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ABSTRACT 

Along with the increasing population, the lack of food and energy  have become 

major global issues in 21 century. Bioethanol is now one of the most popular renewable 

energy sources and is mostly produced by corn in the US. The corn-based ethanol 

production has grown rapidly over the past two decades. The increasing of corn ethanol 

production also created a huge amount of by-product like DDGS, which commonly used 

as animal feed and make the whole industry even more profitable. However, the low bulk 

density and poor flowability inhibit the value of DDGS. The DDGS low bulk density and 

low flowability could be improved by pelleting process. Pellet quality is the key aspect of 

this project. To obtain a high yield of corn ethanol and high quality DDGS the quality of 

the ingredients is very important. There are many things can affect the overall corn quality 

from planting to storage. The drying process is a vital step to maintaining corn quality and 

extent the corn storage life. Our study was conducted to analysis the resultant DDGS pellet 

quality and evaluate a prototype low-temperature grain drying system.  

The pelleting studies in this thesis were focused on analysis the resultant pellet 

quality by using 100% corn-based DDGS. The pelleting process was operated with three 

different DDGS moisture content and three different dies. The results showed that by using 

pilot-scale pellet mill, the bulk density can be increased and the flowability of DDGS could 

be improved by pelleting process.  

The grain drying project talks about an experiment of measure the power 

consumption and moisture removal efficiency of a prototype low temperature grain drying 

system. The data were collected through two replications of the drying process. The drying 
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results indicated that the system had high efficiency and had no negative effect on 

germination performance.  

The TEA and LCA study were conducted to understand both environmental and 

economic impacts of an on-farm low-temperature grain drying system. Three scales of this 

drying system were analyzed in this study. The result showed that the unit drying cost 

decreased as the drying capacity expanded and the lowest unit drying cost was 0.46 USD 

per bushel of corn.  

In conclusion, the pelleting process could be a valid way to improve the low bulk 

density and poor flowability of DDGS. The low temperature closed-cycle grain drying 

system was more efficient than other commonly used high temperature grain dryer and 

maintain the grain quality. 
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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 

General Introduction 

The world population has reached more than 7.3 billion today and projected to 

increase to 9.6 billion or more by 2050 (Population Institute, 2015). Practically all the 

population growth will be happened in the developing world, where has an enormous 

demand for food. Drought, war, or food loss due to disease or insects all could make the 

food shortage become more severe and less predictable (Campbell and Trechter, 1982). In 

2012-2014, around 805 million people suffered chronically undernourished all over the 

world (FAO, 2014). Energy is essential for daily life since it is almost required in all aspects 

(Sayigh, 2004). Along with the increasing population, urbanization, and modernization, the 

demand for energy has increased rapidly (Asif and Muneer, 2007). The energy shortage 

has become one of the world biggest issues due to the increasing demand for energy. The 

fast-growing population and energy consumption brings an enormous pressure to the 

environment. Human activities have produced a 40% increase in atmospheric carbon 

dioxide concentration than preindustrial level, by the end of the twentieth century 

(Schlesinger, 2013). Human activities also consumed 60% of freshwater run-off (Postel et 

al. 1996). 

The optimization of agricultural processing could be an effective way to produce 

enough food to meet the demand for increasing population and reduce the environment 

pressure brought by human activity. Optimized agricultural processing could contribute to 

reducing the input energy and water usage while maintain the output product quality or 

even add extra value to the final product. As a result, the food and energy shortage 
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circumstances could be improved. Meanwhile, the environment issue, such as greenhouse 

gas emission, land usage, water pollution, habitat destruction, ect., could be enhanced.  

To optimize the agricultural process, it is vital to understand and analysis the 

different processing by modeling. Life cycle assessment (LCA) is a technique to assess 

environmental impacts associated with all the stage of a product’s life from the cradle to 

the grave. Techno-Economic Analysis (TEA) is a systematic analysis used to evaluate the 

economic feasibility aimed to recognize opportunities and threats of projects. Both models 

are extensively used for research or commercial purpose and could help decide in new 

technology implication and improve the on-going operation.  

DDGS (Distillers dried grains with solubles) is well known as the by-product of 

modern dry grind ethanol production. DDGS has been extensively used as animal feed for 

decades since DDGS has a high concentrate of protein. Though the DDGS wild used today, 

the problems associated with DDGS has become significant. The first problem of DDGS 

is because of the low bulk density; typically the bulk density has been found at range from 

365 to 630 kg/m3 (U.S. Grains, 2008). The DDGS may fill a truck or trailer to the 

maximum volume, before reach the maximum weight capacity and this will cause the 

shipping costs increase, therefore, reduce the value of DDGS. The second problem of 

utilizing DDGS was the low flowability; this will cause extra labor when loading and 

unloading DDGS from site to site and result in increasing cost.  

Pelleting could be one of the valid ways to improve the problem associated with 

DDGS when handling the material. Wilson and McKinney, (2008) has conducted an 

experiment about pelleting 100% DDGS. They found that the bulk density has been 
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improved after the pelleting process, and along with the increase of L/D ratio the pellets 

durability was increased. 

Grain drying is a vital process in grain handling. It can move the internal grain 

moisture out of grain and maintain the grain quality. Grain drying is a very energy intensive 

process (Gunasekaran and Thompson, 1986). A well-designed drying system is critical to 

saving energy during the drying process.  

This thesis focused on evaluating the quality of DDGS pellet and assessment of a 

prototype low temperature closed-cycle grain drying system. Both TEA and LCA has been 

done on the low temperature closed-cycle grain drying system to discuss the possibility of 

large scale implementation. The following literature review provides the background for 

better understanding DDGS, pelleting processing, and grain drying process. 

Fuel ethanol and DDGS production 

The interest of using bio-based alcohol as transportation fuels could be traced back 

to Henry Ford’s time. Then the whole fuel ethanol and beverage industries start to grow up 

after the prohibition ended. However, the main motive of growing fuel ethanol industry 

was because of the oil crisis at the mid-1970’s. Since that time, the fuel ethanol industry 

started to grown rapidly. The fuel ethanol production has changed from 0.75 billion gallons 

at 1990 to 14.34 billion gallons at 2014 (EIA, 2015).  For corn ethanol plant there are 

mainly three different commercial production process, known as wet milling, drying 

milling, and dry grind ethanol processing (Raush and Belyea, 2006). In recent years, the 

dry grind ethanol processing has become a predominant fuel ethanol production processing 

in U.S., just in 2009 RFA (Renewable Fuel Association, 2009c) reported that more than 

80% of fuel ethanol production plant was using dry grind ethanol processing. The main 
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reason dry grind ethanol processing became more popular was because it is a simpler 

process with lower capital cost and high ethanol yield than other ethanol production 

process. 

Like many other production processes, dry grind ethanol process also generates 

waste or co-products, in this case, distiller grains and carbon dioxide. Typically, the distiller 

grains were consumed in the form of DDGS, which has an actively interest in animal feed 

industry. Back in the early stage, the DDGS was only seen as the by-product of the fuel 

ethanol production process, with a little or no value. The situation was changed due to the 

dramatic expanded in fuel ethanol production result in an enormous amount of DDGS been 

produced. Just in 2014 about 44.28 million short tons, DDGS has been produced (Wisner, 

2015). The DDGS started to take the place of corn and soybean meal since it is a relatively 

low-cost ingredient and high nutrition level. 

The component of DDGS could be varied from plant to plant. Spiehs et al. (2002), 

showed that most of the nutrient variation of DDGS were due to the crop used, the amount 

of dried solubles added back to DDGS and the fermentation process duration or the 

completion of the fermentation process. Typically speaking DDGS contains around 29% 

protein, 10% oil, 9% crude fiber and 5% ash (Lim and Yildirim-Aksoy, 2008). Plenty of 

research has been done in respect of using DDGS to feed poultry, swine, dairy cattle and 

beef cattle. Dicostanzo and Wright. (2011) conducted an experiment to use DDGS to feed 

beef cattle. The DDGS was applied at 0.29%, 0.49%, 0.69%, 0.88%, 1.08% and 1.27% of 

body weight (BW). As the amount of DDGS increased a linearly average daily gain (ADG) 

from 0.9 to 1.81 lb per day was observed. For dairy cattle, Owen and Larson (1991) 

reported that when DDGS has applied at 18.8% of diet DM, the milk production increased 
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most likely due to increased dietary RUP. However, the milk yield was decreased when 

DDGS was applied at 35.8% of the diet DM. The author pointed out that the decreased 

milk production was due to lower protein digestibility and low lysine concentration.  

Pelleting Process 

Pelleting is the process of by using moisture and heat compressing the finely 

divided feed material into a pellet shape. Pelletized feed materials could increase the raw 

materials bulk density, therefore increasing the capacities of storage and transportation. 

Pelleting also could help improve the flowability of the raw materials to obtain better 

handling characteristics without compromised nutritional properties or adding high costs.  

The physical quality of final pellets products is critical. The good flowability is 

important at feed mill especially when moving ingredients from site to site. If the material 

has good flowability it will keep the load times as short as possible and decrease clean-up 

times since less material will accumulate in low-flow areas. Flowability is also of particular 

importance in automated feed lines where low flowability material can cause damage to 

equipment and may leave feeders unfilled (Fahrenholz, 2008). Durability and hardness are 

also the critical basic physical quality of pellets. The proper durability pellets could 

withstand the strict transportation process and reduce the fine material generate. Hardness 

and durability could also become a parameter to evaluate the effects of ingredients 

formulation, pelleting condition, expander treatment and pellet mill die selection. (Pfost, 

1963).  

The factors that influence pellet quality can be divided into several categories. The 

most important factor is the ingredients formulation. The grain used and the percentage of 

each component can have a significant influence on final pellets quality. The pellet quality 
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could be significantly reduced by the content of fats or oils. The ingredient grind fineness 

could have many effects on pellet quality. In general, the finer the grind, either pre- or post-

grind, the better the pellet quality. Regarding pellet mill operations, the die selection has a 

significant influence on the final pellets quality. The L/D ratio is the parameter that helps 

decided the die used in the pelleting process. Typically speaking, the larger the L/D value, 

the higher the pellets quality. However, the pelleting condition was more critical than die 

selection. A large amount of attention must be paid to pelleting condition control such as 

moisture content, steam quality, mixing action in the conditioner and retention time. 

Grain drying 

Grain is the majority resources of carbohydrates and proteins worldwide and the 

primary source of food for the people in the world. (Warchalewski et al., 2000). Grain can 

hold moisture like any other hygroscopic material (Shove and Oliver, 1967). Although the 

grain moisture content is important for grain quality, high moisture level inside the grain 

could increase the mold and fungi infection risk (Brooker et al., 1992). The situation could 

be improved by grain drying process which can reduce the internal grain moisture content 

level. The substance of grain drying is to remove the excess moisture level inside the grain 

and allow the grain store in a certain period without compromise the grain quality.  

There are a lot of conventional grain drying system that available in the market. All 

the conventional drying system could be classified based on their working temperature into 

low and high temperature dryers.  

From energy usage perspective, grian drying is a energy intensive process 

(Gunasekaran and Thompson, 1986). It has been estimated that the energy use for on-farm 

grain drying operation is almost 50% of the overall energy used in on-farm grain processing 
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and handling (FEA, 1974). The key to achieving good drying result and high drying 

efficiency is a well-designed drying system. Beedie (1995), showed that by only improve 

1% of drying system energy efficiency, the profits of drying could increase as much as 

10%. For this reason, many researches have been done to analyze the efficiency of different 

drying system. Kenyon and Shove (1969) and Shove (1973) showed the intermittent 

blowing hot air and cold air into grain could improve the overall drying efficiency. Foster 

(1964) introduced the dryeration process, which first dry grain around 60 oC to 

approximately 2% above the target moisture content and then the grain was transferred to 

separate dryeration bin without cooling. In the dryeration bin, the grain was tempered 6 to 

8 hours without aeration and then was slow cooled by using ambient air at 21.2 CFM for 

another 8 to 12 hours (Morrison 1979). Peterson (1979) has proved this method could save 

up to 25% grain drying energy.  
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CHAPTER 2 OBJECTIVES AND HYPOTHESES 

This study focused on evaluate the resultant pellet quality by using 100% corn-

based DDGS, and to understand the what kinds of different pelleting conditions will affect 

the pelleting result. Grain drying project was conducted to assessment the drying efficiency 

and drying quality of a prototype low temperature closed-cycle grain drying system, and 

the LCA and TEA was also conducted to analysis this drying system. The objective and 

hypotheses were list as following: 

(1) 100% DDGS was pelleted by using CPM CL-2 pilot-scale pellet mill, two dies 

were used in this experiment with three different DDGS moisture level for each die. Some 

pellet physical properties like bulk density and durability were measured to determine the 

quality of final DDGS pellets.  

Ho: The die size and the DDGS moisture content level has no effect on resultant 

physical pellet quality such as pellets bulk density, flowability and color. 

HA: The die size and the DDGS moisture content level has an effect on final pellet 

quality such as pellets bulk density, flowability and color. 

(2) CPM CL Type 5 laboratory pellet mill was used to conduct second pelleting 

project. 100% DDGS was used as ingredient with three different dies and three DDGS 

moisture content level for each die. The pellet physical properties were measured to 

determine the quality of final DDGS pellets.  

Ho: The moisture content of DDGS and the die size has no effect on pelleting 

temperature and resultant pellet quality such as bulk density, angle of repose and color. 

HA: The moisture content of DDGS and the die size has effect on pelleting 

temperature and resultant pellet quality such as bulk density, angle of repose and color. 
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(3) Assessment of the drying efficiency and drying quality of a prototype low 

temperature closed-cycle grain drying system. The power consumption and drying 

efficiency were measured and calculated to determine the efficiency of this drying system. 

A germination test has been done to evaluate whether the drying process has an effect on 

corn germination performance. 

Ho: The drying efficiency of present low temperature drying system was not higher 

than other commonly used on-farm drying system and the drying system will affect the 

seed germination performance. 

HA: The present low temperature drying system has greater drying efficiency than 

other commonly used on-farm drying system and has no negative effect on seed 

germination performance. 

(4) LCA and TEA of low temperature closed-cycle drying system. The study was 

conducted by analyze the environmental and economic impact of three scales of this drying 

system. 

Thesis Organization 

Chapter 1 corresponds to the general introduction and literature review for this 

thesis.  

Chapter 2 corresponds to the objectives and hypotheses of each chapter for this 

thesis. The thesis organization is also reported in this chapter  

Chapter 3 corresponds to the study of DDGS pellet quality by using 100% corn 

based DDGS. This chapter is based on a manuscript to be submitted to journal Animal 

Feed Science and Technology or Cereal Chemistry. 
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Chapter 4 corresponds to the study of pilot scale DDGS pelleting. This chapter is 

based on a manuscript to be submitted to journal Biosystems Engineering or Food and 

Bioprocess Technology. 

Chapter 5 corresponds to the evaluation of a low temperature closed-cycle grain 

drying system. This chapter is based on a manuscript to be submitted to journal Drying 

Technology or Food Engineering.  

Chapter 6 corresponds to the TEA and LCA of the low temperature closed-cycle 

grain drying system. This chapter is based on a manuscript to be submitted to journal 

Industrial Crops and Products. 

Chapter 7 corresponds to the summaries and conclusions of this thesis. 

Chapter 8 corresponds to the future work of this thesis. 
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CHAPTER 3 PELLET QUALITY OF CORN-BASED DDGS 

Abstract 

The rapid growth of corn-based dry grind ethanol plants in the US has resulted in a 

great increase in production of the by-product DDGS (distillers dried grains with solubles). 

Since some physical properties like low bulk density and poor flowability can impact the 

market potential of DDGS, pelleting of DDGS can be one of the easiest ways to improve 

this situation. Pellet quality, and are the focus of this project. The pelleting process was 

conducted with three initial DDGS moisture content and two different dies, total six runs 

were complete to collect the DDGS pellets. The physical quality of pelleted DDGS was 

determined by measure the durability bulk density angle of repose and color of the DDGS 

pellets. The result showed that the pellets durability was ranged from 42% to 89% the 

highest pellets durability was occurred when the moisture content was 20% db and the die 

diameter was 1/8 in. The bulk density was increased while the DDGS moisture content 

decreased and the highest bulk density was observed when the moisture content was 10% 

db and the die diameter was 1/8 in. 

Introduction 

The cost of non-renewable fossil fuels has significantly increased in last several 

years due to the potential decline in overall fossil fuel supply in coming years. There are 

two solutions to this problem: using alternative energy sources and becoming more 

independent on energy sources (RFA, 2008). Ethanol, a renewable source of energy, is an 

alternative of fossil fuels. Various biomass materials can be used to produce this kind of 

biofuel. Currently, corn is the primary material utilized to produce biofuels in U.S. The 

corn ethanol industry has been well developed and the cost of using corn is much lower 
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compared to other biomass sources. Therefore, the fuel ethanol industry has grown rapidly 

in recent years. For example, in the past few years, ethanol has been considered for 10 

percent of the U.S. gasoline supply (RFA, 2014).  

Currently, dry grind ethanol production processing dominates the ethanol 

production industry. Like many other industry processes, dry grind processing also has co-

products, which are carbon dioxide and non-fermentable residual. The non-fermentable 

corn kernel components like fiber, protein and lipid are usually further processed and 

converted into DDGS (distillers dried grains with solubles) or to a lesser degree as DDG 

(distillers dried grains), DWG (distiller wet grains), and CDS (condensed distillers 

solubles) (Liu and Rosentrater, 2011). The DDGS was normally dried to around 10% 

moisture content, to extend the storage and selling life. 

Although distiller grains can be utilized as high valued animal feed, there are 

different kinds of challenges when utilizing DDGS as animal feed. Low bulk density and 

has poor were the two main challenges when handling the DDGS (Rosentrater, 2006a, and 

Rosentrater, 2006b). Once the truck or train reaches the destination, DDGS was hard to 

discharge due to the particles locking together. Thus, low flowability forces strenuous 

manual unloading processes, which create extra labor cost for ethanol manufacturers. 

Another transportation problem of DDGS is the limited loading capacity of one car. DDGS 

is often filled to the volumetric capacity of railcars or trucks during shipping, but usually 

not at the maximum allowable weight, due to the low bulk density of the granular material. 

Thus, this wasted capacity causes additional potential economic loss to the ethanol 

manufacturers (Rosentrater and Kongarb, 2009). There is a way to increase the bulk density 

and flowability of DDGS, which utilizes the pelletizing equipment. Pelleting is a 
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manufacturing process of compressing materials into the shape of pellet and improving the 

value of granular materials (Rosentrater, 2005). Rosentrater (2007a) has indicated that it is 

achievable to use conventional feed milling equipment to pellet DDGS. 

Previous research studies have discussed the process variables that affect the 

physical qualities of resultant pellet and the impact of pelleting on the logistics of DDGS 

shipping. However, there is still very limited work has been done regarding analysis the 

physical qualities of DDGS pellets by using 100% corn-based DDGS. The aim of this 

research is to study the resultant pellet qualities of corn-based DDGS. The results of this 

research may be the reference for a large-scale facility producing DDGS pellets, and help 

the animal feed industry improve the value of DDGS while reducing the cost by utilizing 

DDGS as animal feed. 

Materials and Methods 

Material and equipment 

The DDGS were collected from a local dry grind ethanol plant (Lincolnway Energy, 

LLC Nevada IA 50201). Total two bins of DDGS were stored in our lab at room 

temperature for further research. The pelleting process was completed by using a 1.5 kW 

pilot-scale pellet mill (CPM model CL-2, CPM Acquisition Corp. Crawfordsville, IN 

47933). The pellet mill was made up with an ingredient hopper to hold the DDGS, a 

vibratory feeder to adjust the feeding rate of the DDGS that goes into the screw ingredient 

feeder, and then the screw feeder will push the DDGS into the mill. After the pelleting 

process, the DDGS pellets was come out from the discharge gate. The pellet mill was also 

equipped with a control panel to control the pelleting mill and change the ingredients 

feeding rate (Figure 3.1).  
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Experimental design  

Table 3.1 shows the experimental design for this study. Two dies include diameter 

1/8 in with the L/D ratio of 8 and diameter 3/16 in with the L/D ratio of 8 were used for 

this study. For each die, the DDGS was pretreated to three different moisture levels, which 

were 10% 15% and 20%, respectively. There were total six runs for various die size and 

DDGS moisture content in this study. For each run, two replications of the pelleting process 

were done to collect pellet samples. The pelleting throughput represents the production rate 

of converting raw DDGS to DDGS pellets. The throughput rate was adjusted based on the 

die size. The feeding rate of the ingredients was controlled by adjusting the vibratory feeder 

on the control panel.  

Moisture content of DDGS and the DDGS pellets 

The DDGS and DDGS pellets moisture content were measured based on the NFTA 

(National Forage Testing Association) 2.2.2.5 method (Shreve et al., 2006). Based on the 

instruction 3 g of DDGS or DDGS pellet sample were dried at 105 oC for 3 hours in the 

oven, and the moisture is reported in percentage point db. For each run the sample moisture 

content was measured three times, both mean and standard deviation was reported.  

DDGS moisture content adjustments 

The DDGS moisture content was adjusted to three levels: 10%, 15%, and 20%. 

Based on the measurement the 10% moisture content was the initial DDGS moisture 

content. To adjust the DDGS moisture content, the sample was initially put in a bucket and 

then adding water into the DDGS and mix them. The amount of water added to the DDGS 

for the pelleting process was calculated by assuming the weight of the dry matter remains 
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constant. The calculated amount of water was added to DDGS samples directly by using a 

sprayer and then mixed by the mixer. 

Bulk density of DDGS and DDGS pellets 

The DDGS bulk density was measured based on the ASAE S269.5 procedure 

(ASAE, 2012). The DDGS and DDGS pellets sample flowed freely into a one-liter cup. 

Then a striking stick was used to brushed off the excesses sample with the gentle zig-zag 

strokes.  The bulk density of DDGS or DDGS pellets was calculated by divided the DDGS 

or pellet mass by the volume of the container. The measured was repeated three times for 

each sample, means and standard deviation for each sample bulk density was also 

calculated and reported. 

Angle of repose of raw DDGS and DDGS pellets 

The angle of repose (AoR) is the steepest angle of inclination of the free surface to 

the horizontal of a granular material heap. It is one of the flow properties of the granular 

material that directly indicate the potential flowability (Carr, 1965). Based on Woodcock 

and Mason (1987) the material angle of repose ranged from 30o to 38o was considered as 

free flow while the angle of repose ranged from 38o to 45o was considered as fair flow. If 

the material angle of repose was between 45o to 55o the material was considered as cohesive 

material.  

 Pellet durability measurement 

The pellet durability was also measured regarding ASAE S269.5 (ASAE, 2012). A 

seedburo pellet durability tester (Seedburo Equipment Co. Des Plaines IL 60076) was used 

in this measurement. Before the durability test of DDGS pellets, the pellets were first 

sieved and then randomly sampled 500g pellets for each run. The pellets sample was 
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tumbled 10 min inside the durability tester, after tumbling the sample was sieved to 

separate the remaining pellet from the testing mass.  The pellet durability was calculated 

by dividing the mass of remaining pellet by the initial mass of pellet sample. Three times 

of the test were done for each run; the mean and standard deviation were also calculated 

and reported in the results section. 

Color of DDGS and DDGS pellets 

A Minolta Chromameter (Chromameter CR-410 Konica Minolta Sensing Europe 

B.V.) was used to measure the color of DDGS and DDGS pellets. The color was 

determined by three parameters including L*, a* and b*, which L* represent the lightness 

level, a* represent the green – red level and b* represent blue – yellow level. For each 

pellet sample three replications were done to measure the color, means and standard 

deviations were calculated and reported in the results section.  

Results and Discussion 

Table 3.2 and Table 3.3 report the moisture content results and the statistic analysis. 

For both run 1-3 and run 4-6 the moisture content of DDGS pellets was various from 10% 

to 20 % which followed the trend with the initial DDGS moisture level increased. From 

the statistic analysis the die size has no significant influence on the final DDGS pellets 

moisture content, while the initial DDGS moisture level has a significant effect on the final 

DDGS pellets moisture content. This also results in the die size and moisture level together 

has a significant effect on final pellets moisture content. 

For DDGS pellets bulk density, for run 1-3 the bulk density varied from 510.3 

kg/m3 to 571.4 kg/m3 while for run 4-6 bulk density ranged from 482.1 kg/m3 to 490.2 

kg/m3. All the pellets bulk density was significantly increased compared with the raw 
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DDGS bulk density which was 465 kg/m3 (Table 3.4). The die size and the interaction 

between die size and DDGS moisture level has a significant effect on bulk density since 

the p-values were smaller than 0.0001 (Table 3.5). For each die, the pellet bulk density was 

decreased while the initial DDGS moisture content increased. Jaya Shankar Tumuluru et 

al. (2010) was also observed that for pilot scale DDGS pelleting, the DDGS bulk density 

was increased after pelleting process. The bulk density results were also very similar with 

Fasina and Sokhansanj (1993) result which for each different die, the pellet bulk density 

was decreased when the pellet moisture content increased. 

The pellet durability result was reported in Table 3.6 and Table 3.7 For run 1-3 the 

durability of pellets varied from 73.2% to 89.27%; For run 4-6 the durability of pellets 

ranged from 42.5% to 60.5%. The statistic analysis shows that all the pellet durability data 

were significantly different from each other. Die size and the interaction between die size 

and DDGS moisture level have a significant effect on the DDGS pellets durability value. 

Comparing the results from run 1-3 with run 1-6, we can observe that even though these 

two dies have same L/D ratio, the die with smaller die diameter results in higher pellets 

durability and bulk density. The reason for this difference may be due to different pressure 

level generated during the pelleting process.  

From Table 3.8, the values of angle of repose for run 1-3 were varied from 36.4o to 

43.8o and for run 4-6 the angle of repose varied from 37.4 o to 44.8o, which were very 

similar to run 1-3. From the results, it can be observed that after pelleting process the pellets 

angle of repose value was smaller than the initial DDGS angle of repose which was 47.0o 

this means that the pelleting process could increase the material flowability. According to 

Woodcock and Mason (1987), all the DDGS pellets sample can be treated as fair flow or 
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free flow. The pellets angle of repose was increased as the DDGS moisture level increased 

for the same die. The results were similar with Fasina and Sokhansanj (1993), the alfalfa 

pellets angle of repose was also increased as the alfalfa pellets moisture content level 

increased for the same pellet size. Table 3.9 shows the statistical analysis of the angle of 

repose results, the moisture content and the interaction of moisture content with die size 

has the significant effect on pellet angle of repose results. 

The DDGS color L*, a* and b* results were reported in Table 3.10, 3.11, 3.12, 3.13, 

3.14 and 3.15. The color L* results indicate that the DDGS became darker than the original 

DDGS after pelletized, which is very similar to the result of Rosentrater(2007a). For both 

of the die size, the L* value was decreased with the pellet moisture level increased. It was 

also observed that the color of the DDGS pellets became darker if the die with smaller 

diameter was used to pellet DDGS. The die size and DDGS moisture level were the main 

factors that affect the color L* value. The color a* and color b* results was similar with 

color L* results. The color a* and color b* values were all decreased after the pelleting 

process. For each die, the color a* and color b* values were decreased as the DDGS 

moisture content increased.  

Conclusions 

This present research was carried out to understand the physical properties of 

resultant DDGS pellets. As expected, adding water can get more durable pellet. If the two 

dies have same L/D value but one has larger die diameter, the resultant pellets durability 

lower than the other die. By using pilot-scale pellet mill, the DDGS bulk density can be 

increased and the DDGS flowability can be improved. Thus, the die size and DDGS 
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moisture content has effect on the final pellet physical qualities. In further study, the 

temperature should be considering as a major variable quantity during the pelleting process. 
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Figure 3.1 CPM CL-2 pelleting mill 

 

 

 
Figure 3.2 Different dies used in pelleting process 
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Table 3.1 Pelleting process conditions 

 Die Size   

Run Diameter length L/D Moisture (db%) Throughput(lb/hr) 

1  

1/8 

 

1 

 

8 

10  

37.5 2 15 

3 20 

4  

3/16 

 

1 1/2 

 

8 

10  

52 5 15 

6 20 

 

 

 
Table 3.2 Moisture content for DDGS and DDGS pellets* 

   Moisture content(%)   

Run Die 

(in) 

Moisture 

level(%) 

Replication 

1 

Replication 

2 

Replication 

3 
Means 

Standard 

deviations 

DDGS  10 10.4 10.5 10.7 10.5a 0.15 

1  

1/8 

 

10 10.6 10.3 10.3 10.4a 0.17 

2 15 14.3 14.9 14.6 14.6b 0.30 

3 20 19.7 20.3 20.5 20.1c 0.41 

4  

3/16 

 

10 10.9 10.4 10.6 10.6a 0.25 

5 15 14.7 15.5 15.3 15.1b 0.41 

6 20 19.8 21.2 20.6 20.5c 0.70 
*Different letters after means in each level of the moisture content indicates significant difference at α=0.05 

 

 

 
Table 3.3 ANOVA for moisture content 

Factor DF* F value Pr > F 

Die Size 1 0.0371 0.8497 

Moisture 2 777.0124 <.0001 

Die size * Moisture 5 342.4788 <.0001 
*Degree of freedom 
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Table 3.4 Bulk density for DDGS and DDGS pellets * 

   Bulk density(kg/m3)   

Run Die 

(in) 

Moisture 

level(%) 

Replication 

1 

Replication 

2 

Replication 

3 
Means 

Standard 

deviations 

DDGS  10 465.2 467.1 465.5 465.9a 1.02 

1  10 572.4 571.8 569.9 571.4b 1.3 

2 1/8 15 527.3 531.7 530.2 529.7c 2.2 

3  20 512.4 508.1 510.3 510.3d 2.2 

4  10 488.7 490.5 491.3 490.2e 1.3 

5 3/16 15 485.5 484.9 484.7 485.0f 2.0 

6  20 480.5 482.3 483.5 482.1g 1.5 

* Different letters after means in each level of the bulk density indicates significant difference at α=0.05 

 

 

 
Table 3.5 ANOVA for bulk density 

Factor DF* F value Pr > F 

Die Size 1 31.7724 <.0001 

Moisture 2 1.9863 0.1717 

Die size * Moisture 5 1088.568 <.0001 
*Degree of freedom 

 

 

 
Table 3.6 Pellet durability for DDGS pellets* 

Durability (%) 

Run Die 

(in) 

Moisture 

level(%) 

Replication 

1 

Replication 

2 

Replication 

3 
Means 

Standard 

deviations 

1  10 72.6 72.9 74.1 73.2a 0.8 

2 1/8 15 80.6 80.3 78.4 79.8b 1.2 

3  20 89.4 89.2 89.2 89.3c 0.1 

4  10 42.6 42.4 42.5 42.5d 0.1 

5 3/16 15 48.6 46.2 57.6 57.5e 1.2 

6  20 60.8 60.2 60.5 60.5f 0.3 
* Different letters after means in each level of the durability results indicates significant difference at 

α=0.05 

 

 

 
Table 3.7 ANOVA for pellet durability* 

Factor DF* F value Pr > F 

Die Size 1 55.9509 <.0001 

Moisture 2 1.960 0.1753 

Die size * Moisture 5 1374.109 <.0001 
*Degree of freedom 
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Table 3.8 Angle of repose for DDGS and pellets* 

Angle of repose (o) 

Run Die 

(in) 

Moisture 

level(%) 

Replication 

1 

Replication 

2 

Replication 

3 
Means 

Standard 

deviations 

DDGS  10 47.6 46.9 46.7 47.0a 0.47 

1  10 35.9 36.5 36.9 36.4b 0.5 

2 1/8 15 39.5 38.8 38.7 39.0c 0.4 

3  20 43.3 43.9 44.2 43.8d 0.5 

4  10 37.6 37.9 36.7 37.4e 0.6 

5 3/16 15 40.9 39.9 40.5 40.4f 0.5 

6  20 44.9 44.7 44.8 44.8g 0.6 

* Different letters after means in each level of the angle of repose indicates significant difference at α=0.05 

 

 

 
Table 3.9 ANOVA for pellets angle of repose* 

Factor DF* F value Pr > F 

Die Size 1 0.5455 0.4709 

Moisture 2 145.4527 <.0001 

Die size * Moisture 5 158.6061 <.0001 
*Degree of freedom 

 

 

 
Table 3.10 Color L* for DDGS and pellets* 

Color L* 

Run Die 

(in) 

Moisture 

level(%) 

Replication 

1 

Replication 

2 

Replication 

3 
Means 

Standard 

deviations 

DDGS  10 56.58 55.83 56.76 56.39a 0.8 

1  10 35.22 37.43 35.18 35.94b 1.28 

2 1/8 15 30.36 31.47 30.25 30.69c 0.67 

3  20 26.91 29.64 26.37 26.64d 0.27 

4  10 46.93 45.19 45.71 45.94e 0.89 

5 3/16 15 39.09 41.22 39.07 39.79f 1.23 

6  20 32.89 32.92 38.77 34.86b 3.38 

* Different letters after means in each level of the color L* indicates significant difference at α=0.05 

 

 

 
Table 3.11 ANOVA for Color L* 

Factor DF* F value Pr > F 

Die Size 1 17.1830 0.0008 

Moisture 2 5.7635 0.0139 

Die size * Moisture 5 51.7294 <.0001 
*Degree of freedom 
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Table 3.12 Color a* for DDGS and pellets* 

Color a* 

Run Die 

(in) 

Moisture 

level(%) 

Replication 

1 

Replication 

2 

Replication 

3 
Means 

Standard 

deviations 

DDGS  10 12.14 12.36 11.98 12.16a 0.2 

1  10 9.33 9.56 10.32 9.74b 0.52 

2 1/8 15 8.72 8.77 8.61 8.70c 0.08 

3  20 7.92 7.83 7.47 7.74d 0.23 

4  10 11.22 11.44 11.29 11.31a 0.11 

5 3/16 15 10.25 10.14 10.24 10.21e 0.06 

6  20 9.31 9.14 9.42 9.29f 0.14 

* Different letters after means in each level of the color a* indicates significant difference at α=0.05 

 

 

 
Table 3.13 ANOVA for Color a* 

Factor DF* F value Pr > F 

Die Size 1 13.3542 0.0021 

Moisture 2 7.9258 0.0045 

Die size * Moisture 5 74.7460 <.0001 
*Degree of freedom 

 

 

 
Table 3.14 Color b* for DDGS and pellets* 

Color b* 

Run Die 

(in) 

Moisture 

level(%) 

Replication 

1 

Replication 

2 

Replication 

3 
Means 

Standard 

deviations 

DDGS  10 22.3 23.1 22.5 22.6a 0.4 

1  10 17.17 15.76 15.29 16.07b 0.97 

2 1/8 15 13.82 14.86 13.93 14.23c 0.57 

3  20 13.26 14.17 13.57 13.67c 0.46 

4  10 23.33 21.42 22.83 22.52d 0.99 

5 3/16 15 19.86 19.82 19.41 19.69e 0.24 

6  20 17.84 17.34 17.68 17.62f 0.25 

* Different letters after means in each level of the color b* indicates significant difference at α=0.05 

 

 

 
Table 3.15 ANOVA for Color b* 

Factor DF* F value Pr > F 

Die Size 1 39.5126 <.0001 

Moisture 2 2.2657 0.1381 

Die size * Moisture 5 79.3773 <.0001 
*Degree of freedom  
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CHAPTER 4. PHYSICAL PROPERTIES OF PILOT SCALE PELLETING 

Abstract 

The DDGS has been broadly used as animal feed due to the high nutrition level and 

relatively low cost. However, the poor flowability and low bulk density became the main 

disadvantage of handling and utilizing DDGS. Pelleting process as the popularly used food 

processing technology could improve the flowability and bulk density of DDGS. The 

present study was conducted to understand what kind of pelleting condition will affect the 

resultant pellets quality. The experiment was using 100% of DDGS as the pelleting 

ingredient with three moisture content level. The pellets durability was tested to obtain the 

pellets quality. The experiment result showed that with high die L/D ratio and high 

moisture content, the pellets would lead to a relatively high durability. The result shows 

that with higher L/D value and higher moisture content, the highest pellet durability was 

91%. For bulk density, the highest value 579.3 kg/m3 comes from the pellets with higher 

L/D value die and lower DDGS moisture level. 

Introduction 

The high nutrition level and relatively low cost have made DDGS a valuable by-

product from corn ethanol plant. However, the poor flowability and low bulk density 

became the major issues in shipping and storage DDGS. After long distance shipping the 

cohesive DDGS was even harder to unload and cause increasing labor cost and unload 

times and also has the potential risk of damage the railcars or trucks since other force will 

need to remove the DDGS during unloading (Fahrenholz, 2008). Furthermore, low bulk 

density means that the DDGS needs extra storage space and will be filled up the railcars or 
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trucks before reaching maximum weight capacity which result in the increase of shipping 

costs.  

Pelleting could be a valid way to improve the handling issues of DDGS. Rosentrater 

and Kongar (2009) showed that pelleting DDGS was highly cost-effective and it will 

reduce the overall transporting costs. Pelleting 100% DDGS has been shown to be possible 

(AURI, 2005), and could be done directly at the ethanol plant before shipping. The increase 

in bulk density have been noticed after pelleting process, and the bulk density was 

increased as the die L/D ratio increased (Wilson and Mckinney, 2008). 

There were few works about pelleting DDGS, most of the works were only treated 

DDGS as part of the pelleting ingredients. Wang et al. (2007a) reported when the DDGS 

level increased in the ingredients the pellet quality decreased and it can be observed 

visually. Stender et al. (2008) also indicated that the pellet durability was decreased as the 

DDGS level increased. The aim of this research is to study pilot scale pelleting process by 

using 100% corn-based DDGS. The results of this research may be the reference for a 

large-scale facility producing DDGS pellets, and help the animal feed industry improve the 

value of DDGS while reducing the cost by utilizing DDGS as animal feed. 

Materials and Methods 

Material and equipment 

The corn-based DDGS were provided by Lincolnway Energy (Lincolnway Energy 

LLC Nevada IA 50201) a local dry grind ethanol plant. The DDGS held in a bin and stored 

in our lab at room temperature for further research. The 5 hp 1800 RPM CPM laboratory 

pellet mill (CL-5 CPM Acquisition Corp. Crawfordsville, IN 47933 - USA) was used for 

the pilot scale pelleting study. Figure 4.1 shows the pellet mill used in this study. The pellet 
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mill was made up with an ingredient hopper to hold the DDGS, a vibratory feeder to adjust 

the flow of the DDGS into the conditioner and a screw feeder to push the DDGS into  the 

mill to complete the pelleting process. The pellet mill was also equipped with a PLC 

interface to control the pelleting mill and change the ingredients feeding rate.  

Experimental design  

Table 3.1 shows the experimental design for this study. Three dies include die 

diameter 1/8 in with L/D (length to diameter) ratio of 8, die diameter 3/16 in with L/D 

(length to diameter) ratio of 5.5 and die diameter 1/4 in with L/D ratio of 6 were used for 

this study. For each die, the DDGS was pretreated to three different moisture levels, which 

were 10% 15% and 20%, respectively. There were total nine runs for various die size and 

DDGS moisture content in this study. The pelleting throughput represents the production 

rate of converting raw DDGS to DDGS pellet. The throughput rate was adjusted based on 

the die size. The feeding rate of the ingredients was controlled by adjusting the vibratory 

feeder on the control panel. The highest pelleting throughput was run 7-9 which was 95 

lb/hr.  

DDGS moisture content adjustments 

The moisture content of DDGS was adjusted to three levels: 10%, 15%, and 20%. 

The 10% moisture content was the initial DDGS moisture content. To set the DDGS 

moisture content, the samples of DDGS were initially put in a bucket and then adding water 

into the DDGS and mix them. The amount of water added to the DDGS for the pelleting 

process was calculated by assuming the weight of the dry matter remains constant. The 

calculated amount of water was added to DDGS samples directly by using a sprayer and 

then mixed by the mixer. 
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Moisture content of DDGS and the DDGS pellets 

The moisture content was measured based on the NFTA (National Forage Testing 

Association) 2.2.2.5 method (Shreve et al., 2006). Based on the instruction 3 g of DDGS 

or DDGS pellet sample were dried at 105 oC for 3 hours in the oven, and the moisture is 

reported in % dry basis (db). The moisture content was measured three times for each 

sample; both mean and standard deviation was presented.  

Bulk density of DDGS and DDGS pellets 

The bulk density of DDGS was measured based on the procedure given by ASAE 

S269.5 (ASAE, 2012). The DDGS and pellet sample flowed freely into a one-liter cup. 

Then a striking stick was used to brushed off the excesses samples with the gentle zig-zag 

strokes.  The bulk density of DDGS or DDGS pellets was calculated by divided the DDGS 

or pellet mass by the volume of the container. The measured was repeated three times for 

each sample, means and standard deviation for each sample bulk density was also 

calculated and reported. 

Pellets durability measurement 

The pellet durability was also measured regarding ASAE S269.5 (ASAE, 2012). A 

seedburo pellet durability tester (Seedburo Equipment Co. Des Plaines IL 60076) was used 

in this measurement. Before the durability test of DDGS pellet, the pellet was first sieved 

and then 500g of the pellet was sampled for each run. The pellet sample was tumbled 10 

min inside the durability tester, after tumbling the sample was sieved to separate the 

remaining pellet from the testing mass.  The pellet durability was calculated by dividing 

the mass of remaining pellet by the initial mass of pellet sample. Three times of the test 



32 

 

were done for each run, the mean and standard deviation were also calculated and reported 

in the result section. 

Angle of repose of DDGS and DDGS pellets 

The angle of repose (AoR) is one of the factors that can indicate the material 

potential flowability. (Carr, 1965). The angle of repose value was to measure the steepest 

angle between free flow material inclination surface and the horizontal. Woodcock and 

Mason (1987) suggest that if the angle value between 30° to 38° this material was 

considered as free flow material and the angle value between value between 38° to 45° this 

material was considered as fair flow material. If the material angle of repose value between 

45° to 55°, this material was considered as cohesive material. The angle of repose measured 

in this study could also be called as the emptying angle of repose which the DDGS pellets 

was filled in a box, and then the pellets were free flow out of the box.  

Color 

A Minolta Chromameter (Chromameter CR-410 Konica Minolta Sensing Europe 

B.V.) was used to measure the color of DDGS and DDGS pellets. The color was 

determined by three parameters including L*, a* and b*, which L* represent the lightness 

level, a* represent the green – red level and b* represent blue – yellow level. For each 

pellet sample, three replications were done to measure the color, mean and standard 

deviation were calculated and reported in the results section.  

Results and Discussion 

The pelleting temperature measured during the pelleting process was listed in Table 

4.2, the temperature value for each run was ranged from 23.3 °C to 44.3 °C. For each die 

size, the pelleting temperature was decreased along with the increase of DDGS moisture 
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level. For run 7, the temperature did not follow the trend for pelleting temperature change, 

23.3 °C was the average pelleting temperature for this run. The reason was that there were 

no pellets generated from run 7 the DDGS was just flowed through the pellet mill and die,  

there was no sufficient friction between DDGS, die and pellet mill wheel. Table 4.3 shows 

the statistic analysis for DDGS pellets temperature. Die size and the interaction between 

die size and moisture content have significant effect on DDGS pellets temperature. 

Table 4.4 and Table 4.5 report the moisture content results and the statistic analysis. 

The DDGS pellets moisture content has followed the trend with the moisture level 

increased. From the statistic analysis the die size has no significant influence on the final 

DDGS pellets moisture content, while the DDGS ingredients moisture level has a 

significant effect on the final DDGS pellets moisture content. This also results in the die 

size and moisture level together has a significant effect on final pellets moisture content. 

For run 1-3 the DDGS pellets bulk density varied from 531.3 kg/m3 to 579.3 kg/m3 

while for run 4-6 bulk density ranged from 490.4 kg/m3 to 518.2 kg/m3 and for run 8-9 the 

pellets bulk density was ranged from 469.7 kg/m3 to 475.3 kg/m3. (Table 4.6) All the pellets 

bulk density was significantly increased compared with the raw DDGS bulk density. The 

die size and DDGS moisture level together have a significant effect on bulk density (Table 

4.7). The bulk density value was decreased along with the increase of raw DDGS moisture 

content level. The results of the DDGS pellets bulk density were similar to Jaya Shankar 

Tumuluru et al. , (2010) the change in the bulk density was significant. The bulk density 

results were also similar with Fasina and Sokhansanj (1993), the pellets bulk density was 

decreased along with the increase of pellets moisture content.  
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The pellet durability result was reported in table 3.6 and table 3.7 For run 1-3 the 

durability of pellets varied from 78.0% to 91.8%; For run 4-6 the durability of pellets varied 

from 62.6% to 75.8% while for run 8-9 the durability pf pellets varied from 80.6% to 

85.9%. (Table 4.8) The statistic analysis shows that all the pellets durability data were 

significantly different from each other. Die size and die size together with moisture level 

all has a significant effect on the pellets durability value (Table 4.9). Comparing the results 

from run 1-3 with run 1-6, we can observe that even though these two dies have same L/D 

ratio, the die with smaller die diameter results in higher pellets durability and bulk density. 

The reason for this difference may be due to different pressures generated during the 

pelleting process. 

The values of angle of repose for run 1-3 were varied from 34.3° to 42.6°, and for 

run 4-6 the angle of repose ranged from 35.5° to 43.1° while for run 8 and 9 the angle of 

repose value was ranged from 39.7° to 44.6° (Table 4.10). The angle of repose value 

indicated that after pelleting process the DDGS pellets could be considered as fair flow or 

free flow. Compare to the raw DDGS angle of repose which was 47.0° From the results; 

we can see that after pelleting process the pellets angle of repose value was smaller than 

the raw DDGS this means that the pelleting process could increase the material flowability. 

For each dies, the pellets angle of repose was increased along with the DDGS moisture 

level increased. Compare to other pellets angle of repose results, Fasina and Sokhansanj 

(1993) found that the pellet size and moisture content has a significant effect on alfalfa 

bulk properties. The angle of repose for alfalfa pellets was increased while the pellets 

moisture content increased which was similar to our finding. Table 4.11 shows the 
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statistical analysis of the angle of repose results, the moisture content and the interaction 

of moisture content with die size has the significant effect on pellet angle of repose results. 

The color L* for DDGS and pellets was reported in Table 4.12 and Table 4.13. The 

color L* value indicates that the DDGS became darker than the original DDGS after 

pelletized, which is very similar to the result of Rosentrater(2007a). For both of the die 

size, the L* value was decreased with the moisture level increased. It was also observed 

that the color of the DDGS pellets became darker if the die with smaller diameter was used 

to pellet DDGS. The die size and the die size together with moisture level was the main 

factor that affects the color L* value. Table 4.14, 4.15, 4.16 and Table 4.17 shows the 

reuslts for color a* and color b*. The color a* and color b* results were similar with color 

L* results. The color a* and color b* values were all decreased after the pelleting process. 

For each die, the color a* and color b* values were decreased as the DDGS moisture 

content increased.  

Conclusions 

The present pelleting project showed the similar results with the first pelleting 

project. Adding moisture into the DDGS and using the die with larger L/D value can get 

more durable pellets. This highest pellet durability occurred when the DDGS moisture 

content was 20%, and the die L/D value was 8. Compare with the first pelleting project, 

under the similar pelleting condition the pellet durability was higher due to the different 

pilot scale pelleting mill used for each pelleting studies. For pelleting temperature, the die 

with a smaller diameter will result in the higher pellet temperature, while for each different 

die the highest pellet temperature was observed when the DDGS moisture content was 
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10%. By using pilot-scale pellet mill, the bulk density can be increased, and the bulk 

density was larger with the larger L/D value. 
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Figure 4.1 CPM CL-5 pelleting mill (CPM Acquisition Corp, 2010) 

 

 

 

 

Figure 4.2 Different dies used in pelleting process 
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Table 4.1 Pelleting process conditions and experimental design 

 Die Size   

Run Diameter length L/D Moisture (db%) Throughput(lb/hr) 

1  

1/8 

 

1 

 

8 

10  

45 2 15 

3 20 

4  

3/16 

 

1 

 

5.5 

10  

67 5 15 

6 20 

7  

1/4 

 

1 1/2 

 

6 

10  

95 8 15 

9 20 

 

 

 
Table 4.2 DDGS and pellets temperature* 

Temperature (oC) 

Run Die 

(in) 

Moisture 

level (%) 

Replication 

1 

Replication 

2 

Replication 

3 
Means 

Standard 

deviations 

DDGS  10 22.5 22.2 22.4 22.3a 0.15 

1  10 44.5 44.3 44.1 44.3b 0.20 

2 1/8 15 41.6 40.9 41.3 41.3c 0.35 

3  20 38.9 39.3 39.4 39.2d 0.26 

4  10 38.5 37.9 38.3 38.2e 0.31 

5 3/16 15 36.5 37.1 36.9 36.8f 0.30 

6  20 31.8 31.0 31.5 31.4g 0.40 

7  10 23.5 23.2 23.3 23.3h 0.15 

8 1/4 15 36.6 36.5 37.1 36.7f 0.32 

9  20 30.3 31.9 31.5 31.2g 0.83 

* Different letters after means in each level of the temperature indicates significant difference at α=0.05 

 

 

 
Table 4.3 ANOVA for pellet temperature 

Factor DF* F value Pr > F 

Die Size 2 18.0989 <.0001 

Moisture 2 1.2902 0.2936 

Die size * Moisture 5 704.0689 <.0001 

*Degree of freedom 
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Table 4.4 Moisture content for DDGS and pellets* 

Moisture content (%) 

Run Die 

(in) 

Moisture 

level (%) 

Replication 

1 

Replication 

2 

Replication 

3 
Means 

Standard 

deviations 

DDGS  10 10.4 10.6 10.5 10.5a 0.10 

1  10 10.6 10.5 10.5 10.5a 0.06 

2 1/8 15 14.8 14.5 14.7 14.7b 0.15 

3  20 19.5 19.3 19.8 19.5c 0.25 

4  10 10.8 10.9 10.6 10.7a 0.15 

5 3/16 15 15.3 14.8 14.9 15.0b 0.26 

6  20 19.6 20.5 21.3 20.5d 0.85 

8 
1/4 

15 15.7 15.2 14.8 15.2b 0.45 

9 20 20.4 20.6 20.4 20.5d 0.11 

* Different letters after means in each level of the moisture content indicates significant difference at 

α=0.05 
 

 

 
Table 4.5 ANOVA for moisture content 

Factor DF* F value Pr > F 

Die Size 2 1.1513 0.3354 

Moisture 2 774.3772 <.0001 

Die size * Moisture 7 344.2883 <.0001 

*Degree of freedom 

 

 

 
Table 4.6 Bulk density for DDGS and pellets* 

Bulk density(kg/m3) 

Run Die 

(in) 

Moisture 

level (%) 

Replication 

1 

Replication 

2 

Replication 

3 
Means 

Standard 

deviations 

DDGS  10 465.2 467.1 465.5 465.9a 1.02 

1  10 579.7 578.6 579.5 579.3b 0.58 

2 1/8 15 545.9 548.7 549.6 548.1c 1.92 

3  20 531.7 528.6 533.7 531.3d 2.56 

4  10 518.9 517.5 518.3 518.2e 0.70 

5 3/16 15 508.3 511.2 509.7 509.7f 1.45 

6  20 489.7 491.2 490.2 490.4g 0.76 

8 
1/4 

15 475.5 474.7 475.8 475.3h 0.57 

9 20 470.2 469.2 469.7 469.7i 0.50 

* Different letters after means in each level of the bulk density indicates significant difference at α=0.05 
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Table 4.7 ANOVA for bulk density 

Factor DF* F value Pr > F 

Die Size 2 52.9369 <.0001 

Moisture 2 5.3120 0.0136 

Die size * Moisture 7 2320.145 <.0001 

*Degree of freedom 

 

 

 
Table 4.8 Pellet durability for DDGS pellets* 

Durability (%) 

Run Die 

(in) 

Moisture 

level (%) 

Replication 

1 

Replication 

2 

Replication 

3 
Means 

Standard 

deviations 

1  10 78.5 78.7 76.9 78.0a 0.98 

2 1/8 15 85.6 83.7 84.6 84.6b 0.95 

3  20 89.4 92.5 93.7 91.8c 2.21 

4  10 63.7 61.5 62.6 62.6d 1.10 

5 3/16 15 70.5 68.2 69.5 69.4e 1.15 

6  20 76.8 75.4 75.3 75.8f 0.84 

8 
1/4 

15 79.9 80.4 81.7 80.6b 0.93 

9 20 86.6 86.4 84.7 85.9g 1.04 

* Different letters after means in each level of the durability indicates significant difference at α=0.05 

 

 

 
Table 4.9 ANOVA for pellet durability 

Factor DF* F value Pr > F 

Die Size 2 21.1748 <.0001 

Moisture 2 6.8477 0.0051 

Die size * Moisture 7 305.2842 <.0001 

*Degree of freedom 
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Table 4.10 Angle of repose for DDGS and pellets* 

Angle of repose (o) 

Run Die 

(in) 

Moisture 

level (%) 

Replication 

1 

Replication 

2 

Replication 

3 
Means 

Standard 

deviations 

DDGS  10 46.6 46.9 46.7 46.7a 0.15 

1  10 34.7 33.8 34.3 34.3b 0.45 

2 1/8 15 38.7 38.8 38.2 38.6c 0.32 

3  20 42.6 42.9 42.2 42.6d 0.35 

4  10 35.6 35.7 35.1 35.5e 0.32 

5 3/16 15 39.8 39.7 39.2 39.6f 0.32 

6  20 43.2 43.5 42.7 43.1d 0.40 

8 
1/4 

15 39.7 39.5 39.9 39.7f 0.20 

9 20 44.5 44.8 44.6 44.6g 0.15 

* Different letters after means in each level of the angle of repose indicates significant difference at α=0.05 

 

 

 

Table 4.11 ANOVA for angle of repose 

Factor DF* F value Pr > F 

Die Size 2 2.3306 0.1219 

Moisture 2 215.8844 <.0001 

Die size * Moisture 7 369.6365 <.0001 

*Degree of freedom 

 

 

 

Table 4.12 Color L* for DDGS and pellets* 

Color L* 

Run Die 

(in) 

Moisture 

level(%) 

Replication 

1 

Replication 

2 

Replication 

3 
Means 

Standard 

deviations 

DDGS  10 56.58 55.83 56.76 56.39a 0.8 

1  10 45.33 45.43 45.67 45.47b 0.17 

2 1/8 15 38.82 39.56 39.44 39.27c 0.39 

3  20 36.42 36.01 36.93 36.45d 0.46 

4  10 53.62 53.92 53.21 53.58e 0.35 

5 3/16 15 49.72 49.33 49.71 49.58f 0.22 

6  20 45.23 47.54 45.78 46.18b 1.20 

8 
1/4 

15 54.91 55.07 55.62 55.20g 0.37 

9 20 51.68 51.32 50.24 51.08h 0.74 

*Different letters after means in each level of the color L* indicates significant difference at α=0.05 
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Table 4.13 ANOVA for color L* 

Factor DF* F value Pr > F 

Die Size 2 29.9463 <.0001 

Moisture 2 1.2749 0.3002 

Die size * Moisture 7 386.0057 <.0001 

*Degree of freedom 

 

 

 

Table 4.14 Color a* for DDGS and pellets* 

Color a* 

Run Die 

(in) 

Moisture 

level (%) 

Replication 

1 

Replication 

2 

Replication 

3 
Means 

Standard 

deviations 

DDGS  10 12.14 12.36 11.98 12.16a 0.2 

1  10 8.72 9.52 9.33 9.19b 0.41 

2 1/8 15 7.98 7.57 6.68 7.41c 0.66 

3  20 6.12 6.08 5.71 5.97d 0.22 

4  10 10.26 11.01 10.93 10.73e 0.41 

5 3/16 15 9.33 8.97 9.04 9.11b 0.19 

6  20 7.54 7.14 7.59 7.42c 0.24 

8 
1/4 

15 10.59 10.78 10.07 10.4e 0.36 

9 20 9.56 9.96 9.68 9.73b 0.21 
*Different letters after means in each level of the color a* indicates significant difference at α=0.05 

 

 
Table 4.15 ANOVA for color a* 

Factor DF* F value Pr > F 

Die Size 2 7.6642 <.0001 

Moisture 2 4.8285 0.0188 

Die size * Moisture 7 60.1517 <.0001 

*Degree of freedom 
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Table 4.16 Color b* for DDGS and pellets* 

Color b* 

Run Die 

(in) 

Moisture 

level (%) 

Replication 

1 

Replication 

2 

Replication 

3 
Means 

Standard 

deviations 

DDGS  10 22.3 23.1 22.5 22.6a 0.4 

1  10 13.22 14.71 14.91 14.28b 0.92 

2 1/8 15 12.66 11.59 11.92 12.05c 0.55 

3  20 10.81 10.52 10.63 10.65d 0.15 

4  10 18.21 19.78 19.34 19.11e 0.81 

5 3/16 15 16.76 16.56 16.86 16.72f 0.15 

6  20 14.54 14.73 15.54 14.93b 0.53 

8 
1/4 

15 19.21 19.57 19.89 19.55e 0.34 

9 20 14.76 15.58 14.46 14.93b 0.58 
*Different letters after means in each level of the color b* indicates significant difference at α=0.05 

 

 

Table 4.17 ANOVA for color b* 

Factor DF* F value Pr > F 

Die Size 2 15.8029 <.0001 

Moisture 2 2.9992 0.0715 

Die size * Moisture 7 90.2169 <.0001 

*Degree of freedom 
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CHAPTER 5. ASSESSMENT OF LOW TEMPERATURE CLOSED-CYCLE 

GRAIN DRYING SYSTEM 

 

Abstract 

This study was about to analyze the drying efficiency of a prototype low 

temperature closed-cycle grain drying system. The main principle of this drying system 

was the heat pump system working as a dehumidifier. The main component of this drying 

equipment including a compressor, a condenser, twin evaporators, and a fan. Two drying 

processes including trial 1 and trial 2 were conducted to assess the overall drying 

performance of this low temperature drying system. To calculate the drying efficiency, the 

total energy consumption was divided by the amount of water removal for each trail; the 

drying efficiency was reported in the form of Btu/lb of water removal. We also ran corn 

seed germination test to check if the drying process has an effect on seed germination 

performance. The drying efficiency results for trail 1 and 2 was 1036 Btu/lb water removal 

and 869 Btu/lb water removal respectively, compare to other on-farm drying methods this 

drying system had high drying efficiency. The germination test results showed that this 

drying system had no adverse effect on germination performance. 

Introduction 

For corn production in Iowa, on-farm drying was the major way for post harvest 

corn drying. Most of the on-farm grain dryers were high temperature dryer. Although high 

temperature grain drying was much faster,  it will result in reduce of the grain quality and 

germination performance. Seyedin, Burris, and Flynn (1984) reported that the corn seed 

germination performance could be significantly reduced by high temperature drying and 
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by analyzing the shoot and root dry matter the seedling vigor was also significantly 

reduced. The maximum grain drying temperature was reported by Hall (1980), for corn 

used as seed the maximum safe temperature was 43 °C while for commercial corn the 

maximum safe drying temperature was 54 °C. The highest 82 °C safe drying temperature 

was the corn used as animal feed. This indicates that low temperature grain drying was 

important for seed or commercial used corn.  

From energy usage perspective, grain drying is an energy intensive process 

(Gunasekaran and Thompson, 1986). For most of the grain production, the energy required 

for grain drying often higher than the energy usage for producing grain from seed to harvest 

(Verma, 1982; Enlow, 1982). The heat pump grain drying concept was early investigated 

by Davis (1949), Shove (1953), and Flikke et al. (1957) they found the system was not 

attractive economically for the then-prevailing fuel prices. More recently, since the fossil 

fuel price has increased a lot, Prasertsan and Saen-saby (1998) found that the heat pump 

drying was more competitive than electrically heated dryers and direct-fired dryer due to 

the lowest operating cost. 

This study was conducted to analyze the efficiency of the prototype low 

temperature closed-cycle grain drying system and its effects on seed germination. Two 

trials have been done in this study. The energy consumption and amount of moisture 

removal were measured for each trail.  

Materials and Methods 

The drying apparatus assessed in this study is a low temperature closed-cycle grain 

drying system provided by the Loebach Brothers (David R. Loebach and Joseph E. 

Loebach, Loebach Brothers Inc.,). Figure 5.1 shows overall layout of this drying system, 
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the drying apparatus connected with the wagon by two air pipe, the dried air goes into the 

bottom of the wagon and the moist air goes into the drying apparatus through the top of the 

wagon.  Figure 5.2 shows the simple diagram of this low temperature drying system. The 

core part of this drying apparatus including a compressor (Copeland CF06K6E-PFV-979, 

Emerson Climate Technologies Incorporated, Sidney, OH 45365), a condensation-

evaporation system including a condenser and twin evaporators, and a centrifugal blower 

(GE motors 5KCP39KGV804S, 0.5 hp, GE Energy Management, Atlanta, GA 30339). 

Electricity was the only energy source for this system. By controlling the four solenoid 

valves this drying system could run with one evaporator cooling and other evaporator 

heating, at present, the timer will reverse the solenoid value to allow the first evaporator to 

defrost and heat and the second evaporator to cool and remove moisture. 

The corn was harvested by Richard Vanderpool's group and stored in Bio-Century 

Research Farm (Iowa State University, 1327 U Avenue, Boone, IA). The initial corn wet 

basis moisture content is 28.1% to 28.3%. 

The energy consumption was measured by a power meter (Landis+Gyr MX-92-

270-908, Landis+Gyr AG, Alpharetta, GA 30022) that was attached to the drying system. 

Four temperature loggers (Omega OM-EL-USB-2-LCD, Omega Engineering, Inc., 

Stamford, CT 06907) were applied to record the air relative humidity and air temperature, 

separately for high moisture air out from the corn, dry air from drying equipment, air from 

12 inch below the corn surface, and ambient air for both of the drying trails (Figure 1). The 

moisture content of corn was measured by using the mini GAC handheld moisture analyzer 

(mini GAC plus DICKEY-john Corp.) and the corn moisture content recorded every 24 

hours to track the moisture content change from time to time. Three replications were done 
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to measure the corn moisture content, and the average and standard deviation were 

calculated and reported in the results section. 

For trail 1, the corn with the weight of 2880 pounds and moisture content of 28.1% 

wet basis was placed into the wagon before the drying process. Based on the corn moisture 

content results during the drying process and the suggestion of the Loebach brother’s the 

drying process was operated for 68 hours after drying process started. 

For trail 2, the corn with the weight of 3200 pounds and moisture content of 28.3% 

wet basis was placed into the wagon before the drying process. Based on the corn moisture 

content results during the drying process and the suggestion of the Loebach brother’s the 

drying system was operated for 66.5 hours after drying process started. Corn was sampled 

before and after the drying process for a germination test.  

For airflow rate about this low temperature grain drying system, the airflow static 

pressure was measured during the trial 2. The total air flow rate during trial 2 was calculated 

based on Shedd’s curve which is about resistance to airflow of grains and seeds (ASAE, 

2011). Figure 3 shows the dimension of the wagon that hold the corn, which use to compute 

the aeration area and the corn depth. 

The corn germination performance was tested by using an incubator (Fisher 

Scientific Isotemp Incubator 650D, Thermo Fisher Scientific, Waltham, MA 02451). The 

germination test has followed the procedure that provided by Williams et al. (2014) which 

randomly picked up 50 kernels of corn and put them between two pieces of wet paper 

towels. Then rolled the two wet paper tower together with corn kernels and sealed them in 

a plastic bag. Put the plastic bag in an incubator for seven days at 30 °C. After accounted 

the number of germinated corn kernels, the germination rate was computed by dividing the 
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germinated corn kernels number by the initial 50 corn kernels. The germination test was 

done three times both mean and the standard deviation were calculated and reported in the 

results section. 

The drying efficiency was determined by calculating the ratio between power 

consumption (Btu) and water removal (lb) and the result Btu/lb of water removal was 

reported. 

𝐷𝑟𝑦𝑖𝑛𝑔 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
energy consumption (kWh)

water removal (lb)
 

The water removal (lb) was calculated by subtracting the amount of water (lb) in the corn 

after drying process from the total amount of water (lb) in the corn before drying process.  

Results and Discussion 

Drying data collection and calculation 

The drying data for the two drying trails was reported in table 5.1 mean and standard 

deviation for each drying parameter were also calculated and reported. The initial corn 

moisture content was measured as 28.1% and 28.3% for trial 1 and trial 2 respectively with 

the average value 28.2% and the standard deviation 0.1. For trial 1 the overall drying time 

was recorded as 68 hours and 66.5 hours respectively for trail 1 and trail 2. The average 

dry time for this drying system was calculated as 67.25 hours. The initial corn weight for 

trial 1 was measured as 3460 lb while for trial 2 the initial corn weight was 4000 lb. The 

mean of initial corn weight was calculated as 3730 lb with the standard deviation value 

270. The drying power consumption were measured as 170 kWh (580064 Btu) and 180 

kWh (614185 Btu) for trial 1 and trial 2 respectively. The average power consumption for 

this drying system was calculated as 175 kWh (597125 Btu) with the standard deviation of 
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5 kWh (17060.7 Btu). The final corn moisture content was measured as 14.3% and 12.9% 

for trial 1 and trial 2 respectively. The average dried corn moisture content was 13.6% and 

the standard deviation was 0.7%. The total water removal during drying process was 560 

lb in trial 1 and 707 lb in trial 2. The drying efficiency was calculated as 0.30 kWh/lb of 

water removal (1036 Btu/lb of water removal) and 0.25 kWh/lb of water removal (869 

Btu/lb of water removal) for trial 1 and trial 2 respectively. The system average drying 

efficiency was calculated as 0.275 kWh/lb of water removal (953 Btu/lb of water removal) 

of water removal with the standard deviation of 0.025 kWh/lb of water removal (68.9 

Btu/lb of water removal). Compare drying equipment efficiency from trial 1 and trial 2, the 

equipment in trail 2 was 16% more efficient than the equipment in trial 1. The trail 1 and 

trail 2 was conducted under a similar temperature condition which was 13 to 25 degree 

Celsius, the main reason caused the efficiency difference was before we started the trial 1 

the whole drying system had not been operated for a while, and it took time to get the 

drying system work in the best condition and start to remove water from the corn. Zhang 

(2015) conducted a similar corn drying project which used the same drying system with 

the present study. In Zhang’s study, two trials including fall trial and winter trial were 

conducted to measure the drying efficiency. The drying efficiency in Zhang’s work was 

reported as 1480 Btu/lb of water removal and 2760 Btu/lb of water removal for fall and 

winter trial respectively. Compare to Zhang’s result the drying system in the present study 

was 36% and 65% more efficient. The reason for the drying efficiency difference could be 

because of the difference of the initial corn moisture content and dried content. The original 

corn moisture content in Zhang’s study was 18.9% which was about 33% lower than that 

in the present study. The drying system will always run at low efficiency when the initial 
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grain moisture content is relatively low. The air temperature also had a significant effect 

on drying efficiency. In Zhang’s winter trial the corn was dried from 18.9% moisture 

content to 14.1% moisture content, and the working air temperature was between -3 oC to 

10 oC, while in the present study the average working air temperature was 24.3 oC. Hanna 

et al. (2014) reported the energy consumption during grain drying by using several different 

drying methods including batch in bin system and counter-flow style dryer; the result 

showed that the drying efficiency ranged from 2000-3000 Btu/lb of water removed, which 

consume 52%-68% more energy to remove one pound of water. Compared to the energy 

efficiency result Morey et al. (1978) observed 5.7 MJ/kg (2461 Btu/lb), the present system 

was more efficient. Compared to Wilcke and Bern (1986) result, which was 3.02 MJ/kg 

(1300 Btu/lb), the present system was more efficient and had a shorter drying period.  

For air flow rate, the static air pressure during trial 2 was measured as 0.41 in of 

water, based on the calculation the average aeration area was 39 ft2 the corn depth was 1.65 

ft. The pressure drop per unit depth was computed as 0.25 in of water per 1 foot of corn 

which means from the Shedd’s curve the air flow for shield corn was 25 cfm per 1 square 

foot. The total airflow rate was computed as 975 cfm. 

Air temperature and relative humidity results 

Figure 5.4, 5.5, 5.6, and 5.7 shows the trial 1 air temperature and relative humidity 

value recorded by the four temperature. It was clear to see that all the air temperature and 

dew point temperature for logger 1, logger 2 and logger 3 all has the similar trend with 

logger 5. Also, at the same period, all the temperature value remained at the same level, 

except for the air temperature before drying the corn was higher than air temperature after 
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drying the corn. For trial 2 the temperature result was resembled with trail 1, since the 

drying system operated under similar temperature (Figure 5.7, 5.11).  

For air temperature result the means and the standard deviation were calculated and 

reported in Table 5.2 and Table 5.3 For trial 1 the average air temperature was 22.9 °C, 

17.7 °C, 18.6 °C, and15.9 °C for logger 1, logger 2, logger 3, and logger 5 respectively. For 

trial 2 the average air temperature was 25.5 °C, 20.1 oC, 22.5 °C, and 18.9 °C for logger 1, 

logger 2, logger 3, and logger 5 respectively. The statistical analysis showed that all the 

temperature results were significantly different from each other. For different logger, the 

average air temperature was 24.3 °C, 18.9 °C, 20.6 °C, and 17.5 °C for logger 1, logger 2, 

logger 3, and logger 5 respectively. From figure 5.11 and 5.12 it was clear to observe that 

the dry air temperature was higher than other air temperature. The air temperature will 

decrease when carrying water out from the corn.  

For dew point temperature results the means and the standard deviation were 

calculated and reported in Table 5.2 and Table 5.3. For trial 1 the average air temperature 

was 11.3 °C, 14.2 °C, 14.5 °C, and 3.7 °C for logger 1, logger 2, logger 3 and logger 5 

respectively. For trial 2 the mean dew point temperature was 13.8 °C, 16.6 °C, 16.2 °C, and 

9.0 oC for logger 1, logger 2, logger 3, and logger 5 respectively. The statistical analysis 

showed that all the temperature results were significantly different from each other. For 

various logger, the average air temperature was 12.6 °C, 15.4 °C, 15.3 °C, and 6.42 °C for 

logger 1, logger 2, logger 3, and logger 5 respectively. From figure 5.12 and 5.13, it was 

evident to observe that the dry air dew point temperature was lower than the moist air and 

the air inside the corn mass, which means the drying system work ideal for move the 

moisture out of the system.  
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For relative humidity result, compare the relative humidity value before and after 

drying the corn. A significant 20 to 30 percentage point relative humidity drop can be 

observed (Figure 5.11), which illustrates the drying system could effectively change the 

relative humidity. The figure 3 shows the relative humidity change happened inside the 

corn. 

For relative humidity result, approximate 40 percentage point relative humidity 

drop can be observed between the relative humidity value before and after drying the corn 

(Figure 5.8 Figure 5.9). This illustrates that the drying apparent can effectively change the 

relative humidity and compare this value with trail 1, which was 20 to 30 percentage point 

relative humidity drop, the drying system was more efficient on trial 2.  For the air relative 

humidity inside the corn, a significant decrease can be observed after the drying process 

started 1440 minutes while in trail 1 the air relative humidity inside the corn dropped at 

1800 minutes after the drying process started.  This time, the difference also shows that the 

drying system was more efficient on trial 2. 

Corn seed germination test 

Table 5.4 shows the germination test results. For the initial corn, the average 

germinated corn was 44.3, and the germination rate was 0.88, while for the dried corn the 

average germinated corn was 45 and the germination rate was 0.9. The statistical analysis 

showed that for germinated corn and germination rate there was no significant difference 

between initial corn and dried corn at α=0.05. The results indicated this low temperature 

grain drying system has no negative effect on corn seed germination performance. 
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Conclusions 

The present study shows that the closed cycle low temperature drying system is 

more efficient than most of the drying system that used for the on-farm operation. The heat 

pump system could remove water effectively by reducing the air dew point temperature. 

Air temperature and corn initial moisture content could have an effect on overall drying 

efficiency. Compare to other low temperature drying system; the present system will 

significantly save the overall drying time. The present drying system had no negative effect 

on seed germination performance. 
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Figure 5.1 Low temperature closed-cycle (Loebach) Drying system and logger positions 
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Figure 5.2 The drying system flow diagram 
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Figure 5.3 The dimension of the corn wagon 

 
Figure 5.4 Temperature and relative humidity recorded of the air before drying the corn 
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Figure 5.5 Temperature and relative humidity recorded of the air after drying the corn 

 
Figure 5.6 Temperature and relative humidity recorded of the air inside the corn mass 
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Figure 5.7 Temperature and relative humidity recorded of the ambient air 

 
Figure 5.8 Temperature and relative humidity recorded of the air before drying the corn 
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Figure 5.9 Temperature and relative humidity recorded of the air after drying the corn 

 
Figure 5.10Temperature and relative humidity recorded of the air inside the corn mass 
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Figure 5.11 Temperature and relative humidity recorded of the ambient air 

 

  
Figure 5.12 Air temperature and relative humidity for trial_1 and trial_2  

(Error bars indicates the standard deviation) 
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Figure 5.13 Average air temperature and relative humidity with various loggers  

(Error bars indicates the standard deviation) 
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Table 5.1. Drying data 

Grain drying data Trial 1 Trial 2 Mean St Dev 

Drying time (h) 68 66.5 67.25 0.75 

Initial corn moisture content (%) 28.1 28.3 28.2 0.1 

Initial corn weight (lb) 3460 4000 3730 270 

Moisture content after drying (%) 14.3 12.9 13.6 0.7 

Corn weight after drying(lb) 2880 3200 3040 160 

Water removal (lb) 560 707 633.5 73.5 

Power consumption (kWh) 170 180 175 5 

Drying efficiency (Btu/lb water removed) 1036 869 952.5 83.5 

Drying efficiency (kWh/lb water removed) 0.30 0.25 0.275 0.025 

 

 

 
Table 5.2. Air temperature and relative humidity data with various trials and loggers* 

Air properties Logger1 Logger2 Logger3 Logger4 

Trial 1 

Temperature (oC) 22.9(3.7) a 17.7(2.7) b 18.6(2.8) c 15.9(4.1) d 

Relative humidity (%) 48.3(6.1) a 80.5(9.5) b 79.7(20.5) b 45.1(10.9) c 

Dew point (oC) 11.3(2.6) a 14.2(3.3) b 14.5(3.9) b 3.7(2.1) c 

Trial 2 

Temperature (oC) 25.5(3.8) a 20.1(2.3) b 22.5(3.66) c 18.9(4.2) d 

Relative humidity (%) 48.7(4.4) a 82.1(14.6) b 70.3(20.4) c 53.7(10.3) d 

Dew point (oC) 13.8(3.2) a 16.6(3.6) b 16.2(3.7) c 9.0(2.2) d 
* Different letters after means in each level of the air properties indicates significant difference at α=0.05 

the standard deviation is reported in value with parentheses 
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Table 5.3. Average air temperature and relative humidity data for each logger* 

Air properties Logger1 Logger2 Logger3 Logger4 

Temperature (oC) 24.3(3.9) 18.9(2.7) 20.6(3.8) 17.5(4.4) 

Relative humidity (%) 48.5(5.2) 81.3(12.4) 74.9(20.9) 49.5(11.5) 

Dew point (oC) 12.6(3.2) 15.4(3.7) 15.3(3.9) 6.42(3.4) 
The standard deviation is reported in value with parentheses 

 

 

 
Table 5.4. Germination test results* 

Germination 

test 
Replication 

Corn Seed 

number 

germinated 

corn 

germination 

rate 

 

 

Initial Corn 

 

 

1 50 43 0.86 

2 50 44 0.88 

3 50 46 0.92 

Mean 50 44.3a 0.88a 

St Dev 0 1.5 0.03 

 

 

Dried Corn 

 

 

1 50 45 0.9 

2 50 44 0.88 

3 50 46 0.924 

Mean 50 45a 0.9a 

St Dev 0 1 0.02 
*Similar letters after means in each level of the germination rate indicates insignificant difference at α=0.05 
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CHAPTER 6 TECHNO-ECONOMIC ANALYSIS (TEA) AND LIFE CYCLE 

ASSESSMENT (LCA) OF LOW TEMPERATURE CLOSED-CYCLE GRAIN 

DRYING SYSTEM 

Abstract 

This study was about to understand the environmental and economic impact of the 

low temperature closed-cycle grain drying system that mentioned in the previous chapter 

by using techno-economic analysis (TEA) and life cycle assessment (LCA). For TEA, three 

scales including small (60 bu/batch), medium (600 bu/batch) and large (6000 bu/batch) 

were chosen for analysis the total annual drying cost and unit drying cost. For LCA, the 

greenhouse gasses emission was the only environmental impact that considered in this 

study, since the electricity was the only energy source for this drying system. The TEA 

result shows that the drying cost for one bushel of corn were $0.62, $0.49, $0.46 for the 

small, medium and large scale of the drying system respectively and the drying cost could 

be lower than a grain elevator. The LCA result indicates that the greenhouse gas emission 

will increase along with the expansion of the drying system and since the electricity comes 

from a local coal plant, the drying system greenhouse gas emission was higher than other 

drying systems. Farmers can use this method to make their decision when handling the 

grain. 

Introduction 

LCA (Life Cycle Assessment) is a procedure to assess environmental influence 

associated with a a product’s life from the cradle to the grave. In 1970 the Midwest 

Research Institute first invented this tecnology (Hunt and Franklin, 1996), and the LCA 

procedure mostly used today of was defined by ISO, including goal and scope definition, 
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inventory analysis, impact assessment and interpretation. There is very limit work done in 

the analysis the LCA of grain drying system and grain drying process. 

TEA (Techno-Economic Analysis) can be defined as a systematic analysis used to 

assess the economic feasibility aimed to recognize opportunities and threats of projects, 

considering the capital, operational (variable), and fixed costs (Simba et al., 2012), benefits 

as well. Annual operating expenses and fixed costs are critical parameters in TEA and are 

the basic parameters for cost estimation, process optimization, and project evaluation 

(Marouli and Maroulis, 2005). In this study, the TEA was conducted using an MS-Excel 

spreadsheet to determine the cost of drying system. 

The aim of this study was to analyze the environmental and economic impact for 

the low temperature closed-cycle grain drying system. This study could help farmers to 

make a decision when choosing a new on-farm grain dryer in terms of drying cost and 

environmental impact. 

Materials and Methods 

The TEA and LCA were based on the prototype on-farm low temperature closed-

cycle grain drying system that was provided by Loebach Brothers. The concept for this 

drying system was the heat pump working as a dehumidifier. Figure 6.1 shows the flow 

chart of this drying system, the condensation and evaporation system will remove the 

moisture from the air that comes out of the corn container and the fan will force the dry air 

into the container to drying the corn. 

 The system boundary is shown in Figures 6.2. The drying system was a closed 

cycle system; electricity was the only energy source that goes into the drying system, the 

system boundary for this system only includes the whole drying process. The 
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environmental impact came from the production of the electricity from the local coal plant. 

The functional unit for this TEA and LCA study was based on 1 bushel of corn (56 lb of 

corn at 15.5% moisture content) dried through the drying process. This study analyzed 

annual total impacts and impacts for one bushel of corn. 

All the TEA and LCA of the drying system were based on three scales, which 

included small (60bu/batch), medium (600bu/batch), large (6000bu/batch). The system 

baseline 60 bu/batch was based on the prototype drying apparatus built by Loebach 

Brothers. The baseline system cost and drying system component list were provided by 

Loebach Brother's, and the energy consumption of the baseline system was measured and 

reported in the previous chapter. The main assumptions of this study are listed:  

(1). The corn initial moisture content was assumed as 28%, and the corn was dried 

to 15% moisture content. 

(2). The drying system was operated two months per year since the harvesting dates 

for corn in Iowa is from September to November (USDA, 2011). 

(3). The drying operation time for each scale was assumed based on a suggestion 

from Shove (1970), which was for 1 ton (12000 Btu/h) of refrigeration which could dry 

20-bushel corn per day. For baseline system, the capacity of the compressor is 6690 Btu/h 

which is 0.56 ton. 

(4).  The 60 bu/batch drying time was measured as 2.7 days while for 600 bu/batch 

and 6000 bu/batch the drying time was assumed as 6 days and 15 days. 

(5). The energy consumption for drying was assumed based on our measurement 

and Shove’s (1970) suggestion, which was 3 kWh/bu of corn. The base system energy 

consumption was measured as 2.83 kWh/bu of corn. 
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For LCA the environmental impact considered in this study contained energy 

consumption and greenhouse gas emission. The air emission categories considered were 

carbon dioxide, methane, and NOx. Table 6.1 shows the greenhouse gas emission 

converting factor for coal energy plant. The global warming potential has also been 

calculated and reported. Table 6.2 is the global warming potential factor which used to 

calculated the global warming poterntial for the drying system. 

For TEA, the cost of each drying system component was obtained from online 

sources like Alibaba and PEX supply house. The cost for drying one bushel of corn was 

calculated by dividing energy cost, labor cost and annual drying system cost by the bushel 

of corn. 

The assumption for TEA are listed: 

 The corn storage bin for 600 bushels of corn was 14 feet in diameter with a height 

of 11 feet. 

 The corn storage bin for 6000 bushels of corn was 24 feet in diameter with a 

height of 18 feet. 

 Fan size for 600 bushels was 5hp while for 6000 bushels was 20hp (Sadaka, 

2014). 

 The life span of the drying system was assumed as 25 years. 

 The insurance rate was 0.5% per year and the interests rate was 7% per year 

(Hellevang and Reff, 1987). 

 The maintenance and repair rate was 3% of total capital cost per year (Hellevang 

and Reff, 1987). 
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 Labor cost for handling the corn is 0.061$ per bushel of corn (Plastina and 

Johanns, 2016). 

 At the end of service life, the savage value was assumed as 0. 

 The electricity rate was 10.5 cent per kWh (EIA, 2016). 

Results and Discussion 

Life cycle assessment (LCA) 

Based on the assumptions for unit drying energy consumption the total annual 

electricity usage for 60 bushels, 600 bushels, and 6000 bushels was calculated and reported 

in Table 6.3 as 3735.6 kWh/y, 18000 kWh/y and 72000 kWh/y respectively. The total 

annual electricity usage value was fit both the linear increase regression and power increase 

regression model very well; the R-square value was 0.9891 and 0.999 respectively, which 

was very close to 1 (Figure 6.3). The reason was that the unit power consumption was 

assumed at 3kWh for medium and large scale and for small scale the power consumption 

was 2.83kWh, the total power consumption was mostly determined by the amount of the 

corn. Table 6.3 also shows CO2 emission, CH4 emission, and NOx emission data. For CO2 

emission, the total annual air emission data were 3735.6 kg per year, 18396 kg per year, 

and 73584 kg per year for small, medium, and large scale respectively. For CH4 emission, 

the average 3.39 kg per year, 16.38 kg per year, and 65.52 kg per year for 60 bu/batch, 600 

bu/batch, and 6000 bu/batch respectively. The NOx emission was calculated as 12.51 kg 

per year, 30.3 kg per year, and 241.2 kg per year for small, medium, and large scale 

respectively. Figure 6.4 shows the annual total CO2 emission with various drying system 

capacity. The CO2 emission value fit both the linear model well and the R-square value 

was 0.9864 which was very close to the R-square value for total annual electricity usage. 
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The reason was that the emission data was calculated by multiply the air emission covert 

factor with the annual electricity usage data. From the Figure 6.5 and Figure 6.6, it was 

easy to observe both CH4 and NOx emission was increased along with the system scale 

increased. All the emission data fit both linear model and power model very well, with the 

R-square value 0.9864 and 0.9987 respectively for both CH4 and NOx emission. The results 

were similar to CO2 emission results, and the reason was the CH4 and NOx emission data 

was also calculated by energy usage during drying process times the air emission factors.  

The global warming potential was calculated as 7229.25kg CO2 eq., 34834.14kg 

CO2 eq. and 139336.56kg CO2 eq. for small, medium and large scale respectively. Figure 

6.7 shows the trend for global warming potential, and the global warming potential was 

increased as the drying system capacity increased. The global warming potential value fit 

both the linear and power model well with the R-square value 0.9864 and 0.9987. This 

result was also similar with annual total electricity usage results since the global warming 

potential results were highly related with the system electricity usage. 

Bern (1998) raised a report about energy usage and CO2 emission for preserving 

the corn in Iowa. In this report, several different drying systems and methods including off-

farm dry, farm net air dry, farm HTDC dry and farm comb dry were mentioned and 

discussed. The CO2 emission data was calculated based on preserving 38.8×106 Mg Iowa 

corn. Compare the CO2 emission data with the present LCA data which were converted as 

113.86 kg/Mg corn, 119.14 kg/Mg corn, and 120.7 kg/Mg corn for 60 bushels, 600 bushels, 

and 6000 bushels respectively. The present drying system CO2 emission was only lower 

than farm net air dry method which was 262 kg/Mg corn. The present drying system was 

release 41.5% to 70% more CO2 than other on farm or off farm drying method. Because 
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the electricity was the only energy sources, the energy sources that produced the electricity 

was crucial for greenhouse gas emission. The electricity used in this study was produced 

from the coal power plant which leads to higher CO2 emission level. If the electricity came 

from a cleaner power plant like wind power or hydro power, the greenhouse gas emission 

could be much lower than the present study.  

Techno-Economic Analysis (TEA) 

The general TEA results were reported in Table 6.4, 6.5, 6.6, 6.7, 6.8 and 6.9. The 

annual economic impact for each operation capacity of this drying system was considered 

including capital cost and operating cost. The annual cost was $886.06 per year, $2913.25 

per year and $10992.53 per year for small (60 bu/batch), medium (600 bu/batch), large 

(6000 bu/batch) respectively, and it was increased while the drying capacity increased.  

Figure 6.8 shows the annual drying cost results; it is evident to see that the annual drying 

cost could fit both linear and power model very well. The increase linear regression model 

has R-square value 0.9883 while the power model has R-square value 0.999. The annual 

total drying cost has the similar trend with annual electricity usage results, and the R-square 

value for both results were also approximately the same, this was because the majority 

drying cost every year came from the energy cost for the drying system.  

The drying cost for drying one bushel of corn was calculated by divided the annual 

drying cost by whole corn dried per year. The drying cost was reported as 0.62 USD per 

bushel, 0.49 USD per bushel, 0.46 USD per bushel for year for small (60 bushels/batch), 

medium (600 bushels/batch), large (6000 bushels/batch) respectively. From Figure 6.9, it 

was clear to observe that the drying cost for drying one bushel of corn decreases while the 

drying capacity increases. The relationship among the three scales fit the power decrease 



72 

 

well with the R-square value equal to 0.8913 while for linear regression the R-square value 

was only 0.485. The reason caused the R-square value difference was because the energy 

cost for one bushel of corn was similar for each scale due to the energy consumption for 

one bushel of corn was assumed as 3 kWh, and the capital cost per bushel of corn dried 

was very close to medium and large scale.  

To compare the drying cost for the present drying system with other drying systems, 

the beginning moisture of grain was set as 28%, the ending moisture of grain was 15%. 

The grain elevator drying cost was 0.0425 USD per point per bushel (West Central, 2016). 

If the corn was dried from 28% moisture content to 13% moisture content the drying cost 

for one bushel of corn was computed as 0.553 USD per bushel, which was lower than small 

scale drying cost and much higher than medium and large scale drying system. The result 

indicates that the three scale of present drying system could save money compare to other 

drying systems under similar drying conditions.  

Conclusions 

Based on the TEA and LCA results, both total annual environmental impacts and 

the total annual cost was increased while the system scale expanded. The LCA results 

showed that this drying system would release more CO2 than most of others off farm and 

on farm drying methods since the electricity came from the local coal plant. The 

greenhouse gas emission could be improved by using cleaner electricity like wind power 

electricity or hydropower electricity. The unit cost of drying corn was decreased as the 

operation system scale expanded. The result indicated that the large scale system had lower 

operation cost and compared with other on farm drying methods the medium scale and the 
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large scale low temperature closed cycle drying system was cheaper.  This gives the farmer 

an idea when they are trying to apply a new drying system on their farm. 
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Figure 6.1 The system boundary of drying system 

 

 

 

 

  
Figure 6.2 The Flow chart for drying system 
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Figure 6.3 Annual drying electricity usage with various drying capacity 

 

 

 

 

 
Figure 6.4 Annual total CO2 emission with various drying capacity 
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Figure 6.5 Annual total NOX emission with various drying capacity 

 

 

 

 

 
Figure 6.6 Annual total CH4 emission with various drying capacity 
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Figure 6.7 Annual total global warming potential with various drying capacity 

 

 

 

 

 
Figure 6.8 Annual total drying cost with various drying capacity 
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Figure 6.9 Unit drying cost with various drying capacity 
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Table 6.1. Air emission of producing electricity from coal. 

Emission category g/kWh 

CO2 1022 

CH4 0.91 

NOx 3.35 
Spath, P. L., Mann, M. K., and Kerr, D. R.. (1999).  

 

 

 

Table 6.2 Converting factor for global warming potential 

GWP converting factor (100 years) mass CO2 eq. 

CO2 1 

CH4 28 

NOx 256 
IPCC 2013 – AR5 (Stocker et al., 2013) 

 

 

 
Table 6.3 LCA for Drying system 

Capacity 60 bushel 600 bushel 6000 bushel 

Environmental 

impact 

Total annual 

impact 

(per year) 

Total annual 

impact 

(per year) 

Total annual 

impact 

(per year) 

Electricity usage 

(kWh) 
3735.6 18000 72000 

CO2 emission 

(kg CO2) 
3817.78 18396 73584 

CH4 emission 

(kg CH4) 
3.39 16.38 65.52 

NOx emission 

(kg NOx) 
12.51 60.3 241.2 

Global warming 

potential (kg CO2 eq.) 
7229.25 34834.14 139336.56 
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Table 6.4 60 bushels drying system capital cost 

Component Price 

($/each) 

Quantity Total Cost 

($) 

Compressor 890.00 1 890.00 

Evaporators 170.00 2 340.00 

Accumulator 40.00 1 40.00 

Receiver 87.00 1 87.00 

Expansion valves 65.00 2 130.00 

Solenoid valves 71.00 4 284.00 

Timer 40.00 1 40.00 

Head pressure control 100.00 1 100.00 

Headmaster valve 140.00 1 140.00 

Blower 160.00 1 160.00 

Equipment initial Costs   2,211.00 

Electrical wiring and 

controls  

 88.44 

Equipment installation   884.40 

Equipment freight   22.11 

Total equipment initial 

costs  

 3,205.95 

Engineering and design   224.42 

Total capital costs   3,430.37 

Capital costs per year   294.36 

 

 

 
Table 6.5 60 bushels drying system operating cost 

Fixed costs  
Insurance 16.03 

Subtotal 16.03 

Variable costs  
Labor cost  80.52  

Electricity  392.24  

Maintenance and repair  102.91  

Subtotal  575.67  

Total costs  886.06  

Drying cost per bushel  0.62  
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Table 6.6 600 bushels drying system capital cost 

Component Price 

($/each) 

Quantity Total Cost 

($) 

Compressor 1,000.00 1 1,000.00 

Evaporators 499.00 2 998.00 

Accumulator 121.00 1 121.00 

Receiver 123.00 1 123.00 

Expansion valves 77.00 2 154.00 

Solenoid valves 120.00 4 480.00 

Timer 40.00 1 40.00 

Head pressure control 100.00 1 100.00 

Headmaster valve 140.00 1 140.00 

Blower 360.00 1 360.00 

Equipment initial Costs   3,516.00 

Electrical wiring and 

controls  

 140.64 

Equipment installation   1,902.40 

Equipment freight   47.56 

Total equipment initial 

costs  

 6,896.20 

Engineering and design   482.73 

Total capital costs   7,378.93 

Capital costs per year   633.19 

 

 

 
Table 6.7 600 bushels drying system operating cost 

Fixed costs  
Insurance 25.49 

Subtotal 25.49 

Variable costs  
Labor cost 366.00 

Electricity 1,890.00 

Maintenance and repair 163.65 

Subtotal  2,419.65  

Total costs  2,913.25  

Drying cost per bushel  0.49  

  



82 

 

Table 6.8 6000 bushels drying system capital cost 

Component Price 

($/each) 

Quantity Total Cost 

($) 

Compressor 5,200.00 1  5,200.00  

Evaporators 1,000.00 2  1,000.00  

Accumulator 123.00 1  123.00  

Receiver 151.00 1  151.00  

Expansion valves 97.00 2  97.00  

Solenoid valves 234.00 4  234.00  

Timer 40.00 1  40.00  

Head pressure control 100.00 1  100.00  

Headmaster valve 140.00 1  140.00  

Blower 10,000.00 1  2,600.00  

Equipment Initial Costs    11,484.00  

Electrical wiring and 

controls  

 

755.36 

Equipment installation   7,553.60 

Equipment freight   188.84 

Total equipment initial 

costs  

 

27,381.80 

Engineering and design   1,916.73 

Total capital costs   29,298.53 

Capital costs per year   2514.12 

 

 

 
Table 6.9 6000 bushels drying system operating cost 

Fixed costs  
Insurance  83.26  

Subtotal  83.26  

Variable costs  
Labor cost  1,464.00  

Electricity  7,560.00  

Maintenance and repair  356.35  

Subtotal  9,380.35  

Total costs  10,992.53  

Drying cost per bushel  0.46  
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CHAPTER 7 SUMMARY AND CONCLUSIONS 

The major work presented in this thesis include four parts: Resultant pellets quality 

of corn-based DDGS, Physical quality of pilot scale pelleting result, Assessment of low 

temperature closed-cycle grain drying system, Techno-economic analysis (TEA) and Life 

cycle assessment (LCA) of low temperature closed-cycle grain drying system. 

After pelleting process, the results showed that the moisture content of DDGS and 

the die size or die L/D value had a significant effect on pellets physical qualities. The higher 

moisture content which was 20% moisture content will result in higher pellets durability. 

In this study, the two dies have same L/D value, but one has larger die diameter. The results 

showed that the die with larger die diameter would lead to lower pellet durability. By using 

pilot-scale pellet mill, the bulk density can be increased, the main factor that affects the 

pellet bulk density was the DDGS moisture content and the interaction between die size 

and moisture content. 

The second pelleting project showed the similar results with the first pelleting 

project. Adding moisture into the DDGS and using the die with larger L/D value can get 

more durable pellets. This highest pellet durability was occurred when the DDGS moisture 

content was 20%, and the die L/D value was 8. Compare with the first pelleting project, 

under the similar pelleting condition the pellet durability was higher due to the different 

pilot scale pelleting mill used for each pelleting studies. For pelleting temperature, the die 

with a smaller diameter will result in the higher pellet temperature, while for each die the 

highest pellet temperature was observed when the DDGS moisture content was 10%. By 

using pilot-scale pellet mill, the bulk density can be increased, and the bulk density was 

larger with the larger L/D value. 



84 

 

The results of the prototype low temperature grain drying system assessment 

showed that the closed cycle low temperature drying system could save 52%-68% energy 

to remove one pound of water compare with other drying systems like batch in bin system 

and counter-flow sytle dryer we used for the on-farm operation. Compare to other low 

temperature drying systems, such as drying use natural air the present system will 

significantly save the overall drying time. The corn seed germination test result showed 

that this low temperature drying system had no negative effect on germination 

performance. 

Based on the TEA and LCA results for the low temperature grain drying system, 

both total annual environmental impacts, and the total annual cost was increased while the 

system scale expanded. The LCA results show that this drying system will release more 

CO2 than most of the others off farm and on farm drying methods since the electricity came 

from the local coal plant. The greenhouse gas emission could be improved by using cleaner 

electricity like wind power electricity or hydropower electricity. The unit cost of drying 

corn was decreased as the operation system expanded. The result indicates that the large-

scale system had lower operation cost and compared with other on farm drying methods 

the medium scale and the large scale low temperature closed cycle drying system was 

cheaper.  This give the farmer an idea when they are trying to apply a new drying system 

on their farm. 
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CHAPTER 8 FUTURE WORK 

For DDGS pelleting study, the present study only used water to help complete the 

pelleting process. More work could be done using DDGS binder to help complete the 

pelleting process, and test the physical quality of the DDGS pellet. Also, to conduct 

experiments on a larger scale is also important. It will be a different story in commercial 

scale. More pelleting conditions and pelleting energy consumption could be considered and 

tested. TEA and LCA could also be done to analysis the whole pelleting process. Thus, it 

can help ethanol producer and animal feed producer to make a better pelleting decision and 

increase the DDGS profit. 

For low temperature grain drying study, more work could be done to evaluate the 

drying efficiency when this drying system applies to a larger scale. The drying system 

could also test in a different location across the Iowa state or U.S. to evaluate the different 

air condition affect to the drying performance. The TEA and LCA study of this low 

temperature grain drying system, more work could be conducted to compare the drying 

cost for different grains instead of corn.  
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