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CHAPTER 1. INTRODUCTION TO RESEARCH 

 

Prevention of occupational injuries is a major issue for non-farm agricultural 

workplaces (Field et al., 2014). Furthermore, improving workplace safety outcomes requires 

learning from past incidents, identifying the most significant causes and implementing 

targeted prevention strategies (Abdolhamidzadeh, Abbasi, Rashtchian, & Abbasi, 2011; 

Anderson, 2009; Gotcheva et al., 2016; Pasman, 2009). However, obtaining detailed records 

of past incidents is a challenge acknowledged by investigators across several industrial 

sectors including agribusiness such as grain elevators and biofuel production (Calvo 

Olivares, Rivera, & Nunez Mc Leod, 2014, 2015; Dong, Largay, Wang, & Windau, 2014; 

Keren, 2010; Meel et al., 2007; Riedel & Field, 2011). Workers’ compensation claims have 

been offered by previous researchers as an excellent data source to address existing 

informational gaps about safety incidents and injuries in the workplace (Utterback, Meyers, 

& Wurzelbacher, 2014; Wurzelbacher et al., 2016).  

Workers’ compensation claims data provide case-level injury information such as 

cause of injury, nature of injury, and type of injury. The claims also provide demographic 

information such as age, gender and cost information such as medical and indemnity 

payments (Nestoriak & Pierce, 2009; Reville, Bhattacharya, & Weinstein, 2001; Utterback et 

al., 2012; Wuellner, Adams, & Bonauto, 2016). Typically, workers’ compensation claims 

dataset contain several thousand rows of data, a key factor in their applicability for injury 

surveillance (Oleinick & Zaidman, 2004; Wurzelbacher et al., 2016). Furthermore, the 

majority of employers in the U.S, including those in the grain elevator and biofuels industry, 

purchase workers’ compensation insurance to provide benefits to their employee who suffers 
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a work-related injury (Sengupta, Reno, Burton Jr, & Baldwin, 2012). Therefore, analysis of 

workers’ compensation claims data of biofuels and grain elevator companies can provide key 

insights on contributing factors of occupational injuries needed for enhancing safety 

outcomes in these high- hazard agricultural-based work environments. (Douphrate, 

Rosecrance, Reynolds, Stallones, & Gilkey, 2009; Douphrate, Rosecrance, Stallones, 

Reynolds, & Gilkey, 2009; Utterback & Schnorr, 2010).  

Workers’ compensation claims data have been used in the past to study work-related 

injuries in agriculture, but most of these have focused on farm-level analyses. For example, 

Spector et al. (2016) investigated heat exposure and injury risk of  farm workers using 

Washington State Fund workers’ compensation claims. Similarly, Douphrate et al. (2009) 

examined livestock handling injuries of dairy operations in Colorado using workers 

compensation claims. Even though workers at grain elevators and biofuels are exposed to a 

wide variety of safety hazards and incur a higher rate of occupational injuries than do 

workers in other industries, very little research has examined the use of workers’ 

compensation claims to characterize injuries in these environments.   

 Extracting useful information from large datasets such as workers’ compensation 

claims requires a scientific and systematic technique (Gnanadesikan, 2011; Springmeyer, 

Blattner, & Max, 1992). Statistical methods such as correlation and regression have 

traditionally been used to explore data trends, link cause and effect, and develop prediction 

models  (Chen, Jiang, Wang, & Tang, 2016; Nisbet, Miner, & Elder Iv, 2009). For example, 

Gorucu, Murphy, and Kassab (2015) used a chi-square test to gain a better understanding of 

the relationship between age, gender, cause of injury and number of fatalities in data from 

Pennsylvania State University’s farm and agricultural injury database. Similarly, Reiner, 
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Gerberich, Ryan, and Mandel (2016),  used logistic regression to investigate injuries from 

large agricultural machinery with data drawn from a rural injury database. 

 In the last decade, data mining is rapidly evolving as the preferred method of 

investigators for analyzing large amounts of data such as workers’ compensation claims 

(Liao, Chu, & Hsiao, 2012; Sanmiquel, Rossell, & Vintro, 2015) . Data mining is a 

multidisciplinary field that encompasses classical statistical techniques and new 

computational techniques such as decision trees and association rules (Anand et al., 2006). 

Over the last few years, data mining techniques such as decision trees are being used to 

uncover hidden patterns in large dataset across various disciplines (Cheng, Leu, Cheng, Wu, 

& Lin, 2012). However, the application of these techniques to characterize injury data is not 

a common use of the technique (Nenonen, 2013). 

 In this study a large workers’ compensation claims dataset obtained from a leading 

private insurance company was investigated using statistical techniques such as chi-square 

tests, regression analysis, and data mining techniques such as decision trees. This dataset 

consisted of claims submitted by non-farm agricultural businesses such as grain elevators and 

biofuel producers. Obtaining injury data for these businesses is a challenge. Since, workers’ 

compensation claims has been suggested as a good alternative source for injury and incident 

analysis, the objective of this study is to analyze these claims, identify injury causes, risks, 

and problem areas so supervisors and safety professionals can make decisions needed to 

improve safety outcomes in the workplace. Furthermore, safety incidents that cause injuries 

and fatalities have a widespread impact (Leigh & Marcin, 2012), and therefore mitigating 

these incidents using a proactive data-driven approach rather than just compliance can benefit 
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the worker, the organization, and society-at-large (Mosher, 2011; Simmons, Matos, & 

Simpson, 2016).  

Purpose of Research 

Occupational injuries in the U.S. continue to be a major concern in several industries 

including agribusiness such as grain elevators and biofuel production (Boden, O'Leary, 

Applebaum, & Tripodis, 2016; Lander, Nielsen, & Lauritsen, 2016; Mabila, Gracia, Cohen, 

Almberg, & Friedman, 2015; Wurzelbacher et al., 2016). According to the U.S. Bureau of 

Labor Statistics (BLS), in 2015 the incident rate of non-fatal occupational injuries for the 

agricultural industry including  production agriculture was 71% higher than the national 

average (BLS, 2016).  

Work-related injuries not only affect the injured worker and their family adversely 

but also influence the company’s medical, liability and insurance premium costs (Hajakbari 

& Minaei-Bidgoli, 2014). In addition to direct costs such as medical and indemnity 

payments, there are indirect costs associated with workplace injuries. These include 

equipment damage, equipment repair, incident investigation time, the cost of hiring and 

training an injured worker’s replacement, loss of reputation, loss of employee morale, loss of 

confidence and negative media attention (Gavious, Mizrahi, Shani, & Minchuk, 2009; 

Griend, 2011; OSHA, 2016). According to Manuele (2013), for every dollar in direct costs, 

there are an estimated $4 of indirect costs associated with work-related injuries. 

Based on the most recent data available in research literature, the total cost of 

occupational injuries and illnesses in the U.S. is estimated to be $250 billion (Leigh, 2011). 

According to Marucci-Wellman et al. (2015), in the U.S., nearly $1 billion is spent each 

week just to cover the direct costs of severe work-related injuries. In their study of 
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occupational injury costs in production agriculture, Leigh, McCurdy, and Schenker (2001) 

suggested that injuries in the agricultural industry cost 30% more than the national average 

on a per person basis. In a more recent study, Costich (2010) estimated the average cost of 

hospitalization for agricultural injuries be $12,056. Assuming the direct cost of injuries in on-

farm and non-farm agricultural industries to be equal and using the ratio suggested by 

Manuele (2013), the mean indirect costs of occupational injuries in the agricultural industry 

is estimated at $48,224. Since the agricultural industry (farm as well as non-farm) is currently 

under financial stress due to low commodity prices (Ehmke, 2016), such high injury costs 

represent a further threat to their profitability. Furthermore, unsafe work environments 

influence employee perceptions and their actions thus affecting the success of organizational 

initiatives such as quality management practices (Mosher, Keren, & Hurburgh Jr, 2013).For 

this reason, an improved understanding of injuries and fatalities in the agricultural industry is 

necessary to prevent work-related injury risks before they occur.  

The purpose of this study was to characterize the direct cost of occupational injury 

using the information obtained from the workers’ compensation claims including variables 

such as age, tenure of employee, and nature, cause and type of injury. A secondary purpose 

of the study was to identify and classify at-risk groups within the grain elevator and biofuels 

production industry. To improve the safety of work conditions in these work environments, a 

better understanding of injuries and an enhanced process for identifying at-risk groups is 

necessary.  The grain and biofuels industries spend a great deal of time and resources to 

mitigate safety hazards, so additional information on the injuries and at-risk groups has 

potential to maximizing the return on safety investments. 
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Research Questions 

The overarching goal of this study was to characterize the injury direct costs and 

number of days away from work based on the injured employee demographic and injury 

attributes. This dissertation research consists of three individual studies and the research 

objectives of each of those studies are listed below. 

  In the first study the relationship between the direct costs of injury and the injured 

employee’s demographic and injury attributes were examined for biofuel producers.  The 

claim amount was used as a measure of the direct costs and the research questions examined 

are: 

• Is the claim amount in the biofuels industries independent of the age of the injured 

employee? 

• Is the claim amount in the biofuels industries independent of the tenure of the injured 

employee in the present organization? 

• Is the claim amount in the biofuels industries independent of the type of claim? 

• Is the claim amount in the biofuels industries independent of the nature of injury of 

the injured worker? 

• Is the claim amount in the biofuels industries independent of the cause of injury of the 

injured worker? 

• Is the claim amount in the biofuels industries independent of the body part affected of 

the injured worker? 

In the second study the relationship between the direct costs of injury and the injured 

employee’s demographic and injury attributes were examined for commercial grain handling 
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facilities.  Just as in the first study, the claim amount was used as a measure of the direct 

costs and the research questions examined are: 

• Is the claim amount in the commercial grain handling facilities independent of the age 

of the injured employee? 

• Is the claim amount in the commercial grain handling facilities independent of the 

tenure of the injured employee in the present organization? 

• Is the claim amount in the commercial grain handling facilities independent of the 

nature of injury of the injured worker? 

• Is the claim amount in the commercial grain handling facilities independent of the 

body part affected of the injured worker? 

In the third study the number of days away from work of the injured employee was 

investigated based on the employee’s demographic, injury and organizational attributes. The 

previous two studies that focused on a particular agriculture-related industry such as biofuel 

and commercial grain elevators. This study examined the number of days away for various 

agriculture-related industries such as bulk commodity handling, food manufacturing, grocery 

and retail stores. The research objective of this study was: 

• Is a linear regression model better than a decision tree model at predicting the number 

of days away from work based on the injured employee’s age, tenure, nature of 

injury, cause of injury, body part injured, type of organization and the nature of their 

job? 

Measurement and Methodology 

The dataset used in this study was obtained from a private insurance company 

specializing in insurance products for agricultural businesses.  The dataset was sent to 
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researchers in an electronic format and consisted of individual claims filed by the injured 

employee or their employer with the insurance company. These claims were reported to the 

insurance company from 2008 to 2016.  The oldest claim in the dataset had an injury date of 

January 1, 2008, and the newest claim injury date was March 11, 2016.  

Nearly all workers in the U.S. are covered by workers’ compensation insurance 

(Utterback et al., 2014). Employers generally provide this benefit to their employees by 

either purchasing insurance from an insurance carrier or through self-insurance (Reville, 

Polich, Seabury, & Giddens, 2001). When an employee is injured on the job, the program 

pays the employee’s medical and indemnity costs. To provide information and to facilitate 

the payment, employers must create a report of the worker’s injury to (Utterback et al., 

2012). Data collected during the claims process are provided by employees, employers, 

insurance companies and other involved parties (Utterback et al., 2014). All information 

recorded in the dataset were vetted and verified by insurance company personnel. The 

collection of information from multiple stakeholders makes workers’ compensation claims 

records an excellent data source for occupational injuries (Dement et al., 2004; Janicak, 

2010; Kim, Dropkin, Spaeth, Smith, & Moline, 2012; Reville et al., 2001). 

The data used in this study consisted of  35,686 rows and 18 columns of data. The 

complete list of the 18 columns is provided in Table 1. The dataset did not contain any 

personal information that could be used to identify either the injured employee or their 

employer. Using the demographic information provided in the dataset, age of the employee 

was calculated as the difference between the date of birth and the injury date. Similarly, the 

tenure of the employee was calculated as the difference between the date of hire and injury 

date.The number of days away from work (DAFW) was calculated as the difference between 
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the injury date and the date returned to work. The claim amount variable used as a proxy for 

injury severity and was categorized as “ less than $3,000”, “ $3,001-$9,999”, and “10,000 or 

greater”.  

Table 1: List of variables 

# Column Name Description 

1 Claim Unique identifier for each claim record 

2 Effective Year Filing year of the claim 

3 Account Unique identifier to differentiate claims for each customer 

4 Market Type of business (biodiesel or ethanol) 

5 Gender Gender of injured worker 

6 Accident State Name of state where injury occurred 

7 Jurisdiction State Name of state where the headquarters of the employer is 

located 

8 Date of Birth Date of birth of injured worker 

9 Date of Hire Date on which the present company hired the injured worker 

10 Injury Date Date on which the injury occurred 

11 Date returned to work Date on which the injured employee returned back to work 

12 Claim Description One-line narration of incident resulting in injury; Example: 

"Employee was cleaning equipment and employee opened up a 

line and acid sprayed in his face and mouth." 

13 Claim Status If the claim is still open or closed 

14 Type of claim Indicates if the claim was "medical only", "permanent 

disability", "death". 

15 Body Part Body part(s) injured 

16 Cause of Injury Main cause of injury. For example: " Dust, gasses or fumes 

inhalation", "Foreign matter in eyes", "Chemical exposure" 

etc. 

17 Nature of Injury Describes the type of injury such as Fracture, Strain, 

Contusion etc. 

18 Claim amount Total amount paid out in medical, indemnity and other 

miscellaneous payments. Used as a proxy for injury severity in 

this study. 

 

Variables analyzed in this study were mostly categorical variables, therefore, 

statistical analysis began with the construction of frequency counts, percentages, and 

contingency tables. To characterize and analyze the claim amount against employee and 

injury variables,  contingency tables were used to classify the variable pairs and chi-square 
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tests were used to test for an independent relationship. To identify the at-risk groups for 

posthoc tests, residual analysis was used to determine the nature of relationship between the 

row variable and the column variable of the contingency tables (Agresti & Finlay, 2008). The 

residual is the difference between the observed value of a specific variable pair and its 

expected value (Agresti & Finlay, 2008). A positive residual implies that the observed value 

was greater than the expected value, while a negative residual implies the observed value was 

less than expected value. Descriptive analysis was performed using Microsoft Excel and 

inferential analyses were performed with statistical software SAS version 9.4. According to 

Agresti and Finlay (2008), an adjusted residual of +/- 2 is evidence of dependence between 

the row and column variables while an adjusted residual of +/- 3 is evidence of strong 

dependence. Comparing the adjusted residuals of each cell in a contingency table helped 

identify the cells where the degree of dependence between the two variables was the 

strongest (Sharpe, 2015). 

The contingency table and chi-square test method of statistical analysis were used 

previously to investigate injuries in agriculture-related industries such as crop and dairy 

farming. For example, Javadi and Rostami (2007) used contingency tables and chi-square test 

to categorize and identify causes of on-farm machinery injuries. Similarly, Sprince et al. 

(2003) used chi-square tests to determined the strength of association between farm injuries 

of Iowa farmers and variables such as farming work hours, education beyond high school and 

age. Finally, Karttunen and Rautiainen (2011) evaluated the risk factors for declined work 

ability among full-time dairy farmers using the chi-square statistical tests. 

The exponential growth of data over the last two decades has led to the development 

of new set of tools to analyze large datasets (Anand et al., 2006). These tools are part of the 
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field of study called data mining. Data Mining involves retrieval and analysis of large 

datasets to successfully uncover hidden patterns among the data variables (Cheng et al., 

2012). Data mining includes statistical tools such as regression and modern computing tools 

such as decision trees (Anand et al., 2006). According to Sanmiquel, Rossell, and Vintro 

(2015), decision tree models are extremely useful for investigating injury data and 

identifying the key factors contributing to these injuries. 

Decision trees are one of the most widely used data mining technique (Liao et al., 

2012). This technique was first proposed by Breiman et al. (1984) to recursively partition a 

set of data into homogeneous groups and displayed graphically in an inverted tree-like 

structure. This representation of information in an intuitive and easy to visualize format is a 

reason for the popularity of decision trees in data analysis (Elith, Leathwick, & Hastie, 2008). 

Decision trees can be used to characterize both numeric as well as categorical dependent 

variables (Loh, 2011). If the dependent variable is categorical, then the model is called 

classification tree, and if the dependent variable is numeric then decision tree is known as 

regression tree model (Razi & Athappilly, 2005). 

There are several advantages of using decision trees for investigating large datasets 

such as workers compensation claims, used in this study (Savolainen, Mannering, Lord, & 

Quddus, 2011).  Unlike statistical techniques that are parameter based and require certain 

assumptions for their model parameters, decision trees are non-parametric and hence do not 

require any such pre-defined assumptions (Breiman, 2001; Chang & Chen, 2005). Another 

advantage of decision tree is that they can be used with any type of predictor variables such 

as numeric, binary or categorical for characterizing a dependent variable (Elith et al., 2008; 

Harb, Yan, Radwan, & Su, 2009). Since decision tree have a hierarchical structure where 
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response of one input variable depends on the values of inputs higher in the tree, interactions 

between predictor variables are automatically modeled (Elith et al., 2008). Finally, decision 

tree models while being straightforward to interpret, also have prediction accuracy 

comparable to those of statistical techniques such as regression (Chang & Wang, 2006; Lim, 

Loh, & Shih, 2000; Meleddu & Pulina, 2016).  

 Building decision trees involve three major phases i) tree building ii) tree pruning and 

iii) testing (Breiman et al., 1984). The decision tree model is constructed starting with the 

complete data, and partitioning the data using a set of rules and one predictor variable at a 

time to create two or more mutually exclusive groups (Cheng et al., 2012). At each partition, 

the process is repeated, and a large tree is grown until each of partitioned group are as 

homogenous as possible so the outcomes can be predicted accurately (Nenonen, 2013). Once 

the tree building is complete, the tree is then pruned by removing branches that do not 

contribute significantly in characterizing the dependent variable (Strobl, Malley, & Tutz, 

2009). Tree pruning ensures the decision tree model is kept as simple as possible without 

significant loss of prediction accuracy  (De'ath & Fabricius, 2000). Finally, the pruned 

decision tree model is tested either using a subset of the existing data or a whole new set of 

data (Loh, 2011). This process of tree building, tree pruning, and testing is repeated until the 

model with the least prediction error is found (Breiman et al., 1984; Loh, 2011; Strobl et al., 

2009). 

 In this study the decision model was used to characterize the dependent variable 

“days away from work” (DAFW) based on predictor variables, age, tenure, nature of injury, 

cause of injury and body part injured. The decision model was developed using the SAS 

Enterprise Miner version 13.1, application software. The data were prepared for data mining 
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analysis using MS- Excel. The decision tree model was compared with a multiple linear 

regression model to identify the method that best predicts the DAFW. 

Organization of Dissertation 

This dissertation is written in the alternative manuscript format as defined by Iowa 

State University’s Graduate College. Chapter one is the general introduction which outlines 

the basic ideas behind the research and summarizes the goals and objectives.` Chapters two, 

three, and four, are three manuscripts formatted for submission to specified journals. Chapter 

five is a general summary and interpretation of findings, recommendations for further 

research, and conclusions. 
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Abstract 

Biofuels production is a fast growing and emerging industry. Occupational injuries are a 

serious problem due to their human, financial and social costs, yet little research has been 

published on injuries in the biofuels industry. Learning from past injuries are essential for 

preventing future occurrences, but the lack of injury information hinders this effort in the 

biofuels industry. The present study addresses this knowledge gap by utilizing data from over 

900 workers’ compensation claims reported from 2008 to 2016 by ethanol and biodiesel 

facilities in the U.S. to characterize injury costs and severity. The total amount paid for each 

claim was used as a measure of injury severity, and the effects of age, tenure, type of claim, 

body part injured, nature and, cause of injury on the cost of work-related injuries were 

investigated. Contingency tables were used to classify the variable pairs, chi-square test and 

chi-square residuals were employed to evaluate the relation between the variable pairs and 

identify the at-risk groups. Results showed age and tenure of employee, type of claim, body 

part injured, nature of injury and, cause of injury have a significant influence in determining 

the claim amount. Age group 46-50, tenure group 1-2 years, strain and fractures injuries, 

slips, falls, or trips and, injuries to lower extremities were some of the at-risk groups 

identified. The findings from the study will assist biofuel producers to develop precisely 

targeted safety interventions that are effective in preventing worker injuries and also 

mitigating the financial and social losses from occupational injuries. 
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Introduction 

 The production of biofuels such as ethanol and biodiesel is a fast-growing business 

witnessing constant changes and improvements to its production processes (Dias et al., 2012; 

Gubicza et al., 2016; Moreno & Cozzani, 2015; Priambodo et al., 2015; Scovronick & 

Wilkinson, 2014). The manufacturing of biofuels involves processing, handling, and storing 

of grains such as corn, sorghum, wheat, and oilseeds as well as hazardous chemicals such as 

ammonia and sulfuric acid. The combination of grain handling and chemical hazards present 

a dangerous work environment (OSHA, 2016a, 2016b). Handling and storing flammable 

liquids, working with heavy equipment, dealing with combustible dust and confined spaces, 

grain engulfment, working at heights, slips, falls, and trips are just some of the occupational 

safety hazards in biofuels production (OSHA, 2016b).  

The presence of occupational safety hazards is a precursor for incidents and injuries 

in the workplace (Bevilacqua, Ciarapica, & Mazzuto, 2012; Khanzode, Maiti, & Ray, 2012; 

Vredenburgh, 2002). Data gathered from trade journals, Occupational Safety and Health 

Administration (OSHA) records, Environmental Protection Agency (EPA) reports, academic, 

and newspaper articles suggest an increase in frequency of incidents and injuries, which in 

turn has resulted in higher levels of injuries and fatalities in biofuels producing facilities 

(Calvo Olivares, Rivera, & Nunez Mc Leod, 2014, 2015; Rivera, Olivares, Baziuk, & Mc 

Leod, 2015). Despite the increased risk of worker injuries, very little scientific work has 

explored health and safety in the biofuels industry (Harper, Etchells, Summerfield, & 

Cockton, 2008; Rivera et al., 2015; Riviere & Marlair, 2010). 
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 Work-related injuries not only affect the injured worker and their family adversely 

but also impact the company in the form of increased medical, liability and insurance 

premium costs (Hajakbari & Minaei-Bidgoli, 2014). In addition to direct costs such as 

medical and indemnity payments, there are several indirect costs associated with workplace 

injuries. These indirect costs include equipment damage, equipment repair, accident 

investigation time, the cost of hiring and training an injured worker’s replacement, loss of 

reputation, loss of employee morale, loss of confidence and negative media attention 

(Gavious, Mizrahi, Shani, & Minchuk, 2009; Griend, 2011; Manuele, 2013). According to 

Bird, Germain, and Veritas (1996), for every dollar in direct costs, there are $5 to $50 in 

property damage costs and $1 to $3 in other indirect costs associated with work-related 

injuries. Furthermore, Manuele (2013)  suggested that the ratio of direct to indirect costs used 

by safety practitioners to estimate total injury costs is 1: 4.  

The average direct cost estimate for a work-related injury in the biofuels industry is 

$7,150 (Griend, 2011). Using the 1:4 ratio, the estimate for indirect costs per injury equals 

approximately $28,600. Since biofuels production is a highly cost-sensitive business (Festel, 

2008; Haarlemmer, Boissonnet, Peduzzi, & Setier, 2014), such high injury costs represent a 

threat to the profitability of a biofuels operation. Hence, an improved understanding of 

injuries and fatalities in the biofuels industry is necessary to prevent work-related injury risks 

before they occur.  

Learning from past safety events is a critical component of improving worker safety 

and preventing work-related injuries (Kletz, 2008; Pasman, 2009). Examining injuries and 

identifying associated causes provides valuable information that can help prevent recurrence 

of similar injuries (Ferjencik & Jalovy, 2010). Analysis of incident and injury data can also 
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help identify at-risk groups (Anderson, 2009; Pirdavani, Brijs, & Wets, 2010), so targeted 

injury prevention strategies can be developed, thus improving the return on safety 

investments (Abdolhamidzadeh, Abbasi, Rashtchian, & Abbasi, 2011; Khanzode, Maiti, & 

Ray, 2011; B. K. Kim et al., 2012). In one example, Chettouh, Hamzi, and Benaroua (2016) 

examined incidents in an oil refinery and uncovered evidence that employees lacked safety 

awareness. One result of the research was suggested improvements to the hiring process and 

increased investments in safety education and professional competency. Likewise, 

Marhavilas, Koulouriotis, and Mitrakas (2011) analyzed occupational injury data for an 

electric power provider and found that workers under the age of 45 years had the greatest risk 

of fractures, bruises and sprains injuries, caused due to slips, falls, and impacts with 

stationary objects.  

Obtaining detailed historical records of safety events for data analysis is a challenge 

in the process industry (Meel et al., 2007; Pasman, 2009). In the U.S., organizations such as 

Occupational Safety and Health Administration, U.S Environmental Protection Agency, 

National Fire Protection Association, and the National Response Center track and collect 

data on industrial incidents (Keren, 2010). However, these organizations differ in their 

interests, procedures, and scope of data collection, and it is difficult to use their data for 

studying past incidents in a specific industry (Morrison, Fecke, & Martens, 2011; Tauseef, 

Abbasi, & Abbasi, 2011). While some investigation has resulted in the development of an 

incident database for the biofuels industry (Calvo Olivares et al., 2014, 2015), this database 

does not contain detailed historical records of work-related injuries.  

The majority of employers in the U.S, including those in the biofuels industry, 

purchase workers’ compensation insurance to provide medical and indemnity benefits to an 
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employee who suffers a work-related injury (Sengupta, Reno, Burton Jr, & Baldwin, 2012). 

For an employer, workers’ compensation insurance covers direct costs of a work-related 

injury, including medical expenses and wage replacement incurred by the injured employee 

(Bird et al., 1996; Griend, 2011; Manuele, 2013). Workers’ compensation data contains 

information that can contribute to injury prevention activities (Utterback et al., 2012). 

Several researchers have used workers’ compensation claims data to study occupational 

injuries in various industries (Coleman & Kerkering, 2007; Frank Neuhauser, Mathur, & 

Pines, 2013; Sears, Blanar, Bowman, Adams, & Silverstein, 2013; Smith, Hogg-Johnson, 

Mustard, Chen, & Tompa, 2012). To date, little research has explored the application of 

workers’ compensation claims data to characterize occupational injuries in the biofuels 

industry. 

 This study examined occupational injuries using workers’ compensation claims data 

provided by a leading Midwest-based insurance company from biofuel production facilities. 

The purpose of this study was to characterize the direct cost of occupational injury using the 

information obtained from the workers’ compensation claims including variables such as age, 

tenure of employee, and nature, cause and type of injury. A secondary purpose of the study 

was to identify and classify at-risk groups within the biofuels production industry.  

Background 

For the last ten years, the biofuels industry in the United States has been one of the 

fastest growing areas of the agribusinesses sector (Olivares, Rivera, Baziuk, & Mc Leod, 

2014; OSHA, 2016a). Between 2006 and 2012, biofuel production in the U.S increased more 

than three-fold, making the U.S the number one producer of biofuel products in the world 

(Energy Information Administration, 2016). The rapid growth in biofuels production has 
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been accompanied by an increasing number of occupational injuries in the industry (Moreno 

& Cozzani, 2015; Olivares et al., 2014; Rivera, Olivares, Baziuk, & Mc Leod, 2015). 

A typical large-scale commercial biofuels facility utilizes approximately 50 tons of 

raw biological material daily (Vimmerstedt, Bush, & Peterson, 2013).  Most commercial 

biofuels facilities store large quantities of grain along with chemical additives necessary for 

biofuel production including sulfuric acid, sodium hydroxide, methanol, and glycerol within 

their facility (Hardy, Holz-Clause, Shepherd, & Hurburgh, 2006; Marchetti, Miguel, & 

Errazu, 2008; Vlysidis, Binns, Webb, & Theodoropoulos, 2011). From an occupational 

safety perspective, biofuel production combines the hazards of both grain handling and 

chemical processing facilities, which increases the importance of safety interventions for the 

industry (OSHA, 2016a). 

The production of ethanol and biodiesel involves a substantial amount of routine 

processes (Nigam & Singh, 2011). The routine nature of the process encourages a tendency 

to ignore safety aspects (Rivera et al., 2015), despite the known documented hazards of grain 

handling and chemical facilities (Freeman, Kelley, Maier, & Field, 1998; Niskanen, 2012; 

Reniers, 2009; Riedel & Field, 2011; Roberts & Field, 2010). As the biofuels industry 

continues to evolve with new and improved production technologies, workers in this industry 

will likely be exposed to unknown and known risks including explosions, fire, electrical, 

confined spaces, contact with chemicals, and slips, trips and falls (Spellman, 2013).  

 The existence of occupational safety hazards amplifies the risk of worker injuries 

(Bevilacqua et al., 2012; Khanzode et al., 2012). Workplace safety incidents are classified as 

major or simple (Jorgensen, 2011, 2015, 2016). Major safety events result in a high number 

of injuries and/or fatalities and cause widespread damage to property and the environment 
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(Jorgensen, 2016). Major safety events such as an explosion, fire, or containment of 

chemicals are rare events involving complex event sequences, and they make up a small 

percentage of the total number of workplace incidents (Jorgensen, 2015, 2016). Smaller 

safety events impact the immediate occupational area and result in the injury or fatality to a 

single employee (Jorgensen, 2016). Smaller safety events such as slips, falls, trips, 

contusions, and lacerations, occur more frequently and result in a higher rate of worker 

injuries and fatalities than do major safety incidents (Jorgensen, 2011, 2015, 2016). 

According to the International Association of Oil and Gas Producers, more than half of all oil 

and gas incidents are small incidents such as slips, trips and falls (Attwood, Khan, & Veitch, 

2006). These small workplace safety incidents are seldom investigated (Jorgensen, 2011) 

because they are perceived to be workers’ fault rather than engineering or environment issues 

(Vredenburgh, 2002).    

The lack of a unified source of safety incident data in the biofuels industry has been a 

major challenge to identifying probable contributing factors of incidents that can help 

develop appropriate intervention strategies (Calvo Olivares et al., 2014, 2015; Mulloy et al., 

2013; Sumner & Layde, 2009). Furthermore, the report of incidents and worker injuries 

occurring in the biofuels industry are difficult to obtain as they are spread across multiple 

sources including OSHA investigation summaries, media reports, and trade association 

publications (Calvo Olivares et al., 2014, 2015; OSHA, 2016a). Obtaining information on 

simple safety incidents is still a major challenge in the agribusiness industries including 

biofuels, as there is no single source or entity collecting data on these incidents (Douphrate, 

Rosecrance, & Wahl, 2006; Issa et al., 2016; Riedel & Field, 2011). 
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Workers’ compensation insurance claims records can partially address the 

informational gap about occupational injuries in the biofuels industry, enhancing the ability 

to develop effective safety intervention (Utterback, Meyers, & Wurzelbacher, 2014). 

Workers’ compensation insurance provides an injured worker medical benefits, a portion of 

the employee’s wage, and a lump sum payment when the employee suffers a permanent 

impairment (Sengupta et al., 2012). Most employers in all states in the U.S. except Texas are 

required to provide their employees with workers’ compensation insurance. U.S. employers 

in all industries spend approximately $85 billion each year on workers’ compensation 

insurance costs for their employees (Sengupta et al., 2012; Utterback & Schnorr, 2010). In 

addition to providing benefits to the injured worker, workers’ compensation insurance also 

protects employers from lawsuits and monetary losses resulting from occupational injuries. 

Workers’ compensation data contains valuable information commonly used in injury 

characterization (Utterback et al., 2012).  In addition to information on the direct costs of the 

injury such as medical, indemnity, and disability payments, data on the industry, occupation, 

nature of injury, cause of injury and demographic information of the injured worker are also 

captured in workers’ compensation claims data (Nestoriak & Pierce, 2009; Utterback et al., 

2012). The size and volume of workers’ compensation datasets provide a comprehensive 

understanding of injury patterns, which can then be used to analyze causal factors leading to 

an injury (Oleinick & Zaidman, 2004). 

Previous research has shown that workers’ compensation claims data can be used to 

characterize the risk, scope, and nature of workplace injuries across multiple industries. 

Frank Neuhauser, Mathur, and Pines (2013) utilized workers’ compensation data to compare 

injury incidence by gender and age while controlling for the occupation and type of industry 
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of the injured worker. Sears, Blanar, Bowman, Adams, and Silverstein (2013) used workers’ 

compensation data from the Washington State Department of Labor and Industries to predict 

occupational disability and medical cost outcomes. Smith, Hogg-Johnson, Mustard, Chen, 

and Tompa (2012) compared risk factors associated with severe versus less severe 

occupational injuries using workers’ compensation data in industries such as agriculture, 

mining, and manufacturing. Coleman and Kerkering (2007) studied occupational injuries in 

coal mines and used workers’ compensation data to distinguish between lower and higher 

risk operations and time periods. Schwatka, Butler, and Rosecrance (2013) studied the 

relationship between age and injury type on claim amount in the construction industry using 

workers’ compensation claims from 1998 to 2008. Finally, Bookman (2012), Douphrate, 

Rosecrance, and Wahl (2006) studied workplaces injuries in production agriculture with a 

focus on injury prevention. 

Despite the benefits of using workers’ compensation claims data to characterize and 

predict injuries, very little research has effectively utilized the information source to 

characterize work-related injuries in the biofuels industry. Accordingly, the purpose of this 

study was to examine workers’ compensation claims data to investigate how variables such 

as employee age, tenure, nature and cause of injury and type of claim influence the claim 

amount. Understanding these relationships helps in the development of focused mitigation 

strategies to prevent worker injuries. Also, the findings of this study may be used to model 

the direct costs associated with occupational injuries so biofuels producers and workers' 

compensation insurance providers can better understand the risks and losses from 

occupational injuries.  
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Methods and Data 

Nearly all workers in the U.S. are covered by workers’ compensation insurance 

provided by their employer (Utterback et al., 2014). Employers provide this benefit to their 

employees by either purchasing insurance from an insurance carrier or through self-insurance 

(Reville, Polich, Seabury, & Giddens, 2001). When an employee is injured on the job, the 

insurance carrier or the self-insured employer pays the medical and indemnity costs. To 

provide information and to facilitate the payment, employers must create a report of the 

worker’s injury to inform their insurance provider (Utterback et al., 2012). Data collected 

during the claims process are provided by employees, employers, insurance companies and 

other involved parties (Utterback et al., 2014). The collection of information from multiple 

stakeholders makes claims records an excellent data source for work-related injuries (Dement 

et al., 2004; Janicak, 2010; Kim, Dropkin, Spaeth, Smith, & Moline, 2012; Reville, 

Bhattacharya, & Weinstein, 2001). 

The dataset used in this study were obtained from a private insurance company 

headquartered in a Midwest state. The company specializes in insurance products for 

agribusinesses including biofuels facilities. The dataset consisted of 921 claims reported from 

2008 to 2016.  Of the 921 claims, 145 claims were from biodiesel producing facilities, while 

the remaining 776 were from ethanol producing facilities. The oldest claim in the dataset had 

an injury date of January 2nd 2008, and the newest claim injury date was February 24th 2016. 
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 Table 1: List of variables 

# Column Name Description 

1 Claim Unique identifier for each claim record 

2 Effective Year Filing year of the claim 

3 Account Unique identifier to differentiate claims for each 

customer 

4 Market Type of business (biodiesel or ethanol) 

5 Gender Gender of injured worker 

6 State Name of state where injury occurred 

7 Date of Birth Date of birth of injured worker 

8 Date of Hire Date on which the present company hired the 

injured worker 

9 Injury Date Date on which the injury occurred 

10 Claim Description One-line narration of incident resulting in injury; 

Example: "Employee was cleaning equipment and 

employee opened up a line and acid sprayed in his 

face and mouth." 

11 Claim Status If the claim is still open or closed 

12 Type of claim Indicates if the claim was "medical only", 

"permanent disability", "death". 

13 Body Part Body part(s) injured 

14 Cause of Injury Main cause of injury. For example: " Dust, gasses 

or fumes inhalation", "Foreign matter in eyes", 

"Chemical exposure" etc. 

15 Nature of Injury Describes the type of injury such as Fracture, 

Strain, Contusion etc. 

16 Claim amount Total amount paid out in medical, indemnity and 

other miscellaneous payments. Used as a proxy for 

injury severity in this study. 

 

  The list of variables obtained from the dataset used in this research are shown in 

Table1. All information recorded in the dataset were vetted and verified by insurance 

company personnel. Using the demographic information provided in the dataset, age of the 

employee was calculated as the difference between the date of birth and the injury date. 

Similarly, the tenure of the employee was calculated as the difference between the date of 

hire and injury date.The claim amount variable used as a proxy for injury severity was 

categorized as “<$3,000”, “ $3,000-$9,999” , and   “10,000+”.  
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Since the variables analyzed in this study were all categorical, the statistical analysis 

began with the construction of frequency counts, percentages, and contingency tables. To 

characterize the claim amount using the employee and injury variables,  contingency tables 

were used to classify the variable pairs and chi-square tests were used to validate the 

relationship. For the posthoc tests to identify the at-risk groups, residual analysis was used to 

determine the nature of relationship between the row variable and the column variable of the 

contingency tables (Agresti & Finlay, 2008). The residual is the difference between the 

observed value of a specific variable pair and its expected value (Agresti & Finlay, 2008). A 

positive residual implies that the observed value was greater than the expected value, while a 

negative residual implies the observed value was less than expected value. Descriptive 

analysis was performed using Microsoft Excel and the inferential analyses were performed 

with statistical software SAS version 9.4. 

In SAS, residuals are standardised and calculated as: 

 

Where nij is the observed value, eij is the expected value for the ith row jth column cell. 

pi. is row total for ith row and p.j is the column total for the jth column. According to Agresti 

and Finlay (2008), an adjusted residual of +/- 2 is evidence of dependence between the row 

and column variables while an adjusted residual of +/- 3 is evidence of strong dependence. 

Comparing the adjusted residuals of each cell in a contingency table helped identify the cells 

where the degree of dependence between the two variables was the strongest (Sharpe, 2015). 

Since, the purpose of this study was to characterize the direct cost of occupational 

injury using the demographic (age and tenure) and injury characteristics (nature, type, and 
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cause of injury, body part injured). The claim amount was used as a proxy for direct injury 

cost, and the broad research question that guided this study was: Is the claim amount in 

selected biofuels operations dependent on the employee demographics and injury 

characteristics? Specifically, the following sub research questions listed below were 

analyzed: 

Is the claim amount independent of: 

i. Age of employee 

ii. Tenure of employee 

iii. Type of claim 

iv. Nature and Cause of injury 

v. Body part injured 

Results and Discussion 

Characterizing claim amount based on employee age 

The first research question investigated if the claim amount and the age of the injured 

employee were independent.  The claim amount is the sum of all payments made by the 

workers’ compensation insurance provider to the injured employee.  This amount includes 

medical, indemnity, and other miscellaneous payments made to the injured employee as 

compensation for their work related injury. For this reason, severe injuries, such as those 

resulting in disability or death have a higher claim amount than less severe injuries requiring 

less medical treatment (Sears, Blanar, & Bowman, 2014; Sears et al., 2013).  
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Table 2: Age of employee and claim amount 

Claim amount 

Age         

(years) <$3000 

$3000-

$9999 

$10,000 

& above Total 

<25  
71     

(2.7*) 

3            

(-1.1) 

  2          

(-2.4*) 
76 

26-30  
94          

(2.6*) 

4            

(-1.3) 

5            

(-2.1*) 
103 

31-35  
99 

(1.8) 

4 

(-1.5) 

9 

(-1.0) 
112 

36-40  
89 

(-1.2) 

11 

(1.2) 

14 

(0.5) 
114 

41-45  
107 

(0.1) 

11 

(0.7) 

12 

(-0.6) 
130 

46-50  
92 

(-3.2**) 

12 

(1.1) 

24 

(3.1**) 
128 

51-55  
100 

(-0.6) 

8 

(-0.3) 

17 

(1.1) 
125 

56-60  
68 

(-1.9) 

11 

(2.0*) 

12 

(0.7) 
91 

60+  
36 

(0.6) 

1 

(-1.2) 

5 

(0.2) 
42 

Total 756 65 100 921 

χ2  35.09; df= 16; p-value= 0.0039 and α = 0.05; N=921  

Residuals in brackets; * evidence of relationship; ** evidence of strong relationship 

To explore the relationship between employee age and the claim amount, a 

contingency table with age as the row variable and claim amount as the column variable was 

tabulated as shown in Table 2.  Each cell in the contingency table is a count of claims 

corresponding to the respective age group and claim amount category. The last row in Table 

2 shows the total number of claims in each claim amount category, while the last column 

indicates the number of claims corresponding to each age group.  

The distribution of the number of claims based on the claim amount, as shown in the 

last row of Table 2 indicates that nearly 90% of the claims were less than $10,000. This 

finding implies that the majority of work-related injuries in the dataset used in this study 
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were minor injuries, requiring less medical attention. In other words, only one out of the ten 

injuries recorded, resulted in a claim amount higher than $10,000. The distribution of the 

number of claims, based on age group as shown in the last column of Table 2, shows 77% of 

the claims involved an employee between 25 and 55 years of age. According to the Bureau of 

Labor Statistics, 80% of the total workforce in the U.S are in the age group of 25-55 years 

(BLS, 2016) . Hence, this study’s findings that majority of the work related injuries in the 

biofuel facilities were in the 25-55-year group is consistent with the overall distribution of 

workforce in the United States. 

A chi-square test was conducted to evaluate if the claim amount was independent of 

the age of the employee. The test results showed a p-value of less than 0.05 providing 

evidence that the claim amount and the age of the employee were not independent. This 

finding implies that the age of the employee is a significant factor that can be used to 

determine the claim amount. Since injury severity in this study was measured using the claim 

amount, the findings of this study are consistent with previous research that suggested the 

link between the age of the employee and severity of work-related injuries (Laflamme, 1996; 

Rogers & Wiatrowski, 2005; Salminen, 2004; Takahashi & Miura, 2016). According to 

Rogers and Wiatrowski (2005) and Salminen (2004), young workers below the age of 25 

years have a higher risk of injuries than older workers. However, the injuries to older 

workers are likely to be more severe when compared with younger workers. More severe 

injuries require increased medical attention and could also result in lost workdays, resulting 

in a higher claim amount.  

To identify at-risk age groups, the residual values from the chi-square test shown in 

brackets in Table 2 were examined. The residual values indicate the strongest relationship 
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between age and claim amount are in the 46-50 age group category. Also, evidence of a 

relationship between age and claim amount was found in the 26-30, less than 25, and 56-60 

age categories. It is noteworthy that in the 46-50 age group category, the residual value 

indicates a greater than expected number of claims in the $10,000 and above category and 

fewer than expected number of claims in the below $3,000 category. This implies, that 

employees in the 46-50 age category are likely to have more severe injuries, which requires 

higher levels of workers compensation payments. The residual values for the 26-30 and 

below 25 age categories, however, indicate exactly opposite to that of the 46-50 age group 

category. In both the 26-30 and below 25 age categories, the number of claims in the below 

$3,000 category are more than expected value while the number of claims in the $10,000 and 

above category are fewer than the expected value. 

Also noteworthy is the change in the sign of the residuals as the age of employee 

increases. For the below $3,000 category, the sign of residual changes from positive to 

negative as the age of employee increases except for the age groups 41-45 and 60 and above. 

Similarly, in the above $10,000 category, the sign of residual changes from negative to 

positive as the age of the employee increases except for the age group 41-45.  This change in 

the sign of residuals implies, that the number of claims for minor injuries decreases as the 

age of the employee increases while the number of claims for severe injuries increases with 

the increase in employee age. This finding further corroborates the results of previous studies 

(Laflamme, 1996; Rogers & Wiatrowski, 2005; Salminen, 2004; Takahashi & Miura, 2016) 

who suggested that older workers are likely to have more severe injuries than younger 

workers.  
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Characterizing claim amount based on employee tenure 

Table 3: Tenure of employee and claim amount 

Claim amount 

Tenure  

(years) <$3,000 

$3000-

$9999 $10,000+ 

  

Total 

<1  
104 

(0.0) 

11 

(0.7) 

12 

(-0.6) 
127 

1-2  
267 

(2.8*) 

14 

(-2.1*) 

26 

(-1.7) 
307 

3-5  
185 

(-0.1) 

16 

(0.0) 

25 

(0.1) 
226 

6-10  
116 

(-1.8) 

17 

(2.2*) 

18 

(0.4) 
151 

11-20  
51 

(0.1) 

3 

(-0.7) 

8 

(0.5) 
62 

20+  
28 

(-2.9*) 

4 

(0.6) 

11 

(3.2**) 
43 

Total 751 65 100 916 

χ2 = 21.34; df= 10; p-value= 0.0189 and α = 0.05; N=916 

Residuals in brackets; * evidence of dependence; ** evidence of strong dependence 

The second research question investigated if the tenure of the injured employee and 

the claim amount were independent of each other. The contingency table used to investigate 

this research question is shown in Table 3.  Only 916 records out of the 921 available records 

were analyzed because the remaining records did not contain the tenure information. The 

distribution of the number of claims by employee tenure indicates that nearly half of all 

injury-causing safety incidents involved an employee with two or fewer years of work 

experience.  

Similarly, close to three-quarters of all injury-causing safety incidents involved an 

employee with five or fewer years of experience. This finding is different from the results of  

Chen, Yao and Wu (2013) who studied employees in the petrochemical production industry. 

Chen, Yao and Wu (2013) analyzed occupational injuries recorded in the Council of Labor 
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Affairs in Taiwan, and found that the majority of occupational incident victims were 

employees with more than three years of work experience. According to Vinodhkumar and 

Bhasi (2009), the length of service of an employee in a company influences their skills and 

attitudes towards safety. Therefore, this difference could be attributed to employees in 

biofuels production taking less time to learn about occupational hazards as compared to the 

employees in the petrochemicals industry. Since, the production of biofuels involves a 

routine process (Nigam & Singh, 2011), employees in this industry could have a shorter 

learning cycle when compared to employees in other petrochemical industries. It is worth 

noting that the study of Chen, Yao and Wu (2013) analyzed only those safety incidents that 

resulted in injuries to three or more employees while this study analyzed safety incidents that 

resulted in injuries to one or more employees. 

The chi-square test of independence between the tenure of the injured employee and 

the claim amount resulted in a p-value of less than the 0.05 significance level. This result 

implies, the tenure of the injured employee is also a significant factor that can be used to 

determine the claim amount. This result of a significant relationship between the tenure of 

the injured employee and claim are expected. This expectation was because previous studies 

in the petrochemical industries (Cheng et al., 2013; Nouri, Azadeh, & Fam, 2008) as well as 

non-petrochemical industries such as construction (Lopez Arquillos, Rubio Romero, & Gibb, 

2012; Suarez-Cebador, Carlos Rubio-Romero, & Lopez-Arquillos, 2014) have suggested a 

relationship between tenure and injury severity. Studies by Lopez Arquillos, Rubio Romero, 

and Gibb (2012) and Suarez-Cebador, Carlos Rubio-Romero, & Lopez-Arquillos (2014) 

found that employees with three or less years of work experience have the highest number of 
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occupational injuries, while Nouri, Azadeh, and Fam (2008) suggested that more experienced 

employees tend to have higher number of incidents. 

The residual values from the chi-square test used to investigate the at-risk groups 

showed that employees in the 1-2 years and 20 years and above tenure category show 

evidence of a significant relationship with the claim amount. In addition, one cell in the 6-10 

years tenure category also demonstrated evidence of a significant relationship with the claim 

amount. This result implies that both newer employees and highly experienced employees in 

the biofuel facilities investigated in this study are the most at-risk groups for occupational 

injury. This finding aligns with the findings of  Khanzode et al. (2012). According to 

Khanzode et al. (2012), the risk of injury is high during the initial years on the job, then 

decreases when an employee acquires sufficient work experience but increases again for the 

highly experienced employee.  

Observing the sign of the residuals shows that in the below $3,000 category the sign changes 

from positive to negative as the tenure increases, but in the $10,000 and above category the 

sign changes from negative to positive as tenure increases. This finding implies that with the 

increase in employee tenure, there are greater numbers of claims in the severe injury category 

than in the minor injury category. This shift in injury severity could be attributed to the age 

of the employee since tenure and age are highly correlated (Vinodkumar & Bhasi, 2009). As 

tenure of the employee increase so does their age, reducing their ability to tolerate impact 

from safety incidents (Brorsson, 1989) thereby increasing the likelihood of severe injuries. 
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Characterizing claim amount based on the type of claim  

Table 4: Type of claim and claim amount 

 
Claim amount 

Type of claim <$3,000 
$3,000-

$9,999 
$10,000+ 

 

Total 

Medical only 
747 

(23.6**) 

38          

(-6.8**) 

10            

(-23.5**) 
795 

Temporary 

disability 

3            

(-8.5**) 

11 

(8.0**) 

8      

(3.9**) 
22 

Death or 

Permanent 

disability 

6 

(-21.5**) 

16 

(3.5**) 

82  

(23.7**) 
103 

Total 756 65 100 921 

χ2 = 696.97; df = 4; p-value= <0.001 and α = 0.05; N=921 

Residuals in brackets; * evidence of dependence; ** evidence of strong dependence 

 

The third research question investigated the relationship between the claim amount 

and the type of claim. The variable type of claim, had three categories, “medical only”, 

“temporary disability”, and “death or permanent disability”. “Medical-only” relates to 

occupational safety incidents where the employee’s injury required medical treatment only 

and did not result in any temporary or permanent incapacitation.  This implies the claims in 

the medical-only category had a low injury severity and required minimal medical attention. 

The next claim category – temporary disability – is defined as injuries where employees are 

not able to work fully or to their expected capacity. In these cases, injured employees are 

paid two-thirds of their monthly salary in addition to the medical payments (Manning, 2012). 

The final claim category – death or permanent disability – has the highest injury severity. A 

claim is classified in the death or permanent disability category when the injured employee is 

expected to have either long-term physical challenges or permanent loss of functionality with 

some part of the body (Corso, Finkelstein, Miller, Fiebelkorn, & Zaloshnja, 2006). The 
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contingency table used to classify the claim amount using the type of claim is shown in Table 

4.   

The distribution of claims based on the type of claim showed that 86% of the claims 

were medical only, 2% of the claims involved temporary disability, and 11% of the claims 

involved the death or disability of an employee. Out of the 103 claims in the death and 

permanent disability category, only one claim involved the death of the employee.  The 

finding implies, that the majority of injuries in the biofuels facilities investigated in this 

research were minor injuries requiring only medical attention and no lost workdays. The chi-

square test to investigate the relationship between the type of claim and claim amount had a 

p-value of less than 0.05 significance level, implying that type of claim is a significant factor 

that can be used to determine the claim amount. The test results for this research question 

shows a large chi-square statistics value; this implies a strong relationship between the type 

of claim and the claim amount.  

This evidence of a strong relationship between the two variables explains why both 

claim amount and type of claim can be used as a proxy for injury severity as suggested by 

previous research  (Beery et al., 2014). Medical-only type of claims are the least severe and 

have the lowest claim amount when compared with the other two types of claim: death or 

permanent disability, and temporary disability. The residuals from the chi-square test shown 

in brackets in Table 4 further corroborate the findings of Beery et al.(2014). Furthermore, 

with the change in the type of injury from medical only category in Table 4 to the death or 

disability category, the number of claims in the less than $3,000 category decreases 

significantly while the number of claims in the above $10,000 category increases 

significantly. The finding implies that minor injuries in the biofuels facilities are most likely 
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to have a claim amount of less than $3,000 , while severe injuries are more likely to have a 

claim amount more than  $10,000. It is noteworthy that for each cell in Table 4 the value of 

residual is greater than ± 3. The large residual values provide further evidence indicating a 

strong statistical relationship between the type of injury and claim amount. 

Characterizing claim amount based on the nature and cause of injury  

The fourth research question investigated if the claim amount was independent of the 

nature and cause of injury. The contingency tables used to classify the claim amount by 

nature of injury are shown in Tables 5.  

Table 5: Nature of injury and claim amount 

 

Claim amount 

Nature of injury <$3,000 
$3,000-

$9,999 
$10,000+ 

  

Total 

Strain & sprain 
262 

(-2.9*) 

28 

(1.1) 

49 

(2.7*) 
339 

Others 
110 

(-1.0) 

11 

(0.4) 

18 

(0.9) 
139 

Laceration 
115 

(3.1*) 

6 

(-1.1) 

4 

(1.5) 
125 

Burn 
101 

(1.3) 

6 

(1.7) 

12 

(-3.0**) 
119 

Contusion 
105 

(1.9) 

7 

(-1.0) 

7 

(-1.7) 
119 

Foreign body 
39 

(2.6*) 

1          (-

1.2) 

0 

(-2.3*) 
40 

Fracture 
24 

(-3.7**) 

6 

(2.0) 

10 

(2.9*) 
40 

Total 756 65 100 921 

χ2 = 40.04; df = 12; p-value= <0.001 and α = 0.05; N=921 

Residuals in brackets; * evidence of dependence; ** evidence of strong dependence 

 

The distribution of claims in Table 5 revealed that strain and sprain injuries were the 

most common type of injuries followed by “others” and lacerations. Fractures and foreign 

body were the least common types of injuries. Nearly 37% of claims were for strain and 
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sprain injuries while only 4% of the claims were for fractures or foreign body.  The Chi-

square test suggested that the claim amount was not independent of the nature of the injury. 

This finding means the nature of the injury is a significant factor that can be used to 

determine the claim amount. 

Examining the chi-square residuals indicates the nature of injury categories showing 

an evidence of a strong relationship with claim amount were: strain and sprain, laceration, 

burn, foreign body, and fracture. However, the sign of residuals indicates that, in the case of 

strain and sprain and fractures injuries, the number of claims in the $3,000 or below category 

was less than the expected value, but the number of claims in the $10,000 and above category 

was more than the expected value. This finding suggests that strain and sprain and fracture 

injuries are likely to be more expensive when compared to all other types of injuries. 

Likewise, lacerations and foreign body injuries tend to have lower costs than all other types 

of injuries and are likely to be less expensive. 

A review of the literature suggests strain and sprain injuries are the most common 

type of injury across many industries (Nur, Dawal, & Dahari, 2014; Schwatka et al., 2013; 

van Tulder, Malmivaara, & Koes, 2007). In the U.S., strain injuries alone cost $6.5 billion in 

workers’ compensation costs with the average claim ranging from $5000 to $8000 (Baldwin 

& Butler, 2006; van Tulder et al., 2007). However, studies by Attwood, Khan, and Veitch 

(2006) and Cheng, Yao, and Wu (2013) investigating occupational injuries in the oil and gas 

and petrochemical industries did not list strain injuries in their list of injury types. The fact 

that strain and sprain injuries were the most common type of injuries in this study of biofuels 

facilities suggests that there may be tasks unique to the biofuels industry that may be 

contributing to such higher levels of strain injuries as compared to other petrochemical 
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industries. Fracture, burn, foreign body, laceration and contusion type of injuries have all 

been listed as types of injuries in petrochemical industries by prior studies, yet these type of 

injuries are not as prevalent in biofuels production (Bertolini, Bevilacqua, Ciarapica, & 

Giacchetta, 2009; Owens & Hazeldean, 1995; Wu, 2004). 

Consistent with the nature of injury, the classification of claim amount based on the 

cause of injury as shown in Table 6 indicated that “strain or injured by” is the most common 

cause of injury followed by slips, falls, and trips. Nearly 47% of claims involved a strain 

injury or a slip, trip, or fall injury. The chi-square test showed the claim amount was not 

independent of the cause of the injury thus suggesting the cause of injury is also significant 

factor useful in determining the claim amount.  

Table 6: Cause of injury and claim amount 

 

Claim amount 

Cause of injury <$3,000 
$3,000-

$9,999 
$10,000+ Total 

Strain or injured by 
197 

(-1.9) 

19 

(0.4) 

36 

(2.1*) 
252 

Slip, fall or trip  
131 

(-3.6**) 

15 

(0.7) 

34 

(3.9**) 
180 

Others 
130 

(2.8*) 

7 

(-1.1) 

7 

(-2.5) 
144 

Heat or cold 

Exposures 

115 

(1.6) 

5 

(-1.6) 

12 

(-0.7) 
132 

Struck or injured by 
89 

(0.8) 

11 

(1.4) 

5 

(-2.1*) 
105 

Cut, puncture, 

scrape 

77 

(2.1*) 

4 

(-0.9) 

4 

(-1.9) 
85 

Caught in, or under, 

or between 

17 

(-1.0) 

4 

(1.9) 

2 

(-0.3) 
23 

Total 756 65 100 921 

χ2 = 39.6; df = 12; p-value= <0.001 and α = 0.05; N=921  

Residuals in brackets; * evidence of dependence; ** evidence of strong dependence 

 



48 

 

Residuals from the chi-square test indicate slips, trips, and  falls have the strongest 

relationship with claim amount. Evidence of a significant relationship with claim amount was 

also observed in one cell corresponding to the strain or injured by, others, struck or injured 

by and cut puncture scrape categories. However, the sign of residuals suggests that for 

categories strain or injured by and slips falls or trips, the number of claims in the $10,000 and 

above category was more than the expected value while the number of claims in the $3,000 

or below category was less than the expected value. This finding suggests that injuries due to 

slips, trips, and falls or injuries involving a strain or injured by are likely to be more 

expensive than the other injuries. For the remaining categories including others, struck or 

injured by and cut puncture scrape, the residual values indicate the claim amount are more 

likely to be in the below $3,000 category. Based on these analyses, targeting slips, trips, and 

falls and strain related injuries through safety interventions could potentially reduce the claim 

amount significantly. 

Characterizing claim amount based on injured body part 

The final research question investigated if the claim amount was independent of the 

injured body part. A contingency table constructed to address this research question is shown 

in Table 7.  

The distribution of data suggests that upper extremities such as hands and fingers 

were the most frequently injured body part, followed by the trunk and lower extremities such 

as toes and feet. In eight out of 10 claims filed by the biofuel facilities, the injured body part 

was either an upper extremity, trunk or the lower extremity. This finding is consistent with 

the results of Marhavilas, Koulouriotis, and Mitrakas (2011) who also reported that the most 

injured body parts were arms, legs, head and neck of the employee . The chi-square test 
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results indicated the claim amount was not independent of the body part injured. This finding 

suggests the body part injured is a significant factor that can be used to determine the claim 

amount.  

Table 7: Body part injured and claim amount 

 

Claim amount 

Body part <$3,000 
$3,000-

$9,999 
$10,000+ Total 

Upper extremities 
273 

(1.0) 

19 

(-1.1) 

34 

(-0.3) 
326 

Trunk 
183 

(0.1) 

21 

(1.6) 

18 

(-1.5) 
222 

Lower extremities 
127 

(-3.3**) 

14 

(0.6) 

32 

(3.6**) 
173 

Head & neck 
149 

(3.6**) 

8 

(-1.2) 

5 

(-3.5**) 
162 

Multiple 
24 

(-3.1**) 

3 

(0.2) 

11 

(3.7**) 
38 

Total 756 65 100 921 

χ2 = 40.5; df = 8; p-value= <0.001 and α = 0.05; N=921 

Residuals in brackets; * evidence of dependence; ** evidence of strong dependence 

 

Examining the chi-square residuals indicates that lower extremities, head and neck, 

and multiple body part injuries show evidence of strongest relationship with the claim 

amount. For both lower extremities and multiple body part injuries, the residuals indicate that 

the number of claims in the below $3,000 category was less than the expected value while 

the number of claims in the greater than $10,000 category was more than the expected value. 

This finding suggests that injuries to lower extremities and multiple body parts tend to be 

more expensive compared to the rest of the categories. However, for the head and neck 

injuries, the residuals indicate these injuries are more likely to be inexpensive compared with 

other injuries.   
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With further investigation of the claim records relating to injuries on lower 

extremities and multiple body parts showed, that slips, trips, and falls were the leading cause 

of these injuries. Heat or cold exposures were found to have the next highest number of 

claims corresponding to multiple and head and neck injuries. Reviewing the claims 

description showed that grain dust, hot and cold liquid entering the eye were most frequent 

description mentioned for the head and neck and multiple body part injuries. These findings 

suggest that implementing safety interventions to prevent slips, trips, and falls and providing 

improved protective equipment to prevent hot and cold exposure to employees’ eyes and face 

has potential to significantly help reduce the claim amount. 

Conclusion 

Occupational injuries in the biofuels industry have received little attention in the 

research literature. Lack of a centralized source of data to investigate these incidents 

continues to be a challenge. This study proposes the use of workers’ compensation claims 

data as a useful resource for investigating workplace injuries in the biofuels industry. The 

objective of this study was to characterize the relationship of the claim amount with 

employee age and tenure, nature and cause of injury, type of claim and the body part injured. 

These data are all collected as part of the workers’ compensation claim process. This study 

found that the employee age, tenure, type of claim, injured body part, nature and cause of 

injury have a significantly influence on the claim amount. Since the claim amount is a proxy 

for injury severity this study shows that employee age, tenure, type of claim, injured body 

part, nature and cause of injury have a significantly influence on the severity of occupational 

injuries. Of all the variables analyzed, the type of claim was found to have the most 

significant influence on the claim amount. Furthermore, employees in the age group 46-50, 
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1-2 years’ tenure groups have been identified as the most at-risk groups. Strain and sprain, 

laceration, foreign body, and fractures have a significant influence on the claim  amount, 

while strain or injured by, slips, fall , or trips were found to be the most significant causes. 

Finally, injuries to lower extremities, head and neck, and injuries to multiple body parts have 

the influence on claim amount. 

While workers’ compensation data are extremely useful in injury prevention studies, 

the recording of information during the workers’ compensation claims process could be 

prone to human errors. Also, the scope of analysis is narrowed by the information available 

in the dataset. However, analysis of a large number of claims, recorded over an extended 

period of time, characterizes the strength and rigorousness of this study. The findings of this 

study will enhance the understanding of the risks of injury as it highlights areas where safety 

efforts can be focused. Future work could involve analyzing the relationships between the 

non-cost related variables and also simultaneously investigating all the variables and their 

interaction effects. A multivariate model of the claim amount can be constructed so biofuels 

producers, as well as the worker's compensation insurance providers, can better analyze the 

risks from occupational accidents. 
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Abstract 

Workplace injuries in the grain handling industry are common, yet little research has 

characterized worker injuries in grain elevators across all hazard types. Learning from past 

injuries is essential for preventing future occurrences, but the lack of injury information for 

the grain handling industry hinders this effort. The present study addresses this knowledge 

gap by utilizing data from over 7000 workers’ compensation claims reported from 2008 to 

2016 by commercial grain handling facilities in the U.S. to characterize injury costs and 

severity. The total amount paid for each claim was used as a measure of injury severity. The 

effect of worker age and tenure, cause of injury and body part injured on the cost of work-

related injuries were investigated. Contingency tables were used to classify the variable pairs.  

The chi-square test and chi-square residuals were employed to evaluate the relationship 

between the variable pairs and identify the at-risk groups. Results showed that age and tenure 

of employee, cause of injury and body part injured have a significant influence on the cost 

paid for the claim. Several at-risk groups were identified as a result of the analyses. Findings 

from the study will assist commercial grain elevators in the development of targeted safety 

interventions and assist grain elevator safety managers in mitigation of financial and social 

losses from occupational injuries.  

Keywords: grain elevator, grain handling, occupational injuries, at-risk groups 
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Introduction 

The grain handling industry in the U.S. is a hazardous work environment with 

workers in these facilities constantly at risk of severe and life-threatening occupational 

injuries (Issa et al., 2016). Common sources of occupational hazards in the grain handling 

facilities include grain dust, grain engulfment, entrapment in confined spaces, slips, falls, 

trips, equipment-related hazards,exposure to harmful chemicals and gasses (OSHA, 2016; 

Snyder & Bobick, 1995).  Identification and characterization of past safety incidents can 

drive potential intervention strategies intended to mitigate injury risks (Cohen, Clark, 

Silverstein, Sjostrom, & Spielholz, 2006; Kines, Spangenberg, & Dyreborg, 2007; Menckel 

& Carter, 1985; Verma, Das Khan, Maiti, & Krishna, 2014). However, the majority of past 

studies investigating injuries and fatalities in grain facilities have focused only on a few 

safety hazards. This is true even though hazards in a grain handling facility are plentiful. 

Some of the safety risks affecting the workers in the grain handling industry are, exposure to 

chemicals and gasses, electrical hazards, noise hazard due to fast moving machinery like 

conveyors, motors, and augers, slips, trips and fall and finally suffocation and engulfment 

hazards (Van Fleet , Frank, & Rosenbeck, 2013). 

Despite the existence of numerous workplace hazards in the grain handling industry, 

very few comprehensive studies have thus far examined worker safety across all the hazard 

categories. Previous research has examined specific hazards and resulting injuries in 

commercial grain handling environments. For example, Freeman, Kelley, Maier and Field 

(1998), examined entrapments in various bulk commodities at commercial grain facilities. 

Similarly, the study by Field, Heber,  Riedel,  Wettschurack,  Roberts, and Grafft (2014), 

examined hazards associated with grain vacuum systems at commercial grain storage 
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facilities. No recent comprehensive characterization of injuries in the commercial grain 

handling setting has been completed. A National Institute for Occupational Safety and Health 

(NIOSH) study (NIOSH, 1983) was the last time a detailed analysis of injuries in grain 

elevators was conducted. A review of research literature showed very few follow-up studies 

to the 1983 NIOSH study were completed, even though the grain handling industry has seen 

several changes over the last few years (Rosentrater & Williams, 2004). 

 The grain handling industry performs an important role in U.S. agriculture by 

handling, storing, distributing and processing a variety of agricultural commodities (Williams 

& Rosentrater, 2004). According to the National Agricultural Statistics Service (NASS), in 

2015, there were 8,638 commercial grain facilities in the United States, storing and handling 

11 billion bushels of grains such as corn, wheat, soybean, and oats. In the last five years, the 

grain storage capacity in the U.S. has increased by 15% while the number of grain storage 

facilities has decreased by 4% (NASS, 2011, 2016). Furthermore, the average grain stored at 

each facility has increased by 22% from 2010 to 2015.  These numbers suggest U.S. grain 

handling facilities are getting larger, handling and moving higher volumes of grain as 

compared to previous years. This expansion of the grain handling industry has resulted in a 

high rate of occupational injuries and fatalities as compared to prior years (S. Riedel & Field, 

2011). According to the National Institute for Occupational Safety and Health (NIOSH), 

grain-handling machinery is the second largest factor in farm machinery-related deaths and 

disabilities (Snyder & Bobick, 1995).  

The availability of injury data, especially non-fatal injury data is a continuing 

challenge, limiting potential development of research-based safety intervention in grain 

handling facilities (Issa et al., 2016; Patel, Watanabe-Galloway, Rautiainen, Haynatzki, & 
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Gofin, 2016; Zhou & Roseman, 1994). Although, the Occupational Safety and Health 

Administration (OSHA) standard 29 CFR 1910.272 regulates the grain handling industry, 

OSHA record-keeping does not always record all injuries and fatalities that occur in the grain 

industry (Issa, Cheng, & Field, 2016). Furthermore, many grain handling facilities are 

exempt from OSHA record-keeping requirements because they have fewer than 11 

employees (Douphrate, Rosecrance, & Wahl, 2006; Zhou & Roseman, 1994). Even in larger 

facilities, because of budgetary, administrative, and logistical constraints, OSHA collects 

data only from employers deemed as high hazard, and most often, only from companies with 

more than 40 employees (Leeth, 2012). Additionally, data gathered from grain handling 

facilities is frequently mixed with other farm-level data, so drawing conclusions on 

workplace conditions of grain elevators becomes difficult (Douphrate, Rosecrance, Stallones, 

Reynolds, & Gilkey, 2009). 

The most widely used source for investigating occupational injuries and fatalities 

across various industries are the Census of Fatal Occupational Injuries (CFOI) and the 

Survey of Occupational Injuries and Illness (SOII) published by the U.S. Bureau of Labor 

Statistics (BLS) (Biddle & Marsh, 2002; Nanda, Grattan, Chu, Davis, & Lehto, 2016). 

Waehrer, Dong, Miller, Haile, and Men (2007), investigated the cost of occupational injuries 

in the high-hazard construction industry using the SOII data from BLS. Similarly, Asfaw, 

Pana-Cryan, and Rosa (2011), investigated workplace injuries across five industry sectors 

using the non-fatal SOII injury data. While the BLS data are a useful source for injury 

investigations, researchers have also highlighted its limitation for studying workplace injuries 

in the agricultural industry (Douphrate, Rosecrance, Stallones, et al., 2009; Landsteiner, 

McGovern, Alexander, Lindgren, & Williams, 2015; Patel et al., 2016; Riedel & Field, 
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2013). According to Riedel and Field (2013), BLS data include only annual totals for injuries 

and fatalities and do not provide detailed information such as causative factors, considered 

essential for studying workplace hazards. Furthermore, evidence from scientifically 

published literature also suggests that BLS data significantly underreport work-related injury 

data, missing between 61 and 88 percent of non-fatal injuries (Boden & Ozonoff, 2008; 

Leigh, Du, & McCurdy, 2014; Leigh, Marcin, & Miller, 2004; Rosenman et al., 2006). For 

this reason, a need exists for an alternative injury data source to investigate workplace 

injuries in the grain handling industry. 

Workers’ compensation insurance claims records can partially address the 

informational gap about occupational injuries in the grain handling industry, enhancing the 

ability of firms to develop effective safety interventions (Utterback, Meyers, & 

Wurzelbacher, 2014). Workers’ compensation insurance provides an injured worker medical 

benefits, a portion of the employee’s wage, and a lump sum payment when the employee 

suffers a permanent impairment (Sengupta, Reno, Burton Jr, & Baldwin, 2012). Employers 

in all states in the U.S. except Texas are required to provide their employees with workers’ 

compensation insurance. Each year, companies in the U.S. across all industries spend 

approximately $85 billion on workers’ compensation insurance costs (Sengupta et al., 2012; 

Utterback & Schnorr, 2010). In addition to providing benefits to the injured worker, workers’ 

compensation insurance also protects employers from lawsuits resulting from occupational 

injuries. 

Workers’ compensation data contains valuable information commonly used in injury 

characterization (Utterback et al., 2012).  In addition to information on the direct costs of the 

injury such as medical, indemnity, and disability payments, data on the industry, occupation, 



70 

 

nature of injury, cause of injury, and demographic information of the injured worker are also 

captured in workers’ compensation claims data (Nestoriak & Pierce, 2009; Utterback et al., 

2012). Several studies have highlighted the use of workers’ compensation claims data as an 

excellent data source that provides information on workplace injuries and their contributing 

factors (Dement et al., 2004; Foley, Rauser, Rappin, & Bonauto, 2013; Meyers et al., 2013). 

The size and volume of workers’ compensation datasets provide a comprehensive 

understanding of injury patterns, which can then be used to analyze causal factors leading to 

an injury (Oleinick & Zaidman, 2004). 

Previous research has shown that workers’ compensation claims data can be used to 

characterize the risk, scope, and nature of workplace injuries across multiple industries. 

Neuhauser, Mathur, and Pines (2013) utilized workers’ compensation data to compare injury 

incidence by gender and age while controlling for the occupation and type of industry of the 

injured worker. Sears, Blanar, Bowman, Adams, and Silverstein (2013) used workers’ 

compensation data to predict occupational disability and medical cost outcomes. Smith, 

Hogg-Johnson, Mustard, Chen, and Tompa (2012) compared risk factors associated with 

severe versus less severe occupational injuries using workers’ compensation data in 

industries such as agriculture, mining, and manufacturing. Coleman and Kerkering (2007) 

studied occupational injuries in coal mines and used workers’ compensation data to 

distinguish between lower and higher risk operations and time periods. Schwatka, Butler, and 

Rosecrance (2013) studied the relationship between age and injury type on claim amount in 

the construction industry using workers’ compensation claims from 1998 to 2008.  

Review of research literature also showed that workers’ compensation claims data 

have been used previously to characterize occupational injuries in some agricultural-based 
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industries. For example, Bell and Helmkamp (2003) examined workers’ compensation injury 

claims to investigate injury patterns and rates of non-fatal logging injuries. Douphrate, 

Rosecrance, Reynolds, Stallones, and Gilkey (2009) studied tractor-related injuries by 

analyzing workers’ compensation data. Similarly, Bookman (2012) used workers’ 

compensation data to investigate occupational injuries of Ohio agricultural workers over a 

ten-year period (1999-2008). Despite the validated benefits of utilizing workers’ 

compensation claims data for studying agricultural injuries,  limited research has expanded 

the use of these data to study occupational injuries in the grain handling industry. 

This study investigated occupational injuries in grain elevators using workers’ 

compensation claims data provided by a leading Midwest-based insurance company. The 

purpose of this study was to characterize the direct cost of occupational injury using the 

information obtained from the workers’ compensation claims including variables such as 

body part injured, cause of injury, employee age, and tenure. A secondary purpose of the 

study was to identify and classify at-risk groups within the grain handling industry to enable 

development of targeted intervention strategies for mitigating the risk of occupational 

injuries. 

Methods and Data 

The dataset used in this study obtained from a private insurance company 

headquartered in a Midwest state. The claim data were dated from January 2008 to March 

2016. The variables used in this research are shown in Table 1, and were used from the 

dataset, with the exception of employee age and tenure. The age of the employee was 

calculated as the difference between the date of birth and the injury date. Similarly, the 

tenure of the employee was calculated as the difference between the date of hire and injury 
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date.To simplify analysis, the claim amount was categorized as “<$3,000”, “ $3,000-$9,999”, 

and   “10,000+”.  

Table 1: List of variables in dataset 

# Column Name Description 

1 Claim Unique identifier for each claim record 

2 Effective Year Filing year of the claim 

3 Account Unique identifier to differentiate claims for each customer 

4 Market Type of business (grain elevator) 

5 Gender Gender of injured worker 

6 State Name of state where injury occurred 

7 Date of Birth Date of birth of injured worker 

8 Date of Hire Date on which the present company hired the injured worker 

9 Injury Date Date on which the injury occurred 

10 Claim Description One-line narration of incident resulting in injury; Example: 

"Employee was cleaning equipment and employee opened up a 

line and acid sprayed in his face and mouth." 

11 Claim Status If the claim is still open or closed 

12 Body Part Body part(s) injured 

13 Cause of Injury Main cause of injury. For example: " Cut, puncture or scrape", 

"heat or cold exposures", "Fall, slip or trip" etc. 

14 Nature of Injury Describes the type of injury such as Fracture, Strain, Contusion 

etc. 

15 Claim amount Total amount paid out in medical, indemnity and other 

miscellaneous payments. Used as a proxy for injury severity in 

this study. 

 

Grain elevators are classified as off-farm commercial enterprises and are required to 

provide workers compensation insurance to their employees (Ag web, 2015). Employers 

provide this benefit to their employees by either purchasing insurance from an insurance 

carrier or through self-insurance (Reville, Polich, Seabury, & Giddens, 2001). When an 

employee is injured on the job, the insurance carrier or the self-insured employer pays the 

medical and indemnity costs. To provide information and to facilitate the payment, 

employers must create a report of the worker’s injury to inform their insurance provider 

(Utterback et al., 2012). Data collected during the claims process are provided by employees, 
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employers, insurance companies and other involved parties (Utterback et al., 2014). The 

collection of information from multiple stakeholders makes claims records an excellent data 

source for work-related injuries (Dement et al., 2004; Janicak, 2010; Kim, Dropkin, Spaeth, 

Smith, & Moline, 2012; Reville, Bhattacharya, & Weinstein, 2001). 

The variables used in this study were categorical. For this reason, the statistical 

analysis began with the construction of frequency counts, percentages, and contingency 

tables. The chi-square test was used to validate the hypothesis of independence of the claim 

amount from the demographic (age, tenure) and injury variables (nature of injury, body part 

injured). This statistical methodology was also used by previous studies investigating injuries 

in agriculture (Javadi & Rostami, 2007; Karttunen & Rautiainen, 2011; Sprince et al., 2003).  

Standardized residuals were calculated to identify the source of dependence between the two 

variables or at-risk groups. The standardized residual is the difference between the observed 

value of a particular variable and its expected value (Agresti & Finlay, 2008). A positive 

residual implies that the observed value was greater than the expected value, while a negative 

residual indicates the observed value was less than expected value. The value and sign 

(positive/negative) of residuals were used to determine the nature of the relationship between 

the row and the column variable of the contingency tables (Lopez, Ritzel, Gonzalez, & 

Alcantara, 2011).  

All descriptive and the inferential analyses were performed with statistical software 

SAS version 9.4. In SAS, residuals are standardized and calculated as: 
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Where nij is the observed value, eij is the expected value for the ith row jth column cell. 

pi. is row total for ith row and p.j is the column total for the jth column. According to Agresti 

and Finlay (2008), an adjusted residual of +/- 2 is evidence of dependence between the row 

and column variables while an adjusted residual of +/- 3 is evidence of strong dependence. 

Examining the adjusted residuals of each cell in a contingency table helped identify the at-

risk groups where the degree of dependence between the two variables was the strongest 

(Sharpe, 2015). 

Since the purpose of this study was to characterize the direct cost of occupational 

injury using the demographic and injury characteristics the claim amount was used as a proxy 

for direct injury cost. The broad research question that guided this study was: Is the claim 

amount of injuries in the grain elevators independent of the employee demographics and 

injury characteristics? Specifically, the following sub research questions listed below were 

analyzed: 

Is the claim amount independent of: 

vi. Age of employee 

vii. Tenure of employee 

viii. Nature of injury and 

ix. Body part injured 

Results and Discussion 

Characterizing claim amount based on employee age 

The first research question investigated if the claim amount and the age of the injured 

employee were independent.  The claim amount is the sum of all payments made by the 

workers’ compensation insurance provider to the injured employee.  This amount includes 
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medical, indemnity, and other miscellaneous payments made to the injured employee as 

compensation for their work related injury. For this reason, severe injuries, such as those 

resulting in disability or death have a higher claim amount than less severe injuries requiring 

less medical treatment (Sears, Blanar, & Bowman, 2014; Sears et al., 2013).  

Table 2: Relationship between age of employee and claim amount 

Claim amount 

Age         

(years) <$3000 

$3000-

$9999 

$10,000 

& above Total 

<25  
979     

(8.8**) 

64            

(-2.3*) 

  82          

(-8.6**) 
1125 

26-30  
636          

(5.6**) 

45            

(-1.4) 

67            

(-5.5**) 
748 

31-35  
549 

(2.3*) 

50 

(-2.7*) 

84 

(0.0) 
683 

36-40  
503 

(0.2) 

40 

(0.6) 

109 

(-1.2) 
652 

41-45  
481 

(-2.3*) 

51 

(0.5) 

126 

(2.4*) 
658 

46-50  
608 

(-3.0**) 

64 

(0.4) 

165 

(3.2**) 
837 

51-55  
688 

(-2.5*) 

68 

(-0.6) 

180 

(3.0**) 
936 

56-60  
652 

(-4.0**) 

72 

(0.7) 

188 

(4.2**) 
912 

60+  
585 

(-5.7**) 

87 

(3.5**) 

176 

(4.1**) 
848 

Total 5681 541 1177 7399 

χ2  180.14; df= 16; p-value= <0.0001 and α = 0.05; N=7399  

Residuals in brackets; * evidence of relationship; ** evidence of strong relationship 

To explore the relationship between employee age and the claim amount, a 

contingency table with age as the row variable and claim amount as the column variable was 

tabulated as shown in Table 2.  Each cell in the contingency table is a count of claims 

corresponding to the respective age group and claim amount category. The last row in Table 
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2 shows the total number of claims in each claim amount category, while the last column 

indicates the number of claims corresponding to each age group. 

The distribution of the number of claims based on the claim amount indicates that 

nearly 84% of the claims were less than $10,000, suggesting that small injury claims are the 

largest workers’ compensation expense for grain handling organizations. The distribution of 

the number of claims based on age group, shows 50% of the claims involved an employee 

less than 45 years of age and 76% of the claims involved an employee less than 55 years old. 

One out of every four claims involved an employee older than 55 years. This result is 

different from the studies by Douphrate et al. (2009), Bookman (2012), and Reiner, 

Gerberich, Ryan, and Mandel (2016), where injuries to employees below the age of 55 years 

constituted over 90% of the injuries.  One reason for this difference in distribution between 

the current study and previous studies could be the type of occupation investigated in these 

studies. For example, Bookman (2012) analyzed workers compensation claims of employees 

in various agricultural occupations such as poultry and egg producers, logging or tree 

removal, and fisheries and hatcheries. Bookman’s (2012) study did not include grain 

elevators. Similarly, Reiner et al. (2016) study investigated only farm injuries caused by large 

machinery such as augers, balers, and harvesting machinery. 

A chi-square test was conducted to evaluate if the claim amount varied based on the 

age of the employee. The test results showed a p-value of less than 0.05 providing evidence 

that the claim amount and the age of the employee were not independent. This finding 

implies that the claim amount varied based on the age of the employee and that the age of the 

employee is a significant factor that can be used to determine the claim amount. The finding 

is consistent with previous studies that also found a significant relationship between age and 
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injury severity (Laflamme, 1996; Rogers & Wiatrowski, 2005; Salminen, 2004; Takahashi & 

Miura, 2016). According to Rogers and Wiatrowski (2005) and Salminen (2004), young 

workers below the age of 25 years have a higher risk of injuries than older workers. 

However, the injuries to older workers are likely to be more severe when compared with 

younger workers. More severe injuries require increased medical attention and could also 

result in lost workdays, resulting in a higher claim amount. To identify at-risk age groups, 

residuals were examined. The residuals indicate a strong relationship between age and claim 

amount across all age groups except employees in the 36 to 40 years’ age group category. It 

is noteworthy that as the age of the employee increases from < 25 years to 40 years the sign 

of residual indicates a greater than expected number of claims in the below $3,000 category 

and fewer than expected number of claims in the $10,000 and above category. This finding 

implies that employees up to 40 years of age are likely to have less severe injuries, which 

requires minimum levels of workers’ compensation payments. The residual values for the 41 

and above age group categories indicate exactly opposite to that of the below 40 year age 

group categories. In all the 41 and above age group categories, the number of claims in the 

below $3,000 category are less than expected value while the number of claims in the 

$10,000 and above category are more than the expected value. This finding implies that 

injuries to grain elevator employees who are older than 40 years are likely to be more severe 

and expensive as compared to employees who are 40 years and younger. In other words, as 

the age of the employee increases, the number of claims for minor injuries tends to decrease.  

At the same time, as the age of the employee increases, the number of claims for major 

injuries tends to increase, suggesting that older employees in this environment should 

heighten their focus on safe work practices.  It must be noted that in this study the minor 
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claims with younger employees become more “major” as the employee ages.  This finding 

further corroborates the results of previous studies (Laflamme, 1996; Rogers & Wiatrowski, 

2005; Salminen, 2004; Takahashi & Miura, 2016) who suggested that older workers are 

likely to have more severe injuries than younger workers.  

Characterizing claim amount based on employee tenure 

Table 3: Relationship between tenure of employee and claim amount 

Claim amount 

Tenure  

(years) <$3,000 

$3000-

$9999 $10,000+ 

  

Total 

<1  
1138 

(2.5*) 

98 

(-0.8) 

199 

(-2.4*) 
1435 

1-2  
1641 

(3.2**) 

147 

(-0.4) 

281 

(-3.4**) 
2069 

3-5  
1017 

(-0.3) 

94 

(-0.4) 

219 

(0.6) 
1330 

6-10  
764 

(-2.8*) 

76 

(0.0) 

201 

(3.2**) 
1041 

11-20  
648 

(-2.9*) 

77 

(1.6) 

164 

(2.2*) 
889 

20+  
470 

(-1.5) 

49 

(0.4) 

113 

(1.4) 
632 

Total 5678 541 1177 7396 

χ2 = 33.56; df= 10; p-value= 0.0002 and α = 0.05; N=7396 

Residuals in brackets; * evidence of dependence; ** evidence of strong dependence 

The second research question investigated if the tenure of the injured employee and 

the claim amount were independent of each other. The contingency table used to investigate 

this research question is shown in Table 3.  The distribution of the number of claims by 

employee tenure indicates that nearly half of all injury-causing safety incidents involved an 

employee with two or fewer years of work experience. Similarly, 65% of all injury-causing 

safety incidents involved an employee with five or fewer years of experience and 80% of all 

incidents involved an employee with ten or less years of work experience. Furthermore, the 
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general trend of the number of claims by employee tenure indicates that as tenure increases 

the number of claims decreases.  According to Vinodhkumar and Bhasi (2009), the length of 

service of an employee in a company influences their skills and attitudes towards safety. 

Mariger et al. (2009) in their comprehensive study of farm injuries observed that experienced 

workers in agriculture tend to have fewer injuries than less experienced workers. 

The chi-square test to evaluate if the claim amount varied based on the tenure of the 

employee showed a p-value of less than the 0.05, thus suggesting the tenure of the injured 

employee is also a significant factor that can be used to determine the claim amount. The 

relationship between employee tenure and injury severity has not been investigated in the 

agricultural industry.  Evidence from studies conducted in other high hazard industries such 

as construction and petrochemicals suggest a significant relationship between between tenure 

and injury severity (Cheng, Yao, & Wu, 2013; Lopez Arquillos, Rubio Romero, & Gibb, 

2012; Nouri, Azadeh, & Fam, 2008; Suarez-Cebador, Carlos Rubio-Romero, & Lopez-

Arquillos, 2014).  The residual values from the chi-square test show evidence of a 

relationship between tenure and claim amount across most age categories. With claims below 

$3,000, residuals change from positive to negative as the employee tenure increases, 

suggesting that the longer the tenure of the employee, the fewer small dollar claims they 

incur. The opposite is true with claims above $10,000, with residual values shifting from 

negative to positive. In this case, the longer the tenure of an employee, the more likely he or 

she will incur a more expensive workers’ compensation claim. This shift in injury severity 

could be attributed to the age of the employee since tenure and age are highly correlated 

(Vinodkumar & Bhasi, 2009). As tenure of the employee increase so does their age, reducing 
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their ability to tolerate injuries (Brorsson, 1989) thereby increasing the likelihood of severe 

injuries. 

Characterizing claim amount based on cause of injury 

The third research question investigated if the claim amount was statistically 

independent of the cause of injury. The contingency table used to classify the claim amount 

by cause of injury is shown in Tables 5.  

Table 5: Relationship between cause of injury and claim amount 

 

Claim amount 

Cause of injury <$3,000 
$3,000-

$9,999 
$10,000+ Total 

Strain or injured by 
1552 

(-4.3**) 

173 

(1.8) 

387 

(3.6**) 
2112 

Slip, fall or trip  
1281 

(-11.6**) 

178 

(3.9**) 

448 

(10.5**) 
1907 

Struck or injured by 
926 

(7.4**) 

62 

(-2.2*) 

94 

(-7.0**) 
1082 

Others 
666  

(7.5**) 

31          

(-3.6**) 

63          

(-6.1**) 
760 

Cut, puncture, 

scrape 

650 

(10.1**) 

26          

(-3.9**) 

30          

(-8.9**) 
706 

Vehicle 
190         

(-5.3**) 

35   

(3.0**) 

72 

(4.0**) 
297 

Heat or cold 

Exposures 

246 

(3.0**) 

13 

(-1.9) 

34 

(-2.1*) 
293 

Caught in, under, or 

between 

175 

(-2.6*) 

23 

(1.2) 

49 

(1.7) 
247 

Total 5686 541 1177 7404 

χ2 = 351.6; df = 14; p-value= <0.001 and α = 0.05; N=7404 

Residuals in brackets; * evidence of dependence; ** evidence of strong dependence 

 

The distribution of claims in Table 5 revealed that “strain or injured by” were the 

most common causes of injuries followed by “slips, falls and trip” and “struck or injured by”. 
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Nearly 29% of claims were for strain and sprain injuries while “heat or cold exposures” and 

“caught in, under,or between” accounted for only 4% of the claims.  Furthermore, more than 

half (54%) of the injuries recorded were either due to strain or due to slips and fall injury. 

The Chi-square test suggested that the claim amount was not independent of the cause of the 

injury. This finding means the claim amount is not the same for all type of injuries and that 

cause of the injury is a significant factor that can be used to determine the claim amount. 

Examining the chi-square residuals indicates that certain injuries are more likely to 

have higher claim amounts.  For example, injuries in the strain, slip, fall and trip categories 

are likely to be more expensive when compared to “struck or injured by” and “others” 

categories. A review of the agricultural safety and health literature shows that  strain, slips 

and falls are common across many industries, including agribusiness (Bobick & Myers, 

1994; Davis & Kotowski, 2007; Douphrate, 2008; Fathallah, Miller, & Miles, 2008) . In the 

U.S., strain injuries alone cost $6.5 billion in workers’ compensation costs with the average 

claim ranging from $5000 to $8000 (Baldwin & Butler, 2006; van Tulder, Malmivaara, & 

Koes, 2007).  

Residuals from the chi-square test also indicates that the categories of “slip, trip, or fall”, 

“struck or injured by”, “others”, “cut, puncture, scrape”, and “vehicle” have the strongest 

relationship with claim amount. Evidence of a significant relationship with claim amount was 

also observed in one cell corresponding to the category “caught in, under, or between” and 

two cells corresponding to the categories strain or injured by and heat or cold exposures.  

However, the sign of residuals suggests that for categories “strain or injured by” , “slips, falls 

or trips”, and “vehicles” the claim amount are more likely to be $10,000 and above and less 

likely to be below $3,000. This finding suggests that injuries due to slips, trips, and falls or 
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injuries involving a strain or those due to vehicles are likely to be more expensive than the 

other injuries. For the remaining categories including “others”, struck or injured by, and cut 

puncture scrape, the residual values indicate the claim amount is likely to be lower. Based on 

these analyses, targeting slips, trips, and falls, strain related injuries and vehicle-related 

injuries through safety interventions could potentially reduce the claim amount significantly. 

Characterizing claim amount based on body part injured 

The final research question investigated if the claim amount was statistically 

independent of the injured body part. A contingency table constructed to address this 

research question is shown in Table 7.  

Table 7: Relationship between body part injured and claim amount 

 

Claim amount 

Body part <$3,000 
$3,000-

$9,999 
$10,000+ Total 

Upper extremities 
1909 

(-2.6*) 

182 

(-0.4) 

454 

(3.3**) 
2545 

Lower extremities 
1178 

(-5.2**) 

126 

(0.7) 

331 

(5.4**) 
1635 

Trunk 
1203 

(-0.5) 

142 

(2.9*) 

231 

(-1.5) 
1576 

Head & neck 
1071 

(11.2**) 

58 

(-3.6**) 

71 

(-10.3**) 
1200 

Others 
325 

(-2.2*) 

33 

(0.0) 

90 

(2.5*) 
448 

Total 5686 541 1177 7404 

χ2 = 155.1; df = 8; p-value= <0.001 and α = 0.05; N=7404 

Residuals in brackets; * evidence of dependence; ** evidence of strong dependence 

 

The distribution of data suggests that upper extremities (such as hands and fingers) 

were the most frequently injured body part, followed by lower extremities (such as toes and 

feet) and trunk. In nearly 80% of claims filed, the injured body part was either an upper 
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extremity, trunk or the lower extremity. This finding is different from the results of  the 

NIOSH study (1983) that reported back, finger and eyes as the three most injured body parts. 

The chi-square test results indicated the claim amount was not independent of the body part 

injured. This finding suggests the claim amount varied based on the body part injured and 

that the body part injured is a significant factor that can be used to determine the claim 

amount.  

Examining the chi-square residuals indicates that upper extremities, lower 

extremities, head and neck, and other body part categories show evidence of relationship 

with the claim amount. For upper, lower extremities, and other injury categories, the 

residuals indicate that the number of claims is more likely to be in the $10,000 and above 

category and less likely to be in the in the below $3,000 category. This finding suggests that 

injuries to upper, lower extremities, tend to be more expensive compared to “Head & trunk” 

and “Others” categories. Similarly, for the trunk, head and neck injuries, the residuals 

indicate these injuries are more likely to be inexpensive compared with the remaining 

categories.   

Conclusions 

Occupational injuries across all hazard categories of the grain handling industry have 

received little attention in the research literature. One reason for this is a lack of a centralized 

source of data to quantify the incidents. This study utilized workers’ compensation claims 

data to investigate patterns of workplace injuries in the grain handling industry. The first 

research examined if the claim amount was independent of the age of the employee. This 

study found that the employee age has a significant influence on the claim amount. 

Furthermore, employees who are 40 years of age and above have a higher likelihood of 
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severe injury than employees who are below 40 years of age.  The second research question 

investigated if the claim amount was independent of the tenure of the employee. The results 

showed that the tenure of the employee has a significant influence on the claim amount. 

Also, employees with less than five years of work experience were found to be the most at 

risk group since the majority of injuries involved the employees in this category. The third 

research question examined if the claim amount were independent of the cause of injury. 

Results showed that the cause of injury has a significant influence on the claim amount thus 

suggesting that the injury costs varies based on the cause of injury. This study found that the 

injuries caused due to strain, slips, fall, or trips were the most significant causes of injuries. 

The final research question investigated if the claim amount were independent of the body 

part injured. Data showed that the claim amount were significantly related to the body part 

injured. Injuries to upper and lower extremities, trunk, and injuries to other body parts have 

the most influence on claim amount. 

While workers’ compensation data are extremely useful in injury prevention studies, 

the recording of information during the workers’ compensation claims process could be 

prone to human errors, as they are collected by field agents. Also, the scope of analysis is 

narrowed by the information available in the dataset. However, the analysis of a large 

number of claims, recorded over an extended period of time, characterizes the strength and 

rigorousness of this study. The findings of this study will enhance the understanding of 

recommended areas of preventative intervention in the grain handling environment. Future 

work could involve analyzing the relationships between the non-cost related variables and 

also simultaneously investigating all the variables and their interaction effects. A multivariate 

model of the claim amount could also be constructed so commercial grain elevators, as well 
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as the worker’s compensation insurance providers, can better analyze the risks contributing 

to occupational accidents. 
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Abstract 

The number of days away from work (DAFW) is an important indicator of the severity of a 

work-related injury. Severity is important because injuries that are severe have higher 

economic and social costs than those that are less severe. Therefore, predicting factors that 

influence the DAFW can help supervisors and safety managers evaluate injury risks, identify 

problem areas, and make decisions to mitigate the impacts of severe work-related injuries. 

Very little published research has modeled the DAFW using information recorded through 

workers’ compensation reporting. This study built and compared the predictive performance 

of two models – linear regression and decision tree - using data from a workers’ 

compensation claims dataset (N=10,802). Linear regression and decision tree models were 

built in the SAS Enterprise Miner application. The Root Mean Squared Error (RMSE), a 

measure of precision, was used to compare the two model. Results showed that the linear 

regression model with two-way interactions had a lower RMSE or higher precision than the 

decision tree model. Based on these findings and the fact that regression models are 

straightforward and most widely used, this study suggests the linear regression is a viable 

method for predicting the DAFW. The findings of this study will help safety professionals 

and insurance companies better understand the effects of employee and injury characteristics 

such as age, tenure, nature of injury and cause of injury on injury severity. A better 
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understanding of severity of injuries can facilitate proper planning and development of 

measures for mitigating occupational injuries.  

Keywords: Days away from work, decision tree, linear regression, root mean square error, 

occupational injuries 

Introduction 

The number of days away from work (DAFW), also referred as “days lost from 

work” or “lost work days” is an important indicator of severity of occupational injuries and 

illness (Azadeh-Fard, Schuh, Rashedi, & Camelio, 2015; BLS, 2016c; Khanzode, Maiti, & 

Ray, 2012; Marucci-Wellman et al., 2015). A measure of severity is important because, 

workers suffering severe injuries require more DAFW to recuperate than do workers with 

less severe injuries (Fordyce et al., 2016; Micheli & Cagno, 2010). Therefore, determining 

the number of DAFW can estimate the economic impacts of occupational injuries and assist 

organizations in determining spending priorities for injury intervention efforts (Galizzi & 

Boden, 2003; Krause, Frank, Dasinger, Sullivan, & Sinclair, 2001; Sears, Bowman, & Hogg-

Johnson, 2014). The purpose of this study was to construct two models to predict DAFW 

using the data recorded during the workers’ compensation claims process. 

 Previous studies that investigated DAFW using a workers’ compensation data have 

examined the direct relationship of DAFW with variables such as injured employee’s age, 

tenure, nature of injury and cause of injury. For example, Fordyce et al. (2016)  used the 

DAFW information from the occupational health and safety database to identify the most at-

risk job groups and causes of severe injuries in the electric power industry. Similarly, Onder 

(2013) analyzed past incidents database from a Turkish coal mine and identified the job 

group, age group, and the body part associated with the highest probability of exposure to 
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severe occupational injuries. Margolis (2010) investigated the Mine Safety and Health 

Administration’s database on injuries and illnesses to examine the influence of age and 

experience of injured employees to the severity of injury using the DAFW.  

In observational studies such as these, evaluating the relationship between two 

variables by controlling the effect of other variables is not possible as in the case of 

experimental or intervention studies (Rosenbaum, 2002; von Elm et al., 2007). Therefore, 

multivariate models are required to allow investigators to take into account not just the direct 

relationship but also interactions among all variables in the study (Cohen, Cohen, West, & 

Aiken, 2013; Ramsey & Schafer, 2012). A review of the literature showed very little 

published research had utilized multivariate models to characterize DAFW by leveraging 

information recorded in injury databases such as the workers’ compensation claims.  

The focus of this study was to build and compare two multivariate models for 

modeling the DAFW resulting from occupational injuries. A decision tree model and a 

multiple linear regression model were built using the information in a workers’ compensation 

claims database obtained from a Midwest-based insurance company. The DAFW was the 

dependent variable, and other information recorded in the workers’ compensation process 

such as employee age, employee tenure, nature of injury, cause of injury, and body part 

injured were used as the predictor variables. The root means square error (RMSE) was 

calculated to compare the two models. The RMSE has been identified as a primary factor in 

measuring the precision of the model. Therefore, the predicted DAFW values of a model 

with lowest RMSE value are closer to the actual value than the values predicted by a model 

with higher RMSE value (Chang, Laird, Mausbach, & Hurburgh, 2001; Honn, Satterfield, 
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McCauley, Caldwell, & Dongen, 2016; Lee, Chung, & Kang, 2016; Singh, Sachdeva, & Pal, 

2016).  

Background 

Occupational injuries in the U.S. continues to be a major concern in several 

industries, specifically the process industries (Boden, O'Leary, Applebaum, & Tripodis, 

2016; Lander, Nielsen, & Lauritsen, 2016; Mabila, Gracia, Cohen, Almberg, & Friedman, 

2015; Wurzelbacher et al., 2016). According to the U.S. Bureau of Labor Statistics (BLS, 

2016b), the 2015 incident rate of non-fatal occupational injuries for the manufacturing 

industry was 26% higher than the national average (BLS, 2016b). Similarly, in food 

manufacturing, the incident rate was 56% higher, and in wood products and animal 

production, the incident rate of non-fatal occupational injuries was more than twice the 

national average (BLS, 2016a).  

The cost of these injuries are a burden not just on the injured employee, but their 

families, and society (Leigh & Marcin, 2012). In the U.S., the cost of occupational injuries 

and illnesses is estimated to be over  $200 billion annually (Leigh, 2011; National Safety 

Council, 2016). According to Marucci-Wellman et al. (2015) in the U.S., nearly $1 billion is 

spent each week to cover the direct costs of severe work-related injuries, including medical 

costs and wage replacement for injured employees. Such high costs can pose a serious threat 

to the profitability of any business enterprise. Therefore, an improved understanding of injury 

severity, measured in this study using the DAFW, and the factors affecting the injury severity 

can help estimate the risk of injuries needed for developing measures for preventing 

reoccurrence of occupational injuries.  
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Preventing occupational injuries requires learning from past incidents 

(Abdolhamidzadeh, Abbasi, Rashtchian, & Abbasi, 2011; Pasman, 2009). However, 

obtaining detailed records of past incidents is a challenge acknowledged by investigators 

across several industrial sectors including agribusiness (Calvo Olivares, Rivera, & Nunez Mc 

Leod, 2014, 2015; Dong, Largay, Wang, & Windau, 2014; Riedel & Field, 2011). Workers’ 

compensation (WC) claims records can partially address these informational gaps needed to 

characterize and prevent occupational injuries (Utterback, Meyers, & Wurzelbacher, 2014; 

Wurzelbacher et al., 2016). WC claims data contain information such as medical and 

indemnity payments, industry type, occupation, nature and cause of injury, and employee 

demographic data (Nestoriak & Pierce, 2009; Utterback et al., 2012; Wurzelbacher et al., 

2016). WC claims data are preferred in injury surveillance and prevention because they 

contain a large amount of detail in the records (Oleinick & Zaidman, 2004).  

To distil such large amounts of data into a few parameters characterizing the 

phenomenon under study requires a systematic technique (Gnanadesikan, 2011; 

Springmeyer, Blattner, & Max, 1992). A technique most widely used for analyzing data in 

injury and incident investigation studies is linear regression. (Tso & Yau, 2007). Therefore, 

to investigate the large workers’ compensation claims data used in this study and characterize 

the DAFW, a multiple linear regression model was employed. An important limitation of 

regression analysis is that they require assumptions such as linear relationship between 

dependent and independent variables, and normal distribution of residuals to be satisfied to 

adequately model the underlying data (Fragiadakis, Tsoukalas, & Papazoglou, 2014).  

Data mining techniques such as Classification and Regression Trees (CART) can 

overcome the limitations of linear regression and are widely employed to build predictive 



101 

 

models (Chang & Wang, 2006). These non-parametric techniques are rapidly evolving as an 

effective method of analysis to investigate large datasets such as workers’ compensation 

claims used in this study (Fayyad, PiatetskyShapiro, & Smyth, 1996; Mistikoglu et al., 2015). 

Data mining is a multidisciplinary field that encompasses classical statistical techniques and 

new computational techniques, such as decision trees and association rules (Anand et al., 

2006). The CART or decision trees are the most widely used data mining technique to 

uncover hidden patterns in large data sets across various disciplines (Cheng, Leu, Cheng, 

Wu, & Lin, 2012). However, the application of decision tree techniques has not been 

commonly used with occupational injury data (Mistikoglu et al., 2015; Nenonen, 2013). 

 Previous studies that have investigated the days away from work (DAFW) of injured 

employees focused on a single industry. For example, Onder (2013) evaluated occupational 

injuries with lost days among workers in the coal mining industry, while Blanch, Torrelles, 

Aluja, and Salinas (2009) examined age and DAFW for employees at a plastic film 

manufacturing facility. Fordyce et al. (2016) analyzed fatal and non-fatal injury severity 

factors using DWFW for employees in the electric power industry. The present study 

examined DAFW for occupational injuries in bulk commodity handling, food manufacturing, 

grocery and retail stores. Data mining of historical injury incidents helps identify potential 

problem areas and provide insights into the causes of occupational injuries (Coleman & 

Kerkering, 2007; Nenonen, 2013; Tsioras, Rottensteiner, & Stampfer, 2014).  

Methods and Data 

The dataset used in this study was obtained from a Midwest-based insurance 

company that focuses on agribusiness clients. The dataset consisted of approximately 10,800 

claims reported from January 2008 to March 2016. The insurance company collected the data 
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as part of the workers’ compensation claim process with inputs provided by the injured 

employees, their employers, and other parties involved in the claims process. The insurance 

company personnel vetted all information recorded in the dataset. This collection and review 

of information from multiple stakeholders is a key reason why workers’ compensation claims 

record are an excellent source of information for investigating occupational injury patterns 

(Dement et al., 2004; Janicak, 2010; Kim, Dropkin, Spaeth, Smith, & Moline, 2012; Reville, 

Bhattacharya, & Weinstein, 2001). 

Table 1 lists all the variables used in the study. The age of the employee was 

calculated as the difference between the date of birth and the injury date. Similarly, the 

tenure of the employee was calculated as the difference between the date of hire and injury 

date. The DAFW was calculated as the difference between the injury date, and the date 

returned to work. In this study, DAFW was the dependent variable. Age of the injured 

employee, employee tenure, employee gender, nature of injury, cause of injury, injured body 

part, market, and class description were the independent variables used in the model. 

Linear regression models are the most commonly used predictive modeling 

techniques in incident and injury research (Khanzode, Maiti, & Ray, 2012; Lord & 

Mannering, 2010; Mannering & Bhat, 2014). The rapid growth in the volume of data in 

recent years has led to the popularity of data mining techniques, and decision trees are one of 

the most widely used methods for predictive modeling (Chang & Chen, 2005; Liao, Chu, & 

Hsiao, 2012). In this study, linear regression and decision tree modeling techniques were 

used to build predictive models. Both the models were developed and evaluated using the 

SAS Enterprise Miner software application. The use of SAS Enterprise Miner for building 

and evaluating predictive models has been documented in previous research by Tso and Yau 
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(2007) when predicting electricity consumption and by Yap, Ong, and Husain (2011) in 

evaluating creditworthiness. These studies suggest that the algorithms and statistical 

techniques used by SAS Enterprise Miner for building predictive models have been vetted 

and consequently, have high reliability. 

Table 1: List of variables 

# Column Name Description 

1 Claim Unique identifier for each claim record 

2 Effective Year Filing year of the claim 

3 Market Type of business (such as bulk commodity, food 

manufacturing) 

4 Class description Job class description 

5 Date of Birth Date of birth of injured worker 

6 Date of Hire Date on which the present company hired the injured 

worker 

7 Gender Injured employee’s gender 

8 Injury Date Date on which the injury occurred 

9 Date returned to work Date on which the injured employee returned to work 

11 Body Part Part of body injured 

12 Cause of Injury Main cause of injury. For example: " Dust, gasses or fumes 

inhalation", "Foreign matter in eyes", "Chemical 

exposure". 

13 Nature of Injury Describes the type of injury such as Fracture, Strain, 

Contusion  

  

 In SAS Enterprise Miner, a linear model was build using the stepwise option. In the 

stepwise method, the model is built by adding one independent variable at a time, satisfying 

the entry significance level and eliminating any variable that does not meet the stay 

significance level. The entry and stay significance level for a variable in the model were 

measured using an F-statistic and were set to 0.05 (Neerchal, Morel, Huang, & Moluh, 2014). 

The two-factor interactions option in the SAS Enterprise Miner was selected so both the main 

effects and the two-way interaction effect of the variables could be modeled.  
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Fitting a linear regression model to a dataset requires several assumptions about the 

underlying data (Agresti & Finlay, 2008). These assumptions include homoscedasticity or 

even variability between variables (Long & Ervin, 2000), low correlation among the 

predictor variables or lack of multicollinearity (Friedman & Wall, 2005) and the absence of 

outliers in the dataset (Mark & Workman, 2007). When the assumptions of regression are 

violated the predictive model will result in a poor fit or produce large error values (Chang & 

Chen, 2005). Therefore in this study, a decision tree model that does not require underlying 

assumptions about the dataset  (Chang & Wang, 2006), was used to compare the error values 

generated by the regression model in predicting the DAFW. 

Decision trees are one of the most widely used data mining techniques (Liao et al., 

2012). This technique was first proposed by Breiman et al. (1984) to recursively partition a 

set of data into homogeneous groups and displayed graphically in an inverted tree-like 

structure. This representation of information in an intuitive and easy to visualize format is a 

reason for the popularity of decision trees in data analysis (Elith, Leathwick, & Hastie, 2008). 

Decision trees can be used to characterize both numeric as well as categorical dependent 

variables (Loh, 2011). If the dependent variable is categorical, then the model is called a 

classification tree, and if the dependent variable is numeric, then decision tree is known as a 

regression tree model (Razi & Athappilly, 2005). Since the DAFW was numeric and 

continuous variable, regression tree was used in this study. 

There are several advantages of using decision trees for investigating large datasets 

such as the workers’ compensation claims used in this study (Savolainen, Mannering, Lord, 

& Quddus, 2011).  Decision trees are a non-parametric method to use with workers’ 

compensation claims, data that often violates the assumptions of regression (Breiman, 2001; 
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Chang & Chen, 2005). Another advantage of decision trees is that they can use any type of 

predictor variables, including numeric, binary or categorical to characterize a dependent 

variable (Elith et al., 2008; Harb, Yan, Radwan, & Su, 2009). Since decision trees have a 

hierarchical structure where the response of one input variable depends on the values of 

inputs higher in the tree, interactions between predictor variables are automatically modeled 

(Elith et al., 2008). Finally, decision tree models, while being straightforward to interpret, 

also have prediction accuracy comparable to those of statistical techniques such as regression 

(Chang & Wang, 2006; Lim, Loh, & Shih, 2000; Meleddu & Pulina, 2016).  

Building decision trees involve three major phases: i) tree building, ii) tree pruning, 

and iii) testing (L. Breiman, 2001; Leo Breiman et al., 1984). The decision tree model is 

constructed starting with the complete data, and partitioning the data using a set of rules and 

one predictor variable at a time to create two or more mutually exclusive groups (Cheng et 

al., 2012). At each partition, the process is repeated, and a large tree is grown until each of 

partitioned groups are as homogenous as possible so the outcomes can be predicted 

accurately (Nenonen, 2013). Once the tree building is complete, the tree is then pruned by 

removing branches that do not contribute significantly in characterizing the dependent 

variable (Strobl, Malley, & Tutz, 2009). Tree pruning ensures that the decision tree model is 

kept as simple as possible without significant loss of prediction accuracy (De'ath & 

Fabricius, 2000). Finally, the pruned decision tree model is tested either using a subset of the 

existing data or a whole new set of data (Loh, 2011). This process of tree building, tree 

pruning, and testing is repeated until the model with the least prediction error is found (Leo 

Breiman et al., 1984; Loh, 2011; Strobl et al., 2009). 
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 The SAS Enterprise Miner provides two options for the method of selecting and 

evaluating splitting rules for a continuous dependent variable. In this study, the F-test option 

was selected with a significance level of 0.2 a default in the SAS Enterprise Miner. The depth 

of the tree that specifies the number of levels in the model was set to 5 and the minimum 

number of observations required for a split search was set to 50 to simplify. All other 

parameters were left unchanged or “default” option in the SAS Enterprise Miner.  

The root mean squared error (RMSE) was used as a measure to compare the error 

generated by the two models. The RMSE is the measure of the difference between the 

predicted value generated by the model and the actual value. The general representation of 

the RMSE is given by: 

  

where  is the predicted value obtained from the model,  is the actual value and n is the 

number of observations. A small value of RMSE means the predicted values are close to the 

actual values of the dependent variable indicating less error thereby demonstrating the 

performance of a model (Lee et al., 2016). The RMSE has been a widely used criteria to 

compare predictive models in safety studies (Amnieh, Mozdianfard, & Siamaki, 2010; 

Karacan &Goodman, 2012; Singh, Sachdeva, & Pal, 2016) involving copper mines, 

coalmines, and road incidents.  

Results and Discussion 

In this study, workers’ compensation claims from 2008 to 2016 were used to model 

the DAFW. The range of DAFW values in the dataset was 0 to 365 days. Descriptive 
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analysis of the DAFW for the 10,800 claims showed that approximately 24% of the claims 

had no DAFW. Nearly 51% of the claims had 1 to 10 DAFW, 18% of the claims had 11-100 

DAFW while 7% of the claims had 101-365 DAFW. The variables i) age, ii) tenure, iii) 

gender, iv) market, v) class description, vi) nature of injury, vii) cause of injury and viii)  

body part injured collected during the claim process were used to model the DAFW using 

linear regression and decision tree modeling techniques. 

In the stepwise process, the regression model is built by adding one variable at a time. 

Starting with a model with just the intercept, one variable is added or removed at a time 

based on the entry and stay significance level criteria of 0.05. The results of the regression 

modeling of DAFW are shown in Table 2. In the final model generated by the stepwise 

process, only the age of employee and nature of injury variables were significant out of the 

eight independent variables entered into the model. Likewise, as shown in Table 2, only four 

interaction variables were significant out of the 28 possible two-way interactions. The 

regression model developed in this study for predicting the DAFW was significant at a 95% 

confidence level. This finding suggests that a linear model can characterize the relationship 

between the DAFW and the eight independent variables. The coefficient of determination 

(R2) that describes the proportion of the variance in the DAFW explained by the regression 

model was calculated as 0.19. Six independent variables were not significant to the model, 

including tenure, gender, market, class description, cause of injury and body part group.  
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  Table 2: Stepwise regression model results 

Effect 

Type of 

effect 

Degrees of 

freedom 

Sum of 

Squares F-Value 

p-

value 

Age Main 1 256662.17 124.18 <0.005 

Nature of injury Main 12 101176.29 4.08 <0.005 

Body part * Cause of injury Interaction 96 333803.30 1.68 <0.005 

Body part * Nature of injury Interaction 68 546172.23 3.89 <0.005 

Class description*Market  Interaction 275 948874.77 1.67 <0.005 

Cause of injury* Nature of 

injury Interaction 164 488407.35 1.44 <0.005 

R2= 0.19; N=10802 

The regression coefficient for the variable age from the regression model 

indicated that the injured employee’s age has a positive and significant relationship with 

the DAFW. This finding indicates that older employees are likely to have a greater 

number of DAFW than younger employees for the same type of injury. This finding is 

consistent with previous studies in the research literature. Salminen (2004) and 

Takahashi & Miura (2016) also documented a significant relationship between age and 

injury risks, finding that older workers had more severe injuries, resulting in more days 

off work. Furthermore, Onder (2013) and Margolis (2010), who investigated DAFW in 

mining industry, also found that the age of the worker has a positive and statistically 

significant relationship with the DAFW. 

 In addition to the age of the injured employee, the nature of injury was the only 

other variable that was significant in the regression model. The nature of injury variable 

describes the type of occupational injury, for example, strain, burn, laceration or 

contusion. The analysis of the likelihood estimates showed that fracture and dislocation 

injuries are likely to have a higher DAFW than any other type of injury. Similarly, 

laceration, inflammation and burn injuries are more likely to have a lower number of 
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DAFW. This finding is consistent with the studies by Fordyce et al. (2016), Baril, 

Berthelette, and Massicotte (2003), and Krause et al (2001), who also reported a 

significant relationship between nature of injury and DAFW.  

It is noteworthy that in this study the effect of the cause of injury and the body 

part injured on the DAFW were not significant in the regression model. Previous 

research by Baril et al.(2003), Fordyce et al.(2016) and Tsioras, Rottensteiner, & 

Stampfer (2014) have reported that the cause of injury and the body part injured have a 

significant relationship with the DAFW. This difference between the findings of this 

study and previous studies maybe due to fact that in the agribusiness industry, the type of 

injury is not independent of the cause of injury and body part injured. For example, 

injuries due to slips, trips, and falls may have varying DAFW depending on the type of 

injury (fracture,sprian or inflammation). Likewise injuries to the head and neck due to 

slips, trips, and falls may have a varying DAFW than the same type of injury to lower 

extremities. The significant interaction effect of body part injured with the nature of 

injury and the significant interaction effect of cause of injury with the body part injured 

provide evidence that the nature of injury, cause of injury and body part injured are not 

independent in the agribusiness industries. Finally, the regression model showed  the 

interaction of class description and market were significant. This finding suggests that 

some jobs in a particular industry could have a significantly different number of DAFW 

than the same work in another industry.  

According to the decision tree model, the overall average DAFW for all claims 

investigated in this study was calculated as 20.2 days. This number is much higher than 
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the average values of 8 and 9 DAFW as reported by the BLS in 2014 and 2015, 

respectively (BLS, 2015). This difference in average DAFW between agribusiness 

industries and other industries supports the argument made by previous researchers that 

injuries in the agribusinesses such as grain elevators tend to be more severe than those in 

other industries when measured using DAFW (Reiner, Gerberich, Ryan, & Mandel, 

2016).  

In the decision tree model, the effect of age of the injured employee and the 

nature of the injury on the DAFW were significant, just as in the regression model. 

Likewise, the variables tenure, cause of injury, class description, market and gender do 

not have a significant impact on the DAFW. A notable observation from the tree model 

was the DAFW for strain injuries was significantly higher than the DAFW for burn, 

lacerations, puncture and foreign body injuries.  Furthermore, fracture injuries tended to 

have some of the highest DAFW while lacerations and foreign body tended to have the 

lowest DAFW. As in the regression model, the interaction effect of nature of injury and 

body part were significant in the decision tree model. For example, strain injuries 

involving either an upper extremity or a lower extremity tended to have a higher DAFW 

than strain injuries to any other body part. Finally, the DAFW for younger employees 

were significantly lower than older employees.  For example, employees 44.5 years and 

older suffering from strain injury had an average DAFW of 59 days while the DAFW for 

employees below 44.5 years age suffering from the same injury type was only 25 days. 

Similarly, the average DAFW for employees below 34.5 of age suffering from burns and  
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puncture injuries was 5 days, while the DAFW was 13 days for employees 34.5 years or 

older suffering from the same type of injury. 

The two models were compared using the root mean square error (RMSE) values. 

Models with small RMSE have a higher accuracy than models with large RMSE values 

(Willmott et al., 1985). The values of the RMSE for the two models are shown in Table 

3. Results showed the multiple linear regression model built using the step-wise method 

yielded a lower RMSE value (44.14) than the decision tree model (46.19). Since 

regression models are straightforward, robust and the most widely used prediction 

models, this study suggests that the linear regression are an appropriate approach to 

model the DAFW. 

Table 3: RMSE values of regression and tree models for all claims 

Model type 

Sum of 

squared error 

(SSE) N 

Mean 

squared error 

(MSE) 

Root mean 

squared error 

(RMSE) 

Stepwise Regression with 

two-way interactions 21049062 10802 1948.6 44.14 

Decision tree model 23047462 10802 2133.6 46.19 

 

 To ensure the findings of this study were robust, the model building and evaluation 

process was repeated by removing all claims with no DAFW. Additionally, a second 

regression model was built with no interaction terms to evaluate the merit of including the 

two-way interactions terms in the model. The model comparison results for this extended 

analysis are shown in Table 4. Results showed that the stepwise regression model with the 

two-way interactions had the lowest RMSE compared to the other models. It is noteworthy 

that the regression model even without interaction terms had a lower error value compared to 

the decision tree model. This finding provides further evidence that for the data in this study 
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the regression models are an appropriate method to model the DAFW as compared to the 

decision tree model. 

Table 4: RMSE values of regression and tree models for claims where DAFW >0 

Model type 

Sum of squared 

error (SSE) N 

Mean squared 

error (MSE) 

Root mean 

squared 

error 

(RMSE) 

Stepwise Regression with 

two-way interactions 19303881 8160 2365.7 48.6 

Stepwise Regression with 

no interactions 21468529 8160 2630.9 51.3 

Decision tree model 21641214 8160 2652.1 51.5 

 

Conclusions 

 The objective of this study was to build and compare predictive models for 

determining the DAFW using the information recorded during the workers’ compensation 

claims process.  The two techniques used for building the predictive models were multiple 

regression using stepwise variable selection and the decision tree model. Regression models 

are the most widely used method for predictive analysis. However, for regression models to 

predict the dependent variable with high degree of accuracy, the underlying data must satisfy 

certain assumptions.  Violating these assumptions can result in erroneous outcome. Data 

mining techniques such as decision trees are increasingly used for predictive analysis because 

they are non-parametric methods that do not require underlying assumptions to be satisfied. 

This study found that the linear regression and the decision tree model could adequately 

model the DAFW. 

 While previous studies that investigated the DAFW focused on a single type of 

industry, this study used data from a wide range of process-oriented businesses to model the 

DAFW. Injury and incident analysis in businesses such as biofuels, grain handling and food 
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processing has been sparsely documented. This study augments the existing body of research 

literature on occupational injuries in hazardous industries such as biofuels and grain 

handling. Obtaining injury data for analysis in these industries continues to be a major 

challenge, but the use of workers’ compensation claims data provide a good source of injury 

surveillance and analysis.  

 Several limitations are noted for this study. Firstly, a major limitation of this study 

was that the scope of analysis was narrowed by the information available in the dataset. 

Secondly, while workers’ compensation data are extremely useful in injury prevention 

studies, the recording of information during the workers’ compensation claims process could 

contain errors. Finally, it must be noted that the investigators did not have any control on the 

data collection process. Future work can augment these models by including other 

information such as occupation of the injured employee, their level of education, pay rate, or 

any other variable recorded in the injury reporting process. Also, future studies can evaluate 

the performance of other prediction modeling techniques such as random forests, and 

artificial neural network to model the DAFW in addition to the techniques used in this study. 
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CHAPTER 5. GENERAL CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 

Conclusions 

The overall objective of this study was to characterize occupational injuries in the 

agribusiness industry by extracting useful information from a large workers’ compensation 

claims dataset using statistical and decision tree modeling techniques. The overall objective 

was operationalized into three separate studies documented in chapters 2, 3 and 4. 

The study in Chapter 2 focused on occupational injuries in biofuel production 

facilities such as ethanol and bio-diesel plants. Very little has been published on occupational 

injury patterns in these facilities due to the lack of a centralized injury data source. Workers’ 

compensation claims obtained from these facilities serves as an alternate source to help 

address some of this knowledge gap. Analyzing workers’ compensation claims data provides 

insights on the characteristics of occupational injuries that occur in ethanol and bio-diesel 

producing facilities. The primary objective of the study in chapter 2 was to characterize the 

direct cost of occupational injury using the information on the workers’ age and tenure, body 

part injured, and cause and type of injury obtained from the workers’ compensation claims.  

Contingency table analysis was used to classify the variable pairs, while chi-square 

test and chi-square residuals were employed to evaluate the relation between the variable 

pairs and identify the at-risk groups. Results showed age of injured employee, tenure of 

employee in the organization, type of claim, body part injured, nature of injury, and the cause 

of injury all have a significant influence in determining the claim amount. Furthermore, 

employees aged 46 to 50, less experienced employees, injuries related to strain, fractures, 

slips, trips, or falls, and injuries to lower extremities were identified as categories with a high 

likelihood of severe injuries. 
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The findings of the first study enhance the understanding of the risks of injury in 

biofuel facilities by providing empirical evidence through analysis of past safety injury data. 

The analysis of claims, recorded over an extended period of time, characterizes the strength 

and rigorousness of this study.  

The objective of the study in chapter 3 was to characterize workplace injuries in the 

commercial grain elevator industry. Like the biofuel industry, very few published studies 

have examined work-related injuries, primarily due to the lack of availability of past injury 

data. Therefore, workers’ compensation claims are an important source of knowledge on 

occupational injuries in this industry. 

The specific objective of the study in chapter 3 was to characterize the direct cost of 

occupational injury using the information obtained from the workers’ compensation claims. 

Variables examined included age, tenure of employee, body part injured, and cause of injury. 

Contingency table analysis, chi-square test and chi-square residuals were employed to 

evaluate the relationship between the variable pairs and identify at-risk groups.  

Results showed that age and tenure of employee, cause of injury, and body part 

injured all have a significant influence on the cost paid for the claim. Furthermore, a strong 

relationship between age and claim amount was observed across all age groups except for 

employees in the 36 to 40 years’ age group category. With respect to the tenure of the 

employee, the general trend observed was that as length of tenure increases, the number of 

claims decreases, indicating that employees with less experience are the most at-risk of 

occupational injury. Also, the chi-square tests showed that the claim amount is not the same 

for all types of injuries. Additionally, cause of the injury was a significant factor in 

determining the claim amount. Similarly, the claim amount varied significantly based on the 



124 

 

body part injured thereby suggesting that injuries to certain body parts have higher claim 

amounts. In this case,  injuries to upper and lower extremities tend to be more expensive as 

compared to injuries to “head and trunk”. 

Despite the existence of numerous workplace hazards in the grain handling industry, 

most studies investigating injuries and fatalities in grain facilities have focused only on a few 

safety hazards. The study in chapter 3 investigated occupational injuries across several 

hazard categories of the grain handling industry.  

The findings of the study in chapter 3 will enhance the understanding of 

recommended areas of preventative intervention in the grain handling environment. Also, the 

findings can be used to build multivariate models of the claim amounts, which would help 

commercial grain elevators, as well as the worker’s compensation insurance providers, better 

analyze the risks contributing to occupational injuries. 

The objective of the study in Chapter 4 was to build and compare two multivariate 

predictive models for determining the number of days away from work of workers who 

suffered an occupational injury. The number of days away from work (DAFW) is an 

important metric to measure the severity of a work-related injury. Predicting severity is 

important because severe injuries have higher economic and social costs and determining the 

severity of occupational injuries allows supervisors and safety managers to evaluate injury 

risks, identify problem areas, and make decisions to mitigate the impacts of severe work-

related injuries. 

The study in chapter 4, built and compared two predictive models for the DAFW, 

linear regression model and decision tree model. These models were built in the SAS 

Enterprise Miner application using the data recorded in a large workers’ compensation claims 
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dataset. Comparing the root mean square error (RMSE) of the models showed that the linear 

regression model with two-way interactions had a lower RMSE than the decision tree model 

in predicting the DAFW.  Furthermore, since regression analysis is one of the most widely 

used and understood statistical method; this study suggested that the linear regression is a 

viable and adequate option for modeling the DAFW. 

 The study in chapter 4 augments the existing body of research literature on 

occupational injuries in agribusiness industries such as biofuels and grain elevators. Very 

little published research has modeled the DAFW in these industries. Also, previous studies 

that investigated the DAFW focused on a single type of industry, while this study used data 

from a wide range of process-oriented businesses to model the DAFW. Analysis of a large 

number of claims obtained from various agribusiness industries and recorded over an 

extended period of time, characterizes the strength and rigorousness of the study in chapter 4. 

Limitations 

Several limitations should be considered in interpreting the findings of this study. The 

data for the study were obtained from a private insurance company. The investigator did not 

collect the data and no controls were exercised by the investigator during the data collection 

process. The insurance company collected the data during the workers’ compensation claims 

process and employees, employers, and other involved parties provided the information. 

While inputs from various entities enriches the data, making the WC data an excellent source 

of information related to work-related injuries, the recording of information from multiple 

sources during the WC claims process are prone to human errors. Also, it must be noted that 

the primary purpose of information collection during the WC claims process is to provide 
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benefits to the injured employee and not for research purposes. Therefore, the scope of 

analysis for this research project was narrowed by the information available in the dataset. 

Workers’ compensation data, like other injury data sources, are also prone to 

underreporting of injury claims. For example, workers’ compensation claims data of 

temporary and seasonal workers who are not in the payroll on a permanent basis may not be 

part of this dataset. Hiring temporary and seasonal workers is a common practice in 

agribusiness industry due to the seasonal nature of their business cycle. Therefore, the actual 

number of injuries could be higher than is reflected in the dataset.  

Finally, this research project is an observational study of the occupational injury data 

for non-farm agricultural industries. One important limitation of observational studies is that, 

unlike experimental or intervention studies, evaluating the relationship between two variables 

by controlling the effects of other variables is not possible. This limited some options for 

analysis of the dataset.  

Recommendations for future research 

Based on the findings of this research the following are recommendations for future 

research: 

• In addition to commercial grain elevators and biofuel production facilities, there are  

other agribusinesses where workers’ compensation claims can be utilized to study 

occupational injuries.  

• In this study, the claim amount was used as dependent variable to characterize 

occupational injuries. Similar analysis can also be conducted using cause of injury, 

nature of injury or body part injured as dependent variables. Such analysis would 
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provide further information to agribusiness industries for developing targeted 

interventions and mitigating occupational injuries.  

• Extend the two-way contingency table analysis to three-way or n-ways to investigate 

if the relationships between the two variables changes based on the values of a third 

variable. 

• The primary objective of this research was to gain a better understanding of 

occupational injuries in commercial grain elevators and biofuel production. This 

understanding can be useful for developing more advanced statistical models for 

predicting the number of claims based on the employee and injury characteristics. 

• While this study used the total claim amount as dependent variable, future studies can 

investigate if there is a relationship between the employee and injury characteristics 

and a particular type of costs such as medical or indemnity costs. For example, do 

older workers have higher indemnity costs than younger workers assuming all other 

factors are kept constant? 

• In this study, about 50% of the 34 columns of information available in the workers’ 

compensation claims dataset were utilized. Future work can include other data fields 

such as accident state, occupation, and claims description to investigate injuries in 

agribusiness facilities. For example, the description associated with each claim can be 

mined using text-mining programs to identify patterns associated with these claims. 

• In this study, linear regression and decision trees were used to build predictive models 

for the days away from work. Future studies can use other statistical and data mining 

techniques such as logistic regression, artificial neural network, and random forests, 

for building and evaluating models for the number of days away from work. 
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• Generally, managers and supervisors of the injured employee are actively involved in 

the injury reporting and workers’ compensation claims process. However, very little 

is known about the cost of time and effort spent by various parties involved in the 

claim process. Future research can investigate some of these costs. For example, is 

the time and effort spent by managers in the claim process of severe injuries 

significantly different than those on less severe injuries?    

Most studies that used workers’ compensation claims to study occupational injuries 

investigated only claims related to production agriculture or on-farm work injuries. This 

study is the first to investigate occupational injuries in non-farm agricultural workplaces 

such as grain elevators and biofuel producers using workers’ compensation claims. 

Continuous improvement in workplace safety outcomes requires learning from past 

incidents. The empirical evidence documented in this study can help safety professionals 

and supervisors in agribusinesses implement targeted injury prevention strategies to 

mitigate future occurrences of work-related injuries. 
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