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ABSTRACT 

 Weed management is vitally important in crop production systems. However, 

conventional herbicide-based weed control can lead to negative environmental impacts. 

Manual weed control is laborious and impractical for large scale production. Robotic 

weeding offers a possibility of controlling weeds precisely, particularly for weeds growing 

close to or within crop rows. The fusion of two-dimensional textural images and three-

dimensional spatial images to recognize and localize crop plants at different growth stages 

were investigated. Images of different crop plants at different growth stages with weeds were 

acquired. Feature extraction algorithms were developed, and different features were extracted 

and used to train plant and background classifiers, which also addressed the problems of 

canopy occlusion and leaf damage. Then, the efficacy and accuracy of the proposed methods 

in classification were demonstrated by experiments. Currently, the algorithms were only 

developed and tested for broccoli and lettuce. For broccoli plants, the crop plants detection 

true positive rate was 93.1%, and the false discover rate was 1.1%, with the average crop-

plant-localization error of 15.9 mm. For lettuce plants, the crop plants detection true positive 

rate was 92.3%, and the false discover rate was 4.0%, with the average crop-plant-

localization error of 8.5 mm. The results have demonstrated that 3D imaging based plant 

recognition algorithms are effective and reliable for crop/weed differentiation. 
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CHAPTER 1. GENERAL INTRODUCTION 

 

1.1 Introduction 

In recent years, with the development of greater health consciousness, consumers are 

becoming more interested in vegetables, especially natural, organic vegetables. In 2013, U.S. 

vegetable production resulted in a revenue of 11.4 billion dollars for fresh products, up 14 

percent from 2012, with a total harvested area of 1.63 million acres (USDA-NASS, 2014). In 

organic vegetable production, there were 1.2 billion dollars in total for fresh productions, 

with total harvested area of 164,000 acres (USDA-NASS, 2014).  

One important factor that affects crop yield is weed competition. Weeds are very 

competitive in obtaining moisture, sunlight, and nutrients, all of which adversely affect crop 

yield and quality. The National Organic Farmers’ Survey conducted by Walz (2004) reported 

that organic farmers indicated weeds were one of the major causes of production losses, 

second only to weather-related losses. In addition, weed management is one of the most 

costly operations in vegetable production, especially for organic farming. Organic farmers 

have major production costs associated with weed control, which are mainly caused by the 

reliance on manual weeding. Earthbound Farms, the largest producer of organic vegetables in 

North America, reported that some of their farmers spent up to $1,000 per acre to control 

weeds manually (Zimdahl, 2013). It is obvious that labor costs have made manual weed 
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control impractical. For some farmers, moreover, the use of herbicides is becoming less 

desirable due to the emergence of herbicide-resistant weeds, the environmental impact of 

herbicide runoff, as well as societal demand for chemical-free foods (McErlich & Boydston, 

2014). Realizing that, many tools have been developed to increase mechanical weeding 

efficacy in recent years.  

Inter-row (between crop rows) mechanical weeding is relatively easy to achieve by 

using commercial tools. However, intra-row (within or close to crop rows) mechanical 

weeding has a risk of damaging crop plants. To date, there are limited tools for intra-row 

weeding in vegetable crops with desirable weed control efficacy. With the advancement of 

computational technology, automated robotic weeding offers a possibility of controlling 

weeds in a precise fashion, particularly for weeds growing near crops or within crop rows. 

Since identification and localization of plants have not yet been fully automated, research to 

address these problems is thus in great demand.  

 

1.2 Robotic Mechanical Weeding 

Mechanical weeding currently is the most promising way to control the weeds in non-

chemical situations, especially in organic farming. Manual weeding is a traditional solution, 

using hand or hand-held tools. It is one of the most environmentally friendly weed 

management methods. However, manual weeding becomes impractical due to the labor costs. 

The efficacy of hand weeding is also limited by the operator’s experience and skill. In 1975, 
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short-handled hoe weeding was permanently banned by the California Industrial Safety 

Board. In 2004, the ban was extended to manual weeding.  

With the advancement of agriculture technology, as well as people’s growing demand 

for healthy living, many non-chemical weed management tools have been developed for 

large-scale use (Finney, 2008), in which very good performance was obtained for inter-row 

weeding (between crop rows). Most of the farmers managed weeds in one of three methods: 

burying, cutting, or uprooting. Machines have difficulty in locating space between crops in 

crop rows without human interaction. Only a few machines can accomplish intra-row 

weeding, which uses a selective mechanism or material, such as finger weeders, torsion 

weeders, and spinning brush/tine weeders. Among these, the brush weeders were reported to 

be the most promising technology because they could uproot, bury, and break weeds 

(Upadhyaya & Blackshaw, 2007). The Eco-weeder is a brush-type intra-row mechanical 

weeder that is widely used due to its simplicity as well as its high weed control effectiveness. 

But the Eco-weeder requires a human operator to guide two rotating brushes in and out of the 

crop row. Although such mechanical weeding tools were reported to be effective in 

controlling intra-row weeds, they will cause crop damage unless their end effectors are 

accurately guided (Slaughter, 2008). 

In contrast, the use of automated robotic weeding has great potential for reducing the 

economic and environmental cost while providing high performance in intra-row weed 

control (Thompson et al., 1991). Several weeding robots have been developed (Slaughter, 
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2008), which have the ability to distinguish plants from weeds, as well as control weeds with 

actuators. 

Three operating modes are widely applied on agricultural weeding robots (Slaughter, 

2008). The first mode is based on row-following systems, which is used for locating crop 

rows then accordingly control carriers’ steering and weeding actuators’ positions at the same 

time. Several real-time crop row detection methods were developed. For instance, a method 

described by Søgaard & Olsen (2003) took advantage of infrared images as well as 

optimization algorithms in order to identify crop rows, and obtained an accuracy of ±12 mm. 

The limitation of this mode is that only crop rows can be found, without identifying crops. 

Thus, this method can only accomplish inter-row weeding.  

The second mode is based on GPS mapping systems. Some research groups equipped 

planters with RTK GPS to generate crop maps during planting (Ehsani, Upadhyaya, & 

Mattson, 2004; Sun et al., 2010). With this method, only plants detected at pre-recorded 

planting positions were recognized as crops. Ehsani et al. (2004) tested this type of maize 

seed mapping system and reported that the average error between seed maps and actual plant 

positions after germination was about 34 mm. The error sources of the system are: RTK 

GPS’s error, seed bounce in the furrows, as well as different soil conditions (Griepentrog, 

Nørremark, Nielsen, & Blackmore, 2005). On the other hand, this method highly depends on 

the data collected during planting, which is not flexible.  

The third mode is using a machine vision based plant species identification system. 
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Computer vision has become an option in the inspection of agricultural plants, particularly 

when color and shapes need to be analyzed at high speed. Many applications in agricultural 

robotics such as plant discrimination and self-guidance can be realized with the power of 

computer vision (Astrand & Baerveldt, 2002). Plant morphology and structure have been 

focused on, which remains one of the most consistent methods of plant identification (Du, 

Wang, & Zhang, 2007). 

 

1.3 Machine Vision in Robotic Weeding 

By comparing those three methods used by previously developed weeding robots, the 

machine vision method seems to be the most reliable and flexible. There are many methods 

developed for robotic weeding based on computer vision. With sensing method as criteria, 

most of those computer vision systems can be categorized into two classes: two-dimensional 

(2-D) vision systems and three-dimensional (3-D) vision systems. 

 

2D vision applications: 

A 2D sensor is a type of sensor that can record light or other electromagnetic 

radiation reflected or emitted from objects, by focusing it on a light-sensitive surface. The 

word “2D” means horizontal and vertical dimensions in the image space, as it is a projection 

of the 3D real world.  

Regular 2D cameras were the earliest ones used in robotic weeding. The problem of 
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plant identification was addressed by extracting color or morphological features from a leaf 

or a whole plant, such as length, width, perimeter dimensions, roundness, circularity, 

convexity and moment. Slaughter et al. studied these types of systems and concluded that 

they demonstrated high recognition accuracy only under ideal conditions, in which light was 

controlled and plants were sparseley distributed in images (Slaughter, 2008). Also, they are 

not robust to occlusion problems, or defects of the plants caused by insect damage or wind, 

which are common in the field. Moreover, with complex illumination conditions, such as 

strong sunlight, images will be saturated. Most of the algorithms will fail to segment plants 

out of the background. 

Spectral reflectance characteristics of plants were reported to be effective in 

vegetation segmentation and crop/weed discrimination (Scotford & Miller, 2005; Zwiggelaar, 

1998). However, the selected spectral wavebands for classification are generally different for 

different weed and crop pairs (Zwiggelaar, 1998). Therefore, selecting wavebands and 

designing algorithms for distinguishing crop plants from different weed species is complex. 

On the other hand, an NDVI (normalized difference vegetation index) map, which can be 

generated from an image from an infrared camera or NDVI sensor, is reported to be effective 

in vegetation segmentation. Sui et al. (2008) have developed a vision-based system for weed 

mapping using an NDVI camera. However, in order to accomplish crop/weed discrimination 

with NDVI images, morphological features are still needed. The advantages of spectral 

reflectance based methods include: they are less sensitive to environmental light, and the 
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infrared reflectance of plants can include additional information for plant discrimination.  

 

3D sensing applications: 

A 3D sensor is a type of sensor that can measure the distances between objects and 

sensors, otherwise known as “depth”. The word “3D” corresponds to the three dimensions of 

the real world. In recent research, with the development of sensing technology, a 3D sensor 

promises to address problems in 2D vision systems, such as occlusion. A 3D sensor can also 

give reliable information to perform plant discrimination and plant localization. In several 

studies (J. Li, 2014; Jin & Tang, 2009; Nakarmi & Tang, 2012), 3D sensors were applied in 

agricultural applications which provided a good performance. The advantages of 3D sensors 

for plant discrimination and localization are obvious: 3D sensors can provide fundamental 

depth information, making it is much easier to obtain the 3D structural and morphological 

data of the plants.  

Today, three types of state-of-art 3D sensors are mainly used on mobile robots: stereo 

vision, laser, and PMD time-of-flight. In several articles (Sansoni, Trebeschi, & Docchio, 

2009; Weiss & Biber, 2011), the authors have compared and evaluated those three types of 

sensor for mobile robot:  

To receive 3D data using stereo vision, typically triangulation of two cameras or 

structure-from-motion technique are used. In the study by Jin & Tang (2009), a real-time 

sensing system for corn phenotyping was developed based on a stereo vision sensor. 
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However, due to the stereo camera’s passive operation mode, it is hard to provide reliable 

data for accurate sensing: When receiving 3D data from stereo vision, the disparity 

calculation has a high dependency on the structures or features of the objects in images. 

Further, the precision and maximum depth are limited by the baseline between the cameras. 

Also, qualities of distance values decrease very fast as depth increases. The advantage of 

stereo vision is its high image resolution, with color information. One the other hand, 

cameras in stereo vision systems can also be modified into near-infrared cameras by 

replacing their filters with NIR filters, in order to take advantage of spectral reflectance 

information (Hunt et al., 2010).  

The accuracy, resolution, frame rate as well as price of different 3D laser sensors can 

be vastly different. Some of the 3D laser sensors are implemented from 2D laser scanners 

which uses the line-scanning method, such as Lidar. One example is Kurt3D (Surmann & 

Nüchter, 2003) which equips a rotating 2D SICK® laser sensor to realize 3D laser scanning. 

However, it needs a stop-and-go mode for traveling to receive consistent 3D data, since a 2D 

line sensor was not built for 3D applications. Generally, 3D laser sensors usually have the 

properties of high weight, high power consumption, as well as high price. Those make those 

3D sensors less desirable for small mobile robots. 

The semiconductor based PMD time-of-flight (TOF) camera is the latest technique. It 

measures distance and infrared reflectance intensity information based on time-of-flight 

technique. A modulated light signal is emitted by sensor, reflected by objects then received 
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by sensor receiver (L. Li, 2014). The distances are calculated by the phase shift of the signal 

as well as the reflection intensity. There are many research applications using TOF cameras 

as sensing devices in agriculture, such as phenotyping (Alenyà, Dellen, Foix, & Torras, 

2012), and plant spacing (Jin & Tang, 2009). In a study by Kazmi et al. (2014), the authors 

summarized the advantages along with drawbacks of TOF cameras. The advantages are: they 

deliver high frame rates as well as accurate depth data under suitable conditions. The 

limitations are: resolutions of depth images are often low; the sensors are sensitive to ambient 

sunlight, which usually leads to poor performance while working outdoors; the quality of 

depth values depends on the color of objects, and some sensors have blurring problems while 

sensing moving objects.  

Although there are limitations for 3D cameras, 3D sensing is still beneficial in 

agricultural applications. For indoor applications like phenotyping facilities, very accurate 

depth measurements of plant organs are required to rebuild fine 3D models of plants; In field 

operations like weed control, 3D information can help not only in improvement of plant 

recognition and localization (J. Li, 2014) by resolving problems of occlusion, but also in 

estimation of infection, in order to apply precise amount of chemicals onto the crops 

(Nielsen, Andersen, Slaughter, & Giles, 2004).  

In addition, 3D cameras have not yet reached their full potential: from version to 

version their resolutions and robustness are increasing while their prices are decreasing such 

as Kinect 2 developed by Microsoft. 
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It is clear that 2D images have higher resolution, more detail, and 3D images contain 

spatial information of plants. As a result, in order to accomplish plant localization and 

discrimination, two-dimensional textural data and three-dimensional spatial data can be fused 

together, which takes advantages of both sensor types.  

 

1.4 Research Objectives 

The goal of this project was to develop a computer vision based high-throughput crop 

plant discrimination and localization system for robotic weed control, by fusing 2D color and 

textural data with 3D spatial data. 

The specific objectives were to: 

(1) Explore the possibility of accomplishing crop plant candidates’ detection and 

localization accurately against different weed species at different growth stages by 

using image processing techniques, and then evaluate the performance of the image 

processing system.  

(2) Develop a statistical classification system using supervised machine learning 

techniques, with features from plant color and morphology as inputs, to improve the 

crop/weed discrimination accuracy, and identify the most suitable classification 

method by evaluating the error rates of different classification methods.  
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1.5 Thesis Overview 

In Chapter 2, the methods framework is stated, including the sensor evaluation, data 

collection and the algorithm design overview. 

In Chapter 3, a novel 2D and 3D fusion based crop plant candidate detection system 

is introduced. The image processing algorithms of preprocessing, segmentation, and 

clustering are discussed in detail, along with the analysis of candidate detection results.  

In Chapter 3, a feature-based crop/weed classification system is developed, using 

color, morphological and structural features extracted from the image processing procedures. 

The problem of connecting plants was also considered as solved. Different classification 

methods are evaluated and compared in this study to select the most suitable one. The 

classifier’s performance is discussed, and the error sources are analyzed.  

In Chapter 4, the general conclusion, as well as suggestions for future research are 

presented.  
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CHAPTER 2. METHODS FRAMEWORK AND DATA COLLECTION 

 

2.1 Introduction 

Weed management is important in crop production systems. However, conventional 

herbicide based weed control can lead to negative environmental impacts. Robotic weeding 

offers a possibility of controlling weeds precisely, particularly for weeds growing near or 

within crop rows. In robotic weeding, computer vision is the most competent method when 

color and shapes need to be analyzed at high speed. In this study, the main purpose was to 

develop a computer vision based high-throughput plant recognition and localization system 

for robotic weed control using both 2D and 3D images. In this chapter the research 

methodology adopted in this research is presented. In more details, the sensor evaluation, the 

data acquisition, and the image processing algorithm framework are stated. 

 

2.2 Methods Framework 

The goal of this project was to develop a computer vision based high-throughput 

plant recognition and localization system for robotic weed control, by fusing 2D color and 

textural data with 3D spatial data. The methods framework of the study is listed as follows: 

1. Sensor selection and evaluation. 

2. Material (field with crop and weed plants) preparation, and data acquisition. 

3. Fusion of 2D and 3D based image processing algorithms development. 

4. System evaluation based on recognition and localization results.  
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The rest of this chapter will be organized as follows: 

At first, the sensor used in this study was evaluated by specification and depth 

measurement error level.  

Secondly, the target crop species in this study are defined. The sensor view angle and 

working distance are decided. The field design and the data acquisition apparatus are stated 

as well. 

Lastly, the image processing algorithm framework is introduced, which was designed 

to accomplish crop/weed discrimination and crop plant localization.  

The algorithms developed will be described in detail in Chapter 3 and Chapter 4, and 

the system evaluation will be introduced in Chapter 4.  

 

2.3 Sensor Evaluation 

Kinect v2 sensor (Figure 2-1(a)) was used in this study. It is developed by Microsoft, 

and provides color (RGB), IR (Infrared) and depth information. The 3D sensor in Kinect v2 

is a semiconductor based PMD (photon mixer devices) sensor based on Time-of-Flight 

principle. The 2D color information can be registered into the 3D space point with sensors’ 

relationship provided in Kinect SDK (Figure 2-1(b)). It offers an easy way to combine the 

advantages of both 2D color camera’s high resolution as well as 3D depth sensor’s 

illuminant-change insensitiveness together. It is widely adopted for various computer vision 

applications, including 3D reconstruction, object recognition as well as some Human-
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Computer Interface applications. The specification of Kinect v2 is listed in Table 2-1. The 

resolution of depth is 512x424, which is much higher than other commercial depth sensors, 

for instance, Swiss Ranger. Another advantage of the Kinect v2 sensor is that it uses three 

strong IR emitters as light sources (Figure 2-2). They enable the Kinect v2 to work outdoors 

under indirect sunlight, though it is still not operational under direct sunlight.  

    

Figure 2-1. (a) Kinect v2 sensor used in this study. (b) The colored point cloud output from 
fusing 3D depth information and 2D color information. 

 

Figure 2-2. Teardown picture of a Kinect v2 sensor. Image was taken from (Fankhauser et al., 
2015) 

 



17 

Table 2-1. Kinect v2 Specifications 

Infrared/depth camera Resolution 512 x 424 px 
Field of view (h x v) 70º x 60º 
Operating range 0.5 – 4.5 m 
Depth resolution 1 mm 

Color camera Resolution 1920 x 1080 px 
Field of view (h x v) 84º x 54º 
Color depth 256 bit, 3 channels 

Frame rate 30 Hz 
Shutter type Global shutter 
Voltage 12 VDC 
Power usage 15 W 
Dimensions(w x d x h) (mm) 249 x 66 x 67 
Mass 970 g 
Price 199 USD 

On the other hand, Kinect v2 sensors also have some drawbacks. The most severe one 

is the minimum range requirement: the sensor can detect nothing within a minimum distance 

of 0.5 meters. This limits the density of data points on objects, which will increase the 

difficulty and reduce the accuracy of object detection. Another drawback is delaying, which 

is not severe, but still influences the performance of real-time applications.  

Other than these specifications, accuracy is another important parameter to evaluate a 

sensor in this project. The error is composed of both non-systematic and systematic error. 

The non-systematic error is characterized by statistical uncertainty or noise level. A 

comprehensive report of evaluating the noise level of Kinect v2 was reported by (Fankhauser 

et al., 2015). The author tested the axial noise 𝜎𝜎𝑧𝑧 (noise level along the z-axis) of the depth 

output at different distances and angles of the observed surface. Both indoor and outdoor 

situations are tested. The results are shown in Figure 2-3. The author also found that the noise 
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levels are similar when testing indoor and testing outdoors with overcast sky conditions, and 

the noise level is significant when testing in direct sunlight. For this research project, the 

distance between the sensor and objects is within 0.75-1.25 m, and a sunshade will be used to 

block direct sunlight. Thus, the noise level 𝜎𝜎𝑧𝑧 should be within 4 mm. Thus, it is clear that 

the sensor is competent to output reliable data under indirect sunlight.  

Equally important, systematic error, which is a type of error that deviates by a fixed 

amount from the true value of measurement, is also evaluated by Fankhauser (2015). The 

author analyzed the systematic errors such as depth distortion, amplitude-related error, and 

temperature-related error. The composited systematic error is still in millimeter level when 

working at a short working distance and perpendicular to the object surface. But it increases 

with working distance, or angle of the object surface. In addition, Corti et al. (2015) also 

found that different materials, surfaces, as well as different colors, will result in small offset 

in depth measurement. Still, it is not significant, which was estimated to be ±1 mm.  

Overall, the depth measurement uncertainty of the Kinect v2 sensor should be within 

5 mm. Thus, the Kinect v2 sensor was found competent for this project, as a result of its high 

resolution, tolerance to various illumination conditions, acceptable error level and low price. 
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(a) Axial noise level in indoor test 

 

(b) Axial noise level in outdoor test 

Figure 2-3. Axial noise level (standard deviation of measured depth values) at different 
working distances (z-distance) and different angles of observed object surface (θ), in both 
indoor (a) and outdoor (b) tests (Fankhauser et al., 2015). The θ is defined as the angle 
difference between the direction of sensor and the surface normal.  

 

2.4 Data Collection 

2.4.1 Target species 

The target crop species in this study includes some common crop species, such as 
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lettuce (Lactuca, L.), broccoli (Brassica oleracea L. var. botrytis L.), kale (Brassica napus L. 

var. pabularia (DC.) Rchb.), pak choi (Brassica chinensis L.), tomato (Solanum lycopersicum 

L.), pepper (Capsicum, L.) and green beans (Phaseolus vulgaris L.). Some sample images are 

shown in Table 2-2.  

The negative input of the system are various types of weeds that are common in Iowa, 

including bromegrass (Bromus inermis Leyss), pigweed (Amaranthus spp.), Lambsquaters 

(Chenopodium album), waterhemp (Amaranthus rudis), barnyardgrass (Echinochloa crus-

galli), bindweed (Convolvulus arvensis), purslane (Portulaca oleracea), and white clover 

(Trifolium repens). The example images are shown in Figure 2-4. Some weed species have 

similar shapes as the target plants; sometimes weed plants are higher than the crops, and 

sometimes weeds partially occlude the crop canopies. 

It can be observed that, plant morphological features such as overall canopy shape, 

leaf length, leaf shape, and leaf curvature, as well as plant structural features such as venation 

are ideal for crop/weed discrimination. As they are distinctive between different crop species 

and weed species. 
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Table 2-2 Examples of 2D images taken using Kinect v2 sensor from different species at 
different time, as well as distinctive features that can be observed using Kinect v2 sensor. 

 

 

Spec
ies 

Stage 1 Stage 2 Stage 3 Features 

Lett
uce 

   

Height, 
Diameter, 
Color 
saturation 

Broc
coli 

   

Height, 
Diameter, 
Leaf length, 
Leaf width, 
Leaf aspect 
ratio, 
Venation 

Kale 

   

Height, 
Diameter, 
Leaf shape, 
Crenate 
margin, 
Venation 

Pak 
Choi 

   

Height, 
Diameter, 
Orbicular 
leaf, 
Venation 
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Figure 2-4. Example images of weeds in this study. From up left to bottom right: bromegrass 
(Bromus inermis Leyss), pigweed (Amaranthus spp.), Lambsquaters (Chenopodium album), 
waterhemp (Amaranthus rudis), barnyardgrass (Echinochloa crus-galli), bindweed 
(Convolvulus arvensis), purslane (Portulaca oleracea), and white clover (Trifolium repens). 

2.4.2 View angle and working distance selection 

In order to achieve a higher recognition accuracy in identification of different crop 

species at different growth stages, a suitable sensor setup was needed to be selected. To 

obtain higher classification accuracy, the features to be used for classification must be 

observed and extracted with less “distortions”. In this study, the data was collected using 

cameras. Concerning the simplicity of the mechanical design of our robot, the view angle 

would not be changed frequently. Thus, the view angle of the camera was selected carefully 

to acquire the features according to the different crop species.  

Table 2-2 lists pictures of some different species at different growth stages, and their 

features respectively. According to the table, we can see that: most of the distinctive features 

for crop/weed discrimination are leaf-shape-based, for which it is best to place the sensor 
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directly above the leaves. At the same time, there are no obvious features that can only be 

observed from side views for the target crop species in this study (compared to stalk shape 

for maize). There is an exception for broccoli, in which the side view features (structural) 

might be observable but only in very early growth stages. After that, those structural features 

would be blocked by its own leaves. Thus, it was not economical to place a side view only 

for acquiring those features. As a result,, top view was selected for those species. 

For the purpose of making full use of the sensor, analysis was conducted for this 

project in order to find the best working distance with consideration of spatial resolution and 

noise level. This was because the sensor should be placed as close as possible for better 

spatial resolution (pixels per inch) and less noise, in order to collect finer features. However, 

the working distance should not be too close, because of the sensor’s minimum working 

distance, as well as the field of view. Since the built-in depth sensor has a lower resolution 

than the color sensor in Kinect v2, and the depth sensor is more critical in this project, the 

analysis was only conducted for the depth sensor. 

The depth sensor has a resolution of 512x424, with angles of view 70 deg x 60 deg. 

The sensor is required to be placed more than 19.7” (500mm) away from the plants, due to 

the minimum distance requirement. Thus, the pixel resolution (ppi, pixels per inch) at 

different working distances are calculated in Table 2-3. 
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Table 2-3. Field of view and spatial resolution at different working distance for top view 

Distance Field of view in inch (in mm) Spatial resolution in ppi (in 
mm/pix) 

Vertical Horizontal Vertical Horizontal 
<19.7” (<500mm) Not available 
19.7” (500mm) 22.7 (577) 27.6 (701) 18.7 (1.36) 18.5 (1.37) 
29.5” (750mm) 34.1 (866) 41.3 (1050) 12.4 (2.04) 12.4 (2.05) 
39.4” (1000mm) 45.4 (1154) 55.1 (1400) 9.34 (2.72) 9.30 (2.73) 

As the height of plants varies in the field, as well as the ground is uneven, there must 

be flexibility when selecting the working distance. After all, the height of the sensor H is 

selected by estimating the average crop height: 

𝐻𝐻 = 𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡) + 750𝑚𝑚𝑚𝑚 

With the selected working distance, we obtained a spatial resolution of 12.4 ppi in 

both vertical and horizontal directions on observed plants. The noise level is 2mm, referred to 

noise analysis stated in the previous section. This arrangement allows this sensor to extract 

most of the desired features of the plants.  

 

Figure 2-5. The sensor pose and the desired working distance while acquiring data.  

2.4.3 Apparatus design and field design for data acquisition 

With the analysis of the sensor setup, a simple data collection apparatus was built by 
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mounting the Kinect v2 sensor and a laptop on a modified cart. The adjustability of the 

sensor height and view angle are enabled for this system, in order to be compatible with 

different crop species at different growth stages. By pushing the cart and running the data 

capturing program, infrared image, depth image and color information were collected and 

stored for crop plant recognition study.  

The data used in this study were obtained in the horticulture research station of the 

Iowa State University in Story County (42.11 º N, -93.59 º E). The soil is nearly level to 

moderately sloping landscape near the Skunk River. Soil type was mostly Clarion loam, 

moderately eroded, with 5 to 9 percent slope. The average annual temperature is 49.45ºF and 

the average annual precipitation is 35.83 inch.  

The field reserved for data acquisition in this study was 1/8 acres. The crop plants 

were started in a greenhouse and transplanted in the horticulture research station with row 

spacing of 30 in and plant spacing within the same row of about 12 in. Weeding on the field 

was not fully performed, in order to make sure crop plants and weeds are observed in the 

same images. 

The image data was collected with Kinect v2 sensor in afternoons of both sunny and 

cloudy days, in June, July and August. While acquiring data in sunny days, the average 

illuminance was about 80,000 lux. An umbrella was used to block the sunlight to decrease 

the illuminance to about 9,000 lux and increase the quality of the images. In cloudy days, the 

average illuminance was about 35,000 lux, and no umbrella was used. In this project, the data 

collection cart was pushed at the speed of about 0.3m/s. 3D depth images, as well as 2D color 
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images, were taken about every two seconds. In total, 2212 images were taken from 546 

plants at 4 different times for 7 crop species.  

 

2.5 Algorithm Design Overview 

In order to accomplish plants detection and localization, 3D spatial and 2D color 

information are fused together. The framework of the algorithm is shown in the flowchart 

(Figure 2-6) and stated as follows: 

The algorithm takes a depth image which contains 3D spatial information with 

corresponding 2D color information acquired through a Kinect v2 sensor as input.  

Step 1: Preprocessing. Remove the invalid pixels and remove noise points in point 

clouds. This procedure is done by using a usable-area filter, a cut-off filter and a simplified 

neighbor count filter.  

Step 2: Registration and segmentation. 2D and 3D information are fused. The ground 

is detected using both 2D color and 3D depth information, and a plane equation is fitted 

using RANSAC. All vegetation pixels are extracted in the images. 

Step 3: Clustering & candidate extraction. The remaining points which belong to 

plants are separated into different clusters. Each cluster may contain one plant, or multiple 

objects which are connected in space, with species not determined. Crop plant candidates can 

be extracted by simple thresholding on cluster size to shift small objects which can be 

regarded as non-crop objects. 
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Step 4: Feature extraction. Canopy morphological and structural features in each crop 

plant candidate are extracted. If possible, leaves are segmented, and leaf morphological and 

structural features are extracted. 

Step 5: Grouping. The features extracted (venation for broccoli, and canopy shape for 

lettuce in this study) are used for grouping, in order to separate the pixels within the same 

candidate into different plants. Locations can be calculated as well. 

Step 6: Classification. Crop/weed classification is applied to all the separated plants 

based on their features (canopy, leaf) using machine learning techniques.  

 
Figure 2-6. The data flowchart of the image processing system 
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CHAPTER 3. PLANTS DETECTION, LOCALIZATION AND DISCRIMINATION 

USING 3D MACHINE VISION FOR ROBOTIC INTRA-ROW WEED CONTROL– PART 

A: CROP PLANT CANDIDATE DETECTION 

3.1 Abstract 

Robotic weeding offers a possibility of controlling weeds precisely, particularly for 

weeds growing near or within crop rows. Computer vision is the most competent method 

when color and shapes of the plants need to be analyzed at high speed. This paper presents a 

novel robust crop plant candidate detection algorithm using three-dimensional spatial data 

fused with two-dimensional textural data to enhance the detection capability. The procedures 

include filtering data, detecting vegetation pixels, clustering vegetation pixels, then detecting 

and extracting crop plant candidates using obvious features such as size. The algorithm 

detects crop plant candidates at different growth stages with disturbances from weeds in 

different species, under varying illumination conditions. Currently, the method was only 

developed and tested for broccoli and lettuce. The algorithm was developed and tested on 

data collected at different growth stages under different illumination conditions (sunny and 

cloudy), and also with weeds of different species. During the test, 98% of target crop plants 

were detected as crop plant candidates (true positive rate). Among the candidates, about 66% 

of them are individual target crop plants or crop plants connected with other plants 

(precision), and 34% of them are weeds (false discovery rate).  
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3.2 Introduction 

In recent years, with the development of greater health consciousness, consumers are 

becoming more interested in vegetables, especially natural, organic vegetables. One 

important factor that affects crop yield is weed competition. It is also one of the most costly 

operations in vegetable production, especially for organic farming.  

With the advancement of computational technology, automated robotic weeding 

offers a possibility of controlling weeds in a precise fashion, particularly for weeds growing 

near crops or within crop rows (Slaughter, 2008). Since identification and localization of 

plants have not yet been fully automated, research to address these problems is thus in great 

demand.  

Computer vision has been shown to provide an option in the inspection of agricultural 

products, particularly when color and shape need to be analyzed at high speed. Many 

applications in agricultural robotics such as plants discrimination and self-guidance can be 

realized with the power of computer vision (Astrand & Baerveldt, 2002). Plant morphology 

and structure have been focused on, which remains one of the most consistent methods of 

plants identification (Du et al., 2007). 

With sensing method as criteria, most of those computer vision systems can be 

categorized into two classes: tow-dimensional (2-D) vision systems and three-dimensional 

(3-D) vision systems. 
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2D vision applications: 

A 2D sensor is a type of sensor that can record light or other electromagnetic 

radiation reflected or emitted from objects, by focusing it on a light-sensitive surface. The 

word “2D” means horizontal and vertical dimensions in the image space, as it is a projection 

of the 3D real world.  

Regular 2D cameras were the earliest ones used in robotic weeding. The problem of 

plant identification was addressed by extracting color or morphological features from a leaf 

or a whole plant, such as length, width, perimeter dimensions, roundness, circularity, 

convexity and moment. Slaughter (2008) reviewed these types of systems and concluded that 

they demonstrated high recognition accuracy only under ideal conditions, in which light was 

controlled and plants were sparse in images. Also, they are not robust to occlusion problems, 

or defects of the plants caused by insect damage or the wind, which are common in the field. 

Moreover, with complex illumination conditions, such as strong sunlight, images will be 

saturated. Most of the algorithms will fail to segment plants out of the background. 

Spectral reflectance characteristics of plants were reported to be effective in 

vegetation segmentation and crop/weed discrimination (Scotford & Miller, 2005; Zwiggelaar, 

1998). Zwiggelaar (1998) also reported that the selected spectral wavebands for classification 

are generally different for different weed and crop pairs. Therefore, selecting wavebands and 

designing algorithms for distinguishing crop plants from different weed species is complex. 
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On the other hand, an NDVI (normalized difference vegetation index) map, which can be 

generated from an image from an infrared camera or NDVI sensor, is reported to be effective 

in vegetation segmentation. Sui et al., (2008) have developed a vision-based system for weed 

mapping using an NDVI camera. However, in order to accomplish crop/weed discrimination 

with NDVI images, morphological features are still needed. The advantages of spectral 

reflectance based methods are: they are less sensitive to environmental light, and the infrared 

reflectance of plants can include additional information for plant discrimination.  

3D sensing applications: 

A 3D sensor is a type of sensor that can measure the distances between objects and 

sensors, often referred to as “depth”. The word “3D” corresponds to the three dimensions of 

the real world. In recent research, with the development of sensing technology, a 3D sensor 

promises to address problems in 2D vision systems, such as occlusion. A 3D sensor can also 

give reliable information to perform plant discrimination and plant localization. In several 

studies (J. Li, 2014; Jin & Tang, 2009; Nakarmi & Tang, 2012), 3D sensors were applied in 

agricultural applications which provided a good performance. The advantages of 3D sensors 

for plant discrimination and localization are obvious: 3D sensors can provide fundamental 

depth information, making it is much easier to obtain the 3D structural and morphological 

data of the plants.  

Today, three types of state-of-art 3D sensors are mainly used on mobile robots: stereo 

vision, laser, and PMD time-of-flight. In several articles (Sansoni et al., 2009; Weiss & Biber, 
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2011), the authors have compared and evaluated those three types of sensor for use on mobile 

robots.  

To receive 3D data using stereo vision, typically triangulation of two cameras or 

structure-from-motion technique are used. In the study by Jin & Tang (2009), a real-time 

sensing system for corn phenotyping was developed based on a stereo vision sensor. 

However, due to the stereo camera’s passive operation mode, it is hard to provide reliable 

data for accurate sensing: When receiving 3D data from stereo vision, the disparity 

calculation highly depends on the structures or features of the objects in images. Further, the 

precision and maximum depth are limited by the baseline between the cameras. Also, 

qualities of distance values decrease very quickly as depth increases. The advantage of stereo 

vision is its high image resolution, with color information. One the other hand, cameras in 

stereo vision systems can also be modified into near-infrared cameras by replacing their 

filters with NIR filters, in order to take advantage of spectral reflectance information (Hunt et 

al., 2010).  

The accuracy, resolution, frame rate as well as price of different 3D laser sensors are 

widespread. Some of the 3D laser sensors are implemented from 2D laser scanners which 

uses the line-scanning method, such as Lidar. One example is Kurt3D (Surmann & Nüchter, 

2003) which equips a rotating 2D SICK laser sensor to realize 3D laser scanning. However, it 

needs a stop-and-go mode for traveling to receive consistent 3D data. Generally, 3D laser 

sensors have the properties of high weight, high power consumption, as well as high price. 

Those make those 3D sensors less desirable for small mobile robots. 
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The semiconductor based PMD time-of-flight (TOF) camera is the latest technique. It 

measures distance and infrared reflectance intensity information based on time-of-flight 

technique. A modulated light signal is emitted by the sensor, reflected by objects then 

received by sensor receiver (L. Li, 2014). The distances are calculated by the phase shift of 

the signal as well as the reflection intensity. There are many research applications using TOF 

cameras as sensing devices in agriculture, such as phenotyping (Alenyà et al., 2012), and 

plant spacing (Jin & Tang, 2009). In a study by Kazmi et al. (2014), the authors summarized 

the advantages along with drawbacks of TOF cameras. The advantages include: they deliver 

high frame rates as well as accurate depth data under suitable conditions. The limitations are: 

resolutions of depth images are often low; the sensors are sensitive to ambient sunlight, 

which usually leads to poor performance while working outdoors; the quality of depth values 

depends on the color of objects, and some sensors have blurring problems while sensing 

moving objects.  

Although there are limitations for 3D cameras, 3D sensing is still beneficial in 

agricultural applications. For indoor applications like phenotyping facilities, very accurate 

depth measurements of plant organs are required to rebuild fine 3D models of plants; In field 

operations like weed control, 3D information can help not only in improvement of plant 

recognition and localization (J. Li, 2014) by resolving problems of occlusion, but also in 

estimation of infection, in order to apply precise amount of chemicals onto the crops (Nielsen 

et al., 2004).  

It is clear that 2D images have higher resolution, more detail, and 3D images contain 
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spatial information of plants. As a result, in order to accomplish plant localization and 

discrimination, two-dimensional textural data and three-dimensional spatial data can be fused 

together, which takes advantages of both sensor types.  

In this research, we focused on the development and implementation of a time-

optimal crop plants detection and localization system based on machine vision for robotic 

intra-row weed control. In contrast to the most common technologies in crop plants detection 

based on machine vision, the fusion of 2D color images and 3D depth images are used. Thus, 

the methods proposed can benefit from the advantages of both types of sensors. In this paper, 

a crop-plant-candidate detection algorithm was developed and implemented with the fusion 

of 2D and 3D images, which includes preprocessing, color registration, vegetation pixels 

segmentation and pixels clustering. The performance was evaluated on dataset collected from 

broccoli and lettuce under different illuminantion conditions.  

This paper is arranged as follows. Section 3.3 introduces the sensor used in this study 

with its accuracy evaluation, as well as the data acquisition location and agronomic trial 

design. Section 3.4 describes the proposed method for crop plant candidate detection using 

both color and spatial information, while Section 3.5 presents the experimental results and 

discussion. Finally, a summary is presented. A companion paper sets out the subsequent 

component of crop plant detection and localization, which solves problem of connected 

plants and classify plants using machine learning methods, based on the candidate detection 

as presented in this current paper.  
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3.3 Materials 

3.3.1 Sensor 

Kinect v2 sensor (Figure 3-1 (a)) was used in this study, which provides RGB, IR 

(Infrared) together with depth information. The 3D sensor in Kinect v2 is a semiconductor 

based PMD (photon mixer devices) sensor based on Time-of-Flight principle. The 2D color 

information can be registered to the 3D space point with sensor’s relationship provided in 

Kinect SDK (Figure 3-1 (c)). It offers an easy way to combine the advantages of both 2D 

color camera’s high resolution as well as 3D depth sensor’s light changing insensitiveness 

together. The Kinect v2 sensor uses three strong IR emitters as light sources (Figure 3-1 (b)). 

They enable the Kinect v2 to work outdoors, with indirect sunlight. The resolution of depth is 

512x424, and the depth measurement accuracy is within 5 mm, when working under indirect 

sunlight outdoors. 

 

Figure 3-1. (a) Kinect v2 sensor used in this study. (b) Teardown picture of a Kinect 

v2 sensor (Fankhauser et al., 2015). (c) Example 3D point cloud registered with color. 

3.3.2 Location and agronomic trial 

The data used in this study were obtained in the horticulture research station of the 

Iowa State University in Story County (42.11 º N, -93.59 º E). The soil is nearly level to 
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moderately sloping landscape near the Skunk River. Soil type was mostly Clarion loam, 

moderately eroded, with 5 to 9 percent slope. The average annual temperature is 49.45 ºF and 

the average annual precipitation is 35.83 inch.  

The field reserved for acquisition in this study was 1/8 acres. The crop plants were 

started in greenhouses and transplanted in the horticulture research station with row spacing 

of 30 in and plant spacing within the same row of about 12 in. Weeds were controlled 

manually in the field with some weeds reserved, in order to make sure crop plants and weeds 

are observed in the same images. 

The image data was collected with Kinect v2 sensor in afternoons on both sunny and 

cloudy days, in June, July and August. While acquiring data in sunny days, the average 

illuminance was about 80,000 lux. An umbrella was used to block the sunlight to decrease 

the illuminance to about 9,000 lux and increase the quality of the images. In cloudy days, the 

average illuminance was about 35,000 lux, and no umbrella was used. In this project, the data 

collection cart was pushed at the speed of about 0.3m/s between crop rows. 3D depth images, 

as well as 2D color images, were taken about every two seconds. In total, 203 images were 

taken from 49 broccoli plants and 376 images were taken from 97 lettuce plants at four 

different times.  

 

3.4 Algorithm Design 

In order to accomplish plant detection and localization, 3D spatial and 2D color 
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information were fused together. The framework of the algorithm is shown in the flowchart 

(Figure 3-2) and stated as follows: 

The algorithm takes a depth image which contains 3D spatial information with 

corresponding 2D color information acquired through a Kinect v2 sensor as input.  

Step 1: Preprocessing. Remove the invalid pixels and remove noise points in point 

clouds. This procedure is done by using a usable-area filter, a cut-off filter and a simplified 

neighbor count filter.  

Step 2: Registration and segmentation. 2D and 3D information are fused. The ground 

is detected using both 2D color and 3D depth information, and a plane equation is fitted 

using RANSAC. All vegetation pixels are extracted in the images. 

Step 3: Clustering & candidate extraction. The remaining points which belong to 

plants are separated into different clusters. Each cluster may contain one plant, or multiple 

objects which are connected in space, with species not determined. Crop plant candidates can 

be extracted by simple thresholding on cluster size to shift small objects which can be 

regarded as non-crop objects. 

Step 4: Feature extraction. Canopy morphological and structural features in each crop 

plant candidate are extracted. If possible, leaves are segmented as well, and leaf 

morphological and structural features are extracted as well. 

Step 5: Grouping. The features extracted (venation for broccoli, and canopy shape for 

lettuce in this study) are used for grouping, in order to separate the pixels within the same 

candidate detected into different plants. Locations can be calculated as well. 
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Step 6: Classification. Crop/weed classification is applied to all the separated plants 

based on their features (canopy, leaf) using machine learning techniques. 

The image processing steps (step 1-5) were developed using OPENCV library, C++ 

(Bradski & Kaehler, 2008), and the classification step (step 6) was developed using R 

language (R Development Core Team, 2010). In this section, step 1, 2, 3 are used to 

accomplish crop plant candidate detection. Step 4, 5, 6 are used for plant discrimination, 

which will be introduced in the companion paper.  

 

Figure 3-2. The data flowchart of the image processing system 

 

3.4.1 Preprocessing on depth image 

In general, data collected by optical sensors contains noise, which will cause 

unexpected results if left unfiltered and uncorrected. This is also true for Kinect v2 depth 

sensor, especially when working outdoors. Within preprocessing, useful data (in contrast to 

sparse noise & sensor bad points) is extracted from the depth image, against the disturbances 
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from noise and useless information (such as the wheels of the data collection cart). In our 

algorithm, three simple filters are applied on the depth image: 

  

Figure 3-3. An example of depth image indicating the z-direction distance acquired using a 
Kinect v2 sensor. Noise level is higher in the non-center area, especially at corners. Unit in 
mm. 

3.7.2.1 Useable-area filter: 

The first filter to apply is a reliable area filter. Because of the ambient light, the off-

center pixels in depth images of Kinect v2 sensor have a higher chance of carrying incorrect 

depth information. For instance, Figure 3-3 shows a depth image of broccoli crops collected 

by Kinect v2 sensor, in overcast sky conditions. Noise (pixels similar to salt-and-pepper 

noise) can be observed in the off-center area, especially at the corners. Because the off-center 

pixels have a higher angle difference than center pixels, which will result in higher noise 

levels. It is also a result of the sensor structure as well. In this study, a round area with a 

radius of 220 pixels was selected as reliable area by observing and testing. In this process, 

about 30% of the points are deleted. This operation can be expressed as: 
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𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥,𝑦𝑦) =  �𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥,𝑦𝑦)          𝑖𝑖𝑖𝑖 �|(𝑥𝑥,𝑦𝑦) − (256,212)|� < 220
0                                     𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

where (x, y) is the position of a pixel in depth image in (column, row), and (256, 212) is the 

principal point of the camera or the center pixel of the depth image. 

3.7.2.2 Depth cut-off filter: 

The second filter applied is a cut-off filter in depth images, which is used to remove 

pixels laying outside of a predefined depth range. Bad points from the sensor (usually have a 

distance of zero or infinity) and points with significant depth value (noise in most cases) are 

removed. In this study, the distance upper limit was selected to be the sensor height + 200 

mm, to ensure the ground can be observed by the sensor. And the lower limit is 500 mm, 

which is also the minimum working distance of Kinect v2. The operation can be expressed 

as: 

 𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥,𝑦𝑦) =  �𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥,𝑦𝑦)          𝑖𝑖𝑖𝑖 500 < 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥,𝑦𝑦) < ℎ + 200
0                                     𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (1) 

where (x, y) is the position of a pixel, and h is the sensor height when taking this image.  

3.7.2.3 Neighbor count filter: 

Finally, a simplified neighbor count filter was modified from Statistical Outlier Filter 

developed by (Rusu, 2009) to remove sparse noise. The objects of interest (such as plants and 

soil surface) have flat surfaces. For depth sensors such as Kinect v2, the pixels are denser on 

flat surfaces than on uneven surfaces. In other words, the pixel on a flat surface has more 

surrounding pixels in 3D space. Those “connected” pixels are called “neighborhood” in 3D 

point cloud, which is similar to the concept of “connectivity” in 2D image processing. The 
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neighborhood of a pixel P in pixels set G in Euclidian space E can be defined as an induced 

subset of G consisting of all pixels whose Euclidian distance d to P is:  

a. Shorter than defined value r, or  

b. one of the k shortest.  

The criteria (a) is called RNS (radius neighbor search), and the one using criteria (b) is 

called KNN (k-nearest neighbor) search. The most general method to search neighbors in a 

3D point cloud is the k-d tree method (Cormen & Leiserson). Most of the neighborhood 

searching algorithms implemented in Point Cloud Library (PCL) (("Point Cloud Library 

(PCL)," 2015) are using k-d trees. K-d tree is a binary tree in which every node is a k-

dimensional point. At every non-leaf node, there is a virtual splitting hyperplane that divides 

the space into two parts. Constructing a k-d tree has a worst complexity of 𝑂𝑂(𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛). 

By using the tree properties of the k-d tree, the neighbor search can be done very 

efficiently without large portions of the search space. The complexity of the searching 

algorithm is 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛), which is much less than searching by comparing all the distances to 

each point.  

Although k-d tree, as well as other searching algorithms such as Octree, bd-tree, can 

greatly improve the neighborhood searching speed, it is still a heavy burden for the CPU to 

search neighbor points for every point in a point cloud in this study. However, the problem 

can be simplified in this application. As the output of the depth sensor of Kinect v2 is well 

organized in rows and columns, the concept of “connectivity” in 2D images can be applied in 

this case. The potential neighbors can only be the surrounding pixels on depth image.  
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Thus, in this neighbor searching algorithm, the searching area is limited to a 5 x 5 

window. For point Pij, the searching is limited to a point set 

 𝑃𝑃 ∈ �𝑃𝑃𝑥𝑥𝑥𝑥�𝑖𝑖 − 2 ≤ 𝑥𝑥 ≤ 𝑖𝑖 + 2, 𝑗𝑗 − 2 ≤ 𝑦𝑦 ≤ 𝑗𝑗 + 2 � (2) 

As discussed in Section 2.4, the estimated distance between two adjacent pixels is 2 mm 

if the surface is flat and facing to the sensor. If the surface angle is 60 degrees, the distance 

between pixels becomes 4 mm, where the noise level is ±3 mm. Then 10 mm can be defined 

as the limit of the distance of deciding neighborhood, and that is sufficient even considering 

the varying surface angles of the plants and measurement uncertainty.  

 

Figure 3-4. The strategy of the neighbor count filter.  

Instead of calculating the Euclidean distance d in 3D Cartesian space in L2 norm 

form, the square distance d2 can be used for judgment by comparing d2 with 100 mm2. This 

method was proposed in other studies as well (J. Li, 2014; Rusu, 2009), as the square root 

operations are computationally expensive. However, in this study, the distance d was 

simplified as the depth value difference between two pixels: 

 𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) − 𝑠𝑠𝑠𝑠𝑠𝑠�𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗�) (3) 

After testing, the result is similar to using the L2 norm distance. This simplified 
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definition of distance reduced three minus and three multiplication operations to one single 

minus operation. In addition, it also eliminates the large computation cost of calculating 3D 

point cloud from the depth image. OpenMP parallel computing technique was also used for 

optimization. Therefore, the efficiency increased greatly in this neighborhood searching 

procedure.  

The neighbor count filter first calculates neighbors for each pixel, then removes the 

pixel with fewer neighbors than the threshold (Figure 3-4). The filtering operation can be 

expressed as: 

 𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥,𝑦𝑦) =  �𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥, 𝑦𝑦)          𝑖𝑖𝑖𝑖 𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥,𝑦𝑦) > 15
0                        𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (4) 

After evaluating the resultant point cloud with different thresholds c, c = 15 was 

selected to be the most reasonable value. The results before and after filtering are shown in 

Figure 3-6. The time consumption of filtering using a). The proposed method, b). Method 

stated by J. Li, (2014), and c). Method implemented in PCL are also compared respectively 

in Figure 3-5: 
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Figure 3-5. The performance shift of the proposed method compared with methods 
implemented in PCL and stated by J. Li, (2014). Time measured in seconds.  

 

   

      (a) Point cloud with sparse noise        (b) Point cloud after filtering 

Figure 3-6. Corn plant example showing the differences before (a) and after (b) 
preprocessing. The point cloud is generated from corn crops in the laboratory. After applying 
preprocessing procedure, spare noise and bad points are removed.  

3.4.2 Segmentation using depth and color 

Color registration is to assign colors to their corresponding pixels in depth images. 
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With this procedure, RGBD images and colored point clouds can be generated. Color 

registration also unifies the data structure then simplifies the program. At the same time, 

color registration reduces the memory storage cost. The color registration is based on the 

intrinsic parameters of the Kinect v2 sensor calibrated by the manufacturer, and the 

registration function was provided in Kinect v2 SDK provided by the manufacturer. 

After preprocessing and color registration, the next step is segmentation. In 

segmentation, the pixels are divided into two different subsets: one is the vegetation pixels 

set, and the other is the background pixels set. Both depth and color information are utilized 

in this procedure, as biomass pixels are higher in green color and higher in depth, while 

background pixels are darker in color and lower in depth.  

3.4.2.1 Color based segmentation 

In color based segmentation, the main strategy is to find the green pixels. 

Segmentation using only RGB channels is unstable. The complexity of illumination 

conditions such as shadows will challenge the color-based segmentation algorithms. 

However, illuminant invariant space and HSV color space are found useful in extracting 

green pixels, which are less sensitive to illumination conditions. 

Finlayson et al. (2002) proposed a method using illuminant invariant (ill-inv) space to 

remove the shadows. The theory is built on the assumptions of narrow-band color sensors, 

Lambertian Surface (on which Lambert’s cosine law is obeyed), and Planckian Light (Color 

Temperature). It transfers the color of each pixel from RGB color space into ill-inv color 
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space, where the Y axis is log(B/R), and the X-axis is log(G/R). In ill-inv space, the same 

color under different light conditions forms a line, and all lines of different colors are 

approximately parallel. If project those ill-inv color space points onto a specific line, which is 

called invariant axis, all different colors can be separable. (Figure 3-7) 

 

Figure 3-7. The upper leaf and bottom leaf figures show the assumptions of the illuminant-
invariant method. The right figure shows the ill-inv space and projection of different color 
under different illuminations. It is clear that same color under different light conditions lies a 
specific line. Different colors are on different lines. Thus different colors can be separated. 

The invariant axis is an internal parameter of a color sensor, and can be obtained by 

using the calibration method provided in the study of Alvarez (2008). In this study, the 

invariant axis of Kinect v2 color sensor was calibrated to be a line passing through the origin 

with a slope of 40 degrees. 

After projecting colors of pixels onto the invariant axis, an illuminant-invariant image 
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𝐼𝐼𝑖𝑖𝑖𝑖 can be generated and saved to assistant the segmentation procedure. One example of the 

illuminant invariant image is shown in Figure 3-8(b), which reduced the effect of shadow 

compared with the original color image Figure 3-8(a). 

   

Figure 3-8: The effect of illuminant-invariant map. In the left figure, the light conditions are 
different between shaded and unshaded area. And in the right figure, the illuminant-invariant 
map is generated and compensates the effect of changing light conditions. Green pixels have 
lower values in illuminant-invariant maps. 

Philipp & Rath, (2002) found the HSV (Hue-Saturation-Value) color space to be one 

of the most reliable color space to distinguish green plants from the background. The hue 

values (H channel) of plants don’t change significantly with different light intensity. Thus, 

the HSV color space image 𝐼𝐼𝐻𝐻𝐻𝐻𝐻𝐻 is also stored for the next segmentation step.  

3.4.2.2 Depth based segmentation 

In depth-based segmentation, the strategy of the algorithm is to identify the ground, 

which can be assumed as a plane. The ground identification is based on depth information, as 

well as the color information extracted in the previous step. The ground is visible in images 

because the sensor is looking down at the plants. Ideally, the individual plants could be 

separated after fitting the ground plane and eliminating the ground pixels. 

In order to fit the ground plane, the weighted Random Sample Consensus (RANSAC) 
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algorithm, as well as the robust regression are used. RANSAC is used as a rough ground 

fitting method, and the robust regression is used for refining the ground plane model.  

In this study, the homogeneous coordinate is used to describe points (can be 

transferred from the depth image) and planes. A finite point (𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∈ ℝ3 in Cartesian 

space has homogeneous coordinate 𝑝𝑝 = 𝑡𝑡(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 1), 𝑡𝑡 ≠ 0. A plane in homogeneous 

coordinate has the form of 𝑛𝑛 = 𝑟𝑟(𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑), 𝑟𝑟 ≠ 0, corresponding to the general plane 

equation 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 + 𝑑𝑑 = 0. Then in order for 𝑝𝑝 to lie on the plane 𝑛𝑛, the dot product of 

𝑝𝑝 and 𝑛𝑛 must vanish. That is, 

 𝑝𝑝 ∙ 𝑛𝑛 = 0 (5) 

Then the perpendicular distance 𝑑𝑑𝑑𝑑𝑑𝑑 from an arbitrary normalized point 𝑝𝑝0 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧, 1) to 

a normalized plane 𝑛𝑛 = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑) can be obtained by 

 𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑝𝑝0 ∙ 𝑛𝑛 (6) 

However, the general RANSAC evaluates the resultant model of each iteration by 

only counting inliers based on Euclidean distances. In some cases, the general RANSAC 

algorithm will fail. For instance, when weeds cover the ground and have height close to the 

target crops, the general RANSAC will result in an incorrect ground plane. Thus, it is 

necessary and possible to improve the general RANSAC algorithm with additional 

information.  

In this study, the general RANSAC was modified to make use of the color 

information. The definition of distance 𝑑𝑑𝚤𝚤�  was modified to a distance function 𝑓𝑓(𝑑𝑑𝑖𝑖, 𝑐𝑐𝑖𝑖), in 

which 𝑑𝑑𝑖𝑖 is the perpendicular distance between each point 𝑝𝑝𝑖𝑖 and the plane 𝑛𝑛. And 𝑐𝑐𝑖𝑖 is 
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the corresponding color. The pseudo code is listed in Figure 3-9:  

Algorithm: RANSAC Ground detection 
Input: Color registered point cloud (𝑃𝑃,𝐶𝐶), 𝑖𝑖𝑖𝑖 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑃𝑃,𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
Output: The best fit model 𝑛𝑛�, inlier point set 𝐺𝐺, outlier point set 𝐺̅𝐺 
Procedure: 

1. Set iteration count 𝑡𝑡 = 0 
2. While 𝑡𝑡 < 𝑘𝑘, the minimum iteration count requirement 
3.     Select randomly 3 points 𝑝𝑝𝑗𝑗(𝑗𝑗 = 1,2,3) to determine the ground plane parameters 𝑛𝑛𝑡𝑡 . 
4.     Calculate the distance form each point to the plane 𝑑𝑑𝑖𝑖� = 𝑓𝑓�𝑑𝑑�𝑝𝑝𝑖𝑖,𝑛𝑛𝑡𝑡�, 𝑐𝑐𝑖𝑖�,𝑝𝑝𝑖𝑖 ∈ 𝑃𝑃, 𝑐𝑐𝑖𝑖 ∈ 𝐶𝐶 
5.     Evaluate the cost of the estimated model 𝐶𝐶𝑡𝑡 = ∑𝑐𝑐𝑖𝑖�  
6. Find the minimum 𝐶𝐶𝑡𝑡 
7. Extract inlier points 𝐺𝐺 based on criteria 𝑑𝑑𝑖𝑖� < 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 
8. Output the best  ground plane model 𝑛𝑛� 

 

 

Figure 3-9. The RANSAC detection algorithm 

In this study, with the consideration of the program’s simplicity, the distance 

definition is determined to be: 

 𝑑𝑑𝑖𝑖� = 𝑓𝑓(𝑑𝑑𝑖𝑖,𝑐𝑐𝑖𝑖) = 𝑤𝑤(𝑐𝑐𝑖𝑖) ∗ 𝑑𝑑�𝑝𝑝𝑖𝑖,𝑛𝑛𝑡𝑡�, (7) 

in which the color information acts as a weight factor of the distance function, indicating the 

importance of each pixel in fitting the ground. The determinant of the weight function 𝑤𝑤(𝑐𝑐𝑖𝑖) 

is stated in the next section. The cost 𝑐𝑐𝚤𝚤� of each pixel is defined as a piecewise function 

 𝑐𝑐𝚤𝚤� = �𝑤𝑤(𝑐𝑐𝑖𝑖) 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎�𝑝𝑝𝑖𝑖 ∙ 𝑛𝑛� > 3 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑣𝑣(𝑝𝑝 ∙ 𝑛𝑛)  
0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

, (8) 

In which “inliers” (points close to the ground) have zero cost, and “outliers” (points far from 

the ground) have costs equal to their weight. 

After RANSAC, the refinement of the plane is done by using robust regression. 

Robust regression is a variant of the least square regression method, which is developed for 

data are contaminated with outliers. It is also one kind of weighted least square, in which the 

weight of each data is negatively correlated to its residual. This algorithm may also be 
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iterative, and the weight of each data point is updated in each iteration.  

In this study, the robust regression is used to solve minimization problem 

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛 ∑𝑑𝑑𝑖𝑖
2 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛 ∑(𝑤𝑤𝑖𝑖 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑�𝑝𝑝𝑖𝑖 ∙ 𝑛𝑛�)

2, (9) 

in which 𝑝𝑝𝑖𝑖 ∈ 𝑃𝑃 for each point in the point set, and 𝑤𝑤𝑖𝑖 is its weight. This least square 

problem can also be expressed by solving an over constrained equation 

 
�
𝑤𝑤1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑤𝑤𝑛𝑛

�
𝑛𝑛∗𝑛𝑛

�
𝑝𝑝1𝑇𝑇
⋯
𝑝𝑝𝑛𝑛𝑇𝑇
�

𝑛𝑛∗4

𝑛𝑛4∗1 = 0. (10) 

This over constrained equation can be solved by using SVD (singular-value-decomposition) 

method. In addition, in this case, the weight function is defined as a piecewise function, 

which is based on distance, color, as well as the weight from the latest iteration 

 𝑤𝑤𝑖𝑖 = �𝑤𝑤(𝑐𝑐𝑖𝑖) 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎(𝑤𝑤𝑖𝑖𝑝𝑝𝑖𝑖 ∙ 𝑛𝑛) < 3 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑤𝑤 ∙ 𝑛𝑛)  
0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

. (11) 

In the equation above, 𝑤𝑤(𝑐𝑐𝑖𝑖) is the weight function of the corresponding color information 

of the pixel, which is also used in RANSAC. Thus, in this equation, the “inliers” have 

weights equal to their weight used before, and “outliers” have zero weight. The iteration 

continues until the result no longer changes or the iterations exceed a certain number. The 

best fit ground plane model 𝑛𝑛 is obtained by then.  
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 (a) Principle for ground detection   (b) Result after ground removal 

Figure 3-10. Fig (a) shows a synthetic 2D point cloud of a plant with a ground plane to 
visualize the principle of the ground detection. With RANSAC algorithm, two points are 
randomly selected (blue), and a line is fitted using these points (blue line). Then the model is 
refined using robust linear regression (red line). The points between the brown lines become 
inlier standing the ground. Fig (b) shows a point cloud with only outliers after ground 
detection. The points of the ground are successfully removed.  

After ground detection, the outliers with weight 𝑤𝑤 = 0 are considered as biomass 

pixels. Then, those outlier pixels are extracted into plant data point set 𝑃𝑃𝑡𝑡. At the same time, 

most of the weeds that are relatively short are excluded as background as well.  

3.4.2.3 Weight function determination 

When fitting the ground plane model, it is not reliable to use the depth information 

only. For instance, when the most of the ground was covered by weed, a tilted plane model 

would be produced. In this study, in order to solve such scenarios, weights that are calculated 

by a function of color information are assigned to those pixels when fitting the ground, which 

assists the ground fitting algorithm by telling the importance of each pixel.  

Since pixels belonging to the ground should be close to the fitted ground plane, they 

should have higher weights while performing fitting. In contrast, the plant pixels are more 

likely to be the outliers when fitting the ground, then they should have lower weights. One 
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solution is to define the weight function to be: 

 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡(𝑝𝑝) = 1 + 𝑃𝑃(𝑝𝑝 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺), (12) 

in which 𝑝𝑝 is one pixel in the point cloud, and the 𝑃𝑃(𝑝𝑝 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) means the probability 

of 𝑝𝑝 is belonging to the ground pixel set.  

The probability function should transform (−∞, +∞) to [0,1]. In this study, the 

model used is: 

 
𝑃𝑃[𝑌𝑌 = 1|𝑋𝑋 = 𝑥𝑥𝑖𝑖] =

𝑒𝑒(𝛽𝛽0 +𝛽𝛽1 𝑋𝑋)

1 + 𝑒𝑒(𝛽𝛽0 +𝛽𝛽1 𝑋𝑋)
=

1
1 + exp (−𝛽𝛽0 − 𝛽𝛽1𝑥𝑥𝑖𝑖)

 (13) 

In the equation above, β0 and β1 are the coefficients of the model, and X is the variable vector. 

In this study, considering the computational cost of the program, X is selected from values in 

three color spaces: RGB, HSV, or Illuminant variant. 

The properties of logistic response function are obvious: it is either monotonic 

increasing or decreasing depending on the sign of 𝛽𝛽1; it gradually approaches 0 and 1; and it 

is almost linear in the middle section. Similar to linear regression which determines the 

parameters of a linear model, the method to fit the parameters of this logistic response 

function is called logistic regression, which is one of machine learning methods for 

classification. The advantages of the logistic regression methods are: 

1. Logistic response function model is based on maximum likelihood estimation theory, and 

it doesn’t rely on any assumptions (e.g. normally distributed error, and equal variance of 

different parameters) of data, except for i.i.d (independent, identically distributed).  

2. Relatively low computational cost in fitting the model, as well as calculating the 



54 

probability. 

 

Figure 3-11. The standard logistic response function curve with one variable, with β0 = β1 = 
1, which transforms (−∞, +∞) to [0,1]. 

In order to fit the logistic response function, a binomial distributed dataset was 

generated by manually separate the image pixels into two categories: ground pixels (with 

label 1) and plant pixels (with label 0). After that, three models with different variable 

options (RGB, HSV, and Illuminant-invariant) are fitted for ground detection with different 

crop species.  

  

Figure 3-12. The generation of a ROC curve. The curve is created by plotting the true 
positive rate (TPR) against the false positive rate (FPR) at various threshold settings. 
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Figure 3-13. The ROC space and plots of 4 example predictions. The higher the curve is, the 
more likely the classifier will give the correct result. The predictions on the diagonal dashed 
line are equivalent to randomly guessing.  

Table 3-1 Fitted logistic response functions: coefficients and their corresponding AUC 
values. 

Species Lettuce Broccoli 

Model RGB HSV Ill-inv RGB HSV Ill-inv 
β0  -0.486825 -3.606021 -2.444331 -3.437759 -7.045284 -1.429986 
β1 -0.793238, 

0.0948187, 
-0.019799 

-0.013694, 
0.0405418, 
0.0123583 

-5.830809 -0.15641, 
0.073231, 
0.087175 

-0.002772, 
0.0482402, 
0.0277419 

-6.41317 

AUC 0.92 0.94 0.95 0.90 0.86 0.73 

Those models are validated and compared using the AUC (area under the curve) of 

ROC (receiver operating characteristic) curves. ROC (Figure 3-12, Figure 3-13) is a statistic 

graphical plot that indicates the performance of a binary classifier system with discrimination 

threshold is varied. The AUC is equal to the probability that a classifier will give the right 

result for a randomly chosen positive instance. It is often used in machine learning for model 
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comparison.  

Currently, only the results of lettuce and broccoli detection are analyzed. The fitting 

results are listed in Table 3-1. It is obvious that when detecting lettuce, the Illuminant-

invariant model is the best model, and when detecting broccoli, the RGB model is the best 

model.  

Finally, the weight functions are decided to be: 

Lettuce: 

 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡(𝑝𝑝) = 1 +
1

1 + exp (2.444 + 5.831 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖)
 (14) 

Broccoli: 

 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡(𝑝𝑝) = 1 +
1

1 + exp (3.438 + 0.156 ∗ 𝑅𝑅 − 0.073 ∗ 𝐺𝐺 − 0.087 ∗ 𝐵𝐵)
 (15) 

3.4.2.4 Segmentation performance 

After testing the segmentation algorithm on the data collected, we found that about 

95% of the images could be segmented correctly, in which background pixels were 

eliminated correctly. The reasons for the 5% failures are:  

1. Sometimes, the weeds covered most of the area in the field of view. As the ground 

segmentation relies on the depth information of the ground pixels, it will cause incorrect 

results if the ground is not observable. 

2. Sometimes, especially at early growth stages, the crops are lower in height. Thus, it is 

hard to tell the height difference between the ground and the crops. In such cases, the 

color-based segmentation will be the only solution.  
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Figure 3-14. Sample segmentation successes. The left figure shows the one color image, and 
the right figure shows the segmentation result point cloud. The background was eliminated, 
and the pixels belonging to crops were extracted and separated as clusters. 

  
Figure 3-15. Sample segmentation failures. The left figure shows a segmentation failure case 
in tomato field, in which the ground was covered with weeds. The right figure shows a 
lettuce field case, in which the depth-based segmentation was failed, because of the low 
crops height. Color-based segmentation will still work on the latest case.  

3.4.3 Pixels clustering & crop plant candidate extraction 

With segmentation by using the both depth information and color information, outlier 

points which belong to green plants (crop plants and weeds) can be extracted. Then clustering 

is applied to the plant data point set 𝑃𝑃𝑡𝑡, in order to assign the remaining points into different 

clusters representing different plant candidates. In this step, the clustering relies on spatial 

continuity of pixels only. Therefore, two or more overlapping plants may be grouped into a 
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same cluster. This overlapping problem will be solved after analyzing each leaf in this 

cluster. 

This clustering problem can be described as an unsupervised 3D clustering problem. 

It is unsupervised because the spatial continuity is the only information can be relied on in 

this clustering problem. Different methods have been implemented (except for 

Superparamagnetic clustering (Blatt, Wiseman, & Domany, 1996)) and applied to solve this 

clustering problem. A brief comparison is in Table 3-2. 

Table 3-2. Table showing the description of different clustering methods, as well as their 
advantages and disadvantages. 

Name Description Pros Cons 
K-Mean Iteratively find K 

clusters to minimize the 
sum of with-in cluster 
variation. 

High efficiency K need to be 
specified 

ISODATA Modified K-Mean for 
unknown number of 
clusters 

High efficiency, 
Algorithm splits 
and merges clusters 

Unexpected results 
when plants are 
connected 

Superparamagnetic 
clustering 

Simulation of the 
ferromagnet movement 

High quality results Not open source, 
hard to implement 

Region Growing Growing from seeds to 
neighbors, until the 
whole cloud is 
processed 

High quality results Low efficiency, 
since hard for 
compiler to optimize 
for parallelization 

Connected 
components in 2D 

Find connected 
components in depth 
image 

Best efficiency Change in depth (z-
axis) not considered 
when clustering 
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(a) Point cloud of broccoli crops in field           (b) Clustering result 

Figure 3-16. A run-time example showing the plants clustering procedure. Fig (a) is the point 
cloud generated from Kinect v2 sensor after preprocessing. And Fig (b) is the result after 
background removal and clustering. Different clusters are assigned with different colors. 
Ideally, each cluster stands for a plant.  

After considering both advantages and drawbacks, the 2D connected components 

method was finally selected, because of its high efficiency, and its negligible drawbacks. Due 

to the fact that the data’s range in depth (or z-axis) is very narrow compared to the other two 

dimensions (x, and y-axis), thus it is difficult for any clustering method to rely on depth 

information to separate individual plants perfectly. Further analysis will be performed after 

extracting features. 

With clustering, small clusters containing fewer pixels than a predefined threshold are 

no longer kept, since they can only be weeds or noise. Thus, the plant data point set 𝑃𝑃𝑡𝑡 is 

divided into different subsets indicating different crop plant candidates 𝑆𝑆𝑖𝑖 (𝑖𝑖 = 1⋯𝑛𝑛).  

 

3.5 Results and Discussion 

In this study, the algorithm is tested on all Broccoli images (203 in total) and Lettuce 
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images (376 in total) collected. The detection ground truth was obtained by human inspection 

using manually selecting method frame by frame. Some run-time results examples are shown 

in Figure 3-17. In those images, the background pixels were eliminated, and the crop plant 

candidates were labeled with circles. The candidate detection algorithm’s true positive rate, 

precision, false discovery rate are listed in Table 3-3. In average, during the test, 98% of 

target crop plants were detected as crop plant candidates (true positive rate). Among the 

candidates, about 66% of them are individual target crop plants or crop plants connected with 

other plants (precision, TP/(TP+FP)), and 34% of them are weeds (false discovery rate, 

FP/(TP+FP)).  

There are several error sources contributed to the miss-detection errors The first 

source is error from the Kinect v2 sensor. Since working outdoors will increase the noise 

level of Kinect v2, even with sunlight shaded; The second is error from the algorithms. With 

the disturbances from weeds, sometimes the image processing algorithm will fail in detecting 

ground.  
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Figure 3-17. Examples of the crop plant candidate detection run-time result. In those images, 
the detected crop plant candidates are circled.  

Table 3-3. The candidate detection true positive rate and precision for broccoli and lettuce at 
different growth stages. 

Collection data Days after 
transplant 

Broccoli candidate 
detection 
True positive rate/ 
precision 

Lettuce 
Candidate detection  
True positive rate/ 
precision 

June 13, 2015 12 100% / 66% 100% / 91% 

June 17, 2015 16 100% / 72% 100% / 77% 

June 23, 2015 22 100% / 76% 99% / 45% 

June 27, 2015 26 96% / 75% 95% / 44% 

 

3.6 Conclusion 

This paper demonstrates a new method for detecting crop plant candidates by fusing 
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2D color information and 3D spatial information. The developed algorithm relies only on the 

on-board sensors of the mobile robot, without using any pre-recorded localization data. 

Enhanced by the utilization of both 2D and 3D information, the candidate detection 

algorithm is robust to inconsistent illumination conditions, as well as high weed intensity in 

images.  

Required data was collected from multiple fields of different crop species, with 

multiple weed species, in different illumination conditions. Candidate detection algorithms 

have been implemented, tested and evaluated with broccoli and lettuce datasets. The 

algorithms were successful in detecting the crop candidates with an average true positive rate 

of 98%, and a precision of 66%. Further processing methods based on the morphological and 

structural features of plants were applied in order to improve the precision, and will be 

described in the companion paper, namely plant discrimination. Future work will focus on 

enhancing the algorithm to improve the performance by optimizing the code. 
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CHAPTER 4. PLANTS DETECTION, LOCALIZATION AND DISCRIMINATION 

USING 3D MACHINE VISION FOR ROBOTIC INTRA-ROW WEED CONTROL– PART 

B: PLANT DISCRIMINATION 

4.1 Abstract 

Robotic weeding offers a possibility of controlling weeds precisely, particularly for 

weeds growing near or within crop rows. In robotic weeding, computer vision is the most 

competent method when color and shapes need to be analyzed at high speed. Crops 

localization and discrimination are challenging tasks in robotic weeding with compter vision, 

since it is difficult for a computer to understand the differences of human-use high-level 

descriptions of the appearance. 

In this section we are introducing a feature extraction and classification system for 

robotic weeding, based on the crop plant candidate detection algorithms in the companion 

paper. Morphological and structural features were extracted from leaves and canopies, with 

which the detected candidates can be further separated into different plants. Supervised 

machine learning technique was used to identify crop plants of different growth stages. In 

addition, different machine learning methods were also evaluated and compared. Finally, the 

algorithmic efficiency and classification accuracy of the proposed discrimination methods 

were validated and demonstrated. Based on the data collected, the AdaBoost algorithm 

performs the best, with error rates of 3.1% (broccoli) and 6.8% (lettuce).  
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4.2 Introduction 

Crops/weeds differentiation plays an important role in robotic weeding. But it is 

challenging for a computer to accomplish the discrimination of crops and weeds, due to the 

difficulty for a computer to understand the human-use high-level descriptions of the 

appearance differences between crops and weeds. Supervised machine learning is a 

competent technique, in which computer learn general rules to map the inputs to outputs. In 

machine learning, the crop/weed discrimination can be characterized as a classification 

problem.  

Many supervised learning methods are available. Most of the conventional methods 

use vectors of numerical and categorical features as input, as well as the supervising. Then, a 

probability function is selected, and a training method is used to determine the probability 

function using the input. In the end, the output could be predicted given a new input feature 

vector. The performance of supervised learning heavily depends on feature selection, which 

represents the raw data, as well as the learning method (Bengio, Courville, & Vincent, 2013).  

However, a breakthrough in feature learning and deep learning was initiated by 

Hinton et al., (2006). Later on, great progress has been made that significantly increased the 

performance of machine learning. The central idea of deep learning is referred to as greedy 

layer-wise unsupervised pre-training, which is to learn a hierarchy of features on one level at 

a time, using unsupervised feature learning to learn a new transformation at each level to be 

composed with the previously learned transformations (Bengio et al., 2013). With the support 

of the advancement of computing capacity of computers, especially GPUs, a deep supervised 
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predictor such as a neural network classifier with many layers can be trained. Its ability has 

been proved in many areas, such as Language Processing (Seide, Li, & Yu, 2011) and 

Computer Vision (Szegedy et al., 2014). In many Data mining competitions such as 

ImageNet 2014, deep learning methods covered first places. Compared with traditional 

feature-based machine learning methods, the advantages of deep learning are obvious: it 

requires less work for operators to extract and select features. Theoretically, the best feature 

can be selected by operators is also obtained in deep learning. The disadvantage of deep 

learning is that a large training dataset is needed, which increases the complexity of 

generating training datasets.  

In this study, limited by knowledge and dataset size, only conventional feature-based 

classification methods were considered. Plant candidates were detected at first using the 

computer vision system stated in the previous section. After detecting plant candidates, leaf 

and canopy features were extracted from the plant clusters for recognition. The features can 

be divided into three categories: color based, plant morphology based, and plant structure-

based features.  

Color based features indicate the physical properties of objects, mainly the reflection 

properties. They can be useful when the colors of crop plants are different from that of 

weeds, e.g., broccoli has stronger blue color than weeds, and lettuce has more saturated green 

than weeds. However, color-based features are not sufficient, as crops may share some 

similar colors with some weed species, and color can be influenced by changing illumination 

conditions. As a result, plant morphology and structure-based features are both utilized in our 
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research.  

Structural features are descriptions of the structure of plants, such as the stems, the 

leaves and their spatial relationship. Structural features are not commonly used as they are 

typically described by high-level descriptive languages, which are difficult to parameterize. 

In addition, the structural features need to be extracted from relatively comprehensive 3D 

models of plants. 

Morphological features are descriptions of shapes of plants. Morphology features are 

most commonly used in agricultural computer vision due to their reliability and 

parameterization simplicity. For instance, plant canopy shapes such as height and diameters, 

as well as leaf shapes such as length and width, are scalars and easy to extract using 2D or 

3D sensors. There are many research projects using morphological features for plants 

classification. and about 90% to 95% recognition rates in average were achieved (Q. Wu, 

Zhou, & Wang, 2006; S. G. Wu et al., 2007). In the research of Weiss et al., (2010), the 

authors extracted plant canopy morphological features from LIDAR data for species 

discrimination, and achieved a 98% recognition rate. However, their experiments were 

mostly performed indoor. In our study, the challenge is that the classification needs to be 

performed outdoor, with influences of weeds, damaged leaves, lighting condition changes, 

implying a high data noise level.  

Based on a literature search, classification methods addressing outdoor plant 

classification problems are very few, and their performances are not robust enough for 

automated weeding operation. In this chapter, a crop/non-crop discrimination (classification) 
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system for robotic weeding will be introduced.  

The crop/non-crop classification system used supervised machine learning technique, 

and used plant color, morphological and structural features as input. Different classification 

methods were evaluated and compared in this application. All of the classification programs 

were implemented using R language. 

 

4.3 Plant Features 

In this section, the definitions of the plant leaf and canopy features which are 

extracted and used in this study will be introduced. The features include morphological 

features, structural features, as well as some color features. The morphological features 

consist of features which can describe dimensions and shapes of canopies or leaves, such as 

plant height, diameter, leaf aspect ratio and leaf area convex hull ratio, etc. Color features 

include average hue and saturation, as well as illuminant invariance to take use of the color 

difference between crops and weeds if possible. And the structural features describe the 

structures of plants, such as the venation of leaves. With those features, classifiers can be 

built for different species at different growth stages. The definitions of these features to be 

extracted are listed below, and some of them are referred to the work of Du et al. (2007). 

Leaf features: 

(1) Leaf venation (vein) 

Binominal variable, indicating whether the venation of the leaf can be extracted. 
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(2) Leaf average height (havg): 

The distance between the field ground and the center point of the leaf. 

(3) Leaf area (area): 

The area of the leaf after projection to the ground plane.  

(4) Leaf length (leaf_l): 

The maximum distance on the leaf to the center of the plant. 

(5) Leaf width (leaf_w): 

The maximum width on the leaf, which is perpendicular to the length direction. 

(6) Leaf aspect ratio (ratio): 

The ratio between 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚: the maximum length of the leaf measured from the center of 

the plant, and 𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚: the maximum width on the leaf 

 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚/𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚 (16) 

(7) Leaf roundness (leaf_roundness): 

The ratio between the leaf contour length 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and the bounding ellipse 

circumference 𝐶𝐶𝑒𝑒. 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙/𝐶𝐶𝑒𝑒 (17) 

(8) Leaf rectangularity (leaf_recti): 

The ratio between the leaf area 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and the leaf’s bounding rectangle area 𝐴𝐴𝑐𝑐.  

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙/𝐴𝐴𝑐𝑐 (18) 

(9) (10) Leaf hue, leaf saturation (l_clr_hue, l_clr_setra): 

The average values of Hue and Saturation channel in HSV (Hue-Saturation-Value) 
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color space respectively of the leaf pixels. 

(11) Leaf illuminant-invariant value (l_clr_ill): 

Finlayson in (Finlayson et al., 2002) proposed the way using illuminant invariant (ill-

inv) space method to remove the shadows. The theory is built on the assumptions of the 

narrow-band color sensor, Lambertian Surface (on which Lambert’s cosine law is obeyed), 

and Planckian Light (Color Temperature). It transfers the color from RGB color space into 

ill-inv color space, where the Y axis is log(B/R), and the X-axis is log(G/R). Then if 

project those colors in ill-inv color space onto a specific line, which is called invariant axis, 

all different colors can be separable with different illuminant-invariant values. This feature is 

defined as the average ill-inv values of the leaf pixels. 

Canopy morphological features: 

(12) Canopy height (z_height): 

The maximum perpendicular distance between the field ground and the highest point 

of the plant. 

(13) Canopy radius (radi) 

The average length of the long leaves in all directions. The short new grown leaves 

which are shorter than their underlying leaves are not considered. 

(14) Leaf number (leaf_n): 

The number of leaves that can be segmented from the plant data. 

(15)  (15) Canopy hue, Canopy saturation (clr_hue, clr_setra): 
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The average values of Hue and Saturation channel in HSV (Hue-Saturation-Value) 

color space respectively of the canopy pixels. 

(16) Canopy illuminant-invariant value (clr_ill): 

The average illuminant-invariant value of the plant data points. 

 

4.4 Algorithm Design 

In order to accomplish plants detection and localization, 3D spatial and 2D color 

information were fused together. The framework of the entire algorithm is shown in the 

flowchart (Figure 4-1). 

Step 1: Preprocessing. Remove the invalid pixels and remove noise points in point 

clouds. This procedure is done by using a usable-are filter, a cut-off filter and a simplified 

neighbor count filter.  

Step 2: Registration and segmentation. 2D and 3D information are fused. The ground 

is detected using both 2D color and 3D depth information, and a plane equation is fitted 

using RANSAC. All vegetation pixels are extracted in the images. 

Step 3: Clustering & candidate extraction. The remaining points which belong to 

plants are separated into different clusters. Each cluster may contain one plant, or multiple 

objects which are connected in space, with species not determined. Crop plant candidates can 

be extracted by simple thresholding on cluster size to shift small objects which can be regard 

as non-crop objects. 
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Step 4: Feature extraction. Canopy color, morphological and structural features in 

each crop plant candidate are extracted. If possible, leaves are segmented as well, and leaf 

morphological and structural features are extracted as well. 

Step 5: Grouping. The features extracted (venation for broccoli, and canopy shape for 

lettuce in this study) are used for grouping, in order to separate the pixels within the same 

candidate detected into different plants. Locations can be calculated as well. 

Step 6: Classification. Crop/weed classification is applied to all the separated plants 

based on their features (canopy, leaf) using machine learning techniques. 

In this section, step 1, 2, 3 are used to accomplish crop plant candidate detection and 

are stated in the companion paper. Step 4, 5, 6 are used for plant discrimination, which will 

be introduced in this paper.  

 

Figure 4-1. The flowchart of the image processing procedures.  
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4.4.1 Plant leaf segmentation 

To accomplish plant localization and recognition with leaf features, it is very 

important to segment each leaf out of the plant candidate clusters if possible. However, in the 

dataset collected, leaf damage was found common, which increases the difficulty of leaf 

segmentation if using the leaf shape as patterns.  

Thus, the main strategy is to use marker-controlled watershed segmentation algorithm 

on the depth image and color information (Hue channel in HSV color space) to segment 

leaves.  

Watershed segmentation is a simulation of filling the valleys with water on a 

topographic surface, where the topographic surface is generated from a grayscale image. The 

marker-controlled watershed algorithm enhanced the watershed by starting the filling of 

water from a previously defined set of markers.  

The “watersheds” in this study can be obtained by finding the edges of leaves. The 

edges are the discontinuities in depth and color. This is because different leaves usually have 

different heights, and sometimes they may have different color intensities due to the sunlight 

shadow. Those discontinuities are quantified using the magnitudes of gradients in these 

images.  

In geometry, the gradient of a function 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) in 2D Cartesian coordinate system 

is given by 

 ∇𝑓𝑓 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1

𝑖𝑖 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2

𝑗𝑗 (19) 

where 𝑖𝑖, 𝑗𝑗 are the standard unit vectors. The magnitude of gradient is then defined as 
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In image processing, those partial derivatives can be approximated by convolving Sobel 

operators  

 𝑆𝑆𝑥𝑥 = �
−1 0 1
−2 0 2
−1 0 1

�  𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑦𝑦 = �
−1 −2 −1
0 0 0
1 2 1

� (21) 

to a source image 𝐴𝐴 for horizontal and vertical derivatives respectively. Thus the magnitude 

𝐺𝐺 of the gradient becomes the root of the square sums of above two derivatives 

 𝐺𝐺 = �(𝑆𝑆𝑥𝑥 ∗ 𝐴𝐴)2 + �𝑆𝑆𝑦𝑦 ∗ 𝐴𝐴�
2
 (22) 

where the operator * here is the 2D signal processing convolution operation.  

After obtaining the gradient magnitude of both depth image and color image, edge 

image𝑠𝑠 𝐸𝐸𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸ℎ, can be obtained by thresholding both depth and color gradient magnitude 

image (𝐺𝐺𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎 𝐺𝐺ℎ, respectively). These edge images are merged into a watershed image 𝐸𝐸.  

The label map 𝐿𝐿 is obtained from the edge image 𝐸𝐸. The area where its distance to 

any edges is smaller than a threshold is labeled as one of foreground labels (label 2~n, n>2). 

The pixels identified as background in previous steps are labeled as background (label 0). 

The rest of the pixels are labeled as unknown (label 1). 

Then the depth image, as well as the label map, are passed to the watershed function 

from OpenCV library. An example resultant label image is shown in Figure 4-2.  

In this study, leaves were segmented from the broccoli dataset. As the leaves are not 

obvious in the lettuce dataset, leaf segmentation was not performed for lettuce. 
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Figure 4-2. A run-time output example showing the leaf extraction procedures. Left: Color 
image of on cluster after segmentation and clustering, with connected crops, occlusions, as 
well as broken leaves. Middle: Combined gradient magnitude image on both color and depth. 
Right: Leaves extraction result example. Most of the leaves are extracted and labeled with 
different colors.  

4.4.2 Grouping & localization 

As mentioned before, during crop plant candidate detection stage, only the spatial 

relationship of the pixels was considered while clustering. Thus there may be connected 

plants within the same candidate cluster. Such connected cases can be detected by analyzing 

the pixel distribution using PCA (principal component analysis). It is necessary to separate 

those connected plants for plant localization and discrimination.  

There are researchers addressing the connected problem of plants in past years. 

Mainly two categories of features are used to separate the connected plants. The first one 

category is based on color features. For instance, Tang (2002) built a color based Bayes 

classifier to distinguish centers from leaves of corn plants at early growth stages, with which 

connected corn plants can be separated. However, methods using color features are still 
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sensitive to varying light conditions and growth stages.  

The other category is based on structural features, which localize the plant based on 

the features such as overall shapes, pixel distribution, or the topology of leaves. Many types 

of research in the past separated plants by finding the area with high biomass pixel densities 

for simplicity (Tillett, Hague, Grundy, & Dedousis, 2008). Such methods only work for 

separating crop plants which are easily separable or whose overall shapes are approximately 

spherical, such as lettuce in this study.  

Also, some researchers separate connected plants by analyzing the leaf topology (leaf 

directions, leaf distributions, etc) based on the morphological features of leaves, such as 

curvature (Jin & Tang, 2009), leaf contours (Persson & Åstrand, 2008) and leaf tips (Midtiby, 

Giselsson, & Jørgensen, 2012). Due to the occlusion problems as well as broken leaves in our 

dataset were very common (Figure 4-3), the morphological features such as leaf tips are hard 

to detect. The surfaces of broccoli leaves can also be irregular, thus the curvatures are not 

usable. 

However, leaf directions were found robust when separating plants in the broccoli 

dataset. Moreover, in this study, venation was found the most stable feature in determining 

the directions of the leaves. As the venation close to the center is obvious and is not likely to 

be occluded by other plants, or damaged by small animals.  
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Figure 4-3. One example image of broccoli collected in the field, with damaged leaves and 
interconnected canopies. Leaf venation was found a robust feature to determine the leaf 
directions.  

In this section, a new developed venation-based leaf grouping algorithm is proposed 

for separate broccoli plants. This algorithm works on species with border leaves and obvious 

straight veins. The algorithm has two steps, the first is venation extraction, in which extract 

the vein pixels and convert them into line segments. The second is center finding using those 

line segments. 

4.4.2.1 Venation extraction 

Veins are found obvious in the Red channel from RGB color space images. As the 

pixels from the veins have higher values in red compared to surrounded pixels, those vein 

pixels are considered as “ridges” in the images.  

In image processing, the concept of “ridge” is derived from differential geometry. In 

differential geometry, a ridge point is a point where a smooth surface has a local maximum or 

minimum of principal curvature on lines of curvature. The ridges are the set of ridge points 

from curves on the surface. Equally, a “ridge” point has a lower negative principal curvature, 
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and a “valley” point has a higher positive principal curvature.  

For surface with format 𝜎𝜎(𝑥𝑥,𝑦𝑦) = �𝑥𝑥, 𝑦𝑦,𝑓𝑓(𝑥𝑥,𝑦𝑦)�, if assume only the fluctuation is 

considered, the principal curvatures of the surface patch can be simplified as the eigenvalues 

of the second fundamental form of the surface. In this case, the second fundamental form of 

the surface becomes the Hessian matrix of 𝑓𝑓(𝑥𝑥, 𝑦𝑦) 

 

𝐻𝐻�𝑓𝑓(𝑥𝑥,𝑦𝑦)� =

⎝

⎜
⎛
𝛿𝛿2𝑓𝑓
𝜕𝜕𝑥𝑥2
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𝛿𝛿2𝑓𝑓
𝜕𝜕𝑦𝑦2 ⎠

⎟
⎞

 (23) 

which reflects the second-order partial derivatives of 𝑓𝑓(𝑥𝑥,𝑦𝑦) at each pixel. The eigenvalues 

of the Hessian matrixes indicate the maximum and minimum curvatures on different curves 

at certain pixel. Their corresponding eigenvectors indicates the directions on which the 

extremum curvatures are obtained.  

As shown in Figure 4-4, a flat surface has eigenvalues to be both zero, positive 

eigenvalues correspond to valleys or saddles, and negative eigenvalues correspond to ridges 

or peaks.  

 

Figure 4-4. Surfaces with different eigenvalues of their Hessian matrixes. A flat surface has 
eigenvalues to be both zero, positive eigenvalues correspond to valleys or saddles, and 
negative eigenvalues correspond to ridges or peaks. 
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Figure 4-5. A run-time output example showing venation extraction methods. The left figure 
shows the map of lower eigenvalues of Hessian Matrixes at each location. Ridges are colored 
with brighter colors. The right figure shows the veins extracted by thresholding, with noise.  

Thus, for each cluster found in previous steps, a map of the lower eigenvalue of each 

pixel in the red channel can be generated (Figure 4-5). The eigenvalues are inversed, such 

that the brighter pixels are more likely to be ridge points. It can be seen that the veins are 

obvious on leaves.  

By limiting the processing areas to those leaves’ areas (obtained in leaf segmentation 

step), the veins can be segmented by thresholding. The threshold used in this study was 

determined by experiments and have been tested promising. The veins extracted by 

thresholding might be noisy (Figure 4-5). Then image dilating, thinning and connected 

components algorithms are used to skeletonize the veins, and eliminate the unconnected 

pixels, which are noise pixels.  
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4.4.2.2 Crop plant center detection 

Based on the field of view of the sensor while working, maximum three crop plants 

can be observed within the same image. So in this method, three circles are created to 

represent three potential combinations of the leaves for each crop plant candidate with 

connection. Those circles are initialized at different positions at first. Then the circles move 

to the new positions by calculating the mean positions of pixels from their surrounding leaves 

iteratively, until their positions are converged. Therefore, three potential combinations of 

leaves can be generated (Figure 4-6). 

  

Figure 4-6. A run-time output example showing the venation skeletons extracted from the 
same leaf combination. The left figure shows the potential combinations of leaves. The right 
figure shows the skeletonized venation map extracted from the bottom leaves combination, 
which is passed to the center finding step. 

The center detection method can be applied to the veins extracted from those 

potential leaf combinations. Suppose the primary veins’ direction can be extracted perfectly, 

then all the primary veins can be estimated as a line segment. Then, ideally, the center point 
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lies on every extension lines of each line segment. If there are only two lines unparalleled, 

the point of intersection is unique. If there are more than three lines, the problem becomes 

finding the point, which is closest to all those extension lines.  

The challenge of this method is the difficulty for the computer to distinguish the 

primary vein with other branches by analyzing only the target leaf, due to the imperfect 

extractions (noise pixels, missing branches). However, we can find out all the branches in 

each leaf, and estimate their probability of being primary branches. The algorithm can be 

summarized as three steps: 

1. Find all the branches, and simplify them into line segments.  

2. Estimate the probability of being a primary vein for each line segment, and assign 

the probability to each line segment as a weight factor.  

3. Solve the center-detection problem by using the weighted robust least square 

method. 

In the first step, all the joints of branches are found to separate the branches. In many 

thinning algorithms with small thinning windows, it can be observed that the joints always 

involve some certain patterns. For instance, in the algorithm of Zhang & Suen (1984), all the 

joints involve patterns of either ‘Y’ or ‘˫’ (Figure 4-7). With those joints erased, the separated 

vein branches were fitted into line segments using least square method.  

The second step is to assign each line segment a weight factor, which reflects the 

probability of being a primary vein. It is obvious that a primary vein is the longest and have 

most joints on it for most of the times on a leaf. Thus, the lengths of line segments 𝑙𝑙 and the 
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counts of joints 𝑛𝑛 lying on them are used for calculating the weight factors 𝑤𝑤. The 

algorithm is stated in Figure 4-8: 

               

               

               

               

               

               

               

 Figure 4-7. The patterns which the joints involve after thinning with the method proposed 
by Zhang & Suen, (1984). The upper row shows the ‘Y’ pattern in 4 directions, and the lower 
row shows the ‘˫’ pattern in 4 directions. All the pixels with these patterns are joints.  

Algorithm: Weight factor calculation with in leaf 
Input: Joints p, separated line segments (equation n, length l) 
Output: Weight factor w for each line segment 
Procedure: 

1. for each line segment (n, l) 
2.     Set on-line joint count 𝑡𝑡 = 0 
3.     for each joint p 
4.         Calculate the vertical Euclidean distance d from p to (n, l) 
5.         if distance d < 5 (in pixel) 
6.             Joint count++ 
7.     end for 
8.     Weight multiplier c = max(1, t * 3) 
9. end for 
10. Find the maximum weight multiplier cmax 
11. Normalize weight multiplier c = c / cmax 
12. for each line segment (n, l) 
13.     Weight factor w = multiplier c * line segment length l 
14. end for 

 

 

Figure 4-8. The algorithm of defining the weight factor of each line segment when 
calculating the center. 



84 

     
Figure 4-9. A run-time output example showing the results after the first and second steps in 
center finding. The left figure shows the venation skeletons of one potential leaves 
combination. In the right figure, the joints are colored in red, and the fitted line segments are 
drawn in green, with their lengths equal to their weight factors.  

 The last step is to perform the weighted robust least square algorithm using the 

segmented line segments to finish the center finding. The theory is similar to the algorithm 

used for refinement of depth based segmentation, which uses the inliers to perform the least 

square method, iteratively. The algorithm is summarized in Figure 4-10: 

With the proposed algorithm, the potential leaf combinations with proper centers output 

(the centers are surrounded by leaves, not on leaves) are regarded as correct leaf 

combinations, which indicates individual plants, and the problem of connection is solved. For 

each individual plant, all the canopy features can be extracted again if necessary, and all the 

leaf features can be taken from the pre-extracted leaf feature set.  
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Algorithm: Center finding 
Input: Separated line segments (normalized line equation n, weight w), stop criterial ε 
Output: The center position p 
Procedure: 

1. Iteration i <- 0 
2. Previous position pi-1  
3. Current position pi <- initial position p0 
4. while |pi – pi-1| < ε 
5.      pi-1 = pi 
6.     for each line segment (n,w) 
7.         calc-weight cw <- 0 
8.         Calculate the vertical Euclidean distance d from pi-1  to (n, l) 
9.         if distance d < mean(d) + 3 * stddev(d) 
10.             cw <- w 
11.         else cw <- 0 
12.     end for 
13.     Perform least square to solve: 𝑝𝑝𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑝𝑝
∑(𝑐𝑐𝑐𝑐𝑗𝑗 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑�𝑝𝑝, 𝑙𝑙𝑗𝑗�)2 

14. end while 
15. p = pi 

 

 

Figure 4-10. The algorithm of center finding using vein line segments. 

 
Figure 4-11. A run-time output example showing the iterations of finding the center. The 
green cross indicates the resultant center location in the current iteration. The line segments 
with white color are the active line segments (inliers, with non-zero calc-weights). And the 
line segments in red are the inactive line segments (outliers, with zero calc-weights) in the 
current iteration. 
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4.4.3 Supervising user interface 

In this application, a user interface was built in order to generate supervised data for 

crop/weed discrimination (Figure 4-12). For each separated plant (obtained from previous 

steps), the user can specify whether it is a crop or weed, or it is a wrong detection. In 

addition, if any leaf can be segmented from the plant, the user can also tell whether it is a 

crop leaf, a weed leaf, a piece of ground, or a wrong detection.  

 

Figure 4-12. The supervising user interface. It can realize plant-based supervising and leaf-
based supervising. Plants detected are labeled with circles. With buttons on the right side, the 
operator can identify the crops and weeds. The supervising input as well as the features of 
each plant are saved. 

In this study, 403 sets of plant features were extracted from the Broccoli field dataset, 

with 289 of them are from broccoli crop plants, and others are from non-crops. 861 sets of 

plant features were extracted from the lettuce dataset, with 376 sets of them are from lettuce 

crop plants, and the other are from non-crop objects.  
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4.4.4 Classification methods 

The purpose of classification is to predict the class of a new unknown sample point 

based on database that has been separated into different classes. All numeric features can be 

combined to feature vectors in order to build classifiers. As the leaf features can be extracted 

from plants of some species, such as broccoli, two classifiers are built. One is for leaves, and 

another is for plants. In leaves classification, the result should be whether those leaves are 

from crops or weeds, or they are incorrectly segmented. In the plant classification, the 

classifier uses the features of classified crop leaves, as well as the plant features, then output 

whether the plant is a crop, or a non-crop. 

There are many classification algorithms available, for instance the logistic regression 

(LR), the k-nearest neighbors (KNN), the artificial neural network (ANN), the Bayes 

classifiers such as LDA and QDA, the support vector machine (SVM), and tree-based 

classifiers such as decision tree and random forest (RF). The performance of each classifier 

highly relies on the distributions of data. Thus, it is not suitable to subjectively decide which 

model is the best. In this study, all the above models are fitted using the features extracted. 

Then those models are evaluated and compared by using Cross-Validation (CV) results. The 

evaluation program was implemented using R language (R Development Core Team, 2010).  

In this section, different classification algorithms are introduced, as well as their 

tuning parameters, and some cautions.  
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K-Nearest neighbors 

The K-Nearest Neighbors algorithm (KNN) is a non-parametric method used in 

classification. A new sample point is classified by the votes of its k nearest neighbors. The 

concept of distance to determine the “nearest” neighbors is usually the Euclidean distance in 

feature space. Thus, in order to equalize the importance of each predictor, it is important to 

normalize the predictors in preprocessing.  

It can be seen that the parameter k would affect the result. Theoretically, the higher k 

will result in a smoother decision boundary, then reduce the noise on the classification, but 

make the boundary between classes less distinct. Thus, 10-fold Cross-Validation is used to 

select the best k in this study.  

The KNN function such as prediction and cross-validation were implemented in the 

package “class” (Venables & Ripley, 2002) in R.  

 

Figure 4-13. Example of k-NN classification. The prediction is voted by its k nearest 
neighbors. The classification result should be Red when k = 3 (solid line), and should be Blue 
if k = 6 (dashed line). Adopted from K-nearest neighbors algorithm, ln Wikipedia, n.d., 
Retrieved May 28, 2007, from https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm. 
©2007 by Antti Ajanki. Adopted with permission. 

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
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Logistic regression 

The logistic regression model arises from the desire to model the posterior 

probabilities of the classes via linear functions while at the same time ensuring that they sum 

to one and remain in [0,1] (Hastie, H. Friedman, & Tibshirani, 2009). This method fits a 

logistic function, which is: 

 𝐹𝐹(𝑥𝑥) =
1

1 + exp (−𝛽𝛽0 − 𝛽𝛽1𝑥𝑥)
 (24) 

The advantage of this method is that it is based on maximum likelihood theory, and there is 

no assumption on the distribution of data.  

In this method, as all the predictors are used to fit the logistic regression model, it will 

result in sparse data points in the predictor space, which is also called the “curse of 

dimensionality”. Thus, subset selection is performed to reduce the dimension. In this study, 

“Best subset selection” method is used, which find the best model (simple and less CV error) 

among all the combinations. Since only less than 10 predictors are extracted in this study, 

only 2^10 = 1024 combinations are considered, which is not a big deal for current computers.  

The logistic regression function such as fitting, prediction, subset selection were 

implemented in the packages “stats” (R Development Core Team, 2010) and “bestglm” 

(McLeod & Xu, 2010) in R.  
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Figure 4-14. An example of logistic regression, showing the probability curve fitted using the 
data points. Ln Wikipedia, n.d., Retrieved August 17, 2015, from 
https://en.wikipedia.org/wiki/Logistic_regression. ©2015 by Michaelg2015. Adopted with 
permission. 

Bayes’ classifier 

In these approaches, distribution of the predictors X are modeled in each of the 

response classes Y, and use Bayes’ theorem to estimate P[Y = k | X = x]. When these 

distributions are assumed to be normal, these methods become discriminant analysis. 

When assuming the variance of predictors are equal across all classes. The class 

prediction 𝑌𝑌�(𝑥𝑥) is which the posterior probability is the largest: 

  𝑌𝑌�(𝑥𝑥) = argmax
𝑘𝑘

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝑌𝑌 = 𝑘𝑘|𝑋𝑋 = 𝑥𝑥] 

= argmax
𝑘𝑘

[𝑥𝑥 ∙ 𝜇𝜇𝑘𝑘
𝜎𝜎2
− 𝜇𝜇𝑘𝑘

2

2𝜎𝜎2
+ log(𝑃𝑃[𝑌𝑌 = 𝑘𝑘])]           (𝑑𝑑 = 1)  

= argmax
𝑘𝑘

[𝑥𝑥𝑇𝑇∑−1𝜇𝜇𝑘𝑘 −
1
2
𝜇𝜇𝑘𝑘𝑇𝑇∑−1𝜇𝜇𝑘𝑘 + log(𝑃𝑃[𝑌𝑌 = 𝑘𝑘])] (𝑑𝑑 > 1), 

(25) 

where d is the number of predictors. This method is called linear discriminant analysis 

(LDA), as the decision boundaries are linear.  
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When not assuming equal variance across all classes, the prediction is: 

 𝑌𝑌�(𝑥𝑥) = argmax
𝑘𝑘

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝑌𝑌 = 𝑘𝑘|𝑋𝑋 = 𝑥𝑥]  

    = argmax
𝑘𝑘

[−1
2

log |∑𝑘𝑘| − 1
2
𝑥𝑥𝑇𝑇∑𝑘𝑘

−1𝑥𝑥 + 𝑥𝑥𝑇𝑇∑𝑘𝑘
−1𝜇𝜇𝑘𝑘 −

1
2
𝜇𝜇𝑘𝑘𝑇𝑇∑𝑘𝑘

−1𝜇𝜇𝑘𝑘  +

 log(𝑃𝑃[𝑌𝑌 = 𝑘𝑘])] 
(26) 

This method is called quadratic discriminant analysis (QDA), in which the decision 

boundaries are quadratic. 

When assuming each the predictor Xi is conditionally independent of every other 

feature, the method becomes Naïve Bayes classifier.  

In this study, the assumption of equal variance is not reasonable, and predictors are 

not independent to each other. Thus, QDA is used. The QDA function such as fitting, 

prediction were implemented in package “MASS” (Venables & Ripley, 2002) in R.  

 
Figure 4-15. An example of QDA visualization using generated data, showing the data points 
and the quadratic decision boundary of two classes.  
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Artificial neural network 

A neural network emulates the structure of a human brain as a network of neurons 

that are interconnected to each other. In classification problems, each neuron is equivalent to 

a logistic regression unit in general. The learning happens via an iterative feedback 

mechanism where the error of training data output is used to adjust the corresponding 

weights of input and the coefficients of each neuron. This learning algorithm is known as 

“backpropagation”. The advantage of this method can create complex decision boundaries 

compared with directly using LR, QDA.  

The tuning parameters in a neural network include the number of hidden layers, the 

number of neurons in each layer, as well as learning rate. Larger layer number will lead to 

more complex decision boundaries, but will require longer training time. Higher learning rate 

will speed up the learning procedure, but results in a risk of failing to converge.  

The neural network functions such as fitting, prediction were implemented in package 

“neuralnet” (Günther & Fritsch, 2010) in R.  
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Figure 4-16. An example of three-layer artificial neural network visualization, showing the 
structure of the network, and the coefficients of each neuron. Each circle indicates a neuron, 
and the values above arrows indicates the weight of each input in each neuron. 

Support vector machine 

Support Vector Machine (SVM) is a binary classification method based on finding a 

hyperplane between a set of samples with positive and negative outputs, when assuming the 

data is linearly separable. It is a non-probabilistic binary classifier. In addition to performing 

linear classification, non-linear classification can also be performed by mapping data points 

into high-dimensional feature spaces, which is called “kernel trick”. However, operators still 

need to know the distributions of the data point before deciding which kernel to use.  

The tuning parameters in SVM include the kernel type, the parameter needed for 

kernels, as well as the cost of constraints violation using in Lagrange formulation. The SVM 

functions such as fitting, prediction, as well as parameters tuning were implemented in 
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package “e1071” (Meyer, Dimitriadou, Hornik, Weingessel, & Leisch) in R.  

 

Figure 4-17. An example of linear SVM classification. The problems is to find a hyperplane 
with maximum margin using data points.  

Random forest 

Random forest is one of the tree-Bagging (Bootstrap Aggregation) models, which is 

built based on decision trees. In the Random Forest, it randomly selects k input predictors 

from the total N input predictors (k ~ N^0.5), then learns a decision tree from the data. After 

sampling for several times, different decision trees can be learned, and therefore a forest is 

built. During predicting, each tree in the forest votes for the result. This method is popular 

because it is non-parametric, robust, and is compatible with non-linear data.  

The tuning parameters include the number of trees, and the depth of each tree. Higher 

tree number and tree depth will increase the complexity of the decision boundary, but also 

result in overfitting. The Random forest functions such as fitting, prediction are implemented 

in package “randomForest” (Liaw & Wiener, 2002) in R.  
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Figure 4-18. The concept of forest, In Random forest, different trees are trained with random 
predictors combinations. When predicting, voting is performed by each tree in the forest. 
Adopted from Random Forest とその派生アルゴリズム, ln Hatena Blog, n.d., Retrieved 
Dec 4, 2013, from http://kazoo04.hatenablog.com/entry/2013/12/04/175402 ©2013 by 
kazoo04. Adopted with permission. 

AdaBoost 

Boosting methods are methods that can combine the outputs of many “weak” (error 

rate is only required to be better than chance) classifiers to produce a powerful “committee” 

(Hastie et al., 2009). AdaBoost, short for “Adaptive Boosting”, formulated by Freund & 

Schapire (1997) who won the Godel Prize in 2003, is the most popular boosting algorithm.  

The purpose of AdaBoost is to sequentially apply the weak classification algorithm to 

repeatedly modified versions of the data, therefore, produce a sequence of weak classifiers 

(trees are mostly used). After that, in prediction, all the weak classifiers are combined 

through a weighted vote to produce the final prediction. There are several variants of 

AdaBoost known, such as Discrete AdaBoost, Real AdaBoost, Logit AdaBoost, and Gentle 

AdaBoost. All of them are very similar in their overall structures. Figure 4-19 shows the 

http://kazoo04.hatenablog.com/entry/2013/12/04/175402


96 

algorithm of Discrete AdaBoost as an example.  

The tuning parameters of AdaBoost include the variant selection, the maximum depth 

of the trees in each iteration, the iteration number, and the shrinkage parameter. Since there 

are too many tuning parameters, only a local optimum parameter set was found, which is not 

guaranteed to be the global optimum. The AdaBoost functions such as fitting, prediction 

were implemented in package “ada” (Culp, Johnson, & Michailidis, 2006) in R. 

Algorithm: Two-class Discrete AdaBoost 
Input: M Samples (xi, yi) where 𝑥𝑥𝑖𝑖 ∈ 𝜒𝜒 ,  𝑦𝑦𝑖𝑖 ∈ {−1, +1} 
Output: Final hypothesis H(x) 
Procedure: 

1. Initialize sample weight for each sample W1(i)=1/m for i = 1,…,m. 
2. for each iteration t = 1, .. , T 
3.     Train weak classifier using weight Wi 
4.     Get weak hypothesis ℎ𝑡𝑡 ∶  𝜒𝜒 ∈ {−1, +1} using the classifier 
5.     Compute error 𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡  =  𝐸𝐸𝑤𝑤 [1(𝑦𝑦𝑦𝑦=ℎ𝑡𝑡(𝑥𝑥𝑥𝑥))] 
6.     Choose classifier weight for current iteration  𝛼𝛼𝑡𝑡 = 1

2
ln⁡(1−𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡

𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡
) 

7.     for each sample, update sample weight: 
8.         𝑊𝑊𝑡𝑡+1(𝑖𝑖) = 𝑊𝑊𝑡𝑡(i)exp⁡(−𝛼𝛼𝑡𝑡𝑦𝑦𝑖𝑖ℎ𝑖𝑖(𝑥𝑥𝑖𝑖)) 
9.     end for 
10.     Renormalize 𝑊𝑊𝑡𝑡+1, so that ∑𝑊𝑊𝑡𝑡+1 = 1 
11. end for 
12. Output the final hypothesis: 
13.     𝐻𝐻(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(∑ 𝛼𝛼𝑡𝑡ℎ𝑡𝑡(𝑥𝑥))𝑇𝑇

𝑡𝑡=1  
 

 

Figure 4-19. The algorithm of two-class discrete AdaBoost. 
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Figure 4-20. The concept of Adaboost and the procedure to ensemble weak classifiers (e.g. 
h1, h2 and h3) into a strong classifier H. The size of each circle indicates the weight in each 
iteration. The prediction is based on the weighted votes of those weak classifiers. Adopted 
from Computer Vision Final Project: Viola-Jones & Morphology-based Face Detector, 
Retrieved 2005, from 
http://www.cc.gatech.edu/~kihwan23/imageCV/Final2005/CS7495%20Computer%20Vision
%20Final%20Project.pdf ©2005 by Kihwan Kim. Adopted with permission. 

 

4.5 Experimental Results 

Currently, only two species: broccoli and lettuce, can be classified. When extracting 

features, leaf features could be extracted for most of the broccoli leaves, but not for the 

lettuce leaves. Thus the strategies of grouping and classification are both different for those 

two species. The algorithm was tested on all the crop-plant candidates detected with the 

algorithm described in the companion paper, in which the broccoli and lettuce datasets were 

collected in the horticulture research station of the Iowa State University. The data collection 

http://www.cc.gatech.edu/%7Ekihwan23/imageCV/Final2005/CS7495%20Computer%20Vision%20Final%20Project.pdf
http://www.cc.gatech.edu/%7Ekihwan23/imageCV/Final2005/CS7495%20Computer%20Vision%20Final%20Project.pdf
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details and the agronomic trail was described in the companion paper as well. In this section, 

the results of grouping and classification will be reported, and results of each step for these 

two species are introduced separately.  

4.5.1 Grouping & localization  

For broccoli, the strategy is to segment the leaves first, then used the venation to 

separate connected plants, and find the center at the same time. For lettuce, as the leaves are 

not easy to extract, only the pixel distributions were used to separate connected plants, and 

the center of each plant was obtained by finding the geometric center of the plant cluster. 

Figure 4-21 shows some run-time grouping results, in which connected plants within the 

same candidates were separated. And Table 4-1 shows the average localization error for 

broccoli and lettuce data collected at the different time, in which the golden values were 

obtained by human inspection using manually selecting method frame by frame in images 

using the supervising GUI. 

Table 4-1. The average localization error for broccoli and lettuce at different growth stages. 

Collection data Days after transplant Broccoli 
localization error 

Lettuce 
localization error 

June 13, 2016 12 14.8 mm 5.2 mm 

June 17, 2016 16 10.6 mm 6.9 mm 

June 23, 2016 22 17.2 mm 9.9 mm 

June 27, 2016 26 21.1 mm 12.1 mm 

Average  15.9 mm 8.5 mm 
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Figure 4-21. Examples of the plants grouping and localization run-time result. In those 
images, the detected and separated plants are circled the positions are labeled with crosses. 
For detecting Broccoli, segmented leaves are also labeled with squares. 

4.5.2 Crop/weed classification 

Seven classification models were applied in this study: logistic regression (LR), k-

nearest neighbor (KNN), artificial neural network (ANN), Bayes classifiers QDA, support 

vector machine (SVM), random forest and tree-based AdaBoost. After fitting models with 

different methods and tuned to minimize the CV result, the best performance of each model 

was recorded. 

Broccoli classification 

The broccoli classification was separated into two stages in this study, one was leaf 
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classification using leaf features, and the other was plant classification.  

In leaf classification, with paired plots of every variable (Figure 4-22), three 

predictors: leaf area, leaf length, leaf width, can be observed highly correlated. PCA 

(principal component analysis) was performed to reduce those three predictors into two, 

named pc_1 and pc_2. 

 

Figure 4-22. Paired plot of predictors used in leaf classification stage of broccoli 
classification, showing the distribution of the training data. Red data points were supervised 
as crop leaves, and blue data points were supervised as weed leaves or incorrect 
segmentation. 

In leaf classification, with paired plots of every variable (Figure 4-22), we can 

observe that three predictors: leaf area, leaf length, leaf width are highly correlated. Principal 
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component analysis (PCA) is performed to reduce those three predictors into two, named 

pc_1 and pc_2. 

As a result (Table 4-2), AdaBoost performed the best in leaf classification with the 

minimum CV error. After classifying each leaf, for each separated plant, the classified crop 

leaf parameters was used to form a new set of predictors for crop/weed classification. In this 

study, the Maximum, Minimum, Mean, Median, Standard deviation were considered for each 

leaf parameter as a new predictor. By testing their variance across classes, the max(leaf 

height), min(pc_1), max(pc_2), max(ratio), max(leaf roundness), max(leaf area rate), 

max(leaf Rectangularity) were chosen. The color features were found not stable for leaves. 

Thus they were not used for plant classification.  

Table 4-2. Models evaluation and comparison result for broccoli leaf classification. Listing 
tuning parameters, training errors and CV errors. Adaboost model yields the best 
performance. 

Model Tuning parameter Training error CV error 
LR None 0.052 0.086 
ANN Layer = (5, 2) 0.051 0.154 
KNN K=5 0.083 0.113 
SVM Kernel = radial 

Gamma = 0.01 
Cost = 100 

0.053 0.107 

QDA none 0.064 0.095 
RandomForest N=500 0.138 0.170 
AdaBoost TreeDepth=4 

Iter = 100 
Nu = 0.2 

0.057 0.073 

In plant-scale crop/weed classification, the canopy features as well as the classified 

crop-plant leaf features of each separated plant were used. However, for some plants, as the 

leaves were failed to be segmented, the plant classification became a problem with missing 
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data, for which only some tree-based classification methods (Decision tree and AdaBoost) 

were compatible. Thus, in this study, LR, KNN, ANN, SVM, QDA, RandomForest were 

tested without leaf parameters, and AdaBoost were tested with leaf parameters.  

As a result, AdaBoost performed the best in broccoli plant-scale classification and 

achieved an error rate of 3.1% in average during Cross-Validation, with the false positive rate 

of 1.1% and the false negative rate of 2.0% (Table 4-3). 

 
Figure 4-23. Paired plot of predictors used in plant-scale crop/weed classification in the 
broccoli dataset, showing the distribution of the training data. Red data points were 
supervised as crops, and blue data points were supervised as weeds or incorrect 
segmentation. 
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Table 4-3. Models evaluation and comparison result for broccoli plant classification, listing 
tuning parameters, training errors and CV errors.   

Model Tuning parameter Training error CV error 
LR None 0.072 0.102 
ANN Layer = (5, 2) 0.037 0.119 
KNN K=3 0.105 0.143 
SVM Kernel = radial 

Gamma = 0.01 
Cost = 100 

0.036 0.056 

QDA none 0.044 0.104 
RandomForest N=500 0.077 0.084 
AdaBoost TreeDepth=4 

Iter = 50 
Nu = 0.1 

0.026 0.031 
(FPR=0.011, 
FNR=0.020) 

Lettuce classification 

Since only a few leaves can be extracted from the lettuce dataset, the plant-scale 

classification was performed only, using only canopy features of the separated plants (Figure 

4-24).  

As a result, AdaBoost performed the best in lettuce plant-scale classification and 

achieved an error rate of 6.8% in average during Cross-Validation, with the false positive rate 

of 4.0% and the false negative rate of 2.8%. (Table 4-4).  
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Figure 4-24. Paired plot of predictors used in plant-scale crop/weed classification using the 
lettuce dataset, showing the distribution of the training data. Red data points were supervised 
as crops, and blue data points were supervised as weeds or incorrect segmentation. 

Table 4-4. Models evaluation and comparison result for lettuce plant classification, listing 
tuning parameters, training errors and CV errors. AdaBoost performed the best in plant 
classification. 

Model Tuning parameter Training error CV error 
LR None 0.112 0.134 
ANN Layer = (5, 2) 0.079 0.173 
KNN K=5 0.105 0.135 
SVM Kernel = radial 

Gamma = 0.01 
Cost = 100 

0.087 0.154 

QDA none 0.072 0.115 
RandomForest N=500 0.097 0.127 
AdaBoost TreeDepth=4 

Iter = 50 
Nu = 0.1 

0.051 0.068 
(FPR=0.040, 
FNR=0.028) 
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4.6 Discussion and Conclusion 

In this study, a feature extraction and classification system was developed for robotic 

weeding of broccoli and lettuce. The problem of connected plants was solved by grouping 

using features extracted. With features from plant color and morphology extracted with 

image processing, crop plants at different growth stages can be discriminated with non-crop 

objects. Different classification methods were also evaluated and compared in this 

application.  

The average localization errors for broccoli and lettuce were 15.9 mm and 8.5 mm, 

respectively. By evaluating and comparing different classification methods, AdaBoost was 

found the best in this application. After feature extraction and classification, crop plants can 

be recognized with error rates of 3.1% and 6.8% with AdaBoost for broccoli and lettuce in 

average, respectively. With the crop-plant candidate detection result presented in the 

companion paper, the average detection rates of 93.1% and 92.3% were obtained for broccoli 

and lettuce weeding, with average false discovery rates of 1.1% and 4.0%, respectively. The 

results show that this plant discrimination system is feasible for use in robotic weeding on 

broccoli and lettuce. 

The reasons why AdaBoost performed the best are: Firstly, crop/non-crop 

classification is a two-class classification problem, with non-linear decision boundary. Crops 

are in the same patterns, and others are all non-crops. Then using linear models (LR, QDA, 

ADNN, SVM) with sigmoid-shaped responses is not suitable. As Adaboost was designed to 

create complex decision boundaries, it is more suitable in this study. Secondly, in this study, 
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only about ten predictors are used, with limited information available. Thus, Random Forest, 

which is mainly used with many predictors available and to find the most valuable features, 

is less suitable than AdaBoost.  

The classification error comes from four sources: The first is sensor error. As the data 

is collected outdoors with Kinect v2 sensor, the noise can affect the accuracy even with 

sunlight shaded. Also, the resolution of depth image is still limited. The second is from the 

image processing algorithms. As the situations are complex in the field, the algorithms such 

as ground fitting and leaf extraction may have inaccurate results, then affect the accuracy of 

extracted features. The last source is that insufficient features are extracted. The features 

extracted in this study still cannot fully parameterize the crops and non-crops including all 

differences.  

In the future, the image processing algorithm should be enhanced to be more robust, 

thus extract features more accurately. More features addressing the differences between crops 

and non-crops should be developed. In addition, since the deep learning algorithm has a great 

potential in detection and recognition, it should be tried in the future.  
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CHAPTER 5. SUMMARY AND CONCLUSIONS 

 

This study consisted of two main efforts, the first was to develop an image processing 

system based on the fusion of 2D color and 3D spatial images, and explore the possibility to 

accomplish crop-plant candidate detection accurately by segmentation and clustering. The 

second was to develop a classification system using supervised machine learning technique, 

with features from plant color, morphology and structure, to accomplish discrimination of 

crop plants at different growth stages with non-crop objects. 

In the first section, the accuracy of the Kinect v2 sensor was evaluated, then 

thousands of pictures were taken from different crop species with weeds existing. Data 

collection was performed at different growth stages of the crop plants, from germination or 

transplantation to maturity. Using the data collected, image processing algorithms were 

developed and implemented for broccoli and lettuce to segment the crop-plant candidates.  

In the second problem, a leaf-and-canopy feature extraction algorithm was developed 

and implemented which also addressed the problem of connecting plants. A classification 

system was developed using supervised machine learning technique, with features of plant 

color and morphology extracted, to accomplish the discrimination of crop plants at different 

growth stages with non-crop objects (e.g. weeds). Different classification methods were also 

evaluated and compared in this application, and AdaBoost was found to perform the best in 

this application.  

After testing the algorithm with the broccoli and lettuce dataset, detection rates (true 



109 

positive rate) of 93.1% and 92.3% with average false discovery rates of 1.1% and 4.0% for 

broccoli and lettuce were obtained, respectively. And for the actual crop plants, the average 

localization errors were 15.9 mm and 8.5 mm for broccoli and lettuce, respectively. The 

results indicate that the developed system has the ability to accomplish crop plant 

discrimination and localization for broccoli and lettuce in the field. The performance still 

needs to improve.  

There are several error sources contributed to misdetection error and localization 

error: the first is the error from the Kinect v2 sensor, since working outdoors will increase the 

noise level, even with sunlight shaded; The second is that the with the disturbances from 

weeds, sometimes the image processing algorithm will fail in detecting the ground and 

extracting leaves. The third is that the ground is not strictly flat in the field, which will also 

affect the ground fitting results. 

The machine-learning based classification error came from four sources: The first is 

the sensor error in data collection. As the data is collected outdoors with Kinect v2 sensor, 

the noise can still affect the accuracy even with sunlight shaded. In addition, the resolution of 

depth image is still limited. The second is from the image processing algorithms. As the 

situations are complex in the field, the algorithms such as ground fitting and leaf extraction 

may have the inaccurate result, then affect the accuracy of extracted features. The last source 

is that insufficient features are extracted. The features extracted in this study still cannot fully 

parameterize the crops and non-crops including all differences.  

In the future, the system’s performance can be improved by enhancing current image 
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processing algorithms, extracting more features, as well as developing algorithms for other 

species. In addition, since the deep learning algorithm has a great potential in detection and 

recognition, it should be tried in this project in the future. 
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