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ABSTRACT 

 

Weeds in row crops compete for resources available to crop plants and thus 

will affect crop yield and quality. However, consumers show a growing interest in 

organic food or foods produced with fewer agricultural chemicals. Therefore, a need 

exists to develop alternative weed control methods. A tine mechanism for an 

autonomous weeding machine was developed, and the interaction of a single tine 

and a rotating tine mechanism with the soil was investigated. The goal of this 

research was to develop a laboratory methodology for evaluating the effectiveness 

of a tine and rotating tine mechanism in disturbing weed plants simulated by 

individual wood pieces. Two experiments were performed using the tine and tine 

mechanism under a controlled environment. Soil in a large rotating bin was 

processed and sieved to a maximum size of 5 mm. The soil was then conditioned 

with water to produce the desired moisture content. A single tine was used in the 

first experiment. The experimental factors for this test were the tine diameter, tine 

depth and the speed that the tine moved through the soil. For the second 

experiment, four tines were attached to a disk that rotated about a vertical axis. The 

rotational tine mechanism was tested at different working depths and disk rotational 

speeds. All of these tests were conducted in a rotating soil bin with a controlled 

speed. The orientation of each simulated weed was observed in each trial. The 

observations were captured in a Mean Likelihood of Control (MLC) parameter which 

was intended to indicate the mean likelihood of simulated weed being controlled. In 

the first experiment, significant differences were observed in MLC across tine 
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diameter, tine working depth and travel speed. There was evidence of a significant 

interaction between tine diameter and tine working depth. As for the second 

experiment, significant differences were observed in MLC across tine working depth 

and rotational speed of tine mechanism. Evidence of a significant interaction 

between working depth and tine mechanism rotational speed was observed. All of 

the factors tested were important and could be used to determine machine settings 

in the field. 
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CHAPTER 1 GENERAL INTRODUCTION 

 

Background 

 
In 2015, fresh market vegetable and melon production in United States was 

estimated to be 20.3 million metric tons with a total harvested area of 6,273 km2 

(USDA, 2015). Vegetable production resulted in a revenue of almost 12 billion, USD 

so raising vegetables is an important economic sector in the U.S. The three largest 

produced crops are onions, melons and lettuce, which accounted for almost 40 

percent of the total production. California is the top fresh vegetable producer with 51 

percent of production and 58 percent of the economic value. The large values 

associated with this sector indicate that consumers demand high quality products for 

a healthy and well-balanced diet. However, there is serious competition between 

weed and vegetable crops which results in reduced quality and yield (Das & 

Yaduraju, 1999). 

Weeds in crop field compete for soil nutrients, soil moisture, sunlight 

(Tollenaar & J. Wu, 1999), space, water and other ecological factors throughout the 

whole growing season (Maxwell, O’Donovan, Upadhyaya, & Blackshaw, 2007). 

Some weed species are dangerous to livestock and release toxins through the soil 

which endanger other plants (Marer, 2000). Without a proper weed management 

program, weeds will affect crop yield and quality, resulting in reduced revenue for 

the grower. 

The most effective method of weed management is by controlling the weeds 

through eliminating or suppressing the weed growth. There are several types of 
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weed control options practiced by farmers around the world. These options include 

manual, biological, chemical and mechanical methods of weed control.  

The earliest form of weed control is manual control which is time consuming 

and laborious (Gianessi & Reigner, 2007). The technique damages the weed with 

hand or handheld tools and has a high labor requirement. It reduces soil disturbance 

(Buchanan, 1992; Tu, Hurd, & Randall, 2001), minimizes damage to crop and 

nature, and reduces soil erosion (Hajek et al., 2016). 

Biological control utilizes natural enemies of weed plants such as herbivores, 

predators, insects, parasites, or diseases to control the germination of weed seed 

and reduce the vigor and size of infestations (Clausen, 1978; McEvoy, Cox, & 

Coombs, 1991; Stiling, 1992). It is the most selective, cost efficient method to control 

aggressive weeds and cover large areas for long term periods (Hajek et al., 2016).  

The most common weed control method in modern agricultural practices is 

the chemical method (Cloutier, Van der Weide, Peruzzi, & Leblanc, 2007). It uses 

herbicides to control the weed growth or weed seed germination by speeding up, 

stopping or changing the normal growth of weeds plant. It is low cost, easy to use, 

and generally has high efficacy compared to other methods. However, many people 

are now concerned with the effects of agricultural chemicals on human health, the 

environment and agricultural workers (Bak & Jakobsen, 2004). Moreover, there is 

high demand for organic product and foods produced and processed without 

synthetic substances (McEachern, Seaman, Padel, & Foster, 2005). With all the 

reasons mentioned, agricultural producers need a better alternative weeding method 

that eliminates weed plants without possible negative effects on human health, 
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workers safety and natural systems. Mechanical weed control is an alternative to 

chemical weed control with high potential for sucess. This method eliminates or 

suppresses weeds through physical disruption using mechanical tools. 

T. Ahmad, Tang, and Steward (2014) reported there are two types of 

mechanical weeding machines: inter-row weeders, which control weeds growing 

between the crop plant rows and intra-row weeders, which control weeds very near 

or within the crop plant rows. The most common machines for mechanical weed 

control available commercially are inter-row cultivators, basket weeders and rotary 

cultivators (Cloutier et al., 2007). Inter-row cultivators and rotary cultivators are 

implements with cutting edges that either bury the weed plants with soil, cut the 

weed stems or uproot the weed plants. The basket weeder has steel-shaped rolling 

cages, which loosen and pulverize the soil and uproot the weed plants.  

Weed control for intra-row operations is more challenging as many weeds 

grow very close by or within the crop plant rows. Several tools have been developed 

for this purpose, such as harrows, torsion weeders, finger weeders and brush 

weeders. The brush weeder, which is made with fiberglass or nylon brush material, 

uproots or buries intra-row weed plants with soil. It is very effective in eliminating 

young weeds (Fogelberg & Gustavsson, 1999). The torsion weeder uses spring 

steel tines, which are mounted on a rigid frame to control neighboring weed plants. 

The finger weeder uses two circular shaped rotating disk with flexible rubber spikes 

to dislodge weed plants by penetrating the soil from the surface. All of the intra-row 

machines work effectively if the vehicle steering method is precise and accurate as 

physical contact with the crop plants could cause damage.  
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A main issue with the above mechanical weed control approaches is they do 

not have the capability to differentiate between weed and crop plants, thus limiting 

the effectiveness of controlling the weeds that are close to crop plants. Several 

weeders, however, are equipped with machine guidance systems. For example, 

there is an intra-row weeder which utilizes the Global Positioning System (GPS; 

Griepentrog, Nørremark, & Nielsen, 2006) and other weeders which use laser 

transmitters and receivers as guidance sensors (Van Zuydam, Sonneveld, & Naber, 

1995). Until now, there are only a few complete autonomous weed control systems, 

which have been tested in the field. Mazin, Won Suk, Thomas, Gregory, and Gezan 

(2013) developed an automated weeder with a roller mechanism that uproot weeds. 

Pérez-Ruíz, Slaughter, Fathallah, Gliever, and Miller (2014) developed a low cost 

intra-row weeding co-robot that reduced manual labor for intra-row weed control. 

Automated weeding has the potential to overcome labor shortages, human 

mistakes, and the high costs associated with manual labor.  

There are few reports on the efficacy of mechanical and automated weeders 

(Cirujeda, Melander, Rasmussen, & Rasmussen, 2003; Mazin et al., 2015). The lack 

of efficacy study are due to challenges faced by researchers to conduct such 

studies. Ahmad (2012) reported that differences in weed density and soil conditions 

affected his results, while Mazin et al. (2015) found that weeding efficacy was 

effected by the weed species. Thus, reports of in-situ efficacy studies of mechanical 

weeding machines are limited.  

Determining the efficacy of a mechanical weeder is difficult to accomplish in 

the field for several reasons. These reasons include time constraints, no standard 
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efficacy test methods, and uncontrolled parameters during field operations. Often, 

most of the research time is allocated for the development and testing of mechanical 

and automated weeders and less time to determine weed control efficacy. Highly 

variable weather conditions and the short growing seasons of temperate climates 

make it more difficult for in-situ efficacy studies to be executed. There is also no 

standard method to guide engineers and researchers for an efficacy study for 

mechanical or automated weeders. In a field operation, many uncontrolled 

parameters need to be considered such as the surrounding temperature, the soil 

type, and soil moisture content (Ahmad, 2012). The physical variety of weeds can 

also result in a less systematic study of weeding efficacy (Van der Weide et al., 

2008). Systematic efficacy studies investigating different parameters can provide the 

settings required by the machine and the weeding mechanism to researchers.  

This lack of efficacy knowledge and uncontrolled parameters during field 

experiments leads to the need for a systematic approach to investigate weeding 

efficacy. One potential approach is to conduct an in-situ efficacy study, but there are 

still limitations with uncontrolled variables. Another approach is to conduct an 

experimental approach under controlled conditions to determine the efficacy of 

mechanical weeding mechanism in disturbing simulated weeds. A laboratory 

experiment with controlled ambient temperatures and soil conditions could facilitate 

studies of the effects of different parameters on weed control.    
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Objectives 

 
 The overall goal of this research was to investigate the performance of a tine 

and a tine mechanism in disturbing soil and simulated weed plants under controlled 

laboratory conditions. This tine mechanism was designed for an automated intra-row 

weeding machine in vegetable crop production. The specific objectives of this 

research were to: 

1. Investigate the effect of tine diameter, tine working depth and travel speed on 

the ability of a single tine to disturb simulated weed plants.  

2. Investigate the effect of tine working depth and the rotational speed on the 

performance of a tine rotating tine mechanism in disturbing simulated weed 

plants. 

Thesis Overview 

 
 This thesis consists of four chapters. Chapter 1 introduces the research. 

Chapter 2 provides background literature review for the research. Chapter 3 is a 

journal article describing research investigating the efficacy performance by tine 

mechanism. Chapter 4 summarizes conclusions from the research and 

recommendations for future work. References for each chapter are given at the end 

of the individual chapters. 
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CHAPTER 2 LITERATURE REVIEW 

  

In 2015, fresh market vegetable and melon production in United States was 

estimated to be 20.3 Million metric tons with a harvested area of 6,273 km2 (USDA, 

2015). Additionally, vegetable production resulted in a revenue of almost 12 billion 

dollars, an increase of 11 percent from the previous year. Vegetable production is an 

important economic sector in the U.S. The three vegetable crops with the largest 

produced mass are onions, watermelons, and head lettuce, which accounted for 

almost 40 percent of the total produced mass. The three highest vegetable crop 

values are romaine lettuce (USD 1 Billion), head lettuce (USD 1.25 Billion) and 

tomatoes (USD 1.243 Billion) with a combined value that was 29 percent of the 

value of all vegetable crops. California is the top fresh vegetable producing state 

with 51 percent of production and 58 percent of the value, followed by Florida (7.8 

percent of production and 9.3 percent of value) and Arizona (7.2 percent of 

production and 8.5 percent of value). The large numbers associated with this sector 

indicates that consumers have a high demand for vegetables as a part of a healthy 

diet. A major challenge in vegetable production, however, is the competition 

between weed plants and crop plants which results in reduced crop quality and yield 

(Das & Yaduraju, 1999). 

Weed control is a significant issue in agricultural production and has been 

under the attention of agricultural experts for many decades. Weeds are valueless 

wild plants that interfere with crop plant growth. Farmers strive to improve crop 

production through greater crop yield and quality, but weeds are a barrier to these 
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improvements. Weeds in row crops compete for soil nutrients, moisture, and sunlight 

available to crop plants (Tollenaar & J. Wu, 1999). Moreover, crops and weeds 

compete for space and other ecological factors throughout the whole growing 

season. Some weed species are dangerous to livestock and release toxins through 

the soil which endanger other plants (Marer, 2000). Without a proper weed control 

program, weeds will affect crop yield and quality, thus resulting in economic loss for 

the grower. Granitto, Navone, Verdes, and Ceccatto (2002) reported that weed 

infestations lead to crop losses in part due to the competition between crops and 

weeds for available nutrients and moisture.  

There are several studies on crop yield losses due to the existence of weeds. 

Johnson (1971) reported higher oil contents and seed yields for sunflowers grown in 

plots with lower weed competition. Felton (1976) conducted an experiment to 

determine the reduction in soybean yield due to weed pressure. The presence of 

weeds caused a reduction of 37% of yield. Tollenaar, Nissanka, Aguilera, Weise, 

and Swanton (1994) reported the mean grain yield of four maize (Zea mays L.) 

hybrids across three years of experiment was 65% higher in weed-free treatments. 

Another study reported that the existence of weeds in rice crop fields could result in 

a yield reduction of 57% (Smith, 1968). An effective method for managing weeds is 

needed to minimize the adverse effects of weeds on crop production (Walker, 1994). 

There are several types of weeding control options used by farmers around 

the whole world. These options include manual, biological, chemical and mechanical 

methods of weed control. Each of these methods has its own advantages and 

disadvantages in term of efficacy in controlling weeds, health risks to the farmer and 
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cost. Each of these methods will be discussed in this chapter. This chapter will also 

discuss the need for autonomous weeding robots, and the need for weed control 

efficacy studies for mechanical and automated weed control. 

Manual Weed Control 

 

Manual weed control is the earliest form of weed control. It is a time 

consuming and laborious method in which farmers use their hands or hand tools to 

eliminate weeds (Gianessi & Reigner, 2007). Techniques such as pulling, cutting 

and damaging the weed plants are normally practiced under conditions where low 

cost labor is available. The benefits of this method are that it minimizes soil 

disturbance (Buchanan, 1992; Tu et al., 2001), minimizes damage to crop, and 

reduces soil erosion (Hajek et al., 2016).  

Pulling or uprooting weeds is considered the best approach to control small-

scale weed infestations, especially for the earliest growth stage weeds when the 

weed plants are still young or when chemicals cannot be applied in a particular area. 

This action is accomplished by pulling the weed plant by hand or with weed-pulling 

handheld tools, which assist the user in gripping the weed by its stem and uprooting 

it. The tool’s size, weight and shape are designed for different sizes and types of 

weeds. Generally, there are two types of hand tools: short-handled and long-

handled. Examples of short-handled weeding tools are the Fishtail Weeder, the Hoe 

Dag and the Dee Weeder (Figure 2.1; Hemingway, 2015); while examples of long-

handled tools are the Dutch Hoe, the CobraHead Weeder and the Radius Weeder 

(Figure 2.2; Cook, 2014 & Hemingway, 2015). The idea of applying tools for weed 

control opens the door for mechanical weed control, discussed later in this chapter. 
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(a) (b) (c) 

Figure 2.1. Short handled weeding tools, from left (a) Fishtail weeder, (b) Hoe dag, and (c) Dee 
weeder (Hemingway, 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) (c) 

Figure 2.2. Long handled weeding tools, from left (a) Dutch hoe, (b) Cobra Head Weeder and 
(c) Radius weeder (Cook, 2014; Hemingway, 2015). 

 

Biological Control 

 

Recently, some farmers have practiced biological weed control in agricultural 

crops (Tilman, Tilman, Crawley, & Johnston, 1999). Biological control is the 

technique of applying natural enemies of weed plants such as herbivores, predators, 

insects, parasites, or diseases to control the germination of weed seed and reduce 

the vigor and size of infestations (Clausen, 1978; McEvoy et al., 1991; Stiling, 1992). 

Some farmers use sheep to control tansy ragwort or leafy spurge and goats for 
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brush weed and Russian knapweed (Pickett, 1998; Tu et al., 2001; Walker, 1994). 

Biocontrol insects can control weeds (Table 2.1). These insects are released on 

target sites that require weed control management. 

Table 2.1. Biocontrol insects for different weed species ("Biocontrol Conservation," 2016; 
Croft, 1990; Pickett, 1998). 

 
Biocontrol Insects Weed Species 

Flea beetles Leafy spurge 

Cinnabar moth, Tansy flea Tansy ragwort 

Chrysolira beetle St. John’s Wort 

Bindweed mites, Bindweed moth Field bindweed 

Mecinus janthinus Dalmatian toadflax 

Larinus minutus Diffuse knapweed 

Gall midge, Gall wasp Russian knapweed 

Rosette weevil Musk Thistle 

Root weevil Spotted knapweed 

Gall fly Canada thistle 

 

There are advantages and disadvantages in exercising biological weed 

control. On the positive side, it is the most selective and cost efficient method to 

control aggressive weeds. Moreover, it attacks specific weeds and is able to cover 

large areas for long time period (Hajek et al., 2016). On the contrary, regional 

managers are concerned with the damage on non-target plants caused by the 

biological control agents as they have the capability to spread to other regions far 

from the original control sites and cause different impacts across the landscape 

(Kaser & Ode, 2016; Klapwijk, Bylund, Schroeder, & Björkman, 2016). 
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Chemical Control 

  

The most commonly-used weed control method in the United States and 

other developed countries today is chemical weed control (Cloutier et al., 2007). It is 

the technique of applying herbicides to weeds or the soil to control the weed growth 

or weed seed germination by speeding up, stopping or changing the normal growth 

of the weed plant or drying out the weed leaves or defoliating the weed. Generally, 

there are two ways of applying herbicide, which are selective application by using 

individual spray nozzles to apply chemical to individual weeds and broadcast 

spraying with multiple spray nozzles. The latter has the advantage of quickly 

covering large field areas. Chemical weed control has several advantages over other 

weed control methods. Herbicides are low cost, easy to use, rapidly applied, and 

generally have high efficacy.  

Despite all of the available methodology, weeds are adaptable plants that 

continually evolve as a natural response to herbicides (Maxwell et al., 2007). 

Farmers must rotate and apply complicated chemical mixtures for pre and post-

emergence weed control, while minimizing costs to avoid herbicide resistance 

among weeds (Friesen, Ferguson, & Hall, 2000; Norsworthy et al., 2012). On the 

other hand, the general public is concerned about the effects of agricultural 

chemicals on human health, the environment, and agricultural workers (Bak & 

Jakobsen, 2004). Workers can be exposed to herbicides in a treatment area and 

during the mixing and application processes. Herbicides can cause headaches and 

nausea for low levels of exposure and blurred eyesight, strong headache and 

blistered skin for high levels of exposure and eventually death for extreme cases 
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(Marer, 2000). Herbicides may also have long term effects such as elevated risk of 

cancer and disturbed immune systems (Horrigan, Lawrence, & Walker, 2002). The 

application of weed control chemicals could also lead to different environmental 

issues such as soil and water contamination (Horrigan et al., 2002; Margni, Rossier, 

Crettaz, & Jolliet, 2002; Spliid, Carter, & Helweg, 2004).  

With all the potential negative impacts of chemical weed control methods on 

human health and safety and environment, there is a need to develop alternative 

methods for controlling weeds including new mechanical methods and robotic 

platforms to assist farmers in controlling weeds mechanically. 

Mechanical Control 

 

Recently, mechanical weed control methods have been investigated as an 

alternative to chemical weed control. There is a growing interest among consumers 

in organic agriculture, and demand is increasing for foods produced and processed 

without synthetic substances (McEachern et al., 2005). Several studies indicated 

that the reasons consumers are now opting for organic food are health 

consciousness (Tregear, Dent, & McGregor, 1994; Zanoli & Naspetti, 2002), taste 

(Hill & Lynchehaun, 2002; Magnusson, Arvola, Koivisto Hursti, Åberg, & Sjödén, 

2001), environmental concern (Soler, Gil, & Sanchez, 2002; Squires, Juric, & Bettina 

Cornwell, 2001; Wandel & Bugge, 1997) and concern over food safety (Kouba, 

2003; Squires et al., 2001). 

The advent of mechanization paved the way for the development of 

mechanical means of weed control. This method eliminates or suppresses weeds 

through physical disruption using mechanical tools. Some of the methods are 
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pulling, plowing, disking and mowing. In the earlier times of mechanization, harrows 

and hoes were pulled by draft animals. This approach is still being practiced in 

developing countries. Developed countries shifted to mechanical weed control 

implements being powered by tractors. Farmers started to apply harrowing as this 

approach reduced labor requirements in crop management. In row crops, harrowing 

is currently also used in addition to hoeing to target weeds in the intra-row area (Van 

der Weide et al., 2008). Although this old method has been modernized, the 

application of harrowing at early crop growth stages is limited. Cirujeda et al. (2003) 

reported the harrowing method is efficient in controlling weeds only at their early 

growth stage. This process needs to be repeated throughout the growing season in 

order to gain sufficient control (Kurstjens & Kropff, 2001).  

T. Ahmad et al. (2014) categorized mechanical weeding machines into two 

classes: inter-row weeders and intra-row weeders. Inter-row weeders are designed 

to control weeds growing between the crop plant rows. Intra-row weeding 

technologies seek to control weeds growing very close by or within the crop plant 

rows.  

 

Inter-row Weeders  

 

Generally, weeding mechanisms for the mechanical inter-row weeding 

operations include harrow, sweep, ducksfoot, hoe, and brush mechanisms. The 

oldest mechanical and nonchemical weeding methods are harrowing and hoeing. 

These mechanical operations treated the whole soil surface to eliminate weeds or 

reduce weed density. To reduce yield losses, machine settings and timing are 
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essential for each weeding operation (Pullen & Cowell, 1997; Rasmussen, 1990). 

The most common machines for mechanical weed control available commercially 

are inter-row cultivators, basket weeders and rotary cultivators (Cloutier et al., 2007). 

Inter-row cultivators and rotary cultivators are implements with cutting edges that 

perform weed control action. Rotary cultivators have rotating tine mechanisms that 

bury the weed plants with soil, cut the weed stem or uproot the weed plant; while 

basket weeders have rolling cages made of spring steel shapes. Several baskets 

are attached to a tool bar, which is mounted to a tractor. Basket weeders remove 

weed plants by loosening and pulverizing the soil and uprooting the weed plants. 

 

Intra-Row Weeders 

 

While most of the available inter-row weeding machines perform well for the 

operations, weed control for intra-row operation are more challenging as weeds can 

grow very close to the crop or within the crop plant rows. Several tools have been 

developed for this purpose, such as torsion weeders and finger weeders. Below are 

a few examples of available machines used for intra-row weeding operations. 

 

Brush Weeder 

 The brush weeder employs brush elements made of fiberglass or nylon which 

are rotated about a vertical axis (Figure 2.3). Its main weeding technique is to uproot 

the weed plants or bury the weed plants with soil. It is very effective in eliminating 

young weeds (Fogelberg & Gustavsson, 1999). The condition of the soil is important 

for this method. The weeder will only remove the top parts of the weed plants above 
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the soil surface if the soil is too hard. Precise guidance by an operator is important to 

use this machine as it could damage the crop (Melander, 1997). 

 

Torsion Weeder 

 The torsion weeder uses spring steel tines, which are mounted on a steel, 

firm frame. The tine is bent so it passes near the crop plants to control neighboring 

weed plants (Figure 2.4). The crop slips through the tine pairs during the weeding 

operation. The gap between the tines can be adjusted for different crops and 

different crop growth stages. The advantage of the torsion weeder that it is gentle on 

crop plants and can be combined with inter-row hoeing. On the other hand, this 

method needs precise guidance relative to the crop row during the weeding 

operation to work close to the crop without damaging it. This liability leads to slow 

weeding operations. 

 

Finger Weeder 

 The finger weeder is specifically designed to control small and emerging 

weed plants. It uses two circular shaped rotating disk with flexible rubber spikes 

(Figure 2.5). This pair of mechanisms is positioned at a desired angle towards the 

crop, and the spikes dislodge the weeds by penetrating the soil surface. This method 

is ideal to control weeds for crops such as broccoli, cauliflower and cabbage. Similar 

to torsion weeders, crop damage could occur if the weeding mechanism was 

inaccurately guided relative to the crop row. 
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Other Methods 

 
Blow Weeder 

 This method controls weed plants by utilizing compressed air to blow them 

from the top soil (Figure 2.6). It is able to control weeds larger than a finger weeder 

could handle. The downside of this method is that it could cause crop damage and 

requires substantial power (Norremark, Sorensen, & Jorgensen, 2006). For 

example, the weed blower needs a 60 kW tractor to operate which is double the 

power required for normal hoeing. 

 

Flame Weeding 

 Flame weeding, also known as flame cultivation, was used in 1940 to mid-

1960s for cotton and sorghum crops, but then usage stopped as herbicide weeding 

control was adopted. This method come back in the 1990’s as a non-chemical weed 

control alternative, especially for organic farming. It uses liquefied petroleum gas 

(LPG) and propane gas burners to produce flames that are directed toward the weed 

plants (Figure 2.7). This method is costly to operate (Nemming, 1993). 
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Figure 2.3. Brush weeder needs precise maneuvering by an operator to eliminate weed and 
avoid contact with crop plants (Melander, 1997). 

 

 

Figure 2.4. Torsion weeder uses bending steel spring tines to reach neighboring weed plants 
(Van der Weide et al., 2008).  
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Figure 2.5. Finger weeder uses two circular shaped rotating disk with flexible rubber spikes to 
control weed plants (Source: http://www.suttonag.com). 

 

 
Figure 2.6. Blow weeder uses compressed air to blow weed from the top of the soil (Van der 
Weide et al., 2008). 

 

 

 

http://www.suttonag.com/
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Figure 2.7. Intra-row flame directs flame to weed plant (Source: http://www.bhu.org.nz/). 

 

 

Figure 2.8. An autonomous and GPS-based system for intra-row mechanical weed control in 
operation at the field experiments. (a) Autonomous tractor, (b) tractor GPS antenna, (c) side-
shift and cycloid hoe GPS antenna, (d) wheel for height adjustment, (e) front pass (Nørremark, 
Griepentrog, Nielsen, & Søgaard, 2008). 

 
Figure 2.9. Sarl Radis uses light sensor to detect crop and guides a hoe in and out of the crop 
row. 
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Autonomous and Robotic Technology In Mechanical Weeding 

 

The main issue with the above mechanical weed control methods is they do 

not have the capability to differentiate between weed and crop plants. This limits the 

effectiveness of controlling the weeds that are close to the crop plants, especially 

within crop rows. A potential solution is to integrate autonomous and robotics 

technology with mechanical weeding machines (Grundy et al., 2005). The 

application of robotic approaches to weed control is a relatively new idea for 

sustainable agricultural practices. Autonomous approaches to weed control shows 

potential to control weeds with higher accuracy and with less energy (Toledo, 

Steward, Tang, & Gai, 2014). With automation technology, the weeding process will 

be more efficient and ecofriendly. 

Harrell, Slaughter, and Adsit (1988) stated that an autonomous agricultural 

and robotic weeder incorporates three basic components: a sensing system, the 

ability to perceive the environment and make decisions from the collected data, and 

actuators or end-effectors to execute those decisions.  

In a review of autonomous robotic weed control systems, Slaughter, Giles, 

Fennimore, and Smith (2008) stated that a general-purpose autonomous robotic 

weed control system requires vehicle guidance using either global or local 

localization sensors, weed detection and identification by sensors, and precision 

weed control. Precision weed control can be accomplished through several means 

including cutting, micro-spraying, electro-mechanically guided cultivating tools, or 

thermal heating of the weed plants.  
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Automatic guidance technology utilizes machine vision systems to detect row 

crop or the global positioning system (GPS) to localize the vehicle and steer the 

vehicle to follow a desired path. There are several studies about the performance of 

automatic guidance of weeders. Griepentrog et al. (2006) developed an autonomous 

RTK (Real-time Kinematics) GPS-based intra-row weeder powered by an 

electrohydraulic motor. Nørremark et al. (2008) showed that by utilizing the global 

positioning system, the autonomous weeder could execute hoeing within crop rows 

without any contact with the crop plants (Figure 2.8). Laser transmitters and 

receivers have also been applied as localization sensors for automatic guidance. 

Van Zuydam et al. (1995) applied this technology in their robot thus enabling 

weeding and other field operations to be executed at day or night. 

One of the important processes in intra-row weed control is weed plant 

detection and classification. The machine should have the ability to distinguish 

between the crop and weed plants. It is critical for an intra-row weeding machine to 

operate close to individual crop plants to remove or suppress the near-by weed 

plants. Heisel, Andreasen, and Christensen (2002) reported a decrease in yield for 

sugar beets with weeds that were growing close to the crop. Machine vision systems 

and image processing technology offer a high possibility to detect and identify the 

weeds during the weeding operations. Reid, Zhang, Noguchi, and Dickson (2000) 

reported that sensors, which are installed in automated weeding machines, have the 

capability to determine and differentiate crop from weeds, and precisely remove 

them. For example, the “Sarl Radis” (Figure 2.9), an automated weeder developed in 

France, used light sensors for crop detection and a control system to control the 
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motion of the hoe relative to the crop row and around the crop plants (Cloutier et al., 

2007). The travel speed of this automated weeder was 3 km/h, limited by the hoe 

mechanism. Chaisattapagon (1995) developed a machine vision system to 

distinguish weeds using three different features: color, shape and texture. Saber et 

al. (2015) used ultrasonic sensors to detect vegetable crops for automated 

mechanical intra-row pinch roller weeding mechanism. Gai, Tang, and Steward 

(2015) in their study stated that two-dimensional (2D) and three-dimensional (3D) 

vision sensors are reliable to perform plant discrimination and localization for 

autonomous agriculture robots. Their system detected individual crop plants in crop 

rows. 

Until now, there are only a few complete robotic weed control systems which 

have been tested in the field. Mazin et al. (2013) developed an automated 

mechanical weeder to control intra-row weeds.  This weeder could uproot weeds 

with heights from 10 cm to 18 cm. A robotic weeder for transplanted lettuce was 

developed by Blasco, Aleixos, Roger, Rabatel, and Molto (2002). Attached to the 

robotic end-effector was a pair of electrodes that delivered 15 kV of electrical 

potential to the weed plants, which eliminated them. The system operated using two 

machine vision systems, which identified and localized weed plants. A field test 

showed that the machine could identify 84% of the weeds and 99% of the lettuce 

plants. Pérez-Ruíz et al. (2014) developed a low-cost intra-row weeding co-robot.  

This machine was operated in a transplanted tomato field without harming the plants 

while eliminating the intra-row weeds. It reduced manual labor for intra-row weed 

control. Lamm, Slaughter, and Giles (2002) developed an auto-weeding machine, 
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and the research team tested it in several commercial cotton fields. The system 

differentiated weed plants from cotton plants. Then, the precise micro-spray system 

applied chemicals to identified weed plants at a forward travel speed of 0.45 m/s. In 

fourteen commercial cotton field tests, the system sprayed 88.8% of the weeds and 

identified 78.7% of the cotton plants. Iida, Kudou, Ono, and Umeda (2000) also 

reported on an experiment in which an autonomous weeder resulted an 83% 

improvement in weed elimination compared to a mechanical approach. 

  Automation and robotics are technologies that can be effective in weed 

management. Automated weeding has the potential to overcome production 

concerns such as labor shortages, human mistakes resulting from fatigue, and the 

high costs associated with manual labor. Moreover, this technology could reduce 

environmental impact and promote good weed management practices. Growers can 

utilize the information provided in this chapter to identify and analyze the need for 

auto-weeding machines in their farm. Moreover, agricultural machinery 

manufacturers can also benefit from this research to produce improved automated 

weeders.  

Mechanical and Automated Weed Control Efficacy 

 

While the main purpose of a weeder is to eliminate or suppress weeds in an 

agriculture field, there are only a few reports documenting the efficacy of mechanical 

and automated weeders (Cirujeda et al., 2003; Mazin et al., 2015). A number of 

weeding mechanisms and automated weeding machines have been developed, but 

efficacy studies are largely absent. There are several reasons why efficacy results 

are difficult to find. Ahmad (2012) reported that differences in weed density and soil 
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conditions affected his results. Mazin et al. (2015) found, during a performance test 

of a pinch-roller weeding machine, the weeding efficacy was affected by the weed 

species. Thus carrying out in-situ efficacy studies of weeding machines has 

challenges. There are some reasons why efficacy studies are difficult to execute in 

field operations. These reasons include time constraints, lack of standard efficacy 

tests and uncontrolled variables during field operations. 

 Time constraints are primarily due to development and testing of automated 

weeders taking substantial amounts of time.  These requirements result in less time 

to focus on weeding efficacy studies. An efficacy study requires time for preparation 

of crop, weeds, and soil as the field conditions are highly variable. In addition, 

unpredictable weather events and the short growing seasons in temperate climates 

make it difficult to execute in-situ efficacy studies. Secondly, no standard test 

procedures are available to conduct an efficacy study for mechanical or automated 

weeders. Typically, engineers and researchers without a background in weed 

science develop weeders. Thus, they may not have the expertise to execute weeder 

efficacy studies.  

Nevertheless, a systematic efficacy study has the potential to test mechanical 

weeders and compare their performance. As in-situ tests of mechanical weeders 

and automated weeders were conducted, many uncontrolled parameters need to be 

considered such as the surrounding temperature, soil type and moisture content 

(Ahmad, 2012). The variety of weeds with type, size, root depth and growth stage 

resulted a less systematic study of weeding efficacy (Van der Weide et al., 2008). 
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Even though some of the studies claimed to do efficacy tests, it is hard to compare 

the results with other machines as there are variety of uncontrolled variables. 

Moreover, it is important how the end effector, for this case the weeding 

mechanism of an automated weeder, interacts with the crop biological system. The 

weeding mechanism has the potential to destroy or damage the crop as well as not 

eliminating the weeds due to uncontrolled parameters. Thus, systematic efficacy 

studies on different parameters can provide the settings required by the machine 

and the weeding mechanism to users.  

This lack of efficacy knowledge and uncontrolled parameters during field 

experiment leads to a need for a systematic approach to gain the weeding efficacy 

studies. One of the possible approach is to conduct an in-situ efficacy study, but 

there are still limitations with uncontrolled variables such as ambient temperature, 

soil moisture content, soil type and variety of weeds. Another potential method is to 

conduct experiments under controlled conditions to determine the efficacy of 

mechanical weeding mechanisms in disturbing simulated weeds. A laboratory 

experiment with controlled ambient temperatures and soil conditions could be an 

effective approach to understand the effect of different parameters on weed control 

efficacy.    

Laboratory Experimental Approach 

 
According to an assessment of performance of sweep cultivators, row 

cultivators, rotary hoes and tine mechanisms conducted by Alexandrou and Coffing 

(2001), the latter mechanism was the most effective method for intra-row weeding. 
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Thus, the tine mechanism was chosen as the weeding end-effector for this research 

as it has several advantages: 

1. It serves the purpose of controlling the weeds within intra-row crops by burying 

them with soil, uprooting the weeds, or cutting the weed plants.  

2.  It is low cost with easy maintenance and replaceable. 

3. The size is relatively small. Thus with good positioning control, it could reach 

near the crop plant without damaging it. 

 

A laboratory experiment was designed to test a tine and tine mechanism on 

simulated weeds. Wood cylinders were used to simulate weed plants as the shape is 

uniformed, constant and resembles the weed stem. The experiment could be 

conducted by simulating weed plants with various root depths, spacing density and 

distance between each weed plant. The experimental factors for a single tine were 

tine diameter, tine working depth and tine travel speed. The experimental factors for 

the tine mechanism were tine working depth and rotational speed of the tine 

mechanism. The details of these factors and experimental design are discussed on 

next chapter. 
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CHAPTER 3  EXPERIMENTAL APPROACH TO DETERMINE THE EFFICACY 
PERFORMANCE BY TINE MECHANISM FOR AUTO WEEDING MACHINE 

A paper to be submitted to the Transactions of ASABE 
Jafni J. Jiken, Brian L. Steward, Lie Tang, Mehari Takeste and Safal Kshetri. 

Abstract 

 

Weed plants in row crops compete for resources available to crop plants, and 

thus will affect crop yield and quality. Consumers show a growing interest in organic 

food or foods produced with fewer agricultural chemicals. Thus, there is a need to 

develop alternative weed control methods. A tine mechanism for an autonomous 

weeding machine was developed, and the interaction of a single tine and a rotating 

tine mechanism with the soil was investigated. The goal of this research was to 

develop a laboratory methodology for evaluating the effectiveness of a tine and 

rotating tine mechanism in disturbing weed plants simulated by individual wood 

pieces. Two experiments were performed using the tine and tine mechanism under a 

controlled laboratory environment. Soil in a 2.44 m diameter rotating bin was 

processed and sieved to a maximum size of 5 mm. The soil was then conditioned 

with water to produce a moisture content of 17%. A single tine was used in the first 

experiment. The experimental factors for this test were the tine diameter, tine depth 

and the speed of the tine being moved through the soil. For the second experiment, 

four tines were attached to a disk that rotated about a vertical axis. The rotational 

tine mechanism was tested at different working depths and disk rotational speeds. 

All of these tests were conducted in a rotating soil bin at a controlled speed. The 

position and orientation of each simulated weed were observed in each trial. The 

effects of the tines were captured in a Mean Likelihood of Control (MLC) parameter, 
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an estimate of the mean likelihood of simulated weeds being control by the tine. 

Significant differences were observed in the MLC across tine diameter, tine working 

depth and across travel speed. Interaction of tine diameter and the tine working 

depth had a significant effect on MLC. For the second experiment, significant 

differences were observed in MLC across tine working depth and rotational speed of 

tine mechanism. Interaction of working depth and tine mechanism rotational speed 

had a significant effect on MLC. All of the factors tested were important and can be 

used for determining machine settings in the field. 

 

Keywords: tine mechanism, weeds, mechanical weed control, automated 

intra-row weeding. 

Introduction 

 
Weed control is a significant issue in agricultural production and has been 

under the attention of agricultural experts for many years because weed competition 

reduces crop yield and quality. Weeds in row crops compete for nutrients, space, 

moisture, and sunlight available to crop plants (M. Tollenaar & J. Wu, 1999). Without 

effective weed control, reductions in crop yield and quality will reduce revenue for 

growers. Granitto et al. (2002) reported that weed infestations lead to crop losses 

because of nutrient and moisture competition between crop and weeds. Tollenaar et 

al. (1994) reported that the mean grain yield of four maize (Zea mays L.) hybrids 

across three years of experiments was 65% higher in weed-free treatments. With the 

negative effect of weeds on crop production, effective methods for controlling weeds 

are needed. Weed control efficacy is important to obtain high crop yield and quality. 
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Generally, there are four types of weed control methods: manual, biological, 

mechanical, and chemical control. Manual weed control is the earliest method in 

which farmers used their hands or hand tools to eliminate weeds. It is, however, time 

consuming and laborious (Gianessi & Reigner, 2007). With the advent of 

mechanization, mechanical weed control methods were developed, first with 

cultivators being pulled by draft animals and then with engine-powered tractors. 

More recently, some farmers have practiced biological weed control in agricultural 

production by using natural enemies of the weeds, such as herbivores, predators, 

insects, parasites or diseases (McEvoy et al., 1991; Stiling, 1992). The most 

commonly used weed control method today in the United States and other 

developed countries is chemical weed control (Cloutier et al., 2007). Chemical weed 

control has the advantages of low cost, easy and rapid application, and good 

efficacy compared with the other three methods.  

Despite the effectiveness of chemical weed control, weeds are adaptable 

plants that continually evolve in response to herbicides (Upadhyaya & Blackshaw, 

2007). Moreover, there is an increasing public concern about the use of agricultural 

chemicals for food production, and the demand for organic food is increasing 

(McEachern et al., 2005). Other alternatives to chemical weed control have thus 

been explored such as biological control and mechanical control. Mechanical weed 

control has several advantages over the other methods. It is faster, less laborious 

and more efficient compared to manual and biological control (B. Melander, 

Rasmussen, & Bàrberi, 2005; Pannacci & Tei, 2014). Mechanical weed control kills 

or damages weeds by cutting or bruising roots, leaves, or stems of the weed, 
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burying weed plants with soil, or uprooting the weed plants. Consequently, it is good 

to investigate the effectiveness of mechanical weed control mechanisms. 

 Ahmad et al. (2014) reported there are two types of mechanical weeding 

machines: inter-row weeders and intra-row weeders. Inter-row weeders are 

designed to control weeds growing between the crop plant rows. Intra-row weeding 

technologies seek to control weeds growing very close by or within the crop plant 

rows. Mechanical inter-row weeders such as inter-row cultivators, basket weeders 

and rotary cultivators are already available commercially (Cloutier et al., 2007).  

There are several mechanical weed control methods, namely:  weed pulling, 

mowing and tillage (Tu et al., 2001). Weed pulling involves a tool grasping the weed 

stem and removing the weed together with its root. Mowing is a method of cutting, 

shredding or removing the above ground biomass. Tillage is the process of turning 

over the soil and disturbing the weed plant. Example of implements to mechanically 

control weeds are row cultivators, hoes and rotary tillers (Bowman, 1997). However, 

it is challenging to control weeds for intra-row weeding mechanically. Several types 

of mechanical weeders are available for intra-row weeding operations including 

harrows, brush weeders, torsion weeders and finger weeders.  

The application of automation and robotic approaches to weed control is a 

relatively new idea for sustainable agricultural practices. Autonomous approaches to 

weed control show potential to control weeds with higher accuracy but with less 

energy (Toledo et al., 2014). With automation technology, the weeding process will 

be more efficient and ecofriendly. Reid et al. (2000) reported that sensors, which are 

applied in an automated weeding machine, have the capability to determine and 
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differentiate crop plants from weed plants, and assisting the machine to remove 

them. For example, the “Sarl Radis”, an automated weeder developed in France, 

used light sensors for crop detection and a controller system to control the motion of 

a hoe relative to the crop row and around the crop plants (Cloutier et al., 2007). Iida 

et al. (2000) also reported on an experiment in which an autonomous weeder 

resulted an 83% improvement in weed elimination compared to a mechanical 

approach.  

Until now, there are only a few complete autonomous weed control systems 

which have been tested in the field. Mazin et al. (2013) developed an automated 

mechanical weeder to control intra-row weeds which could uproot weeds with 

heights from 10 cm to 18 cm. Pérez-Ruíz et al. (2014) developed a low cost intra-

row weeding co-robot which reduced manual labor for intra-row weed control by 

58%. Although with all the development of autonomous and robotic weed control 

systems, there are few studies reporting on the efficacy performance of the weeding 

control.  

 It is challenging to conduct an efficacy study of a mechanical weeder. Ahmad 

(2012) in his performance study of an automated mechanical weeder reported that 

differences in weed density and soil conditions affected his results. During a 

performance test of pinch-roller weeding machine, Mazin et al. (2015) found that 

weed species was one of the major factors effecting weeding efficacy. 

There are several reasons why few mechanical weeder efficacy studies have 

been reported. These reasons include time and seasonal constraints restricting the 

time available to conduct experiments, the weeder designers may not have 
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background or expertise in weed science needed to perform the experiments and 

many uncontrolled parameters in the field that need to be considered such as the 

ambient temperature, soil type, soil moisture content and soil strength (Ahmad, 

2012). The variety of weeds with varying sizes, root depths and growth stages can 

result a less systematic study determining weeding efficacy (Mazin et al., 2015). 

This lack of efficacy knowledge and uncontrolled parameters during field 

experiment leads to a need for a systematic approach to gain understanding of the 

weeding efficacy of mechanical weeders. One of the potential approach is to 

conduct an in-situ efficacy study, but there are still limitations with uncontrolled 

variables. The other approach is to conduct experiments under more controlled 

conditions. A laboratory experiment with controlled ambient temperatures and soil 

conditions could uncover the effects of different parameters on weed control.    

According to an assessment conducted by Alexandrou and Coffing (2001) of 

the performance of sweep cultivators, row cultivators, rotary hoes and tine 

mechanisms, the latter mechanism was the most effective method for intra-row 

weeding. Therefore, this research mainly focused on the performance of tine 

mechanism. This tine mechanism was designed for automated intra-row weeding 

machine in vegetable crop production. 

The specific objectives of this research were to: 

1. Investigate the effect of tine diameter, tine working depth and travel speed on 

the ability of a single tine to disturb simulated weed plants.  
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2. Investigate the effect of tine working depth and the rotational speed on the 

performance of a tine rotating tine mechanism in disturbing simulated weed 

plants. 

Materials and Methods 

 
Experiment Apparatus 

 Two experiments were conducted in Advanced Machinery Systems Lab 

(AMSL) at Iowa State University in Ames, Iowa. The first experiment investigated the 

effect of a single tine on simulated weed plants. The second experiment was 

designed to determine the performance of a rotating tine mechanism design for 

intra-row weeding. This mechanism consisted of a circular disk that rotated about a 

vertical axis, with four tines mounted on it. A 2.44 m diameter circular soil bin was 

used for this experiment (Figure 3.1). The bin was rotated by a hydraulic power unit. 

The soil bin had a rotary tiller powered by another hydraulic power unit. The tiller 

mixed the soil, and an adjustable horizontal blade levelled the soil at the beginning 

of every experimental trial.  

 

Figure 3.1. The circular soil bin with controlled speed used for the tine-soil interaction 
experiment located at AMSL at Iowa State University with a diameter of 2.44 m.  
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Soil Characterization  

The particle size distribution of the soil was measured using ASTM C136 and 

had a composition of 32% sand, 43% silt and 24% clay. According to the USDA Soil 

Classification System, the soil was classified as loam. 

The soil Atterberg engineering properties including the soil liquid limit and soil 

plasticity limit were measured according to ASTM D4318. The plasticity index was 

calculated from the soil plasticity limit and soil liquid limit as shown in:  

 𝑃𝐼 = 𝑃𝐿 − 𝐿𝐿  (1) 

where PI is the plasticity index, 

PL is the plastic limit, and 

LL is the liquid limit, 

all of which are in terms of moisture contents on a dry basis.  These soil parameters 

are used to characterize engineering soil behavior such as shear and stress 

strength, compressibility and permeability.  

The soil water content (%, dry basis) vs blow number was plotted for the loam 

soil to determine the liquid limit (Figure 3.2a). Blow number is the number of drops of 

a brass cup containing the soil under test required to close a groove in the soil 

sample after drawing the grooving tool through the soil (Figure 3.2b). According to 

the ASTM D4318 standard, the liquid limit is the soil moisture content at a blow 

number of 25. In this case, the liquid limit of was 32 % (d.b.).  

The soil’s plastic limit moisture content was determined using the method 

described in ASTM D4318. The soil moisture content at the plastic limit was 23 % 

(d.b.). 
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(a) (b) 

 

Figure 3.2 Soil Water content vs blow number (a) measured using the Liquid Limit Apparatus 
(b) for loam soil. At Blow Number, N=25 the value of soil moisture content was 32% 

representing the liquid limit. 

 

The soil Atterberg limits and associated visual observation of the engineering 

behavior of the soils under shearing loading were used for monitoring the wetting 

schedule of the soil in the bin.  

To determine soil compressibility behavior under different soil moisture 

content, (Tekeste, Habtzghi, & Koolen, 2013) showed that soils with moisture 

content approximately 2/3 of that at the soil plastic limit were in friable soil aggregate 

states. For the soil bin study on tine-soil interaction, friable and low soil smearing 

behavior was preferred. Soil samples were prepared at two levels of soil moisture 

content namely 17% and 20% M.C., which were 2/3, and 5/6 the difference between 

plastic limit and air-dry limit respectively.  The air-dry limit was 4% M.C. At 17% 

M.C., visual inspection of soil aggregates under thumb shearing showed friable and 

low smearing behavior. At 20% M.C., the soil exhibited a higher smearing behavior 
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and thus was not suitable for the experiment. Therefore, for all the tine-soil 

interaction tests of loam soil in the circular soil bin, the soil moisture content was 

maintained at 17% M.C. (d.b.) by periodically rewetting with a water mist. 

 

Soil Preparation for Tine Experiment 

The soil bin was filled with approximately 2.2 m3 of 5 mm sieved loam soil. The soil 

had an initial soil bulk density of 1.27 g /cm³ and an initial air-dry soil moisture 

content of 3.58% (d.b.). The mass of soil was 1,145 kg, which was calculated using:  

 M =  Vρ  (2) 

 where ρ is the density in kg/m³, 

M is the mass in kg, and 

 V is the volume in m³. 

The dry soil mass was calculated as 1,106 kg using the equation: 

 
𝑀𝐷.𝑆 =  

1

1 + 𝑀. 𝐶.
𝑀𝑠  

(3) 

 

where 𝑀. 𝐶.  is the moisture content of the water (dry basis), 

𝑀𝐷.𝑆. is the mass of dry soil in kg, and 

𝑀𝑠 is the mass of soil in kg. 

The sieved loam soil was prepared in a uniformly loose condition by tilling 

with a rotary tiller to a depth of about 160 mm. The soil surface was then levelled 

with a scraper blade. This tilling and leveling process was repeated for every trial. 
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The soil moisture content was controlled throughout the experiments. Samples were 

taken to a laboratory for measuring the moisture content by using an industrial oven 

according to the ASTM D4318 standard. 

 

Test Procedure 

The first experiment was conducted from 15th to 20th of May 2016, to 

investigate the soil disruption and the disruption to weed plants at different tine 

depths, travel speeds and tine diameters. Small, young weed plants were simulated 

by using 70 mm long and 2 mm diameter wood cylinders. Wood cylinders were used 

to simulate weed plants for this laboratory experiments because they are consistent, 

uniform, and resemble the weed stems. They easily penetrated the soil and their 

depth was easily adjusted. The wood cylinders were inserted into the soil to a depth 

of 50.8 mm in a row perpendicular to the direction of travel of the tine at a spacing of 

6.35 mm between cylinders. 

 For each experimental trial, five sets of 15 wood cylinders were inserted into 

the soil (Figure 3.3). For each set, the eighth wood cylinder, counting from the inside 

end of the row, was placed at the center of the row approximately at the tine line of 

action (Figure 3.4). A three factor factorial design was used for this experiment with 

three different tine diameters (6.35 mm, 7.94 mm, and 9.525 mm), three working 

depths (25.4 mm, 50.8 mm, and 76.2 mm) and two travel speeds (0.23 m/s and 0.45 

m/s; Table 3.1). Eighteen experimental trials were conducted per experimental 

replication.  
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The experiment consisted of three replications resulting in a total of 54 trials. 

There were 4,090 observations consisting of the status of individual wood cylinders 

after a tine passed through the wood cylinder row. The observations were made by 

categorizing the effects of the tine on the wood cylinders.  

 

 

 
Figure 3.3. Five sets of each with 15 woods cylinders was set up in the soil bin for a trial. 

 

 

 

 

 

 

 

 

 
 Figure 3.4. Schematic for the wood cylinders setting with depth penetration of 50.8 mm and 

distance of 6.35 mm from each other. The eighth wood cylinder was placed at the center of 
row. 

50.8mm 

6.35mm 
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Table 3.1. Levels of different tine diameters, working depths and travel speeds used for the 
first experiment. 

 

Factor First Level Second Level Third Level 

Tine Diameter 6.35 mm 7.94 mm 9.53 mm 

Working Depth 25.4 mm 50.8 mm 76.2 mm 

Travel Speed 0.23 m/s 0.45 m/s None 

 

In both experiments, the effect of tines on the simulated weed plants were 
observed. The effect of the tine resulted in changes in the location and orientation of 
each simulated weed. Each individual simulated weed plant observation was captured 
in a Likelihood of Control (LC) parameter which was intended to indicate the mean 
likelihood of simulated weeds being controlled (i.e. uprooted, cut or buried) by the 
mechanism. There were five LC categories in which each wood cylinder was placed 
depending on the movement of the wood cylinder caused by the interaction ( 

Table 3.2 and  

Figure 3.5). These categories were: 

1. The most extreme case where the simulated weed was completely extracted 

from the soil and laying on the soil surface. Simulated weeds affected in this way 

were assigned an LC value of 90 percent. 

2. The simulated weed was moved from its original position and tilted. Simulated 

weeds affected in this way were assigned an LC value of 60 percent. 

3. The simulated weed was moved from its original position but was still vertically 

oriented.  A 30% LC value to each simulated weed in this state. 

4. The simulated weed was still in its original position but tilted and assigned a 10% 

LC value. 

5. For simulated weed with no change in location or orientation, a 0% LC value was 

assigned. 
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Table 3.2 Code and the description of the affected simulated weed disturbed by tine. 

 

CODE 
Likelihood 
of Control 

(LC) % 

 
DESCRIPTION 

 90 The stick was pulled completely out of the soil. 

 60 The stick was moved from its original position and tilted. 

 
30 

The stick was moved from its original position but was still 
horizontally straight. 

 10 The stick was on its original position but tilted. 

 0 No change was observed. 

                 

 
Figure 3.5 The arrangement of one set of wood cylinders as the simulated weed (left) and the 
effect of tine to a set of wood cylinders after a trial with pattern as indicated in Table 3.5 
(right). The pattern arrow matches the pattern code in Table 3.5. 

                  

The second experiment was conducted on May 30th 2016. In this experiment, 

a rotating tine mechanism was used.  The mechanism had four tines inserted into a 

steel disk located with equal spacing around a circle with a 7.94 mm diameter 

(Figure 3.6). Each tine was circular with a 152 mm diameter cross section. A two 

factor factorial design was used for this experiment with two working depth levels 

(25.4 mm and 76.2 mm) and three tine mechanism rotational speed levels (25 rpm, 

50 rpm and 100 rpm; Table 3.3). The soil bin linear speed at the center of the tine 

mechanism was 0.45 m/s. The experiment consisted of six experimental trials per 

replication with three replications for a total of 18 experimental trials. The same 
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method of using wood cylinders to simulate weed plants as the first experiment was 

used. However for this experiment, the rotating tine mechanism had a wider width of 

influence as compared with a single tine, thus 21 wood cylinders were used per row 

with a spacing distance of 12.7 mm between wood cylinders resulting in 254 mm 

long rows. A total of 1,890 observations of the status of individual wood cylinders 

were recorded after the rotating tine mechanism passed through them. 

 

 

Figure 3.6. Rotating tine mechanism with four mounting tines. 
 

Table 3.3. Levels of different working depth and rotational speed of tine mechanism used for 
the second experiment. 

 
 First 

Level 
Second 
Level 

Third Level 

Working 
Depth  

25.4 mm 76.2 mm None 

Speed of Tine 
Mechanism 

25 
rev/min 

50 rev/min 100 rev/min 
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Data Analysis 

 For the first experiment, the SAS (SAS 9.4) MIXED procedure was used to 

analyze the dependent variable, the Mean Likelihood of Control (MLC) percentage. 

MLC was calculated by taking the mean value of the Likelihood Control (LC) values 

for each individual simulated weed plant from each trial. In the first experiment, a 3 

(tine diameter) x 3 (tine working depth) x 2 (travel speed of tine) analysis of variance 

(ANOVA) was performed on the MLC percentage. Diameter of tine, tine working 

depth, travel speed, interaction between diameter of tine and tine working depth, 

interaction of diameter of tine and travel speed, interaction of tine working depth and 

travel speed, and three way interaction between diameter, tine working depth and 

travel speed were treated as fixed effects. For statistically significant fixed effects, 

post hoc pairwise comparisons with a Tukey adjustment were performed. A priori 

significance level was set at 0.05. 

 The same SAS MIXED procedure was applied for the second experiment to 

analyze the MLC percentage as the dependent variable. For the second experiment, 

a 2 (tine working depth) x 3 (rotational speed of tine mechanism) analysis of 

variance (ANOVA) was performed. Tine working depth and rotational speed of 

rotating mechanism and the interaction between these two independent variables 

were treated as fixed effects. Pos hoc pairwise comparisons with a Tukey 

adjustment were performed for statistically significant fixed effects. 
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Results and Discussion 

 

 In the first experiment, there was a significant main effect for all three factors; 

tine diameter (F (2, 36) =47.29, p= <.0001), tine working depth (F (2, 36) =65.51, p= 

<.0001), and travel speed of tine (F (1, 36) =5.29, p= 0.0274). As for the interaction 

case, there was statistical evidence of an interaction of tine diameter and the 

working depth of tine (F (4, 36) =4.66, p= <.0039). However, there was no statistical 

evidence of an interaction of tine diameter and travel speed and the interaction of 

working depth and speed.  

 The interaction of tine diameter and working depth had a significant effect on 

the MLC.  Because of this interaction, post hoc pairwise comparisons with a Tukey 

adjustment were performed (Table 3.4). 

The residuals are consistent with random error (Figure 3.7). The random 

errors were assumed to be normally distributed. The residual plot shows the 

variance between the calculated and measured values of the dependent variable as 

a function of the measured values. The residuals were randomly distributed about 

the line of error with zero mean. The histogram of the residual shows they were 

normally distributed (Figure 3.8). The symmetric bell-shaped histogram which was 

evenly distributed around zero indicates that the normality assumption is likely to be 

true.  
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Table 3.4. Effect of diameter and depth interaction on the Mean Likelihood of Control (%). 
Values are mean ± standard deviation. Within a column, means followed by the same letter are 
not significantly different at p < 0.05. 

 
Diameter (mm) 

Depth (mm) Mean Likelihood of Control (%)  

6.35 

25.4 9.51 ± 3.43 a      

50.8 14.78 ± 3.73 a b     

76.2 19.00 ± 3.26  b c    

7.94 

25.4 14.89 ± 4.44 a      

50.8 19.360 ± 3.6  b  d   

76.2 23.93 ± 2.01   c  e  

9.53 

25.4 14.91 ± 3.85 a   d   

50.8 
26.40 ± 5.15 

    e  

76.2 
34.02 ± 7.08 

     f 

 

 

 

Figure 3.7. Residuals plotted against predicted mean shows the residuals were constant with 
random error. 
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Figure 3.8. The symmetric bell-shaped histogram of the residuals was evenly distributed 
around zero. 

 

Data were further analyzed by graphically representing the LC values 

assigned to individual simulated weeds (Figure 3.9).  For example, in the first 

replicate with tine diameter of 7.92 mm, working depth of 50.8 mm and speed of 

0.45 m/s, all the simulated weeds placed in the middle of each row were completely 

removed with LC value of 90. The LC value decreased to 60 and 30 when the 

simulated weeds were further from the tine. The four simulated weeds furthest from 

the tine were not affected by the tine. Using the LCs for each simulated weed 

observation, the mean of LC for each trial was calculated (Table 3.5). The frequency 

of individual observations of each simulated weed for this trial with all three 

replications were also presented in a histogram (Figure 3.10).  This histogram 

represented a case with an MLC near the middle of the MLC range and was 

achieved with the tine size and working depth factors at the middle levels.  It can be 

compared to those representing the results associated with cases with low MLC 

values (Figure 3.11) and high MLC values (Figure 3.12). One can observe a 

decrease in simulated weed disturbances in the low MLC case with no simulated 
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weeds being completely “uprooted.” More high value LCs resulted for the trials with 

bigger sizes of tine diameter, larger working depth and higher lateral speed. All 

these factors have a substantial effect on weed plant disruption. 

The histograms are presented with in order of treatments with increasing MLC 

values. The frequency of 0% LC observations decreased, and 90% LC observation 

increased across the treatments associated with figures 3.10, 3.11 and 3.12. 

 

 
Figure 3.9. Results from the first replication of case of tine diameter of 7.92 mm, working 
depth of 50.8 mm and speed of 0.45 m/s. The squares represent the observations associated 
with each individual wood cylinder (fifteen wood cylinders per set with five sets per 
experimental trials).  The black pattern represents and observation with an LC value of 90 with 
the gray scale becoming gradually light for small values of LC. 
  

Table 3.5. Tabulated results from the first replication of case of tine diameter of 7.92 mm, 
working depth of 50.8 mm and speed of 0.45 m/s. Each simulated weed observation was 
assigned an LC code by stick number and the MLC mean of each set were calculated. 

Stick Number Set 
Mean 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 0 0 0 0 30 60 90 90 60 30 10 0 0 0 0 24.7 

2 0 0 0 10 10 30 90 90 30 10 10 0 0 0 0 18.7 

3 0 0 0 0 10 30 90 90 90 30 10 0 0 0 0 23.3 

4 0 0 0 0 10 60 90 90 60 30 30 0 0 0 0 24.7 

5 0 0 0 0 10 60 90 90 60 30 10 0 0 0 0 23.3 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SET

1

2

3

4

5
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Figure 3.11 The frequency of individual observation of each simulated weed for case of tine 
diameter 6.35 mm, working depth 25.44 mm and speed 0.23 m/s with all three replications. 

 

 

Figure 3.12 The frequency of individual observation of each simulated weed for case of tine 
diameter 9.53 mm, working depth 76.2 mm and speed 0.45 m/s with all three replications. 
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Figure 3.10 The frequency of individual observation of each simulated weed for case of tine 
diameter 7.94 mm, working depth 50.88 mm and speed 0.45 m/s with all three replications. 
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Table 3.6 Mean Likelihood of Control (MLC) Percentage for diameter 6.35 mm, 7.94 mm & 9.53 
mm; depth 25.44 mm, 50.88 mm & 76.2mm; and speed 0.23 m/s & 0.45m/s. 

 
Speed 0.23 m/s  Speed 0.45m/s 

Diameter 
(mm) 

Depth 
(mm) 

MLC % 
 Diameter 

(mm) 
Depth 
(mm) 

MLC % 

6.35 

25.44 9.3 ± 2.9  

6.35 

25.44 9.7 ± 4.0 

50.88 12.6 ± 3.0  50.88 16.7 ± 3.0 

76.2 18.2 ± 3.4  76.2 19.8 ± 3.0 

7.94 

25.44 15.3 ± 5.4  

7.94 

25.44 14.5 ± 3.4 

50.88 20.0 ± 3.1  50.8 18.7 ± 4.1 

76.2 23.5 ± 1.5  76.2 24.4 ± 2.4 

9.53 

25.44 13.3 ± 3.8  

9.53 

25.44 16.5 ± 3.3 

50.88 24.4 ± 6.7  50.88 28.4 ± 1.8 

76.2 31.0 ± 7.6  76.2 37.0 ± 5.2 

 
 

When the MLC was tabulated by the combinations of experimental factors 

(Table 3.6), the mean MLC value increased with larger time diameters and higher 

tine working depths for both of the travel speeds.  When the mean MLC values were 

plotted against tine diameter and by working depth (Figures 3.13 and 3.14) some 

patterns were observed. First, larger tine diameters yielded higher MLC values. This 

result was expected as larger tine diameters resulted in larger soil disruption areas, 

and then affected more simulated weed plants. This pattern was observed in all 

cases except for the case of a 9.53 mm diameter, a 25.44 mm depth, and a 0.23 m/s 

speed (Figure 3.13). 

The MLC percentage of the simulated weeds increased with the higher values 

of working depths. This pattern was observed with every tine diameter and travel 

speed. This pattern was expected as deeper working depths affects wider widths of 

soil. The increasing pattern of the MLC percentage was also significant for higher 

speed trials. However, the increasing speed did not have as large an effect as that 

observed with the rotational speed and working depth factors. 
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Figure 3.13. Mean Likelihood of Control (MLC) percentage vs diameter level for case speed = 1 
(0.23 m/s) shows an increasing pattern in simulated weed MLC percentage except for depth = 
25.44 mm & diameter = 9.5 mm. 

 

 
Figure 3.14. Mean Likelihood of Control (MLC) percentage vs diameter level for case speed = 2 
(0.45 m/s) shows an increasing pattern in simulated weed MLC percentage. 

  

For the second experiment, both factors had a significant main effect on MLC. 

For tine working depth, F (1, 12) was 39.78 (p= <.0001) and for rotational speed of 

tine mechanism, F (2, 12) was 52.5, (p<.0001). There was also statistical evidence 
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of an interaction of tine working depth and the rotational speed of tine mechanism on 

the MLC percentage F (2, 12) =4.77, (p= <.0299).  

The residuals were consistent with the assumption of random error, and the 

model was correct on average for all fit values (Figure 3.15). The symmetric bell-

shaped residual histogram was also evenly distributed around zero demonstrates 

that the normality assumption was likely to be true (Figure 3.16).  

 

 

Figure 3.15. Plot of residuals vs predicted mean shows the residuals are constant with random 
error for the rotating tine mechanism experiment. 

 

 

Figure 3.16. The symmetric bell-shaped histogram showed that the residuals were evenly 
distributed around zero for the rotating tine mechanism experiment. 
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Table 3.7. Mean Likelihood of Control (MLC) Percentage ± standard deviation value presented 
with different working depth and rotational speed of tine mechanism. Within a column, means 
followed by the same letter are not significantly different at p < 0.05. 

 
Working Depth 

(mm) 
Rotational 

Speed (rpm) 
Mean Likelihood of Control 

Percentage (%) 

25.4 

25  16.5 ± 4 a 

50  20.7 ± 6 a     

100  31.7 ± 6       b  

76.22 

25  24.9 ± 4 a     

50  26.8 ± 3       b   

100  50.2 ± 4                c 

 

The MLC percentage was highest at the working depth of 76.22 mm tine 

mechanism rotational speed of 100 rpm with the MLC value of 50.2% and a 

standard deviation of 4% (Table 3.7). The lowest MLC was observed at a working 

depth of 25.4 mm and a rotational speed of 25 rpm, with a MLC value of 16.5% and 

a standard deviation of 4%. A small difference was observed of 2% MLC between 25 

rpm and 50 rpm at working depth of 76.22 mm. The MLC value almost doubled at 

100 rpm. Because of the significant interaction between tine working depth and the 

rotational speed, post hoc pairwise comparisons with a Tukey adjustment were 

performed.  

The MLC percentage increased with deeper working depth (Figure 3.17). The 

pattern applied to all three rotational speeds, (25 rpm, 50 rpm and 100 rpm). Deeper 

working depth caused a wider soil disturbance region. Thus, the probability of weed 

MLC was higher. This effect was observed through the increases in MLC percentage 

for each higher speed. MLC increased rapidly for the 100 rev/min treatments as with 

the depth of 6.2 mm indicates that more simulated weeds being disturbed during the 

experiment.  



60 
 

 

 
Figure 3.17. Mean Likelihood of Control (MLC) percentage vs rotational speed for rotating tine 
mechanism experiment displays an increasing pattern on the MLC percentage. 

 

As for the other factors, the MLC value increased with higher rotational 

speeds. The pattern was observed in both 25.4 mm and 76.2 mm tine working 

depths. This result was expected as higher rotational speeds should disturb a larger 

area around the tine and then disturb a larger number of simulated weeds. This 

observation implies the most effective weed control occurs with higher rotational 

speeds and deeper working depths. Similarly, increases in MLC were observed with 

increases in tine mechanism rotational speed because higher rotational speeds led 

to a smaller distance between passes of the rotating tines and wider disturbance 

regions around each tine caused more disturbance on the simulated weeds. 
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Conclusions 

 
A mechanical rotating tine weeding mechanism was developed for an 

automated intra-row weeder. Two experiments were conducted to investigate effects 

of the tine on simulated weeds through the soil disruption caused by the tine. The 

purpose of the first experiment was to investigate the effects of three factors: tine 

diameter, working depth and travelling speed. The second experiment investigated 

the effects of working depth and rotating speed of the weeding mechanism on 

simulated weeds.  Wood cylinders were used to model the weed plants. From the 

experiments, it can be concluded: 

1. There is statistical evidence that tine diameter, tine depth and travel speed had 

an effect on simulated weed MLC percentage. Larger diameter, deeper working 

depth and higher travel speed caused a higher MLC percentage. 

2. Tine working depth and the rotating tine mechanism speed affect simulated weed 

MLC. The rotating tine mechanism should have better weed control with a 

deeper tine working depths and higher rotating tine mechanism speeds. 
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CHAPTER 4 : GENERAL CONCLUSIONS 

General Discussion 

 
 This research investigated the effects of a tine and a tine weeding mechanism 

on simulated weeds. Two experiments were conducted in a laboratory under 

controlled environment and soil conditions by using woods cylinders to simulate 

weed plants. The movement of each simulated weed due to nearby interaction with 

the tine mechanism was observed in each trial. The observations were captured in a 

Likelihood of Control parameter, which was intended to indicate the likelihood of 

simulated weed being controlled by the mechanism. The first experiment 

investigated the effect of different single tine experimental factors on simulated weed 

plants. The second experiment studied the effects of a rotating tine mechanism with 

different experimental factors on simulated weed plants.  

 The experimental factors of the first experiment were tine diameters, different 

tine working depths and travel speeds. Based on the results from the single tine 

experiment in Chapter 3, it was concluded that the tine diameter, tine working depth 

and the travelling speed of the tine all have significant effects on weed control 

efficacy. Moreover, there is statistical evidence of an interaction between tine 

diameter and the tine working depth. The potential for weed control efficacy over a 

wide region around the tine increased as tine diameter, working depth and travel 

speed increased. The largest diameter, the deepest working depth and the highest 

travel speed case resulted in the highest MLC value as the tine disrupted a wider 

soil region. 

For the second experiment, statistical analysis showed that both rotational 

speed and depth of rotating tine mechanism affected weed control efficacy. In 
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addition, there was an interaction between tine working depth and the rotational 

speed of the tine mechanism. The potential to control weeds effectively increased 

with deeper working depths and with faster rotational speeds. Deeper working 

depths led to a wider region of soil disturbance. Similarly, increases in MLC were 

observed with increases in tine mechanism rotational speed because higher 

rotational speeds lead to a smaller distance between passes of the rotating tines and 

wider disturbance regions around each tine caused more movement and disruption 

to the simulated weed plants.  

From this research, the following conclusions were drawn:  

1. Tine diameter, tine working depth and travel speed are significant factors in 

eliminating or causing damage to weeds.  

2. As for tine mechanism, the tine working depth and rotational speed of the tine 

mechanism are significant. This implies the most effective weed control occur 

with higher rotational speeds and deeper working depth.  
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Recommendation for Future Research 

 

 This research supported the development of an auto-weeding machine which 

consisted of rotating tine mechanisms mounted on a pair of pivoting arms. Two 

prototypes are still under development and testing. One of them is powered by 

hydraulic actuators while the other one is powered by electrical motors. The 

research done and discussed in Chapter 3 was done with the latter machine but with 

a single arm and was performed in a controlled laboratory setting with controlled soil 

conditions. Since this prototype will be integrated with a machine vision system 

soon, it opens many of opportunities for future work with different factors, 

environments, soil conditions and different machines. The author would like to end 

this chapter with several suggestions. 

1. The experiments with the single tine and the rotating tine mechanism, were 

carried out with loose loam soil. A similar test with different textural classes of 

soils and different compaction levels should be conducted to examine how 

these soil parameters affect weed control efficacy. This laboratory experiment 

could also be performed in soil conditions which are similar to vegetable crop 

farming in soil type, soil condition and moisture content. Statistical models 

from these tests could be used to calibrate the machine before the weeding 

process is done in different type of soils and compaction levels.  

2. The effect of simulated weed depth representing different root depth for weed 

plants should be investigated. The results from this study might be used later 

to define the best machine variable settings as the tine working depth and the 
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rotational speed of tine mechanism to eliminate various type of weeds in a 

field. 

3. This research was done with tine and the rotating tine mechanism moving into 

one longitudinal direction. Investigating the effect of lateral speed of the 

pivoting arm will be important for the final application. 

4. In this research, different tine diameters attached to a rotating mechanism 

were used to test expected weed control performance. Using the 

methodology developed from this research, other tine designs should be 

tested to determine weed control efficacy performance advantages. 
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