sZnmgkg 0.639 0.774 0.988 pNgkg sZnmgkg -0.110 0.163 0.064 pNgkg sZnmgkg -0.148 0.379 0.497

pPgkg sPmgkg  -0.600 -0.618 0.389 pPgkg sPmgkg  -0.773 0.009 -0.510 pPgkg sPmgkg  -0.049 0.807 -0.406

pPgkg sKmgkg -0.027 -0.154 0.316 pPgkg sKmgkg -0.242 0.219 -0.509 pPgkg sKmgkg 0.941 -0.019 -0.818

pPgkg sMgmgkg -0.264 0.635 -0.236 pPgkg sMgmgkg 0.810 -0.644 0.050 pPgkg sMgmgkg 0.772 -0.489 -0.326

pPgkg sMnmgkg -0.560 -0.294 -0.171 pPgkg sMnmgkg -0.816 0.391 -0.793 pPgkg sMnmgkg -0.469 -0.065 -0.050

pPgkg sZnmgkg -0.368 0.687 0.073 pPgkg sZnmgkg -0.578 0.094 -0.731 pPgkg sZnmgkg -0.815 -0.601 -0.094

pKgkg sNO3mgkg -0.238 0.142 0.369 pKgkg sNO3mgkg 0.711 0.344 -0.290 pKgkg sNO3mgkg 0.229 -0.411 0.036

pKgkg sKmgkg -0.768 0.433 0.916 pKgkg sKmgkg 0.383 0.230 0.580 pKgkg sKmgkg 0.944 0.518 0.925

pKgkg sCamgkg -0.648 -0.839 -0.296 pKgkg sCamgkg -0.134 -0.313 -0.673 pKgkg sCamgkg 0.582 -0.168 0.491

pKgkg sMgmgkg 0.312 -0.345 0.063 pKgkg sMgmgkg 0.126 -0.882 -0.731 pKgkg sMgmgkg 0.839 -0.360 0.246

pKgkg sZnmgkg -0.759 -0.415 -0.198 pKgkg sZnmgkg 0.123 -0.438 -0.402 pKgkg sZnmgkg -0.659 -0.424 -0.134

pCAgkg sNO3mgkg 0.445 0.307 0.741 pCAgkg sNO3mgkg -0.077 0.399 0.938 pCAgkg sNO3mgkg 0.431 0.938 0.727

pCAgkg sCamgkg -0.009 -0.653 -0.073 pCAgkg sCamgkg 0.326 0.016 0.141 pCAgkg sCamgkg 0.956 -0.549 -0.396

pCAgkg sMgmgkg 0.155 -0.740 0.200 pCAgkg sMgmgkg -0.362 -0.332 -0.159 pCAgkg sMgmgkg 0.602 -0.278 -0.316

pCAgkg sMnmgkg 0.184 0.769 0.372 pCAgkg sMnmgkg 0.247 -0.066 0.413 pCAgkg sMnmgkg 0.669 0.192 0.671

pMGgkg sNO3mgkg 0.433 0.160 0.780 pMGgkg sNO3mgkg 0.197 0.522 0.792 pMGgkg sNO3mgkg 0.069 0.638 0.666

pMGgkg sPmgkg  -0.099 0.737 0.297 pMGgkg sPmgkg  0.721 -0.117 0.391 pMGgkg sPmgkg  0.361 0.772 0.712

pMGgkg sCamgkg -0.662 -0.664 -0.267 pMGgkg sCamgkg -0.270 -0.358 -0.205 pMGgkg sCamgkg 0.566 -0.862 0.589

pMGgkg sMgmgkg -0.029 -0.837 0.133 pMGgkg sMgmgkg -0.298 -0.732 -0.469 pMGgkg sMgmgkg 0.632 -0.827 0.162

pMGgkg sFemgkg 0.338 0.426 0.215 pMGgkg sFemgkg 0.249 -0.520 0.009 pMGgkg sFemgkg 0.725 0.143 -0.398

pMGgkg sMnmgkg 0.473 0.612 0.404 pMGgkg sMnmgkg 0.548 0.344 0.529 pMGgkg sMnmgkg 0.730 0.747 -0.209

pMGgkg sZnmgkg 0.036 -0.807 0.161 pMGgkg sZnmgkg 0.215 -0.653 0.232 pMGgkg sZnmgkg -0.486 -0.728 0.560

pFEmgkg sNO3mgkg -0.412 0.784 0.611 pFEmgkg sNO3mgkg -0.228 0.959 0.082 pFEmgkg sNO3mgkg -0.575 0.321 0.457

pFEmgkg sCamgkg 0.447 -0.710 -0.293 pFEmgkg sCamgkg 0.388 -0.232 -0.456 pFEmgkg sCamgkg 0.141 0.052 0.016

pFEmgkg sMgmgkg 0.744 -0.761 0.096 pFEmgkg sMgmgkg -0.433 -0.172 -0.072 pFEmgkg sMgmgkg 0.214 0.047 0.345

pFEmgkg sMnmgkg -0.194 0.823 0.072 pFEmgkg sMnmgkg -0.175 0.282 0.142 pFEmgkg sMnmgkg 0.565 -0.641 0.831

pMNmgkg sNO3mgkg 0.229 -0.223 -0.329 pMNmgkg sNO3mgkg -0.618 0.158 0.710 pMNmgkg sNO3mgkg -0.193 0.372 -0.260

pMNmgkg sPmgkg  0.701 0.592 -0.160 pMNmgkg sPmgkg  0.011 0.378 0.359 pMNmgkg sPmgkg  -0.301 0.364 -0.257

pMNmgkg sKmgkg 0.841 -0.818 -0.637 pMNmgkg sKmgkg -0.232 -0.469 -0.115 pMNmgkg sKmgkg -0.763 -0.128 -0.925

pMNmgkg sFemgkg -0.300 0.219 0.939 pMNmgkg sFemgkg 0.198 0.195 0.219 pMNmgkg sFemgkg 0.700 -0.021 0.498

pMNmgkg sMnmgkg -0.224 0.192 0.852 pMNmgkg sMnmgkg 0.088 -0.255 0.230 pMNmgkg sMnmgkg 0.687 -0.321 0.280

pMNmgkg sZnmgkg 0.705 -0.520 0.327 pMNmgkg sZnmgkg -0.187 0.322 0.540 pMNmgkg sZnmgkg 0.355 0.390 0.010

pZNmgkg sNO3mgkg 0.561 0.326 0.600 pZNmgkg sNO3mgkg 0.726 0.171 0.158 pZNmgkg sNO3mgkg 0.000 0.563 0.778

pZNmgkg sPmgkg  0.080 -0.419 0.585 pZNmgkg sPmgkg  0.177 0.259 -0.078 pZNmgkg sPmgkg  -0.199 0.628 0.569

pZNmgkg sKmgkg -0.242 -0.043 -0.034 pZNmgkg sKmgkg 0.676 -0.044 0.454 pZNmgkg sKmgkg 0.765 -0.860 0.005

pZNmgkg sMgmgkg 0.237 -0.127 0.078 pZNmgkg sMgmgkg 0.468 -0.331 -0.662 pZNmgkg sMgmgkg 0.870 -0.442 -0.021

pZNmgkg sFemgkg 0.248 0.813 0.149 pZNmgkg sFemgkg -0.292 0.027 -0.436 pZNmgkg sFemgkg -0.010 0.562 0.152

pZNmgkg sMnmgkg 0.410 0.752 0.200 pZNmgkg sMnmgkg -0.002 0.653 0.162 pZNmgkg sMnmgkg 0.127 0.812 0.221

pZNmgkg sZnmgkg 0.008 0.281 -0.193 pZNmgkg sZnmgkg 0.176 -0.300 -0.780 pZNmgkg sZnmgkg -0.712 -0.264 0.483

Yieldkgha sNO3mgkg 0.075 0.244 -0.855 Yieldkgha sNO3mgkg 0.586 0.632 -0.635 Yieldkgha sNO3mgkg 0.240 0.665 -0.761

Yieldkgha sPmgkg  0.190 -0.078 -0.440 Yieldkgha sPmgkg  0.523 0.834 -0.546 Yieldkgha sPmgkg  -0.738 0.487 -0.648

Yieldkgha sCamgkg -0.247 -0.705 -0.021 Yieldkgha sCamgkg 0.038 -0.500 -0.143 Yieldkgha sCamgkg 0.713 -0.056 0.211

Yieldkgha sMgmgkg 0.541 -0.406 -0.376 Yieldkgha sMgmgkg -0.349 0.303 0.743 Yieldkgha sMgmgkg 0.145 0.174 0.314

Yieldkgha sMnmgkg 0.116 0.729 -0.283 Yieldkgha sMnmgkg 0.338 0.527 0.061 Yieldkgha sMnmgkg 0.568 0.147 -0.428

Yieldkgha sZnmgkg -0.235 -0.060 -0.211 Yieldkgha sZnmgkg 0.189 0.367 0.579 Yieldkgha sZnmgkg 0.354 0.183 -0.339

Oilgkg sNO3mgkg 0.289 0.250 0.719 Oilgkg sNO3mgkg 0.259 0.539 0.868 Oilgkg sNO3mgkg -0.471 0.207 0.926

Oilgkg sPmgkg  0.453 0.613 0.319 Oilgkg sPmgkg  -0.757 0.961 0.533 Oilgkg sPmgkg  0.234 -0.181 0.676

Oilgkg sCamgkg -0.147 -0.874 -0.214 Oilgkg sCamgkg 0.348 -0.560 0.608 Oilgkg sCamgkg -0.098 -0.144 0.339

Oilgkg sMgmgkg 0.286 -0.771 0.169 Oilgkg sMgmgkg 0.274 0.465 -0.071 Oilgkg sMgmgkg -0.002 0.008 0.120

Oilgkg sFemgkg 0.048 0.398 0.425 Oilgkg sFemgkg -0.328 0.708 -0.289 Oilgkg sFemgkg 0.728 -0.767 0.103

Oilgkg sMnmgkg 0.227 0.622 0.493 Oilgkg sMnmgkg -0.602 0.601 0.009 Oilgkg sMnmgkg 0.416 -0.741 0.353

Oilgkg sZnmgkg 0.250 -0.777 0.070 Oilgkg sZnmgkg -0.016 0.484 0.113 Oilgkg sZnmgkg -0.042 -0.253 0.443

Starchgkg sNO3mgkg -0.175 -0.681 -0.742 Starchgkg sNO3mgkg -0.527 -0.740 -0.938 Starchgkg sNO3mgkg -0.486 -0.634 -0.972

Starchgkg sPmgkg  -0.360 -0.228 -0.396 Starchgkg sPmgkg  0.654 -0.586 -0.574 Starchgkg sPmgkg  0.064 -0.280 -0.778

Starchgkg sCamgkg -0.059 0.552 0.184 Starchgkg sCamgkg -0.326 0.232 -0.267 Starchgkg sCamgkg -0.704 0.292 0.020

Starchgkg sMgmgkg -0.254 0.833 -0.179 Starchgkg sMgmgkg -0.454 -0.155 0.479 Starchgkg sMgmgkg -0.222 0.080 0.182

Starchgkg sFemgkg 0.292 -0.268 -0.387 Starchgkg sFemgkg 0.538 -0.151 0.417 Starchgkg sFemgkg -0.626 0.728 -0.096

Starchgkg sMnmgkg 0.110 -0.696 -0.471 Starchgkg sMnmgkg 0.639 -0.253 -0.161 Starchgkg sMnmgkg -0.916 0.618 -0.452

gNgkg sNO3mgkg -0.405 -0.115 0.841 gNgkg sNO3mgkg -0.366 -0.417 0.819 gNgkg sNO3mgkg -0.034 -0.313 0.914

gNgkg sPmgkg  -0.343 -0.442 0.384 gNgkg sPmgkg  -0.507 -0.310 0.478 gNgkg sPmgkg  0.285 -0.479 0.705

gNgkg sKmgkg 0.188 0.865 0.138 gNgkg sKmgkg -0.184 0.639 0.009 gNgkg sKmgkg -0.655 0.178 0.271

gPgkg sNO3mgkg 0.072 0.087 0.789 gPgkg sNO3mgkg 0.219 0.350 0.197 gPgkg sNO3mgkg 0.848 0.394 0.427

gPgkg sPmgkg  0.001 -0.309 0.046 gPgkg sPmgkg  -0.774 0.610 0.705 gPgkg sPmgkg  0.168 -0.052 0.843

gPgkg sMgmgkg 0.021 -0.038 0.089 gPgkg sMgmgkg 0.362 0.290 -0.874 gPgkg sMgmgkg 0.214 -0.059 -0.386

gPgkg sFemgkg -0.449 0.220 0.040 gPgkg sFemgkg -0.422 0.323 -0.590 gPgkg sFemgkg -0.105 -0.702 -0.687

gPgkg sZnmgkg 0.006 0.326 -0.211 gPgkg sZnmgkg -0.148 -0.117 -0.466 gPgkg sZnmgkg 0.052 -0.308 0.843

gKgkg sNO3mgkg 0.626 -0.670 0.403 gKgkg sNO3mgkg 0.207 0.637 -0.923 gKgkg sNO3mgkg 0.955 0.559 -0.458

gKgkg sPmgkg  0.016 -0.175 -0.272 gKgkg sPmgkg  -0.756 0.705 -0.313 gKgkg sPmgkg  0.004 -0.016 0.162

gKgkg sKmgkg 0.451 -0.463 0.868 gKgkg sKmgkg -0.106 -0.221 -0.064 gKgkg sKmgkg 0.247 -0.167 -0.245

gKgkg sFemgkg -0.091 -0.068 -0.515 gKgkg sFemgkg -0.336 0.291 0.261 gKgkg sFemgkg -0.202 -0.451 -0.764

gKgkg sMnmgkg -0.027 -0.457 -0.387 gKgkg sMnmgkg -0.616 0.540 -0.231 gKgkg sMnmgkg 0.165 -0.501 -0.897

gSgkg sKmgkg 0.180 -0.768 0.855 gSgkg sKmgkg -0.307 -0.858 -0.607 gSgkg sKmgkg -0.717 0.082 0.096

gSgkg sCamgkg -0.235 -0.172 -0.254 gSgkg sCamgkg 0.038 0.436 0.602 gSgkg sCamgkg -0.398 0.597 0.799

gSgkg sMgmgkg -0.237 -0.300 0.012 gSgkg sMgmgkg 0.182 -0.037 0.739 gSgkg sMgmgkg -0.700 0.633 0.718

gSgkg sZnmgkg 0.481 0.006 0.114 gSgkg sZnmgkg -0.242 -0.754 -0.071 gSgkg sZnmgkg 0.651 0.598 -0.204

gCagkg sNO3mgkg 0.036 -0.256 0.243 gCagkg sNO3mgkg 0.495 -0.013 0.310 gCagkg sNO3mgkg 0.715 0.763 0.111

gCagkg sKmgkg 0.474 -0.347 0.867 gCagkg sKmgkg 0.121 0.239 0.524 gCagkg sKmgkg 0.611 0.098 0.855

gCagkg sMgmgkg -0.392 -0.093 0.304 gCagkg sMgmgkg 0.464 -0.377 -0.973 gCagkg sMgmgkg 0.220 -0.419 0.675

gCagkg sFemgkg -0.567 0.847 -0.854 gCagkg sFemgkg -0.605 -0.327 -0.352 gCagkg sFemgkg -0.677 -0.727 0.177

gCagkg sMnmgkg -0.512 0.547 -0.754 gCagkg sMnmgkg -0.677 0.079 0.240 gCagkg sMnmgkg -0.329 -0.338 0.178

gMggkg sNO3mgkg 0.318 0.523 0.844 gMggkg sNO3mgkg 0.151 0.712 0.920 gMggkg sNO3mgkg 0.731 0.384 0.755

gMggkg sPmgkg  0.438 -0.154 0.279 gMggkg sPmgkg  -0.776 0.513 0.785 gMggkg sPmgkg  0.290 -0.041 0.974

gMggkg sFemgkg -0.055 0.494 0.165 gMggkg sFemgkg -0.289 0.044 -0.286 gMggkg sFemgkg 0.429 -0.729 -0.384

gMggkg sZnmgkg 0.448 0.055 -0.088 gMggkg sZnmgkg -0.050 -0.152 -0.034 gMggkg sZnmgkg 0.429 -0.348 0.889

gFemgkg sNO3mgkg 0.227 0.965 0.503 gFemgkg sNO3mgkg 0.699 -0.296 0.203 gFemgkg sNO3mgkg -0.230 0.643 0.070

gFemgkg sPmgkg  0.254 -0.085 0.529 gFemgkg sPmgkg  -0.253 0.115 -0.101 gFemgkg sPmgkg  0.935 0.746 -0.013

gFemgkg sKmgkg 0.789 0.099 0.082 gFemgkg sKmgkg 0.547 0.066 0.800 gFemgkg sKmgkg 0.391 -0.183 0.337

gFemgkg sCamgkg 0.436 -0.474 -0.092 gFemgkg sCamgkg -0.123 0.584 -0.804 gFemgkg sCamgkg -0.559 -0.041 0.929

gFemgkg sMgmgkg -0.437 -0.634 0.037 gFemgkg sMgmgkg 0.616 0.790 -0.502 gFemgkg sMgmgkg -0.051 0.007 0.747

gMnmgkg sPmgkg  -0.309 0.355 0.911 gMnmgkg sPmgkg  -0.452 0.841 -0.639 gMnmgkg sPmgkg  0.138 0.309 -0.760

gMnmgkg sKmgkg 0.087 0.001 -0.401 gMnmgkg sKmgkg 0.533 0.500 0.367 gMnmgkg sKmgkg 0.781 0.075 0.438

gMnmgkg sCamgkg -0.358 -0.723 0.234 gMnmgkg sCamgkg -0.023 -0.575 -0.467 gMnmgkg sCamgkg -0.234 -0.787 0.050

gMnmgkg sMgmgkg -0.866 -0.248 0.183 gMnmgkg sMgmgkg 0.660 0.549 0.546 gMnmgkg sMgmgkg 0.325 -0.722 0.510

gMnmgkg sFemgkg 0.343 0.829 0.260 gMnmgkg sFemgkg -0.535 0.930 0.552 gMnmgkg sFemgkg -0.671 -0.489 0.482

gMnmgkg sMnmgkg 0.270 0.571 0.308 gMnmgkg sMnmgkg -0.509 0.630 0.569 gMnmgkg sMnmgkg -0.761 0.044 0.398

gMnmgkg sZnmgkg 0.504 -0.478 0.254 gMnmgkg sZnmgkg -0.211 0.341 0.187 gMnmgkg sZnmgkg -0.603 -0.840 -0.934

gZnmgkg sNO3mgkg 0.554 0.807 0.248 gZnmgkg sNO3mgkg -0.196 0.782 -0.293 gZnmgkg sNO3mgkg 0.284 0.889 0.630

gZnmgkg sPmgkg  0.380 0.346 -0.185 gZnmgkg sPmgkg  -0.199 0.024 -0.291 gZnmgkg sPmgkg  -0.068 0.483 0.951

gZnmgkg sCamgkg -0.301 -0.345 -0.657 gZnmgkg sCamgkg -0.126 0.056 -0.799 gZnmgkg sCamgkg 0.797 -0.616 0.074

gZnmgkg sMgmgkg -0.275 -0.878 -0.357 gZnmgkg sMgmgkg -0.375 -0.344 -0.432 gZnmgkg sMgmgkg 0.588 -0.305 -0.477

gZnmgkg sMnmgkg 0.621 0.537 0.555 gZnmgkg sMnmgkg 0.123 -0.049 0.264 gZnmgkg sMnmgkg 0.733 -0.042 -0.087

gZnmgkg sZnmgkg 0.683 -0.415 0.349 gZnmgkg sZnmgkg 0.469 -0.148 -0.647 gZnmgkg sZnmgkg -0.172 -0.415 0.828  
 

Figure 3.8. Data Correlation between soil nutrient elements and selected growth parameters 
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                                                   CHAPTER VI: 

                     GENERAL CONCLUSION AND FUTURE WORK 

                                              General Conclusion 

The use of mathematical and statistical analysis has been shown to be an integral part 

of the successful development of the bio-renewables industry. The prediction of 

environmental and economic impacts is an important step in sequestering the potential 

burdens of unconcerned production bio-renewable based goods. The studies represented in 

this thesis are examples of the powerful predictions which can be obtained through the TEA 

and LCA methodologies. The study in Chapter 2 has shown that the conversion of chicken 

blood to bio-based flocculant, which was empirically hypothesized, is an economically viable 

operation at commercial scale. Further, select unit operations were highlighted as especially 

economically impactful, i. e. waste water surcharge and spray dryer fixed costs. Chapter 3 

demonstrated environmental and economic incentives for PLA composite production 

utilizing bio-based filler material (rice husks, wood, and DDGS) and recycling end-of-life 

treatment. Additionally, use of synthetic filler material (glass and talc) was shown to produce 

the largest amount of negative impacts over all end-of-life treatments, especially when 

incineration was applied. Chapter 4 reestablished the conclusions met in the previous parallel 

study (Riedell et al., 2011). Over the two years’ worth of growth data, nitrogen applications 

were shown to effect growth over all crop rotations. The nitrogen applied during the C-C 

rotation showed the greatest increase in growth amplitude and speed. During the C-S rotation 

the nitrogen showed a similar effect as applied to the C-C rotation, but the overall effect was 

not as significant. Nitrogen applications during the C-S-G-L rotations were shown to have 

the least effect overall. Further, new interaction trends were observed as well. The soil 
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nutrient elements (N, P, and K) were shown to have various significant interactions with 

plant dry weight, grain yield, and grain starch content. To conclude, the results documented 

in these three separate studies were shown to benefit a variety of different areas within the 

bio-renewable industry, therefore, the results may work well as a precursor for future projects 

looking to expand or reconfirm the conclusions produced. 

 

                                                   Future Work 

Looking forward, there are certainly areas where this research may be expanded. 

Specifically, relative to the research in Chapter 3, there are many future projections which 

were not considered. If the bio-based flocculant is produced, will the product be applied to 

purification of human consumed products? If so, the FDA involvement will inevitably have 

to be considered. Additionally, future market changes, such as the chicken processers 

potentially beginning to sell their excess blood, will have a direct impact on the results 

concluded here. Further economic projection modeling of these implications is suggested 

before any sort of commercialization is considered. The Chapter 4 research leaves room for 

the inclusion of more detailed equipment and processing options, as well as the need for a 

more in-depth approach for modeling the pre-processing of raw materials. Many new 

correlation trends are observed in Chapter 5. It is suggested that future research endeavors 

empirically investigate the relatively high correlations between soil chemical make-up and 

important growth characteristics such as yield and starch content. Expanding on the results 

documented in this thesis may yield potentially beneficial results in these specific areas of the 

bio-renewable industry. 
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