
Graduate Theses and Dissertations Graduate College

2016

Hydraulic system modeling and optimization to
achieve performance characteristics
Kathryn Kline
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/etd

Part of the Agriculture Commons, and the Bioresource and Agricultural Engineering Commons

This Thesis is brought to you for free and open access by the Graduate College at Iowa State University Digital Repository. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Kline, Kathryn, "Hydraulic system modeling and optimization to achieve performance characteristics" (2016). Graduate Theses and
Dissertations. 15018.
http://lib.dr.iastate.edu/etd/15018

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15018&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15018&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15018&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/grad?utm_source=lib.dr.iastate.edu%2Fetd%2F15018&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15018&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=lib.dr.iastate.edu%2Fetd%2F15018&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1056?utm_source=lib.dr.iastate.edu%2Fetd%2F15018&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd/15018?utm_source=lib.dr.iastate.edu%2Fetd%2F15018&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


i 
 

 
 

   

Hydraulic system modeling and optimization to achieve performance 

characteristics 

 

 

by 

 

 

Kathryn Kline 

 

 

 

 

A thesis submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

 

MASTER OF SCIENCE 

 

 

Major: Agricultural and Biosystems Engineering 

 

Program of Study Committee: 

Brian Steward, Major Professor 

Stewart Birrell 

Steven Hoff 

 

 

 

Iowa State University 

Ames, Iowa 

2016 

Copyright © Kathryn Kline, 2016. All rights reserved. 



ii 
 

 
 

TABLE OF CONTENTS 

LIST OF FIGURES ........................................................................................................................... iii 

LIST OF TABLES .............................................................................................................................. v 

ABSTRACT ........................................................................................................................................ vi 

CHAPTER 1. GENERAL INTRODUCTION .................................................................................. 1 

Introduction ....................................................................................................................................... 1 

Thesis Organization .......................................................................................................................... 5 

References ......................................................................................................................................... 5 

CHAPTER 2. LITERATURE REVIEW .......................................................................................... 6 

Modeling a Hydraulic Cylinder Cushion .......................................................................................... 8 

Modeling Flow through a Cushioning Orifice ................................................................................ 14 

References ....................................................................................................................................... 17 

CHAPTER 3. HYRAULIC SYSTEM MODELING AND OPTIMIZATION TO ACHIEVE 

PERFORMANCE CHARACTERISTICS ..................................................................................... 19 

Abstract ........................................................................................................................................... 19 

Introduction ..................................................................................................................................... 20 

Methods ........................................................................................................................................... 22 

Results ............................................................................................................................................. 43 

Conclusions ..................................................................................................................................... 56 

References ....................................................................................................................................... 58 

CHAPTER 4. GENERAL CONCLUSIONS AND SUGGESTED WORK ................................. 59 

APPENDIX-DETAILED RESULTS OF DESIGN OPTIMIZATION PROCEDURE .............. 61 

 

 

  

 

 

 

 



iii 
 

 
 

LIST OF FIGURES 

Figure 1.1: Multiple sectors of industry incorporate hydraulic fluid power components……………1 

Figure 1.2: Hydraulic cylinder with cushioning spears to meter flow out of fluid port………….…..2 

Figure 1.3: Cushion spear profiles with changing cross-sectional area..…………………………..…4 

Figure 2.1: Hydraulic cylinder in retraction with main functional components labeled……………..7 

Figure 3.1: Resistances encountered as fluid flows into and out of the cylinder……………………24 

Figure 3.2: Equations developed to describe the cross-sectional diameter as a function of spear  

length for (a) a stepped cushion, (b) a two-taper cushion, and (c) a parabolic profile 

cushion………………………………………………………………………………………27 

 

Figure 3.3: The final system of state equations describing the dynamics of the system…………….31 

Figure 3.4: Cylinder with a piccolo style cushioning spear (spear shown as a cutaway)…………....32 

Figure 3.5: Conceptualized flow path with resistances………………………………………………33 

Figure 3.6: Piccolo spear with orifices fully blocked, partially blocked and open……………...…...33 

Figure 3.7: Graphic of partially closed orifice (Source: Manring, 2005)……………………………34 

Figure 3.8: Constant deceleration spear design showing spear diameter as a function of length...….43 

Figure 3.9: Result of entering the analytically calculated spear profile into the dynamic model…....44 

Figure 3.10: Analytical data fit with a quadratic regression curve………………………….……….45 

Figure 3.11: Analytical data fit with two linear regression curves…………………………………..46 

Figure 3.12: Velocity (a) and pressure (b) results of the tapered regression curve fit to  

analytical data……...………………………………………………………………………...46 

 

Figure 3.13: Velocity (a) and pressure (b) results of the parabolic regression curve fit to  

analytical data…………………………………………...…………………………………...47 

Figure 3.14: Dimensional error between the two spear types developed from the regression  

fits and the spear type developed analytically.…….....……………………………………...48 

 

Figure 3.15: Velocity response of the analytically designed cushioning spear with viscous effects 

included……………………..…………………………………………………………………….….49 

Figure 3.16: Optimized velocity results for a parabolic cushioning spear……………………….…..50 

Figure 3.17: The velocity (a) and pressure (b) response of the optimized parabolic profile…….…..51 

Figure 3.18: Optimized velocity results for a stepped cushioning spear…………………………….52 



iv 
 

 
 

Figure 3.19: The velocity (a) and pressure (b) response of the optimized stepped profile………….52 

Figure 3.20: Optimized velocity results for a tapered cushioning spear………….…………………53 

Figure 3.21: The velocity (a) and pressure (b) response of the optimized tapered profile…………..54 

Figure 3.22: Optimized velocity results for a piccolo shaped cushioning spear………….………….54 

Figure 3.23: The velocity (a) and pressure (b) response of the optimized piccolo profile.………….55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

 
 

LIST OF TABLES 

Table 3.1: Spear dimensions varied by the optimization program…………………………..…….…40 

Table 3.2: System parameters entered into the optimization program…………………..…………...41 

Table 3.3: RMSE values for the various spear types tested……………………………………...…..55



vi 
 

 
 

ABSTRACT 

As automation technology continues to be integrated into industrial and mobile 

machinery, more precise control of hydraulic cylinders will assist in the achievement of 

desired response characteristics. Thus, in designing the cushioning mechanism for a 

hydraulic cylinder, there is value in predicting the deceleration response due to pressure 

generated when fluid passes through the cushion orifice. The cushion orifice can be 

designed to change as a function of piston position to meet a desired velocity response. In 

practice, determination of the orifice area requires a lengthy iterative process of trial and 

error. Therefore, to overcome these design process challenges, dynamic models of 

cylinder cushioning systems were developed that, when solved numerically, predicted the 

pressure and velocity responses of the cylinder with time. Utilizing these dynamic 

models, a cushion design optimization procedure was also developed to obtain the 

dimensions of the cushioning spear that most closely obtains the desired velocity 

response profile. Simulations of the dynamic cushion model were performed using a 

cushion spear with a shape designed through a static analysis to produce constant 

deceleration during the cushioning phase. Spear shapes were fit to the analytically 

developed common spear profile and their performance was assessed with simulation. 

The developed optimization procedure was run to compare the performance the spear 

shapes common to industry. Lastly, to identify the range of results produced by the 

optimizer, the procedure was run ten times for each spear type with the variation between 

runs. The performance of each run was quantified by measuring the root-mean square 

error (RMSE) between the desired velocity profile and the simulated velocity profile. 

When surrounding system conditions were held constant, the analytical analysis produced 
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a profile leading to nearly constant deceleration with an RMSE of 1.4x10-3 m/s (0.29 feet 

per minute; fpm) when simulated by the dynamic model. However, attempts to replicate 

the results of the analytical model with common spear shapes resulted in deviation from 

the constant deceleration goal with the parabolic and linear regression curves producing 

RMSE values of  14.9x10-3 and 21.7x10-3 m/s (2.94 and 4.28 fpm) respectively. The 

optimizer produced a consistent family of results for each spear with an average standard 

deviation of 2.6x10-3 m/s (0.51 fpm). This dynamic modeling approach has potential to 

assist designers in the development of cushioning spears that meet customer cushion 

response specifications. 
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CHAPTER 1. GENERAL INTRODUCTION 

Introduction 

 The principles that provide the basis of fluid power were being developed as early 

as the 1600’s (Daines, 2009). However, the hydraulic portion of the fluid power industry, 

as we know it today, has mainly been developed within the last century, particularly since 

a hydraulic system utilizing oil instead of water was used to control guns on the USS 

Virginia in 1906 (Esposito, 2003). The economic impact of the fluid power industry still 

remains strong today; based on 2013 U.S. Census Bureau data, sales within the fluid 

power industry surpassed $22 billion and provided jobs for 71,000 people. After taking a 

broader view of the industry and including ten key industries that utilize fluid power 

components, the employment numbers increase to over 874,000 people with payroll 

figures exceeding $54.4 billion (Stelson, 2015).  

 

Figure 1.1: Multiple sectors of industry incorporate fluid power components. (Photo: beisensors.com) 

Recent developments in the fluid power industry have focused on the 

incorporation of sensing and control technology to develop systems that have the 

potential to increase machine productivity and efficiency. For instance, automating 

certain machinery such as an agricultural sprayer can allow for more efficient application 

of agricultural chemicals and a reduced environmental impact. Achieving improvements 
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in the efficiency and productivity of equipment like the sprayer requires improved motion 

control of the mechanical systems involved in the machine’s operation. 

Mechanical motions within machines, like the sprayer, are typically controlled 

with hydraulic systems instead of pneumatics due to the higher power density of the less 

compressible hydraulic oil. The motion control provided by these hydraulic systems can 

be divided into two sub-categories, rotational motion and linear motion. While rotational 

motion can be generated by hydraulically with motors, linear motion control is typically 

accomplished using hydraulic cylinders.  

While linear motion control can be conducted through alternative methods using 

mechanical and electrical systems, a hydraulic cylinder’s ability to transmit power is 

limited only by the structural strength of the materials used in machining the cylinder 

(Merritt, 1967). The immense power and force capabilities of a hydraulic cylinder can, 

however, be detrimental when the moving piston is permitted to impact the case at the 

end of stroke. Without measures put in place to decelerate the piston and prevent impact 

with the end of the case, fatigue damage and subsequent failures can occur if the piston is 

able to impact the case repeatedly. Beyond fatigue damage, a cylinder can be destroyed if 

the load being moved generates enough momentum to break the case upon impact.  

To address the issues regarding damage and unwanted motion due to impact, 

hydraulic cylinder cushions have been developed to decelerate the piston and rod 

assembly as it approaches the end of the stroke (Esposito, 2003). Piston deceleration is 

achieved by metering the fluid as it exits the cylinder causing a pressure increase in either 

the cap or rod end, depending on direction of motion (Figure 1.2). By increasing the 
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pressure in these volumes on the back side of the piston, a force resisting the motion of 

the piston is developed causing the piston to decelerate.  

 

Figure 1.2: Hydraulic cylinder with cushioning spears to meter flow out of fluid port.  

(Photo: Norvelle, 1995) 

Various approaches to metering the fluid for cylinder cushions have been 

implemented. One approach diverts the outlet flow through needle valves as the cushion 

spear enters the cushion cavity (Figure 1.2). An alternative approach utilizes a cushioning 

spear or collar that either contains a varying outer diameter or internally bored orifices to 

variably meter the outlet flow as a function of insertion depth of the spear into the 

cushioning cavity (Anon, 1973). This research project focused on the second approach.  

When viewing a cushioning spear from the side or as a cross-section, the varying 

diameter of the spear utilized in the second approach creates an outline that can be 

categorized into four different spear shapes: stepped, tapered, parabolic and piccolo 

(Figure 1.3). The last shape analyzed, the piccolo spear, has a constant external diameter 

and meters the flow by sequentially covering each of the three fluid ports as the spear 

enters the cavity. 
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Stepped Spear

Tapered Spear

Parabolic Spear

Piccolo Spear

 

Figure 1.3: Cushion spear profiles with changing cross-sectional area.  

Due to the different rate at which the spear diameter increases, each of these 

designs produces a unique velocity profile as the cylinder decelerates. Therefore, in 

choosing which of the four designs to implement and selecting the associated 

dimensional parameters, there is value in being able to predict the effect these design 

choices will have on the pressure and deceleration response of the cylinder during 

cushioning.  

The objectives of this research are to:  

1. Develop a dynamic model that can predict the velocity and pressure 

performance of a hydraulic cylinder cushion. 

2. Support the developed dynamic model through analytical analysis. 
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3. Utilize the dynamic model to analyze the performance of cushioning spear 

types commonly found in industry and compare those spears to the 

analytically developed spear type.  

4. Implement a cushion design optimization procedure to find cushioning spear 

profiles that best achieve a predetermined velocity profile. 

Thesis Organization 

 Following the introductory chapter, the remainder of this thesis is organized 

through three additional chapters, Chapters 2-4. Chapter 2 presents a review of previous 

research that was found to be relevant to this project. Chapter 3 describes the 

mathematical development and results of the dynamic model created to analyze the 

response of various hydraulic cylinder cushion designs along with the optimization 

procedure utilized. Chapter 4 presents the conclusions derived at the completion of the 

project along with suggestions for future research. 

References 

Anon. "Constant deceleration cylinder has special built-in shock absorber", Product 

Engineering, 1973. 

Daines, James R. Fluid Power: Hydraulics and Pneumatics. Tinley Park, IL: Goodheart-

Willcox, 2009.  
 

Esposito,A. Fluid Power with Applications (6th ed.). Upper Saddle River, N.J.: Prentice 

Hall. 2003.  

Merritt, H. Hydraulic Control Systems. New York: Wiley, 1967.  

Norvelle, F. Fluid Power Technology. Minneapolis/St. Paul: West Pub, 1995.  

Stelson, Kim. "Engineering research center for compact and efficient fluid power 

strategic research plan", Center for Compact and Efficient Fluid Power, 2015.  
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CHAPTER 2. LITERATURE REVIEW 

Hydraulic cylinders are used extensively in industry to provide linear motion 

control. These cylinders are composed of cylindrically shaped metal case with a piston-

rod assembly (A and B respectively in Figure 2.1) that moves back and forth within the 

case. The piston and rod assembly separates two different volumes inside the cylinder 

case. For a single rod cylinder, these two volumes are called: the rod end volume, where 

the rod end is the end of the cylinder from which the rod protrudes, and the cap end 

volume, where the cap end does not have a rod (Figure 2.1 c and d respectively). As these 

volumes are pressurized, hydrostatic forces due to the pressurized fluid act on the 

surfaces of the vessel containing the fluid.  Thus, the forces acting on the piston-rod 

assembly cause it to move, extending the rod out of the cylinder case or retracting the rod 

into the cylinder case (Figure 4 shows a cylinder in retraction). An external load can be 

attached to cylinder rod, and as the piston-rod assembly moves, a force is exerted on the 

load causing the load to move along a linear path. For a cylinder in retraction, the flow 

leaving the cap end exits through the cushioning cavity E before returning to the rest of 

the hydraulic circuit through the cylinder port I. The cylinder stops when the piston 

reaches the end of its stroke, or when the piston makes contact with the end cap, H. The 

components labeled F and G are the cylinder cushion spear and collar that decelerate the 

piston before it contacts the end cap in either retraction or extension, respectively.  
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Figure 2.1: Hydraulic cylinder in retraction with main functional components labeled. 

Hydraulic cylinders provide high power density for moving heavy loads, but if the 

cylinders are allowed to reach end of stroke at full speed, sudden deceleration can cause 

excessive impact (Esposito, 2003). Therefore, a cushioning mechanism was designed to 

decelerate the cylinder piston and reduce the speed at which impact occurs.  

Cylinder cushions meter the flow leaving the cylinder case causing pressure to 

increase. When the area of the piston is exposed to this accumulating pressure, a force 

develops that opposes the motion of the piston-rod assembly causing deceleration 

(Norvelle, 1995).  With the importance of accurately metering the fluid leaving the 

cylinder to create a resisting force, there is value in predicting the pressure response, i.e. 

the cushion pressure as a function of time, generated when the fluid is metered by the 

cushioning mechanism orifice.  

In approaching the development of a mathematical model to describe the 

performance of a hydraulic cylinder and cylinder cushion, it was necessary to investigate 

how other researchers had treated similar systems. In their general approach to describing 

the system, other researchers seemed to choose one of two methods: an energy based 

model, or a model based on the principle dynamic equations. The earliest research efforts 

tended to lean towards the energy approach that required less complicated mathematics. 
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In more recent investigations, with the assistance of computer-based analysis, numerical 

simulation provided more insight into the response of the system. The details of how 

various researchers applied both of these methods, the energy approach and that based on 

principle equations, were reviewed and are detailed in this chapter. 

Additionally, one detail that is often not clear in the published research is the 

mathematical model used to describe the flow through the annular clearance created by 

the spear entering the cushioning cavity. The orifice equation appears to be the most 

utilized model, but there is also a pressure drop as fluid flows through an annular pipe. 

The insertion depth at which analysis should transition from using one equation to the 

other is not well identified, so additional research, detailed in this chapter, was conducted 

to evaluate how critical transitioning between these equations may be. 

Modeling a Hydraulic Cylinder Cushion 

Previous attempts to model a hydraulic cylinder and simulate the performance of 

cushioning mechanisms have focused on an energy approach. W.L Green (1968) and 

John Berninger (1973) both utilized an energy approach to model a hydraulic cylinder 

cushion while Berninger’s approach included additional first principle equations similar 

to those used during the analysis conducted for the project detailed in this report.  

To analyze the effectiveness of a hydraulic cushion design, Green calculated the 

kinetic energy of the moving piston and concluded whether or not the work done on the 

piston-rod assembly during cushioning would sufficiently dissipate the energy present in 

the system (Green, 1968). To conduct his analysis, Green assumed that the hydraulic 

fluid was incompressible with fully turbulent flow through the cushioning orifice, the seal 
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friction was negligible, and that there was no remaining energy stored as pressure or fluid 

velocity remaining after the cushioning orifice. 

 The kinetic energy of the moving piston was calculated using the known initial 

velocity of the system, v, and the total mass, m, of the load and the piston-rod assembly 

(Equation 2.1). 

𝐾𝐸0 =
1

2
𝑚𝑣2     (2.1) 

Next the efficiency, η, of the hydraulic cushion was calculated using the mathematical 

expression:  

    𝜂 = −
𝑃𝑀

𝑃𝐹
(1 − 𝑒−𝜆)    (2.2) 

where PM is the maximum allowable cushion pressure, 

λ is a dimensionless number described using the mathematical expression:  

𝜆 =
𝑃𝑀 𝐴 𝐿

𝐾𝐸0
     (2.3) 

where A is the cross-sectional area of the cushioning spear and L is the 

length of the cushioning spear, 

and PF is the equivalent static pressure defined by the expression: 

         𝑃𝐹 =
𝑃𝐸𝐴1±𝐹

𝐴
     (2.4) 

where PE is the maximum system pressure,  

A1 is the effective area of the piston on the driving side, and 

F is the external load.  
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Utilizing the kinetic energy of the moving piston, KE0, and the cushioning 

efficiency, η, the kinetic energy remaining after cushioning can be calculated utilizing the 

expression: 

      𝐾𝐸𝐿 = (1 − 𝜂) 𝐾𝐸0    (2.5) 

Subtracting the remaining energy from the initial energy present calculates the energy 

dissipated in cushioning. If all of the remaining energy is assumed to be in the form of 

kinetic energy, the final velocity of the piston can be calculated by substituting the 

remaining kinetic energy for the initial kinetic energy in Equation 2.1.  

While this approach may predict whether or not a cushion will be effective and 

calculate certain parameters such as the final velocity, it was not possible to calculate the 

pressure or velocity response as a function of time. The dynamic model developed for the 

research described in this thesis utilizes an approach based on principal equations that, 

when solved numerically, can produce pressure and velocity results over a period of time.  

 An article written to highlight work conducted by John Berninger compared the 

pressure response of a hydraulic cylinder cushion utilizing a fixed orifice area to the 

response of a cushion with an area that varies with stroke distance through the cushioning 

stage. The fixed area cushion causes a large pressure spike and sudden deceleration while 

the cushioning orifice with a varying area could cause more gradual pressure increases 

and deceleration (Anon, 1973). Berninger used an energy approach along with equations 

developed from first principles to determine the orifice area as a function of the insertion 

depth of the cushioning spear into the cushioning cavity needed to achieve constant 

deceleration of the cylinder. Berninger utilized four basic equations (Equations 2.6-2.9). 
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Newton’s second law of motion represented by adding β to work with acceleration terms 

in g’s. 

    𝐹 = 𝑚𝑎 =
𝑊

𝑔
(𝛽𝑔)             (2.6) 

where F is the net force accelerating the piston-rod assembly,  

m and a are the mass and acceleration of the piston-rod assembly,  

W is the weight of the piston-rod assembly,  

g is gravitational acceleration, and  

β is a ratio of the piston acceleration rate to the acceleration of gravity. 

 

Bernoulli’s equation, which comes from evaluating the conservation of energy 

within the system, relates the fluid flow velocity through an orifice to the corresponding 

pressure drop. Mathematically, this relationship is: 

∆𝑃

𝛾
=

𝑉0
2

2𝑔
        (2.7) 

where ΔP is the pressure drop across the orifice, 

 γ is the specific weight of the fluid, 

 V0 is the velocity of the fluid flowing through the orifice, and 

 g is gravitational acceleration. 
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The law of continuity, which is derived from the law of mass conservation, states 

that all of the flow leaving the case of the cylinder must flow through the cushioning 

orifice, but that the velocities vary in relation to the different areas. Mathematically, this 

relationship is: 

𝐴2𝑉𝑝 = 𝐶𝐴0𝑉0         (2.8) 

where A2 is the piston area minus the cross-sectional area of the cushioning spear,  

Vp is the piston velocity,  

A0 and V0 are the orifice area and flow velocity through the orifice and  

C is a flow coefficient that represents the ratio of the stream area at the vena 

contracta to the orifice area. For round orifices, the minimum flow area, or vena 

contracta, occurs downstream of the orifice by a length of about half the orifice 

diameter (Merritt, 1967). 

Lastly, Berninger utilized the law of energy conservation to relate the kinetic 

energy of the system to the potential energy stored in the pressurized fluid and the work 

being done by the pressurized fluid moving the piston-rod assembly. 

𝑊𝑜𝑟𝑘 = 𝐸𝑘 − 𝐸𝑝        (2.9) 

Berninger developed an equation to find cushion orifice area as a function of 

cushion spear insertion depth based on the assumption that the inlet and exhaust pressures 

remain constant. Additional equations not requiring an assumption of constant system 

pressures have been developed by Berninger, but are proprietary. While Berninger’s 

approach calculates a cushion design with a varying area that will cause a constant rate of 
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deceleration, there were no equations provided that can calculate the state of the system 

at various operating points. Additionally no method for calculating the final velocity 

upon impact with the case was provided. 

Schwartz et al. (2005) evaluated the effect of a cushioning collar, or bushing, used 

to decelerate a hydraulic cylinder in either extension or retraction. In analyzing the 

hydraulic cylinder, Schwartz utilized the same basic equations as Berninger used 

including a force balance and an equation derived from the law of mass conservation. 

Schwartz also included a compressibility factor, so unlike others he did not assume the 

fluid to be incompressible. To find the pressure drop associated with flow through the 

cushioning orifice, Schwartz uses an experimentally determined cushioning factor which 

related the flow through the cushioning orifice to the pressure drop across it which is 

used in the mathematical relationship:  

𝑞 = 𝑓𝑐√∆𝑃𝑐       (2.10) 

where q and ΔPc represent the flow through and pressure drop across the cushioning 

orifice and fc is the cushioning factor. The complex, changing geometry of the cushioning 

collar is cited as reasoning for the use of this experimental factor. In addition to modeling 

the cylinder, with equations derived from Bernoulli’s equation, Schwartz developed a 

model for the proportional directional control valve through which pressurized fluid was 

supplied to the hydraulic cylinder. Schwartz built a testing apparatus and conducted 

experiments to validate their model. The reported results of this validation were reported 

to have a maximum error of 10% between the pressure response of the simulated system 

and the experimental system. 
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Chen et al. (2015) and Chengbin et al. (2011) investigated the response of 

hydraulic cylinder cushions through simulation. To model the flow through the passage 

created by the cushioning spear entering the cushioning cavity, the simulation software 

utilized an equation for laminar and turbulent flow through an annular passage. Both 

Chen and Chengbin validated their results experimentally and achieved a very minimal 

margin of error. In comparing the peak pressure, the simulated results in the Chen study 

fell within 3% of the experimentally measured results. Chengbin did not provide 

quantitative results; but the simulation results were observed to track the experimental 

results with an error similar to Chen’s at 3%. These studies demonstrated that accurate 

simulations are possible even when certain factors such as fluid leakage and friction are 

simplified or neglected. 

The cited research modeled the cushioning orifice using either the standard orifice 

equation with a sharp edge or the modified orifice equation for orifices with length.  

Modeling Flow through a Cushioning Orifice 

While the standard orifice flow and orifice with length equations fit many 

applications in hydraulics, there is a lack of definition on the maximum length at which 

the orifice with length equation is valid. Therefore, certain scenarios, such as a hydraulic 

cylinder with cushion spears and collars, may not be accurately described using the 

orifice equations. In an attempt to decide which equation best describes the flow through 

the annular clearance created by a hydraulic cylinder cushion, various flow equations, 

including those intended for orifices and annular pipes, were evaluated. To have any 

success in matching results from an annular pipe flow to those generated by the orifice 
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equation, a nonlinear equation must be used thus eliminating some of the approaches to 

describing pipe flow. 

Kratz et al. (1931) analyzed flow through pipes with an annular cross-section. 

Their chosen approach utilized the Darcy equation to describe the head loss due to 

friction. The Darcy equation is a nonlinear relationship between head loss, which is 

another way to represent pressure drop, and fluid velocity that corresponds to the orifice 

equation’s nonlinear relationship between flow and pressure drop, shown as:  

ℎ = 𝑓
𝑙𝑣2

2𝑔𝑚
       (2.11) 

where h is the head loss due to friction,  

f is the friction factor,  

l is the effective length of the pipe,  

m is the mean hydraulic radius, 

v is the average fluid velocity, and  

g is the acceleration of gravity.  

The mean hydraulic radius, m, for an annular pipe is equal to one-fourth of the 

difference between the diameter of the outer pipe and the diameter of the inner pipe. The 

friction factor, f, is a function of the roughness of the pipe surface and Reynold’s number 

for the flow. 
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Merritt (1967) describes an equation for viscous, or laminar, flow through an 

annular pipe similar to that analyzed by Kratz et. al. However, Merritt’s equation 

presented a linear relationship between the fluid flow and pressure drop, shown as: 

𝑄 =
𝜋𝑟𝑐3

6𝜇𝐿
∆𝑃       (2.12) 

where r is the radius of the cushioning cavity, 

c is the clearance between the cushion spear and the wall of the cushioning cavity, 

µ is the dynamic viscosity of the fluid, 

L is the length of the cushion spear that is inserted into the cushioning cavity, and 

∆P is the pressure drop across the annular clearance. 

An additional equation expands on Merritt’s work by modeling inertial, or 

turbulent flow through an annular pipe (Anon, 2013). This equation represented a non-

linear relationship between the pressure drop corresponding to flow through the annular 

clearance, mathematically expressed as: 

𝑄 = 𝜋(𝑟2 − (𝑟 − 𝑐)2)√
2∆𝑃

𝜌
(

2𝑐

𝜀𝐿
+

1

1.52
)     (2.13) 

where ρ is the density of the fluid, and 

ε is expressed mathematically as: 

𝜀 =
0.316

𝑅𝑒0.21
       (2.14) 

where Re is the Reynolds number of the moving fluid. 



17 
 

 
 

When compared to the linear relationship proposed in Merritt, the non-linearity of 

the equation presented in Anon generated results more aligned to the standard orifice 

equation when compared to the linear relationship proposed in Merritt. 

The studies on modeling a hydraulic cushion have shown that modern modeling 

techniques utilizing numerical solvers can produce experimentally validated results. 

Additionally, their success in modeling a hydraulic cylinder supports their assumption 

that the neglected effect of friction does not substantially impact the accuracy of the 

results. The studies on orifices flow show that a variety of methods exist to describe the 

flow through, and pressure drop across, an orifice. With the case of the annular clearance 

created by the hydraulic cylinder cushion, the definitions of the established orifice flow 

equations overlap making it difficult to choose the correct equation. Therefore, the 

equation most relevant to the cushioning clearance being modeled, the annular flow 

equation, was chosen.  
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CHAPTER 3. HYRAULIC SYSTEM MODELING AND 

OPTIMIZATION TO ACHIEVE PERFORMANCE 

CHARACTERISTICS 
Kathryn Kline, Brian L. Steward 

Abstract 

As automation technology continues to be integrated into industrial and mobile 

machinery, more precise control of hydraulic cylinders will assist in the achievement of 

desired response characteristics. Thus, in designing the cushioning mechanism for a 

hydraulic cylinder, there is value in predicting the deceleration response due to pressure 

generated when fluid passes through the cushion orifice. In practice, determination of the 

orifice area requires a lengthy iterative process of trial and error. Therefore, to overcome 

these design process challenges, dynamic models describing cylinder cushioning systems 

were developed that, when solved numerically, predict the pressure and velocity 

responses of the cylinder with time. Simulations of the dynamic cushion model were 

performed using a cushion spear with a shape designed through an analytical analysis 

with the intent to produce constant deceleration during the cushioning phase. Due to the 

uncommon shape developed through the analytical process, spear shapes more common 

to industry were fit to the analytically developed spear profile and their performance was 

assessed with simulation. The analytical analysis produced a profile leading to nearly 

constant deceleration with an RMSE of 1.4x10-3 m/s (0.29 feet per minute; fpm) when 

simulated by the dynamic model. However, attempts to match the results of the analytical 

model with spear shapes more common to industry resulted in deviation from the 

constant deceleration goal with the parabolic and linear regression curves producing 

RMSE values of 14.9x10-3 and 21.7x10-3 m/s (2.94 and 4.28 fpm) respectively. This 

means the performance of the cushion is highly sensitive to variations in the spear shape 
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profile and, to achieve constant deceleration during cushioning, manufacturers must have 

the capability to produce a spear shape that may not conform to any of the commonly 

utilized spear shapes. However, when the analytically developed spear profile was 

simulated with viscous effects the RMSE value increased to 40.7x10-3 m/s (8.01 fpm) 

therefore an optimization procedure was developed to select the ideal cushion dimensions 

with viscous effects included. The optimization procedure produced a consistent family 

of results for each spear with an average standard deviation of 2.6x10-3 m/s (0.51 fpm). 

This dynamic modeling approach has potential to assist designers in cushioning spear 

development that meets customer cushion response specifications. 

Introduction 

Modern innovations in the hydraulics industry have revolutionized our ability to 

automate processes in the agricultural, construction, and manufacturing sectors. Through 

the application of automation technology, more efficient and less wasteful practices can 

be implemented. To achieve these advances, automated machines must have hydraulic 

systems that can provide precise and reliable motion control. Hydraulic systems can 

control both the rotational and linear motion utilized in these processes. Hydraulic motors 

are used to implement rotational motion, while linear control is performed by hydraulic 

cylinders. The focus of this study was to analyze a cushioning component within 

hydraulic cylinders and to understand the dynamic relationships within the cylinder in an 

effort to predict and optimize the deceleration performance of the cylinder. 

While hydraulic cylinders provide high power density for moving heavy loads, if 

the cylinders are allowed to reach end of stroke at full speed, particularly with high 

inertial loads, the sudden deceleration can cause excessive impact (Esposito, 2003). 



21 
 

 
 

Therefore, cylinder cushioning technology has been developed with a goal of 

decelerating the cylinder piston and reducing the speed before the piston-rod assembly 

reaches the end of stroke.  

Cylinder cushions work by metering the flow leaving the cylinder case when the 

piston-rod assembly nears the end of a stroke.   When the fluid flow is restricted, an 

increase in the cylinder end pressure develops – in the cap end for the retraction stroke 

and the rod end for the extension stroke. When the piston area is exposed to this 

increased pressure, a force develops that opposes the motion of the piston-rod assembly, 

causing it to decelerate (Norvelle, 1995).  With the importance of accurately metering the 

fluid leaving the cylinder to create a resisting force, there is value in predicting the 

pressure response, i.e. the cushion pressure as a function of time, generated when the 

fluid is metered by the cushioning mechanism orifice.  

Previous attempts to predict the pressure response of a cylinder in deceleration, 

and the performance of a particular cushioning mechanism, have involved approaches 

based on both energy conservation and dynamic relationships. Green (1968) and Anon 

(1973) utilized an energy approach to model the effectiveness of a hydraulic cushion by 

analyzing if the work done on the piston-rod assembly during cushioning will sufficiently 

dissipate the kinetic energy of the moving piston, rod and load. Schwartz et al. (2005) 

evaluated the effect of a cushioning collar, or bushing, instead of a cushioning spear. To 

predict the pressure and velocity response of the system, Schwartz used a cushioning 

factor that was estimated from experimental data including the pressure drop across and 

flow rate through the cushioning orifice. Chen et al. (2015) and Chengbin et al. (2011) 

analyzed hydraulic cylinder cushions through the use of dynamic system modeling and 
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simulation. Both Chen and Chengbin validated their results experimentally and achieved 

results with a margin of error around 3%. 

Due to the difficulty of modeling the friction within a system, simulations 

typically either consider friction within the cylinder negligible or the effect of internal 

friction is estimated as a small percentage of the load. The results achieved by Chen and 

Chengbin’s investigations demonstrated that accurate simulations are possible even when 

certain factors such as the friction or fluid leakage are simplified or neglected. 

The objectives of this research were to: 

1. Compare the cushioning velocity profile produced by the analytically 

developed spear shape design to those produced using standard spear shapes 

more commonly used in industry. 

2. Investigate the velocity profile and deceleration performance of the four 

commonly-used spear shapes with dimensions determined by a cushion design 

optimization procedure. 

Methods 

The research described in this paper investigated dynamic models that, when 

solved numerically, simulate the pressure and velocity response of the cylinder. Utilizing 

the developed dynamic model, a cushion design optimization process was implemented 

to find cushion designs that will best meet desired velocity response profiles specified by 

end users. To better understand the fidelity of the dynamic model, tests were run to 

compare the results of the dynamic model to the expected results of the cushion design 

produced through an analytical analysis based on a method utilized by Berninger (Anon, 
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1973). Additional tests were run to evaluate the effectiveness of the optimizing procedure 

and to compare the performance of various common cushion shapes used in industry. 

Specifically, a dynamic model was developed in Matlab and analysis was done to find a 

cushion spear geometry that should result in contact deceleration.  Additionally, the 

cushion design optimization approach was implemented using a genetic algorithm.  Tests 

were also run to support the research objectives. 

Development of Cylinder Cushion Dynamic Model 

When developing the dynamic model, the cushioning process was broken up into 

the two main influences that effect the performance of the cushion. The first factor, 

considered to have the most impact on deceleration, is the orifice created by the cushion 

spear entering the cylinder cushion cavity (Figure 3.1). The second factor that may have a 

reasonable impact on the system is the effect of the viscous resistance within the annular 

passage created by the cushioning spear as it enters the cushioning cavity through which 

the fluid exits the cylinder.  

Additionally, the capacitance of the fluid was included in the model to increase 

fidelity. The fluid capacitance relates to the pressure spike caused by the sudden metering 

of the fluid. Originally, with no capacitance included, the model predicted that these 

pressure spikes could reach levels 2-3 times larger than the operating pressure. However, 

by adding a relationship describing the system’s fluid capacitance, the pressure spikes 

were either eliminated or replaced with a period of transitory oscillation depending on the 

style of the cushioning spear. 
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To develop the equations describing the cylinder cushioning system, the path of 

the fluid through the system and the corresponding fluid resistances encountered were 

modeled. Using this approach, the pressure at or fluid flow rate through a specific 

component in the system can be calculated. An analysis of the system and the included 

resistances is described below beginning with the development of the flow leaving the 

cap end of a cylinder. Like electrical resistance is used to relate voltage drop across a 

resistor to the current going through the resistor through Ohm’s law, fluid resistance 

relates the pressure drop across a hydraulic component to the volume flow rate going 

through it.  For an orifice, valve, fitting or turbulent flow through a fluid conduit, the 

pressure drop is proportional to the square of the volume flow rate, and fluid resistance is 

the coefficient of proportionality.  For laminar flow through a fluid conduit, pressure drop 

is proportional to volume flow rate, and fluid resistance is again the coefficient of 

proportionality.  Fluid resistances are calculated based on component geometry and fluid 

properties. 

 

Figure 3.1: Resistances encountered as fluid flows into and out of the cylinder during the 

cushioning phase of the retraction stroke. 
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Three resistances are encountered as the fluid leaves the cap end of the cylinder. 

First, the fluid passes through an orifice, then through the narrow passageway created 

between the spear and the cavity which causes a viscous resistance to develop in the 

laminar flow, and finally though a meter out orifice that is included to represent the 

directional control valve that directs the flow to and from the cylinder. Modeling the 

cylinder cushion system started at the cap end by summing the pressure drops developed 

by flow encountering three fluid resistances in series (Figure 3.1). The two orifices create 

a non-linear relationship between pressure and flow while the viscous resistance remains 

linear due to the laminar flow through the narrow passageway. The summation of 

pressure drops is equal to the cap end pressure, which stated mathematically is: 

𝑃𝑐 = 𝑅𝑚𝑜𝑄𝑐
2 + 𝑅𝑜𝑟𝑖𝑓𝑖𝑐𝑒𝑄𝑐

2 + 𝑅𝑣𝑖𝑠𝑐𝑜𝑢𝑠𝑄𝑐        (3.1) 

The equation can be rearranged to represent a standard quadratic equation in terms of the 

fluid flow rate exiting the cap end, Qc. 

0 = (𝑅𝑚𝑜 + 𝑅𝑜𝑟𝑖𝑓𝑖𝑐𝑒)𝑄𝑐
2 + 𝑅𝑣𝑖𝑠𝑐𝑜𝑢𝑠𝑄𝑐 − 𝑃𝑐                        (3.2) 

where Rmo is the resistance of the metering orifice located after the outlet of the cylinder, 

Rorifice is the resistance and the orifice created when the cushioning spear enters 

the cushioning cavity, 

Rviscous is the resistance due to laminar flow along the length of the spear as it 

enters the cushioning cavity, and 

 Pc is the pressure in the cap end of the cylinder. 

This equation can now be solved for fluid flow out of the cap end using the quadratic 

formula. 
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   𝑄𝑐 =
−𝑅𝑣𝑖𝑠𝑐𝑜𝑢𝑠+√𝑅𝑣𝑖𝑠𝑐𝑜𝑢𝑠

2+4𝑃𝑐(𝑅𝑚𝑜+𝑅𝑜𝑟𝑖𝑓𝑖𝑐𝑒)

2(𝑅𝑚𝑜+𝑅𝑜𝑟𝑖𝑓𝑖𝑐𝑒)
         (3.3) 

The resistance of the meter out valve can be derived from the orifice equation which is: 

𝑄 = 𝐴𝑚𝑜𝐶𝐷√
2(𝑃𝑐)

𝜌
         (3.4) 

Rearranging equation 3.4 results in            

     𝑃𝑐 =
𝜌

2𝐴𝑚𝑜
2 𝑐𝑑

2 𝑄𝑐
2 = 𝑅𝑚𝑜𝑄𝑐

2          (3.5) 

where ρ is the density of the fluid, 

Cd is the discharge coefficient determined by the shape of the orifice, and 

Amo is the area of the orifice representing the metering valve. 

Similarly, the resistance of the orifice created by the cushioning spear can be derived: 

     𝑅𝑜𝑟𝑖𝑓𝑖𝑐𝑒 =
𝜌

2𝐴𝑥
2𝐶𝑑

2           (3.6) 

where  Ax is the annular area between the spear and the cushion cavity at the 

cavity entrance and is defined mathematically as: 

     𝐴𝑥 =
𝜋

4
(𝑑𝑐𝑎𝑣

2 − 𝑑𝑐𝑢𝑟
2)         (3.7) 

dcav is the inside diameter of the cushion cavity into which the cushion 

spear is inserted, and  

dcur is the outside diameter of the cushion spear at the distance from the 

end of the spear equivalent to the current spear insertion depth. 
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The diameter, dcur, varies with the insertion depth of the spear, x, and is based on 

the spear design. Equations to describe this changing diameter were developed for 

stepped and tapered spears along with the inverted parabola shaped spear (Figure 3.2).     

  For 0 < x < L1 
 𝑑𝑐𝑢𝑟 = 𝐷1 
  
 For L1 < x < L2 
 𝑑𝑐𝑢𝑟 = 𝐷2 
 

 For L2 < x < L3 
 𝑑𝑐𝑢𝑟 = 𝐷3 

 

 

      For 0 < x < L1 

   𝑑𝑐𝑢𝑟 = 𝐷1 + 2(𝑥)𝑡𝑎𝑛(𝜃1) 

  For L1< x < L2 

𝑑𝑐𝑢𝑟 = 𝐷2 + 2(𝑥 − 𝐿1)𝑡𝑎𝑛(𝜃2)          

 

 

 𝑑𝑐𝑢𝑟 = 2 [
2𝐷1 − 4𝐷2 + 2𝐷3

𝐿1
2 𝑥2] + 

2 [
−3𝐷1 + 4𝐷2 − 𝐷3

𝐿1
𝑥 + 𝐷1] 

                      

Figure 3.2: Equations developed to describe the cross-sectional diameter as a function of spear length 

for (a) a stepped cushion, (b) a two-taper cushion, and (c) a parabolic profile cushion. 

 Laminar flow will occur in the clearance between the cushion spear and the cavity 

wall.  The associated fluid resistance is also dependent on the calculation of spear 

diameter at the current insertion depth, dcur. Two fluid resistance relationships as 

functions of spear insertion depth were needed due to differences in the spear geometries. 

One equation was derived for the stepped cushion design where the clearance between 

x 

x 

θ1 

θ2 

x 

L1

2
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the cavity wall and the spear was constant for each step. A second equation was then 

needed for the tapered and parabolic spear shapes where the clearance varied. The fluid 

resistance associated with laminar flow through a cylindrical annular geometry can be 

found from the annular flow equation (Merritt, 1967): 

∆𝑃 =
6𝜇𝑥𝑄

𝜋𝑟𝑐3            (3.8) 

where  

µ is the dynamic viscosity of the hydraulic fluid,  

x is the length of the annular passageway,  

Q is the flow through the annular passageway, 

r is the radius of the outer cylinder, and 

c is the clearance between the outer cylinder and the concentric inner 

cylinder that form the annular passage. 

For constant clearance for each step of the stepped spear, when this equation was 

solved for fluid resistance, the fluid resistance is: 

   𝑅𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑠𝑡𝑒𝑝𝑝𝑒𝑑 =
6𝜇𝑥

𝜋
𝑑𝑐𝑎𝑣

2
(𝑑𝑐𝑎𝑣−𝑑𝑐𝑢𝑟)3

      (3.9) 

where x is the insertion depth of the spear as specified in Figure 3.2. The fluid resistance 

associated with the tapered and parabolic spear shapes in which the clearance was 

changing was derived from the same annular flow equation, using infinitesimal annular 

passageway lengths and integrating of the insertion length of the spear.  This analysis 

resulted in:  
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  𝑅𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑡𝑎𝑝𝑒𝑟𝑒𝑑/𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 =
6𝜇

𝜋
𝑑𝑐𝑎𝑣

2

(
−8𝑥(𝐷1+𝑥𝑡𝑎𝑛(𝜃)−𝑑𝑐𝑎𝑣)

(𝐷1−𝑑𝑐𝑎𝑣)2(𝐷1+2𝑥𝑡𝑎𝑛(𝜃)−𝑑𝑐𝑎𝑣)2)   (3.10)  

where θ is the angle of taper on the tapered spear or the angle of taper on the parabola as 

approximated by taking three evenly spaced points along the spear and calculating the 

two angles between.  

An approach similar to that used for calculating the flow leaving the cap end was 

utilized to describe the flow into the rod end of the cylinder, Figure 3.1.  Summing the 

pressure drops from system pressure to the pressure in the cylinder rod end. 

                                                   𝑃𝑅 = 𝑃𝑠 − 𝑅𝑚𝑖𝑄𝑅
2                                                                      (3.11) 

where Rmi is the resistance of the meter-in valve. 

Solving for the flow rate into the cylinder rod end. 

             𝑄𝑅 =
√𝑃𝑠−𝑃𝑅

𝑅𝑚𝑖
                        (3.12) 

Applying Newtons’s second law to the cylinder piston, rod, and load assembly results in 

the relationship: 

   𝑚𝑎 = 𝑃𝑅(𝐴𝑝 − 𝐴𝑅) − 𝑃𝐶𝐴𝑃𝑐𝑢𝑠ℎ − 𝐶𝑡𝑣 + 𝑚𝑔𝑐𝑜𝑠(𝜃𝑚)                                 (3.13)          

where PR is the rod end pressure, 

 Ap is the cross-sectional area of the piston, 

 AR is the cross-sectional area of the rod, 

APcush is the cross-sectional area of the piston with the cross-sectional area of the 

cushioning cavity removed, 

 m is the mass of the piston-rod assembly along with the mass of an applied load, 
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Ct is the viscous damping coefficient representing internal friction in the cylinder, 

and θm is the mounting angle of the cylinder relative to vertical. 

Equation 3.13 was rearranged to solve for the acceleration of the cylinder piston, rod, and 

load assembly which can be written as the time derivative of velocity resulting in: 

𝑑𝑣

𝑑𝑡
=

𝑃𝑅(𝐴𝑝−𝐴𝑅)−𝑃𝐶𝐴𝑃𝑐𝑢𝑠ℎ−𝐶𝑡𝑣+𝑚𝑔𝑐𝑜𝑠(𝜃𝑚)

𝑚
                               (3.14) 

The pressure in either end of the cylinder is developed through the compression of 

fluid in those volumes.  This physical relationship between fluid flow into a volume and 

the resulting changes in pressure is described by the capacitance equation for the volume 

at the cap end of the cylinder: 

             
𝑑𝑃𝐶

𝑑𝑡
=

𝐴𝑝𝑣−𝑄𝑐

𝐶𝑓𝑐

                     (3.15) 

and the volume at the rod end of the cylinder: 

          
𝑑𝑃𝑅

𝑑𝑡
=

𝑄𝑅−(𝐴𝑝−𝐴𝑅)𝑣

𝐶𝑓𝑅

                        (3.16) 

where v is the velocity of the piston, and 

Cfc and CfR are the fluid capacity of the cap and rod end volumes, respectively.  

Fluid capacitance is defined generally as: 

𝐶𝑓 =
𝑉

𝛽
            (3.17) 

where β is the bulk modulus of the fluid, and  

V is the volume of the container holding the fluid (Kulakowski et al., 2007). 

For the model, the volume used to calculate the cap end capacitance, Cfc was held 

constant at the length of the cushion spear times the area of the piston to represent the 
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fluid volume when cushioning begins. For the rod end capacitance CfR, the volume used 

was calculated as the stroke length of the cylinder minus the length of the cushion and an 

estimated piston thickness. The volumes were defined this way because the capacitance 

of the system has the greatest impact on the system dynamics at the start of the 

cushioning phase.  

In the end, the dynamic model of the cylinder cushioning system during retraction 

consisted of a system of four state equations with v, x, Pc, and PR as the state variables 

(Figure 3.3). The rod and cap end flow rates, Qc and QR, were calculated using equations 

3.3 and 3.12 for the retracting cylinder. Matlab script was developed to solve this system 

of equations using the ode45 function, which is a numerical solver utilizing the explicit 

Runge-Kutta (4,5) formula, called the Dormand-Prince pair (Shampine, 1997). The 

model was first simulated for three seconds in a pre-cushioning state with Rviscous and 

Rorifice set to zero. This step was done to determine the initial conditions when cushioning 

started. The value of the state variables at the end of the pre-cushioning state were used 

as the initial conditions for the cushioning stage simulation. 

 

Figure 3.3: The final system of state equations describing the dynamics of the system. 
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An additional style of cushioning spear used in industry is the piccolo spear 

(Anon, 1973). The piccolo spear has a continuous external diameter with a hole bored 

through the spear axial center and multiple small holes drilled through the sides of the 

spear through which orifice flow can pass. As the spear enters the discharge port, the 

holes in the side of the spear are gradually cut off increasing the metering resistance of 

the exiting fluid (Figure 3.4). 

 
Figure 3.4: Cylinder with a piccolo style cushioning spear (spear shown as a cutaway). 

 

For the piccolo spear, fluid flow takes one of two parallel paths. The fluid leaving 

the cylinder’s cap end either flows through the three piccolo holes and out through the 

discharge port or the fluid moves through the annular clearance between the piccolo spear 

and the wall of the cushioning cavity. These two paths were modeled as two sets of fluid 

resistances in parallel (Figure 3.5). 

The upper path with three parallel orifices represents the fluid flowing through the 

three piccolo holes and out through the discharge port. The lower path represents the flow 

through the annular clearance and this flow was treated similarly to the annular flow 

analyzed for the previous spear shapes.  
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Figure 3.5: Conceptualized flow path with resistances. 

Due to the consistent outer diameter of the piccolo spear, the clearance value used 

in Rorifice and Rviscous for the lower branch was constant at dcav-dcur. Alternatively, for the 

upper branch, the effective area of the piccolo holes varies with the insertion depth of the 

spear (Figure 3.6). 

 

Figure 3.6: Piccolo spear with orifices fully blocked, partially blocked and open. 

The flow through each of the three piccolo holes was calculated based on the 

status of the orifice opening, whether it was open, partially blocked or closed. For a fully 

open case, the previously used orifice resistance equation was used. 

𝑅𝑜𝑟𝑖𝑓𝑖𝑐𝑒 =
𝜌

2𝐴𝑝𝑥
2 𝐶𝑑

2             (3.6) 
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where Apx is the area of the orifices bored through the side of the piccolo spear. 

If the orifice is fully blocked, the resistance calculation becomes undefined as Apx 

goes to zero, so it is removed from the calculation at this point. The final case, 

representing a partially blocked orifice, requires an additional equation for the area of a 

circular port as a function of the portion covered (Manring, 2005). 

                                           𝐴𝑥 =
𝜋

8
𝐷2 + (𝜀 −

𝐷

2
) √(𝐷 − 𝜀)𝜀 +

𝐷2

4
sin−1 (

2𝜀

𝐷
− 1)                              (3.18) 

where  

 D is the diameter of the orifices bored into the sidewall of the spear, and 

 ε is the length of circular opening that is uncovered. 

 

Figure 3.7: Partially blocked orifice, the remaining open area is shown with shading (Manring, 2005). 

 Finally, because parallel branches in a fluid system must have an equal pressure 

drop across each branch, the pressure drops across each branch can be set equal to one 

another. 

𝑃𝑐 = 𝑅𝑜𝑟𝑖𝑓𝑖𝑐𝑒_𝑒𝑞𝑄1
2 = 𝑅𝑜𝑟𝑖𝑓𝑖𝑐𝑒𝑄2

2 + 𝑅𝑣𝑖𝑠𝑐𝑜𝑢𝑠𝑄2     (3.19) 

where Q1 and Q2 represent the flow through the upper and lower branch 

respectively, and  

Rorifice_eq is the combined resistance of the three parallel orifice resistances 

mathematically represented as: 

          𝑅𝑜𝑟𝑖𝑓𝑖𝑐𝑒_𝑒𝑞 = [
1

√𝑅𝑜𝑟𝑖𝑓𝑖𝑐𝑒1+√𝑅𝑜𝑟𝑖𝑓𝑖𝑐𝑒2+√𝑅𝑜𝑟𝑖𝑓𝑖𝑐𝑒3
]

2

   (3.20) 

D

ε 
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where Rorifice1, Rorifice2, and Rorifice3 equal the resistances of each of the three piccolo holes 

shown in Figure 3.5. 

Solving for Q1, Q2, and the combined flow rate leaving the cap end, Qc. 

𝑄1 = √
∆𝑃

𝑅𝑜𝑟𝑖𝑓𝑖𝑐𝑒_𝑒𝑞
         (3.21) 

𝑄2 =
−𝑅𝑣𝑖𝑠𝑐𝑜𝑢𝑠+√𝑅𝑣𝑖𝑠𝑐𝑜𝑢𝑠

2 −4𝑅𝑜𝑟𝑖𝑓𝑖𝑐𝑒(∆𝑃)

2𝑅𝑜𝑟𝑖𝑓𝑖𝑐𝑒
    (3.22)  

 

𝑄𝑐 = 𝑄1 + 𝑄2                                                                  (3.23) 

where ΔP is the pressure drop between the cap end pressure and the pressure in the 

cushioning cavity. 

The remaining equations defining the state of the system, shown in Figure 3.3, do 

not need to be altered for the piccolo spear. 

An additional model was developed to simulate a cylinder in extension. This 

model was very similar to the retraction model with variations focused on changing the 

location where the cushioning spear is inserted from the discharge port to the case. This 

research project was focused on cylinder in retraction, but similar results are expected for 

a cylinder in extension.  

Analytical Development of Cushion Orifice Area Profile for Constant Deceleration  

 An analytical approach was used to find cushion orifice area profiles which 

theoretically should result in constant deceleration.  These profiles were then simulated 

using the dynamic cushion model described above.  This analytical approach was pursued 

to provide confidence in the results of the dynamic model by entering the area profile into 
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the dynamic model and comparing the resulting velocity profile with that expected from 

constant deceleration.  

The method used for analysis was inspired by work done by John Berninger 

(Anon, 1973). Berninger presented an analytical approach to calculate the orifice area as 

a function of cushion insertion depth which would produce a constant deceleration during 

cylinder cushioning. What was most intriguing and useful about Berninger’s approach is 

that the constant deceleration constraint transforms the differential equations describing 

cushioning dynamics to an algebraic equation. The constant deceleration constraint based 

on the idea that, in industry, the ideal cylinder cushion will have a smooth, constant rate 

of deceleration. This performance is ideal because jolting during the deceleration of a 

cylinder, perhaps operating an excavator boom, could be felt by the operator causing a 

distraction. Through applying this constraint, when summing the forces on the cylinder 

piston-rod assembly, the acceleration can be set to a constant value and the equation 

becomes algebraic. Mathematically, this is represented as: 

𝑃𝑟(𝐴𝑝 − 𝐴𝑟) − 𝑃𝑐𝐴𝑝 + 𝑊 = 𝑚𝑎𝑐    (3.24) 

where  

Pr is the rod end pressure,  

Pc is the cap end pressure,  

Ar and Ap are the areas of the piston and rod respectively, 

W is the weight of the piston-rod assembly along with any externally mounted 

load, 
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m is the mass of the piston-rod assembly along with any load applied to the 

cylinder, and  

ac is the constant cylinder deceleration. 

which, when solved for the cap end pressure becomes: 

𝑃𝑐 =
1

𝐴𝑝
[𝑃𝑅(𝐴𝑝 − 𝐴𝑅) + 𝑊 − 𝑚𝑎𝑐]    (3.25) 

Next the orifice equation is used to calculate the orifice area that will produce the 

cap pressure required for constant deceleration from equation 3.24.  

𝐴0 =
𝑄𝑐 

𝐶𝐷√
2(𝑃𝑐−𝑃𝑒)

𝜌

     (3.26) 

where  

Pe is the exhaust pressure in the discharge port,  

CD is the discharge coefficient based on the geometry of the orifice, and  

ρ is fluid density.   

Both pressures, the discharge coefficient, and the fluid density are constant. The cap end 

flow rate, QC, is equal to the piston velocity multiplied by the piston area, since the fluid 

is assumed to be incompressible. The piston velocity is changing with time since the 

piston-rod assembly is being decelerated, so based on basic physics, the cap end flow rate 

as a function of time is mathematically: 

𝑄𝑐(𝑡) = 𝑣(𝑡)𝐴𝑝 = (𝑎𝑐𝑡 + 𝑣0)𝐴𝑝   (3.27) 
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where v(t) is the piston velocity at time t, and 

vo is the initial velocity of the piston upon the beginning of the cushioning region. 

Substituting equations 3.25 and 3.27 into equation 3.26 provides an equation for the 

orifice area as a function of time, t, from the start of the cushioning phase of the 

retraction stroke. 

𝐴0 =
(𝑎𝑐𝑡+𝑣0)𝐴𝑝

𝐶𝐷

√
1

2
𝜌𝐴𝑝

𝑃𝑅(𝐴𝑃−𝐴𝑅)+𝑊−𝑚𝑎𝑐−𝑃𝑒𝐴𝑝
    (3.28) 

The cushioning time can be related to cushion position using:   

𝑥(𝑡) =
1

2
𝑎𝑐𝑡2 + 2𝑣0𝑡 + 𝑥0    (3.29) 

where  

x(t) is the position of the piston as a function of time,  

v0 is the initial velocity of the piston upon entering the cushioning region, and 

x0 is the displacement position of the piston upon entering the cushioning region, 

and was defined to be zero.  

The position equation was solved for time, t, using the quadratic formula:  

𝑡 =
−2𝑣0+√4𝑣0

2+8𝑎𝑐𝑥

2𝑎𝑐
     (3.30) 

which was substituted for t in equation 3.28. This analysis resulted in the relationship of 

the orifice area between the cushion spear and the sidewall of the cushioning cavity as a 
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function of insertion depth for constant deceleration with constant supply and exhaust 

pressures.  

The purpose of developing this relationship was to give insight into what cushion 

spear would ideally result in constant deceleration.  In addition, by applying this ideal 

cushion area-depth relationship to the dynamic model, the resulting velocity profile could 

be compared against that resulting from constant deceleration and serve as confirmation 

of the results from the dynamic model. Comparing these results provided confidence in 

the fidelity of the dynamic model.  

Cushion Design Optimization  

Using the dynamic model of the cylinder cushioning system, a cushion design 

optimization procedure was implemented to find the spear dimensions that, for the 

selected style of spear, would result in a velocity profile that best matched the desired 

cylinder deceleration performance as specified by the customer. For each spear type, a 

limited set of geometric dimensions thought to have the greatest effect on cushioning 

performance were adjusted through optimization (Table 3.1). The dimensions for the first 

three spears types were defined in Figure 3.7. For the piccolo cushion design, D 

represents the diameter of the spear, L is the length, t is the wall thickness and p is the 

diameter of the orifices bored through the wall of the spear (Figure 3.6). 
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Table 3.1: Spear dimensions varied by the optimization program. 

Stepped Tapered Parabolic Piccolo 

D1 D1 D1 D 

D2 D2 D2 L 

D3 D3 D3 t 

L1 L1 L1 p 

L2 L2   

L3    

 

A genetic algorithm (GA) was used for cushion design optimization. With this 

approach, the GA enabled a global search of the design space for the dimensions leading 

to cushioning velocity profiles that best matched the desired performance characteristics 

(Coello et al., 2007). Genetic algorithms solve optimization problems based on a process 

that imitates biological evolution. The GA organizes the problem into a population of 

individual solutions, each of which is represented by a chromosome composed of the 

solution parameters. The genetic algorithm evaluates the fitness of each individual 

solution in the population. With every generation, the population moves toward an 

optimized solution by combining the chromosomes of individual solutions (breeding) that 

have a good fitness. To keep the optimizer from being trapped in local minima, mutations 

are applied at each generation to diversify the search of the solution space. 

The dynamic model was embedded into the genetic algorithm, and solution fitness 

was determined by comparing the resulting velocity profiles to a desired velocity profile 

generated from user inputs including the initial speed and deceleration time. To compare 

the simulated velocity profile to the desired profile, the root mean square error (RMSE) 

was calculated and used as the solution fitness to determine how well the spear 

dimensions could produce velocity results matching the desired performance. The GA 

used the resulting mean square error as a fitness function which served as the basis for 
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generating the next set of dimensions to be simulated. The process repeated until the 

RMSE of sequential simulations stabilized, and the variation was less than 10-6 feet per 

minute. The population size was 200 individuals, and the mutation rate was 20%. 

Experiment Methodology 

With the completion of the dynamic model and optimization procedure, numerous 

tests were run to evaluate the simulated results.  The dynamic cushion model was used to 

simulate the relationship of cushion orifice area to spear depth for constant deceleration. 

During the development of this relationship, two assumptions were made: the fluid 

pressure in both ends of the cylinder was constant and viscous effects were neglected. 

Therefore, to effectively compare the results of the dynamic model to the expected results 

of the analytically designed cushioning spear, adjustments were made to the system being 

represented in the dynamic model. To maintain constant fluid pressure, the metering 

orifices were opened to 0.5 in. To remove the viscous effects, the fluid viscosity was set 

to zero.  

Table 3.2: System parameters entered into the optimization program. 

Bore Diameter (in) 5 Final Speed (fpm) 0 

Rod Diameter (in) 2 Deceleration Time (s) 1.5 

Cushion Cavity Diameter (in) 1 Fluid Density (kg/m3) 861 

Max Spear Length (in) 5 Dynamic Viscosity (Pa-s) 0 

Metering Orifice Diameters (in) 0.5 Viscous Damping Coefficient [N/(m/s)] 100 

Additionally, the initial velocity of the piston assembly and the required rate of 

deceleration were specified. Based on the dimensions of the cylinder, the steady state 

velocity was found to be 34.44 fpm. Therefore, with a final velocity of 0 fpm and a 

deceleration time of 1.5 seconds, the cushioning deceleration was calculated to be 0.12 

m/s2 or 22.96 feet/min2.  
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 The shape of the spear design generated by the analytical equation cannot be 

described by any of the spear types common to industry. Thus, tests were run to see 

whether the constant deceleration response could be replicated with the tapered or 

parabolic spear types. To calculate the tapered and parabolic spear profiles that would 

best match the results of the analytical equation, linear and quadratic regression curves 

were fit to the orifice area-spear depth function. Additionally, to investigate the effect of 

the assumptions made during the development of the analytical equation, the dimensions 

of the analytically developed cushioning spear were simulated with viscous effects 

included. 

 To investigate how well the commonly-used spear types could achieve a constant 

deceleration velocity profile, the cushion design optimization was run for each of the four 

spear shapes using the same system parameters (Table 3.2). The difference between the 

desired velocity profile and the response produced by the optimized result for each spear 

type was quantified by calculating the root mean square error (RMSE). The calculated 

RMSE value serves as a performance metric for the common spear types. 

Lastly, the optimization process works by repeatedly running the model while 

varying spear dimensions (shown in Figure 3.2) such as cushion spear diameter and 

length. Due to the nature of this process, the optimizer produced different designs each 

time the process was run. Therefore, the cushion design optimization procedure was run 

ten times for each of the four cushion spear design types to capture the range of results 

that the optimizer produced using the system parameters shown in Table 3.2.   
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Results 

Analytical Analysis 

 By entering the parameters listed in Table 3.2 into equation 3.28, the orifice area 

required to produce constant deceleration was found along the length of the spear.  From 

this relationship, the necessary spear diameter along the length of the spear was found 

(Figure 3.8). The diameter profile appeared linear for the first portion of the spear and 

curved near the end.  This observation means that the ideal shape is a mixture of the 

tapered and parabolic shapes currently used. 

 

Figure 3.8: Constant deceleration spear design showing spear diameter as a function of length. 
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Figure 3.9: Velocity (a) and pressure (b) results of entering the analytically calculated spear profile 

into the dynamic model. 

When this shape was entered into the dynamic model and simulated, the resulting 

velocity profile matched the desired response very closely (Figure 3.9). The rapid 

oscillations at the beginning of the cushioning phase were due to the change in the 

dynamics as the system switches from not being cushioned to additional cushioning 

resistances being added to the system in a step-like manner. The oscillations represent the 

interaction between the fluid capacitance and the rod-piston-load mass. The RMSE being 

the simulated response and the expected response was 1.47 x 10-3 m/s (0.29 fpm) which 

is quite low indicating a good match between the simulation and the design velocity 

profile.  

While the results of running the analytically ideal cushion spear design produced 

the expected result, the equation used to describe this design does not match with any 

commonly used spear shapes (Figure 3.2). Therefore, since the parabolic and tapered 

spear shapes most closely matched the ideal cushion area-spear depth relationship, 

quadratic and linear regression lines were fit to the relationship. To represent the tapered 
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spear type, the analytical data was fit with two linear regressions, one from a length of 0 

to 65 mm (0 to 2.56 in.) and the other from 65 to 102 mm (2.56 in. to 4 in.).  The two 

resulting lines were used because of the curved nature of the data and because many 

tapered cushioning spears do have multiple sections with different taper angles along 

their length. These regression curves fit the ideal relationship with coefficient of 

determination, R2, value of 0.998 for both lines (Figure 3.10).   The second order 

polynomial regression resulted in a parabolic spear shape and had an R2 value of 0.9997 

(Figure 3.11). 

 
Figure 3.10: Analytical data fit with two linear regression curves. 
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Figure 3.11: Analytical data fit with a quadratic regression curves. 

Figure 3.12: Velocity (a) and pressure (b) results of the tapered regression curve fit to analytical 

data. 
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Figure 3.13: Velocity (a) and pressure (b) results of the parabolic regression curve fit to analytical 

data. 

 When the dynamic cushion model was simulated with the tapered and parabolic 

spear shapes arising from the regression curves, the resulting velocity profiles matched 

the constant deceleration profiles, but with some departure from that observed in the 

simulations with the ideal relationship.  Specifically, in the case of the tapered spear, the 

simulated velocity profile started to depart from the desire at the end of the first taper 

segment (as observed at about 0.4 seconds; Figures 3.12) and then near the end of the 

second segment (as observed at about 0.75 seconds). The start of the flat velocity at about 

1.25 seconds signals the end of the cushioning spear.   For the parabolic spear, the 

simulated velocity profile closely matched the desired profile until about 0.75 seconds 

(Figure 3.13).   This type of response in which the deceleration is reduced near the end of 

the spear is due to the relationship between spear area and flow rate not resulting in 

sufficient cushion pressure to continue to decelerate piston-rod assembly as desired. The 

error in the velocity profiles of the tapered and parabolic spears matched the error in the 

diameter of the spears (Figure 3.14). A positive error means the diameter of the tapered 
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and parabolic spears was larger than the analytically developed spear and a negative error 

means that the diameter was smaller.  

The simulated velocity profile for the parabolic spear had an RMSE of 14.9x10-3 

m/s (2.94 fpm) and that of the tapered spear was 21.7 x 10-3 m/s (4.28 fpm). These errors 

were substantially higher than that of the spear with the ideal shape. The variation in the 

calculated RMSE value demonstrates the sensitivity of the system to variations in the 

geometric profile of the cushioning spear, even variations that are less than typical 

manufacturing tolerances. This means that to truly achieve constant deceleration, 

manufacturers must take care to keep the spear profile close to the ideal shape and 

consider the trade-offs between manufacturing tolerances and the need to meet a desired 

velocity profile. 

Figure 3.14: Dimensional error between the two spear types developed from the regression fits and 

the spear type developed analytically. 
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Achieving the desired results of entering the analytically developed cushion spear 

into the dynamic model provided confidence in the fidelity of the dynamic model. 

However, cushioning cannot solely be described by an orifice as was the case with the 

analytical approach. To increase the fidelity of the model, the viscous effects of laminar 

flow through the annular clearance was included. When viscous effects were included for 

a fluid with a viscosity of 47 cP, the simulated velocity profile of the ideal spear shape 

was no longer linear and the RMSE value increased 41 x 10-3 m/s (8.01 fpm; Figure 

3.15). The tapered and parabolic spear types performed similarly to the analytically 

developed curve when viscous effects were included. Therefore, an optimization 

procedure was employed to select the dimensions of a cushioning spear that, with viscous 

effects included, would best meet the desired velocity profile. 

Figure 3.15: Velocity response of the analytically designed cushioning spear with viscous effects 

included. 
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Cushion Design Optimization 

To analyze and compare the simulated results for multiple spears designs with 

varied dimensions, the cushion design optimization procedure utilized the RMSE value 

calculated by measuring the difference between the simulated velocity profile and the 

desired velocity profile. The calculated error includes a square operation, meaning the 

calculation does not consider whether the error is located above or below the desired 

velocity. Because of this effect, the optimizer finds many possible “best” solutions 

resulting in a family of results that vary between repeated runs. Ten applications of the 

design optimization procedure to the parabolic spear shape produced RMSE values 

ranging from 21.4x10-3 - 30.8x10-3 m/s (4.22-6.06 fpm) with an average error of 25.2x 

10-3 m/s (4.96 fpm) and a standard deviation of 3.2x10-3 m/s (0.63 fpm).  The solutions 

tended to fall within a 25.4x10-3 m/s (5 fpm) band for most of the cushioning phase 

(Figure 3.16). Detailed results including the dimensions and RMSE values produced from 

each of the ten runs are included in the appendix.  

 

Figure 3.16: Optimized velocity results for a parabolic cushioning spear. 
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Plotting the results from all ten of the test runs shows the variation in the 

responses produced by the optimizer; however, to compare the responses of the various 

spear shapes it is valuable to examine the results of a single run, Figure 3.17.   While the 

velocity profile is not linear, the shape of the response is smooth with the final velocity of 

the piston reduced by over four times. 

 

Figure 3.17: The velocity (a) and pressure (b) response of the optimized parabolic profile. 

A similar process was conducted for the stepped profile cushion spear type. The 

RMSE of the resulting velocity profiles ranged from 22x10-3 – 28x10-3 m/s (4.35-5.52 

fpm) with an average error of 25x10-3 m/s (4.93 fpm) and a standard deviation of 1.9x10-3 

m/s (0.38 fpm). The location of the sudden drops in velocity caused by the stepped spear 

shape shifts as the cushion design optimization procedure finds designs with steps of 

varying length (Figure 3.18).  
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Figure 3.18: Optimized velocity results for a stepped cushioning spear. 

  In analyzing the response of a single run, the differences between the spear types 

become more obvious. Sudden changes in the diameter of the stepped spear shape lead to 

points along the velocity response where the piston speed drops abruptly, Figure 3.19. 

The velocity reduction upon the start of cushioning is more pronounced because the 

design optimizer selected spear dimensions with larger starting diameters when compared 

to the parabolic and tapered spear types.

 

Figure 3.19: The velocity (a) and pressure (b) response of the optimized stepped profile. 
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When optimization was performed with the tapered cushion, the resulting velocity 

profiles were more consistent than those observed with the other cushion types (Figure 

3.20). The resulting velocity profiles had RMSE ranging from 22.9x10-3 – 26.9x10-3 m/s 

(4.51-5.31 fpm) with the average error being 24.4x10-3 m/s (4.81 fpm) and a standard 

deviation of 1x10-3 m/s (0.20 fpm). 

Figure 3.20: Optimized velocity results for a tapered cushioning spear. 

 The tapered and parabolic spear types produced responses with very similar, smooth 

shapes. However, the results of the tapered spear indicate that the piston decelerates 

faster and deviates further from the desired velocity profile when compared to the 

parabolic spear, Figure 3.21.  
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Figure 3.21: The velocity (a) and pressure (b) response of the optimized tapered profile. 

Lastly, the piccolo style spear produced results similar to the stepped spear 

(Figure 3.22), but with substantantially more error and variation in error. The RMSE 

values ranged from 22.4x10-3 - 33.6x10-3 m/s (4.41-6.61 fpm) with an average error of 

25.8x10-3 m/s (5.07 fpm) and a standard deviation of 3.7x10-3 m/s (0.73 fpm). 

Figure 3.22: Optimized velocity results for a piccolo shaped cushioning spear. 
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The velocity and pressure results of the piccolo profile were similar to those associated 

with the stepped spear shape, Figure 3.23. The sudden drop in velocity occurred as each 

of the piccolo holes were cut off.  

Figure 3.23: The velocity (a) and pressure (b) response of the optimized piccolo profile. 

The calculated RMSE values for the four optimized spear types, the analytically 

produced spear geometry and the two regression curves are compared in Table 3.3. The 

optimized spear types include viscous effects while the analytical spear along with the 

parabolic and tapered approximations do not include viscous effects. The results indicate 

that the effects of including a viscous fluid of cushioning were represented in the size of 

the error between the simulated velocity profile and the desired velocity profile. 

Table 3.3: RMSE values for the various spear types tested 

Spear Type RMSE (fpm) Standard Deviation (fpm) 

Stepped 4.93 0.38 

Tapered 4.81 0.20 

Parabolic 4.96 0.63 

Piccolo 5.12 0.75 

Analytically Developed Cushion 0.29 - 

Tapered Fit to Analytical Curve 4.28 - 

Parabolic Fit to Analytical Curve 2.94 - 
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Conclusions 

From the results of this research, it can be concluded that: 

1. Spear profile produced by the analytical model to achieve constant 

deceleration results in simulated cushion velocity results representing nearly 

constant deceleration based the dynamic model of the cushion system.  The 

correspondence between the two approaches lends credibility to the fidelity of 

the dynamic cushion model.  

2. By neglecting the viscous effects during the development of the analytical 

equation, the system being modeled does not fully capture the effects of 

cushioning.  

3. The profile produced by the analytical analysis was a mixture of two common 

spear types with the first part representative of a tapered spear while the 

second portion was more similar to a parabolic spear. When the results of the 

analytical analysis were fit with more common tapered or parabolic curves, 

the resulting velocity responses deviated from constant deceleration 

responses. Therefore, the velocity response of the cushioning spears is highly 

sensitive to changes in the spear profile. 

4. Under conditions where the pressures in each end of the cylinder were held 

constant, the four common spear types performed very similarly. The main 

difference indicated by the results was that the parabolic and tapered spear 

types produce smoother velocity profiles.  
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5. The results of the optimization tests demonstrated that the optimization 

procedure was effective in selecting spear shapes that most closely follow the 

desired velocity profile.  

 The results of this project have potential to impact manufacturers of cylinders 

with cushions. Where previous cushion designs were based on a more time consuming 

iterative process done by the designer, this dynamic modelling approach and cushion 

design optimization procedure can enhance the design process by providing more 

information to the designer and their customers. Also, with the sophistication of modern 

manufacturing equipment, it is possible to manufacture the new cushion designs 

developed using the approach.  
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CHAPTER 4. GENERAL CONCLUSIONS AND SUGGESTED 

WORK 
 

From the results obtained from this research, the following general conclusions were 

drawn: 

1) Dynamic modeling of the cylinder cushion dynamics with associated insights 

have the potential to make an impact on cylinder manufacturers which have 

design scenarios where cylinder cushioning and cushion performance is 

important. Where previous cushion designs were based on design rules-of-thumb 

and trial-and-error, the use of dynamic models and simulation can save time, 

effort, and money. 

2) The results of simulating the analytically developed cushion spear matched what 

was expected, thus providing confidence in the results of the dynamic model. 

3) The dynamic modeling and simulation of cushions resulted in velocity and 

pressure profiles that can provide insight to designers and their customers.  

4) Cushion design optimization was effective in selecting spear shapes that most 

closely follow the desired velocity profile even with the additional fidelity 

associated with models of laminar flow though the annular clearance between the 

cushion spear and cushion cavity side wall.    

The following items are suggested for future research that would build upon this project:   

1) Future research should focus on the development of the spear shape produced 

through the analytical analysis. While the current analysis requires the assumption 

of constant system pressures and a non-viscous fluid, further research could 
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develop an equation that can compensate for fluctuating pressures in the system 

and include the viscous effects that proved to be essential. 

2) A sensitivity analysis should be performed to identify which of the cushioning 

spear dimensions has the largest impact on the velocity and pressure response. 
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APPENDIX-DETAILED RESULTS OF DESIGN OPTIMIZATION 

PROCEDURE 

Full results of running the optimizer ten times for each spear type. Dimensions are in inches, error 

values and statistical results are in feet per minute. 

Stepped D1 D2 D3 L1 L2 L3 RMSE Average 

1 0.9667 0.9671 0.9774 1.1808 1.4615 1.9387 4.5977 3.88522 

2 0.9678 0.9703 0.9868 1.9529 1.9895 1.3703 3.3611  Std Dev 

3 0.9669 0.9696 0.9803 1.3426 1.76 1.4444 4.346  0.4461 

4 0.9693 0.9708 0.9824 1.3326 1.9501 1.7616 4.418   

5 0.9662 0.9665 0.98 1.2618 1.9923 1.6401 3.7893   

6 0.9686 0.973 0.989 1.9627 1.8763 1.5117 3.8494   

7 0.9651 0.9653 0.9802 1.3816 1.9815 1.3788 3.6171   

8 0.9631 0.9633 0.9774 1.495 1.9999 1.9353 3.4064   

9 0.9665 0.9673 0.9819 1.838 1.8056 1.3602 3.3129   

10 0.965 0.9653 0.9769 1.1847 1.6885 1.7241 4.1543   

Tapered D1 D2 D3 L1 L2   RMSE Average 

1 0.958662 0.972051 0.987304 2.633086 2.96766   4.2448 4.29468 

2 0.960547 0.96828 0.981781 2.998226 2.242537   4.1561  Std Dev 

3 0.955986 0.975014 0.979235 1.86028 2.894139   3.9711  0.1791 

4 0.959503 0.975597 0.985813 2.537318 2.992697   4.4173   

5 0.958726 0.975782 0.9879 2.939935 2.93439   4.2652   

6 0.960879 0.966813 0.985897 2.720684 2.987006   4.23   

7 0.956208 0.982711 0.987917 2.928572 2.872868   4.5334   

8 0.958839 0.972095 0.983382 2.196777 2.962114   4.212   

9 0.960372 0.969106 0.982863 2.26153 2.698748   4.2899   

10 0.964018 0.970932 0.98184 2.920587 2.425566   4.627   

Parabolic D1 D2 D3 L1     RMSE Average 

1 0.9650 0.97 0.986 4.378     4.0422 3.7429 

2 0.962392 0.967013 0.98989 5.921584     3.1861  Std Dev 

3 0.96569 0.971378 0.988025 4.070084     4.5233  0.6983 

4 0.963291 0.976112 0.989864 4.475033     5.2846   

5 0.965089 0.966156 0.988594 4.901842     3.1612   

6 0.963513 0.966658 0.988495 5.927051     3.3371   

7 0.959845 0.972443 0.989362 5.408715     4.0253   

8 0.964556 0.968138 0.989919 5.86767     3.6534   

9 0.965915 0.967058 0.989703 4.927755     3.3245   

10 0.965076 0.96509 0.989953 5.189492     2.8913   
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Piccolo D L t p     RMSE Average 

1 0.9820 5.0725 0.3195 0.1015     6.6082 5.07266 

2 0.9779 5.9823 0.4781 0.1051     4.8229  Std Dev 

3 0.9751 4.0759 0.7869 0.1014     5.3530  0.7251 

4 0.9784 5.9631 0.8720 0.1071     4.8059   

5 0.9775 6.1049 0.3813 0.1059     4.6324   

6 0.9749 4.5265 0.6831 0.1012     4.6760   

7 0.9776 6.1570 0.7059 0.1076     4.5758   

8 0.9858 5.3671 0.1142 0.1167     6.2600   

9 0.9758 4.6144 0.3327 0.1192     4.4075   

10 0.9753 4.6662 0.8395 0.1012     4.5849   
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