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CHAPTER I. GENERAL INTRODUCTION 

 

 

1.1 Introduction 

Agricultural systems are managed ecosystems in which, particularly in the 

Midwestern United States, generally the soil is covered only for about five months of the 

year and left bare for the remainder months. The lack of ground cover combined with 

management practices like tillage, weather conditions, and terrain characteristics – soil 

slope, soil type, the percentage of organic matter, nutrient concentration, among others – 

lead to soil erosion and nutrient leaching (Blanco-Canqui et al., 2013; Van der Werf & 

Petit, 2002). Eroded particles and nutrients are often transported, sometimes reaching 

roadways ditches and water bodies, and making it necessary to spend money and resources 

on restoration and cleanup (Knowler & Bradshaw, 2007; Nowak & Cabot, 2004). As a 

consequence, public concern regarding preservation of soil and water resources in the past 

decades has put farmland practices in the spotlight, and interest in adoptions of practices 

that could mitigate these effects have increased (Malone et al., 2014; Sarrantonio & 

Gallandt, 2003; K. W. Staver & Brinsfield, 1998).  

To address this issue, the state of Iowa has undertaken a major effort to provide 

effective solutions, which might make Iowa an emerging leader in environmental and 

conservation practices associated with nutrient loss from farmlands and from urban and 

industrial areas. For this purpose, the Iowa Department of Agriculture and Land 

Stewardship, the Iowa Department of Natural Resources and Iowa State University 

released the Iowa Nutrient Reduction Strategy (INRS) in November 2012. The INRS is a 

scientific and technology-based program for the development and analysis of alternatives 
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to reduce the movement of nutrients from point and nonpoint sources to water sources 

(Iowa Nutrient Strategy, 2013).  

Incorporating cover crops into agricultural production has long been recognized as 

a management practice that could reduce not only soil erosion but also the leaching of 

nutrients, and as a consequence, governmental agencies and research groups are promoting 

its adoption. The Leopold Center for Sustainable Agriculture, Practical Farmers of Iowa, 

the Midwest Cover Crop Council, and the USDA Natural Resources Conservation Service 

(NRSC) are some of the groups working with farmers to spread information on the benefits 

of cover crops, and also giving advice on its management. Cover crops have a direct impact 

on soil erosion due to their ability to reduce wind and water erosion, enhance water 

infiltration, minimize runoff rates, and as a result, maintain large aggregate size. Regarding 

water quality, by including an extra crop in a rotation a more efficient use of nutrients takes 

place, as a result, there is a reduction in the pool of mobile nutrients that could contaminate 

nearby water bodies (Dabney et al., 2001; Kaspar, Jaynes et al., 2007; Kessavalou & 

Walters, 1997; Lal et al., 1991; Langdale et al., 1991; Meisinger et al., 1991; Ryan et al., 

2003; Snapp et al., 2005; Weil & Kremen, 2007). Thus, state and federal agencies have an 

interest in tracking cover crops adoption, to evaluate both the effectiveness of awareness-

raising and incentive campaigns and the actual acreage under this conservation practice. In 

addition, the identification and mapping of cover crops will serve as an essential basis for 

assessing the impact of this conservation practice on soil and water quality.  

Currently, nationwide surveys on cover crop use are being reported yearly by the 

Sustainable Agriculture Research and Education (SARE) program – supported by the 

USDA’s National Institute of Food and Agriculture – and by the Conservation Technology 
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Information Center (CTIC). One of the biggest challenges for field surveys methods relies 

on the high spatial variability in the implementation of conservation practices, making it 

necessary to sample large areas to obtain results that are representative of the area. In 

addition, most of the field surveys are based on farmer’s responses, which makes them 

dependent on the data source. To deal with these constraints, the use of remote sensing is 

proposed in this study to detect cover crop fields. The main advantages of remote sensing 

data interpretation over field surveys are its independence of the data source, and 

possibility to cover larger areas. 

Since different soil coverages have specific spectral signatures, remotely sensed 

images are a useful tool for performing land cover classification (Bailey & Boryan, 2010; 

Ustuner et al., 2014). Several vegetation ratio indexes derived from remotely sensed images 

have been developed to detect differences between vegetative covers, with the normalized 

differenced vegetation index (NDVI) being the most commonly used. The NDVI is an 

indicator that describes the greenness of vegetative covers, and it is sensitive to the 

percentage of biomass, leaf size, and healthiness of vegetation. Therefore, monthly NDVI 

of fields can be used to detect changes in land surface related to crops (Bannari et al., 1995; 

Glenn et al., 2008; Huete et.al, 1985; Rouse et al., 1974; Tucker, 1979).  

The current study developed a remote sensing protocol based on monthly NDVI of 

agricultural fields for identifying vegetative ground covers that could correspond to cover 

crops.  
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1.2 Thesis organization 

This thesis is organized into four Chapters. Chapter 1 provides a general 

introduction to the study, its motivations, and objective. A literature review is presented in 

Chapter 2; it gives an overview on cover crops and the NDVI, the vegetation index selected 

for the model. Chapter 3 is a paper outlining the remote sensing protocol for cover crop 

detection. General conclusions and recommendations for future work are presented in 

Chapter 4. 
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CHAPTER II. LITERATURE REVIEW 
 
 

2.1 Cover crops 

 

2.1.1. Definition 

Cover crops are short-term vegetation planted or managed to cover bare soils for 

mitigating or preventing soil erosion and degradation, which could be grown either during 

a time between cash crops or onto bare fields during fallow periods (Kessavalou & Walters, 

1997; Pieters & McKee, 1938; Snapp et al., 2005b; Weil & Kremen, 2007). This 

agricultural practice is not novel, it was first adopted over 2,000 years ago, and according 

to Pieters (1927), the concept of cover crops was first introduced by Richard Parkinson in 

1799. In recent years, the incorporation of cover crops into agricultural rotations has 

reemerged, in response to the many benefits related to cover crops as a conservation 

practice (Sarrantonio & Gallandt, 2003).  

 

2.1.2. Management 

According to the season in which they grow, cover crops can be classified as winter 

or summer, with winter cover crops being the most often adopted in the United States Corn 

Belt. Because there are a broad variety of species which if managed appropriately could 

serve as cover crops, it is possible to choose the one that would fit best for each agricultural 

system (Hartwig & Ammon, 2002; Moncada & Sheaffer, 2011; D. W. Reeves, 1994). 

Figure 1.1 shows the phenological cycle of winter wheat when used as a winter cover crop. 
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Figure 2.1 Phenology of Winter Wheat in the Midwest United States. 
Source: Jensen, 2009. 

 

Similar to when planning which commercial crop to grow, it is also necessary to 

consider weather and soil aspects when selecting a cover crop. Regarding soil conditions, 

availability of nutrients and water should be taken into account; while rainfall and 

temperature are the most important weather variables to consider (Clark, 2007). Cover crop 

species that survive winter conditions and resume their growth as soon as conditions are 

favorable again are classified as winter-hardy; on the contrary, species that don’t survive 

winter conditions are known as winter-kill. Because a species could perform as winter- 

hardy or killed depending on where it is planted, the USDA has produced maps of hardiness 
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regions that can be used by farmers to determine if a crop would survive the winter 

conditions of the area or not (Figure 1.2).  

For the state of Iowa winter cereal rye (Secale cereale), hairy vetch (Vicia villosa), 

common vetch (Vicia sativa), winter wheat (Triticum aestivum), and winter triticale 

(Triticale hexaploide Lart.) can be used as winter-hardy crops, while Oats (Avena sativa), 

spring wheat (Triticum aestivum), and crimson clover (Trifolium incarnatum) would be 

killed by winter conditions.  

 

Figure 2.2. Iowa plant hardiness zone map.  
Source: USDA, 2012. 

 

There are different possibilities for the establishment of cover crops, being drilling, 

broadcasting, and aerial seeding the most used. Drill seeding is typically done after the 
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cash crop is harvested, while broadcast and aerial can be used to seed cover crops on fields 

with standing cash crops (Moncada & Sheaffer, 2011). 

In general winter cover crops are terminated during spring, and the termination date 

would vary depending on season’s weather conditions. In addition, the cash crop that is 

going to be planted after the cover crop needs to be considered. It is recommendable that 

cover crops are terminated close to or after soybean planting, and a week to ten days before 

planting if followed by corn. 

 

2.1.3. Benefits of cover crop adoption 

Even when the primary purpose of growing cover crops is to create a physical 

barrier against the erosional forces of wind and water, the integration of cover crops into 

agricultural systems could lead to other multiple benefits. For instance, cover crops can act 

as weed suppressors, alleviate effects of compaction, help to regulate pests, and promote 

the recycling of nutrients among others (Lal et al., 1991; Langdale et al., 1991; Mallory et 

al., 1998).  

 

2.1.3.1. Soil quality enhancement  

Cover crops can modify many aspects of soil properties, and also when the soil is 

not left bare after a cash crop a more complex and efficient use of nutrients and water takes 

place. For example, cover crop’s canopy can affect soil temperature by narrowing the day-

night variation. The canopy intercepts net radiation increasing the solar energy harvested, 

reduces wind speed at the surface level, and also diminishes the impact of raindrops, as a 

consequence, some properties of the first portion of soil are modified when cover crops are 
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incorporated in rotations (Blanco-Canqui, et al., 2013; Lal et al., 1991). Cover crops also 

influence the soil atmosphere at a deeper level, physically by modifying the macropore 

matrix of the soil with their roots, which contributes to decrease soil bulk density, and 

chemically by recycling nutrients. Also, the fine roots of cover crops affect the porosity of 

the soil not only during the growing season but also when roots die and decompose 

(Dabney, 1998; Kaspar et al., 2007; Reeves, 1994). Cover crops also have an impact on the 

C : N relationship of soils; this change would vary depending on the species selected. For 

example, grasses would increase the amount of carbon, while legumes would contribute to 

increase N by fixation (Malone et al., 2014; Meisinger et al., 1991). 

  

2.1.3.2. Soil erosion reduction 

Even in flat terrains or with low slopes, water and wind erosion still takes place, 

carrying soil sediments, organic matter, agricultural chemicals and even bacteria from 

manure to water bodies. Due to cover crop’s ability to enhance water infiltration, minimize 

runoff rates and maintain large aggregate sizes the adoption of this practice in cropping 

systems has a significant impact on soil and water quality (Dabney et al., 2001; Frye et al., 

1985; Holderbaum et al., 1990; Kaspar et al., 2007). The reduction in runoff volumes is 

related to the increased hydraulic roughness of soils where cover crops are being grown, 

and the green canopy mitigates the kinetic energy of raindrops, reducing soil sealing 

(Blanco-Canqui et al., 2013; Bonner et al., 2014; Clark, 2007; Dabney, 1998). When 

topsoil is lost, nutrients and organic matter – containing carbon and nitrogen – are also 

carried away with sediments, decreasing soil productivity and also contaminating nearby 
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water bodies (Dabney, 1998; Kessavalou & Walters, 1997; Malone et al., 2014; Staver & 

Brinsfield, 1998).  

 

2.1.3.3. Weed and pest management 

Direct competition for space and resources – water, sunlight, nutrients – is the 

principal factor that makes cover crops great controllers of weeds, in particular when using 

high-density planting. Moreover, some species used for cover cropping can produce 

allelopathic compounds – phenolic acids, glucosinolates, and coumarins – that inhibit the 

germination or growth of other plants. It has been proved that this is a species-specific 

effect, hence using appropriate mixes could maximize the benefits of allelochemicals 

(Creamer et. al, 1996; Dabney et al., 2001; Kelton et al., 2012; Reeves, 1994; Teasdale, 

1996).  

The effect of cover crops on pests would vary depending on the species or mixture 

selected, management practices adopted and weather conditions. Cover crops could work 

as refuges for beneficial insects, which would leave or die if cover crops were not planted. 

Although, organic farmers can take more advantage of the previously mentioned attributes 

of cover crops as there are not many agrochemicals permitted for products going into this 

markets (Clark, 2007; S. M. Dabney et al., 2001; Lal et al., 1991). 

 

 

2.2 Normalized Difference Vegetation Index (NDVI) 

The radiometric reflectance values obtained from individual spectral bands does 

not always provide enough information to quantify and qualify some phenomenon. To deal 
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with this limitation, indices have been developed using two or more spectral domains, 

resulting in a more sensitive measurement of the parameter under evaluation (Asrar et al., 

1984; Bannari et al., 1995). The normalized differenced vegetation index was first reported 

by Rouse et al. (1974), and it has been one of the most used indexes for evaluating 

vegetative covers with remote sensing techniques.  

The NDVI is a normalized ratio, computed by combining the reflectance values in 

the Near Infrared and Red spectral bands (1).  

NIR Red
NIR Red

    ( 1 ) 

 

The usefulness of NDVI relies on the principle that red radiation (630-690 nm) is 

strongly correlated to the concentration of chlorophyll, while near infrared (760-900 nm) 

is influenced by cell structures present on leafs and also the leaf area. Visible radiation in 

the red portion of the spectra is absorbed by chlorophyll, as a consequence, healthy 

photosynthetic active vegetation would absorb more red radiation than senescent 

vegetation. Regarding the near infrared, it is scattered because of the intercellular structure 

of the leaves, thus growing vegetation presents a high area of air-cell walls, which causes 

the reflection of the NIR radiation (Bannari et al., 1995; Baret & Guyot, 1991; de Paul 

Obade & Lal, 2013; Glenn, Huete, Nagler, & Nelson, 2008; Heilman & Kress, 1987; 

Jackson & Huete, 1991; Kumar et al., 2002; Major et al., 1990; Tucker, 1979) (Figure 1.3).  

 



14 
 

 

Figure 2.3. Spectral reflectance of healthy vegetation.  
Source: Jensen, 2009. 

 

This relationship between the red and NIR bands can be used to differentiate 

vegetation from others land covers (Tucker, 1979), values lower than 0 correspond to areas 

without vegetation, values from 0.2 to 0.5 could be associated with vegetation that doesn’t 

have a dense canopy, or is senescent, while values greater than 0.5 would be representative 

of healthy and vigorous vegetation. Therefore, NDVI can be used to perform a 

multitemporal evaluation of vegetation and crop classification (Baret & Guyot, 1991; 

Tucker & Sellers, 1986). 
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One of the advantages of using the NDVI when evaluating vegetation is its ability 

of normalizing external effects, like differences in illumination and topography, as both 

bands are affected in the same manner (Holben and Justice, 1981). 
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CHAPTER III. REMOTE SENSING PROTOCOL FOR THE EVALUATION OF 
COVER CROP ADOPTIONS 

 

 

3.1 Abstract 

The use of cover crops has been recognized as an agricultural management practice 

that can enhance soil quality, contribute to suppressing weeds, promote the recycling of 

nutrients, and provide many other benefits when incorporated in farming systems. Because 

cover crops can mitigate or prevent soil erosion and nutrient leaching, the positive impact 

of this conservation practice also has an effect beyond farm boundaries, by reducing the 

contamination of water bodies caused by agriculture. As a consequence, state and federal 

agencies have been trying to assess farmer’s motivations and barriers for cover crop use, 

and have also intended to track their adoption as a means of assessing conservation practice 

implementation. Because remote sensing techniques can provide information over large 

areas, periodically, it can be useful for estimating cover cropped fields. 

A decision tree model approach was used in this study to develop sets of criteria 

for the identification of fields with cover crops, pastures and grasses, and stover, based on 

monthly NDVI values. The model had an overall accuracy of 82%, while the level of 

precision for cover crop detection was 76.9%. The results of this study demonstrate that 

remote sensing can be used successfully to identify the adoption of cover crops in 

agricultural fields based on monthly average NDVI values. 
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3.2 Introduction 

Over the past decades, the introduction of new technologies has made significant 

improvements in agricultural production. For instance, yields have been increased, more 

pests and diseases are under control, and resources are being used more efficiently. 

However, there is still more that could be done to address one of the biggest challenges of 

agricultural systems: to produce sustainably, by increasing or maintaining yields at 

economically acceptable levels while minimizing the environmental impacts (Kirchmann 

& Thorvaldsson, 2000; Lal et al., 1991; Lowrance et al., 1986; Robertson & Swinton, 

2005). Farming practices and management decisions have direct consequences at the farm 

scale and indirect effects beyond the farm’s boundaries too. As a result, integration of 

appropriate conservation practices and sustainable management decisions in agricultural 

systems have a significant importance not only for farmers but also for societies (Knowler 

& Bradshaw, 2007; Nowak & Cabot, 2004; Van der Werf & Petit, 2002).  

 Among the negative environmental effects of agricultural production, the 

contamination of water bodies by agricultural nonpoint sources is nowadays one of the 

major concerns for governments, researchers, and communities (Malone et al., 2014; 

Mitsch et al., 2001; Pereira & Hostettler, 1993; Staver, 1991). Agricultural pollutants 

consist mainly of nutrients, pesticides, pathogens, and sediments. However, there are many 

conservation practices which can be implemented to reduce or minimize the negative 

impacts of agriculture. For instance, the incorporation of cover crops in crop rotations, 

buffer strips of perennial vegetation, contour farming, terraces, no-tillage and crop residue 

management, riparian vegetation buffers, among others, can be implemented separately or 
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combined (Rigby et al., 2001; Tomer et al., 2015). For the purpose of this paper, we will 

address the importance of incorporating cover crops into farming systems.  

Most of the agricultural cropping systems are based on the production of one cash 

crop per year, which is responsible for most of the farm’s income, and only uses the land 

for about six months. Cover crops are planted after summer cash crops are harvested in the 

Northern U.S., while summer cover crops complement fall or winter cash crops in Southern 

regions (Kessavalou & Walters, 1997; Snapp et al., 2005). For the state of Iowa, and other 

states in the Midwest region, corn (Zea mays L.) and soybeans (Glycine max L.) are the 

most relevant marketable crops grown, and from the broad variety of species that could be 

used as cover crops rye (Secale cereale L), oat (Avena sativa L), and wheat (Triticum 

aestivum L) are some of the most chosen. 

Using a cover crop as a physical barrier for reducing wind and water soil erosion 

has been one of the main reasons for adoption (Lal et al., 1991; Langdale et al., 1991). 

Even in flat terrains, where the consequences of water erosion are less severe compared to 

fields with steeper slopes, cover crops protect the upper portions of soils by reducing runoff 

speed, increasing water infiltration, and protecting soil aggregates from the kinetic energy 

of raindrops impact. However, cover crops not only prevent soil degradation but also 

improve its quality. Including a cover cover crop in agricultural rotations can contribute to 

alleviate soil compaction and reduce bulk density, increase organic matter, infiltration and 

aeration, and control weeds (Dabney et al., 2001; Langdale et al., 1991; Meisinger et al., 

1991; Ryan et al., 2003; Weil & Kremen, 2007). Also, the inclusion of cover crops in 

rotations increases the biodiversity of the systems, which can contribute to breaking the 
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cycle of weeds and pests – nematodes principally – and increase soil microbial activity 

during the cooler months (Clark, 2007).  

At the landscape scale, cover crops help reduce the contamination of surface water 

and groundwater that is caused by agricultural activities by limiting nutrient leaching and 

soil sediment transport. The inclusion of cover crops in rotations generates a more complex, 

yet efficient, cycling of nutrients. During its growth in the fall, cover crops take up the 

nutrients that remain in the soil after the cash crop, keeping them from leaving the system. 

In the next spring, after the cover crops are killed and as a result of the decomposition of 

residues, part of those nutrients are released back into the soil and are available for the next 

cash crop. This seasonal reduction in the availability of nutrients reduces the concentration 

of nutrients leaching farmlands and reaching water bodies (Blanco-Canqui et al., 2013; 

Bonner et al., 2014; Clark, 2007; Dabney et al., 2001; Kaspar et al., 2007; Langdale et al., 

1991; Malone et al., 2014; Meisinger et al., 1991; Reeves, 1994; Staver, 1991). 

Cover crops status as an advantageous conservation practice means that state and 

federal agencies have an interest in tracking their adoption as a means of assessing 

conservation practice implementation. There are, however, limited means of tracking 

conservation crops. At the present, cover crop acreage is mainly obtained by reports, 

generated at different administrative levels (nation, state, county), and most of them are 

based on field surveys. Because agricultural practices have particular characteristics – high 

spatial, interannual and seasonal variability – regular survey methods have some 

limitations for providing accurate information on them. For instance, lack of spatial 

distribution of the samples could result in inaccurate conclusions on the actual acreage of 

cover crops.  
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Therefore, the use of remote sensing techniques for detecting cover crops could be 

an appropriate alternative method as it gathers information on large continuous areas. Also, 

it is possible to acquire data periodically, depending on the sensor selected and weather 

conditions. In addition, satellite imagery is also more accurate for the evaluation and 

documentation of land cover change over the time, as this information is georeferenced 

(Carfagna & Gallego, 2005; de Paul Obade & Lal, 2013; Foody, 2002; Leon et al., 2003; 

Rogan et al., 2003). 

Remote sensing technology can be applied to a broad number of fields, with 

environmental and agricultural research being areas where it has been more developed. 

Satellite image analysis is useful for monitoring and evaluating environmentally related 

phenomena like flood, drought and desertification, forestry characterization and fires, 

volcanic eruptions, and water pollution including oil spill and algae bloom, among others 

(Chuvieco, 2008; Reeves & Baggett, 2014; Wolter & Townsend, 2011; Wolter et al., 2009). 

Regarding agriculture, satellite photo interpretation and analysis has been extensively used 

to predict crop yields; detect spread of diseases; assess vegetation healthiness, phenological 

stages and plant density; estimate and evaluate crop residues (distribution, volume, and 

degradation rate); and monitor tillage intensity and crop rotations (Biard & Baret, 1997; 

Daughtry et al., 2005; Daughtry et al., 2010; Daughtry et al., 2006; Daughtry et al., 2004; 

French et al., 2000; Gelder et al., 2009; Glenn et al., 2008; Yao et al., 2012). For assessing 

cover crops, remote sensing has been mainly used combined with on-site sampling data, 

but not by itself. For instance, Hively et al. (2009) quantified the efficiency of different 

cover crops species to capture nutrients in the Chesapeake Bay. Prabhakara et al. (2015) 

evaluated the performance of remote sensing indices for assessing biomass production and 
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soil coverage, which were measured in situ. The fundamentals of remote sensing data for 

land use and cover characterization relies on the principle that different surfaces have 

specific responses in the wavelength spectra, making it possible to create spectral 

signatures for each categorical class or theme (Figure 3.1).  

 

Figure 3.1. Spectral response curves for different land covers and clouds.  
Source: Aronoff, 2005. 

 

Since Landsat 1, the first Earth observation satellite launched in 1972, it has been 

possible to use satellite image information for generating maps of spatial distribution of 

crops and other surface covers (Bauer & Cipra, 1973; Mulla, 2013). For example, the 

United States Department of Agriculture’s (USDA) National Agricultural Statistics 

Service (NASS) has developed a geospatial product called Cropland Data Layer (CDL) for 

estimation of crop acreages. Because CDL products, as well as other land cover maps, 

typically reflect the crop that occupies an area during the primary growing season, 
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commodity crops mainly, these resources are not suitable for the evaluation of cover crop 

adoptions. 

Indexes derived from remote sensing data are indicators of intensity for a condition 

or characteristic, constructed by the combining reflectance values. A broad variety of 

vegetation indexes has been developed for different applications, being the normalized 

differenced vegetation index (NDVI), reported for the first time in 1973 (Rouse et al., 

1974), the most used for vegetative cover analysis. When light strikes vegetation canopies 

part of it is absorbed, transmitted and reflected, depending on the light’s wavelength and 

the leaf surface. The NDVI is calculated based on the Red (630 - 690 nm) and Near Infrared 

(760 – 900 nm) reflectance values, according to equation 1 and ranges from -1 to +1.  

NIR Red
NIR Red

    ( 2 ) 

 

Values from 0.1 or lower usually correspond to areas with no vegetation – barren 

rock, snow, sand –, moderate NDVI values ranging from 0.2 to 0.5 are representative of 

sparse vegetation or senescent crops, and higher values are associated with healthy dense 

vegetation. The NDVI relies on the principle that healthy vegetation absorbs red radiation 

for photosynthetic processes, while Near Infrared is largely reflected when reaching the 

intercellular structure (Bannari et al., 1995; Baret & Guyot, 1991; de Paul Obade & Lal, 

2013; Glenn et al., 2008; Heilman & Kress, 1987; Jackson & Huete, 1991; Major et al., 

1990; Tucker, 1979) (Figure 3.2).  



27 
 

 

Figure 3.2. NDVI spectral signature for healthy vegetation.  
Source: Prabhakar et al.,2012. 

 

Because NDVI quantifies the spectral response of different vegetative covers, it is 

an appropriate parameter for performing multi-temporal analysis of land cover change. 

The main purpose of this research is to enhance our ability to inventory current, 

past and future cover crops adoption. To accomplish this goal, the present study developed 

a remote sensing protocol based on the NDVI to detect cover crops on satellite images from 

Landsat-7 Enhanced ThematicMapper (ETM+) and Landsat-8 Operational Land Imager 

(OLI). 
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3.3 Materials and Methods 

3.3.1. Description of the study area 

Twenty-seven Hydrological Unit Code (HUC) 12 watersheds where cover crops 

were planted in 2013 and 2014 were selected for the area of study. The study area is located 

in East-Central Iowa and occupies a total surface of 245,463 hectares. It is principally 

situated in Benton County and also includes portions of Tama, Linn, Poweshiek, Iowa, and 

Johnson Counties (Figure 3.3). According to the landform regions classification, it is 

located in the Southern Iowa Drift Plain (Tallgrass Prairie) and Iowan Surface (Eastern 

Tallgrass Prairie), and Peoria Loess is the most representative soil type of the area 

(Appendix A). The Southern Iowa Drift Plain is the most extensive of Iowa’s landforms, 

composed almost entirely of moderate to thick loess cover, weathered glacial drift, and has 

integrated drainage. The Iowan Surface landform extends over the northeastern of Iowa 

and is characterized by long, gently rolling slopes, and most of the terrain is covered in 

thin, discontinuous loess or loam over drift. 

The climate conditions of the area that most affect the development of cover crops 

are the minimum temperatures, which are in the range of -28.9 to -26.1 C.  
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Figure 3.3. Study area 
 

3.3.2. Data acquisition and processing 

The first step for detecting cover cropped fields was to create a dataset with three 

classes: “Cover crops”; “Corn/Soybeans stover”, for fields that didn’t have growing 

vegetation while winter cover crops did; and “Pasture/Grass”, for fields with vegetative 

cover that could partially or entirely share the growth season with cover crops. Figure 3.4 

shows a flow chart of steps performed to process the acquired data.  
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Figure 3.4. Flow chart of the dataset creation process. 
 

For this study, ground truth data for fields in where cover crops were planted in 

2013 and 2014 was provided to the research group by a seed dealer. For both planting 

seasons, Trimble Pathfinder™ GPS (Global Positioning System) and RTK (Real-Time 

Kinematic) equipment were used to collect and record the georeferenced information of 

the planter’s path. The output data was extracted into shapefiles, one for each year, 

consisting of the polygon feature classes of the fields planted with cover crops. The 

attribute tables of the shapefiles included information on the species, date, time, terrain 

elevation and planting speed, among others, for each polygon.  

The Cropland Data Layer (CDL) for 2013 and 2014 was used to select fields with 

other covers than cover crops (USDA, 2013 and 2014). The CDL is a raster, geo-
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referenced, crop-specific land cover data layer developed by the USDA, National 

Agricultural Statistics Service, Research and Development Division, Geospatial 

Information Branch, Spatial Analysis Research Section. It can be downloaded for free from 

the CropScape website (https://nassgeodata.gmu.edu/CropScape/), has no copyright 

restrictions, it is considered public domain, and free to redistribute. The 2013 and 2014 

layers for the state of Iowa were mostly produced using Landsat 7 ETM+ (only for 2013), 

Landsat 8 OLI/TIRS, Disaster Monitoring Constellation (DMC) DEIMOS-1 and UK2 

sensors 

According to the USDA NASS, the CDLs for the state of Iowa presented a 

relatively high percentage of accuracy classification for the four main land covers found in 

the study area (Table 3.1). However, when performing a visual inspection of the data, some 

misclassified pixels were detected and needed to be corrected (Figure 3.5). 

Table 3.1.CDL Classification accuracy for 2013 and 2014 state of Iowa layers 
Source: USDA, National Agricultural Statistics Service, 2013 and 2014 Iowa Cropland Data Layer. 

 2013 – Accuracy (%) 2014 – Accuracy (%) 
Corn 96.98 97.68 
Soybeans 96.28 97.17 
Alfalfa 61.87 70.24 
Other Hay/Non-Alfalfa 51.78 55.52 
Overall accuracy 95.2 96.3 
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Figure 3.5. CDL for 2013 and corn field with pixels misclassified as soybeans 
 

In order to perform some geoprocessing corrections to reclassify the misclassified 

pixels, it was necessary to have the fields delimited with borders. For this purpose, the field 

boundary shapefiles from the USDA Agricultural Conservation Planning 

Framework Database (ACPF) were used. The ACPF program has combined data from field 

boundaries, soil surveys, recent land use, and topography among others, for individual 

HUC12 watersheds in Iowa, Illinois, and southern Minnesota. A geodatabase containing 

all that information has been created for each HUC 12 watershed, and it is available for 

free downloading at the USDA ACPF Watershed Database website 

(http://www.nrrig.mwa.ars.usda.gov/st30_huc/huc.htm). 
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The land cover classes from the CDL raster files for 2013 and 2014 were matched 

to the ACPF field boundary polygons, using the Zonal Statistics as Table ArcMap tool. 

The fields were then reclassified according to the category that had the majority of pixels, 

within the field's boundaries. For both years, according to the CDL classification, there 

were five cover types in the study area: corn and soybeans, which were reclassified as 

Stover, and alfalfa, other hay/non-alfalfa, and grass/pasture, which were re-coded as 

Pasture/Grass (Figure 3.6). 

 

Figure 3.6. Cropland data layer processing. 
CDL for 2013 (left). Field classification based on CDL and ACPF datasets (right). 

 

For each year, the cover crop and CDL produced layers were joined, and all the 

fields were buffered inwards by 30 meters – the size of 1 Landsat pixel –, to make sure all 

the reflectance data obtained from a field was representative of its cover (Figure 3.7). Fields 

smaller than 1 hectare and all the CDL fields that overlapped with the ground truth data 

cover crop fields were deleted. A total of one hundred and thirty-one cover cropped fields 
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were selected, seventy-eight for 2013 and fifty-three for 2014. All these fields were unique; 

there were not fields with cover crops in both seasons.  

 

Figure 3.7. Field boundary and 30 meters inward buffer. 
 

The objective of this project was to produce a model that could detect cover crops 

regardless of weather conditions, planting dates, species, and soil types, even though we 

know weather and planting differences influence the spectral reflectance of the ground 

surface. Based on usual planting dates reported by the USDA (USDA NASS, 2010) for the 

most important cover crop species for the region (winter cereal rye, winter wheat, and oats), 

and seeding recommendations dates from the Midwest Cove Crops Council Cove Crop 

Decision Tool (MCCC, 2015), planting dates were classified into three categories: Early 

(August 1st to September 10th), Normal (September 11th to October 31st), and Late 
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(November 1st to November 15th). Thus, to understand weather conditions affecting cover 

crop planting dates, establishment and development, rainfall events and growing degree 

days (GDD) of the study area were analyzed for both of the planting seasons.  

Fall rainfall was limited only in 2014, despite two significant events on September 

10th (45.21 mm) and October 14th (55.11 mm). Looking at the distribution of fields by 

planting date (Figure 3.8) it can be noticed that there were not cover crops planted before 

the first rainfall, it could be inferred that the beginning of the 2014 cover crop planting 

season was influenced by this event. From the calculation and analysis of growing degree 

days, it could be expected that cover crops stopped producing biomass after November 7th 

(3 GDD) for 2013 and November 1st (-2.5 GDD) for 2014. 

To include inter-annual variations in conditions, we combined the two years in 

order to build the model.  

 

Figure 3.8. Distribution of cover crop fields by planting date 
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A decision tree classification approach was selected for this study, described in 

more detail below. As this method is sensitive to the amount of data per category (Rogan 

et al., 2003), the fields per class were restricted to the total of cover crop fields. Therefore, 

sixty-five fields for each category were randomly selected from the CDL recoded shapefile; 

the same sample fields were used for both years (Table 3.2, Figure 3.9). 

Table 3.2. Fields per class in the dataset. 

Fields 2013 2014 Total 
Cover Crops 78 53 131 

Oats 17 2 19 
Oats - Winter rye 3 1 4 
Winter rye 50 40 90 
Winter wheat 8 10 18 

Corn/Soybeans stover 65 65 130 
Corn 38 34 72 
Soybeans 27 31 58 

Pasture/Grass 65 65 130 
Alfalfa 42 42 84 
Other hay/non-alfalfa 2 2 4 
Grass/Pasture 21 21 42 

Total 208 183 391 
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Figure 3.9. Selected fields. 
 

All non-cover crop fields were visually inspected using eight satellite images for 

each year to assess the information provided by the CDL. Fields containing mixed pixels 

and/or fields that seemed to be under different management practices were discarded and 

replaced with others, also randomly selected (Figure 3.10). In addition, for corn and 

soybeans fields it was verified that there was no vegetation growth after harvest; and only 

fields that had the same cover for both years were considered for the items under the 

Pasture/Grass category. 
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Figure 3.10. Visual assessment of training data 
 

3.3.3. Satellite Image Database 

A database consisting of satellite images from Landsat 7 and 8 was created by the 

research group to evaluate cover crop adoptions and other agricultural conservation 

practices affecting water quality and landscape change across time series. The images were 

downloaded from the USGS Earth Explorer website (http://earthexplorer.usgs.gov/) and 

saved on a shared server. This imagery collection contained all the scenes available for the 

period 2000-2015 for the state of Iowa, with less than 50% of cloud cover and obtained 

during the daytime. 
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3.3.4. Time series selection 

To analyze the temporal change using vegetation indexes derived from remote 

sensing data, it was necessary first to establish a date range that could detect the differences 

between the land cover categories. For our study, we used the period from June 1 of year 

1 to May 31 of year 2 for each crop year (Figure 3.11).  

 

Figure 3.11. Timeline for the selected time series. 
         

This range allowed us to evaluate the change in land use accurately, being able to 

detect the growing season of corn, soybeans, and pastures, and contrast it to cover crops 

growth. An example of the phenological cycle of winter wheat, which could serve as a 

cover crop if killed by April or May, is shown in Figure 3.12.  
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Figure 3.12. Phenology of Winter Wheat in the Midwest United States.  
Source: Jensen, 2009. 

 

3.3.5. Landsat data transformation 

One of the main goals of Landsat missions is to provide long-term and consistent 

information that could be combined despite the recording sensor. In order to generate 

products of higher quality two new bands were incorporated to Landsat 8, signal to noise 

ratio and radiometric quantization were increased, and all the spectral wavebands were 

narrowed (Figure 3.13).  
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Figure 3.13. Landsat 7 and 8 bandpass wavelengths.  
Source: USGS, 2013. 

 

On the one hand, these modifications had improved the ability of Landsat 8 for 

detecting land changes, on the other hand, the alteration of the bands made it necessary to 

perform spectral reflectance transformations to compare its data to that from Landsat 7. 

Previous research has reported that for the calculation of NDVI (1) the narrower bands of 

Landsat’s 8 compared to Landsat 7 (Table 3.3) could generate differences associated with 

the sensor (Flood 2014; Ke et al., 2015; Li et al., 2013; She et al., 2015; Xu, 2014). 

Table 3.3. NDVI bands wavelengths. 

 

Roy et al. (2015) developed transformation functions using ordinary least squares 

(OLS) regressions to adjust the top of atmosphere (TOA) and surface reflectances between-

sensors differences for each band and also for NDVI. For our dataset, Landsat 7 Red, Near 

Sensor Band 
Near-Infrared 

(μm) 
Band Red (μm) 

Landsat 8 Operational Land Imager 
(OLI) and Thermal Infrared Sensor (TIRS)

5 0.85 – 0.88 4 0.64 – 0.67 

Landsat 7 – Enhanced Thematic Mapper 
Plus (ETM+) 

4 0.77 – 0.90 3 0.63 – 0.69 
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Infrared, and NDVI values were rescaled to Landsat 8, using (3), (4), and (5). Regarding 

NDVI, it was reported that, on average, Landsat’s 8 surface NDVI was greater than 

Landsat’s 7 by 0.0165, and its mean relative difference was 4.86%. The transformation 

proposed by the authors (5) is reliable for normalizing the NDVI reflectance values 

between sensors as its regression coefficient of determination (r2) was 0.926 and p-value 

<0.0001.  

Red λ (~0.66 μm) 8 0.0107 0.9175 	7 (3) 

Near infrared λ (~0.85 μm) 8 0.0374 0.9281 	7 (4) 

NDVI 8 0.0235 0.9723 	7 (5) 

 

 

3.3.6. Model building and accuracy assessment 

The vegetation indexes showed on Table 3.4 were used to calculate mean and 

standard deviation values for each field, using each suitable satellite image during the 

selected period; images with substantial cloud cover, snow, or ice over the study region 

were not used.  

Table 3.4. Vegetation indexes. 

Index Formula Author and Year 

Normalized Difference 
Vegetation Index (NDVI) 

NIR RED
 Rouse et al., 1974 

Ratio Vegetation Index 
(RVI) NIR

 
Pearson and 
Miller, 1972 

Vegetation Index Number 
(VIN) 

NIR
 

Pearson and 
Miller, 1972 

Soil Adjusted Vegetation 
Index (SAVI) 1  Huete, 1988 

 
 



43 
 

The final step of our analysis was to adopt a decision tree classification approach 

to evaluating NDVI, VIN, SAVI, and RVI time series and detect threshold values that could 

accurately separate the three land cover categories: cover crop, stover and pasture/grass. 

Selecting the mean index value for each field and specific image date could overwhelm the 

decision tree algorithm. Moreover, any resulting model could be used only those years in 

which the sensor visits the area on the same dates, and records appropriate images. In order 

to develop a more general model, average monthly indexes per field were calculated and 

selected as the explanatory variables for the decision tree analysis.  

As a decision tree is a non-parametric supervised learning method, it has some 

characteristics and advantages that make it one of the most suitable classification methods 

for our dataset. Being non-parametric by nature decision trees do not make any 

assumptions on the probability distributions of the variables analyzed. Moreover, tree-

based methods can combine both numerical data – index values – and categorical data – 

land cover types –, and are easy for interpretation and visualization. In addition, decision 

trees can handle datasets with missing or non-continuous data, this feature was particularly 

important in our study, as the calculation of vegetation index field values depended on the 

prevailing weather conditions of the day when the image was obtained. For instance, some 

clouds could partially cover an image, making possible to calculate the indexes values only 

for a fraction of the total fields, on a specific date.  

The dataset was randomly separated into two sub-datasets: one to calibrate the 

models, consisting of 70% of the data; and the remaining 30% to validate the results. 

Decision trees are sensitive to the number of samples in each category because the 
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algorithm considers the variations within-class and between-class. Therefore, the number 

of samples for each category on the sub datasets was kept similar (Table 3.5). 

Table 3.5. Subdatasets structure. 

 Stover Cover crop Pasture/Grass Total % 
Calibration 91 92 91 274 70 
Validation 39 39 39 117 30 
Total 130 131 130 391 100 

 

The package Rattle from the R software was used to perform a decision trees for 

each index, using the calibration dataset. The mean values were selected for the input 

variables. In order control the size of the tree, and also to generate a model that could be 

easily adopted, the minimum of fields in any node and leaf were set to nine, and a maximum 

of three classification levels was chosen.  

The performance of the proposed indexes for cover crop detection was evaluated 

using the validation dataset. An error matrix was constructed, and it was used to calculate 

the metrics derived from the decision trees, the overall accuracy, the classification accuracy 

for each class, and the kappa statistic. Although other evaluation measures could have been 

used for this purpose, the error matrix and analysis provides an overview of the validity of 

the model that has the advantage of being widely used and straightforward in its 

interpretation. 

 

 

3.4 Results and Discussion 

The analysis of the decision trees for each vegetative indicated that NDVI 

performed slightly better than the others indexes to differentiate cover crops fields from 



45 
 

other fields. The NDVI showed a higher kappa coefficient, which means that there is a 

better agreement between the data, higher overall accuracy, and also higher accuracy for 

classifying cover crops (Table 3.6). As a result, NDVI was the index selected for this study 

to develop sets of criteria for cover crop detection using a decision tree approach. 

Table 3.6. Evaluation of the vegetation indexes.  

Index Kappa Overall Accuracy Cover Crop Accuracy 
NDVI 0.73 82 76.9 
RVI 0.71 81 61.5 
VIN 0.70 80 64.1 

SAVI 0.71 81 64.1 
 

In order to evaluate whether the mean NDVI is an appropriate measure of central 

tendency to describe the data the median NDVI was calculated, and both measures were 

compared by regressing one on the other. Figure 3.14 shows that there seem to be no 

significant differences between the mean and the median NDVI, which is confirmed by the 

high R2 (0.9972). This result supports the mean NDVI as an adequate measure for 

classifying fields with different vegetative covers. Moreover, a decision tree using the 

median NDVI values was constructed, and similar results were obtained. 
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Figure 3.14. Mean and median NDVI comparison. 
 
 

The spectral signatures for the studied classes were generated based on average 

monthly NDVI values computed by field and are shown in Figure 3.15. The dotted lines 

represented the periods when the NDVI was not representative of the category under which 

the field was assigned. For the case of cover crop fields, reflectance values recorded during 

June, July, August and September would not be representative of them, but of the cash crop 

being grown on the same field. The same period would not show values that corresponded 

to corn or soybeans residues, but to corn or soybeans development.  

R² = 0.9972
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Figure 3.15. Spectral signatures by class using average NDVI. 
 

From this graph, it can be seen that the NDVI spectral signatures for cover crops 

and stover do not show great differences, and this had an impact on the developed model. 

However, there are two months: October and December, when the differences between 

classes were more notorious, and in particular for the Pasture/Grass category. 

The NDVI decision tree classification model is shown in Figure 3.16. The 274 

fields present in the dataset formed the root of the tree (top of the tree), being Cover Crops 

the most relevant category, consisting of 92 fields which represented the 34% of the data. 

The remaining 66% was divided into equal parts under Pasture/Grass and Stover 

categories, with 91 fields on each one. The boxes (nodes) were labeled with the class that 
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had the highest percentage of observations for that node and were identified with numbers. 

The probability for predicting the classes is shown in the second line of the box; the first 

value corresponds to Cover Crops, the second to Pasture/Grass and the third to Stover. The 

color gradient of the boxes is a visual representation of the node probability for predicting 

its main class (darker colors indicate higher probability). The third line in the box 

corresponds to the percentage of observations of the dataset grouped by the node.  

 

Figure 3.16. Decision tree for land cover classification. 
 

The most relevant variables for the classification model were October, May, and 

December average NDVI. From Figure 3.15 it can be seen that October and May NDVI 

presented the greatest differences between classes. Hence it was expected that these 

variables were selected by the model to separate the categories. Also, to evaluate the 

sensitivity of the model to the fields in the dataset, different random selections of the 70% 

calibration datasets were created. Even when some variations on the threshold values were 
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detected among the different models, October and May NDVI were selected for splitting 

the data in most of them.  

Descriptive statistics for the parameters used in the model (October, May, and 

December NDVI) are shown in (Figure 3.17).  

 A field’s October NDVI value forms the primary split or branching in the model, 

with a breakpoint value of 0.44. Fields with October NDVI ≥ 0.44 are most likely to be 

pasture or grass (94%). In order to split the data further from that point, the model uses 

May NDVI; if May NDVI < 0.38, the field is classified as cover crop, otherwise it is 

classified as pasture or grass. In effect, this tends to identify fields as grass or pasture if 

they have relatively high NDVI in both October and May. For fields with cover crops, they 

may have robust ground cover later in the year after a fall establishment (thus high October 

NDVI), but are likely to be killed off and/or plowed under early in the spring in preparation 

for planting the season’s regular crop (thus low May NDVI).  

The secondary May NDVI threshold is effective at identifying pasture/grass (100% 

of the fields so categorized are indeed pasture or grass). At the end of the winter or early 

spring, depending on weather conditions, pastures resume its growth, and as a consequence 

its levels of greenness increase. Later in the spring, the NDVI reaches the maximum levels, 

and remains roughly stable during the summer, while the crop produces biomass. A decline 

in the NDVI is detectable during the fall, when weather conditions turn unfavorable for the 

crop to keep growing, reaching the minimum in the month of February. 

The secondary May NDVI threshold is somewhat less effective at identifying cover 

crops (only 71% of those fields are in fact cover crops; 14% are corn/soybeans and 14% 

are pasture/grass). However, this branch of the tree is only 3% of the full dataset, indicating 
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that this set of classification criteria is only useful for a small number of fields. Looking at 

the fields meeting these criteria, the cover crop fields identified by this rule were planted 

between August 7th and September 9th, which is somewhat unusual because generally 

cover crops are planted after corn or soybeans are harvested, mostly in October and early 

November. As a result, October’s NDVI of these fields was higher than typically later-

planted cover crops would be, and was similar to pastures, which resume their growth 

during the spring and show high values of NDVI during summer and early spring. The 

pasture/grass erroneously classified as cover crop was an alfalfa field, which presented an 

NDVI of 0.35 for the month of May, and was identified as an outlier when analyzing the 

distribution for its class (Figure 3.17). For that field, NDVI values for the following months 

were evaluated to detect if the alfalfa was terminated and replaced with other crop or if the 

field was left bare. However, the NDVI values for the next months were within the 

interquartile range, so it could be inferred that the low May NDVI was related to a 

particular condition, after which the alfalfa continued its growth. For the case of the stover 

field incorrectly classified as cover crop, it was soybeans grown in 2014 and also identified 

as an outlier for October’s NDVI in its category. The field presented low NDVI values for 

November and December, so it could be assumed that it was harvested at the end of October 

or early November, probably before the first November satellite image (11/08/2014).  

Fields with October NDVI < 0.44 are roughly equally likely to be stover or cover 

crop (51% and 49% respectively). May’s NDVI was also the variable selected by the model 

to split the data further for this branching of the tree; if May NDVI ≥ 0.31, the field is 

classified as cover crop, if not it is classified as stover. Because 40% of the total cover crop 

fields in the dataset are classified under this rule, and also because it has the highest 
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probability (94.87%) for the category, this set of classification criteria is the most 

significant for detecting cover crops (darkest green node of the tree). The relatively small 

predicting error arises from the inclusion of two stover fields with May NDVI of 0.31 and 

0.32. From Figure 3.17 it can be observed that these values were close to the maximum of 

its category, so it might be possible that the fields were planted early in the season, and 

consequently were able to be detected sooner than others. Inspecting the cover crop fields 

selected by this rule, all of them were planted during October and the first ten days of 

November, a range that is considered as normal/late for the state of Iowa. The fall biomass 

production of the fields in this category would be influenced by the combination of weather 

conditions, the species selected and planting date, and it could be inferred that plant growth 

was at least enough to allow its survival. May NDVI would suggest there is at least a normal 

biomass production during the spring, suggesting that these fields had winter-hardy cover 

crops. 

Because May NDVI is not as powerful to classify stover fields as it is for cover 

crops, a third breakpoint value is needed. A field is more likely to have a cover crop if 

December’s NDVI  0.20, and stover if NDVI < 0.20. Analyzing the fields classified as 

cover crops, about 94% of these cover crops were planted during October. December NDVI 

 0.20 could suggest that the cover crops emerged; however, its survival would depend on 

the species and weather conditions of the year.  

Fields with December’s NDVI < 0.20 are most likely to be stover (77%). The 

relatively high effectiveness of this threshold for detecting stover fields could be explained 

by inspecting December’s medians for cover crops and stover (Figure 3.17). The selected 

threshold is greater than stover’s median (0.19) and smaller than cover crop’s median 
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(0.21), making it more reliable for detecting fields with corn or soybeans residue. The cover 

crops erroneously included in this category were planted between October 20th and 

November 10th, and as a consequence they did not produce much biomass by December, 

showing low NDVI values which are similar to those from fields with stover. 

   
 

  

Figure 3.17. Distribution of average monthly NDVI by class. 
 

 

3.4.1. Model evaluation and performance 

The accuracy of the decision tree model for predicting each category was evaluated 

using a validation dataset, and an error matrix was constructed showing correctly and 

incorrectly classified fields (Table 3.7).  
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Table 3.7. Error matrix for land covers classes. 

  PREDICTED AS ROW 
TOTAL   COVER CROP PASTURE/GRASS STOVER 

CLASS 

COVER CROP 30 0 9 39 

PASTURE/GRASS 2 37 0 39 

STOVER 10 0 29 39 

COLUMN TOTAL 42 37 38 117 

KAPPA = 0.73 

 

The validation dataset had a total of 117 fields, 39 for each category, and the overall 

accuracy of the model for predicting the classes was 82.0%. For the case of cover crops, 

76.9% (30 fields) were identified by the model as cover crops, while the remaining ones 

were classified as stover fields. Overall the model said 35.8% of the data were cover crops 

when actually 33.3% of the data were cover crops, and pastures and grasses and stover 

fields were underestimated by the model by 1.6% and 0.9% respectively.  

A kappa coefficient of 0.73 indicates a good agreement between the reference data 

and the results predicted by the model. However, on a dataset level, the model slightly 

overestimates the number of cover cropped fields.  

The proportions of the classes on the dataset evaluated were noted representative 

of their actual proportions in the area of study, as a real study area will not have equal 

numbers of the three categories. Thus, a dataset considering the proportion of each category 

in the area of study (3 % of cover crop fields, 12% of pasture/grass fields, and 85% of 

stover fields) we created and evaluated. The fields in the dataset were classified using the 

threshold values identified by the model, and the results were analyzed using an error 

matrix (Table 3.8).  
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Table 3.8. Error matrix for a validation dataset representative of the study area. 

  PREDICTED AS ROW 
TOTAL   COVER CROP PASTURE/GRASS STOVER 

CLASS 

COVER CROP 4 0 0 4 

PASTURE/GRASS 0 14 0 14 

STOVER 20 0 79 99 

COLUMN TOTAL 24 14 79 117 

KAPPA = 0.58 

 

For the case of cover crops and pastures, all the fields were correctly identified. 

However, 20 stover fields were classified as cover crops, which leads to an overestimation 

of 500% of the cover crop fields. The overestimation occurs because there is a small 

amount of cover crops in comparison to corn and soybean stover fields.  

 

 

3.5 Conclusions 

The results of this study demonstrate that remote sensing can successfully be used to 

detect cover crops in agricultural fields, and as a consequence, it is an appropriate tool to 

evaluate current and future cover crop adoptions. Landsat’s 7 and 8 satellite image derived 

data was used to calculate average monthly vegetation indexes values, and characterize 

agricultural fields of the study area, being NDVI the most accurate index for the dataset. 

A decision tree classification approach was used to develop sets of criteria for 

identifying cover crops, pastures and grasses, and stover fields based on average monthly 

NDVI. The model was able to classify fields by category with an overall accuracy of 82%, 

while its precision for detecting cover crops was 76.9%. Three rules were developed for cover 

crops detection, being October NDVI < 0.44 and May NDVI  0.31 the one with the highest 
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probability (95%). In addition, the NDVI threshold can be used to estimate the biomass 

production by field, as a means of the effectiveness of the cover crop as a conservation practice. 

The development of a similar model using more growing seasons could be helpful to 

account for the effect of plant growth variability, which is strongly associated with weather 

conditions. Also, further research is required to evaluate the performance of the model in other 

areas of study, as the breakpoint values might change. 
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CHAPTER IV. SUMMARY AND CONCLUSIONS 
 

 

4.1 Summary and conclusions 

Since cover crops have an impact on soil and water quality, knowledge of their 

implementation plays a main role in the evaluation of current conservation practices and 

future actions required. Because remote sensing techniques can provide information over 

large areas, periodically, then can successfully be implemented to gather information from 

agricultural areas. Satellite image derived data from Landsat’s 7 and 8 red and near-infrared 

bands was used to compute monthly average NDVI values to characterize the different 

groundcovers of the study area at the field level. A decision tree model approach was used 

to develop sets of criteria for the identification of fields with cover crops, pastures and 

grasses, and stover, based on monthly NDVI values. The model was developed based on a 

calibration dataset and tested using a validation dataset, and showed an overall accuracy of 

82%. The level of precision for cover crop detection was 76.9%, and because this category 

was overestimated by 2.5%, the application of this set of criteria could result in an 

overestimation of the cover crops acreage. Further research is required to evaluate its 

performance in other areas of study.  

The results of this study indicate that remote sensing techniques have the capability 

to differentiate cover crop fields from other land covers, although the accuracy of the 

classification would be strongly influenced by planting date and biomass production.  
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4.2 Recommendations 

The sets of criteria developed to identifying different land covers showed a 

relatively high accuracy, even so, several factors could hinder its functionality on other 

datasets. Firstly, the proportions of the classes on the dataset evaluated were not 

representative of their actual proportions in the area of study. Using a dataset from a 

surveyed area, with current ratios for the classes, could lead to a more robust model. 

The purpose of this study was to develop a remote sensing protocol independent on 

the species selected as a cover crop, planting date and method, date of emergence, biomass 

production, termination date, and other management practices related to the cover cropped 

fields. However, building a model based on a dataset with this information could contribute 

to elaborate additional conclusions on the application of the detection rules created by the 

model. Also, if extending the dataset and scaling up of this research to more years of study, 

variations on crop’s NDVI that are related to climate conditions might be accounted better. 

The index selected for this study, the NDVI, is one of the most used vegetation 

indices for the evaluation of vegetative covers. However, factors like vegetation moisture, 

soil moisture, percentage of vegetative cover, soil type, and management practices can 

affect the strength of the NDVI for characterizing the vegetation correctly. In addition, high 

soil’s background reflectance during the establishment period of cover crops also 

influences the NDVI values. Because all the indexes tested in this study are based on the 

Red and Near Infrared bands, further research on indexes combining these and other bands 

is needed to evaluate the detection of cover crop fields using remotely sensed data. 
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APPENDIX A. ANALYSIS OF MEDIAN MONTHLY NDVI 
 
 

 

Figure A.1. Decision tree using median monthly NDVI.  
 

 

Table A.1. Error matrix for median monthly NDVI decision tree. 

  PREDICTED AS ROW 
TOTAL   COVER CROP PASTURE/GRASS STOVER 

CLASS 

COVER CROP 29 0 10 39 

PASTURE/GRASS 2 37 0 39 

STOVER 14 0 25 39 

COLUMN TOTAL 45 37 35 117 

OVERALL ACCURACY = 78% KAPPA = 0.66 
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APPENDIX B. ANALYSIS OF AVERAGE MONTHLY RVI, VIN AND SAVI 
 
 

 

Figure B.1. Decision tree using average monthly RVI. 
 
 

Table B.1. Error matrix for average monthly RVI decision tree. 

  PREDICTED AS ROW 
TOTAL   COVER CROP PASTURE/GRASS STOVER 

CLASS 

COVER CROP 24 0 15 39 

PASTURE/GRASS 3 36 0 39 

STOVER 3 1 35 39 

COLUMN TOTAL 30 37 50 117 

OVERALL ACCURACY = 81% KAPPA = 0.71 
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Figure B.2. Decision tree using average monthly VIN. 
 

Table B.2. Error matrix for average monthly VIN decision tree. 

  PREDICTED AS ROW 
TOTAL   COVER CROP PASTURE/GRASS STOVER 

CLASS 

COVER CROP 25 0 14 39 

PASTURE/GRASS 2 37 0 39 

STOVER 7 0 32 39 

COLUMN TOTAL 34 37 46 117 

OVERALL ACCURACY= 80% KAPPA = 0.70 
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Figure B.3. Decision tree for average monthly SAVI. 
 

Table B.3. Error matrix for average monthly SAVI decision tree. 

  PREDICTED AS ROW 
TOTAL   COVER CROP PASTURE/GRASS STOVER 

CLASS 

COVER CROP 24 0 15 39 

PASTURE/GRASS 3 36 0 39 

STOVER 4 0 35 39 

COLUMN TOTAL 31 36 50 58 

OVERALL ACCURACY = 81% KAPPA = 0.71 
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APPENDIX C. SATELLITE IMAGES DATASET 
 
 

Table C.1. Satellite images and dates. 
 
 

SENSOR IMAGE DATE RASTER ID 

Landsat 7 2013-06-13 LE70260302013164EDC00 

Landsat 7 2013-06-22 LE70250312013173EDC00 

Landsat 8 2013-07-07 LC80260312013188LGN00 

Landsat 7 2013-07-08 LE70250312013189EDC00 

Landsat 7 2013-07-15 LE70260312013196EDC00 

Landsat 8 2013-07-16 LC80250312013197LGN00 

Landsat 7 2013-07-24 LE70250312013205EDC00 

Landsat 7 2013-07-31 LE70260312013212EDC00 

Landsat 8 2013-08-01 LC80250312013213LGN00 

Landsat 8 2013-08-08 LC80260312013220LGN00 

Landsat 7 2013-08-16 LE70260312013228EDC00 

Landsat 8 2013-08-17 LC80250312013229LGN00 

Landsat 8 2013-08-24 LC80260312013236LGN00 

Landsat 7 2013-08-25 LE70250312013237EDC00 

Landsat 7 2013-09-01 LE70260312013244EDC00 

Landsat 8 2013-09-02 LC80250312013245LGN00 

Landsat 8 2013-09-09 LC80260312013252LGN00 

Landsat 7 2013-09-10 LE70250312013253EDC00 

Landsat 8 2013-09-18 LC80250312013261LGN00 

Landsat 8 2013-09-25 LC80260312013268LGN00 

Landsat 7 2013-09-26 LE70250312013269EDC00 

Landsat 8 2013-10-11 LC80260312013284LGN00 

Landsat 7 2013-10-12 LE70250312013285EDC00 

Landsat 8 2013-10-27 LC80260312013300LGN00 

Landsat 7 2013-10-28 LE70250312013301EDC00 

Landsat 8 2013-11-12 LC80260302013316LGN00 

Landsat 7 2013-11-13 LE70250312013317EDC00 

Landsat 8 2013-11-28 LC80260302013332LGN00 

Landsat 7 2013-12-06 LE70260312013340EDC00 

Landsat 8 2013-12-07 LC80250312013341LGN00 

Landsat 8 2014-03-04 LC80260312014063LGN00 

Landsat 8 2014-03-13 LC80250312014072LGN00 

Landsat 8 2014-03-20 LC80260302014079LGN00 

Landsat 7 2014-03-21 LE70250312014080EDC00 

Landsat 8 2014-03-29 LC80250312014088LGN00 
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Landsat 8 2014-04-05 LC80260302014095LGN00 

Landsat 7 2014-04-22 LE70250312014112EDC00 

Landsat 8 2014-05-07 LC80260312014127LGN00 

Landsat 8 2014-05-23 LC80260302014143LGN00 

Landsat 7 2014-05-31 LE70260302014151EDC00 

Landsat 8 2014-06-01 LC80250312014152LGN00 

Landsat 7 2014-06-09 LE70250312014160EDC00 

Landsat 8 2014-06-17 LC80250312014168LGN00 

Landsat 8 2014-06-24 LC80260302014175LGN00 

Landsat 7 2014-06-25 LE70250312014176EDC00 

Landsat 8 2014-07-03 LC80250312014184LGN00 

Landsat 8 2014-07-10 LC80260312014191LGN00 

Landsat 7 2014-07-18 LE70260312014199EDC00 

Landsat 8 2014-07-19 LC80250312014200LGN00 

Landsat 7 2014-07-27 LE70250312014208EDC00 

Landsat 7 2014-08-03 LE70260312014215EDC00 

Landsat 8 2014-08-04 LC80250312014216LGN00 

Landsat 7 2014-08-12 LE70250312014224EDC00 

Landsat 7 2014-08-19 LE70260312014231EDC00 

Landsat 7 2014-09-04 LE70260312014247EDC03 

Landsat 8 2014-09-05 LC80250312014248LGN00 

Landsat 7 2014-09-13 LE70250312014256EDC00 

Landsat 8 2014-09-28 LC80260312014271LGN00 

Landsat 7 2014-10-06 LE70260312014279EDC00 

Landsat 8 2014-10-07 LC80250312014280LGN00 

Landsat 7 2014-10-22 LE70260312014295EDC00 

Landsat 8 2014-10-30 LC80260312014303LGN00 

Landsat 7 2014-10-31 LE70250312014304EDC00 

Landsat 8 2014-11-08 LC80250312014312LGN00 

Landsat 7 2014-12-02 LE70250312014336EDC00 

Landsat 8 2014-12-17 LC80260312014351LGN00 

Landsat 8 2015-01-18 LC80260302015018LGN00 

Landsat 8 2015-02-12 LC80250312015043LGN00 

Landsat 8 2015-02-19 LC80260302015050LGN00 

Landsat 7 2015-03-31 LE70260312015090EDC00 

Landsat 8 2015-04-01 LC80250312015091LGN00 

Landsat 7 2015-04-16 LE70260312015106EDC00 

Landsat 8 2015-04-17 LC80250312015107LGN00 

Landsat 8 2015-04-24 LC80260302015114LGN00 

Landsat 8 2015-05-03 LC80250312015123LGN00 

Landsat 7 2015-05-18 LE70260312015138EDC00 

Landsat 8 2015-05-19 LC80250312015139LGN00 

Landsat 7 2015-05-27 LE70250312015147EDC00 
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APPENDIX D. MEAN MONTHLY NDVI DATASET 
 
 

Table D.1. Average monthly NDVI 
 
 
CAL: field used for model calibration 

VAL: field used for model validation 

 
 

DATASET YEAR CLASSIFICATION J F M A M J J A S O N D 

CAL 2013 COVER CROP   0.24 0.26 0.30 0.28 0.40 0.39 0.46 0.74 0.74 0.34 

CAL 2013 COVER CROP   0.26 0.41 0.29 0.30 0.42 0.39 0.52 0.78 0.76 0.45 

CAL 2013 COVER CROP   0.21 0.20 0.25 0.31 0.41 0.38 0.46 0.78 0.76 0.31 

CAL 2013 COVER CROP   0.21 0.21 0.25 0.38 0.65 0.51 0.31 0.56 0.69 0.39 

CAL 2013 COVER CROP   0.33 0.49 0.36 0.42 0.90 0.85 0.45 0.62 0.64 0.52 

CAL 2013 COVER CROP   0.22 0.21 0.25 0.35 0.83 0.72 0.37 0.36 0.47 0.27 

CAL 2013 COVER CROP   0.22 0.23 0.26 0.33 0.77 0.72 0.35 0.41 0.48 0.34 

CAL 2013 COVER CROP   0.26 0.35 0.37 0.50 0.91 0.86 0.57 0.28 0.36 0.23 

CAL 2013 COVER CROP   0.23 0.20 0.24 0.38 0.80 0.89 0.58 0.24 0.29 0.22 

CAL 2013 COVER CROP   0.22 0.19 0.24 0.37 0.80 0.90 0.56 0.24 0.28 0.21 

CAL 2013 COVER CROP   0.24 0.21 0.27 0.26 0.69 0.69 0.45 0.25 0.26 0.25 

CAL 2013 COVER CROP   0.27 0.45 0.25 0.48 0.91 0.88 0.61 0.24 0.28 0.30 

CAL 2013 COVER CROP   0.24 0.20 0.25 0.25 0.75 0.69 0.44 0.25 0.22 0.21 

CAL 2013 COVER CROP   0.25 0.33 0.27 0.28 0.79 0.90 0.74 0.23 0.22 0.25 

CAL 2013 COVER CROP   0.25 0.32 0.26 0.27 0.79 0.89 0.76 0.22 0.22 0.24 

CAL 2013 COVER CROP   0.24  0.33 0.31 0.73 0.86 0.72 0.24 0.22 0.26 

CAL 2013 COVER CROP   0.26 0.30 0.32 0.27 0.69 0.87 0.76 0.23 0.21 0.25 

CAL 2013 COVER CROP   0.23 0.21 0.26 0.30 0.81 0.91 0.64 0.23 0.19 0.18 

CAL 2013 COVER CROP   0.24 0.21 0.28 0.32 0.84 0.87 0.60 0.26 0.20 0.18 

CAL 2013 COVER CROP   0.23 0.27 0.66 0.54 0.89 0.86 0.46 0.23 0.18 0.21 

CAL 2013 COVER CROP   0.26 0.34 0.60 0.34 0.50 0.63 0.45 0.31 0.19 0.22 

CAL 2013 COVER CROP   0.30 0.51 0.81 0.40 0.61 0.68 0.58 0.33 0.22 0.25 

CAL 2013 COVER CROP   0.22 0.30 0.82 0.47 0.86 0.81 0.44 0.24 0.21 0.21 

CAL 2013 COVER CROP   0.23 0.30 0.68 0.42 0.77 0.79 0.51 0.27 0.21 0.24 

CAL 2013 COVER CROP   0.31 0.42 0.83 0.51 0.90 0.83 0.42 0.32 0.25 0.26 

CAL 2013 COVER CROP   0.29 0.48 0.81 0.43 0.63 0.71 0.50 0.36 0.27 0.28 

CAL 2013 COVER CROP   0.21 0.23 0.27 0.31 0.77 0.91 0.65 0.25 0.19 0.21 

CAL 2013 COVER CROP   0.22 0.23 0.25 0.29 0.73 0.91 0.75 0.28 0.18 0.21 

CAL 2013 COVER CROP   0.24 0.24 0.26 0.26 0.72 0.88 0.64 0.26 0.19 0.22 

CAL 2013 COVER CROP   0.23 0.28 0.26 0.29 0.71 0.91 0.71 0.28 0.18 0.21 
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CAL 2013 COVER CROP   0.21 0.28 0.26 0.27 0.74 0.92 0.66 0.24 0.18 0.21 

CAL 2013 COVER CROP   0.21 0.30 0.32 0.45 0.62 0.84 0.67 0.28 0.19 0.22 

CAL 2013 COVER CROP   0.23 0.27 0.28 0.30 0.86 0.90 0.81 0.31 0.17 0.22 

CAL 2013 COVER CROP   0.19 0.20 0.36 0.32 0.88 0.86 0.68 0.37 0.21 0.20 

CAL 2013 COVER CROP   0.19 0.23 0.30 0.26 0.89 0.90 0.72 0.26 0.19  

CAL 2013 COVER CROP   0.19 0.20 0.32 0.27 0.89 0.88 0.62 0.29 0.18 0.18 

CAL 2013 COVER CROP   0.21 0.21 0.40 0.48  0.86 0.67 0.27 0.16 0.18 

CAL 2013 COVER CROP   0.24 0.23 0.35 0.36 0.44 0.81 0.77 0.30 0.14 0.20 

CAL 2013 COVER CROP   0.18 0.24 0.37 0.31 0.75 0.86 0.67 0.31 0.19 0.17 

CAL 2013 COVER CROP   0.22 0.26 0.31 0.33 0.59 0.82 0.77 0.29 0.20 0.21 

CAL 2013 COVER CROP   0.19 0.23 0.33 0.29 0.81 0.87 0.71 0.32 0.19 0.18 

CAL 2013 COVER CROP   0.19 0.27 0.33 0.56 0.62 0.86 0.73 0.32 0.20 0.23 

CAL 2013 COVER CROP   0.20 0.24 0.27 0.28 0.82 0.88 0.74 0.24 0.18 0.18 

CAL 2013 COVER CROP   0.21 0.23 0.28 0.27 0.83 0.89 0.78 0.37 0.18 0.17 

CAL 2013 COVER CROP   0.20 0.23 0.34 0.41 0.87 0.88 0.70 0.30 0.18 0.18 

CAL 2013 COVER CROP   0.25 0.24 0.26 0.27 0.81 0.89 0.74 0.21 0.19 0.21 

CAL 2013 COVER CROP   0.19 0.21 0.28 0.61 0.86 0.89 0.71 0.28 0.16 0.16 

CAL 2013 COVER CROP   0.19 0.21 0.23 0.45 0.74 0.88 0.70 0.30 0.17 0.16 

CAL 2013 COVER CROP   0.19  0.22 0.46 0.82 0.89 0.71 0.30 0.17 0.15 

CAL 2013 COVER CROP   0.23 0.23 0.27 0.28 0.61 0.77 0.84 0.31 0.20 0.21 

CAL 2013 COVER CROP   0.19 0.19 0.37 0.35 0.84 0.88 0.67 0.31 0.19 0.17 

CAL 2013 COVER CROP   0.26 0.22 0.28 0.31 0.77 0.85 0.61 0.23 0.20 0.21 

CAL 2013 COVER CROP   0.19 0.21 0.29 0.51 0.88 0.89 0.63 0.27 0.18 0.17 

CAL 2013 COVER CROP   0.25 0.21 0.28 0.30 0.75 0.92 0.81 0.26 0.16 0.19 

CAL 2014 COVER CROP 0.33 0.10 0.41 0.26 0.27 0.67 0.88 0.90 0.63 0.29 0.30 0.34 

CAL 2014 COVER CROP 0.19 0.06 0.21 0.23 0.28 0.30 0.84 0.92 0.64 0.30 0.25 0.21 

CAL 2014 COVER CROP 0.32 0.24 0.43 0.52 0.27 0.46 0.85 0.88 0.63 0.30 0.31 0.35 

CAL 2014 COVER CROP 0.19  0.21 0.23 0.26 0.31 0.89 0.88 0.70 0.24  0.20 

CAL 2014 COVER CROP 0.20  0.22 0.23 0.26 0.32 0.85 0.88 0.70 0.26  0.20 

CAL 2014 COVER CROP 0.18  0.26 0.27 0.24 0.44 0.86 0.80 0.56 0.25 0.22 0.22 

CAL 2014 COVER CROP 0.24  0.29 0.30 0.25 0.45 0.86 0.78 0.43 0.25 0.24 0.24 

CAL 2014 COVER CROP 0.22 0.22 0.27 0.27 0.27 0.47 0.84 0.94 0.51 0.25 0.24 0.22 

CAL 2014 COVER CROP 0.20 0.09 0.24 0.29 0.33 0.69 0.89 0.90 0.69 0.23 0.22 0.19 

CAL 2014 COVER CROP 0.20  0.22 0.26 0.31 0.41 0.85 0.89 0.67 0.25 0.25 0.21 

CAL 2014 COVER CROP 0.19  0.24 0.36 0.28 0.55 0.80 0.93 0.56 0.27 0.24 0.23 

CAL 2014 COVER CROP 0.19 0.21 0.21 0.25 0.30 0.42 0.81 0.87 0.65 0.25 0.24 0.20 

CAL 2014 COVER CROP 0.16  0.21 0.20 0.26 0.87 0.88 0.88 0.75 0.22 0.21 0.19 

CAL 2014 COVER CROP 0.16  0.20 0.24 0.33 0.70 0.84 0.87 0.59 0.25 0.20 0.18 

CAL 2014 COVER CROP 0.16  0.20 0.22 0.27 0.84 0.87 0.88 0.68 0.28 0.22 0.18 

CAL 2014 COVER CROP 0.14  0.20 0.23 0.29 0.69 0.86 0.85 0.79 0.31 0.21 0.18 

CAL 2014 COVER CROP 0.15  0.21 0.20 0.30 0.68 0.85 0.84 0.66 0.29 0.21 0.20 

CAL 2014 COVER CROP 0.21  0.23 0.26 0.27 0.41 0.64 0.89 0.73 0.26 0.23 0.21 

CAL 2014 COVER CROP 0.18  0.23 0.32 0.73 0.70 0.87 0.88 0.65 0.25 0.22 0.21 



73 
 

CAL 2014 COVER CROP 0.17 0.05 0.20 0.22 0.34 0.86 0.89 0.88 0.60 0.25 0.20 0.18 

CAL 2014 COVER CROP 0.16  0.20 0.23 0.45 0.62 0.89 0.88 0.73 0.26 0.21 0.18 

CAL 2014 COVER CROP 0.24  0.30 0.41 0.83 0.67 0.80 0.71 0.58 0.43 0.33 0.27 

CAL 2014 COVER CROP 0.22  0.27 0.34 0.76 0.66 0.82 0.69 0.53 0.35 0.29 0.25 

CAL 2014 COVER CROP 0.20  0.26 0.33 0.63 0.60 0.85 0.90 0.75 0.34 0.26 0.22 

CAL 2014 COVER CROP 0.17  0.22 0.28 0.81 0.59 0.83 0.74 0.87 0.40 0.24 0.20 

CAL 2014 COVER CROP  0.08 0.22 0.30 0.44 0.35 0.59 0.89 0.82 0.25 0.25 0.21 

CAL 2014 COVER CROP 0.16  0.19 0.21 0.24 0.71 0.91 0.91 0.72 0.31 0.22 0.18 

CAL 2014 COVER CROP 0.24  0.24 0.27 0.29 0.61 0.90 0.90 0.75 0.25 0.24 0.21 

CAL 2014 COVER CROP 0.17  0.21 0.29 0.58 0.47 0.75 0.91 0.60 0.26 0.22 0.20 

CAL 2014 COVER CROP 0.20  0.22 0.23 0.28 0.61 0.89 0.82 0.73 0.33 0.24 0.19 

CAL 2014 COVER CROP 0.18  0.19 0.21 0.25 0.58 0.87 0.85 0.74 0.32 0.22 0.18 

CAL 2014 COVER CROP 0.17  0.19 0.21 0.33 0.68 0.86 0.88 0.80 0.34 0.23 0.18 

CAL 2014 COVER CROP 0.17 0.06 0.20 0.20 0.32 0.61 0.85 0.86 0.81 0.31 0.23 0.18 

CAL 2014 COVER CROP 0.16  0.19 0.20 0.31 0.60 0.85  0.84 0.32 0.24 0.18 

CAL 2014 COVER CROP 0.21  0.23 0.25 0.31 0.84 0.83 0.87 0.66 0.39 0.24 0.20 

CAL 2014 COVER CROP 0.15  0.19 0.21 0.35 0.87 0.90 0.90 0.75 0.30 0.22 0.17 

CAL 2014 COVER CROP 0.18  0.20 0.20 0.24 0.66 0.88 0.88 0.72 0.36 0.21 0.18 

CAL 2014 COVER CROP 0.17  0.19 0.21 0.25 0.66 0.91 0.91 0.78 0.27 0.23 0.19 

CAL 2013 PASTURE/GRASS   0.29  0.77 0.76 0.68 0.70 0.56 0.59 0.44 0.46 

CAL 2013 PASTURE/GRASS   0.29 0.61  0.70 0.73 0.68 0.57 0.71 0.45 0.46 

CAL 2013 PASTURE/GRASS   0.29 0.43 0.81 0.60 0.78 0.79 0.58 0.76 0.76 0.49 

CAL 2013 PASTURE/GRASS   0.25 0.25 0.40 0.80 0.82 0.76 0.65 0.48 0.34 0.31 

CAL 2013 PASTURE/GRASS   0.32 0.40 0.60 0.76 0.70 0.66 0.56 0.57 0.44 0.37 

CAL 2013 PASTURE/GRASS   0.28 0.35 0.82 0.70 0.76 0.86 0.67 0.85 0.61 0.44 

CAL 2013 PASTURE/GRASS   0.28 0.35 0.61 0.74 0.78 0.76 0.73 0.64 0.53 0.45 

CAL 2013 PASTURE/GRASS   0.23 0.25 0.67 0.76 0.73 0.74 0.57 0.50 0.41 0.31 

CAL 2013 PASTURE/GRASS   0.35 0.36 0.65 0.77 0.80 0.78 0.75 0.65 0.52 0.43 

CAL 2013 PASTURE/GRASS   0.24 0.26 0.64 0.78 0.82 0.83 0.75 0.55 0.40 0.33 

CAL 2013 PASTURE/GRASS   0.29 0.38 0.68 0.79 0.75 0.70 0.66 0.65 0.44 0.42 

CAL 2013 PASTURE/GRASS   0.21 0.30 0.63 0.75 0.71 0.65 0.58 0.54 0.41 0.36 

CAL 2013 PASTURE/GRASS   0.27 0.35 0.58 0.74 0.81 0.76 0.59 0.50 0.36 0.32 

CAL 2013 PASTURE/GRASS   0.25 0.27 0.53 0.75 0.75 0.72 0.60 0.53 0.38 0.33 

CAL 2013 PASTURE/GRASS   0.25 0.27 0.64 0.87 0.84 0.86 0.81 0.59 0.36 0.25 

CAL 2013 PASTURE/GRASS   0.21 0.26 0.48 0.78 0.80 0.76 0.61 0.48 0.35 0.30 

CAL 2013 PASTURE/GRASS   0.24 0.40 0.73 0.66 0.72 0.73 0.63 0.61 0.47 0.39 

CAL 2013 PASTURE/GRASS   0.31 0.54 0.73 0.83 0.76 0.70 0.57 0.59 0.43 0.40 

CAL 2013 PASTURE/GRASS   0.20 0.31 0.57 0.75 0.74 0.71 0.57 0.51 0.37 0.30 

CAL 2013 PASTURE/GRASS   0.28 0.61 0.68 0.81 0.59 0.70 0.59 0.71 0.52 0.39 

CAL 2013 PASTURE/GRASS   0.25 0.35 0.74 0.85 0.81 0.78 0.52 0.57 0.34 0.33 

CAL 2013 PASTURE/GRASS   0.30 0.48  0.66 0.76 0.76 0.68 0.75 0.47 0.44 

CAL 2013 PASTURE/GRASS   0.31 0.39 0.82 0.78 0.86 0.73 0.76 0.73 0.70 0.50 

CAL 2013 PASTURE/GRASS   0.30 0.44 0.84 0.73 0.48 0.75 0.69 0.80 0.73 0.59 
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CAL 2013 PASTURE/GRASS   0.33 0.26 0.79 0.90 0.67 0.65 0.74 0.83 0.67 0.50 

CAL 2013 PASTURE/GRASS   0.30 0.42 0.90 0.90 0.78 0.71 0.79 0.68 0.58 0.55 

CAL 2013 PASTURE/GRASS   0.27 0.38 0.85 0.48 0.82 0.79 0.75 0.79 0.74 0.48 

CAL 2013 PASTURE/GRASS   0.28 0.37 0.78 0.90 0.83 0.88 0.71 0.88 0.76 0.63 

CAL 2013 PASTURE/GRASS   0.28 0.36 0.88 0.75 0.57 0.69 0.73 0.78 0.73 0.63 

CAL 2013 PASTURE/GRASS   0.30 0.61 0.87 0.75 0.78 0.78 0.72 0.78 0.76 0.43 

CAL 2013 PASTURE/GRASS   0.27 0.69 0.85 0.69 0.76 0.89 0.77 0.81 0.69 0.44 

CAL 2013 PASTURE/GRASS   0.26 0.47 0.81 0.87 0.84 0.77 0.70 0.82 0.76 0.56 

CAL 2013 PASTURE/GRASS   0.29 0.56 0.77 0.85 0.74 0.74 0.70 0.78 0.65 0.54 

CAL 2013 PASTURE/GRASS   0.27 0.54 0.86 0.65 0.72 0.76 0.66 0.68 0.63 0.41 

CAL 2013 PASTURE/GRASS   0.26 0.41 0.84 0.48 0.59 0.84 0.83 0.81 0.65 0.34 

CAL 2013 PASTURE/GRASS   0.26 0.49 0.62 0.88 0.81 0.80 0.68 0.83 0.80 0.54 

CAL 2013 PASTURE/GRASS   0.28  0.81 0.73 0.85 0.84 0.83 0.80 0.64 0.35 

CAL 2013 PASTURE/GRASS   0.30 0.40 0.88 0.79 0.77 0.85 0.64 0.69 0.50 0.33 

CAL 2013 PASTURE/GRASS   0.29 0.52 0.60 0.74 0.78 0.76 0.68 0.76 0.58 0.45 

CAL 2013 PASTURE/GRASS   0.31 0.63  0.54 0.70 0.67 0.60 0.76 0.61 0.55 

CAL 2013 PASTURE/GRASS   0.31 0.66  0.52 0.51 0.75 0.77 0.77 0.65 0.47 

CAL 2013 PASTURE/GRASS   0.32 0.58 0.81 0.64 0.72 0.77 0.71 0.76 0.67 0.47 

CAL 2013 PASTURE/GRASS   0.29 0.69 0.88 0.86 0.79 0.84 0.76 0.87 0.76 0.54 

CAL 2013 PASTURE/GRASS   0.27 0.56 0.82 0.66 0.60 0.80 0.74 0.85 0.75 0.49 

CAL 2013 PASTURE/GRASS   0.29 0.34 0.83 0.69 0.81 0.83 0.77 0.78 0.71 0.51 

CAL 2013 PASTURE/GRASS   0.30 0.38 0.80 0.69 0.77 0.80 0.66 0.72 0.50 0.42 

CAL 2014 PASTURE/GRASS 0.31 0.24 0.38 0.53 0.76 0.81 0.68 0.77 0.76 0.62 0.52 0.42 

CAL 2014 PASTURE/GRASS  0.17  0.50 0.83 0.74 0.80 0.77 0.80 0.65 0.64 0.43 

CAL 2014 PASTURE/GRASS 0.36  0.35 0.54 0.83 0.89 0.67 0.87 0.76 0.75 0.64 0.44 

CAL 2014 PASTURE/GRASS 0.28  0.24 0.28 0.59 0.80 0.84 0.81 0.67 0.44 0.37 0.29 

CAL 2014 PASTURE/GRASS 0.33 0.20 0.37 0.50 0.70 0.72 0.77 0.76 0.78 0.65 0.52 0.44 

CAL 2014 PASTURE/GRASS 0.30  0.28 0.47 0.74 0.75 0.79 0.84 0.89 0.81  0.43 

CAL 2014 PASTURE/GRASS 0.27  0.35 0.47 0.69 0.74 0.76 0.79 0.76 0.56 0.56 0.42 

CAL 2014 PASTURE/GRASS 0.22  0.23 0.28 0.63 0.79 0.78 0.81 0.68 0.50  0.30 

CAL 2014 PASTURE/GRASS 0.38  0.35 0.45 0.64 0.80 0.81 0.77 0.77 0.64  0.49 

CAL 2014 PASTURE/GRASS 0.29 0.03 0.26 0.30 0.69 0.87 0.85 0.86 0.71 0.54 0.30 0.34 

CAL 2014 PASTURE/GRASS 0.34  0.35 0.45 0.75 0.79 0.69 0.66 0.69 0.65 0.55 0.44 

CAL 2014 PASTURE/GRASS 0.25  0.22 0.25 0.62 0.74 0.79 0.76 0.66 0.46  0.27 

CAL 2014 PASTURE/GRASS 0.19  0.22 0.28 0.74 0.83 0.86 0.84 0.85 0.60  0.27 

CAL 2014 PASTURE/GRASS 0.25 0.18 0.30 0.41 0.75 0.79 0.75 0.77 0.75 0.64 0.52 0.40 

CAL 2014 PASTURE/GRASS 0.33 0.15 0.25 0.31 0.61 0.62 0.66 0.73 0.71 0.58 0.53 0.29 

CAL 2014 PASTURE/GRASS 0.25  0.35 0.43 0.72 0.84 0.79 0.79 0.73 0.58 0.54 0.40 

CAL 2014 PASTURE/GRASS 0.25 0.14 0.32 0.40 0.61 0.73 0.81 0.81 0.76 0.58  0.34 

CAL 2014 PASTURE/GRASS 0.27 0.19 0.23 0.30 0.62 0.75 0.73 0.71 0.61 0.47 0.43 0.30 

CAL 2014 PASTURE/GRASS 0.26 0.07 0.36 0.52 0.85 0.76 0.67 0.72 0.78 0.65  0.38 

CAL 2014 PASTURE/GRASS 0.36  0.36 0.44 0.83 0.84 0.71 0.92 0.92 0.74  0.46 

CAL 2014 PASTURE/GRASS 0.24  0.30 0.57 0.66 0.88 0.79 0.77 0.69 0.82 0.74 0.37 
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CAL 2014 PASTURE/GRASS 0.35  0.39 0.61 0.85 0.77 0.87 0.74 0.68 0.73  0.50 

CAL 2014 PASTURE/GRASS 0.36  0.31 0.53 0.84 0.85 0.79 0.83 0.70 0.82  0.50 

CAL 2014 PASTURE/GRASS 0.39 0.24 0.36 0.58 0.85 0.80 0.74 0.90 0.87 0.87  0.47 

CAL 2014 PASTURE/GRASS 0.33  0.38 0.60 0.79 0.90 0.62 0.87 0.88 0.76  0.48 

CAL 2014 PASTURE/GRASS 0.29 0.20 0.30 0.50 0.88 0.78 0.77 0.90 0.71 0.84 0.82 0.33 

CAL 2014 PASTURE/GRASS 0.38 0.21 0.33 0.50 0.82 0.78 0.76 0.87 0.74 0.73 0.80 0.36 

CAL 2014 PASTURE/GRASS 0.33  0.35 0.53 0.88 0.82 0.76 0.87 0.83 0.84 0.82 0.50 

CAL 2014 PASTURE/GRASS 0.32 0.22 0.30 0.45 0.61 0.78 0.78 0.91 0.70 0.61 0.64 0.27 

CAL 2014 PASTURE/GRASS 0.28 0.21 0.34 0.48 0.88 0.79 0.77 0.81 0.81 0.78 0.68 0.42 

CAL 2014 PASTURE/GRASS 0.26  0.29 0.40 0.68 0.84 0.77  0.76 0.83 0.79 0.30 

CAL 2014 PASTURE/GRASS 0.31  0.35 0.54 0.81 0.83 0.73 0.90 0.78 0.66 0.75 0.40 

CAL 2014 PASTURE/GRASS 0.36  0.34 0.56 0.35 0.93 0.78 0.88 0.79 0.76 0.74 0.47 

CAL 2014 PASTURE/GRASS 0.33  0.32 0.62 0.88 0.86 0.62 0.81 0.85 0.79  0.53 

CAL 2014 PASTURE/GRASS 0.32  0.33 0.54 0.85 0.79 0.80 0.77 0.75 0.80 0.76 0.47 

CAL 2014 PASTURE/GRASS    0.36 0.87 0.75 0.66 0.90 0.68 0.82 0.86 0.50 

CAL 2014 PASTURE/GRASS 0.33  0.33 0.51 0.73 0.70 0.73 0.82 0.76 0.74 0.66 0.45 

CAL 2014 PASTURE/GRASS 0.36 0.11 0.30 0.50 0.59 0.79 0.75 0.87 0.85 0.82 0.67 0.44 

CAL 2014 PASTURE/GRASS  0.24  0.56 0.83 0.77 0.69 0.79 0.63 0.72 0.72 0.47 

CAL 2014 PASTURE/GRASS 0.31  0.41 0.40 0.81 0.67 0.68 0.89 0.59 0.86 0.84 0.50 

CAL 2014 PASTURE/GRASS 0.31 0.13 0.32 0.49 0.89 0.81 0.70 0.70 0.92 0.80 0.77 0.41 

CAL 2014 PASTURE/GRASS 0.35 0.14 0.29 0.51 0.87 0.76 0.71 0.87 0.85 0.79 0.71 0.48 

CAL 2014 PASTURE/GRASS 0.32  0.30 0.50 0.85 0.89 0.75 0.79 0.80 0.74 0.80 0.44 

CAL 2014 PASTURE/GRASS 0.37 0.19  0.53 0.83 0.84 0.82 0.87 0.85 0.83  0.44 

CAL 2014 PASTURE/GRASS 0.37  0.37 0.40 0.85 0.67 0.83 0.69 0.75 0.66 0.55 0.46 

CAL 2013 STOVER   0.19 0.21 0.22 0.23 0.76 0.89 0.76 0.26 0.17 0.14 

CAL 2013 STOVER   0.21 0.24 0.24 0.34 0.60 0.80 0.53 0.23 0.18 0.20 

CAL 2013 STOVER   0.21 0.26 0.29 0.38 0.65 0.91 0.78 0.31 0.28 0.19 

CAL 2013 STOVER   0.18 0.20  0.65 0.90 0.88 0.55 0.27 0.20 0.17 

CAL 2013 STOVER   0.19 0.21  0.58 0.92 0.89 0.68 0.32 0.18 0.17 

CAL 2013 STOVER   0.22 0.21 0.26 0.27 0.71 0.88 0.74 0.21 0.19 0.17 

CAL 2013 STOVER   0.19 0.20 0.23 0.43 0.84 0.89 0.60 0.33 0.19 0.20 

CAL 2013 STOVER   0.17 0.17 0.21 0.55 0.85 0.87 0.66 0.26 0.16 0.17 

CAL 2013 STOVER   0.18 0.19 0.23 0.40 0.87 0.86 0.79 0.38 0.19 0.17 

CAL 2013 STOVER   0.21 0.21 0.28 0.31 0.70 0.91 0.83 0.28 0.18 0.15 

CAL 2013 STOVER   0.18 0.19 0.22 0.44 0.88 0.87 0.73 0.36 0.23 0.18 

CAL 2013 STOVER   0.22 0.21 0.28 0.33 0.63 0.89 0.68 0.25 0.18 0.17 

CAL 2013 STOVER   0.20 0.21 0.25 0.31 0.72 0.93 0.79 0.26 0.20 0.19 

CAL 2013 STOVER   0.26 0.25 0.29 0.38 0.77 0.74 0.47 0.25 0.21 0.24 

CAL 2013 STOVER   0.24 0.23 0.28 0.33 0.55 0.84 0.64 0.23 0.17 0.22 

CAL 2013 STOVER   0.21 0.19 0.24 0.44 0.87 0.88 0.64 0.27 0.20 0.20 

CAL 2013 STOVER   0.19 0.18 0.23 0.49 0.88 0.89 0.69 0.28 0.18 0.18 

CAL 2013 STOVER   0.26 0.21 0.27 0.54 0.90 0.88 0.52 0.22 0.18 0.22 

CAL 2013 STOVER   0.18 0.20 0.26 0.51 0.88 0.86 0.52 0.25 0.20 0.19 
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CAL 2013 STOVER   0.18 0.18 0.23 0.44 0.82 0.89 0.67 0.28 0.18 0.16 

CAL 2013 STOVER   0.22 0.23 0.24 0.33 0.84 0.88 0.78 0.35 0.24 0.20 

CAL 2013 STOVER   0.19 0.18 0.22 0.33 0.86 0.89 0.71 0.32 0.19 0.17 

CAL 2013 STOVER   0.32 0.26 0.29 0.32 0.72 0.90 0.69 0.23 0.15 0.17 

CAL 2013 STOVER   0.24 0.22 0.25 0.37 0.89 0.92 0.62 0.21 0.18 0.20 

CAL 2013 STOVER   0.23 0.22 0.25 0.54  0.83 0.43 0.25 0.20 0.21 

CAL 2013 STOVER   0.21 0.22 0.24 0.46 0.94 0.90 0.71 0.27 0.18 0.18 

CAL 2013 STOVER   0.19 0.22 0.25 0.52 0.82 0.86 0.55 0.25 0.16 0.17 

CAL 2013 STOVER   0.26 0.26  0.48 0.75 0.91 0.71 0.24   

CAL 2013 STOVER   0.23 0.24 0.29 0.36 0.70 0.90 0.69 0.24 0.18 0.20 

CAL 2013 STOVER   0.24 0.22 0.29 0.34 0.62 0.88 0.67 0.23 0.19 0.22 

CAL 2013 STOVER   0.20 0.20 0.26 0.41 0.88 0.88 0.69 0.28 0.19 0.19 

CAL 2013 STOVER    0.17 0.27 0.28 0.65 0.88 0.85 0.29 0.13 0.20 

CAL 2013 STOVER   0.21 0.20 0.25 0.41 0.87 0.89 0.67 0.29 0.18 0.20 

CAL 2013 STOVER   0.25 0.26 0.31 0.34 0.62 0.87 0.68 0.35 0.34 0.27 

CAL 2013 STOVER   0.23 0.21 0.24 0.35 0.78 0.73 0.38 0.27 0.39 0.25 

CAL 2013 STOVER   0.22 0.21 0.25 0.36 0.89 0.88 0.66 0.28 0.19 0.17 

CAL 2013 STOVER   0.23 0.21 0.29 0.30 0.64 0.91 0.81 0.31 0.19 0.19 

CAL 2013 STOVER   0.20 0.19 0.26 0.28 0.77 0.89 0.69 0.20 0.16 0.14 

CAL 2013 STOVER   0.19 0.19 0.24 0.38 0.92 0.87 0.73 0.34 0.21 0.16 

CAL 2013 STOVER   0.19 0.19 0.25 0.34 0.63 0.89 0.86 0.27 0.16 0.19 

CAL 2013 STOVER   0.25 0.21 0.24 0.58 0.85 0.85 0.71 0.28 0.19 0.20 

CAL 2013 STOVER   0.18 0.19 0.22 0.37 0.85 0.87 0.70 0.32 0.18 0.18 

CAL 2013 STOVER   0.24 0.21 0.26 0.34 0.87 0.89 0.56 0.26 0.18 0.22 

CAL 2013 STOVER   0.19 0.22 0.25 0.34 0.87 0.90 0.68 0.25 0.19 0.18 

CAL 2014 STOVER 0.17 0.09 0.19 0.22 0.31 0.40 0.73 0.91 0.70 0.28 0.23 0.19 

CAL 2014 STOVER 0.17  0.20 0.23 0.28 0.87 0.87 0.88 0.60 0.28  0.20 

CAL 2014 STOVER 0.17 0.11 0.22 0.21 0.28 0.79 0.83 0.86 0.61 0.33 0.23 0.21 

CAL 2014 STOVER    0.23 0.29 0.31 0.83 0.93 0.89 0.21 0.21 0.18 

CAL 2014 STOVER 0.17  0.20 0.21 0.27 0.71 0.91 0.89 0.75 0.31 0.23 0.18 

CAL 2014 STOVER  0.05  0.23 0.28 0.36 0.87 0.93 0.81 0.29 0.22 0.19 

CAL 2014 STOVER 0.18  0.20 0.20 0.22 0.57 0.90 0.90 0.72 0.28 0.23 0.17 

CAL 2014 STOVER 0.19 0.05 0.22 0.25 0.27 0.38 0.71 0.89 0.64 0.28 0.23 0.21 

CAL 2014 STOVER 0.23 0.06 0.22 0.24 0.25 0.36 0.74 0.92 0.58 0.23 0.22 0.22 

CAL 2014 STOVER 0.19 0.05 0.20 0.22 0.23 0.85 0.90 0.80 0.45 0.25 0.24 0.19 

CAL 2014 STOVER 0.22 0.11 0.22 0.23 0.27 0.53 0.82 0.93 0.60 0.25 0.26 0.22 

CAL 2014 STOVER 0.19 0.14 0.20 0.21 0.24 0.36 0.62 0.86 0.68 0.25 0.21 0.20 

CAL 2014 STOVER 0.20  0.21 0.21 0.26 0.85 0.91 0.91 0.78 0.35 0.23 0.19 

CAL 2014 STOVER 0.19  0.20 0.24 0.27 0.46 0.75 0.89 0.73 0.25 0.23 0.20 

CAL 2014 STOVER 0.21 0.12 0.21 0.22 0.29 0.57 0.87 0.92 0.58 0.52 0.50 0.25 

CAL 2014 STOVER 0.19   0.22 0.26 0.65 0.88 0.87 0.78 0.32 0.21 0.19 

CAL 2014 STOVER 0.23  0.23 0.27 0.26 0.34 0.79 0.88 0.77 0.25  0.22 

CAL 2014 STOVER 0.18  0.21 0.21 0.26 0.77 0.89 0.87 0.62 0.26 0.21 0.19 
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CAL 2014 STOVER 0.18  0.20 0.22 0.30 0.35 0.69 0.90 0.64 0.25 0.22 0.20 

CAL 2014 STOVER 0.21   0.22 0.28 0.44 0.79 0.93 0.62 0.23 0.21 0.20 

CAL 2014 STOVER 0.19  0.21 0.21 0.25 0.71 0.84 0.89 0.71 0.30 0.25 0.19 

CAL 2014 STOVER 0.15  0.18 0.20 0.25 0.63 0.87 0.89 0.77 0.31 0.22 0.18 

CAL 2014 STOVER 0.21 0.04 0.21 0.21 0.27 0.46 0.81 0.92 0.70 0.24 0.20 0.21 

CAL 2014 STOVER 0.20 0.14 0.22 0.23 0.27 0.51 0.82 0.88 0.60 0.26  0.20 

CAL 2014 STOVER 0.17 0.08 0.20 0.19 0.26 0.89 0.90 0.89 0.68 0.31 0.22 0.18 

CAL 2014 STOVER 0.26  0.27 0.25 0.25 0.72 0.87 0.87 0.64 0.29 0.23 0.20 

CAL 2014 STOVER 0.19 0.11 0.21 0.21 0.25 0.84 0.86 0.82 0.60 0.24  0.19 

CAL 2014 STOVER 0.21  0.21 0.22 0.29 0.57 0.73 0.88 0.72 0.29 0.24 0.20 

CAL 2014 STOVER 0.19 0.13 0.20 0.20 0.27 0.42 0.72 0.93 0.88 0.26 0.20 0.19 

CAL 2014 STOVER 0.21  0.23 0.22 0.28 0.72 0.85 0.83 0.63 0.28 0.24 0.22 

CAL 2014 STOVER 0.19  0.21 0.21 0.28 0.53 0.85 0.83 0.45 0.27 0.22 0.19 

CAL 2014 STOVER   0.21 0.25 0.33 0.57 0.81 0.88 0.62 0.23 0.22 0.21 

CAL 2014 STOVER 0.14  0.20 0.22 0.27 0.74 0.88 0.88 0.76 0.25  0.18 

CAL 2014 STOVER 0.17  0.19 0.20 0.26 0.86 0.88 0.90 0.75 0.33 0.24 0.19 

CAL 2014 STOVER 0.18  0.19 0.18 0.23  0.90 0.91 0.79 0.28  0.18 

CAL 2014 STOVER 0.17  0.19 0.20 0.24 0.59 0.91 0.90 0.66 0.26 0.22 0.18 

CAL 2014 STOVER 0.19  0.20 0.21 0.25 0.85 0.88 0.91 0.68 0.39 0.28 0.21 

CAL 2014 STOVER 0.20 0.09 0.20 0.21 0.27 0.49 0.85 0.93 0.70 0.23 0.19 0.19 

CAL 2014 STOVER 0.26 0.08 0.29 0.38 0.28 0.46 0.76 0.89 0.65 0.26 0.26 0.26 

CAL 2014 STOVER 0.16 0.12 0.19 0.19 0.27 0.87 0.90 0.90 0.68 0.29 0.22 0.17 

CAL 2014 STOVER 0.26 0.15 0.24 0.24 0.29 0.56 0.90 0.93 0.49 0.23 0.18 0.24 

CAL 2014 STOVER 0.24  0.31 0.41 0.32 0.60 0.84 0.77 0.45 0.28  0.25 

CAL 2014 STOVER 0.26  0.24 0.25 0.28 0.48 0.79 0.91 0.62 0.22  0.23 

CAL 2014 STOVER 0.18 0.16 0.20 0.23 0.25 0.34 0.60 0.92 0.73 0.23 0.21 0.20 

CAL 2014 STOVER 0.22  0.22 0.24 0.27 0.66 0.90 0.91 0.85 0.35  0.21 

CAL 2014 STOVER 0.17 0.14 0.19 0.21 0.29 0.70 0.87 0.92 0.67 0.26 0.19 0.18 

CAL 2014 STOVER 0.16 0.15 0.22 0.23 0.30 0.58 0.84 0.93 0.71 0.23 0.23 0.19 

VAL 2013 COVER CROP   0.24 0.21 0.29 0.28 0.75 0.67 0.37 0.32 0.42 0.25 

VAL 2013 COVER CROP   0.21 0.19 0.25 0.42 0.87 0.91 0.58 0.24 0.25 0.21 

VAL 2013 COVER CROP   0.24 0.25 0.27 0.28 0.67 0.69 0.40 0.26 0.27 0.26 

VAL 2013 COVER CROP   0.24 0.23 0.26 0.25 0.67 0.68 0.41 0.24 0.24 0.24 

VAL 2013 COVER CROP   0.26 0.30 0.26 0.33 0.92 0.86 0.50 0.24 0.22 0.24 

VAL 2013 COVER CROP   0.21 0.22 0.25 0.30 0.84 0.93 0.70 0.23 0.20 0.20 

VAL 2013 COVER CROP   0.28 0.44 0.71 0.40 0.76 0.81 0.43 0.26 0.21 0.23 

VAL 2013 COVER CROP   0.23 0.44 0.75 0.39 0.74 0.78 0.66 0.29 0.22 0.22 

VAL 2013 COVER CROP   0.22 0.25 0.39 0.40 0.76 0.82 0.51 0.27 0.20 0.23 

VAL 2013 COVER CROP   0.22  0.47 0.41 0.77 0.80 0.51 0.29 0.21 0.23 

VAL 2013 COVER CROP   0.23 0.29 0.72 0.39 0.76 0.84 0.48 0.25 0.19 0.22 

VAL 2013 COVER CROP   0.24 0.23 0.28 0.36 0.76 0.90 0.68 0.26 0.17 0.19 

VAL 2013 COVER CROP   0.23 0.24 0.27 0.29 0.80 0.90 0.69 0.28 0.19 0.21 

VAL 2013 COVER CROP   0.21 0.29 0.80 0.49 0.91 0.90 0.64 0.24 0.19 0.20 
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VAL 2013 COVER CROP   0.21 0.26 0.25 0.26 0.70 0.92 0.74 0.28 0.18 0.21 

VAL 2013 COVER CROP   0.26 0.23 0.28 0.28 0.68 0.89 0.67 0.24 0.20 0.23 

VAL 2013 COVER CROP   0.25 0.30 0.31 0.31 0.63 0.80 0.75 0.28 0.18 0.22 

VAL 2013 COVER CROP   0.19 0.20 0.33 0.47 0.86 0.85 0.68 0.32 0.16 0.17 

VAL 2013 COVER CROP   0.20 0.21 0.33 0.50 0.92 0.87 0.64 0.27 0.16 0.18 

VAL 2013 COVER CROP   0.20 0.23 0.33 0.39 0.86 0.89 0.74 0.34 0.18 0.17 

VAL 2013 COVER CROP   0.20 0.20 0.31 0.29 0.85 0.89 0.70 0.31 0.18 0.19 

VAL 2013 COVER CROP   0.23 0.26 0.34 0.40 0.54 0.84 0.78 0.30 0.21 0.23 

VAL 2013 COVER CROP   0.19 0.20 0.34 0.45 0.88 0.90 0.68 0.28 0.17 0.17 

VAL 2013 COVER CROP   0.20 0.19 0.25 0.53 0.90 0.89 0.55 0.26 0.17 0.18 

VAL 2014 COVER CROP 0.28 0.35 0.27 0.28 0.31 0.38 0.57 0.81 0.73 0.33 0.36 0.28 

VAL 2014 COVER CROP 0.22  0.28 0.30 0.50 0.68 0.87 0.89 0.61 0.24 0.24 0.22 

VAL 2014 COVER CROP 0.25  0.26 0.32 0.32 0.39 0.70 0.90 0.86 0.28 0.25 0.26 

VAL 2014 COVER CROP 0.20 0.05 0.21 0.24 0.28 0.45 0.87 0.89 0.66 0.26 0.23 0.20 

VAL 2014 COVER CROP 0.15  0.20 0.20 0.27 0.66 0.86 0.89 0.83 0.34 0.22 0.18 

VAL 2014 COVER CROP 0.17  0.20 0.20 0.28 0.62 0.86 0.84 0.86 0.32 0.22 0.17 

VAL 2014 COVER CROP 0.22  0.25 0.27 0.27 0.68 0.88 0.88 0.76 0.27 0.23 0.20 

VAL 2014 COVER CROP 0.18  0.21 0.25 0.28 0.48 0.70 0.93 0.70 0.23 0.23 0.18 

VAL 2014 COVER CROP 0.23   0.35 0.81 0.55 0.79 0.64 0.60 0.32 0.29 0.25 

VAL 2014 COVER CROP 0.22   0.38 0.70 0.53 0.76 0.63 0.52 0.37 0.33 0.27 

VAL 2014 COVER CROP 0.24  0.26 0.32 0.83 0.57 0.82  0.54 0.32 0.28 0.24 

VAL 2014 COVER CROP 0.19  0.25 0.39 0.84 0.59 0.82 0.66 0.55 0.39 0.36 0.24 

VAL 2014 COVER CROP 0.17  0.20 0.23 0.44 0.54 0.88 0.90 0.69 0.28 0.22 0.19 

VAL 2014 COVER CROP 0.18 0.12 0.21 0.21 0.25 0.50 0.89 0.85 0.73 0.36 0.24 0.19 

VAL 2014 COVER CROP 0.15  0.18 0.20 0.37 0.62 0.89 0.89 0.81 0.33 0.22 0.17 

VAL 2013 PASTURE/GRASS   0.31 0.32 0.78 0.75 0.68 0.68 0.58 0.59 0.43 0.46 

VAL 2013 PASTURE/GRASS   0.30 0.49 0.86 0.70 0.66 0.71 0.87 0.75 0.58 0.39 

VAL 2013 PASTURE/GRASS   0.23 0.31 0.61 0.62 0.75 0.64 0.49 0.43 0.39 0.30 

VAL 2013 PASTURE/GRASS   0.30 0.48 0.54 0.65 0.70 0.68 0.53 0.51 0.32 0.36 

VAL 2013 PASTURE/GRASS   0.28 0.47 0.69 0.87 0.89 0.79 0.75 0.83 0.69 0.39 

VAL 2013 PASTURE/GRASS    0.25 0.78 0.87 0.67 0.83 0.74 0.87 0.82 0.48 

VAL 2013 PASTURE/GRASS   0.30 0.41 0.89 0.84 0.75 0.80 0.75 0.86 0.84 0.54 

VAL 2013 PASTURE/GRASS   0.24  0.86  0.73 0.84 0.71 0.82 0.69 0.44 

VAL 2013 PASTURE/GRASS   0.29 0.52 0.88 0.86 0.89 0.80 0.72 0.82 0.80 0.58 

VAL 2013 PASTURE/GRASS   0.26  0.77 0.87 0.78 0.76 0.68 0.82 0.73 0.55 

VAL 2013 PASTURE/GRASS   0.30 0.52 0.66 0.86 0.66 0.85 0.66 0.74 0.68 0.48 

VAL 2013 PASTURE/GRASS   0.31 0.37 0.82 0.83 0.72 0.77 0.77 0.82 0.69 0.50 

VAL 2013 PASTURE/GRASS   0.32 0.41 0.87 0.69 0.80 0.84 0.65 0.84 0.67 0.49 

VAL 2013 PASTURE/GRASS   0.31 0.61  0.79 0.80 0.66 0.79 0.74 0.54 0.48 

VAL 2013 PASTURE/GRASS   0.29 0.54 0.79 0.69 0.75 0.76 0.73 0.62 0.47 0.43 

VAL 2013 PASTURE/GRASS   0.26 0.63  0.60 0.92 0.79 0.70 0.86 0.71 0.53 

VAL 2013 PASTURE/GRASS   0.31 0.66 0.87 0.68 0.62 0.78 0.82 0.82 0.67 0.43 

VAL 2013 PASTURE/GRASS   0.31 0.70 0.80 0.66 0.57 0.75 0.86 0.83 0.67 0.44 



79 
 

VAL 2013 PASTURE/GRASS   0.30 0.37 0.82 0.69 0.80 0.84 0.76 0.78 0.69 0.55 

VAL 2014 PASTURE/GRASS 0.29  0.36 0.46 0.80 0.81 0.78 0.72 0.73 0.66 0.48 0.42 

VAL 2014 PASTURE/GRASS 0.25  0.25 0.32 0.64 0.81 0.81 0.82 0.75 0.52  0.30 

VAL 2014 PASTURE/GRASS 0.27  0.25 0.31 0.56 0.72 0.78 0.70  0.59  0.35 

VAL 2014 PASTURE/GRASS 0.32  0.35 0.58 0.85 0.92 0.70 0.63 0.87 0.80 0.69 0.40 

VAL 2014 PASTURE/GRASS 0.27 0.09 0.24 0.28 0.74 0.74 0.74 0.72 0.64 0.51 0.38 0.31 

VAL 2014 PASTURE/GRASS 0.22  0.26 0.35 0.79 0.89 0.83 0.83 0.77 0.65 0.53 0.34 

VAL 2014 PASTURE/GRASS    0.47 0.82 0.80 0.77 0.80 0.80 0.62 0.61 0.41 

VAL 2014 PASTURE/GRASS 0.32  0.40 0.52 0.82 0.80 0.73 0.87 0.54 0.76  0.49 

VAL 2014 PASTURE/GRASS 0.31  0.27 0.69 0.74 0.81 0.91 0.90 0.82 0.82  0.48 

VAL 2014 PASTURE/GRASS 0.34  0.31 0.62 0.49 0.87 0.71 0.75 0.84 0.82  0.41 

VAL 2014 PASTURE/GRASS 0.37 0.21 0.32 0.52 0.59 0.83 0.76 0.91 0.77 0.79 0.76 0.54 

VAL 2014 PASTURE/GRASS 0.40  0.34 0.57 0.89 0.78 0.90 0.67 0.83 0.85 0.83 0.54 

VAL 2014 PASTURE/GRASS 0.33  0.37 0.60 0.82 0.66 0.87 0.72 0.85 0.83 0.81 0.45 

VAL 2014 PASTURE/GRASS 0.31 0.22 0.24 0.41 0.88 0.92 0.76 0.81 0.76 0.70 0.82 0.44 

VAL 2014 PASTURE/GRASS 0.31  0.29 0.48 0.86 0.87 0.85 0.79 0.74 0.80 0.72 0.47 

VAL 2014 PASTURE/GRASS 0.23 0.11 0.28 0.46 0.34 0.91 0.71 0.85 0.69 0.84 0.84 0.33 

VAL 2014 PASTURE/GRASS 0.34  0.36 0.61 0.67 0.75 0.74 0.89 0.74 0.82  0.52 

VAL 2014 PASTURE/GRASS    0.54 0.86 0.81 0.80 0.74 0.65 0.75 0.76 0.48 

VAL 2014 PASTURE/GRASS 0.35 0.21 0.39 0.59 0.86 0.87 0.72 0.73 0.82 0.80 0.82 0.48 

VAL 2014 PASTURE/GRASS 0.32 0.13 0.29 0.44 0.70 0.75 0.87 0.82 0.78 0.74  0.43 

VAL 2013 STOVER   0.19 0.22 0.28 0.50 0.91 0.87 0.66 0.33 0.19 0.17 

VAL 2013 STOVER   0.20 0.19 0.29 0.33 0.73 0.92 0.79 0.27 0.21 0.18 

VAL 2013 STOVER   0.30 0.26 0.34 0.39 0.84 0.92 0.81 0.29 0.15 0.25 

VAL 2013 STOVER   0.25 0.21 0.24 0.30 0.68 0.90 0.74 0.27 0.18 0.21 

VAL 2013 STOVER   0.20 0.19 0.23 0.45 0.82 0.85 0.63 0.28 0.17 0.19 

VAL 2013 STOVER   0.20 0.17 0.24 0.30 0.58 0.92 0.76 0.24 0.15 0.18 

VAL 2013 STOVER   0.20 0.19 0.23 0.45 0.88 0.87 0.68 0.29 0.20 0.19 

VAL 2013 STOVER   0.19 0.21 0.22 0.45 0.92 0.90 0.77 0.38 0.23 0.18 

VAL 2013 STOVER   0.23 0.21 0.26 0.36 0.71 0.87 0.68 0.21 0.20 0.20 

VAL 2013 STOVER   0.18 0.19 0.23 0.48 0.92 0.88 0.72 0.30 0.17 0.17 

VAL 2013 STOVER   0.22 0.20 0.23 0.33 0.89 0.88 0.76 0.33 0.17 0.20 

VAL 2013 STOVER   0.21 0.19 0.27 0.33 0.77 0.93 0.69 0.21 0.18 0.18 

VAL 2013 STOVER   0.26 0.27 0.32 0.39 0.82 0.91 0.61 0.24 0.23 0.21 

VAL 2013 STOVER   0.19 0.20 0.27 0.44 0.84 0.87 0.75 0.45 0.17 0.17 

VAL 2013 STOVER   0.19 0.19 0.22 0.44 0.88 0.87 0.70 0.32 0.21 0.18 

VAL 2013 STOVER   0.24 0.22 0.30 0.37 0.79 0.87 0.52 0.23 0.19 0.21 

VAL 2013 STOVER   0.18 0.18 0.21 0.34 0.91 0.89 0.68 0.28 0.18 0.17 

VAL 2013 STOVER   0.19 0.22 0.24 0.26 0.86 0.87 0.77 0.37 0.21 0.18 

VAL 2013 STOVER   0.25 0.23 0.27 0.30 0.89 0.87 0.64 0.29 0.20 0.21 

VAL 2013 STOVER   0.25 0.21 0.26 0.33 0.76 0.93 0.61 0.20 0.17 0.18 

VAL 2013 STOVER   0.19 0.22 0.25 0.34 0.82 0.84 0.66 0.27 0.20 0.20 

VAL 2014 STOVER 0.15  0.19 0.20 0.24 0.79 0.87 0.90 0.60 0.29 0.20 0.18 
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VAL 2014 STOVER 0.14  0.21 0.23 0.32 0.59 0.79 0.84 0.72 0.32 0.24 0.20 

VAL 2014 STOVER 0.17  0.18 0.18 0.22 0.65 0.89 0.90 0.73 0.31 0.22 0.18 

VAL 2014 STOVER 0.23 0.05 0.22 0.25 0.30 0.48 0.81 0.88 0.58 0.25 0.20 0.22 

VAL 2014 STOVER 0.19  0.21 0.21 0.24 0.66 0.90 0.87 0.75 0.28 0.23 0.19 

VAL 2014 STOVER 0.18  0.19 0.21 0.25 0.88 0.90 0.90 0.72 0.32 0.24 0.19 

VAL 2014 STOVER 0.21  0.21 0.21 0.26 0.47 0.73 0.89 0.69 0.26 0.21 0.20 

VAL 2014 STOVER 0.19  0.21 0.23 0.30 0.33 0.64 0.89 0.70 0.29 0.27 0.21 

VAL 2014 STOVER 0.20 0.19 0.21 0.22 0.28 0.34 0.71 0.87 0.60 0.23 0.19 0.19 

VAL 2014 STOVER 0.15  0.19 0.21 0.25 0.62 0.88 0.88 0.67 0.33 0.23 0.18 

VAL 2014 STOVER 0.18 0.07 0.23 0.22 0.29 0.44 0.81 0.87 0.59 0.26 0.21 0.19 

VAL 2014 STOVER 0.14  0.21 0.21 0.25 0.68 0.83 0.86 0.78 0.31 0.23 0.14 

VAL 2014 STOVER 0.16 0.10 0.19 0.21 0.30 0.30 0.60 0.83 0.80 0.27  0.20 

VAL 2014 STOVER 0.19  0.20 0.23 0.27 0.39 0.69 0.89 0.87 0.23  0.19 

VAL 2014 STOVER 0.19 0.06 0.20 0.21 0.24 0.64 0.91 0.90 0.78 0.30 0.20 0.18 

VAL 2014 STOVER 0.19  0.21 0.23 0.27 0.72 0.90 0.92 0.85 0.34 0.19 0.18 

VAL 2014 STOVER 0.18 0.10 0.21 0.23 0.29 0.35 0.63 0.89 0.69 0.30  0.21 

VAL 2014 STOVER 0.21  0.22 0.22 0.25 0.86 0.89 0.90 0.58 0.21  0.20 
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