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ABSTRACT 

 Infiltration water and sediment mass retained are the two key processes for 

pesticide mass retention by buffer strips from agricultural runoff, based on the review of 

106 published articles.  Estimates, based on average published data for runoff volume and 

sediment mass retention, show that the average pesticide retention is 46, 51, and 70 % for 

the three sorption classes (Koc<100, 100<Koc<1000, and Koc>1000, respectively).   

Source area to buffer area ratios ranging between 10:1 to 50:1 are more practical and 

effective under field applications of buffer strips.  Buffer strips have an upper area where 

larger particles settle and a lower area where runoff containing fine particles passes 

through.  Rainfall-runoff experiments were conducted on 1.0 m wide x 5.6 m long 

switchgrass buffer strips to measure pesticide mass transport through buffer strips 

receiving runoff containing different sized sediment under steady-state rainfall intensity 

of 6.35 cm/h.  Twenty four strips were used to provide three replications each of the 

sediment type treatments of fine sand, fine aggregates, clay-sized particles, and no 

sediment; and two treatments of flow convergence represented by source area to buffer 

area ratios of 10:1 and 30:1.  Atrazine, chlorpyrifos, and linuron were used in the 

experiments at the label recommended rates using field formulations.  When receiving 

runoff mixed with fine sand, buffer strips retained 73% and 53% atrazine, 87% and 80% 

chlorpyrifos, and 81% and 54% linuron for the two area ratios of 10:1 and 30:1 

respectively.  The corresponding numbers, when receiving runoff mixed with fine 

aggregates, were 72% and 54% atrazine, 87% and 71% chlorpyrifos, and 76% and 58% 

linuron respectively for the two area ratios.  Switchgrass buffer strips retained, on 

average, 70.1% and 49.2% atrazine, 83.0% and 57.6% chlorpyrifos, and 71.2% and 



xiii 

 

 

50.4% linuron, respectively for the two area ratios of 10:1 and 30:1 when receiving 

simulated runoff containing clay-sized particles.  Linuron data presented in these 

experiments is an estimate and readers are cautioned when interpreting linuron data.  

Results were significantly different for atrazine when the two area ratios were compared 

for all three sediment types.  Results for chlorpyrifos and linuron were not significantly 

different between the two area ratios indicating the strips performed equally well under 

both flow conditions in case of sediment type fine sand and fine aggregates.  In case of 

clay-sized particles, results for atrazine and linuron were significantly different for the 

two area ratios indicating flow convergence can impact atrazine and linuron retention by 

buffer strips.  In case of fine sand, outflow from the buffer strips showed some re-

entrainment of sediment from previously deposited sediment, buffer strip soil, or erosion 

at the exit point, which needs to be further investigated.  Infiltration and sediment 

retention were the key processes for pesticide retention in case of fine aggregates, 

whereas infiltration alone was the key process in case of fine sand and clay-sized 

particles.  VFSMOD-W, embedded with the empirical linear-additive pesticide mass 

retention model was used to predict atrazine, chlorpyrifos and linuron retention by the 

switchgrass buffer strips studied in the experiments.  Saturated hydraulic conductivity 

(Ksat) of the switchgrass soil was the key parameter in calibrating the model to the 

experimental conditions, indicating type of buffer strip vegetation and timing of 

calibration data collection are important factors.  Predicted pesticide mass retention 

results indicate that the performance of buffer strips receiving runoff from farm fields 

containing large proportions of fine sand or clay-sized particles needs to be further 

investigated.            
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CHAPTER 1.  OVERVIEW OF PESTICIDE TRANSPORT THROUGH BUFFER 

STRIPS WITH DIFFERENT SIZED SEDIMENT   

 

1.1 General Introduction 

Buffer strips, also known as filter strips or just filters, are an agricultural 

conservation practice designed to reduce the transport of runoff from source areas 

(agricultural fields) to the receiving water bodies.  No farm chemical application occurs 

on these strips.  Buffer strips are able to reduce the runoff water mass and sediment mass, 

the two phases of agricultural runoff.  These two phases carry with them any farm 

chemicals that might be lost from the source areas.  Pesticides applied to the source areas, 

included in farm chemicals, are lost from the source areas.  The dissolved phase of 

pesticides (carried with runoff water) and the sorbed phase of pesticides (carried with 

sediment) are both reduced as the runoff travels through the buffer strips.  Published 

research has shown a varying degree of reduction in both the dissolved and sorbed phases 

of pesticides.  One of the key pesticide properties, sorption, determines how much 

pesticide is in the dissolved phase and the sorbed phase.  Sediment mass to which the 

pesticide is sorbed has been studied as a single carrier phase.  Sediment mass in runoff 

comprises particles (sand, silt, and clay) and aggregates of varying sizes.  Variable sizes 

of these particles and aggregates have different surface area which effects pesticide 

sorption.  Specifically, different sized sediment can be present or absent from the runoff 

under field conditions.  This can influence pesticide transport through the buffer strips as 

different sized sediment varies in specific surface area and organic matter.  In order to 

better understand buffer strip performance, the transport of diffident sized sediment (fine 

sand, fine aggregates without sand, and clay-sized particles) with the runoff water 
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through buffer strips needs to be studied.  As runoff containing only the clay-sized 

particles is introduced into the buffer strips, there is a potential for the runoff to re-entrain 

sediment from within the strip.  As such, the introduction of runoff containing no 

sediment into the buffer strips also needs to be simultaneously evaluated.  Secondly, 

specific sized sediment transport through the buffer strips can be influenced by 

converging flow resulting from changes in topography.  Controlled experimental 

conditions, where the effects of flow convergence can be evaluated, need to be included 

in the study.  Results from such a study can help to calibrate and/or validate existing 

models for the transport of runoff through the buffer strips.   

1.2 Dissertation Organization 

A review of published research on buffer strips was conducted.  Literature 

included all articles in which pesticide transport had or had not been studied.  As runoff 

water mass and sediment mass are the two carrier phases for pesticides, data on the 

retention of these two carrier phases was summarized.  The retention of these two carrier 

phases was then used with the pesticide property of sorption to develop a simple 

mathematical model for pesticide retention by buffer strips.  Chapter 2 of this dissertation 

presents an in-depth perspective of the published research in terms of pesticide retention 

processes occurring in the buffer strips.    

Review of literature revealed various gaps in the available research data.  The 

majority of studies have observed buffer strip performance under small source to buffer 

area ratios (typically less than 10).  Flow convergence, due to changes in micro-

topography in the buffer strips, causes the area ratios to change.  Area ratios of less than 

10 are not likely to exist in real field applications.  None of the studies have observed 
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how sorption affects the transport of pesticides with different sized sediment in the buffer 

strips.  As such, a dual experiment was conducted in September 2013 to evaluate 

pesticide transport through buffer strips with different sized sediment for area ratios of 

10:1 (AR10) and 30:1 (AR30). 

Chapter 3 of this dissertation presents the how the experiment was conducted.  It 

explains why fine sand (sediment type D1) and fine aggregates (sediment type D2) were 

chosen for comparison for transport of atrazine, chlorpyrifos, and linuron through buffer 

strips.  Using switchgrass buffer strips, results of this randomized experiment with three 

replications (n=3) each for AR10-D1, AR30-D1, AR10-D2, and AR30-D2 treatments are 

presented in Chapter 3. 

Clay particles are very fine in comparison to fine sand and fine aggregates and do 

not settle quickly.  There is the possibility of clay-sized particles being re-entrained into 

runoff from the buffer strip soil itself.  The second part of the experiment conducted 

compared pesticide transport with clay-sized particles (sediment type D3) with runoff 

containing no sediment (sediment type D0) and no pesticide.  AR10 and AR30 were 

compared as well to see the effects of concentrated flow caused by flow convergence.  

Treatments AR10-D3, AR30-D3, AR10-D0, and AR30-D3 were used in the randomized 

experiment and the results obtained are presented and discussed in Chapter 4. 

Vegetative Filter Strip Modeling System with Water Quality (VFSMOD-W) has 

an empirical model embedded in it for determining pesticide mass retention by buffer 

strips.  VFSMOD-W was used to predict how the buffer strips respond to receiving 

simulated runoff containing specific-sized sediment under the two flow convergence 
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condition studied in Chapters 3 and 4.  Comparisons of the measured and the predicted 

pesticide mass retentions using a calibrated VFSMOD-W are discussed in Chapter 5. 

Chapter 6 of this dissertation provides a general discussion of the research 

performed and provides suggestions for future research work.             
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CHAPTER 2.  REVIEW OF PESTICIDE RETENTION PROCESSES 

OCCURRING IN BUFFER STRIPS RECEIVING AGRICULTURAL RUNOFF 

 

Reproduced from a paper published in 

The Journal of American Water Resources Association (JAWRA) 

 

Kapil Arora 
2,3,4

, Steven K. Mickelson
2
, Matthew J. Helmers

2
, and James L. Baker

2
 

2.1 Abstract 

Review of the published results shows that the retention of the two pesticide 

carrier phases (runoff volume and sediment mass) influences pesticide mass transport 

through buffer strips.  Data averaged across different studies showed that the buffer strips 

retained 45% of runoff volume (ranging between 0% and 100%) and 76% of sediment 

mass (ranging between 2% and 100%).  Sorption (soil sorption coefficient, Koc) is one 

key pesticide property affecting its transport with the two carrier phases through buffer 

strips.  Data from different studies for pesticide mass retention for weakly (Koc < 100), 

moderately (100 < Koc < 1,000), and strongly sorbed pesticides (Koc > 1,000) averaged 

(with ranges) 61 (0-100)%, 63 (0-100)%, and 76 (53-100)%, respectively.  Because there 

are more data for runoff volume and sediment mass retention, the average retentions of 

both carrier phases were used to calculate that the buffer strips would retain 45% of 

weakly to moderately sorbed and 70% of strongly sorbed pesticides on an average basis.  

As pesticide mass retention presented is only an average across several studies with  

 

____________________ 
1
 Reprinted with permission of J. of American Water Resources Association, 2010, 46(3), 

618-647.  DOI: 10.1111/j.1752-1688.2010.00438.x  Paper No. JAWRA-08-0067-P.  

© 2010 American Water Resources Association.  
2
 Graduate Student and Field Agricultural Engineer, Professor and Chair, Professor, and 

University Professor Emeritus, respectively.  
3
 Primary researcher and author. 

4 
Author for correspondence.
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 different experimental setups, the application of these results to actual field conditions 

should be carefully examined. 

2.2 Introduction 

Nonpoint source losses of pollutants to surface waters from agricultural lands in 

the United States are of continued concern.  Agricultural runoff, in addition to carrying 

sediment and nutrients, has been documented to transport pesticides.  Pesticide losses 

from agricultural lands have been reported in the literature since the early 1970s.  These 

losses have been reported as generally being one to five percent of the amount applied.  

Wauchope (1978) provided a review of early studies on pesticide losses from agricultural 

fields.  Several publications since 1978 show similar data on pesticide losses from 

agricultural fields (Rohde et al., 1980; Hall et al., 1983; Glenn and Angle, 1987; Hall et 

al., 1991; Paterson and Schnoor, 1992; Shipitalo et al., 1997; Gaynor et al., 2001).  These 

losses have been shown to be dependent on in-field tillage practices and site-specific 

conditions (Hall et al., 1972, 1974; White et al., 1976; Baker and Johnson, 1979; Baker 

and Laflen, 1979; Wu et al., 1983; Shipitalo et al., 1997).  One of the key factors reported 

in these studies is the timing of a runoff event after application of pesticides.  Losses of 

pesticides have been reported to be higher with runoff events happening immediately or 

within a short time duration after application.  Many of the studies have suggested the use 

of practices such as buffer strips and/or wetlands to control/reduce the offsite transport of 

pesticides from agricultural lands. 

Buffer strips have been studied worldwide for the last four decades as a strategy 

to reduce the environmental impact of agricultural runoff.  Buffer strips are non-treated 

areas of land through which runoff from agricultural fields may pass before entering 
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surface waters.  These areas, generally, are either cropped or have close grown vegetation 

planted in them.  Several researchers such as Young et al., 1980; Dickey et al., 1981; 

Cooper et al., 1987; Magette et al., 1989; Dillaha et al., 1989; Chaubey et al., 1994, 1995; 

Coyne et al., 1995; Daniels and Gillian, 1996; Edward et al., 1996; Lee et al., 2000; 

Pandey et al., 2001; Lee et al., 2003; Blanco – Canqui et al., 2004b; Helmers et al., 2005; 

and Deletic, 2005; have shown buffer strips to be effective in reducing off-site transport 

of sediment, animal waste suspended solids, and nutrients.  In addition, the U. S. 

Department of Agriculture Natural Resource Conservation Service (USDA - NRCS, 

2000) recommends use of vegetative filter (buffer) strips as a best management practice 

to reduce non-point source pollution. 

Pesticide retention by buffer strips has also been studied in the past four decades 

by several researchers (Asumussen et al., 1977; Baker & Mickelson, 1994; Baker et al., 

1995; Arora et al., 1996; Misra et al., 1996; Mickelson et al., 1998; Lowrance et al., 

1997; Patty et al., 1997; Baker et al., 2000; Rankins et al., 2001; Seybold et al., 2001; 

Vellidis et al., 2002; Arora et al., 2003; Boyd et al., 2003; Mickelson et al., 2003; Krutz 

et al., 2003, 2004).  In these studies, the main processes for pesticide retention have been 

identified as infiltration, sediment deposition, and sorption.  The main phenomenon 

occurring in buffer strips has been reported as the reduction of flow velocity due to the 

resistance to flowing water caused by the vegetation.  In addition, the runoff source area 

is usually a tilled area subject to potentially greater soil surface sealing from rainfall 

energy.  As such, the infiltration rate within the buffer strip area is greater and more 

constant than the source area. 
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Pesticide movement from treated fields with runoff may occur with rainfall, 

irrigation, and/or snow melt.  Each runoff event results in a loss of both sediment and 

water from the treated field.  Pesticide properties affect pesticide behavior, and therefore 

it’s transportation in the water phase and sediment phase.  One key pesticide property 

affecting pesticide loss with runoff is its soil sorption coefficient, Koc.  According to the 

Food and Agriculture Organization of the United Nations (FAO, 2000), the soil sorption 

coefficient, or simply the partitioning coefficient, Koc, is the ratio of pesticide 

concentration as adhered or sorbed to soil solid phase (normalized to the organic carbon 

content of the soil) to the dissolved water concentration.  A larger Koc value means that 

the pesticide of interest will have a higher concentration in soil or sediment, and 

therefore, is strongly sorbed.  Likewise, a very low Koc value means that the pesticide 

will have a higher concentration in soil water or is weakly sorbed.  FAO (2000) uses Koc 

values to classify the mobility of pesticides.  A pesticide with a Koc value of less than 100 

L/kg is classified as highly mobile to mobile; a Koc value between 100 and 1000 L/kg is 

classified as moderately mobile; and a Koc value greater than 1000 L/kg is classified as 

being slightly mobile to immobile.  Hornsby et al. (1996) summarized that pesticides that 

are highly sorbed to soil are mainly carried by sediment in runoff.  Buffer strips may trap 

such pesticides simply by trapping sediment.  On the other hand, pesticides that are 

weakly to moderately sorbed to soil particles are carried mainly with the water phase of 

runoff (Wauchope, 1978).  Trapping of such pesticides with buffer strips may occur 

either by infiltration of runoff or by removal of the pesticide from the water phase of the 

runoff by sorption to the buffer strip soil or vegetation.  Therefore, an attempt to review 
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buffer strip effectiveness in retaining pesticides must examine what happens to both 

components (pesticide carrier phases) of runoff, i.e. water and sediment. 

A comprehensive search of literature on buffer strips (also designated as 

vegetative filter strips, vegetative filters, buffer zones, and filter strips) was conducted.  

Databases for the different agricultural research journals were searched and a list of 

publications was compiled.  This list was trimmed to include only those publications that 

reported collection of field data as related to either or both the water and sediment 

components of runoff.  Only field data presented at meetings, published in technical 

reports or published in research journals were included.  Any experimental data that was 

not presented or published and was contained in MS thesis or Ph D dissertation was not 

included.  Any paper listed both as a presentation at a meeting and as published in a 

journal was also trimmed to exclude the presented paper, as the peer reviewed publication 

of the same presented paper was considered a better representation of the reported data.  

Using these criteria for paper selection, a list of thirty-five studies was compiled for 

review of field data.  These studies have evaluated pesticide retention by buffer strips in 

either or both carrier phases of runoff.  Twenty-two additional studies did not evaluate 

pesticide retention but were found to have evaluated buffer strips for retention of either 

runoff water or sediment or both.  As explained in the previous paragraph, pesticide 

retention by buffer strips is dependent upon transport of both carrier phases.  These 

additional twenty-two studies provided for unique experimental conditions of runoff 

source area to buffer strip area ratios, source area tillage practices, and buffer strip 

vegetation which were not available in the pesticide retention studies dataset.  Thus, they 

were included in the review to expand the dataset for pesticide retention studies.          
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Field data from the compiled list of studies was extracted and analyzed.  This 

dataset consisted of buffer strip performance results reported under a wide range of 

sampled experimental conditions across different studies.  An attempt was made to 

summarize this dataset to best represent the performance characteristics of buffer strips.  

To achieve this task, the retention of both pesticide carrier phases (runoff water and 

sediment) was estimated from the expanded dataset of fifty-seven studies.   These 

estimates and their minimum and maximum values, thus, represent the entire range of 

experimental conditions studied including those unique to the non-pesticide retention 

studies.  Using these synthesized retention estimates for both carrier phases, a simple 

mathematical model was then developed to calculate the overall pesticide retention for 

the three different pesticide classes (based on sorption coefficient, Koc).  This modeled 

pesticide retention, thus includes the experimental setups of the studies that have not 

studied pesticide retention by buffer strips.  Lastly, a comparison was made between the 

model calculated overall retention and the overall retention as reported in the pesticide 

retention studies.  This was done to see how inclusion of non-pesticide retention studies 

affected the model calculations when compared with data from the pesticide retention 

studies.           

This article presents several advances over the Reichenberger et al. (2007) paper, 

a review paper on the effectiveness of different strategies for reducing pesticide transport 

to ground and surface waters.  The authors of this previously published paper presented a 

summary of a limited number of publications addressing edge-of-field buffer strips as a 

sub-set of their review.  The authors did not include edge-of-field buffer strips that 

existed as a part of a riparian forest buffer system, a grassed waterways, or as contoured.  
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Edge-of-field buffer strip placement within an agricultural watershed is a mix of different 

locations subject to similar runoff conditions.  The current article uses data from the 

studies representing different applications of buffer strips to estimate pesticide retention.   

Secondly, the summary presented by Reichenberger et al. (2007) only showed the range 

of pesticide retention for different studies.  It did not include any estimate of the 

minimum, average, and maximum retention of either component of runoff (water and 

sediment).  Their review also did not summarize publications that evaluate retention of 

individual components of the runoff by buffer strips.  Since estimates were not calculated 

for retention of individual components of the runoff, no comparisons have been drawn 

between calculated retention and reported pesticide retention by the buffer strips.  The 

current article calculates an estimate for pesticide retention by buffer strips with 

individual components of runoff, calculates overall pesticide retention, and then 

compares it with published data.   

2.3 Buffer Strip Processes 

As reported in research studies, runoff from the agricultural fields or the source 

area is generally passed over a specified area of the buffer strips.  The source area 

consists of the pesticide application zone, which is generally cropped and tilled as shown 

in a simplified schematic in Figure 2.1.  Runoff generated in this zone generally flows 

down slope along the width, Ws, of the source area.  This runoff then enters the buffer 

strip area as inflow.  This inflow travels the width, W, of the buffer strip area and exists 

as outflow from the buffer strip.  The length of the buffer strip area (l, perpendicular to 

flow) may or may not be same as the length of the source area (ls, perpendicular to flow).  

The resulting ratio of the source area to the buffer strip area has generally been termed as 
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“Area Ratio”.  Most commonly, different area ratios have been achieved by simply 

changing the width of the buffer strip while keeping the size of the source area constant.  

In these cases, the length of the buffer strip perpendicular to the flow is same as that of 

the source area and is maintained constant when changing the area ratio.  A few studies 

on the other hand have kept the buffer strip area size the same but have achieved different 

area ratios by varying runoff flow rates from the source area.  This has been achieved in 

these experimental designs by the use of a flow divider where the runoff from the source 

area is split in proportion for the desired area ratio.   

Runoff from the source area consists of two components or pesticide carrier 

phases, i.e. water and sediment.  In addition, water as rainfall may be added to the buffer 

strip as runoff passes through it.  Thus, the water mass inputs into the unit cell of buffer 

strip, as shown in Figure 2.2, are rainfall, Ri (L) and inflow runoff water, Mi (L).  Rainfall 

water has been measured for its pesticide concentrations (Nations and Hallberg, 1992).  

These concentrations are generally low enough where they could be ignored in the buffer 

strip runoff retention studies.  Thus, the rainfall water, Ri (L), is considered to have 

negligible pesticide mass in it, whereas the inflow runoff water has a dissolved pesticide 

concentration of Ci (mg/L).  The sediment component of the runoff entering the buffer 

strip is represented by Si (kg), as the sediment mass input in to the unit cell.  This 

sediment has a sorbed pesticide concentration of Csi (mg/kg).  Outputs leaving the buffer 

strip unit cell are: the mass of water, Mout (L), with a dissolved pesticide concentration of 

Cout (mg/L); sediment mass specified as Sout (kg), with sorbed pesticide concentration of 

Csout (mg/kg); and infiltration water mass, Mx (L), with a dissolved pesticide 

concentration of Cx (mg/L).  Under certain conditions, it is possible for shallow  



 13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Simplified schematic showing source area and buffer strip area dimensions 

under a typical field application of buffer strips 
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groundwater to flow to the surface in low areas due to up gradient pressure from new or 

existing rain-water.  In these cases, infiltration water mass is reduced by the amount of 

shallow groundwater that comes out on the soil surface.  Studies that have evaluated 

pesticide retention by buffer strips have measured the input pesticide mass by measuring 

the mass contained in either or both carrier phases.  The pesticide mass leaving the buffer 

strips has been similarly measured.  Studies have then estimated the amount of pesticide 

mass retained in buffer strips by calculating the difference between the input and output 

pesticide masses of either or both carrier phases.  This pesticide retention has been 

attributed mainly to the processes of infiltration, sediment deposition, and sorption (Arora 

et al., 1996; Misra et al., 1996; Kloppel et al., 1997; Lowrance et al., 1997; Patty et al., 

1997; Arora et al., 2003). 

In this review article, an attempt was made to estimate pesticide retention by 

buffer strips associated with infiltration, sediment deposition, and sorption processes 

based on data reported in literature.  First, information contained in the expanded dataset 

of fifty-seven studies was extracted.  Runoff volume retention was synthesized from 

runoff data available in thirty-seven out of fifty-seven studies.  This runoff volume 

retained has commonly been attributed to infiltration in these studies.  Secondly, 

sediment mass retained (commonly attributed to sediment deposition) was synthesized 

from sediment data available in thirty-two studies of the same expanded dataset.  Effect 

of sorption was then evaluated to see how it impacts pesticide concentrations, and 

consequently, the pesticide mass retained.  Using the synthesized retentions of both 

carrier phases, a simple mathematical model was developed to calculate the overall 

pesticide retention.  This model was based on published data and selected assumptions of   
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Figure 2.2:  Schematic showing various processes, inputs and outputs from a buffer 

strip unit cell. 
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pesticide properties as discussed in the literature.  Pesticide retention values, calculated 

using this simple model, were then compared with the reported data from thirty-five 

studies that have evaluated pesticide retention by buffer strips.        

2.4 Infiltration Water Mass (Mx) 

Pesticide mass that moves into the soil with infiltration in a buffer strip unit cell 

(Figure 2.2) is the product of infiltration water mass, Mx (Carrier) and the dissolved 

concentration of the pesticide in infiltrating water, Cx.  Infiltration has been reported as 

the key process by which buffer strip mitigates weakly and moderately sorbed pesticides 

(Baker and Mickelson, 1994; Patty et al., 1997; USDA - NRCS, 2000; Vellidis et al., 

2002; Arora et al., 2003).  In estimating infiltration, studies have measured inflow (Mi), 

and outflow (Mout) runoff volume, and rainfall volume (Ri).  Infiltration then has been 

estimated by subtraction of outflow from the sum of inflow and rainfall.  This infiltration, 

so determined, in fact represents the total runoff volume retained by ponding due to 

micro-topography, any increase in soil moisture content, and actual infiltration in the 

buffer strip.  In addition, under certain conditions, it is possible for subsurface water to 

come out of the surface in low lying areas due to the up-gradient pressure from new rain 

water.  This process can impact net infiltration into buffer strips as they tend to be located 

on the lower end of farm slopes adjacent to streams. In this review article, no attempt was 

made to isolate any of the processes, as they are not reported separately in the literature.  

All of the processes have been combined together as the runoff volume retained.   

Review of the reported data and studies show that the group of contributing 

factors affecting runoff volume retention can be grouped into two categories, which are 

site factors and hydrologic factors.  The first category of site factors includes area ratio 
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(Srivastava et al., 1996; Misra et al., 1996; Arora et al., 1996, 2003; Boyd et al., 2003) 

and/or buffer strip length (Thom & Blevins, 1996; Patty et al., 1997; Barfield et al., 1998; 

Antonious, 1999; Abu - Zreig, 2001; Mickelson et al., 2003; Antonious,  2004); slope of 

the buffer area; age, type and density of vegetation in the buffer area (Dillaha et al., 1988, 

1989; Patty et al., 1997; Schmitt et al., 1999; Rankins et al., 2001); and buffer strip area 

soil type.  Most frequently studied site factors (Tables 2.1 and 2.2) were found to be silty 

loam soil type for both source and buffer areas, and grassed vegetation in the buffer area.  

The second category of contributing factors is the storm intensity and the rainfall amount, 

and the hydrologic conditions of the site.  Variable rainfall intensities (Webster and 

Shaw, 1996; Kloppel et al., 1997; Boyd et al., 2003; Mickelson et al., 2003), rainfall and 

runoff amounts and rates (Misra et al., 1996; Arora et al., 1996; Dosskey et al., 2002; 

Arora et al., 2003), and antecedent soil moisture conditions (Assmussen et al., 1977; 

Rohde et al., 1980), explain the variability in runoff volume retentions as reported.  The 

first category of contributing factors, i.e. the site factors, can be designed and/or 

controlled to a certain extent; however, the second set of contributing factors, i.e. the 

hydrologic factors, are temporal in nature.  In the Krutz et al. (2005) review, authors 

summarized that the natural rainfall studies generally reported data gathered under 

various field conditions of runoff and rainfall intensities.  They concluded that these 

conditions are more realistic to occur in actual applications of buffer strips.  As such, data 

from such studies are more realistic indicators of buffer strip performance.  It should be 

noted that the most natural rainfall studies have been conducted under controlled 

experimental conditions using bordered test plots where runoff from one plot does not 

cross over into other plots.  These bordered conditions do not exist in actual field   
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Table 2.1: Runoff and Sediment retained by buffer strips as reported in natural rainfall studies (1983-2005). 

 

Literature 

Citation 

Duration 

Events 

Source Area Characteristics Buffer Area Characteristics 

Source & 
Buffer Area 

Soil Type 

Area 

Ratio 

Runoff Volume 

Retained 

Sediment 

Retained 

Area & Width 
Vegetation (Tillage) 

Percent Slope 

Dimensions 
Vegetation 

Percent Slope 

Study Average 
Data-points 

(Range) 

Study Average 
Data Points 

(Range) 

Hall et al.  
(1983) 

1 year 
11 events 

0.003 ha, w = 16 m 

Corn (n/a) 
14 

w = 6 m, l =1.8 m 

Oats 
14 

Silty Clay 
Loam 2.67 

66 % 

4 
(43 - 85) 

76 % 

4 
(66 - 99) 

Parsons et al.  
(1994) 

2 years 
9 events 

0.015 ha, w = 36.6 m 

n/a (n/a) 
1.9 

w = 4.3 & 8.5 m, l = 4 m 

Grass 
1 

Sandy 
Loam 

4.35 & 
8.6 

68 % 

34 
(0 - 100) 

79 % 

34 
(4 - 100) 

Arora et al.  

(1996) 

2 years 

6 events 

0.41 ha, w = 154 m 

Corn (Conv. Till) 

3 

w = 20.12 m, l = 1.52 m 

Smooth Bromegrass 

2 

Silty Clay 

Loam  15 & 30 

60 % 

36 

(3 - 100) 

60 % 

36 

(41 - 100) 

Daniels & Gilliam 

(1996) 

2 years 

26 events 

0.05 ha w = 84 m 
n/a (n/a) 

1.1 & 1.2 

w = 3 & 6 m, l = 6 m 
Fescue 

4.9 & 2.1 

Sandy 
Loam to 

clay loam 

14.33 & 

28.67 

n/a 
n/a 

n/a 

56 % 
4 

(45 - 61) 

Robinson et al. 

(1996) 

2 years 

13 events 

0.057 ha, w = 18.3 m 
Fallow (Tilled every 3 wks) 

7 & 12 

w = 3.1, 6.1, 9.2, 12.2 & 18.3 m, l = 31m 
Bromegrass 

7 & 12 Silt Loam 

1, 1.5, 2, 

3 & 6 

n/a 
n/a 

n/a 

80 % 
4 

(70 – 85) 

Webster & Shaw 
(1996) 

3 years 
24 events 

0.009 ha, w = 22 m 

Soybeans, (NT, CT & Disked) 
3 

w = 2 m, l = 4 m 

Tall fescue 
3 Silty Clay 11 

48 % 

24 
(0 - 100) 

n/a 

n/a 
n/a 

Patty et al.  
(1997) 

1 to 2 years 
16 events 

0.025 ha, w = 50 m 

Corn / Wheat (Plowing) 
7 – 15 

w = 6, 12, & 18 m, l = 5 m 

Rye grass 
7 - 15 Silt Loam 

2.77, 

4.17, & 
8.33 

82 % 

9 
(42 - 97) 

97 % 

9 
(87 - 100) 

Tingle et al. (1998) 
3 years 
1 event 

0.009 ha, w = 22 m 

Soybean, tilled 
3 

w = 0.5, 1, 2, 3 & 4 m, l = 4 m 

Tall fescue 
3 

Silty Clay 
Loam 

5.5, 7.3, 

11, 22 & 
44 

58 % 

5 
(47 - 69) 

87 % 

5 
(82 - 94) 

Mendez et al. 

(1999) 

2 years 

35 events 

0.009 ha, w = 24.7 m 

Corn, tilled 

18 

w = 4.3 & 8.5 m, l = 3.7 m 

Tall fescue 

18 Silt Loam 

2.91 & 

5.74 

56 % 

2 

(40 - 71) 

86 % 

2 

(82 - 90) 

Muñoz-Carpena  

et al. (1999) 

3 years 

7 events 

0.015 ha, w = 37 m 

n/a (n/a) 

5 – 7 

w = 4.3 & 8.5 m, l = 4 m 

Fescue, bluegrass, and bermuda grass 

5 – 8 Silt Loam 

4.35 & 

8.6 

26 % 

7 

(8 - 53) 

88 % 

7 

(57 - 98) 

Sheridan et al. 
(1999) 

 
3 years 

104 events 

0.93 ha, n/a 
Corn, Pearl Millet, Peanuts, n/a 

3.5 

w = 8 m, l = 39 m 
Bermudagrass and Bahiagrass 

3.5 

Loamy 

Sand 29.8 

64 % 
2 

(56 - 72) 

81 % 
2 

(78 - 83) 

w = width of source area or buffer area in the direction of flow, l = length of buffer perpendicular to direction of flow, area ratio is source area (ha) divided by buffer area (ha),  
  study average is (total input minus total output) divided by total input, n/a is not reported in the study. 
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Table 2.1 (continued):  

 

Literature 
Citation 

Duration 
Events Source Area Characteristics Buffer Area Characteristics 

Source & 

Buffer Area 
Soil Type 

Area 
Ratio 

Runoff Volume 
Retained 

Sediment 
Retained 

  

Area & Width 

Vegetation (Tillage) 

Percent Slope 

Dimensions 

Vegetation 

Percent Slope   

Study Average 

Data-points 

(Range) 

Study Average 

Data Points 

(Range) 

Rankins et al.  

(2001) 

3 years 

16 + 6 

events 

0.009 ha, w = 4 m 

Cotton  (Disked) 

3 

w = 0.3 m, l = 22 m 

Diff. Grasses 

3 Silty Clay 73.33 

57 % 

4 

(46 - 76) 

74 % 

4 

(66 - 80) 

Hoffman et al. 

(2002) 

2 years 

2 events 

0.17 ha, w = 46.7 m 
Corn / Wheat (Conv. Till) 

4 

w = 9 m, l = 45 m 
Wheat / Costal Bermudagrass 

4 Black Clay 4.2 

9 % 
2 

(0 - 27) 

n/a 
n/a 

n/a 

Boyd et al.  

(2003) 

2 years 

5 events 

0.41 ha, w = 154 m 
Corn (Conv. Till) 

4 

w = 20.12 m, l = 1.52 m 
Smooth Bromegrass 

3 

Silty Clay 

Loam  15 & 45 

71 % 
30 

(54 - 100) 

82 % 
30 

(53 - 100) 

Lee et al.  
(2003) 

2 years 
19 events 

0.005 ha, w = 22.1 m 

Soybean / Corn (n/a) 
8 

w = 7.1 & 16.3 m, l = 4.1 m 

Switchgrass 
5 Fine Loam 

1.36 & 
3.11 

59 % 

1 
n/a 

92 % 

1 
n/a 

Helmers et al. 
(2005) 

1 year 
1 event 

n/a, w = 670 m 

Corn (n/a) 
1 

w = 13, l = n/a 

Bluestem, Switchgrass, and Indiangrass 
1 Silt Loam 51.5 

29 % 

2 
(2 - 56)  

79 % 

2 
(74 - 83) 

Vianello et al. 
(2005) 

2 years 
16 events 

0.07 ha, w = 35 m 

Corn, Soybeans (Plowed) 
1.8 

w = 6 m, l = 20 m 

Grass + Shrub + Trees 
1.8 Silty Loam 5.83 

17 % 

12 
(9 - 31) 

n/a 

n/a 
n/a 

w = width of source area or buffer area in the direction of flow, l = length of buffer perpendicular to direction of flow, area ratio is source area (ha) divided by buffer area (ha),  

 study average is (total input minus total output) divided by total input, n/a is not reported in the study. 
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Table 2.2: Runoff and Sediment retained by buffer strips as reported in simulated rainfall / runoff / irrigation studies (1977-2005). 

 

Literature 

Citation 

Duration 

Events 

Source Area Characteristics Buffer Area Characteristics 

Source & 
Buffer Area 

Soil Type 

Area 

Ratio 

Runoff Volume 

Retained 

Sediment 

Retained 

Area & Width 
Vegetation (Tillage) 

Percent Slope 

Dimensions 
Vegetation 

Percent Slope 

Study Average 
Data-points 

(Range) 

Study Average 
Data Points 

(Range) 

Asmussen et al. 

(1977) 

1 year 

2 events 

0.003 ha, n/a 

Corn, Bedded 

2 

w = 24.4 m, l = 4.5 m 

bermudagrass, bahiagrass 

2 

Loamy 

Sand 0.27 

27 % 

2 

(3 - 51) 

96 % 

2 

(94 - 98) 

Brockway et al. 
(1977) 

1 year 
3 events 

0.6 ha, w = 140 m 

Wheat on Irrigation Furrows 
1.2, 1.4, 1.7 

w = 2.44, l = 42.86 

Wheat, single & double band planted 
1.4, 1.7 Silt Loam 57.38 

6 % 

12 
(0 - 41) 

70 % 

12 
(59 - 86) 

Hayes et al. (1984) 
n/a 
5 events 

0.001 ha, n/a 

mine spoil from erosion table 
30 

w = 28.8, 33.1 & 33.9 m, n/a 

Fescue 
2.9, 4.5, 9.8 Silt Loam n/a 

76 

5 
(55 - 93) 

94 % 

5 
(93 - 99) 

Dillaha et al. (1988) 

1 year 

6 events 

0.01 ha, w = 18.3 m 

Bare & compacted 

n/a 

w = 4.6 & 9.1 m, l = 5.5 m 

Orchard Grass 

5, 11 & 16 Silt Loam 

2.01 & 

3.98 

12 % 

12 

(0 - 37) 

71 % 

12 

(20 - 97) 

Dillaha et al. (1989) 

1 year 

6 events 

0.01 ha, w = 18.3 m 

Bare soil, conv. tilled 

n/a 

w = 4.6 & 9.1 m, l = 5.5 m 

Orchard Grass 

5, 11 & 17 Silt Loam 

2.01 & 

3.98 

18 % 

12 

(0 - 66) 

77 % 

12 

(34 - 99) 

Magette et al. 

(1989) 

n/a 

6 events 

0.012 ha, w = 22 m 
Fallow, broiler litter applied 

(2.7 - 4.1) 

w = 4.6 & 9.1 m, l = 5.5 m 
Fescue 

(2.7 - 4.1) 

Sandy 

Loam 

2.39 & 

4.78 

21 % 
12 

(0 - 46) 

63 % 
12 

(3 - 92) 

Coyne et al. (1995) 

1 year 

2 events 

0.01 ha, w = 22.1 m 
n/a 

9 

w = 9 m, l = 4.6 m 
Fescue & Kentucky Blue Grass 

9 Silt Loam 2.46 

88 % 
2 

(88 - 89) 

99 % 
2 

(98.5 - 99.5) 

Misra et al.  

(1996) 

1 year 

6 events 

n/a, n/a 
n/a 

n/a 

w = 12.2 m, l = 1.48 m 
Bromegrass 

(2 - 3) Loam 15 & 30  

31 % 
12 

(17 - 38) 

n/a 
n/a 

n/a 

Thom & Blevins 
(1996) 

1 year 
2 events 

n/a, conv. & no-till 

n/a 
9 

w = 15, 30 & 45 m, l = n/a 

Fescue-Bluegrass Mixture 
9 n/a n/a 

95 % 

6 
(91 - 97) 

98 % 

6 
(91 - 97) 

Van Dijk et al. 

(1996) 

n/a 

2 events 

n/a, n/a 

n/a 

n/a 

w = 1, 4, 5 & 10 m, l = 0.5 m 

n/a 

2.3, 2.5, 4.3, 5.2, 7, 8.5 n/a n/a 

38 % 

24 

(0 - 86) 

81 % 

24 

(49 - 99) 

Barfield et al. 

(1998) 

1 year 

2 events 

0.01 ha, w = 22.1 m 

Bare (Conv. & No-till) 

9 

w = 4.57, 9.14 & 13.72 m 

Bluegrass & Fescue 

9 Silt Loam 

1.61, 

2.42 & 

4.84 

94 % 

12 

(88 - 100) 

98 % 

12 

(92 - 100) 

w = width of source area or buffer area in the direction of flow, l = length of buffer perpendicular to direction of flow, area ratio is source area (ha) divided by buffer area (ha),  

 study average is (total input minus total output) divided by total input, n/a is not reported in the study. 
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Table 2.2 (continued):  

 

Literature 

Citation 

Duration 

Events 

Source Area Characteristics Buffer Area Characteristics 

Source & 
Buffer Area 

Soil Type 

Area 

Ratio 

Runoff Volume 

Retained 

Sediment 

Retained 

Area & Width 
Vegetation (Tillage) 

Percent Slope 

Dimensions 
Vegetation 

Percent Slope 

Study Average 
Data-points 

(Range) 

Study Average 
Data Points 

(Range) 

Pearce et al. (1998) 

2 years 

1 event 

n/a, n/a 

n/a 

n/a 

w = 10 m, l = 3 m 

Grass Community 

( 3 - 5 ) 

Sandy to Clay 

Loam n/a 

n/a 

n/a 

n/a 

93 % 

2 

(92 - 95) 

Tingle et al. (1998) 
3 years 
1 event 

0.009 ha, w = 22 m 

Soybean, tilled 
3 

w = 0.5, 1, 2, 3 & 4 m, l = 4 m 

Tall fescue 
3 

Silty Clay 
Loam 

5.5, 7.3, 

11, 22 & 
44 

88 % 

5 
(83 - 93) 

94 % 

5 
(88 - 98) 

Mendez et al. 
(1999) 

1 year 
3 events 

0.009 ha, w = 24.7 m 

Corn, tilled 
18 

w = 4.3 & 8.5 m, l = 3.7 m 

Tall fescue 
18 Silt Loam 

2.91 & 
5.74 

56 

2 
(40 - 71) 

86 % 

2 
(82 - 90) 

Mersie et al. (1999) 

1 year 

3 events 

n/a, n/a 

n/a 

n/a 

w = 2 m, n/a 

Switchgrass & tall fescue 

3 

Loamy Fine 

Sand 15 

60 % 

6 

(20 - 100) 

n/a 

n/a 

n/a 

Schmitt et al. 

(1999) 

1 year 

1 event 

n/a, n/a 

n/a 

n/a 

w = 7.5 & 15 m, l = 3 m 

Mixed grasses 

( 6 - 7) 

Silty Clay 

Loam 

5.4 & 

10.8 

56 % 

6 

(36 - 82) 

93 % 

6 

(84 - 99) 

Gilley et al. (2000) 
1 year 
2 events 

0.004 ha, w = 10.7 m 
Corn residue with no crop, NT, 

Disked, Manure applied 
( 8 - 16 ) 

w = 0.72 m, l = 3.7 m 

Switchgrass 
( 9 - 16 ) Fine Silt 14.86 

7 % 

12 
(6 - 9) 

61 % 

12 
(2 - 100) 

Melville et al. 

(2001) 

1 year  

1 event 

0.002 ha, w = 6 m 

n/a 

8.75 

w = 1 m, l = 3 m 

Fescue and Medow Grass 

8.75 Sandy Loam 6 

3 % 

6 

(1 - 4) 

93 % 

6 

(70 - 98) 

Seybold et al. 

(2001) 

n/a 

4 events 

n/a 

n/a 

n/a 

w = 3 m, l = 0.9 m 

Switchgrass & bare soil 

1 Loam 15 

61 % 

4 

(53 - 73) 

n/a 

n/a 

n/a 

Arora et al.  

(2003) 

1 year 

1 event 

n/a 
n/a 

n/a 

w = 20.12 m, l = 1.52 m 
Smooth Bromegrass 

2 

Silty Clay 

Loam  15 & 30 

35 % 
6 

(30 - 39) 

88 % 
6 

(87 - 90) 

w = width of source area or buffer area in the direction of flow, l = length of buffer perpendicular to direction of flow, area ratio is source area (ha) divided by buffer area (ha),  

study average is (total input minus total output) divided by total input, n/a is not reported in the study. 
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Table 2.2 (continued):  

 

Literature 

Citation 

Duration 

Events 

Source Area Characteristics Buffer Area Characteristics 

Source & 
Buffer Area 

Soil Type 

Area 

Ratio 

Runoff Volume 

Retained 

Sediment 

Retained 

Area & Width 
Vegetation (Tillage) 

Percent Slope 

Dimensions 
Vegetation 

Percent Slope 

Study Average 
Data-points 

(Range) 

Study Average 
Data Points 

(Range) 

Ludovice et al. 

(2003) 

1 year 

4 events 

0.03 ha, w = 10 m 

Corn 

n/a 

w = 5 7 10 m, l = 3 m 

Grass 

n/a n/a 1 & 2 

95 % 

8 

(88 - 99) 

n/a 

n/a 

n/a 

Mersie et al. (2003) 
1 year 
3 events 

n/a, n/a 

n/a 
n/a 

w = 2 m, n/a 

Switchgrass & tall fescue 
3 

Loamy Fine 
Sand 15 

60 % 

6 
(20 - 100) 

n/a 

n/a 
n/a 

Mickelson et al. 

(2003) 

1 year 

3 events 

n/a 
n/a 

n/a 

w = 4.6 & 9.1 m, l - 1.52 m 

Smooth Brome/Kent. Blue/Kent.  
Tall Fescue 

4.6 Silt Loam 5 & 10 

42 % 
4 

(33 – 56) 

79 % 
2 

(71 – 87) 

Blanco-Canqui  
et al. (2004a) 

1 year 
1 event 

0.001 ha, w = 8 m 

Fallow 
4.9 

w = 0.7, 4 & 8 m, l  = 1.5 m 

Fescue & Switchgrass 
4.9 Silt Loam 

1, 2 & 
11.4 

24 % 

9 
(2 - 45) 

90 % 

9 
(75 - 96) 

Blanco-Canqui  

et al. (2004b) 

1 year 

1 event 

0.001 ha, w = 8 m 

Fallow with Concentrated Flow 

4.9 

w = 0.7, 4 & 8 m, l  = 1.5 m 

Fescue & Switchgrass 

4.9 Silt Loam 

1, 2 & 

11.4 

25 % 

6 

(13 - 37) 

91 % 

6 

(72 - 99) 

Helmers et al. 
(2005) 

1 year 
5 events 

n/a, w = 670 m 

Corn (n/a) 
1 

w = 13, l = n/a 

Bluestem, Switchgrass, and Indiangrass 
1 Silt Loam 51.5 

1 % 

10 
(0 - 43) 

84 % 

10 
(73 - 93) 

Vianello et al. 

(2005) 

2 years 

2 event 

0.07 ha, w = 35 m 

Corn, wheat, soybeans 

1.8 

w = 6 m, l = 20 m 

Grass + Shrub + Trees 

1.8 Silty Loam 5.83 

23 % 

2 

(19 - 28) 

n/a 

n/a 

n/a 

w = width of source area or buffer area in the direction of flow, l = length of buffer perpendicular to direction of flow, area ratio is source area (ha) divided by buffer area (ha),  

study average is (total input minus total output) divided by total input, n/a is not reported in the study.
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applications.  Therefore, this creates some uncertainty as to how representative the results 

from such studies are of actual field conditions.  Runoff from different locations with the 

same source area may enter into the buffer strip at multiple locations and converge within 

the buffer strip in actual field conditions.    

Several studies have reported runoff volume retention as a response under 

different combinations of site factors and hydrologic factors as treatments using natural 

or simulated rainfall/runoff events.  A median response across such conditions would best 

represent the performance of buffer strips.  This median value would, however, be 

skewed by similarities in experimental setups as the sampled field conditions are not 

equitably represented in these studies.  An average value would, thus, be the most 

appropriate summary statistic capable of reflecting the effects of the wide range of 

sampled field conditions on buffer strips performance.  Secondly, the studies in the 

expanded dataset have reported rainfall, inflow, and outflow for varying number of 

events observed under different treatments used in the experimental designs.  To give a 

more balanced representation of the diversity of conditions among the treatments and 

events reported, it was necessary to calculate event weighted treatment averages (TA) 

and treatment weighted study averages (SA) to estimate overall runoff volume retention 

in this review article.  This was accomplished by the use of equations 2.1 and 2.2 as 

shown below for calculating TA and SA.  Percent runoff volume retained (PRVR) was 

first calculated as amount retained (rainfall plus inflow minus outflow) divided by input 

(rainfall plus inflow) for each reported event and treatment type.  Rainfall over the buffer 

area was considered as a direct input to the system when calculating this PRVR for each 

event.  PRVR was then averaged for the number of events reported using equation 2.1 to 
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calculate TA.  TAs were then averaged across treatments to calculate the SA using 

equation 2.2.   

𝑇𝐴𝑗 =
∑ (𝑃𝑅𝑉𝑅)𝑖

𝑛
𝑖=1

𝐸𝑛
  2.1 

 

𝑆𝐴 =
∑ (𝑇𝐴)𝑗

𝑛
𝑗=1

𝑇𝑛
  2.2 

where TA is the treatment average (%) for each unique treatment in a study, PRVR 

represents the percent runoff volume retention for each event, i represents different 

events with in a study from 1 to n, En is the total number of events reported in a study, SA 

is the study average (%), j represents the different treatments with in a study from 1 to n, 

and Tn are the total number of treatments for the same study. 

A few studies did not report event-by-event data but provided treatment averages 

based on the number of observed events.  In these cases, the runoff volume retention 

reported was used as-is to calculate the SA using equation 2.2.  In addition to these 

studies, a few special cases were observed as the data was synthesized.  A few studies 

reported runoff volume retention based on a calculation of total inputs and total outputs 

from all events.  A few more studies reported runoff volume retention averaged across 

events but did not report the number of events used to calculate the average.  A few 

studies reported measurement errors due to experimental setup and cautioned that the 

results reported were only estimates.  SA in these special cases was considered as having 

been reported from a single event.  Each SA calculated thus either represented a unique 

number of events as reported or a single event if it was a special case. 

Percent runoff volume retention from individual studies was averaged across 

studies to calculate an event and treatment weighted average response.   Equation 2.3 was 
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used to account for the number of events and treatments represented in each study 

average to calculate this average.    

𝐴𝑅 =
∑  ((𝑇𝐴)𝑗 × 𝐸𝑥)𝑘

𝑛
𝑘=1

∑ (𝐸𝑥)𝑘
𝑛
𝑘=1

 2.3 

where AR is the average retention (%) across studies, k represents the different studies 

from 1 to n, TA is the treatment average (%) as reported or calculated using equation 2.1,  

j represents different treatments within a study, Ex is number of events a study represents, 

and n is the total number of studies.  The number of events was set to 1 when using 

equation 2.3 for the studies that were considered special cases as per earlier discussion.  

The same procedure of calculating the TA, SA, and event and treatment weighted 

average across studies was used to average data for sediment mass retention and pesticide 

retention as discussed later in this article.  

Runoff volume retention was 45% when averaged across studies that reported 

percent infiltration data collected from field studies (natural rainfall, simulated 

rainfall/runoff/irrigation).   Natural rainfall studies showed an average of 50% runoff 

volume retention (Hall et al., 1983; Parsons et al., 1994; Arora et al., 1996; Webster & 

Shaw, 1996; Patty et al., 1997; Tingle et al., 1998; Mendez et al., 1999; Muñoz - Carpena 

et al., 1999; Sheridan et al., 1999; Rankins et al., 2001; Hoffman et al., 2002; Lee et al., 

2003; Boyd et al., 2003; Helmers et al., 2005; Vianello et al., 2005).  The simulated 

runoff studies showed an average of 38% runoff volume retention (Assmussen et al., 

1977; Brockway et al., 1977; Hays et al., 1984; Dillaha et al.,  1988, 1989; Magette et al., 

1989; Coyne et al., 1995; Misra et al., 1996; Thom and Blevins, 1996; Van Dijk et al., 

1996; Barfield et al., 1998; Tingle et al., 1998; Mersie et al., 1999, 2003; Schmitt et al., 

1999; Gilley et al., 2000; Melville et al., 2001; Seybold et al., 2001; Arora et al., 2003; 
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Ludocice et al., 2003; Mickelson et al., 2003; Blanco - Canqui et al., 2004a, 2004b; 

Helmers et al., 2005; Vianello et al., 2005).  This average runoff volume retention 

accounts for the different number of events and treatments reported, but does not include 

any differences due to experimental setup.  This average runoff volume retention is an 

average across different combinations of site factors and hydrologic factors to the extent 

reported in different studies.   

The amount of runoff volume retention as a percent of total input (rainfall plus 

inflow) was determined for each reported event and plotted against area ratio.  This plot 

was made since several studies have concluded that longer buffer strips (smaller area 

ratios) can greatly increase the amount of runoff volume retained.  Figure 2.3 shows the 

percent runoff volume retained on an event basis for different area ratios as reported or 

calculated from the data included in various studies.  This figure shows a wide range for 

percent runoff volume retention (from 0% to 100%), including negative values.  The 

possible reasons for negative values for runoff volume retention are measurement error, 

shallow groundwater appearing on the surface due to up gradient pressure, neglecting 

rainfall over the buffer area as an input in calculations, and/or experimental design where 

output runoff volume from a buffered plot is compared to runoff volume from a non-

buffered plot.  Runoff volume retention in the source area is assumed similar for both the 

buffered and the non-buffered plots in these studies, which is not the case, resulting in 

negative numbers.    In the case of wide buffer strips, there is a potential for runoff 

generation from within the buffer strip, under natural rainfall conditions and prior to 

runoff from source area, reaching the buffer area.  None of the studies included in this 
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review article measured this runoff generation as an output and as such, it is not included 

in any calculations for determining runoff volume retention.   

Several additional studies (Dillaha et al., 1989; Tim et al., 1994; Hoffman et al., 

1995; Tim et al., 1995; Srivastava et al., 1996; Boyd et al., 2003) have concluded that the 

amount of runoff water that is retained in the buffer strip greatly depends on the length 

and/or the area of the strip over which the flow occurs.  Consequently, longer buffers can 

significantly reduce runoff volume.  However, it is not feasible to maintain uniform flow 

across the buffer strips due to changes in topography as reported by Dillaha et al. (1989) 

and Thom and Blevins (1996).  Some of the more recent studies (Helmers et al., 2005; 

Bansal et al., 2006) have shown that flow convergence or concentrated flow occurs in the 

case of field scale buffer strips.  This happens due to formation of flow paths with in the 

buffer strip area in relationship to variable micro topography of the specific site.  As 

such, the buffer strip area over which the flow occurs is actually smaller than the actual 

area of the buffer strip.  The resulting area ratio, i.e. source area to the buffer strip area 

(actual flow path area), is a relatively higher area ratio.  Different studies have used 

different experimental setups (simulated rainfall, simulated runoff, natural rainfall, etc.) 

as reported by Krutz et al. (2005); however, each study has used some ratio of source area 

to buffer strip area. 

Four studies listed in Table 2.1 and 2.2 did not report on the area ratios used in the 

experimental design, whereas fourteen studies used an area ratio of greater than ten.  

Over half of the studies (twenty-four) have used an area ratio of less than ten in their 

experimental setups.  Flow convergence or concentrated flow, as discussed earlier, 

happens in field scale buffer strips.  As such, it can result in variable runoff volume 
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retention as the entire area of the buffer strip is not exposed to uniform overland flow.  

Bansal et al. (2006) have shown, through grid analysis using elevation data that flow 

convergence happens due to development of flow paths within the field and the buffer.  

As such, area ratios of 10 or smaller are unlikely to be implemented for field scale buffer 

strips.  The USDA - NRCS (2003) filter strip practice standard recommends limiting area 

ratios to about 50 when designing field scale filter/buffer strips, although no lower limit 

is assigned.  Under a strip cropping situation, area ratios can be as low as one, as in the 

theoretical case of a two strip rotation.  In such cases, low area ratios or small source 

areas and therefore low runoff flow volumes, are less likely to occur in field conditions 

due to flow convergence.  As such, results from studies with low area ratios or low runoff 

flow volumes are likely an over estimation of the actual field performance of buffer 

strips.  Average runoff volume retention is 40% if results related with area ratios less than 

10 are excluded.  This average retention is an average across different combinations of 

site factors and hydrologic factors to the extent reported in the different studies; and it 

does not include any differences due to experimental setup.   

Minimum runoff volume retention, on an event-by-event basis as reported in these 

studies (Tables 2.1 and 2.2), is of the order of one to five percent.  Saturated hydrologic 

conditions have been reported as the key factor for such low percent retention.  

Maximum runoff volume retention is 100% as reported by Parsons et al., 1994; Arora et 

al., 1996; Barfield et al., 1998; Boyd et al., 2003; Mersie et al., 2003; and  Blanco - 

Canqui et al., 2004a under both natural and simulated rainfall/runoff experimental setups.  

Authors of these studies have concluded that such high percent infiltration occurs during 

dry antecedent moisture conditions accompanied by a low flow rate and/or volume of 
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runoff from source areas.  In summary, runoff volume retention varies with different site 

specific combinations of site and hydrologic factors on an event-by-event basis as 

reported in Tables 2.1, 2.2, and Figure 2.3.  This event variability for runoff volume 

retention plotted for different area ratio ranges is evident in Figure 2.3.  Both the mean 

and median values along with the percentile ranges are shown for each area ratio range 

plotted.  Median value is skewed towards the studies with similar source area to buffer 

area ratios, source area tillage practices, buffer strip vegetation, and slope.  Area ratios of 

less than 10 are represented by 142 data points, area ratios from 10 to 30 are represented 

by 35 points, and area ratios of greater than 30 are represented by 30 data points in Figure 

2.3.  An overall median value will skew the final value of runoff volume retention 

towards smaller area ratios which is not representative of field conditions where flow 

converges in buffer strips.  Thus, an event and treatment weighted average value is more 

accurate representation of the range of values than the median value.  An average 

performance of buffer strips across different conditions more likely represents the 

performance potential of buffer strips in reducing runoff volume.  This average 

performance, however, is sensitive to the effects of larger area ratios. 

2.5 Dissolved Pesticide Concentration (Cout) 

Dissolved pesticide concentration in the outflow from the buffer strips, 

represented by Cout in Figure 2.2, is a result of interactions between the input pesticide 

mass and the effect of rainfall dilution and sorption or desorption of the pesticide with 

organic matter/soil in the buffer strip.  An interesting point to consider is what water 

infiltrates: is it just runoff or is it some mixture of runoff mixed with rainwater (a dilution 

effect)?  Only runoff will infiltrate when there is no rain falling on the buffer strips as  
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Figure 2.3: Percent runoff volume reduction as a function of area ratio. Percent reduction 

numbers (used in this figure) are on event basis as reported or calculated from data 

reported in studies listed in Table 2.1 and 2.2 where area ratio data were available.  Note: 

Two data points at ~90% for 10-15 range pull the mean up.  Dots are outliers.  Numbers 

above the box plots indicate sample size. 

 

runoff passes through it, and therefore, a change in pesticide concentration can directly be 

attributed to sorption and/or desorption. On the other hand, if rainfall is occurring on the 

buffer strip as runoff from the source area passes through it, a change in concentration is 

a net effect of rain water dilution and sorption/desorption.  

  A few studies have quantified the changes in dissolved pesticide concentration 

due to rainfall as the runoff passes through the buffer strips.  These studies show that 

different combinations of site and hydrologic factors result in different rainfall dilution 

effects.  Variations to area ratios (Misra et al., 1996), rainfall intensities (Lowrance et al., 

1997; Vellidis et al., 2002); and buffer strip lengths (Schmitt et al., 1999) result in 
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variable rainfall dilution factors for dissolved pesticide concentrations.  Thus, it is 

important to note that the concentration change due to dilution is sensitive to rainfall 

intensities, surface roughness, buffer strip length and slope, and area ratio. 

In addition to rainfall dilution, the change in the dissolved pesticide concentration 

in outflow depends on how much pesticide gets sorbed or desorbed to dead organic 

matter content (age and amount), live vegetation (height and thickness), and soil particles 

(size and distribution) of the buffer strips.  These three components represent the total 

sorption sites that may be available for sorption within the buffer strips.  As such, one 

may assume that longer buffer strips with wider effective flow widths will have larger 

sorption capacity than shorter buffer strips with narrower effective flow widths.    Large 

sorption capacities found in relation to large organic matter content of the buffer strip 

soils supports this assumption (Reungsang et al., 2001).  However, a few researchers 

have found no clear relation between moderately sorbed pesticide concentration reduction 

and length of buffer strips (Patty et al., 1997; Tingle et al., 1998; and Syversen and 

Bechmann, 2004).  Evaluating sorption sites in terms of the age and vegetation density of 

the buffer strips, Schmitt et al. (1999) showed that outflow dissolved moderately and 

strongly sorbed pesticide concentrations were significantly lower in buffer strips which 

were 10 times older than the newly established two year old buffer strips.  Older buffer 

strips are likely to have greater pools of surface residue and organic matter in the soil.  

Increased surface residue is likely to reduce flow velocity due to greater resistance to 

flow whereas increased organic matter content is likely to provide greater pesticide 

sorption sites.  The study did not clearly specify if the pesticide concentration reduction 

observed was caused by increased organic matter content in the soil or due to reduced 
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travel time, i.e. greater contact time for the pesticides to get sorbed.  Evaluating sorption 

sites in terms of contact with live vegetation, Arora et al. (1996) and Misra et al. (1996) 

found no effect on the dissolved moderately sorbed pesticide concentrations when the 

flow depth was doubled, doubling the contact area with live vegetation.  These two 

studies tried to estimate mathematically from experimental data as to how much sorption 

was taking place in the buffer strips.  The authors estimated that the net effect of sorption 

and desorption was of the order of five percent of the input pesticide mass for atrazine, 

metolachlor, and cyanazine for 15:1 and 30:1 area ratio buffer strips.  Other researchers 

have found mixed results where outflow dissolved concentrations have either decreased 

or increased (Cole et al., 1997; Mickelson et al., 1998; Mersie et al., 1999; Arora et al., 

2003).  These studies have not been able to clearly establish how much sorption or 

desorption is taking place as the flow passes through the buffer strips.    

Krutz et al. (2005) have summarized the environmental fate of over twenty 

pesticides and/or their metabolites as they pass through the buffer strip area.  Sorption of 

non-ionic pesticides to the buffer strip soil occurs at a greater degree than it’s desorption.  

The amount of net sorption is relatively small (Lacas et al., 2005) as the flow in buffer 

strips is transient and sorption/desorption is not an instantaneous process.  Anionic 

pesticides, on the other hand, show no difference in sorption to and desorption from 

buffer strip soil when compared with cultivated field soils.  Krutz et al. (2005) concluded 

that mobility of herbicides is not significantly impeded by larger percent organic matter 

in the soils. 

In summary, sorption and desorption of pesticides does occur in the buffer strips.  

Owing to differences in pesticide properties, lack of direct measurements (indirect 
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measurements for atrazine, metolachlor, and cyanazine by Arora et al., 1996; Misra et al., 

1996), and differences in reported results, the net effect of this process on pesticide 

retention in buffer strips cannot be accurately predicted.  Outflow dissolved pesticide 

concentrations, when compared with outflow as sorbed to sediment pesticide 

concentrations, show that pesticide partitioning coefficient’s do not significantly vary 

between inflow and outflow as expected.  In addition, most of the studies have measured 

the outflow dissolved pesticide concentrations.  This concentration has been used to 

estimate the pesticide mass output in the water phase by multiplying the concentration 

with the outflow volume.  Percent pesticide mass retained (calculated in the studies is a 

difference between input and output masses as a percent of input), represents the net 

retention of pesticide within the buffer strips.  Therefore, outflow dissolved pesticide 

concentration and percent mass retained represent the net effect of infiltration, rainfall 

dilution and sorption/desorption.  Therefore, the percent pesticide mass retained in the 

buffer strips with runoff volume can be considered directly proportional to the percent 

runoff volume retained and the pesticide partitioning coefficient.    

2.6 Sediment Mass Retained   

Sediment mass retained is the mass of eroded sediment from the source area that 

deposits with in the buffer strip.  This deposited mass is generally calculated as the 

difference between inflow (Si) and outflow (Sout) sediment masses (Figure 2.2).  Percent 

sediment mass retention as reported in different studies is shown in Figure 2.4.  This 

figure shows sediment mass retention as a function of area ratio.  Similar to Figure 2.3, 

Figure 2.4 also shows the event by event variability in the reported data where the 

sediment mass retention varies between 2% to 100%.     
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Sediment mass retention was 76% when averaged across studies that have 

reported data collected from field studies (natural rainfall, simulated 

rainfall/runoff/irrigation).   Natural rainfall studies showed an average of 75% retention 

(Hall et al., 1983; Parsons et al., 1994; Arora et al., 1996; Daniels and Gilliam, 1996; 

Robinson et al., 1996; Patty et al., 1997; Tingle et al., 1998; Mendez et al., 1999; Muñoz 

- Carpena et al., 1999; Sheridan et al., 1999; Rankins et al., 2001; Boyd et al., 2003; Lee 

et al., 2003; Helmers et al., 2005).  The simulated rainfall/runoff/irrigation studies 

showed an average of 76% retention (Asmussen et al., 1977; Brockway et al., 1977; 

Dillaha et al., 1988, 1989; Magette et al., 1989; Coyne et al., 1995; Van Dijk et al., 1996; 

Thom & Blevins, 1996; Barfield et al., 1998; Pearce et al., 1998; Tingle et al., 1998; 

Mendez et al., 1999; Schmitt et al., 1999; Gilley et al., 2000;  Melville et al., 2001; Arora 

et al., 2003; Mickelson et al., 2003; Blanco - Canqui et al., 2004a, 2004b; Helmers et al., 

2005).  This average percent sediment mass retention, so calculated, includes the number 

of different events and treatments reported in the study but does not include any 

differences due to experimental setup.  Some of the studies again have reported sediment 

mass retention by using a comparison basis between buffered plots and non-buffered 

plots.  Output from a non-buffered plot is considered as input into the buffered plot when 

making calculations.  Actual input into the buffered plots is not measured in these studies 

due to their experimental setup and is the likely reason for low sediment mass retention 

numbers reported.  The reported numbers (Figure 2.4) show a combined effect of three 

processes, i.e. sedimentation ahead of the buffer strip, physical filtering of the sediment 

in the buffer strip, and co-deposition (penetration) of  particles into the soil surface of the 

buffer strip along with infiltrating water.  
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Figure 2.4:  Percent sediment mass retention as a function of area ratio.  Percent 

reduction numbers (used in this figure) are on event basis as reported or calculated from 

data reported in studies listed in Table 2.1 and 2.2 where area ratio data were available.  

Dots are outliers.  Numbers above the box plots indicate sample size.   

 

Deposition ahead of the buffer strip has been shown by Dillaha et al. (1989), 

Dabney et al. (1995), and Meyer et al. (1995) as one of the factors in sediment mass 

reduction.  Physical filtering effect of the buffer strip is a function of the sediment 

transport capacity of the water flowing through the buffer strip and its effectiveness in 

offering resistance to flow (Dabney et al., 1995; Jin et al., 2001).  None of the studies 

have determined whether or not the deposited sediment becomes a part of flow through 

buffer strip for subsequent events.  Lastly, penetration of very fine particles into the 

buffer strip soil may occur resulting in sediment retention (Misra, 1995; Mickelson et al., 
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2003; Lacas et al., 2005).  This penetration of fine particles results in reduced runoff 

volume retention when compared to the non-sediment mixed simulated runoff (Misra, 

1995; Mickelson et al., 2003).  In summary, the studies reviewed have not reported 

sediment mass retention for the three processes individually.  As such, total sediment 

mass retention is considered as the combined effect of the above mentioned three 

processes in this review article. 

Data presented in the natural rainfall studies, when averaged for low sediment 

mass retention (data points with values less than 50%), showed a 25% sediment mass 

retention.  The average for simulated rainfall/runoff studies was 19% sediment mass 

retention.  Authors from the studies cited no till or minimum till practices and/or 

sufficient canopy cover in the source area as the key factors for low sediment mass 

retentions.  Minimum sediment mass retention, as reported in both natural rainfall and 

simulated rainfall studies, was the order of 2% to 10% (Magette et al., 1989; Parsons et 

al., 1994; Muñoz - Carpena et al., 1999; Gilley et al., 2000; Jin et al., 2001).  Similar data 

averages for high sediment retention (data points with values greater than 50%) for 

natural rainfall studies averaged 88%.  This average was 95 % for simulated runoff 

studies, with a maximum of 100% sediment mass retention reported for either 

experimental setup.  Authors reported dry antecedent moisture conditions and/or very low 

runoff producing storms as the key factors for such high sediment mass retentions. 

In summary, buffers strips can be expected to retain 76% sediment mass based on 

an average of studies reviewed.  This is comparable to USDA information of 75% 

retention stated in the on - line document Buffer Strips: Common Sense Conservation 

(USDA - NRCS, 2008).  Sediment mass retention across various studies for different area 
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ratios shows at least 40% retention, provided the numbers that are related with negative 

infiltration and for area ratios less than 10 are excluded.  Buffer strips may only retain 2% 

to 10% of the incoming sediment mass on the minimum basis.  This extreme of minimum 

sediment mass retention should not be viewed as the inability of buffer strips to perform 

appropriately.  Similarly, maximum sediment mass retention of 100% by buffer strips 

should not be viewed as if buffer strips can completely stop sediment export from small 

scale fields/watersheds.   

2.7 Sorbed Pesticide Concentration   

Sediment mass that enters the buffer strip has a particle size distribution and a 

sorbed pesticide concentration.  Enrichment of this sediment occurs as the runoff flows 

through the buffer strips.  Larger particles settle out first and the outflow consists mostly 

of smaller particles (Lee et al., 2000).  These smaller particles can have higher sorbed 

pesticide concentrations, up to ten times higher as reported in the review by Lacas et al. 

(2005).  This is most likely as smaller particles have larger specific surface area, and 

subsequently, more pesticide mass sorbed to them.  Thus, sorbed pesticide concentrations 

in outflow should theoretically increase as enrichment occurs.  None of the studies 

reviewed have evaluated sorbed pesticide concentrations between inflow and outflow 

based on particle size classes.  Krutz et al. (2005) summarized that it is difficult to 

differentiate between inflow and outflow sorbed concentrations for field studies due to 

differences in inflow nominal concentrations, solubility, hydrophobicity, and ionic 

nature.  Consequently, the effects of enrichment were not quantified in this paper by 

Krutz et al. (2005).  A few studies have reported inflow and outflow sorbed pesticide 

concentrations on an overall basis but not based on particle size classes (Webster and 
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Shaw, 1996; Arora et al. (1996); and Arora et al., 2003).  These studies have found 

negligible or insignificant differences between the inflow and outflow overall sorbed 

pesticide concentrations for all three sorption classes (weakly, moderately, and strongly 

sorbed pesticides).  As the effects of the enrichment process are reportedly negligible, the 

retained sediment sorbed pesticide concentrations are, therefore, similar to both inflow 

and outflow sorbed pesticide concentrations.   

Inflow sorbed pesticide concentration is proportional to the sorption coefficient of 

the pesticide.  As inflow and retained sediment sorbed pesticide concentrations are 

similar, the retained sediment sorbed pesticide concentration is also proportional to the 

sorption coefficient.  The sorbed pesticide mass is generally measured as a product of 

sediment mass and the sorbed pesticide concentration.  The retained sorbed pesticide 

mass, therefore, is proportional to the sorption coefficient and the retained sediment 

mass.                 

2.8 Estimating Average Pesticide Mass Retention (%) in Buffer Strips 

 Average retentions of both carrier phases of pesticides (runoff volume and 

sediment mass) have been calculated and presented in this paper.  These average 

retentions include unique experimental setups not used by studies that have exclusively 

studied pesticide retention by buffer strips.  Using these average carrier retentions, 

average pesticide retention was estimated and compared with pesticide retention data 

reported in literature.  A simple mathematical model was considered to estimate average 

pesticide retention (%) for the three different pesticide classes (based on sorption 

coefficient, Koc).  This model can be used to estimate average pesticide retention under 

field conditions which fall within the range of the experimental setups of the expanded 
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dataset.  Furthermore, the model can be used to estimate overall pesticide retention for 

any pesticide not studied.   

Using pesticide sorption or the partitioning coefficient (Koc) as the key pesticide 

property, a simple model can be written as a function of carrier mass retained (%) and the 

pesticide mass (%) within the carrier.  This results in the following equation for 

determining average pesticide retention (%) within the buffer strips. 

APRk = (CR x PMk)w  +  (CR x PMk)s 2.4 

where APRk is average pesticide retention (%), k represents three pesticide sorption 

classes, CR is carrier phase retention (%), and PM is pesticide mass with the specific 

carrier (%), w and s are the water and sediment phase of runoff, respectively.  PMk, 

pesticide mass in the carrier phase, will depend on the partitioning coefficient (Koc) of the 

pesticide.  Equation 2.4, therefore, will result in separate percent retention by buffer strips 

for different pesticides.   

As discussed earlier in the paper, the effect of sorption and desorption on 

pesticide mass retained in buffer strips is difficult to determine based on published data.  

This model assumes that the net effect of sorption and desorption is negligible or zero.  

Secondly, the model also assumes that the net effect of enrichment is negligible or zero.  

As explained earlier, the model considers the pesticide mass retained with either carrier 

phase of runoff as directly proportional to the carrier mass retained and the pesticide mass 

contained in this carrier phase based on the sorption coefficient.  This model is 

parameterized to account for synthesized data for the average runoff volume (%) and 

sediment mass retention (%) in the buffer strips.  By quantifying pesticide mass (PM) 



 40 

 

 

contained in each carrier phase, the model can calculate a pesticide mass retention (%) 

when the carrier retention (%) is multiplied with the pesticide mass (%) it carries. 

Parameter PMk of equation 2.4 simply stated represents three classes of pesticides 

i.e. weakly sorbed (Koc < 100 L/kg), moderately sorbed (100 < Koc < 1000 L/kg), and 

strongly sorbed (Koc > 1000 L/kg).   This results in a separate value of PMk for each class 

of pesticide synthesized for pesticide retention.  Pesticide mass (PMk) contained in either 

carrier phase (water or sediment) entering the buffer strips depends on specific pesticide 

properties.  Pesticide formulation, solubility in water, volatilization, sorption to infield 

soil, method of application, and half - life affects the amount of pesticide that is lost from 

source area (Baker and Mickelson, 1994).  In summarizing these characteristics, 

Wauchope (1978) concluded that for pesticides with relatively low solubility and high 

sorption coefficients, only 10 - 30 % of the total loss from the source area occurred with 

runoff water.  Rohde et al. (1980) reported a 5% to 25% of total loss of trifluralin with 

runoff water.  Boyd et al. (2003) reported chlorpyrifos losses in the range of 10% to 40% 

of the total loss from source area.  On the other hand, for moderately sorbed pesticides 

with medium solubility, Wauchope (1978) summarized that 60% to 100% of total loss 

from source area was with runoff water.  Hall et al. (1972, 1974) showed 80% to 98% of 

total loss of atrazine with runoff water.  Arora et al. (1996) showed 85% to 99% of total 

loss of atrazine, metolachlor, and cyanazine being with runoff water.  Pesticide loss with 

runoff water as a percent of total loss for atrazine, alachlor, cyanazine, carbaryl, and 

fonofos varied between 65% to 95% in the results reported by Hall et al., 1972; Ritter et 

al., 1974; Caro et al., 1974; Bailey et al., 1974;  Baker et al., 1978; and Rohde et al., 

1980.  In summary, for strongly sorbed pesticides, an average of only 20% of loss from 
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source area with runoff occurs in runoff water.  The remaining 80% of the loss occurs 

with runoff sediment.  For moderately sorbed pesticides, this average loss is 80% with 

runoff water and only 20% with runoff sediment.  Almost 95% to 100% of the total loss 

of weakly sorbed pesticides occurs with runoff water.  These average values of pesticide 

mass (PMk) in runoff from source area and entering the buffer strips for the three 

pesticide classes for both water and sediment carrier phases are presented in Table 2.3. 

The second parameter (CR) in equation 2.4 represents carrier phase retention of 

runoff volume and/or sediment mass in buffer strips.  As presented in the “Infiltration 

Water Mass” section earlier, CR for runoff volume was 45% when averaged across 

studies that reported percent infiltration data collected from field studies (natural rainfall, 

simulated rainfall/runoff/irrigation).  This average of 45% runoff volume retention is used 

as CR for water in equation 2.4 and Table 2.3.  Similarly, as presented in the “Sediment 

Mass Retained” section earlier, buffers strips can be expected to retain 76% sediment 

mass based on an average of studies reviewed.  This average of 76% sediment mass 

retention is used as CR for sediment in calculating the average percent retention in 

equation 2.4 and Table 2.3.  Ranges of either carrier mass retentions are presented in 

parenthesis in Table 2.3.  Table 2.3 also represents the lower and upper end of pesticide 

mass retention (in parenthesis) in buffer strips for the three different types of pesticides.  

A lower end of 10% runoff volume retention and 20% of sediment mass retention is used 

in calculating the average percent retention for both total and with either carrier phase.  

An upper end of 95% runoff volume retention and 90% of sediment mass retention is 

used in calculating this percent retention for both total and with either carrier phase. 
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 The model calculated estimate of the pesticide retention quantified (Table 2.3) by 

the review performed in this article represents varying situations of area ratios, buffer 

strips lengths and slopes, buffer vegetation density and age, rainfall intensities, and dry 

and saturated antecedent conditions of buffer soils.  This estimate, so quantified, is based 

on the average retention of either pesticide carrier phase and does not take into 

consideration experimental error of individual studies.  Table 2.4 shows pesticide 

retention by buffer strips under different agricultural applications of buffer strips.  

Strongly sorbed pesticides, such as chlorpyrifos and trifluralin (both with Koc > 1000 

L/kg) can be retained on the average of 70% (0.2 x 0.45 + 0.8 x 0.76) with minimum and 

maximum retentions of 18% and 91% respectively (calculated using equation 2.4 and 

listed in Table 2.3).  This calculated average is lower than the individual study averages 

but is within the range of strongly sorbed pesticide retentions reported (Table 2.4).  This 

calculated average pesticide retention for strongly sorbed pesticides is lower than the 

average among natural rainfall studies which showed an average of 75% retention by the 

buffer strips (Antonious and Byers, 1997; Patty et al., 1997; Antonious, 1999; Boyd et al., 

2003; Antonious, 2004; Syversen, 2005; 8 pesticides).  The model calculated average is 

lower when compared with the simulated studies which averaged 78% (Rohde et al., 

1980; Kloppel et al., 1997; Schmitt et al., 1999; Arora et al., 2003; Mersie et al., 2003; 5 

pesticides).  The overall average for both natural and simulated studies averaged 76% 

retention (10 pesticides) by buffer strips.  The average pesticide retention for both 

experimental data sets, separately and combined, exceeds the model calculated average 

pesticide retention of 70% for the strongly sorbed pesticides as listed in Table 2.3.  The 

model makes two assumptions that the net effects of sorption/desorption and enrichment 
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in buffer strips on pesticide mass retention is negligible or zero.  Model calculated 

averages being lower than the reported averages, shows that these processes do affect 

strongly sorbed pesticide mass retention.  The difference between study average of 76% 

retention and model calculated average of 70% shows that the effect of 

sorption/desorption and enrichment is relatively small (~6%) in this case.  

Model calculated averages were also compared with study averages for 

moderately sorbed pesticides which are transported mainly with water.  In case of these        

 

Table 2.3: Average pesticide mass retention (%) in buffer strips with average retention of 

both carrier phases (%) as modeled using equation 2.4.  Lower and upper end pesticide 

mass retentions are included in parenthesis. 

 

Type of 

Pesticide 

Carrier 

Phase in 

Pesticide Mass 

in Carrier 

Average 

Carrier 

Pesticide Mass 

Retention 

  Runoff Phase
1
 (%) Retention

2
 (%) in Carrier (%) 

     

Weakly 

Sorbed Water 95 45 (10 – 95) 43 (9 – 90) 

(Koc <  100 

L/kg) Sediment 5 76 (20 – 90) 4 (1 – 5) 

 Total 100  46 (10 – 95) 

     

Moderately 

Sorbed Water 80 45 (10 – 95) 36 (8 – 76) 

(100 < Koc 

< 1000 

L/kg) Sediment 20 76 (20 – 90) 15 (4 – 18) 

 Total 100  51 (12 – 95) 

     

Strongly 

Sorbed Water 20 45 (10 – 95) 9 (2 – 19) 

(Koc > 1000 

L/kg) Sediment 80 76 (20 – 90) 61 (16 – 72) 

  Total 100   70 (18 – 91) 
1
 Average pesticide mass in the carrier phase is an average over the Koc range from the reported studies.   

2 
Average retention of both carrier phases is calculated from studies listed in Table 2.1 and Table 2.2, 

majority of which have been conducted on silt loam soils. 
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Table 2.4: Pesticide retention (%) by buffer strips as reported by different studies as related to agricultural runoff (1977-2005). 

Literature Citation, 

Location 

Duration / Events 

Source Area Buffer Area   Pesticide Retention  
Area & Dimensions 

Vegetation (Tillage) 

Slope (percent) 

Dimensions 

Vegetation 

Slope (percent) 

Soil Type 

& Area 

Ratio 

Name, Formulation 

Rate kg a.i./ha, Method 

Koc, Half-life (days) 

Study Average 

Data Points 

(Range) Comments 

Application: Buffer Strips Intercropped in Vegetable Row Crops, Natural Rainfall Studies    

Antonious and Byers 

(1997), USA 

1 year, 4 events 

0.008 ha, w = 22 m 

Tomatoes, roto-tilled 

10 

w = 1.5 & 3 m, l = 3.7 m 

Fescue 

10 

Silty Loam 

7.2 & 14.2 

Endosulfan, EC 

0.61, sprayed 

12400, 50 

78 (T) 

2 

(56-99) 

Natural rainfall events recorded 

on a 5 % O.M. soil. 

Antonious (1999) 

USA 
n/a, n/a 

0.008 ha, w = 22 m 

Capsicum / Tomatoes, 

n/a 
10 

w = 1.5 & 3 m, l = 3.7 m 

Festuca sp. Kentucky 31 
10 

Silty Loam 
7.2 & 14.2 

Dacthal, W-75 

3.44, banded 
5000, 100 

88 (T) 

4 
(72 - 100) 

Total retention by both water 

and sediment phase not reported. 

Natural rainfall events recorded 
on a 2 % O.M. soil. 

Antonious (2004) 
USA 

1 year, 3 events 

0.008 ha, w = 22 m 
Tomatoes, n/a 

10 

w = 0.7 m, l = 3.7 m 
Tall Fescue 

10 

Silty Loam 

31 

Trifluralin, EC 
0.84, sprayed 

8000, 60 

86 (W) 
n/a 

(n/a) 

Only retention in dissolved 

phase reported as an average of 
three natural rainfall events on a 

2.8 % O.M. soil. 

Application: Edge of Field Buffer Strips as Setbacks for Tile Inlet Terraces, Natural Rainfall Studies    

Mickelson et al. 

(1998), USA 

2 years, 5 events 

0.75 ha, n/a 

Corn, disked 

7.5 

w = 20.1 m, l = 40.2 m 

Source area crop 

7.5 

Silty Clay 

Loam 

9.3 

Atrazine, 4L 

2.2, broadcast 

100, 60 

1.8 (T) 

15 

(-18 - 25) 

Buffer strips as cropped areas 

with no pesticide application on 

a 3 % O.M. soil were used in 

this study.  Due to ponding at 

the tile inlet, setbacks were 

submerged by different depths 
and uniform flow through the 

setback buffers was not 

achieved. 

    

Metolachlor, 8E 

2.8, broadcast 

200, 90 

4.8 (T) 

15 

(-15 - 26) 

    

Cyanazine, 4L 
3.4, broadcast 

190, 14 

5.6 (T) 
15 

(-10 - 25) 

Application: Edge of Field Buffer Strips as Zone 3 of Riparian Forest Buffer System, Natural Rainfall Studies  

Lowrance et al. 

(1997), USA 
3 years, > 18 events 

2.5 ha, n/a 

Corn (Conv. Till) 
n/a 

w = 8 m, l = 55 m 

Bermudagrass and Bahia grass 
n/a 

Loamy 

sand 
56.82 

Atrazine 

2.85, sprayed 
100, 60 

70 (T) 

2 
(n/a) Similar to Vellidis et al. (2002) 

below except this is a three year 

study with a larger source area 

planted to corn.     

Alachlor 

3.42, sprayed 

170, 15 

81 (T) 

2 

(n/a) 

Vellidis et al. (2002), 

USA 

2 years, > 10 events 

n/a, w = 10 m 

Pasture 

n/a 

w = 8 m, l = 100 m 

Bermudagrass and Bahia grass 

n/a 

Loamy 

sand 

n/a 

Atrazine 

17.1, sprayed 

100, 60 

95 (T) 

2 

(n/a) 

Pesticide mass retention is total 

input v/s total output over two 

years of study. It is not an 
average across different events 

recorded. Events recorded 

include events occurring after 
first 250 mm of rainfall up to 

next year’s pesticide application.     

Alachlor 
20.5, sprayed 

170, 15 

96 (T) 
2 

(n/a) 

O.M. = organic matter, n/a is not available or not reported in the study, (T) = total pesticide mass, (W) = pesticide mass with water carrier phase, (S) = pesticide mass with sediment carrier phase,        

Koc = soil organic carbon sorption coefficient (values as reported in study or from Hornsby et al.(1996), a.i. = active ingredient of the pesticide, Soil M.C. = Soil Moisture Content.



 

 

4
5

 

Table 2.4 (continued):  

 

Literature Citation, 

Location 

Duration / Events 

Source Area Buffer Area   Pesticide Retention  
Area & Dimensions 

Vegetation (Tillage) 

Slope (percent) 

Dimensions 

Vegetation 

Slope (percent) 

Soil Type 

& Area 

Ratio 

Name, Formulation 

Rate kg a.i./ha, Method 

Koc, Half-life (days) 

Study Average 

Data Points 

(Range) Comments 

Application: Edge of Field Buffer Strips as a part of Grassed Waterway, Simulated Rainfall Studies   

Assmussen et al. 
(1977), USA 

1 year, 2 events 

0.003 ha, n/a 
Corn (Conv. Till) 

2 

w = 24.4 m, l = 4.6 m 
bermudagrass, bahiagrass 

2 

Loamy 
sand 

0.27 

2,4-D 
0.56, sprayed 

20, 10 

71 (T) 
2 

(69 - 72) 

Simulated rainfall intensity of 

25.4 cm/h was used to apply 
12.7 cm of rainfall over the 

source area for both events.  

Rohde et al. (1980), 

USA 
2 years, 2 event 

0.003 ha, w = 6.1 m 

n/a 
n/a 

w = 24.4 m, l = 4.6 m 

Bermudagrass/Bahiagrass 
3 

Loamy 

sand 
0.25 

Trifluralin, n/a 

1.12, surface applied & 

incorporated 
8000, 60 

92 (W) 

2 
(86 - 96) 

Simulated rainfall intensity of 

19.1 cm/h was used to apply 
14.9 cm of rainfall under dry 

(42.7  % Soil M.C.) conditions 

and 15.7 cm under wet (28.6  
% Soil M.C.) conditions. 

Application:  Edge of Field Buffer Strips on Contours, Natural Rainfall Studies     

Hoffman et al. (1995), 

USA 

2 years, > 2 events 

0.17 ha, w = 36.7 m 

Corn / Wheat (Conv. Till) 

4 

w = 9 m, l = 45 m 

Wheat / Costal Bermudagrass 

4 

Black Clay 

5.2 

Atrazine, n/a 

2.24, pre-emergence 

100, 60 

47 (T) 

2 

(44 - 50) 

Three sections of source area 

and contour grass filter strips 

established within each 

watershed (0.6 ha). 

Hoffman et al. (2002), 

USA 
2 years, 2 events 

0.17 ha, w = 36.7 m 

Corn / Wheat (Conv. Till) 
4 

w = 9 m, l = 45 m 

Wheat / Costal Bermudagrass 
4 

Black Clay 
4.2 

Atrazine, n/a 

n/a, n/a 
100, 60 

52 (T) 

4 
(46 - 59) 

Project report from Blackland 

Prarie Demonstration Program 

has not been published. Three 
sections of source area and 

contour grass filter strips 

established within each 
watershed (0.6 ha). 

Arora et al. (1996), 

USA 
2 years, 6 events 

0.41 ha, w = 154 m 

Corn (Conv. Till) 
3 

w = 20.12 m, l = 1.52 m 

Smooth Bromegrass 
2 

Silty Clay 

Loam 
15 & 30 

Atrazine, 4L 

2.12, broadcast spray 
100, 60 

61 (T) 

36 
(11-100) 

Concentrations and masses for 

each carrier phase were 
measured but are not reported. 

Flow distributor was used at 

the inflow end of buffer strips 
to achieve replications and to 

regulate inflow based on area 

ratios.     

Metolachlor, 8E 

2.8, broadcast spray 

200, 90 

63 (T) 

36 

(16 - 100) 

    

Cyanazine, 4L 
3.36, pre-emergence spray 

190, 14 

61 (T) 
36 

(8 -100)  

O.M. = organic matter, n/a is not available or not reported in the study, (T) = total pesticide mass, (W) = pesticide mass with water carrier phase, (S) = pesticide mass with sediment carrier phase,        
Koc = soil organic carbon sorption coefficient (values as reported in study or from Hornsby et al.(1996), a.i. = active ingredient of the pesticide, Soil M.C. = Soil Moisture Content.
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Table 2.4 (continued):  

 

Literature Citation, 

Location 

Duration / Events 

Source Area  Buffer Area    Pesticide Retention  
Area & Dimensions 

Vegetation (Tillage) 

Slope (percent) 

Dimensions 

Vegetation 

Slope (percent) 

Soil Type 

& Area 

Ratio 

Name, Formulation 

Rate kg a.i./ha, Method 

Koc, Half-life (days) 

Study Average 

Data Points 

(Range) Comments 

Webster and Shaw 

(1996), USA 

3 years, 24 events 

0.009 ha, w = 22 m 
Soybeans, (Nt, CT & 

Disked) 

3 

w = 2 m, l = 4 m 

Tall fescue 

3 

Silty Clay 

11 

Metolachlor, n/a 
3.4, pre emergence 

sprayed 

200, 90 

51 (W) 

63 

(0 - 100) 

Only runoff water samples were 

analyzed. Three events are simulated 

rainfall events. 

    

Metribuzin, n/a 
0.42, pre emergence 

sprayed 
60, 40 

59 (W) 

50 
(0 - 100)  

Patty et al. (1997), 

France 

1 to 2 years, 11 events 

0.025 ha, w = 50 m 

Corn / Wheat (Plowing) 

( 7 - 15 ) 

w = 6, 12, & 18 m, l = 5 m 

Rye grass 

( 7 - 15 ) 

Silt Loam 

2.77, 4.17, 

& 8.33 

Atrazine, n/a 

1.25, broadcast sprayed 

100, 60 

83 (T) 

6 

(44 -100) 

Buffer strips at three different 

locations studied based on crop 

rotations and combination of 
natural/simulated rainfall events.  

Atrazine and Lindane were considered 

at two locations (2 & & % O.M. soils) 
whereas the other two pesticides were 

considered at the third site (2-3 % O. 

M. soils). Koc and half-life for 
pesticides are as reported in the study.  

Runoff collection tanks overflowed 

during rainfall events.  Reported data 
are estimates. 

    

Lindane, n/a 

1.35, soil-incorporated 

1100, 400 

94 (T) 

6 

(72 -100) 

    

Diflufenican, n/a 
0.16, broadcast sprayed 

1990, 200 

99 (T) 
5 

(97 -100) 

    

Isoproturon, n/a 

1.25, broadcast sprayed 
120, 30 

99.8 (T) 

5 
(99.8 -99.9) 

Rankins et al. (2001), 

USA 
3 years, 16 + 6 events 

0.009 ha, w = 22 m 

Cotton (Disked) 
3 

w = 0.3 m, l = 4 m 

Diff. Grasses 
3 

Silty Clay 
73.3 

Fluometuron 

1.7, broadcast sprayed 
100, 85 

71 (T) 

4 
(59 - 84) 

Four different grass species as 

treatments considered under a mix of 
natural and simulated rainfall events. 

    

Norflurazon 

1.7, broadcast sprayed 

700, 30 

61 (T) 

4 

(45 - 86)  

O.M. = organic matter, n/a is not available or not reported in the study, (T) = total pesticide mass, (W) = pesticide mass with water carrier phase, (S) = pesticide mass with sediment carrier phase,        

Koc = soil organic carbon sorption coefficient (values as reported in Study or from Hornsby et al.(1996), a.i. = active ingredient of the pesticide, Soil M.C. = Soil Moisture Content.
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Table 2.4 (continued):  

 

Literature Citation, 

Location 

Duration / Events 

Source Area  Buffer Area    Pesticide Retention  
Area & Dimensions 

Vegetation (Tillage) 

Slope (percent) 

Dimensions 

Vegetation 

Slope (percent) 

Soil Type 

& Area 

Ratio 

Name, Formulation 

Rate kg a.i./ha, Method 

Koc, Half-life (days) 

Study Average 

Data Points 

(Range) Comments 

Boyd et al. (2003), 
USA 

2 years, 5 events 

0.41 ha, w = 154 m 
Corn (Conv. Till) 

4 

w = 20.12 m, l = 1.52 m 
Smooth Bromegrass 

3 

Silty Clay 
Loam 

15 & 45 

Atrazine (4L) 
1.68, broadcast spray 

100, 60 

86 (T) 
30 

(63 - 100) 
Concentrations and masses for each 

carrier phase were measured but are 

not reported. Flow distributor was 

used at the inflow end of buffer strips 
to achieve replications and to regulate 

inflow based on area ratios. Data 
averaged has been extracted from 

Boyd, P. MS Thesis (1999) 

    

Acetochlor (4L) 
1.96, broadcast spray 

n/a, 90 

84 (T) 
30 

(69 - 100) 

    

Chlorpyrifos (15G) 
1.22, banded 

6070, 30 

86 (T) 
30 

(62 - 100) 

Syversen (2005) 

Norway 

4 years, > 6 events 

0.45 ha, w = 45 m 

Barley (Harrowed in 

Winter) 

14 

w = 5 m, l = 10 m 

Fescue, timothy, thistle, 

common couch 

14 

Silty Clay 

Loam 

9 

Glyphosate, n/a 

1.08, n/a 

24000, 47 

48 (T) 

1 

(n/a) 

A correction equation was developed 

and applied to correct runoff volumes for 

reference runoff from control plots. Only 

average over four years for each 
pesticide provided in the study. Event by 

event data not reported.     

Propiconazole, n/a 
0.125, n/a 

650, 110 

85 (T) 
1 

(n/a) 

    

Fenpropimorph, n/a 

0.375, n/a 

4300, 30 

34 (T) 

1 

(n/a)  

    

AMPA, n/a 

n/a, n/a 

>1200, 150 

67 (T) 

1 

(n/a) 

Aminomethylphosphonic acid (AMPA) 

is a degeneration product of Glyphosate 

Vianello et al. (2005), 

Italy 

2 years, 8 events 

0.07 ha, w = 35 m 

Corn, Wheat, Soybeans 

(Plowed) 

1.8 

w = 6 m, l = 20 m 

Grass + Shrub/Trees 

1.8 

Silty Loam 

5.83 

Metolachlor 

2.25, sprayed, pre 

emergence 

200, 90 

99 (T) 

4 

(97 - 100) 

Total of 13 natural rainfall events 

recorded.  Five events as outliers or no 

results were excluded. Site consisted of 

two rows of shrub/trees planted at 1.5 
and 4.5 m from the edge of the buffer. 

Both grass and shrub/trees were planted 

three years prior to the experiment.     

Terbuthylazine 
1.13 & 1, pre & post 

emergence sprayed 

600, 27 

99 (T) 

4 

(99 - 100) 

    

Isoproturon 

1, pre-emergence  

120, 30 

69 (T) 

5 

(0 - 99)  

O.M. = organic matter, n/a is not available or not reported in the study, (T) = total pesticide mass, (W) = pesticide mass with water carrier phase, (S) = pesticide mass with sediment carrier phase,        

Koc = soil organic carbon sorption coefficient (values as reported in Study or from Hornsby et al.(1996), a.i. = active ingredient of the pesticide, Soil M.C. = Soil Moisture Content.
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Table 2.4 (continued):  

 

Literature Citation, 

Location 

Duration / Events 

Source Area Buffer Area    Pesticide Retention  
Area & Dimensions 

Vegetation (Tillage) 

Slope (percent) 

Dimensions 

Vegetation 

Slope (percent) 

Soil Type 

& Area 

Ratio 

Name, Formulation 

Rate kg a.i./ha, Method 

Koc, Half-life (days) 

Study Average 

Data Points 

(Range) Comments 

Application: Edge of the Grain Row Crop Field Buffer Strips, Simulated Studies    

Misra et al. (1996), USA 

1 year, 6 events 

n/a, n/a 

n/a 

n/a 

w = 12.2 m, l = 1.48 m 

Bromegrass 

2.5 

Loam 

15 & 30 

Atrazine,  

n/a, mixed with water 

100, 60 

39 (W) 

12 

(24 - 74) No sediment was mixed with runoff 

water. Pesticides were added to runoff 

water to achieve nominal concentrations 

and therefore two treatments of 0.1 mg/L 

and 1.0 mg/L of each compound. Six 

rainfall simulations were done of set of 2 
buffer strips each 

    

Metolachlor, n/a 

n/a, mixed with water 

200, 90 

37 (W) 

12 

(22 - 75) 

    

Cyanazine, n/a 

n/a, mixed with water 
190, 14 

36 (W) 

12 
(23 - 73) 

Thom and Blevins 

(1996), USA 

1 year, 2 events 

n/a, conv. & no-till 

n/a 

9 

w = 15, 30 & 45 m, l = n/a 

Fescue-Bluegrass Mixture 

9 

n/a 

n/a 

Atrazine, n/a 

2.24, broadcast 

100, 60 

97(T) 

3 

(93 - 99) 

Pesticide was applied 24-h prior to 

rainfall simulation (6.35 cm/h) as 1 hour 

rain, 24-h rest, 30 min rain, 30 min rest, 

and 30 min rain. 

Kloppel et al. (1997), 

Germany 

1 year, 7 events 

n/a, n/a 

Triticale (Cultivated) 

8 

w = 10, 15 & 20 m, l = 10 

Mixed grasses 

5 

Silty 

Loam 

n/a 

Terbuthylazine 

n/a, mixed with water 

600, 27 

86 (T) 

7 

(70 - 98) Simulated rainfall (1.4 cm/h) was 

applied on buffer strips during runoff 

simulations. Runoff was added to the top 

of the strips at rates of 400, 1500, and 

2000 L/h.  Runoff simulations were 

carried with 50 and 200 µg/L 
concentrations of each pesticide.  

    

Isoproturon 

n/a, mixed with water 

120, 30 

85 (T) 

7 

(70 - 98) 

    

Dichloroprop - P 

n/a, mixed with water 
1000, 10 

82 (T) 

7 
(61 - 98) 

Barfield et al. (1998), 

USA 

 

0.01 ha, w = 22.1 m 

Bare (Conv. & No-till) 

9 

w = 4.57, 9.14 & 13.72 m, l = 

4.57m 

Bluegrass & Fescue 

9 

Silt 

Loam, 

1.61, 

2.42 & 

4.84 

Atrazine, n/a 

2.24, broadcast 

100, 60 

98 (W) 

12 

(94 - 100) 

No rainfall applied on buffer strips 

during simulation; however, strips were 

saturated prior to test runs. 

Tingle et al. (1998),  
USA 

3 years, n/a 

0.009 ha, w = 22 m 
Soybean, tilled 

3 

w = 0.5, 1, 2, 3 & 4 m, l = 4 m 
Tall fescue 

3 

Silty 

Clay 

Loam 

5.5, 7.3, 
11, 22 

& 44 

Metolachlor, n/a 
2.8, pre emergence sprayed 

200, 90 

80 (T) 
5 

(67 - 90)  

    

Metribuzin, n/a 

0.42, pre emergence 

sprayed 

60, 40 

85 (T) 

5 

(73 - 96)  

O.M. = organic matter, n/a is not available or not reported in the study, (T) = total pesticide mass, (W) = pesticide mass with water carrier phase, (S) = pesticide mass with sediment carrier phase,          

Koc = soil organic carbon sorption coefficient (values as reported in Study or from Hornsby et al.(1996), a.i. = active ingredient of the pesticide, Soil M.C. = Soil Moisture Content. 
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Table 2.4 (continued):  

 

Literature Citation, 

Location 
Duration / Events 

Source Area Buffer Area   Pesticide Retention  

Area & Dimensions 

Vegetation (Tillage) 
Slope (percent) 

Dimensions 

Vegetation 
Slope (percent) 

Soil 

Type & 

Area 
Ratio 

Name, Formulation 

Rate kg a.i./ha, Method 
Koc, Half-life (days) 

Study Average 

Data Points 
(Range) Comments 

Application: Edge of the Grain Row Crop Field Buffer Strips, Simulated Studies    

Schmitt et al. (1999), 

USA 

1 year, 1 event 

n/a 

n/a 

n/a 

w = 7.5 & 15 m, l = 169 m 

Mixed grasses 

6.5 

Silty 

Clay 

Loam 

5.4 & 

10.8 

Atrazine, n/a 

n/a, mixed with water 

100, 60 

62 (T) 

6 

(32 - 90) 
Pesticides were applied to achieve peak 

concentrations as would be found from a 

post plant corn field runoff.  Runoff 

application manifold was used in 

conjunction with a runoff mixing tank.     

Alachlor, n/a 

n/a, mixed with water 

170, 15 

68 (T) 

6 

(42 - 93) 

    

Permethrin, n/a 

n/a, mixed with water 
100000, 30 

80 (T) 

6 
(53 - 97)  

Arora et al. (2003),  

USA 

1 year, 1 event 

n/a 

n/a 

n/a 

w = 20.12 m, l = 1.52 m 

Smooth Bromegrass 

2 

Silty 
Clay 

Loam 

15 & 30 

Atrazine, n/a 

n/a, sprayed on sediment 

100, 60 

50 (T) 

6 

(47 - 53) 

Pesticides were applied to the sediment 

to achieve a nominal concentration of 

100 mg of pesticide per kg of soil. Flow 

distributor was used at the inflow end of 

buffer strips to achieve replications and 

to regulate inflow based on area ratios.     

Metolachlor, n/a 

n/a, sprayed on sediment 

200, 90 

51 (T) 

6 

(48 - 54) 

    

Chlorpyrifos, n/a 
n/a, sprayed on sediment 

6070, 30 

80 (T) 
6 

(77 - 83)  

Krutz et al. (2003), USA 

2 years, 2 events 

0.003 ha, w = 3 m 

n/a 

2 

w = 3 m, l = 1 m 

Buffalograss 

2 

Black 

clay 

10 

Atrazine, n/a 

n/a, mixed with water 

100, 60 

22 (W) 

2 

(n/a) No sediment was mixed with runoff 

water. Pesticides were added to water to 

achieve a nominal concentration of 0.1 

µg / ml of each compound.  A nurse tank 

in conjunction with a recirculation pump 
and a sheet flow runoff applicator was 

used to apply runoff to buffer strips. 

Buffer strips were saturated prior to 

runoff addition 

    

Diaminoatrazine, n/a 

n/a, mixed with water 

20 (W) 

2 

    

Deisopropylatrazine, n/a 

n/a, mixed with water 

20 (W) 

2 

    

Desethylatrazine, n/a 

n/a, mixed with water 

19 (W) 

2 

    

Hydroxyatraxzine, n/a 

n/a, mixed with water 

18 (W) 

2 

O.M. = organic matter, n/a is not available or not reported in the study, (T) = total pesticide mass, (W) = pesticide mass with water carrier phase, (S) = pesticide mass with sediment carrier phase,        

Koc = soil organic carbon sorption coefficient (values as reported in Study or from Hornsby et al.(1996), a.i. = active ingredient of the pesticide, Soil M.C. = Soil Moisture Content.
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Table 2.4 (continued):  

 

Literature Citation, 

Location 
Duration / Events 

Source Area Buffer Area   Pesticide Retention  

Area & Dimensions 

Vegetation (Tillage) 
Slope (percent) 

Dimensions 

Vegetation 
Slope (percent) 

Soil 

Type & 

Area 
Ratio 

Name, Formulation 

Rate kg a.i./ha, Method 
Koc, Half-life (days) 

Study Average 

Data Points 
(Range) Comments 

Application: Edge of the Grain Row Crop Field Buffer Strips, Simulated Studies    

Ludovice et al. (2003), 

Brazil 

1 year, 4 events 

0.03 ha, w = 10 m 

Corn 

n/a 

w = 5, 7, & 10 m, l = 3 m 

Grass 

n/a 

n/a 

1 & 2 

Atrazine 

1.3, broadcast spray 

100, 60 

60 (T) 

4 

(2 - 93) 

Simulated rainfall with intensity of 6 

cm/h was used to apply 11 cm of rainfall 

for each event. 

Mickelson et al. (2003), 

USA 

1 year, 3 events 

n/a 

n/a 

n/a 

w = 4.6 & 9.1 m, l - 1.52 m 

Smooth Brome/Kent. Blue/Kent. 

Tall Fescue 

4.6 

Silt 

Loam 

5 & 10 

Atrazine, 4L 

n/a, mixed with water 

100, 60 

51 (T) 

4 

(27 - 84) 

Two runoff mixes, experimental 
treatments as with and without sediment, 

were introduced at the top of buffer 

strips. Atrazine was applied to achieve a 

nominal concentration of 1 mg/L. 

Simulated rainfall with intensity of 6.6 

cm/h was used to approximately 5.5 cm 

of rainfall. 

Krutz et al. (2004), USA 
2 years, 2 events 

0.003 ha, w = 30 m 

n/a 
2 

w = 3 m, l = 1 m 

Buffalograss 
2 

Black 

clay 
10 

Metolachlor, n/a 

n/a, mixed with water 
200, 90 

25 (W) 

2 
(n/a) 

Same as Krutz et al. (2003), different 

pesticide and metabolites. Koc for 

metabolites as reported in the study. 

    

Metolachlor ESA, n/a 

n/a, mixed with water 

5 , n/a 

16 (W) 

2 

(n/a) 

    

Metolachlor OA, n/a 

n/a, mixed with water 

7, n/a 

14 (W) 

2 

(n/a) 

Vianello et al. (2005), 

Italy 
2 years, 2 events 

0.07 ha, w = 35 m 

Corn, wheat, soybeans 
1.8 

w = 6 m, l = 20 m 

Grass + Shrub + Trees 
1.8 

Silty 

Loam 
5.83 

Metolachlor 

2.25, sprayed, pre 

emergence 
200, 90 

82 (T) 

1 
(n/a) 

One outlier event not included in 

averages. One event for Metolachlor & 

Isoproturon each. Study site is same as 

Vianello et al. (2005) reported under 
natural rainfall studies.  

    

Isoproturon 
1, pre-emergence sprayed 

120, 30 

92 (T) 
1 

(n/a)  

Popov et al. (2006), 

Australia 

1 year, 7 events 

n/a 

n/a 

n/a 

w = 4 m, l = 1.25 m 

Mixed grasses 

5.3 

Clay 

(vertisol) 

n/a 

Atrazine, n/a 

n/a, sprayed on sediment 

100, 60 

55 (T) 

7 

(40 - 85) 

Pesticides were applied to the sediment 

with tank mix having concentration of 

100 µg a.i. /L of each pesticide. Water 

tank with mixing tank used to deliver 

runoff 

    

Metolachlor, n/a 

n/a, sprayed on sediment 

200, 90 

66(T) 

7 

(44 - 86)  

O.M. = organic matter, n/a is not available or not reported in the study, (T) = total pesticide mass, (W) = pesticide mass with water carrier phase, (S) = pesticide mass with sediment carrier phase,        
Koc = soil organic carbon sorption coefficient (values as reported in Study or from Hornsby et al.(1996), a.i. = active ingredient of the pesticide, Soil M.C. = Soil Moisture Content. 
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Table 2.4 (continued):  

 

Literature Citation, 

Location 
Duration / Events 

Source Area Buffer Area   Pesticide Retention  

Area & Dimensions 

Vegetation (Tillage) 
Slope (percent) 

Dimensions 

Vegetation 
Slope (percent) 

Soil 

Type & 

Area 
Ratio 

Name, Formulation 

Rate kg a.i./ha, Method 
Koc, Half-life (days) 

Study Average 

Data Points 
(Range) Comments 

Application: Edge of Field Buffer Strips as Strip Crops, Natural Rainfall Studies    

Hall et al. (1983), USA 
1 year, 11 events 

0.003 ha, w = 16 m 

Corn (n/a) 
14 

w = 6 m, l =1.8 m 

Oats 
14 

Silty 

Clay 

Loam 
2.67 

Atrazine, 80W 
2.2 & 4.5, pre 

emergence & 

incorporated 
100, 60 

78 (T) 

11 
(65 - 91) Buffer strips are setup as strip crop 

Application: Orchard Floor Inter-row Buffer Strips, Laboratory Study    

Watanabe et al. 

(2001), USA 
1 year, 3 events 

0.00005 ha, n/a 

n/a 
3 

w = 2 m, l = 1 m 

Fallow & Fescue 
3 

Silt 

Loam 
1 & 2 

Diazinon, n/a 

2.8, broadcast spray 
400, 45 

53 (T) 

2 
(33 – 73) 

Buffer strips intercropped in orchard 
trees, expressed as 50 % and 100 % of 

the floor area. Simulated rainfall (5 

cm/h) was applied for 60 min for each 
event. 

Application: Edge of the Field Buffer Strips, Laboratory Studies    

Mersie et al. (1999), 

USA 
1 year, 3 events 

n/a 

n/a 
n/a 

w = 2 m, l = 0.9 m 

Switchgrass & bare soil 
1 

Sandy 
loam 

(Emporia 

series) 
15 

Atrazine 

2.2, n/a 
100, 60 

41 (W) 

3 
(39 - 44) 

Same as Seybold et al. (2001) below 

with narrower tilted beds and different 
soil. 

    

Metolcahlor 

3.5, n/a 
200, 90 

47 (W) 

3 
(42 - 53)  

Seybold et al. (2001), 

USA 
n/a, 4 events 

n/a 

n/a 
n/a 

w = 3 m, l = 0.9 m 

Switchgrass & bare soil 
1 Loam 

(Cullen 

series) 

15 

Atrazine 

2.2, n/a 
100, 60 

57 (W) 

4 
(53 - 69) Lab experiment using tilted bed set up 

simulating field conditions as 

receiving runoff from conventionally 

tilled corn field.    

Metolcahlor 

3.5, n/a 

200, 90 

61 (W) 

4 

(58 - 73) 

Mersie et al. (2003), 
USA 

2 years, 3 events 

n/a 
n/a 

n/a 

w = 2 m, l = 0.9 m 
Fescue, Switchgrass, and bare 

3 

Loamy 

fine sand 

(Bojac 
series) 

15 

Endosulfan (α and β) 
n/a, n/a 

12400, 50 

74 (W) 
3 

(40 - 100) 

Same as Seybold et al. (2001) above 
with narrower tilted beds, different 

soil, and pesticide. 

O.M. = organic matter, n/a is not available or not reported in the study, (T) = total pesticide mass, (W) = pesticide mass with water carrier phase, (S) = pesticide mass with sediment carrier phase,         

Koc = soil organic carbon sorption coefficient (values as reported in Study or from Hornsby et al.(1996), a.i. = active ingredient of the pesticide, Soil M.C. = Soil Moisture Content.
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pesticides, the runoff volume retention by buffer strips is important.  Different studies 

(Table 2.4) have not shown a substantial difference in mass retention between weakly and 

moderately sorbed pesticides.  Based on model calculated retentions as listed in Table 

2.3, such pesticides (100 < Koc < 1000 L/kg) can be retained on average 51% by the 

buffer strips with a range of 12% to 95%.  This model calculated average is lower than 

the individual study averages but is within the range of moderately sorbed pesticide 

retentions reported (Table 2.4).  An average for moderately sorbed pesticides among 

natural rainfall studies showed a 66% retention by buffer strips (Hall et al., 1983; 

Hoffman et al., 1995; Arora et al., 1996; Webster and Shaw, 1996; Lowrance et al., 1997; 

Patty et al., 1997; Mickelson et al., 1998; Rankins et al., 2001; Hoffman et al., 2002; 

Vellidis et al., 2002; Boyd et al., 2003; Syversen, 2005; Vianello et al., 2005; 10 

pesticides).  This average for simulated studies was calculated as 60% (Misra et al., 1996; 

Thom and Blevins, 1996; Kloppel et al., 1997; Tingle et al., 1998; Mersie et al., 1999; 

Schmitt et al., 1999; Seybold et al., 2001; Watanabe et al., 2001; Arora et al., 2003; Krutz 

et al., 2003; Ludovice et al., 2003; Mersie et al., 2003; Mickelson et al., 2003; Krutz et 

al., 2004; Vianello et al., 2005; Popov et al., 2006; 6 pesticides).  The overall average for 

both the natural and simulated rainfall/runoff studies averaged 64% retention (10 

pesticides) by buffer strips.  The average pesticide retention for both of the experimental 

data sets, separately and combined, exceeds the model calculated average pesticide 

retention of 51% for the moderately sorbed pesticides as listed in Table 2.3.  The 

difference between study average of 64% retention and model calculated average of 51% 

shows that the effect of sorption/desorption and enrichment in case of moderately sorbed 

pesticides is relatively larger (~13%) than the strongly sorbed pesticides.   
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Study averages for weakly sorbed pesticides (Koc < 100 L/kg) were calculated and 

compared with the model calculated averages.  An average for weakly sorbed pesticides 

among natural rainfall studies showed a 59% retention by buffer strips (Webster and 

Shaw, 1996; one pesticide (metribuzin)).  This average for simulated studies was 

calculated as 81% (Assmussen et al., 1977; Tingle et al., 1998; two pesticides (2, 4-D and 

metribuzin)).  The overall average for both the natural and simulated studies calculated as 

61% retention (two pesticides) by the buffer strips.  The average pesticide retention for 

both of the experimental data sets, separately and combined, again exceeds the model 

calculated average pesticide retention of 46% for the weakly sorbed pesticides as listed in 

Table 2.3.  In comparison, retention of the bromide anion (Koc = 0), as studied by Misra, 

1995 and Mickelson et al., 2003 (both simulation studies), averaged 48% with a 

minimum and maximum range of 20% to 77%.  Two natural rainfall studies (Vellidis et 

al., 2002 and Lowrance et al., 1997) studied bromide anion transport through buffer strips 

(as Zone 3 of the riparian forest buffer system, (USDA - NRCS, 1997)), but did not 

report retention in the buffer strip.   The averages for bromide anion retention are within 

the range of data reported and estimated (Table 2.3) for weakly sorbed pesticides.  The 

difference between study average of 61% retention and model calculated average of 46% 

is greater than the same difference for both strongly and moderately sorbed pesticides.  

The model assumptions are likely to hold true in the case of weakly sorbed pesticides.  

The effect of sorption/desorption and enrichment in this case is negligible as majority of 

the pesticide is transported as dissolved in water carrier phase.  Model calculated average 

of 46% pesticide retention closely follows the average runoff volume retention of 45%.  

This average runoff volume retention includes several different experimental setups of 
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buffer strips evaluation which are not included in the three studies that have evaluated 

weakly adsorbed pesticides (Tables 2.1, 2.2 and 2.3).  As such, model calculated average 

retention is different from study averaged retention for weakly sorbed pesticides. 

Percent pesticide mass retentions as reported in different studies were plotted on an event 

basis.  Figure 2.5 shows strongly sorbed pesticide mass retention as a function of source 

to buffer area ratio.  This figure shows event-by-event variability similar to Figures 2.3 

and 2.4, but also shows that none of the studies have evaluated area ratios larger than 50 

for strongly sorbed pesticides.  Very few data points exist for the 30 to 50 area ratio range 

and the pool of data for the 10 to 30 area ratio range is limited as well.  Larger area ratios 

(greater than 10) are likely to occur in field scale buffers due to convergence of flow as 

the micro-topography changes.  As such, larger area ratios should be considered when 

evaluating strongly sorbed pesticides.  Figure 2.6 shows the pesticide mass retention for 

weakly to strongly sorbed pesticides by buffer strips as a function of area ratio.  This 

figure closely follows Figure 2.3 for runoff volume retention.  As such, runoff volume 

retention (water carrier phase) plays a key role in weakly to moderately sorbed pesticides 

retention, whereas both runoff volume and sediment mass retention are of importance for 

strongly sorbed pesticides. 

Developing an estimate of the average pesticide retention and comparing it with 

published data, as done above in this review article, has its limitations.  All studies 

conducted with buffer strips have found them to be effective (to a varying degree) in 

reducing runoff volume and controlling sediment yields to surface water bodies.  

Retention of both of these carriers, i.e. runoff water and sediment, has been identified as 

the main mechanisms for pesticide retention within buffer strips.  These studies, however,  
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Figure 2.5: Percent pesticide (strongly sorbed, Koc > 1000 L/kg) mass retention as a 

function of area ratio.  Percent reduction numbers (used in this figure) are on event basis 

as reported or calculated from data reported in studies listed in Table 2.4 where area ratio 

data were available.  Dots are outliers.   Numbers above the box plots indicate sample 

size. 

 

 

represent different experimental setups (natural or simulated) and different combinations 

of hydrologic factors (storm intensity and duration, and runoff flow rates), site factors 

(area ratio/length, slope, age, soil type, and antecedent moisture conditions), and pesticide 

properties (pesticide formulation, solubility in water, volatilization, sorption to in-field 

soil, method of application, and half-life).  Pesticide retention as shown in Table 2.3 is 

synthesized as an average across these studies and therefore, models the reported 

experimental data.   Several of the simulation studies have used extreme conditions under 

which the experiments were conducted.  Extreme conditions, such as very high rainfall  
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Figure 2.6: Percent pesticide (weakly to moderately sorbed, Koc < 1000 L/kg) mass 

retention as a function of area ratio.  Percent reduction numbers (used in this figure) are 

on event basis as reported or calculated from data reported in studies listed in Table 2.4 

where area ratio data were available.  Dots are outliers.  Numbers above the box plots 

indicate sample size. 

 

                     

intensities and/or dry antecedent moisture conditions represent unusual or worst case 

scenarios which have limited applicability to field conditions.  As such, future studies 

should consider practical field conditions in their experimental designs.  Dry antecedent 

moisture conditions in the buffer area are unlikely to occur once runoff initiates in the 

source area.  Future simulated experimental designs should consider adding rain on the 

buffer area to reach similar hydrologic balance with the source area.  In case high rainfall 

intensities are used, it will be helpful to quantify what fraction of annual pesticide mass is 

likely to move through a buffer under extreme portion of flow.  In addition, the studies 
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must consider flow convergence in the buffer areas and how it impacts the area ratio.  As 

flow converges, it flows through a smaller buffer area than designed, resulting in a larger 

area ratio.  Area ratios in the experimental designs should be carefully evaluated based on 

the local topography.  Small area ratios of less than 10 should be avoided unless it is 

adequately justified to do so.      

One of the main summaries of the natural rainfall/runoff studies is the temporal 

pattern of hydrologic conditions and their impact on pesticide retention.  This event by 

event variability is bound to happen in field conditions.  Figures 2.5 and 2.6 for pesticide 

mass retention correspond with the event-by-event variability as seen in Figures 2.3 and 

2.4 for runoff volume retention and sediment mass retention.  Best and worst runoff 

events should not be considered as performance indicators as they only represent either 

extreme.  At the same time, it is practically impossible to evaluate all combinations of 

site factors, hydrologic factors, and pesticide properties on field scale basis.  Therefore, a 

process-based model that can analyze these combinations needs to be developed and 

validated.  Studies performed to date can, however, serve the purpose of validating the 

model.  Validation of such a process-based model will, however, require additional 

studies to be undertaken, as several of the past studies have used very small test plots and 

area ratios.  Development and validation of such a model is beyond the scope of this 

review article. 

 Most of the data extracted from the studies reviewed in this paper represent buffer 

strips established on loamy/silty soils.  Sandy soils can have higher infiltration rates just 

based on soil texture. Clayey soils on the other hand can have cracks or large macro-

pores developed through them due to insect/earthworm populations or due to root mass 
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decay, thus increasing the infiltration rates.  The average retention shown in Table 2.3 

does not include much variability in soil textures.  Another similarity among several 

studies is the analysis of data considering outflow from non-buffered plots as inputs for 

buffered plots.  Variability in non-buffered plots due to micro-topography and/or soil 

type difference has in certain cases led to outflow from non-buffered plots being lower in 

mass than the outflow from the buffered plots.  In addition, some of the studies have not 

included rainfall over the buffer area in the mass balance.  Such experimental designs do 

not accurately represent field conditions.  Future studies should consider measuring both 

inflow into and the outflow from the buffer strips.      

2.9 Conclusions 

Seventeen natural rainfall studies and twenty three simulated rainfall / runoff / 

irrigation studies were reviewed and 359 data points were extracted to estimate runoff 

volume and sediment mass retention.  Runoff volume retention commonly termed as 

infiltration in these studies, averaged (with ranges) 45 (0 – 100)% across the different 

studies under both natural and simulated experimental conditions, whereas the sediment 

mass retention averaged 76 (2 – 100)%.  The studies, from which the data has been 

averaged, represent different combinations of hydrologic factors (storm intensity and 

duration, and runoff flow rates) and site factors (area ratio/length, slope, age, soil type, 

and antecedent moisture conditions).  Consequently, the average runoff volume and 

sediment mass retention only represents the average of the reported data and do not take 

into account experimental error of different studies.  In addition, results from research 

studies are mainly obtained under controlled conditions whereas field scale buffer strips 
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perform in uncontrolled conditions.  Therefore, actual field performance of buffer strips 

may be different, and if so, probably less. 

Overall pesticide retention by buffer strips from natural and simulated studies for 

weakly (Koc < 100 L/kg), moderately (100 < Koc < 1000 L/kg), and strongly sorbed 

pesticides (Koc > 1000 L/kg) averaged (with ranges) 61 (0 - 100), 63 (0 - 100), and 76 (53 

- 100)% respectively.  The pool of these studies is limited in scope and more studies need 

to be undertaken to expand this pool of data, keeping in mind that it is not feasible to 

conduct field scale natural rainfall studies for all possible combinations of site factors, 

hydrologic factors, and pesticide properties.  More specifically, larger area ratios (greater 

than 10) need to be considered in future evaluations as flow convergence occurs due to 

changes in micro-topography in field applications of buffer strips. 

Model calculated average pesticide mass retention using average runoff volume 

retention of 45% and average sediment mass retention of 76%, was  70% for strongly 

sorbed and 46% for weakly to moderately sorbed pesticides (Equation 2.4 and Table 2.3).  

This calculated pesticide mass retention is an average across different studies with 

different treatments.  This calculated average is sensitive to the treatment combinations 

not studied.   The majority of studies have used tilled source area conditions or silty loam 

buffer strip area soil types when evaluating pesticide retention by buffer strips.  As such, 

application of calculated averages to no till source area conditions or different soil type in 

buffer strip area should be carefully evaluated. 

The model assumption that the net effect of sorption/desorption and enrichment 

processes in buffer strips is negligible does not appear to be valid for moderately and 
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strongly sorbed pesticides.  As such, the model calculated average pesticide mass 

retention was lower than the average pesticide mass retention reported in studies for these 

two pesticide classes.  In the case of weakly sorbed pesticides, the model calculated 

pesticide retention very closely followed the runoff volume retention.  As such, the above 

mentioned model assumption is valid for this category of pesticides.  The reason for the 

model calculated pesticide retention to be lower than the average reported in studies is 

inclusion of the expanded dataset.  This expanded dataset includes unique experimental 

conditions of source area to buffer area ratios, source area tillage practices, and buffer 

area vegetation, which are not available in the pesticide retention studies.     

Experimental studies that use dry antecedent moisture conditions in buffer strip 

soil, sediment free runoff, zero infiltration, simulated vegetation, and excessively high 

rainfall intensities, usually do not represent practical field conditions.  These studies have 

experimental value as they set boundary limits to buffer strip performance.  Natural 

rainfall studies, those that more closely mimic actual field conditions, represent data that 

would be expected to provide a reasonable indicator of buffer strip performance. 

Minimal pesticide retention for moderately sorbed pesticides is of the order of 5% 

to 10% whereas the maximum retention is of the order of 94% to 100%.  Runoff volume 

retention by buffer strips is the key process for retention of moderately sorbed pesticides.  

Minimal and maximum retention for strongly sorbed pesticides is of 10% to 20% and 

90% to 100% respectively.  Sediment mass retention in the buffer strips plays the key 

role in retention of strongly sorbed pesticides.  
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Minimum and maximum performance characteristics of buffer strips represent 

event-by-event variability.  Maximum performance may occur when all runoff from 

source area containing pesticides is retained within the buffer.  Minimum performance 

may occur when the buffer strip is fully saturated prior to runoff entry.  Subsequently, 

such performance data do not indicate that buffer strips are either an absolute solution or 

a complete failure in reducing environmental impacts of agricultural runoff.   

Different studies representing different experimental setups were used to 

synthesize the performance data for buffer strips.  Due to the lack of adequate monitoring 

for the range of physical conditions with studies and the differences among experimental 

designs across studies, the average pesticide retention of the reported data more closely 

represents the actual performance of buffer strips. 
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3.1 Abstract 

Pesticide retention in both dissolved and sorbed phase by buffer strips depends 

upon several factors, including pesticide chemistry, sediment type (texture), and the ratio 

of the contributing source area to the buffer area.  A rainfall-runoff study was conducted 

to develop a better understanding of these factors by comparing the transport of three 

different pesticides with two different sediment types under two different source area to 

buffer area ratios.  Simulated runoff water, mixed with pesticide-applied sediment, was 

applied to 1.0 m wide and 5.6 m long switchgrass buffer strips under 6.35 cm/h steady 

state rainfall conditions.  Twelve strips were used for providing three replications each of 

the sediment type treatments of fine sand, D1 and fine aggregates, D2; and the source 

area to buffer area ratio treatments of 10:1, AR10 and 30:1, AR30.  Atrazine, 

chlorpyrifos, and linuron were applied at the label recommended rates using field 

formulations to each sediment type prior to mixing with the simulated runoff water.  

When receiving runoff mixed with fine sand, buffer strips retained 73% and 53%  

atrazine, 87% and 80% chlorpyrifos, and 81% and 54% linuron for the two area ratios of 
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10:1 and 30:1 respectively.  The corresponding numbers, when receiving runoff mixed 

with fine aggregates, were 72% and 54% atrazine, 87% and 71% chlorpyrifos, and 76% 

and 58% linuron respectively for the two area ratios.  Differences in percent retention for 

atrazine were significant between the two area ratios for both D1 and D2 treatments.  

Chlorpyrifos and linuron percent retentions were not significantly different between the 

smaller and the larger area ratios for either sediment type; however, the trend was higher 

retention at lower area ratio.  When comparing between D1 and D2 sediment types for 

either area ratio, the percent retention for atrazine and chlorpyrifos was not significantly 

different.  This indicates that the buffer strips retained either pesticide equally for the 

experimental conditions studied.  Linuron mass in the sorbed phase for either sediment 

type was below the detection limit indicating linuron does not sorb well to sediment with 

negligible to low organic carbon content.  Linuron data presented in this experiment is an 

estimate and readers are cautioned on the interpretation of linuron data.  For the 

simulated runoff mixed with fine sand for either area ratio, re-entrainment of sediment 

was observed.  In these treatments, the sediment transport capacity of the water flowing 

through the buffer strips was not reduced to zero.  This resulted in re-entrainment of 

sediment even though all of the fine sand in the simulated runoff settled in the buffer 

strips.  Re-entrained sediment in the runoff exiting the buffer strips, showed quantifiable 

amounts of atrazine and chlorpyrifos sorbed with it, however, the total sorbed mass of 

either pesticide was very small.                

3.2 Introduction 

Pesticide transport with runoff can be mitigated with the help of off-site practices, 

such as buffer strips.  Buffer strips are vegetative areas to which no pesticide has been 
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applied.  These vegetative areas act as filters of pollutants being carried by the runoff.  

Arora et al. (2010) summarized several pesticide retention studies that have reported 

experimental data for pesticide retention by buffer strips, concluding that the pesticide 

retention by buffer strips is greatly dependent on the partitioning coefficient of the 

pesticide.  Pesticide partitioning coefficient or simply adsorption coefficient (Koc) causes 

pesticides masses to be different in runoff water and sediment phase.  Weakly adsorbed 

(0 < Koc < 100 L/kg) and moderately adsorbed (100 L/kg < Koc < 1000 L/kg) pesticides 

are mainly lost from application fields with water phase.  Strongly adsorbed (Koc > 1000 

L/kg) pesticides are mainly carried in the runoff sediment phase from the fields where 

applied.  The authors also summarized that the key processes occurring in the buffer 

strips are infiltration, sediment deposition (both just before the strip and within the strip) 

and pesticide sorption to the plant matter and buffer strip soil.  Infiltration was identified 

as the key process for weakly to moderately adsorbed pesticides whereas sediment 

deposition was the key process for strongly adsorbed pesticides.  They also found in their 

review that none of the studies had reported experimental data that shows the effect of 

different sized sediment on the pesticide retention within the buffer strip.  Smaller or 

finer soil particles have greater specific area and therefore can have higher concentrations 

of sediment adsorbed pesticide concentrations.  On the other hand, larger soil particles 

have less specific area in comparison to finer particles, and, thus, have lower sediment 

adsorbed pesticide concentrations.  It needs to be determined how the presence of specific 

sized sediment impacts the total pesticide mass retained by the buffer strips.   

Another factor affecting the pesticide retention by buffer strips identified by 

Arora et al. (2010) is area ratio.  Application area or source area, typically, consists of the 
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farm field to which a pesticide is applied.  The buffer strip is the area downstream from 

the source area to which no pesticide has been applied.  The ratio of source area to buffer 

area or simply area ratio influences the quantity of runoff that may pass through a buffer 

strip.  In comparison to smaller source area, large source areas can yield greater volumes 

of runoff to a buffer strip both in terms of runoff water and runoff sediment.  Secondly, 

flow convergence within the buffer strips under field conditions can cause the area ratio 

to be greater than the design area ratio.  Helmers et al. (2005) and Bansal et al. (2008) 

showed that flow convergence can easily increase the area ratios by 2 to 10 times of the 

design area ratios.  Arora et al. (2010) suggested that future buffer strip studies should 

consider area ratios of at least 10:1 or higher.  

Converging flow can cause the flow volume to change and can subsequently 

cause the sediment load being transported by runoff water to change.  Thus, the sediment 

particle size distribution can be subject to change.  Particles of different sizes are likely to 

behave differently in the buffer strips.  Larger, heavier particles may deposit quickly in 

the buffer strips, whereas the fine particles may not settle at all in a buffer strip.  Jin and 

Romkens (2001) studied the movement of fine sand, silt loam, and coarse sand soil 

particle fractions in simulated vegetative filter strips in a laboratory setup.  The authors 

reported that the simulated vegetative filter strips were not effective in retaining particles 

smaller than 150 µm in size.  They also reported that 80% of the particles deposited in the 

approach channel and the upper half to the vegetative filter strip.   

The particle size distribution of the sediment in runoff entering the buffer strip 

can be influenced by the size of the source area or the area ratio, type of tillage practices 

being used in the source area, rainfall intensity, crop or residue cover, and soil type.  All 



 75 

 

 

of these factors can influence the mass of different particle sizes in runoff sediment.  

Cogo et al. (1983), using simulated rainfall, investigated the effects of residue cover, 

tillage-induced roughness, and runoff velocity on eroded sediment size distribution in 

terms of aggregate sizes ranging between 2 to 2000 µm.  The authors reported that the 

size distributions of the eroded sediment under chisel plow plus disk, moldboard plow 

plus disk, no-till, and chisel plow tillage systems were not greatly different when the soil 

was covered with residue.  However, the D50 size (the aggregate size which 50% of the 

aggregates exceed) in the eroded sediment without cover was 33, 32, 20, and 11 µm 

respectively for the four tillage systems.  In comparison with the eroded sediment for 

soils with cover for the respective tillage treatments, the D50 was 12 µm for all four 

tillage systems.  Authors also reported that the percentage of aggregates with size > 50 

µm decreased exponentially with an increase in residue cover for no-till soils.  Under 

tillage plow tillage system, the percentage of larger aggregates in runoff was not 

effectively reduced by an increase in residue cover.  Increase in runoff flow velocity 

resulted in the percentage of eroded aggregates > 50 µm to linearly increase for chisel 

plow tillage conditions. 

Poor to no residue cover conditions can influence the sediment size distributions 

of the eroded sediment.  Elberts et al. (1980) tested runoff samples from formed rills and 

interrills for particle size distributions under simulated rainfall of 6.40 cm/h.  Bare rill 

plots, established on an 8% slope with Miami silt loam soil type, also received inflow at 

different flow rates to simulate runoff from upslope lands.  Results showed that the 

highest enrichment of sand particles was found in the size classes of > 2000 µm and 50 - 

210 µm.  For both rill and interrill plots, the highest percentage of silt and clay was 
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reported for the size class of < 50 µm.  In this size class, silt and clay particles were 70% 

and 30% of the total sediment mass.        

Effect of sediment size distribution on pesticide loss from source area was 

evaluated by Wu et al. (2003).  Authors studied the effects of size distribution of eroded 

sediment on propiconazole lost from agricultural farm fields in Norway.  Runoff samples 

were collected from the entry point of a farm pond which received eroded sediment from 

an adjacent farm field.  Results reported showed that about 80% of propiconazole in 

sorbed phase was attached to aggregates with sizes between 2 to 250 µm.  The authors 

concluded that environmental transport of propiconazole could be reduced with quick 

settling of such aggregates. 

All of the studies summarized by Arora et al. (2010) have evaluated sorbed 

pesticide transport through buffer strips as lumped together for all sediment and 

aggregate classes.  Different sized sediment can have variable pesticide sorption due to 

differences in surface area and organic matter content.  None of the studies published 

have researched how the pesticide retention by buffer strips is influenced by different 

sized sediment.  Runoff from a farm field consists of sediment as a mixture of fine 

organic matter, sand, silt, clay, and aggregates.  Treatments in an experiment with 

specific sized sediment in runoff entering the buffer strips can only be achieved in a 

simulation study.  Secondly, flow convergence can alter the source area to buffer area 

ratios as the runoff travels through the strip.  This can cause the flow volumes and flow 

velocities to change affecting the sediment transport capacity of the water moving 

through the buffer strips.  When evaluating different sized sediment for pesticide 

transport through the buffer strips, effects of flow convergence in the form of area ratio 
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changes need to be studied as well.  A rainfall-runoff simulation study was thus proposed 

with the overall objective to evaluate pesticide transport through buffer strips with 

specific sized sediment in the runoff entering the strips under different source area to 

buffer area ratios.   

To study pesticide transport with different sized sediment, an attempt was made to 

select size classes that were reasonably achievable.  USDA (1982) classifies soil particles 

with size 50 - 2000 µm as sand and particles 50 - 250 µm as fine sand (Figure 3.1).  

Particle size classification from other sources identify soil textural classes differently, 

however, the USDA classification was used in this experiment.  In laboratory settings, 

soil aggregates can be dispersed by chemical means followed by sand separation by 

sieving or sedimentation methods (Gee & Bauder, 1986).  This separation is not feasible 

for any soil without destroying the sorption sites needed for pesticide transport.   

Mechanical sieving can only provide sediment smaller than a particular size, which 

includes both particles and aggregates.  Chemical dispersion is accomplished by first 

removing cementing substances, such as organic matter and iron oxides, and then 

replacing calcium and magnesium ions (which tend to bind soil particles together into 

aggregates) with sodium ions (which surround each soil particle with a film of hydrated 

ions).  The calcium and magnesium ions are then removed from solution by treating with 

oxalate or hexametaphosphate (Calgon) anions (Baver et al., 1972; Gee & Bauder, 1986; 

Sheldrick & Wang, 1993), resulting in discrete particles.  Chemical dispersion would 

have destroyed existing pesticide sorption sites on the sand particles.  As sand particles 

cannot be separated from the soil aggregates, naturally occurring sands should be 

considered in such a study.  Coarse sand particles, 250 - 2000 µm, should not be 
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considered in a buffer strip study as prior research shows that coarse sands settle in the 

approach areas just prior to the entry into the buffer strips.  Thus, fine sand particles, with 

size ranging from 50 - 250 µm were considered for evaluation in this research study.     

USDA classification identifies particles < 50 µm as silt and clay.  In a laboratory 

setting, particles passing USA Sieve # 60 (< 250 µm) and retained above USA Sieve # 

270 (> 53 µm) are classified as fine sand.  Particles passing through a USA Sieve # 270 

(< 53 µm) are typically classified as silt and clay.  Mechanically grinding and sieving the 

ground soil through a USA Sieve # 270 can yield sediment type smaller than 53 µm in 

size.  This sediment type will be a mix of particles (silt and clay) and fine aggregates, 

here-in-after classified together as fine aggregates.  Further size separation of this 

sediment type cannot be achieved without destroying the pesticide sorption sites.  This 

sediment type will have different surface area and organic matter content in comparison 

to fine sand particles.  Thus, it will have different amounts of pesticide sorbed to it in 

comparison to sediment type consisting of fine sand.  These two sediment types, i.e. fine 

sands (53 - 250 µm) and fine aggregates (< 53 µm) were selected for comparison in this 

study as they are a part of the runoff entering the strip but travel differently through the 

strip.  Transport of different sediment types can be impacted by flow convergence.  Flow 

convergence, coupled with different sediment types, can affect how the pesticide 

transport occurs through the buffer strips.  Flow convergence in an experimental setup 

can be evaluated by comparing different area ratios.  Based on recommendations by 

Arora et al. (2010), a smaller area ratio of 10:1 was selected for evaluation.  For 

comparison purposes, a larger area ratio of 30:1 was selected based on experimental 

feasibility.  The larger area ratio represented a flow convergence magnitude of 3, which is 
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Figure 3.1:  USDA and other methods of soil particle size classification. Source: Gee & 

Bauder, 1986. 
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within the range of magnitudes observed by Helmers et al. (2005) and Bansal et al. 

(2006).  Thus, the specific objectives of this experiment were to: 

1. Evaluate pesticide retention by buffer strips receiving simulated runoff 

consisting only of fine sand (53 - 250 µm) under two different area ratios of 

10:1 and 30:1; 

2.  Evaluate pesticide retention by buffer strips receiving simulated runoff 

consisting only of fine aggregates (< 53 µm) under two different area ratios of 

10:1 and 30:1; 

3. Compare pesticide retention by buffer strips between the fine sand particles 

(53 - 250 µm) and fine aggregates (< 53 µm). 

3.3 Materials and Methods 

Fine aggregates with no sand, (sediment type D2 in this experiment), were 

prepared by using the top soil adjacent to the buffer strip site and removing sand 

particles/large aggregates from it.  The top 5.1 cm of the soil surface just upslope of the 

switchgrass plots was scrapped with a loader bucket to obtain the source soil.  This 

source soil was air dried under a roof to reduce moisture and for easy handling.  The 

dried soil was sieved through a 1.27 cm soil sieve to remove large organic matter 

fragments and large soil aggregates.  Sieved source soil was then further dried in the sun 

at 98
o
F for 6 hours to further reduce its moisture.  The sun dried soil was then ground in a 

Humboldt soil grinder.  About 100 gm of the ground source soil, passing through a 2000 

µm size sieve, was analyzed for its particle size distribution to obtain a percent finer 

particle classification.  The percent finer classification can be used to reference 

experimental results for comparison with other studies and for modeling purposes.  The 
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USDA Textural Classification of the Clarion 138C source soil, as provided on Web Soil 

Survey and as obtained in laboratory analysis, is listed in Table 3.1. 

As evident from the laboratory analysis, D60 (60% particles finer than a particular 

size) refers to the separation of sand and silt/clay for the source area soil.  Mechanical 

separation of aggregates finer than 53 µm was performed by sieving the ground soil. 

Approximately 23 kg of fine aggregates passing through Sieve # 270 were collected for 

  

Table 3.1: Particle size classification of the source soil (Clarion 138C). 

 

USDA Textural Class USDA 

Composition 

Laboratory 

Analysis (n=3) 

Percent Finer Based on 

Laboratory Analysis 

Sand (53 - 2000 µm): 41.6% 40.0% 60.0% (D60 = 53 µm)  

Silt (2 - 53 µm): 37.4% 34.4% 25.6% (D26 = 2 µm) 

Clay (smaller than 2 µm): 21% 25.6% 0.0% (D0 = 0 µm) 

  

 

use in this experiment.  Fine aggregates were mixed in a stainless steel stock pot by 

placing the sealed stock pot on a bucket rotator for 30 min.  About 100 gm of the mixed 

fine aggregates were analyzed utilizing the Pipette Method and consisted of 70% silt and 

30% clay (n=3). 

Fine sand particles (sediment type D1 in this experiment) were obtained by 

sieving Ames Golf Sand available from the Hallett Materials Quarry located in south east 

Ames, Iowa.  Ames Golf Sand is produced from the naturally occurring sand in the 

quarry which is dredged up from a 3 to 10 m depth.  The quarried sand is then processed 

using cells to separate the fine sand material from the production of concrete sand.  The 

fine sand is then further run through cells to obtain the gradation needed for PGA TOUR 

Golf Sand specifications.  The specifications for the Ames Golf Sand showed that the 
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fine sand (53 - 250 µm) ranged from 5% to 10% in mid-August 2013.  These 

specifications showed that the Ames Golf Sand had the highest percentage of fine sand in 

comparison to other naturally occurring sands available.   Approximately 23 kg of fine 

sand particles passing through Sieve # 60 and retained above Sieve # 270 was collected 

for use in this experiment.  The fine sand particles were mixed in a stainless steel stock 

pot by placing the sealed stock pot on a bucket rotator for 30 min.  About 100 gm of the 

mixed fine sand particles were analyzed and consisted of 99% sand and 1% fines (n=3).  

Figure 3.2 shows the percent finer particle classification for the source area soil (Clarion 

138C) for comparison between the treatments.  Treatment D1 thus represents fine sand 

particles ranging from D84 to D60 and treatment D2 (discussed earlier) represents fine 

aggregates smaller than D60 for the source soil.   

 Two herbicides, atrazine and linuron, and an insecticide, chlorpyrifos, were 

studied in this experiment and their chemical characteristics are listed in Table 3.2.  

Pesticides were applied at the label recommended rates of 2.8 kg active ingredient (a.i.) 

per hectare for atrazine, 2.2 kg a.i. per hectare for linuron, and 1.1 kg a.i. per hectare for 

chlorpyrifos.  A known volume of each of the three pesticides was obtained from the 

commercially available formulations for use in the experiment. 

A known volume of pesticide was mixed with water and the mixture was sprayed 

on to the sieved particles and aggregates using a fine tip hand sprayer.  After pesticide 

application, the particles were mixed together in a stainless steel stock pot by placing the 

sealed stock pot on the bucket rotator for 30 min.  After mixing, either sediment type was    

transferred into individual 18.9 L buckets, sealed, and stored in a dark cooler designated 

for pesticide storage. 



 

 

 

8
3

 

 

     Figure 3.2: Particle size distribution for the source area soil (Clarion 138C). Dotted line indicates estimated particle size for D0. 
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Table 3.2. Names, half-lives, and sorption coefficients for the three pesticides studied. [a] 

 
Common 

Name 

 

Trade 

Name 

Chemical Formulae 

 

Field 

Half Life 

(days) 

Adsorption 

Coefficient [a] 

Koc (L/kg) 

Partitioning 

Coefficient 

Kd = Koc × foc [b] 

Atrazine AAtrex C8H14ClN 60 100 4 

 

Linuron Linex, 

Lorox 

C9H10Cl2N2O2 48 400 16 

Chlorpyrifos Lorsban 

  

C9H11Cl3NO3PS 30 6070 243 

 

[a] Source: Hornsby et al., 1996, pp. 6–16. 

[b] Kd values are calculated for 4% average fractional organic carbon content of soil (foc). 

 

The buffer strip area on which the experiment was conducted is located at the 

Iowa State University (ISU) Agricultural Engineering and Agronomy Research Farm, 

11.3 km west of Ames, Iowa.  Switchgrass plots, 7.62 m wide x 22.86 m long, with a 2% 

to 3% slope, were available for use in 2013.  These plots, established in April 2007, had 

been a part of nutrient loss and biomass harvest study from 2007 to 2012.  A layout of 

these plots is shown in Figure 3.3.  These switchgrass plots had sub-surface drain lines 

installed in the lower 10.7 m of the plot, thus reducing the usable size of the plots to 7.6 

m wide by 12.2 m long.  The area was surveyed to verify the slope on these plots using a 

transit and a ranging rod.  The rainfall simulator (Norton and Savabi, 2010) used in this 

study was only 8 m long.  During the rainfall simulator calibrations, it was determined 

that in one setting of the simulator, rainfall uniformity of 90% and higher could only be 

achieved over an area 1.02 m wide x 5.79 m long due to lack of overlap for the end 

nozzles.  Thus, buffer strips of size 1.02 m wide x 5.79 m long were selected for use in 

the experiment due to sub-surface drainage, slope, and rainfall simulator size (described 

later) limitations.  Based on the total switchgrass area available, it was decided to use a 

0.61 m separation distance between each strip to minimize rainfall overlap from the 

simulator.   
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Figure 3.3:  Location of the Switchgrass Buffer Strips on Field 5A, predominately on 

Clarion 138C Soil Type (Soil Map and Aerial Image Source: USDA Web Soil Survey, 

2014).  Plot and buffer strip dimensions are for reference and not to scale with the aerial 

image. 
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according to the topography such that the two top edges were at similar elevations.  The 

frame was adjusted again to achieve the same for the two bottom edges.  Switchgrass 

within the frame was trimmed to 25.4 cm height.  Switchgrass outside the frame was 

trimmed down to the ground surface.  Excess biomass, resulting from trimming of 

switchgrass, was removed from both areas.  Grass, both in the strip and outside of the 

strip, was kept trimmed to the mentioned heights until the simulations were conducted.  A 

second frame of same dimensions, using 0.61 m long PVC pipe spacers, was laid down 

and adjusted for topography prior to trimming the grass in-between the strips.  The 

process was repeated until all strip boundaries were marked with flags on the top edge, 

the bottom edge, and both sides.  Flags were placed on inside edge of the pipe frame.  

Galvanized steel borders were installed on the flagged edges of the buffer strips to avoid 

runoff from leaving the strip area.  Slight adjustments to the dimensions of the buffer 

strips were performed during border installation to adjust for dry soil and impenetrable 

root mass.  A galvanized steel V-shaped runoff collection gutter, with a 10 degree slope, 

was installed on the downstream end of the buffer strips to concentrate the outflow to one 

point for sample collection and flow measurement.  Trenches, 9.1 m long x 0.61 m wide 

x 0.61 m deep, were dug using a backhoe on the downstream end of each buffer strip.  

This was done to allow for free flow of the outflow and to retain all flow exiting the 

buffer strips on the plots.  Using this strip installation methodology and taking into 

consideration the experimental limitations as explained earlier, a total of 24 strips were 

installed on switchgrass plots.  These buffer strips were assigned numerical identifiers 

starting with number one for the northern-most buffer strip and twenty-four for the 

southern-most buffer strip.  Twelve of these twenty four strips were randomly selected 
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for use in this experiment for three replications each of AR10-D1, AR30-D1, AR10-D2, 

and AR30-D2 treatments. 

The type of tiller species and population in the buffer strips was determined by 

randomly tossing a 0.05 m
2
 wooden rectangle (0.30 m x 0.17 m) at three different 

locations along the length of the buffer strip.  These three approximate locations were 

determined by dividing the length of the strip into two halves, upslope half and 

downslope half, respectively.   Mid-point of the upslope half and the downslope half, and 

the mid-point of the buffer strip were used as the three location for determining 

vegetation densities.  The tillers were then counted by species within the wooden 

rectangle for each of the three locations within each strip, resulting in three sets of 

populations per strip.  These three numbers were averaged for the sediment type 

treatment and then scaled on a per hectare basis to determine average tiller population 

and percentage composition of each species.  Vegetation in strips used for the fine sand 

treatment (D1) was 58% switchgrass (Panicum virgatum), 40% fox tail (Setaria 

lutescens), and 2% other.  The average tiller population was determined to be 9.92 M 

tillers/ha.  The corresponding numbers for the vegetation in strips used for the fine 

aggregates treatment (D2) was 58% switchgrass (Panicum virgatum), 37% fox tail 

(Setaria lutescens), and 5% other.  The average tiller population was determined to be 

8.47 M tillers/ha.  The population densities were comparable to 9.00 (Helmers et al., 

2005), 10.46 (Mickelson et al., 2003), 7.01 (Misra et al. 1996), and 8.82 (Arora et al., 

1996) M tillers/ha.  These population densities classified the buffer strips as having a 

poor to fair cover based on the criteria provided by Temple et al. (1987) and Haan et al. 

(1994).  
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The water used for the chemical applications on the ISU research farm was used 

as the source water for this simulation project.  Water was supplied to the three 9463 L 

poly-tanks on-site which served as reservoirs for the rainfall-runoff simulations.  The site 

experienced extremely dry conditions with only 5.41 cm of rainfall in July and August 

prior to September 2013.  As such, it was decided to flood irrigate the strips to create 

field capacity conditions in the strip prior to conducting the simulation experiment.   

Water from the reservoir tanks was applied by gravity as irrigation water using a flow 

distributor to the upstream end of the strips with an approximate flow rate of 11.36 Lpm.  

Irrigation was stopped when the water showed up at the downstream end of the strip.  

Typically, a time period of 12 hours elapsed between the end of irrigation and start of 

simulation experiment on any particular strip.  A covered runoff collector was installed at 

the outflow end of the buffer strips into the wet soil in order to minimize soil disturbance, 

immediately prior to start of the simulation. 

A 26.25-m-long oscillating linear-overhead-boom rainfall simulator, as described 

by Norton and Savabi (2010), was used to apply simulated rainfall at 6.35 cm/h for 60 

min on one strip in a single setting.  For the Ames 8 WSW recording station for the 

National Weather Service, the rainfall intensity in terms of recurrence interval for a 10 

year-1 hour storm is 5.82 cm/h and for a 25 year-1 hour storm is 7.16 cm/h (NOAA, 

2013).  The Norton Rainfall Simulator has several advantages over its predecessors 

including the ability to almost continuously apply rainfall over the entire length of the test 

plot across the slope.  In comparison, nozzles of the rotating overhead boom rainfall 

simulator, as described by Swanson (1965), only apply rainfall to a part of the test plot 

over which they pass.      



 89 

 

 

Prior to conducting the simulation experiments, the Norton rainfall simulator was 

calibrated to ensure it delivered the intended rainfall intensity over the entire strip area.  

First, the nozzle flow rate was calibrated by capturing the discharge from each nozzle at a 

specific pressure for a given time period.  Each nozzle discharge was measured three 

times to get an average flow rate at a specific pressure.  The flow rates were measured at 

three different pressures to verify nozzle performance across the oscillating boom.  Based 

on the measured flow rates, pressures across the oscillating boom sections were adjusted 

and tested to achieve ±5% of the mean flow rate across all nozzles. 

After the nozzle flow rates had been calibrated, the simulator was hoisted and 

calibrated for obtaining the design rainfall intensity of 6.35 cm/h.  For calibration 

purposes, the rainfall simulator was setup over an area of same dimensions as the buffer 

strips.  Eighteen rain gauges were setup underneath the simulator and rainfall was 

collected for 10 minutes.  The procedure was repeated until the desired operating 

pressures were obtained for delivering the design rainfall intensity.  The rainfall simulator 

operating procedures, as described in Norton and Savabi (2010), were followed.   

A photograph of a rainfall-runoff simulation in progress during September 2013 is 

shown in Figure 3.4.  A typical rainfall-runoff simulation setup used in the experiment 

consisted of three poly-tanks mounted on a 14.6 m long flatbed trailer.  The three poly-

tanks comprised of a 4542 L rainfall water supply tank, a 1987 L runoff supply tank, and 

a 1230 L runoff supply tank.  An additional 1230 L poly-tank was placed on the ground 

at the outflow end of the buffer strip to catch excess water from the rainfall simulator.  

Excess rain water was recirculated back into the rainfall supply tank as the catch tank 

filled up during the experiment.  Prior to the start of the simulation, water from the 
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reservoir tanks was pumped into the rainfall tank to feed the rainfall simulator.  Using a 

Neptune in-line water flow meter, approximately 1931 L and 777 L, of water was 

metered into the larger and smaller runoff supply tanks, respectively.  Metered quantity 

of water was used to calculate the mass of sediment needed to achieve the desired 

sediment mass concentration in simulated runoff.  This set-up provided adequate 

quantities of water needed to complete two rainfall-runoff simulations in one day.  A 

simple schematic of this setup is provided in Figure 3.5.  Approximately about 4.83 kg of 

sediment (corrected for moisture content) was mixed in 1931 L of water to obtain a 

sediment concentration of 2500 mg/L in the AR30 treatment simulated runoff.  The 

corresponding sediment mass for the AR10 treatment was 1.90 kg mixed in 777 L of 

water to obtain similar sediment mass concentration.  The addition of sediment mass to 

water in the runoff supply tank took place 30 min prior to start of rainfall on the buffer 

strip.   The sediment and water mixture was thoroughly mixed for 30 min in the inflow 

supply tank to provide an opportunity for the pesticide mass to equilibrate between the 

sediment and water phases.  The agitation took place by utilizing four TeeJet Vortex 

Agitation Nozzles (Model Y-33-I-80) mounted on a manifold attached on the return end 

of the flow from the pump.  The nozzles were pointed towards the bottom of the tank to 

keep sediment in suspension. 

After the sediment and water had been mixed for 30 min, it was introduced as 

inflow to the upper end of the buffer strips.  An additional pipe mounted on the outflow 

end of the agitation pump served as the inflow line to the buffer strips. This inflow line 

was attached to a specially designed PVC distributor consisting of a 0.61 m long PVC 

pipe, a Great Plains industries digital flow meter, a gate valve for flow control, and a 
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perforated PVC pipe, 1.91 cm in diameter and 1.5 times as wide as the 1.01-m-wide 

upper end of the buffer strips.  This construction minimized turbulence for flow readings 

while providing for an effective method of flow control and distribution.  Perforations in 

the PVC pipe were performed using a 0.64 cm bench drill.  The number of perforations 

drilled into the PVC pipe were determined to insure that the flow was neither too slow to 

carry sediment nor too fast to cause erosion on the inflow end of the buffer strip.  The 

terminal end of the distributor had a 90-degree elbow attached to it to allow for free flow 

such that the distributor did not accumulate any sediment within itself.  Discharge from 

the distributor openings was allowed to fall on flat metal piece placed in the buffer strip 

grass to further spread out the flow. 

 The buffer strip inflow was introduced at a rate of 13.25 Lpm for the AR10 strip 

and 39.75 Lpm for the AR30 strips.  This calculation for runoff volume was based on the 

assumption that 22.5% of the 6.35 cm/h rainfall would run off from the source area.  

Typical runoff from agricultural fields ranges from 15 to 25% of the rainfall amount.  The 

design buffer strip area was 1.01 m by 5.49 m, equaling 5.57 square meters.  Source Area 

1 is 10 times bigger or 55.74 square meters.  The runoff rate of 1.43 cm/h calculates as 

0.80 cubic meters of water in one hour or 796.41 L of water in one hour or 13.27 Lpm.  

Source Area 2 is 30 times bigger or 167.23 square meters.  This equates to inflow rate of 

2389.23 L of water in one hour or 39.82 Lpm.  The flow rates were increased by 

approximately 0.50 Lpm to account for volume of water removed from inflow during 

sampling.  

Two rainfall simulations were conducted each day during the field experiment in 

September 2013.  Each simulation run included a 60 min rainfall with inflow being added
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        Figure 3.4:  Photograph of a rainfall-runoff simulation in progress showing the experimental setup.
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Figure 3.5:  Rainfall-Runoff Simulation Setup for Switchgrass Buffer Strip Study (not to 

scale). 
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to upstream end of the buffer strips 15 min after the start of rainfall.  Sediment mixing 

started 15 min prior to start of the rainfall in case of the treatments where inflow with 

sediment was added.  Six to seven rain gauges, with 0.25 cm accuracy were setup on the 

plots to measure the rainfall depth and intensity.  Two rain gauges were setup outside the 

wetted perimeter of the simulator to capture any natural rainfall that might have occurred 

during the simulation. 

Inflow was metered into the upstream end of the buffer strips using a Great Plains 

Industries digital flow meter.  The gate valve placed after the flow meter in the distributor 

set-up provided with a flow control adjustment to achieve the desired flow rate.  Digital 

flow rate readouts were recorded at the onset of inflow and then every 10 min to calculate 

the volume of inflow into the buffer strip.  This calculated volume was compared with the 

total volume readout provided by the flow meter.  The total volume of inflow used for 

comparison, in both cases, was corrected for the volume of water taken for inflow 

samples and for particle size analysis, as the sampling port was mounted after the flow 

meter.  The inflow volume was within ±3% of each other; however, corrected flow 

volume calculated using flow meter readings was used to perform the hydrologic 

analysis.  Samples were taken at 10 min intervals from sampling port with time counted 

from the start of inflow.  Two, 0.95 L samples, were collected from inflow to ensure 

sediment was obtained for sediment adsorbed pesticide concentration analysis.  Due to 

infiltration within the buffer strip, the outflow was expected to be variable.  One 0.95 L 

sample was collected every two minutes after the start of outflow from the buffer strips.  

In between the sampling times and other tasks for the simulation, flow measurements 

were performed to estimate the rate of outflow.  Outflow was collected in a 4.73 L bucket 
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and weighed on a stainless steel bench scale with 0.002 kg accuracy.  Time to fill about 

1/2 to 2/3 of the bucket was recorded using a stop clock.  The temperature of the water 

was recorded to convert the weight of water recorded to volume of water based on 

density.  Temperature was recorded with a Fischer Scientific Multi-Thermometer with a 

20.32 cm long stainless steel stem with an accuracy of 0.1 degrees Centigrade or 

Fahrenheit.  Samples were composited to ensure enough sediment (~ 1 to 5 gm) was 

available to analyze for sediment adsorbed pesticide concentrations.  All equipment used 

for delivery and sampling of inflow and outflow was flushed with water from the 

reservoir tank at the end of each run.  A Sharp Digital Atomic Clock was used to record 

the time of start of sediment mixing, rainfall, inflow, and outflow sampling.  Rain water 

collected in rain gauges was collected as a single sample for rainfall analysis.  The 

inflow, outflow, and rain samples were immediately transported to a refrigerated storage 

room at 4
o
C in the Department of Agricultural and Biosystems Engineering.  All analysis 

of the collected samples was completed within eight months of collection. 

   Sediment mass concentrations were determined to complete the sediment mass 

balance.  Total solids concentration in inflow, outflow, and rainfall samples was 

determined by placing a 20 mL aliquot in a labeled tin and over drying the sample for 24 

h at 90
o
C (to avoid boiling action) and then at 105

o
C for 1 h.  The aliquot was obtained 

by using a 20 mL disposable glass pipette from a thoroughly stirred sample.  The weight 

of the empty tin, the volume of sample placed in the tin, and the weight of tin with the 

dry sample were used in calculating total solids concentration.  The pipette was rinsed 

with distilled de-ionized water when obtaining aliquot from samples within the same set 

of inflow or outflow samples.  A new pipette was used at the start of obtaining aliquots 
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from each set of samples.  Each sample was tested in duplicates and difference between 

the total solids concentrations was calculated.  Samples failing the 5% permissible 

difference were retested until the difference was below the permissible limit.  For each 

set of inflow and outflow samples, the sediment mass concentrations were corrected for 

total solids concentration in the rainfall sample for the respective treatment. 

Pesticide concentrations in the samples (both water and sediment phase) were 

determined using gas–liquid chromatography.  The pesticide mass was extracted into 

toluene (purity = 99.99%) and toluene extracts were analyzed on the gas chromatograph.  

Toluene was chosen as the solvent for extraction as all three pesticides have relatively 

high solubility in toluene (Table 3.3).  

Table 3.3: Solubility of the three pesticides used in the study in water and toluene. 

 
  Solubility at 20

o
C (mg/L) [a] Solubility Ratio [b] 

Pesticide CAS # [c] Water Toluene Toluene : Water 

Atrazine 1912-24-9 35 4000 114 

Linuron 330-55-2 63.8 75,000 1175 

Chlorpyrifos 2921-88-2 1.05 4,000,000 3,809,524 

[a] PPDB, 2006, USDA-ARS and PPDB, 2013, University of Hertfordshire, UK. 

[b] Solubility ratio of >100 indicates potential to extract 100% of pesticide from water into toluene. 

[c] Chemical Abstracts Service Identification Number, American Chemical Society, 2014. 

 

Pesticide extraction procedures used in this experiment were similar to those used 

by Arora et al. (2003), Boyd et al. (2003), Misra et al. (1996), and Arora et al. (1996).  To 

develop sediment extracts, the water from the refrigerated samples was decanted such 

that the settled sediment was not re-suspended.  The decanted water was poured into a 

clean quart jar rinsed with de-ionized water.  The sediment mass and the remaining water 

were then stirred and the shaken sample with sediment was transferred into stainless steel 
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cups.  Stainless steel cups were then centrifuged at 4300 rpm for 15 minutes.  Water was 

decanted and the stainless steel cups containing the wet sediment were weighed.  

Pesticide mass from the wet sediment was extracted by adding a known weight of toluene 

into the stainless steel cups.  Ten to fifteen, 4 mm dia., glass beads were added to the wet 

sediment-toluene mixture to lift the sediment into suspension in the toluene.  The cups 

were then rotated for 1 h in a horizontal orientation and then for 1 h in a vertical 

orientation.  Toluene from the stirred mixture was decanted into amber silanized glass 

vials to the extent possible.  The remaining mixture was dried for 24 h in an externally 

vented oven to obtain the dry weight of the sediment.  To develop water extracts, a 

subsample of the mixed water remaining after centrifuging out the sediment was filtered 

through 0.45 µm membrane filter paper under a vacuum to obtain water free of sediment.  

A known weight of this filtered water subsample was extracted with a known weight of 

toluene by shaking the mixture in a clean, 250 mL flat bottom flask on an orbital shaker 

for 60 min.  After shaking, distilled de-ionized water was added to the flask to allow 

toluene to rise into the neck of the flask, as toluene is lighter than water.  The water-

toluene mixture was then allowed to separate for 15 min, and the separated toluene was 

decanted into screw-top glass test tubes using individually wrapped borosilicate glass 

pipettes.  Volumetrically, about 200 ml of the filtered water subsample was extracted 

with 10 mL of toluene.  Glass tubes and vials containing the toluene extracts were stored 

in a dark refrigerator at 4
o
C prior to analysis. 

Prior to analysis, 1 mL of the toluene extracts (calibrated by weight) were pipetted 

into amber silanized glass vials.  Benzophenone was used as an internal standard for 

analysis.  Ten µL of known concentration of benzophenone was added to the sample in 
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each glass vial.  Toluene extracts containing the internal standard were analyzed on the 

Waters GCT accurate-mass Time-of-Flight (TOF) Mass Spectrometer (MS) coupled with 

a Model 6890 Gas Chromatograph (GC) from Agilent, which was equipped with a Model 

7683 Auto-injector from Agilent.  Two micro-liters of the extract were injected using the 

front inlet in split-less mode into the GC with an injector temperature of 260
o
C.  The 

column used on the GC was a Restek Rxi-5 Sil MS, 30 m long with an internal diameter 

of 0.25 mm having a film thickness of 0.25 µm.  Carrier gas was Helium (purity = 

99.9995%) with a constant flow rate of 1.0 mL/min.  Temperature of the column was 

kept at 100
o
C for the first minute, then ramped to 160

o
C at a rate of 30

o
C per minute, then 

ramped to 250
o
C at a rate of 10

o
C per minute, and finally ramped to 310

o
C at a rate of 

30
o
C per minute and baked out for four minutes.  The TOF-MS was operated in the 

electron ionization positive (EI+) mode with electron energy of 70 eV, a source 

temperature of 150
o
C, trap current of 100 micro amps, scan range of 45 to 650 Daltons 

with a scan rate of one scan per sec.  The mass measurement precision was +/- 1 

milliDalton.  Mass peaks produced in the chromatograms were processed using 

respective accurate-mass quantitation ions and total ion current for the three pesticides on 

the MassLynx 4.1 software.  The libraries used in the software for mass identification 

were Wiley 7th Edition (McLafferty, 2000) and NIST 2011 which included ion 

identification for each CAS number provided in Table 3.4. 

An inflow-outflow-rainfall mass balance was performed to calculate the amount 

of infiltration water mass using equation 3.1 below: 

Mx = Mi + Ri – Mout (3.1) 
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where Mx is the infiltration water mass as shown in Figure 2.2 in mm, Mi is the 

inflow water mass in mm, Ri is the rainfall water mass in mm, and Mout is the outflow 

water mass in mm.  Measurements in mm were obtained by converting the volumetric 

mass (L) to mm of depth over the strip area, to account for variations in the strip 

dimensions.  Sediment mass retentions were obtained by using the sediment mass 

concentration with the respective flow volume to obtain the sediment mass in inflow and 

outflow.  The pesticide mass retained in the strip in the water carrier phase was calculated 

by using the dissolved pesticide mass concentrations with the respective flow volumes for 

both inflow and outflow.  The dissolved pesticide mass concentrations in outflow were 

analyzed for about one half of the samples taken every two minutes due to budget 

restrictions.  Intermediate concentration values were linearly interpolated for calculation 

purposes.  The pesticide mass retained with the sediment carrier phase was calculated by 

using the sorbed pesticide concentrations with the respective sediment mass in inflow and 

outflow.  The sediment mass in the outflow samples was combined to ensure adequate 

pesticide mass was available for detection and quantitation.  As such, the same value for 

sorbed pesticide concentration was used for the samples combined in performing the 

calculations.  Total pesticide mass retained was then obtained by adding the pesticide 

mass retained in the water phase and in the sediment phase.  The percent pesticide 

retention values were analyzed for significant differences among area ratios and between 

sediment types for the three pesticides using a randomized block design (Cochran and 

Cox, 1992).     

 

 



 100 

 

 

3.4 Results and Discussion 

Simulation experiments were conducted approximately 12 h after the irrigation 

was stopped on each strip.  The duration of irrigation and the amount of water applied 

was variable for each strip.  These durations and amounts along with strip dimensions are 

presented in Table 3.4.  The flow rate used ranged between 9.2 to 11.2 Lpm as the 

irrigation water was gravity applied from the reservoir tank and the flow rate varied due 

to change in height of water in the tank.  The infiltration rates, for the duration of 

irrigation over the strip area, averaged between 10.2 to 11.7 cm/h.  Without the irrigation, 

it would not have been feasible to conduct the experiment as all inflow and rainfall would 

have infiltrated. 

3.4.1 Infiltration water mass (Mx) 

Dissolved pesticide mass that is transported with the water carrier phase through 

the buffer strip is retained with the infiltration water mass (Mx).  Sorbed pesticide mass 

that is transported with the sediment carrier phase through the buffer strip is retained with 

the sediment mass.  Table 3.5 shows the mass balance for percent infiltration for three 

replications each of the 10:1 (AR10) and 30:1 (AR30) area ratios; and D1 and D2 

sediment types.  The percentage of infiltration water mass for the AR10 buffer strips was 

similar, with an average of 71.5% for D1 strips, when compared with the same area ratio 

buffer strips for D2 strips (average of 73.6% for three strips).  There was no statistically 

significant difference between the two averages at α = 0.05 in the two-tailed t-test.  For 

the AR30 strips, D1 strips had an average infiltration water mass retention of 48.9% 

when compared with the D2 strips with an average of 53.4%.  The average infiltration 

water mass retention percentage was statistically significant when the AR10 and AR30 
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strips were compared for both sediment types (D1 and D2).  The difference between the 

two area ratios for the infiltration water mass retention is likely due to greater depth of 

water flow and not due to type of sediment introduced with inflow into the strips.  The 

results, therefore, indicate that flow convergence, resulting in higher area ratios as the 

flow passes through the buffer strips, can cause the infiltration percentage to be lower.  

As a special case, the first 15 min of rainfall was excluded from the mass balance to 

estimate percent infiltration without the rainfall wetting period.  This mass balance is also 

presented in Table 3.5.  This caused the rainfall amounts to be lower and percent 

infiltration water mass to be lower than the mass balance in which the entire amount of 

rainfall was included.  This exclusion of 15 min of rainfall did not change the differences 

among treatments as explained earlier. 

Flow rates (average inflow and outflow for each replication) and average rainfall 

rates for AR10 strips are presented graphically as a function of time in Figure 3.6.  The 

time scale represented in these figures starts at zero to mark the start of the rainfall on the 

buffer strip.  Inflow on each strip was started 15 min after the rainfall had started (wetting 

period).  Time for the outflow to appear at the downstream end of the buffer strips 

averaged 13.5 min ranging between 5 to 19 min for the AR10 strips.  The corresponding 

travel time for the AR30 strips (Figures 3.6) was 5.3 min ranging between 3 to 8 min.  

Under concentrated flow conditions represented by AR30, the travel time was less than 

half in comparison to AR10 strips.  When compared within the same area ratio of 10:1, 

the average travel time for sediment type D1 was 15.5 min ranging between 13 to 19 min 

whereas for sediment type D2, the average was 10.3 min ranging between 5 to 19 min.  

The corresponding numbers for the 30:1 area ratio for D1 sediment type were 5 min 
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Table 3.4:  Buffer strip dimensions and area, amount and duration of irrigation applied for each replication of two area ratios and 

sediment types. 

 

Replication Sediment Strip Run Date Strip Irrigation 

 

Type # # 

 

Length 

(m) 

Width 

(m) 

Area 

(m
2
) 

Amount 

(L) Duration (h) 

AR10 - D1 - Rep 1 Fine Sand 2 3 9/11/2013 5.6 1.0 5.6 2432 4.0 

AR10 - D1 - Rep 2 Fine Sand 24 14 9/23/2013 5.6 1.0 5.6 2846 5.0 

AR10 - D1 - Rep 3 Fine Sand 19 19 9/30/2013 5.6 1.0 5.6 2861 4.5 

Average     5.6 1.0 5.6 2713 4.5 

Standard Deviation     0.0 0.0 0.0 243 0.5 

          

AR30 - D1 - Rep 1 Fine Sand 5 5 9/12/2013 5.6 1.0 5.6 6391 10.0 

AR30 - D1 - Rep 2 Fine Sand 9 7 9/13/2013 5.6 1.0 5.6 4277 7.0 

AR30 - D1 - Rep 3 Fine Sand 14 18 9/25/2013 5.6 1.0 5.4 2668 4.5 

Average     5.6 1.0 5.6 4446 7.2 

Standard Deviation     0.0 0.0 0.1 1867 2.8 

          

AR10 - D2 - Rep 1 Fine Aggregates 6 6 9/12/2013 5.6 1.0 5.7 7386 11.0 

AR10 - D2 - Rep 2 Fine Aggregates 11 9 9/16/2013 5.6 1.0 5.6 2652 4.5 

AR10 - D2 - Rep 3 Fine Aggregates 13 17 9/25/2013 5.6 0.9 5.1 3181 5.5 

Average     5.6 1.0 5.7 2838 4.7 

Standard Deviation     0.0 0.0 0.1 425 0.8 

          AR30 - D2 - Rep 1 Fine Aggregates 1 4 9/11/2013 5.6 1.0 5.8 3284 5.5 

AR30 - D2 - Rep 2 Fine Aggregates 21 13 9/23/2013 5.6 1.0 5.6 2439 4.0 

AR30 - D2 - Rep 3 Fine Aggregates 20 20 9/30/2013 5.7 1.0 5.7 2792 4.5 

Average     5.6 1.0 5.5 4406 7.0 

Standard Deviation     0.0 0.1 0.3 2594 3.5 
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Table 3.5:  Inflow, outflow, rainfall, and infiltration for two area ratios (AR10 and AR30) and two sediment types (D1 and D2). 

Replication Strip Area Inflow 
1
 Outflow Rainfall Infiltration 

Modified 

Rainfall 
2
 

Modified 

Infiltration 
2
 

# # (m
2
) (mm) (mm) (mm) (%) (mm) (%) 

AR10 - D1 - Rep 1 2 5.6 106.3 36.9 62.2 78.1% 46.7 75.9% 

AR10 - D1 - Rep 2 24 5.6 107.3 53.0 63.5 69.0% 47.6 65.8% 

AR10 - D1 - Rep 3 19 5.6 107.7 54.6 63.5 68.1% 47.6 64.9% 

Average 
3
 

 

5.6 107.1 48.2 63.1 71.7% a 47.3 68.8% a 

Standard Deviation 

 

0.0 0.7 9.8 0.7 

 

0.5 

 
         AR30 - D1 - Rep 1 5 5.6 318.6 191.9 63.5 49.8% 47.6 47.6% 

AR30 - D1 - Rep 2 9 5.6 317.9 182.0 63.1 52.2% 47.4 50.2% 

AR30 - D1 - Rep 3 14 5.4 332.2 218.2 64.2 45.0% 48.2 42.6% 

Average 

 

5.6 322.9 197.4 63.6 48.9% b 47.7 46.7% b 

Standard Deviation 

 

0.1 8.1 18.7 0.6 

 

0.4 

 
         AR10 - D2 - Rep 1 6 5.7 106.1 56.4 62.7 66.6% 47.0 63.2% 

AR10 - D2 - Rep 2 11 5.6 108.0 43.3 64.2 74.8% 48.2 72.3% 

AR10 - D2 - Rep 3 13 5.1 119.5 38.0 62.0 79.1% 46.5 77.1% 

Average 

 

5.5 111.2 45.9 63.0 73.6% a 47.2 71.0% a 

Standard Deviation 

 

0.3 7.2 9.5 1.1 

 

0.8 

 
         AR30 - D2 - Rep 1 1 5.8 314.0 165.4 62.8 51.6% 47.1 54.2% 

AR30 - D2 - Rep 2 21 5.6 321.7 204.3 63.5 47.0% 47.6 44.7% 

AR30 - D2 - Rep 3 20 5.7 313.0 183.4 62.8 51.2% 47.1 49.1% 

Average 

 

5.7 316.3 184.3 63.0 51.4% b 47.3 49.3% b 

Standard Deviation 

 

0.1 4.7 19.5 0.4 

 

0.3 

 1
 Flow converted to mm of water depth over the strip area.  Flow for area ratio 30:1 is about 3 times the flow for 10:1 due to design of  

the experiment. 
2
 Rainfall for the first 15 min of the experiment excluded from total rainfall for a modified infiltration mass balance. 

 
3
 t-test H0: Mean (10:1) = Mean (30:1), no significant difference between the same letters at α = 0.05 in the two-tailed test. 
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Figure 3.6: Average inflow and outflow from three replications, and average rainfall for all four treatments. 
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(ranging between 3 - 8 min) and for D2 sediment type were 5.3 min (ranging between 4 - 

8 min).  In the case of the AR10 strips, the travel time was reduced when comparing D1 

to the D2 strips.  In case of the AR30 strips, the travel time was similar when comparing 

D1 to the D2 strips.  The main reason for quicker travel times for the AR30 strips for 

either sediment type is due to increased inflow volume.  Figure 3.6 shows similar trends 

for outflow, which after starting from zero, first increased gradually, then reached 

somewhat of a steady-state condition, and then rapidly stopped after the inflow and 

rainfall were stopped.  These results indicate that the infiltration capacity of the soil did 

not reach a constant value during the rainfall period only.  The increasing limbs of the 

outflow hydrographs indicate the infiltration capacity of the soil decreased during this 

time period before reaching somewhat of a steady-state condition.  Considering the mass 

balance for the last 10 min of the rainfall, to represent a steady-state condition, infiltration 

for this time period of 10 min calculated as 46.1% for AR10-D1, 59.4% for AR10-D2, 

31.4% for AR30-D1, and 33% for AR30-D2 treatments, respectively.  

In comparison with previously conducted simulation studies, Tingle et al. (1998) 

and Blanco-Canqui et al. (2004a and 2004b) have reported an average infiltration water 

mass of 15.2 percent for close to 11:1 area ratio strips.  Misra et al. (1995) and Arora et 

al. (2003) have conducted rainfall simulation studies and reported an average infiltration 

water mass of 29.4% for 30:1 area ratio strips.  These studies are summarized in Table 

2.2.  These results are lower than the results obtained in this experiment for both area 

ratios, respectively.  Possible reason for higher infiltration achieved in this experiment is 

the extensive dry period which existed prior to conducting the experiment.  This could 

have caused the moisture at lower depths of the buffer strips to be lower than what it can 
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be under periods of repeated rainfalls.  Obtaining deep cores of soil samples prior to start 

of simulation in the buffer strips was not feasible in this experiment as it would have 

created preferential flow paths.  Differences in experimental design, especially how the 

infiltration water mass is calculated by comparing a buffered plot with a non-buffered 

plot, is the second reason for study averages explained above, for 11:1 area ratio to be 

low.    

3.4.2 Dissolved pesticide concentration (Cout) 

Dissolved pesticide concentration (Ci) in the inflow into the buffer strips is 

subject to interaction with the rainfall water; and sorption to the organic carbon contained 

in the living and dead organic matter on the strip surface, and organic matter in the top 

2.5 cm of the soil (surface mixing zone).  In addition, as the flow passes through the strip, 

pesticide molecules are subject to sunlight exposure, pH changes due to surface 

interactions, and surface soil temperature changes.  All these factures cause the dissolved 

pesticide concentrations to be different in outflow (Cout).   

Figure 3.7 shows the dissolved atrazine concentrations in inflow (averaged for 3 

replications) and in outflow for each of the three replications for the four treatments of 

AR10-D1, AR30-D1, AR10-D2, and AR30-D2, respectively.   When compared between 

D1 and D2 treatments, the average inflow atrazine concentrations were slightly higher for 

D2 treatments.  As fine sand is more porous than fine aggregates, atrazine mass could 

have been lost to a higher degree during mixing after pesticide application.  When the 

atrazine concentrations for all four treatments in the rising limb time duration of the 

outflow hydrograph were compared, the concentrations gradually increased over time.  

This increase in concentrations was more obvious in the AR10 treatment strips for both 
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D1 and D2 sediment type.  The effect of rainfall dilution and sorption to organic matter 

are the two likely reasons for the rising limb of the dissolved atrazine concentration 

graph.  This effect is more marked in AR10 strips as the inflow rate was lower than the 

AR30 strips.   

Dissolved chlorpyrifos concentrations in inflow (averaged for 3 replications) and 

in outflow for each of the three replications for the four treatments of AR10-D1, AR30-

D1, AR10-D2, and AR30-D2, respectively, are plotted in Figure 3.8.  As in the case of 

atrazine, dissolved chlorpyrifos concentrations in inflow were higher for D2 sediment 

than for D1 sediment for both area ratios.  For all four treatments, the outflow 

concentrations were lower than the average inflow concentrations for chlorpyrifos.  For 

treatment AR30-D2, the concentrations gradually increased with the rising limb of the 

hydrograph.  A similar trend was observed for AR1-D2 treatment.  This tread was not 

clear for the AR10-D1 and AR30-D1 treatments for the dissolved chlorpyrifos 

concentrations in outflow.  

Figure 3.9 shows the dissolved concentrations for linuron in inflow (averaged for 

3 replications) and in outflow for each of the three replication for the four treatments of 

AR10-D1, AR30-D1, AR10-D2, and AR30-D2, respectively.  Linuron concentrations in 

toluene, when processed on the gas chromatograph-mass spectrometer, showed two peaks 

for the accurate-mass ions and for the total ion current.  The presence of two peaks on the 

chromatogram indicates decomposition, disintegration, and/or degradation of linuron into 

a second compound with a similar chemical structure to linuron.  Linuron standards at 

different concentrations showed the presence of same two peaks at the same time on the 

chromatogram.  The masses for the two peaks were added together to determine the  
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Figure 3.7: Dissolved atrazine concentrations in inflow (average) and in outflow for each replication. 
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Figure 3.8: Dissolved chlorpyrifos concentrations in inflow (average) and in outflow for each replication. 



 

 

1
1
0

 

 

 
 

  

Figure 3.9: Dissolved linuron concentrations in inflow (average) and in outflow for each replication. 
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linuron concentrations.  The extent to which decomposition, disintegration, and/or 

degradation of linuron had occurred could not be determined.  As such, the results for 

linuron are estimates and the reader is advised to use caution when interpreting linuron 

data from this experiment.  Dissolved concentration data presented in Figure 3.9 shows 

that the linuron concentrations were low when the outflow began from the strips and then 

the concentrations gradually increased with the rising limb of the hydrograph.  Similar 

trends were observed for atrazine and chlorpyrifos as mentioned earlier.            

 Rainfall on the downstream end of the buffer strip has a smaller chance of 

infiltrating than the rainfall on the upstream end.  Dissolved pesticide concentrations in 

outflow can simply be lower than the inflow concentrations due to dilution from rainfall.  

Calculations were made to determine a maximum dilution factor due to rainfall 

considering all of the water mass infiltrating was exclusively inflow only and not a 

mixture of inflow plus rainfall.  In other words, how much of the outflow water mass is 

comprised of rainfall.  In the case of AR10 strips for both D1 and D2 sediment type, the 

outflow water mass was lower than the mass of water applied from rainfall.  Assuming 

infiltration of inflow only in this case, the outflow will have no dissolved concentration 

of the three pesticides.  Detection of dissolved pesticide concentrations above zero 

indicates that the infiltrating water mass is a mixture of inflow and rainfall.  In the case of 

AR30 strips, the outflow water mass exceeded the rainfall water mass applied for both 

D1 and D2 sediment types (Table 3.5).  Using an average modified rainfall amount of 

47.7 mm for the 45 min time interval for AR30-D1 strips and an average outflow amount 

of 197.4 mm, the maximum dilution factor calculates as 0.24 (47.7/197.4).  The 

corresponding dilution factor for AR30-D2 is 0.26 using the average modified rainfall 
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and outflow amounts.  Using the average 0.25 rainfall dilution factor for AR30 strips, the 

pesticide concentrations will be reduced by 25% if all modified rainfall water mass was 

part of the outflow.  Average inflow concentrations for chlorpyrifos, when multiplied by 

0.75 (1 minus 0.25), show concentration values higher than the observed outflow 

concentrations.  This indicates that sorption of chlorpyrifos to the organic matter in the 

strip is occurring along with dilution from rainfall.  It could not be determined, due to the 

experimental setup, if the sorption was permanent or if both sorption and desorption of 

the pesticides were occurring.  In the case of atrazine and linuron, the calculated outflow 

concentrations (due to dilution) were slightly higher than the observed outflow 

concentrations.  This indicates that the sorption of atrazine and linuron may not be 

permanent and both sorption and desorption processes are occurring in the strips for these 

two pesticides.     

3.4.3 Sediment mass retained   

            Sediment mass retained in the buffer strips was determined by subtracting the 

output sediment mass from the input sediment mass.  In making this calculation, 

sediment mass concentrations were determined and corrected, and are shown in Figure 

3.10.  Average inflow sediment mass concentrations were slightly above the design 

concentration of 2500 mg/L.  Sediment mass concentrations in outflow were significantly 

lower in outflow when compared with inflow concentrations for all four treatments.  Due 

to reduced flow velocity, sediment deposition occurs within the buffer strips resulting in 

sediment retention.  Visual observations during the experiment showed that majority of 

fine sand (sediment type D1) settled in the first meter length of the buffer strip.  Outflow 

from the strips used in sediment type D1, thus, consisted of none of the fine sand used as  
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Figure 3.10: Sediment mass concentrations in inflow (average) and in outflow for each replication. 
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treatment.  The majority of sediment in outflow was re-entrained from within the buffer 

strips and potentially at the exit point of the buffer strip.  Potential existed for the 

installation of the covered outflow collector to disturb the soil at the exit point.  This 

disturbance was minimized due to the covered outflow collector’s installation into the 

wet soil.  Furthermore, any disturbed particles and aggregates would have flushed out in 

the initial 2 min of the outflow prior to any sample collection.  For sediment type D1, 

outflow concentrations for AR30 were slightly higher than AR10.  For sediment type D2, 

outflow concentrations for AR30 were also slightly higher when compared to the outflow 

concentrations for AR10 with the exception of one replication (R2).   

Sediment mass retention for sediment type D1 was 96.4% and 89.8% for the AR10 and 

AR30 strips, respectively (Table 3.6).  Sediment mass retention for sediment type D2 was 

92.8% and 90.2% for the AR10 and AR30 strips, respectively.  For sediment type D1, the 

sediment mass retention is nearly 100%, as the majority of fine sand particles settled with 

the strips.  Since sediment re-entrainment most likely occurred from within the strip, the 

sediment mass retention is lower than 100%.  The AR30 area ratio strips received three 

times the flow volume, which likely increased the flow velocity.  This is the most likely 

reason for AR30 sediment mass retention to be lower than for AR10 in case of sediment 

type D2.  These differences in sediment mass retention were not significantly different in 

the two-tailed t-test at α = 0.05. 

3.4.4 Sorbed pesticide concentration   

Sediment sorbed pesticide concentrations (Csi and Csout) were determined for 

inflow samples and for combined sediment mass outflow samples.  Sediment mass in the 

outflow samples had to be combined to ensure enough pesticide mass was available for  
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Table 3.6:  Sediment mass in inflow and outflow from the buffer strips, and percent 

sediment retained for two area ratios (AR10 and AR30) and two sediment types (D1 and 

D2). 

 

Replication Strip Strip Area 

Sediment 

In
1
 

Sediment 

Out 

Sediment 

Retained
3
 

# # (m
2
) kg/ha

2
 kg/ha (%) 

AR10 - D1 - Rep 1 2 5.6 2690.8 75.2 97.2% 

AR10 - D1 - Rep 2 24 5.6 2736.3 73.1 97.3% 

AR10 - D1 - Rep 3 19 5.6 2669.7 147.2 94.5% 

Averages 

 

5.6 2698.9 98.5 96.4% b 

Standard Deviation 

 

0.0 34.1 42.2  

  

 

  

 

AR30 - D1 - Rep 1 5 5.6 8130.8 687.4 91.5% 

AR30 - D1 - Rep 2 9 5.6 7999.0 429.1 94.6% 

AR30 - D1 - Rep 3 14 5.4 8536.6 1431.0 83.2% 

Averages 

 

 8222.2 849.1 89.8% b 

Standard Deviation 

 

0.1 280.2 520.2  

  

 

  

 

AR10 - D2 - Rep 1 6 5.7 2720.3 227.4 91.6% 

AR10 - D2 - Rep 2 11 5.6 2811.6 293.1 89.6% 

AR10 - D2 - Rep 3 13 5.1 3138.5 90.0 97.1% 

Averages 

 

5.5 2890.1 203.5 92.8% b 

Standard Deviation 

 

0.3 219.9 103.7  

  

 

  

 

AR30 - D2 - Rep 1 1 5.8 8140.5 795.2 90.2% 

AR30 - D2 - Rep 2 21 5.6 8217.2 883.8 89.2% 

AR30 - D2 - Rep 3 20 5.7 8012.7 707.1 91.2% 

Averages 

 

5.7 8123.5 795.4 90.2% b 

Standard Deviation  0.1 103.3 88.3  
1
 Sediment mass is determined by multiplying sediment concentration with flow volume.  Sediment 

mass in inflow for area ratio 30:1 is about 3 times the flow for 10:1 due to design of the experiment. 
 

2
 Sediment mass converted to kg/ha over the strip area to account for variations in strip size. 

 
3
 t-test H0: Mean (10:1) = Mean (30:1), no significant difference between the same letters at  

 α = 0.05 in the two-tailed test. 

 

extraction, detection, and quantification.  These concentrations are tabulated in Appendix 

C along with the respective dissolved concentrations.  Sorption coefficient (K) values 

(ratio of sorbed concentration to dissolved concentration) were determined and are 

tabulated in Appendix C.  

           Sorption coefficients for atrazine for the AR10-D1 treatment averaged in inflow as 

1 (ranged from 0.5 to 1.5) and in outflow as 2 (ranged from 1 to 3).  For AR30-D1 

treatment, the respective averages and ranges were 1 (0.5 to 1.5) in inflow and 0 (0 to 1) 
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in outflow.  Sorption coefficients for chlorpyrifos for the AR10-D1 treatment averaged in 

inflow as 27 (ranged from 11 to 47) and in outflow as 39 (ranged from 25 to 105).  For 

AR30-D1 treatment, the respective averages and ranges were 14 (9 to 21) in inflow and 

20 (10 to 25) in outflow.  Linuron concentrations in sorbed phase were not detected both 

in inflow and outflow samples.  As such, sorption coefficients could not be determined.  

Sediment type D1 tested at 0.4% for organic matter and thus is likely to have low K 

values.  Using Koc values from Table 3.2, a sorption coefficient for atrazine is 0.2 and 

chlorpyrifos is 14.  Observed data for K values in inflow for both atrazine and 

chlorpyrifos is consistent with the tabulated values.  This was not the case in outflow.  

Higher K values in outflow indicate a stronger sorption of the two pesticides to the 

sediment in outflow.  As the majority of fine sand settled out in the buffer strips, high K 

values indicate that the sorption of the two pesticides to the re-entrained sediment and 

organic matter is occurring in the runoff.   

In case of sediment type D2 (fine aggregates), atrazine sorption coefficients for 

the AR10-D2 treatment averaged 5 in the inflow (range from 3 – 9) and 19 in the outflow 

(ranged from 9 – 41).  The respective averages and ranges for the AR30-D2 treatment 

were 4 (3 - 5) in inflow and 19 (8 to 30) in outflow.  Sorption coefficients for 

chlorpyrifos for the AR10-D2 treatment averaged in inflow as 181 (ranged from 126 to 

272) and in outflow as 375 (ranged from 138 to 953).  For AR30-D2 treatment, the 

respective averages and ranges were 145 (109 to 212) in inflow and 288 (122 to 317) in 

outflow.  Sediment type D2 tested at 4% for organic matter and thus is likely to have low 

K values.  Using Koc values from Table 3.2, a sorption coefficient for atrazine is 2.4 and 

chlorpyrifos is 143.  For both atrazine and chlorpyrifos, adsorption coefficient values 
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were higher in outflow than in inflow.  As fine aggregates are trapped in the buffer strips, 

some enrichment of sediment is likely to occur.  This means that the outflow consists of 

even finer aggregates and fine clay particles, thus leading to higher sorption coefficient in 

outflow.  Linuron concentrations in sorbed phase were not detected both in inflow and 

outflow samples for the sediment type D2 as well.  Linuron has a higher Koc value than 

atrazine.  Lack of linuron sorption to both sediment types D1 and D2 indicates that 

linuron does not easily attach to sediment particles with low organic content.   

3.4.5 Pesticide mass retained 

Table 3.6 shows the total pesticide masses, which is a sum of the dissolved phase 

and sorbed phase pesticide masses for sediment type D1.  Table 3.7 shows the same data 

for sediment type D2.  For sediment type D1, the AR10 strips retained an average of 

73.0% of total atrazine in comparison with AR30 strips which retained an average of 

52.5%.  This difference was statistically different in the two tailed t-test at α = 0.05.  The 

average sorbed atrazine mass was less than 0.5% of the total mass (dissolved plus sorbed) 

in inflow.  In case of both area ratios, the strips retained over 95% of the sediment sorbed 

atrazine.     

Average retention for total chlorpyrifos was 87.2% and 79.5% for the AR10-D1 

and AR30-D1 treatments, respectively.  These two averages were not statistically 

different at α = 0.05.  The average sorbed chlorpyrifos mass was about 6% of the total 

mass in inflow for AR10-D1 strips in comparison to about 3% for AR30 strips.  This 

higher sorption of chlorpyrifos than atrazine is mainly due to higher sorption coefficient 

of chlorpyrifos (Koc = 6070) in comparison with atrazine (Koc = 100).  Both treatment 
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strips retained about 97% of sediment sorbed chlorpyrifos.  The difference between the 

two area ratios for the sorbed chlorpyrifos was not statistically different (α = 0.05).   

Average linuron retention in case of the AR10-D1 treatment was 80.5% in comparison 

with the AR30-D1 treatment where it was 53.9%.  These two averages were not 

statistically different at α = 0.05.  In spite of the insignificant statistical difference for 

chlorpyrifos and linuron for the two area ratios, lower area ratio strips retained a greater 

percentage of total pesticide mass.  This is likely due to increased infiltration at low flow 

depths.  Infiltration is further increased by potential surface storage in case of switchgrass 

strips.  Switchgrass tends to grow in clumps which are very stiff and dense, and such 

vegetation is likely to create a dam effect.  This dam effect can create temporary surface 

storage conditions leading to increased infiltration.  For sediment type D2 (Table 3.7), 

AR10 strips retained an average total mass of 71.5% for atrazine, 87.4% for chlorpyrifos, 

and 75.5% for linuron.  In comparison, AR30 strips retained an average of 53.7% 

atrazine, 71.3% chlorpyrifos, and 57.5% linuron total mass, respectively.  The difference 

between the two area ratio treatments for sediment type D2 for atrazine, chlorpyrifos, and 

linuron was statistically different in the two tailed t-test at α = 0.05.  Significantly 

different infiltration between the AR10-D1 and AR30-D2 strips is the likely reason for 

atrazine, chlorpyrifos, and linuron retentions to be significant as 70 to 100% of their mass 

was in the dissolved phase in input to the strips. 

The sorbed phase for sediment type D2 comprised an average of 1.2% of total 

atrazine input mass and 30% of total chlorpyrifos input mass.  This sorbed mass for 

atrazine and chlorpyrifos was 4 to 5 times higher than the sorbed mass for sediment type 

D1 in input to the buffer strips.  If a spherical particle with radius r, volume V, and 
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Table 3.7: Percent retained and dissolved, sorbed, and total pesticide masses in inflow and outflow of the AR10 and AR30 buffer 

strips for sediment type D1. 
    Atrazine Mass [1] Chlorpyrifos Mass Linuron Mass 

Replication Mass Dissolved [2] Sorbed [2] Total Dissolved Sorbed Total Dissolved Sorbed Total 

# Inflow / Outflow g/ha g/ha g/ha g/ha g/ha g/ha g/ha g/ha g/ha 

AR10 - D1 - Rep 1 

 

Inflow 20.1 0.057 20.2 2.7 0.256 3.0 36.4 - 36.4 

Outflow 4.0 0.002 4.0 0.4 0.006 0.4 5.6 - 5.6 

Retained (%) 79.9% 96.7% 80.0% 86.4% 97.6% 87.4% 84.6% - 84.6% 

 

AR10 - D1 - Rep 2 

 

Inflow 22.9 0.060 22.9 1.7 0.127 1.9 37.4 - 37.4 

Outflow 6.3 0.002 6.3 0.1 0.003 0.1 8.0 - 8.0 

Retained (%) 72.3% 97.2% 72.3% 95.8% 97.7% 95.9% 78.5% - 78.5% 

 

AR10 - D1 - Rep 3 
 

Inflow 18.2 0.048 18.2 1.8 0.057 1.9 23.7 - 23.7 

Outflow 6.2 0.004 6.2 0.4 0.005 0.4 5.4 - 5.4 

Retained (%) 66.0% 92.4% 66.1% 77.7% 91.5% 78.1% 77.3% - 77.3% 

 

Inflow 20.4 0.055 20.4 2.1 0.147 2.2 32.5 - 32.5 

Average Outflow 5.5 0.002 5.5 0.3 0.005 0.3 6.3 - 6.3 

 

Retained (%) 72.9% a [3] 95.6% a 73.0% a 86.5% a 96.9% a 87.2% a 80.5% - 80.5% a 

 Standard Dev. 

[4] 

Inflow 2.4 0.006 2.4 0.54 0.101 0.63 7.6 - 7.6 

Outflow 1.3 0.001 1.3 0.18 0.002 0.18 1.5 - 1.5 

           

 

AR30 - D1 - Rep 1 

 

Inflow 81.2 0.136 81.4 10.6 0.334 10.9 110.5 - 110.5 

Outflow 39.2 0.007 39.2 2.7 0.011 2.7 56.1 - 56.1 

Retained (%) 51.8% 95.2% 51.8% 74.3% 96.8% 75.0% 49.3% - 49.3% 

 

AR30 - D1 - Rep 2 
 

Inflow 87.4 0.129 87.5 9.9 0.297 10.2 119.9 - 119.9 

Outflow 39.2 0.005 39.2 1.7 0.010 1.7 45.9 - 45.9 

Retained (%) 55.2% 96.1% 55.2% 82.9% 96.5% 83.3% 61.7% - 61.7% 

 
AR30 - D1 - Rep 3 

 

Inflow 87.1 0.153 87.2 7.9 0.340 8.3 109.7 - 109.7 

Outflow 43.2 0.005 43.2 1.6 0.021 1.6 54.8 - 54.8 

Retained (%) 50.4% 96.5% 50.5% 80.3% 93.8% 80.9% 50.1% - 50.1% 

  Inflow 85.2 0.139 85.4 9.5 0.324 9.8 113.4 - 113.4 

Average Outflow 40.5 0.006 40.5 2.0 0.014 2.0 52.3 - 52.3 

  Retained (%) 52.5% b 95.9% a 52.5% b 79.0% a 95.6% a 79.5% a 53.9% - 53.9% a 

 Standard Dev. 

 

Inflow 3.5 0.012 3.5 1.4 0.024 1.4 5.7 - 5.7 

Outflow 2.3 0.0008 2.3 0.63 0.006 0.63 5.5 - 5.5 

[1]  Mass of pesticides is converted  to g/ha over the strip area,  [2]  Dissolved mass refers to pesticide mass retained with infiltration water.  Sorbed mass refers to pesticide mass retained with  

Sediment,  [3] Two-tailed t-test with unequal variances with H0(mean AR10) = H1(mean AR30); no significant difference between same letters at α = 0.05,  [4] Standard deviation for inflow  

and outflow masses. 
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Table 3.8: Percent retained and dissolved, sorbed, and total pesticide masses in inflow and outflow of the AR10 and AR30 buffer 

strips for sediment type D2. 
    Atrazine Mass [1] Chlorpyrifos Mass Linuron Mass 

Replication Mass Dissolved [2] Sorbed [2] Total Dissolved Sorbed Total Dissolved Sorbed Total 

# Inflow / Outflow g/ha g/ha g/ha g/ha g/ha g/ha g/ha g/ha g/ha 

  

AR10 - D2 - Rep 1 

 

Inflow 36.5 0.631 37.1 4.6 1.6 6.2 35.7 - 35.7 

Outflow 13.1 0.075 13.2 1.1 0.160 1.2 11.3 - 11.3 

Retained (%) 64.1% 88.1% 64.5% 76.4% 90.3% 80.1% 68.3% - 68.3% 

  

AR10 - D2 - Rep 2 

 

Inflow 37.7 0.506 38.2 3.5 2.0 5.5 32.1 - 32.1 

Outflow 10.0 0.085 10.1 0.428 0.115 0.543 7.8 - 7.8 

Retained (%) 73.4% 83.2% 73.5% 87.8% 94.2% 90.1% 75.7% - 75.7% 

  

AR10 - D2 - Rep 3 
 

Inflow 34.1 0.336 34.4 3.3 2.0 5.3 38.9 - 38.9 

Outflow 7.9 0.051 8.0 0.301 0.052 0.353 7.0 - 7.0 

Retained (%) 76.7% 84.7% 76.8% 90.8% 97.4% 93.3% 82.0% - 82.0% 

  Inflow 36.1 0.491 36.6 3.8 1.9 5.6 35.5 - 35.5 

Average Outflow 10.4 0.071 10.4 0.602 0.109 0.712 8.7 - 8.7 

  Retained (%) 71.3% a [3] 85.6% a 71.5% a 84.1% a 94.2% a 87.4% a 75.5% a - 75.5% a 

 Standard Dev. 

[4] 

Inflow 1.8 0.16 1.9 0.69 0.19 0.51 3.4 - 3.4 

Outflow 2.6 0.02 2.6 0.42 0.05 0.47 2.3 - 2.3 

           

  

AR30 - D2 - Rep 1 

 

Inflow 88.0 0.905 88.9 14.4 4.8 19.2 96.0 - 96.0 

Outflow 41.1 0.240 41.3 5.2 0.555 5.8 39.8 - 39.8 

Retained (%) 53.3% 73.5% 53.5% 63.8% 88.4% 69.9% 58.6% - 58.6% 

  

AR30 - D2 - Rep 2 
 

Inflow 92.5 0.939 93.5 12.9 4.9 17.8 95.7 - 95.7 

Outflow 44.1 0.346 44.5 4.1 0.380 4.5 44.8 - 44.8 

Retained (%) 52.3% 63.1% 52.4% 68.3% 92.2% 74.8% 53.2% - 53.2% 

  
AR30 - D2 - Rep 3 

 

Inflow 110.0 0.869 110.8 13.8 5.5 19.3 83.0 - 83.0 

Outflow 49.4 0.444 49.9 5.5 0.401 5.9 32.1 - 32.1 

Retained (%) 55.1% 48.9% 55.0% 60.2% 92.7% 69.4% 61.4% - 61.4% 

  Inflow 96.8 0.904 97.7 13.7 5.1 18.8 91.6 - 91.6 

Average Outflow 44.9 0.343 45.2 4.9 0.445 5.4 38.9 - 38.9 

  Retained (%) 53.7% b 62.0% a 53.7% b 64.0% b 91.2% a 71.3% b 57.5% b - 57.5% b 

 Standard Dev.  

 

Inflow 11.6 0.04 11.6 0.73 0.38 0.83 7.4 - 7.4 

Outflow 4.2 0.10 4.3 0.74 0.10 0.78 6.4 - 6.4 

[1]  Mass of pesticides is converted to g/ha over the strip area,  [2]  Dissolved mass refers to pesticide mass retained with infiltration water.  Sorbed mass refers to pesticide mass retained with  

Sediment,  [3] Two-tailed t-test with unequal variances with H0(mean AR10) = H1(mean AR30); no significant difference between same letters at α = 0.05,  [4] Standard deviation for inflow  

and outflow masses. 
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surface area A is divided into small spheres, such that the new spheres have a new radius 

equal to r/2, it yields eight small spheres to make up the same volume V of the original 

sphere but doubles the surface area.  Further subdividing the small spheres into even 

smaller spheres such that the new radius is r/4, it yields sixty four smaller spheres to 

make up the same volume V, but the surface area is increased by four times of the 

original sphere.  Greater organic matter content and larger surface area are the two main 

reasons for the sorbed atrazine and chlorpyrifos mass in input of the sediment type D2 

(smaller sized aggregates) to be higher than sediment type D1 (larger sized particles).  

Difference in the sediment sorbed atrazine and chlorpyrifos mass for AR10 and AR30 

strips was insignificant for both D1 and D2 sediment.  This indicates that these two 

pesticides in the treatments were attached to particles which settled out irrespective to 

follow depth difference between AR10 and AR30 strips.            

For weakly sorbed pesticides (Koc < 100), natural rainfall and simulated 

rainfall/runoff studies averaged by Arora et al. (2010) show that buffer strips will retain, 

on average, 61% of the total input mass.  The corresponding number for moderately 

sorbed pesticides (100 < Koc < 1,000) is 63% retention, and 76% retention for strongly 

sorbed pesticides (Koc > 1,000), respectively.  For sediment type D1, average retention of 

total atrazine mass between AR10 and AR30 strips was 62.8%, was 67.2% for linuron, 

and 83.3% for chlorpyrifos, respectively.  In this case, atrazine data matched very well 

with the study averages as atrazine is the most common pesticide studied in the 

previously published buffer strip studies.  Using the mathematical model (equation 2.4) 

and data from Table 2.3, the percent retention for atrazine is predicted as 46%, 51% for 

linuron, and 70% chlorpyrifos.  Data for sediment type D1 shows higher percent 
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retentions as the mass sorbed to sediment was very low.  The process of infiltration 

played a major role in atrazine, linuron, and chlorpyrifos retention in case of sediment 

type D1.     

For sediment type D2, average retention of total atrazine mass between AR10 and 

AR30 strips was 62.6%, was 66.5% for linuron, and 79.4% for chlorpyrifos, respectively.  

In this case, atrazine data again matched very well with the study averages provided by 

Arora et al. (2010).  The data for sediment type D2 shows higher percent retentions for 

linuron and chlorpyrifos for than the model predicted retentions (equation 2.4 and Table 

2.3).  Both processes of infiltration and sediment retention were important for linuron and 

chlorpyrifos retention in case of sediment type D2.   

3.5 Conclusions 

            This experiment represents a case of a rainfall-runoff simulation where runoff 

from the source area consists either only of fine sand particles or fine aggregates without 

sand.  Runoff consisting of specific sized particles eliminated any complications in 

interpretation of results which otherwise would be the case with a study comprising of 

runoff with all sediment particle sizes mixed together.  Under these specific experimental 

conditions, buffer strips, receiving only fine sand as sediment in inflow, retained 73% and 

53% of atrazine mass for the 10:1 and 30:1 area ratios respectively.  In case of buffer 

strips receiving sediment free of fine sand, atrazine retention was 72% and 54% 

respectively, for the two area ratios.  The differences in retention for the two area ratios 

were significant (α = 0.05) indicating atrazine retention is reduced with an increased area 

ratio for either sediment type. 
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           Chlorpyrifos and linuron retentions by the switchgrass buffer strips were 83% and 

73%, for fine sand, averaged for both 10:1 and 30:1 area ratios.  For fine aggregates, 

these averages for the two pesticides were 79% and 67%, respectively.  The differences 

between the two treatments of area ratios were not significant for these two pesticides (α 

= 0.05).  However, the trend was higher retention at lower area ratios for both pesticides 

for either sediment type. 

           Linuron mass, sorbed to fine sand and fine aggregates, was below the 

experimental detection limit conditions, indicating linuron transport is not affected by the 

processes of sedimentation in the buffer strips.  Infiltration was the key factor for linuron 

retention in buffer strips.  As reported in this study, the linuron mass retained in the 

buffer strips is an estimate and the readers are advised to interpret linuron results 

accordingly.    

           Differences in pesticide retention between fine sand and fine aggregates were not 

significant for atrazine and chlorpyrifos for both 10:1 and 30:1 area ratios.  Even though 

fine aggregates had 4 to 5 times higher  mass of the two pesticides sorbed to them in 

comparison with fine sand, buffer strips were able to retain a similar amount of total 

pesticide mass with either sediment type under both area ratio conditions.  This indicates 

the atrazine and chlorpyrifos transport through the buffer strips was similar for the two 

sediment types studied under the given experimental conditions. 

           Sediment retention was over 90% for all four treatments studied in this experiment 

with no significant difference between sediment type and area ratios.  Visual observations 

showed that fine sand particles settled within the first couple meters of the buffer strip 

length as expected.  Fine aggregates, on the other hand, settled over the entire length of 
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the buffer strips.  In the case of fine aggregates, results from this study indicate that the 

5.6-m length of the buffer strips was adequate to retain atrazine and chlorpyrifos equally 

in comparison to fine sands. 

           Fine sand treatment results revealed that after the sediment from the inflow is 

retained in the buffer strip, the sediment transport capacity of the water flowing through 

the strip is not reduced to zero.  Re-entrainment of sediment into the runoff from within 

the strip occurs.  Source of this re-entrained sediment can be previously deposited 

sediment or the buffer strip soil itself.  The exit point, where the runoff leaves the buffer 

strip, can be an additional source of re-entrainment, especially if the flow velocity 

increases due to slope changes resulting in erosion.  Re-entrained sediment, in the runoff 

exiting the buffer strips, showed quantifiable amounts of atrazine and chlorpyrifos sorbed 

with it, however, the total mass of either pesticide was very small.  These results indicate 

that the sorption of the pesticide to the sediment originating from within the buffer strips 

is possible.                   
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4.1 Abstract 

Clay-sized particles are highly mobile and their transport through the buffer strips 

can be influenced by several factors.  Switchgrass buffer strips were studied to develop 

an understanding of these factors by evaluating the retention of three pesticides under two 

different source area to buffer area ratios, receiving simulated runoff containing clay-

sized particles.  Six strips, 1.0 m wide x 5.6 m long, received pesticide and clay-sized 

particles mixed simulated runoff, while six similar strips received simulated runoff 

containing no sediment and no pesticide.  Two source area to buffer area ratios of 10:1 

and 30:1 were studied under 6.35 cm/h steady-state rainfall conditions for two sediment 

types D3 (clay-sized particles) and D0 (no sediment).  Atrazine, chlorpyrifos, and linuron 

were applied at the label recommended rates, using field formulations, to the simulated 

runoff water containing clay-sized particles.  Switchgrass buffer strips retained, on 

average, 70.1% and 49.2% atrazine, 83.0% and 57.6% chlorpyrifos, and 71.2% and 

50.4% linuron, respectively, for the two area ratios of 10:1 and 30:1 when receiving 

simulated runoff containing clay-sized particles.  Results for atrazine and linuron were  
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significantly different between the two area ratios.  Results were not significantly 

different for chlorpyrifos.  Results indicate that flow convergence can greatly reduce 

switchgrass buffer strips capacity to reduce atrazine and linuron from runoff containing 

clay-sized particles.  Switchgrass buffer strips receiving no sediment in runoff showed an 

average of 113 and 72 mg/L sediment mass concentration in outflow for the 10:1 and 

30:1 area ratio buffer strips, respectively.  Sediment mass concentration results show that 

re-entrainment of sediment occurs in the buffer strips.  The source of re-entrained 

sediment is the buffer strips soil and/or erosion at the exit point of the outflow from the 

strips.  The infiltration water mass retention was 71.1% and 51.4%, respectively, for the 

lower and higher area ratios in strips receiving clay-sized particles in runoff.  In 

comparison, the corresponding numbers for the two area ratio strips receiving no 

sediment in runoff were 67.9% and 47.0%, respectively.  Clay-sized particles can 

penetrate into the soil pores and potentially reduce the infiltration rate of the soil.  Lack 

of difference in infiltration between the two sediment types for the respective area ratios 

indicates that presence of clay-sized particles in simulated runoff did not impede 

infiltration.  Results of this experiment indicate that infiltration is the key process for 

pesticide retention with clay-sized particles, as both the dissolved phase and the sorbed 

phase are carried with water.   

4.2 Introduction 

Clay-sized particles are an integral part of the agricultural surface runoff 

occurring from croplands.  Clay-sized particles are classified as a mix of particles and 

aggregates with sizes smaller than two micrometers (< 2 µm; Theng and Yuan, 2008; Gee 

& Bauder, 1986).  This class of particles and aggregates is a mixture of organic, 
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inorganic, and biological materials with sizes ranging from just less than 2 µm to 

nanoscale (10
-9

 m) (Navortsky, 2003).  One particular characteristic of clay-sized 

particles is the larger specific surface area in comparison with silt- (2 - 50 µm) and sand-

sized (50 - 2000 µm) particles.  A larger specific surface area for soil particles can have a 

greater amount of nutrients and pesticides sorbed to them.  This can result in nutrient and 

pesticides concentrations to be higher in clay-sized particles than the silt- and sand-sized 

particles.  The clay-sized particles are likely to travel long distances with agricultural 

runoff as they require very little energy to stay in suspension.  The mass of clay-sized 

particles in the agricultural runoff is impacted by slope, tillage, and crop residue cover in 

the cropped areas.  Rhoton et al. (2002) compared no-till and conventional tillage 

practices for their effect on runoff and soil loss from Midwestern and Southeastern 

United States silt loam soils.  By comparing runoff, soil loss, bulk density of field soils 

(0-3.8 cm depth), and soil organic matter under the two tillage systems, authors 

concluded that long term cultivation and runoff results in preferential erosion of the fine 

silt and clay-sized particles.   

Meyer et al. (1992) studied the size distributions of eroded sediment for twenty 

two soils in Mississippi, Iowa, and Alabama as undispersed sediment and secondly by 

dispersing the sediment.  Runoff samples were obtained in late spring and summer from 

bare, initially dry, tilled fields which were otherwise under intensive cropping.  Samples 

were collected after steady state runoff conditions had been achieved under simulated 

rainfall of 6.70 cm/h.  The authors found that the sandy loam and loam textured soils 

produced eroded sediment similar to clayey soils under undispersed conditions.  When 

results from the twenty two different soils were compared, undispersed eroded sediment 
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consisted of less than 20 percent clay irrespective of the clay content of the source soil.  

Data reported for Clarion Loam soil in the study showed size distribution of the eroded 

sediment as 1.8 percent (> 1000 µm), 24.4 percent (250 - 1000 µm), 36.2 percent (36 - 

250 µm), 15.2 percent (16 - 63 µm), 8.3 percent (4 - 16 µm), and 14.1 percent (< 4 µm).  

Respective numbers reported for Tama Silty Clay Loam soil were 1.7%, 25.6%, 17.5%, 

26.1%, 13.9%, and 15.2%.  Data indicates that under typical 10,000 mg/L sediment mass 

concentrations of eroded sediment in runoff, less than 1500 mg/L corresponds to size 

smaller than 4 µm.   

The amount of clay-sized particles that can be naturally dispersed in the runoff 

from a source area can be influenced by tillage systems.  Deizman et al. (1987) studied 

the size distributions of eroded sediment in agricultural runoff under no-till and 

conventional tillage systems.  Simulated rainfall at 5.0 cm/h was applied on Groseclose 

silt loam plots with 3.7% organic matter and 1.39 g/cm
3
 bulk density.  Approximately 

100 mm of rainfall was applied over each plot as 50 mm for 60 min (dry run), a 24-h 

delay, 25 mm for 30 min (wet run), a 30 min delay followed by 25 mm for 30 min (very 

wet run).  Plots  (0.01 ha) under no-till had slope ranging between 8.6% to 15.1%, and 

residue level ranging between 1.1 to 3.4 kg/ha.  The corresponding numbers for 

conventional tillage were 8.5% to 9.7% for slope and zero kg/ha as residue level.  Runoff 

samples were collected and analyzed for sediment size distributions.  Under undispersed 

conditions of the eroded sediment, averaged for three runs, no-till plots showed size 

distribution of 2.5% aggregates larger than 2000 µm, 39.8% aggregates between 50 - 

2000 µm, 52.4% aggregates between 2 - 50 µm, and 5.3% aggregates smaller than 2 µm.  

Conventional tillage plots showed 2.2% aggregates larger than 2000 µm, 29.9% 
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aggregates (50 - 2000 µm), 60.0% aggregates (2 - 50 µm), and 7.9% (< 2 µm), 

respective, for the undispersed eroded sediment size distribution.  Data indicates that 

under typical 10,000 mg/L sediment mass concentrations of eroded sediment in runoff, 

less than 800 mg/L corresponds to size smaller than 2 µm.   

Wu et al. (2003) evaluated the effects of size distribution of eroded sediment on 

propiconazole (Koc = 650, Hornsby et al., 1996) lost from agricultural farm fields in 

Norway.  Runoff samples were collected from the entry point of a farm pond which 

received eroded sediment from an adjacent farm field.  In the undispersed samples of the 

eroded sediment, aggregates with size between 250 to 2000 µm comprised of 46.6% of 

sediment by weight, whereas the clay-sized particles (< 2 µm) comprised only 3.8% of 

sediment.  This fraction of sediment accounted for 20% of total sediment sorbed 

propiconazole.  Authors concluded that the high mobility even under low flow velocity 

conditions makes clay-sized particles important transporters of sediment bound pesticides 

in runoff suspensions.   

Buffer strips are conservation practices installed on the agricultural landscapes in 

between the cropped fields and runoff receiving water bodies.  The intent of such 

placement is to intercept runoff leaving the farm fields and alleviate its impact on the 

water bodies.  All of the studies reviewed and summarized by Arora et al. (2010) have 

looked at sediment sorbed pesticide transport as lumped together for all eroded sediment 

particles.  None of the studies have evaluated pesticide transport through buffer strips 

with clay-sized particles only.  Due to the size of the material comprising the clay-sized 

particles, little trapping in buffer strips is generally theorized.  Research needs to be 

performed to evaluate the pesticide trapping efficiency of the buffer strips for naturally 
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dispersed clay-sized particles in the runoff.  This research needs to be carefully designed 

and evaluated as the clay-sized particles (< 2 µm) may be re-entrained into the runoff 

from within the buffer strip.   

Studies, summarized by Arora et al. (2010), indicate that flow convergence occurs 

in buffer strips due to changes in micro-topography.  Source area to buffer area ratios, 

ranging between 10:1 to 50:1, are likely to occur under realistic applications of buffer 

strips.  As flow converges, it increases the flow volume passing through a certain point 

within the buffer strip.  Changes in micro-topography can cause flow velocities to change 

within the buffer strips.  Such changes in flow volume and velocities can impact the 

retention of clay-sized particles, and subsequently pesticide mass retained by the buffer 

strips.  This impact needs to be quantified, especially to determine what occurs in lower 

part of the buffer strips if heavier particles and aggregates settle in the upper half.  

Obtaining runoff containing only of clay-sized particles is only possible under simulated 

conditions.  Clay-sized particles, can thus, be harvested from the source area soil and 

used in simulated runoff entering the buffer strips.  A simulated rainfall/runoff 

experiment was thus conducted with the following objectives: 

1. Evaluate the retention of pesticides in buffer strips receiving runoff containing 

naturally dispersed clay-sized particles (< 2 µm); 

2. Compare sediment mass retention in buffer strips from runoff containing clay-

sized particles (< 2 µm) with runoff containing no sediment/pesticide;  

3. Evaluate the impact of flow convergence on pesticide retention with clay-

sized particles by performing the experiment under simulated source area to 

buffer area ratios of 10:1 and 30:1.   
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4.3 Materials and Methods 

Clay-sized particles from the source soil (Clarion 138C) were obtained by setting 

a water column on a levelled flatbed trailer.  A circular poly tank with 4542 L capacity 

served as the container for setting up the water column (Figure 4.1).  Water, as used on 

the farm for chemical applications, was pumped into the circular poly tank.  The tank was 

left undisturbed for 24 h in a machine shed on the levelled flatbed trailer to allow any 

turbulence in the water to subside.  Secondly, this did not allow for any hot and cold 

water currents to develop due to the differential solar heating of the poly tank which 

could hinder fine sediment/particle settling.  A known amount of source soil (Clarion 

138C), ground and sieved through 2000 µm sieve, was added to a known amount of 

water and agitated with a heavy duty pump for 30 min.  Approximately 50 kg of ground 

and sieved soil was added to 454 L of water in a 682 L cylindrical poly tank.  The 

agitated sediment-water slurry was allowed to stand for 5 min to allow heavier sediment 

and aggregates to settle out.  The remaining sediment-water mixture was then added to 

the water surface of the circular poly tank containing 3400 L water with a specially 

designed long arm applicator at a rate of 26.5 L per min.  After the sediment-water 

mixture was applied to the water surface, the time for sediment particles (> 2 µm) to 

settle to below the bottom 15 cm of the water column was calculated.  This calculation 

was based on water temperature and the height of the water column in the tank, including 

the increase in height of water column due to sediment-water mixture addition.  After the 

time to settle sediment particles larger than 2 µm had elapsed, a specially designed siphon 

constructed from 10.1 cm PVC pipe was placed in the bottom of tank.  The siphon 

consisted of a pivoting arm with multiple inlets drilled into the PVC pipe such that 



 135 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1:  Schematic showing the poly tank used to setup the water column on a 

levelled flat-bed trailer to harvest clay-sized particles (not to scale). 

 

 

the inlet points were located at 25 cm height from the bottom of the tank.  Approximately 

2700 L of water containing the clay fraction was siphoned for use in the experiment as 

simulated runoff from source area.  This runoff comprised of sediment class D3 treatment 

in the experiment.               

  Two herbicides, atrazine and linuron, and an insecticide, chlorpyrifos, were 

studied in this experiment and are listed in Table 3.2.  Pesticides were applied to the 

siphoned off water containing clay-sized particles at the label recommended rates of 2.8 

kg active ingredient (a.i.) per hectare for atrazine, 2.2 kg a.i. per hectare for linuron, and 
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1.1 kg a.i. per hectare for chlorpyrifos.  A known volume of each of the three pesticides 

was obtained from the commercially available formulations for use in the experiment.  

Amount of pesticide mass used for application was similar to the ones used for the 

experiment in Chapter 3.   

Re-entrainment of clay-sized particles is possible as runoff flows through a buffer 

strip.  To estimate how much of clay-sized particles (< 2 µm) can potentially be re-

entrained into runoff, water containing no sediment was used as runoff entering the buffer 

strips for comparison.  No pesticides were applied to this water.  This runoff with no 

sediment and no pesticide comprised of sediment type D0 treatment in the experiment. 

The experiment was conducted at the same location as described in Chapter 3.  

Twelve switchgrass buffer strips, separate from the ones used for the experiment 

described in Chapter 3, but located on the same site, were randomly selected for use in 

this experiment.  Six buffer strips represented the sediment type D0 treatment with three 

replications each for the 10:1 and 30:1 source area to buffer area ratios.  The other six 

buffer strips represented the sediment type D3 treatment with three replications each for 

the 10:1 and 30:1 source area to buffer area ratios.   

Dimensions of the switchgrass buffer strips were 1.0 m wide x 5.6 m long, similar 

to buffer strips used in the previous experiment.  Establishment and maintenance of the 

buffer strips was performed in the similar manner as explained in Chapter 3.  Type of 

tiller species and population was determined by counting the tiller species within the 

randomly tossed 0.05 m
2
 wooden rectangle (0.30 m x 0.17 m) at three different locations 

along the length of the VBS and counting the tillers within the frame area.  The same 

procedure, as used in the previous experiment to calculate tiller densities, was used.  
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Vegetation in strips used for treatment with no sediment (D0) was 53% switchgrass 

(Panicum virgatum), 44% fox tail (Setaria lutescens), and 3% other.  The average tiller 

population was determined to be 10.64 M tillers/ha.  The corresponding numbers for the 

vegetation in strips used for the clay treatment (D3) was 45% switchgrass (Panicum 

virgatum), 53% fox tail (Setaria lutescens), and 2% other.  The average tiller population 

was determined to be 8.75 M tillers/ha.   

The same experimental procedures were used for conducting the experiment as 

explained in Chapter 3.  Methodology for collecting inflow, outflow, and rainfall 

samples; measuring inflow, outflow, and rainfall rates; and the laboratory procedures for 

analysis of samples were also same.  One key point of the analytical methods was the 

separation of the liquid from the wet sediment in the runoff samples.  Nitrocellulose 

membrane filters, used for liquid separation, had an opening size of 0.45 µm.  Thus, the 

sediment type D3 represents particles with size ranging from 0.45 µm to 2 µm.  

Mathematical procedures used for determining infiltration, sediment deposition, and 

pesticide mass retention, both in sorbed and dissolved phase, were the same as explained 

in Chapter 3. 

4.4 Results and Discussion 

This experiment was conducted as a second part of the dual experiment performed   

in September 2013.  A trial experiment was conducted using an inflow flow rate of 11.0 

Lpm on a separate part of switchgrass area with dry antecedent soil moisture conditions.  

This trial experiment failed to produce any outflow from the strip area over the 45 min 

experimental time period.  As such it was decided to irrigate the buffer strips prior to 

conducting the experiment.  Without this irrigation, it would not have been feasible to 
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conduct the experiment.  Table 4.1 lists the durations and amounts of irrigation along 

with strip dimensions.  Each strip consumed variable amount of irrigation water before 

the water showed up at the downstream end.  The duration of irrigation was variable as 

well.  The irrigation water was gravity applied from the reservoir tank and the flow rate 

varied due to change in height of water in the tank.  The flow rate observed for irrigation 

water ranged between 9.2 to 11.2 Lpm.  The irrigation was stopped after the water 

showed up at the exit point of the buffer strips as it allowed for uniform irrigation over 

the strip area.  Secondly, it allowed for the installation of the covered outflow collector 

into the wet soil without disturbing the soil at the exit point of the buffer strips.  This 

disturbance of the soil would have been significantly higher if the collector had been 

installed into the dry soil causing the exit point to act as a source of particles into the 

outflow from the strips.  The infiltration rate, over the duration of the irrigation applied 

and over the strip area, ranged from 10.0 to 11.6 cm/h.   

4.4.1 Infiltration water mass (Mx) 

            Table 4.2 shows the mass balance for percent infiltration for the three replications 

each of the 10:1 (AR10) and 30:1 (AR30) area ratios; and the D0 and D3 sediment types.  

The percentage of infiltration water mass for the AR10 buffer strips was similar, with an  

average of 67.9% for D0 strips, when compared with the same area ratio buffer strips for 

D3 strips (average of 71.1% for three strips).  There was no statistically significant 

difference between the two averages at α = 0.05 in the two-tailed t-test.  For the AR30 

strips, D0 strips had an average infiltration water mass retention of 51.4% when 

compared with the D3 strips with an average of 47.0%.  There was no statistically 

significant difference between these two averages.  Thus, the presence of clay-sized 
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particles in the runoff did not change the infiltration capacity of the strips within a given 

area ratio.  As the clay-sized particles are fine, they are expected to penetrate the soil 

surface through the soil pores and can potentially reduce the infiltration capacity of the 

soil as the soil pores get plugged.  This did not happen in the case of the strips receiving 

simulated runoff with clay-sized particles.  The average infiltration percentage was 

statistically significant when the AR10 and AR30 strips were compared for both the D0 

and D3 sediment type at α = 0.05 in the two tailed t-test.  Within the sediment type, the 

trend was a greater infiltration with a lower area ratio.  Flow difference, as the AR30 

strips had three times the design inflow as that of the AR10 strips, is the reason why 

infiltration percentages are lower for AR30 strips.  Time period, when both rainfall and 

inflow were simultaneous inputs into the buffer strips, was considered to calculate the 

modified rainfall amount (Table 4.2).  During this time period of 45 min, the percent 

infiltration was reduced by using modified rainfall, but the trends remained the same.  

This indicates that rainfall during the first 15 min wetting period did not affect the 

infiltration capacity.  The differences among area ratios and among sediment types stayed 

the same as explained earlier. 

Flow rates (average inflow and outflow for each replication) and average rainfall 

rates for the AR10 strips are presented graphically as a function of time in Figure 4.2.  

Travel time, time for the runoff to travel the 5.6 m long buffer strips, averaged 10 min 

(ranged from 9 to 14) and 17min (ranged from 9 to 25) for AR10-D0 and AR10-D3 

treatments, respectively.  The travel times for the AR30 strips were 4 min (range 4 to 4) 

and 4 min (range 3 to 5) for the D0 and D3 treatments, respectively.  Larger flow volume 



 

 

1
4
0

 

 

Table 4.1:  Buffer strip dimensions and area, amount and duration of irrigation applied for each replication of two area ratios and 

sediment types. 

 

Replication Sediment Strip Run Date Strip Irrigation 

 

Type # # 

 

Length 

(m) 

Width 

(m) 

Area 

(m
2
) 

Amount 

(L) Duration (h) 

AR30 - D0 - Rep 1 None 4 1 9/10/2013 5.6 1.0 5.8 4281 7.0 

AR30 - D0 - Rep 2 None 12 10 9/16/2013 5.6 1.0 5.5 3856 6.0 

AR30 - D0 - Rep 3 None 15 23 10/2/2013 5.7 1.0 5.6 2400 4.0 

Average     5.6 1.0 5.6 3512 5.7 

Standard Deviation     0.0 0.0 0.1 986 1.5 

          

AR10 - D0 - Rep 1 None 3 2 9/10/2013 5.6 1.0 5.8 4129 7.0 

AR10 - D0 - Rep 2 None 10 8 9/13/2013 5.6 1.0 5.6 4080 6.5 

AR10 - D0 - Rep 3 None 18 24 10/2/2013 5.6 1.0 5.6 2453 4.0 

Average     5.6 1.0 5.6 3554 5.8 

Standard Deviation     0.0 0.0 0.1 954 1.6 

          

AR10 - D3 -Rep 1 Clay 23 12 9/20/2013 5.6 1.0 5.4 1847 3.0 

AR10 - D3 - Rep 2 Clay 7 16 9/24/2013 5.7 1.0 5.8 3571 6.0 

AR10 - D3 - Rep 3 Clay 16 22 10/1/2013 5.7 1.0 5.6 1671 3.0 

Average     5.6 1.0 5.6 2363 4.0 

Standard Deviation     0.0 0.0 0.2 1050 1.7 

          AR30 - D3 - Rep 1 Clay 22 11 9/20/2013 5.6 1.0 5.4 3196 5.5 

AR30 - D3 - Rep 2 Clay 8 15 9/24/2013 5.6 1.0 5.9 3937 6.0 

AR30 - D3 - Rep 3 Clay 17 21 10/1/2013 5.6 1.0 5.8 3414 5.5 

Average     5.6 1.0 5.7 3516 5.7 

Standard Deviation     0.0 0.0 0.3 381 0.3 
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               Table 4.2:  Inflow, outflow, rainfall, and infiltration for two area ratios (AR10 and AR30) and two sediment  

               types (D0 and D1). 

 

Replication Strip Area Inflow 
1
 Outflow Rainfall Infiltration 

Modified 

Rainfall 
2
 

Modified 

Infiltration 
2
 

# # (m
2
) (mm) (mm) (mm) (%) (mm) (%) 

AR10 - D0 - Rep 1 3 5.8 104.4 57.2 63.9 66.0% 47.9 62.5% 

AR10 - D0 - Rep 2 10 5.6 108.1 59.7 64.2 65.3% 48.2 61.8% 

AR10 - D0 - Rep 3 18 5.6 110.5 48.4 63.1 72.1% 47.4 69.4% 

Average 
3
 

 

5.6 107.7 55.1 63.8 67.9% a 47.8 64.6% a 

Standard Deviation 

 

0.1 3.1 6.0 0.6 

 

0.4 

 
         AR30 - D0 - Rep 1 4 5.8 309.5 179.5 64.5 52.0% 48.4 49.8% 

AR30 - D0 - Rep 2 12 5.5 323.8 174.6 63.1 54.9% 47.4 53.0% 

AR30 - D0 - Rep 3 15 5.6 322.3 203.4 63.5 47.3% 47.6 45.0% 

Average 

 

5.6 318.5 185.8 63.7 51.4% b 47.8 49.3% b 

Standard Deviation 

 

0.1 7.9 15.4 0.7  0.5 

 
         AR10 - D3 - Rep 1 23 5.4 112.8 53.1 64.8 70.1% 48.6 67.1% 

AR10 - D3 - Rep 2 7 5.8 106.5 27.8 64.3 83.7% 48.3 82.0% 

AR10 - D3 - Rep 3 16 5.6 108.0 69.7 64.8 59.6% 48.6 55.5% 

Average 

 

5.6 109.1 50.2 64.6 71.1% a 48.5 68.1% a 

Standard Deviation 

 

0.2 3.3 21.1 0.2 

 

0.2 

 
         AR30 - D3 - Rep 1 22 5.4 333.9 203.1 63.5 48.9% 47.6 46.8% 

AR30 - D3 - Rep 2 8 5.9 305.3 152.1 63.5 58.8% 47.6 56.9% 

AR30 - D3 - Rep 3 17 5.8 310.5 249.5 63.5 33.3% 47.6 30.3% 

Average 

 

5.7 316.6 201.6 63.5 47.0% b 47.6 44.7% b 

Standard Deviation 

 

0.3 15.2 48.7 0.0 

 

0.0 

 1
 Flow converted to mm of water depth over the strip area.  Flow for area ratio 30:1 is about 3 times the flow for 10:1 due to design of  

the experiment. 
2
 Rainfall for the first 15 min of the experiment excluded from total rainfall for a modified infiltration mass balance. 

 
3
 t-test H0: Mean (10:1) = Mean (30:1), no significant difference between the same letters at α = 0.05 in the two-tailed test. 
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is the reason why these times were quicker for AR30 strips when compared to AR10 

strips.  All four hydrographs for outflow in Figure 4.1 show that no outflow was detected 

with rainfall alone during the wetting period.  The rising limbs of the hydrographs show a 

decrease in the infiltration capacity of the buffer strip soil.  With time, the infiltration 

capacity did reach somewhat of a steady state condition, but did not reach a constant 

value.  The recessional limbs of the hydrographs show a sharp decrease in outflow after 

the rainfall and inflow were stopped, when compared with the rising limbs.  This sharp 

decrease indicates that potentially two processes are occurring, surface storage on the 

strips and infiltration, to rapidly reduce the outflow to zero.   

A steady-state condition can be considered for the last 10 min of the rainfall.  

Considering only the inflow, rainfall, and outflow for these 10 min, infiltration calculated 

as 45.3% for AR10-D0, 49.8% for AR10-D3, 48.9% for AR30-D0, and 32.4% for AR30-

D3 treatments, respectively.  The trend of higher infiltration with lower area ratio in these 

10 min was observed for sediment type D3.  The trend was reversed for sediment type D0 

indicating that infiltration capacity for AR30-D0 strips was higher than the AR10-D0 

strips for these 10 min. 

4.4.2 Dissolved pesticide concentration (Cout) 

Chlorpyrifos and linuron were not detected in both the inflow and outflow samples for 

treatments AR10-D0 and AR30-D0.  This was expected as no pesticide was added to 

these two treatments.  Trace amounts of atrazine was detected in inflow and outflow 

samples for these two treatments, but was below the quantitation limits.  Atrazine was not 

added to the inflow water or on the plots for these two treatments.  Poly-tanks, flow-lines, 

and pumps were the same when used for pesticide treatments and when used for the 
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Figure 4.2: Average inflow and outflow for three replications, and average rainfall for AR10-D0, AR30-D0, AR10-D3, and AR30-D3 

treatments. 
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treatment containing no pesticide.  All tanks, flow-lines, and pumps were thoroughly 

rinsed after each run.  Detection of atrazine in all inflow samples, for two of the 

replications, indicates some atrazine is desorbing from the flow lines.  Atrazine would 

have sorbed to the flow line material in the previous runs when pesticide applied 

sediment was used in the treatment. 

 For sediment type D3 treatments, atrazine, chlorpyrifos, and linuron dissolved 

concentrations are plotted as a function of time in Figures 4.3, 4.4, and 4.5, respectively.  

Atrazine concentrations for the AR10 treatment strips were lower in outflow than inflow.  

Only one of the three replications showed the trend of increasing concentration with the 

rising limb of the hydrograph (Figure 4.3).  This trend was not visible in any of the three 

replications in the AR30-D3 treatment for atrazine.  Rainfall dilution and sorption to the 

buffer strip soil are likely to cause the outflow concentrations to be lower earlier than 

later in the hydrograph.  No specific trends in the outflow concentrations indicate 

negligible effects of these two processes on the outflow concentrations for atrazine.  

Dissolved chlorpyrifos concentrations in inflow were higher than outflow for both AR10 

and AR30 treatment strips (Figure 4.4).  Outflow concentrations for both treatments 

showed an increase with the rising limb of the hydrograph before reaching somewhat of a 

steady-state concentration.  This indicates that both rainfall and sorption processes 

reached steady-state condition for chlorpyrifos.    

Two peaks were observed on the chromatographs when the linuron concentrations 

in toluene were processed for the accurate-mass ions and for the total ion current.  

Linuron standards at different concentrations showed the presence of the same two peaks 

at the same time on the chromatogram.  The masses for the two peaks were added 
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together to determine the linuron concentrations, although the R
2
 value for the 

concentration for the added mass was low (0.78).  The reasons for presence of two peaks 

could be decomposition, disintegration, and/or degradation of linuron into a secondary 

compound similar in structure to linuron.  The two peaks, when processed individually, 

had even lower R
2
 than the masses of the peaks added together.  As such, the results for 

linuron are estimates and the reader is advised to use caution when interpreting linuron 

data from this experiment.  Linuron concentrations in the dissolved phase for sediment 

type D3 are shown in Figure 4.5.  Outflow concentrations for both AR10 and AR30 strips 

were lower than the inflow strips.  Outflow concentrations for AR30, as in case of 

atrazine and chlorpyrifos, did show the same trend of gradually increasing with the rising 

limb of the hydrograph. 

A rainfall dilution factor can be calculated for the last 10 minutes of the inflow 

hydrograph, assuming steady-state conditions exist during this time period.  A complete 

mixing of the rainfall water will occur into the inflow, and thus, the infiltration water will 

be a complete mix of rainfall water and inflow.  The dilution factor, in this case of last ten 

minutes, will be a ratio of inflow divided by the sum of inflow and rainfall.  This dilution 

factor is calculated as 0.69 for the AR10 strips, and as 0.87 for the AR30 strips.  Thus, 

the outflow pesticide concentrations, mathematically, will be equal to the inflow 

concentrations reduced by 31% for the AR10 strips, and by 23% for the AR30 strips.  

Table 4.3 shows the average inflow, calculated outflow, and the average outflow 

pesticide concentrations for the last ten minutes of the rainfall.  In the case of dissolved 

chlorpyrifos concentrations for the AR10-D3 strips, measured outflow concentrations 

were lower by 45% than the calculated outflow concentrations.  The corresponding
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Figure 4.3: Dissolved atrazine concentrations in inflow (average) and in outflow for each replication. 
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Figure 4.4: Dissolved chlorpyrifos concentrations in inflow (average) and in outflow for each replication. 
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Figure 4.5: Dissolved linuron concentrations in inflow (average) and in outflow for each replication. 
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Table 4.3:  Dissolved pesticide concentrations in inflow, outflow, and outflow diluted for 

rainfall, for the AR10-D3 and AR30-D3 strips. 

 

Atrazine Concentration 

(µg/L) 

Chlorpyrifos Concentration 

(µg/L) 

Linuron Concentration 

(µg/L) 

Inflow 

[1] 

Outflow 

[2] 

Outflow 

[3] 

Inflow 

[1] 

Outflow 

[2] 

Outflo

w [3] 

Inflow 

[1] 

Outflow 

[2] 

Outflow 

[3] 

  

--------------------------------------- Treatment AR10-D3 ------------------------------------------- 

 

40 27 27 4 3 2 32 22 21 

  

--------------------------------------- Treatment AR30-D3 ------------------------------------------- 

 

28 24 24 5 4 3 33 29 28 

[1]  Measured inflow concentration is averaged for the last 10 minutes. 

[2]  Outflow concentration as calculated using the dilution factor of 31% for AR10 strips 

 and 23% for AR30 strips. 

[3]  Measured outflow concentration, averaged for the three replications and then averaged 

 for the last 10 minutes of inflow time period. 

 

number for the AR30 strips was 23%.   Measured concentrations lower than the 

calculated observations due to rainfall dilution indicates that sorption of chlorpyrifos is 

occurring to the buffer strip organic matter.  This is likely true as chlorpyrifos has a 

relatively high Koc of 6070.  In the case of the dissolved atrazine and linuron, the 

measured outflow concentrations are similar to the calculated outflow concentrations.  

Lack of any difference in these two outflow concentrations, for both sediment type D3 

treatments, indicates that very little sorption of atrazine and linuron is occurring to the 

buffer strips organic matter due to low Koc.  In case sorption is occurring, there is the 

possibility that the equilibrium between the dissolved mass and sorbed pesticide mass 

exists.  This equilibrium can cause the pesticide mass to shift from the sorbed phase to 

the dissolved phase resulting in very little difference between the observed dissolved 

concentration and rainfall diluted calculated concentrations.  
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4.4.3 Sediment mass retained   

Sediment mass concentrations in inflow and outflow, for all four treatments of 

AR10-D0, AR30-D0, AR10-D3, and AR30-D3, are presented in Figure 4.6.  Inflow and 

outflow sediment mass concentrations were corrected for total solids concentration in the 

rainfall samples.  This resulted in the inflow concentrations for AR10-D0 and AR30-D0 

strips to be slightly below zero but were set to zero as no sediment was added in the D0 

sediment type treatment.  Outflow concentrations for the AR10-D0 and AR30-D0 strips 

showed sediment mass concentrations ranging from 0 to 450 mg/L, with majority of data 

points falling in the range of 0 to 200 mg/L (Figure 4.6).  As no sediment was added to 

the simulated runoff into the buffer strips in the D0 treatment, presence of such sediment 

mass concentration shows that sediment is re-entrained into the flow from with the strips.  

The source of re-entrainment can be the buffer strip soil, previously deposited sediment 

or the eroded sediment at the exit point of outflow.  Sediment mass concentrations, when 

average for all outflow samples within a replication, and then averaged for the three 

replications, were 113 and 72 mg/L, respectively, for the AR10-D0 and AR30-D0 strips.  

The AR30 strips are likely to have higher flow velocities and can potentially re-entrain 

larger sediment mass than that for the AR10 strips.  Lower sediment mass concentrations 

are likely due to larger flow volume passing through the strips. Sediment mass 

concentrations for the AR10-D3 and AR30-D3 strips averaged 412 and 440 mg/L in 

inflow; and 431 and 426 mg/L in outflow for the two treatments, respectively.  Outflow 

concentrations, for both area ratio treatments for sediment type D3, ranged from 105 to 

790 mg/L.  This range indicates that both rainfall dilution and re-entrainment processes 

are occurring in the buffer strips.    
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Figure 4.6: Sediment mass concentrations in inflow (average) and in outflow for each replication. 
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Sediment mass in inflow and outflow was used to calculate sediment mass 

retention for the four treatments as presented in Table 4.4.  For sediment type D3, 

average sediment mass retention was 55.0% and 38.6% respectively for the AR10 and 

AR30 strips.  These two averages were significantly different at α = 0.05 in the two tailed 

t-test.  Sediment type D3 refers to particles smaller than 2 µm which can easily 

 

Table 4.4:  Sediment mass in inflow and outflow from the buffer strips, and percent 

sediment retained for two area ratios (AR10 and AR30) and two sediment types (D0 and 

D3). 

 

Replication Strip 

Strip 

Area Sediment In 
1
 Sediment Out 

Sediment 

Retained 
3
 

# # (m
2
) kg/ha 

2
 kg/ha (%) 

AR10 - D0 - Rep 1 3 5.8 0.0 115.6 x 

AR10 - D0 - Rep 2 10 5.6 0.0 27.1 x 

AR10 - D0 - Rep 3 18 5.6 0.0 38.5 x 

Averages 

 

5.6 0.0 60.4 x 

Standard Deviation 

 

0.1 0.0 48.1 

       

AR30 - D0 - Rep 1 4 5.8 0.0 138.6 x 

AR30 - D0 - Rep 2 12 5.5 0.0 111.3 x 

AR30 - D0 - Rep 3 15 5.6 0.0 99.2 x 

Averages 

 

5.6 0.0 116.3 x 

Standard Deviation 

 

0.1 0.0 20.2 

       

AR10 - D3 - Rep 1 23 5.4 493.0 219.1 55.6% 

AR10 - D3 - Rep 2 7 5.8 399.7 130.7 67.3% 

AR10 - D3 - Rep 3 16 5.6 461.2 259.8 43.7% 

Averages 

 

5.6 451.3 203.2 55.0% a 

Standard Deviation 

 

0.2 47.5 66.0 

       

AR30 - D3 - Rep 1 22 5.4 1512.5 891.7 41.0% 

AR30 - D3 - Rep 2 8 5.9 1357.8 612.4 54.9% 

AR30 - D3 - Rep 3 17 5.8 1331.0 1073.6 19.3% 

Averages 

 

5.7 1400.4 859.2 38.6% b 

Standard Deviation 

 

0.3 98.0 232.3 

   1
 Sediment mass is determined by multiplying sediment concentration with flow volume.   

  Sediment mass in inflow for area ratio 30:1 is about 3 times the flow for 10:1 due to design  

  of the experiment. 
  2

 Sediment mass converted to kg/ha over the strip area to account for variations in strip size. 
  3

 t-test H0: Mean (10:1) = Mean (30:1), no significant difference between the same letters at  

  α = 0.05 in the two-tailed test. 
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penetrate into the soil surface with infiltration water and/or adhere to grass tillers.  

Sediment mass retention, in the case of sediment type D3, does not represent sediment 

deposition in the buffer strip.  Infiltration water is thus carrying clay and smaller-sized 

particles with it.  The sediment mass contained in outflow is a mixture of particles 

introduced as input and re-entrained particles as shown by the concentration analysis.  

The average outflow mass from sediment type D0 was subtracted from the outflow mass 

for the sediment type D3, for the respective area ratios.  For the sediment type D3, the 

reduced sediment mass was divided by the actual sediment mass output.  For the area 

ratios 10:1 and 30:1, the outflow contained 70.3% ((203.2 - 60.4) / 203.2) and 86.5% of 

the input sediment mass, respectively.  The larger area ratio strips had a higher 

percentage of the input sediment mass in the outflow (due to greater flow depth) resulting 

in a lower percentage of clay particles penetrating into the buffer strip soil.  Since the 

particle size analysis samples were destroyed by accident during a facilities move, an 

evaluation of the particle size analysis results could not be performed.       

4.4.4 Sorbed pesticide concentration   

Sediment sorbed pesticide concentrations (Csi and Csout) are tabulated in Appendix 

C, along with the respective dissolved concentrations.  These concentrations were 

determined for all inflow and for combined sediment mass outflow samples.  Sediment 

mass in the outflow samples had to be combined to ensure enough pesticide mass was 

available for extraction, detection, and quantification.  Sorption coefficient (K) values 

(ratio of sorbed concentration to dissolved concentration) were determined and are 

tabulated in Appendix C.  
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There was no sediment in the inflow samples for sediment type D0.  As such, 

there were no sediment sorbed extracts to analyze.  Sorbed pesticide concentrations in the 

outflow for sediment type D0 were zero for all three pesticides.  Thus, there was no 

residual atrazine, chlorpyrifos, and linuron on buffer strip soil to create any complications 

with data interpretations.     

In the case of the sediment type D3 (clay-sized particles), atrazine sorption 

coefficients for the AR10 treatment averaged 59 (range from 48 – 70) and 54 (ranged 

from 37 – 97) in inflow and outflow, respectively.  The respective averages and ranges 

for the AR30-D3 treatment were 86 (63 - 132) in inflow and 71 (31 to 104) in outflow.  

Sorption coefficients for chlorpyrifos for the AR10-D3 treatment averaged in inflow as 

340 (ranged from 255 to 559) and in outflow as 502 (ranged from 250 to 819).  For 

AR30-D3 treatment, the respective averages and ranges were 522 (364 to 756) in inflow 

and 501 (282 to 622) in outflow.  For atrazine, the sorption coefficient values were lower 

in outflow than in inflow.  For chlorpyrifos, the sorption coefficient values for AR10 

strips were lower in inflow than in outflow, whereas the converse was true for AR30 

strips.  Sediment sorbed concentrations for both atrazine and chlorpyrifos were also lower 

for outflow than for inflow for both area ratios for sediment type D3.  Re-entrainment of 

sediment containing no pesticide is the reason why outflow concentrations for atrazine 

and chlorpyrifos were lower in outflow.  Linuron concentrations in sorbed phase were not 

detected both in inflow and outflow samples for the sediment type D3.  Linuron has a 

higher Koc value than atrazine.  Lack of detection of quantifiable data for sediment sorbed 

pesticide concentrations indicates that the clay-sized particles consisted of low organic 

matter content.     
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4.4.5 Pesticide mass retained 

Pesticide mass balance for sediment type D0 was not performed as the three 

pesticides were not detected in the inflow and outflow samples.  The pesticide mass 

balance, for both dissolved phase and sorbed phase pesticide mass for sediment type D3, 

is presented in Table 4.5.  The AR10 and AR30 strips retained an average of 70.1% and 

49.2% total atrazine mass for sediment type D3.  This difference in percent retention for 

atrazine between the two area ratios was significantly different in the two tailed t-test at α 

= 0.05.  The total sorbed mass for atrazine in inflow was 2.9% of the total input mass, 

averaged for both AR10 and AR30 strips.  It would be expected that this percentage 

should be relatively high as clay particles have large specific surface area.  At the average 

inflow sediment mass concentration of 425 mg/L, total clay-sized particle mass was not 

large enough for the percent input mass to be higher.  In comparison, sediment type D1 

had less than 0.1% atrazine in sorbed phase in inflow at an average sediment mass 

concentration of 2539 mg/L.  In case of sediment type D2, this number was 1.2% for 

atrazine, with an average sediment mass concentration of 2580 mg/L.  To compare 

pesticide sorption across sediment types, a Sediment Sorption Ratio (SSR) can be 

determined in terms of percent input sorbed mass per 1000 mg/L sediment mass 

concentration.  The SSR was calculated as 0.04, 0.47, and 6.82 for the sediment types D1, 

D2, and D3, respectively for atrazine.  Clay particles, thus, had the highest percent input 

sorbed atrazine mass per 1000 mg/L sediment mass concentration.  In terms of the sorbed 

mass retention, the AR10 strips retained 74.7% and the AR30 strips retained 58.5% 

atrazine for sediment type D3.  These two percent retentions were significantly different 

from each other.  The greater flow volume in case of the AR30 strips is the main reason 
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Table 4.5: Percent retained and dissolved, sorbed, and total pesticide masses in inflow and outflow of the AR10 and AR30 buffer 

strips for sediment type D3. 
    Atrazine Mass [1] Chlorpyrifos Mass Linuron Mass 

Replication Mass Dissolved [2] Sorbed [2] Total Dissolved Sorbed Total Dissolved Sorbed Total 

# Inflow / Outflow g/ha g/ha g/ha g/ha g/ha g/ha g/ha g/ha g/ha 

  

AR10 - D3 - Rep 1 

  

Inflow 46.8 1.2 47.9 4.9 0.623 5.5 39.3 - 39.3 

Outflow 14.8 0.334 15.1 0.842 0.112 0.954 11.7 - 11.7 

Retained (%) 68.3% 72.3% 68.4% 82.7% 82.1% 82.6% 70.1% - 70.1% 

  

AR10 - D3 - Rep 2 

  

Inflow 47.1 1.1 48.1 4.7 0.528 5.2 33.0 - 33.0 

Outflow 7.9 0.184 8.1 0.431 0.110 0.541 6.1 - 6.1 

Retained (%) 83.1% 82.7% 83.1% 90.9% 79.1% 89.7% 81.4% - 81.4% 

  

AR10 - D3 - Rep 3 
  

Inflow 35.2 0.959 36.2 3.6 0.633 4.2 33.3 - 33.3 

Outflow 16.0 0.298 16.2 0.836 0.219 1.1 12.5 - 12.5 

Retained (%) 54.7% 68.9% 55.1% 76.8% 65.3% 75.0% 62.4% - 62.4% 

  In 43.0 1.1 44.1 4.4 0.595 5.0 35.2 - 35.2 

Average Out 12.9 0.272 13.2 0.703 0.147 0.850 10.1 - 10.1 

  Retained (%) [3] 70.0% 74.7% 70.1% a 84.0% 75.3% 83.0% a 71.2% - 71.2% a 

Std. Dev. 

  

In 6.8 0.124 6.9 0.694 0.058 0.669 3.5   3.5 

Out 4.3 0.079 4.4 0.236 0.063 0.272 3.5   3.4 

           

  

AR30 - D3 - Rep 1 

  

In 82.0 3.0 85.0 14.1 3.3 17.4 106.1 - 106.1 

Out 42.1 1.3 43.4 6.5 1.4 8.0 52.9 - 52.9 

Retained (%) 48.7% 55.7% 48.9% 53.6% 56.3% 54.1% 50.1% - 50.1% 

  

AR30 - D3 - Rep 2 
  

In 104.4 3.1 107.5 13.8 2.7 16.6 89.6 - 89.6 

Out 44.9 0.987 45.9 4.3 0.894 5.2 35.4 - 35.4 

Retained (%) 57.0% 68.1% 57.3% 69.0% 67.2% 68.7% 60.5% - 60.5% 

  
AR30 - D3 - Rep 3 

  

In 81.4 3.7 85.1 15.0 3.6 18.6 105.6 - 105.6 

Out 49.9 1.7 51.6 7.8 1.3 9.1 61.2 - 61.2 

Retained (%) 38.7% 52.6% 39.3% 48.0% 63.1% 50.9% 42.1% - 42.1% 

  In 89.3 3.3 92.5 14.3 3.2 17.5 100.4 - 100.4 

Average Out 45.6 1.4 46.9 6.2 1.2 7.4 49.8 - 49.8 

  Retained (%) 48.9% 58.5% 49.2% b 56.6% 61.9% 57.6% a 50.4% - 50.4% b 

Std. Dev. 

  

In 13.1 0.350 13.0 0.630 0.424 1.0 9.4   9.4 

Out 3.9 0.377 4.2 1.8 0.282 2.0 13.2   13.2 

[1]  Mass of pesticides is converted  to g/ha over the strip area,  [2]  Dissolved mass refers to pesticide mass retained with infiltration water.  Sorbed mass refers to pesticide mass retained with  

Sediment,  [3] Two-tailed t-test with unequal variances with H0(mean AR10) = H1(mean AR30); no significant difference between same letters at α = 0.05,  [4] Standard deviation for inflow  

and outflow masses. 



 157 

 

 

for the retention to be lower at larger area ratio.  As clay-sized particles do not settle out, 

the process of particle penetration with infiltration water was the key contributing factor 

for sorbed atrazine retention.  In the dissolved phase, average atrazine retention was 

70.0% and 48.9% for the AR10 and AR30 buffer strips, respectively.  This difference 

was statistically significant between the two area ratios.  As infiltrating water mass is the 

carrier phase for dissolved pesticides, infiltration is the key factor for retention.   

Chlorpyrifos retention for the AR10 and AR30 strips for sediment type D3 

averaged 83.0% and 57.6%, respectively.  These two averages were not statistically 

different in the two tailed t-test at α = 0.05, although, the trend was lower retention at 

larger area ratio.  In the sorbed phase, chlorpyrifos mass was 11.2% and 18.2% of the 

total input mass for the two area ratios, respectively.  Higher sorption of chlorpyrifos than 

atrazine is mainly due to higher Koc for chlorpyrifos.  The AR10 and AR30 strips retained 

an average of 75.3% and 61.9% chlorpyrifos for sediment type D3 in the sorbed phase.  

This difference was significant between the two area ratios.  As clay particles are retained 

mainly by particle penetration, greater infiltration at lower area ratio was the key factor 

for higher sorbed phase chlorpyrifos retention. 

Average linuron retention by the AR10 and AR30 buffer strips for sediment type 

D3 was 71.2% and 50.4%, respectively.  This difference in percent retention for linuron 

between the two area ratios was significantly different in the two tailed t-test at α = 0.05.  

A statistically different infiltration rate between the two area ratios was the main reason 

for the lower percent retention of linuron at higher area ratio.  Linuron was detected in 

the sorbed phase in some of the D3 sediment samples for both inflow and outflow.  The 

concentrations were too low for quantification.  Literature suggests that linuron is sorbed 
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to organic matter to a greater extent than soil particles.  Lack of sediment sorbed linuron 

mass suggests that the clay fraction was low in large-sized organic particles.  All organic 

particles were fine enough (< 0.45 µm) to be included with the dissolved phase linuron 

concentration determination.  During sediment preparation by settling, any floating larger 

sized organic particles were retained in the particle separation tank (Figure 4.1).  Settled 

sediment and floating particles were left as only the required amount of water containing 

the desired particles was siphoned.  

4.5 Conclusions 

 This experiment represents a simulation study where large particles > 2 µm are 

not present in the runoff entering the buffer strips.  Such can be the case from no-till 

fields, pastures, and/or alfalfa fields.  Absence of larger particles made it easier to 

interpret the results of clay particles retention by buffer strips.  Under these experimental 

conditions, infiltration water mass retained by AR10 and AR30 buffer strips was 71.1% 

and 51.4% for sediment type D3 (clay particles), respectively.  In comparison, infiltration 

water mass for the treatment where no sediment was present was 67.9% and 47.0%, 

respectively for the two area ratios. The difference between the area ratios, for either 

sediment type, was significant at α = 0.05.  Presence of fine clay particles did not impede 

infiltration in the buffer strips for sediment type D3 for both area ratios.     

 In case of the treatment where no sediment was introduced in simulated runoff, 

re-entrainment of sediment into the runoff was observed.  Sources of this re-entrained 

sediment were the buffer strip soil, previously deposited sediment, and/or erosion at the 

exit point of the runoff.  Sediment concentrations in outflow averaged 113 and 72 mg/L, 

respectively, for the AR10-D0 and AR30-D0 strips.  The AR30 strips are likely to have 
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higher flow velocities and can potentially re-entrain larger sediment mass compared to 

the AR10 strips.  Lower sediment mass concentrations are likely due to larger flow 

volume passing through the strips, though the sediment mass re-entrained was higher 

with higher area ratio. 

 Average sediment mass retention for clay particles was 55.0% and 38.6% 

respectively for the AR10 and AR30 strips.  These two averages were significantly 

different at α = 0.05 in the two tailed t-test.  This sediment mass is retained by penetration 

of fine particles into the soil pores with the infiltration water.  Sediment mass retention, 

in the case of sediment type D3, does not represent sediment deposition in the buffer 

strips.  Assuming sediment mass re-entrained in sediment type D3 strips was similar to 

sediment type D2 strips, the outflow contained 70.3% and 86.5% of the input clay 

particles for the AR10 and AR30 buffer strips respectively.  Flow convergence, more 

present with the larger area ratio, thus will reduce the retention of clay-sized particles in 

the buffer strips.         

 There was a significant difference between the AR10 and AR30 strips for total 

atrazine mass retained for sediment type D3.   Strips retained an average of 70.1% and 

49.2% of the total atrazine mass for the smaller and larger area ratios, respectively.  This 

difference is mainly due to difference in total infiltration between the two area ratios.   

 Chlorpyrifos retention for AR10 and AR30 strips for sediment type D3 averaged 

83.0% and 57.6%, respectively.  These two averages were not statistically different in the 

two tailed t-test at α = 0.05, although, the trend was lower retention at larger area ratio.  

Lack of significance between the two area ratios indicates that the lower area ration 
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buffer strips can perform equally well for chlorpyrifos retention under conditions of flow 

convergence found with the area ratio 30:1 in this experiment. 

 Results showed sorption for linuron to clay particles to be below the detection 

limits.  This indicates that the clay particle suspension used in the experiment contained 

low organic matter as linuron sorbs better to organic carbon (Koc = 400) than atrazine 

(Koc = 100).  Results of linuron retention are estimates as the two unique mass peaks in 

the chromatograms were added together to obtain the total dissolved concentrations.  

Readers are advised to interpret results accordingly.  The AR10 and AR30 buffer strips 

for sediment type D3 retained on average, 71.2% and 50.4% of the input dissolved 

linuron, respectively.  This statistically significant difference between the two area ratios 

was mainly due to significantly different total infiltration.  Results indicate that the longer 

lengths of buffer strips (greater infiltration) will be more effective than shorter length 

buffer strips in case of linuron.          
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5.1 Abstract 

 VFSMOD-W, embedded with the empirical linear-additive pesticide mass 

retention model, was used to predict atrazine, chlorpyrifos, and linuron mass retention by 

1.0 m wide x 5.6 m long switchgrass buffer strips.  Simulated runoff with fine sand (53 - 

250 µm), fine aggregates (< 53 µm), and clay-sized particles (< 2 µm) were considered as 

three different inflow sediment mass characteristics treatments and compared under the 

source area to buffer area ratios of 10:1 and 30:1.  Saturated hydraulic conductivity (Ksat) 

of the switchgrass soil was the key factor in calibrating the model to the experimental 

conditions.  The calibrated model predicted infiltration mass retention for all three 

sediment types and the two area ratios with a Root Mean Squared Error (R.M.S.E.) of 

less than 5, indicating that the model performs well in predicting infiltration under flow 

convergence conditions.  Predicted sediment mass retention was higher than the 

measured value for five of the six treatments mainly due to the observed re-entrainment 

of sediment into the outflow.  Pesticide mass retained by the switchgrass buffer strips for 

both area ratios of sediment type D2, fine aggregates, was comparable between the  
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measured and predicted values for all three pesticides (average R.M.S.E. < 15), indicating 

that the model performs well for fine aggregates (d50 = 15 µm).  For clay and smaller-

sized particles (D50 = 1.5 µm), the pesticide mass retention was zero for both area ratios 

due to the design of the empirical linear-additive model.  For fine sands (D50 = 150 µm), 

the model predicted significantly higher retention of all three pesticide masses for both 

area ratios, indicating the model did not perform well for fine sands.   Predicted results 

indicate that the performance of the buffer strips receiving runoff from the farm fields 

containing large proportions of fine sand or clay-sized particles needs to be further 

investigated.               

5.2 Introduction 

 Agricultural runoff process simulation models allow for data analysis to predict 

the response of pesticide retention by the buffer strips.  Such models, by the design 

implemented by the modeler, can be either continuous-run or event-based models.  

Continuous-run models simulate several physical processes sequentially for the time 

duration specified by the modeler.  The time step, upon which the process interactions are 

calculated, typically depends upon the measured data available for calibration of the 

model; and can range from a second to a day.  Such a process-based model for predicting 

pesticide retention by the buffer strips, on a continuous basis, does not exist.   

 An event-based model for predicting pesticide retention by buffer strips has been 

proposed by Sabbagh et al. (2009).  Previously, the pesticide trapping efficiency of the 

buffer strips has been based on the physical characteristics of buffer strip slope and length 

in the direction of flow.  The proposed model is based on the percent infiltration and 

percent sediment retention by the buffer strips, a pesticide phase distribution parameter, 
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and the percent clay content in the runoff entering the buffer strips.  The five data sets 

used in the development of the model had percent clay content values of 21% to 30%, 

with only one data point with percent clay content of 48%.  The model was developed 

with a condition that the R.M.S.E. between the predicted and measured values of the 

pesticide mass retention by the buffer strips, using the five different evaluation data sets, 

should be less than 15%.  The buffer strip width-based empirical model predicted a 

higher R.M.S.E. of 38.7% using the evaluation data sets in comparison to new proposed 

numerical/empirical model which predicted an R.M.S.E of 14.5% for the same data sets.  

The authors also proposed a linking procedure for obtaining the percent infiltration and 

percent sediment mass retentions by the buffer strips from the Vegetative Filter Strip 

Modeling System, VFSMOD (Muñoz-Carpena et al. 1999, Muñoz-Carpena and Parsons, 

2004).  The authors concluded that the new numerical/empirical model approach 

significantly improved the predictability of the pesticide mass retention by the buffer 

strips over the previously used width-based empirical model.              

 Poletika et al. (2009) verified the pesticide mass retention predications produced 

by the newly proposed numerical/empirical approach by Sabbagh et al. (2009) in an 

experiment conducted on Galva silty clay loam with an average 28.9% clay content and 

2.58% organic carbon.  Simulated rainfall and simulated runoff experiments under two 

drainage area to buffer strip area ratios of 15:1 and 30:1 were studied with full buffer 

strip width and with 10% of the width receiving the simulated runoff.  In this experiment, 

the buffer strip width referred to the dimension of the strip perpendicular to the flow.  

Use of only 10% of the buffer strip width, thus, represented the concentrated flow in 

comparison to the use of the full width or uniform flow.  Under uniform flow conditions, 
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the authors reported no significant difference between the 15:1 and 30:1 area ratios.  

When averaged between the two area ratios, the buffer strips showed 59% infiltration, 

88% sediment mass retention, 85% total chlorpyrifos and 62% total atrazine mass 

retention.  In the case of concentrated flow, the performance measures were reduced 

regardless of the area ratio.  When averaged between the two area ratios, the buffer strips 

showed 16% infiltration, 31% sediment mass retention, 21% total chlorpyrifos and 12% 

total atrazine mass retention.  The authors reported that the un-calibrated VFSMOD and 

the empirical model proposed by Sabbagh et al. (2009) were capable of predicting the 

pesticide mass retention for both of the uniform and concentrated flow experimental 

conditions and for the two pesticides studied.  The authors concluded that due to 

significant differences between the flow regimes, the uniformity of flow was the key 

factor for pesticide mass retention in the experiment conducted.  This represents a logical 

conclusion, as on a per unit area basis, the use of 10% of the buffer strip area as 

concentrated flow path represents equivalent area ratios of 150:1 and 300:1 for the two 

treatments studied in the experiment.             

 The model proposed by Sabbagh et al. (2009) is a linear-additive model, with a 

major advantage that it requires minimal hydrological, soil, and pesticide properties data.  

In a typical use of this model, the non-equivalent nature of the recurrence intervals of 

runoff and design storm is ignored.  As such, the model can be used with user specified 

conditions for predicting pesticide retention by the buffer strips under a given set of 

hydrological and site conditions, and pesticide properties.  One major advantage of such a 

model is that the worst case scenarios of pesticide loss from the source areas can be 

modeled.  Experiments described in Chapters 3 and 4 represent the worst case scenario 
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where the maximum amount of the pesticide mass applied to the soil particles is lost in 

the runoff.  Use of such a model allows validation of how well the model performs under 

specific experimental conditions.  The objective of the application of this empirical 

model, to the experiments described in Chapters 3 and 4, is to evaluate how well the 

model predicts pesticide retention with runoff containing different sized particles, and 

secondly how well the model predicts the differences in pesticide retention resulting from 

flow convergence represented by the two different source areas to buffer area ratios.   

5.3 Empirical Model Application 

Sabbagh et al. (2009) developed a linear-additive model consisting of numerically 

and non-linearly derived terms; and is not a process-based model.  This 

numerical/empirical model is described by equations 5.1, 5.2 and 5.3: 

ΔP = 24.79 + 0.54 (ΔQ) + 0.52 (ΔE) – 2.42 ln(Fph +1) – 0.89 (%C) (5.1) 

 where  ΔP = pesticide reduction by buffer strips (%) 

ΔQ = runoff volume reduction by the buffer strips (%) 

ΔE = reduction in eroded sediment by buffer strips (%) 

Fph = phase distribution parameter, dimensionless 

%C = percent clay in incoming sediment 

  

Fph = Qi / (Kd Ei)   (5.2) 

 where  Qi = volume of water entering the buffer strips (L) 

Ei = mass of sediment entering the buffer strips (kg) 

Kd = linear sorption coefficient (L/kg) 

 

Kd =  Koc foc  (5.3) 

 where  Koc = adsorption coefficient (L/kg) 

  foc = fractional organic carbon in the soil 

 
Equation 5.1 consists of terms ΔQ and ΔE, which are derived from the Vegetative Filter 

Strip Modeling System, VFSMOD-W (Muñoz-Carpena et al. 1999, Muñoz-Carpena and 

Parsons, 2004).  VFSMOD is an event-based model, which numerically models flow 
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through a buffer strip and predicts infiltration and sediment retention.  VFSMOD-W has 

equations 5.1, 5.2, and 5.3 built into its code and predicts percent pesticide retention. 

Several parameter input values are required to obtain the predicted values of 

infiltration (ΔQ) and sediment retention (ΔE).  The procedure, explained by Sabbagh et 

al. (2009), was used to calculate these parameter values.  A buffer strip project in 

VFSMOD-W requires input for overland flow, soil properties, buffer vegetation 

properties, incoming sediment characteristics, storm hyetograph, source area storm 

runoff, and pesticide properties.  

Overland flow input requires the input of buffer length in the direction of flow 

and the buffer width perpendicular to flow.  The buffer strip dimensions in the 

experiments described in Chapters 3 and 4 were used as input values for these two 

parameters.  A segment roughness and slope of 0.4 and 2.5% were used as inputs, 

respectively.  Default kinematic wave numerical solution parameters, as recommended in 

the VFSMOD-W model documentation and user’s manual (Muñoz-Carpena and Parsons, 

2014), were used in the overland input file.   

Infiltration-buffer strip soil properties file required input of vertical saturated 

hydraulic conductivity which was estimated using the Soil – Plant – Air – Water (SPAW, 

2014) model.  The SPAW model has a soil water characteristics sub-program built into it 

which calculates saturated hydraulic conductivity for a given percent sand, percent clay, 

percent organic matter, and compaction factor.  Percent sand and percent clay from Table 

3.1 along with a 4% organic matter and a compaction factor of 0.9 were used.  A 

compaction factor of 1.0 is used with normal soils.  As the weather prior to the 

experiment was extremely dry, potential of cracks and dead roots existed in the buffer 
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strip soil.  As such, compaction factor of 0.9 was used to calculate the saturated hydraulic 

conductivity.  The soil water characteristics sub-program of the SPAW model also 

calculated moisture contents for wilting point, field capacity, and saturation, as percent 

volume, for the given set of conditions explained above.  In the infiltration-buffer strip 

soil properties file in VFSMOD-W, field capacity moisture content was used as initial 

moisture content.  This represented the moisture content in the soil at the start of the 

experiment, twelve hours after the irrigation had been applied to the buffer strips. 

One additional parameter required in the infiltration-buffer strip soil properties 

file for VFSMOD-W is the average suction at the wetting front.  This suction was 

calculated by using equation 5.4 given by Rawls and Brakensiek (1989) as: 

 

Hf = exp[6.5309 – 7.32561(Φ) + 0.001583 (C
2
) + 3.809479 (Φ

2
) +  

 0.000344 (S) (C) – 0.049837 (S) (Φ) + 0.001608 (S
2
) (Φ

2
) +  

 0.001602 (C
2
) (Φ

2
) – 0.0000136 (S

2
) (C) – 0.003479 (C

2
) (Φ) –  

 0.000799 (S
2
) (Φ)] (5.4) 

 

Where, Hf is Green-Ampt wetting front suction parameter (cm), S is percent sand, 

C is percent clay, and, Φ is porosity of the soil corrected for entrapped air, 

corrected porosity is 90% of the soil porosity (Fox et al, 2005). 

  

The height of the grass in the vegetation properties file was used as 25.4 cm as the 

switchgrass was cut to this height prior to the experiment.  Grass roughness and bare 

surface roughness were used as 0.012 and 0.04, respectively.  The rainfall hyetograph, 

inflow storm hydrograph, incoming sediment characteristics, and pesticide properties 

from the experiments (as described in Chapters 3 and 4) were used as inputs into 

VFSMOD-W.  Selected input parameters used in VFSMOD-W are provided in Table 5.1.  
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As the sediment particle size analysis samples for input and output from buffer strips 

were accidently destroyed during the water quality laboratory move to a new building, 

the values of the parameters listed in Table 5.1 were estimated from analysis performed 

for Figure 3.2. 

 

Table 5.1: Selected VFSMOD-W input parameter values used for predicting pesticide 

retention by buffer strips. 

 

 Sediment Type 

Parameter Fine Sand 

(D1) 

Fine 

Aggregates 

(D2) 

Clay-Sized 

Particles (D3) 

No Sediment 

(D0) 

Particle size of 

sediment entering the 

strip,  

D50 (µm) 

 

 

150 

 

 

15 

 

 

1.5 

 

 

0 

Portion of particles 

entering the strip with 

diameter > 37 µm (%) 

 

 

100 

 

 

30 

 

 

0 

 

 

0 

Organic matter content 

of the sediment (%) 

 

0.4 

 

4 

 

7 

 

0 

Clay content in inflow 

sediment (%) 

 

0 

 

30 

 

100 

 

0 

 

5.4 Results and Discussion 

5.4.1 VFSMOD-W calibration 

 The VFSMOD-W model predicted significantly lower infiltration than the 

observed infiltration without calibration.  Such low infiltration would result in flow 

volume being higher, thus affecting the sediment transport through the buffer strips.  A 

calibration of VFSMOD-W was thus performed before it could be used to predict the 

pesticide retention.  This calibration was performed using previously listed parameter 

values and inflow and outflow hydrographs for each replication of treatments AR10-D0 

and AR30-D0.  Parameters such as average suction at the wetting front, initial and 
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saturated moisture content of buffer strip soil, maximum surface storage, strip grass 

spacing, height, and roughness, and bare surface roughness had minimal impact on 

percent infiltration water mass.  The model was most sensitive to saturated hydraulic 

conductivity, Ksat of the buffer strip soil.  The value of Ksat was calibrated using percent 

infiltration observed for each replication.  For the AR10-D0 treatment, the values of Ksat 

averaged 9.9 cm/h (9.2, 9.4, and 11.0), whereas for the AR30-D0 treatment, this average 

was 19.8 cm/h (19.6, 21.9, 17.8), respectively.  The calibrated valued of Ksat for the 

respective area ratio treatments was significantly higher than the Ksat value obtained from 

the SPAW model (2.4 cm/h) or from the Web Soil Survey (USDA 2014) (3.2 cm/h).  

Using the SPAW model to predict texture for the calibrated Ksat, the texture was 

calculated as sandy loam (40% sand, 5% clay) for the AR10-D0 treatment and loamy 

sand (80% sand, 2% clay) for the AR30-D0 treatment.  The root density of switchgrass 

reaches its peak in Central Iowa around early August and then declines (Tufekcioglu et 

al. 1999).  Severe dry weather in the months preceding the experiments conducted in 

September 2013 could have led to root death and soil cracking resulting in opening of 

macropores.  Bharati et al. (2002) studied soil-water infiltration under crops, pasture and 

established riparian buffer in Midwestern USA.  They reported a 60 min cumulative 

infiltration of 23 cm in the switchgrass soil in Central Iowa in October months.  Bonin et 

al. (2012) studied soil physical and hydrological properties under three biofuel crops in 

Ohio and reported an average cumulative infiltration of 69 cm over three hours for 

switchgrass soil with a constant infiltration rate of 16.8 cm/h.  As switchgrass soil has 

been reported to show high infiltration rates, the calibrated values of Ksat were, therefore, 
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used to predict infiltration for the three sediment types and for the two area ratios, 

respectively.      

5.4.2 Infiltration water mass (Mx) 

The average inflow hydrographs and average rainfall hyetographs for all eight 

treatments are plotted in Figures 5.1 and 5.2.  Hydrographs for the average outflow 

(averaged for three replications for each treatment) and the outflow predicted by 

VFSMOD-W are also plotted in the same figures for the respective treatments.  The 

predicted hydrographs showed a sharp increase in outflow, a very steady increase in 

outflow after the initial rise, and a very sharp decline in outflow from buffer strips. The 

predicted outflow hydrographs for all treatments showed a small peak at the initiation of 

outflow for all treatments.  This peak in the rising limb of the hydrographs indicates that 

equilibrium between the inputs and outputs is reached a few minutes after the start of 

outflow.  The recessional limbs of the predicted outflow hydrographs for all four 

treatments follow the observed recessional limbs.  In a majority of the predicted 

hydrographs, the outflow started a few minutes earlier and stopped a few minutes later 

than the observed outflow.  Initially, the predicted outflow is higher than the measured 

outflow, and later in the hydrographs, the predicted outflow is lower.  The initial moisture 

content being lower than the values used in predictions is a possible reason for the 

outflow to start quicker than the measured outflow.  Some of the spread in the measured 

outflow is due to the average values of the three replications.  Overall, the percent 

infiltration mass predicted by VFSMOD-W (Table 5.2) was close to the measured value.  

The Root Mean Square Error (R.M.S.E.) for the AR10 between the measured and 

predicted percent infiltration was 4.5, whereas it was 2.9 for the AR30 buffer strips.  This 
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means that the calibrated model predicted the percent infiltration water mass fairly well 

for both area ratios.  This indicates that the model can accommodate flow convergence 

conditions when predicting infiltration water mass.  

5.4.3 Sediment mass retained   

            Sediment mass retention was predicted with the calibrated VFSMOD-W using 

sediment characteristics listed in Table 5.1.  The predicted and measured sediment mass 

retentions are presented in Table 5.2 for the respective treatments.  For sediment types D1 

and D2, for both area ratios, the predicted values were higher than the observed values.  

In the case of the sediment type D1, the model predicted 100% sediment mass retention  

 

Table 5.2:  Measured and VFSMOD-W predicted percent infiltration and sediment mass 

retention. 

 

Treatments Infiltration Water Mass (%) Sediment Mass Retention (%) 

 

Measured Predicted Measured Predicted 

AR10 - D0 67.9 68.0 Re-entrained 100.0 

AR10 - D1 71.7 68.0 96.4 100.0 

AR10 - D2 73.6 66.9 92.8 99.2 

AR10 - D3 71.1 67.2 55.0 59.0 

Average 72.1 67.4   

R.M.S.E. 

 

5.0 

 

4.8 

     AR30 - D0 51.4 51.7 Re-entrained 100.0 

AR30 - D1 48.9 50.8 89.8 100.0 

AR30 - D2 51.4 52.2 90.2 96.2 

AR30 - D3 48.7 52.1 38.6 9.5 

Average 49.7 51.7   

R.M.S.E. 

 

2.3 

 

18.1 

 

for both area ratios.  It did not predict any sediment re-entrainment, which is why the 

predicted retention is higher than the measured retention.  This is also the likely reason 

for the predicted results to be higher for sediment type D2 than for the measured results.  
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Figure 5.1: Average rainfall and inflow, and average and calibrated outflow for sediment type D0 and D3 treatments. 
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Figure 5.2: Average rainfall and inflow, and average and calibrated outflow for sediment type D1 and D2 treatments. 
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The predicted sediment mass retentions for sediment type D3 showed different results.  

For the treatment AR10, the predicted value was higher, whereas it was lower for the 

AR30 treatment, when compared with the measured values.  The likely reason for the 

AR30 predicted value being lower is a greater influence of flow convergence in the 

model calculations than for the observed values.  Consequently, the R.M.S.E. values for 

AR10 were lower than the AR30 treatments (Table 5.2).  This indicates that the 

predictive effect of flow convergence on clay-sized particles (< 2 µm) for sediment mass 

retention when using VFSMOD-W needs to be further investigated.   

5.4.4 Pesticide mass retained 

Using the predicted infiltration water mass and sediment mass retained from 

Table 5.2, the percent pesticide retention was calculated using equation 5.1, 5.2, and 5.3.  

The percent pesticide retention was obtained directly from the water quality output file of 

VFSMOD-W, as these equations are built into VFSMOD-W.  The total predicted and 

measured mass retentions, for the three pesticides, are presented in Table 5.3.  Sabbagh et  

 

Table 5.3:  Measured and VFSMOD-W predicted percent atrazine, chlorpyrifos, and 

linuron mass retention. 

 

Treatments Atrazine Retention Chlorpyrifos Retention Linuron Retention 

 

Measured Predicted Measured Predicted Measured Predicted 

AR10 - D1 73.0 96.8 87.2 100.0 80.5 100.0 

AR10 - D2 71.5 74.6 87.4 77.9 75.5 77.9 

AR10 - D3 70.1 0.0 83.0 0.0 71.2 0.0 

R.M.S.E.  42.8(17.0)  48.8(11.3)  42.6(13.9) 

       AR30 - D1 52.5 87.5 79.5 90.8 53.9 97.3 

AR30 - D2 53.7 65.5 71.3 83.4 57.5 68.4 

AR30 - D3 49.2 0.0 57.6 0.0 50.4 0.0 

R.M.S.E.  35.5(26.1)  34.6(11.7)  38.9(31.6) 
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al. (2009) noted that the five studies used to develop equation 5.1 and the five studies 

used to validate the model only had a percent clay range of 12% to 48%.  The model 

assumes that the source area and buffer area soil are same, and also assumes that the 

inflow into buffer strips contains same percent clay as the source area soil.  The model 

did not predict any pesticide retention (for sediment type D3) for both area ratios when 

the clay content of the inflow sediment was 100%.  Model modifications need to be 

considered when the percent clay content of the inflow sediment is 100%.  For sediment 

type D1, the model predicted nearly 100% pesticide mass retention for AR10 strips, and 

over 85% pesticide retention for AR30 strips.  For both area ratios, the model predicted 

pesticide retention for all three pesticides was higher than the measured retention in the 

case of sediment type D1.  For sediment type D2, the model predicted and the measured 

values for the three pesticide retentions for both area ratios were within the R.M.S.E 

tolerance value of 15% set by Sabbagh et al. (2009).  The R.M.S.E. value for the AR10-

D2 strips, across the three pesticides, was 5.9 and the corresponding number was 11.6 for 

the AR30-D2 strips.  This indicates that the model works well when predicting pesticide 

retention for sediment with d50 of 15 µm (sediment type D2).  When comparing between 

the AR10 and AR30 strips for all three sediment types, the R.M.S.E pesticide retention 

was higher for the AR10 strips than for the AR30 strips.  This is mainly due to the 

prediction of zero pesticide retention for sediment type D3.  Excluding the numbers for 

sediment type D3, the R.M.S.E (values in parenthesis in Table 5.3) was lower for AR10 

strips for all three pesticides than for AR30 strips.  This indicates that uncertainty in the 

predicted pesticide mass retention is increased with increased area ratio. 
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5.5 Conclusions 

VFSMOD-W was used to compare the predicted pesticide mass retention for the 

three pesticides, two area ratios, and the three sediment types with the measured 

retentions as described in Chapters 3 and 4.  The empirical pesticide mass retention 

model embedded into VFSMOD-W does not differentiate different sediment sizes in the 

inflow to the buffer strips, but only contains a percent clay term.  The purpose of such a 

comparison, thus, was to measure how well the model predicted pesticide retention under 

specific sediment sizes and different flow convergence conditions. 

The model calibration results indicate that saturated hydraulic conductivity (Ksat) 

can be greatly influence the percent infiltration by VFSMOD.  After calibration, the 

model predicted infiltration water mass for all three sediment types and area ratios fairly 

well (R.M.S.E. < 5).  This indicates that the model can handle the flow convergence 

conditions adequately for all three sediment types studied. 

Re-entrainment of sediment from the buffer strip soil or pre-deposited sediment or 

from the exit of outflow occurs.  This re-entrainment is the likely reason for the 

VFSMOD-W predicting sediment mass retentions to be higher than the measured values 

for AR10 and AR30 buffer strips for D1 and D2 sediment types.  For the AR30-D3 

treatment, the model predicted lower sediment mass retention than observed values, 

likely due to the effects of flow convergence.  These flow convergence effects on model 

predictions need to be further investigated. 

The empirical linear-additive model embedded within VFSMOD-W predicted that 

the buffer strips will not retain any of the three pesticides mass when the inflow sediment 

contains 100% clay or smaller sized particles (sediment type D3).  Under any field 
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application, any time the sum of the first four terms in the empirical model is less than the 

percent clay term, the model will predict zero pesticide mass retention.  As such, 

revisions to the model need to be considered to predict pesticide mass retention with 

greater accuracy.  

The calibrated VFSMOD-W model predicted pesticide mass retention for all three 

pesticides for fine aggregates (sediment type D2, D50 = 15 µm) very close to the 

measured values in the experiments for both area ratios.  This means that the model is 

well-suited for predicting pesticide mass retention under conditions of flow convergence 

when the inflow sediment size ranges between 2 µm to 53 µm.        
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CHAPTER 6.  GENERAL CONCLUSIONS   

 

6.1 General Discussion 

Buffer strips can take different shapes under different USDA-NRCS conservation 

practices such as riparian buffers, filter strips, grassed waterways, shelterbelts, 

windbreaks, living snow fences, contour grass strips, cross-wind trap strips, shallow 

water areas for wildlife, field borders, alley cropping, herbaceous wind barriers, and 

vegetative barriers.  The intent of the design upon which the buffer strips are based is to 

reduce the transport of runoff, sediment, nutrients, pesticides, pathogens, and other 

potential contaminants from source areas (agricultural fields) to the receiving water 

bodies.  Different applications of the buffer strips are subject to different site conditions 

in terms of crop rotations, tillage, and residue cover; and source area to buffer area ratios.  

These conditions can influence the sediment composition of the runoff leaving the source 

areas and the runoff transmission through the buffer strips.   

The experiments conducted as a part of this research represent situations where 

fine sand is either present or absent from runoff or the runoff consists only of clay or 

smaller sized particles.  Under typical applications of the buffer strips, this represents the 

upstream and downstream parts of buffer strips where one specific sediment type can be 

absent in the runoff.  In case of fine sand particle (53 - 250 µm), the buffer strips were 

able to retain majority of the pesticide mass sorbed with sediment as majority of the sand 

particles were trapped by sedimentation in the upstream end of the buffer strip under both 

area ratios.  Due to low organic matter content of the sand particle, the sorbed pesticide 

mass was low.  Fine aggregates, on the other hand, had higher organic matter content.  
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The results for pesticide retention were, however, similar between the two sediment types 

for the respective area ratios for the three pesticides studied.  For clay or smaller-sized 

particles (< 2 µm), particle penetration into the buffer strip soils with the infiltrating 

water was the key process for retention of sediment sorbed pesticide.  The Sediment 

Sorption Ratios (SSR) calculated for atrazine showed that clay-sized particles had largest 

percent pesticide mass per 1000 mg/L sediment mass concentration, followed by fine 

aggregated, and then by the fine sand particles.  Total pesticide mass retained with clay-

sized particles was significantly lower than the fine sand and fine aggregate sediment 

type for the lower area ratio. 

Flow convergence in terms of deeper flow depth in the case of the larger area 

ratio of 30:1 in comparison with 10:1, showed significant difference for atrazine due to 

significantly different infiltration.  This is mainly due the low sorption coefficient for 

atrazine.  Linuron data followed a similar trend as no quantifiable mass was detected 

sorbed to the sediment.  Linuron has a higher sorption coefficient, however, in these 

experiments; linuron behavior was similar to atrazine.  Chlorpyrifos data showed no 

significant difference between the area ratios, however, the trend was lower retention at 

higher area ratios. 

The calibrated VFSMOD-W, embedded with the empirical linear-additive model, 

predicted pesticide mass retention in the case of fine aggregates very well.  In the case of 

fine sand, the model predicted significantly higher pesticide reduction.  In the case of 

clay-sized particles, the model predicted no pesticide retention.  These differences mainly 

exist due to the design of the model.  In practical applications of buffer strips, the 

likelihood of runoff containing only fine sand is rare.  The runoff can contain 
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significantly high concentrations of clay particles under no-till tillage systems and low 

slope topography with good residue cover.  Modifications to this empirical linear-additive 

model should be considered to more accurately predict pesticide mass retention when 

runoff consists of higher concentrations of clay or fine sand.      

6.2 Recommendations for Future Research 

Sieving of ground soil to obtain specific particle sizes is a time consuming 

process.  Less time consuming methods for particle separation need to be developed 

which can produce particles from the source areas under consideration.  These methods 

need to consider the magnitude of field scale studies as a large mass of precisely 

separated particles is needed in such studies.  Such methods can be very helpful in the 

evaluation of several different agricultural practices on a field scale in relation to the 

nutrients, pesticides, and pathogens. 

Very limited data exists on the transport of pesticides through the buffer strips 

with sorption coefficient over 150.  Studies need to be considered with different 

pesticides with sorption coefficient higher than 150 to improve the pesticide retention 

predicting ability of the available models.  Re-entrainment of sediment into the flow 

exiting the buffer strips needs to be further evaluated.  This can help answer questions on 

changes in the outflow pesticide concentrations as reported in different studies. 

Most of the data extracted from the studies reviewed by Arora et al. (2010) 

represent buffer strips established on loamy/silty soils.  Sandy soils can have higher 

infiltration rates just based on the soil texture.  Clayey soils on the other hand can have 

cracks or large macro pores developed through them due to insect/earthworm populations 
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or due to the root mass decay, thus increasing the infiltration rates.  Future work should 

consider different soil textures outside of the 10% to 30% clay range.   

One of the major recommendations for future work with buffer strip studies is to 

perform mass balance analysis by considering inflow, rainfall, and outflow from each 

strip individually.  Experimental designs, where the analysis of data considering outflow 

from non-buffered plots as input for buffered plots is performed, are not appropriate and 

can lead to impractical results.  In such experimental designs, errors are introduced in 

analysis due to variability in non-buffered plots (due to micro topography and/or soil type 

difference) and can lead to outflow from non-buffered plots being lower in mass than the 

outflow from the buffered plots.  Secondly, rainfall over the buffer area should be 

considered as input in the mass balance, especially when the rain occurs during the flow 

transmission through the buffer strip.  Such experimental designs do not accurately 

represent field conditions as rainfall volume is part of infiltration. 

Arora et al. (2010) summarized the natural rainfall/runoff studies showing the 

temporal pattern of hydrologic conditions and their impact on pesticide retention.  This 

event by event variability is bound to happen in field conditions.  Best and worst runoff 

events should not be considered as performance indicators as they only represent either 

extreme.  At the same time, it is practically impossible to evaluate all combinations of 

site factors, hydrologic factors, and pesticide properties on field scale basis.  The 

empirical models developed to date have limited applicability.  Therefore, a process-

based model that can analyze these combinations for pesticide mass retention needs to be 

developed and validated.  Studies performed to date can, however, serve the purpose of 

validating the model.  Validation of such a process-based model will, however, require 
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additional studies to be undertaken, as several of the past studies have used very small 

test plots and area ratios.  In addition, several studies have not considered a complete 

mass balance considering all inputs and outputs, providing impractical data sets that 

cannot be used for model validation.  Several existing buffer strip models such as 

Agricultural Policy/Environmental eXtender (APEX), Riparian Ecosystem Management 

Model (REMM), Pesticide Root Zone Model (PRZM), Soil Water Assessment Tool 

(SWAT), VFSMOD-W (Vegetative Filter Strip Modeling System), Iowa State University 

Vegetative Infiltration Basin/Vegetative Treatment Area Model (ISU-VIB/VTA), Water 

Erosion Prediction Project (WEPP), and others can serve as platforms for such a process-

based pesticide mass retention model. 
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APPENDIX A. FIELD OBSERVATIONS AND EXPERIMENTAL FLOW DATA 

Appendix A1:  Field observations and experimental flow data for buffer strips replication 

AR10 – D1 – R1. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR10 - D1 - Rep 1 3 2 2,432 4.0 

Simulated Rainfall Start Time: 12:12 PM   

Simulated Rainfall Stop Time: 1:12 PM   

Sediment Mix Start Time: 11:57 AM   

Total Sediment Used (kg): 2.08   

Simulated Runoff Start Time: 12:27 PM   

Simulated Runoff Stop Time: 1:12 PM   

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data ------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time  Corrected Flow Rate Water Temp 

hh:mm Lpm hh:mm Lpm 
o
F 

12:27 13.21 12:45 Outflow started 

 12:37 13.29 12:47 0.93 80.9 

12:47 13.40 12:51 7.08 80.5 

12:57 13.32 12:56 8.72 80.3 

13:07 13.29 1:00 8.92 80.3 

13:12 13.29 1:04 9.18 80.1 

    1:11 9.08 80.1 

    1:12 2.42 80.0 

    1:13 2.42 80.0 

    1:14 Outflow stopped 

           

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

63 55 55 66 66 

6 (mm) 7 (mm)   

 

External Rain Gauges (Outside Strip Area) 

66 -   1 (mm) 2 (mm) 

Average Rainfall (mm) = 62 

 

0 0 
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Appendix A2:  Field observations and experimental flow data for buffer strips replication 

AR10 – D1 – R2. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR10 - D1 - Rep 2 14 24 2,846 5.0 

Simulated Rainfall Start Time: 12:35 PM   

Simulated Rainfall Stop Time: 1:35 PM   

Sediment Mix Start Time: 12:20 PM   

Total Sediment Used (kg): 2.08   

Simulated Runoff Start Time: 12:50 PM   

Simulated Runoff Stop Time: 1:35 PM   

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data --------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time 

Corrected Flow Rate 

Water Temp 

hh:mm Lpm hh:mm 
Lpm o

F 

12:50 13.44 13:03 Outflow started 

 13:00 13.29 13:04 3.74 64.6 

13:10 13.40 13:07 3.38 64.5 

13:20 13.32 13:11 7.34 64.5 

13:30 13.44 13:15 10.52 64.5 

13:35 13.40 13:18 5.78 64.4 

    13:22 10.05 64.3 

    13:26 10.90 64.3 

    13:29 10.90 64.3 

    13:32 10.51 64.3 

    13:35 10.51 64.3 

    13:36 12.84 64.2 

    13:37 5.79 64.2 

    13:38 1.93 64.2 

    13:41 Outflow stopped 

       

 

  

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

76 76 76 64 51 

6 (mm) 7 (mm) External Rain Gauges (Outside Strip Area) 

50 50   1 (mm) 2 (mm) 

Average Rainfall (mm) = 63 

 

0 0 
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Appendix A3:  Field observations and experimental flow data for buffer strips replication 

AR10 – D1 – R3. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR10 - D1  -Rep 3 19 19 2,861 4.5 

Simulated Rainfall Start Time: 11:30 AM   

Simulated Rainfall Stop Time: 12:45 PM   

Sediment Mix Start Time: 11:15 AM   

Total Sediment Used (kg): 2.01   

Simulated Runoff Start Time: 11:45 AM See note  

Simulated Runoff Stop Time: 12:45 PM  below 

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data --------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time Corrected Flow Rate Water Temp 

hh:mm Lpm hh:mm Lpm 
o
F 

11:45 13.51 12:19 Outflow started 

 11:55 13.29 12:21 10.23 72.0 

12:00 13.59 12:24 10.59 69.1 

12:15 13.74 12:30 11.28 66.9 

12:25 13.51 12:36 11.96 67.2 

12:35 13.29 12:40 10.55 67.7 

12:45 13.25 12:45 10.55 67.7 

    12:46 4.90 67.6 

    12:48 4.90 67.6 

    12:50 1.15 67.7 

    12:52 Outflow stopped 

           

Note: Simulator broke at 12 Noon, everything stopped, simulator, fixed and  

everything restarted at 12:15 PM   

          

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

58 64 64 64 76 

6 (mm) 7 (mm) External Rain Gauges (Outside Strip Area)  

56 64   1 (mm) 2 (mm) 

Average Rainfall (mm) = 64 

 

0 0 
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Appendix A4:  Field observations and experimental flow data for buffer strips replication 

AR30 – D1 – R1. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR30 - D1  -Rep 1 5 5 6,391 10.0 

Simulated Rainfall Start Time: 2:24 PM   

Simulated Rainfall Stop Time: 3:24 PM   

Sediment Mix Start Time: 2:09 PM   

Total Sediment Used (kg): 5.26   

Simulated Runoff Start Time: 2:39 PM   

Simulated Runoff Stop Time: 3:24 PM   

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data --------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time Corrected Flow Rate Water Temp 

hh:mm Lpm hh:mm Lpm 
o
F 

14:39 39.82 14:43 Outflow started 

 14:49 39.78 14:44 5.95 75.7 

14:59 39.78 14:46 8.92 75.3 

15:09 39.63 14:51 16.94 75.1 

15:19 39.56 14:54 17.95 74.8 

15:24 39.56 14:58 22.74 74.8 

    15:04 28.79 74.5 

    15:10 33.56 74.5 

    15:16 33.56 74.5 

    15:21 36.53 74.6 

    15:24 36.53 74.6 

    15:25 23.10 74.5 

    15:27 Outflow stopped 

           

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

53 56 61 76 - 

6 (mm) 7 (mm) External Rain Gauges (Outside Strip Area)  

66 69   1 (mm) 2 (mm) 

Average Rainfall (mm) = 64 

 

0 0 
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Appendix A5:  Field observations and experimental flow data for buffer strips replication 

AR30 – D1 – R2. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR30 - D1  -Rep 2 7 9 4,277 7.0 

Simulated Rainfall Start Time: 2:32 PM   

Simulated Rainfall Stop Time: 3:32 PM   

Sediment Mix Start Time: 2:17 PM   

Total Sediment Used (kg): 5.35   

Simulated Runoff Start Time: 2:47 PM   

Simulated Runoff Stop Time: 3:32 PM   

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data --------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time Corrected Flow Rate Water Temp 

hh:mm Lpm hh:mm Lpm 
o
F 

2:47 39.86 14:55 Outflow started 

 14:57 39.63 14:56 10.18 70.6 

15:07 39.71 15:00 22.27 70.6 

15:17 39.78 15:04 20.58 70.1 

15:27 39.94 15:09 29.21 70.1 

15:32 39.94 15:14 33.78 69.8 

    15:18 32.07 69.8 

    15:24 30.48 69.8 

    15:30 30.48 69.8 

    15:32 30.48 69.7 

    15:33 3.21 69.7 

    15:34 Outflow stopped 

           

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

69 64 64 58 64 

6 (mm) 7 (mm) External Rain Gauges (Outside Strip Area)  

61 64   1 (mm) 2 (mm) 

Average Rainfall (mm) = 63 

 

0 0 
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Appendix A6:  Field observations and experimental flow data for buffer strips replication 

AR30 – D1 – R3. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR30 - D1  -Rep 3 18 14 2,668 4.5 

Simulated Rainfall Start Time: 4:35 PM   

Simulated Rainfall Stop Time: 5:35 PM   

Sediment Mix Start Time: 4:20 PM   

Total Sediment Used (kg): 5.35   

Simulated Runoff Start Time: 4:50 PM   

Simulated Runoff Stop Time: 5:35 PM   

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data --------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time Corrected Flow Rate Water Temp 

hh:mm Lpm hh:mm Lpm 
o
F 

16:50 40.39 16:53 Outflow started 

 17:00 40.54 16:54 6.19 70.1 

17:10 39.86 16:56 18.02 69.5 

17:20 39.63 17:00 25.27 69.5 

17:30 39.71 17:04 27.43 69.4 

17:35 39.94 17:09 30.06 69.4 

    17:15 29.32 69.4 

    17:21 27.48 69.3 

    17:26 27.48 69.3 

    17:30 28.13 69.3 

    17:35 28.17 69.3 

    17:38 9.84 69.3 

    17:40 1.54 69.3 

    17:41 Outflow stopped 

           

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

51 64 94 64 64 

6 (mm) 7 (mm)  External Rain Gauges (Outside Strip Area) 

64 51   1 (mm) 2 (mm) 

Average Rainfall (mm) = 64 

 

0 0 
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Appendix A7:  Field observations and experimental flow data for buffer strips replication 

AR10 – D2 – R1. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR10 - D2  -Rep 1 6 6 7,386 11.0 

Simulated Rainfall Start Time: 4:20 PM   

Simulated Rainfall Stop Time: 5:20 PM   

Sediment Mix Start Time: 4:05 PM   

Total Sediment Used (kg): 2.09   

Simulated Runoff Start Time: 4:35 PM   

Simulated Runoff Stop Time: 5:20 PM   

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data --------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time Corrected Flow Rate Water Temp 

hh:mm Lpm hh:mm Lpm 
o
F 

16:35 13.29 16:42 Outflow started 

 16:49 13.67 16:44 0.94 74.8 

16:55 13.36 16:47 6.99 74.0 

17:00 13.40 16:50 7.68 73.8 

17:05 13.40 16:55 8.52 73.6 

17:10 13.59 17:00 9.13 73.6 

17:15 13.67 17:05 9.06 73.5 

17:20 13.67 17:10 8.47 73.5 

    17:15 8.47 73.5 

    17:20 8.62 73.5 

    17:22 0.78 73.5 

    17:25 Outflow stopped 

           

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

53 58 58 66 76 

6 (mm) 7 (mm)  External Rain Gauges (Outside Strip Area) 

64 -   1 (mm) 2 (mm) 

Average Rainfall (mm) = 63 

 

0 0 
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Appendix A8:  Field observations and experimental flow data for buffer strips replication 

AR10 – D2 – R2. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR10 - D2  -Rep 2 9 11 2,652 4.5 

Simulated Rainfall Start Time: 1:25 PM   

Simulated Rainfall Stop Time: 2:25 PM   

Sediment Mix Start Time: 1:10 PM   

Total Sediment Used (kg): 2.03   

Simulated Runoff Start Time: 1:40 PM   

Simulated Runoff Stop Time: 2:25 PM   

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data --------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time Corrected Flow Rate Water Temp 

hh:mm Lpm hh:mm Lpm 
o
F 

13:40 13.51 13:45 Outflow started 

 13:50 13.29 13:46 2.64 63.8 

14:00 13.59 13:50 3.77 63.8 

14:10 13.48 13:58 5.52 63.5 

14:20 13.51 14:04 5.49 63.5 

14:25 13.29 14:10 6.00 63.1 

    14:14 9.27 63.0 

    14:17 4.90 62.9 

    14:22 4.90 62.9 

    14:25 4.90 62.9 

    14:26 7.68 62.9 

    14:28 2.72 62.9 

    14:29 Outflow stopped 

           

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

64 71 64 64 69 

6 (mm) 7 (mm)  External Rain Gauges (Outside Strip Area) 

61 58   1 (mm) 2 (mm) 

Average Rainfall (mm) = 64 

 

0 0 
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Appendix A9:  Field observations and experimental flow data for buffer strips replication 

AR10 – D2 – R3. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR10 - D2 - Rep 3 17 13 3,181 9.5 

Simulated Rainfall Start Time: 2:40 PM   

Simulated Rainfall Stop Time: 3:40 PM   

Sediment Mix Start Time: 2:25 PM   

Total Sediment Used (kg): 2.08   

Simulated Runoff Start Time: 2:55 PM   

Simulated Runoff Stop Time: 3:40 PM   

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data --------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time Corrected Flow Rate Water Temp 

hh:mm Lpm hh:mm Lpm 
o
F 

14:55 13.59 15:14 Outflow started 

 15:05 13.67 15:16 5.28 70.6 

15:15 13.51 15:19 3.78 70.6 

15:25 13.67 15:23 5.62 70.1 

15:35 13.48 15:27 7.75 69.7 

15:40 13.29 15:30 8.37 69.7 

    15:34 7.75 69.7 

    15:36 8.66 69.7 

    15:38 8.66 69.5 

    15:40 8.66 69.5 

    15:41 7.84 69.5 

    15:43 3.85 69.5 

    15:45 Outflow stopped 

           

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

64 69 61 58 56 

6 (mm) 7 (mm)  External Rain Gauges (Outside Strip Area) 

64 64   1 (mm) 2 (mm) 

Average Rainfall (mm) = 62 

 

0 0 
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Appendix A10:  Field observations and experimental flow data for buffer strips 

replication AR30 – D2 – R1. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR30 - D2  -Rep 1 4 1 3,284 5.5 

Simulated Rainfall Start Time: 3:04 PM   

Simulated Rainfall Stop Time: 4:04 PM   

Sediment Mix Start Time: 2:49 PM   

Total Sediment Used (kg): 5.12   

Simulated Runoff Start Time: 3:19 PM   

Simulated Runoff Stop Time: 4:04 PM   

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data --------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time Corrected Flow Rate Water Temp 

hh:mm Lpm hh:mm Lpm 
o
F 

15:19 39.78 15:27 Outflow started 

 15:29 40.09 15:28 8.16 79.8 

15:39 40.54 15:31 19.32 79.7 

15:49 40.24 15:35 28.37 79.7 

15:59 39.82 15:41 28.31 79.6 

16:04 39.82 15:46 26.97 79.6 

    15:51 28.08 79.6 

    15:56 26.84 79.5 

    16:01 26.39 79.5 

    16:04 26.39 79.5 

    16:07 2.44 79.5 

    16:09 Outflow stopped   

      

 

  

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

53 58 64 64 66 

6 (mm) 7 (mm)  External Rain Gauges (Outside Strip Area) 

69 66   1 (mm) 2 (mm) 

Average Rainfall (mm) = 63 

 

0 0 
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Appendix A11:  Field observations and experimental flow data for buffer strips 

replication AR30 – D2 – R2. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR30 - D2  -Rep 2 13 21 2,439 4.0 

Simulated Rainfall Start Time: 10:25 AM   

Simulated Rainfall Stop Time: 11:25 AM   

Sediment Mix Start Time: 10:10 AM   

Total Sediment Used (kg): 5.25   

Simulated Runoff Start Time: 10:40 AM   

Simulated Runoff Stop Time: 11:25 AM   

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data --------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time Corrected Flow Rate Water Temp 

hh:mm Lpm hh:mm Lpm 
o
F 

10:40 39.78 10:44 Outflow started 

 10:50 39.82 10:45 5.96 65.3 

11:00 39.75 10:47 12.01 65.3 

11:10 39.63 10:50 18.57 65.3 

11:20 39.78 10:53 24.81 65.2 

11:25 39.78 10:56 29.02 65.1 

    11:01 26.71 65.0 

    11:07 29.07 65.0 

    11:13 29.07 65.0 

    11:18 31.01 65.0 

    11:21 30.72 65.0 

    11:25 30.72 65.0 

    11:26 29.18 65.0 

    11:27 12.33 65.0 

    11:28 2.15 65.0 

    11:30 Outflow stopped   

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

58 64 64 69 56 

6 (mm) 7 (mm) External Rain Gauges (Outside Strip Area) 

71 64   1 (mm) 2 (mm) 

Average Rainfall (mm) = 64 

 

0 0 
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Appendix A12:  Field observations and experimental flow data for buffer strips 

replication AR30 – D2 – R3. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR30 - D2  -Rep 3 20 20 2,792 4.5 

Simulated Rainfall Start Time: 1:45 PM   

Simulated Rainfall Stop Time: 2:45 PM   

Sediment Mix Start Time: 1:30 PM   

Total Sediment Used (kg): 5.25   

Simulated Runoff Start Time: 2:00 PM   

Simulated Runoff Stop Time: 2:45 PM   

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data --------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time Corrected Flow Rate Water Temp 

hh:mm Lpm hh:mm Lpm 
o
F 

14:00 40.01 14:05 Outflow started 

 14:10 39.82 14:06 5.39 69.6 

14:20 39.52 14:10 19.88 68.4 

14:30 39.63 14:16 24.18 68.4 

14:40 39.67 14:20 27.08 68.9 

14:45 39.67 14:27 28.64 68.5 

    14:33 24.22 68.5 

    14:39 30.65 68.6 

    14:41 30.65 68.5 

    14:45 30.65 68.6 

    14:46 22.11 68.6 

    14:48 6.52 68.6 

    14:50 0.95 68.6 

    14:52 Outflow stopped 

           

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

64 69 64 69 56 

6 (mm) 7 (mm)  External Rain Gauges (Outside Strip Area) 

69 51   1 (mm) 2 (mm) 

Average Rainfall (mm) = 63 

 

0 0 
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Appendix A13:  Field observations and experimental flow data for buffer strips 

replication AR10 – D3 – R1. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR10 - D3  -Rep 1 12 23 1,847 3.0 

Simulated Rainfall Start Time: 2:01 PM   

Simulated Rainfall Stop Time: 3:01 PM   

Sediment Mix Start Time: 1:49 PM   

Total Sediment Used (kg): Pre-Mixed Clay   

Simulated Runoff Start Time: 2:16 PM   

Simulated Runoff Stop Time: 3:01 PM   

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data --------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time Corrected Flow Rate Water Temp 

hh:mm Lpm hh:mm Lpm 
o
F 

14:16 13.51 14:25 Outflow started 

 14:26 13.48 14:26 2.61 63.5 

14:36 13.85 14:28 3.71 63.5 

14:46 13.48 14:31 4.53 63.1 

14:56 13.55 14:34 6.95 63.1 

15:01 13.55 14:37 8.57 63.0 

    14:40 9.22 63.0 

    14:42 7.81 62.8 

    14:47 7.81 62.8 

    14:50 8.14 62.8 

    14:53 9.23 62.7 

    14:56 8.42 62.7 

    15:00 8.95 62.7 

    15:01 8.95 62.7 

    15:02 6.85 62.7 

    15:03 5.50 62.7 

    15:04 2.47 62.7 

    15:05 Outflow stopped   

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

71 64 64 - 64 

6 (mm) 7 (mm)  External Rain Gauges (Outside Strip Area) 

64 64   1 (mm) 2 (mm) 

Average Rainfall (mm) = 65 

 

0 0 
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Appendix A14:  Field observations and experimental flow data for buffer strips 

replication AR10 – D3 – R2. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR10 - D3 - Rep 2 16 7 3,571 6.0 

Simulated Rainfall Start Time: 1:25 PM   

Simulated Rainfall Stop Time: 2:25 PM   

Sediment Mix Start Time: 1:10 PM   

Total Sediment Used (kg): Pre-Mixed Clay   

Simulated Runoff Start Time: 1:40 PM   

Simulated Runoff Stop Time: 2:25 PM   

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data --------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time Corrected Flow Rate Water Temp 

hh:mm Lpm hh:mm Lpm 
o
F 

13:40 13.55 14:05 Outflow started 

 13:50 13.63 14:06 4.08 71.4 

14:00 14.20 14:11 5.38 71.1 

14:10 13.51 14:14 7.52 70.6 

14:20 13.82 14:19 8.25 70.6 

14:25 13.29 14:22 10.09 70.6 

    14:25 10.09 70.6 

    14:26 Outflow stopped 

           

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

64 81 64 51 64 

6 (mm) 7 (mm)  External Rain Gauges (Outside Strip Area) 

64 -   1 (mm) 2 (mm) 

Average Rainfall (mm) = 64 

 

0 0 
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Appendix A15:  Field observations and experimental flow data for buffer strips 

replication AR10 – D3 – R3. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR10 - D3  -Rep 3 22 16 1,671 3.0 

Simulated Rainfall Start Time: 1:40 PM   

Simulated Rainfall Stop Time: 2:40 PM   

Sediment Mix Start Time: 1:25 PM   

Total Sediment Used (kg): Pre-Mixed Clay   

Simulated Runoff Start Time: 1:55 PM   

Simulated Runoff Stop Time: 2:40 PM   

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data --------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time Corrected Flow Rate Water Temp 

hh:mm Lpm hh:mm Lpm 
o
F 

13:55 13.14 14:01 Outflow started 

 14:05 13.29 14:02 3.14 69.4 

14:15 13.40 14:08 6.84 69.0 

14:25 13.40 14:15 8.51 69.6 

14:35 13.40 14:20 9.55 69.6 

14:40 13.40 14:28 10.28 69.6 

    14:33 11.54 69.6 

    14:39 12.32 69.6 

    14:40 12.32 69.6 

    14:42 10.43 69.6 

    14:44 3.86 69.6 

    14:48 Outflow stopped 

           

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

64 64 64 58 76 

6 (mm) 7 (mm)  External Rain Gauges (Outside Strip Area) 

64 -   1 (mm) 2 (mm) 

Average Rainfall (mm) = 65 

 

0 0 
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Appendix A16:  Field observations and experimental flow data for buffer strips 

replication AR30 – D3 – R1. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR30 - D3  -Rep 1 11 22 3,196 5.5 

Simulated Rainfall Start Time: 11:45 AM   

Simulated Rainfall Stop Time: 12:45 PM   

Sediment Mix Start Time: 11:30 AM   

Total Sediment Used (kg): Pre-Mixed Clay   

Simulated Runoff Start Time: 12:00 PM   

Simulated Runoff Stop Time: 12:45 PM   

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data --------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time Corrected Flow Rate Water Temp 

hh:mm Lpm hh:mm Lpm 
o
F 

12:00 40.01 12:03 Outflow started 

 12:10 40.01 12:05 10.57 62.9 

12:20 39.86 12:08 15.17 62.9 

12:30 39.75 12:14 21.46 62.5 

12:40 39.63 12:19 27.57 62.5 

12:45 39.63 12:24 27.10 62.5 

    12:29 28.31 62.4 

    12:33 29.74 62.4 

    12:36 29.74 62.4 

    12:41 32.00 62.3 

    12:45 32.00 62.3 

    12:46 25.34 62.4 

    12:47 4.54 62.4 

    12:49 Outflow stopped 

           

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

69 69 64 64 53 

6 (mm) 7 (mm)  External Rain Gauges (Outside Strip Area) 

64 -   1 (mm) 2 (mm) 

Average Rainfall (mm) = 64 

 

0 0 
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Appendix A17:  Field observations and experimental flow data for buffer strips 

replication AR30 – D3 – R2. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR30 - D3 - Rep 2 15 8 3,937 11.0 

Simulated Rainfall Start Time: 10:15 AM   

Simulated Rainfall Stop Time: 11:15 AM   

Sediment Mix Start Time: 10:00 AM   

Total Sediment Used (kg): Pre-Mixed Clay   

Simulated Runoff Start Time: 10:30 AM   

Simulated Runoff Stop Time: 11:15 AM   

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data --------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time Corrected Flow Rate Water Temp 

hh:mm Lpm hh:mm Lpm 
o
F 

10:30 39.78 10:35 Outflow started 

 10:40 39.86 10:37 4.62 60.1 

10:50 39.63 10:41 15.23 59.6 

11:00 39.71 10:45 19.45 59.6 

11:10 40.20 10:50 22.77 59.8 

11:15 40.20 10:57 23.42 59.8 

    11:02 25.94 59.6 

    11:07 25.93 59.6 

    11:11 25.93 59.5 

    11:14 27.05 59.5 

    11:15 27.05 59.6 

    11:16 24.87 59.6 

    11:17 10.57 59.5 

    11:18 1.77 59.5 

    11:19 Outflow stopped 

       

 

  

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

64 - - - 64 

6 (mm) 7 (mm)  External Rain Gauges (Outside Strip Area) 

64 -   1 (mm) 2 (mm) 

Average Rainfall (mm) = 64 

 

0 0 
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Appendix A18:  Field observations and experimental flow data for buffer strips 

replication AR30 – D3 – R3. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR30 - D3  -Rep 3 21 17 3,414 5.5 

Simulated Rainfall Start Time: 10:40 AM   

Simulated Rainfall Stop Time: 11:40 AM   

Sediment Mix Start Time: 10:25 AM   

Total Sediment Used (kg): Pre-Mixed Clay   

Simulated Runoff Start Time: 10:55 AM   

Simulated Runoff Stop Time: 11:40 AM   

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data --------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time Corrected Flow Rate Water Temp 

hh:mm Lpm hh:mm Lpm 
o
F 

10:55 40.01 10:58 Outflow started 

 11:05 39.78 11:00 21.43 65.5 

11:15 40.05 11:03 28.03 65.5 

11:25 39.90 11:09 32.28 65.5 

11:35 39.63 11:14 33.98 65.5 

11:40 39.63 11:20 34.42 65.5 

    11:25 35.61 65.4 

    11:32 35.77 65.5 

    11:37 35.77 65.5 

    11:39 34.27 65.5 

    11:40 32.52 65.5 

    11:42 20.81 65.5 

    11:44 5.26 65.5 

    11:46 0.89 65.5 

    11:48 Outflow stopped 

       

 

  

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

64 - 76 64 64 

6 (mm) 7 (mm)  External Rain Gauges (Outside Strip Area) 

64 51   1 (mm) 2 (mm) 

Average Rainfall (mm) = 64 

 

0 0 
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Appendix A19:  Field observations and experimental flow data for buffer strips 

replication AR10 – D0 – R1. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR10 - D0  -Rep 1 2 3 4,129 7.0 

Simulated Rainfall Start Time: 1:47 PM   

Simulated Rainfall Stop Time: 2:47 PM   

Sediment Mix Start Time: x   

Total Sediment Used: None   

Simulated Runoff Start Time: 2:02 PM   

Simulated Runoff Stop Time: 2:47 PM   

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data --------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time Corrected Flow Rate Water Temp 

hh:mm Lpm hh:mm Lpm 
o
F 

14:02 13.36 14:09 Outflow started 

 14:14 13.55 14:11 1.93 82.6 

14:24 13.29 14:13 4.50 82.4 

14:34 13.17 14:16 5.62 82.4 

14:44 13.32 14:20 8.91 82.3 

14:47 13.32 14:27 9.46 82.4 

    14:34 9.63 82.3 

    14:40 9.34 82.3 

    14:47 9.34 82.2 

    14:48 7.06 82.2 

    14:52 Outflow stopped 

       

 

  

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

64 61 53 76 76 

6 (mm) 7 (mm)  External Rain Gauges (Outside Strip Area) 

53 -   1 (mm) 2 (mm) 

Average Rainfall (mm) = 64 

 

0 0 
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Appendix A20:  Field observations and experimental flow data for buffer strips 

replication AR10 – D0 – R2. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR10 - D0  -Rep 2 8 10 4,080 6.5 

Simulated Rainfall Start Time: 4:00 PM   

Simulated Rainfall Stop Time: 5:00 PM   

Sediment Mix Start Time: x   

Total Sediment Used: None   

Simulated Runoff Start Time: 4:15 PM   

Simulated Runoff Stop Time: 5:00 PM   

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data --------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time Corrected Flow Rate Water Temp 

hh:mm Lpm hh:mm Lpm 
o
F 

16:15 13.29 16:24 Outflow started 

 16:25 13.40 16:25 2.98 69.8 

16:35 13.59 16:29 5.58 69.8 

16:39 13.67 16:35 7.15 69.7 

16:45 13.40 16:41 9.98 69.6 

16:50 13.29 16:45 10.33 69.6 

17:00 13.29 16:49 11.13 69.5 

    16:51 11.11 69.6 

    16:57 10.29 69.5 

    17:00 10.29 69.5 

    17:01 8.98 69.5 

    17:02 4.61 69.4 

    17:05 Outflow stopped   

      

 

  

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

69 69 58 64 64 

6 (mm) 7 (mm)  External Rain Gauges (Outside Strip Area) 

64 64   1 (mm) 2 (mm) 

Average Rainfall (mm) = 64 

 

0 0 
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Appendix A21:  Field observations and experimental flow data for buffer strips 

replication AR10 – D0 – R3. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR10 - D0  -Rep 3 24 18 2,453 4.0 

Simulated Rainfall Start Time: 4:00 PM   

Simulated Rainfall Stop Time: 5:00 PM   

Sediment Mix Start Time: x   

Total Sediment Used: None   

Simulated Runoff Start Time: 4:15 PM   

Simulated Runoff Stop Time: 5:00 PM   

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data --------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time Corrected Flow Rate Water Temp 

hh:mm Lpm hh:mm Lpm 
o
F 

16:15 13.67 16:29 Outflow started 

 16:25 13.85 16:30 0.82 73.6 

16:35 13.74 16:34 5.25 73.4 

16:45 13.89 16:40 7.55 72.6 

16:55 13.67 16:44 9.61 71.9 

17:00 13.67 16:49 9.86 71.9 

    16:54 9.94 71.9 

    16:58 10.15 71.9 

    17:00 10.15 71.9 

    17:01 9.65 71.9 

    17:03 3.16 71.9 

    17:05 0.79 71.9 

    17:07 Outflow stopped   

      

 

  

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

53 71 64 56 58 

6 (mm) 7 (mm)  External Rain Gauges (Outside Strip Area) 

69 71   1 (mm) 2 (mm) 

Average Rainfall (mm) = 63 63 0 0 
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Appendix A22:  Field observations and experimental flow data for buffer strips 

replication AR30 – D0 – R1. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR30 - D0  -Rep 1 1 4 4,281 7.0 

Simulated Rainfall Start Time: 11:05 AM   

Simulated Rainfall Stop Time: 12:05 PM   

Sediment Mix Start Time: x   

Total Sediment Used: None   

Simulated Runoff Start Time: 11:20 AM   

Simulated Runoff Stop Time: 12:05 PM   

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data --------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time Corrected Flow Rate Water Temp 

hh:mm Lpm hh:mm Lpm 
o
F 

11:20 39.56 11:24 Outflow started   

11:22 39.60 11:25 12.02 80.1 

11:30 39.52 11:27 16.06 80 

11:44 39.41 11:29 21.99 79.9 

11:49 39.71 11:34 23.78 79.8 

11:52 39.41 11:41 25.40 79.6 

12:00 39.71 11:47 29.33 79.6 

12:05 Stop 11:55 26.36 79.7 

    12:05 26.36 79.7 

    12:06 9.68 79.7 

    12:07 Outflow stopped   

          

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

79 64 56 64 61 

6 (mm) 7 (mm)  External Rain Gauges (Outside Strip Area) 

- -   1 (mm) 2 (mm) 

Average Rainfall (mm) = 65 

 

0 0 
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Appendix A23:  Field observations and experimental flow data for buffer strips 

replication AR30 – D0 – R2. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR30 - D0  -Rep 2 10 12 3,856 6.0 

Simulated Rainfall Start Time: 5:05 PM  See note below 

Simulated Rainfall Stop Time: 6:05 PM   

Sediment Mix Start Time: x   

Total Sediment Used: None   

Simulated Runoff Start Time: 5:20 PM   

Simulated Runoff Stop Time: 6:05 PM   

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data --------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time Corrected Flow Rate Water Temp 

hh:mm Lpm hh:mm Lpm 
o
F 

17:20 39.82 17:24 Outflow started 

 17:30 39.86 17:26 7.01 63.4 

17:40 39.90 17:29 10.59 63.1 

17:50 39.82 17:32 15.20 63.1 

18:00 39.71 17:35 16.07 63.1 

18:05 39.78 17:39 22.05 63.0 

    17:43 25.54 63.0 

Note: Rainfall simulator initial 

startup at 4:40 PM, broke after 10 

seconds, everything stopped, 

simulator fixed, and run re-started 

at 5:05 PM. 

17:48 26.37 63.0 

17:54 31.01 63.0 

18:00 32.66 63.0 

18:03 27.56 62.9 

18:05 28.02 62.9 

18:06 21.78 62.9 

    18:07 Outflow stopped   

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

69 71 64 64 53 

6 (mm) 7 (mm)  External Rain Gauges (Outside Strip Area) 

58 64   1 (mm) 2 (mm) 

Average Rainfall (mm) = 63 

 

0 0 
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Appendix A24:  Field observations and experimental flow data for buffer strips 

replication AR30 – D0 – R3. 

 

Replication Run Strip Irrigation  

# # # Amount (L) Duration (hr) 

AR30 - D0  -Rep 3 23 15 2,400 4.0 

Simulated Rainfall Start Time: 2:15 PM   

Simulated Rainfall Stop Time: 3:15 PM   

Sediment Mix Start Time: x   

Total Sediment Used: None   

Simulated Runoff Start Time: 2:30 PM   

Simulated Runoff Stop Time: 3:15 PM   

   

 ----------- Inflow Data ---------  ---------------------------- Outflow Data --------------------------- 

Clock Time 

Corrected 

Flow Rate Clock Time Corrected Flow Rate Water Temp 

hh:mm Lpm hh:mm Lpm 
o
F 

14:30 40.01 14:34 Outflow started 

 14:40 39.82 14:35 6.20 72.1 

14:50 39.78 14:37 13.27 72.1 

15:00 39.71 14:41 23.01 72.0 

15:10 40.01 14:46 25.49 71.7 

15:15 39.78 14:51 29.05 71.7 

    14:56 27.62 71.7 

    15:01 29.70 71.7 

    15:05 29.14 71.7 

    15:10 29.86 71.7 

    15:14 29.99 71.7 

    15:15 29.92 71.7 

    15:17 23.18 71.7 

    15:19 1.70 71.7 

    15:20 Outflow stopped   

Rain Gauges on the Strip Area (up to 7 gauges)     

1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm) 

64 71 56 64 69 

6 (mm) 7 (mm) External Rain Gauges (Outside Strip Area) 

64 58   1 (mm) 2 (mm) 

Average Rainfall (mm) = 64 

 

0 0 
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APPENDIX B. SEDIMENT MASS AND DISSOLVED  

PESTICIDE CONCENTRATIONS 

 

Sediment mass concentrations and dissolved phase pesticide concentrations in 

inflow (in) and outflow (out) from the buffer strips.  n. d. is not detected, d. b.q.l. is 

detected but below quantitation limit.  Sampling time for inflow is from start of inflow 

and for outflow is from start of outflow.  Sediment mass concentrations for all samples 

are corrected for total solids concentration in the rainfall sample for the respective 

treatment. 

Treatment 

and  

Replication 

  
Corrected 

Sediment Mass 

Concentration  

Dissolved Phase Concentration 

Sample 

I.D. Time Atrazine Chlorpyrifos Linuron 

# # min mg/L µg/L µg/L µg/L 

AR10 - D1 - R1 In - 1A 10 2552 21 3 34 

AR10 - D1 - R1 In - 2A 20 2498 19 3 31 

AR10 - D1 - R1 In - 3A 30 2591 18 2 35 

AR10 - D1 - R1 In - 4A 40 2497 18 2 36 

       AR10 - D1 - R1 Out 1 2 405 5 1 5 

AR10 - D1 - R1 Out 2 4 340    

AR10 - D1 - R1 Out 3 6 255 8 1 10 

AR10 - D1 - R1 Out 4 8 305    

AR10 - D1 - R1 Out 5 10 240    

AR10 - D1 - R1 Out 6 12 230 9 1 12 

AR10 - D1 - R1 Out 7 14 300    

AR10 - D1 - R1 Out 8 16 250    

AR10 - D1 - R1 Out 9 18 220 13 1 19 

AR10 - D1 - R1 Out 10 20 190    

AR10 - D1 - R1 Out 11 22 135    

AR10 - D1 - R1 Out 12 24 165 12 1 19 

AR10 - D1 - R1 Out 13 26 25    

AR10 - D1 - R1 Out 14 28 135 13 1 18 

AR10 - D1 - R1 Rainfall 

 

0 n.d. n. d. n. d. 

       AR10 - D1 - R2 In - 1A 10 2500 20 2 33 

AR10 - D1 - R2 In - 2A 20 2555 20 2 33 

AR10 - D1 - R2 In - 3A 30 2580 21 1 33 

AR10 - D1 - R2 In - 4A 40 2563 23 2 38 

       AR10 - D1 - R2 Out 1 2 100 7 d, b.q.l. 7 

AR10 - D1 - R2 Out 2 4 60    
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Treatment 

And 

Replication 

  
Corrected 

Sediment Mass 

Concentration  

Dissolved Phase Concentration 

Sample 

I.D. Time Atrazine Chlorpyrifos Linuron 

# # min mg/L µg/L µg/L µg/L 

AR10 - D1 - R2 Out 3 6 110 9 d, b.q.l. 10 

AR10 - D1 - R2 Out 4 8 137    

AR10 - D1 - R2 Out 5 10 175    

AR10 - D1 - R2 Out 6 12 141 9 d, b.q.l. 11 

AR10 - D1 - R2 Out 7 14 95    

AR10 - D1 - R2 Out 8 16 110    

AR10 - D1 - R2 Out 9 18 160 13 d, b.q.l. 16 

AR10 - D1 - R2 Out 10 20 100    

AR10 - D1 - R2 Out 11 22 160    

AR10 - D1 - R2 Out 12 24 160 14 d, b.q.l. 18 

AR10 - D1 - R2 Out 13 26 185    

AR10 - D1 - R2 Out 14 28 135    

AR10 - D1 - R2 Out 15 30 125 13 1 18 

AR10 - D1 - R2 Out 16 32 140    

AR10 - D1 - R2 Out 17 34 105    

AR10 - D1 - R2 Out 18 36 132 15 1 20 

AR10 - D1 - R2 Rainfall 

 

0 d, b.q.l. n.d. n. d. 

       AR10 - D1 - R3 In - 1A 10 2527 22 2 27 

AR10 - D1 - R3 In - 2A 20 2461 21 2 28 

AR10 - D1 - R3 In - 3A 30 2445 22 2 31 

AR10 - D1 - R3 In - 4A 40 2475 21 2 29 

       AR10 - D1 - R3 Out 1 2 295 7 d, b.q.l. 5 

AR10 - D1 - R3 Out 2 4 293    

AR10 - D1 - R3 Out 3 6 285 9 1 8 

AR10 - D1 - R3 Out 4 8 278    

AR10 - D1 - R3 Out 5 10 308    

AR10 - D1 - R3 Out 6 12 270 10 1 9 

AR10 - D1 - R3 Out 7 14 240    

AR10 - D1 - R3 Out 8 16 280    

AR10 - D1 - R3 Out 9 18 268 13 1 11 

AR10 - D1 - R3 Out 10 20 265    

AR10 - D1 - R3 Out 11 22 273    

AR10 - D1 - R3 Out 12 24 300 15 1 13 

AR10 - D1 - R3 Out 13 26 215    

AR10 - D1 - R3 Out 14 28 225    
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Treatment 

And 

Replication 

  
Corrected 

Sediment Mass 

Concentration  

Dissolved Phase Concentration 

Sample 

I.D. Time Atrazine Chlorpyrifos Linuron 

# # min mg/L µg/L µg/L µg/L 

AR10 - D1 - R3 Out 15 30 208 14 1 12 

AR10 - D1 - R3 Rainfall 

 

0 n.d. n. d. n. d. 

       AR30 - D1 - R1 In - 1A 10 2595 28 4 37 

AR30 - D1 - R1 In - 2A 20 2675 28 3 38 

AR30 - D1 - R1 In - 3A 30 2527 25 3 33 

AR30 - D1 - R1 In - 4A 40 2457 23 3 32 

       AR30 - D1 - R1 Out 1 2 565 18 1 18 

AR30 - D1 - R1 Out 2 4 565    

AR30 - D1 - R1 Out 3 6 452 19 1 23 

AR30 - D1 - R1 Out 4 8 460    

AR30 - D1 - R1 Out 5 10 458    

AR30 - D1 - R1 Out 6 12 460 20 1 27 

AR30 - D1 - R1 Out 7 14 488    

AR30 - D1 - R1 Out 8 16 450    

AR30 - D1 - R1 Out 9 18 365 19 1 31 

AR30 - D1 - R1 Out 10 20 355    

AR30 - D1 - R1 Out 11 22 365    

AR30 - D1 - R1 Out 12 24 325 18 2 33 

AR30 - D1 - R1 Out 13 26 285    

AR30 - D1 - R1 Out 14 28 355    

AR30 - D1 - R1 Out 15 30 395    

AR30 - D1 - R1 Out 16 32 280 21 1 27 

AR30 - D1 - R1 Out 17 34 330    

AR30 - D1 - R1 Out 18 36 325    

AR30 - D1 - R1 Out 19 38 295    

AR30 - D1 - R1 Out 20 40 315 24 1 32 

AR30 - D1 - R1 Out 21 42 275    

AR30 - D1 - R1 Rainfall 

 

0 n.d. n. d. n. d. 

       AR30 - D1 - R2 In - 1A 10 2359 27 4 38 

AR30 - D1 - R2 In - 2A 20 2568 30 4 39 

AR30 - D1 - R2 In - 3A 30 2623 27 3 37 

AR30 - D1 - R2 In - 4A 40 2515 27 3 38 

       AR30 - D1 - R2 Out 1 2 280 21 1 24 
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Treatment 

And 

Replication 

  
Corrected 

Sediment Mass 

Concentration  

Dissolved Phase Concentration 

Sample 

I.D. Time Atrazine Chlorpyrifos Linuron 

# # min mg/L µg/L µg/L µg/L 

AR30 - D1 - R2 Out 2 4 325    

AR30 - D1 - R2 Out 3 6 275 19 1 21 

AR30 - D1 - R2 Out 4 8 265    

AR30 - D1 - R2 Out 5 10 310    

AR30 - D1 - R2 Out 6 12 240 19 1 23 

AR30 - D1 - R2 Out 7 14 250    

AR30 - D1 - R2 Out 8 16 241    

AR30 - D1 - R2 Out 9 18 270 20 1 24 

AR30 - D1 - R2 Out 10 20 250    

AR30 - D1 - R2 Out 11 22 245    

AR30 - D1 - R2 Out 12 24 245 23 1 27 

AR30 - D1 - R2 Out 13 26 180    

AR30 - D1 - R2 Out 14 28 205    

AR30 - D1 - R2 Out 15 30 175    

AR30 - D1 - R2 Out 16 32 191 24 1 29 

AR30 - D1 - R2 Out 17 34 205    

AR30 - D1 - R2 Out 18 36 200    

AR30 - D1 - R2 Out 19 38 191 22 1 26 

AR30 - D1 - R2 Rainfall 

 

0 d, b.q.l. n.d. n. d. 

       AR30 - D1 - R3 In - 1A 10 2655 26 2 31 

AR30 - D1 - R3 In - 2A 20 2493 27 2 37 

AR30 - D1 - R3 In - 3A 30 2538 26 2 36 

AR30 - D1 - R3 In - 4A 40 2585 27 2 29 

       AR30 - D1 - R3 Out 1 2 463 19 1 20 

AR30 - D1 - R3 Out 2 4 560    

AR30 - D1 - R3 Out 3 6 550 18 1 16 

AR30 - D1 - R3 Out 4 8 619    

AR30 - D1 - R3 Out 5 10 917    

AR30 - D1 - R3 Out 6 12 680 19 1 22 

AR30 - D1 - R3 Out 7 14 615    

AR30 - D1 - R3 Out 8 16 720    

AR30 - D1 - R3 Out 9 18 599 23 1 27 

AR30 - D1 - R3 Out 10 20 705    

AR30 - D1 - R3 Out 11 22 669    

AR30 - D1 - R3 Out 12 24 492 19 1 26 
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Treatment 

And 

 Replication 

  
Corrected 

Sediment Mass 

Concentration  

Dissolved Phase Concentration 

Sample 

I.D. Time Atrazine Chlorpyrifos Linuron 

# # min mg/L µg/L µg/L µg/L 

AR30 - D1 - R3 Out 13 26 587    

AR30 - D1 - R3 Out 14 28 950    

AR30 - D1 - R3 Out 15 30 528    

AR30 - D1 - R3 Out 16 32 796 20 1 29 

AR30 - D1 - R3 Out 17 34 528    

AR30 - D1 - R3 Out 18 36 649    

AR30 - D1 - R3 Out 19 38 485    

AR30 - D1 - R3 Out 20 40 478 20 1 28 

AR30 - D1 - R3 Out 21 42 689    

AR30 - D1 - R3 Out 22 44 695    

AR30 - D1 - R3 Out 23 46 545 18 1 27 

AR30 - D1 - R3 Rainfall 

 

0 d, b.q.l. n.d. n. d. 

       AR10 - D2 - R1 In - 1A 10 2653 35 5 34 

AR10 - D2 - R1 In - 2A 20 2518 32 4 33 

AR10 - D2 - R1 In - 3A 30 2535 33 4 32 

AR10 - D2 - R1 In - 4A 40 2515 39 4 35 

       AR10 - D2 - R1 Out 1 2 403 15 1 10 

AR10 - D2 - R1 Out 2 4 423    

AR10 - D2 - R1 Out 3 6 378 21 1 17 

AR10 - D2 - R1 Out 4 8 358    

AR10 - D2 - R1 Out 5 10 317    

AR10 - D2 - R1 Out 6 12 403 22 2 20 

AR10 - D2 - R1 Out 7 14 361    

AR10 - D2 - R1 Out 8 16 373    

AR10 - D2 - R1 Out 9 18 303 22 2 19 

AR10 - D2 - R1 Out 10 20 368    

AR10 - D2 - R1 Out 11 22 351    

AR10 - D2 - R1 Out 12 24 288 27 2 23 

AR10 - D2 - R1 Out 13 26 563    

AR10 - D2 - R1 Out 14 28 528    

AR10 - D2 - R1 Out 15 30 500 24 2 20 

AR10 - D2 - R1 Out 16 32 393    

AR10 - D2 - R1 Out 17 34 353    

AR10 - D2 - R1 Out 18 36 428 23 2 21 

AR10 - D2 - R1 Out 19 38 418    
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Treatment 

And 

Replication 

  
Corrected 

Sediment Mass 

Concentration  

Dissolved Phase Concentration 

Sample 

I.D. Time Atrazine Chlorpyrifos Linuron 

# # min mg/L µg/L µg/L µg/L 

AR10 - D2 - R1 Out 20 40 448 24 2 23 

AR10 - D2 - R1 Rainfall 

 

0 n.d. n. d. n. d. 

       AR10 - D2 - R2 In - 1A 10 2575 35 4 29 

AR10 - D2 - R2 In - 2A 20 2608 35 3 30 

AR10 - D2 - R2 In - 3A 30 2550 36 3 31 

AR10 - D2 - R2 In - 4A 40 2655 34 3 29 

       AR10 - D2 - R2 Out 1 2 1011 15 d, b.q.l. 10 

AR10 - D2 - R2 Out 2 4 910    

AR10 - D2 - R2 Out 3 6 1076 18 d, b.q.l. 11 

AR10 - D2 - R2 Out 4 8 1080    

AR10 - D2 - R2 Out 5 10 1045    

AR10 - D2 - R2 Out 6 12 1015 24 1 17 

AR10 - D2 - R2 Out 7 14 1051    

AR10 - D2 - R2 Out 8 16 1045    

AR10 - D2 - R2 Out 9 18 982 23 1 17 

AR10 - D2 - R2 Out 10 20 982    

AR10 - D2 - R2 Out 11 22 1076    

AR10 - D2 - R2 Out 12 24 1070 26 1 19 

AR10 - D2 - R2 Out 13 26 645    

AR10 - D2 - R2 Out 14 28 465    

AR10 - D2 - R2 Out 15 30 430    

AR10 - D2 - R2 Out 16 32 495 23 1 19 

AR10 - D2 - R2 Out 17 34 325    

AR10 - D2 - R2 Out 18 36 325    

AR10 - D2 - R2 Out 19 38 375    

AR10 - D2 - R2 Out 20 40 255 24 1 21 

AR10 - D2 - R2 Out 21 42 220    

AR10 - D2 - R2 Rainfall 

 

0 d, b.q.l. n.d. n. d. 

       AR10 - D2 - R3 In - 1A 10 2644 30 3 35 

AR10 - D2 - R3 In - 2A 20 2594 27 3 34 

AR10 - D2 - R3 In - 3A 30 2603 33 2 35 

AR10 - D2 - R3 In - 4A 40 2651 25 3 28 

       AR10 - D2 - R3 Out 1 2 454 12 d, b.q.l. 9 
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Treatment 

And 

Replication 

  
Corrected 

Sediment Mass 

Concentration  

Dissolved Phase Concentration 

Sample 

I.D. Time Atrazine Chlorpyrifos Linuron 

# # min mg/L µg/L µg/L µg/L 

AR10 - D2 - R3 Out 2 4 434    

AR10 - D2 - R3 Out 3 6 386 14 d, b.q.l. 11 

AR10 - D2 - R3 Out 4 8 349    

AR10 - D2 - R3 Out 5 10 334    

AR10 - D2 - R3 Out 6 12 229 20 1 20 

AR10 - D2 - R3 Out 7 14 219    

AR10 - D2 - R3 Out 8 16 223    

AR10 - D2 - R3 Out 9 18 239 25 1 21 

AR10 - D2 - R3 Out 10 20 194    

AR10 - D2 - R3 Out 11 22 149    

AR10 - D2 - R3 Out 12 24 114 22 1 19 

AR10 - D2 - R3 Out 13 26 193    

AR10 - D2 - R3 Out 14 28 183 23 1 21 

AR10 - D2 - R3 Rainfall 

 

0 n.d. n. d. n. d. 

       AR30 - D2 - R1 In - 1A 10 2513 26 5 28 

AR30 - D2 - R1 In - 2A 20 2580 27 4 29 

AR30 - D2 - R1 In - 3A 30 2650 29 5 31 

AR30 - D2 - R1 In - 4A 40 2615 30 4 33 

       AR30 - D2 - R1 Out 1 2 387 19 1 15 

AR30 - D2 - R1 Out 2 4 667    

AR30 - D2 - R1 Out 3 6 512 22 2 21 

AR30 - D2 - R1 Out 4 8 457    

AR30 - D2 - R1 Out 5 10 432    

AR30 - D2 - R1 Out 6 12 417 23 3 21 

AR30 - D2 - R1 Out 7 14 417    

AR30 - D2 - R1 Out 8 16 432    

AR30 - D2 - R1 Out 9 18 417 25 3 24 

AR30 - D2 - R1 Out 10 20 461    

AR30 - D2 - R1 Out 11 22 442    

AR30 - D2 - R1 Out 12 24 514 26 4 26 

AR30 - D2 - R1 Out 13 26 397    

AR30 - D2 - R1 Out 14 28 502    

AR30 - D2 - R1 Out 15 30 474    

AR30 - D2 - R1 Out 16 32 538 26 3 26 

AR30 - D2 - R1 Out 17 34 567    
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Treatment 

And 

Replication 

  
Corrected 

Sediment Mass 

Concentration  

Dissolved Phase Concentration 

Sample 

I.D. Time Atrazine Chlorpyrifos Linuron 

# # min mg/L µg/L µg/L µg/L 

AR30 - D2 - R1 Out 18 36 497    

AR30 - D2 - R1 Out 19 38 652    

AR30 - D2 - R1 Out 20 40 642 29 3 30 

AR30 - D2 - R1 Out 21 42 442    

AR30 - D2 - R1 Rainfall 

 

0 d, b.q.l. n.d. n. d. 

       AR30 - D2 - R2 In - 1A 10 2544 30 5 31 

AR30 - D2 - R2 In - 2A 20 2603 30 4 30 

AR30 - D2 - R2 In - 3A 30 2543 29 4 29 

AR30 - D2 - R2 In - 4A 40 2538 27 3 29 

       AR30 - D2 - R2 Out 1 2 340 21 1 17 

AR30 - D2 - R2 Out 2 4 360    

AR30 - D2 - R2 Out 3 6 360 24 2 21 

AR30 - D2 - R2 Out 4 8 425    

AR30 - D2 - R2 Out 5 10 410    

AR30 - D2 - R2 Out 6 12 385 25 3 22 

AR30 - D2 - R2 Out 7 14 373    

AR30 - D2 - R2 Out 8 16 385    

AR30 - D2 - R2 Out 9 18 415 23 3 22 

AR30 - D2 - R2 Out 10 20 415    

AR30 - D2 - R2 Out 11 22 425    

AR30 - D2 - R2 Out 12 24 445 21 3 21 

AR30 - D2 - R2 Out 13 26 435    

AR30 - D2 - R2 Out 14 28 455    

AR30 - D2 - R2 Out 15 30 485 21 2 20 

AR30 - D2 - R2 Out 16 32 467    

AR30 - D2 - R2 Out 17 34 490    

AR30 - D2 - R2 Out 18 36 465    

AR30 - D2 - R2 Out 19 38 495 18 1 24 

AR30 - D2 - R2 Out 20 40 490    

AR30 - D2 - R2 Out 21 42 448    

AR30 - D2 - R2 Out 22 44 315 20 1 25 

AR30 - D2 - R2 Rainfall 

 

0 n.d. n. d. n. d. 

       AR30 - D2 - R3 In - 1A 10 2565 35 5 31 

AR30 - D2 - R3 In - 2A 20 2528 33 5 26 
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Treatment 

And 

Replication 

  
Corrected 

Sediment Mass 

Concentration  

Dissolved Phase Concentration 

Sample 

I.D. Time Atrazine Chlorpyrifos Linuron 

# # min mg/L µg/L µg/L µg/L 

AR30 - D2 - R3 In - 3A 30 2573 35 4 24 

AR30 - D2 - R3 In - 4A 40 2568 37 4 26 

       AR30 - D2 - R3 Out 1 2 365 22 1 8 

AR30 - D2 - R3 Out 2 4 322    

AR30 - D2 - R3 Out 3 6 317 26 2 19 

AR30 - D2 - R3 Out 4 8 347    

AR30 - D2 - R3 Out 5 10 345    

AR30 - D2 - R3 Out 6 12 350 27 3 17 

AR30 - D2 - R3 Out 7 14 351    

AR30 - D2 - R3 Out 8 16 370    

AR30 - D2 - R3 Out 9 18 371 28 3 16 

AR30 - D2 - R3 Out 10 20 360    

AR30 - D2 - R3 Out 11 22 380    

AR30 - D2 - R3 Out 12 24 386 28 3 18 

AR30 - D2 - R3 Out 13 26 322    

AR30 - D2 - R3 Out 14 28 355    

AR30 - D2 - R3 Out 15 30 366    

AR30 - D2 - R3 Out 16 32 405 28 4 17 

AR30 - D2 - R3 Out 17 34 420    

AR30 - D2 - R3 Out 18 36 476    

AR30 - D2 - R3 Out 19 38 475    

AR30 - D2 - R3 Out 20 40 487 24 3 20 

AR30 - D2 - R3 Out 21 42 366    

AR30 - D2 - R3 Out 22 44 280 30 4 19 

AR30 - D2 - R3 Rainfall 

 

0 d, b.q.l. n.d. n. d. 

       AR10 - D3 - R1 In - 1A 10 448 43 5 37 

AR10 - D3 - R1 In - 2A 20 437 45 5 39 

AR10 - D3 - R1 In - 3A 30 426 42 5 36 

AR10 - D3 - R1 In - 4A 40 438 37 3 30 

       AR10 - D3 - R1 Out 1 2 441 29 1 23 

AR10 - D3 - R1 Out 2 4 435    

AR10 - D3 - R1 Out 3 6 443 32 1 25 

AR10 - D3 - R1 Out 4 8 435    

AR10 - D3 - R1 Out 5 10 430    
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Treatment 

And 

Replication 

  
Corrected 

Sediment Mass 

Concentration  

Dissolved Phase Concentration 

Sample 

I.D. Time Atrazine Chlorpyrifos Linuron 

# # min mg/L µg/L µg/L µg/L 

AR10 - D3 - R1 Out 6 12 446 18 2 17 

AR10 - D3 - R1 Out 7 14 411    

AR10 - D3 - R1 Out 8 16 375    

AR10 - D3 - R1 Out 9 18 405 28 2 22 

AR10 - D3 - R1 Out 10 20 397    

AR10 - D3 - R1 Out 11 22 410    

AR10 - D3 - R1 Out 12 24 387 29 2 23 

AR10 - D3 - R1 Out 13 26 446    

AR10 - D3 - R1 Out 14 28 407    

AR10 - D3 - R1 Out 15 30 413 30 2 23 

AR10 - D3 - R1 Out 16 32 403    

AR10 - D3 - R1 Out 17 34 410    

AR10 - D3 - R1 Out 18 36 400    

AR10 - D3 - R1 Out 19 38 431 33 1 25 

AR10 - D3 - R1 Rainfall 

 

0 n.d. n. d. n. d. 

       AR10 - D3 - R2 In - 1A 10 394 40 5 28 

AR10 - D3 - R2 In - 2A 20 350 42 5 29 

AR10 - D3 - R2 In - 3A 30 390 46 4 33 

AR10 - D3 - R2 In - 4A 40 370 47 4 33 

       AR10 - D3 - R2 Out 1 2 790 30 1 27 

AR10 - D3 - R2 Out 2 4 750    

AR10 - D3 - R2 Out 3 6 730 32 2 23 

AR10 - D3 - R2 Out 4 8 475    

AR10 - D3 - R2 Out 5 10 390    

AR10 - D3 - R2 Out 6 12 400 28 2 24 

AR10 - D3 - R2 Out 7 14 375    

AR10 - D3 - R2 Out 8 16 423    

AR10 - D3 - R2 Out 9 18 370 28 2 19 

AR10 - D3 - R2 Out 10 20 405 27 1 20 

AR10 - D3 - R2 Out 11 22 485 26 1 21 

AR10 - D3 - R2 Rainfall 

 

0 d, b.q.l. n.d. n. d. 

       AR10 - D3 - R3 In - 1A 10 435 31 4 31 

AR10 - D3 - R3 In - 2A 20 424 33 3 32 

AR10 - D3 - R3 In - 3A 30 396 34 4 31 
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Treatment 

And 

Replication 

  
Corrected 

Sediment Mass 

Concentration  

Dissolved Phase Concentration 

Sample 

I.D. Time Atrazine Chlorpyrifos Linuron 

# # min mg/L µg/L µg/L µg/L 

AR10 - D3 - R3 In - 4A 40 446 33 3 30 

       AR10 - D3 - R3 Out 1 2 557 13 d, b.q.l. 10 

AR10 - D3 - R3 Out 2 4 437    

AR10 - D3 - R3 Out 3 6 352 19 1 16 

AR10 - D3 - R3 Out 4 8 365    

AR10 - D3 - R3 Out 5 10 313    

AR10 - D3 - R3 Out 6 12 332 22 1 15 

AR10 - D3 - R3 Out 7 14 328    

AR10 - D3 - R3 Out 8 16 343    

AR10 - D3 - R3 Out 9 18 337 24 1 19 

AR10 - D3 - R3 Out 10 20 308    

AR10 - D3 - R3 Out 11 22 382    

AR10 - D3 - R3 Out 12 24 391 23 1 19 

AR10 - D3 - R3 Out 13 26 418    

AR10 - D3 - R3 Out 14 28 383    

AR10 - D3 - R3 Out 15 30 352 25 1 21 

AR10 - D3 - R3 Out 16 32 363    

AR10 - D3 - R3 Out 17 34 395    

AR10 - D3 - R3 Out 18 36 393 23 1 15 

AR10 - D3 - R3 Out 19 38 367    

AR10 - D3 - R3 Out 20 40 417    

AR10 - D3 - R3 Out 21 42 427 24 1 23 

AR10 - D3 - R3 Out 22 44 323    

AR10 - D3 - R3 Rainfall 

 

0 d, b.q.l. n.d. n. d. 

       AR30 - D3 - R1 In - 1A 10 431 27 4 28 

AR30 - D3 - R1 In - 2A 20 440 26 4 30 

AR30 - D3 - R1 In - 3A 30 441 23 4 34 

AR30 - D3 - R1 In - 4A 40 485 23 5 34 

       AR30 - D3 - R1 Out 1 2 551 20 1 16 

AR30 - D3 - R1 Out 2 4 535    

AR30 - D3 - R1 Out 3 6 541 21 3 21 

AR30 - D3 - R1 Out 4 8 475    

AR30 - D3 - R1 Out 5 10 465    
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Treatment 

And 

Replication 

  
Corrected 

Sediment Mass 

Concentration  

Dissolved Phase Concentration 

Sample 

I.D. Time Atrazine Chlorpyrifos Linuron 

# # min mg/L µg/L µg/L µg/L 

AR30 - D3 - R1 Out 6 12 500 22 3 24 

AR30 - D3 - R1 Out 7 14 476    

AR30 - D3 - R1 Out 8 16 445    

AR30 - D3 - R1 Out 9 18 455 19 3 24 

AR30 - D3 - R1 Out 10 20 415    

AR30 - D3 - R1 Out 11 22 441    

AR30 - D3 - R1 Out 12 24 436 19 4 25 

AR30 - D3 - R1 Out 13 26 405    

AR30 - D3 - R1 Out 14 28 425    

AR30 - D3 - R1 Out 15 30 408 21 3 27 

AR30 - D3 - R1 Out 16 32 411    

AR30 - D3 - R1 Out 17 34 435    

AR30 - D3 - R1 Out 18 36 415 21 3 30 

AR30 - D3 - R1 Out 19 38 420    

AR30 - D3 - R1 Out 20 40 420    

AR30 - D3 - R1 Out 21 42 440 22 3 29 

AR30 - D3 - R1 Out 22 44 411    

AR30 - D3 - R1 Rainfall 

 

0 n.d. n. d. n. d. 

       AR30 - D3 - R2 In - 1A 10 423 33 3 26 

AR30 - D3 - R2 In - 2A 20 447 34 5 30 

AR30 - D3 - R2 In - 3A 30 456 35 5 29 

AR30 - D3 - R2 In - 4A 40 450 35 5 31 

       AR30 - D3 - R2 Out 1 2 105 26 1 16 

AR30 - D3 - R2 Out 2 4 225    

AR30 - D3 - R2 Out 3 6 490 26 1 19 

AR30 - D3 - R2 Out 4 8 420    

AR30 - D3 - R2 Out 5 10 425    

AR30 - D3 - R2 Out 6 12 510 28 2 21 

AR30 - D3 - R2 Out 7 14 530    

AR30 - D3 - R2 Out 8 16 575    

AR30 - D3 - R2 Out 9 18 565 33 3 25 

AR30 - D3 - R2 Out 10 20 400    

AR30 - D3 - R2 Out 11 22 460    

AR30 - D3 - R2 Out 12 24 415 29 3 22 

AR30 - D3 - R2 Out 13 26 375    
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Treatment 

And 

Replication 

  
Corrected 

Sediment Mass 

Concentration  

Dissolved Phase Concentration 

Sample 

I.D. Time Atrazine Chlorpyrifos Linuron 

# # min mg/L µg/L µg/L µg/L 

AR30 - D3 - R2 Out 14 28 355    

AR30 - D3 - R2 Out 15 30 320 30 3 25 

AR30 - D3 - R2 Out 16 32 360    

AR30 - D3 - R2 Out 17 34 345    

AR30 - D3 - R2 Out 18 36 345 32 3 26 

AR30 - D3 - R2 Out 19 38 335    

AR30 - D3 - R2 Out 20 40 355    

AR30 - D3 - R2 Out 21 42 330 25 3 22 

AR30 - D3 - R2 Rainfall 

 

0 d, b.q.l. n.d. n. d. 

       AR30 - D3 - R3 In - 1A 10 412 25 4 28 

AR30 - D3 - R3 In - 2A 20 422 27 5 36 

AR30 - D3 - R3 In - 3A 30 435 25 5 32 

AR30 - D3 - R3 In - 4A 40 440 28 5 38 

       AR30 - D3 - R3 Out 1 2 516 19 1 19 

AR30 - D3 - R3 Out 2 4 456    

AR30 - D3 - R3 Out 3 6 461 22 2 21 

AR30 - D3 - R3 Out 4 8 446    

AR30 - D3 - R3 Out 5 10 406    

AR30 - D3 - R3 Out 6 12 418 18 4 20 

AR30 - D3 - R3 Out 7 14 436    

AR30 - D3 - R3 Out 8 16 406    

AR30 - D3 - R3 Out 9 18 436 18 3 25 

AR30 - D3 - R3 Out 10 20 413    

AR30 - D3 - R3 Out 11 22 426    

AR30 - D3 - R3 Out 12 24 416 23 3 28 

AR30 - D3 - R3 Out 13 26 426    

AR30 - D3 - R3 Out 14 28 408    

AR30 - D3 - R3 Out 15 30 431 20 4 23 

AR30 - D3 - R3 Out 16 32 443    

AR30 - D3 - R3 Out 17 34 431    

AR30 - D3 - R3 Out 18 36 436 19 3 25 

AR30 - D3 - R3 Out 19 38 403    

AR30 - D3 - R3 Out 20 40 438    

AR30 - D3 - R3 Out 21 42 461    

AR30 - D3 - R3 Out 22 44 459    
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Treatment 

And 

Replication 

  
Corrected 

Sediment Mass 

Concentration  

Dissolved Phase Concentration 

Sample 

I.D. Time Atrazine Chlorpyrifos Linuron 

# # min mg/L µg/L µg/L µg/L 

AR30 - D3 - R3 Out 23 46 426 22 4 31 

AR30 - D3 - R3 Rainfall 

 

0 d, b.q.l. n.d. n. d. 

       AR10 - D0 - R1 In - 1A 10 0 d, b.q.l. n.d. n. d. 

AR10 - D0 - R1 In - 2A 20 0 d, b.q.l. n.d. n. d. 

AR10 - D0 - R1 In - 3A 30 0 d, b.q.l. n.d. n. d. 

AR10 - D0 - R1 In - 4A 40 0 d, b.q.l. n.d. n. d. 

       AR10 - D0 - R1 Out 1 2 435 d, b.q.l. n.d. n. d. 

AR10 - D0 - R1 Out 2 4 301    

AR10 - D0 - R1 Out 3 6 423 d, b.q.l. n.d. n. d. 

AR10 - D0 - R1 Out 4 8 241    

AR10 - D0 - R1 Out 5 10 300    

AR10 - D0 - R1 Out 6 12 280 d, b.q.l. n.d. n. d. 

AR10 - D0 - R1 Out 7 14 347    

AR10 - D0 - R1 Out 8 16 165    

AR10 - D0 - R1 Out 9 18 195 d, b.q.l. n.d. n. d. 

AR10 - D0 - R1 Out 10 20 190    

AR10 - D0 - R1 Out 11 22 190    

AR10 - D0 - R1 Out 12 24 200 d, b.q.l. n.d. n. d. 

AR10 - D0 - R1 Out 13 26 180    

AR10 - D0 - R1 Out 14 28 155    

AR10 - D0 - R1 Out 15 30 150    

AR10 - D0 - R1 Out 16 32 95 d, b.q.l. n.d. n. d. 

AR10 - D0 - R1 Out 17 34 106    

AR10 - D0 - R1 Out 18 36 165    

AR10 - D0 - R1 Out 19 38 180    

AR10 - D0 - R1 Out 20 40 111 d, b.q.l. n.d. n. d. 

AR10 - D0 - R1 Out 21 42 126    

AR10 - D0 - R1 Out 22 44 70    

AR10 - D0 - R1 Rainfall 

 

0 d, b.q.l. n.d. n. d. 

       AR10 - D0 - R2 In - 1A 10 0 n.d. n.d. n. d. 

AR10 - D0 - R2 In - 2A 20 0 n.d. n.d. n. d. 

AR10 - D0 - R2 In - 3A 30 0 n.d. n.d. n. d. 

AR10 - D0 - R2 In - 4A 40 0 n.d. n.d. n. d. 
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Treatment 

And 

Replication 

  
Corrected 

Sediment Mass 

Concentration  

Dissolved Phase Concentration 

Sample 

I.D. Time Atrazine Chlorpyrifos Linuron 

# # min mg/L µg/L µg/L µg/L 

AR10 - D0 - R2 Out 1 2 131 n.d. n.d. n. d. 

AR10 - D0 - R2 Out 2 4 141    

AR10 - D0 - R2 Out 3 6 231 n.d. n.d. n. d. 

AR10 - D0 - R2 Out 4 8 66    

AR10 - D0 - R2 Out 5 10 71    

AR10 - D0 - R2 Out 6 12 6 n.d. n.d. n. d. 

AR10 - D0 - R2 Out 7 14 71    

AR10 - D0 - R2 Out 8 16 61    

AR10 - D0 - R2 Out 9 18 6 n.d. n.d. n. d. 

AR10 - D0 - R2 Out 10 20 23    

AR10 - D0 - R2 Out 11 22 6    

AR10 - D0 - R2 Out 12 24 1 n.d. n.d. n. d. 

AR10 - D0 - R2 Out 13 26 56    

AR10 - D0 - R2 Out 14 28 56    

AR10 - D0 - R2 Out 15 30 18 n.d. n.d. n. d. 

AR10 - D0 - R2 Out 16 32 56    

AR10 - D0 - R2 Out 17 34 26 n.d. n.d. n. d. 

AR10 - D0 - R2 Out 18 36 16    

AR10 - D0 - R2 Out 19 38 21    

AR10 - D0 - R2 Out 20 40 26    

AR10 - D0 - R2 Rainfall 

 

0 d, b.q.l. n.d. n. d. 

       AR10- D0 - R3 In - 1A 10 0 d, b.q.l. n.d. n. d. 

AR10- D0 - R3 In - 2A 20 0 d, b.q.l. n.d. n. d. 

AR10- D0 - R3 In - 3A 30 2 d, b.q.l. n.d. n. d. 

AR10- D0 - R3 In - 4A 40 3 d, b.q.l. n.d. n. d. 

       AR10- D0 - R3 Out 1 2 12 d, b.q.l. n.d. n. d. 

AR10- D0 - R3 Out 2 4 184    

AR10- D0 - R3 Out 3 6 117 d, b.q.l. n.d. n. d. 

AR10- D0 - R3 Out 4 8 42    

AR10- D0 - R3 Out 5 10 60    

AR10- D0 - R3 Out 6 12 122 d, b.q.l. n.d. n. d. 

AR10- D0 - R3 Out 7 14 72    

AR10- D0 - R3 Out 8 16 92    

AR10- D0 - R3 Out 9 18 117 d, b.q.l. n.d. n. d. 

AR10- D0 - R3 Out 10 20 109    
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Treatment 

And 

Replication 

  
Corrected 

Sediment Mass 

Concentration  

Dissolved Phase Concentration 

Sample 

I.D. Time Atrazine Chlorpyrifos Linuron 

# # min mg/L µg/L µg/L µg/L 

AR10- D0 - R3 Out 11 22 82    

AR10- D0 - R3 Out 12 24 82 d, b.q.l. n.d. n. d. 

AR10- D0 - R3 Out 13 26 72    

AR10- D0 - R3 Out 14 28 62    

AR10- D0 - R3 Out 15 30 32 d, b.q.l. n.d. n. d. 

AR10- D0 - R3 Out 16 32 85    

AR10- D0 - R3 Out 17 34 55 d, b.q.l. n.d. n. d. 

AR10- D0 - R3 Rainfall 

 

0 d, b.q.l. n.d. n. d. 

       AR30 - D0 - R1 In - 1A 10 0 d, b.q.l. n.d. n. d. 

AR30 - D0 - R1 In - 2A 20 0 d, b.q.l. n.d. n. d. 

AR30 - D0 - R1 In - 3A 30 0 d, b.q.l. n.d. n. d. 

AR30 - D0 - R1 In - 4A 40 0 d, b.q.l. n.d. n. d. 

       AR30 - D0 - R1 Out 1 2 139 d, b.q.l. n.d. n. d. 

AR30 - D0 - R1 Out 2 4 121    

AR30 - D0 - R1 Out 3 6 145 d, b.q.l. n.d. n. d. 

AR30 - D0 - R1 Out 4 8 175    

AR30 - D0 - R1 Out 5 10 165    

AR30 - D0 - R1 Out 6 12 131 d, b.q.l. n.d. n. d. 

AR30 - D0 - R1 Out 7 14 116    

AR30 - D0 - R1 Out 8 16 90    

AR30 - D0 - R1 Out 9 18 75 d, b.q.l. n.d. n. d. 

AR30 - D0 - R1 Out 10 20 55    

AR30 - D0 - R1 Out 11 22 50    

AR30 - D0 - R1 Out 12 24 40 d, b.q.l. n.d. n. d. 

AR30 - D0 - R1 Out 13 26 52    

AR30 - D0 - R1 Out 14 28 75    

AR30 - D0 - R1 Out 15 30 27 d, b.q.l. n.d. n. d. 

AR30 - D0 - R1 Out 16 32 60    

AR30 - D0 - R1 Out 17 34 50    

AR30 - D0 - R1 Out 18 36 62 d, b.q.l. n.d. n. d. 

AR30 - D0 - R1 Out 19 38 30    

AR30 - D0 - R1 Out 20 40 47    

AR30 - D0 - R1 Out 21 42 15    

AR30 - D0 - R1 Out 22 44 32 d, b.q.l. n.d. n. d. 

AR30 - D0 - R1 Rainfall 

 

0 d, b.q.l. n.d. n. d. 
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Treatment 

And 

Replication 

  
Corrected 

Sediment Mass 

Concentration  

Dissolved Phase Concentration 

Sample 

I.D. Time Atrazine Chlorpyrifos Linuron 

# # min mg/L µg/L µg/L µg/L 

AR30 - D0 - R2 In - 1A 10 0 n.d. n.d. n. d. 

AR30 - D0 - R2 In - 2A 20 0 n.d. n.d. n. d. 

AR30 - D0 - R2 In - 3A 30 0 n.d. n.d. n. d. 

AR30 - D0 - R2 In - 4A 40 0 n.d. n.d. n. d. 

       AR30 - D0 - R2 Out 1 2 160 n.d. n.d. n. d. 

AR30 - D0 - R2 Out 2 4 134    

AR30 - D0 - R2 Out 3 6 75 n.d. n.d. n. d. 

AR30 - D0 - R2 Out 4 8 0    

AR30 - D0 - R2 Out 5 10 30    

AR30 - D0 - R2 Out 6 12 105 n.d. n.d. n. d. 

AR30 - D0 - R2 Out 7 14 95    

AR30 - D0 - R2 Out 8 16 110    

AR30 - D0 - R2 Out 9 18 75 n.d. n.d. n. d. 

AR30 - D0 - R2 Out 10 20 60    

AR30 - D0 - R2 Out 11 22 105    

AR30 - D0 - R2 Out 12 24 42 n.d. n.d. n. d. 

AR30 - D0 - R2 Out 13 26 55    

AR30 - D0 - R2 Out 14 28 106    

AR30 - D0 - R2 Out 15 30 125 n.d. n.d. n. d. 

AR30 - D0 - R2 Out 16 32 70    

AR30 - D0 - R2 Out 17 34 30    

AR30 - D0 - R2 Out 18 36 30 n.d. n.d. n. d. 

AR30 - D0 - R2 Out 19 38 32    

AR30 - D0 - R2 Out 20 40 35    

AR30 - D0 - R2 Out 21 42 10 n.d. n.d. n. d. 

AR30 - D0 - R2 Rainfall 

 

0 n.d. n.d. n. d. 

       AR30 - D0 - R3 In - 1A 10 0 d, b.q.l. n.d. n. d. 

AR30 - D0 - R3 In - 2A 20 0 d, b.q.l. n.d. n. d. 

AR30 - D0 - R3 In - 3A 30 0 d, b.q.l. n.d. n. d. 

AR30 - D0 - R3 In - 4A 40 0 d, b.q.l. n.d. n. d. 

       AR30 - D0 - R3 Out 1 2 342 d, b.q.l. n.d. n. d. 

AR30 - D0 - R3 Out 2 4 260    

AR30 - D0 - R3 Out 3 6 160 d, b.q.l. n.d. n. d. 

AR30 - D0 - R3 Out 4 8 83    
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Treatment 

And 

Replication 

  
Corrected 

Sediment Mass 

Concentration  

Dissolved Phase Concentration 

Sample 

I.D. Time Atrazine Chlorpyrifos Linuron 

# # min mg/L µg/L µg/L µg/L 

AR30 - D0 - R3 Out 5 10 20    

AR30 - D0 - R3 Out 6 12 25 d, b.q.l. n.d. n. d. 

AR30 - D0 - R3 Out 7 14 30    

AR30 - D0 - R3 Out 8 16 5    

AR30 - D0 - R3 Out 9 18 15 d, b.q.l. n.d. n. d. 

AR30 - D0 - R3 Out 10 20 33    

AR30 - D0 - R3 Out 11 22 35    

AR30 - D0 - R3 Out 12 24 30 d, b.q.l. n.d. n. d. 

AR30 - D0 - R3 Out 13 26 45    

AR30 - D0 - R3 Out 14 28 55    

AR30 - D0 - R3 Out 15 30 55 d, b.q.l. n.d. n. d. 

AR30 - D0 - R3 Out 16 32 10    

AR30 - D0 - R3 Out 17 34 18    

AR30 - D0 - R3 Out 18 36 0 d, b.q.l. n.d. n. d. 

AR30 - D0 - R3 Out 19 38 70    

AR30 - D0 - R3 Out 20 40 55    

AR30 - D0 - R3 Out 21 42 50 d, b.q.l. n.d. n. d. 

AR30 - D0 - R3 Out 22 44 20    

AR30 - D0 - R3 Rainfall 

 

0 d, b.q.l. n.d. n. d. 
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APPENDIX C. SORBED PESTICIDE CONCENTRATIONS FOR  

COMBIMED SAMPLES 

 

Sorbed pesticide concentrations and sorption coefficients for atrazine and 

chlorpyrifos for combined inflow and outflow samples from buffer strips. 

 

  

Atrazine 

Concentration 

Atrazine 

Sorption  

Chlorpyrifos 

Concentration 

Chlorpyrifos 

Sorption  

Treatment Sample Sorbed Dissolved 

Coefficien

t Sorbed Dissolved Coefficient 

Replication I.D. (µg/kg) (µg/L) K (L/kg) (µg/kg) (µg/L) K (L/kg) 

AR10-D1-R1 In 1A + 1B 25 21 1 91 3 32 

AR10-D1-R1 In 2A + 2B 23 19 1 98 3 30 

AR10-D1-R1 In 3A + 3B 17 18 1 106 2 43 

AR10-D1-R1 In 4A + 4B 21 18 1 89 2 47 

AR10-D1-R1 Out 1 - 4 16 7 2 40 1 39 

AR10-D1-R1 Out 5 - 8 27 10 3 107 1 105 

AR10-D1-R1 Out 9 - 14 30 13 2 74 1 71 

        AR10-D1-R2 In 1A + 1B 25 20 1 67 2 40 

AR10-D1-R2 In 2A + 2B 24 20 1 55 2 30 

AR10-D1-R2 In 3A + 3B 20 21 1 28 1 20 

AR10-D1-R2 In 4A + 4B 20 23 1 40 2 26 

AR10-D1-R2 Out 1 - 6 28 9 3 32 d, b.q.l. - 

AR10-D1-R2 Out 13 - 18 19 14 1 38 d, b.q.l. - 

AR10-D1-R2 Out 7 - 12 25 12 2 46 1 47 

        AR10-D1-R3 In 1A + 1B 16 22 1 25 2 13 

AR10-D1-R3 In 2A + 2B 28 21 1 24 2 11 

AR10-D1-R3 In 3A + 3B 23 22 1 33 2 16 

AR10-D1-R3 In 4A + 4B 25 21 1 29 2 13 

AR10-D1-R3 Out 1 - 6 18 9 2 18 1 18 

AR10-D1-R3 Out 12 - 15 38 14 3 34 1 34 

AR10-D1-R3 Out 7 - 11 23 12 2 20 1 19 

      

  

AR30-D1-R1 In 1A + 1B 16 28 1 38 4 11 

AR30-D1-R1 In 2A + 2B 16 28 1 43 3 13 

AR30-D1-R1 In 3A + 3B 18 25 1 38 3 12 

AR30-D1-R1 In 4A + 4B 16 23 1 44 3 14 

AR30-D1-R1 Out 1 - 4 11 19 1 16 1 13 

AR30-D1-R1 Out 15 - 21 8 22 0 13 1 10 

AR30-D1-R1 Out 5 - 8 9 19 0 18 1 15 

AR30-D1-R1 Out 9 - 14 11 19 1 18 2 10 
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Atrazine 

Concentration 

Atrazine 

Sorption  

Chlorpyrifos 

Concentration 

Chlorpyrifos 

Sorption  

Treatment Sample Sorbed Dissolved Coefficient Sorbed Dissolved Coefficient 

Replication I.D. (µg/kg) (µg/L) K (L/kg) (µg/kg) (µg/L) K (L/kg) 

        AR30-D1-R2 In 1A + 1B 18 27 1 35 4 10 

AR30-D1-R2 In 2A + 2B 15 30 1 33 4 9 

AR30-D1-R2 In 3A + 3B 17 27 1 39 3 13 

AR30-D1-R2 In 4A + 4B 15 27 1 40 3 16 

AR30-D1-R2 Out 1 - 6 10 20 0 21 1 20 

AR30-D1-R2 Out 13 - 19 17 23 1 23 1 22 

AR30-D1-R2 Out 7 - 12 9 20 0 26 1 25 

        AR30-D1-R3 In 1A + 1B 20 26 1 39 2 16 

AR30-D1-R3 In 2A + 2B 21 27 1 40 2 17 

AR30-D1-R3 In 3A + 3B 14 26 1 48 2 21 

AR30-D1-R3 In 4A + 4B 17 27 1 36 2 14 

AR30-D1-R3 Out 1 - 4 2 18 0 18 1 18 

AR30-D1-R3 Out 13 - 16 3 20 0 12 1 12 

AR30-D1-R3 Out 17 - 20 5 20 0 15 1 14 

AR30-D1-R3 Out 21 - 23 8 19 0 22 1 21 

AR30-D1-R3 Out 5 - 8 1 20 0 12 1 12 

AR30-D1-R3 Out 9 - 12 6 21 0 15 1 15 

      

  

AR10-D2-R1 In 1A + 1B 210 35 6 605 5 126 

AR10-D2-R1 In 2A + 2B 290 32 9 639 4 157 

AR10-D2-R1 In 3A + 3B 225 33 7 587 4 163 

AR10-D2-R1 In 4A + 4B 221 39 6 566 4 133 

AR10-D2-R1 Out 1 - 4 764 19 41 485 1 398 

AR10-D2-R1 Out 10 - 14 300 25 12 693 2 317 

AR10-D2-R1 Out 15 - 20 249 24 11 285 2 138 

AR10-D2-R1 Out 5 - 9 315 22 14 1508 2 754 

        AR10-D2-R2 In 1A + 1B 216 35 6 655 4 165 

AR10-D2-R2 In 2A + 2B 206 35 6 735 3 222 

AR10-D2-R2 In 3A + 3B 102 36 3 699 3 209 

AR10-D2-R2 In 4A + 4B 191 34 6 714 3 272 

AR10-D2-R2 Out 1 -3 188 17 11 234 d, b.q.l. - 

AR10-D2-R2 Out 10 - 13 315 25 13 188 1 188 

AR10-D2-R2 Out 14 - 17 382 23 16 953 1 953 

AR10-D2-R2 Out 18 - 21 461 24 19 609 1 609 
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Atrazine 

Concentration 

Atrazine 

Sorption  

Chlorpyrifos 

Concentration 

Chlorpyrifos 

Sorption  

Treatment Sample Sorbed Dissolved Coefficient Sorbed Dissolved Coefficient 

Replication I.D. (µg/kg) (µg/L) K (L/kg) (µg/kg) (µg/L) K (L/kg) 

AR10-D2-R2 Out 4 - 6 204 21 10 232 1 411 

AR10-D2-R2 Out 7 - 9 208 23 9 253 1 264 

      

  

AR10-D2-R3 In 1A + 1B 98 30 3 627 3 250 

AR10-D2-R3 In 2A + 2B 116 27 4 693 3 220 

AR10-D2-R3 In 3A + 3B 106 33 3 685 2 286 

AR10-D2-R3 In 4A + 4B 108 25 4 559 3 197 

AR10-D2-R3 Out 1 - 4 413 14 30 486 d, b.q.l. - 

AR10-D2-R3 Out 10 - 14 786 23 34 607 1 599 

AR10-D2-R3 Out 5 - 9 513 21 24 645 1 626 

      

  

AR30-D2-R1 In 1A + 1B 104 26 4 522 5 109 

AR30-D2-R1 In 2A + 2B 112 27 4 590 4 139 

AR30-D2-R1 In 3A + 3B 110 29 4 628 5 123 

AR30-D2-R1 In 4A + 4B 117 30 4 609 4 141 

AR30-D2-R1 Out 1 - 5 307 21 14 360 2 176 

AR30-D2-R1 Out 11 - 15 313 26 12 864 4 243 

AR30-D2-R1 Out 16 - 21 218 28 8 872 3 257 

AR30-D2-R1 Out 6 - 10 357 24 15 618 3 192 

        AR30-D2-R2 In 1A + 1B 103 30 3 607 5 110 

AR30-D2-R2 In 2A + 2B 88 30 3 568 4 130 

AR30-D2-R2 In 3A + 3B 120 29 4 566 4 146 

AR30-D2-R2 In 4A + 4B 136 27 5 617 3 212 

AR30-D2-R2 Out 1 - 5 344 23 15 258 2 153 

AR30-D2-R2 Out 11 - 14 428 22 20 495 3 194 

AR30-D2-R2 Out 15 - 18 396 20 19 464 2 248 

AR30-D2-R2 Out 19 - 22 452 19 24 263 1 278 

AR30-D2-R2 Out 6 - 10 287 24 12 704 3 268 

      

  

AR30-D2-R3 In 1A + 1B 116 35 3 646 5 138 

AR30-D2-R3 In 2A + 2B 101 33 3 652 5 136 

AR30-D2-R3 In 3A + 3B 100 35 3 734 4 189 

AR30-D2-R3 In 4A + 4B 114 37 3 703 4 161 

AR30-D2-R3 Out 1 - 4 730 24 30 265 2 155 

AR30-D2-R3 Out 13 - 16 639 28 23 750 4 214 

AR30-D2-R3 Out 17 - 19 641 27 24 498 3 146 
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Atrazine 

Concentration 

Atrazine 

Sorption  

Chlorpyrifos 

Concentration 

Chlorpyrifos 

Sorption  

Treatment Sample Sorbed Dissolved Coefficient Sorbed Dissolved Coefficient 

Replication I.D. (µg/kg) (µg/L) K (L/kg) (µg/kg) (µg/L) K (L/kg) 

AR30-D2-R3 Out 20 - 22 671 27 25 1115 4 317 

AR30-D2-R3 Out 5 - 8 639 27 24 420 3 158 

AR30-D2-R3 Out 9 - 12 529 28 19 373 3 122 

        

AR10-D3-R1 In 1A + 1B 2088 43 48 1286 5 257 

AR10-D3-R1 In 2A + 2B 2875 45 64 1259 5 255 

AR10-D3-R1 In 3A + 3B 2443 42 58 1288 5 258 

AR10-D3-R1 In 4A + 4B 2398 37 64 1237 3 413 

AR10-D3-R1 Out 1 - 4 1103 30 37 346 1 309 

AR10-D3-R1 Out 13 - 16 1765 30 59 529 2 294 

AR10-D3-R1 Out 17 - 19 2632 32 83 795 2 520 

AR10-D3-R1 Out 5 - 8 892 22 41 383 2 250 

AR10-D3-R1 Out 9 - 12 1279 29 44 485 2 301 

        AR10-D3-R2 In 1A + 1B 2088 40 52 1216 5 251 

AR10-D3-R2 In 2A + 2B 2875 42 69 1439 5 299 

AR10-D3-R2 In 3A + 3B 2443 46 53 1279 4 286 

AR10-D3-R2 In 4A + 4B 2398 47 51 1349 4 349 

AR10-D3-R2 Out 1 - 3 1103 31 35 638 2 413 

AR10-D3-R2 Out 4 - 7 1765 29 60 944 2 546 

AR10-D3-R2 Out 8 - 11 2632 27 97 889 1 616 

        AR10-D3-R3 In 1A + 1B 1903 31 62 1739 4 466 

AR10-D3-R3 In 2A + 2B 1648 33 50 1555 3 559 

AR10-D3-R3 In 3A + 3B 2357 34 70 1258 4 346 

AR10-D3-R3 In 4A + 4B 2302 33 70 1088 3 337 

AR10-D3-R3 Out 1 - 4 634 17 37 622 1 620 

AR10-D3-R3 Out 10 - 14 1041 23 44 801 1 621 

AR10-D3-R3 Out 15 - 18 1068 24 44 845 1 665 

AR10-D3-R3 Out 19 - 22 1629 24 69 1038 1 819 

AR10-D3-R3 Out 5 - 9 1161 22 52 820 1 673 

        

        AR30-D3-R1 In 1A + 1B 2202 27 82 2355 4 661 

AR30-D3-R1 In 2A + 2B 2118 26 82 2197 4 547 

AR30-D3-R1 In 3A + 3B 1802 23 77 2149 4 478 

AR30-D3-R1 In 4A + 4B 1962 23 85 2034 5 440 



 232 

 

 

 

  

Atrazine 

Concentration 

Atrazine 

Sorption  

Chlorpyrifos 

Concentration 

Chlorpyrifos 

Sorption  

Treatment Sample Sorbed Dissolved Coefficient Sorbed Dissolved Coefficient 

Replication I.D. (µg/kg) (µg/L) K (L/kg) (µg/kg) (µg/L) K (L/kg) 

AR30-D3-R1 Out 1 - 4 1520 21 74 1268 2 606 

AR30-D3-R1 Out 13 - 16 1983 20 97 1960 3 597 

AR30-D3-R1 Out 17 - 22 1124 22 52 1239 3 380 

AR30-D3-R1 Out 5 - 8 1258 21 59 1755 3 536 

AR30-D3-R1 Out 9 - 12 1772 19 92 1774 4 505 

        AR30-D3-R2 In 1A + 1B 2163 33 66 2250 3 665 

AR30-D3-R2 In 2A + 2B 2554 34 74 1828 5 395 

AR30-D3-R2 In 3A + 3B 2215 35 64 1991 5 364 

AR30-D3-R2 In 4A + 4B 2206 35 63 1986 5 431 

AR30-D3-R2 Out 1 - 5 1959 26 75 914 1 721 

AR30-D3-R2 Out 10 - 13 1717 30 57 1739 3 531 

AR30-D3-R2 Out 14 - 17 1715 30 57 1184 3 370 

AR30-D3-R2 Out 18 - 21 2052 29 71 1942 3 622 

AR30-D3-R2 Out 6 - 9 949 30 31 1284 2 550 

        AR30-D3-R3 In 1A + 1B 3277 25 132 2746 4 756 

AR30-D3-R3 In 2A + 2B 3072 27 115 2505 5 468 

AR30-D3-R3 In 3A + 3B 2423 25 98 2699 5 519 

AR30-D3-R3 In 4A + 4B 2455 28 88 2727 5 539 

AR30-D3-R3 Out 1 - 4 1267 21 61 1355 2 691 

AR30-D3-R3 Out 13 - 16 2132 21 104 985 3 282 

AR30-D3-R3 Out 17 - 20 1625 19 85 985 3 306 

AR30-D3-R3 Out 21 - 23 1372 21 64 1615 3 471 

AR30-D3-R3 Out 5 - 8 1128 19 60 1264 4 356 

AR30-D3-R3 Out 9 - 12 1905 20 94 1450 3 485 
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