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ABSTRACT 

 

Turfgrass production and maintenance relies heavily on the addition of nutrients, typically in the 

form of synthetic fertilizers based on natural gas. Soy-based biocomposite fertilizers have the potential 

to replace these synthetic fertilizers and reduce dependence on abiotic resources as well as decrease 

the environmental impact associated with the production and use of synthetic fertilizers.  

Plant-based turfgrass fertilizers already exist on the market and typically use plant materials, 

such as sugar beets, that are relatively difficult and costly to produce. Soybeans are the preferred plant 

protein to provide nutrients in a biocomposite fertilizer because of the soybean’s unique relationship 

with bacteria that allows it to utilize nitrogen gas from the atmosphere. Soybeans are also grown on a 

large scale in the Midwest, making them readily available.  

In this work, it was determined that soy-based biocomposites performed as well as 

commercially available fertilizers in terms of facilitating plant growth. It was also seen that nutrient 

levels in leachate samples were not significantly different for soy-biocomposite fertilizers compared to 

synthetic slow-release fertilizers when applied at a standard application rate. Addition, when over-

applied the soy-based composites exhibited drawbacks similar to that of some synthetic fertilizers.  

Economic analysis demonstrated that soy-based biocomposites could be produced on a 

commercial scale and at a competitive cost. Dependent on the specific formulation, the production costs 

for soy biocomposites were as low as $15.15 per pound of nitrogen. In comparison, the synthetic slow-

release fertilizers used for comparison in this study are currently sold at a retail price of $54.73 per 

pound of nitrogen.  

A life cycle assessment also demonstrated that the cradle-to-gate production of soy-

biocomposite fertilizers creates significantly less global warming potential (GWP) compared to the 

production of traditional ammonium nitrate and urea fertilizers. In the case of biocomposites comprising 

of more than 60% soy filler, the GWP was shown to be negative, suggesting the production of these 

biocomposites have the potential to sequester greenhouse gases.  
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CHAPTER 1 

INTRODUCTION 

 

Fertilization of turfgrass is typically accomplished with synthetic fertilizers. Natural gas is the 

most abundant feedstock used in fertilizer production today. In addition to using non-renewable 

resources, petro-chemical fertilizers are energy intensive to manufacture, hazardous to produce, and 

create a significant amount of global warming potential (GWP).  

In this study, a biocomposite material was developed, consisting of a polylactic acid (PLA) 

polymer matrix filled with a relatively large concentration of nutrient-carrying filler, such as soy. The 

proteins within the soy provided the macronutrients (nitrogen, phosphorus, and potassium) for healthy 

plant growth during degradation of the composite. Soy is naturally effective at utilizing atmospheric 

nitrogen during its growth process, and can be grown in sub-optimal conditions where low soil nitrogen 

content has less detrimental effects than with other row crops.  

This research tested the viability of soy biocomposite fertilizers and compared them to 

commercially available slow-release fertilizers and biobased alternatives. Testing included growth and 

nutrient trials, as well as modelling of the economic viability and the environmental impacts associated 

with the production of soy biocomposite fertilizers.  

It was hypothesized that through this research a soy based biocomposite fertilizer could be 

developed which could compete with premium slow-release synthetic fertilizers in terms of 

performance and costs. Soy based biocomposites exhibiting similar or lower levels of global warming 

potential and water nutrient contamination would be considered successful as they rely on renewable 

resources.  

 

Background 

 

This work focused on measuring the effectiveness of fertilizers, such as those used on residential 

turfgrass, where over-application and over-watering are far more common when compared to the 

production of agronomic crops. The use of biobased, controlled-release fertilizer, such as a protein-filled 

degradable composite, may provide important nutrients to the residential lawn-care market. 
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Homeowners require smaller quantities of fertilizer when compared to farmers. As these users purchase 

in a smaller niche market, they often desire and can afford premium products. Consumers are often 

willing to purchase a more costly product if there are additional value-added benefits that offset the 

additional costs. Examples of additional benefits from biorenewable, soy-based fertilizer include: greater 

safety for children and pets, biorenewable sourcing of inputs, slow release of nutrients, lower 

environmental impact, and greater overall sustainability.  

A previous ISU research project on biobased pots, served as a catalysts for the initiation this 

project. A research project conducted under Dr. David Grewell, Dr. James Schrader, and Dr. William 

Graves investigated the use of biobased alternatives to petroleum-based plastic horticulture pots 

(containers). During these trials, it was seen that biocomposite containers produced larger plants 

compared to those grown in standard containers produced from petrochemical plastics (Schrader et al., 

2013; McCabe et al., 2016). These studies showed that nutrients were supplied to the plant by the 

decomposing container materials; that is to say, the containers were “self-fertilizing”. The present 

research investigated the effectiveness of similar biocomposite materials for use as granular fertilizers 

and aimed to identify an optimal formulation in terms of promoting plant growth, reducing nutrient 

pollution, and minimizing costs.  

The research conducted with bio-containers at Iowa State included the use of a soy-based 

polymer produced from soy flour and soy protein isolate. This formulation, known as soy protein 

polymer with adipic acid (SPA), had proven its ability to be used as a polymer filler, extruded, and 

injection molded. Therefore, this formulation was used for the experiments performed in this work.  

 

Objective 

The objective of this work was to determine whether it is possible to develop biobased fertilizers 

that can compete with commercially availability fertilizers in terms of performance and costs.  This 

included comparing biobased and synthetic fertilizers in terms of plant health, costs, and environmental 

impacts.  

 

General Approach 

To achieve the objectives it was important to identify a soy-based biocomposite formulation for 

the fertilizer that could function as well as or better than commercial fertilizers. Plant growth and 

health, including plant dry mass, shoot volume, and overall health were measured. This data was used 

to determine the effectiveness of the soy-based materials in comparison with synthetic fertilizers and 
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currently available biobased alternatives. Nutrient analyses of plant tissue and water leachate were also 

characterized to determine the effectiveness of plant nutrient uptake and to estimate the amount of 

nutrients lost through water leaching in greenhouse trials. Although the leachate trials did not directly 

correlate to nutrient runoff, they provided insight into potential full-scale run-off scenarios.  

Testing was completed in two major phases. The first phase studied a broad set of formulations 

to eliminate ineffective formulations and reduced the experimental design space. The second phase, a 

greenhouse trial, was performed to supply quantifiable, numerical data for the analysis of a subset of 

formulations selected from the initial trial. The two-phase approach allowed for a larger number of 

formulations to be included in testing.  

Nutrient content of the biocomposites is directly proportional to the level of soy-based material 

in the composite.  That is to say, soy protein was the active fertilizing ingredient. In general protein 

purity results in an increase in the cost of the final composite, but also provided increased nutrient 

levels of a given formulation. These competing desired features (costs and nitrogen concentration) were 

studied by using two different soy-based fillers with different protein purities and associated costs, soy 

protein polymer (SPA) and soy flour (SF). The polymer matrix material provided control over the 

degradation rate, and thereby controlled the nutrient release rate. Two different grades of the same 

polymer type (binder), PLA 2003D and PLA 3001D from NatureWorks, were selected for the 

investigation. The use of plasticizers and their content was also analyzed as they increase the 

processability of the composites; however, they also increased the overall price. 
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CHAPTER 2 

LITERATURE REVIEW 

 

The use of fertilizers is common in most residential and agricultural applications; however, its 

goals, effects, and negative impacts vary depending on many factors, such a fertilizer type, application 

rate, environment, as well as geography. This literature review will provide insight into how the use and 

effects of turfgrass fertilizer differ from fertilizer use.  Key concepts relating to the modeling processes 

used during this research will also discussed. 

The literature review will assess multiple areas of interest surrounding fertilizer production and 

use. Discussed first will be the negative effects associated with the production of traditional, synthetic 

fertilizers. Among discussed items will be how Life Cycle Assessments can be used to model the total 

resource use and pollutant production of manufacturing them. 

The detrimental effects of fertilizer runoff and nonpoint source pollution is discussed in a 

separate section. Nutrient pollution is a topic of concern with respect to water quality impacts.  Nutrient 

runoff not only has detrimental effects on surface water and water sheds (and thus on the drinking 

water quality of parts of the US population), it has the potential to promote dead zones downstream 

(Gulf region, Chesapeake Bay). 

Although this work will focus on turfgrass, the findings can help differentiate between the 

effects of fertilization of turfgrass systems and agricultural systems, the latter are generally better 

understood, as more research data are available.  

An additional section of the review will provide a brief overview of legumes (such as soybeans) 

and describe why they are suitable as the primary supplier of nutrients (N) for the biocomposite 

fertilizer used in the current experiments.  

The process of constructing an economic model known as a Techno-Economic Analysis (TEA) will 

be examined to give an overview as to why this is an important technique when considering the full-

scale application of the materials discussed herein. 

Finally, the modeling of the total life cycle impact of a product provides will be reviewed on how 

different consumer goods effect the environment. A Life Cycle Assessment (LCA) review will discuss 

some benefits and limitations of the modelling process. 
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Negative Effects of Excess Nutrients in Watersheds 

 

Nitrogen, phosphorus, and potassium (NPK) are the most important elements required for 

healthy plant growth (Mengel, 2009). These nutrients are typically applied annually to crops and 

residential lawns in the form of different fertilizers. A plethora of fertilizer-related water pollution issues 

have been reported, especially in the rivers and lakes of the Midwest and Southern states where runoff 

from numerous watersheds converge and concentrate the contaminants. These nutrients are harmful to 

the ecosystem and cost the U.S. taxpayers $2.2 billion annually in clean up and mitigation, for nitrogen 

and phosphorus alone. (EPA, 2016) 

Before the creation of modern fertilizers, these elements existed in our aquatic ecosystems. In 

small quantities, these materials are harmless and support a healthy environment. However, application 

of fertilizers on both agricultural and residential lands has led to excessive levels of these nutrients 

within surface waters caused by runoff. Of these nutrients, nitrogen in the form of nitrate is the largest 

portion of surface water nutrients. Research by the U.S. Geological Survey found that approximately 

10% of private water sources, such as wells, were found to contain NO3-N levels above the EPA 

recommended limit of 10 mg/L (Oram, 2014). Nutrient pollution is not limited to small areas. The fact 

that 166 costal hypoxic dead zones have been identified (Diaz et al., 2008) demonstrates the potential 

negative effects of fertilization.  

Currently, the U.S. EPA acknowledges the pollution issues associated with application of 

fertilizers and describes them concisely on their webpage (EPA, 2016). The list of issues includes excess 

algae growth, habitat destruction, hypoxia, eutrophication, fish kills, bacterial blooms, “blue-baby” 

syndrome, and destruction of recreational areas.  

Runoff of nutrients associated with fertilizer application is described as a type of nonpoint 

source pollution. This type of pollution is defined as “pollution coming from diverse diffuse sources 

including urban storm water, agriculture, and hydromodification, etc.” (Lin, et al., 2009). Urban 

watersheds are also contributing to nonpoint pollution and causing water quality hazards of surface 

waterbodies (Lin, et al., 2009).  

In the US Midwest, these pollutants eventually concentrate in rivers and feed into the Gulf of 

Mexico, causing widespread water quality issues in coastal areas. An article in Scientific American 

(Biello, 2008) describes the “dead zones” created off the coasts. The dead zone in the gulf is 

approximately 5,000 square miles in total area. The hypoxic conditions are caused by excessive nutrient 
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loads in the water. Dead zones in the gulf are not only harmful to marine life, but can also cause 

economic hardships for those that rely on the gulf waters for their livelihood.  

The article (Biello, 2008) also describes an experiment conducted to determine if rivers and 

streams are capable of removing excess nutrients by natural processes. Because plant life relies on the 

nutrients to grow, organisms in lakes and streams may be able to uptake some of the excess nutrients. 

Researchers found through their studies that only a limited amount of nutrients can be abated by the 

environment. However, because the system is so large and complex, the research team was unable to 

define a numerical quantity that could be up taken by organisms. Their findings did show that a 

significant number of watersheds are severely overloaded and are incapable of utilizing the large 

nutrient load, leading to the nutrient pollution currently plaguing the gulf coast.   

Figures 1 and 2 show maps from the National Geological Society mapping the levels of nitrate 

ions in different areas across the U.S. and how they can affect the quality of groundwater for drinking 

use in specific areas. Figure 1 shows a strong correlation of ion concentration with agricultural intensity 

across the U.S., most notably the Midwest.  

 



7 
 

 
 

 

Figure 1 - Nitrate ion concentration across the U.S. Image provided by National Geological Society. 

 

Agricultural runoff is not the only nutrient source causing harm to water supplies. Residential 

lawn care can also provide excess nutrients to watersheds and contribute to nutrient pollution. Some 

areas within the U.S. rely on water stored deep within the soil, often separated by a layer of hard rock 

such as limestone. These water sources are known as aquifers and are generally not affected by nutrient 

runoff, as water must infiltrate deep into the earth and excess nutrients tend to be filtered by the 

limestone as water permeates downwards. However, many Americans rely on more shallow sources of 

groundwater for drinking water. These areas are extremely susceptible to nutrient related issues and 

illnesses. Figure 2 indicates areas of the U.S. that are at higher risks of nitrate contamination. Without 

the thick layer of rock to percolate through, shallow groundwater sources are more susceptible to 

nutrient pollution. 
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Figure 2 - Areas at risk of nitrate contamination. Image provided by the National Geological Society. 

 

Turfgrass Fertilizing 

 

Nitrogen runoff after application of synthetic fertilizers is a common issue, especially when 

combined with large rain events. A journal article posted in the Journal of Environmental Quality 

(Morton, 1987) describes an experiment conducted to test the amount of nitrogen leaching from 

turfgrass under various conditions. Researchers varied the amount of fertilizer applied as well as the 

quantity of water.  The amount of nitrogen leachate varied significantly from 32 kg/ha for overwatered, 

high nitrogen rate treatments; to 2 kg/ha for the scheduled watering, unfertilized, control treatment. 

This sixteen-fold increase is mostly likely the result of the fact that conventional fertilizers 

contain nitrogen in a water-soluble state allowing major rain events or overwatering to transport 

nutrients into larger bodies of water where they are concentrated with other similar runoff. Negative 

effects of this pollution can be exacerbated in urban areas because of the infrastructure, such as storm 
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drains, and impermeable areas such as pavements. Drains are put in place to increase the rate at which 

water is transferred away from residential areas and into bodies of water. Pavement has similar effects 

as piping as it is impermeable and connected to the storm drain system. This decreases the area of 

permeable surfaces like soil and the amount of time available for nutrient-laden water to infiltrate into 

the soil where nutrients would be contained or utilized.  

Another key contributor to turfgrass fertilizer leaching is the amount of fertilizer applied. As 

reported by (Morton, 1987), higher application rates lead to larger amounts of runoff, especially when 

combined with high precipitation rates. A long-term project funded by the National Science Foundation 

(Neely, 2004) estimated the average amount of fertilizer applied in residential settings by homeowners 

and professional lawn care companies. This research discovered that on average 97.6 kg/ha (2.00 

lbs/1000 ft2) of nitrogen was applied annually. However, they calculated a standard deviation of 88.3 

kg/ha (1.81 lbs/1000 ft2). This suggests that the amount of fertilizer applied fluctuated in many cases 

from nearly no fertilizer, to a rate nearly double the average. This may also suggest that many 

homeowners either lack the proper knowledge to apply fertilizer correctly, or are poorly informed on 

the impacts caused by over-application of these fertilizers. 

Excessive application of fertilizer is relatively common in residential settings. Farmers are 

relatively educated with regard to fertilizer use and have a better understanding of application and 

usage. More importantly, farmers are less likely to have a standard deviation of delivery rates as high as 

the residential application because of costs and profit driven factors. In more detail, the cost of fertilizer 

is among the highest input costs for row crop farmers in the U.S. Economists of the USDA estimated 

costs for 2015 corn production at nearly $700 per acre (Gloy, 2015). Of the total cost, fertilizer 

corresponds to the second most expensive input for farming at $135 per acre of the total $700. Costs 

associated with land ownership are the only higher input; estimated at $181 per acre. 

Fertilizing a residential lawn is relatively inexpensive compared to the large acreage most 

farmers manage, so that the cost factor of over-application of fertilizer in a residential setting is 

negligible compared to agricultural crop production. Homeowners are less likely to notice the small 

financial difference caused by over-applying fertilizer and there is little social identification of the 

impacts of lawn care compared to the impact of farming activities.   

Considering the amount of land currently treated as turfgrass, 17 million hectares (King, 2007); 

management of the nutrient pollution caused by fertilization in these areas should not be ignored. Areas 

contributing to the 17 million hectares include: home lawns, commercial property, golf courses, parks, 

other recreational areas, schools, cemeteries, and others. Notably, the areas associated with turfgrass 
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tend to be urban/suburban areas. These urban areas produce more runoff than the natural ecosystem, 

such as forested areas because of the aforementioned impermeable nature of most urban land cover.  

A three-year experiment comparing nitrogen content in urban runoff to other systems 

(Groffman, 2004) found that nitrogen yields from 2.9 to 7.9 kg N/ha/y were found to be common in 

urban areas. In comparison, the forested area lost approximately 1 kg N/ha/y under similar weather 

conditions. The large amount of nitrogen lost in urban areas was contributed to variables such as storm 

water infrastructure, application rate of fertilizers, impermeable areas, and over-watering of turfgrass.  

 

Legume Nitrogen Fixation 

 

Many sources of nitrogen exist for the production fertilizers and nitrogen is one of the most 

abundant elements in the world. The focus of this research is on the use of biocomposites with soybean 

content, in which soy protein is used as a source of nitrogen for fertilizers. Soybeans were chosen 

because they are a member of the family Leguminosae that have a unique relationship with a specific 

bacterium that allows them to capture and utilize nitrogen from the atmosphere.  

Most plants rely on ammonia (NH3) for nitrogen needed to build the plant’s amino acids, 

proteins, and nucleic acids. Soybeans are no exception to this rule and also use ammonia. However, 

soybeans typically are less affected compared to other plants by lower nitrogen content in the soil 

because a specific type of rhizobial bacteria, Rhizobiaceae, α-Proteobacteria, is capable of turning 

atmospheric nitrogen (N2) into ammonia within the legume’s root system (Rolfe, 1984). The bacteria and 

legume share a symbiotic relationship where each organism benefits from the presence of the other. In 

this case, the rhizobial bacteria live in nodules located on the plant’s root system. This growth does not 

cause physical harm to the plant, but the legume does provide the bacteria an environment to thrive. 

The bacteria benefit the legume by producing ammonia from diatomic nitrogen; the legume then uses 

this ammonia in return.  

It is estimated that soybeans account for 77% of the total nitrogen fixation by all legumes 

worldwide, with 1.64×107 metric tons of atmospheric nitrogen fixed annually (Herridge, 2008). The U.S. 

soybean crop accounts for approximately one third of this nitrogen, with Brazil and Argentina’s soybean 

crops following close behind. Herridge combines data and models from nearly a dozen different authors’ 

estimations on the global nitrogen budget of soybeans and other legumes. He created his own model 

based upon the most accurate and useful components of various models, ranging back to the 1970s. 

Herridge also suggests that most of these models are, at best, well-informed guesses. The complexity of 
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the nitrogen fixation occurring within legumes, and the multitude of variables, make these models 

difficult to verify.  

In his study, Herridge defined the percentage of a plant’s total nitrogen associated with N2 

fixation as %Ndfa. Among other legumes, soybeans are the most difficult plant for which to model this 

%Ndfa because the variance in soil health, current nitrogen within the soil, and other factors affect 

soybeans to a much higher degree compared to non-legume plants. It was estimated that, on average, 

58% of nitrogen in soybeans was related to the dinitrogen fixation for a typical farmer’s crop (Herridge, 

2008). However, within controlled experiments, a range of 0-95 %Ndfa was reported. This large range 

was the result of the plants’ ability to utilize N from the soil as well as the atmosphere.  

In more detail, it was found that within a controlled experiment the amount of ammonia made 

available to the plant had a great effect on the utilization of atmospheric nitrogen by fixation. If more 

nitrogen was supplied through fertilizers and organic matter, the soybean had no need for the bacteria 

and they were not present. Under extremely low nutrient availability, the rhizobial bacteria flourished 

and provided nearly all (95%) of the nitrogen the soybean plants needed; assuming plants had enough 

starting fertilizer to grow a root system. This implies that soybeans can be grown under different 

conditions, even in soil nearly void of nitrogen, and it will sequester additional amounts of nitrogen from 

the air to compensate for the lack of nutrients.  

 

Fertilizer Production and Life Cycle Assessment 

 

One method to compare the total environmental impact of the production of different goods is 

through Life Cycle Assessments (LCA). Conducting an LCA involves summation of the inputs and outputs 

of a particular system to determine the environmental and resource usage and their impact associated 

with production of a certain quantity of a good. Details on conducting an LCA are documented in 

standards such as ISO 14040. These inputs and outputs include raw resource collection, transportation, 

manufacturing, packaging, consumer use, and end of life treatment. Properly defining the boundaries of 

a LCA can be difficult, but researchers have developed models and databases that can be shared to 

utilize the collective knowledge of the community to promote consistency of various models. 

For the research conducted here, the life cycle assessments will show the total environmental 

impact associated with the production of the soy biocomposite fertilizer. Assessments that focus on the 

production of a good are referred to as “cradle-to-gate” LCAs as they consider all activities from raw 
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resource harvesting through the production of a good. The life cycle assessment developed here will be 

compared to published literature values of other authors who also utilized a cradle-to-gate approach.  

The methodology for conducting a life cycle assessment is outlined in the standard ISO 14040. 

An LCA consists of four major steps: determination of goal and scope, analysis of inputs/outputs, impact 

assessment, and interpretation of results. More details on each of these steps are outlined in the 

Methodology section.  

Many impacts can be calculated throughout an LCA. The LCA conducted here focusses on the 

impact categories most relevant to fertilizer production. These categories include: global warming 

potential (GWP), abiotic energy depletion, abiotic resource use, eutrophication potential, and 

acidification potential. These categories account for the largest impacts associated with the production 

of most consumer goods (Skowrońska, 2014). Skowrońska and other authors typically focus on the 

production of either ammonium nitrate (AN) or urea. These two forms of nitrogen are the most 

commonly used forms of fertilizer. The process used to create urea and ammonium nitrate is described 

in detail in the materials section.  

The impact categories include the respective input resources or output pollutants that 

contribute to the specific negative effect in question. For example, GWP accounts for greenhouse gases 

(GHGs) such as N2O, CO2, and CH4 (Skowrońska, 2014).  Total GWP is measured in kilogram of CO2 

equivalence (kg CO2 eq). The total GWP for both AN and urea is 2.82 and 0.72 kg CO2 eq, respectively for 

each pound of nitrogen produced (Skowrońska, 2014).  

Abiotic energy or resource use refers to inputs that are from non-renewable feedstocks such as 

oil, gas, coal, and other fossil fuel based products. In many LCA’s, authors examine traditional fertilizers 

from natural gas. However, they include the feedstock natural gas as a resource used, but not as energy 

consumption. This can lead to discrepancies when comparing different models. Thus, attention must be 

given to ensure similar methods were when comparing models.  

Acidification and eutrophication potentials are calculated with regard to the variety of pollutants that 

cause negative effects on both fresh and salt-water environments. The most common forms of acetic 

pollutants include NOx, SOx, as well as other nitrogen-based contaminants.  

  



13 
 

 
 

CHAPTER 3 

MATERIALS 

 

The formulations investigated for this project contained varying amounts of the materials listed 

in the following sections. Each of these components served a specific function within the composite, 

which is detailed in each corresponding sections. The experimental design of the varying formulations is 

discussed in a separate section “Methodology”.   The categories of materials used include: fillers, 

matrices, and plasticizers. The function of the filler material in this specific application was to provide 

the nutrients needed by plants. As stated, soy-based fillers were utilized as the key source of nutrients 

for the composite fertilizer because of their relatively high nitrogen content. Polymer matrices are 

needed to mechanically stabilize the filler material and control the degradation rate. It is important to 

note that the ratio of filler to matrix material within these formulations affects the rate at which the 

composite degraded, as well as the rate of nutrient release. There is an inversely proportional 

relationship between matrix content within the composite and degradation rate; higher matrix content 

decreases degradation rate and slows nutrient release.  

Lastly, the use of a plasticizer was also investigated to determine if the additive, which enhances 

processability, also has an effect on plant growth. In more detail, plasticizers can have a wide range of 

functions; however, for this study their primary function was to lower the processing temperature of the 

matrix to reduce thermal degradation of the soy filler.  

 

Filler Materials 

 

Two soy-based fillers were investigated during this research to determine their effectiveness as 

a nutrient source as well as their effect on overall formulation cost. A soy-based formulation previously 

developed at Iowa State University (Grewell et al, 2013) was the first filler investigated for this 

experiment. It was developed for use in the horticulture crop containers previously mentioned in the 

background information, and will be referred to as “SPA”. This material mixture is comprised of both soy 

flour and soy protein isolate. It includes plasticizing ingredients, such as glycerol as a processing aid. This 

particular formulation contains adipic acid, which is used as a crosslinking agent to improve the 

mechanical properties of the soy-based polymer.  
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Because of the success of this material with the crop containers, it was decided that this filler 

would be used as a starting point for the biocomposite formulation. The material formulation consisted 

primarily of soy flour (SF) and soy protein isolate (SPI). Additional ingredients included: glycerol, adipic 

acid, phthalic anhydride, potassium sorbate, sodium sulfite anhydrous, and water. The primary function 

of the other additives was to increase water stability and act as plasticizers during the extrusion process. 

Of the two primary soy ingredients, soy protein isolate has a higher protein content and provides a 

higher amount of nitrogen. However, SPI is more expensive and may affect the cost competitiveness the 

soy biocomposite fertilizer. The SPA has the drawback of requiring a separate extrusion step, increasing 

the time and cost to produce the final formulation as more production time is required.  

Soy flour was also investigated as the single source of nutrients. Soy flour contains nutrients 

required for healthy plant growth, but in lower concentrations compared to SPA. It was hypothesized 

that the lower cost of SF compared to SPA may provide an economic advantage. The SF-based materials 

also required fewer extrusion steps as the flour does not need to be compounded before being 

combined with the matrix (PLA).  

 

Matrix 

 

Polymer composite materials require a mechanical stabilizing component. This material is often 

referred to as the base resin, or the matrix. In composites, filler materials are typically added to a matrix 

to enhance specific properties: strength, chemical resistance, UV light stability, electrical conductivity, 

among other mechanical properties, and/or to lower cost. In the biocomposite investigated here, the 

filler provided the unique benefit of supplying nutrients for plant growth. This uncommon use of a filler 

material requires the use of specialized polymers that support the filler and promote the composite’s 

functions. Desirable characteristics for this application include: degradability, commercially available, 

and affordability. Few polymers meet these requirements however polylactide or polylactic acid (PLA) is 

a suitable material.  

Polylactic acid is a biobased polymer resin that can be derived from agricultural crops, or crop 

by-products. Currently, the largest producer of PLA is NatureWorks, with production facilities located 

near Omaha, Nebraska. NatureWorks produces their “Ingeo” line of PLA polymers by first grinding whole 

kernel corn and mixing it with water into a slurry. The slurry is then exposed to enzymes to 

depolymerize the starch into sugar. The sugar then undergoes a fermentation process, converting the 

carbohydrates into lactic acid, the base monomer for PLA. These lactic acid monomers are first 
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converted into short chain oligomers before the final polymerization. The intermediate process of 

creating oligomers is used to allow large-scale production of high molecular weight PLA. If lactic acid 

monomers are polymerize directly on a large scale, the reaction is self-limiting and low molecular weight 

polymers with limited thermal/mechanical properties.  The final polymerization with the oligomers, 

result in polylactide resin, which can be processed similar to other polymers by extrusion, injection 

molding, and other processes. 

NatureWorks manufactures a wide variety of PLA resins suited for different applications. Many 

of their resin grades are well suited for durable goods applications. However, these resin grades are not 

suitable when resin degradation is desired, as they are too tenacious. The more stable grades of resin 

also tend to be more costly, which would be counterproductive for the proposed application. Therefore, 

the less durable grades of PLA were identified as the most desirable matrices for this research and the 

2000 and 3000 series of Ingeo biopolymers were chosen as suitable matrices. These materials are 

relatively easy to degrade in the environment. Although the 2000 and 3000 Ingeo series are also sold 

with modifications, such as lubricants for ease of processing, the unmodified versions of these two 

polymers were selected for investigation. The 2003D resin is advertised as an “extrusion grade” 

polymer, and the 3001D grade as an “injection mold grade” polymer. While past research projects at 

Iowa State University had used the 3001D resin for the injection molding of horticulture pots, this 

project required only the extrusion of material and therefore the 2003D resin was studied.  

 

Plasticizer 

Plasticizers are often used with polymers to improve the processability of composites as well as 

increase flexibility of the final plastic. In this application, a plasticizer was used to decrease the extrusion 

temperature during processing. Polyethylene glycol (PEG) was selected for this purpose; it can also be 

derived from biobased feedstocks. PEG was added to the formulation to lower the extrusion 

temperatures, and reduce thermal degradation of soy fillers in the composite, as well as reduce 

denaturing of the soy proteins.  

A disadvantage of the addition of a plasticizer is the additional extrusion step, which is required 

to combine the PLA and PEG prior to further compounding with soy fillers.  It was found during past 

work at ISU that PEG lowers the processing temperature of PLA by approximately 30 °C (when included 

at 10% by weight). In this work, plasticizer content varied from zero, five, to ten percent of overall 

matrix mass. It is important to note these contents assume overall matrix mass and not overall 

composite mass. 
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Synthetic Fertilizer 

 

Commercially available, synthetic fertilizer was studied and was used as a “baseline” in terms of 

performance, environmental impacts, and costs; these fertilizers are the current standard for both crop 

production and turf maintenance. They are generally derived from fossil fuels, such as natural gas, and 

are produced in various formulations and types for different applications. Large reaction chambers are 

filled with natural gas and steam, and are reduced to remove the oxygen. This leaves nitrogen, 

hydrogen, and carbon dioxide. After removal of the carbon dioxide, a catalyst is used to convert the 

contents to ammonia. The ammonia can be used directly as a fertilizer; or it can be further refined into 

ammonium nitrate (NH₄NO₃) by first converting into nitric oxide, nitric acid, and then finally ammonium 

nitrate. The synthetic fertilizer selected for comparison in these trials was a slow-release, polymer-

coated synthetic fertilizer known as Nutricote, manufactured by Florikan. It is important to note that 

Nutricote is considered one of the most efficient and sought-after slow-release fertilizers currently on 

the market. It provides a best-case scenario for the synthetic fertilizer control groups.  

Generally, fertilizer is expensive to produce and involves multiple environmental issues. Large-

scale chemical conversions require thermal energy to initiate the reaction. Significant quantities of 

water are required, both for cooling and for cleaning between reactions. This adds to the environmental 

impacts of these products. In addition, it is important to note that catalysts are typically expensive and 

are often considered environmental hazards because they tend to be based on heavy metals. 

 

Biobased Alternative Fertilizer 

 

This work also tested a commercialized biobased alternative fertilizer, known as Milorganite.   

Its nutrient content was comparable to several of the formulations of the soy biocomposite materials. 

Milorganite consists of heat-dried microbes that are used in the digestion process of organic materials 

for wastewater treatment. This material was included for growth trials, but because very little 

information on its production is available, it was omitted from the LCA conducted during this research. 

The cost of Milorganite is relatively low as the feedstock is a byproduct of wastewater treatment and 

the only major input is energy for drying and packaging.  
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Soy Biocomposite Formulations 

 

Ultimately, 14 formulations were produced for the initial phase of testing. The ratio of 

components was varied to determine the effects of filler type, matrix type, filler to matrix ratio, and 

plasticizer content. Each of the 14 formulations are detailed in Table 1.  

 

 

Table 1 - Formulations of soy-based biocomposites by percent mass. 

  MATRIX 
MATERIAL 

PLASTICIZER FILLER MATERIAL 

MATERIAL NAME 2003D 3001D PEG 8000 Soy Flour SPA 

3001 PLA/SPA (50/50) - 50 - - 50 

3001 PLA/SPA (40/60) - 40 - - 60 

3001 PLA/SPA (30/70) - 30 - - 70 

3001 PLA(5%PEG)/SPA (50/50) - 47.5 2.5 - 50 

3001 PLA(5%PEG)/SPA (40/60) - 38 2 - 60 

3001 PLA(5%PEG)/SPA (30/70) - 28.5 1.5 - 70 

3001 PLA(10%PEG)/SPA (50/50) - 45 5 - 50 

3001 PLA(10%PEG)/SPA (40/60) - 36 4 - 60 

3001 PLA(10%PEG)/SPA (30/70) - 27 3 - 70 

2003 PLA/SPA (50/50) 50 - - - 50 

2003 PLA/SPA (40/60) 40 - - - 60 

2003 PLA/SF (60/40) 60 - - 40 - 

2003 PLA/SF (50/50) 50 - - 50 - 

2003 PLA/SF (40/60) 40 - - 60 - 

 

After material compounding was completed, the formulations were analyzed for nutrient 

content.  A third-party testing center, Minnesota Valley Testing Laboratories, was hired to analyze the 

materials and determine nitrogen (N), phosphorus (P), and potassium (K) levels. These three materials 

are the key ingredients, or macronutrients, for healthy plant growth and are often referred to as “NPK 

values”. The most important of these nutrients is nitrogen, which was used as the normalizing 

independent variable.  In more detail, the N content was used to calculate the total applied material to 

turf in terms of mass (N)/square area. Typical application rates for fertilizing turfgrass is 1 pound of 

nitrogen per 1000 ft2. Table 2 details the relative elemental composition of each fertilizer. 
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Table 2 - Fertilizer nutrient content: nitrogen, phosphorus, and potassium (NPK) for each of the tested 
materials. Shown on a percent mass basis. 

MATERIAL NAME NITROGEN PHOSPHORUS POTASSIUM 

3001 PLA/SPA (50/50) 3.21 0.68 1.05 

3001 PLA/SPA (40/60) 3.82 0.88 1.31 

3001 PLA/SPA (30/70) 4.89 1.03 1.56 

3001 PLA(5%PEG)/SPA (50/50) 3.36 0.71 1.09 

3001 PLA(5%PEG)/SPA (40/60) 3.87 0.91 1.37 

3001 PLA(5%PEG)/SPA (30/70) 5.22 1.07 1.70 

3001 PLA(10%PEG)/SPA (50/50) 3.99 0.83 1.27 

3001 PLA(10%PEG)/SPA (40/60) 4.28 0.91 1.39 

3001 PLA(10%PEG)/SPA (30/70) 5.19 1.10 1.71 

2003 PLA/SPA (50/50) 3.33 0.75 1.13 

2003 PLA/SPA (40/60) 4.11 0.78 1.23 

2003 PLA/SF (60/40) 3.00 0.73 1.14 

2003 PLA/SF (50/50) 4.01 0.93 1.45 

2003 PLA/SF (40/60) 4.49 1.09 1.74 

SYNTHETIC FERTILIZER 18.00 6.00 8.00 

MILORGANITE 5.00 2.00 0.00 

 

Material Processing 

 

The biocomposite materials were extruded at Iowa State’s Center for Crops Utilization Research 

pilot plant on standard polymer processing equipment. A Leistritz 28 mm co-rotating extruder was used 

to compound the components. This machine has a maximum throughput rate of 350 kg/h, as stated by 

the manufacturer. Several of the formulations required multiple extrusions steps. For example, the SPA 

had to be compounded before it was further compounded with the PLA matrix. The plasticizer, PEG, also 

had to be extruded individually with PLA before adding the filler materials (soy). Each formulation 

required between one and three extrusion steps, depending on the composition. During the extrusion 

process, the extruded material was pulled across a steel table and into a pelletizer. This process created 

fertilizer pellets, or prills, that can be applied with traditional broadcast-style spreaders common in the 

turfgrass industry. 
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CHAPTER 4 

METHODOLOGY 

 

Phase One: Turfgrass Trial 

 

An initial screening experiment was conducted to confirm effect of fertilizer biocomposites on 

turfgrass health and to reduce the number of formulations to analyze in the greenhouse testing. This 

experiment was set up at the ISU Turfgrass Research Facility. With the aid of turfgrass specialists, a test 

area was created on a plot that had not been fertilized or treated for approximately three years and 

consisted of Clarion loam type soil. Individual, square test plots were defined (five feet on each side). 

The testing area consisted of Park Kentucky Bluegrass, maintained to a height of three inches. Enough 

plots were marked to test the 14 biobased material formulations, synthetic fertilizer, and Milorganite; as 

well as their replicates. As stated previously, a standard application rate of one pound of nitrogen per 

1000 ft2 was adopted. Three negative control groups (without fertilizer) were also included in the 

experimental design and replicated just as each of the 16 treatments was. Each testing group had four 

replicates that were randomly assigned throughout the testing area.  

This test was conducted in the fall of 2015; fertilizers were applied in the second week of 

September. Application was completed by hand, individually for each square plot to reduce cross 

contamination between test plots. The fertilizers were “watered in” after application to reduce the risk 

of nitrogen burning of the turfgrass by the synthetic material. After the initial application, no manual 

watering was included in the procedure. 

Data collected during the turfgrass trial was completely subjective and relied on visual data 

collection with the assistance of turfgrass specialists. A numerical rating scale from 1 through 9 was used 

to characterize growth. A score of 9 indicated an ideal lawn with dark green turfgrass. A score of 1 was 

assigned to turf with a dark brown color, indicating it was dormant or dead. A score of 6 indicated turf 

that was “least commercially acceptable”; a term used by specialists to define the minimum visual 

quality for a commercially tended lawn. Data collection continued for an additional seven weeks after 

application, until the turfgrass went into dormancy. Figure 3 shows the average visual health ratings for 

each treatment. A slight decrease in visual data during the final week can be seen in Figure 3; indicating 

the start of the dormant cycle for the fall and winter seasons.  
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Using the data in Figure 3, the best performing biocomposites were selected for further 

investigations. The eight materials selected for greenhouse trials are listed in Table 3.  

 

 

Figure 3 - Turfgrass plot visual health ratings over 7 week test. 

 

 

 

 

 

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

Week 0 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

P
lo

t 
A

ve
ra

ge
 V

is
u

al
 R

at
in

g

Experiment TImeline

Ctrl. Avg. Milorganite 3001 PLA-SPA 50/50

3001 PLA-SPA 40/60 3001 PLA-SPA 30/70 3001 PLA(5%PEG)-SPA 40/60

3001 PLA(10%PEG)-SPA 40/60 2003 PLA-SPA 50/50 2003 PLA-SPA 40/60

3001 PLA(5%PEG)-SPA 50/50 2003 PLA-SF 60/40 3001 PLA(10%PEG)-SPA 50/50

2003 PLA-SF 50/50 3001 PLA(5%PEG)-SPA 30/70 2003 PLA-SF 40/60

2003 PLA-Algae-SF 42.5/12.5/45 Synthetic 3001 PLA(10%PEG)-SPA 30/70



21 
 

 
 

Table 3 - Soy formulations selected for phase two, greenhouse trials. Formulations are shown with 
ingredients by percent mass. 

  MATRIX 
MATERIAL 

PLASTICIZER FILLER MATERIAL 

MATERIAL NAME 2003D 3001D PEG 8000 Soy Flour SPA 

3001 PLA/SPA (50/50) - 50 - - 50 

3001 PLA/SPA (30/70) - 30 - - 70 

3001 PLA(5%PEG)/SPA (30/70) - 28.5 1.5 - 70 

3001 PLA(10%PEG)/SPA (30/70) - 27 3 - 70 

2003 PLA/SPA (50/50) 50 - - - 50 

2003 PLA/SF (60/40) 60 - - 40 - 

2003 PLA/SF (50/50) 50 - - 50 - 

2003 PLA/SF (40/60) 40 - - 60 - 

 

Phase Two: Greenhouse Trial 

 

A second experimental design was constructed and executed (Phase 2) to produce numerical 

data for statistical analysis. The process of growing, maintaining, and collecting data from turfgrass 

within a greenhouse environment provided a host of challenges that could not be overcome within the 

given timeframe and budget. Therefore, a cultivar of Durango Bee Marigolds was selected based on the 

long history with studies of these plants at Iowa State University. Plants were grown in 4.5-inch 

standard, polypropylene horticulture containers. It is important to note that the knowledge gained from 

the results in a greenhouse setting during Phase 2 can be applied to turfgrass applications as Durango 

Bee Marigolds have been successfully used as a testing analog for turfgrass previously (Mills, 1996). 

Eight biocomposite materials were tested. Again, Milorganite and a synthetic slow-release 

fertilizer (Nutricote) were used for comparison. In addition, two fertilizer treatment levels were used for 

this experiment. A “standard rate” of 423 grams of nitrogen per cubic meter of soil was tested as well as 

a “double rate” of 846 grams. The standard rate was determined through the specific macronutrient 

needs of Durango Bee Marigolds (Mills, 1996).  

For this test, each material type had an independent negative control group. Thus, a larger 

number of controls was included in the experimental design because plant growth studies naturally 

have a large experimental error. Nine replicates were used for each application, for a total of 270 

experimental data points.  
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Marigold seedlings were started four weeks prior to the start of the greenhouse growth 

experiment. To reduce experimental error, only those seedlings with a relatively uniform plant height 

were transplanted into the 4.5-inch containers for testing. Preparation of the containers included 

metering of the fertilizers for each of the experimental pots. This allowed for the individual mixing of the 

appropriate mass of fertilizer with the appropriate volume of soil for each of the 180 containers that 

received a fertilizer treatment. Seedlings were watered directly after transplant and a random number 

generator was used to disperse them throughout the growing area in the greenhouse.  

Plants were grown for four weeks until they reached a suitable size, the equivalent of a sale-

sized plant at a nursery. During the growth period, a dry-growing process was used. This technique 

refers to the watering of the plants to the point where the soil is saturated, but water does not flow 

from the container.  

Horticulture experts took visual health ratings. Shoot volume was measured based on the 

maximum height, width, and depth of each plant’s shoot. The shoot is considered the part of the plant 

that exists above the surface of the soil. Each plant was then harvested at the base, individually bagged, 

and labelled; all bagged shoots were placed in a drier to remove all moisture to determine shoot dry 

weight.  

After harvesting of shoots, a pour-through method (Wright, 1990) was used to collect leachate 

samples. The pour-through method was conducted by first watering the plants to saturation, 12 hours 

prior to leachate collection. This ensures that all containers contain a similar amount of water before the 

pour-through was conducted. For the collection of leachate samples, each pot was placed in secondary 

containment and 70 mL of water was poured into the soil. The majority of this water (50-55 mL) exited 

the bottom of the container as leachate and was collected. Five leachate and tissue samples were 

randomly selected from each treatment group for nutrient analysis. These leachate and plant tissue 

samples were sent for nutrient analysis of total nitrogen, phosphorous, and potassium to a third-party 

analysis group, Minnesota Valley Testing Laboratories. While the leachate data does not directly 

correlate to expected runoff values, researchers believe that there is a general relationship between the 

two. Full-scale testing of each of these materials was not economically feasible, but could be considered 

for future work once an optimal formulation is identified. 

Statistical analysis was completed on the dependent variables. Each Pair, Student’s t-Test 

statistical comparison was used within the latest version of JMP statistics software to compare the 

differences between materials tested. A confidence level of 95% was applied to the statistical analysis. 

This approach was adopted for all health and growth data collected during the greenhouse trials. 
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Techno-Economic Analysis 

 

The most important factor for the economic viability of the proposed bio-fertilizer, outside of 

material availability, is its cost competitiveness with current commercially available fertilizers. To 

estimate the cost to produce the proposed bio-fertilizer, a techno-economic analysis (TEA) was 

constructed to model its production at a given scale.  

In order to conduct a TEA, a list of assumptions was generated. The assumptions for equipment, 

production, and prices were all based on best possible estimates currently available. This model was 

constructed to account for changes in material, nitrogen content, material cost, and processing. The 

following list contains the major assumptions for the cost inputs of setting up a facility capable of 

producing soy biocomposite fertilizers.  

 

 Extruder cost: $300,000 

o Used 2,200 hours annually 

o Output of 1,200 kg/h 

o Power rating of 50 kW 

 Pelletizer cost: $5,000 

o Used 2,200 hours annually 

o Power rating of 7.5 kW 

 Material feeder cost: $2,500 

o Used 2,200 hours annually 

o Power rating of 5 kW 

 Material mixer cost: $7,500 

o Used 550 hour annually  

o Power rating of 10 kW  

 Four laborers 

o 2,200 hours annually 

o $12 per hour pay 

o  

 Lifetime of ten years 

 Lease 4,000 ft2 commercial space 

o $12 ft2 per year 

 Interest rate of 3.30% 

 One-time setup cost: $15,000 

 Straight-line depreciation of equipment 

o Salvage value of 10% 

 

Material costs were based on bulk wholesale prices. Cost of filler materials (soy flour and SPA) 

were calculated to be $1.00 and $2.27 per kilogram, respectively. Wholesale price of the plasticizer 

(PEG) was $1.30 per kg. The cost of both the 3001D and 2003D PLA averaged $2.25 per kilogram.  

Input cost increased by 2% each subsequent year to adjust for rising material costs. Total 

material production output increased at a rate of 5% per year to account for increases in efficiency as 

laborers gain competency. 
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The model initially estimated the yearly annuity and depreciation. These numbers give time 

value to the money originally invested in the company. Subsequently, using assumed material costs and 

outputs, yearly material input and its cost could be calculated for production costs. Other production 

costs were calculated on a yearly basis and can be scaled with overall production in the model. These 

items include labor, electrical costs of equipment, water, cost of facilities, and yearly fixed costs. Yearly 

fixed costs account for small charges that do not fluctuate, unlike other production costs that change 

with production rates. We assumed this to be a fixed portion (10%) of the yearly annuity.  

The individual costs were then totaled to calculate the annual operating cost. The annual 

operating cost for each scenario (material formulation) was adjusted to account for the total amount of 

nitrogen produced. This adjustment allows for comparison across all materials by eliminating error 

associated with different nitrogen content in the fertilizers. This is especially important when comparing 

a range of materials. In this case, operating cost was first adjusted to account for total kilograms of 

production per year. Using the calculated cost per kilogram, the cost per pound of nitrogen can then be 

determined by using the nitrogen content of each fertilizer produced. Dollars per pound of nitrogen is 

the most useful functional unit (normalized unit) when comparing fertilizers because they are applied to 

turfgrass using the nitrogen content.  

Profits per year were estimated within the TEA by assigning a sale price to the fertilizer 

produced. This sale price can be changed to estimate yearly profits, or estimate the amount of time 

required to “break even” with regard to the initial investment. The Solver add-in within Microsoft Excel 

was used to calculate the break-even cost for each material. This was completed by totaling the yearly 

profits over the 10-year lifespan. In Solver, the profit total was set to zero and the Solver was given the 

option to change the sale cost of the material. This adjusted the sale cost to the minimum price to break 

even over the 10-year period.  

 

Life Cycle Assessment 

 

For this analysis, a software package known as GaBi was used to create the LCA models. GaBi 

contains a range of the materials and processes used during the manufacturing of the biocomposites, 

but many processes required individual data generation within the software. The software has the 

capability of calculating all environmental impacts with a properly constructed model. 

The goal of the LCA was to determine the environmental impact associated with the production 

of soy-based biocomposite fertilizers. Knowing the goal allows a system boundary to be set. Terms often 
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used in LCA creation are “cradle”, “gate”, and “grave”. Cradle refers to the extraction of raw resources 

to be used in the system. Gate is a term used to describe the gateways of different processes within 

manufacturing. Grave refers to the end use and utilization of the product created. As only the 

manufacturing of the biocomposites is under investigation, a “cradle-to-gate” approach was used here. 

That is, the analysis considers all factors from raw resource harvest to production of a finished good. A 

functional unit has to be set to allow normalization and comparison of all obtained results. Here we 

used the functional unit of one pound of nitrogen for the analysis. This functional unit was selected 

because the amount of nitrogen is typically the standard for the application of fertilizer (typical 

application rates often use one pound of nitrogen per 1000 ft2). 

The next step within an LCA is the collection of the life cycle inventory. This inventory accounts 

for all inputs and outputs from the system that could have an environmental impact. The flows of 

materials were determined during the TEA and were subsequently applied to the LCA. Flows in this 

system included water, electricity, raw materials, and wastes. Many of the processes studied already 

existed within the GaBi software; those that did not already exist, such as the extraction of soy flour, 

were manually added to GaBi’s database by using literature values and constructing the process to 

reflect the published values. An example of literature useful for Life Cycle Assessment data collection is 

an LCA conducted on NatureWork’s Ingeo processing (Vink, 2003) which was used to provide 

information on the cradle-to-gate production of PLA. 

The third step, assessment of environmental impact, is typically a long and tedious process. 

Although setting up processes within GaBi can be initially a very long process, the software saves time 

and work during this third step. With the advent of GaBi the assessment process is simple and all 

impacts are calculated by the software and shown in the “Balances” tab. These values can be exported 

for further assessment. When properly built, the models within GaBi adjust for the functional unit and, 

in this case, supply data relating to 1 pound of nitrogen for each of the materials investigated.  

The fourth, and final, step of an LCA is to interpret the results obtained. Before interpretation, it 

is important to be certain that all comparisons of calculated environmental impacts are in the same 

units as the literature values for the standard fertilizers they will be compared against them.  

Results obtained for the production of soy-based biocomposites were compared to literature 

values for the cradle-to-gate production of commercial fertilizers. Publications relating to the synthetic 

fertilizer (Nutricote) and bio-based alternative (Milorganite) could not be obtained. Instead, production 

values for the synthesis of ammonium nitrate and the production of urea were used for LCA 
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comparisons. Literature values for comparisons are taken from the publication “Life Cycle Assessment of 

Fertilizers: A Review”, by Skowrońska (2014).  
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CHAPTER 5 

 RESULTS AND DISCUSSION 

 

Greenhouse Photographs 

 

Figures 4 to 13 show photographs of random samples selected from each treatment group. Each 

photograph shows a plant that received no fertilizer (left), a plant that received the standard application 

rate of 423 grams nitrogen per cubic meter of soil (center), and a plant that received the high 

application rate of 846 grams nitrogen per cubic meter of soil (right). Photographs are shown here to 

support data presented for shoot dry weight, shoot volume, and plant visual health in the following 

section. Some forms of traditional fertilizer are susceptible to nutrient burning plants. A major 

observation made during the greenhouse experiment was the ability of the soy-based fertilizer to 

nutrient burn the plants when fertilizer is over applied; this can be observed easiest in the photographs 

provided. Figure 11, specifically, shows the formulation which caused the worst nutrient burning when 

over applied.  
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Figure 4 – Images taken just before harvest of plants grown with 3001 PLA/SPA (50/50) at application rates of zero (left), 
standard (center), and double (right). 

 

Figure 5 - Images taken just before harvest of plants grown with 3001 PLA/SPA (30/70) at application rates of zero (left), 
standard (center), and double (right). 
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Figure 6 - Images taken just before harvest of plants grown with 3001 PLA(5%PEG)/SPA (30/70) at application rates of zero 
(left), standard (center), and double (right). 

 

Figure 7 - Images taken just before harvest of plants grown with 3001 PLA(10%PEG)/SPA (30/70) at application rates of zero 
(left), standard (center), and double (right). 
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Figure 8 - Images taken just before harvest of plants grown with 2003 PLA/SPA (30/70) at application rates of zero (left), 
standard (center), and double (right). 

 

Figure 9 - Images taken just before harvest of plants grown with 2003 PLA/SF (60/40) at application rates of zero (left), standard 
(center), and double (right). 
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Figure 10 - Images taken just before harvest of plants grown with 2003 PLA/SF (50/50) at application rates of zero (left), 
standard (center), and double (right). 

 

Figure 11 - Images taken just before harvest of plants grown with 2003 PLA/SF (40/60) at application rates of zero (left), 
standard (center), and double (right). 
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Figure 12 - Images taken just before harvest of plants grown with Milorganite at application rates of zero (left), standard 
(center), and double (right). 

 

Figure 13 - Images taken just before harvest of plants grown with synthetic fertilizer (Nutricote) at application rates of zero 
(left), standard (center), and double (right). 

 

Shoot Dry Weight 

 

The statistical results are presented in charts referred to as a “connecting letters chart”. The 

tables consist of sets of letters assigned to the biocomposites based on their statistical difference, or 

lack of difference, from other fertilizers. In more detail, materials (population sets) were assigned the 

same letter if there was no statistical difference compared to other materials also assigned this letter. 
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Materials are often assigned multiple letters corresponding to various population sets. The connecting 

letters charts for plant growth and health data can be seen below. 

The average shoot dry weight (SDW) was one of the key indicators (independent variables) for 

yield used in the greenhouse experiments. With all other growth factors being equal (dependent 

parameters: light, water, soil type, and plant species), the differences in shoot dry weight indicate 

effectiveness of the fertilizing nutrients made available to the plant. 

Table 4 shows the average shoot dry weight in grams for different fertilizer formulations using 

the standard application rate of fertilizer. It is important to note that the negative control (no fertilizer) 

was assigned its own letter and that it mean value 2.379 g was the lowest of all of the populations. This 

indicates that plants receiving any of the soy-based fertilizer performed statistically better than 

receiving no fertilizer. There were only two materials that did not statistically perform as well as the 

synthetic fertilizer: 2003 PLA/SF (60/40), and 3001 PLA (10% PEG)/SPA (30/70). The balance of the soy-

based composites showed no statistical difference in terms of shoot dry weight yield.  

Table 4 - Shoot dry weight (SDW) averages, displayed in grams, for each fertilizer type using standard 
application rate. 

MATERIAL 
     

MEAN (G)  STD DEV 

MILORGANITE A 
    

3.857 0.695 

2003 PLA/SF (50/50) A B 
   

3.552 0.362 

SYNTHETIC FERTILIZER 
 

B C 
  

3.374 0.387 

2003 PLA/SF (40/60) 
 

B C D 
 

3.211 0.704 

3001 PLA/SPA (50/50) 
  

C D 
 

3.137 0.419 

3001 PLA(5%PEG)/SPA (30/70) 
  

C D 
 

3.081 0.455 

3001 PLA/SPA (30/70) 
  

C D 
 

3.031 0.635 

2003 PLA/SPA (50/50) 
  

C D 
 

3.002 0.547 

2003 PLA/SF (60/40) 
   

D 
 

2.856 0.429 

3001 PLA(10%PEG)/SPA (30/70) 
   

D 
 

2.842 0.645 

NEGATIVE CONTROL 
    

E 2.378 0.335 
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Shoot Volume 

 

Shoot volume is another indicator of plant health. Generally, the shoot volume correlates with 

shoot weight. Table 5 shows the mean shoot volume (in cubic centimeters) for each soy-based fertilizer 

type and the standard application rate of fertilizer. In this table, the negative control group is given its 

own letter group. This indicates that all fertilizers performed statistically better at producing larger 

plants when compared to applying no fertilizer.  

 

Table 5 - Shoot volume in cm3 for each material using standard application rate. 

MATERIAL 
    

MEAN (CM3) STD DEV 

2003 PLA/SF (50/50) A 
   

3506 437 

MILORGANITE A B 
  

3158 814 

2003 PLA/SPA (50/50) A B 
  

3158 541 

3001 PLA/SPA (50/50) 
 

B C 
 

3083 346 

2003 PLA/SF (60/40) 
 

B C 
 

3057 467 

3001 PLA(5%PEG)/SPA (30/70) 
 

B C 
 

2976 362 

3001 PLA(10%PEG)/SPA (30/70) 
 

B C 
 

2901 532 

2003 PLA/SF (40/60) 
 

B C 
 

2872 683 

SYNTHETIC FERTILIZER 
 

B C 
 

2800 396 

3001 PLA/SPA (30/70) 
  

C 
 

2736 438 

NEGATIVE CONTROL 
   

D 1914 359 

 

Visual Health Rating 

 

The visual health ratings of plants is subjectively based that relies on visual observations by 

researchers. A rating system of 1 through 5 was used to assign scores to each plant in the series; 5 being 

ideal and 1 being brown/dead. Average visual health ratings are detailed in Table 6. The statistical 
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comparison shown in Table 6 indicates that most of the fertilizers produced acceptable, healthy plants 

that outperformed the control group. Although the synthetic fertilizer produced an acceptable plant, it 

was not as appealing as the plants that received other fertilizers.  

 

Table 6 - Average visual health ratings for each material type under standard application rate. Visual 
grading scale went from 1 (dead, brown plant) to 5 (lush, dark green plant). 

MATERIAL 
   

MEAN STD DEV 

2003 PLA/SF (40/60) A 
  

5.00 0.00 

2003 PLA/SF (50/50) A 
  

5.00 0.00 

2003 PLA/SF (60/40) A 
  

5.00 0.00 

2003 PLA/SPA (50/50) A 
  

5.00 0.00 

3001 PLA(10%PEG)/SPA (30/70) A 
  

5.00 0.00 

3001 PLA(5%PEG)/SPA (30/70) A 
  

5.00 0.00 

3001 PLA/SPA (30/70) A 
  

5.00 0.00 

3001 PLA/SPA (50/50) A 
  

5.00 0.00 

MILORGANITE A 
  

4.92 0.18 

SYNTHETIC FERTILIZER 
 

B 
 

4.44 0.30 

NEGATIVE CONTROL 
  

C 3.60 0.39 

 

Leachate Acid/Base Characterization  

 

The average pH of leachate samples are detailed in Table 7. The range of leachate pH observed 

varied between 6.54 to 6.71. The level of pH of the leachate samples is an indicator of chemical effects 

caused by the growing medium or fertilizer on the water passing through them. Changes in pH can 

promote adverse effects to plant health as well as other effects. Fertilizers typically decreases the pH 

because of their tendencies to form acids. This can be seen in the results in Table 7 as both the synthetic 

and Milorganite leachate samples have relatively low average pH levels. 
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Table 7 - Average pH of leachate samples for each materials type. Standard application rate of fertilizer. 

MATERIAL 
    

MEAN (PH) STD DEV 

3001 PLA/SPA (30/70) A 
   

6.71 0.11 

NEGATIVE CONTROL A B 
  

6.67 0.11 

2003 PLA/SPA (50/50) A B C 
 

6.66 0.09 

3001 PLA(5%PEG)/SPA (30/70) A B C 
 

6.64 0.09 

3001 PLA(10%PEG)/SPA (30/70) A B C D 6.63 0.07 

2003 PLA/SF (50/50) A B C D 6.63 0.14 

2003 PLA/SF (60/40) 
 

B C D 6.60 0.07 

3001 PLA/SPA (50/50) 
 

B C D 6.60 0.05 

MILORGANITE 
 

B C D 6.60 0.07 

SYNTHETIC FERTILIZER 
  

C D 6.59 0.06 

2003 PLA/SF (40/60) 
   

D 6.54 0.12 

 

Leachate Electrical Conductivity  

 

The electrical conductivity (EC) of leachate samples is typically measured by horticulture 

specialists when examining the effects of fertilizers or growing mediums. The EC is influenced by 

physical and chemical properties including soluble salts, clay content, mineralogy, organic matter, and 

other factors. The level of EC of a leachate sample is a measure of ions present in the sample, and can be 

used as an indicator of the amount of nutrients present in the sample. Electrical conductivity is 

measured in units of Siemens per unit area (here the data is reported in milliSiemens per square 

centimeter (mS/cm2).  

Table 8 shows the EC of leachate samples collected after fertilization with different soy-based 

and comparison fertilizers under the standard application rate. Three leachate samples contained similar 

EC levels as the negative control group, indicating they would likely have lower amounts of nutrient 
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runoff in a turfgrass situation. These materials were 2003 PLA/SF (50/50), synthetic fertilizer, and 2003 

PLA/SF (60/40). All other fertilizers were shown to result in higher leachate EC readings.  

 

Table 8 - Electrical conductivity (EC) measured in milliSiemens per square centimeter (mS/cm2). Data is 
for all material types using standard application rate of fertilizer. 

MATERIAL 
     

MEAN (MS/CM2) STD DEV 

2003 PLA/SF (40/60) A 
    

2.36 0.23 

3001 PLA/SPA (30/70) A 
    

2.31 0.42 

3001 PLA(10%PEG)/SPA (30/70) A B 
   

2.24 0.48 

2003 PLA/SPA (50/50) A B C 
  

2.22 0.27 

3001 PLA(5%PEG)/SPA (30/70) A B C D 
 

2.19 0.50 

MILORGANITE A B C D 
 

2.14 0.60 

3001 PLA/SPA (50/50) A B C D 
 

2.09 0.29 

2003 PLA/SF (60/40) 
 

B C D E 1.93 0.33 

SYNTHETIC FERTILIZER 
  

C D E 1.89 0.31 

2003 PLA/SF (50/50) 
   

D E 1.84 0.31 

NEGATIVE CONTROL 
    

E 1.70 0.36 

 

Tissue Nutrients 

 

The nutrients held within the plant’s tissue are an indication of how much fertilizer the plants 

had access to and took up during their growing cycle. The optimal level of nutrients, in percent mass, in 

the tissue are listen in horticultural textbooks and will be used for comparison. Table 9 details the 

optimal tissue for marigold plant nutrient levels of all three macronutrients by percent mass (Mills, 

1996). 
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Table 9 - Optimal levels of all macronutrients within tissue for marigold production. (Mills, 1996) 

Nutrient Minimum Maximum 

Nitrogen 3.32 3.64 

Phosphorus 0.49 0.54 

Potassium 2.79 2.88 

 

Table 10 details the level of tissue nitrogen for each soy-based fertilizer at the standard 

application rate. It is important to note that the negative control group contained the lowest amount of 

tissue nitrogen of the various treatments. The synthetic fertilizer and 2003 PLA/SF (50/50) had a slightly 

higher level of N; these two materials statistically contained the same levels of tissue nitrogen. The 2003 

PLA/SF (50/50) was the only soy-based fertilizer formulation whose tissue nitrogen mean fell within the 

optimal range. There also appeared to be a strong correlation between filler content of soy 

biocomposites and overabundance of nitrogen in the tissue.  For example, the four materials that had 

the highest N levels in Table 10 contained the highest amounts of filler.  In addition, these formulations 

all grew plants containing more than 1% excess nitrogen than the optimal level. 
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Table 10 - Percent by mass of nitrogen within tissue sample for plants grown with each material type 
under standard application of fertilizer. Optimal level of nitrogen is between 3.32 and 3.64%. 

MATERIAL 
     

MEAN (% MASS) STD DEV 

3001 PLA(10%PEG)/SPA (30/70) A 
    

4.52 0.38 

2003 PLA/SF (40/60) A 
    

4.39 0.45 

3001 PLA(5%PEG)/SPA (30/70) A B 
   

4.30 0.26 

3001 PLA/SPA (30/70) 
 

B C 
  

3.88 0.67 

2003 PLA/SF (60/40) 
 

B C 
  

3.88 0.22 

3001 PLA/SPA (50/50) 
  

C 
  

3.72 0.38 

2003 PLA/SPA (50/50) 
  

C 
  

3.69 0.21 

MILORGANITE 
  

C 
  

3.68 0.65 

2003 PLA/SF (50/50) 
  

C D 
 

3.48 0.14 

SYNTHETIC FERTILIZER 
   

D 
 

3.00 0.43 

NEGATIVE CONTROL 
    

E 1.32 0.37 

 

The results of the phosphorus study indicated that the soy biocomposites performed well 

compared to the synthetic fertilizer and negative controls, as detailed in Table 11. In more detail, the 

synthetic fertilizer had no statistical difference compared to the negative control group. The Milorganite 

fertilizer grew plants containing nearly optimized levels of phosphorus in this experiment (0.485 %). 

However, it did not statistically outperform the 2003 PLA/SF (60/40) formulation. The soy biocomposite 

2003 PLA/SF (40/60) was the only fertilizer that resulted in plants containing levels of phosphorus higher 

than the optimal level (0.645%).   
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Table 11 - Percent by mass of phosphorus within tissue sample for plants grown with each material type 
under standard application of fertilizer. Optimal level of tissue phosphorus is between 0.49 and 0.54%. 

MATERIAL 
        

MEAN (% MASS) STD DEV 

2003 PLA/SF (40/60) A 
       

0.645 0.104 

MILORGANITE 
 

B 
      

0.485 0.063 

2003 PLA/SF (60/40) 
 

B C 
     

0.430 0.055 

2003 PLA/SF (50/50) 
  

C D 
    

0.414 0.053 

3001 PLA(10%PEG)/SPA (30/70) 
  

C D 
    

0.394 0.072 

3001 PLA/SPA (30/70) 
  

C D E 
   

0.384 0.081 

3001 PLA(5%PEG)/SPA (30/70) 
   

D E F 
  

0.357 0.043 

2003 PLA/SPA (50/50) 
    

E F 
  

0.325 0.062 

3001 PLA/SPA (50/50) 
     

F G 
 

0.307 0.037 

SYNTHETIC FERTILIZER 
      

G H 0.254 0.024 

NEGATIVE CONTROL 
       

H 0.247 0.030 

 

As seen in Table 12, all soy-based biocomposites grew plants containing higher levels of 

potassium within the tissue compared to the negative control group and the commercial fertilizers. In 

addition the synthetic fertilizer, Milorganite, and the negative control group performed similar and 

contained approximately 1% less potassium than desired. In comparison, the marigolds fertilized with 

the SPA biocomposite contained levels of tissue potassium closer to the optimum amount, ranging from 

2.76 to 3.09. However, formulations containing SF on average resulted in higher levels of tissue 

potassium compared to SPA formulations, ranging from 3.04 to 3.32%. It is important to note that the 

highest levels are approximately 0.5% too high.   
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Table 12 - Percent by mass of potassium within tissue sample for plants grown with each material type 
under standard application of fertilizer. Optimal level of potassium is between 2.79 and 2.88%. 

MATERIAL 
   

MEAN (% MASS) STD DEV 

2003 PLA/SF (60/40) A 
  

3.32 0.34 

2003 PLA/SF (40/60) A 
  

3.19 0.54 

3001 PLA(10%PEG)/SPA (30/70) A B 
 

3.09 0.49 

2003 PLA/SF (50/50) A B 
 

3.04 0.17 

2003 PLA/SPA (50/50) A B 
 

2.97 0.62 

3001 PLA/SPA (50/50) A B 
 

2.93 0.25 

3001 PLA/SPA (30/70) A B 
 

2.93 0.53 

3001 PLA(5%PEG)/SPA (30/70) 
 

B 
 

2.76 0.21 

SYNTHETIC FERTILIZER 
  

C 1.76 0.15 

MILORGANITE 
  

C 1.64 0.26 

NEGATIVE CONTROL 
  

C 1.62 0.24 

 

Leachate Nutrients 

 

The nutrient leachate studies were completed to estimate the level of nutrient runoff that 

would likely be observed, although it is not a direct measurement of the predicted runoff. The leachate 

samples were collected following the standard pour-through collection process (Wright, 1990) and sent 

to a third party for nutrient analysis techniques. 

It was hypothesized that soy-based biocomposite fertilizers would result in less nutrient 

pollution compared to synthetic fertilizers. In this analysis, the negative control group corresponded to 

the minimum levels of expected leachate nutrients. The data for phosphorus and potassium is reported 

in parts per million (PPM), while the nitrogen data is reported in percent mass. 

The data collected on nitrogen leachate was inconclusive. Numbers returned from MVTL 

indicated no difference in nitrogen leachate for any of the materials or treatment rates. The testing 
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equipment used to analyze leachate samples did not have the accuracy needed to discern any 

differences. All data returned from MVTL indicated a leachate level of 0.01%. 

The conclusion that can be drawn from these results is that materials tested performed well 

enough to show no discernable difference in terms of nitrogen levels in leachate. The extremely low 

levels of nitrogen within the leachate may be an indicator that materials tested performed exceedingly 

well as slow-release fertilizers.  

Table 13 details the average level of phosphorus found in the leachate samples collected from each 

material at the standard application rate. Three materials showed statistical differences from one 

another and the negative control group. These materials were: 3001 PLA/SPA (30/70), 3001 PLA/SPA 

(50/50), and 2003 PLA/SF (40/60). All three materials contained higher levels of phosphorus compared 

to all other fertilizers, containing 5.07 to 8.53 ppm in comparison to the 1.30 ppm found for the negative 

control. All other fertilizer materials showed no statistical difference in phosphorus content in leachate 

from the negative control group. It was hypothesized that the high levels of phosphorus are attributed 

to the large filler to matrix ratio of the formulations and their lack of plasticizer. Similar material 

formulations contained as high as 70% filler, but did not have statistically different levels of phosphorus 

leachate when they included a plasticizer, indicating the addition of PEG allowed for better utilization of 

the phosphorus in those formulations. 
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Table 13 - Parts per million (ppm) of phosphorus within leachate sample from plants grown with each 
material type under standard application of fertilizer. 

MATERIAL 
    

MEAN (PPM) STD DEV 

3001 PLA/SPA (30/70) A 
   

8.53 2.64 

3001 PLA/SPA (50/50) 
 

B 
  

6.60 1.68 

2003 PLA/SF (40/60) 
  

C 
 

5.07 2.35 

3001 PLA(10%PEG)/SPA (30/70) 
   

D 1.84 0.97 

2003 PLA/SF (50/50) 
   

D 1.82 0.37 

2003 PLA/SF (60/40) 
   

D 1.71 0.41 

MILORGANITE 
   

D 1.62 0.45 

3001 PLA(5%PEG)/SPA (30/70) 
   

D 1.54 0.56 

2003 PLA/SPA (50/50) 
   

D 1.54 1.01 

NEGATIVE CONTROL 
   

D 1.30 1.09 

SYNTHETIC FERTILIZER 
   

D 0.93 0.19 

 

Table 14 details the levels of potassium in leachate samples collected from plants grown at the 

standard application rate of fertilizers. Five of the fertilizers tested performed similarly to the negative 

control group according to the data collected. These materials were: 2003 PLA/SPA (50/50), Milorganite, 

synthetic fertilizer, 3001 PLA/SPA (30/70), and 3001 PLA/SPA (50/50). All other materials produced up to 

twice as much potassium in the leachate when compared to the negative control group at 0.82 ppm.  
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Table 14 - Parts per million (ppm) of potassium within leachate sample from plants grown with each 
material type under standard application of fertilizer. 

MATERIAL 
   

MEAN (PPM) STD DEV 

2003 PLA/SF (60/40) A 
  

1.85 0.55 

3001 PLA(10%PEG)/SPA (30/70) A B 
 

1.65 0.97 

2003 PLA/SF (40/60) A B 
 

1.61 0.66 

3001 PLA(5%PEG)/SPA (30/70) A B 
 

1.40 0.46 

2003 PLA/SF (50/50) A B 
 

1.37 0.26 

2003 PLA/SPA (50/50) 
 

B C 1.07 0.64 

NEGATIVE CONTROL 
  

C 0.82 0.59 

MILORGANITE 
  

C 0.66 0.22 

SYNTHETIC FERTILIZER 
  

C 0.62 0.09 

3001 PLA/SPA (30/70) 
  

C 0.45 0.15 

3001 PLA/SPA (50/50) 
  

C 0.39 0.18 

 

Effect of Type of Soy Filler  

 

Two base materials were considered (soy protein isolate and soy flour) to determine if the 

relatively inexpensive soy flour was able to perform as well as the more refined SPA (SPI-based plastic) 

soy filler. Both formulations had the same matrix to filler ratio, used the same matrix material, and 

contained no plasticizer. It is important to note that the resulting formulations had the same amount of 

SF and SPA (SPI) plastic filler and thus had various levels of N levels because SPA had a higher level of 

nitrogen-rich protein.  The varying amount of nitrogen was accounted for by adjusting the amount of 

fertilizer applied (rate).The material formulations used to determine this effect were: 

 2003 PLA/SF (50/50) 

 2003 PLA/SPA (50/50).  
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It was determined that the only statistically significant differences were their electrical 

conductivity and the level of phosphorus in the collected tissue samples. As shown in Tables 9 and 12, 

the two materials were assigned different letters for each of these independent variables.  

In more detail, it was determined that the formulation that contained SF resulted in a lower soil 

EC, suggesting a lower loss of nutrients through leaching. In this experiment the negative control group 

had an average EC of 1.70 mS/cm2 and was used as the baseline as it represented the lowest expected 

leachate values. The formulation containing SF had an average EC of 1.84 mS/cm2 and the SPA-based 

formulation had an EC of 2.22 mS/cm2. It was theorized that the plant’s utilization of nutrients from the 

soy flour was superior to that of the SPA. This could have been caused by the higher water stability of 

the SPA formulation compared to the SF. The higher water stability in the SPA is prmoted by the 

crosslinking agents added during extrusion to increase processability and decreased the degradability of 

the SPA.  

In order to compare tissue phosphorus levels, it is proposed to compare the measured values to 

the optimal level of tissue nutrients as detailed in Table 9. The optimal level of phosphorus in the tissue 

is 0.49 to 0.54% (Mills, 1996). The formulation containing SF produced plants with an average of 0.414% 

phosphorus, which was closer to the optimum level compared to the SPA formulation’s average of 

0.325%. This result was contributed to the fact that higher levels of phosphorus were found in the soy 

flour formulation, as detailed in Table 3.  
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Filler to Matrix Ratio Effect  

 

The ratio of filler (soy) to matrix (PLA) had the dominant effect in terms of fertilizing effects 

compared to the other independent variables that were studied within the experimental design space. 

This is consistent with the theory that the filler content is directly proportional to the degradation rate 

and the amount of nutrients released. In more detail, formulations containing more filler material 

required a lower application rate as they contained higher levels of nutrients. Higher filler loading levels 

correlated to lower matrix content, increasing the degradation rate and rate of nutrient release. Three 

formulations were selected to determine the effects of the matrix to filler ratio. The biocomposites 

contained the same PLA matrix type (2003 PLA), had no plasticizer, and used the same filler material 

(SF). The formulations examined were: 

 2003 PLA/SF (60/40) 

 2003 PLA/SF (50/50), and  

 2003 PLA/SF (40/60).  

It was determined that there were statistically significant differences between these three 

formulations for average shoot dry weight, shoot volume, tissue nitrogen, tissue phosphorus, and levels 

of phosphorus in the leachate.  

As detailed in Table 4, the average shoot dry weight was not statistically different between the 

40/60 mixture and either of the other two other materials. However, the formulation with 50/50 

(PLA/SF) was statically better than the 60/40 (PLA/SF) material as indicated by the differences in the 

connecting letters chart (Table 4). The average shoot dry weight for each of the three materials was 

2.856 g, 3.552 g, and 3.211 g for the 60/40, 50/50, and 40/60 formulations, respectively. The likely 

explanation for the 40/60 (PLA/SF) material’s poor plant growth was that the nutrients were released 

too quickly, stunting plant growth. That is to say, over-fertilization with nitrogen can often “burn” plants, 

causing inhibited growth.  

Table 5 details the average shoot volume for each formulation type. The formulation containing 

a 50/50 mixture showed statistically larger shoot volumes compared to the other two formulations. 

Results showed that the average shoot volume was 3057, 3506, and 2872 cm3 for the 60/40, 50/50, and 

40/60 formulations, respectively. Similarly to shoot dry weight results, the 40/60 material formulation 

likely released nutrients too quickly during the growth period and inhibited plant growth.  

Nitrogen content in the plant tissue is detailed in Table 10; it was found that the 40/60 (PLA/SF) 

formulation was statistically different from the other two materials. The average tissue nitrogen for 
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each of the formulations was 3.88, 3.48, and 4.39% for the 60/40, 50/50, and 40/60 formulations, 

respectively. It is important to note that the optimal level of tissue nitrogen ranges between 3.32 and 

3.64% (Mills, 1996) and only the 50/50 formulation fell within this range. The other two formulations 

(40/60 and 60/40) exhibited levels above the optimum amount, with 40/60 significantly above optimal. 

Higher levels of tissue nitrogen for the 2003 PLA/SF (40/60) material are likely caused by the higher filler 

content (nutrient content). As seen in Table 10, there appears to be a very strong correlation between 

filler content and increased nitrogen levels in the tissue.  

In reference to the phosphorous tissue levels, Table 11 indicates that while two formulations 

(60/40 and 50/50) were statistically similar, the third formulation (40/60) was statistically different. The 

optimum level of tissue phosphorus ranges between 0.49 and 0.54% (Mills, 1996). As seen in Table 11, 

none of the biocomposite formulations fell within this relatively small window. The 40/60 formulation 

resulted in a higher than optimum phosphorus level, at 0.645% tissue phosphorus. The formulations 

containing 60/40 and 50/50 mixtures fell below the optimal level with 0.430 and 0.414%, respectively. It 

is assumed that the higher tissue nutrient levels were caused by the increased filler content in the 

formulation. As previously noted, higher filler content increases degradation rate as well as nutrient 

release rates.  

A statistically significant difference was also observed in the average level of phosphorus in the 

leachate samples, as detailed in Table 13. The formulation containing a 40/60 (PLA/SF) mixture was 

statistically different from the other two formulations. The two formulations containing lower levels of 

filler (60/40 and 50/50) did not have a statistically higher levels of phosphorus in leachate compared to 

the negative control group. The phosphate levels were 1.71, 1.82, and 1.30 ppm for 60/40, 50/50, and 

the negative control, respectively.  Inversely, the 40/60 mixture were significantly higher levels of 

phosphorus, at 5.07 ppm. The filler content strongly correlated to the phosphorus level in the leachate. 

That is, the materials with lower filler contents produced leachate with lower levels of phosphorus. This 

is likely because of the higher degradation rates associated with higher filler contents.  

 

Plasticizer Effect 

 

To determine the effects of plasticizer, three levels of plasticizer content were studied. The 

plasticizer used during these trials was polyethylene glycol. The formulations contained the same base 

polymer matrix (3001 PLA), type of soy filler (SPA), and filler content (70%); however, the plasticizer 

content was varied between 0, 5, and 10% wt. of the matrix weight. The plasticizer did not replace any 
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of the filler material, but rather the matrix in order to assure the content remained the same. In more 

detail, the formulations under review to determine the effect of plasticizer were:  

 3001 PLA/SPA (30/70) 

 3001 PLA(5%PEG)/SPA (30/70), and  

 3001 PLA(10%PEG)/SPA (30/70). 

In summary, the statistical analysis suggested that the plasticizer had an effect on tissue 

nitrogen and on levels of phosphorus and potassium in leachate. As detailed in Table 10, the 

formulations containing plasticizer had statistically higher levels of nitrogen in the plant tissue. Optimal 

levels of tissue nitrogen for marigolds range between 3.32 and 3.64% (Mills, 1996). Levels of nitrogen in 

tissue measured in this investigation were 4.52, 4.30, and 3.88% for formulations containing 10, 5, and 

0% PEG, respectively. While all three materials produced plants containing higher than optimal levels of 

tissue nitrogen, nitrogen level was generally proportional to PEG levels.  

Table 13 details the average levels of phosphorus found in leachate samples. The samples 

containing 5 and 10% PEG contained statistically lower levels of phosphorus in the leachate than 

formulations without PEG at 1.54 and 1.84 ppm respectively. The formulation containing no plasticizer 

had the highest level of leachate phosphorus (8.53 ppm). 

Table 14 details the potassium levels in leachate for the various formulations, and it is seen that 

there is no statistical difference between formulations containing 10 and 5% PEG (1.65 and 1.40 ppm of 

potassium, respectively). However, the formulation containing no plasticizer was statistically different 

from the formulations with PEG, containing 0.45 ppm of potassium in leachate.   

 

Effect of Polymer Grade  

 

To determine the effect of the polymer matrix (PLA) grade, two materials were studied. The 

materials selected were NatureWorks 2003D and 3001D polylactide (PLA). These two materials were 

selected because these biopolymers are known to have higher degradation rates while retaining much 

of the processability associated with higher grades. While there are other grades available within the 

two and three thousand series, many contain modifications such as lubricants. The 2003D and 3001D 

polymers were selected because they are the base resins and lack additional modifications which may 

change the results. The two formulations that were used for this comparison were: 

 2003 PLA/SPA (50/50)  

 3001 PLA/SPA (50/50).  
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In summary, it was determined that the grade of polymer chosen had a statistically significant 

effect only on the level of phosphorus within leachate.  

The average levels of phosphorus found in leachate samples are detailed in Table 13. The table 

shows the statistical difference between 2003D and 3001D PLA. The formulations containing 3001D PLA 

caused phosphorus levels in leachate of 6.60 ppm while the 2003D PLA showed an average phosphorus 

level in leachate of 1.54 ppm and was not statistically different from the negative control group at 1.30 

ppm.  

The variance of the phosphorus levels in the leachate of these two materials was likely caused 

by the differences of phosphorus in the formulation. As seen in Table 3, the formulation containing 2003 

PLA had a higher ratio of phosphorus to nitrogen compared to the 3001 PLA-based biocomposite. 

Fertilizer is applied by nitrogen content and therefore more phosphorus is applied when using the 2003 

PLA based formulation.  

 

Effect of Application Rate 

 

It is important to note that the standard application rate used for the greenhouse experiment 

was 423 g of nitrogen per cubic meter of soil, while the highest rate that was studied was two times this 

value at 846 g per cubic meter of soil. The results obtained for each of these application rates are 

compared below in the following figures. The negative control group, no fertilizer, is shown for 

comparison as well. 

Figure 14 shows the shoot dry weight (SDW) for both the standard and high application rate.  It 

is seen that neither fertilizer formulation showed a statistically significant increase in SDW when 

increasing from standard to high application rates. Some growth indicators saw a large decrease when 

the application rate was doubled; indicating that over fertilization of soy-based fertilizers is a concern. It 

is important to note that there was significantly lower shoot weights for soy-based fertilizers when using 

the higher application rate. Five of the eight soy biocomposite materials saw statistically lower SDW 

values when the double application rate was used. In addition, several soy-fertilizers at the higher rates 

resulted in lower weights compared to the negative control group; this indicates that overdosing of soy-

based fertilizers can decrease overall yield. Milorganite also produced a lower SDW when the 

application rate was doubled, although it was not significantly lower.  



50 
 

 
 

 

Figure 14 - Shoot dry weight (SDW) displayed in grams for the standard and double application rates. 
Negative control shown in gray. 

 

Figure 15 shows the average shoot volume for both the standard and the double application 

rates. The trends are similar to shoot dry weights seen in Figure 13. The same five soy biocomposites 

that showed lower SDWs at the higher rate also showed statistically lower shoot volumes. Again, the 

synthetic fertilizer showed a slight increase in shoot volume when applied at a double rate, although the 

increase was not statistically significant. It was theorized that decreases in SDW and shoot volume for 

soy biocomposites were caused by nutrient “burning”. That is, nutrients were released more quickly 

than the plant was able to use them, creating a toxic environment that inhibits growth.  
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Figure 15 - Shoot volume displayed in cm3 for each material type using standard and high application 
rates. Negative control shown in gray. 

 

The results of fertilizer effect on soil acidity are seen in Figure 16. The effect of application rate 

on the pH of leachate samples was generally an inverse relationship for the soy-based fertilizers. The 

Milorganite fertilizer resulted in the largest decrease in pH between the two rates, dropping from a 6.60 

average to 6.01. Decreases in leachate pH are attributed to the fertilizer’s inherent acidity, which is 

magnified by higher application rates. Although the synthetic fertilizer resulted in a slight increase in pH 

when increasing from the standard to the double rate, it was not significant.  
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Figure 16 - Average pH for leachate samples collected from each material type under standard and 
double application rates. Negative control shown in gray. 

 

Figure 17 details the effect of application rate on the leachate’s electrical conductivity. As 

expected, the majority of the formulations showed statistically higher EC levels when the application 

rate was doubled because of increased levels of nutrients available. Milorganite showed the largest 

increase of EC, with the higher application rate more than doubling the EC compared to the standard 

application rate. Higher EC levels were expected with increased application rates because there are 

more nutrients available for the leachate to absorb. These results show that most of the fertilizers 

tested produced statistically higher levels of leachate EC when the application rate was increased; 

reinforcing the fact that over-application of fertilizer leads to more surface water contamination.  
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Figure 17 - Electrical conductivity (EC), measured in milliSiemens per cm2 for each material type under 
standard and double application rate. Negative control shown in gray. 

 

The effects of application rate on plant visual health ratings are seen in Figure 18. Two of the 

soy-based composites caused only slight decreases in visual health at higher application rates. These 

two materials were the formulations containing 5 and 10% PEG plasticizer. This may be anecdotal 

evidence that higher levels of plasticizer can decrease plant health. One formulation, 2003 PLA/SF 

(40/60), resulted in a statistically significant decrease in visual health at the higher application rate. 

Figure 8 shows photos of plants from this treatment group. It was theorized that the high filler content 

of soy flour released nutrients too quickly and the marigolds were nutrient-“burned”. The only material 

to see an increase in visual health is the synthetic fertilizer, which saw a statistically significant increase 

in its average visual health rating.  
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Figure 18 - Average visual health rating for each material type under standard and double application 
rates. Negative control shown in gray. 

 

Figure 19 shows the level of nitrogen in the plant’s tissue. The optimal level of nitrogen in the 

tissue ranges between 3.32 and 3.64% (Mills, 1996). It is seen that six of the eight soy biocomposites, 

and seven of the total ten materials, showed statistically higher levels of tissue nitrogen when applied at 

double the standard rate. This suggests that over-application of fertilizer leads to higher levels of 

nitrogen in the plant tissue and promotes excessive levels of nitrogen in the tissue.  
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Figure 19 - Tissue nitrogen, by percent mass, for each material type under standard and double 
application rates. Negative control shown in gray. Ideal levels are between 3.32 and 3.64% (Mills, 1996). 

 

Phosphorus levels of tissue samples are seen in Figure 20. As expected, over-application of 

fertilizer led to higher phosphorus levels in plant tissues. An important takeaway from this comparison is 

that soy-based fertilizers saw large increases in tissue phosphorus when increasing the fertilizer 

application rate; in some cases, the level more than doubled. However, the synthetic fertilizer caused no 

significant difference when applied at the higher rate. The synthetic fertilizer also resulted in the lowest 

level of tissue phosphorus, other than the negative control group. The synthetic fertilizer was unable to 

create optimal levels of tissue phosphorus (between 0.49 and 0.54% (Mills, 1996)), even when applied at 

double the recommended rate. However, the majority of the soy-based biocomposites did reach, or in 

some cases exceeded, the optimal level. It was theorized that the form of phosphorus in the synthetic 

and soy-based fertilizers differed, with the phosphorus in the soy-based fertilizer being more easily 

available for uptake by the plant.  
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Figure 20 - Tissue phosphorus, by percent mass, for each material type under standard and double 
application rates. Negative control shown in gray. Ideal levels are between 0.49 and 0.54% (Mills, 1996). 

 

Figure 21 shows the application rate’s effect on the tissue’s potassium level. Similar to the 

phosphorus levels, the synthetic fertilizer did not result in plants with optimal levels of potassium 

(between 2.79 and 2.88% (Mills, 1996)). Synthetic fertilizers also showed very little increase in tissue 

nutrients when increasing from a standard to a double application rate. The majority of soy-based 

fertilizers fell within the ideal range when applied at a standard rate, but many exceeded the optimal 

levels when over-applied at the double application rate because excessive amounts of nutrients were 

made available to the plants.  
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Figure 21 - Tissue potassium, by percent mass, for each material type under standard and double 
application rates. Negative control shown in gray. Ideal levels are between 2.79 and 2.88% (Mills, 1996).  

For both phosphorus and potassium in leachate, there were significantly higher levels of these 

nutrients found when application rates were doubled as seen in Figures 22 and 23, which show the 

phosphorus and potassium levels respectively. The synthetic fertilizer and Milorganite did not show the 

same results. This result was unexpected and proves that over-application of soy-based fertilizers can 

lead to excessive levels of leachate contamination than other fertilizers under investigation. However, 

when applied at the standard application rate, the leachate nutrient levels were comparable to the 

synthetic and Milorganite fertilizers.  

The fact that doubling the application rate of synthetic and Milorganite fertilizers did not cause 

excessive levels of nutrients in leachate may be attributed to earlier leaching of nutrients. That is, the 

nutrients were leached out of the container earlier in the growth cycle. The leachate sample results 

shown here were collected at harvest. Additional work should be completed to determine if this 

hypothesis is true.  
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Figure 22 - Tissue phosphorus, in parts per million (ppm), for each material type under standard and 
double application rates. Negative control shown in gray. 

 

 

Figure 22 - Tissue potassium, in parts per million (ppm), for each material type under standard and 
double application rates. Negative control shown in gray. 
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Techno-Economic Analysis  

 

The two control materials that were compared to the soy biocomposites were the synthetic 

fertilizer (Nutricote) and the biobased alternative (Milorganite). As of summer 2016, the synthetic 

fertilizer had a sale price of $21.72 per kilogram. Adjusting for the nitrogen content of 18%, the cost 

per pound of nitrogen was $54.73. Milorganite currently sells for approximately ~$1.89 per kilogram. 

Adjusting for its nitrogen content of 5% it has a cost of $17.15 per pound of nitrogen. Data on price per 

pound of nitrogen for both of these fertilizers is the sale cost of the material, and not the production 

cost. Production cost could not be obtained from the manufacturer, so sale price was used for 

comparisons.  

Results obtained through the techno-economic analysis are detailed in Table 15. Table 15 lists 

the cost to produce one kilogram of material for the first and last year of production as designated by 

the lifespan of 10 years given in the assumptions. Costs of year ten are lower because of the increases in 

production efficiency made over the ten year period that was listed in the assumptions. It is seen that 

because of the insignificant cost difference between PLA and SPA ($2.25 per kilogram compared to 

$2.27) there is little difference in price per kilogram between a formulation containing 50% filler 

compared to one with 70% filler. However, there are significant effects caused by filler content when 

soy flour is used compared to SPA. Soy flour has a price of $1.00 per kilogram, compared to SPA’s cost of 

$2.27. Soy flour also had reduced processing cost, as it only required one extrusion step.  
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Table 15 - Cost to produce biocomposites per kilogram of material for the first and last year of the ten 
year lifespan. 

MATERIAL NAME YEAR 1 COST 
($/KG) 

YEAR 10 COST 
($/KG) 

3001 PLA/SPA (50/50) $2.39 $1.84 

3001 PLA/SPA (40/60) $2.39 $1.84 

3001 PLA/SPA (30/70) $2.39 $1.84 

3001 PLA(5%PEG)/SPA (50/50) $2.43 $1.87 

3001 PLA(5%PEG)/SPA (40/60) $2.43 $1.87 

3001 PLA(5%PEG)/SPA (30/70) $2.44 $1.88 

3001 PLA(10%PEG)/SPA (50/50) $2.40 $1.85 

3001 PLA(10%PEG)/SPA (40/60) $2.41 $1.86 

3001 PLA(10%PEG)/SPA (30/70) $2.43 $1.87 

2003 PLA/SPA (50/50) $2.39 $1.84 

2003 PLA/SPA (40/60) $2.39 $1.84 

2003 PLA/SF (60/40) $1.81 $1.40 

2003 PLA/SF (50/50) $1.69 $1.30 

2003 PLA/SF (40/60) $1.56 $1.20 

 

Table 16 shows a similar trend when the cost was adjusted for total nitrogen content in the 

formulations. The prices displayed is the cost to produce enough material to supply one pound of 

nitrogen.  The production cost per pound of nitrogen allows for better comparison between materials as 

it adjusts for any differences in nitrogen content. 
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Table 16 - Cost to produce biocomposites per pound of nitrogen for the first and last year of the ten year 
lifespan. 

MATERIAL NAME YEAR 1 COST 
($/LB N) 

YEAR 10 COST 
($/LB N) 

3001 PLA/SPA (50/50) $33.73 $25.95 

3001 PLA/SPA (40/60) $28.37 $21.83 

3001 PLA/SPA (30/70) $22.18 $17.07 

3001 PLA(5%PEG)/SPA (50/50) $32.76 $25.19 

3001 PLA(5%PEG)/SPA (40/60) $28.52 $21.93 

3001 PLA(5%PEG)/SPA (30/70) $21.21 $16.30 

3001 PLA(10%PEG)/SPA (50/50) $27.32 $21.00 

3001 PLA(10%PEG)/SPA (40/60) $25.59 $19.67 

3001 PLA(10%PEG)/SPA (30/70) $21.20 $16.30 

2003 PLA/SPA (50/50) $32.52 $25.02 

2003 PLA/SPA (40/60) $26.37 $20.29 

2003 PLA/SF (60/40) $27.41 $21.10 

2003 PLA/SF (50/50) $19.10 $14.70 

2003 PLA/SF (40/60) $15.79 $12.15 

 

By using the Solver add-in provided by Excel, the minimum sale price can be calculated for each 

material (Table 17). This break-even price is calculated by assigning a sale price to the material produced 

and totaling the profit over the ten-year period. Within Solver, the option to vary sale price was given 

and a target of $0.00 was set for the total profit. This returns a minimum sale price to break-even over 

the ten-year period. 
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Table 17 - Minimum sale price per kg of biocomposite to break even over lifespan of model. 

MATERIAL NAME BREAKEVEN PRICE 
($/KG) 

3001 PLA/SPA (50/50) $2.08 

3001 PLA/SPA (40/60) $2.08 

3001 PLA/SPA (30/70) $2.08 

3001 PLA(5%PEG)/SPA (50/50) $2.11 

3001 PLA(5%PEG)/SPA (40/60) $2.12 

3001 PLA(5%PEG)/SPA (30/70) $2.12 

3001 PLA(10%PEG)/SPA (50/50) $2.09 

3001 PLA(10%PEG)/SPA (40/60) $2.10 

3001 PLA(10%PEG)/SPA (30/70) $2.11 

2003 PLA/SPA (50/50) $2.08 

2003 PLA/SPA (40/60) $2.08 

2003 PLA/SF (60/40) $1.58 

2003 PLA/SF (50/50) $1.47 

2003 PLA/SF (40/60) $1.36 

 

Converting the minimum sale price to a nitrogen basis allows for comparison to other material 

types, such as the synthetic and Milorganite fertilizers (Table 18). The price for the synthetic and 

Milorganite fertilizers is $54.73 and $17.15 per pound of nitrogen, respectively. It is important to note 

that these are the sale prices and not the production prices, which is detailed for the soy biocomposites. 

The price to produce one pound of nitrogen varied from $13.77 to $29.45 for the soy biocomposites, 

with the least expensive material being 2003 PLA/SF (40/60). With the production costs calculated, it 

can be assumed that production of soy-based biocomposite fertilizers would be viable on a commercial 

production level. 
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Table 18 - Minimum sale price per pound of nitrogen for biocomposites to break even over lifespan of 
model. To compare; the synthetic fertilizer and Milorganite have sale prices equal to $54.73 and $17.15 
per pound of nitrogen, respectively. 

MATERIAL NAME BREAKEVEN PRICE 
($/KG) 

3001 PLA/SPA (50/50) $29.45 

3001 PLA/SPA (40/60) $24.75 

3001 PLA/SPA (30/70) $19.33 

3001 PLA(5%PEG)/SPA (50/50) $28.54 

3001 PLA(5%PEG)/SPA (40/60) $24.90 

3001 PLA(5%PEG)/SPA (30/70) $18.46 

3001 PLA(10%PEG)/SPA (50/50) $23.81 

3001 PLA(10%PEG)/SPA (40/60) $22.30 

3001 PLA(10%PEG)/SPA (30/70) $18.48 

2003 PLA/SPA (50/50) $28.39 

2003 PLA/SPA (40/60) $23.00 

2003 PLA/SF (60/40) $23.94 

2003 PLA/SF (50/50) $16.66 

2003 PLA/SF (40/60) $13.77 

 

Life Cycle Assessment 

 

Life cycle assessment results obtained through GaBi are detailed for the production of soy 

biocomposites as well as both ammonium nitrate and urea fertilizers. Impact categories discussed 

included: total global warming potential (GWP), eutrophication potential (EP), acidification potential 

(AP), as well as abiotic energy depletion and abiotic resource use.  
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Table 19 details the total GWP for each of the fertilizers. The functional unit for comparison is 

kilograms of CO2 equivalence. It is important to note that the negative value for the following soy-based 

biocomposite fertilizers: 3001 PLA/SPA (30/70), 3001 PLA(5%PEG)/SPA (30/70), 3001 PLA(10%PEG)/SPA 

(30/70), and 2003 PLA/SF (40/60). These negative values are the result of the sequestration of CO2 

during the growth of soybeans. In addition, there is a general inverse relationship between soy content 

and GWP.  It is also seen that there is generally a proportional relationship between PLA and GWP.   This 

can be attributed to the fact that PLA requires relatively large amounts of energy during synthesis - 

approximately 54.1 MJ of energy per kilogram of polymer (Vink, 2003). The largest GWP of any material 

examined was 2.82 kg of CO2 equivalence, a result of the synthesis of ammonium nitrate.  

 

 

Abiotic energy depletion is also detailed in Table 19 and has a unit of MJ of energy consumed. 

The results follow similar trends as those seen for GWP in reference to soy and PLA content. It is 

important to note that the values for ammonium nitrate and urea are relatively low (18 and 23 MJ, 

respectively) due to the natural gas being used as a feedstock for chemistry, and not for fuel for energy 

production.  

 

 
GWP 

ABIOTIC 
ENERGY 

DEPLETION 

ABIOTIC 
RESOURCE 

USE 
EUTROPHICATION ACIDIFICATION 

 
(kg CO2 eq) (MJ) (kg Sb eq) (kg PO4

3- eq) (kg SO2 eq) 

3001 PLA/SPA (50/50) 1.26 252 7.02E-06 1.70E-02 6.83E-02 

3001 PLA/SPA (30/70) -1.17 114 2.85E-06 1.03E-02 3.42E-02 

3001 PLA(5%PEG)/SPA (30/70) -0.86 106 2.58E-06 9.55E-03 3.20E-02 

3001 PLA(10%PEG)/SPA (30/70) -0.94 102 2.46E-06 9.42E-03 3.12E-02 

2003 PLA/SPA (50/50) 1.21 243 6.77E-06 1.64E-02 6.58E-02 

2003 PLA/SF (60/40) 2.67 333 9.11E-06 2.11E-02 8.83E-02 

2003 PLA/SF (50/50) 0.71 222 5.77E-06 1.57E-02 6.08E-02 

2003 PLA/SF (40/60) -0.51 173 4.21E-06 1.39E-02 4.95E-02 

AMMONIUM NITRATE 2.82 18 1.04E-02 2.27E-04 2.13E-03 

UREA 0.72 23 1.04E-02 2.45E-04 2.41E-03 

Table 19 - Results for cradle-to-gate life cycle assessment for the equivalence of 1 pound of nitrogen produced. 
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Abiotic resource use is detailed in Table 19 and has a functional unit of kilograms of antimony 

equivalence (kg SB eq). It is seen in this column that the natural gas is accounted for in abiotic resources 

and not abiotic energy depletion. Abiotic resource use is four magnitudes higher for urea and 

ammonium nitrate than for soy-based biocomposites.  

Table 19 also shows the results for the eutrophication potential for each material. The 

functional unit used is kilogram of phosphate equivalence (kg PO4
3- eq) for each pound of nitrogen 

produced.  In addition, Table 19 details the acidification potential for each of the materials with a 

functional unit of kilogram of sulfur dioxide equivalence (kg of SO2 eq) per pound of nitrogen produced.   

In general, it is seen that the eutrophication potential (EP) and acidification potential (AP) are 

one or two magnitudes higher for the soy-based fertilizers when compared to urea and ammonium 

nitrate.  While this may be counterintuitive, it is related to current farming practices. In more detail, the 

production of soybeans in the U.S. typically utilizes synthetic fertilizers, which cause increases to 

eutrophication and acidification levels once the nutrients applied to the field become runoff. As detailed 

in the literature review, up to 95% of the nitrogen needed for soybean production could come from 

atmospheric nitrogen under the correct conditions (Herridge, 2008). Currently, the average is only 

approximately 58% of the total nitrogen needed. With the correct sustainable farming practices, the 

amount of eutrophication and acidification caused by soybean production could be drastically 

decreased, thus lowering the impact of soy-based biocomposite fertilizers in this category.  
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CHAPTER 6 

CONCLUSION 

 

The results obtained during this study indicate that soy-based biocomposite fertilizers can be a 

viable alternative to currently available turfgrass fertilizers. All soy biocomposites performed better than 

the negative control group, proving they have positive effects on plant shoot dry weight, shoot volume, 

and visual health. Some formulations performed as well as, or better than, the commercially available 

fertilizers. 

Nutrient content in leachate was found to be statistically similar to both of the commercially 

available fertilizers (Milorganite and Nutricote) when applied at a standard application rate. In addition, 

it was found that both phosphorus and potassium levels in leachate were not statistically higher for 

most soy biocomposites compared to the commercially available fertilizers. 

Soy biocomposites were also found to be cost effective in comparison to the commercially 

available fertilizers. The production price of soy biocomposites was competitive compared to the 

purchasing price for the commercially available fertilizers.   

The life cycle assessment indicated that soy biocomposites with high filler content reduced GWP 

compared to commercially available fertilizers. Fertilizers containing more than 60% filler showed lower 

energy and resource use, as well as a negative GWP because the of sequestration of CO2 during the 

growth cycle of the soybeans, which constitute the majority of the fertilizers’ makeup. 

Future testing could provide more insight into the transport of nitrogen, as well as the major 

factors contributing to the release rate of nutrients from the soy biocomposites. Information on factors 

such as pellet size and porosity may provide benefits to the project as well. Any further investigation 

should also include an analysis of micronutrients within the biocomposites and the effects of adding 

them to formulations.  
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