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ABSTRACT 

In recent years, there has been a growing demand for alternative protein sources 

in the US. Grains are important in the food industry and they are staple foods around the 

world. Grains are good energy sources and some grains have very high protein content 

(e.g., amaranth). There has also been high demand for fish because fish are a very good 

source of protein. Improving methods of fish farming and processing of grains is 

beneficial to meeting these high demands for protein. For this thesis, three studies were 

investigated. They focused cost effectiveness, sustainability, and meeting the high 

demand of alternative food products. 

For the first study, a techno-economic analysis and life cycle assessment of 

extruded aquafeed were evaluated by developing a model for five production rates 

(10ton/y, 100ton/y, 250ton/y, 500ton/y, and 1000ton/y). The study was carried out to 

optimize cost and environmental performance in the production of aquaculture feed for 

small-scale producers. The results showed that unit cost of producing extruded aquafeed 

decreased as the production output increased. 

The second study focused on amaranth milling with three different mills (burr 

mill, roller mill, and nutrimill) with three corrugations (0.002 in., 0.005 in. and 0.010 in.) 

and three moisture levels (10%, 20%, and 24%) for the grain. The results revealed that 

the 10% moisture content and the fine setting for the nutrimill had the finest mean 

particle distribution. These findings will be relevant when incorporating amaranth flour 

into gluten-free food products. 

Lastly, the third study focused on meeting the needs of individuals with gluten 

intolerance. GF bread was formulated from amaranth and rice flour with the goal of 
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improving sensory properties, nutritive value, and reducing cost of GF bread. Bread flour 

was used as control, while rice and amaranth flour were used at different combination 

ratios. Results show that consumer panelists consistently preferred the control to other 

treatments for all attributes tested but a bread with 18.7% rice flour had acceptable 

properties. 

Meeting the needs for alternative protein sources is challenging but these studies 

highlight that there are effective solutions which can be capitalized on by researchers in 

the food industry. 
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CHAPTER ONE 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Introduction 

Grains are important in the food industry, as they are the base for most staple 

foods around the world. Apart from the importance of the high starch content of grains 

which is a vital energy source, they provide dietary fiber, nutritious protein, and lipids 

rich in essential fatty acids. Grains are also good sources of obtaining essential 

micronutrients such as vitamins, minerals, antioxidants and phytochemicals (Dewettinck 

et al., 2008); whole grains provide significant dietary amounts of B vitamins, particularly 

thiamine, pyridoxine, niacin and riboflavin (Bock, 2000). According to FAO (2015), the 

world grain production in the year 2015 is now forecast at 2.53 trillion tons; this forecast 

is 2.6 million tons less than the last foreseen and 33.9 million tons below the 2014 record. 

There are different types of grains within the true cereal grains which are from the 

botanical family Poaceae. These grains include wheat, oats, rice, corn, barley, sorghum, 

rye, and millet. They are grown primarily for the harvesting of mature grains, which are 

processed into staple food for human and feed for livestock. Wheat accounts for 

approximately 33% of grains produced in the world while rice accounts for 25% 

(Trabelsi et al., 1999). Grains are also processed into various products such as starch, 

malt, biofuel (alcohol) and sweetener. The physical properties have to be measured on a 

regular basis to determine optimum condition for processing (Trabelsi et al., 1999). Most 

grains are fed to livestock, as feed and they often consume the whole grain products. 
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Feed grains are processed mostly to improve digestibility in livestock and remove 

contaminants to ensure highest feed quality.  

 

1.2 Grain Processing 

Physical properties of grains are important parameters often used to determine the 

quality and optimum conditions for processing and safe storage of grain. Grain hardness 

is a fundamental physical property of cereal because it reflects the milling quality of the 

grain, and can be related to the texture of a cooked food product (Lin, 1997). Grain 

processing is essential for both human food and animal feed production. For bread and 

other baked goods, grains are milled, and the flour is subjected to treatment with water 

and heat. Commercial cereals may be extruded, puffed, flaked, or altered to improve 

product quality. Grain processing is required as a prior condition for manufacturing 

attractive and palatable food products. On the contrary, grain processing may result in an 

increase or decrease in the levels of bioactive compounds in grains (Slavin et al., 2001).  

The core objective of the dry-milling process is to make cereals more desirable as 

food. Milling is referred to as size reduction. Prior to milling of the endosperm for flour, 

the bran and germ, which are enriched with fat and protein, are separated from the 

starchy endosperm. Since fat oxidizes when exposed, which could result to poor shelf 

life, separation process before final milling helps prolong the shelf life of the flour 

(Hoseney, 1994). Size reduction aids further processing of food products; it increases the 

surface area of the products. The required particle size after milling varies for different 

grains. For instance, the endosperm must remain in whole pieces from rice and barley; a 

fine flour is demanded from wheat; and a high yield of large flaking grits is desirable 
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from com (Hoseney, 1994). Dry milled grains are used in different areas of the food 

industry. For instance, corn grits are used for breakfast cereals and brewing, corn meal 

for dry mixes in pancakes or corn bread, and flour from different grains for baked food 

products, binders, breading and batters for processed or frozen meat products (Lin, 1997). 

One major disadvantage of milling is the decrease in nutritive value of the flour (Hegedüs 

et al., 1985). Though, the flour can be fortified after milling (Preedy et al., 2011). 

Extrusion cooking is a widely used processing technique in the food industry. It is 

suitable for producing pasta (Marti et al., 2010), though formulating gluten-free (GF) 

pasta is a challenge (Marti and Pagani, 2013). Amerayo et al., (2011) reported the effects 

of extrusion cooking on pasta quality. Studies have adapted extrusion cooking for 

formulating GF pasta. Marti et al. (2010) reported extrusion of pasta using brown and 

milled rice, though using brown rice for extruded pasta was a challenge (Silva et al., 

2016).  

1.3 Gluten-free Food Products 

Celiac disease is a digestive disorder which damages the villi, tiny hair-like 

projections in the small intestine that absorb nutrients, due to an immunological reaction 

to gluten (King, 2006).  It has led to higher demand for gluten-free products as persons 

with celiac disease have to abstain from food products containing gluten. 

Various grains have been used in different studies to improve the nutritional 

benefits of GF food products. These grains include chestnut flour (Demirkesen et al. 

2010), tiger nut flour (Demirkesen et al. 2013), carob germ flour (Tsatsaragkou et al. 

2013), amaranth and oat composition (inglett et al., 2015), quinoa (Rothschild et al., 

2015), and legume flours (Gularte et al. 2012; Miñarro et al. 2012), especially the grains 
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with high dietary fiber, vitamin and mineral contents. Studies have been carried out on 

different GF food products, including spaghetti (Bastos et al., 2016), sugar-snap cookies 

(Mancebo et al., 2015), and cake (Rothschild et al., 2015). The physical, chemical, 

sensory, and rheological properties of various GF food products have been investigated in 

recent studies. Ziobro et al. (2016) evaluated the effects of protein isolates on starch 

based GF bread quality. Decrease in bread volume was reported as the composition of 

proteins increased; bread structure was influenced by replacement of gum with protein. 

However, positive results were reported for crumb color and consumer acceptance. 

The shelf life of GF food products is shorter than gluten-containing food products. 

According to Ozkoc and Seyhun, (2015) the shorter shelf life of GF food products may 

be as a result of the relatively high amount of starch in GF formulation.  

1.4 Techno-economic Analysis 

Although studies have been conducted to assess TEA on grain storage and 

refining of food waste to useful chemicals or livestock feed composition, to my 

knowledge, nothing has been published on TEA and LCA of GF food products. “Techno-

economic analysis (TEA) can be defined as a tool used to evaluate the potential costs and 

profits based on assumed equipment and facility characters and costs” (Petter and Tyner, 

2014). TEA is a useful tool used in various industries for evaluation of mobile broadband 

services (Frias and Pérez, 2012), biofuel production (Kazi et al., 2010; Vlysidis et al., 

2011) and other biological systems.  Utilization of TEA can enable merging of 

engineering design, technical information, costs and profits. It can provide support for 

long-term business strategic decisions and also for on-going operations (Knoll, 2012), 

decisions of system improvements can be inferred from the tool. To conduct TEA, 
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system boundaries and flowcharts are required, realistic assumptions are necessary and 

major technical and economic parameters must be identified. Based on the model, capital 

and operating costs are calculated, and profits are calculated to evaluate the economic 

potential of the system. According to Wallace (2011), from preliminary design to final 

commercial launch, TEA can be conducted with different levels of rigor. Sensitivity 

analysis can be adapted in TEA to test various results when changing process and 

parameters in the flow diagram. Optimizing specific elements can be achieved through 

sensitivity analysis (Wallace, 2011; Knoll, 2012). Lam et al., (2014) studied TEA of 

bakery waste, while Han et al., (2015) reported TEA for conversion of food waste into 

hydrogen. Suleiman et al., (2014) reported TEA for grain storage facility.  

1.5 Life Cycle Assessment 

There are different developed methods used when evaluating environmental 

impacts during product manufacture and service process. Life Cycle Assessment (LCA), 

Environmental Impact Assessment (EIA), Material Flow Analysis (MFA), Environmental 

Risk Assessment (ERA), Strategic Environmental Assessment (SEA), Ecological 

Footprint, and Cost-Benefit Analysis (CBA), are tools that can be employed when 

assessing environmental impact (Finnveden et al., 2009). LCA is a tool used to evaluate 

the environmental burden during product manufacture or service or product’s activity 

throughout its life cycle (Roy et al., 2009). The variables of concern would be the unit 

environmental impact (Du et al., 2010). A well rounded LCA contains four stages, 

namely: goal and scope definition, life cycle inventory analysis (LCI), life-cycle impact 

assessment (LCIA), and the interpretation phase.  
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The goal and scope stage comprises of the reason and purpose of the LCA study, 

the system boundaries, and the functional unit will be defined at this stage (Finnveden et 

al., 2009). The functional unit can be quantitatively calculated to express effectively the 

function of a product or service (Finnveden et al., 2009). In the LCI stage, the inputs and 

outputs, within the chosen system boundary, are determined and quantified. Interpretation 

helps the user understand LCA results at the goal definition stage so that conclusions can 

be drawn and suggestions for further study or improvement on the already existing 

system to be made (ISO, 2006).  

1.6 Thesis Organization 

This thesis follows the format for journals where manuscripts will be submitted. 

Each chapter in this thesis is self-contained; they include introduction, materials and 

methods, results and discussion, conclusion, references, figures, and tables. 

Chapter one (this chapter) is a broad introduction to this project and literature 

review. Chapter two includes the hypothesis and objectives of the three studies carried 

out in this project. Chapter three, titled “Techno-economic analysis and life cycle 

assessment of extruded aquafeed”, is a research paper modified from a manuscript 

submitted to ASABE 2015 conference. Chapter four, titled “Characterization of 

thermophysical and rheological changes during amaranth grain milling” and Chapter five, 

titled “Evaluation of Rheological, physicochemical, and sensory properties of rice and 

amaranth flour based GF bread”, are research papers modified from a manuscript to be 

submitted to ASABE 2016 conference. Chapter six draws a general conclusion from this 

project and also includes suggestions for future work.  
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CHAPTER TWO 

OBJECTIVES AND HYPOTHESES 

 

In this project, each study had two main objectives and each objective has its null 

hypothesis (Ho) and alternative hypothesis (Ha).  

The objectives for techno-economic analysis and life cycle assessment of extruded 

aquafeed were: 

To optimize cost in the production of aquaculture feed for small-scale producers using 

TEA and LCA for production rates of 10 ton/y, 100 ton/y, 250 ton/y, 500 ton/y and 1000 

ton/y.  

• (Ho) There would be no difference in the unit cost of production as the production 

rate increases from 10 ton/y to 1000 ton/y.  

• (Ha) There would be decrease in the unit cost of production as the production rate 

increases from 10 ton/y to 1000 ton/y) 

To evaluate environmental performance in the production of aquaculture feed for small-

scale producers using TEA and LCA for production rates of 10 ton/y, 100 ton/y, 250 

ton/y, 500 ton/y and 1000 ton/y.  

• (Ho) There will be no difference in the unit CO2 emission across all 

production output. 

• (Ha) There will be differences in the unit CO2 emission across all 

production outputs. 

The objectives for characterization of thermophysical and rheological changes during 

amaranth grain milling were: 
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To evaluate characteristics of amaranth grain using different mills at various moisture 

content.  

• (Ho) There would be no difference in the mean particle size of amaranth 

flour at 10% MC for roller mill, burr mill, and nutrimill. 

• (Ha) There would be differences in the mean particle size of amaranth 

flour at 10% MC for roller mill, burr mill, and nutrimill. 

To evaluate physical properties (color, bulk density, thermal properties, moisture content, 

angle of repose) and quality of amaranth flour from different mills and moisture content 

(burr mill, roller mill, and nutrimill). 

• (Ho) There would be no difference in the colorimeter reading for amaranth 

flour at 20% MC for nutrimill and roller mill. 

• (Ha) There would be difference in the colorimeter reading for amaranth 

flour at 20% MC for nutrimill and roller mill. 

The objectives for evaluation of rheological, physicochemical, and sensory properties of 

rice and amaranth flour based GF bread were: 

To formulate GF bread from amaranth and rice flour, which would be fortified to meet 

the required nutritional need obtained from a regular wheat bread. 

• (Ho) There would be no difference in the physical test between control 

and GF bread made with 18.7% rice flour. 

• (Ha) There would be difference in the physical test between control and 

GF bread made with 18.7% rice flour. 
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To conduct consumer test panel on GF bread from amaranth and rice flour with wheat 

bread 

• (Ho) There would be no difference in the attribute acceptance from 

consumers for GF bread samples and control in this study. 

• (Ha) There would be difference in the attribute acceptance from 

consumers for GF bread samples and control in this study.
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CHAPTER THREE 

TECHNOECONOMIC ANALYSIS (TEA) AND LIFE CYCLE ASSESSMENT 

(LCA) OF EXTRUDED AQUAFEED  

 

Abstract  

The increasing world population has led to higher demand for protein source. Fish 

is an excellent source of protein for humans; hence, the need for more farmed fish. The 

aquaculture industry has been recognized as the fastest growing food production system 

globally, with a 10% increase in production every year. It is also one of the sustainable 

and reliable growth market for manufactured fish feed. This study was carried out to 

optimize cost and environmental performance in the production of aquaculture feed for 

small-scale producers. Techno-economic analysis (TEA) and Life-cycle assessment 

(LCA) were tools for the analysis. In this study, the cost assessment and environmental 

assessment were analyzed for the production of fish meal diet; using single screw 

extruder for five different production output (10 ton/y, 100 ton/y, 250 ton/y, 500 ton/y, 

1000 ton/y) in three states in the US (Iowa, Ohio and Indiana). The location used for 

producing fish feed will influence the total CO2 emitted annually. Since the CO2 emission 

was calculated using electricity generation and gas production, CO2 emission will vary in 

different states because the source of electricity for most states in the US differ. Aquatic 

feed producers can use this tool to evaluate their annual cost, energy consumption, and 

CO2 emissions in the course of producing fish feed.  

Keywords: Aquaculture feed, TEA, LCA, Extrusion   
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3.1 Introduction 

Aquaculture is an intensely expanding sector of agriculture. This expansion is 

resulting from the increase in demand for fish. As the human population continues to 

expand beyond 6 billion, it is expected that humans would rely on farmed fish as an 

important source of protein. The worldwide decline of ocean fisheries stocks has resulted 

in an increasing demand for farmed fish; which has provided momentum for rapid growth 

in fish farming or aquaculture (Naylor et al., 2000). The market for manufactured feeds is 

growing rapidly (Riaz, 1997), this would enable fish farmers to meet the growing market 

for farmed fish.  

Lapere (2010) reported that the global decline in fish catch coupled with the 

increasing demand for fish made the prospect of aquaculture sectors very bright. Global 

aquaculture production attained another all-time high of 90.4 million tons (live weight 

equivalent) in 2012 (US$144.4 billion), including 66.6 million tons of food fish and 23.8 

million tons of aquatic algae, with estimates for 2013 of 70.5 million and 26.1 million 

tons respectively (FAO, 2014). Historically, the aquaculture industry has relied on fish 

meal and fish oil as the primary sources of protein and essential fatty acids for fish diets. 

Fish feed manufacturing is considered as a reliable and sustainable industry in feed 

production (Rosentrater et al., 2009a; Drew et al., 2007). Studies have been carried out to 

substitute fishmeal in fish diet with distiller dried grains (DDGS), soy meal, oilseed meal. 

Rosentrater et al., (2009a and 2009b) evaluated the effect of substituting fish feed on 

extrusion parameters.   

Extrusion technology is commonly used to produce fish feeds, since physical 

properties, such as water stability, durability, hardness, oil absorption capacity and 
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buoyancy control, are usually improved compared to steam pelleted diets (Sørensen et al., 

2009). Extrusion processing helps with the improvement in the nutritional and physical 

properties of the fish feeds (Davis and Arnold, 1995; Cheng et al., 2003).  

Extrusion processing is an adaptable process in the food industry, it requires 

relatively low energy to function effectively (Dziezak, 1989). Studies have reported that 

extrusion technology has been accepted in aquafeed feed production because it is cost 

effective and potential improvement of extruded feed. Extrusion is a controllable process. 

The barrel temperature, cook time, moisture content and degree of physical damage on 

the feedstock can be influenced in one unit operation. When extrusion process is handled 

properly, a very high-quality product can be produced (Riaz, 2007; Davis and Arnold, 

1995). Extrusion cooking is defined as a high-temperature-short-time (HTST) cooking 

process, which involves the cooking of ingredients in the extruder barrel, with a 

combination of high pressure, heat, and friction. The extruded materials exit through a 

die. The die is designed to produce highly expanded, low-density products with unique 

physical and chemical characteristics (Robinson, 1991; Pansawat et al., 2008). During the 

extrusion process, heat and shear force facilitates hydration of starches and proteins. Both 

classified as structure-forming materials, starch and protein are turned into a melt where 

droplets of water are entrapped (Guy, 2001; Sørensen et al., 2009). Bjiirckt and Asp 

(1983) reported that there are beneficial and undesirable effects of extrusion cooking on 

nutritional value of food products. The beneficial effects include the destruction of anti-

nutritional factors and gelatinization of starch. The undesirable effect happens from the 

reactions between protein and sugars which reduce the nutritional value of the protein. 

One of the critical factors that should be considered during extrusion cooking is optimum 
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processing. Since, over or under processing will reduce the nutritional value of the output 

(Riaz, 2007). 

Extrusion is categorized according to screw types; single screw and twin screw 

extruders. Single screw extruders are an attractive option for many applications due to 

low capital investment, low manufacturing cost, low maintenance, simplicity in design, 

and straightforward operation (Kim and Kwon, 1996). A typical single screw extruder 

comprises of three main zones: feed metering, compression zone, and a die for shaping 

(Previdi et al., 2006). It relies on drag flow to move the material down the barrel and 

develops pressure at the die (Kelly et al., 2006). Material enters from the feeder and 

moves in a channel toward the die when a screw rotates inside the barrel (Kim and Kwon, 

1996). 

The twin-screw extruders are classified according to the direction of screw 

rotation as either counter-rotating or co-rotating (Ayadi et al., 2011). Twin-screw 

extruders can process materials with different moisture contents and different viscosities 

(Hsieh et al., 1990). The feed rates of twin-screw extruders are independent of screw 

speed and are not influenced by pressure flow caused by restriction at the die (Altomare 

and Ghossi, 1986). 

When manufacturing fish feed, twin-screw extruder is often preferred over single 

screw extruder. This is because the twin-screw extruder can handle wet, oily or sticky 

ingredients, and viscous materials with different levels of composition over a broad range 

of particle sizes (Cheng et al., 2003; Chevanan et al., 2007). The twin-screw extruder can 

also produce floating feeds, which helps prevent feed waste and easy to handle fish feed.  

Aquaculture farmers often prefer floating fish feeds to sinking feeds (Cheng and Wang, 
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1999). It is typical of fish to eat only floating feed. In this study, techno-economic 

analysis (TEA) and life cycle assessment (LCA) were used to optimize cost and 

environmental performance in the production of aquaculture feed for small-scale 

producers. 

3.2 Materials and Methods 

3.2.1 Functional Unit 

The functional unit for both TEA and LCA was 1ton of fish feed. Environment 

impacts and economic feasibility of this study were evaluated based on 1ton of fish feed 

production. 

 

3.2.2. Techno-Economic Analysis  

Techno-economic analysis (TEA) can be defined as a systematic analysis used to 

assess the economic feasibility aimed to recognize opportunities and threats of projects, 

taking into account the capital, fixed costs, and variable cost (operational) (Simba et al., 

2012), as well as benefits. Fixed and annual operating costs are critical parameters in 

TEA and are critical factors for cost estimation, project evaluation, and process 

optimization (Marouli and Maroulis, 2005). The TEA in this study was conducted using 

an Excel spreadsheet (MS-Excel) to determine the cost of extrusion processing for 

aquatic feeds. This economic cost analysis calculation was divided into capital, fixed, and 

variable costs.  

3.2.2.1 Capital Costs 

In this study, the capital cost considered was the cost of purchasing the equipment 

for aquafeed production. It was assumed that the building was already in place. The cost 

of the equipment was obtained from three Chinese manufacturing companies (Jnsunward 
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Machinery Co. Ltd, Zhengzhou Taizy Trading Co., Ltd, and Xinxiang hengfu machinery 

Co., Ltd).  

3.2.2.2 Fixed Costs 

Fixed cost is independent of production rates (Pearlson, 2011). Fixed costs are 

those costs associated with depreciation, insurance, interest, overhead, and taxes. 

Depreciation was calculated using the straight-line method over the estimated service life 

of the assets. Depreciation is a non-cash deduction that occurs in the financial (profit and 

loss) report. Different equipment in feed production depreciates at various rates, and there 

are different methods of calculating depreciation. In this study, depreciation was 

calculated using the straight-line method over the estimated life services of the assets 

equation (1) for simplicity.  

Straight line depreciation ($) = A * (PP – SV) / estimated useful life  (1) 

A is the assets, PP is the purchased price, and SV is the salvage value 

Insurance was calculated by multiplying 0.00462 with the sum of initial equipment costs 

and building cost (Davis et al., 2011). Interest costs were related to capital investments. 

5% interest rate was used in this study. The costs of interest were determined using 

equation (2). 

 Interest ($/y) = � ����� ∗ (�	
�
�
 ���
���	� ����� + ��

�
	� ����)   (2)  

I = interest rate (5%)  

Overhead cost was calculated by multiplying the production rate by 0.16 

(Rosentrater, 2013). Taxes were calculated as 0.35% of the total capital costs, cost of 

miscellaneous and repairs were accounted for as $4.25 for each ton of fish feed produced 

(Rosentrater, 2013). 
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3.2.2.3 Variable Costs 

Variable cost for fish feed production included the costs associated with labor, 

utilities, ingredients, maintenance and repair, and other cost required by the facility for 

daily operation (Suleiman et al., 2014). Feed ingredients costs were determined based on 

different suppliers’ prices of materials per metric ton. A complete list of ingredients used 

in this study is shown in Table 3.1. The maintenance costs were determined as 3% of the 

capital investment. Other variable costs are shown in Table 3.2. The cost of labor was 

calculated based on the estimated number of workers, total annual operational hours and 

estimated wages per hour. The utilities considered in this study were natural gas 

(propane), electricity and water. Electricity cost is necessary in feed manufacturing; it 

includes costs for lighting and powering equipment such as extruder, mill, mixer, blender, 

dryer, and conveyor. The drying machines considered in this model used natural gas. 

 

3.2.2.4. Total Costs 

Total cost refers to the total expenses incurred in the production of a particular set 

of output. It comprises of the sum of capital, fixed, and variable costs. The unit total cost 

was obtained by dividing the total cost by the production output. 

3.2.3. Life-Cycle Assessment 

Life-Cycle Assessment (LCA) is defined as a tool for evaluating environmental 

effects of a product, process, or identifying and quantifying energy, material used, and 

waste released into the environment; it is known as a ‘from cradle to grave analysis’ (Roy 

et al., 2009; Walker et al., 2011; Hospido et al., 2003). LCA is a recognized procedure for 

assessing Greenhouse gas emissions of different products from ethanol production to 

food production to grain storage (Feng et al., 2008). The main goal of LCA is to improve 
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production, assess environmental performance indicators, help decision-making and 

market claims (Tillamn, 2000). The system boundary of this study is shown in Figure 3.1 

and the fish feed production location considered in this study are States of Iowa, Ohio 

and Indiana. CO2 emissions from electricity and natural gas generation from these states 

were used for modeling LCA for this study. The average CO2 emission from electricity 

generation for each state was calculated by dividing total CO2 emitted each year by the 

total electricity generated in the same year from 2010-2013 using data from EIA (2014). 

The CO2 emission for propane was obtained from LCA published data (Morawicki, 

2012). The total electricity required for each production rate was multiplied by the yearly 

estimated hours of operation and the CO2 emitted for generating electricity to obtain the 

total CO2 emitted for each production rate, this same procedure was used to derive the 

CO2 emission from propane. The sum of CO2 emitted from electricity and propane for 

each scenario was reported as the total CO2 emission for each production rate. 

3.2.4. Assumptions made for Fish Feed Production 

TEA and LCA for fish feed production were modeled using different 

assumptions. Firstly, it was assumed that the production building for all scenarios were 

already in place.  Table 3.1 shows some of the assumptions used for fish feed production 

in this study. The labor cost was assumed to be 12 $/hour (Xie, 2015). For production of 

10ton/y, the production time was calculated based on the production output of the 

production line (20 kg/hour). It was assumed that 200 hours will be required to produce 

10 tons of fish feed while 2000 hours was the assumed production time for other fish feed 

production outputs (Suleiman et al., 2014). 
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3.3 Results and Discussion 

3.3.1. Techno-economic Analysis (TEA) 

3.3.1.1. Capital Costs 

The annualized capital cost decreased as the output increased, 2513.43 $/ton, 

263.76 $/ton, 158.25 $/ton, 80.68 $/ton and 47.79 $/ton for the production output of 

10ton/y, 100 ton/y, 250 ton/y, 500 ton/y and 1000 ton/y respectively as shown in Figure 

3.2. This trend was the same as obtained by Suleiman et al., (2014), there was increase in 

the capital cost as the production rate increased. The capacity required to produce more, 

increases as rate of production increases. Capital costs are the most important cost in 

plant establishment and construction; they are the initial investment cost put into the plant 

(Suleiman et al., 2014). 

3.3.1.2. Fixed Costs 

The fixed costs calculated in this study were 2830.2$/ton, 297.0$/ton, 178.19 

$/ton, 90.84 $/ton and 53.81 $/ton for the production output of 10 ton/y, 100 ton/y, 250 

ton/y, 500 ton/y and 1000ton/y respectively, as shown in figure 3.3. Since assets cost 

increases with an increase in capital investment, depreciation values were expected to 

increase as production rate increases. Insurance costs are proportional to the production 

rate, as rate increased from 10 tons/y to 1000 tons/y, insurance also increased from 

108.52 $ to 206.34 $. Interest costs were related to capital investments. Like other fixed 

costs, overhead, and taxes increased as production capacity increased. The total 

annualized fixed cost decreased as production rate increased as shown in Figure 3.3. This 

result is similar to that obtained by Suleiman et al., (2014). 
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3.3.1.3. Variable Costs  

The unit variable costs calculated were 1293.99 $/ton, 1496.93 $/ton, 601.36 

$/ton, 302.84 $/ton, and 318.67 $/ton for the production output of 10 ton/y, 100 ton/y, 

250 ton/y, 500 ton/y, and 1000 ton/y respectively as shown in Figure 3.4. Variable costs 

had the greatest impact on the total operational cost in al scenarios. It was 31.38%, 

83.46%, 77.14%, 76.92%, and 85.56% for 10 ton/y, 100 ton/y, 250 ton/y, 500 ton/y, and 

1000 ton/y, respectively. This same trend was observed by Suleiman et al. (2014). As 

expected, the annual costs of feed ingredients increased as production rate increased. The 

total annualized cost of labor for production of 1ton of fish feed was 86.49 $. The results 

showed that the costs of utilities increased as the production rate increased.  The cost of 

ingredients, labor, maintenance, utilities, and other facility costs increases as the 

production rate increased. This should explain why the percentage of variable cost to total 

cost is 85.56% for the 1000 ton/y production rate compared with other production rates in 

this study. 

3.3.1.4. Annual Total Costs 

The unit total costs per year were 4124.19 $/ton, 1793.56 $/ton, 779.56 $/ton, 

393.69 $/ton, and 372.47 $/ton for the production output of 10 ton/y, 100 ton/y, 250 

ton/y, 500 ton/y, and 1000 ton/y, respectively. The production rate of 10 ton/y was 

modeled with the effective production time of all equipment, this explains the increase in 

the unit total cost for the 100ton/y. The unit total costs of production decreased as the 

production rate increased, as shown in Figure 3.5. According to Marouli and Maroulis 

(2005) increasing size of production plant is key to reducing production cost. The unit 
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cost of production decreased as the production rate increases. Suleiman et al., (2014) had 

similar trend as the production output of extruded aquafeed increased. 

3.3.2. Life-Cycle Assessment 

The kg CO2 emitted per MW-h of electricity generated for states of Iowa, Indiana 

and Ohio were 1.04, 0.87, and 0.78 respectively. Propane production emits 1.52 kg CO2 

per liter (EIA, 2002). The unit CO2 emitted as determined by LCA for each state is show 

in figure 3.6, figure 3.7 and figure 3.8. Increase in CO2 emission was observed as the rate 

of production increased. Figure 3.9 compares the unit CO2 emitted in the three states. 

Iowa tended to have higher CO2 emission compared to states of Ohio and Indiana, this 

could be because the state of Iowa generated more electricity from coal in the years 

evaluated in this study (2010 to 2013). Iowa has been generating electricity from 

renewable energy sources (wind energy) recently, which implies that they would have 

less CO2 emission compared to previous years. CO2 emission from electricity generation 

from coal is 1.022g/kWh (Spath and Mann, 1999). 

3.4. Conclusion 

Declination of world fish capture has provided an open market for aquatic feeds 

and various opportunities for the aquaculture sectors. The LCA spotted increase in CO2 

emission as the required output increased because there was an increase in energy 

consumption. The location of production has key role in CO2 emission as well, since 

most states use different electricity sources. The annual cost of operation increases as the 

expected output increased, but the unit cost decreased with increase in production. The 

system boundary for this study was restricted, therefore the need for further work on TEA 

and LCA of aquafeed production with broader system boundary.   
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Figure 3.1. System boundary of LCA for fish feed production 

 

 

Figure 3.2. Annualized unit costs as determined by TEA for fish feed production 
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Figure 3.3. Annualized unit fixed costs as determined by TEA for fish feed production 

 

 

Figure 3.4. Annualized unit variable costs as determined by TEA for fish feed production 
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Figure 3.5. Annualized unit total costs as determined by TEA for fish feed production 

 
 

 

Figure 3.6. Annualized unit CO2 emission as determined by LCA for fish feed production 
in the State of Iowa 
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Figure 3.7. Annualized unit CO2 emission as determined by LCA for fish feed production 
in the State of Indiana 
 
 
 

Figure 3.8. Annualized unit CO2 emission as determined by LCA for fish feed production 
in the State of Ohio 
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Figure 3.9. Annualized unit CO2 emission for fish feed production in the states of Iowa, 
Ohio, and Indiana  
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Tables 3.1. Assumptions made for fish feed production 

Assumptions               

Equipment service life 15y           

Electricity use  Lighting and motor power     

Electricity use efficiency Motor reductions of 75%     

1hp is equivalent to 746W-h 

(0.746kW-h)       

CO2 emission as a result of electricity and natural gas generation    

The building was already in place       

The system boundary for LCA does not include the transportation or emissions from 

freight 
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Table 3.2. List of ingredients for fish feed production - Rainbow trout (Suleiman et al., 
2015; Fallahi et al., 2012) 

 

 

Ingredient 

for Feed 

Total 

mass 

(ton) 

Inclusio

n level 

(%) 

Materia

l cost 

($/ton) 

Scenarios ($) 

I II III IV V 

Menhaden 

Fishmeal 
0.002 20 800 1600 

1600

0 
40000 80000 

16000

0 

Soybean 

Meal 
0.002 20 800 1600 

1600

0 
40000 80000 

16000

0 

Blood Meal 0.0005 5 450 225 2250 5625 11250 22500 

Wheat Bran 0.0012 12.2 180 216 2160 5400 10800 21600 

Corn Gluten 

Meal 
0.0025 25 750 1875 

1875

0 
46875 93750 

18750

0 

Fish Oil 0.0011 11 720 792 7920 19800 39600 79200 

Hydrogenate

d Soybean 

Lecithin 

0.0001 1 550 55 550 1375 2750 5500 

Corn starch 0.00038 3.8 550 209 2090 5225 10450 20900 

Stay-C 
0.00000

5 
0.05 500 2.5 25 62.5 125 250 

Vitamin 

premix 

0.00009

5 
0.95 800 76 760 1900 3800 7600 
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Table 3.2. Continued 

  

Mineral 

Premix 
0.0001 1 500 50 500 1250 2500 5000 

Total 0.01 100   6700.5 67005 167513 335025 670050 
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Table 3.3. Variable costs input as determined by TEA for fish feed production 

  Variable costs ($/ton) 

Electricity 0.07 

Water 0.02 

Raw ingredients 670.41 

Maintenance and repairs 3 

Miscellaneous supplies 1 

Others 0.25 
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CHAPTER FOUR 

CHARACTERIZATION OF THERMOPHYSICAL AND RHEOLOGICAL 

CHANGES DURING AMARANTH GRAIN MILLING 

 

Abstract 

Amaranth grain is gluten free and has high levels of protein. The total mineral 

content of amaranth grain is generally greater than that observed in conventional grains. 

This study focused on amaranth milling with three different mills (burr mill, roller mill, 

and nutrimill), with three corrugations (0.002 in., 0.005 in. and 0.010 in.) and three 

moisture levels (10%, 20%, and 24% w.b.). The following physical properties were 

measured in the grain: seed dimension, one thousand seed weight, and moisture content 

before and after tempering. The following physical properties were measured in the flour: 

mean particle size, bulk density, color, angle of repose, moisture content, thermal 

conductivity, thermal diffusivity, and specific heat capacity. Results show that one 

thousand seed weight (W1000) of the amaranth grains increased linearly with an increase 

in moisture content, from 0.75 to 0.88 grams. The mean particle size of the flour 

increased with an increase in moisture content. It was observed that changes in the 

physical properties correlated with moisture content. The results of this study give 

understanding of changes that ought to be considered in the processing and handling of 

amaranth flour. These results will be relevant when incorporating amaranth flour into 

gluten-free food products. 

Keywords: Amaranth grain, gluten intolerance, particle size distribution, physical 

properties. 
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4.1. Introduction 

 

There has been an increase in the population of people opting for gluten-free 

diets. Larger segment of the general public is picking this dietary alternative for an 

assortment of reasons, such as the celiac disease. Gluten intolerance is becoming very 

pronounced in the United States (Caitlin and Rosentrater, 2014), and more people are 

opting for gluten-free diets; numerous individuals additionally partake in gluten free diet 

for non-therapeutic reasons. There has been growth in the gluten-free market because of 

these listed reasons (Caitlin and Rosentrater, 2014). Amaranth grain is gluten free and has 

very high levels of protein. Interest in amaranth grain has been on the increase recently 

because of the high protein level and quality of the grain (Antoinette et al., 1981; Birthe 

et al., 1987). 

Amaranthus or Amaranth is a traditional Mexican plant. It is a cosmopolitan 

genus of herbs with approximately 60 plant species, the majority of which are wild 

(Stallknecht and schulzschaeffer, 1993). Amaranthus plants have inflorescences and 

foliage with different colors, ranging from purple to red and gold. It is a dicotyledonous 

plant and is also considered a pseudocereal because of its properties and characteristics 

(Breene, 1991). Amaranthus are known for high tolerance to arid conditions and poor soil 

conditions, locations where cereals find it challenging to grow (Saunders and Becker, 

1984). Amaranthus has an excellent capacity to produce high biomass and is used as 

grains, leafy vegetables, and ornamentals. Several species of amaranth are often 

considered as weeds (Narpinder and Prabhjeet, 2011). Amaranth grain yield is dependent 

on the cultivar selection and the growing season, particularly on the availability of 

moisture in the soil (Abalone et al., 2004). 
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When compared to conventional grains, amaranth has higher level of mineral 

content. The phytic acid content of amaranth was reported to range from 2.2 to 3.4 

mmol/100g of seeds (Becker et al., 1981; Betschart et al., 1981). Abalone et al., (2004) 

reported relatively high lysine, tryptophan content, and protein content (16% to 18%). 

Shrinkage coefficient, porosity, specific volume, bulk density, and true density of 

amaranth grain were evaluated and correlation was reported between changes in the 

physical properties and moisture content of amaranth grain.  

The operator of a unit can conduct trial milling to optimize milling conditions of a 

sample, this is referred to as experimental milling (Elieser and Arthur, 1997). Grains can 

be conditioned for milling by adjusting the amount of moisture added when tempering, 

increasing or reducing the duration allotted for tempering, temperature and utilization of 

different mill settings can be tested to obtain optimal results. The environment of the 

laboratory where the milling study is conducted should be monitored as well. Studies 

have shown that environmental conditions, such as temperature and relative humidity can 

affect milling performance. Although, changes in relative humidity had no significant 

effect in non-pneumatic laboratory mills (Shollenberger, 1921). Al-Obaidy (1982) 

reported an increase in flour moisture; decrease in flour ash content, protein content, flour 

extraction, milling loss, grinding and sifting performance in the evaluation of flour 

milling with respect to changes in relative humidity.  

Paulk et al., (2015) reported decrease in mean particle size of sorghum by 100um 

improved weight gain of finishing pigs by 1.23%. Energy requirement for reducing 

particle size of material increase when reducing the material to finer sizes. Size reduction 

has advantages in the food industry. This advantages incudes, increased overall surface 
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area per unit volume; this allows greater access to digestive enzymes and increase the 

efficiency at which food is digested (Goodband et al., 2002), pelleting, increased ease of 

management, mixing, and modification of physical characteristics of the material (Koch, 

1996). Probst et al., (2013) evaluated grinding performance for corn and corncob using 

hammer mill. The study reported substantial loss of moisture from ground materials, this 

was observed more with samples with higher initial moisture content, and ground cob had 

comparatively higher particle size compared to ground corn. 

Studies have been reported on the milling performance of other cereal, but none 

has been reported on amaranth milling. Hence, the objective of this study was to evaluate 

characteristics of amaranth grain using different mills at various moisture content and to 

evaluate physical properties and quality of amaranth flour from different mills and 

moisture content (burr mill, roller mill, and nutrimill). 

4.2. Materials and methods 

4.2.1. Sample Preparation 

Organic amaranth grain harvested in California USA and certified by the Organic 

Crop Improvement Association (OCIA) was used for this study. The crude protein 

(16.2%), crude fiber (4.1%), ash content (2.5%), and fat content (7.7%) of the grain were 

all measured in dry basis. The amaranth grains were cleaned and mixed thoroughly. 

About 27kg of the grain was sampled for this study. The initial moisture content of the 

grains was evaluated using the ASAE (2001) method. The desired moisture content of 

grains was tempered by adding the amount of distilled water calculated using equation 1 

(Sacilik et al., 2003) 

� = � (!" − ! )(100 − !")                                                                                                                 (1) 
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Wi is the initial sample weight, Mi is the initial moisture content, Mf is the final moisture 

content 

4.2.2. Seed Dimensions 

To determine the seed dimensions (maximum length L, maximum width W), 85 

Amaranth grains were randomly selected. Image j software (version, 1.49p, 2015) was 

used to determine seeds dimensions. The arithmetic mean (A) and standard deviation 

(SD) were obtained from the data, using equation 2 and 3.  

& = �' ∗ ∑ )
' *�          (2) 

n is the sample size, x is individual value 

         (3) 

x is individual score, n is the sample size, x̄ is the mean 

4.2.3. One Thousand Seed Weight  

One thousand grain was determined by weighting 100 kernels of the grain, which 

were  picked at random from the bulk seeds, with an electric weighing scale (Denver 

Instrument, DI4K, Bohemia, NY, USA). There were three replications for each 

measurement (Tunde-Akintunde et al., 2004; Ixtaina et al., 2008; Vilche et al., 2003). 

4.2.4. Grain Milling 

The amaranth samples were ground using roller mill, nutrimill, and burr mill. The 

roller mill used for this study had a corrugation of 1/32 inches, the spacing between the 

rollers was adjusted to 0.002in., 0.005in., and 0.010in. (fine, medium, and coarse 

respectively). The burr mill had settings ranging from 1 to 10, but the setting used for this 

study were 1, 2 and 3 to represent fine, medium and coarse respectively. The nutrimill 
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had a labeled with fine and coarse. The mid-point of this two points was used as the 

medium point for this study while the fine and coarse position represented the fine and 

coarse setting for the milling processes. The grains were measured conditioned to three 

different moisture levels (10%, 20%, and 24% w.b) before the milling process. There 

were two replicates of each treatment, weighing 500grams each. 

4.2.5. Mean Particle Size 

The ground amaranth samples were analyzed for particle size distribution using a 

Tyler Ro-tap (ASABE S319.4). In this study, the samples were poured into a stack of 

seven sieves and the Ro-tap machine was set to shake these sieves for 10 minutes (Probst 

et al., 2013). The geometric mean particle size for each treatment was calculated using 

equation 4. 

�+, =  
��-� ./ 012 345 6278
29:; (12)829: <       (4) 

Wi is the weight of retained sample, di is the sieve diameter 

4.2.6. Bulk Density 

In this study, bulk density of ground samples was measured using a volumeter, 

the ground amaranth was poured into the hopper, with a one liter cylindrical vessel of 

stainless steel placed directly under it. The closure below the hopper was opened, and the 

ground samples were allowed to flow freely into the vessel. Then the top was leveled in a 

zigzag motion, and the weight of the ground was measured (Suleiman et al., 2015; Singh 

and Goswami, 1996; Cetin, 2007; Paksoy and Aydin, 2004).  
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4.2.7. Angle of Repose 

The angle of repose is the angle with the horizontal at which the materials will 

stand when piled (Mohsenin, 1986). The angle of repose in this study was determined as 

described by Tunde-Akintunde et al., (2004). The angle of repose was calculated from the 

diameter and height of heap using equation 5.  

= = tan-� ℎ�
�ℎ�/(0.5)���� 
�	��ℎ)        (5) 

4.2.8. Thermal Properties  

The thermal properties evaluated were, thermal conductivity (k), diffusivity (d) 

and heat capacity (c). Thermal conductivity of a material is a measure of its ability to 

transmit heat; it is expressed in the unit W/m◦K. Thermal diffusivity quantifies a 

material’s ability to conduct heat relative to its ability to store heat, and its unit is m2/s. 

Specific heat of a material is the amount of heat required to increase the temperature of a 

unit mass of the material by one degree, and its unit is kJ/kg◦K (Stroshine, 2004).  The 

thermal properties of the amaranth flour were determined using a thermal properties 

meter (KD2, Decagon Devices, Pullman, Wash). 

4.2.9. Color 

Color is vital attribute when grading and inspecting flour and grains. In this study, 

the seed color was measured using a Chroma meter CR-410 (Konica Minolta Optics, 

Japan). Colorimeter readings were expressed by Hunter values for L*, a* and b*. L* 

values measure black (0 value) to white (100 value), a* values measure red (+a*) and 

green (-a*), and b* values measure yellow (+b*) to blue (-b*) of a material (Amir et al., 

2015).  
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4.2.10. Statistical Analysis  

These experiments were carried out with two replications for each mill setting and 

moisture level unless stated otherwise. The arithmetic mean values and standard 

deviations were reported. All figures were plotted using Microsoft Office Excel, and 

Statistix 10 was used to run analysis of variance (ANOVA). The significance level (alpha 

value) of the statistical analysis in this study was set at 0.05. The moisture content, bulk 

density, angle of repose, thermal properties and color measurements had three 

replications while the mean particle size had duplicates. 

4.3. Results and Discussion 

4.3.1. Moisture Content 

Table 4.1 shows the moisture content of the grains before milling. The moisture 

content of the samples was measured prior to milling, 10%, 20% and 24% was obtained 

as shown in Table 4.1. The moisture content of the flour was measured after milling. 

Table 4.2 shows the moisture content of amaranth flour, the moisture loss in the 

feedstock increase in the samples with higher initial moisture content. According to 

Probst et al., (2013) this higher moisture loss observed in the samples can be attributed to 

higher heat generated inside grinding chambers. The interaction between grain particle to 

particle, and milling chambers to particle friction during size reduction would generate 

heat. The moisture lose from the feedstock material in the milling chamber can be as a 

result of temperature increase during the milling process. This same trend was observed 

for corn and corncobs by Probst et al., (2013). The burr Mill plugged at fine setting and 

could not grind the samples at 24% moisture level (w.b.); these could be due to more heat 

generated as a result of friction in the plates and between grain particles.  
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4.3.2. Seed Dimensions 

The average maximum seed length and width were 1.20 ± 0.22mm and 1.10 ± 

0.20 respectively. These values are less than the range of values obtained from chia seeds 

but slightly higher than the values obtained for kaňiwa (Suleiman et. al., 2015). They are 

of the same range as the results obtained by Abalone et al., (2004) for amaranth seeds. 

4.3.3. One Thousand Seed Weight  

The one thousand seed weight (W1000) of the amaranth grains increased linearly 

with increase in moisture content, from 0.75g to 0.88grams. The relationship between one 

thousand seed weight and moisture content of amaranth can be expressed as shown in 

equation 6.  

W1000 = 0.73 + 0.0048x  (R2 = 0.94)       (6) 

Figure 4.1 shows the W1000 of the grains with increasing moisture content. 

Increase in W1000, observed and the same trend was reported for chia seeds, kaniwa, farro 

and triticale by Suleiman et. al., (2015). This same trend was also observed for guna 

seeds (Aviara, et al., 1999), coriander seed (Coskuner and karababa, 2007), green wheat 

(Al-Mahasneh and Rababah,, 2007), barley (Sologubik et al., 2013), rapeseed (Calisir et. 

al., 2005) and caper seed (Dursun and Dursun, 2005). 

4.3.4. Mean Particle Size 

Table 4.3 shows the data obtained from particle size analysis carried out in this 

study. The mean particle size of the flour increased with increase in moisture content. 

The results obtained for the particle size distribution are similar to that for milling corn 

kernel and corncob with hammer mill reported by Prost et al., (2013). The mean particle 

size for the nutrimill (fine, 10% MC w.b.) was the lowest compared to the mean particle 
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size for the fine corrugation and 10% MC (w.b.) for the roller mill and burr mill (Figure 

4.2). 

4.3.5. Bulk Density 

There is no definite trend for bulk density of the ground samples as regards 

increase in moisture content (Table 4.4).  Bulk density decreased as moisture content of 

treatments increased for burr mill (Figure 4.3). Similarly, Bernhart and Fasina, (2009) 

also reported decrease in the particle density with increase in moisture content. Prost et 

al., (2013) also observed decrease in bulk density as moisture content of corn increased, 

the decrease was attributed to increase in particle volume. 

4.3.6. Angle of Repose 

Figure 4.4 shows the angle of repose for all ground samples; it can be observed 

that there is no definite trend in the chart. The angle of repose did not increase as the 

moisture or mill setting increased. The 0.005in., and 0.010in. of the roller mill tends to 

show increasing angle of repose at all moisture levels, but this trend does not stand for 

other treatments. 

4.3.7. Thermal Properties 

The variation in thermal conductivity, diffusivity and specific heat capacity for 

the amaranth grain before milling and ground samples for 10%, 20%, and 24% moisture 

level (w.b.) are shown in Table 4.5, 4.6 and 4.7 respectively. The specific heat capacity 

tends to increase linearly with increasing from 10% to 24% (w.b.). A similar trend was 

observed for minor millet grains and flour by Subramanian and Viswanathan (2003); 

Chia, Kañiwa, Farro and Triticale by Suleiman et al., (2015); gram by Dutta et al. (1988); 

and Roselle seeds by Bamgboye and Adejumo (2010). With respect to this trend, it can 
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be said that moisture content of a material has significant effect on the specific heat 

capacity of the material.  

No specific trend was observed for the thermal diffusivity and thermal conductivity 

across all treatments. The results obtained for thermal diffusivity, and thermal 

conductivity was in the range of 0.09 to 0.12 and 0.13 to 0.20 respectively. Mahapatra et 

al., (2013) reported an increase in thermal diffusivity and thermal conductivity of 

increasing moisture in cowpea flour, Božiková (2003) reported the same trend for corn 

and wheat flour. In contrast, Mahapatra et al. (2011) reported a decrease in thermal 

diffusivity of rice flour with the increase in moisture content. 

4.3.8. Color 

The colorimeter readings for the amaranth grain before milling and ground 

samples for 10%, 20%, and 24% moisture level (w.b.) are shown in Table 4.8, 4.9, and 

4.10 respectively. The milling corrugation of the three mills had no significant effect on 

the brightness of the flour in this study, as shown in comparison within mills in Table 

4.11, 4.12 and 4.13. The moisture content of the grains has significant impact on the L* 

of amaranth flour in all treatments. The a* value of the roller milled samples was 

significantly different in the samples with 10% MC (0.005in. mill corrugation), 10% MC 

(0.010in. mill corrugation), 24% MC (0.005in. mill corrugation), and 20% MC (0.005in. 

mill corrugation). The samples with 10% (w.b.) had higher values, indicating that they 

had more red appearance compared to other samples.  The b* value for samples milled 

with the roller mill were all negative; this indicates that they were best described as blue. 

There were significant difference between 24% MC (0.002in. mill corrugation), 24% MC 
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(0.005in. mill corrugation), and 10% MC (0.010in. mill corrugation), and 10% MC 

(0.002in. and 0.005in. mill corrugation). 

4.4. Conclusion 

 

The effect of three mill settings (fine, medium, coarse) and moisture levels (10% 

to 24% w.b.) on the milling behavior of amaranth grain at three moisture levels was 

studied. Heat generated by friction during the milling process resulted in substantial 

decrease in the moisture content of amaranth flour.  Also, the burr mill plates plugged 

when high moisture level grain and fine setting was combined. It would be most 

appropriate to account for moisture losses that occur in ground materials when designing 

milling systems. The mean particle size for all burr mill, roller mill and nutrimill 

increased with increase in moisture content for all mill setting.  

The results of this study gives understanding of changes that ought to be 

considered in the processing and handling of amaranth flour. This result would also be 

relevant when incorporating amaranth flour into gluten free products. 
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Figure 4.1. One thousand seed weight of amaranth grain with increasing MC 

 

Figure 4.2. Mean particle size distribution of amaranth flour 
Error bars are ± standard deviation. n is 2 for each treatment 
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Figure 4.3. Bulk density of amaranth flour 
Error bars are ± standard deviation. n is 3 for each treatment 
All pairwise comparisons are shown in Table 4.11, 4.12, and 4.13 

 
Figure 4.4. Angle of repose of amaranth flour 
Error bars are ± standard deviation. n is 3 for each treatment 
All pairwise comparisons are shown in Table 4.11, 4.12, and 4.13 
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Table 4.2. Moisture content of amaranth flour  

  10% (w.b.) 20% (w.b.)  24% (w.b.) 

  mean SD mean SD mean SD 

Roller mill 2th 12.00 4.67 19.37 0.55 21.35 3.20 

 5th 12.58 3.09 18.91 3.50 22.94 2.61 

 10th 13.44 0.34 20.95 2.52 27.27 0.00 

Nutrimill fine 11.67 2.89 19.79 3.50 26.52 1.31 

 med 11.51 3.03 22.03 3.51 25.72 1.76 

 coarse 14.09 0.79 19.60 4.42 17.63 7.64 

Burr mill fine 11.21 2.10 20.26 1.36   

 med 9.70 0.52 20.91 1.57 24.60 1.71 

 coarse 12.21 3.06 18.50 0.96 23.92 5.28 

All pairwise comparisons are shown in Table 4.11, 4.12, and 4.13  

Table 4.1. Initial moisture content of amaranth grain (w.b. %) 

 Target MC Mean SD 

10% 10.23 1.08 

15% 20.76 1.56 

20% 24.31 1.05 
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Table 4.3. Mean particle size of distribution amaranth flour (mm) 

    10% (w.b.) 20% (w.b.) 24% (w.b.) 

  mean SD mean SD mean SD 

Roller mill 2th  0.73 0.01 0.94 0.01 0.97 0.01 

 5th 0.75 0.00 0.96 0.01 0.96 0.01 

 10th 0.83 0.01 0.96 0.01 0.97 0.00 

Nutrimill fine 0.58 0.00 0.86 0.00 0.90 0.00 

 med 0.67 0.02 0.88 0.00 0.90 0.01 

 coarse 0.69 0.02 0.90 0.01 0.92 0.01 

Burr mill fine 0.74 0.01 0.90 0.03   

 med 0.82 0.00 0.92 0.00 0.94 0.01 

  coarse 0.93 0.01 0.97 0.00 0.98 0.01 

All pairwise comparisons are shown in Table 4.11, 4.12, and 4.13 
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Table 4.4. Bulk density of amaranth flour (kg/m3) 

   10% (w.b.) 20% (w.b.) 24% (w.b.) 

  mean SD mean SD mean SD 

Roller mill 2th  493.73 1.47 599.77 0.58 610.67 4.10 

 5th 537.10 1.44 626.87 3.81 590.80 37.99 

 10th 587.70 1.82 608.83 5.58 526.43 3.06 

Nutrimill fine 516.07 5.30 513.83 3.63 494.97 14.10 

 med 544.37 1.57 529.80 6.84 505.60 13.29 

 coarse 516.07 5.30 554.50 0.80 533.43 8.69 

Burr mill fine 553.57 6.02 497.33 5 5.11   

 med 632.07 2.42 560.27 7.49 532.33 3.71 

  coarse 734.50 0.20 673.00 1.71 613.77 3.32 

All pairwise comparisons are shown in Table 4.11, 4.12, and 4.13 
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Table 4.5. Thermal properties of 10% (w.b.) MC amaranth flour 

  

Thermal 

conductivity 

(ᵂ/m-k) 

Diffusivity 

(mm^2/s) 

Specific heat 

capacity 

(MJ/m^3-k) 

  mean SD mean SD mean SD 

sample (as is) 0.14 0.03 0.09 0.00 1.31 0.16 

Roller mill 2th 0.13 0.01 0.11 0.00 1.19 0.09 

 5th 0.13 0.01 0.10 0.00 1.28 0.06 

 10th 0.14 0.01 0.10 0.00 1.35 0.11 

Nutrimill fine 0.13 0.01 0.10 0.00 1.22 0.10 

 med 0.13 0.00 0.10 0.00 1.35 0.06 

 coarse 0.13 0.00 0.10 0.00 1.29 0.04 

Burr mill fine 0.13 0.01 0.10 0.00 1.25 0.03 

 med 0.14 0.01 0.10 0.00 1.42 0.10 

 coarse 0.15 0.00 0.09 0.00 1.65 0.03 

All pairwise comparisons are shown in Table 4.11, 4.12, and 4.13 
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Table 4.6. Thermal properties of 20% (w.b.) MC amaranth flour 

    

Thermal 

conductivity 

(W/m◦K) 

Diffusivity 

(mm2/s) 

Specific heat 

capacity 

(MJ/kg◦K) 

    mean SD mean SD mean SD 

sample (as is ) 0.16 0.01 0.09 0.00 1.78 0.81 

Roller mill 2th  0.17 0.02 0.11 0.00 1.56 0.15 

 5th 0.15 0.01 0.11 0.01 1.43 0.04 

 10th 0.16 0.01 0.10 0.00 1.50 0.09 

Nutrimill fine 0.15 0.00 0.10 0.00 1.50 0.04 

 med 0.16 0.01 0.11 0.00 1.48 0.09 

 coarse 0.16 0.01 0.10 0.00 1.52 0.13 

Burr mill fine 0.16 0.00 0.11 0.00 1.44 0.01 

 med 0.17 0.01 0.11 0.00 1.57 0.08 

  coarse 0.17 0.00 0.10 0.00 1.64 0.04 

All pairwise comparisons are shown in Table 4.11, 4.12, and 4.13 
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Table 4.7. Thermal properties of 24% (w.b.) MC amaranth flour 

    

Thermal 

conductivity 

(ᵂ/m-◦K) 

Diffusivity 

(mm2/s) 

Specific heat 

capacity 

(MJ/kg◦K) 

    mean SD mean SD mean SD 

sample (as is ) 0.16 0.03 0.09 0.00 1.77 0.30 

Roller mill 2th  0.17 0.01 0.11 0.00 1.54 0.03 

 5th 0.16 0.01 0.11 0.00 1.51 0.05 

 10th 0.17 0.00 0.12 0.00 1.39 0.05 

Nutrimill fine 0.16 0.01 0.11 0.00 1.43 0.03 

 med 0.16 0.01 0.11 0.00 1.51 0.04 

 coarse 0.17 0.01 0.11 0.00 1.52 0.04 

Burr mill med 0.17 0.01 0.11 0.00 1.56 0.12 

  coarse 0.19 0.01 0.11 0.00 1.71 0.07 

All pairwise comparisons are shown in Table 4.11, 4.12, and 4.13 
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Table 4.8. Colorimeter reading for amaranth flour with 10% (w.b.) MC 

  L* a* b* 

  mean SD mean SD mean SD 

sample (as is)  46.14 1.00 0.41 0.03 -1.65 0.23 

Roller mill 2th 53.52 1.69 1.95 0.16 -10.86 1.66 

 5th 54.03 1.36 2.02 0.06 -10.37 0.54 

 10th 53.00 0.64 1.83 0.10 -8.88 0.56 

Nutrimill fine 57.08 0.70 2.03 0.13 -13.51 0.89 

 med 54.50 1.54 1.71 0.21 -11.08 1.36 

 coarse 54.93 1.06 1.67 0.12 -11.08 0.82 

Burr mill fine 53.58 0.93 1.78 0.20 -9.96 1.08 

 med 52.34 0.95 1.75 0.08 -9.08 0.27 

 coarse 50.73 1.26 1.21 0.18 -6.03 1.24 

All pairwise comparisons are shown in Table 4.11, 4.12, and 4.13 
 

 

 

 

 

 

 

 

 

 



76 

 

Table 4.9. Colorimeter reading for amaranth flour with 20% (w.b.) MC  

  L* a* b* 

  mean SD mean SD mean SD 

sample (as is)  43.64 0.83 0.99 0.07 -1.16 0.17 

Roller mill 2th 46.81 0.82 1.24 0.15 -3.93 0.98 

 5th 47.56 0.56 1.11 0.08 -3.29 0.65 

 10th 46.66 0.31 1.16 0.02 -3.30 0.25 

Nutrimill fine 46.19 0.69 1.04 0.86 -2.48 0.87 

 med 44.86 0.76 1.06 0.14 -3.00 0.99 

 coarse 45.43 0.86 1.04 0.13 -2.42 0.74 

Burr mill fine 45.41 0.97 1.41 0.06 -3.06 0.46 

 med 45.73 1.15 1.36 0.06 -3.32 0.66 

 coarse 44.94 0.94 1.04 0.09 -2.18 0.30 

All pairwise comparisons are shown in Table 4.11, 4.12, and 4.13 
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Table 4.10. Colorimeter reading for amaranth flour with 24% (w.b.) MC 

  L* a* b* 

  mean SD mean SD mean SD 

sample (as is)  41.16 0.68 1.10 0.09 -2.18 0.47 

Roller mill 2th 46.27 0.62 1.23 0.03 -2.93 0.34 

 5th 47.43 0.59 1.30 0.05 -4.27 0.56 

 10th 47.49 0.59 1.16 0.05 -3.89 0.36 

Nutrimill fine 42.62 1.45 0.80 0.14 -1.23 0.73 

 med 43.43 1.06 0.78 0.08 -1.54 0.42 

 coarse 42.28 1.01 0.88 0.10 -1.13 0.41 

Burr mill med 44.72 0.48 1.36 0.05 -2.04 0.39 

 coarse 44.20 0.52 1.36 0.05 -1.62 0.36 

All pairwise comparisons are shown in Table 4.11, 4.12, and 4.13 
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Table 4.11. All pairwise comparison for mean of treatments within mill – roller mill 

 
Means with different alphabets a-e within the same row are significantly different, at P = 
0.05 
  

MC 10% (w.b.) 20% (w.b.) 24% (w.b.) 

corrugati
on 2th 5th 10th 2th 5th 10th 2th 5th 10th 

Mean 
particle 

size 0.73e 0.75d 0.83c 0.94b 0.96ab 0.96ab 0.97a 0.96ab 0.97a 
%MC 
w.b. 
after 

milling 
12.00
c 

12.58
c 

13.4
4c 19.37b 

18.91
b 20.95b 21.35b 

22.94a

b 
27.27 

a 

L 
53.52
a 

54.03
a 

53.0
0a 

46.81b

c 
47.56
b 46.66bc 46.27c 

47.43b

c 
47.56
b 

a* 1.95ab 2.01a 
1.83
b 1.24cd 1.16cd 1.16cd 1.23cd 1.30c 1.11d 

b* 

-
10.86
d 

-
10.37
d 

-
8.88c -3.93ab 

-
3.29ab -3.30ab -2.93a -4.27b 

-
3.91ab 

Bulk. 
density 

493.7
3e 

537.1
0d 

587.
7c 

599.7
7bc 

626.8
7a 

608.83
abc 

610.6
7ab 

590.8
0bc 

526.4
3d 

Angle of 
Repose 

20.72
ab 

19.63
cd 

18.3
5e 21.14a 

20.05
bc 18.86de 

19.97b

c 
20.81a

b 
19.96
bc 

k (ᵂ/m-
k) 0.13b 0.13b 

0.14
b 0.17a 0.15a 0.16a 0.17a 0.16a 0.17a 

d 
(mm^2/s

) 0.11b 0.10cd 
0.10
d 0.11cd 0.11c 0.10cd 0.11bc 0.11bc 0.12a 

c 
(MJ/m^3

-k) 1.19e 1.28de 
1.35c

d 1.56a 
1.43ab

c 1.50ab 1.54a 1.51ab 
1.39bc

d 
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Table 4.12. All pairwise comparison for mean of treatments within mill – Nutrimill 

MC 10% (w.b.) 20% (w.b.) 24% (w.b.) 

corrugati
on fine 

mediu
m 

coars
e fine 

mediu
m coarse fine 

mediu
m coarse 

Mean 
particle 

size 0.58e 0.67d 0.69d 0.86c 0.88bc 0.90ab 0.90ab 0.90ab 0.92a 
%MC 
w.b. 
after 

milling 
11.67
e 11.51e 

14.09
de 

19.79
bcd 

22.03a

bc 
19.60
bcd 

26.52
a 

25.72a

b 
17.63c

de 

L 
57.08
a 54.50b 

54.93
b 46.19c 44.86d 

45.43c

d 
42.61
f 43.43e 42.28f 

a* 2.03a 1.71b 1.67 b 1.04 c 1.06 c 1.04 c 0.80d 0.78 d 0.88d 

b* 

-
13.51
d 

-11.08 

c 

-
11.08 

c 
-2.48 

b -3.00 b 
-2.42 

b -1.23a -1.54a -1.13a 

Bulk 
density 

516.0
7d 

544.3
7ab 

516.0
7d 

513.8
3d 

529.8
0 c 

554.5
0a 

494.9
7e 

505.6
0de 

533.4
3bc 

Angle of 
Repose 

25.17
a 

23.19 

bc 
23.51 

b 
21.96 

c 
22.54 

bc 
22.29 

bc 
22.93 

bc 23.59b 
23.11b

c 

k (ᵂ/m-
k) 0.13d 0.13d 0.13d 0.15 c 0.16 bc 0.16 bc 

0.16 

bc 0.16 ab 0.17a 
d 

(mm^2/s
) 0.10de 0.10f 0.10f 0.10ef 

0.11 

bcd 0.10cd 0.11ab 
0.11 

abc 0.11a 
c 

(MJ/m^3
-k) 1.22d 1.35 bc 1.29cd 1.50 a 1.48 a 1.52 a 1.43ab 1.51 a 1.52 a 

Means with different alphabets a-f within the same row are significantly different, at P = 
0.05 
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Table 4.13. All pairwise comparison for mean of treatments within mill – burr mill 

Means with different alphabets a-g within the same row are significantly different, at P = 
0.05 
 
  

MC 10% (w.b.) 20% (w.b.) 24% (w.b.) 

corrugatio
n fine 

mediu
m coarse fine 

mediu
m coarse 

mediu
m coarse 

Mean 
particle 

size 0.74e 0.82d 0.93b 0.90c 0.92bc 0.97a 0.94b 0.98a 
%MC 

w.b. after 
milling 11.21d 9.70d 12.21d 20.26bc 

20.91ab

c 18.50c 24.61a 23.92ab 

L 53.58a 52.34b 50.73c 45.41d 45.73d 44.94de 44.72de 44.20e 

a* 1.77a 1.75a 1.21cd 1.41b 1.36bc 1.04d 1.36bc 1.36bc 

b* -9.96e -9.08e -6.03d -3.06bc -3.32c 2.18ab -2.04ab -1.62a 

Bulk 
density 

553.57
e 632.07c 

734.50
a 

497.33
g 560.27e 

673.00
b 532.33f 

613.77
d 

Angle of 
Repose 23.43a 19.63d 17.99e 22.62ab 21.96bc 19.12d 21.22c 19.46d 

k (ᵂ/m-k) 0.13e 0.14d 0.15c 0.16c 0.17bc 0.17b 0.17b 0.19a 

d 
(mm^2/s) 0.10cd 0.10d 0.09e 0.11ab 0.11bc 0.10bcd 0.11ab 0.11a 

c 
(MJ/m^3-

k) 1.25d 1.42c 1.65ab 1.44c 1.57b 1.64ab 1.56b 1.71a 
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CHAPTER FIVE 

EVALUATION OF RHEOLOGICAL, PHYSIOCHEMICAL, AND SENSORY 

CHARACTERISTICS OF GLUTEN-FREE BREAD BASED WITH RICE AND 

AMARANTH FLOUR 

 

Abstract 

Celiac disease is an immunological reaction to gluten and is a common food 

intolerance in the U.S. This has led to an increase in the demand for gluten-free food 

products. A variety of whole grains (for example, corn, rice, sorghum, buckwheat, 

amaranth, and quinoa) are gluten-free (GF) and are excellent sources of fiber, iron, and B 

vitamins. GF food manufacturers are investing in the formulation of GF products using 

these types of whole grains. This study focused on formulating gluten-free bread with 

amaranth and rice flour. Bread flour served as the control, while rice and amaranth flour 

were used at different combination ratios. The protein and moisture content of the flour 

were obtained, and other flour properties were measured using a mixograph. Bread 

quality was investigated by measuring specific volume, hardness, color (bread crust and 

crumb), and sensory evaluation using 77 consumer panelists. Consumers did not like 

breads formulated with amaranth.  However, bread made with a combination of amaranth 

and rice flour had higher scores than bread with pure amaranth, improvement seems 

plausible.  

Keywords: Celiac disease, consumer panel, product development 
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5.1. Introduction 

 

Celiac disease is becoming a common food intolerance in the U.S. and has led 

to increased demand for gluten-free (GF) food products. Celiac disease is a digestive 

disorder which damages the villi, tiny hair-like projections in the small intestine that 

absorb nutrients, due to an immunological reaction to gluten (King, 2006). But gluten 

is paramount for the structure formation of baked products because it is a structure-

building protein essential for formulating leavened baked goods. Gluten retains gas, 

which helps obtain the desired volume, structure and texture in a dough system. 

Obtaining high-quality GF bread is a technological challenge (Torbica et al., 2010).  

GF food manufacturers are investing in the use of whole grains including corn, 

rice, sorghum, buckwheat, amaranth and quinoa; since the majority of these are 

excellent source of fiber, iron and vitamin B (Thompson, 2009). The pseudocereals 

are considered as potentially GF grains with beneficial nutrient profile, which are 

capable of diversifying this rising market for GF products (Alvarez-Jubete et al., 

2010). 

Different factors influence the choices of consumers; these factors can be either 

sensory or non-sensory factors (Jaeger, 2006). For GF products, personal health might 

be considered more important factor than sensory quality. Individuals with celiac 

disease still have trouble finding desirable GF products because of the high price, 

poor sensory properties, and limited variety and availability of the products. The 

quality of most commercially available GF breads are substandard in quality 

compared to gluten-containing bread (Gallagher et al., 2003). The relative poor shelf 

life of GF product has also been reported (Gallagher et al., 2003).   
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Development of GF bread remains a technological challenge due to the high 

dependence of bread’s properties on gluten. GF flours are not enriched or fortified, 

the resulting GF products are also less enriched when compared to their wheat-based 

counterparts. Hence, GF products may lead to nutritional deficiencies. The crumb, 

which is wet after baking and sticks together, becomes dry, rough and crumbly the 

next day (Gambus et al., 2007). Preserving desirable sensory quality of bread during 

storage is vital because products are expected to stay the same for a couple of days 

(Gambus et al., 2007). Getting a balance between good nutritional quality and good 

sensory properties in GF bread is a challenge.  

Studies have reported that rice flour is increasingly utilized as substitute for 

wheat flour in GF food products, which are focused on individuals with special 

dietary needs. Rice flour has a bland taste, is easily digestible, and has other desirable 

properties which makes it suitable for GF products (Rosell et al., 2007, Rosell and 

Marco, 2008, Blanco et al., 2011). Amaranth flour, on the other hand, has very high 

levels of protein. The protein level and the quality of amaranth have contributed to a 

renewed interest in amaranth grain (Betschart et al., 1981; Pedersen et al., 1987). 

Amaranth flour contains a higher content of minerals as calcium, potassium, 

phosphorus, as well as dietary fiber, than many cereal grains (Pedersen et al., 1990, 

Whittaker and Ologunde, 1990). Amaranth is also very suitable for fortification of 

baked products (Ana et al., 2010).  Amaranth flour was used in GF biscuit (Tosi et al., 

1996) and bread (Schoenlechner et al., 2010). Moore et al. (2004) compared the 

texture of GF and wheat-based doughs, batters, and bread. The results show a gluten-
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like matrix in the GF bread, that, in turn, enhanced loaf volume, improved crumb 

texture and delayed staling of the bread.  

Miles et al. (2012) studied the relationship between mixograph parameters and 

grain milling characteristics for hard red bread wheat. The study reported that grain 

kernel diameter correlated with the dough consistency reading obtained from the 

mixograph. A strong correlation was not inferred from the results achieved from the 

mixograph, physical property measurement of the grains and the milling 

characteristics. Mahmoud et al. (2013) studied the physical, sensory, and staling 

properties of GF balady flat bread formulation based on rice flour, corn, and potato 

starch blends with different levels of hydrocolloids. The results showed that gums 

clearly improved the weight and roundness of gluten free balady flat bread.Alencar et 

al. (2015) evaluated the influence of sweeteners and pseudocereals in GF bread 

formulations. The quality parameters evaluated were specific volume, firmness, color, 

water activity, proximate composition, gross energy, sensory properties and an image 

analysis of the crumb. The results of the study showed that it is possible to develop 

GF bread with pseudocereals and sweeteners with similar sensory and 

physicochemical properties to those produced using starch-based formulations.  

The objective of this study was to formulate GF bread from amaranth and rice 

flour, they will be fortified with garbanzo bean to increase the protein content of the 

GF bread. 
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5.2. Materials and Methods 

Calculate amount of total protein in each of the formulations.   

5.2.1 Flour Mix and Baking Process 

Ingredients used in this study were amaranth flour, white rice flour, potato flour, 

tapioca starch, corn starch, high gluten flour, cane sugar, salt, water, active yeast, 

shortening, xantham gum, and guar gum, which were all acquired from a local grocery 

store (Hy-Vee and Wheatfield). The composition of each flour mix in the treatments 

tested in this study is shown in Table 5.1. 

Figure 1 shows the baking procedure for control, and Figure 2 shows the baking 

procedure for treatment two, three and four. The control was placed in the proofing oven 

with had a temperature of 85ᴼF and 95% humidity (National Mfg. Co, Lincoln, NE) at 

three stages in the baking process while other treatments were proofed once because the 

GF flour have weak protein structure compared to the control flour. Treatment one 

(control) took less time to bake (25 minutes at 450ᴼF) compared to treatment two, three, 

and four (60 minutes at 350ᴼF). 

5.2.2. Analytical Methods 

Protein content and moisture content of flours were determined by standard 

AACC methods (1983). The moisture absorption rate for each flour mix was used as 

stated in the mixograph handbook. Mixing behavior of the high gluten wheat flour, rice 

flour, amaranth flour and the combination of rice and amaranth flour dough were 

evaluated using 10 g mixograph procedure (Method AACC 54-40A, AACC, 1983; 

Khatkar et al., 1996). The peak time, peak height, development angle, weakening angle, 
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mixing tolerance angle, and tail width were measured by the mixograph (National Mfg. 

Co, Lincoln, NE). 

5.2.3. Bread Quality Evaluation 

The following bread quality characteristics were analyzed: specific volume 

(cm3/g), height (cm), crumb and crust color, and crumb hardness (N). The volume and 

weight of bread samples were measured five minutes after they were removed from the 

oven. Loaf weight was measured using a digital scale (Denver Instrument company, A-

250) while loaf volume was measured using rapeseed displacement method (AACC 

method 10-05.01). The bottom compartment of measuring unit was emptied of seeds, a 

wood block with a volume of 400 cc was placed inside. The seeds were allowed to flow 

into the lower compartment. When the compartment was full, and the seeds were clearly 

present in the viewing tube, the gate controlling entrance of the seeds into the bottom 

compartment was shut. This preliminary procedure was carried out to calibrate the 

measuring instrument before the volume of bread was measured. The dummy of known 

volume (400 cm3) was replaced with bread sample and volume of the bread was read off 

the viewing tube. Height was measured with a ruler in the middle section of each bread 

sample. Bread height, weight, and volume were measured on three (3) loaves for each 

treatment.  

The digital colorimeter used in this study was Chromameter CR-410 (Konica 

Minolta Optics, Japan). The crust and crumb of the baked loaves were analyzed for the 

following color parameters: L* (lightness), a* (redness to greenness) and b* (yellowness 

to blueness). Crumb color determinations were made in four slices from the center of the 
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loaves, and crust color determinations were made in the slices from the ends of each loaf 

(Gómez et al. 2010).  

5.2.4. Texture Profile Analysis  

  Texture analysis was performed using a TA.XT2i Texture Analyzer (Stable 

Microsystems, Surrey, UK). The bread samples were stored in a plastic container for 24 

hours and texture profile was carried out on bread slices (10 mm thickness) compressed 

to 50% of their original height at 1.0 mm/s using a ceramic probe (32 mm x 12.7 mm, 

diameter flat contact surface plate) with elapsed time between compressions being 10 s 

(Hung et al., 2007). Bread crumb hardness as defined by Bourne (2002), was evaluated. 

Compression test was followed according to AACC Method 74-09, crumb hardness was 

calculated by using a texture analysis program (version V1.22), which was coupled to the 

texture analyzer. Six (6) readings were obtained per treatment.   

5.2.5. Experimental Design of Sensory Evaluation 

  Untrained (77) panelists were recruited from the faculty, staff and students of 

Iowa State University; the use of human subjects was approved by the Iowa State 

University Institutional Review Board (IRB). Before testing, panelists were required to 

read and sign an informed consent document, and all potential risks and benefits were 

explained to them.  Three samples and control were assigned 3-digit random numbers and 

presented separately in randomized order. Sensory evaluation of bread was conducted 

using a consumer acceptability test (Meilgaard et al., 2007). Attributes selected for 

testing the bread were appearance, aroma, flavor and texture.  Panelists were asked to 

scale their acceptance of the bread samples on a 9-point hedonic scale (ranging from 

strongly dislike (1) to strongly like (9)). Panelists were provided with plain water to 
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remove residual taste between samples. All sensory sessions were carried out in 

individual booths equipped with white lighting and guidelines for suitable sensory 

evaluation room were followed (Meilgaard et al., 2007).  

5.2.6. Statistical Analysis 

  Differences among means in texture, color and acceptability (??) were analyzed 

by analysis of variance using Statistix 10 (Analytical Software, Tallahassee, FL). The 

significance level (alpha value) of the statistical analysis in this study was set at 0.05.  

5.3 Results and Discussion 

5.3.1. Mixograph Parameters and Analytical Methods 

  The MC and protein content of the flours used in this study are shown in Table 

5.2. The data obtained from running all four treatments on the mixograph for 10 minutes 

is shown in Tables 5.3, 5.4, 5.5, 5.6 and Figures 5.3, 5.4, 5.5, 5.6 for control, 18.7% rice 

flour, 18.7% amaranth flour and 9.3% amaranth and rice flour, respectively. The first 

phase of the mixograph indicates the protein characteristics of the flour (Torbica et al., 

2010). The mixing time obtained for 18.7% rice flour, 18.7% amaranth flour and 9.3% 

were all below one minute (Tables 5.4, 5.5, and 5.6), meaning the protein structure in GF 

flours collapsed easily compared to that of the control (Table 5.3 and Figure 5.3). 

Similarly, Torbica et al., (2010) investigated rheology of dough using mixolab and 

observed a decrease in mixing time for rice and buckwheat-based doughs compared to 

the mixing time for wheat dough.     

5.3.2. Bread Quality Evaluation 

All GF treatments had less rise compared the control, which is not surprising, 

because the GF flours lack the elasticity that gluten provides in the control. The specific 



89 

 

volume for control was significantly different from that of GF treatments, as shown in 

Table 5.7. The bread made with rice and amaranth flour had higher rise and specific 

volume than bread with only rice flour but was similar in specific volume to the bread 

with only amaranth flour (Table 5.7). This is not surprising because flour substitution in 

bread formulation is known to result in significant decreases in the bread volume. The 

decrease in specific volume can be attributed to limited amount of water-binding 

substances in the mix (Korus et al., 2015). Xantham gum and guar gum was used in the 

GF formulation to aid the structure formation but this didn’t seem sufficient to overcome 

lack of gluten.  A similar trend was observed for GF made from rice flour (Matos and 

Rosell 2012), GF bread with soy bean isolate (Smerdel et al. 2012), and acorn flour 

(Korus et al. 2015).  

  The crust and crumb of the loaves are shown in Figure 5.7 and 5.8. 18.7% 

rice flour treatment had the highest L* for bread crust color (Table 5.7) while 9.3% 

amaranth and rice flour treatment overlapped with control and 18.75 amaranth flour.  

Torbica et al. (2010) also showed that bread with rice flour is lighter than breads made 

with wheat or amaranth flour. Rice flour is lighter than amaranth flour.    

Saunders et al., (2014) conducted a study on substituting bread flour with distiller’s dried 

grains with solubles (DDGS). It was observed that the physical property of the loaves 

varied significantly as the ratio of DDGS increased. The decrease in volume of the loaves 

were attributed to the dilution of gluten (Saunders et al., 2014). In other studies, no 

significant difference was observed for texture of GF bread with buckwheat compared to 

GF bread from rice flour (Torbica et al., 2010, Lin et al., 2009). 
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5.3.3. Texture Profile Analysis 

  The results obtained from TAXT2 are shown in Table 5.7.  Hardness differed 

between control and breads made with predominantly rice flour or amaranth flour. Bread 

made with the rice-amaranth blend did not significantly differ from the control in 

hardness. The bread made with predominantly rice flour had highest mean for hardness, 

this could be because it had the lowest protein content (10.67% d.b) compared to other 

treatments in this study. 

5.3.4. Sensory Evaluation 

  Sensory results are shown in Table 5.8. The results indicated that panelists 

did not like the breads made with amaranth flour (disliked slightly to moderately), while 

the bread made with rice flour was neither disliked nor liked, and slightly liked the 

control bread. Bread with rice flour (18.7% rice flour and 9.3% rice flour+amaranth 

flour) were considered similar for color, texture and flavor.  Common comments 

indicated a distaste for the strong taste with lingering after-taste from amaranth flour 

(Table 5.9).  Because of the significantly higher flavor and overall acceptability scores, it 

appears that the 9.3% rice flour was able to mask some unpleasant flavor from amaranth 

flour in the bread. But the rice also appeared to have a positive impact on texture, as the 

blended flour bread had a higher score than the pure amaranth flour bread (remember to 

be consistent with what you call these). The particularly low mean flavor score allotted to 

the bread with predominantly amaranth flour could be attributed to the presence of 

intrinsic compounds in amaranth which produces nutty flavor when subjected to high 

temperature (NPC, 1984; Sanicheze et al., 1985) such as in baked products.  (is nutty that 

objectionable?  Other off-flavors?) There was negative correlation between the sensory 



91 

 

texture mean acceptability score and mean instrumental springiness (-0.32) and 

cohesiveness (-0.25) of 18.7% RF, while hardness had positive correlation (0.17). The 

treatment with 18.7% AF had positive correlation for springiness (0.34), cohesiveness 

(0.48) and negative correlation for hardness (-0.55). When comparing the correlation 

observed for 18.7% AF and 18.7% RF, the treatments seemed to have correlate in the 

opposite direction for the same attribute. The control and 9.3% AF+RF flour treatment 

had positive correlation for all attributes tested, springiness (0.54, 0.26 respectively), 

cohesiveness (0.12, 0.38 respectively) and hardness (0.01, 0.44 respectively). 

5.4 Conclusion 

  Formulating gluten free bread is a challenge. From the results obtained in this 

study, panelists gave more negative feedback on the taste and overall acceptance of the 

treatment with only amaranth flour. Masking of the strong taste of amaranth flour should 

be considered when amaranth flour is considered in GF bread.   

 

5.5 References 

 

Alvarez-Jubete, L., Arendt, E.K., Gallagher, E., 2010. Nutritive value of pseudocereals 

and their increasing use as functional gluten- free ingredients. Trends in Food 

Science & Technology 21, 106-113. 

Barca, A., Rojas-Martínez, M., Islas-Rubio, A., Cabrera-Chávez, F., 2010. Gluten- Free 

Breads and Cookies of Raw and Popped Amaranth Flours with Attractive 

Technological and Nutritional Qualities. Plant Foods Hum Nutr 65, 241-246. 

Betschart, A.A., Irving, D.W., Shepherd, A.D., Saunders, R.M., 1981. Amaranthus 

Cruentus: Milling Characteristics, Distribution of Nutrients within Seed 



92 

 

Components, and the Effects of Temperature on Nutritional Quality. Journal of 

Food Science 46, 1181-1187. 

Blanco, C.A., Ronda, F., Pérez, B., Pando, V., 2011. Improving gluten- free bread quality 

by enrichment with acidic food additives. Food Chemistry 127, 1204-1209. 

Gallagher, E., Kunkel, A., Gormley, T., Arendt, E., 2003. The effect of dairy and rice 

powder addition on loaf and crumb characteristics, and on shelf life (intermediate 

and long- term) of gluten- free breads stored in a modified atmosphere. Eur Food 

Res Technol 218, 44-48. 

Halina, G., amp, X15b, Marek, S., Rafa, X, Ziobro, 2007. The effect of composition of 

hydrocolloids on properties of gluten- free bread. Acta Scientiarum Polonorum: 

Technologia Alimentaria 6, 61. 

Hung, P. V., Maeda, T., and Morita, N., 2007. Dough and bread qualities of flours with 

whole waxy wheat flour substitution. Food Research International. 40:273-279. 

Jaeger, S.R., 2006. Non- sensory factors in sensory science research. Food Quality and 

Preference 17, 132-144. 

Khatkar, S.V., Bell, A.E., and Schofield, J.D., 1996. A Comparative Study of the Inter-

Relationships - Between Mixograph Parameters and Bread-Making Qualities of 

Wheat Flours and Glutens. J Sci Food Agric pp. 71-85. 

King, J.E., 2006. Mayo Clinic on Digestive Health, In: Mayo Clinic Proceedings, second 

ed. Mayo Clinic, USA, p. 126. 

Korus, J., Witczak, M., Ziobro, R., & Juszczak, L., 2015. The influence of acorn flour on 

rheological properties of gluten-free dough and physical characteristics of the 



93 

 

bread. European Food Research & Technology, 240(6), 1135-1143. 

doi:10.1007/s00217-015-2417-y 

Machado Alencar, N.M., Steel, C.J., Alvim, I.D., de Morais, E.C., Andre Bolini, H.M., 

2015. Addition of quinoa and amaranth flour in gluten- free breads: Temporal 

profile and instrumental analysis. LWT - Food Science and Technology 62, 1011-

1018. 

Mahmoud, R.M., Yousif, E.I., Gadallah, M.G.E., Alawneh, A.R., 2013. Formulations and 

quality characterization of gluten- free Egyptian balady flat bread. Annals of 

Agricultural Sciences 58, 19-25. 

Matos, M., & Rosell, C., 2012. Relationship between instrumental parameters and 

sensory characteristics in gluten-free breads. European Food Research & 

Technology, 235(1), 107-117.  

Meilgaard, M.C., Civille, G.V., and Carr, B.T., 2007. Sensory Evaluation Techniques, 

Fourth Edition. Boca Raton, Florida. 

Miles, C.W., Van Biljon, A., Otto, W.M., Labuschagne, M.T., 2012. Grain and milling 

characteristics and their relationship with selected mixogram parameters in hard 

red bread wheat. Journal of Cereal Science. 

Moore, M.M., Schober, T.J., Dockery, P., Arendt, E.K., 2004. Textural Comparisons of 

Gluten- Free and Wheat- Based Doughs, Batters, and Breads. Cereal Chemistry 

81, 567-575. 

Ozkoc S, Seyhun N. 2015. Effect of Gum Type and Flaxseed Concentration on Quality of 

Gluten-Free Breads Made from Frozen Dough Baked in Infrared-Microwave 

Combination Oven. Food & Bioprocess Technology [serial online] 8 (12):2500-



94 

 

2506. Available from: Academic Search Premier, Ipswich, MA. Accessed January 

23, 2016 

Pedersen B, Knudsen KEB, Eggum B.O., 1990. The nutritional value of amaranth grain 

(Amaranthus caudatus) 3. Energy and fibre of raw and processed grain. Plant 

Foods Hum Nutr 40:61–71. 

Pedersen, B., Hallgren, L., Hansen, I., Eggum, B., 1987. The nutritive value of amaranth 

grain (Amaranthus caudatus). Plant Food Hum Nutr 36, 325-334. 

Rosell, C.M., Collar, C., Haros, M., 2007. Assessment of hydrocolloid effects on the 

thermo- mechanical properties of wheat using the Mixolab. Food Hydrocolloids 

21, 452-462. 

Rosell, C.M., Marco, C. 2008. Arendt, E.A., Bello F. Dal (Eds.), Gluten-free cereal 

products and beverages, Elsevier, Oxford, UK (2008), pp. 81–100. 

Sakač, M., Torbica, A., Sedej, I., Hadnađev, M., 2011. Influence of breadmaking on 

antioxidant capacity of gluten free breads based on rice and buckwheat flours. 

Schoenlechner, R., Mandala, I., Kiskini, A., Kostaropoulos, A., Berghofer, E., 2010. 

Effects of water, albumen and fat on the quality of gluten-free bread containing 

amaranth. International Journal of Food Science and Technology, 45, 661-669.  

Smerdel, B., Pollak, L., Novotni, D., Čukelj, N., Benković, M., Lušić, D., Ćurić, D., 

2012. Improvement of gluten-free bread quality using transglutaminase, various 

extruded flours and protein isolates. Journal of Food & Nutrition Research, 51(4), 

242-253. Food Research International 44, 2806-2813. 



95 

 

Thompson, T., 2009. The nutritional quality of gluten-free foods. E. Gallagher (Ed.), 

Gluten-free food science and technology, Wiley-Blackwell, Oxford, UK (2009), 

pp. 42–51. 

Tosi, E.A., Ciappini, M.C., Masciarelli, R., 1996. Utilization of whole amaranthus 

(Amatanthus cruentus) flour in the manufacture of biscuits. Zywnosc, 9, 99-112. 

Torbica, A., Hadnađev, M., Dapčević, T., 2010. Rheological, textural and sensory 

properties of gluten- free bread formulations based on rice and buckwheat flour. 

Food Hydrocolloids 24, 626-632. 

Whittaker, P., Ologunde, M.O., 1990. Study of iron bioavailability in a native Nigerian 

grain amaranth cereal for young children, using a rat model. Cereal Chem 

67:505–508. 

  



96 

 

 

 
 

 
  

  
  
  
  
  
  
  
 

  
  
  
  
  
  
  
  
  
  
  
  
  
  

  
  

  

 
 
 
 

 

 
 

 

     
 

    
     
     
     
     
     
     
     
     
     
     
     
     

 

Mixing Proofing Proofing Proofing Kneading 
Kneading/

folding 

Baking 

Cooling 

Slicing 

Mixing Baking Cooling Slicing 

Figure 5.1. Baking process for treatment one (control) adapted from Arendt et 
al., (2008) 
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Figure 5.2. Baking process for treatment two, three, and four adapted from 
Arendt et al., (2008) 



97 

 

 

 

Figure 5.3. Mixograph plot for Treatment one (Control) 

 
 

 

Figure 5.4. Mixograph plot for Treatment two (18.7% rice flour) 
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Figure 5.5. Mixograph plot for Treatment three (18.7% amaranth flour) 

 

 

Figure 5.6. Mixograph plot for Treatment four (9.3% amaranth and 9.3% rice flour) 
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Figure 5.7. Bread crust for all treatments 
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Figure 5.8. Bread crumb for all treatments 
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Table 5.1. Bread flour composition for all treatments 
    

  
Control 18.7%RF 18.7%AF 

9.3% 
AF+RF 

% % % % 

High gluten flour 54.91 - - - 

Sugar 3.29 2.43 2.43 2.43 

Salt 0.82 0.61 0.61 0.61 

Shortening 1.65 1.22 1.22 1.22 

Yeast 4.72 3.69 3.69 3.69 

Water 34.60 51.09 51.09 51.09 

Amaranth flour -   -   - 9.33 

Rice flour - 18.65 18.65 9.33 

Guar gum - 0.20 0.20 0.20 

Xantham gum - 0.20 0.20 0.20 

Potato flour - 6.08 6.08 6.08 

Garbanzo flour - 8.92 8.92 8.92 

Corn starch - 2.03 2.03 2.03 

Tapioca flour - 4.87 4.87 4.87 

Total 99.99 99.99 99.99 99.99 

RF is rice flour, AF is amaranth flour, % in wet basis 
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Table 5.2. Moisture and protein content of flours used for bread 

Flour MC % w.b. 
MC % 
d.b. Protein w.b.% Protein d.b.% 

wheat  13.06 15.02 14.64 16.84 

rice  13.46 15.55 6.84 7.90 

amaranth 12.99 14.94 13.79 15.85 

potato 9.43 10.41 8.84 9.76 

corn 9.95 11.04 0.46 0.51 

tapioca 12.34 14.08 0.3 0.34 

Garbanzo 9.79 10.85 22.56 25.01 
n=2 for each treatment 

 

Table 5.3. Mixograph parameter for treatment one (Control) 

Envelope analysis 
time 
(min) 

Value 
(%) 

slope 
(%/min) 

Width 
(%) 

Integral 
(%Tq*min) 

Left peak 2.49 62.41 12.40 29.11 67.78 

peak 3.67 68.55 0 28.66 101.33 

right peak 5.97 55.43 -8.85 13.99 143.26 

curve tail 10 48.12 -0.73 9.76 185.59 

time X 8 50.66 -1.46 10.51 165.62 
n=1 for each treatment 
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Table 5.4. Mixograph parameter for treatment two (18.7% rice flour) 

Envelope analysis 
time 
(min) 

Value 
(%) 

slope 
(%/min) 

Width 
(%) 

Integral 
(%Tq*min) 

 
Left 
peak - - - - - 

 peak 1 58.42 0 37.17 34.71 

 
right 
peak - - - - - 

 
curve 
tail - - - - - 

  
time 
X 8 21.39 1.50 15.06 195.30 

n=1 for each treatment 

 
 
Table 5.5. Mixograph parameter for treatment three (18.7% amaranth flour) 

Envelope analysis 
time 
(min) 

Value    
(%) 

slope 
(%/min) 

Width 
(%) 

Integral 
(%Tq*min) 

Left peak - - - - - 

peak 1 48.51 0 24.73 31.33 

right peak - - - - - 

curve tail - - - - - 

time X 8 17.08 -0.51 11.20 171.52 
n=1 for each treatment 
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Table 5.6. Mixograph parameter for treatment four (9.3% amaranth and 9.3% rice flour) 

Envelope analysis 
time 
(min) 

Value    
(%) 

slope 
(%/min) 

Width 
(%) 

Integral 
(%Tq*min) 

Left peak - - - - - 

peak 1 65.48 0 35.17 36.91 

right peak - - - - - 

curve tail - - - - - 

time X 8 15.00 -0.02 9.13 198.62 
n=1 for each treatment 
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Table 5.7. Bread quality evaluation for all treatments 

 

  

 Control 18.7% RF 18.7% AF 9.3% AF+RF 

Bread rise (cm) 

7.33a  

(0.31) 

4.00c 

 (0.24) 

3.70c  

(0.18) 

4.47b  

(0.31) 

Specific 

volume(cm3/g) 

3.26a  

(0.28) 

1.85c  

(0.08) 

1.94bc 

 (0.18) 

2.10b 

 (0.09) 

Crust L* 

 

32.58c 

(2.06) 

41.15a  

(2.73) 

35.87b  

(2.76) 

33.13bc 

 (3.22) 

Crust a* 

 

5.38a 

(0.47) 

1.85c 

(1.01) 

3.42b 

(1.56) 

4.54ab 

(1.27) 

Crust b* 

 

2.91b 

(0.82) 

6.83a 

(0.58) 

5.98a 

(0.75) 

5.90a 

(0.97) 

Crumb L* 

 

58.62a 

(0.68) 

50.94b 

(0.51) 

41.36c 

(2.79) 

46.74d 

(0.32) 

Crumb a* 

 

-0.84b 

(0.12) 

-2.33d 

(0.27) 

-0.13a 

(0.19) 

-1.28c 

(0.27) 

Crumb b* 

 

-13.10c 

(0.62) 

-3.98b 

(0.50) 

-3.68ab 

(1.10) 

-2.76a 

(0.74) 

Hardness (N) 

 

2.93c 

(0.68) 

7.81a 

(3.77) 

6.24ab 

(2.46) 

4.62bc 

(0.84) 

Springiness 

 

0.59a 

(0.03) 

0.58a 

(0.10) 

0.31c 

(0.07) 

0.44b 

(0.07) 
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Table 5.7. Continued  

 
a-d means followed by different letters within the same row are significantly different. 
Alpha value is 0.05. n=6 for each treatment, RF is rice flour, AF is amaranth flour 
Values in parenthesis are standard deviation 
 

 
 
 
Table 5.8. Mean score for sample acceptability on a scale of 1-9 by 77 panelists 

 Attributes Control 18.7% RF 18.7%AF 9.3%AF+9.3%RF  

Color 
 

7.12a 

(1.54) 
6.24b 
(1.73) 

5.25c 

(2.03) 
5.63c 

(1.76) 

Texture 
 

6.38a 

(1.64) 
5.07b 

(2.02) 
4.20c 

(1.95) 
5.11b 

(2.05) 

Taste 
 

6.21a 

(2.05) 
4.55b 

(1.98) 
2.91c 

(1.76) 
4.07b 

(2.18) 

Overall 
 

6.24a 

(1.72) 
4.86b 

(1.87) 
3.20c 

(1.72) 
4.37b 

(1.97) 
 
Means with different superscripts a-c within the same row are significantly different (p < 
0.05).  
RF is rice flour, AF is amaranth flour 
Values in parenthesis are standard deviation 
 

  

Cohesiveness 

 

0.35a 

(0.03) 

0.40a 

(0.03) 

0.42a 

(2.09) 

0.35a 

(0.03) 
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Table 5.9.  Summary of trends in panelists’ comments and observations about breads 
from different treatments 
RF is rice flour; AF is amaranth flour   

Treatment Comments 

Control Tasteless, normal, nice crust, satisfactory 

18.7% RF Odd texture, looked tasty, wet/moist, no 
strong aftertaste, bland, nice consistency, 
nice crust 

18.7% AF Too moist, doughy texture, strong flavor, 
strong lingering taste, undercooked 
appearance, weird unpleasant taste, grainy 
taste 

9.3% AF+RF Too moist, gummy texture, crunchy crust, 
dense texture, grainy taste, taste like bean  
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CHAPTER SIX 

CONCLUSION AND FUTURE WORK 

 

6.1 Conclusion 

6.1.1. TEA and LCA of Extruded Aquafeed  

  LCA and TEA showed that operation scale influenced the economic feasibility for 

extruded aquafeed production. Increasing the production rate reduced the unit cost of 

production; this also applied to CO2 emission. The Unit CO2 emission decreased as 

production rate increased. Aquafeed production companies do not exist in the state of 

Iowa, this tool can be used by start-up companies in Iowa to estimate costs of producing 

aquafeed and CO2 emission during production. 

6.1.2. Characterization of Thermophysical and Rheological Changes during 

Amaranth Grain Milling 

  Milling of Amaranth grain was studied, the heat generated by friction during the 

milling process resulted in significant moisture loss from amaranth flour at higher initial 

moisture contents. High MC also caused plucking of the burr mill plates at the fine 

setting. This moisture loss must be accounted for when computing the mass balance of 

the milling system and the desired yield of flour. The mean particle size for all burr mill, 

roller mill, and nutrimill increased with increase in moisture content for all mill settings.  

6.1.3. Gluten-free Bread 

  Formulating GF bread is a challenge. From the results obtained in this study, 

panelists had more negative feedback about the taste and overall acceptance of the 

treatment with only amaranth flour than combined flours. Masking of the strong taste of 
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amaranth flour should be considered when amaranth flour is considered as a substitute for 

wheat flour in bread. There were significant differences (color, texture, taste and overall 

acceptance) between the GF bread samples and the control in all treatments. 

 

6.2 Future Work 

6.2.1. TEA and LCA of Extruded Aquafeed 

  The system boundary for this study was restricted. It would be very helpful to 

conduct TEA and LCA on a broader systems boundary. The cost of labor might also vary 

in different states in the US since most states have different minimum wages; it would be 

very helpful to look at more production locations and also factor the different costs of 

labor according to the state where the fish feed production site would be.  

6.2.2. Characterization of Thermophysical and Rheological Changes during 

Amaranth Grain Milling 

  Data for burr fine (24% MC) was not reported in this study because the burr could 

not mill the grain at that moisture level. Comparing flour using lower moisture level in 

the future study will be very helpful to have a better comparison between the fine settings 

of all three mills. 

6.2.3. Gluten-free Bread 

  Masking of the strong taste of amaranth flour should be considered when using 

amaranth flour as a substitute for wheat flour in bread making. The texture of the GF 

bread is also a concern; this might be as a result of the amount of water added to the mix. 

Further experiments can be conducted to obtain the adequate amount of water required to 

improve the texture of GF bread. Also image analysis of GF bread slices should be 
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considered for future study. TEA can be used as a tool to analyze cost of producing GF 

bread; this would help understand the cost implication of GF bread better.  
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