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ABSTRACT 

 

In order to fully understand the interaction between phenotype and genotype x 

environment to improve crop performance, a large amount of phenotypic data is needed. 

Studying plants of a given strain under multiple environments can greatly help to reveal their 

interactions. This thesis presents two key portions of the development of the Enviratron rover, 

a robotic system that aims to autonomously collect the labor-intensive data required to perform 

experiments in this area. The rover is part of a larger project which will track plant growth in 

multiple environments. 

The first aspects of the robot discussed in this thesis is the system hardware and main, 

or whole-chamber, imaging system. Semi-autonomous behavior is currently achieved, and the 

system performance in probing leaves is quantified and discussed. In contrast to existing 

systems, the rover can follow magnetic tape along all four directions (front, left, back, right), 

and uses a Microsoft Kinect V2 mounted on the end-effector of a robotic arm to position a 

threaded rod, simulating future sensors such as fluorimeter and Raman Spectrometer, at a 

desired position and orientation. Advantages of the tape following include being able to 

reliably move both between chambers and within a chamber regardless of dust and lighting 

conditions. The robot arm and Kinect system is unique in its speed at reconstructing an 

(filtered) environment when combined with its accuracy at positioning sensors. A comparison 

of using raw camera coordinates data and using KinectFusion data is presented. The results 

suggest that the KinectFusion pose estimation is fairly accurate, only decreasing accuracy by 

a few millimeters at distances of roughly 0.8 meter. The system can consistently position 

sensors to within 4 cm of the goal, and often within 3 cm. The system is shown to be accurate 
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enough to position sensors to ± 9 degrees of a desired orientation, although currently this 

accuracy requires human input to fully utilize the Kinect’s feedback. 

The second aspect of the robot presented in this thesis is a framework for generating 

collision-free robot arm motion within the chamber. This framework uses feedback from the 

Kinect sensor and is based on the Probabilistic Roadmaps (PRM) technique, which involves 

creating a graph of collision-free nodes and edges, and then searching for an acceptable path. 

The variant presented uses a dilated, down-sampled, KinectFusion as input for rapid collision 

checking, effectively representing the environment as a discretized grid and representing the 

robot arm as a collection of spheres. The approach combines many desirable characteristics of 

previous PRM methods and other collision-avoidance schemes, and is aimed at providing a 

reliable, rapidly-constructed, highly-connected roadmap which can be queried multiple times 

in a static environment, such as a growth chamber or a greenhouse. In a sample plant 

configuration with several of the most challenging practical goal poses, it is shown to create a 

roadmap in an average time of 32.5 seconds. One key feature is that nodes are added near the 

goal during each query, in order to increase accuracy at the expense of increased query time. 

A completed graph is searched for an optimal path connecting nodes near the starting pose and 

the desired end pose. The fastest graph search studied was an implementation of the A* 

algorithm. Queries using this framework took an average time of 0.46 seconds. The average 

distance between the attained pose and the desired location was 2.7 cm. Average distance C-

space between the attained pose and the desired location was 3.65 degrees. 

The research suggests that the robotic framework presented has the potential to fulfill 

the main hardware and motion requirements of an autonomous indoor phenotyping robot, and 

can generate desired collision-free robot arm motion.  
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CHAPTER 1. INTRODUCTION AND THESIS FORMATTING 

 

The 21st century presents many challenges, many of which will inevitably involve food. 

Organizations such as the Royal Society of London (2009) and the FAO (Rai, Reeves, Pandey, 

Collette, & Food and Agriculture Organization of the United Nations, 2011) suggest a need for 

at least a 50% increase in food supply in the next half-century. Understanding how to 

sustainably improve yield in a changing climate is a complex task. This will require an intimate 

understanding of how existing and emerging crop species interact with their environment, 

especially if the genetic descendants of these crops are expected to survive climate change 

predictions as high as several degrees in many areas, and globally as high as 4.8 by some 

scenarios reported by the Intergovernmental Panel on Climate Change (IPCC, 2014). Studying 

crops requires large quantities of data under every environment studied, so manually gathering 

data for studying plants’ response to multiple climate scenarios will become prohibitive for 

many research groups. 

As many important traits, such as yield, are complex traits (Pieruschka & Poorter, 

2012), there have been many studies and companies relating to phenotyping. Phenotyping is 

the study of plants’ expressed traits, in contrast to genotyping, or studying plant’s genetics. 

The recent development of plant phenotyping techniques measuring plant parameters is often 

done using imaging. Example approaches include Time-of-Flight (ToF) cameras (Alenyà, 

Dellen, Fox, & Torras, 2013; Chaivivatrakul, Tang, Dailey, & Nakarmi, 2014), stereo image 

sequences (Aksoy, Abramov, Wörgötter, Scharr, Fischbach, & Dellen, 2015), and point clouds 

from the Microsoft Kinect v1 (Azzari, Goulden, & Rusu, 2013). These technologies are 

generally used to measure leaf area, plant height, and stem diameter. As the techniques mature, 
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these parameters should become more reliable and algorithms to extract additional plant 

parameters will undoubtedly be developed. This will, in turn, allow researchers to compile 

great quantities of repeatable data on their plants’ growth to correlate the various inputs, such 

as water practices or soil nitrogen treatments (Neilson, Edwards, Blomstedt, Berger, Møller, 

& Gleadow, 2015) with observed growth patterns. These, in turn, can be used to identify areas 

for improving plants’ treatments or optimize biomass yield, for instance. The studies 

previously mentioned are part of the generation of studies which often either uses a fixed robot 

arm or a human observer. Since a similar set of measurements are typically taken for many 

plants at many time intervals, the area is ripe for automation. Some agricultural robots aim to 

fill this role, including those at many universities, and the relatively new Rowbot (sold by 

Rowbot Systems). 

While operating a robot arm on a sparsely populated environment, often the robot arm 

can be commanded to approach a location without colliding with anything. For instance, the 

robot arm used by Aksoy (Aksoy, et al., 2015) for imaging tobacco seedlings likely never hit 

their small plants during imaging. Even during the initial tests presented in this thesis, Chapter 

2, the robot arm was operating without serious collisions. However, the situation is more 

complicated when there are obstacles to either reach over or around. This prompted the robotics 

community to seek solutions to various path-planning problems. Commonly, a distinction is 

made between approaches involving knowledge of the environment and those involving local 

sensors (Shaffer, 1991). Most modern methods use knowledge of the robot’s environment. 

Some operate in static environments, such as the probabilistic roadmaps (PRM) method 

(Kavraki, Svestka, Latombe, & Overmars, 1996). Others operate in dynamic environments, 

such as the depth space approach proposed by Flacco et al. (Flacco, Kröger, De Luca, & 
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Khatib, 2012). The desired end result is a collision-free path from a start position and 

orientation (pose) to a goal pose. 

Current phenotyping systems, such as those available through Lemnatec and used at 

the Plant Accelerator at the University of Adelaide (Neilson, et al., 2015), enable researchers 

to study the traits they desire on many plants in one environment. As far as the author is aware, 

there is currently no solution available to autonomously study plant phenotypes using multiple 

environments. This is the long-term goal and broad current knowledge gap that this research 

is targeting. It is part of the broader Enviratron project at Iowa State, “a facility to test and 

evaluate the performance of plants under variable environmental conditions” (NSF, 2014). 

All research objectives were focused on making this broad research project a working 

reality. The work presented in this thesis is snapshot of the work required on this path, and all 

work is completed with the goal of being integrated together into a seamless robotic plant 

phenotyping system. New solutions are presented, and novel packaging of existing ideas helps 

to fill in gaps in the current literature, linking previously-separated ideas to push the envelope 

on robotic applications. The chapters in this thesis are aimed at becoming two independent 

journal papers: 1) development and results of the robotic system hardware and Kinect-level 

imaging system, and 2) a framework for path planning in constrained environment using the 

Kinect feedback in quasi-real-time. What is meant by quasi-real-time is that the map and plans 

are generated in a short time period, and the environment is static, allowing the rest of the 

interactions to happen at true real time speeds. 

There are two supplementary process documents in the appendices. Appendix A is a 

light instruction manual for the robot base, intended for use in the Enviratron facility during 

operation. Appendix B contains pictures and SolidWorks drawings from the build phase of the 
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project. These appendices are presented to illustrate the function and completeness of the robot 

base. 
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CHAPTER 2. DEVELOPMENT OF AN AUTONOMOUS INDOOR PHENOTYPING 

ROBOT 

 

2.1. Abstract 

In order to fully understand the interaction between phenotype and genotype x 

environment to improve crop performance, a large amount of phenotypic data is needed. 

Studying plants of a given strain under multiple environments can greatly help to reveal their 

interactions. To collect the labor-intensive data required to perform experiments in this area, 

an indoor rover has been developed, which can accurately and autonomously move between 

and inside growth chambers. The system uses Mecanum wheels, magnetic tape guidance, a 

Universal Robots UR 10 robot manipulator, and a Microsoft Kinect v2 3D sensor to position 

a threaded rod near a user-chosen point on the leaves of a Ficus plant and an artificial Dracaena, 

simulating the future use of sensors such as a fluorimeter and Raman spectrometer. Integration 

of the motor controllers, robot arm, and a Microsoft Kinect (v2) 3D sensor was achieved in a 

customized C++ program. Three-dimensional meshes representing plants inside the chamber 

were reconstructed using the Kinect SDK’s KinectFusion. Image-processing functions were 

implemented to filter the depth image to remove undesired surfaces and noise, reducing the 

memory requirement and allowing the plant to be reconstructed at a higher resolution. This 

paper shows the system architecture and some preliminary results of the system, as tested using 

a setup which simulates a growth chamber. A comparison of using raw camera coordinates 

data and using KinectFusion data is presented. The results suggest that the KinectFusion pose 

estimation is fairly accurate, only decreasing accuracy by a few millimeters at distances of 

roughly 0.8 meters. 

Keywords: growth chambers, mechatronics, robotics, software development 
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2.2. Introduction 

In a world of changing climate and increasing world population, there is a great need 

to understand the interaction between genotypes and phenotypes in order to produce enough 

crop yield. Organizations such as the Royal Society of London (2009) and the (Rai, Reeves, 

Pandey, Collette, & Food and Agriculture Organization of the United Nations, 2011) suggest 

a need for at least a 50% increase in food supply in the next half-century. This will not be 

achieved without a drastic change in the way we grow our food. Sustainable intensification, 

involving increasing the productivity of existing farmland while reducing negative 

environmental impacts, is promoted as one of the best ways – and some would say the only 

way - to achieve this. 

One of the main methods to increase crop yield without increasing chemical use 

involves plant breeding techniques. Effective plant breeding requires in-depth data on plants’ 

health and growth patterns, which are part of their broader phenotype, or physical 

characteristics. Many traits relating to growth, performance, and yield are complex traits under 

polygenic control (Pieruschka & Poorter, 2012). Studying these traits using plants’ phenotypes 

to understand how each strain behaves under various growing conditions is an important step 

toward improving the characteristics of a crop stock. This paper presents a technical solution 

to several issues relating to current phenotyping techniques. 

Due to the large amount of manual labor required in traditional by-hand phenotyping 

methods, numerous studies and experiments have been exploring phenotyping methods that 

are based on images, often either RGB (red, green, and blue channels) or RGB-D (red, green, 

blue, and depth channels). For instance, one phenotyping technique uses infrared and depth 

images acquired with a CamCube time-of-Flight (ToF) camera (Alenyà, Dellen, Foix, & 
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Torras, 2013). The method involves taking a general view of the plant, segmenting to find 

leaves which are suitable for probing, and then moving the cameras closer to the suitable leaf 

using a Barret WAM arm. This leaf is then probed with a sample cutting tool. This points to 

the possibility for an application of a wide variety of sensors. For instance, fluorescence 

imaging sensors could be placed on the end of the robot arm for investigating the fluorochrome 

chlorophyll, which is involved in crop yield (Chaerle & Van Der Straeten, 2001). Numerous 

other sensors, such as near-infrared spectroscopy, can be applied to extract phenotypic data 

(Montes, Melchinger, & Reif, 2007).  

Other image-based phenotyping techniques use infrared stereo image sequences to 

extract depth and then segment the resulting data to extract parameters such as leaf area and 

number of leaves (Aksoy, Abramov, Wörgötter, Scharr, Fischbach, & Dellen, 2015). Tobacco 

plants can be stereo-imaged periodically, using a KUKA robot arm. The image pairs are then 

run through an OpenCV block-matching algorithm to extract depth information. Next, the 

images are segmented to distinguish each leaf. Leaf area is found by ellipse-fitting each leaf, 

and the number of leaves is compared to the ground truth obtained via human measurement. 

Since these methods used fixed plant imaging positions, the methods are mainly suitable for 

stationary plants and a stationary robot arm, limiting the experiment to one growth 

environment. In a growing area larger than the reach of the robot arm, this approach also 

requires conveyance of the plants out of their growth environment, introducing other stress 

factors outside of the designed environment. Azzari et al. (2013) fused several point clouds, 

sometimes as many as 2000 point clouds per plant, to reconstruct the plant for extraction 

several pieces of information, including volume and allometric relationships. Point clouds were 

attained through manually moving their first-generation Kinect (v1). Chaivivatrakul et al. 
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(2014) used a plant rotating table to obtain and fuse several point clouds of corn plants into 

one 3D reconstruction. They then extracted traits such as leaf area, leaf length, and stem 

diameter. Phenotyping can also be done in the field, as demonstrated by Klodt, Herzog, Töpfer, 

and Cremers (2015). This method involves taking a pair of images of the same grapevine plant, 

on several different days. Once image pairs are acquired, they are rectified to extract depth 

information, and finally segmented to find leaf and stem areas. This method did not provide an 

automated image capturing technique, and did not provide a framework for integration with 

other sensors for monitoring plant growth. 

The solution presented in this paper required a minimal amount of labor during run-

time, and can be extended, by adapting established phenotyping and plant-breeding to the 

techniques, to track plants that are growing in multiple growth environments concurrently. This 

solution involved a semi-autonomous rover equipped with a Universal Robots UR 10 (UR10) 

robot arm, an industrial computer, a Microsoft Kinect (v2) sensor, and a rover base. The system 

was self-powered and required no wires to the outside world. The rover was equipped with a 

120 volt power supply capable of powering numerous auxiliary sensors. This system allowed 

for attachment of plant monitoring equipment, as illustrated in three proof-of-concept 

experiments. In the first, the rover autonomously moved to the region representing the desired 

growth chamber in a setup mimicking Iowa State University’s new Enviratron plant growth 

facility. This facility will contain several growth chambers with a robot vestibule in front of 

each chamber door. Once at the destination, the system probed several plants in the chamber 

with a rigidly-mounted steel rod that simulates other sensors that need to be placed at a certain 

distance and with a specific orientation to plant leaves. In the second experiment, the robot 

probed leaves on one plant using three related but different data sources, to compare the 
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accuracy of each source. The third experiment involved the robot probing (perpendicularly) a 

flat surface which was at several orientations. 

 

2.3. Materials 

2.3.1. Background on hardware and design 

The Enviratron Rover aims to be a tool which can be used to autonomously gather 

feedback on plants which are simultaneously growing in multiple environments, from sensors 

as varied as traditional cameras, Raman spectrometers, thermal imagers, and fluorescence 

monitoring systems. The final application consists of eight growth chambers, arranged in a 

grid pattern (Figure 1). To reach these goals, the rover needs to be mobile, accurate at 

positioning sensors, and able to navigate the environment it is placed in (roughly 120 cm in 

the direction perpendicular to travel), all with extremely high reliability and repeatability. 

Making the rover autonomous will allow data to be collected at precise intervals of time, with 

significantly lowered per-data labor requirements for the researchers involved. The system 

should run without human input for a whole day, or 8 hours. Clearly, the application requires 

the system to adapt to varied sensors, and a powerful onboard PC to process that information. 

 

Figure 1. The chamber arrangement. 
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The scope of this paper is to present the system in an intermediate stage where 

automation is achieved for each individual task. Our setup is equivalent to assuming the growth 

chamber vestibule is opened, and the material separating the vestibule from the growth area is 

already removed. Human input was only required to select, using a PC, a point on the plant to 

image, and the human told the rover when to shift sideways to view another plant. The 

procedures required to get Raman spectrometer readings share very similar sub-tasks, such as 

locating the plant and calculation of the surface normal. 

Several commercial systems could be repurposed and programmed for this task. 

However, each has significant drawbacks. For instance, the Segway 440 Flex Omni has 

omnidirectional control, can interface with external hardware, and is specified to carry 

payloads as high as 450 kg. Another system, the Neobotix MMO-550, is omnidirectional and 

has support for the UR10, sensors and sensors such as SICK NAV350, and can be controlled 

using the open-sourced Robotic Operating System (ROS). However, its uptime is quoted at 3 

hours and there is limited additional space for sensors and electronics. Finally, the Ridgeback, 

sold by Clearpath Robotics, nearly fits the design requirements, but has low obstacle clearance, 

mediocre battery, and limited support for high-power-consumption external computer, arm and 

sensor configurations. 

It should be noted that, to the best of our knowledge, no use of a rover for autonomous 

imaging of plants in multiple environments has been reported in the literature. These 

previously-mentioned commercial systems are only collections of multi-purpose hardware 

which we merely claim could be repurposed, i.e. modified and put to use, for the current novel 

task. 
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2.3.2. System hardware 

The rover proposed in this paper, shown in Figure 2, combines many features which 

are desirable in research applications similar to this, and a brief overview of these features will 

be explained in this section. 

 

Figure 2. The Enviratron rover. 

The main frame of the rover uses the T-slotted aluminum building system sold by 80/20 

Inc. (Columbia City, Indiana, USA). This makes the overall system architecture extremely 

modular and adaptive, and also provides natural ease of maintenance. The system was modeled 

entirely in SolidWorks prior to build. There was one Roboteq FBL2360 motor controller for 

each side (Left and Right) each controlling two Midwest Motion Products MMP BL58-412F-

48V GRA60-032 brushless DC motors. Each motor drove one 6” Mecanum Wheel HD, 

purchased through AndyMark. Four dust and water-resistant Roboteq MG1600 magnetic tape 

sensors were used for guidance and simple localization. A Spektrum DX6i Transmitter was 

used for remote control during development. One lighted hard-wired emergency stop was 

placed on each side for safety. A Meanwell TS1000 DC/AC inverter powered external 120 V 
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outlets as well as the three core components of the imaging and probing system: a Logic Supply 

ML400G-30 industrial computer, Microsoft Kinect for Windows V2, and Universal Robots 

UR 10 robot arm. Finally, the whole system is powered by a 100Ah battery from AA Portable 

Power Corp (also known as batteryspace.com). This battery was chosen for its high energy 

storage capacity and appropriate balance of features, safety, and pricing. The overall system, 

excluding the UR10 arm to allow comparison with previously-mentioned commercial systems, 

had roughly half the cost of the least-expensive commercial system. 

The Mecanum wheels used are similar to those analyzed by Gfrerrer (2008). In the 

ideal Mecanum wheel, force between the wheel and the ground only occurs along a vector 

parallel to the axis of the single roller which is in contact with the ground at that instant. Each 

roller’s axis is rotated 45 degrees from the motor’s axis. The wheels make contact with the 

ground in a shape described as an “O”, a configuration often termed “O from below” in the 

robotics community. If the wheels are installed such that this does not occur, the stability was 

found to be poor, especially for lateral motion. 

 

2.4. Method 

2.4.1. Overview 

Our task mainly involves: localization of the rover, control of the motion of the rover, 

building knowledge of the growth chamber’s contents, and positioning the sensor. The way we 

integrated our hardware allowed compartmentalization of these tasks, all of which can be 

controlled by the “brain”, which is the PC (Figure 3). 
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Figure 3. Software hierarchy. Line denotes a communication line, and arrows show direction 

packets are sent. 

Various communication protocols and technologies were leveraged. Three tape-sensor 

data streams were sent to the motor controllers using Pulse Width Modulation (PWM), and 

one magnetic sensor used Roboteq’s proprietary RoboMag protocol, allowing marker 

information to be transmitted easily. Motor position was implicitly sent to the motor controller 

via the built-in Hall-effect sensor. Roboteq’s proprietary implementation of a PID closed-loop 

speed controller was leveraged by our custom “master” motor controller script to control each 

motor during each scan cycle. The two motor controllers (“master” and “slave”) communicated 

using Roboteq’s proprietary implementation of the Controller Area Network (CAN) protocol. 

Our custom PC code was all written in C++. The PC modifies and reads the motor controllers’ 

internal variables using serial (RS232) communication. The PC gets current pose (position and 

orientation) information and sends desired poses to the UR10 via TCP/IP (Ethernet) 

communication. Kinect information is read using a USB 3.0 connection. 

2.4.2. A brief note on control strategy 

This paper aims to present a functional, intuitive, and adaptable framework for mobile 

manipulator implementation. As such, the control scheme is kept simple with a minimal 
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amount of tunable parameters. The ideas presented apply to all holonomic robots equipped 

with a guidance sensor on each side. Although it is dynamically-loaded, the system requires 

the controller to know relatively little about its system in order to function. 

All inputs and real-time commands are fed into the “master” motor controller which 

then commands the other “slave” motor controller. The motor controllers’ internal scripting 

have a large number of internal functions, but can only process Booleans and integers and have 

no ability to add libraries. This is generally not a limitation if clever coding practices are used. 

To provide the system with knowledge of its location, we have implemented a concept 

equivalent to tracking the rising edge of strategically-placed markers (any “upside-down” 

magnetic tape is interpreted as a marker by the MG1600’s). A marker on one side of the track 

makes the controller “look” for rising edges on the other side of the track. The number of rising 

edges found during one “look” interval is stored as the last known location in the motor 

controller. To determine when the rover should turn off of the main track, we checked whether 

we counted an even or odd number of markers and compared with the current desired chamber. 

An example of this logic, for an odd chamber number, is presented in Figure 4. In addition to 

information on the most recent marker count, representing the current magnetic-tape branch, 

the PC can recognize the four-way intersection inside each individual chamber that 

corresponds to the leftmost plant. This provides requisite low-level localization. Further 

localization within the chamber will result from feedback from the Kinect sensor. 
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MarkerCopy = Marker 

While MarkerCopy > 2 

 MarkerCopy = MarkerCopy – 2 

If MarkerCopy = 1 & Marker = DesiredChamber 

 Follow Left Track 

Else 

 Follow Right Track 

Figure 4. Psuedocode for track choice. 

 

The rover has two modes for guidance: one-sensor proportional control and two-sensor 

proportional control. The strategy can be summarized with the following formulas. 

1-sensor control: 

𝑉𝐷𝑂𝑇  =  𝑉𝐷𝐸𝐹  ∗  𝐹  (1) 

𝐹 = {
0.5 𝑖𝑓 𝑜𝑛 𝑡𝑢𝑟𝑛𝑠

0.75 𝑖𝑓 𝑙𝑒𝑓𝑡 𝑡𝑎𝑝𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 (𝑖. 𝑒. "𝑙𝑜𝑜𝑘")
1 𝑒𝑙𝑠𝑒

  (2) 

𝑉𝑆𝑇𝐸 = 𝐾1 ∗ 𝑇1  (3) 

 

2-sensor control: 

𝑉𝐷𝑂𝑇 = 𝑉𝐷𝐸𝐹 ∗ 𝐹  (4) 

𝐹 = {
0.5 𝑖𝑓 𝑜𝑛 𝑡𝑢𝑟𝑛𝑠

0.75 𝑖𝑓 𝑙𝑒𝑓𝑡 𝑡𝑎𝑝𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 (𝑖. 𝑒. "𝑙𝑜𝑜𝑘")
1 𝑒𝑙𝑠𝑒

  (5) 

𝑉𝑆𝑇𝐸 = 𝐾2 ∗ (𝑇1 + 𝑇2)  (6) 

𝑉𝑃𝐸𝑅𝑃 = 𝐾2 ∗ (−𝑇1 + 𝑇2)  (7) 

 

In the formulas, 𝑉𝐷𝐸𝐹is the default velocity, 𝑉𝐷𝑂𝑇, 𝑉𝑆𝑇𝐸, 𝑉𝑃𝐸𝑅𝑃 terms denote velocity in 

the direction of travel (DOT), steering, and perpendicular to the DOT, respectively. F is a 
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scaling factor, 𝐾1 and 𝐾2 are proportional gains, 𝑇1 is the reading from the tape sensor on the 

leading edge of the robot (i.e. the DOT), and 𝑇2 is for the trailing edge. Equations 1-3 are 

standard proportional control. Equations 4-7 apply proportional control in two directions. 

Equation 7 makes the robot correct the difference in the Tape readings by moving 

perpendicular to DOT; if the robot is moved forward both sensors will read opposite signs and 

strengthen the feedback. As seen in equation 6, an improperly-oriented robot, i.e. one that is 

not “pointing along the track”, will have both sensors have the same sign and the steer 

command will be strengthened. The three velocity terms are summed appropriately for each 

wheel (c.f. AndyMark), and the results are sent to the individual motors. 

2.4.3. Pre-Processing of Kinect depth data 

The imaging and probing system has to be inherently robust to varying leaf size, stalk 

height, and plant type. Two approaches have been considered: 1) the trivial case of hard-coding 

robot-arm positions to several generally-desired poses, such as “front view” and “top view”. 

2) The general case of calculating desired pose based on knowledge of the sensor being used 

and the current arrangement of plants. For this study, we focused on the second, more general 

case. 

Researchers have proposed using many 3D reconstruction methods on plants including 

structured light (Nguyen, Slaughter, Max, Maloof, & Sinha, 2015), ToF (Alenyá et al., 2013), 

and stereo reconstruction (Biskup, Scharr, Schurr, & Rascher, 2007). The Kinect V2 sensor 

was chosen for this study due to its affordable price, useful features and specifications (c.f., 

Butkiewicz, 2014), and well-documented application program interface (API). An additional 

advantage of the Kinect V2 is that its Software Development Kit (SDK) provides reasonably 
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accurate reconstruction sample code, termed KinectFusion, that integrates easily into custom 

applications (Izadi, Kim, Hilliges, Molynequx, Newcombe, Kohli, 2011, and Microsoft, 2016). 

Sending an unfiltered depth image to the KinectFusion algorithm was found to lead to 

a gradual erosion of the leaves, stalk, and stems of the plant, resulting in unusable meshes. 

However, this off-the-shelf algorithm was found to be very effective if an appropriately-filtered 

depth image was instead passed to the algorithm. The number of voxels that are tracked are 

limited, and unstable voxels are filtered out, to allow the algorithm to run in real-time. In our 

application the table and walls surrounding the plant are far more stable than the pixels 

corresponding to the thin-stemmed, thin-leaved plants. 

Several details were found to be important for this application. First, algorithms for 

real-time tasks such as plant probing need to be computationally efficient enough to allow 

quick reconstructions. Additionally, the Kinect V2 API has an accurate mapping between the 

color camera and the depth camera. However, not every depth pixel has a corresponding color 

pixel due to physical properties of the sensors. We set depth pixels without an RGB counterpart 

to zero. Incoming images from the Kinect sensor were put into a data structure that is 

effectively an RGB image. This representation is known to be sensitive to lighting changes, 

and there are methods for dealing with this issue. Luckily, the Kinect V2 had quite effective 

auto-brightness capabilities so lighting changes were not a significant issue. The challenge was 

finding an appropriate color space that allowed for easy identification of plant matter. Yang, 

Lu, and Waibel (1997), for instance, found that human faces were clustered in what they term 

chromatic color space. We are mainly interested in plants, which are generally diffuse green 

and brown objects, so we converted each RGB input image into HSV. After conversion to 

HSV, an experimentally-determined threshold was applied to each depth pixel. Let 𝐷𝑖𝑗 (𝑇𝑖𝑗) 
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represent the pixel in row i and column j of the R x C depth image (thresholded depth image), 

corresponding to a region of the HSV image as determined by the Kinect API’s mapping, and 

let 𝑉𝑖𝑗 be the corresponding pixel in the V image of the HSV color space. We have, for 1 ≤

𝑖 ≤ 𝑅 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝐶, 

𝑇𝑖𝑗 = {
𝐷𝑖𝑗  𝑖𝑓 𝑉𝑖𝑗 < 140

0 𝑒𝑙𝑠𝑒
  (8) 

The value of 140 conservatively thresholds out many extremely bright pixels, such as 

the walls of the growth chamber. Next, a 2x2 rectangular structuring element was used to 

morphologically dilate the image (Jain, Kasturi, & Schunck, 1995), conservatively removing 

many noisy “bright” elements. The resulting thresholded and dilated depth image, which 

contains the plant pixels plus some other pixels, was passed to the KinectFusion algorithm. 

Most settings were found to have minimal effect on the results. We left every setting default 

except increased the amount of voxels tracked per meter from 256 to 512. An example fusion 

image is shown in Figure 5. 

 

Figure 5. A sample fused image 

2.4.4. Describing Kinect data in robot-base coordinates 

Before being able to use the Kinect’s 3D information to accurately position a robot 

arm, the Kinect data must be described in robot base coordinates (see Figure 6). This was 

achieved by first describing camera coordinates 𝑃𝑐 in end-effector coordinates and then 
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describing that data in robot base coordinates, via homogeneous coordinate transforms. To 

convert user-selected point 𝑃𝑐 [m], from camera coordinates into base coordinates 𝑃𝐵 [m] we 

used: 

𝑃𝐵  =  𝐻𝐸𝐵  ∗  𝐻𝐶𝐸  ∗  𝑃𝐶   (9) 

Where 𝐻𝐸𝐵 and 𝐻𝐶𝐸 denote transformation matrices between end-effector and base, 

and camera and end-effector, respectively. A transformation matrix is given by 

𝐻 =  [
𝑅 𝑃
𝟎 1

]  (10) 

where 𝟎 = [0, 0, 0], 𝑅 ∈ ℝ3x3 is a rotation matrix, and 𝑃 ∈ ℝ3 is the "translation vector 

describing the origin of the original coordinates by using the final coordinate system. 

  

Figure 6. Main UR coordinates. B: Robot base, E: end-effector, C: camera coordinates. 

The mapping between the camera’s coordinate system and the robot arm’s end-

effector’s coordinate system must be determined. An overview of camera “hand-eye” 
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calibration can be found in the seminal Tsai and Lenz paper (1989). This mapping can be 

completely defined by a rotation followed by a translation, which can be represented by a 

homogeneous transformation: 

𝑃𝐸  =  𝐻𝐶𝐸  ∗  𝑃𝐶   (11) 

where 𝑃𝐸 denotes a point in robot end-effector coordinates [m]. 

The Kinect SDK presented a few details that needed to be worked out. For instance, 

for a given point in the space, different functions return coordinates in different reference 

frames. Careful reading of the SDK’s various projects’ source code and experimentation with 

the sensor yielded a thorough understanding of the setup. 

Transforming from a given frame to the robot base follows the same process of 

applying successive transformation matrices to coordinates until the point is described in robot 

coordinates. Since all three coordinate systems used by Kinect shared the same origin, 

converting form these coordinates to the camera coordinates was trivial. The main 

transformation matrix was from camera coordinates to the robot end-effector. First, a rough 

“theoretical” estimate of 𝐻𝐶𝐸 was obtained using calipers, for validating the final calibration. 

In absence of the detailed calibration found in high-priced sensors, a more accurate 

calibration matrix was found using Christian Wengert’s add-on (Wengert) to the Camera 

Calibration Toolbox (Bouguet, 2015) for MATLAB. The rotation was found to be small (off-

diagonal entries |ℎ𝑖𝑗|  <  0.03). Since the camera gets bumped occasionally and will therefore 

change orientation by small amounts that will likely negate these rotation entries, we mostly 

care about translation. The HCE for our setup was approximately (translation in [mm]): 

𝐻𝐶𝐸 = [

1 0 0 54.0
0 1 0 102.6
0 0 1 82.5
0 0 0 1.0

]  (12) 
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The final calibration procedure involved techniques found in Wengert’s online 

documentation, with a few modifications. The Kinect V2 produced washed-up images of the 

calibration pattern when the camera was within roughly 0.5 meters of the calibration pattern. 

A single layer of standard white paper was taped over the Kinect IR emitters, with a piece of 

tape securing the edge closest to the receiver firmly against the Kinect front face. This 

decreased the IR emission in a clean enough fashion to collect images that weren’t over-

saturated. The calibration pattern was scaled up such that the spacing between two adjacent 

circles’ centers was 16mm. Finally, the Kinect was flipping images left to right internally; we 

un-did that flip prior to calibration. The system was successfully calibrated using between 30 

and 40 images; several calibrations were performed to perfect the process. Doing rapid 

calibration enables the end system to be modified to accommodate additional sensors without 

delaying the rest of the experiments’ schedule significantly. 

After the points are described in end-effector coordinates, we desire to describe them 

in robot base coordinates. Given a pose of the robot, defined by position 𝑃 = [𝑝𝑥, 𝑝𝑦, 𝑝𝑧]
𝑇
 and 

rotation vector 𝑟 = [𝑟𝑥, 𝑟𝑦, 𝑟𝑧] in the robot base coordinates, we desire the transformation matrix 

from the end effector to the base. Using the notation in equation 10, the rotation matrix R is 

defined as 

𝑅 = [𝐴𝑥, 𝐴𝑦, 𝐴𝑧] = [

  c + rx
2v  rxryv– rzs rxrzv + rys

ryrxv + rzs c + ry
2v ryrzv– rx s

rzrxv– rys rzryv + rxs c + rz
2 v

] (13) 

where 𝑐 = 𝑐𝑜𝑠(𝜃), 𝑠 = 𝑠𝑖𝑛(𝜃) and 𝑣 = 1 − 𝑐𝑜𝑠(𝜃). See Craig (2009) for discussion. 

In the experiment presented in this paper, described later, all coordinates were 

transformed to “camera” coordinates immediately after their variable’s initialization. The pose 

used for 𝐻𝐸𝐵 depended on where the data was obtained from, as explained later. 
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2.4.5. Obtaining position and normal 

To aid in planning for the next phase of the project, three different methods of probing 

were implemented. All three used the same Kinect camera and the same probing algorithm. 

However, the source of the normal and position information was different. 

The Kinect for Windows SDK (K4W) has functions for mapping between the color 

frame (RGB) to the camera space (“K2”). Using OpenCV, K4W, and custom methods 

(functions), the first method involved using the Kinect’s internally-estimated, real-time 

position and normal of the location in the internal KinectFusion reconstruction corresponding 

to an RGB point clicked on our OpenCV window (termed method F). The pose of the robot at 

the initialization of that instance of KinectFusion was used to calculate 𝐻𝐸𝐵, since data is 

returned after being transformed to initial-pose “camera coordinates” using Kinect’s estimate 

of the current pose relative to the initial pose. 

The second method used three points in the Kinect’s real-time depth space 

corresponding to RGB points (termed method D). The point clicked on our OpenCV window 

gave us the desired position. The surface normal was obtained using the K4W CameraSpace 

coordinates associated with the clicked pixel (𝑃1), a pixel five pixels to the right (𝑃2; since the 

RGB images are flipped this is equivalent to -x in camera coordinates), and a pixel five pixels 

below (𝑃3) in the RGB image. The pose used to calculate 𝐻𝐸𝐵 was the pose of the robot at the 

instant the probing button was clicked. This data is real-time, and not dependent on the 

estimated relative pose. The surface normal pointing out of the leaf was the cross product of 

the vector from 𝑃1 to 𝑃2 and the vector from 𝑃1 to 𝑃3. Quantitatively: 𝑉1 = 𝑃2 − 𝑃1, 𝑉2 = 𝑃3 −

𝑃1, 𝑎𝑛𝑑 𝑁 = 𝑉1 × 𝑉2. 𝑉1 and 𝑉2 are vectors. 
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The third method involved manually opening the mesh generated by KinectFusion with 

the software MeshLab and saving the coordinates of three points (minimum necessary to 

understand the leaf’s normal and position), to .txt files (termed method M). Logic used to find 

the normal in this method was the same as in the method D above. This data uses the same 𝐻𝐸𝐵 

as method F. 

For methods F and D, the user simply clicked the desired point and clicked probe. In 

method M, there was roughly a minute of required interaction between the user and the PC, 

per probe. 

2.4.6. Calculating desired robot pose 

Next, we calculated the desired end-effector coordinate system axes 𝐴𝑥, 𝐴𝑦, 𝑎𝑛𝑑 𝐴𝑧. 

Two logical constraints were added to our system: 𝐴𝑧 should align with the surface normal N 

and the Kinect should be level with the ground. Since our probe end-effector is orthogonal to 

our end-effector’s XY plane, i.e., it extends in the 𝐴𝑧 direction, we solved the following 

equations for 𝐴𝑥, 𝐴𝑦, 𝑎𝑛𝑑 𝐴𝑧: 

𝐴𝑧 = −𝑁, 𝐴𝑥 ∗ 𝑁 = 0, 𝐴𝑥𝑧 = 0, 𝑎𝑛𝑑 𝐴𝑦 = 𝐴𝑧 × 𝐴𝑥             (14 a, b, c, d) 

This can be solved by two directions of 𝐴𝑥. To disambiguate, two checks were 

implemented. First, if 𝐴𝑦 is pointing up and the normal is not pointing high, rotate 180 degrees 

so 𝐴𝑦 is downward. Else, if 𝐴𝑥 points left, rotate 180 degrees so the Kinect doesn’t hit the 

plant. 

The position the end-effector moved to, PC1, is a translation from the actual leaf position 

𝑃1. Our probe stick was offset from the tool center point in the direction of the tool’s x-axis, 

and was orthogonal to the tool’s XY plane. Thus, the end-effector position, in robot base 

coordinates, was defined by: 
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𝑃 = 𝑃1 + 𝐿 ∗ 𝑁 − 𝑟 ∗ AX  (15) 

Where 𝐿 is the length of the probe stick and 𝑟 is the radius from the tool center point to 

the thin probe. Next, we determined the rotation vector to send to the arm by solving equation 

13 for 𝑟𝑥, 𝑟𝑦, 𝑎𝑛𝑑 𝑟𝑧. Finally, the calculated coordinate values were sent to the UR10 to probe 

the leaf. 

 

2.5. Results and Discussion 

This section presents three experiments to validate the rover’s design and the imaging 

system. The first uses the rover to position the UR10 appropriately, and uses method M to 

probe two plants. The second experiment uses a stationary rover to position the UR10 

appropriately, and uses all three described probing methods to probe one plant. For all 

probing’s, the goal location was the bottom-left corner, from the perspective of the crouched 

robot, of a small piece of painters’ tape, roughly 5mm square. For easy identification, one leaf 

had two additional pieces placed away from the goal location, and one leaf had one additional 

piece. The third experiment involved probing a piece of flat acrylic which was oriented at 

specific angles, to gain insight into the KinectFusion’s surface normal estimation. An 

experiment testing the KinectFusion normal or position accuracy has not been reported in the 

literature, and this should prove to be valuable to researchers looking to use the KinectFusion 

in other systems. As far as the author is aware, only depth information has been quantifiably 

analyzed (Butkiewicz, 2014). 

2.5.1. Mobile rover 

This section presents an experiment demonstrating current effectiveness of the 

proposed system. The UR 10 arm was commanded to probe two plants (one artificial Silk 
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Dracaena plant - VCK8023, from artificialplantsandtrees.com - and one real Ficus plant), on 

three separate leaves, five times each (i.e. 30 separate probing’s). Both plants were placed on 

a 73 cm-high table (approximately the height that the UR base is at), around 1m apart. During 

normal conditions, the UR arm would extend approximately 80 centimeters in its -Y direction 

for its end-effector to hit a desired leaf.  

Before each trial, the rover was set up at the edge of a track with complete magnetic 

tape as would be in a setup with one chamber. The rover entered the “chamber” and stopped 

at the intersection. A user clicked a button on the PC’s custom user interface (UI), commanding 

the rover to shift sideways. There was only one issue with the tape-following navigation. After 

trial 3, one sensor reported magnetic tape in an un-taped portion of concrete. The sensors were 

calibrated with the Roboteq utility and the experiment proceeded as planned. The tape-

following was accurate enough at our low speed that it has not been formally tested; the steady-

state oscillations about a straight line are negligible, and the rover never went off the tape. 

Once the desired plant was in view, the user initiated our filtered KinectFusion 

algorithm. After several seconds of data acquisition, the mesh was saved. Three points near 

the bottom-left corner of the tape markers were located in the MeshLab software, and stored 

in .txt file. The user clicked on our UI to probe the plant, the coordinates were sent through our 

“mesh probe algorithm”, and the UR 10 approached the leaf with the probe. Using the UR 10’s 

touchscreen user interface, we found ground truth by translating the end-effector until the 

probe hit the bottom-left corner of the tape markers. A summary of results is presented in Table 

1. The mean error was 26.5 [mm] (95% CI [24.2 28.7]).  
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Table 1. Euclidian distance error [mm]. “Avg.” means “average”. 

 

 Trial          

Plant Leaf 1 2 3 4 5 Avg. 

1 1 29.7 27.7 27.4 27.9 26.6 27.9 

1 2 22.9 23.5 22.0 24.5 26.9 24.0 

1 3 20.7 33.9 20.9 25.7 30.3 26.3 

2 1 18.6 16.9 8.5 24.0 19.6 17.5 

2 2 27.4 34.3 29.5 30.3 32.6 30.8 

2 3 34.7 33.0 27.1 35.1 31.9 32.4 

      Avg. 26.5 

2.5.2. Stationary rover, positional accuracy test 

For the second experiment, the rover was kept stationary near the artificial Silk 

Dracaena, the UR10 was placed in a low “crouching” pose, and the program was initialized. 

The UR arm slowly (0.07 m/s) moved in an arc up to a higher pose, looking at the plant. The 

mesh was saved and integration was paused to ensure as much similarity between method F 

and M. Method F was used, the ending coordinates recorded, and the ground truth was found 

as before. The UR resumed its high pose, and if tracking was still successful, method F was 

used to probe another leaf. Again, the UR resumed its high pose, and if tracking was still 

successful, method F was used to probe another leaf. Tracking was occasionally lost while 

moving close to the plant, likely due to the proximity to the plant, which would result in an 

entire depth image of points below the Kinect’s minimum threshold. When tracking wasn’t 

successful on the second or third leaf, the Fusion was started at the bottom again before the 

next probing.  (Since the KinectFusion can be reconstructed in real time, losing tracking is only 

a minor issue. For applications where tracking continuously is important, a future work could 

be replacing the transformation matrix with one obtained using feedback from the robot arm, 

and stopping reconstruction while approaching the plant.) However, a new mesh was not 

saved. Once all three leaves and their ground truth were found for method F, method P and M 

were used to probe the same three leaves. So, each trial had 9 probing’s and 9 corresponding 
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ground truths. (Since orientation wasn’t exactly the same for each probing, the probe would 

contact the tape at a different end-effector position. Thus, ground truth could not be shared 

between methods or trials.) Five trials were conducted, resulting in 15 samples for each of the 

three methods. A standard comparison of means (student’s t and LSD) test was performed in 

JMP Pro 12. Key results are presented below. 

 

Figure 7. Error (Euclidian distance) [mm] for methods D, F, and M on a stationary rover. 

Table 2. Means and Standard Deviations 
Level Mean [mm] Std Dev [mm] Std Err Mean [mm] Lower 95% [mm] Upper 95% [mm] 

D 25 7.3 1.9 20.8 28.9 

F 33 9.8 2.5 27.3 38.2 

M 30 10.7 2.8 24.3 36.2 

 

Table 3. Student’s t Comparison of Means 
Level  - Level Difference [mm] Std Err Dif [mm] Lower CL [mm] Upper CL [mm] p-Value [mm] 

F D 8 3.4 1.0 14.8 0.0260* 

M D 5 3.4  -1.6 12.3 0.1257 

F M 3 3.4  -4.4 9.5 0.4606 

 

As seen in Table 2 and Table 3, only one difference of means was statistically 

significant (at p<0.05). Method D only had a statistically significantly lower mean error 

(p<0.05) mean than method F. However, the Lower CL is 1, suggesting that the methods, 
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although having statistically different means, could have practically similar means. This is in 

line with what was qualitatively observed; method D appeared to be the best method, but not 

by a lot. This suggests that the default Kinect Fusion pose estimation, used by method F (real-

time KinectFusion) but not method D (real-time Depth) is reasonably accurate but not perfect. 

More data could be collected to increase confidence in the true means. However, this 

will likely be unnecessary because in practical terms, they all are good enough for “rough” 

probing, and none of them were accurate enough to be used, un-corrected, with a traditional 

fluorimeter or Raman spectrometer sensor. Regardless of the plant leaf location data source, 

the probing accuracy still needs to be improved for the system to meet the autonomous data-

collection objective. This will be elaborated in the “general discussion and conclusion” section. 

2.5.3. Stationary rover, surface normal test 

This experiment tested the accuracy of the surface normal estimates that can be 

obtained using KinectFusion. A standard white paper was fixed to the surface of a piece of 

standard grade extruded acrylic (sold by Grainger, Inc.), as shown in Figure 8. The acrylic was 

fixed to pieces of 8020 extruded aluminum arranged with hinges for one degree of freedom. 

This hinge lined up with the robot’s x axis. A piece of paper with lines intersecting at a common 

point in angles in increments of 30 degrees was placed below the setup. These intersections 

helped measure rotation about the robot’s z axis. For several combinations of x and z rotation 

([0,0], [-30,0], [-60,0], [-90,0], [-90,30] with [0, 0] meaning flat acrylic and x axes aligned), all 

three previously-described methods (real-time Kinect Fusion, depth, and mesh) were used to 

probe the bottom-left corner of a small piece of blue painters’ tape, ten times per combination. 

The range of angles tested is limited mainly due to self-collisions of the robot and collisions 

of the Kinect with the Environment. 
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Figure 8. Probing angled white paper. 

As the surface normal defines one vector, and the probe defines another vector with a 

common point where the probe intersects the paper, these two vectors define a plane. Within 

this plane, the two vectors will make an angle. This angle is easy to standardize and is a suitable 

metric for comparing various systems’ ability to interact with the surface normals in their 

environment. 

In a perfect trial, the probe would just barely contact the paper, at an exact point. As 

shown in the previous experiments, there is translational error in the system. To deal with this 

error, the acrylic was translated along the table’s angle lines when the probe appeared to be 

near the acrylic. This maintained the angle of the acrylic’s normal relative to the robot’s 

coordinate system, preserving the ground truth for measurement. Note that a perfect probing 

would yield an angle of 90, meaning the probe was perfectly normal. 

Results are presented in Table 4 and Table 5. First, a comparison of the means of the 

three methods was conducted. Method M was seen to have statistically significantly better 

mean compared with the other two methods, while the depth (D) and KinectFusion (F) methods 

failed to show statistically significant different means. This is in agreement with what was 

observed and what was expected. An estimate of the surface normal is far more accurate when 
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using neighboring data to find an average normal estimate. Looking at each method 

individually, the results show that method F (real-time KinectFusion) has a mean between 63 

and 67 degrees (95% confidence). Method D (depth) shows a mean between 65 and71 degrees 

(95% confidence). Neither of these ranges is accurate enough to use fluorimeters, which are 

sensitive enough that they are often are used with an attachment to guide the sensor to the 

proper angle. The error for method D can be attributed to the local noise in the Kinect data and 

possibly the hand-eye calibration, as the KinectFusion pose estimation was not used. Error in 

method M (manually-selected KinectFusion), with the mean angle between 81 and 84 degrees 

(95% confidence) can be attributed to the KinectFusion’s estimation of pose and possibly the 

hand-eye calibration. Since a human entered points manually, and used points that were 

separated by roughly a centimeter, there was little room for other errors.  Error in method F is 

more complicated, however. This error will be a combination of the KinectFusion’s estimation 

of pose as well as the local imperfections caused by local Kinect noise. Comparing the means 

for method F and D shows that the two methods’ means are not statistically different. This 

reinforces what the previous probing experiment showed: the KinectFusion’s estimation of 

pose is probably pretty accurate. This suggests that much of the error was from the Kinect’s 

local surface normal estimate. 
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Figure 9. Angle [deg] for methods D, F, and M on a stationary rover. 90 is perfectly normal. 

Table 4. Means and standard deviations [deg]. 50 trials each level (method). 
Level Mean [deg] Std Dev [deg] Std Err Mean [deg] Lower 95% [deg] Upper 95% [deg] 

D 68 10.2 1.4 65.2 71.0 

F 65 6.7 0.9 63.3 67.1 

M 83 5.0 0.7 81.1 84.0 

 

Table 5. Student’s t comparison of means [deg] 
Level  - Level Difference [deg] Std Err Dif [deg] Lower CL [deg] Upper CL [deg] p-Value [deg] 

M F 17 1.5 14.4 20.4 <.0001* 

M D 14 1.5 11.5 17.5 <.0001* 

D F 3 1.5  -0.1 5.9 0.0580 

 

2.6. General Discussion and Conclusion 

As presented in this paper, a novel system for autonomous indoor phenotyping was 

created. The system’s design, hardware, software layout, and a concept-level view of the 

software were presented. The system was tested in a one-chamber case, and the effectiveness 

of the navigation system was informally demonstrated. Data is presented demonstrating the 

validity of the plant probing sub-system. This system used the Kinect V2 ToF sensor, which is 

rapidly being adopted by various research communities. The reliability of the Kinect’s surface 

normal estimate and an investigation into the accuracy of the KinectFusion algorithm are 
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presented. This has previously been a gap in the literature, even though this application of the 

Kinect has many potential uses for integration with robotic systems such as that presented in 

this paper. The result from probing using the same algorithm on three related but different data 

structures were compared. One general conclusion is that the Kinect’s internal estimate of 

orientation is generally accurate to better than 9 degrees. The three data sources discussed – 

real-time depth (D), real-time local Kinect Fusion (F), and offline Kinect Fusion (M) – can be 

used to consistently position sensors within 4 cm of a desired position, and if used properly, 

within 3 centimeters reliably. In ideal cases, the error was as low as 1.5 cm. Before installing 

other sensors, some refinement of the probing sub-system should be done, improving location 

accuracy and surface normal estimation. 

Future work includes reducing probing position and surface normal errors. Efforts to 

this end include modifying the Kinect housing for as rigid as possible mounting, and doing a 

camera calibration with more pictures, and using optimized locations for these pictures. Other 

improvements include more sophisticated pre-processing of the depth data and using the UR10 

feedback for calculation of 𝐻𝐸𝐵, the transformation from end-effector coordinates to robot 

base. The surface normal estimate can be improved using, for instance, principal components 

analysis to find the surface normal (technically, an eigenvector) corresponding to the plane 

which is fitted to a cluster of points near the goal location. Use of another highly accurate 

distance sensor to augment the rough, real-time Kinect algorithm is another general solution. 

Additionally, we aim to program the system to autonomously position sensors near a desired 

leaf with a desired angle. This will likely involve using traditional RGB image processing 

methods to detect the desired leaf location, and incorporation of an appropriate collision-free 

path planner. 
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2.6.2. Safety emphasis 

In order to make the rover safe for interaction with humans, several features have been 

implemented. First, fuses were inserted which minimizes risk of short-circuiting of contacts 

and risk of drawing current that is higher than components’ specifications. The battery consists 

of four sets of four 3.2.V (nominal) lithium-ion batteries (total 51.2 nominal). One fuse is 

inserted in between the 2 middle cell-sets, and one fuse is connected directly to the battery’s 

48V contact. Both fuses are currently 25A. Secondly, one emergency stop, which cuts power 

to the motors, is on each side of the rover base. Third, the wheels are designed to have a 

“moderate” level of traction, so the rover is physically limited in its accelerations and in its 

ability to push objects. This reduces likelihood that the rover would trap someone against a 

wall, whether the robot or the human was at fault. Fourth, according to the UR10 user manual 

(2015), the robot arm is suitable for “Collaborative operation according to ISO 10218-1:2011” 

If the robot exceeds a safety setting (force, torque, velocity, etc.) the UR10 can go into a slow 

or stopped mode according to the user-defined settings.  

Further internal electrical precautions were taken. High-current relays (arbitrarily 

chosen as 200A) implement the emergency-stop and main switch power control, allowing 

reliable operation. Some electrical precautions similar to those recommended in the motor 
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controller manufacturer’s user manual (Roboteq) were implemented. These included a path 

from motor voltage terminal through a pull-down resistor to ground while the system is turned 

off (implemented using a five-pole single-throw industrial switch), and a path from the motor 

voltage terminal through a diode and a 10A fuse to the battery’s positive terminal to prevent 

over-voltage while the system is turned on. Finally, all significant wiring inside the controller 

has been sized appropriately, labelled, shielded with heat-shrinkable tubing and cable wrap, 

crimped with appropriately-rated wire crimps, and guided using cable ties and mounting pads. 

Bus bars were used to organize voltage contacts of the same voltage (24V, 48V, ground). This 

enhances maintenance and decreases the risk of electrical accidents. No unified standard was 

applied or monitored, however. 
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CHAPTER 3. PATH PLANNING OF A ROBOTIC ARM IN A GROWTH CHAMBER 

 

3.1. Abstract 

To aid in collection of phenotypic data, some researchers are proposing robotic 

systems. Operating a robotic arm in a growth chamber with multiple plants occupying space 

in the robot arm’s used workspace can result in unwanted collisions. Current phenotyping 

systems ignore this aspect of robotic phenotyping. A novel implementation of the Probabilistic 

Roadmaps technique is applied to feedback from a Time-of-Flight sensor, the Kinect v2. A 

standard roadmap is created and further enhanced by adding nodes near the plants and near 

nodes with few neighbors. During the query phase, the algorithm attempts to add the goal to 

the roadmap. If unsuccessful, nodes are added near this goal. Collision-free motion is 

developed, considering the joints, end-effector, and Kinect sensor. Planning times are 

approximately 32 seconds, and query times are approximately 0.5 second. The approach is 

flexible and can easily be adapted to multiple setups with different sensors. 

Keywords: Path Planning, Robot Arm, Growth Chambers 

 

3.2. Introduction 

In a world of changing climate and increasing world population, there is a great need 

to understand the interaction between genotype and phenotype in order to produce enough crop 

yield. Organizations such as the Royal Society of London (2009) and the FAO (Rai, Reeves, 

Pandey, Collette, & Food and Agriculture Organization of the United Nations, 2011) suggest 

a need for at least a 50% increase in food supply in the next half-century. Sustainable 

intensification, involving increasing the productivity of existing farmland while reducing 
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negative environmental impacts, is promoted as one of the best ways – and some would say 

the only way – to achieve this. 

One of the main methods to increase crop yield without increasing chemical use 

involves plant breeding techniques. Effective plant breeding requires in-depth data on plants’ 

health and growth patterns, which are part of their broader phenotype, or physical 

characteristics. Many traits relating to growth, performance, and yield are complex traits under 

polygenic control (Pieruschka & Poorter, 2012). Studying these traits using plants’ phenotypes 

to understand how each strain behaves under various growing conditions is an important step 

toward improving the characteristics of a crop stock. This requires large quantities of data from 

sensors. One promising solution to obtain this data is to use robotic systems. However, robot 

arms are not programmed for collision-free motion, and the robotic arm may collide with a 

plant. Slight collisions are generally not an issue, but a robot arm may sweep a volume that 

goes straight through the middle of a plant, knocking it over, for instance.  

This paper discusses available path planning solutions as they could be applied to 

operation in a plant growth environment, and proposes a novel solution which can be 

considered a variant of the probabilistic roadmaps (PRM) technique. Emphasis is on the 

application of a mobile manipulator interacting with plants in a growth chamber, but the 

method is general enough to work with many setups. Importantly, the framework provided 

allows easy re-configuration to adapt to different sensor arrangements. 

The framework is tested using simulations and a physical plant setup. The framework 

uses input from a Kinect v2 Time-of-Flight (ToF) sensor. Both the simulations and the physical 

setup use a Universal Robots UR10 robot arm, and processing is done in MATLAB on a 64-

bit Dell T1700 running Windows 10 with an Intel Xeon 3.4 GHz CPU and 16.0 GB RAM. 
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3.3. Related Work 

Two related classic problems in robotics are path planning and collision avoidance. 

Path planning involves generating a set of poses which the robot should follow in succession. 

Collision avoidance describes methods which aim to help the robot prevent itself from hitting 

un-desired objects. This paper is aimed at collision-free path planning, a branch of robotics 

research which combines these two problems: these methods aim to provide sets of poses 

which the robot should follow, where the robot will not hit un-desired objects. 

The collision-free path planning problem has been around for several decades, and is 

aimed around the general task of moving a robot arm from a starting position to a goal position 

while minimizing or eliminating collisions. Most approaches can be placed into one of two 

categories: approaches based on knowledge or simulation of the robot workspace and those 

based on local sensors (Shaffer, 1991).  

Sensor methods include rings of infrared sensors (Gandhi & Cervera, 2003), 

capacitance-based sensors (Feddema & Novak, 1994), and a whole-arm skin of infrared 

proximity sensors (sensors described in Cheung and Lumelsky, 1992; successful 

implementation described in Lumelsky and Cheung, 1993). Sensor methods are often 

promoted for their relatively lower computational requirements, low sensor noise, and ability 

to operate in the absence of a perfect world model. However, many modern advances in 

computing power and algorithm maturity have led to successful implementation of real-time 

collision avoidance using knowledge of the robot workspace. 

Some simulation-based approaches use robot simulators such as V-Rep (Rohmer, 

Singh, & Freese, 2013) to simulate the currently-running robot environment, and use the 

feedback to slow down robots as appropriate to lower risk of collision (Fenucci, Indri, & 



41 

 

 

Romanelli, 2014). In Fennucci’s case, unfortunately, results have not been reported on 

dynamically-updated obstacles, although it appears possible given their framework.  Another 

interesting real-time approach involves using a statically-placed, external Microsoft Kinect to 

compute distances between the robot arm, as modeled by a sequence of spheres, and obstacles 

of arbitrary shape (Flacco, Kröger, De Luca, & Khatib, 2012). These distances, and a rough 

measure of obstacle velocity, are sent to a collision-avoidance algorithm which computes target 

joint position and velocity. Finally, this target joint position and velocity is sent to the one of 

the Reflexxes libraries for jerk-limited, continuous control (consult, for instance, Kröger & 

Wahl, 2010 and Kröger, 2011). The approach has demonstrated the ability to avoid a human’s 

arm in real-time. Another real-time collision-free robot control system limits the robot so that 

it avoids colliding with its environment except for a specific hand of a user, when the user 

enters the interaction mode (De Luca and Flacco, 2012). The observing PC uses the distance 

between the end-effector and the nearest obstacle to modify the task velocity. The smallest 

distance from an obstacle to other points of interest on the robot is used to slow down the joint 

motions which result in a smaller distance, as determined using the Jacobian associated with 

the robot’s current joint positions. De Luca and Flacco point out that these vectors can be used 

in more traditional collision avoidance algorithms such as potential fields (Khatib 1986), 

circular fields (Haddadin, Belder, & Albu-Schaeffer, 2011; Singh, Stephanou, & Wen, 1996), 

and elastic strips (Brock & Khatib, 2002).  

In general terms, the potential field method uses the goal position as an attractive force, 

and obstacles as a repulsive force, in operational space (the coordinates of the task i.e. position 

and orientation). This approach helps a robot arm avoid obstacles. As the method does not 

explicitly require global planning, avoiding getting stuck in local minima must be 
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accomplished by augmenting the method with other techniques. Circular fields generates a 

repulsive force perpendicular to the direction of travel. This conserves the kinetic energy of 

the system and generally helps the robot to move around obstacles, rather than getting stuck in 

local minima. Elastic strips represent a planned collision-free path as a swept volume in the 

workspace (XYZ, for instance) which is expanded by a Minkowski sum. When obstacles enter 

the vicinity of the original path, an external force is applied which creates a modified path 

which remains within the expanded swept volume. The approach allows robots with many 

degrees of freedom to operate in dynamic environments while maintaining task constraints. 

One approach which has been shown to apply to holonomic and non-holonomic robots 

is the Rapidly-Exploring Random Trees (RRT) method (LaValle, 1998). The initial location is 

added to the graph, and subsequent nodes are generated while considering the system’s 

geometry (and, optionally, dynamics). The method has been applied, sometimes with 

variations, to many classes of robots. This is the method used by V-Rep (Rohmer, 2013). 

Although the method could probably be modified for use in multi-query applications, the 

method is generally suited for single-query collision-free path planning problems. A related 

approach grows one RRT at the start and one at the goal, and attempts to connect the two in an 

efficient way (Kuffner & LaValle, 2000). 

Some methods use a combination of offline map-building with online graph-search. 

One example is probabilistic roadmaps (PRM), which involves generating a graph of reachable 

configurations (nodes) and rapidly-computable local paths (edges) between these nodes 

(Kavraki, Svestka, Latombe, & Overmars, 1996, Kavraki, Kolountzakis, & Latombe, 1998, 

and Song, Thomas, & Amato, 2003). This graph can be searched using many different graph-

search methods. Another related approach, Dynamic Road Maps (DRM), uses knowledge of 



43 

 

 

the robot forward kinematics, geometry, and sensor arrangement to generation a roadmap 

offline. A mapping between the operational space and the C-space is also generated offline. 

During runtime, the algorithm modifies the roadmap before performing a graph search for the 

final path (Leven & Hutchinson, 2002). This has been used to perform collision-free path 

planning in under 100ms in a dynamic environment using a point cloud of the environment 

and the A* search algorithm (Kunz, Reiser, Stilman, & Verl, 2010). Kunz et al. reported pre-

processing time on the order of several hours for many of their setups. The time increased as 

the number of roadmap nodes increased, in a manner which appears quadratic but is not 

specified. The graph-search (online) time wasn’t affected much by the number of roadmap 

nodes, likely because they use the A* search algorithm which only searches part of the graph 

in most situations (Hart, Nilsson and Raphael, 1968 and 1972). 

The main idea behind A* search is that for a given node 𝑛𝑖, the cost, 𝑓(𝑛𝑖), is a sum of 

the cost of reaching that location, 𝑔(𝑛𝑖), and the estimated cost of reaching the goal from that 

location, ℎ(𝑛𝑖). (“Cost” depends on the application. For instance, traveling across water could 

be more “expensive” than travelling across land.) In fact, Dijkstra’s algorithm (Dijkstra, 1959), 

which only takes into account the path taken to a node, is a special case of the A* algorithm 

where no estimate ℎ(𝑛𝑖) is used. Many heuristics could be used for ℎ(𝑛𝑖), and for heuristics 

which do not overestimate the cost of reaching the goal, the algorithm is guaranteed to 

converge on the optimal solution, if any is available (Hart et al., 1968 and 1972). 

 

3.4. Background on the Application 

In order to gather data on indoor plants during their growth cycles, one promising 

option is to use a robot arm in conjunction with a robot base to position sensors to a proper 
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position and orientation. This paper focuses on building collision-free path plans with a ToF 

sensor (Microsoft Kinect v2) mounted on the end-effector of a robot arm (UR10). As shipped 

from the factory, the robot arm has no awareness of when it will collide with a plant, as shown 

in Figure 10. 

 
Figure 10. Probing examples. Left: collision with a plant. Right: no collision. 

Situations like this can easily be avoided when only one plant is in front of the robot 

arm. However, in plant-breeding applications, often dozens of plants will be in each growth 

chamber, which means that situations where the instruments (or possibly even the arm) collide 

with the plants will likely occur quite often. As such, the robot needs a method to avoid hitting 

plants while still allowing the instrument (in this case, the probe) to reach the goal. 

Additionally, when a collision-free path is not possible, the system should detect this, 

document it, and have a programmed response. In the current implementation, a message is 

displayed on the PC’s screen and the robot arm approaches as close as it can in configuration 

space (C-space), also termed joint space. A future work is to decide how to deal with this as 

part of the overall robotic imaging system.  The program could pick a different leaf, e-mail the 

researcher, or even choose an “optimal” collision-containing path or “optimal” collision-free 

approximate pose, using metrics such as a weighting of Euclidian distance and orientation 

offsets. 
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In applications such as plant breeding, where the robot is intended to interact with 

specific aspects of its environment, using various sizes and quantities of sensors, the robot will 

require a representation of the environment, in order to understand where to place sensors. This 

could be time-invariant and relatively complete as in the real-time-updating 3D models created 

by KinectFusion (Izadi, Kim, Hilliges, Molynequx, Newcombe, & Kohli, 2011) 

implementations, or incomplete as in the case of using a single frame of depth information or 

a laser scanner. Since information about the environment is therefore already available before 

the robot attempts collision-free path planning, adding a sensor-based collision avoidance 

scheme doesn’t yield much benefit, and approaches using knowledge of the robot workspace 

have been considered. 

Analytic approaches are infeasible on noisy plant-shaped Kinect feedback, and would 

require pre-processing to find geometric approximations. In contrast, the PRM and DRM 

families of algorithms can be configured or modified to operate in virtually any environment. 

Due to its ease of modification, and related ability to rapidly adopt to new configurations, such 

as in-field sensor changes, PRM is well-suited for applications with sensor requirements which 

may change often, such as autonomous plant phenotyping. 

 

3.5. Materials and Methods  

In this section, the framework proposed is developed. First, the basic PRM method is 

explained while only considering collisions with the end-effector, which is a 3D case. The 

approach is extended to the 6D configuration space, and enhancements are discussed. 
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3.5.1. 3D PRM 

To illustrate the basic PRM method, we first considered only collisions with the end-

effector. A sample plant environment was set up with four artificial plants (from 

artificialplantsandtrees.com) with varying leaf size and shape, and arranged with the tall plants 

in front. This represents the toughest case. Reaching over and around tall plants to approach a 

short plant is more difficult than: a) reaching over and around short plants, or b) reaching over 

and around tall plants to approach a tall plant. A sample start position and several goal positions 

were chosen. The positions were, in order: right, top, and back of an artificial Pink Germanium; 

top and left of an artificial Diffenbachia; right and top of an artificial Dracaena; and back, top, 

and right of an artificial Gold Guzmania. The plant arrangement is shown in Figure 11. The 

table is roughly the same height as the 𝑧 = 0 location on the robot arm. The arm must reach 

over plants 1 and 4 in order to reach the locations attempted near plants 2 and 3. This case 

reduces to a three-dimensional path planning problem. First, an occupancy grid 𝑂𝑐𝑐 ⊆  ℝ3 (an 

array in memory, where 1 represents objects and 0 represents free space) was constructed by 

down-sampling an approximate mesh model of the Kinect’s environment, as obtained using 

the default KinectFusion program, discussed in Chapter 2. The resolution of the occupancy 

grid is application-dependent, and for this paper, 1cm was chosen. This occupancy grid was 

morphologically dilated by 6cm, which is equivalent to modelling the end-effector as a ball 

with radius 6 cm. This will be elaborated in the whole-arm collision avoidance case. 𝑁 = 150 

randomly-generated nodes 𝑛 were generated in the open space around the plants (in this case, 

𝑌 <  0, 𝑍 >  0). Nodes 𝑛𝑖 and 𝑛𝑗  were connected by edge 𝐸𝑖𝑗 using a local planner if the 

collision-free line between them was in the free space, and if 𝑑 = |𝑛𝑖 − 𝑛𝑗| < 0.3 ∗

max(𝑠𝑖𝑧𝑒(𝑂𝑐𝑐)) = 𝑡, the maximum allowable distance. 
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Figure 11. Four artificial plants. 1: Pink Germanium, 2: Diffenbachia, 3: Dracaena, 4: Gold 

Guzmania. 

The resulting graph 𝐺 was searched for the optimal solution using either depth-first 

search (DFS) or A* search. In the A* implementation presented in this paper, the distance 

between two nodes is measured by the 2-norm of the vector connecting them, representing 

straight-line edges. As a result, 𝑔(𝑛𝑖) is the sum of all edge distances on the shortest path from 

the start node to 𝑛𝑖. Hence, a 2-norm of the vector from the current node and the goal node is 

used for ℎ(𝑛𝑖). This is a lower bound on the distance to the goal. At a given search step, 

neighbors of the current node are evaluated, and the node 𝑛 with the lowest known function 

value 𝑓(𝑛) is chosen as the node for the next step. The lowest-cost successor node visited on 

the way to a node is stored in the data structure. The final node will to point to its successor, 

which will point to its successor, all the way back to the start node. The result is a sequence of 

sets of XYZ locations (joint values in the 6D case) which, when visited by the UR10 arm in its 

linear (joint-space in the 6D case) trajectory setting, will result in a collision-free path from the 

start pose to the goal pose. Further, this sequence is optimal given a graph and our cost function. 
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A summary of results is presented in Table 6, as averaged over 25 trials. A sample path 

in the environment is shown in Figure 12; the graph of nodes corresponding to this path is 

shown (without edges) in Figure 13. Key observations include: depth first search (DFS) is 

significantly slower than A*, and the search time for A* is significantly smaller than the 

construction time. This shows the need for using a limited-search method, such as A*, rather 

than an exhaustive-search method such as depth-first search, which is more suited for querying 

the same graph with the same goal, from multiple start locations. Additionally, this points to 

the validity of PRM-based approaches in this type of application: once the roadmap was 

constructed from the Kinect feedback, querying the roadmap for traversal between locations is 

computationally inexpensive. The average error column reflects the high probability that the 

nearest node can be connected to the goal via the PRM graph. The algorithm found a safe path 

to the goal for most queries, and only occasionally couldn’t reach the goal, returning a 

destination which had error usually on the order of 15-20 cm. This suggests a need for roadmap 

enhancements or increased number of nodes, both of which are discussed in the next section. 

Finally, note how the sample path consists of 10 nodes. This is not always possible and is 

certainly not possible for many whole-arm-collision avoidance cases, including the one 

presented in this paper. Links of the arm would collide with the tall plants (1 and 2 in our case). 

Table 6. 3D PRM results, averaged over 25 trials. 𝑁 = 150 for each trial. 

Method N Construction Time [s] Search Time [s] Error [cm] 

A* 150 1.024 0.110 0.148 

DFS 150 1.163 25.401 0.170 
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Figure 12. Sample 3D path generation. Black dots: dilated obstacles (sparsely plotted), gray: 

KinectFusion mesh, green dots: sparse path travelled, yellow circles: nodes visited. 

 

Figure 13. Sample graph. Black dots: dilated obstacles (sparsely plotted), blue dots: nodes, 

gray: KinectFusion mesh, green dots: sparse path travelled, yellow circles: nodes visited. 
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3.5.2. PRM for 6-DOF robot arm 

For the case of planning for collision-free motion of the whole robot arm, the PRM 

method was still used. The presented approach consists of a roadmap construction phase and a 

query phase. During the roadmap construction phase, the first step is creating a 3D occupancy 

grid, as in the previous case. However, collision checking was carried out in a way that 

accounted for the robot arm’s links and the sensors on the end effector, which will be 

collectively called “the robot”. In this case, the only sensor was a Kinect v2, but the approach 

would extend to arbitrary configurations. To aid in computation, the robot was modeled as 

several spheres of radius 6 cm as shown in Figure 14. This is similar to the modeling used by 

Flacco et al. (2012). One major advantage in modeling the UR as several spheres is that 

checking for collision of these spheres with the environment is computationally inexpensive. 

This is equivalent to checking for collision of the spheres’ center point with an expanded 

(dilated) occupancy grid. In other words, checking whether an object collides with a sphere is 

equivalent to checking whether that obstacle is one radius away from the sphere’s center. 

Hence, expanding the obstacle by one radius has the same effect. To accommodate spheres of 

different sizes, a new occupancy grid could have been made for each unique radius, by dilating 

the original environment by the unique radius. 

To avoid self-collisions on the system (Kinect-robot and robot-robot collisions), and to 

avoid twisting sensor wires unnecessarily, the joints were restricted. For reference, in the 

current implementation they were (in order from base to end-effector): [-180, 0; -180, 0; -180, 

90; -180, 15; -180, 180; 125, 235]. 
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Figure 14. UR 10 modelled by spheres. 

Motion in Cartesian space results in unpredictable robot motion, without complete 

knowledge of the joint-level motion controller being used. Leveraging the UR’s internal 

processor and pre-built software, the only trajectory generation scheme that allowed our remote 

PC complete knowledge of the robot’s swept path was a linear trajectory in C-space. To move 

the robot with C-space motion required a desired angle for all six robot joints, so this is a 6-

dimensional space. The robot moved each joint linearly to the temporary goal value, such that 

every joint on the robot reached its final value at the same control cycle. As a result, the robot 

traced a path that is fully defined at each value of joint angle. 

The start and goal joint positions were assumed to be known, since the UR10 arm is 

sending its current pose over TCP/IP constantly, and the imaging system can determine its goal 

once a leaf is identified, using the Kinect’s mapping from RGB to depth space. Inverse 

Kinematics can be determined using the Robotic Operating System (ROS) package for the 

UR10, which is easily ported from C++ to MATLAB or virtually any other language 
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supporting floating-point arithmetic. The algorithm planned a path from a start through several 

goals, which were the C-space equivalent poses to the previous 3D case’s XYZ goals. 

The algorithm for a basic 6D PRM implementation is outlined below1. Sets of joints, 

termed a node, within the joint limits, 𝜃𝑟 ∈ ℝ6, were added if zero of the tracked points, 

including the end-effector (𝑝𝑒) from the tracked set 𝑃(𝑛𝑖) = {𝑝0 𝑝1 … 𝑝𝑒} collided with the 

obstacles, using forward kinematics. Edges between nodes were added if the distance between 

nodes was below a threshold (for the 6D case, if 𝑑 = |𝑛𝑖 − 𝑛𝑗| < 𝑘 ∗ |𝜃𝑟| = 𝑡, k chosen as 0.2 

in these examples) and the 6D line between nodes (sparsely calculated every 3 degrees, to 

reduce computation), as defined by an extension of the Bresenham algorithm (Bresenham, 

1965), resulted in zero collisions. 

𝑁  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑜𝑑𝑒𝑠 
𝑖 = 0 
While 𝑖 <  𝑁 
 𝑛𝑖Random set of valid joint angles 
 If ∀ 𝑝 ∈ 𝑃(𝑛𝑖), 𝑝 ∉ 𝑂𝑐𝑐 
  Add node 
  𝑖 = 𝑖 + 1 
  For all 𝑛𝑗 s.t. ‖𝑛𝑖  −  𝑛𝑗‖ < 𝑡 

   If ∀ 𝑝 ∈ {∪ 𝑃(𝑛𝑙) | 𝑛𝑙  𝑎𝑙𝑜𝑛𝑔 𝑙𝑖𝑛𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑖 𝑎𝑛𝑑 𝑛𝑗}, 𝑝 ∉ 𝑂𝑐𝑐 

    Add edge 𝑒𝑖𝑗  

   End if 
  End for 

End If 
End while 

Figure 15. Default PRM 

 

Now that the construction phase was completed, the graph was queried with a start and 

goal position. In all variants discussed, the query and search is only carried out using the largest 

connected component. A discussion on a simple method to increase connectedness is presented 

                                                 
1 I say “a basic 6D PRM” because some other basic PRM planners only allow a node to add edges to its k nearest neighbors (Song, 

Thomas, & Amato, 2003). 
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later on. The node nearest to the start and goal were labeled as the start and goal nodes, 

respectively. In theory, any 6D graph search method could then be used. However, due to the 

graph size and hardware limitations, breadth-first search was found to crash the MATLAB 

environment. Other related recursive and exhaustive-search methods would likely result in 

similar results. Additionally, these methods generally are slower than limited-search method 

such as an algorithm from the A* search family, including the uninformed Dijkstra’s algorithm. 

Dijkstra’s algorithm was shown by Kunz et al. (2010) to generally take longer than a more-

informed A* search on PRM planners. 

In this implementation, an A* implementation was used. As in the 3D case, distance 

between nodes is measured by the 2-norm of their difference (now a 6D vector), and the 2-

norm of the vector from the current node and the goal node is used for ℎ(𝑛𝑖). Again, this 

sequence is optimal given a graph and our cost function. 

3.5.3. 6D PRM variants 

The basic procedure outlined above works well for general cases, and can be adapted 

to achieve a desired balance between computation time and various motion characteristics, 

such as minimum swept Cartesian volume, or increase the nearness of the final pose to the true 

goal pose. A good discussion of several variants was presented by Song (Song, Thomas, & 

Amato, 2013). Variants explored in this paper are aimed at applications where the robot arm 

is known to operate in a subset section of its workspace, with additional joint constraints 

imposed by, for instance, wires attached to the arm. 

The three variants presented are: adding nodes with an end-effector near the plants (in 

front of the robot, above the table); adding nodes with the end-effector, 𝑝𝑒(𝑛𝑖) =

[𝑝𝑒𝑥(𝑛𝑖) 𝑝𝑒𝑦(𝑛𝑖) 𝑝𝑒𝑧(𝑛𝑖)] (cm), near the goal (including attempting to directly connect the 



54 

 

 

goal); and adding nodes near nodes with a low number of neighbors (these nodes are likely in 

difficult-to-reach locations, and potentially part of a disconnected part of the graph). These 

variants are outlined and compared. 

Although it is possible that another research team studied similar enhancements, the 

author has not seen these published elsewhere. These enhancements are intuitive, require a 

minimal amount of additional code, and are shown to be effective at producing highly useful 

PRM Graphs with a low number of nodes compared to other published results, which can range 

on the order of several thousand nodes for a 6-DOF robot. 

The “Near Plants” variant adds nodes with end-effector location in the operational 

space (XYZ) near the plants. This is very similar to basic node-addition phase. 

𝑁𝑝  =  𝑓𝑙𝑜𝑜𝑟(𝑁 2⁄ ) 

𝑖 = 0 
While 𝑖 <  𝑁𝑝 

 𝑛𝑖Random set of valid joint angles 
 If (∀ 𝑝 ∈ 𝑃(𝑛𝑖), 𝑝 ∉ 𝑂𝑐𝑐) & 𝑝𝑒𝑦(𝑛𝑖) < 0 & 𝑝𝑒𝑧(𝑛𝑖) > 0 & 𝑝𝑒𝑧(𝑛𝑖) < 0.80 

  Add node 
  𝑖 = 𝑖 + 1 
  For all 𝑛𝑗 s.t. ‖𝑛𝑖  −  𝑛𝑗‖ < 𝑡 

   If ∀ 𝑝 ∈ {∪ 𝑃(𝑛𝑙) | 𝑛𝑙  𝑎𝑙𝑜𝑛𝑔 𝑙𝑖𝑛𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑖 𝑎𝑛𝑑 𝑛𝑗}, 𝑝 ∉ 𝑂𝑐𝑐 

    Add edge 𝑒𝑖𝑗  

   End if 
  End for 

End If 
End while 

Figure 16. Adding nodes near plants 

Adding nodes near the goal introduces 𝑑𝑒𝑀𝑖𝑛, a minimum distance threshold. This can 

be tuned to the accuracy required by the application, and could be extended to include 

orientation. Position and orientation are important for most applications, including plant-

probing. 
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𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒  Current Time 

𝑖 = 0 

𝐺′Largest connected component on 𝐺 

Attempt to connect goal 𝑞𝑔 to  𝐺′ 

 SuccessBreak 
 FailContinue 
While Current Time <  𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒 + 5 
 𝑛𝑖Random set of valid joint angles 

 If ∀ 𝑝 ∈ 𝑃(𝑛𝑖), 𝑝 ∉ 𝑂𝑐𝑐 & ‖𝑝𝑒(𝑞𝑔) − 𝑝𝑒(𝑛𝑖)‖ < 𝑑𝑒𝑀𝑖𝑛 

  𝑖 = 𝑖 + 1 
  For all 𝑛𝑗 s.t. ‖𝑛𝑖  −  𝑛𝑗‖ < 𝑡 

   If ∀ 𝑝 ∈ {∪ 𝑃(𝑛𝑙) | 𝑛𝑙  𝑎𝑙𝑜𝑛𝑔 𝑙𝑖𝑛𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑖 𝑎𝑛𝑑 𝑛𝑗}, 𝑝 ∉ 𝑂𝑐𝑐 

    Add edge 𝑒𝑖𝑗  

    If 𝑛𝑖 ∉ 𝐺 
     Add 𝑛𝑖 

     If ‖𝑞𝑔 − 𝑛𝑖‖ < 0.15 

      Quit Adding 
End If 

    End If 
   End If 
  End For 

End If 
End While 

Figure 17. Adding nodes near end-effector at desired pose 

The “low neighbors” routine (“k neighbors”) is called to add nodes near low-neighbor 

nodes, until every node 𝑛𝑖 has more neighbors 𝑏(𝑛𝑖) than some minimum number 𝑏𝑚. The 

method is repeated multiple times (3 in these examples) to raise the number of neighbors of 

newly-added points. In this context, “near” has a very specific meaning, which will now be 

defined. 

The tolerance 𝑇 can be defined by a vector which is larger in high-freedom joints, and 

which is guaranteed to have a magnitude of 𝑐 ∗ 𝑡. For 𝑐 < 1, therefore, points generated with 

all joints within this tolerance will be closer to the low-neighbor node than 𝑐 ∗ 𝑡. 

𝑇 = 𝑐 ∗
𝜃𝑟

‖𝜃𝑟‖
∗ 𝑡  (15) 

Valid means the joint values are within the overall joint limits and within 𝑛𝑖 ± 𝑇. 

  



56 

 

 

𝑁𝑇Number of nodes on 𝐺 

𝑖 = 0 
𝑏𝑚Minimum number of Neighbors 
While 𝑖 <  𝑁𝑇 

𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒  Current Time [s] 

 While 𝑏(𝑛𝑖) < 𝑏𝑚 && Current Time < 𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒 + 5 
𝑛𝑖Random set of valid joint angles 

 If (∀ 𝑝 ∈ 𝑃(𝑛𝑖), 𝑝 ∉ 𝑂𝑐𝑐) 

  For all 𝑛𝑗 s.t. ‖𝑛𝑖  −  𝑛𝑗‖ < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

   If ∀ 𝑝 ∈ {∪ 𝑃(𝑛𝑙) | 𝑛𝑙  𝑎𝑙𝑜𝑛𝑔 𝑙𝑖𝑛𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑖 𝑎𝑛𝑑 𝑛𝑗}, 𝑝 ∉ 𝑂𝑐𝑐 

If 𝑛𝑖 ∉ 𝐺 
      Add 𝑛𝑖 
     End If 

Add edge 𝑒𝑖𝑗  

   End if 
  End for 

End If 
 End While 
 𝑖 = 𝑖 + 1 
End while 

Figure 18. Adding nodes near low-neighbor nodes 

3.5.4. Experiment, with motion 

Qualitatively, it was found that doing the roadmap construction and enhancement in a 

particular order produced paths which appeared smoothest, while keeping construction time 

and search time low. The arrangement proposed is as follows. 

1. Start with an initial, Default roadmap construction. (𝑁 = 500) 

2. Add nodes near plants. (𝑁𝑝 = 250) 

3. Increase connectivity by adding nodes near low-neighbor nodes (𝑏𝑚 = 5, 3 

iterations) 

4. Add nodes near the goal during the search phase. (𝑑𝑒𝑀𝑖𝑛 = 0.1) 

With 𝑁 = 500, and the same goal positions as in the 3D and 6D cases presented, during 

a sample path, the robot achieved poses near the goal locations, as shown in Figure 19. 
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Figure 19. PRM example: the PRM framework generated paths approaching each goal 

location in succession. Starting with top left, left-to-right, top-to-bottom (in visitation order): 

right, top, and back of an artificial Pink Germanium; top and left of an artificial Diffenbachia; 

right and top of an artificial Dracaena; and back, top, and right of an artificial Gold 

Guzmania. 

 

3.6. Results and Discussion 

These methods were studied one at a time, with key results presented in Table 7. The 

construction time does not include the time required to load and down-sample the mesh to 
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create the occupancy grid, as this is the same for all methods, and will likely require negligible 

computation time in programs that are already generating models of the environment in real 

time, such as KinectFusion. 𝑁𝑠 is the number of nodes added before roadmap enhancements, 

and was kept at 150 for all trials (except the second “default” method, with 𝑁𝑠 = 225 to allow 

fair comparison with the “add near plants” enhancement). Keeping 𝑁𝑠 this low helps illustrate 

the weaknesses and strengths of each method. With high 𝑁𝑠, the error decreases and the 

improvements of each enhancement are mainly seen qualitatively by looking at the distribution 

of the set of end-effector locations, 𝑆 = {∪ 𝑝𝑒(𝑛𝑖)|𝑛𝑖 ∈ 𝐺}. 25 trials were simulated, each with 

the same 10 goal locations, which were the C-space configurations resulting in the same 𝑝𝑒(∙)’s 

as the XYZ’s in the 3D case. 

As can be seen, adding nodes near the goal is an effective enhancement for reducing 

error, but adds significant search time. Adding nodes near plants reduces error more effectively 

than simply increasing 𝑁 to the same number that adding nodes near plants results in. As 

pointed out earlier, one major benefit of this enhancement is that the paths generated are usually 

closer to the plants, resulting in a smoother-looking motion. As side effects, this extended 

construction time, kept search time low, and reduced errors slightly. Finally, adding nodes near 

nodes with few neighbors was found to reduce connected components by an average 38.8% 

(from 36.5 before enhancement to 22.32 after enhancement). The hidden benefit of increasing 

graph connectivity, thereby increasing number of searchable nodes and generally smoothing 

the paths, can be seen qualitatively when the algorithm was used on the real robot. 

As a fair disclaimer, it is possible that these relationships and benefits of enhancement 

don’t hold at every 𝑁𝑠 value. Due to the high number of constants used in just the three 

enhancements described in this paper, which were kept as simple as possible, the number of 
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parameters and the range of possibilities which would need to be explored to optimize the PRM 

frameworks is enormous, and is beyond the scope of this paper. This is one disadvantage to 

using the highly-effective probabilistic or heuristic methods for problem solving. 

Table 7. Testing PRM variants. 𝑁𝑠 is nodes for each trial’s initial roadmap (before 

enhancements, if any). Construction time [s], search time [s], error [deg], and Euclidian 

distance error (m) averaged over 25 trials. Each trial consisted of 10 separate goal locations.  

Method Ns Construction [s] Search [s] Error [deg] Error [m] 

Default 150 1.198 0.269 20.606 0.180 

K Neighbors 150 4.759 0.429 16.764 0.158 

Add Near Plants 150 2.684 0.342 14.769 0.144 

Default 225 2.550 0.349 15.874 0.157 

Add Near Goal 150 1.278 1.191 12.771 0.098 

Proposed Method 500 32.540 0.461 3.652 0.027 

 

3.7. Conclusion 

As demonstrated in section 3.6, the generic PRM can generate roadmaps rapidly, and 

the A* algorithm can return paths of acceptable poses rapidly. The roadmap enhancements 

presented allow the robot to approach closer to the goal locations in exchange for computation 

time. The PRM generated reasonable paths which attained the desired positions, reliably. In 

contrast to previous approaches, the current implementation uses a low-cost end-effector-

mounted sensor and a novel implementation of the PRM algorithm which is shown to work 

well in a real-world application. In future work, the framework can be further optimized for 

speed and achieving specific path objectives, such as balancing position and orientation when 

a collision-free path is unattainable. Specific objectives can be achieved by changing the cost 

functions used in finding the “nearest node to the goal” and in the A* algorithm (currently 

Euclidian distance in C-space). Paths can be smoothed by, for instance, attempting to skip 

nodes on the returned path by checking for a collision-free path between non-adjacent nodes. 

Additionally, the framework can be integrated with the KinectFusion algorithm for near-real-
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time collision-free path planning, without the need for an external sensor. This would involve 

porting the code to C++ and interacting with the mesh directly, rather than saving it as a 

separate file. 
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CHAPTER 4: GENERAL CONCLUSIONS 

As seen in chapter 2, a rover was developed which met the design criteria for operating 

in a growth chamber for a whole day. The Kinect sensor was shown to be accurate enough to 

position sensors within a few centimeters (often within 3 cm) of the desired location. This is 

accurate enough to enable the system to use a more accurate short-range sensor, such as a line 

scanner, to get a highly-accurate reconstruction of the desired leaf. Local orientation estimates 

were discovered to be one weakness of the sensor, often producing results 20 to 30 degrees 

away from the desired orientation. If this error is not fixed, it may make sense to assume a 

fixed angle while going near the plants. Then, the line scanner’s result could be used for highly 

accurate probing. The source of this error was shown to be mainly a result of the local noise, 

rather than the KinectFusion’s estimation of pose. This suggests that, with additional work 

(such as using principal components analysis to find the surface normal of the plane which fits 

a cluster of points near the goal location), the sensor may be able to position sensors at the 

desired angle as well. 

During the surface normal and accuracy tests, it became apparent that the arm may 

collide with plants if no path planning procedures were implemented. Off-the-shelf algorithms 

could not be found for use in our system, and as far as the author is aware, research on collision-

free robot arm motion in plant spaces is virtually non-existent. To enable the robot arm to 

approach multiple plant leaves in the same environment without colliding with the plants, a 

variant of the Probabilistic Roadmaps (PRM) technique was implemented. The system 

modeled the robot arm by an overlapping set of spheres, allowing quick collision checks. The 

proposed variant took 32.5 seconds for roadmap construction, and allowed the robot to query 
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a collision-free path in 0.46 seconds. The robot reached locations 3.65 degrees away from the 

desired pose, which was (using data from each sample, not converting 3.65 degrees) 2.7 cm. 

Future work for the path planning portion of this work should include smoothing of the 

generated paths (by, for instance, attempting to skip nodes on the returned path by checking 

for a collision-free path between non-adjacent nodes), and implementing the MATLAB code 

in C++ alongside the modified KinectFusion application described in Chapter 2. The 

framework can be further optimized for speed and achieving specific path objectives, such as 

balancing position and orientation when a collision-free path is unattainable. This could be 

achieved by changing the cost functions used in finding the “nearest node to the goal” and in 

the A* algorithm (currently Euclidian distance in C-space). The overall end result would be 

near-real-time collision-free path planning, without the need for an external sensor. 

Finally, leaf-segmentation algorithms, a redundant localization system (such as QR 

codes in the facility or a 2D SLAM algorithm), and data management systems should be added 

to the system to complete the robotic package. 

The work presented in this thesis can be used as the foundation for implementing a 

fully-autonomous data-acquisition system for use in plant phenotyping. Autonomously 

acquiring traits such as estimated biomass, plant height, number of leaves, chlorophyll 

fluorescence, and various spectral responses, can allow researchers to conduct experiments for 

a relatively low cost. Additionally, having a mobile rover, such as the one presented, acquire 

the data in multiple growth chambers allows a researcher to conduct multiple related studies 

in different environments, enabling the study of the interaction between genotype and the 

environment. This, in turn, allows the researchers to determine desirable strains of crops.   
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APPENDIX A: INSTRUCTIONS FOR BASIC USE OF ROVER BASE 

RoAd/Enviratron Testing Instructions 

(2016-08-03 YMD) 

Abbreviations: MC Motor Controller, RC Remote Control, S_R_[M]_[D] script RoAd 

[month] [date] (S_E script Enviratron), 

1. Front is the side with the robot arm (side with the bump) 

2. Turn on rover’s RC controller. Flip the appropriate upper-left switch to “1 F Mode” (RC. 

0 is Script/tape) 

3. Press one E-Stop in (such that current is blocked) 

4. Turn on rover with 30mm main switch. 

5. TeamViewer into the rover’s PC. 

6. Open Roborun+ (allows interface with MC). 

7. Configuration has settings. Run has real-time status of MC. Console has places to send 

commands. Scripting allows you to edit one “MicroBasic” script at a time. 

a. In Scripting, click the “Open” Icon and find most recent script (e.g. S_R_2_8) in 

“TestingOrganization” (Shortcut on Desktop). MC’s only have 8 remote-editable 

variables, so they were given high-level “functions”. These MC commands are in the first 

few lines of every script. 

 
Figure 20. Roboteq Motor Control Utility for most MC/Tape sensor troubleshooting and 

settings. 

8. Click “Yes” on popup saying roughly “Controller Found. Read Configuration?” (Your 

MC settings are now in “Configuration”). If COM2 is not open (Bottom of screen), 

switch COM Port drop-down (upper-right) to COM2 (it was probably on Auto and 

detected the secondary MC). 

9. Safely test with the rover. Try: 

a. RC control 

b. Tape-following (upper-left switch to “0 Gear”) 

i. General (no MC Commands required) 

ii. Track Left at a fork (MC Commands required) 

iii. Track Right at a fork (MC Commands required) 

iv. Go to a specific simulated chamber (use long cardboard simulator) 

(MC Commands required) 

v. Into and inside the chamber in High Bay (MC Commands required)  

c. Computer Control (MC Commands required)  
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d. Making Rover stop moving, only using Console commands (MC Commands 

required) 

Shutting down Robot: 

1. Press one E-Stop in (such that current is blocked). 

2. Turn off rover’s pc. 

3. Turn off rover with 30mm main switch. 

4. Turn off RC controller. 

5. (During testing only) Verify that everything powered down properly. Remove red 

alligator clip from the battery + terminal, and clip onto an 8020 bar. 

C++ Roboteq Class: 

 Uses Windows API (VS2012) from 

http://www.roboteq.com/index.php/support/downloads 

 OLD API: See sample.cpp. This file contains a C++ console program script similar to the 

MicroBasic script on the main MC. This was eventually abandoned, as the response rate 

was too slow. The MC should run its script, and the user can modify User Variables 1-8 in 

a similar manner as the Roborun+ procedure. Use an instance of the RoboteqDevice 

class, and use its member function “SetCommand”. All standard Roboteq runtime 

commands have a macro, except _R (MicroBasic Run, equivalent to “12”) and one other 

(_C, CAN, is likely 25.). 

 
Figure 21. C++ Roboteq test code uses RoboteqDevice class and sample.cpp. 

 Basic procedure: initialize MC1 and MC2 with device.Connect(\\\\.\\com1) etc.. Set the 

watchdog timer to 0 (see MC manual) device.Setconfig(_RWD, 0) for both. From there 

onward, use only MC1 since MC1 is “master” and runs the script. Use 

device.SetCommand(12, 2)) to run the onboard script. (This can be done efficiently using 

the customized device.SetVar method I added to the class in EnviratronFusion projects.) 

If you want to pause the program, Roboteq added sleepms(int milliseconds); similar to 

Windows C++ function sleep(). Example: set VAR 8 to 3 (“go to chamber 3”) with 

device.SetCommand(_VAR, 8, 3); 

A few notes: 

1. Console commands are equivalent to what the C++ program can send to the MC 

http://www.roboteq.com/index.php/support/downloads
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2. E-Stops are physically connected to VMOT (the voltage source for the motors). Hit an E-

Stop, and there is extremely high probability that the motors will stop running. Use these 

in panic situations. 

3. As a last resort, pull the red alligator clip off of the battery. This will GAURANTEE the 

rover motors stop being driven by the battery. However, damage to computer/data/UR10 

may result. MC’s will not be affected. 

4. Don’t run over wires. Mecanum wheels will severely damage the wires. 

5. Procedure is very similar for Enviratron and RoAd rovers. Some in-script variables 

should be changed (search in script file for “Env” or “RoAd”; C++/Roborun+ commands 

to track Right / Left are flipped (12, 2 1). 

6. Sensors may need to be zeroed (adjust pulse input wires as necessary. Connect 

MagSensor’s 2 pin to Computer’s RS232 2 pin, and Mag 3 – PC 3. Open MagSensor 

Control Utility, verify sensor is correct using small scrap of magnetic tape, move robot so 

sensor is over non-ferrous material, and click “Calibrate Zero”. 

 
Figure 22. Use green Serial/RS232 wires to communicate with computer. 

Feedback: 

RC Control notes/tips/issues: 

 

Tape notes/tips/issues: 

 

Computer Control notes/tips/issues: 

 

C++ Program Control notes/tips/issues 

 

Other (organization, variable assignments, Mechanics/design of rover, etc.): 
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APPENDIX B: BUILD OUTLINE 

Building a Rover Similar to the RoAd or Enviratron Rovers 

A quick walk-through by Dylan Shah 

This section explains key aspects of our robot build process, in a compact bullet-point 

format. This does not contain detailed (micromanaged) instructions, nor does it contain 

instructions on common skills such as soldering. The intimate details are specific to a 

particular build, and can either be further customized or can be copied from the existing 

implementation. 

Abbreviations for following pictures: CAN controller area network communication 

standard, E-stop emergency stop, FL front left, FR front right, MC motor controller (MC.1.1 

means motor controller 1, motor 1), MS main switch, NC normally closed, NO normally 

open, PC personal computer, PWM pulse-width modulation, R resistor, RC remote control, 

RL rear left, RR rear right, RS232 RS-232 communication standard, TS tape sensor VMOT 

voltage for motor (Roboteq labels this on their MC’s),  

1. Start with SolidWorks Drawings of a robot that fits design specifications and has all 

critical dimensions (hole placements, part sizes) as accurate as possible. Sketch or write 

out key steps not included in this manual. If holes aren’t correct, you will have to 

manually make some with a drill, Dremel, or band saw, etc. 

 
Figure 23. SolidWorks of rover. 

2. Begin assembly of the main frame, motors and LoveJoys. 
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Figure 24. Frame, motors, and LoveJoys. 

 

3. Add bearings, wheels, and collars. Verify that all components added so far, including the 

set screws on bearings and wheel collars, are properly tightened (tighten by hand, use 

lock washers wherever possible). These will be difficult to adjust later (likely requiring a 

forklift or specialized repair bay). 

 
Figure 25. Mecanum wheels, bearings, and collars. 

4. Add plating, bus bars, and electrical boxes (picture shows step partly completed). Some 

plating can only go on in a specific order. 
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Figure 26. Left: Some plating, bus bars, and electrical components added. Right: get creative. 

Sometimes taping a screw onto an Allen wrench aids in adding a difficult screw. 

5.  (Optional) Shorten the MS cables. First, cut them, leaving them a few inches (I 

recommend 4) longer than you think you need. Strip the outer black sheath back 

approximately 2 cm. Keep as much of the foil and uninsulated wires intact as possible. 

Strip ~2mm of wire on the tip of each insulated sub-wire. Remove the case from the old 

DB15 connector, exposing the old wires. Solder the new stripped wires to the 

corresponding connection point on a new DB15 connector. The stray uninsulated wires 

and foil should be soldered with the GND pin (black wire) like the old DB15 had. This 

grounded sheathing helps eliminate noise. Basically mimic the Roboteq “old DB15”. 

Extra Optional: use heat-shrink wrap to insulate connections after soldering. 

 
Figure 27. Shortening MagSensor cables. 

6. Connect wiring. 

a. Use: cable guides, insulating heat-shrinkable tubing, cable wrap, nylon-insulated 

crimp connectors, and properly-gauged wiring. All non-professionally-purchased 

wiring was DC, so it can be sized according to charts available online based on 

expected current and wire length.  
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b. Follow the wiring diagram. If the diagram doesn’t make sense, either there is an error 

in the diagram or you are misinterpreting – discuss with group members. Note that 

the diagram does not mention: motors (MC.1.1 FL MC.1.2 RL, MC.2.1 FR, MC.2.2 

RR), AC components (connect +48 terminal to 48V bus bar, and GND terminal to 

GND Bus Bar, plug in components such as PC and UR10), the 48/24V converter has 

two black GND wires – connect both to the GND bus bar 

c. Use the fuses and diode where recommended. 

d. Label each wire as they are put on. “Brother” brand label makers work nicely. 

e. Resistors are pull-down resistors. Fuses & e-stops are for safety. Diode allows high 

voltage from regeneration (stopping, or being externally pushed) to safely flow to the 

battery. 

f. The specific MC input port for each MagSensor and RC PWM output is arbitrary. 

g. From experience, grounding RS232 lines isn’t required – this is likely because every 

component shares a common ground. However, there is little harm in using the 

RS232 “ground line” recommendation. 

h. When in doubt, read the spec sheets and search internet forums etc. on the relevant 

topic. 

 
Figure 28. Shorthand wiring diagram. 



72 

 

 

 
Figure 29. "Power Side" of the rover. 
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Figure 30. "Brain Side" of the rover. 

7. Troubleshoot. Make sure connections are as desired, and all are safe. 

8. Program, etc. Using Roborun+: download software to MC1, download profiles 

(collections of settings) to MC1 and MC2. Using MagSensor PC Utility, zero (calibrate) 

the TS’s. Using Microsoft Visual Studio, program with the Roboteq C++ API, and/or the 

lab’s software. RS232 communication with MC’s is preferred (USB is unstable). 
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9. The final product *might* look like the robot below. 

 
Figure 31. Finished rover, without end-effector sensors (optional). 
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