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ABSTRACT 

 

Predicting in-stream pathogen levels has long been known to be a challenging problem due to 

complex interactions between microorganisms and the natural stream environment, and the 

spatial heterogeneity involved in stream networks of a watershed. Here we have developed 

models for predicting E. coli (a pathogen indicator) in streams. In E. coli estimation, the first 

modeling approach uses Geographic Information Systems (GIS) based watershed indexes 

considering the undisturbed land cover, which encompasses the natural land cover area, 

wetlands, and vegetated stream corridors, and the disturbed land cover extent which includes 

areas receiving manure from confined animal feeding operations, tile-drained areas, and 

areas under cropped and urban land cover. The second approach involves developing 

mathematical models for calculating E. coli resuspension, deposition, in-stream routing, and 

growth in the streams. A hydrological model capable of predicting in-stream E. coli 

concentrations in the streambed sediment as well as in the water column was developed. In 

order to develop the hydrological model for predicting in-stream E. coli concentrations, 

firstly a model capable of predicting E. coli resuspension was formulated. Secondly, 

formulations for calculating in-stream E. coli routing, water temperature depended E. coli 

growth, and the streambed sediment and water column E. coli concentrations were 

developed. Finally, these formulations were programmed in FORTRAN language, and were 

integrated into the Soil and Water Assessment Tool (SWAT), a watershed scale hydrological 

model, written in FORTRAN. In addition to the model development, this study also involves 

monitoring E. coli concentrations in the streambed sediment and the water column 
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xi 

extensively starting from May 2009 to December 2011 in the Squaw Creek Watershed, Iowa, 

USA. The observations were used to verify the model predictions, and results indicated that 

the models performed well.  

The GIS based approach developed here for estimating E. coli concentrations in streams can 

be potentially useful in predicting in-stream waterborne E. coli levels using watershed 

indexes. Approximately 95- 98% of the predictions were within 1 order magnitude of the 

observed values, when we used hydrologically corrected watershed indexes for E. coli 

estimation. The model skills varied from 0.39 to 0.55.    

In E. coli resuspension model, approximately 81% of the predicted E. coli resuspension rates 

were within a factor of 2 of the inferred values (i.e., measured E. coli). All of the predicted 

resuspension rates were within a factor of 5 of the inferred values. The model skill value of 

0.85 indicated that the model predicts E. coli resuspension rates successfully.  

The application of the modified SWAT model in the Squaw Creek Watershed, which was 

developed here, performed well. For example, approximately 62% of the predicted streambed 

sediment E. coli, and 82% of the predicted water column E. coli concentrations were within 1 

order magnitude of the measured concentrations. The R
2
 for monthly average daily flow was 

0.99, while for daily flow predictions R
2
 was 0.42. The Nash-Sutcliffe’s efficiency (NSE) for 

monthly average daily and daily flow predictions were 0.75 and 0.39, respectively.  

We also developed a model for calculating in-stream total E. coli loads (i.e., contributions 

from the streambed as well as from free floating) in order to improve Total Maximum Daily 

Loads (TMDLs) estimation, and understand the potential impacts of streambed sediment E. 



 
 xii 
 

 

xii 

coli on total in-stream E. coli loads. While comparing the total predicted E. coli loads with 

the measured E. coli loads, coefficient of determination (R
2
) was 0.82, and model skill was 

0.78; these results indicates that the model for calculating total in-stream E. coli loads 

performed well, and should help in developing Total Maximum Daily Loads (TMDLs) for 

stream bacteria.  

In addition to in-stream processes and overland flow, weather pattern can potentially impacts 

in-stream E. coli concentrations. To understand the impacts of weather pattern on in-stream 

E. coli concentrations, E. coli observations in the streambed sediment and the water column 

(from two locations) were related with climate data (i.e., air temperature, soil temperature, 

solar radiation, and rainfall). The results show that increase in temperature increases E. coli 

concentrations not only in the water column but also in the streambed sediment. Moreover, 

E. coli in the streambed sediment remained elevated even at relatively lower temperature. 

These results signify that increase in ambient temperature can potentially increase E. coli 

levels in the water bodies.  

The results from monitoring and modeling of in-stream E. coli presented here will have 

significant importance in developing Total Maximum Daily Loads (TMDL) for in-stream 

pathogens as well as predicting E. coli concentrations in the streams at the watershed scale. 
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CHAPTER 1. GENERAL INTRODUCTION 
 

1. Introduction 

In-stream pathogen contamination, which is often assessed by enumerating pathogen 

indicators such as Escherichia coli (E. coli) in stream water, is a major water quality concern 

in the United States of America (USA). For example, approximately 27% of the total rivers 

and streams (5,653,128 km) in the USA are assessed, and 53% of the assessed are impaired 

(USEPA, 2012). The leading cause of impairment is elevated pathogen levels in streams. The 

method by which pathogens proliferate in natural streams has long been understood to be a 

complex problem. Understanding pathogen transport in streams requires a symbiotic union of 

computational approaches and field observations. Emphasize on controlling in-stream 

pathogen contaminations necessitates an improvement of our understanding how the 

combined impacts of in-stream processes, climatic conditions, hydrology, land cover, and 

anthropogenic activities at the watershed scale influence stream water.  This research 

integrates field observations and computational modeling approaches to improve our 

understanding of E. coli (a pathogen indicator) transport in the streams.  

1.1 Goals and objectives 

The overall goal of this research was to improve understanding of E. coli transport in natural 

streams. Here we have developed computational models, and carried out extensive 

monitoring of E. coli concentrations in the streambed sediment and the water column of the 

Squaw Creek Watershed, Iowa, USA, which will provide much needed information to 

improve Total Maximum Daily Loads (TMDLs) estimation, and hydrological models for 

predicting E. coli concentrations in the streams. In addition, we have used E. coli monitoring 
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data to understand the impacts of weather pattern on in-stream E. coli concentrations (i.e., in 

the streambed sediment and the water column).  

The specific objectives of this study are to:  

1. Assess the impacts of watershed indexes and precipitation on spatial in-stream E. coli 

concentrations.  

Hypothesis: Waterborne E. coli concentrations in a stream can be estimated using the 

landscape (i.e., land cover) characteristics of the stream watershed.  

2. Develop a model for predicting resuspension of E. coli from streambed sediments.  

Hypothesis: In-stream E. coli resuspension can be calculated using the stream flow 

properties and characteristics of both cohesive and non-cohesive sediments.   

3. Improve SWAT for developing TMDLs for bacteria.  

Hypothesis: Integrating a pathogen transport model, capable of predicting E. coli 

concentrations in the streambed sediment and in the water column, into Soil and Water 

Assessment Tool (SWAT), can improve SWAT applicability for predicting in-stream E. 

coli concentrations at the watershed scale.   

4. Assess the impacts of streambed sediment on in-stream total E. coli loads over a range of 

flow conditions and the streambed sediment E. coli concentrations. 

Hypothesis: Current U.S. EPA methodology for assessing stream water pathogen 

contaminations, which relies solely on analysis of water samples, may underestimate in-

stream pathogen loads.  

5. Assess the impacts of weather pattern on in-stream E. coli concentrations.  
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Hypothesis: Weather pattern can have a potential impact on E. coli concentrations in the 

streambed sediment and the water column.  

In order to improve our understanding of E. coli transport in natural streams, here we have 

developed several approaches (i.e., Geographical Information System (GIS), E. coli 

resuspension model, and hydrological model), and each approach has its own unique 

purpose. For example, the purpose of the first approach, which is described in chapter 1, was 

to create watershed indexes using Geographic Information System (GIS) software to 

understand the relationships between E. coli concentrations in the water column and 

disturbed and undisturbed natural land cover. These watershed indexes were used to calculate 

E. coli concentrations in stream water column. While the first approach does not includes in 

stream processes such as resuspension, deposition, and growth of E. coli, the second 

approach, which is described in chapter 3, incorporates in stream processes. The primary 

purpose of the second approach was to develop a resuspension model capable of predicting 

E. coli release from the streambed to the water column. The predictions of this model were 

verified at 16 unique locations of the Squaw Creek Watershed. The E. coli resuspension 

model described in chapter 3 was further modified for improving hydrological model capable 

of predicting in-stream E. coli levels at the watershed scale, which is described in chapter 4. 

The pathogen transport model was formulated and written in FORTRAN language to 

improve Soil and Water Assessment Tool (SWAT) (hydrological model), which is explained 

in chapter 4. The predictions of modified SWAT model were verified using the field data 

collected at Squaw Creek Watershed. The model predicts E. coli concentrations in streambed 

sediment as well as in the water column. In addition, we developed a model to estimate total 
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pathogen loads in streams (i.e., E. coli loads in water column caused by streambed sediment 

under various flow conditions), which is described in chapter 5. The pathogen load model 

explains the impacts of streambed sediment and flow on water column E. coli concentrations. 

The model was used to quantify and compare pathogen loads in two different situations: 1) 

stream water meets existing EPA water quality standards, which do not include the impacts 

of streambed sediment on water column E. coli; and 2) streambed sediment impacts on water 

column E. coli was incorporated.  

The research proposed here which includes field studies as well as computer modeling, will 

provide tools to predict E. coli concentrations in streambed sediment as well as in the water 

column, and will improve bacteria TMDL estimation. 

1.1 Thesis organization 

The research performed here is divided into five parts. The first part is focused on developing 

a Geographical Information System (GIS) based model for predicting in-stream waterborne 

E. coli concentrations, which is described in chapter 2, and the chapter has been published in 

Ecological Indicator (Pandey et al., 2012, vol. 23, 641 – 652). In order to calculate E. coli 

concentrations, watershed indexes considering the undisturbed land cover extent which 

encompasses the natural land cover area, wetlands, and vegetated stream corridors, and the 

disturbed land cover extent which includes areas receiving manure from confined animal 

feeding operations (CAFOs), tile-drained areas, and areas in cropped and urban land, were 

used. For developing and validating the model, waterborne E. coli concentrations, which 

were measured at 46 sampling locations in the Squaw Creek Watershed, Iowa, USA, by 

Squaw Creek Watershed Coalition, were used.   
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The second part of the research is focused on developing a model for predicting resuspension 

of E. coli from the streambed, which is described in chapter 3, and the chapter has been 

published in Water Research (Pandey et al., 2012, vol. 46, 115-126). A model for predicting 

E. coli resuspension from the streambed to the water column was developed. Sediment 

particle attached E. coli concentrations and erosion rates estimated from sediment transport 

theory were used to calculate E. coli resuspension rates. We monitored E. coli concentrations 

in the streambed sediment and the water column of the Squaw Creek Watershed at 16 

sampling locations, which were used to verify the E. coli resuspension rates. 

The third part of the research is concentrated on improving an existing watershed scale water 

quality model to improve Total Maximum Daily Loads (TMDLs) estimation for pathogen 

impaired waters, which is described in chapter 4. This chapter has been submitted as a final 

project report to the EPA Regions 7 (contract no. X7-97703701-1) “Improving SWAT for 

Developing TMDLs for Bacteria”, and has been approved. A manuscript based on this report 

is ready to be submitted for publication in Water Research. In this study, first a watershed-

scale E. coli transport model, which includes in-stream routing, resuspension, deposition, and 

E. coli growth, and capable of predicting E. coli in the streambed sediment and the water 

column was developed.  Second, the model was programmed in FORTRAN, and integrated 

with the existing Soil and Water Assessment Tool (SWAT), a hydrological model, to predict 

the E. coli concentrations in the streambed sediment as well as in the water column. Finally, 

the predictions were verified using monitored streambed sediment and water column E. coli 

concentrations of the Squaw Creek Watershed.   
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The fourth part of the research develops a model for predicting in-stream total E. coli loads, 

which is described in chapter 5, and ready to be submitted. The model was used to calculate 

in-stream total E. coli loads in the Squaw Creek Watershed under a range of flow conditions 

using particle attached E. coli concentrations, and water column E. coli concentrations. Here 

we have shown how in-stream E. coli loads are underestimated by ignoring the impacts of 

streambed sediment E. coli. This work emphasizes the need for improving the United States 

Environmental Protection Agency (USEPA) current water quality testing methodology, 

which currently relies solely on water borne E. coli concentrations to assess stream pathogen 

levels and identify impaired waters. 

The fifth part assesses the impacts of weather pattern on in-stream E. coli concentrations, 

which is described in chapter 6, and a draft is submitted for rapid communication in Water 

Resources Research. In this work, E. coli measurements taken in the streambed sediment and 

the water column of the Squaw Creek Watershed were related to air temperature, soil 

temperature, solar radiation, and rainfall to investigate the impacts of temperature, solar 

radiation, and rainfall on in-stream E. coli levels. The work provides foreknowledge and 

evidences for a potential increase in pathogen contamination by increases in ambient 

temperatures. 

2. Literature review 

Water borne pathogen contamination in ambient water bodies and related diseases are a 

major water quality concern in all over the world. To find the current trends and possible 

future research directions in the field, this literature review provides a historical perspective 

of pathogen contaminations and elaborates on pathogen contaminations in ambient water 
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bodies. Besides this, we also discussed the state of art of pathogen survival under various 

environmental conditions. We present a short synopsis elaborating water resources 

development and global warming impacts on pathogen contaminations. Finally, we expound 

on future challenges and recommendations to address the issue of pathogen contaminations 

of ambient water bodies.  

Pathogen contamination is a serious issue for almost all types of ambient water bodies 

(USEPA, 2012), therefore, understanding waterborne pathogen contamination in a relatively 

broader sense is necessary. As scientific evidence for warming of Earth climate is 

unequivocal (IPCC, 2007), it is important to understand how changes in weather patterns can 

potentially impact E. coli levels in ambient water bodies. To meet the future water demand 

for food, increasing water resource structures are necessary (Word Bank, 2010); however, 

these new water storage structures can also aggravate the public health risk, which also needs 

to be addressed. 

We found that there is a clear need for studies that brings knowledge from different fields 

and aspects of pathogen contamination, and put them in a single place to present the problem 

as a whole. Therefore, our goal in this review is to present pathogen contamination problems 

at a relatively broad scale. We attempt to summarize the prevalence of potential health risks 

imposed by various ambient water bodies under different environmental conditions, and to 

find the current trends and possible future directions in this field. The study is divided into 

sections: 1) historical perspective of water borne pathogen contaminations; 2) health risks 

associated with water borne pathogens; 3) pathogen contaminations in various ambient water 

bodies; 4) environmental factors affecting pathogens survival in ambient water bodies; 5) the 
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impact of water resources development and climate warming on pathogen contamination; 6) 

future challenges and recommendations.   

Each section has a specific objective. For example, the first provides historical studies 

elaborating early concern and pathogen related human causalities. The second section 

emphasizes potential health risks caused by water borne pathogens. The third is to describe 

pathogen contaminations in various ambient water bodies such as coastal waters, estuaries 

water, ground waters, stream waters, and lakes and reservoirs. The fourth focuses on the 

impacts of environmental factors (i.e., solar radiation, temperature, pH, predators, dissolved 

oxygen, salinity, protienaceous material, and solid attachment) on pathogen survival. The 

fifth is to render a short synopsis of water resources development and global warming 

impacts on pathogen contaminations; and the sixth section expound on future challenges and 

recommendations. 

2.1 Historical perspective of water borne pathogen contaminations  

Issues of water contamination have a long history and there are descriptions in Sushruta 

Samshita, a foundation text on ayurvadic medicine (Indian traditional medicine), about water 

borne diseases resembling cholera from 500 to 400 B.C. in India (Colwell, 1996). The 

pathogens such as Vibrio Cholera, which causes cholera, infects several million people each 

year (Nelson et al., 2009). There have been several historical cholera pandemics. The first 

occurred between 1817 and 1823, resulting in the deaths of 10,000 British troops and 

countless Indian deaths. It later spread across China, Indonesia, and the Caspian Sea totaling 

more than 100,000 deaths. The second cholera pandemic between 1829 and 1851, which 
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began in Russia, caused 100,000 deaths in Hungary, and it later spread cross the Atlantic to 

New York on 23 June 1832 (Colwell, 1996).    

The classical map of cholera deaths in London in the 1840s, which was produced by Dr. John 

Snow (Snow, 1854), a physician to Queen Victoria, shows potential health risks caused by 

contaminated water. In his investigation, Dr. Snow hypothesized that the cause of cholera 

was drinking water of the well on Broad Street, London. This was the first instance on record 

of the implementation of an appropriate measure to prevent the transmission of water borne 

pathogens (Colwell, 1996; Okun, 1996). Also this was the first work, which used a 

geographic method to show the spread and epicenter of cholera, which resulted in locating a 

contaminated water body, responsible for spreading the disease.  His tracking of death rates 

caused by contaminated water, was an important observation in the understanding of the 

epidemiology of waterborne diseases (Colwell, 1996). 

Besides Dr. Snow’s study, there are several other noteworthy works. For example, the first 

study on the longevity of the typhoid bacillus in water (Jordan et al., 1904), which showed 

the viability of the typhoid bacillus in contaminated water. On the request of the sanitary 

districts of Chicago, authors examined the life of typhoid bacillus in the waters of Lake 

Michigan, the Chicago Drainage Canal, and the Illinois River. The purpose of the study was 

to understand if typhoid bacillus could survive during water transport from the Chicago 

Drainage Canal to the mouth of the Illinois River. The authors concluded that the typhoid 

germ loses its vitality over time. Ruediger (1911) reported that colon bacilli and typhoid 

bacilli disappear from polluted river water faster in summer than in winter, when the river is 
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covered with ice and snow, which indicates that winter seasons prolong survival of pathogens 

(Phelps, 1914).  

The prevalence of infectious diseases which were potentially transmitted by recreational 

water contact was presented by the Committee on Bathing Places (Simons et al., 1922), who 

gathered the information on the methods employed at different bathing places for washing 

and disinfecting suits and towels. The study found that infection was caused by infected 

water at the bathing places. A similar study by Winslow and Moxon (1928) found that the 

bathing beach water of New Haven Harbor was highly polluted. This study surveyed the 

harbor waters of New Haven, Connecticut, and suggested that the average coliform count in 

bathing water should not exceed 100 counts per 100 ml in order to be considered as safe 

water. The author’s suggestion was used to convince the New Haven authorities to develop a 

sewage treatment plant to eliminate the discharge of crude sewage water into the Harbor. 

A similar study by Rubentschik et al. (1936) for salt lakes (limans) found that a large number 

of pathogens were absorbed in lake sediment. In the 1920s, the American Public Health 

Association reviewed the incidences of disease associated with the use of recreation water, 

and proposed recommendations to control pathogen contaminations. A review study on 

pathogen contamination by Rudolfs et al. (1950) provided an excellent summary of early 

work on the occurrence and survival of pathogenic bacteria in soil, water, sewage sludge and 

vegetation.   

Moore (1954) carried out a bacteriological survey of beach pollution in the summer of 1948 

and 1950, and discovered that the sewer system was a primary source of coliform organisms 

in the sea water. Many other  notable studies such as the studies on sewage contamination for 
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coastal bathing waters in England and Wales (The Committee on Bathing Beach 

Contamination of the Public Health Laboratory, 1959) also described the potential health 

risks caused by pathogens in the coastal environment. Other relatively recent studies 

describing pathogen contamination in various water bodies (i.e., streams, reservoirs, lakes) 

are described in later sections of this study.  

2.2 Health risks associated with water borne pathogens 

The unsafe levels of pathogens in ambient water bodies are a major cause of water 

contaminations, which causes public health risks. According to the World Health 

Organization (WHO), over 2.6 billion people lack access to clean water, which is responsible 

for about 2.2 million deaths annually, of which 1.4 million are children (WHO, 2010). 

Improving water quality could reduce about 4% of the global disease burden (WHO, 2010). 

The WHO estimated that 88% of that burden is attributable to contaminated water.  

In order to improve people’s livelihood, the United Nations envisioned Millennium 

Development Goals (MDGs)—eight international development goals—and improving water 

quality is one of them. The target is to reduce the number of people without access to safe 

water by 50% by the year 2015 (WHO, 2011). To achieve this target, it is imperative to 

understand how pathogen contaminations impact ambient water bodies, and what the 

potential sources of contaminations are. Improving water quality of the ambient water bodies, 

particularly controlling pathogen levels, is a viable option for achieving MDGs.  

Water borne diseases (i.e., diarrhea, gastrointestinal illness) caused by various bacteria, 

viruses, and protozoa were the reasons for many of the outbreaks (Craun et al., 2006). In 
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developing countries such as Africa, waterborne diseases infect millions (Fenwick, 2006).  

Even in the United States, these diseases are a major cause of illnesses. A study by Craun et 

al. (2006) reported statistics on waterborne outbreaks in the U.S., which shows that at least 

1870 outbreaks (23 per year) occurred between 1920 and 2002.  

A relatively recent report of the U.S. Environmental Protection Agency (EPA) estimated that 

pathogens impair 480,000 km of rivers and shorelines and 2 million ha of lakes of the U.S. 

(USEPA 2010a). Approximately 900,000 illnesses and 900 deaths each year are reported in 

the U.S. because of exposure to water-borne pathogens (Arnone and Walling, 2007). Besides 

acute gastroenteritis, a major etiological agent, many others such as Giarida, 

Cryptosporadium, E. coli O157:H7, V. cholera, and Salmonella were the grounds for many 

outbreaks (Craun et al., 2006). In mid and late 18th century diseases such as cholera, infected 

millions of people all over the world (Colwell, 1996). Studies [for example, Jordan et al. 

(1904), Ruediger (1911), Simons et al. (1922), and Rudolfs et al. (1950)] provided excellent 

reviews on incidences during the early 19th century.  

Relatively newer studies [for example Diffey (1991), Brookes et al. (2004), Jamieson et al. 

(2004), Gerba and Smith (2005), Gerba and McLeod (1976), John and Rose (2005), Hipsey 

et al. (2008), and Pachepsky and Shelton (2011)] have reviewed the current state of art and 

advancement in this field, particularly, for freshwater and estuarine sediments. However, 

there is a gap in studies.  Besides this, many of the current reviews are on specific water 

bodies, for instance, John and Rose (2005) focuses on ground water, Brookes (2004) focuses 

on reservoirs and lakes, and Jamieson et al. (2004) focuses on agriculture watershed. Others, 

for example, Kay et al. (2007) reviewed on catchment microbial dynamics.  
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2.3 Pathogen contaminations in ambient water bodies 

In the previous section, we provided the review/case studies from the late 18th century and 

the mid-19th century, concerning water borne pathogen contamination, and related issues. In 

this section, we describe pathogen contamination problems in various ambient water bodies 

such as coastal environment, estuaries, groundwater, streams, and reservoirs and lakes. This 

section will review studies focused on pathogen survival in various water bodies, and 

potential sources. In Table 1.1, previous studies relevant to pathogen contamination are 

categorized by the ambient water bodies.  

2.3.1 Coastal environment 

In the U.S., pathogens are a leading cause of impairments of coastal environments; urban 

runoff and sewers have been identified as the primary source of coastal water impairments 

(Arnone and Walling, 2007). The studies elaborating pathogens contamination in coastal 

environments are summarized in Table 1.1. A study by Rippey (1994) reported about 400 

outbreaks and 14,000 cases caused by pathogen contaminated coastal water since the late 

1800s in the USA. Impairments in coastal environments have major economic impacts on the 

U.S. For example, losses caused by bacterial contamination in Massachusetts are more than 

$75 million each year (Weiskelet al., 1996; Arnone and Walling, 2007).  

The sources of coastal water contamination are:  point discharges of treated and untreated 

sewage from shoreline outfalls, and non-point discharges. The non-point sources such as 

runoff from naturally vegetated areas discharges pathogens into coastal water. Besides runoff 

from vegetated areas, the storm water runoff from urban, commercial, and industrial land 
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also discharges pathogens into coastal water. Other sources such as malfunctioning or 

poorly-sited septic systems can also introduce significant amounts of pathogens (Sayler et al., 

1975; Howe et al., 2002). A study by Weiskel et al. (1996) reported that the direct deposition 

of waterfowl feces is the considerable source for pathogens. A review paper by Fayer and 

Trout (2005) summarizes the transport of various pathogens such as Giardia, Toxoplasma, 

and Cryptosporidium—zoonotic parasites in the coastal environment.  

The direct discharge of storm water runoff to coastal waters through storm drain systems 

could cause pathogen contaminations; even where separate storm and sanitary sewer systems 

are in place. Weiskel et al. (1996) found that about 16% of the total fecal coliform inputs 

were caused by storm water entering Buttermilk Bay in Massachusetts. Coastal streams 

draining largely undeveloped watersheds with extensive riparian wetlands can be the natural 

sources of fecal bacteria to coastal waters. On-site septic systems contribute significant 

amounts of fecal bacteria to coastal waters in low-lying, fine-grained geological settings 

where saturated soils enhance bacteria growth. Weiskel et al. (1996) reported that wrack 

deposits in shoreline could act as a reservoir of fecal bacteria, and removal of wrack deposits 

from inter tidal zone can improve the water quality of adjacent coastal waters.  

2.3.2  Estuaries 

Human activities have impacted estuaries significantly as they are often adjacent to populated 

areas, and often provide a means of transportation and receive substantial recreational use 

(Schriewer et al., 2010). The studies describing pathogen sources in estuaries and potential 

survival are summarized in Table 1.1. Municipal point sources are the primary cause of 

pathogen contaminations in estuaries. Urban water disposed through combined sewer 
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outflows is the cause of approximately 12% of estuary impairments in the U.S. (Arnone and 

Walling, 2007). Pathogens such as Vibrio vulnificus, that carries the highest fatality rate of 

any food-borne pathogen in the U.S., were detected in Gulf of Mexico Estuary (Lipp et al., 

2001; Rippey, 1994; Baker-Austin et al., 2009). The presence of other pathogens such as 

Bacteroidale is also reported in the water samples of 10 major rivers and estuaries within the 

Monterey Bay Region (Schriewer et al., 2010). The most common pathogens previously 

identified in estuaries by Rhodes and Kator (1988) were Vibrio cholerae, Giardia, 

Cryptosporidium, Salmonella, and Campylobacter spp. The researchers compared die-off of 

various pathogens in estuaries water and determined that die-off of Salmonella was lower 

than E. coli, which means that E. coli concentrations may not indicate true levels of 

salmonella in waters.  

2.3.3 Ground water 

Groundwater is heavily used all over the world as the primary source for domestic drinking 

water supplies. Nationally, 40% of the U.S. domestic water supply originates from 

groundwater, and over 40 million people use groundwater as their drinking water via private 

wells (Alley et al., 1999; John and Rose, 2005). Groundwater pathogen contaminations has 

led to numerous disease outbreaks in the U.S., for example, at least 46 outbreaks of disease 

occurred between 1992 and 1999; resulting in 2,739 cases of illness and several deaths (John 

and Rose, 2005). These are reported cases; however, actual occurrence could be higher. 

Table 1.1 summarizes studies relevant to pathogen contaminations in ground water. 

Controlling groundwater pathogen contamination has recently been emphasized in many 

countries. For example, identifying the sources of ground water pathogen contamination has 
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received significant importance in Australia. Many studies reported that the health risks 

caused by chlorine-resistant protozoa such as Cryptosporidium spp (Ferguson et al., 2003; 

Kay et al., 2007; Kay et al., 2008) are considerable. Also in the UK, regulators have 

expressed concern; the main concern was that unlined wetlands might cause pathogen 

contamination to groundwater (Kay et al., 2007).  Similarly, the European Union (EU) has 

emphasized protecting ground water from pathogen contaminations. 

Pathogen contaminated ground water can cause pollution in coastal environments. For 

example, a study of Buttermilk Bay has shown that groundwater is capable of transporting a 

large amount of pathogens from surface to coastal waters either by direct discharge or by 

discharge to streams that flow into the Bay (Moog, 1987; Weiskel et al., 1996). The risk of 

contaminating groundwater increases particularly in areas where shallow aquifers exist. In 

these situations it is more likely that contaminated surface water or water from septic tanks 

could reach to groundwater (Weiskel et al., 1996; John and Rose, 2005).  

It has been found that precipitation events increase groundwater pathogen contaminations 

(John and Rose, 2005), which could be the result of increased recharge of contaminated 

ground water during rainy seasons. Besides, ground water can also be contaminated by 

seepage and percolation of contaminated water from the vadose zone (Darnault et al., 2004). 

The macropores of agriculturally managed soils may play a considerable role in polluting 

ground water, particularly from the fields where manure is applied (Jamieson et al., 2002).  

2.3.4 Streams 
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Pathogen contamination is a major cause of stream impairments. The sources of impairment, 

and health risks induced by water borne pathogens are extensively reported (Table 1.1). In 

the U.S. pathogen contamination is the leading cause of stream water pollutions. The EPA’s 

National Water Quality Inventory Report suggests that about 53% of the assessed streams 

(USEPA, 2012) are impaired, and majority of them are contaminated by pathogens. The cost 

to implement total maximum daily load (TMDL), a plan to improve stream water, is 

estimated as $0.9 to $4.3 billion per year (USEPA, 2010b). According to USEPA, the 

elevated levels of pathogen are the leading cause of impairment in Iowa streams as well as in 

the streams of the USA. 

Pathogen influxes into streams from agriculture land are the main cause of stream 

impairments (USEPA, 2012). Weak understanding on pathogen transport from agricultural



  

 

1
8 

Table 1.1. Studies describing contamination in ambient water bodies 

 

 

 

Type of water Author (s) year Organisms Results Remarks 

Coastal water      

 Gerba and McLeod (1976) 

 

Goyal et al. (1977) 

 

 

Kapuscinski and Mitchell 

(1983) 

Rao et al. (1984) 

 

 

Gonzalez et al. (1990) 

 

 

Alkan et al. (1995) 

 

 

Weiskel et al. (1996) 

 

E. coli, fecal coliform 

 

Total coliform, fecal 

coliform 

 

E. coli, bacteriophages 

 

Enteroviruses (Polio and 

Rota)  

 

E. coli and E. faecalis                     

 

 

E. coli and enterococci 

 

 

Fecal coliform 

Longer survival in sediment 

presence 

Sediments of shallow canal 

can act as reservoir 

 

E. coli survive longer than 

bacteriophages  

Abundance viruses were 

attached with  

sediment 

E. faecalis digestion  was 

higher than  E. coli 

 

Light intensity influenced 

bacterial  

die-off  

Waterfowl major 

Sediment influence in 

pathogen survival 

Pathogens distribution in 

water and sediment 

 

Survival of pathogens in 

sunlight 

Viruses distribution in water 

and sediment 

 

Predators digestion rate in 

fresh and marine  

water 

Die-off on solar radiation 

and environmental  

factors 

Pathogen source and 
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Table 1.1. (continued) 

Type of water Author (s) year Organisms Results Remarks 

  

 

Sinton et al. (1999) 

 

 

Solo-Gabriele et al. 

(2000)   

 

Griffin et al. (2003) 

 

 

Nasser et al. (2003) 

 

 

Schriewer et al. (2010) 

 

 

Bacteria and Fecal 

bacteriophages 

 

E. coli    

                                                           

 

Adenoviridae, 

Caliciviridae    

             

Cryptosporidium, viruses, 

E. coli     

 

Bacteroidales, fecal 

indicator, protozoa, 

bacteria                                      

 

source of fecal coliform 

inputs 

Somatic coliphages shown 

prolonged 

 survival 

Riverbanks as the primary 

pathogen  

source      

Human viruses released 

by human sewage 

responsible for viral 

E. coli die-off was faster 

than other  

pathogens          

Bacteroidales have shown 

higher predictive skill 

than fecal indicators                                                                                                      

 

transport pathways 

 

Sunlight influence in 

sewage-polluted  

seawater 

Sources of pathogens in 

subtropical environment 

 

Pathogenic human viruses 

transmitted via the fecal-

oral route. 

Comparative survival of 

various pathogens 

 

Bacteroidales as a 

predictor of pathogens in 

coastal water 
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Table 1.1. (continued) 

Type of water Author (s) year Organisms Results Remarks 

Estuaries water     

 Ketchum et al. (1952) 

 

 

Smith et al. (1978) 

 

Anderson et al. (1983) 

 

 

Rhodes and Kator (1990) 

 

White et al. (1998) 

 

Lipp et al. (2001)  

 

 

Desmarais et al. (2002)  

 

Coliform, zooplankton 

 

 

Echovirus 1, 

coxsackieviruses 

E. coli 

 

 

E. coli       

                   

Perkinsus                          

marinus                                                                                                                            

 Vibrio vulnificus 

 

 

E. coli,  C. perfringens 

 

Sactericidal and predation 

caused coliform  

die-off  

Sediment prolonged 

viruses survival 

Survival was related with 

temperature and  

eukaryote 

Mortality rises in  

sunlight  

Use of Kriging analysis 

for disease prevalence   

Salinity controls the 

distribution of 

 pathogens 

Pathogens re-grown with 

tides and sterile  

Processes responsible for 

pathogens decrease  

 

Persistence of pathogen 

viruses 

Seasonal variation in 

pathogen survival in 

diffusion chamber 

Indigenous  microbiota 

and sunlight influence 

Use of GIS in pathogen 

distribution analysis 

Distribution of human 

pathogens  

 

Influence of soil on fecal 

indicator in tidally 
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Table 1.1. (continued) 

Type of water Author (s) year Organisms Results Remarks 

  

Frias-Lopez et al. (2002)  

                   

  

 

Chandran and Mohamed 

(2005) 

 

Baker-Austin et al. (2009) 

 

Clostridium, 

Campylobacter, 

Arobacter                 

 

E. coli, Salmonella 

 

 

Vibrio vulnificus 

sediment 

Pathogen partitioning was 

found  in surface and 

overlying  

water   

E. coli shows better 

survival capacity than 

salmonella 

Prevalence of antibiotic 

resistance in a human 

pathogen 

influenced environment 

Bacterial communities 

partitioning between sea 

water, dead coral  

surface 

Relative survival in 

microcosm  

studies 

Multi-site analysis shows 

widespread antibiotic 

resistance in  

Pathogens 

Ground water     

 Bitton et al.  (1983) 

 

Schijven and 

Hassanizadeh (2000) 

 

Salmonella, E. coli, S. 

faecalis, enteroviruses   

Viruses 

 

S. faecalis decay rate was 

similar to viruses  

Viruses attachment with 

soil was influenced by 

pH, and favorable sites  

 

Survival of pathogens in 

ground water      

Soil passage impacts in 

virus removal at field 

scale  
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Table 1.1. (continued) 

Type of water Author (s) year Organisms Results Remarks 

 Gordon and Toze (2003) 

 

 

Pang et al. (2004) 

 

Nevecherya et al. (2005) 

 

 

Filip and Demnerova 

(2009) 

 

Grisey et al.  

(2010) 

Bacteriophages, E. coli, 

viruses 

 

E. coli and F-RNA phages 

 

Salmonella, viruses, E. 

coli, shigellos 

 

Bacillus megaterium and 

Staphylococcus 

 

Total coliforms, E. coli, 

Enterococci, 

Pseudomonas aeruginosa, 

Salmonella and 

Staphylococcus aureus 

E. coli and viruses shown 

maximum mortality in 

presence of predators 

Pathogens were sorbed in 

aquifer material 

Mathematical model was 

derived for temperature 

depends inactivation rate  

Pathogens survived 10 to 

100 days 

 

Bacterial density 

monitoring coupled with 

artificial trace 

experiments proved useful 

in locating pathogens 

sources 

Ground water 

characteristics influence 

on survival of pathogens  

Transport of E. coli and F-

RNA phages 

Pathogenic bacteria and 

viruses survival in ground 

water 

Pathogens survival in 

ground water; FT-IR 

characterization  

Pathogens survival in 

groundwater and landfill 

leachate 
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Table 1.1. (continued) 

Type of water Author (s) year Organisms Results Remarks 

Streams     

 

 

 

 

 

 

 

Chin (2010) 

 

Smith et al. (1973) 

 

Burton et al. (1987) 

 

 

Smith et al. (1987) 

 

 Terzieva and McFeters 

(1991) 

 

 

 

McFeters and Terzieva 

(1991) 

 

Fraser et al. (1998) 

Fecal coliform 

 

Salmonela, fecal 

coliforms, streptococci 

Pseudomonas aeruginosa, 

Salmonella newport, E. 

coli  

E. coli, Fecal bacteria 

 

E. coli, Campylobacter 

jejuni, Yersinia 

enterocolitica 

 

 

Yersinia enterocolitica 

and E. coli 

 

Fecal coliform 

Summer and rainfall 

raises pathogens     

Salmonella decline was 

close to fecal coliform 

Clay in sediments 

improves E. coli  

survival 

U.S. rivers shows decline 

in fecal indicator  

Temperate zone surface 

water serve as a persistent 

vehicle in transmission of 

bacteria between animals 

and humans 

Experimental design and 

environmental play major 

role in pathogens survival 

Model predicted 

pathogens 

Urban areas impacts in 

stream pathogens 

Usefulness of indicators 

organisms 

Survival of pathogens in 

fresh water sediments 

 

Water quality assessment 

from 1974 to 1981 

Survival and injury study 

of bacteria in agricultural 

surface water  

 

 

Survival in stream water, 

comparison between field 

and lab studies 

Modelling non-point 

source pollution 
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Table 1.1. (continued) 

Type of water Author (s) year Organisms Results Remarks 

Lake & reservoirs      

 Beaver and Crisman 

(1989) 

Rubentschik et al. (1936) 

 

Mac Kenzie et al. (1994) 

 

 

Wcislo and Chrost (2000) 

 

Kistemann et al. (2002) 

 

 

Howe et al. (2002) 

 

 

Ishii et al. (2006) 

Ciliates 

 

Serratia marcescens 

 

Cryptosporidium 

 

 

E. coli 

 

E. coli, coliform, fecal 

streptococcal, and 

Clostridium perfringens 

Cryptosporidium oocysts  

 

 

E. coli 

Grazing habits of ciliates 

are discussed 

Adsorption of bacteria 

could be questionable 

C. oocysts study passes 

through the filtration 

system of water supply 

Predators controlled 

pathogen levels 

Most of the pathogens 

increases during extreme 

runoff events 

Animal feces was a major 

source of pathogens 

 

E. coli survived longer in 

soil 

 

Predators roles in fresh 

water  

Adsorption of bacteria in 

salt lakes 

Contaminated water from 

Milwaukee lake caused 

outbreak  

Survival of pathogens in 

man-made reservoir 

Microbial load in drinking 

water reservoir during 

rainfall events 

Water supply’s oocysts 

caused outbreak in 

northern England  

Presence and growth of E. 

coli in Lake superior 

watershed 
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land is considered the major challenge in implementing corrective measures to improve 

stream water quality. For example, it is difficult to identify the origin point of pathogens and 

the pathway in which they enter the stream. Pathogens may enter into streams from many 

potential sources including lateral inputs from pastures and riparian zones, the influx of 

pathogen-contaminated ground water, direct deposit of fecal matter from livestock and 

wildlife, discharge of contaminated sanitary sewer flows, and wastewater treatment plant 

effluent.  

Controlling pathogen contaminations from livestock is challenging. For example, there is 

doubt that pathogen contamination can be prevented by fencing off riparian buffers, and if 

buffers are useful in controlling stream water pathogens, we are not certain about the width 

they must be (Nagels et al., 2002). There are review studies, which elaborated the stream 

water pathogen contamination (Jamieson et al., 2004; Pachepsky et al., 2006). Many studies 

have emphasized using mathematical models to understand pathogen transport in stream 

water (Kim et al., 2010; Muirhead et al., 2004; Jamieson et al., 2005a; Jamieson et al., 

2005b).  

2.3.5 Reservoirs & Lakes 

Studies, which have shown the threat of pathogen contaminations in lakes and reservoirs, are 

summarized in Table 1.1. In many countries surface reservoirs serve as the main source of 

drinking water, and these surface water bodies are often vulnerable to pathogen 

contamination (Kistemann et al., 2002). In the developed world, although there is increased 

awareness of water quality and water treatment for pathogen contamination, outbreaks of 
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water-borne disease via public water supplies continue to be reported (Gibson et al., 1998; 

Howe et al., 2002; Brookes et al., 2004).  

For example, during the spring of 1993 an estimated 403,000 residents of the greater 

Milwaukee, Wisconsin area, experienced gastrointestinal illness due to infection with the 

parasite Cryptosporidium parvum following contamination of the city’s water supply, which 

was associated with inadequate filtration of contaminated water from Lake Michigan (Mac 

Kenzie et al., 1994; Cicirello et al., 1997). In the 1990s, Cryptosporidiosis became the most 

common cause of outbreaks associated with public drinking water supplies in the United 

Kingdom (Howe et al., 2002).  In developing countries, it is difficult to estimate the exact 

morbidity and mortality of diseases caused by water borne pathogens because the 

surveillance systems are rudimentary, and many cases are not reported; however, diseases 

such as diarrhea and cholera are the leading cause of morbidity (Nelson et al., 2009). Overall, 

diarrhea disease associated with drinking water is responsible for 2 to 2.5 million deaths 

annually (Fenwick, 2006).  

In lakes and reservoirs, increased pathogens are often associated with storm events, and the 

stream inflow is considered to be the major source of pathogens. During rainy seasons, the 

influx of contaminated water from streams to lakes and reservoirs can increase pathogen 

levels substantially (Kistemann et al., 2002). The quantity of pathogen influxes from lakes’ 

and reservoirs’ tributaries during rainy seasons is of particular importance in determining 

pathogen transport and distribution (Brookes et al., 2004). 
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2.4 Factors affecting pathogen survival and transport 

Previous sections described the pathogen contaminations in various ambient water bodies 

and potential sources. Factors affecting pathogen survival and transport in ambient water 

bodies are of a great interest, which is discussed in this section. The pathogen contamination 

in water bodies, which are used by public either for drinking water or recreational purposes 

causes health risks to human health as well as significant economic losses (Scott et al., 2002). 

Numerous review studies describing environmental factors impacts on pathogen survival are 

available (Brookes et al., 2004; Fayer and Trout, 2005; Gerba, 2005; Hipsey et al., 2008). In 

this section, we discussed major environmental factors, which impacts pathogen survival and 

growth. Modeling approaches for estimating growth and survival are also discussed. Previous 

studies summarizing potential impacts of environment on waterborne pathogens are 

categorized by environmental factors in Table 1.2.  

Pathogen concentrations in water bodies are influenced by many environmental factors. The 

effect of these factors may vary with season and the type of ambient water bodies (Van 

Donsel et al., 1967; Gallagher and Spino, 1968; Niemi, 1976). For example, in stream water, 

temperature is considered to be the governing factor in E. coli survival (McFeters and Stuart, 

1972); however, in groundwater and reservoir, the presence of predators controls their 

survival (Wcislo and Chrost, 2000; Gordon and Toze, 2003; John and Rose, 2005).  

2.4.1 Solar radiation 

Solar radiation is considered to be the most important factor that influences the survival of 

pathogens, however, the influence may vary with depth of water, type of water bodies, and 
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type of pathogen (Sinton et al., 2002). For example, sunlight inactivation rates vary. From 

greatest to least  they are: coliforms > enterococci > F-RNA phages > somatic coliphages 

(Davies-Colley et al., 1999; Davies-Colley et al., 1994; Davies-Colley et al., 2000). Another 

study reported the sunlight inactivation rate as: enterococci > fecal coliforms > E. coli > 

somatic coliphages > F-RNA phages (Sinton et al., 2002). The authors found that 

inactivation rates depend on cumulative solar radiation (insolation), and inactivation rates 

were more than 10 times higher than the corresponding dark inactivation rates in enclosed 

(control) chambers.  

Table 1.2 summarizes the studies describing the relationship between sunlight and pathogen 

inactivation. Previous studies have reported that the incoming solar radiation (insolation) is 

arguably the most crucial in the inactivation of E. coli and enterococci in water (Whitman et 

al., 2004). As solar light has high impact on pathogen survival, the current recommendation 

for maximum E. coli density in freshwater (235 CFU/ 100 ml) could be biased. To protect 

swimmers effectively from potential waterborne infection, criteria should take into 

consideration two factors—time of day and amount of insolation —that influence E. coli 

counts in the water (Whitman et al., 2004).  

The simplest type of function to estimate the solar radiation impact in pathogen survival, for 

a given exposure is formulated as (Diffey, 1991):  

          (1) 

where S0 is the initial number of cells, D is the ultraviolet dose and γ is factor that 

characterizes biological sensitivity. To estimate the vertical attenuation of UV light in water, 
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the Beer’s law, which is an exponential function, is often used; this involves the attenuation 

coefficient and depth of water (Brookes et al., 2004; Tung et al., 2007). 

The above simple function (Eq 1) is valid if a single harmful event (hit) is sufficient to 

inactivate a cell, however, very often inactivation of a single cell requires more than one hit 

and mathematical treatment of this condition leads to shoulder survival conditions (Harm, 

1980; Diffey, 1991). Considering shoulder conditions, a two parameters multi-target kinetic 

expression is proposed as follows (Sinton et al., 1999; Sinton et al., 2002):  

         (2) 

where Ps is survival percentage under shoulder conditions, S is insolation (MJ m
-2

), ks is an 

inactivation coefficient (m
2
 KJ 

-1
), and ns is a dimensionless parameter quantifying the size of 

the shoulder. The inactivation coefficient was obtained from the slope of the inactivation 

curve (Sinton et al., 2002).  

2.4.2 Temperature 

Temperature influence in the growth and inactivation of various viruses and pathogens is 

reported extensively (Robertson et al., 1992; Jenkins et al., 1997; Walker and Stedinger, 

1999), and considered to be the only well-defined factor with consistent effects on virus 

survival (Gerba, 2005). We have summarized previous studies, describing temperature 

impacts on pathogen survival in Table 1.2. Various studies found that inactivation of 

pathogens increases with high temperature, with greater inactivation rates above 20 
0
C.  The 

possible mechanism for high virus inactivation at high temperatures are reported to be more 

rapid denaturation of viral capsid proteins or potential degradation by extracellular enzymes
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Table 1.2. Influence of environmental factors on pathogen survival and growth 

Factors Author(s) (year) Organisms Results Remarks 

Sun light     

 Harm (1969) 

 

 

Webb (1978), 

Webb and Brown 

(1976), Webb and  

 

Brown (1977) 

Kapuscinski and 

Mitchell (1983) 

Diffey (1991) 

 

Sinton et al. (1999) 

 

 

Davies-Colley et al. 

(1999) 

E. coli strains Bs-1 and 

AB 2480 

 

E. coli 

 

 

 

E. coli, MS2, ǿx-174, 

and T7 

Pathogens 

 

 

Somatic coliph-ages, 

bacterio-phages  

 

Enterococci , F-RNA 

phages, E. coli 

300 nm wavelength was 

more sensitive to strain 

AB 2480 than Bs-1 

Radiation of 365 nm and 

460 nm inactivated E. 

coli  

 

E. coli died more rapidly 

than other populations 

Time, seasons, clouds, 

reflection, altitude  

impacts pathogens  

Somatic coliphages 

exhibited superior 

survival 

Sunlight was crucial in 

pathogens disinfections  

Lab scale; sunlight 

germicidal activity  

 

Lab scale; sensitivity to 

UV, near UV and visible 

radiation 

 

Lab scale; sunlight 

induced mortality. 

Review; solar ultraviolet 

radiation effects on 

pathogens 

Sunlight inactivation of 

pathogens in sewage 

 

Compared to DO and pH, 

sunlight was more 

influential 
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Table 1.2. (continued) 

Factors Author(s) (year) Organisms Results Remarks 

 Sinton et al. (1994) 

 

 

 

Craik et al. (2001), Craik 

et al. (2000) 

 

 

Sinton et al. (2002) 

 

 

 

 

Whitman et al. (2004) 

 

Chandran and Mohamed 

(2005) 

Fecal coliforms and 

enterococci  

 

 

Cryptosporidium parvum 

oocysts, Giardia muris 

cysts  

 

Fecal coliforms, E. coli, 

somatic coliphages, F-

RNA phages  

 

 

E. coli 

 

E. coli and Salmonella 

Solar spectrum between 

318 and 340 nm and > 

400nm caused most 

inactivation  

Inactivation was found to 

be very sensitive to UV 

dose. 

 

Resistance of Somatic 

coliphages and F-RNA 

was superior in sea and 

fresh water, respectively 

 

Solar radiation controls 

the natural mortality  

E. coli survived better 

than salmonella 

Lab scale; inactivation of 

pathogens from sewage 

and meat works  

 

Lab scale; Medium 

pressure ultraviolet 

radiation impact on 

survival 

Lab scale; sunlight 

inactivation of pathogens 

from sewage plant 

effluent in fresh and saline 

waters 

In-situ microcosms; 

survival study  

Microcosm studies; 

relative survival  
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Table 1.2. (continued) 

Factors Author(s) (year) Organisms Results Remarks 

 Maiga et al. (2009) 

 

E. coli and enterococci Sunlight increases the 

mortality of both 

indicators 

Microcosm studies; dark 

and real sunlight  

 

Temperature     

 Van Donsel et al. (1967) 

 

 

Niemi (1976) 

 

Gordon and Terzieva 

(1991) 

 

Solic and Krstulovic 

(1992) 

 

Abdul-Raouf et al. (1993) 

E. coli, Streptococcus 

 

 

E. coli, phage T7 

 

E. coli, Yersinia 

enterocolitica 

 

Fecal coliform 

 

 

E. coli 0157:H7 

In autumn, streptococcus 

survive longer than E .coli 

 

Survival varies with water 

types and seasons 

High injuries cause a 

rapid decrease in E. coli 

 

Environmental influenced 

mortality of pathogens  

 

Unchanged population at 

5 
0
C, however, increased 

between at 21 and 30 
0
C 

Shaded and exposed 

outdoor soil plots 

experiment 

Survival in different water 

types  

Lab scale; pathogenic and 

nonpathogenic bacteria in 

stream  

Lab scale; pH, salinity, 

solar radiation and 

temperature 

Lab scale; pathogen 

survival in ground and 

roasted beef 
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Table 1.2. (continued) 

Factors Author(s) (year) Organisms Results Remarks 

 Presser et al. (1998) 

 

Salter et al. (2000) 

 

 

 

Panagou et al. (2003) 

 

 

Ross et al. (2003) 

 

 

King et al. (2005a) 

 

E coli 

 

E. coli 

 

 

 

Monascusruber (a 

fungus) 

 

E. coli 

 

 

Cryptosporidium oocysts 

Change in temperature 

influenced 

Regression growth model 

predicted the effect of 

temperature and NaCl 

 

Predicted influence of 

temperature, pH on fungus 

growth  

Effect of temperature, water 

activity, pH, and lactic acid 

on E. coli growth 

Mortality increased at 

temperatures > 15 
0
C, and 

predators reduced oocysts 

Lab scale; survival and 

modeling  

Modeling the combined 

effect of temperature and 

NaCl on pathogen 

growth 

Experiment; modeling 

growth of heat resistance 

fungus 

Square root-type model 

describing E. coli 

growth. 

Lab scale; useful for 

hydrodynamic modeling 

in oocysts risk 

estimation 
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Table 1.2. (continued) 

Factors Author(s) (year) Organisms Results Remarks 

pH     

 Robertson et al. (1992) 

 

 

Solic and 

Krstulovic(1992) 

 

Abdul-Raouf et al. (1993) 

 

 

Presser et al. (1998) 

 

 

 

Ross et al. (2003) 

Cryptosporidium parvum 

 

 

Faecal coliforms 

 

 

E. coli 0157:H7 

 

 

E. coli 

 

 

 

E. coli 

High and low pH have a 

significant impact on 

oocyst viability. 

Pathogens optimal 

survival was between pH 

6 and pH 7  

Citric and lactic acids 

ineffective in inactivation 

at pH 4.7, and 5.4 

The inhibitory effect of 

combinations of water 

activity and pH varied 

with temperature 

pH  effects was varied 

with changes in other 

environmental factors 

Lab scale; survival under 

various environment 

 

Lab scale; combined 

effects of environments 

 

Lab scale; survival in 

different pH and 

temperature conditions 

Lab scale; growth as a 

function of temp, pH, 

lactic acid, and water 

activity 

Growth modeling; 

temperature, pH, lactic 

acid  
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Table 1.2. (continued) 

Factors Author(s) (year) Organisms Results Remarks 

 Gerba (2005) 

 

 

John and Rose (2005) 

 

 

Hipsey et al. (2008) 

 

Pathogenic viruses 

 

 

Pathogenic viruses 

 

 

Pathogenic bacteria 

Enteric viruses are stable 

at pH of natural water 

bodies 

pH over the range from 6 

to 7.8 has effects on 

mortality  

Gradual increase in 

mortality beyond pH of 6 

to 8, and substantial 

increase outside the range 

4–10 

Review; viruses survival  

 

 

Review; microbial 

survival  

 

Modeling; generic 

modeling of microbial 

population in aquatic 

systems 

Predators     

 Enzinger and Cooper 

(1976) 

 

McCambridge and 

McMeekin (1980) 

Bacteria and protozoa  

 

 

E. coli 

Protozoa influenced E. 

coli survival  

 

Protozoan influence was 

critical during initial 

decline 

Lab scale; predators role 

in pathogen removal  

 

Lab scale; relative effects 

of bacterial and protozoa 

in E. coli mortality 
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Table 1.2. (continued) 

Factors Author(s) (year) Organisms Results Remarks 

 Anderson et al. (1983) 

 

 

 

Gonzalez et al. (1990) 

 

 

 

Rhodes and Kator (1990) 

 

 

Menon et al. (1996) 

 

 

 

Wcislo and Chrost (2000) 

Fecal bacteria 

 

 

 

Protozoa, E. coli and 

Enterococcus faecalis 

 

 

E. coli 

 

 

Heterotrophic flagellate  

 

 

 

E. coli 

E. coli disappearance 

increases in the presence 

of natural biota and 

eucaryote 

Enterococcus faecalis 

survived longer than E. 

coli 

 

Autochthonous 

micriobiota enhanced E. 

coli mortality  

Ingestion kinetics was 

consistent with 

competitive inhibition of 

enzymatic reactions 

Predators played major 

role in E. coli mortality 

Membrane diffusion 

chamber; predators 

influence in mortality  

 

Field scale; differential 

digestion rates of bacteria 

by protozoa in  

fresh water 

Lab scale; effects of 

sunlight and 

 predators 

Lab scale; kinetics of 

flagellate grazing in the 

presence of bacterial prey 

 

Field scale; predator and 

aquatic environment  
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Table 1.2. (continued) 

Factors Author(s) (year) Organisms Results Remarks 

 Menon et al. (2003) 

 

 

John and Rose (2005) 

 

Fecal bacteria 

 

 

Pathogenic viruses and 

bacteria 

Predator’s grazing was 

dominant coliform 

mortality  

Predatory and competing 

organisms reduces viruses 

population in aquifer 

Field scale; protozoan 

induced mortality  

 

Review; various factors 

including predators 

influence in pathogens 

Dissolved oxygen     

 Webb and Brown (1979) 

 

 

 

John and Rose (2005) 

 

 

Mackenzie et al. (1992) 

E. coli k12 

 

 

 

Pathogenic bacteria and 

viruses 

 

Fecal bacteria 

Lethality of radiation was 

oxygen-dependent  

 

 

Does not includes the 

potential impact of 

dissolve oxygen  

Oxygen is crucial in 

sunlight inactivation of 

fecal bacteria 

Lab scale; oxygen 

dependent radiation 

lethality in E. coli DNA 

repairs capability  

Review; survival of 

pathogens in ground water 

 

Solar inactivation under 

aerobic and anaerobic 

conditions 
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Table 1.2. (continued) 

Factors Author(s) (year) Organisms Results Remarks 

 Reed (1997) 

 

 

(Davies-Colley, Donnison 

et al. 1999) 

 

 

 

Gordon and Toze (2003) 

E. coli, enterococcus 

faecalis 

 

E. coli, enter- 

ococci and F-RNA phages 

 

 

 

E. coli, bacteiophage 

MS2, viruses  

 

Solar based pathogens 

inactivation require fully 

aerobic conditions 

Inactivation of 

enterococci, F-RNA 

phages and E. coli was 

increased strongly with 

increased oxygen 

E. coli and viruses 

displayed maximum 

decay under aerobic 

conditions 

Lab scale: critical role of 

oxygen in sunlight 

pathogen inactivation  

Lab scale; interaction of 

DO, pH, and sunlight in 

inactivation of indicator 

organisms 

 

Field scale; influence of 

water characteristics in 

pathogens survival 

Salinity     

 Carlucci and Pramer 

(1959) 

 

 

Pathogens 

 

Rapid pathogens  

decrease in the  

sea water  

Report; factors  

affecting the survival  

of bacteria  
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Table 1.2. (continued) 

Factors Author(s) (year) Organisms Results Remarks 

 Elliot and Colwell (1985) 

 

Cornax et al. (1990) 

 

 

Alkan et al. (1995) 

 

 

Mallin et al. (2000) 

 

 

Bordalo et al. (2002) 

 

 

Allwood et al. (2003) 

Indicator organisms 

 

18 pathogenic strains 

 

 

E. coli and enterococci 

 

 

E. coli 

 

 

Faecal indicator bacteria 

 

 

Feline calcivirus, E. coli 

and coliphages 

Direct detection method 

for pathogens  

Pathogenic organisms 

showed inactivation in 

saline environment 

High level of light 

intensity in saline water 

increases inactivation 

Fecal coliform and E. coli 

abundance was inversely 

related with salinity 

Overall survival was 

higher in low salinities  

 

Decay rate changes with 

salinity 

Letters; estuarine and 

marine water 

Lab scales; survival of 

various pathogenic strains 

in seawater 

Lab scale; survival of 

pathogens in saline water 

and environment 

Field scale; effect of 

human development in 

coastal watershed  

Dark and light  

microcosm study; survival 

study  

Comparative study on 

pathogen survival in 

various water 
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Table 1.2. (continued) 

Factors Author(s) (year) Organisms Results Remarks 

  

Griffin et al. (2003) 

 

Pathogenic human viruses Salinity influenced 

viability of pathogenic 

human viruses 

Review; pathogenic 

human viruses in saline 

waters 

Proteinaceous matter     

 Carlucci and 

Pramer (1959) 

 

LaLiberte and Grimes 

(1982) 

Baker et al. (1983) 

 

 

Tertera et al. (1989) 

 

 

Davies et al. (1995) 

Pathogens 

 

 

E. coli 

 

Vibrio cholera 

 

 

B. fragilis  

 

 

C. perfringens, protozoa, 

E. coli 

Increased nutrients 

decreased the  

die-off 

Increased organic content 

enhanced survival 

Nutrient supplementation 

increased growth  

 

Nutrient and anaerobic 

conditions enhanced 

growth  

Nutrients and sediments 

improved growth 

Report; environmental 

factors affecting  

mortality 

Lab and field scale; 

survival of E. coli 

Lab scale; effects 

of nutrient  

deprivation 

Field scale; human 

origin pathogens 

growth 

Lab scale; fecal bacteria 

sediments  
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Table 1.2. (continued) 

Factors Author(s) (year) Organisms Results Remarks 

 Barcina et al. (1997) Allochthonous bacteria Survival study Biological approach 

Solid attachment     

 Bitton and Mitchell 

(1974) 

 

Gerba and Schaiberger 

(1975) 

 

Goyal et al. (1977) 

 

Smith et al. (1978) 

 

Rao et al. (1984) 

 

Ryan et al. (2002)  

 

 

Pang et al. (2004) 

Bacteriophage T7 

 

 

Viruses 

 

 

Coliforms, salmonella 

 

Enteroviruses 

 

Enteroviruses 

 

Viruses (PRD1 and MS2) 

  

E. coli 

Addition of inorganic and 

organic colloids reduced 

the inactivation  

Viruses adsorption to 

particulate matters 

prolonged survival  

Bacteria in sediment  

 

Adsorption to sediment 

enhanced survival  

Solid attached viruses 

survived longer 

Sand attached viruses 

shown slow inactivation 

Solid attachment 

prolonged survival 

Lab scale; colloid effects 

in pathogen mortality 

 

Lab scale; effects of 

particulate on virus 

survival  

Field scale; pathogens in 

water and sediments 

Field scale; persistence of 

pathogen in sediment 

Field scale; sediment 

adsorbed viruses  

Effect of iron oxide- 

coated sand  

Model; reversible and 

irreversible attachment 
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(John and Rose 2005).  A previous study (Gordon and Toze, 2003) found that inactivation of 

E. coli increases above 20 
0
C in deionized water-saturated soils; however, no significant 

differences were observed on E. coli inactivation in filtered or raw groundwater between 15 

and 28 
0
C. The most influential factor besides temperature in ground water affecting E. coli 

inactivation is the presence of groundwater microorganisms (predators) (Gordon and Toze, 

2003). To estimate the effect of temperature on the survival of pathogens, the first-order 

decay function is often used. The temperature dependent pathogen inactivation function for 

Cryptosporidium is (Jenkins et al., 1997; Brookes et al., 2004): 

                            (3) 

                            (4) 

where t is the time in days, C is the concentration of viable oocystes, kD is dark inactivation, 

and T is the temperature in 
0
C. Cryptosporidium is a significant cause of water-borne enteric

 

disease throughout the world and represents a challenge to the
 
water industry and a threat to 

public health (King et al., 2005a). The general expression for the temperature dependence of 

bacterial growth is formulated (Salter et al., 2000; Ross et al., 2003): 

         
              (5) 

where kg is growth rate, µmax is maximum growth rate of bacteria at 20 
0
C,  f

T
(T) is a function 

of temperature (Hipsey et al., 2008). 
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2.4.3 pH 

Pathogens such as E. coli O15: H7 have been found to have a high tolerance to low pH. No 

loss of viability was observed in O157:H7 EHEC at pH levels of 3.0 to 2.5 for at least 5 

hours, and it has been proposed that this tolerance to low pH could be the reason that 

outbreaks of E. coli infections caused by certain acidic foods occur (Miller and Kaspar, 1994; 

Benjamin and Datta, 1995; Presser et al., 1998). Table 1.2 summarizes the studies relating 

pH to pathogen growth and survival. 

In fresh and saline water, pH influence on the survival of coliform have been observed 

(McFeters and Stuart, 1972; Solic and Krstulovic, 1992; Abdul-Raouf et al., 1993; Presser et 

al., 1998; Ross et al., 2003; John and Rose, 2005). However, compared to studies on 

temperature and solar radiation, less emphasis has been given on pH influence on the 

survival of pathogens in ambient water bodies, and the possible reason could be because 

many ambient water bodies usually maintain relatively stable pH, close to neutral (≈ 7.0). 

Research on pathogen survival in acidic food has been done extensively and has shown 

relationships between pathogen survival and disease outbreaks (Benjamin and Datta, 1995).  

Hipsey et al. (2008) proposed a typical formulation for evaluating the pH influence in 

bacteria inactivation.  

        (6) 

where CPHM is the maximum effect pH toxicity can have on the mortality rate,  KPHM  and δM  

mediate the sensitivity of mortality to change in pH, and pH
*
 is the magnitude of the pH 

departure from natural pH (pH
*
 = absolute(pH -7)).  
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2.4.4 Predators 

Numerous studies recognized the impact of predators in pathogen mortality (Enzinger and 

Cooper, 1976; McCambridge and McMeekin, 1980; McCambridge and McMeekin, 1981; 

Anderson et al., 2005). Table 1.2 shows the various studies evaluating the impact of 

predators in pathogen destruction.  Naturally occurring microbial predators, i.e., 

phagotrophic protozoa, bacterivorous protists, and other predator bacteria, graze pathogens. 

In a lab-scale study, Enzinger and Cooper (Enzinger and Cooper, 1976) have shown that E. 

coli survival depended on the presence of protozoan predators. In other study, McCambridge 

and McMeekin, (1980) have shown that predators played a major role in E. coli survival.  

Several studies provide information on the relative impact of predators on various pathogens 

(Gonzalez et al., 1990), and they found that Enterococcus faecalis survives in estuaries water 

longer than E. coli. The impact of predators in ground water pathogens has been reported 

extensively (John and Rose, 2005). Similarity has been found between the ingestion kinetics 

of prey and competitive inhibition enzymatic reactions (Menon et al., 1996). Studies on 

various environmental factors which impact pathogens in an aquatic environment (Wcislo 

and Chrost, 2000) concluded that a major factor responsible in pathogen destruction could be 

microflagellate grazing. 

Other environmental factors already discussed, such as solar radiation and warmer 

temperatures, also enhance the impacts of predators, natural biota and eukaryote.  Studies in 

general have shown that E. coli disappearance increases in the present of natural biota and 

eukaryote in warmer temperatures (Anderson et al., 1983). Previous studies also have 

concluded that the combined effect of solar radiation and predators was higher than when 
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each of these factors acting independently (McCambridge and McMeekin, 1981).  To 

evaluate the impact of pathogen inactivation in water, Hipsey et al. (2008) proposed 

estimation of minimum predation rate.  

     (7) 

where kp20 is the minimum rate due to predation at 20 
0
C (d

-1
),  accounts for the sensitivity 

of predation to temperature and C is the organisms concentration. Hipsey et al. (2008) 

explanation for second term on the equation’s right hand side was that it enhances the base 

predation rate, kp20, when above threshold Cminp.  

2.4.5 Dissolved oxygen 

The concentrations of dissolved oxygen may not have a significant influence on pathogen 

concentration, but it increases pathogen inactivity. In John and Rose’s ground water pathogen 

contamination review study, for example, dissolved oxygen was ignored in evaluating 

pathogen survival (John and Rose, 2005). However, many authors consider it an influential 

factor. One study of sunlight’s impact on pathogen inactivity has shown that the lethality of 

radiation was oxygen dependent. Anderson et al. (2005) have found that dissolved oxygen 

concentrations impact the pathogen’s DNA repair capability.  

Table 1.2 shows the relevant studies, which focus on dissolved oxygen’s influence on 

pathogen survival. Studies concluded that E. coli, bacteriophages, MS2, polio virus, and 

coxsackie virus display maximum decay under aerobic conditions (Davies-Colley et al., 

1999). Mackenzie et al. (1992) found that the sunlight inactivation rate is influenced by 

oxygen concentration in water. The study described the influence of aerobic and anaerobic 
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conditions in pathogen inactivation, concluding that enterococci, F-RNA phages, and E. coli 

survival was higher in aerobic conditions. Webb and Brown (1979) found that oxygen 

concentration influenced the UV irradiated E. coli inactivation. Similarly, Reed (1997) found 

that salmonella inactivation using γ- irradiation was influenced by oxygen concentrations. 

2.4.6  Salinity 

Numerous early twentieth-century studies have emphasized on the health risk caused by 

pathogens in saline water (Winslow and Moxon, 1928). However, more recent research has 

reported a rapid decline of pathogens when surface water enters to  saline water (Carlucci 

and Pramer, 1959). Cornax et al. (1990), who studied influence of salinity on eighteen 

pathogenic strains, found that salinity enhanced inactivation.  

 Table 1.2 presents the studies that evaluate salinity’s impact on pathogen survival. Alkan et 

al. (1995) reported that increased sunlight was more effective in saline water than freshwater, 

meaning salinity enhanced sunlight-mediated inactivation. Results in marine water research 

have shown that fecal coliform and E. coli abundance is inversely related to water salinity 

(Mallin et al., 2000). In a microcosm study intended for evaluating the impact of 

environmental factors on pathogen survival, Bordalo et al. (2002) found that overall pathogen 

survival was higher in low salinities. 

Many studies such as Griffin et al. (2003) have proposed that pathogen contamination is 

reduced once freshwater enters into a saline environment. In numerous coastal water bodies, 

however, high levels of pathogenic human viruses are common (Griffin et al., 2003). This 
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indicates that saline water may reduce the pathogen levels, but the contaminated saline water 

can still contain sufficient pathogens to create a potential threat to human health. 

2.4.7 Protienaceous material 

Pathogen survival is enhanced by the presence of soluble organic matter and nutrients. In a 

seawater experiment, the mortality of pathogens was decreased when nutrient concentration 

was increased in (Carlucci and Pramer, 1959). Another study which used lake bottom water 

found that pathogen survival in that water was more likely near the lakebed than the surface 

because of higher organic content (LaLiberte and Grimes, 1982). Baker et al. (1983), who 

studied the influence of nutrient supplementation, found that pathogen growth was triggered 

when nutrients were provided. Table 1.2 shows the various studies focusing on nutrients’ 

impact on pathogen survival.  

Tartera et al. (1989) studied nutrient impacts on pathogen growth in aerobic and anaerobic 

conditions and reported that nutrient supplementation significantly enhances pathogen 

growth in anaerobic conditions. Although Barcina et al. (1997) reported that starved bacteria 

show the tendency to shrink, the starving results in enhanced resistance to heat. John and 

Rose (2005) reviewed nutrients’ influence in pathogen survival in groundwater and 

concluded that peptone and glucose protect bacteria from enzymatic attack. Gordon and Toze 

(2003) reported that nutrient addition reduces decay of E. coli, polioviruses, and 

coxsackieviruses.  
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2.4.8 Solid attachment 

Numerous studies have shown that pathogens survive longer in conditions when they are 

attached to solid particles (Gordon and Toze, 2003; Gerba, 2005; John and Rose, 2005). 

Muirhead et al. (2004) reported that the number of pathogens in sediment was several fold 

(10–1,000 times) higher than in water by itself. During high flow conditions, pathogens, 

which were attached to sediment particles, were released from the streambed into the water. 

Anderson et al. (2005) compared the differential survival of fecal bacteria in subtropical 

waters and sediment, and concluded that the decay rate of fecal coliform attached to sediment 

was much lower in the sediment than the water column; similar results are reported by other 

authors (Gerba and McLeod, 1976; Fish and Pettibone, 1995; Craig, Fallowfield et al., 2004). 

Table 1.2 shows studies which explain the impact of solid particles on pathogen survival.  

Bitton and Mitchell (1974) evaluated the impacts of organic and inorganic colloids on 

pathogen survival and documented that the presence of colloids reduced pathogen 

inactivation. Viruses which are adsorbed to particulate matters have shown prolonged 

survival (Gerba and Schaiberger, 1975). Goyal et al. (1977) reported that total coliform, fecal 

coliform, and salmonella have shown a tendency to attach with sediments in order to survive 

longer. In studying enteroviruses, Rao et al. (1984) have shown that virus associated with 

solid particles survived longer in various environmental conditions.   

Pang et al. (2004) used modeling to analyze reversible and irreversible attachment of E. coli 

with solid particles and the attachment’s impact on survival. Many viruses attach with iron 

oxide particles, which reduces inactivation rates (Ryan et al., 2002). A study of virus 

transport through ground water explained that pathogens transport is governed by particle 
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attachment with mineral surfaces (Loveland et al., 1996). The authors explained that the 

attachment edge occurred at a pH value that was between 2.5 and 3.5 greater than the mineral 

surface’s pH; particles attached above this edge were found to be reversibly attached. The 

Loveland study also explained the Derjaguin-Landau-Verwey-Overbeek potential energy, 

which controls the attachment edge. 

2.5 The impact of water resources development and climate warming  

Besides pathogen transport modeling and evaluating the impacts of various environmental 

factors on pathogen survival in water bodies, recently there are many studies which 

emphasize synthesizing and assessing the impacts of water resource development and climate 

warming on pathogen contamination. Infectious diseases caused by pathogens are the third 

leading cause of death in the United States, and the leading cause in the world (Binder et al., 

1999). The past two decades have seen the emergence of many new pathogenic infectious 

diseases (Daszak et al., 2000). Many of these diseases are caused by anthropogenic changes 

such as water resource development, climate warming, and interaction between human and 

animals, both, domestic and wild (Krause, 1994; Epstein, 2001; Woolhouse, 2002; Foley et 

al., 2005; Jablasone et al., 2005; Fenwick, 2006; Normile, 2009; Schriewer, et al., 2010).  

2.5.1 Water resources development  

Water resources development involves altering the natural flow path of rivers, streams, and 

lakes, as well as designing irrigation schemes and dams. These activities were responsible for 

causing new diseases and also exacerbated the existing health risks (Fenwick, 2006; 

Steinmann et al., 2006).  
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The influence of water resource development in spreading diseases such as schistosomiasis, a 

parasitic disease which is ranked second only to malaria with regards to the number of people 

infected, has been reported extensively; one estimate says that about 103 million out of 779 

million infected people live in close proximity to large reservoirs and irrigation schemes 

(Steinmann et al., 2006).  

Designing dams and irrigation schemes in tropical and subtropical climate zones has often 

resulted in disease outbreaks caused by waterborne pathogens.  Take, for example, the 

Sennar Dam on the Blue Nile River and Sudan’s Gezira Scheme, the world’s largest 

irrigation project. Because of the dam’s commercial success, the irrigation in the region has 

doubled in size in the 1940s and 1950s. After 1950s, infections from malaria and 

schistosomiasis increased significantly, becoming the subject of the first integrated disease-

control program, the Blue Nile Health Project, which was implemented from 1978 to 1990. 

The project failed to make a dent in controlling the prevalence of schistosomiasis (Eltoum et 

al., 1993; Fenwick, 2006; Steinmann et al., 2006).  Another example is the Three Gorges 

Dam in China completed in 2009, which created a 50,700 km
2 

reservoir and submerged more 

than 220 counties. According to Hotez et al. (1997) the reservoir would produce 

environmental changes that could lead to the transmission of schistosomiasis
 
in the area 

served by the dam.  

To meet a growing population’s demand for food and energy supply, water resources 

development is necessary; as a result, a large number of people live in close proximity to 

water bodies, which will expose them to health risks. Lerer and Scudder (1999) assessed the 
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impacts of water resources development on health risks and concluded that evaluating 

strategies to mitigate health risks is crucial before executing a new project.  

2.5.2 Global climate warming and pathogen-caused disease risks  

Climate changes alter pathogens’ mortality rate. For example, changes in temperature, 

rainfall and humidity influence pathogens’ survival in ambient water bodies (Harvell et al., 

2002). Typically pathogens grow faster in warm rather than cold environments, thus disease 

introduction and transmission could increase with elevated temperature. For example, El 

Niño events, which have been linked to global warming, are annual weak warm ocean 

currents that run southward along the coast of Peru and Ecuador about December and 

increase ocean temperatures (Trenberth and Hoar, 1996; Trenberth, 1997). Harvell et al. 

(2002) reported El Niño’s influence on marine and terrestrial pathogens, including cholera 

vibrio, oyster pathogens, crop pathogens and human cholera. Because of these influences, 

global warming could lead to a rapid declination of terrestrial and aquatic animal population.  

Recent worldwide increases in the emergence of new infectious diseases are significant; 

many infectious diseases can be devastating to the lives of terrestrial and aquatic animals 

(Williams and Bunkley - Williams, 1990; Harvell et al., 1999; Mallin et al., 2000). For 

example, pathogens were responsible for massive frog die-offs in the U.S. and Western 

Australia (Morell 1999), deaths of Hawaiian forest birds (Daily et al., 1993), the extinction of 

a species of land snail (Cunningham and Daszak, 1998), and the decline in population of 

wildlife such as lions, eagles and black-footed ferrets (Woodroffe, 1999). The occurrence of 

infectious disease increases because of global warming. Studies by Smith and Tirpak (1990) 

and  Martens, Niessen et al. (1995) reported the potential impacts of global warming and 
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climate change on the emergence and transmission of diseases. In 2001, Epstein reported that 

climate plays a crucial role in determining human health by controlling the spread of many 

infectious diseases. Epstein described how extreme weather events accelerate the 

introduction and transmission of diseases by creating advantageous growth conditions for 

waterborne pathogens.  

Harvell et al. (1999) described that changing environmental conditions alter the virulence of 

existing diseases and increase the possibility of new diseases. Many pathogenic organisms in 

estuaries and oceans are dormant, but an increase in temperature could enhance their growth 

and proliferation. The spread of Cholera in Bangladesh, for example, was found to be caused 

by an increase in sea water’s surface temperature (Colwell, 1996). Nevertheless, a few claim 

that global warming can have positive impacts on human health; for example, Epstein (2001) 

states that high temperatures in some regions may reduce snail populations, the intermediate 

source for schistosomiasis. Generally, however, the increase in the spread of other diseases in 

the ocean and on the land could be catastrophic to the health of ambient water bodies as well 

as humans (Martens et al., 1995; Colwell, 1996; Trenberth and Hoar, 1996; Harvell et al., 

2002; Patz, 2002; Jablasone et al., 2005).  

2.6 Challenges and recommendations 

Mitigating the threat of global warming and its impacts on ambient water bodies is a major 

challenge for the future. Although climate warming has significant impacts on pathogen 

survival and growth, our currently weak understanding about the fate and transport of 

pathogens could prevent researchers from identifying increased health risks caused by global 

warming. Multidisciplinary knowledge about how ambient water bodies, wildlife, domestic 
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animal, and human populations interacting and impacting each other could be crucial in 

dealing with future challenges. Generally, domestic animals, wildlife and humans are 

considered to be major sources of waterborne pathogens. Finding the specific culprit—the 

primary pathogen source—is challenging, however (Malakoff, 2002). A watershed, for 

example, can have many pathogen sources such as agricultural land, riparian areas, 

agricultural feeding operations, livestock, wildlife, and humans. 

Typically most studies have relied on E. coli to indicate pathogen levels in water. Although 

widely used in monitoring contamination levels, E. coli alone can lead to mercurial and 

misleading information (Gordon, 2001). Schriewer et al. (2010) suggested that with 

improved pathogen detection technology (i.e., PCR-based detection) an indicator organism 

such as E. coli can be accurate enough in most cases. Overall, improving technology to 

identify causative agents more accurately, creating standard epidemiological data for 

diseased populations, and enhancing the knowledge of disease dynamics can improve 

researchers’ understanding of the risks caused by interactions among various populations 

(Harvell et al., 1999; Daszak et al., 2000; Harvell et al., 2002). 

In the past, a considerable number of studies on pathogen contaminations have been 

conducted on a scale where the conditions of ambient water bodies were simulated in labs. 

These studies are helpful in understanding pathogen behavior only up to a point. For 

enhancing the understanding of pathogen interactions in the environment, more emphasis 

should be given to field-scale studies.  

Various publications are available in developing models for predicting pathogen 

contaminations in ambient water bodies (i.e., Dorner et al., 2006; Kim et al., 2010; Rehmann 
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and Soupir, 2009; Droppo et al., 2009; Cho et al., 2010; Droppo et al., 2011). In general, 

pathogen transport is modeled as function of advection, settling, resuspension, lateral influx. 

Some for example, Droppo et al. (2009) emphasized on flocculation impacts on pathogen 

transport.  However, the evaluations of existing models’ predictions show that there is a need 

for improvements. Many of these approaches have modeled only temperature induced 

mortality and growth, and did not include interactions among other environmental factors 

(e.g., pH, nutrients, DO, solar radiation). Inclusion of these environmental factors can be 

useful, particularly, when models are used at watershed scale. Developing models that are 

reliable in predicting pathogen survival and transport at watershed scale can be helpful in 

implementing/evaluating the strategies for mitigating ambient water body pathogen levels.  

3. Conclusions 

Mitigating the threat of global warming and its impacts on ambient water bodies can be the 

major challenge for the future, particularly controlling pathogen contaminations. In this 

review of literature, we examined studies from various disciplines to understand pathogen 

contamination in ambient water bodies. The worldwide prevalence of pathogen 

contaminations, major pathogen sources and their significant impacts on ambient water 

bodies, crucial environmental factors that potentially impact pathogen survival, modeling 

approaches that are commonly used for predicting waterborne pathogens, the impacts of 

water resources and climate warming on pathogen contaminations, and future challenges and 

recommendations for improving water quality were discussed. We found that a considerable 

number of studies on pathogen contamination have been conducted on a lab-scale; more 

emphasis should be given to field-scale studies for enhancing the understanding of pathogen 
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interactions in the environments. Considering existing model’s ability in predicting pathogen 

contamination, improvement and development of new models is necessary so that pathogen 

levels can be predicted accurately. We emphasized on improving current models for 

predicting pathogen levels in water bodies. Integrating knowledge from multiple fields (e.g., 

hydrology, microbiology, and ecology) could increase understanding on pollution levels and 

potential cause of pollutions, and it can also help devising strategies to improve water 

quality.  
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CHAPTER 2. ASSESSING THE IMPACTS OF WATERSHED INDEXES 

AND PRECIPITATION ON SPATIAL IN-STREAM Escherichia coli 

CONCENTRATIONS 
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Abstract 

Pathogen contamination of waterbodies, which is often identified by the presence of 

pathogen indicators such as Escherichia coli, is a major water quality concern in the United 

States. Reducing in-stream pathogen contamination requires an understanding of the 

combined impacts of land cover, climatic conditions, and anthropogenic activities at the 

watershed scale. In this study these factors are considered by assessing linear relationships 

between in-stream E. coli water quality data, watershed indexes, and rainfall for the Squaw 

Creek Watershed, IA, USA. The watershed indexes consider the undisturbed land cover 

which encompasses the natural land cover area, wetlands, and vegetated stream corridors, 

and the disturbed land cover extent which includes areas receiving manure from confined 
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animal feeding operations (CAFOs), tile-drained areas, and areas in cropped and urban land. 

In addition to disturbed and undisturbed land, we also calculated indexes for barren land and, 

land slope. Bivariate analysis was used to assess the linkage between E. coli concentrations, 

watershed indexes and the cumulative rainfall 15, 30, 45, and 60 days prior to water sample 

collection. To predict in-stream E. coli concentrations, we developed multivariate regression 

models, and predictions were compared with observed E. coli concentrations at 46 sampling 

locations over four sampling periods in two years. Results show that areas receiving manure, 

wetlands, drained land, and cropped land all influence in-stream E. coli concentrations 

significantly (p < 0.001). The coefficient of determination was higher when indexes were 

corrected using the cumulative rainfall 30 days prior to the sampling event. Model skill 

varied from 0.29 to 0.55. More than 95% of the predictions across all spatial locations fall 

within one order of magnitude of the observed values. This Geographic Information System 

(GIS) based approach for predicting in-stream E. coli concentrations appears to be a useful 

technique for assessing the impacts of land management on water quality. 

1. Introduction 

Watershed-scale assessments of point and nonpoint source pollutant loads, and 

recommendations to reduce loads so that water quality criteria may be met are being 

developed in the United States.  In addition to meeting regulatory requirements, 

contamination of surface waters is a major environmental and public health concern, and new 

tools are needed to improve understanding of watershed characteristics impacting 

contaminant transport. For instance, the National Water Quality Report of the United States 

Environmental Protection Agency (U.S. EPA, 2011) reveals that out of 44,752 watershed 
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assessments or Total Maximum Daily Loads (TMDLs) which have been developed, 

approximately 21% are related to pathogens (assuming indicator organisms are representative 

of pathogen contamination). Of the total 71,509 reported water quality impairments, 15% are 

due to elevated pathogen levels.  Fifty percent of the total 1,496,334 km of assessed rivers 

and streams are impaired, and pathogens are the leading cause of these impairments. 

A major challenge in improving water quality and estimating the pathogen contamination in 

stream water is our weak understanding of the combined impacts of bacterial loadings from 

point and non-point (diffuse) sources and their impact on in-stream pathogen concentrations. 

Mathematical models which incorporate the influence of watershed characteristics and 

hydrology can be useful to calculate in- stream pathogen concentrations and derive plans for 

watershed scale water quality improvements. In this study we have focused on developing 

models for predicting in-stream pathogen concentrations based on the landscape 

characteristics and hydrology of the watershed. 

A primary source of bacterial pollution in streams is considered to be agricultural activities 

(EPA, 2012), such as manure applications onto cropped land and effluent discharges, often 

caused by accidental spills (Armstrong et al., 2009), from confined animal feeding operations 

(CAFOs). Rainfall events occurring shortly after manure application to cropped land can 

generate overland flow, which in turn may deliver large quantities of bacteria and potentially 

pathogens into surface waters (Soupir et al., 2006; Guber et al., 2006; Guber et al., 2007). 

Some manure application practices such as liquid manure injection in the field rather than 

surface application can potentially reduce E. coli transport from cropped land to the streams 

from overland transport. However, E. coli in injected manure can be transported to streams 
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through tile drainage systems rather than with overland flow (Dorner et al., 2006). Effluent 

from CAFOs contains high levels of E. coli (Mallin and Cahoon, 2003), which can cause 

water contamination if discharged directly to the stream. Another risk to water quality is 

accidental spills from CAFOs, which may  increase stream E. coli levels due to the influx of 

animal waste (Armstrong et al., 2009; Centner and Feitshans, 2006; Jagai et al., 2010; 

Lichtfouse et al., 2010).  

According to the U.S. EPA (U.S. EPA, 2001b), the U.S. has approximately 238,000 CAFOs, 

which generate approximately 317 million gallons of manure annually (Armstrong et al., 

2009; USEPA, 1999). The potential for water contamination from CAFOs has led to strict 

federal regulations in the U.S. to minimize degradation of water resources; CAFOs are 

required to have National Pollution Discharge Elimination Systems (NPDES) permits before 

they can discharge effluent into nearby waters. Although regulations are in place in the U.S., 

reducing the bacterial pollution associated with CAFOs and land application of manure is 

still a major challenge (Centner, 2004).  

Although agricultural activities, such as manure application and effluent discharges from 

CAFOs, have the potential to play a major role in influencing stream water quality, the 

characteristics of the watershed (i.e., land cover, soils, geology, topographic features and 

catchment hydrology) also play a key role in determining stream water quality (Rothwell et 

al., 2010a;b). While assessing environmental conditions, many previous studies have 

explored new methods to identify representative input parameters, which can be useful to 

predict stream water quality (Zhao et al., 2006; Wu and Chau, 2006; Xie et al., 2006; Zhang 

and Chau, 2009; Chau et al., 2002; Muttil and Chau, 2007). A number of studies have 
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explored the utility of Geographic Information System (GIS) to understand the relationship 

between watershed characteristics and nutrient concentrations in streams (e.g. Jarvie et al., 

2002; Tiner, 2004, King et al., 2005b; Bach et al., 2010; Shiels and Guebert, 2011; Zhang 

and Huang, 2011). Land cover indexes have been shown to be particularly useful for 

explaining and predicting spatial variation in waters impaired by nitrate, pH, orthophosphate, 

suspended sediments, and metals (Roth et al., 1996; Robson and Neal, 1997; Gergel et al., 

2002; Buck et al., 2004; Kearns et al., 2005; Aitkenhead-Peterson et al., 2007; Evans et al., 

2006; Helliwell et al., 2007; Meynendonckx et al., 2006; Rothwell et al., 2010a;b). 

Recently, Rothwell et al. (2010a;b) applied GIS tools to improve understanding between 

water chemistry (i.e., pH, sulphate, cations, nutrients, and metals) and watershed 

characteristics such as land cover, topography, soil hydrology, and geology. The authors 

found that water chemistry is related to land cover and geology, with good linear 

relationships being identified between nitrate and arable land cover.  The approach was less 

effective for predicting orthophosphate concentrations, likely due to the strong influence of 

point sources of pollution.  The authors concluded that the approach works best when the 

pollutant sources in a watershed are dominated by nonpoint sources. Other studies, for 

example, Crowther et al. (2002), Kay et al. (2008), and Wilkes et al. (2011) reported how 

land use factors in watersheds impact water quality of the ambient water bodies, particularly, 

faecal indicator concentrations. The authors found that inputs from diffuse sources, 

particularly, runoff from farmed land are likely to be a significant source of contamination. 

While previous studies have investigated linkages between the landscape and in-stream water 

chemistry using the watershed characteristics approach (Rothwell et al., 2010a;b; Shiels and 



83 
 

  

 

Guebert, 2011), relationships between landuse and water pathogen levels need further 

examination to understand how landcover (i.e., cropping land, undisturbed land cover, and 

disturbed land cover) potentially impacts in-stream pathogen concentrations. Therefore, our 

goal was to build upon previous approaches and evaluate the impacts of watershed 

characteristics and hydrology on in-stream E. coli concentrations.  Both landuse and 

hydrology are important in improving our understanding of the sources, fate, and transport of 

pathogens as they move from the terrestrial to the stream environment. Our study has three 

objectives: 1) characterize the watershed based on the extent of disturbed and undisturbed 

land cover; 2) quantify the relationship between in-stream E. coli concentrations, watershed 

characteristics, and rainfall; and 3) use watershed indexes to develop multivariate regression 

models for predicting in-stream E. coli concentrations.  

2. Study Area 

This study was conducted in the Squaw Creek Watershed. The study area is shown in Figure 

1.1 Squaw Creek passes through four counties (Story, Webster, Hamilton, and Boone) of 

Iowa, USA, and is a tributary of the South Skunk River. The Squaw Creek watershed, 

Hydrologic Unit Code (HUC) 10 (ID 0708010503), has a total drainage area of 592.39  



84 
 

  

 

 

 

 

Figure 2.1. The Squaw Creek Watershed in central Iowa, U.S.A. The dark red line 

shows the watershed boundary, and the thin black line shows the polygon boundaries. 

The blue line shows streams, green circles indicate locations of CAFOs, and blue circles 

indicate water sampling locations.  
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sq km. The basin length and perimeter of the watershed is 43.53 km and 134.02 km, 

respectively, with an average slope of 2.01%. The basin relief is 111.51 m, the main channel 

length is 60.46 km and the total stream length within the watershed is 346.72 km. There are 

75 first order streams. The 2002 hydrologic Unit Code (HUC 10) watershed land use 

estimates 0.09%, 0.17% and 0.05% of the watershed land area as water, wetland and wetland 

forest, respectively. Deciduous forest, ungrazed grass, grazed grass, Conservation Reserve 

Program (CRP) grassland, and alfalfa were 2.71%, 10.87%, 2.52%, 1.70%, and 1.84%, 

respectively. Corn and soybeans, and other rowcrops are 41%, 33%, and 0.43%, respectively. 

Common/industrial, residential, and barren land are 1.67%, 1.27%, and 0.06%, respectively.  

3. Methods 

3.1. Water quality data 

We obtained water quality data from the Squaw Creek Watershed Coalition Program (Iowa 

Water, 2011). The program started in 2006, and collects stream water at 52 sampling 

locations in May and October of each year for water quality analysis. For this study we used 

the water quality data from four sampling periods (October 2008 and 2009, and May 2009 

and 2010) from 46 of the 52 sampling locations, as the remaining locations contained 

missing data. We selected these years solely because of data completeness. 

3.2. Spatial datasets 

In this study we used seven spatial datasets to characterize the watershed: 1) digital elevation 

model (DEM); 2) CAFOs; 3) land cover; 4) soils; 5) stream network; 6) wetland; and 7) 

rainfall.  The DEM (30 m resolution) floating point grid was obtained from the Natural 
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Resources Geographic Information System (NRGIS) library. The library is maintained by 

GIS section of the Iowa Department of Natural Resources (IDNR). The location map of 

CAFOs, which are registered with the IDNR, was obtained from NRGIS. Data attributes of 

the map were updated in January 2011.  

The 2002 land cover map (30 m resolution) for the state of Iowa was obtained from NRGIS. 

The Land cover/Land use classifications used in the map were derived from satellite imagery 

collected between May 2002 and May 2003. We used a Soil Survey Geographic Database 

(SSURGO) (2010) hydric soils map of Iowa (30 m grid), which was obtained from NRGIS. 

This coverage contains a grid representing soil mapping units from the published soil survey 

reports with a minimum size delineation of 0.80 ha.  

The stream network map (2004) of the watershed was obtained from the NRGIS. This 

coverage contains selected arcs from the 1:100,000 National Hydrography Dataset (NHD), 

which was developed jointly by the United States Geological Survey (USGS ) and EPA. 

Selected arcs represent the centerlines of wide streams, impoundments, reservoirs, and 

wetlands. The stream network was produced from a 30 m resolution DEM. A map of the 

National Wetland Inventory (NWI) (2009) of Iowa was obtained from NRGIS.  The NWI 

digital data files contain wetlands location and classification as developed by the U.S. Fish & 

Wildlife Service. We used daily rainfall data for Ames, Iowa, which is within the Squaw 

Creek Watershed, as a representative rainfall for the watershed. The rainfall data was 

obtained from the Iowa Environmental Mesonet, Agronomy Department, Iowa State 

University, USA.  
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3.3. Spatial data analysis 

For our analysis, we used GIS (ArcMap
TM

10) and GeoDa 0.9.5-I software. ArcGIS 10 was 

used for mapping, editing, and map-based analysis. For example, calculations of natural land 

covers, wetlands, stream corridors, CAFO proximity to streams, CAFO density, drained areas 

(described in section 4.2.2) , and cropland areas were performed using ArcMap10. GeoDa 

(0.9.9.12) software was used for creating thiessen polygons of the watershed. A total of 46 

thiessen polygons, each for a sampling location were created for the watershed (Figure 1.1). 

The landscape characteristics of the each polygon were calculated using spatial analysis 

functionality of ArcMap10, as described in section 4.  

4. Watershed indexes 

The watershed was divided into 46 thiessen polygons for each of the 46 sampling locations 

(Figure 1.1). To create the polygons, a point shape file of sampling locations was imported 

into GeoDa software, and the GeoDa function “change from point files to polygons” was 

used to produce a thiessen polygon for each sampling location. For each polygon, we 

calculated both the undisturbed and disturbed land cover extent watershed indexes using 

ArcMap10.  

4.1. Undisturbed land cover extents 

To characterize the watershed, we calculated the undisturbed land cover extent and disturbed 

land cover extent (detailed later). To calculate the undisturbed land cover extent, we 

estimated three indexes: natural cover (Inc), wetland (Iwl), and stream-corridor (Isc).  The U.S. 

Fish and Wildlife Service has used similar approaches for characterizing watersheds, and 
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evaluating the impacts of changes in environment and natural habitat on water quality (Tiner, 

2004). In a relatively recent study, Shiels and Guebert (2011) used indexes of natural land 

cover, wetland, and stream – corridor integrity for correlating the water quality with natural 

land cover of the Mississinewa Watershed in east central Indiana. 

4.1.1. Natural cover index (Inc) 

To calculate the natural cover index we first exported all of the natural areas (forest, 

grassland, shrub and wetland) from the land cover map using a select by attribute 

functionality. Then the areas of natural cover (Anc) were clipped from the watershed map. 

The natural cover area calculation method is shown in Figure 1.2.  The natural cover index 

(Inc) was estimated by dividing the total area of natural cover (Anc) in each polygon, by the 

total polygon area (Ac).  

                (1) 

4.1.2. Wetland index (Iwl) 

Wetland indexes were estimated by dividing the NWI polygon area, by historic wetland 

extent (HWE) area according to Shiels and Guebert (2011). The HWE area was calculated by 

merging NWI polygons with the hydric soil layer. 

                                             (2) 



 
 

  

8
9 

 

8
9 

 

Figure 2.2. The map shows the calculation of the natural cover area index (Inc). The green color indicates natural cover (i.e. 

wetland, forest, grassland). The map to the right shows where the natural cover area was isolated from watershed 

landcover map (left).  
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4.1.3. River – stream corridor integrity index (Isc) 

To assess the influence of vegetated riparian corridors on stream water quality stream 

corridor, the integrity index (Isc) was calculated according to Tiner (2004) and Shiels and 

Guebert (2011): 

            (3) 

where Avsr is vegetated stream riparian area and Atsr is total stream riparian area. A buffer of 

200 m on each stream bank was used to estimate Atsr. The Avsr was estimated by overlaying 

the Anc  (estimated in section 4.1.1)  on Atsr, and clipping the Anc layer with the  Atsr layer.  

4.1.3. Barren area index (Ibr) 

To calculate the barren area index, Ibr, we extracted the barren areas from 2002 land cover 

map, and divided it by the total polygon area. 

    
      

  
           (4) 

where Abaren is area of each polygon classified as barren, and Ac is the total area of the 

polygon. 

4.2. Disturbed land cover extent 

The disturbed land cover indexes were calculated to assess the impacts of agricultural 

activities including CAFOs, tile drainage, and cropped land cover within the watershed.   

These indexes are described below: 
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4.2.1. CAFOs index (Icafo) 

We calculated Icafo, to assess the impact of manure generated from CAFOs on in-stream E. 

coli concentrations. The 2006 Iowa Department of Natural Resources (DNR)  manure 

application map of the study area, which contains the potential areas receiving manure, 

assuming a standard application rate of 179.33 N kg/ha prior to corn under cropped land 

currently in 2-year corn/soybean rotation management, was used to calculate the areas under 

manure application in each polygon. Icafop was calculated as follows:  

      
   

  
            (5) 

where Ama is area of each polygon receiving manure application, and Ac is the total area of the 

polygon.  

4.2.2. Drained land index (Id)  

The Squaw Creek Watershed has extensive land area under tile drainage management. To 

assess the impacts of drained land on stream water quality we estimated Id the drained land 

index, using the hydric soil layer and cropped area.   

            (6) 

where Ad is drained area, and Ac is the polygon area. For estimating Ad, areas under 

agriculture (i.e., corn, soybean, other rowcrops) were extracted from the land cover map, 

which were intersected by the hydric soil layer as described by Shiels and Guebert (2011).  
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2 Figure 2.3. The map shows the calculation of the CAFO index (Icafo). Stream buffers of 

200 m are shown as dashed lines, streams are shown as blue lines, red dots are CAFO 

locations, and green circular areas are the regions where manure is potentially applied. 
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4.2.3. Cropped area index (Ircc and Ircs) 

The cropped area of the watershed has the potential to impact stream water quality. To 

calculate the cropped land indexes, we estimated the areas under corn and soybean crop 

rotation. The cropped land indexes were calculated as: 

      
   

  
                                  (7) 

      
   

  
                           (8) 

where Ircc and Ircs are indexes for corn and soybean crops; Acc and Acs are the total areas under 

corn and soybean crops; and Ac is the total area of polygon. 

4.2.4. Urban area index (Iurb) 

The urban area of the watershed has the potential to impact stream water quality. To calculate 

urban land indexes, we estimated the areas under residential and commercial/industrial land. 

The Iurb were calculated as: 

     
      

  
              (9) 

where Aurban is land classified as residential, commercial, and industrial area of each polygon, 

and Ac is the total area of the polygon. 

4.2.5. Slope index (Islope) 

The slope area index (Islope) was calculated as:  

       
      

      
                     (10) 
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where slpavg is the average slope of each polygon, and slpmax is the maximum slope of each 

polygon.  

4.2.6. Hydrological correction 

In order to include the impacts of rainfall on in-stream water quality, all indexes were 

hydrologically corrected.  As inclusion of hydrology was crucial in this study, we used four 

periods of cumulative rainfall (i.e., 15, 30, 45, and 60 days) for hydrological correction of the 

watershed indexes, which resulted in four different sets of models. To include hydrology, we 

multiplied all indexes (estimated using equations 1 – 10) with the cumulative rainfall (m) 

from 15, 30, 45, and 60 days prior to the sampling day. Runoff data were not directly 

available, and therefore, cumulative rainfall data from the 15, 30, 45, and 60 days prior to 

sampling for each polygon was used to substitute for runoff, as described previously by 

Jarvie et al. (2002).  

4.3. Statistical analyses and modelling 

Bivariate Pearson correlations were used to measure the degree of association between E. 

coli concentrations and the watershed indexes. To develop the model for predicting the 

impacts of watershed indexes on in-stream E. coli concentrations, we performed step wise 

(forward) multivariate regression analysis using JMP statistical software (JMP 
R
 Pro 9.0.0). 

In the stepwise regression model, the stopping rule was based on a p-value threshould, and 

probability to enter and leave were defined as 0.05 and 0.05, respectively, for the 30, 45, and 

60 days cumulative rainfall correction. For 15 days cumulative rainfall correction, the 

probability to enter and leave were defined as 0.10 and 0.10, because no variables were 
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significant at the 0.05 level. To develop the model, we randomly selected 70% of the data 

from each year. The remaining 30% of the data were used to validate the model. In the 

model, four indexes of undisturbed land cover (Inc, Iwl, Isc,Ibr), and six indexes of disturbed 

land cover (Icafo, Id, Ircc, Ircs, Iurb, Islope) were used as independent variables to predict the 

dependent variable (E. coli concentrations). To evaluate the model efficiencies, suitability of 

the model, and predictions, we calculated the model skill (Willmott 1981), cofficient of 

determination (R
2
), and Nash-sutcliffe model coefficients (Nash and Sutcliffe, 1970).   

         
∑|     |

 

∑ |    ̅| |    ̅|  
                                                               (9) 

        
∑       

 

∑ |    ̅|  
                    (10)        

where skill is the model predictive skill; Nash is the Nash-sutcliffe model efficiency 

coefficient (NSE); M is the measured value; P is the predicted value, and  ̅ is the mean of 

measured values. In addition, we also estimated the coefficient of determination (r
2
).The 

model skill values vary from 0 to 1, and value of 1 is considered a perfect prediction. The 

NSE values vary from -∞ to 1; the NSE of 1 is considered a perfect prediction. The model 

skill and NSE values close to 1 are considered as perfect prediction; however, previous 

studies show that achieving NSE and model skill values close to 1 have not yet been attained 

due to the complexities involved in bacteria predictions in streams. As described by Dorner 

et al. (2006), order – of – magnitude estimates are needed for water quality improvement; 

greater values of NSE, r
2
, and model skill are not expected. Based on the results of previous 

studies involved in modeling in-stream bacteria predictions, we target achieving the model 

skill and r
2
 values greater than 0.35. Previous studies have reported negative NSE values [a 
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study by Cho et al., 2010 reported NSE from  -0.78 to -0.99 and Parajuli et al., 2009a,b 

reported NSE values of -0.41], and repored r
2
 range from 0.15 – 0.40 (Parajuli et al., 2009a) . 

We targeted achieving NSE values greater than -0.50; however, while evaluating the model 

predictions model skill and r
2 

values were also taken into consideration.   

5. Results  

5.1. Variation in E. coli concentrations, rainfall and watershed indexes 

The descriptive statistics of E. coli concentrations and watershed indexes are shown in Table 

2.1. In October 2008, the mean of the E. coli concentrations of all locations was 927 (± 678) 

Most Probable Number (MPN)/100 ml. The E. coli concentration ranged from 100 to 3300 

MPN/100 ml. However, in October 2009, the mean E. coli concentration was 44% lower 

(519 ± 1777 MPN/100 ml) than October 2008, and the range was from 10 – 1777 MPN/100 

ml. This indicates that the variation in E. coli concentrations among the sampling locations as 

well as seasons was substantial.  

Moreover, in May 2009 the mean E. coli concentration was 48% higher (1371 ± 1477 

MPN/100ml) than in October 2008. The maximum value of E. coli in this season was 66% 

higher than the maximum value in October 2008. Observations from May 2010 show that E. 

coli concentrations were low; they were 30% lower than concentrations in October 2008. In 

May 2009, E. coli concentrations at several locations were considerably higher than other 

seasons, for example, some of the locations showed E. coli concentrations as high as 5500 

MPN/100 ml. 



97 
 

  

9
7 

To assess the potential impacts of rainfall on E. coli concentrations, we calculated the 

cumulative rainfall for 15, 30, 45, and 60 days prior to the sampling day.  For instance, the 

sampling day in October for both years was the 11
th

; therefore, we calculated cumulative 

rainfall 15, 30, 45, and 60 days prior to the 11
th

 of October. Similarly for the May season, we 

calculated the cumulative rainfall 15, 30, 45, and 60 days prior to the 15
th

 of May (which was 

the sampling day). In October 2008, the 15, 30, 45, and 60 days cumulative rainfall was 43, 

70, 114, and 142 mm, respectively. In October 2009 the weather was relatively dry, the 

cumulative rainfall values were 1.3, 2, 2, and 5.1 mm respectively. Usually in May central 

Iowa receives frequent rainfall; the cumulative rainfall in May 2009 was 59, 132, 154, and 

189 mm for 15, 30, 45, and 60 days, respectively.  In May of 2010, these values were 72.39, 

73.66, 73.66, and 73.66, respectively.  Except for the May 2009 sampling date, rainfall 

during sampling was not observed; in May of 2009 a total of 19.60 mm of rainfall was 

recorded on the sampling day.  

The variation in watershed indexes among the sampling locations is shown in Table 2.1. 

Figures 2.4a and 2.4b show the undisturbed and disturbed land cover indexes and their 

relationships with E. coli concentrations. In these figures, we plotted the watershed indexes 

versus E. coli concentrations of each season at 46 locations. The mean of Inc was 0.25 (± 

0.10) with a range from 0.11 to 0.53. The mean of Iwl (0.03 ± 0.03) was 12% of Inc. However, 

the mean of Isc (0.12 ± 0.08) was 48% of Inc. Since not every polygon contains CAFO 

operations the values of Icafo were zero for many of the polygons. Polygons showing the 

CAFO operations and areas receiving manure are shown in Figure 2.3. The mean value for 

Icafo was 0.0001 (± 0.0002). Similar to CAFO indexes, minimum values for Iwl, Ibr, Id, Ircc, Ircs, 
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and Iurb were also zero as not every polygon contained wetlands, barren land, drained land, 

cropped land cover, and urban areas. The mean value of Id was 0.19 (± 0.16), while these 

values for Ircc and Ircs were 0.25 ± 0.19 and 0.20 ± 0.16, respectively.  

5.2. Linkages between E. coli concentrations, rainfall and watershed indexes 

 Figures 2.4a and 2.4b show E. coli concentrations versus undisturbed land cover indexes and 

disturbed land cover indexes, respectively. The bivariate correlation matrix showing the 

linkage between E. coli, and watershed indexes is shown in Table 2.2.  Analyzing the 

cumulative rainfall of 15, 30, 45, and 60 days in all seasons shows that mean E. coli 

concentrations of 46 sampling locations was increased when the cumulative rainfall was 

higher (i.e., higher cumulative rainfall of the season resulted in increased in-stream E. coli 

concentrations). The correlation between disturbed land cover watershed indexes and E. coli 

concentrations were mixed (positive as well as negative). For example, Id, Ircc, Ircs, Icafo, Ibr 

were positively correlated, while Inc , Iwl, Isc, Islope, and  Iurb were negatively correlated (Table 

2.2, Figure 2.4a,b).   
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Table 2.1. Descriptive statistics of in-stream E. coli concentrations at 46 sampling location in 

the Squaw Creek watershed, Iowa and watershed indexes, including natural cover index 

(Inc),wetland index (Iwl), river - stream-corridor index (Isc), barren land index (Ibr), CAFO 

index (Icafo), drained land index (Id), index for corn crop (Ircc), index for soybean crop (Ircs), 

index for slope (Islope), and index for urban land (Iurb).  

  Mean  Median  Std. Dev.  Minimum  Maximum  

E. coli (MPN/100 ml)  

     Oct-08 927 735 678 100 3300 

Oct-09 519 360 438 10 1777 

May-09 1371 729 1477 80 5500 

May-10 651 495 642 50 3900 

Watershed indexes 

     Inc 0.25 0.23 0.10 0.11 0.53 

Iwl 0.03 0.02 0.03 0.00 0.14 

Isc 0.12 0.10 0.08 0.03 0.31 

Ibr 0.0014 0.00 0.0070 0.00 0.047 

Icafo 0.0001 0.00 0.0002 0.00 0.0008 

Id 0.19 0.22 0.16 0.00 0.50 

Ircc 0.25 0.34 0.19 0.00 0.53 

Ircs 0.20 0.28 0.16 0.00 0.44 

Islope 0.42 0.39 0.19 0.18 1.00 

Iurb 0.17 0.03 0.22 0.00 0.73 
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5.3. Model development and validation  

To develop the models we used stepwise multiple linear regression analyses. The four 

models for four different types of hydrological corrections (i.e., 15, 30, 45, and 60 days of  

cumulative rainfall) were developed, and the results are shown in Table 2.3. The coefficient 

of determination (R
2
) for 15, 30, 45, 60 days of cumulative rainfall models were 0.08, 0.36, 

0.26, and 0.29, respectively. The best R
2 

value (0.36) was achieved using the 30 day 

cumulative rainfall.  

The Nash-Sutcliffe Efficiency (NSE) coefficient value of the developed model for the 30 day 

cumulative rainfall model was -0.45, and for the 60 day cumulative rainfall model it was -

0.59. The model skill for the 30 and 60 day cumulative rainfall models were 0.46 and 0.55, 

respectively. The model skill and NSE coefficient for 15, and 45 days cumulative rainfall 

models are shown in Table 2.4. In order to understand differences in predicted and observed 

E. coli, we performed a factor analysis (Table 2.4), and found that about 96% of the 

predictions are within one order of magnitude of the observed values when applying the 30 

day model; similarly approximately 96% are within one order of magnitude of the observed 

values when applying the 60 day model.  
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Figure 2.4a. Relationships between E. coli (MPN/100 ml) and undisturbed land cover indexes. E. coli concentrations at 46 

locations for each season (October 2008, May 2009, October 2010, and May 2010) and the corresponding undisturbed land 

cover (Inc, Iwl, Isc) and barren land (Ibr) indexes are shown in the Figure. 
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Figure 2.4b. Relationships between E. coli (MPN/100 ml) concentrations and disturbed land cover indexes. E. coli 

concentrations at 46 locations for each season (October 2008, May 2009, October 2010, and May 2010) and the 

corresponding disturbed land cover (Icafo, Id, Ircc, Ircs, Iurb) and slope (Islope) indexes are shown in the Figure. 
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Table 2.2. Bivariate correlation matrix for in-stream E. coli concentration at 46 sampling 

locations, and watershed indexes, including natural cover index (Inc),wetland index (Iwl), river 

- stream-corridor index (Isc), barren land index (Ibr), CAFO index (Icafo), drained land index 

(Id), index for corn crop (Ircc), index for soybean crop (Ircs), slope index (Islope), and urban 

land index (Iurb). 

  

E. coli 

Oct 2008 

E. coli 

May 2009 

E. coli 

October 2009 

E. coli 

May 2010 

Inc -0.21 -0.23 -0.20 -0.08 

Iwl 0.10 -0.03 0.06 -0.08 

Isc -0.12 -0.21 -0.20 -0.10 

Ibr 0.28 0.44
*
 0.04 0.10 

Icafo 0.08 0.15 0.09 -0.12 

Id 0.16 0.30
*
 0.19 0.02 

Ircc 0.25 0.19 0.10 0.03 

Ircs 0.33
*
 0.37

*
 0.07 0.12 

Islope -0.23 -0.26 -0.37
*
 -0.16 

Iurb -0.30
*
 -0.25 -0.03 -0.05 

 

Note: * indicates significant at α = 0.05; number of observation = 184. 

 

 

 



104 
 

  

1
04

 

Figure 2.5 shows the model validation results. The regression equations developed for 

predicting E. coli concentrations are shown in Table 2.3. The result shows that hydrological 

corrections using 30 days cumulative rainfall produced better results (i.e., r
2
 of 0.36).  The 

regression equation of 30 day hydrological correction is marked a by red dotted line in Table 

2.3. In table 2.4, we have shown r
2
, NSE, and model skill values for all four regression 

equations. In developing the equations, we randomly selected 70% of the total data, while 

30% of the randomly selected data were reserved for model validation. Figures 2.5a and 2.5c  

Table 2.3. Regression equations describing relationships between stream water E. coli 

concentrations and catchment characteristics of Squaw Creek Watershed, including wetland 

index (Iwl), drained land index (Id), confined animal feeding operation index (Icafo), index for 

corn crop (Ircc) and index for soybean crop (Ircs). Coefficient of determination (R
2
), degree of 

freedom (DF), p-value, and number of samples (n) are shown in the Table.   

Models Regression equations 

15 Day cumulative 

rainfall 

613.56 – 11387.33 × Icafo – 24.93 × Ircc + 45.71 × Ircs 

R
2
 = 0.07; DF = 125; n = 128; p = 0.0193 

30 Day cumulative 

rainfall 

432.47 + 75.17 × Iwl + 51.58 × Id – 54.34 ×  Ircc + 44.55 × Ircs 

R
2
 = 0.36; DF = 124; n = 128; p < 0.0001 

45 Day cumulative 

rainfall 

491.60 – 27.04 × Ircc + 52.79 × Ircs 

R
2
 = 0.26; DF = 126; n = 128; p < 0.0001 

60 Day cumulative 

rainfall 

505.12 – 32.97 × Ircc + 62.44 × Ircs 

R
2
 = 0.29; DF = 126; n = 128; p < 0.0001 
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shows the result of 15 and 45 days of cumulative rainfall regression models, respectively.  

The results of 30 and 60 day cumulative rainfall models are shown in Figure 2.5b, and 2.5d. 

In the Figures, the 1:1 line and the one order of magnitude lines are drawn to show the 

proximity of the predictions to the observed values. As shown in Figure 2.5d (60 day 

cumulative rainfall model), 95 – 98% of the predictions are within one order of magnitude of 

the observed values; however, in the 30 day cumulative rainfall model (Fig. 2.5b),  more 

predictions fall along the 1:1 line, and the R
2
 value supports this observation as it is higher 

than the other models. The predictions statistics for all models are shown in Table 2.3. 

6. Discussion 

In this study we assessed the dependence of in-stream E. coli concentrations on watershed 

indexes. During the four sampling events in 2008, 2009, and 2010, most locations had E. coli 

concentrations higher than the U.S. EPA water quality standard (USEPA, 2001a) which 

states that the geometric mean of at least five samples during a 30-day period must not 

exceed 126 MPN/100 ml and that a single sample must not exceed 235 MPN/100 ml. The 

spatial (variation among the sampling locations) and temporal variability (variation among 

the sampling seasons) of in-stream E. coli concentrations and relationships with rainfall is 

also shown. The temporal variability (among sampling events) in E. coli concentrations was 

considerably high, with mean values ranging from 519 – 1371 MPN/100 ml (Table 2.1). For 

example, samples collected during May of 2009 show exceptionally high E. coli 

concentrations compared to the other sampling events. Spatial variability was also large 

(standard deviation = 1477 MPN/100 ml) during the May 2009 sampling period (Table 2.1). 

The exceptionally high E. coli concentration in May 2009 can be attributed to overland flow 



106 
 

  

1
06

 

due to rainfall on the day of sampling. Several previous studies have found that the overland 

flow (i.e., runoff from agriculture land) increases the influx of E. coli into stream water 

(Guber et al., 2010; Soupir et al., 2006; Edwards et al., 2000; Khaleel et al., 1982; Moore et 

al., 1988).  

Due to availability, we used the land cover, and manure data from 2002 and 2006, 

respectively; however, the observed E. coli data used in this study are from 2008 to 2010.  

For the study area, the land cover map of 2002 is the most comprehensive. In addition to this 

study, many other recent studies have also relied on these dated land cover maps for 

watershed scale assessments (Secchi et al., 2011; Burkart and Jha, 2012; Jha et al. 2011). 

Although the land cover map used in this study is approximately 10 years old, few changes in 

land cover have occurred over this time period. Iowa, U.S.A. is renowned for intensive 

agricultural production, and cropped land cover dominates Iowa’s watersheds. While 

estimating watershed indexes, we used the land cover map of 2002; the recent changes in 

land cover in the watershed were not included. Due to increased demand of corn for biofuel 

production, a trend of increasing corn acreages in Iowa has been reported. For example, a 

recent study by Khanal et al. (2012) studied the potential impacts of the expansion of corn 

ethanol production on cropping pattern and emphasized that corn demand will be met by 

growing corn more intensively and shifting cropland from cropping systems with lower 

environmental impacts into continuous corn (CC). The authors predicted that the probability 

of CC will increase in the vicinity of ethanol plants; however, additional studies are required 

to better understand the impacts of CC on in-stream pathogen concentrations. We do not 

anticipate considerable impacts of recent land cover (i.e., increased core acreages) changes 
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on in-stream E. coli concentrations; however the latest land cover map is preferred for 

calculating watershed indexes over the land cover map of 2002.  

Similarly, the manure application area map of 2006 was obtained from Iowa DNR, which 

based these estimates on animal feeding operation (AFO) locations as well as the amount of  

manure produced at the AFOs in 2006. It is possible that some changes in the areas which 

currently receive land application of manure have occurred; however, we expect these 

changes to be minimal. To assess potential changes, we compared maps locating confined 

feeding operation in 2011 and 2006 (Fig. 2.3), which indicates that there are some slight 

changes, for instance, one new CAFO is now located at the south end of the watershed (Fig. 

2.3) in the 2011 map that was not present in the 2006 map. Also in this study we used 30 m 

DEMs, and applying finer resolution (10 m or lower) might result in a more precise 

estimation of watershed indexes.  

For the 15 day cumulative rainfall model, the manure application areas (Icafo) and cropped 

land cover (Ircc and Ircs) were found to be significantly related with in-stream E. coli 

concentrations (p = 0.019); however, the probability for variables to be included in this 

model were set at a higher level (p = 0.10).  When we used the 30 day cumulative rainfall, in 

addition to cropped land, wetland (Iwl) and drained land (Id) indexes were also found to be 

significant (p<0.0001) indicators (Table 2.3) in E. coli predictions. In the 45 and 60 day 

cumulative rainfall models, only the cropped land indexes (Ircc, and Ircs) were found to be 

significantly related with in-stream E. coli (p < 0.0001).  This indicates that the amount of 

rainfall and subsequent runoff, potentially can impact in-stream water quality.  
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Many studies have also noted the role of wetlands in reducing E. coli discharges to surface 

waters (Ibekwe et al., 2003; Nerella et al., 2000). Landscape such as natural land cover 

(particularly riparian areas) can act as buffer between the stream and disturbed land cover, 

reducing the influx of contamination into streams. However, natural land cover also attracts 

wildlife, and in the past many studies have shown that wildlife in riparian areas often 

increases stream E. coli concentrations (Buckely et al., 1998; Weiskel et al., 1996; Cox et al., 

2005).  

Our results (Table 2.2, Figs. 2.4a, 2.4b) show that Ircc, Ircs, and Id, which link the inputs and 

changes from cropped land to stream water (Hamilton, 2002), are positively correlated with 

in-stream E. coli concentrations. This indicates that water drainage/runoff from cropped land 

can potentially increase in-stream E. coli concentrations.  The primary reason for high E. coli 

concentration is likely the cropped land in the watershed, which receives manure as fertilizer. 

Based on analyses of the manure application map of 2006, approximately 6.8% of the 

watershed area receives manure as a fertilizer with an application rate of 179.33 N kg/ha. 

This can potentially elevate the E. coli levels in stream water. Previous studies such as Soupir 

et al. (2006) and Guber et al. (2010) have studied the transport of bacteria from manures 

applied to pasture land, and found that rainfall events occurring shortly after manure 

application to cropped land can increase pathogen loads to surface waters.  In addition, the 

tile drains in cropland can also transport bacterial contamination into stream waters (Guber et 

al., 2006; Ferguson et al., 2007; Gerba and Smith, 2005; Duffy, 2003). The study area is 

mostly flat cropped land (averaging 2% slope) under tile drainage management. A recent 

study by VanderZaag et al. (2010) has detected high concentrations of bacteria in tile 
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drainage effluent. Other studies by Lapen et al. (2008) and Gottschall et al. (2009) tested the 

impacts of municipal biosolid applications to cropped land, and found that nutrient (N, NH4-

N, Total P, PO4 – P) and bacteria (E. coli and Clostridium perfringens) concentrations were 

significantly higher in tile drain effluent as well as in ground water, when the agriculture land 

received municipal biosolids.  

 The cropped land indexes were identified as significant variables in all four models, 

supporting previous studies that have shown that cropped land potentially increases E. coli 

concentrations in stream water (Guber et al., 2006; Ferguson et al., 2007; VanderZaag et al., 

2010; Lapen et al., 2008).  Fields under corn-soybean rotation in Iowa will typically receive 

manure applications in alternate years during the fall prior to corn planting. The land cover 

under corn crop receives manure as fertilizer. Manure is typically only applied to about half 

of the land under corn-soybean rotation management in any one year, which could lead to 

difficulties in linking that land cover to in-stream E. coli levels.  The CAFO index (Icafo) 

surprisingly was only significant in the 15 day rainfall model (Table 2.4).  In addition to 

CAFOs, upstream livestock pasture density can also potentially impact stream bacteria 

levels. About 2.5% of the watershed area is under grazed grassland (based on the land cover 

map of 2002), and potentially used as pasture.  Previous studies have shown that pasture land 

can also influence in-stream water quality. Additional information including number of 

animals, size of the animals, grazing schedule, and access to surface waters is needed to 

estimate the impacts of grazing on in-stream E. coli concentrations.  Including grazing 

information in the analysis can potentially improve the predictions, especially in watersheds 

with a higher percentage of the total land area under grazing management. A recent study by 



110 
 

  

1
10

 

Wilkes et al. (2011) found that the detections of pathogenic bacteria including Salmonella 

enterica, Campylobacter spp., Listeria monocytogenes, and Escherichia coli O157:H7 was 

related to livestock pasture density; and pathogen detection was higher in areas where cattle 

have access to the watercourse.   Our bivariate correlation analysis found that Icafo was 

positively correlated with E. coli concentrations during all sampling seasons except May 

2010 (Table 2.2, Figs. 2.4a, 2.4b).   

As discussed in method section, r
2
 and model skill values greater than 0.35 is considered 

satisfactory for predicting in-stream E. coli concentrations. We also targeted NSE values 

greater than -0.50. The model performance analysis (Table 2.4 & Fig 2.5) did produce 

reasonable R
2
, model skill, and NSE values for the models, and it is expected that a larger 

and perhaps continuous dataset would improve the results further. However, when comparing 

this approach to the performance of other watershed-scale models that are capable of 

simulating in-stream bacteria concentrations, the results are promising.  Cho et al. (2010) and 

Parajuli et al. (2009a; 2009b ) both reported NSE values for the Soil and Water Assessment 

Tool (SWAT).  Cho at al. (2010) reported the NSE range from -0.78 to -0.99 (except one 

station with a positive value of 0.01), and the study by Parajuli (2009 a;b) reported the NSE 

value of -0.41 on an uncalibrated model. Parajuli’s study reported an r
2
 value of 0.26. The R

2
 

values of the predictions are low; however, when compared to the results of this study (0.08 – 

0.36). Moreover, as described by Dorner et al. (2006) order-of-magnitude estimates are 

needed for 
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Figure 2.5a,b,c,d. Model validation based on 30% of randomly selected observed data. Comparisons between observed and 

predicted E. coli concentrations are shown for four different models (hydrological corrections of 15, 30, 45, and 60 days of 

cumulative rainfall). The plots show the 1:1 line (solid line) and the line representing one order of magnitude difference 

between observed and predicted values (dashed line). 
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Table 2.4. Model performance statistics for 15 day, 30 day, 45 day, and 60 day cumulative 

rainfall.  

Model performance indicators cumulative rainfall 

 15 day 30 day 45 day 60 day 

Model skill 0.39 0.46 0.29 0.55 

NSE coefficient -0.15 -0.45 -0.20 -0.59 

Coefficient of determination (R
2
) 0.08 0.36 0.26 0.29 

Percentages of predictions within one order 

magnitude of observed values 

98 96 95 96 

 

water quality improvement and greater precision is not necessary or expected for stream 

water bacteria predictions. Our results show that more than 95% of the predictions are within 

1 order of magnitude, which is acceptable for in-stream bacteria predictions at the watershed 

scale. 

A major difference in this study compared to previous work is the number of locations at 

which the E. coli concentrations are being predicted.  We examine water quality at forty-six 

different locations over different seasons, while Parajuli et al. (2009 a;b) assessed model 

prediction at only six locations and the study by Cho et al. (2010) examined water quality at 

four stations. In this study, approximately 96% of the predictions fall within one order of 

magnitude of the observed values (Table 2.4 and Figure 2.5) when applying the 30 day 

cumulative rainfall model, and 96% fall within one order of magnitude of observed values 

when applying the 60 day cumulative rainfall  model. As expected some extreme values were 
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not predicted well by the model; however, the percentages of these predictions were low (4 

%) for both 30 and 60 day rainfall models. Model performance statistics for 15 and 45 day 

cumulative rainfall corrections are shown in Table 2.4. 

While developing the models for predicting in-stream E. coli concentration, several 

assumptions were made.  As previously discussed, the land cover map of 2002 and manure 

application area map of 2006 were used along with observed E. coli data from 4 seasons in 

2008 – 2010.  Changes in landcover or manure management practices between the 

development of the GIS layers used in this assessment and the collection of water quality 

data are expected to be minimal; however, increases in cropped land receiving animal waste 

could lead the model to underpredict in-stream E. coli levels.  The hydrological corrections 

of watershed indexes using cumulative rainfall was used instead of actual runoff data.  A 

hydrological corrections for each polygon based off of runoff data may have improved the 

results; however, the use of cumulative rainfall in the absence of runoff data has been 

successfully applied previously (Jarvie et al., 2002).  In order to improve the robustness of 

the study, we considered four sets of hydrological corrections (15, 30, 45, and 60 days) 

which provided insight into how changes in hydrology influence predictions. In this study, 

the watershed indexes were estimated using a thiessen polygon approach; other methods such 

as creating subwatersheds for each sampling location could also potentially improve 

predictions. 

This work demonstrates the usefulness of hydrologically corrected watershed indexes for 

predicting in-stream E. coli concentrations; however, future work is recommended to further 

explore this approach. Additional information such as wildlife population within the 
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watershed could also be important because many previous studies have shown that wildlife 

potentially contribute E. coli to stream waters, especially from riparian zones (Cox et al., 

2005; Weiskel et al., 1996). We anticipate that precise estimation of indexes denoting manure 

application rates and timing of application in each polygon might also potentially improve 

model prediction, as might delineating the sub watershed for each sampling location prior to 

calculating the watershed indexes. In addition, using flow weighted E. coli concentrations 

and a larger in–stream E. coli dataset would be useful when relating mean E. coli 

concentrations with watershed indexes. Beyond the stepwise regression approach proposed in 

this study, application of non-linear modeling, such as regression trees, could also be a viable 

alternative.   

The GIS based method proposed here can be a useful approach to characterize the watershed, 

and linking the watershed indexes with in-stream contamination (i.e., E. coli levels); 

however, the approach requires further verification. Implementing the approach to a different 

watershed and verifying the results can potentially improve the methods (i.e., identifying the 

indexes which have most significant impacts on in-stream water quality) as well as 

regression equations proposed in Table 2.3. The calculations provided here are based on a 

limited dataset e.g., single sampling event from four seasons. Although we used the data 

from 46 sampling locations, which provided a considerable spatial heterogeneity useful for 

modeling, more frequent monitoring (i.e., multiple sampling in same season) is required to 

develop a robust model. Therefore, we do not recommend using the regression equations 

presented in Table 2.3 for implementing the land cover change plan in order to control in-

stream E. coli concentrations without verifying the model using the data from the other 
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watershed. Nevertheless, the method adapted here for calculating the watershed indexes and 

deriving the relationships between watershed indexes and in-stream E. coli concentrations 

can be a potentially useful tool, which can support decision making and identifying the 

potential sources of E. coli contamination in stream water.  

7. Conclusions 

This study assessed the impacts of hydrologically corrected watershed indexes on in–stream 

E. coli concentrations at 46 locations over four sampling periods in Squaw Creek Watershed, 

Iowa, using a GIS based method. The watershed indexes were estimated using disturbed and 

undisturbed land cover of the Squaw Creek Watershed, and a bivariate analysis was used to 

assess relationships between watershed indexes, rainfall, and in-stream E. coli 

concentrations. Using watershed indexes, step-wise multivariate regression models were 

developed to predict in-stream E. coli concentrations, and predictions were compared with 

observed E. coli data. The model performance was evaluated using factor analysis as well as 

statistical indicators such as model skill, NSE coefficient, and coefficient of determination. 

The results demonstrate that the approach developed in this study has the potential to be a 

useful tool for predicting in-stream E. coli concentrations, and for evaluating the impacts of 

watershed characteristics on water pathogens in agricultural catchments.  This new method of 

using watershed indexes to predict in-stream E. coli concentrations will be useful to planners 

who are responsible for predicting the impacts of land management decisions on stream 

water quality, and for regulatory agents responsible for conducting watershed scale 

assessments and remediation projects. 
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CHAPTER 3. A MODEL FOR PREDICTING RESUSPENSION OF 

Escherichia coli FROM STREAMBED SEDIMENT 
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Abstract 

To improve the modeling of water quality in watersheds, a model is developed to predict 

resuspension of Escherichia coli from sediment beds in streams. The resuspension rate is 

expressed as the product of the concentration of E. coli attached to sediment particles and 

an erosion rate adapted from work on sediment transport. The model uses parameter 

values mostly taken from previous work, and it accounts for properties of the flow through 

the bottom shear stress and properties of the sediment through the critical shear stresses 

for cohesive and non-cohesive sediment. Predictions were compared to resuspension rates 

inferred from a steady mass balance applied to measurements at sixteen locations in a 

watershed. The model’s predictions matched the inferred rates well, especially when the 

diameter of particles to which E. coli attach was allowed to depend on the bottom shear 
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stress. The model’s sensitivity to the parameters depends on the contributions of particle 

packing and binding effects of clay to the critical shear stress. For the current data set, the 

uncertainty in the predictions is controlled by the concentration of E. coli attached to 

sediment particles and the slope used to estimate the bottom shear stress. 

1. Introduction 

Pathogens impair 480,000 km of rivers and shorelines and 2 million ha of lakes in the U.S., 

and the cost to implement total maximum daily load (TMDL) plans is estimated as $0.9 to 

$4.3 billion per year (USEPA, 2010a;b). To predict the risk of bacteria to public health and 

allocate load reductions fairly, models that include accurate representations of the key 

processes of fate and transport are required (Fries et al., 2008). For example, the high 

concentrations of bacteria in suspended sediment and bed sediment suggest that the 

understanding of interactions between pathogens and sediment must be improved (Droppo et 

al., 2009). Sediment disturbance can account for the majority of total bacterial contamination 

(Nagels et al., 2002), and a one-dimensional model applied to the field measurements of 

Jamieson et al. (2005b) showed that including interactions with the sediment improved the 

predictions of E. coli concentrations in the stream (Rehmann and Soupir, 2009). However, 

models that U.S. regulatory agencies use to determine pollutant load reductions usually do 

not include resuspension of bacteria as a source.  

Even when resuspension is included in models, how to predict it is uncertain. Many 

researchers have either specified the resuspension rate (e.g., Petersen et al., 2009) or 

expressed it mainly as a function of flow (Wilkinson et al., 1995; Tian et al., 2002; Collins 

and Rutherford 2004). Kim et al. (2010) added a model of resuspension of E. coli to the Soil 
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and Water Assessment Tool (SWAT); resuspension was estimated using a simplified version 

of Bagnold’s stream power equation, which has been criticized for not including the effect of 

grain size on sediment transport (Ferguson 2005).  Hipsey et al. (2008) accounted for 

properties of the sediment by including a critical shear stress computed from the Shields 

criterion, but although the Shields criterion holds for non-cohesive sediment, its validity for 

cohesive sediment is questionable (Mehta and Lee, 1993). Sanders et al. (2005) assumed 

resuspension to be proportional to the shear stress, while Bai and Lung (2005) expressed 

resuspension as a nonlinear function of the difference between the shear stress and a critical 

shear stress. As Rehmann and Soupir (2009) noted, resuspension of microorganisms from a 

sediment bed depends in general on properties of the flow and sediment (e.g., Lick, 2009, ch. 

3), the type of microorganism (Hipsey et al., 2008), and the presence of biofilms (e.g., 

Droppo et al., 2001).  

To predict E. coli resuspension reliably, theory for transport of cohesive sediment must be 

considered because most bacteria attach to cohesive particles (Black et al., 2002). For non-

cohesive sediments such as sands, which typically have particle diameters greater than 62 

µm, the main forces to consider are the dislodging tendency of the fluid shear stress and the 

submerged weight of a particle. For cohesive sediment, however, inter-grain forces 

complicate the predictions. Clay and very fine silt (< 8 µm) exhibit strong cohesion, while 

larger silt particles (8-62 µm) are more weakly cohesive (van Rijn, 2007). Furthermore, 

because cohesion of deposited flocs renders the critical shear stress for erosion higher than 

that for deposition, the conditions under which the bed is deposited and the time for 

consolidation can be expected to affect erosion (Krishnappan, 2007), as well as the properties 
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of the eroded flocs (Stone et al., 2008).  For example, sediment beds formed in a sheared 

flow eroded at higher shear stresses than those formed in quiescent conditions (Droppo et al., 

2001). Also, biofilms increase the critical shear stress by forming a coating that protects the 

sediment against erosion (Droppo et al., 2001). The coating contains extracellular polymeric 

substances that increase cohesiveness between particles (Paterson, 1989) and strengthens the 

surficial sediment (e.g., Sutherland et al., 1998).  

To improve predictions of in-stream transport of E. coli, we develop a formulation for E. coli 

resuspension that accounts for properties of the flow and properties of both cohesive and 

non-cohesive sediment. The objectives of this study are 1) to develop a model by assuming 

that the E. coli resuspension rate is proportional to the erosion rate of sediment, 2) to 

compare the predictions from the model to resuspension rates inferred from mass balances at 

several locations in a watershed, 3) to evaluate the model’s predictive skill, and 4) to assess 

the sensitivity and uncertainty of the resuspension rate to the input parameters so that 

measurements and modeling can be improved. The model is developed in section 2, and the 

measurements and calculations used in our application of the model to predict resuspension 

in a creek are described in section 3. Objectives 2, 3, and 4 are addressed in section 4, and the 

main conclusions are listed in section 5.    

2. Model 

We hypothesize that the rate of resuspension of attached E. coli can be estimated as the 

product of the concentration of attached E. coli in the sediment bed and an erosion rate 

similar to that for sediment. Several researchers have proposed formulas to predict erosion 

(Partheniades, 1965; Mehta, 1989), but we use the formulation of Lick (2009), in which the 
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erosion rate E depends on the bottom shear stress b, the critical shear stress c for cohesive 

sediment, and the critical shear stress cn for non-cohesive sediment. For b > cn,  

,0

sn

cnc

cnbEE 


















                                                                                                                                      (1) 

where E0 = 10
-6

 m/s is the erosion rate at the threshold of erosion (Lick 2009). Lick (2009) 

found the exponent ns to be approximately equal to 2 for small and intermediate particles, 

while others expressed the erosion rate as linearly proportional (i.e., ns = 1) to the difference 

between the bottom stress and a critical stress (Amos et al., 1996). A compilation of data 

shows that the critical shear stress for non-cohesive sediment depends on the particle 

diameter d: 

,414dcn 
                                                                                                                           (2) 

where cn is in N/m
2
 and d is in m (Lick 2009). For cohesive sediment, the packing of the 

particles, which is quantified by the bulk density b, and extra binding forces caused by clay 

must be considered. Combining the work of Roberts et al. (1998) and Lick et al. (2004), Lick 

(2009) proposed 
















dc

c

d

ae bb

cnc

3

5

2
1



 ,                                                                                                                           (3) 

where a and b are coefficients that Lick (2009) specified as 8.510
-16

 m
2
 and 9.07 cm

3
/g, 

respectively. The coefficient c3 is given by 
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)1(
6

3  sgc 


 

where  is the density of water, s is the specific gravity of the sediment particle, and g is the 

acceleration of gravity. The coefficient c5 depends on the clay fraction; for 2% bentonite 

added to quartz particles, c5 = 7 N/m
2
 (Lick et al., 2004). 

Lick (2009) proposed equation (1) as a uniformly valid formulation for erosion. For large 

particles and no clay fraction, the bulk density does not affect the critical shear stress (Figure 

3.1), and equation (1) follows a form that applies to fine-grained, coarse-grained, cohesive 

sediments, and non-cohesive sediment (Lick, 2009). As the particle size decreases, effects of 

cohesion dominate (i.e., c >> cn), and equation (1) reduces to a form similar to that of 

Roberts et al. (1998) for cohesive sediment. When the binding effects of clay provide the 

main resistance to particle motion, the critical shear stress depends only weakly on the 

particle diameter (Figure 3.1) because both the mobilizing force and the resisting force 

depend on the surface area of the particle.  

The erosion rate in equation (1) can be adapted to predict the rate of resuspension of E. coli. 

Bacteria attach to and bioflocculate around solid particles (Black et al., 2002) and deposit to 

the bottom sediments; attached fractions for streams ranges from 55% during storms 

(Characklis et al., 2005; Krometis et al., 2007) to between 80 and 100% (Auer and Niehaus, 

1993; Hipsey et al., 2008). When sediment is resuspended, an influx of E. coli from the 

stream bed results (Whitman et al., 2006). Therefore, we predict the E. coli resuspension rate 

Ra (CFU m
-2

s
-1

) by multiplying the erosion rate by the concentration Ca (CFU/m
3
) of E. coli 

attached to sediment in the bed: 
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                                                                                                         (5) 

The coefficient and exponent are changed to E0a (m/s) and na to allow for possible 

differences from E0 and ns in equation (1). The resuspension rate is nonzero only when the 

bottom shear stress exceeds the critical shear stress for non-cohesive sediment. We expect 

equation (5) to be useful in predicting resuspension rates because it accounts for effects of 

the flow and sediment, as well as the concentration of E. coli in the stream bed. 

3. Methods 

We applied the model to the Squaw Creek watershed to predict the resuspension of E. coli 

attached to stream bottom sediments into the water column. The model was evaluated using 

data collected from sixteen sites in the watershed. At each site, flow geometry was measured, 

and the concentrations of E. coli in streambed sediment and the overlying water column were 

determined. The resuspension rates predicted with equation (5) were compared to values 

inferred from the one-dimensional model of Rehmann and Soupir (2009). A sensitivity 

analysis was conducted to assess the influence of certain parameters on model output, and the 

parameters controlling the uncertainty in the resuspension rate were identified. Table 3.1 lists 

the parameters used in computing the predicted and inferred resuspension rates, and it 

indicates whether the parameters were measured, estimated, taken from previous work, or 

calibrated. 
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Figure 3.1. Dependence of critical shear stress on particle diameter. The dotted line is 

the critical stress for non-cohesive sediment. The dashed line is the critical stress for 

cohesive sediment with a bulk density b of 1.26 g/cm
3
 and no effects of clay (c5 = 0 

N/m
2
), and the solid line is the critical stress for cohesive sediment with b = 1.26 g/cm

3
 

and c5 = 21 N/m
2
.  
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3.1. Study area 

Squaw Creek passes through four counties of central Iowa, U.S.A. before discharging into 

the South Skunk River near Ames (Figure 3.2). The total area of the Squaw Creek watershed, 

as defined by the 10-digit hydrologic unit code, is 59,327 ha, and the average basin slope is 

2%. Soils consist of loamy Wisconsin glacial till and clayey lacustrine deposits, including 

loam, silty clay, clay loam, and silty clay loam (Iowa NRCS); about 87% of the soil is fine, 

and another 8% is sandy.  

The study area has a humid climate with an average yearly rainfall of 865.4 mm and average 

annual high and low temperature of 15.6 and 3.3°C, respectively. The stream network of 

Squaw Creek watershed was generated using 30 m digital elevation maps from the U.S. 

Geological Survey’s Earth Resources Observation and Science Center and the geographic 

information systems software ArcGIS 9 (ArcMap
TM

 version 9.3.1) to identify the tributaries 

and main stream. 

Land cover was determined with a 2002 map for Iowa obtained from the Natural Resources 

Geographic Information System library, a repository developed by the Iowa Department of 

Natural Resources. About 74% of the watershed was under agricultural management (corn 

41%, soybean 33%, and row crops 0.4%), 17% of the watershed was under grassland 

(ungrazed grass 11% , grazed grass 2.5% , CRP grass 1.7%, and alfalfa 1.8%), and 2.7% was 

deciduous forest. Additionally, 5.4% of the watershed land cover was road, residential, and 

commercial and 0.3% was water and wetlands. The watershed has 20 listed confined feeding 

operation units, and hogs are the major livestock.  
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Figure 3.2. Squaw Creek watershed and sampling locations (1-16). Discharge was 

measured at the U.S. Geological Survey gaging station near station 16. The land cover is 

also shown. 
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Table 3.1. Parameters used to compute the predicted and inferred resuspension rates. The second column indicates whether the 

parameter was used in the predicted rate (P), inferred rate (I), or both (B). The fourth column lists the uncertainty, expressed as a 

percentage of the parameter’s value, assumed in the analysis in section 4.   

Parameter Rates Value Uncty (%) Source 

C1 = conc. of E. coli in water (CFU/100 ml) I 2.25×10
2 
-5.47×10

3
 15 Measured 

C2 = conc. of E. coli in sed. (CFU/m
3
 ) B 1.85×10

7
-3.87×10

8
 15 Measured 

R = hydraulic radius (m) P 0.10-0.76 10 Measured 

A = cross sectional area (m
2
) P 0.5-3.5 10 Measured 

b = bulk density of the sediment (g/cm
3
) P 1.26 5 Obtained through model calibration  

T = temperature (ºC) B 17.0-24.6 5 Measured 

Q = discharge (m
3
/s) P 3.6 5 Measured at station 16 

E0a = coefficient (m/s) P 1×10
-6

 0 Lick (2009) 

a = coefficient for bulk density effect (m
2
) P 8.5×10

-16
 0 Lick (2009)  

b = coefficient for bulk density effect (cm
3
/g) P 9.07 0 Lick (2009)  

c3 = coefficient for clay effect (N/m
3
) P 8.46×10

3
 0 Lick (2009), computed with s = 2.65  

H2 = depth of sediment containing E. coli (m) I 0.02 50 Estimated from sediment sampler 

n = Manning roughness coefficient P 0.036 15 Estimated from Chow (1959) 

S = slope (m/m) P 2.5×10
-4

 20 Estimated with Manning’s eq. at station 16 

fa = attached fraction  B 1.0 15 Estimated using range in Hipsey et al. (2008)  

na = exponent  P 1.0 10 Estimated from Amos et al. (1996)  

c5
 
= coefficient for clay effect (N/m

2
) P 21 10 Calibrated/estimated from Lick (2009) 

d = particle diameter (µm) B 1.0; 0.5-3.5 50 
Calibrated using ranges in Oliver et al. (2007)  

& by fitting d = b with  = 1.9 m/Pa
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3.2. Measurements 

Data were collected from the sampling locations to predict E. coli resuspension rates. Water 

temperature and cross section geometry were measured at sixteen locations on 17 July 2009.  

The mean air temperature during the sampling was 18.4 °C, and although the sky was mostly 

overcast, precipitation was zero. The mean discharge for the day was reported to be 3.6 m
3
/s 

at the U.S. Geological Survey gaging station 05470500 on Squaw Creek in Ames, which is at 

the same cross section as our sampling location 16 (Figure 3.2); the discharge varied by less 

than 2% during the sampling. The Manning roughness coefficient n was taken to be 0.036 

using information for natural streams in Chow (1959, pp. 112-123). The bulk density of the 

stream bed sediments, expressed as weight per unit volume, was determined from wet and 

dry weight (dried in the oven at approximately 75 °C for 2 days) of sediments (Roberts et al., 

1998). For estimating the bulk density of streambed sediment of Squaw Creek Watershed, we 

collected streambed sediment samples at 14 locations (7 sampling locations in main streams 

and 7 sampling locations in tributaries of the Squaw Creek Watershed). Sampling locations 

are shown in Appendix I (Fig A4). To collect the streambed sediment samples, we used a soil 

corer with diameter of 3.175 cm and height of 25.91 cm. We drive a soil corer into the 

streambed (at center of the stream) and remove the intact core. Immediately after collection, 

the core samples were stored at 4 ⁰C. The weights of the cores were measured in the lab. We 

used the volume formula of π r2
h (where r is radius of core, and h is height of the core) to 

calculate the core volume (205.78 cc).  The bulk density of the sediments, expressed as 

weight per unit volume, was determined from sediment wet and dry weight (dried in the oven 

at approximately 75°C for 2 days (Roberts et al., 1998). The bulk density data are shown in 
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Table A of Appendix I. The details of bulk density estimation are also described in Appendix 

I.  

For E. coli estimation, water samples were collected from the center of the stream by 

lowering a Horizontal Polycarbonate Water Bottle Sampler (2.2 L, Forestry Suppliers Inc., 

Mississippi, U.S) from a bridge into the center of the stream at all the locations. Sediment 

samples were collected from the top 2-3 cm of the streambed using a Shallow Water Bottom 

Dredge Sampler (15 cm  15 cm opening, Forestry Suppliers Inc., Mississippi, U.S) at the 

same location as water samples. While enumerating E. coli in water and sediment samples, 

three replicates of water and sediment samples were used in microbial analyses. In field, 

immediately after collection, samples were stored at 4 °C and analyzed in the lab within 24 

hours of sample corrections. The E. coli numbers in water and sediment samples were 

determined by membrane filtration techniques (APHA, 1999) on modified mTEC agar (EPA, 

method 1603).  

To enumerate E. coli in water column, we used 10 ml of stream water sample for filtering 

through a membrane filter, and then CFU in 10 ml of water sample were converted into 

CFU/100 ml (by multiplying by 10) and CFU/m
3
 (by multiplying 10

5
) of water samples. To 

enumerate the E. coli in streambed sediment, sediment attached E. coli were detached by 

stirring the mixture of sediment and purified water (ratio 1:1) for 15 minutes at 

approximately 200 rpm using a magnetic stir bar. The resulting solution (i.e., mixture) was 

used for filtration to enumerate E. coli in the sediment. We filtered 1 ml of mixture (i.e., 

solution prepared by stirring 80 g of sediment and 80 ml of water sample) through a 

membrane filter. Subsequently CFU in 1 ml of sample (i.e., mixture) were converted into 
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CFU/100 g sediment and CFU/ m
3
 of sediment, which requires estimation of total mixture 

volume. The total mixture volume of 143.49 (i.e., 80 of sediment and 80 ml of water) was 

estimated by adding the volume of 80 g of sediment of 63.49 cc (that was calculated by 

dividing 80 g of sediment by 1.26 g/cc sediment bulk density) and 80 ml (i.e., cc) of water. 

The total CFU in 149.49 ml mixture were divided by 80 g of sediment, which yielded CFU in 

1 g of sediment. To calculate CFU/m
3
 of sediment, we multiplied CFU/g of sediment into 

sediment bulk density (i.e., 1.26 × 10
6
 g/m

3
). The calculations performed here provided an 

approximate value of CFU in sediment (either mass or volume basis).  

For E. coli enumeration in sediment, we assumed that stirring of 80 g of sediment and 80 ml 

of water samples detached all E. coli attached to sediment particles, and were distributed 

throughout the mixture volume uniformly. Another assumption is that all sediment samples 

have a unique bulk density of 1.26 g/cc (which was used for calculating mixture volume and 

estimating CFU per m
3
 of sediment volume). To understand the potential impacts in 

predictions caused by uncertainties in bulk density and sediment E. coli estimation, we 

performed sensitivity analysis, which is discussed later in this chapter.  

The method adapted here to calculate E. coli in sediment has certain limitations caused by 

assumptions, which were required to estimate the approximate E. coli numbers attached to 

sediment. However, authors are unaware of any established standard method available for 

enumerating E. coli levels in sediment. Developing a method, which can provide precise 

calculations of E. coli in streambed sediment, is a much needed work that can support 

monitoring of E. coli in streambed sediment. Identifying the advanced methods capable of 

extracting all E. coli attached to sediment into water, and then enumerating E. coli in water 
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samples in order to estimate E. coli in a certain mass or volume of sediment can potentially 

improve the results presented in this study.   

3.3. Calculation of predicted and inferred resuspension rates 

Resuspension rates were predicted with equation (5). All E. coli were assumed to be attached 

to sediment grains; that is, the attached fraction fa = 1 and Ca = C2 (CFU/m
3
). This choice is 

consistent with the assumptions and work reviewed in Hipsey et al. (2008), which showed 

attachment between 80 and 100%. The bottom shear stress was computed from a force 

balance for steady, uniform flow: 

gRSb   ,                                                                                                               (6) 

Where is the water density, g is the acceleration of gravity and R is the hydraulic radius. 

The slope S was estimated from Manning’s equation to be 2.5  10
-4

. Values of the 

coefficients a and b from Lick (2009) were used, and the coefficient E0a was assumed to be 

equal to E0 given by Lick (2009). The coefficient c5 was calibrated, and the exponent na was 

taken to be 1, as suggested by Amos et al. (1996), who found the erosion rate to be linearly 

proportional to the difference between the shear stress and a critical shear stress. The critical 

shear stresses cn and c require an estimate of the diameter d of the particles to which the E. 

coli attach. A constant value of the diameter and a diameter that is linearly proportional to the 

bottom shear stress were used. The merits of these approaches are discussed in section 4.1. 
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To evaluate the predictions, resuspension rates were inferred from the mass balance model of 

Rehmann and Soupir (2009). Considering settling, resuspension, and net growth, they 

determined that a steady-state mass balance for the sediment yields 

221

2

Hkv

wf

C

C

nr

sa


  ,                                                                                                                 (7) 

where ws is the settling velocity, vr is the resuspension velocity, kn2 is the net growth rate in 

the sediment, and H2 is the depth of sediment containing E. coli, which is estimated to be 

about 2 cm for our experiments. The settling velocity ws was estimated with Stokes’s law. 

The net growth rate is the difference between the growth rate and the natural mortality rate, 

which were computed as functions of water temperature using the relations in Hipsey et al. 

(2008). The resuspension velocity at each sampling location was computed from equation 

(7), and the inferred resuspension rate was computed as 

  1122212 CwfCHkCwfCvR sansarai ,                                                               (8) 

where 1222 / CwfCHk san  indicates the relative importance of settling and net growth in the 

mass balance for E. coli in the sediment. For example, when  >> 1, settling is unimportant, 

and net growth balances resuspension.  

Once the exponent na was chosen, the parameters to determine or calibrate were the 

coefficient c5 and the diameter of the particles to which E. coli attach. The optimal values of  

the parameters for the predictions using equation (5) were chosen by minimizing , the sum 
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of the squares of the differences between the logarithms of the inferred and predicted 

resuspension rates:  

  
2

1010 loglog aia RR .                                                                                                (9) 

Values of  were computed with the resuspension rates expressed in CFU/m
2
s. A 

quantitative measure of predictive skill (Willmott 1981) was computed to assess the 

agreement between predicted and inferred E. coli resuspension rates: 
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RR
,                                                                                   (10) 

where the overbar denotes an average over all sampling locations. A skill of 1 indicates 

perfect agreement between predicted and inferred resuspension rates, while a skill of zero 

indicates poor performance.  

To understand the dependence of the resuspension rate on the parameters and help in 

applying the model, the sensitivity and uncertainty were computed. The relative sensitivity of 

the resuspension rate to each parameter yi was computed (Haan, 2002) with 
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y
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(11) 

The relative uncertainty in the resuspension rate was computed by propagating the 

uncertainties of the individual parameters, which were assumed to be independent, with the 

formula of Taylor (1997, p. 75): 
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where N is the number of parameters and yi is the uncertainty in yi. 

4. Results and Discussion 

4.1. Concentrations, critical stresses, and resuspension rates  

E. coli concentrations were large in streambed sediment as well as in the water column. The 

concentration C1 of E. coli in the water column ranged from 225 to 5467 CFU/100 ml with a 

mean of 789 CFU/100 ml and standard deviation of 1255 CFU/100 ml (Figure 3.3). All but 

one of the concentrations exceeded the U.S. water quality standards (USEPA, 2001a), which 

state that the geometric mean of at least five samples during a 30-day period must not exceed 

126 CFU/100 ml and that a single sample must not exceed 235 CFU/100 ml. The 

concentration C2 of E. coli in the sediment ranged from 1.85×10
7
 to 3.87×10

8
 CFU/m

3
 with a 

mean of 1.54×10
8
 CFU/m

3
 and standard deviation of 1.18×10

8
 CFU/m

3
. Concentrations in 

the sediment (CFU/m
3
) were 2-102 times (mean = 34, s.d. = 32) higher than concentrations 

in the water column (CFU/m
3
). Previous studies reported the ratio C2/C1 to be 10-10,000 

(Buckley et al., 1998; Davies and Bavor, 2000; Bai and Lung, 2005).  

Resuspension rates inferred using equation (8) ranged from 11-187 CFU/m
2
s, depending on 

whether the diameter d of the particles to which E. coli attach was set to a constant value 

(Figure 3.4a) or allowed to vary with hydraulic conditions (Figure 3.4b). The inferred rates 

are smaller than those of Jamieson et al. (2005b), who measured resuspension rates of 8200-  
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Figure 3.3. Concentrations of E. coli in the water column and sediment. Red hollow 

circles denote measurements from the main channel, and blue filled circles denote 

measurements from the tributaries. The solid vertical red line is set at the USEPA’s 

water single-sample standard for E. coli (235 CFU/100 ml), and the dotted lines are 

contours of C2/C1 (i.e., ratio between sediment E. coli (CFU/m
3
) and water E. coli 

(CFU/m
3
). The C2 were estimated by multiplying the E. coli in sediment (CFU/g) into 

bulk density of sediment (1.26×10
6
 g/m

3
). 
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Figure 3.4a,b. Comparison between predicted and inferred resuspension rates. The solid line indicates perfect agreement, 

and the dashed lines indicate difference by a factor of 2. Red hollow circles denote measurements from the main channel, 

and blue filled circles denote measurements from the tributaries: (a) Constant value of the particle diameter: d = 1.0 µm, σ 

= 1.04, and skill = 0.82. (b) Particle diameter linearly related to bottom shear stress: d = ατb with α = 1.9 µm/Pa, σ = 0.40, 

and skill = 0.85.  
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15,000 CFU/m
2
s in a stream during storms. One cause of the discrepancy is that Jamieson et 

al. (2005b) artificially seeded the bed with E. coli NAR; concentrations of E. coli in the 

sediment corresponding to the three storms highlighted by Jamieson et al. (2005b) were 

between 1.210
5
 and 5.510

5
 CFU/100 ml, or about 3 to 300 times larger than in our 

experiments. In fact, the resuspension velocities vr = Rai/C2 in our experiments (3.610
-7

–

1.310
-6

 m/s) were only about 2 to 25 times smaller than the values (210
-6

–110
-5

 m/s) 

Jamieson et al. (2005b) observed. The critical shear stress for cohesive sediment was about 

1.1 N/m
2
 at all sampling stations. Because of the effects of clay, the critical stress used for 

the predictions in Figure 3.4 did not depend strongly on the particle diameter (Figure 3.1).  

Estimates of critical stress in other cases vary widely because of the characteristics of the 

sediment, the presence of biofilms, the depositional history of the bed, and the approach used 

to define the critical stress. For field measurements in a stream in which 32% of the sediment 

was finer than 75 m, Jamieson et al. (2005) computed critical shear stresses of 1.5-1.7 N/m
2
 

using the Manning’s roughness coefficient and the discharge at which E. coli NAR first 

appeared in discrete samples during a storm. El Ganaoui et al. (2004) analyzed sediment 

samples from a field site and differentiated between the fluff layer, a surface layer of fine 

sized particles and organics with a mean particle diameter of 10-20 µm and critical shear 

stresses of 0.025-0.05 N/m
2
, and a layer with coarser particles, which had critical shear 

stresses that were 10-20 times larger. Droppo et al. (2001) conducted laboratory experiments 

on kaolinite clay with a mean diameter of 5 m and contaminated sediment from a field site 

that had particle sizes less than 63 m. The critical stress increased from 0.024 N/m
2
 to 0.325 

N/m
2
 when a biofilm was allowed to grow, and critical stresses of 0.100-0.135 N/m

2
 for beds 
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deposited under shear exceeded the stresses of 0.047-0.054 N/m
2
 for beds deposited under 

quiescent conditions. The critical stress estimated for Squaw Creek had a magnitude 

representative of natural sediment beds with biofilms and a realistic deposition history. 

4.2. Predicting resuspension  

Using values of parameters from previous work and a constant value of the particle size 

(Table 3.1), the model predicted thirteen of the resuspension rates within a factor of 2 and all 

within a factor of 5 (Figure 3.4a). The model predicted the resuspension rates from the main 

channel and tributaries about equally well. As noted in section 2, most of the parameters in 

Table 3.1 were either measured or taken from Lick (2009). The coefficient c5 was set to 21 

N/m
2
; this value is three times that used by Lick et al. (2004) for quartz particles with 2% 

bentonite. Because grain size analyses showed that the sediment samples consisted of 

between 1 and 7% clay (i.e., particle sizes < 8 µm), a larger value of c5 is reasonable.  The 

diameter d of particles to which E. coli attach must be specified to compute both the 

predicted and inferred resuspension rates. A single value of 1 µm used for all sites yielded  

= 1.04 and a skill of 0.82. Attachment of E. coli to small particles is consistent with previous 

findings. For example, Oliver et al. (2007) observed that 65% of E. coli attached to particles 

smaller than 2 µm. 

Because of the uncertainty in the diameter of particles to which E. coli attach, the diameter 

was allowed to depend on the bottom shear stress as d =  b where  is a coefficient. The 

optimal value of   of 1.9 µm/Pa yielded diameters between 0.5 and 3.5 µm, which fall 

within previously observed ranges (Oliver et al., 2007), and it changed the range of inferred 
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resuspension rates because of the dependence of the settling velocity on particle diameter. 

The model predicted all of the resuspension rates within a factor of 2 (Figure 3.4b), and it 

yielded  = 0.40 and a skill of 0.85. Again, the model predicted the resuspension rates from 

the main channel and tributaries about equally well. 

This version of the model involves no more calibration parameters, and the relationship 

between the diameter and shear stress appeals to physical intuition. Once the exponent na  

and coefficient c5 were specified using information from Amos et al. (1996) and Lick (2009), 

the only parameter to adjust in the first application (Figure 3.4a) was the diameter d.  

The second application (Figure 3.4b) also had only one parameter to adjust, the coefficient  

. The assumed relationship d = τb   implies that as the bottom shear stress increases,  

larger particles can be resuspended. Also, the coefficient αcan be related to the Shields 

parameter, which is used to determine conditions under which non-cohesive sediment will 

start moving: 

)1()1( 





sgdsg

b








         (13) 

With  = 1.9 µm/Pa equation (13) yields a Shields parameter of about 33. This value is much 

larger than the critical Shields parameter for initiation of motion of 2 µm quartz particles 

(Cao et al., 2006). The larger value we obtained is reasonable because it deals with 

suspended sediment instead of initiation of motion and because the Shields criterion does not 

account for the cohesive effects involved in the transport of small particles.  
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4.3. Sensitivity and uncertainty 

Calculating the sensitivity can help in determining the parameters for other situations. The 

relative sensitivity can be computed analytically (Table 3.2); the parameters b =

2/)exp( dba b  and c = c5/c3d represent the contributions of bulk density and clay content, 

respectively, to the critical shear stress defined in equation (3). Because the resuspension rate 

is linearly proportional to both the coefficient E0a and the concentration Ca of attached E. coli 

in the sediment, the relative sensitivity to those parameters is always 1. All other sensitivities 

depend on the parameter values (Figure 3.5). For the parameter set used in Figure 3.4b, the  

Table 3.2. Relative sensitivity of the predicted resuspension rate to the various parameters. 

As noted in the text, the parameters 
2/)exp( dba bb    and c = c5/c3d represent the 

contributions of bulk density and clay content, respectively, to the critical shear stress c. 
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resuspension rate is most sensitive to the slope, hydraulic radius (which for these 

measurements is approximately equal to the water depth), the concentration of attached E. 

coli, and the coefficients E0a and c5. The magnitude of these sensitivities is approximately  

 

 

Figure 3.5. Absolute value of the relative sensitivity of the predicted resuspension rate 

to the parameters listed in Table 3.2. Sensitivity is computed for station 13. Bars with 

horizontal blue lines are computed for the parameter set used to compute the rates in 

Figure 3.4b. Bars with diagonal red lines use the base parameter set with c5 = 2.5 N/m
2
, 

and bars with green bricks use the base parameter set with b = 1.45 g/cm
3
.  
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equal to the exponent na, or 1, because the bottom shear stress is much greater than the 

critical shear stress for non-cohesive sediment ( >>cn) and effects of clay control the critical 

shear stress for cohesive sediment (c >> b). For similar reasons, the sensitivity to the bulk 

density, particle diameter, and coefficients a and b in equation (3) is smaller. When the 

effects of bulk density outweigh those of the clay content (b >> c)—for example, for a soil 

with greater bulk density or smaller clay content (i.e., reduced c5), most of the sensitivities 

change little, but the resuspension rate becomes most sensitive to the bulk density and the 

coefficient b because of the exponential dependence on both. 

Although the predicted resuspension rate is not sensitive to the particle diameter, the inferred 

resuspension rate can be. With a settling velocity computed with Stokes’s law, the inferred 

rate is always twice as sensitive to the diameter as it is to the concentration of E. coli in the 

water column and the attached fraction (Table 3.3). When settling is more important than net 

growth in the mass balance for E. coli in the sediment ( < 1) as at station 14, the inferred 

resuspension rate is most sensitive to the diameter and less sensitive to the concentration of 

E. coli in the sediment, the depth of sediment containing E. coli, and the water temperature T 

(Figure 3.6). For larger values of , when net growth is more important than settling, the 

inferred rate is most sensitive to temperature except for temperatures corresponding to the 

peak in the net growth rate (i.e., ∂kn2/∂T = 0). The growth and decay relations in Hipsey et al. 

(2008) suggest that sensitivity to temperature will be small around temperatures of 22.6 °C. 

The differences between these two cases is illustrated by the sensitivities for stations 6 and 

11 (Figure 3.6). 
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Figure 3.6. Absolute value of the relative sensitivity of the inferred resuspension rate to 

the parameters listed in Table 3.3: Bars with horizontal lines are computed for station 

14 ( = 0.4, T = 17.7°C), bars with red bricks are computed for station 6 ( = 43, T = 

19.0°C), and bars with diagonal green lines are computed for station 11 ( = 16, T = 

22.7°C). 
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Uncertainty is 30% in the predicted resuspension rate and 47-75% in the inferred 

resuspension rate. For the individual uncertainties in the parameters listed in Table 3.1, about 

75% of the uncertainty in the predicted rate comes from the slope and the concentration Ca of 

E. coli attached to sediment. Another 20% comes from the coefficient c5 and the hydraulic 

radius, which is approximately equal to the water depth in most of our cases, and the 

remaining uncertainty comes from the exponent na. Efforts to reduce uncertainty in the 

predictions should involve better estimates of Ca and either measuring the slope more 

accurately or measuring the bottom shear stress with another method, such as one based on 

velocity measurements at a cross section (e.g., Kim et al., 2000).   

Table 3.3. Relative sensitivity of the inferred resuspension rate to the various parameters. As 

noted in the text, the parameter 1222 / CwfCHk san  measures the relative importance of 

settling and net growth in the mass balance for E. coli in the sediment. The net growth rate 

kn2 and its derivative with respect to temperature are taken from Hipsey et al. (2008). 

 

Parameter 
Relative 

sensitivity 

 

Parameter 
Relative 

sensitivity 

Diameter d 
1

2
 Conc. C2 in sediment 





1
 

Conc. C1 in water column   
1

1
 Depth H2 with E. coli





1
 

Attached fraction fa 
1

1
 Temperature T 

T

k

k

T n

n 





 2

21
 

 

 

The main contributions to the uncertainty in the inferred resuspension rate depend on . 

When net growth is more important than settling (large ), the depth of sediment containing 

E. coli controls the uncertainty, and when settling is more important than net growth (small 
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), the particle diameter controls the uncertainty. In the former case, the uncertainty can be 

reduced by measuring E. coli concentrations at different depths in the sediment; such 

measurements would also allow the assumption of uniform concentration to be assessed and 

revised. In the latter case, the uncertainty occurs because of the dependence on particle 

diameter through the settling velocity. Reducing the uncertainty in the settling velocity—and 

thus the resuspension rate—is difficult for several reasons. As Rehmann and Soupir (2009) 

reviewed in detail, flocculation, which can control the deposition of cohesive sediment 

(Droppo 2001), can cause Stokes’s law to overestimate the settling velocity (Burban et al., 

1990).  Even without flocculation, settling velocities in a flowing stream fall below those 

from Stokes’s law far from the bed and exceed them near the bed (Cuthbertson and Ervine, 

2007). Further uncertainty is introduced by the range of particle sizes present in stream 

sediment and tendency of E. coli to attach to particles of different sizes (Oliver et al., 2007).   

4.4 Model assessment 

The key advantages of our model are that its parameters are related to observable physical 

quantities and that it accounts for the properties of the flow, sediment, and organisms. 

Alternative models for computing resuspension rates include those that assume a constant 

resuspension velocity vr (Chapra, 1997) and those that relate resuspension to the discharge Q 

using a formula of the form 

,1

1

b

aa QCaR                                                                                                                        (14)  

where a1 and b1 are coefficients. Examples of models like (14) include those of Wu et al. 

(2009), who computed the concentration of resuspended organisms, and Collins and 
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Rutherford (2004), who computed the number of E. coli resuspended per unit time. 

Predictions with a constant resuspension velocity of 5.210
-7

 m/s and equation (14) with a1 = 

810
-7

 and b1 = 0.29 (with discharge expressed in m
3
/s) also provide good fits to the inferred 

resuspension rates in Figure 3.4b (Table 3.4).  

Table 3.4. Comparison of methods of predicting resuspension rates. The last two models 

were evaluated with the dataset computed with variable particle diameter. The last two 

columns show the number of predictions within factors of 2 and 5 of the measured values.  

   Number within a factor of… 

Model  Skill 2 5 

Eq. (5), constant d 1.04 0.82 13 16 

Eq. (5), constant  0.40 0.85 16 16 

Constant vr 0.45 0.98 14 16 

Eq. (14) 0.27 0.95 15 16 

 

 

However, choosing the parameters in these two models is difficult in situations without 

measured or inferred resuspension rates to be used for calibration. For example, to specify 

the resuspension rate in their model, Petersen et al. (2009) used the average of the 

resuspension rates reported by Jamieson et al. (2005b). As noted in section 4.1, that rate is 

much higher than the inferred rates from our study. The ranges of resuspension velocity are 

closer, but even with the smallest value of vr from Jamieson et al. (2005b)—which is four 

times larger than the optimal value, the predictions using constant resuspension velocity are 
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worse than all four cases in Table 3.4. The coefficients a1 and b1 in (14) are even harder to 

specify: Collins and Rutherford (2004) did not report their values of the coefficients. Wu et 

al. (2009) related the concentration of resuspended organisms to Q
4.5

; this exponent is much 

larger than b1, and the strong dependence on flow was not reflected in our measurements of 

E. coli concentrations in the water column. In contrast, the parameters in equation (5) can be 

measured, observed, or estimated from previous work; the most challenging parameters to 

specify are the exponent na, which was taken from the work of Amos et al. (1996); the 

coefficient c5, which was estimated from the clay fraction and the results in Lick (2009); and 

the particle diameter, which was discussed in detail in section 4.1.   

The ability of equation (5) to account for sediment properties gives it wider applicability than 

equation (14). For the data in Figure 3.4b, the bottom shear stress is much larger than the 

critical shear stress for non-cohesive sediment, and the binding effects of clay make the 

critical shear stress for cohesive sediment depend only weakly on the particle diameter 

(Figure 3.1). With c approximately constant, the resuspension rate from (5) is proportional 

to an

baC  , and if the bottom shear stress can be expressed as a function of the discharge raised 

to some power, then equation (14) should work well. However, in streams with sediment that 

has a larger bulk density or a smaller clay fraction, the critical shear stress for cohesive 

sediment will not be constant, and predictions with equation (14) will not be as successful.  

The proposed formula (5) for predicting resuspension rates can in principle be applied in 

unsteady flow. In contrast, a model with specified resuspension velocity would be difficult to 

apply because the velocity would have to vary in time. The ability to use (5) to predict 

resuspension in unsteady flows is important because resuspension typically is largest during 
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the rising limb of storm hydrographs (Jamieson et al., 2005b). To apply equation (5), 

estimates of the shear stress would need to be obtained by modifying the force balance in 

equation (6) by considering effects of unsteadiness and nonuniformity or showing that they 

are negligible, as in Jamieson et al. (2005b). 

Our study also demonstrates the challenge of estimating resuspension from field 

measurements. The inferred resuspension rate from equation (8) was computed from a steady 

state mass balance in equation (7). An analysis similar to that of Rehmann and Soupir (2009) 

shows that the flow in Squaw Creek was approximately steady: The time scale of 

unsteadiness—estimated as Q/(dQ/dt) using discharge measured at the U.S. Geological 

Survey’s gaging station at our station 16—was about 11.5 h. This time scale is about 6 times 

larger than the time scale for settling (C2H2/C1faws), 20 times larger than the time scale for 

net growth (
1

2



nk ), and 30 times larger than the time scale for resuspension (H2/vr). Therefore, 

the mass balance in equation (7) should hold approximately. Still, as discussed in section 4.3, 

resuspension rates inferred with equation (8) are uncertain because they require estimates of 

the settling velocity and depth of sediment containing E. coli, and the various processes 

contributing to growth and decay of E. coli (Hipsey et al., 2008) are difficult to quantify in 

the field.   

Future work involves incorporating the resuspension rate in equation (5) in watershed-scale 

models such as SWAT. Such models provide discharge and channel geometry, from which 

shear stresses can be estimated. Spatial variations in quantities such as sediment properties 

can pose a challenge, especially in cases in which the resuspension rate is sensitive to the 

bulk density. However, because our model shows that variations in sediment properties 
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become less important when the binding effects of clay control the critical shear stress c, in 

those cases—as in the case of the Squaw Creek watershed—the model should be easier to 

apply. Also, our use of the model for Squaw Creek, as well as future comparisons with the 

performance of other watershed-scale simulations including resuspension (Collins and 

Rutherford, 2004; Wu et al., 2009; Kim et al., 2010), will guide users in selecting the model’s 

parameters. The resulting model should help in creating plans to improve water quality in 

areas affected by E. coli contamination.  

5. Conclusions 

We predicted resuspension of E. coli from sediment beds in streams by expressing the 

resuspension rate as the product of the concentration of E. coli attached to sediment particles 

and an erosion rate adapted from work on sediment transport. The model accounts for 

properties of the flow through the bottom shear stress and properties of the sediment through 

the critical shear stresses for cohesive and non-cohesive sediment. To evaluate the model’s 

predictive skill, its predictions were compared to resuspension rates inferred from a steady 

mass balance applied to measurements at sixteen locations in a watershed. Sensitivity and 

uncertainty were computed to determine the parameters that affect the predictions most 

strongly and to identify ways to improve the model. The main conclusions of this study are 

as follows: 

1. The model performed well using parameter values mostly taken from previous work. The 

coefficient representing the binding effects of clay was increased from a previously reported 

value because of the higher clay content in the sediment in our study. The application of the 

model in which the particle diameter was linearly proportional to the bottom shear stress (i.e., 
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constant Shields parameter) performed better than an application with constant particle 

diameter, while maintaining the same number of model coefficients.  

2. Although two simpler models also performed well, the proposed model can be applied 

more easily in situations without measured or inferred resuspension rates because its 

parameters are related to observable physical quantities and it accounts for properties of the 

flow, sediment, and organisms. Furthermore, its ability to be applied in unsteady flow is 

important because resuspension is often largest during the rising limb of a storm hydrograph. 

3. When the binding effects of clay control the critical shear stress, the predicted 

resuspension rate is more sensitive to properties of the flow, and when the bulk density 

controls the critical shear stress, the predicted resuspension rate is more sensitive to 

properties of the sediment. For the current data set, the uncertainty in the predictions would 

be reduced by reducing uncertainty in the concentration of attached E. coli and the slope used 

to compute the bottom shear stress.   
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CHAPTER 4. IMPROVING SWAT FOR DEVELOPING TMDLs FOR 

BACTERIA 
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Abstract 

Hydrological models capable of predicting streambed sediment pathogen concentrations, 

which are required for understanding pathogen transport in streams, are lacking, potentially 

due to the complexities involved in modeling interactions between streambed sediment and 

water column pathogens. Here we have developed a pathogen transport model which 

estimates E. coli concentrations, a pathogen indicator, in streambed sediment as well as in the 

water column.  Firstly, a new approach, which involves formulations of E. coli resuspension 

from the streambed sediment to the water column, in-stream E. coli routing, and E. coli 

growth in the streambed sediment and the water column was developed. Secondly, these 

formulations were programmed in FORTRAN, and were integrated into the Soil and Water 

Assessment Tool (SWAT), a watershed scale hydrological model, which calculated E. coli 
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concentrations in the streambed sediment and the water column. Finally, the modified SWAT 

was implemented in the Squaw Creek Watershed, Iowa, USA. An extensive E. coli 

monitoring in streambed sediment and the water column was carried out in the Squaw Creek 

Watershed, and observations were used to verify the modified SWAT predictions. Results 

show that the modified SWAT is capable of predicting in-stream E. coli concentrations (i.e., 

in the streambed sediment and water column).  Majority of the E. coli predictions were 

within 1 order magnitude of the measured values. Approximately 62% of the predicted 

streambed sediment E. coli concentrations and 82% of the predicted water column E. coli 

concentrations were within 1 order magnitude of the measured values. We anticipate that the 

modified SWAT model, capable of predicting the streambed sediment and the water column 

E. coli concentrations, proposed here should have significant importance in Total Maximum 

Daily Loads (TMDLs) development and predicting in-stream E. coli concentrations at the 

watershed scale.  

1. Introduction 

In-stream water pollution is a serious concern in the United States (USA). For example, 

approximately 27.5% of the total rivers and streams in the USA (total 5,688,460 km) are 

assessed, and 53% of the assessed streams are contaminated (EPA, 2012). Pathogen 

contamination is the leading cause of stream water impairment. In the past, many of the 

outbreak occurrences were found to be related with poor water quality, for instance, more 

than 400,000 cases of gastroenteritis in Milwaukee, Wisconsin in 1993 were caused by 

pathogens in city’s drinking water supply (Mackenzie et al., 1994). 
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Previous studies (i.e., Vezzulli et al., 2012; Harvell et al., 2002; Hrudey et al. 2002; Hunter, 

2003; Pandey et al. 2012b) have shown linkages between hydrology (i.e., rainfall) and 

disease outbreaks, indicating a potential linkage between watershed hydrology and disease 

outbreaks. In a recent study, Pandey et al. (2012b) has used watershed indexes considering 

disturbed and undisturbed natural land cover of the watershed for finding relationships 

between in-stream waterborne pathogens and watershed characteristics. Other studies, for 

example, Dorner et al. (2006) and Kim et al. (2010) have focused on developing pathogen 

transport models, which were embedded to existing hydrological models for calculating in-

stream water borne pathogens.  

Dorner’s study was focused on embedding pathogen transport model, which includes in-

stream routing, overland flow, and subsurface to tile drainage systems, with WATFLOOD; 

and Kim’s study was focused on augmenting pathogen resuspension model with Soil and 

Water Assessment Tool (SWAT). In Dorner’s study resuspension process was not included 

in the pathogen transport model; however the authors concluded that resuspension of 

microorganisms from the streambed sediments may be of equal or greater importance than 

land-based sources of pathogens. In Kim’s study bacteria resuspension was included using 

simplified version of Bagnold’s stream power function, which has been criticized for not 

including the effect of grain size on sediment transport (Ferguson, 2005). Relatively recent 

studies by Tang et al. (2011) and Coffey et al. (2010) have implemented existing SWAT 

model, which does not include in-stream processes (i.e., bacteria resuspension and 

deposition) while predicting Cryptosporidium oocycsts transport in streams.  
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Predicting in-stream bacteria concentrations is a difficult task due to the complexities 

involved in determining bacteria behavior in a natural stream environment. For example, 

understanding bacteria survival and transport in an environment, where organic matters, 

sediment characteristics, water levels, and heterogeneous microbial population are changing 

continuously, can be challenging (Droppo et al., 2011; Droppo et al., 2009; Characklish et 

al., 2005; Rehmann and Soupir, 2009). Although there has been substantial progress in 

improving in-stream waterborne bacteria predictions, calculating the impacts of streambed 

sediment on the water column bacteria remains a major challenge, particularly, calculating 

resuspension of bacteria from the streambed to the water column at the watershed scale. The 

resuspension of bacteria from the streambed increases bacteria concentrations in the water 

column considerably (Jamieson et al., 2005a; Muirhead et al., 2004; Droppo et al., 2009); 

estimation of E. coli resuspension, however, is a challenge.  

Predicting bacteria concentrations in the streambed sediment requires understanding of 

complex interaction between the streambed sediment and the water column. Studies 

calculating bacteria in natural streambed sediment are not yet reported. Nevertheless, several 

studies have emphasized the considerable impacts of streambed sediment bacteria on the 

water column (i.e., Jamieson et al., 2005a; Droppo et al., 2011; Dorner et al., 2006). Here we 

have developed a watershed scale model for predicting E. coli, a pathogen indicator in 

streambed sediment as well as in the water column, which includes in-stream E. coli routing, 

resuspension and deposition of E. coli, overland flow, and E. coli growth in the streambed 

sediment and the water column. The model was written in FORTRAN language. The new 

subroutines were coded for the existing SWAT (i.e., written in existing SWAT model 2009), 
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a hydrological model, for predicting in-stream E. coli concentrations. The modified SWAT 

model was built using an Intel (R) Visual FORTRAN Composer XE 2011, and the model has 

the capability of predicting E. coli concentrations in the streambed sediment as well as in the 

water column. The objectives of this study are: 1) predicting streambed sediment E. coli 

concentrations; 2) predicting stream water column E. coli concentrations; 3) verify the 

model’s prediction using extensive E. coli data, monitored in the Squaw Creek Watershed, 

Iowa, USA. 

2. Methodology for calculating in-stream E. coli concentrations 

To improve modeling of in-stream E. coli fate and transport processes, we formulated the 

model for predicting E. coli changes in the streambed and the water column. In addition we 

modeled E. coli growth in the streambed as well as in the water column.  The conceptual 

model is shown in Figure 4.1. The streambed E. coli prediction model involved calculating E. 

coli changes in the streambed, which was divided into an upper zone and lower zone. The 

division of streambed into two zones was necessary in order to include the effects of vertical 

distribution of E. coli in streambed with depth.  
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Figure 4.1. Conceptual map of the model. The ECwz denotes change in E. coli 

concentrations of the water column over 1 day;  ECsuz  denotes change in E. coli 

concentrations in upper zone of the streambed over 1 day; and ECslz denotes change in 

E. coli concentrations in the lower zone of streambed (over 1 day). dwz is depth of the 

water zone (water column), dsuz and dslz are the depths of streambed upper and lower 

zones, respectively. ECruz and ECrlz are the resuspension from the streambed upper and 

lower zones to the water zone, respectively, while ECduz and ECdlz are the depositions of 

E. coli from the water zone to the streambed upper and lower zones, respectively. ECgwz 

indicates E. coli growth in the water zone; ECguz, and ECglz indicate E. coli growth in the 

upper and lower zones of the streambed. lc is the channel length.  
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                               (1) 

                               (2) 

where ECsuz and ECslz are the changes in E. coli (CFU) in the upper and lower zones over 1 

day period, respectively. The ECduz (CFU) is the deposited E. coli in the upper zone, and 

ECdlz (CFU) is the deposited E. coli in the lower zone. The ECruz (CFU) and ECrlz (CFU) are 

the resuspended E. coli from the streambed upper and lower zones, respectively. While ECguz 

(CFU) is E. coli growth in the streambed upper zone, ECglz (CFU) is E. coli growth in the 

streambed lower zone. The E. coli resuspension from the upper and lower zones was 

estimated based on the availability of sediment mass in the upper and lower zones. For 

example, lower zone’s E. coli and sediment resuspension occurs, when estimated total daily 

resuspended sediment mass exceeds the available sediment mass of the upper zones. The 

available sediment mass in the upper and lower zones was determined from the depths of 

upper and lower zones, and depths (of upper and lower zones) were as input parameters.     

To predict the E. coli concentration in the water column, the E. coli change in the water zone 

was calculated as follows: 

                                            (3) 

where ECwz (CFU) is the change in E. coli in the water zone over 1 day period; ECruz (CFU) 

is the release of E. coli from the streambed upper zone to the water zone; ECrlz (CFU) is the 

release of E. coli from the streambed lower zone to the water zone; ECduz (CFU) and ECdlz 

(CFU) are the deposition (settling) of E. coli from the water zone to the streambed upper and 

lower zones, respectively; and ECgwz  (CFU) is E. coli growth in the water zone.  
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The resuspension of E. coli from the streambed to the water column shown in equations 1, 2, 

and 3 was calculated as follows. 

                           (4) 

                           (5) 

where ECruz and ECrlz are the resuspended E. coli from the streambed upper and lower zones 

to the water column (CFU) over 1 day, respectively; ECcuz and ECclz are the E. coli 

concentrations in the streambed upper and lower zones (CFU/g); and RMuz and RMuz  are the 

resuspended sediment mass (g) over 1 day from the streambed upper and lower zones, 

respectively. The particle attached E. coli are resuspended from the streambed (upper and 

lower zones) to the water column. We assumed 80% of the E. coli cells present in the water 

column are attached with suspended sediment particles (Hipsey et al., 2008). The 

resuspended mass from the streambed upper (RMuz) and lower zones (RMlz) was calculated 

by streambed erosion.   

                              (6) 

where RMuz  is resuspended sediment mass from the streambed upper zone (g),  rsuz is the 

streambed upper surface erosion rate (m/d), wp is wetted perimeter of the reach (m), lc is 

reach length (m), ρs is bulk density of sediment particles (g/m
3
), and dt is time step of 1 day.  

Similarly we calculated RMlz using the erosion rate from the streambed lower zone (rslz). The 

total daily erosion rate (m/d), rst, was the sum of rsuz and rslz. The rst was estimated using the 

approach of Lick (2009). First we estimated rst; however, if rst  was greater than the available 

sediment in the top layer (rsuz) (estimated using the depth of the top layer, stream wetted area, 
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and bulk density) of the streambed then remaining resuspended ( rst – rsuz)  sediment is 

released from the the lower layer of the streambed. 

          [
      

      
]
  

           (7) 

where Eoa = 8.64×10
-02

 m/d  is erosion  coefficient (Lick, 2009), τb is streambed shear stress 

(Pa) caused by stream flow, τnc is critical shear stress for non-cohesive sediment (Pa), τc is 

critical shear stress for cohesive sediment (Pa), and na is an erosion coefficient. The 

streambed shear stress of equation 7 was estimated (in equation 8) using the hydraulic 

properties (i.e., stream flow, depth, and water slope) of the stream.  

                   (8) 

where ρw ( 998 kg/m
3
) is density of water; the change in temperature may have slight impacts 

on water density, however,  this is neglected in the model. The g ( = 9.8 m/s
2
) is the 

acceleration of gravity; R is hydraulic radius (m); and S is streambed slope (i.e., water slope) 

(m/m). The hydraulic radius of the stream (R) was estimated from the cross-sectional area of 

stream flow (m
2
), and the depth of water (dwz, (m)). The critical shear stress of cohesive and 

non-cohesive sediment of equation 7 was estimated using the approach of Lick (2009) 

described in detail by Pandey et al. (2012a). 

                          (9) 

      [  
           

   
  

   
]            (10) 
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where a = 8.5 ×10
-16

 m
2
, b = 9.07 cm

3
/g, c1 and c2 are constants, and d is particle size (m). 

The settling of E. coli from the water column to the streambed used in equation 1, 2, and 3 

was calculated using the suspended E. coli, suspended sediment into the water column, and 

Stokes’s law of sediment settling velocity.  While calculating deposition, we assumed 80% of 

E. coli of the water column are attached with sediment particles (Hipsey et al., 2008). 

      
    

   
 

    

      
                                   (11) 

where ECduz is E. coli deposition in the streambed upper zone (CFU);  ECwc is E. coli 

concentrations (CFU/m
3
) in the water column; TSS is suspended sediment concentrations in 

water column (g/m
3
); g is acceleration due to gravity (m/s

2
); d is effective spherical particle 

diameter (m); dw is water depth in stream (m); and µ ( = 8.91 ×10
-04  

Pa s) is the viscosity of 

water. The SS is suspended sediment mass (g) in the water column, which was estimated by 

multiplying the volume of water (m
3
) in reach by the TSS (g/m

3
). The second term of 

equation 11 shows the settling velocity estimation using Stokes’s Law. The value of 86,400 

is a multiplication constant to obtain settling over a day. Initially all of the deposited E. coli 

remain in the streambed upper zone; subsequently due to streambed mixing/disturbance 

caused by stream flow, a fraction (flz) of total deposited E. coli in the streambed upper zone 

was moved to the streambed lower zone. Due to complexity involved in streambed modeling, 

it can be extremely difficult to calculate the transfer of E. coli from the streambed upper zone 

to the lower zone. In addition, it can be difficult to verify the predictions.  In order to 

simplify the simulation, we used flz of 0.15 (15% of the upper zone E. coli transferred to the 

lower zone). The validity of this assumption was tested through calibration (i.e., changing the 

value of flz by 15%) , and we found that this assumption of 15% can be reasonable. Also we 
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provided an option for changing the value of flz (a calibration parameter). The sensitivity of 

this parameter to E. coli predictions is explained later. The transfer of E. coli from the upper 

zone to the lower zone accounted for the effects of streambed mixing, movement, and 

disturbance. Due to the fact that the streambed sediment particles are always in motion 

(vertically as well as horizontally) within the streambed, the E. coli deposited in the top 2cm 

layer (upper zone) potentially can enter the streambed lower zones. Using this transferring 

approach in the model, we simulated the vertical distribution of the E. coli over streambed 

depth.  

In addition to the movement of the E. coli from the streambed to the water column (or vice 

versa), the growth of E. coli in the streambed and the water column has significant influence 

on in-stream E. coli concentrations. In addition to growth, E. coli mortality can also impact 

the E. coli concentration in streams. Both E. coli growth and mortality, however, are reported 

to be controlled by temperature (Hipsey et al., 2008).  Previous studies, for example, Kim et 

al. (2010) excluded the growth function, and the temperature influence was modeled by 

mortality equations only. Another study, for example, Hipsey et al. (2008), emphasized the 

use of a growth function. Since both growth and mortality are functions of temperature, the 

impacts of temperature on E. coli growth and decay can be incorporated using one function 

(either growth or decay). In this study, we used a growth function for calculating the E. coli 

growth in the streambed upper and lower zones, and the water zone, the function described 

by Hipsey et al. (2008).  

         [              (     (             ))]
 

       (12) 
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where ECg is daily E. coli growth (d
-1

); µmax is maximum growth rate constant (d
-1

); CT1 and  

CT2 are growth constants; Tmin  and Tmax are the minimum and maximum growth 

temperatures (⁰C); and Tw is water temperature (⁰C). Using equation 12, we calculated the E. 

coli growth in the streambed (upper and lower zones) as well as in the water column. The 

growth constants used in equation 12 are provided in model application section (section 4). 

The water temperature Tw was estimated from the maximum and minimum daily air 

temperatures (average) using the method proposed by Stefan and Preud’Homme (1993):  

                               (13) 

where Tair is average air temperature (⁰C). 

Parameters sensitivities were analysed to estimate the influence of the parameters on 

sediment E. coli and water E. coli predictions. Relative sensitivityity (Sr) was estimated as: 

   |(
 

 
)  

       

       
|            (14) 

where X is a base value of a parameter and Y is corresponding prediction; X1 and X2 are 15% 

increase and 15% decrease in the parameter values, and Y1 and Y2 are the corresponding 

predictions (James and Burges, 1982; White and Chaubey, 2005).  

3. Integrating in-stream E. coli transport model into the SWAT  

The Soil and Water Assessment Tool (SWAT), a river basin/watershed scale hydrological 

model, was developed by United State Department of Agriculture (USDA) Agricultural 

Research Service. In addition to USDA, several other federal agencies including the U.S. 

Environmental Protection Agency, Natural Resources Conservation Service, National 
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Oceanic and Atmospheric Administrations, and Bureau of Indian Affairs have contributed to 

the model. The model has been extensively used in predicting daily/monthly stream flow and 

water quality (i.e., nutrients, pesticides, sediment) around the world (Gassman et al. 2007). 

Many of the previous studies, which are reviewed by Gassman et al. (2007) and Moriasi 

(2007) have shown the applicability of the SWAT in non-point source modeling. The SWAT 

model simulates the impacts of land use and land management practices on water quantity 

and quality. In SWAT, a watershed is divided into multiple subbasins, and hydrological 

response units (HRU), which consist of homogenous land use and management, soil types, 

and slopes. During model simulations, stream flow and non-point source loads from each 

HRU are summed, and the resulting loads are routed through streams to the watershed 

outlets.  

In order to integrate the model developed in Section 2, we wrote three new FORTRAN 

subroutines (modules): 1) rtbact. f90 (for in-stream E. coli resuspension, and routing); 2) 

netgrowth_sed.f90 (E. coli growth in the streambed); and 3) netgrowth_wat.f90 (E. coli 

growth in the water column). Programming was done with Intel (R) Visual FORTRAN 

Composer XE 2011. The model predicts E. coli concentrations in the streambed and the 

water column. The developed modules were included in the version of SWAT released in 

2009.  Compiling and building of the subroutines and model was done in Parallel Studio XE 

2011 with VS 2010.  Subroutines for resuspension and settling estimation, E. coli growth in 

sediment, and E. coli growth in the water column were imported into Solution Explorer (of 

Intel (R) Visual FORTRAN), where all of the subroutines (a total of 329) from the current 

SWAT 2009 model were also imported for compiling and building the modified SWAT 
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model. Importing all subroutines in Solution Explorer was required as many of the 

parameters of the SWAT are global, and parameter values estimated in one subroutine are 

also used in many other subroutines.  

In order to predict in-stream E. coli concentrations, we also considered E. coli transport to 

streams via over land flow. Overland E. coli transport is available in the original SWAT 

model, and we used the existing equations in the modified SWAT model. To predict overland 

E. coli transport, the current SWAT model includes E. coli in surface runoff, E. coli attached 

to sediment in surface runoff, and E. coli lag in surface runoff. The details of the overland E. 

coli transports processes and related parameters are discussed elsewhere (Neitsch et al. 

2005), as the primary goal of this study was to model in-stream processes. 

4. Model Application 

4.1 Study area and watershed data 

The modified SWAT model, which included the new in-stream E. coli transport model was 

tested in the Squaw Creek Watershed, Iowa, USA. The study area is shown in Figure 4.2. 

The spatial datasets of the watershed (i.e., land cover, elevation, streams, and manure 

application) were obtained from the Natural Resources Geographic Information System 

(NRGIS) library. The library is maintained by the GIS section of the Iowa Department of 

Natural Resources (IDNR). Soil data (STATSGO) used in this study was developed by the 

National Cooperative Soil Survey and distributed by the Natural Resources Conservation 

Services (NRCS) of the U.S. Department of Agriculture (USDA). The DEM and soil maps 

are shown in Figure 4.3a.  The watershed has 20 Confined Animal Feeding Operation Units 
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(CAFO). The CAFO and land cover map is shown in 4.3b.The total area of the watershed 

which receives manure is approximately 4000 ha at a rate of 179 N kg/ha. The CAFO 

locations and manure receiving areas are shown in Figure 4.3b. Due to the lack of detail 

information, we did not include the impacts of septic system and poin-source on streams; 

however, these may influence stream water quality; incorporation of septic and point source 

systems in the model may improve the predictions. The Squaw Creek watershed, HUC 10 

(ID 0708010503), has a total drainage area of 592.39 sq km. The basin length and perimeter 

of the watershed is 43.53 km and 134.02 km, respectively, with an average slope of 2.01%. 

The basin relief is 111.51 m, the main channel length is 60.46 km and the total stream length 

within the watershed is 346.72 km. The digital elevation model (DEM) map of 30 m 

resolution (floating point grid) and soil map used in the model is shown in Figure 4.3a. Land 

cover and areas receiving manure is shown in Figure 4.3b.  

Squaw Creek passes through four counties (Story, Webster, Hamilton, and Boone) of Iowa, 

and is a tributary of the South Skunk River. There are 75 first order streams in the watershed.  

The 2002 hydrologic Unit Code (HUC 10) watershed land use estimates 0.09%, 0.17% and 

0.05% of the watershed land area as water, wetland and wetland forest, respectively. 

Deciduous forest, ungrazed grass, grazed grass, CRP grassland, and alfalfa were 2.71%, 

10.87%, 2.52%, 1.70%, and 1.84%, respectively. Corn and soybeans, and other row crops are 

41%, 33%, and 0.43%, respectively (based on landcover map of 2002). Common/industrial, 

residential, and barren land are 1.67%, 1.27%, and 0.06%, respectively (Fig 4.3b).  
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Figure 4.2. Map shows the study area. Green circle indicates gaging station location, 

streams are shown in blue lines, roads are shown using gray lines, and dark black color 

line is the watershed boundary line. Latitude and longitude of the study area is shown 

in the map. 
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Figure 4.3a. Squaw Creek Watershed: Digital Elevation Model (DEM) (left) and State Soil Geographic database (right).  
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Figure 4.3b. Squaw Creek Watershed land cover: Confined Animal Feeding Operation (CAFO) location (left) and land cover (right). 
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4.2 Escherichia coli data 

E. coli concentrations in the streambed and water column were monitored from the summer 

of 2009 (May) through the fall of 2011 (December).  The samples were collected weekly (1 -

2 times per week). The samples were collected at gaging station shown in Figure 4.2. Water 

samples were collected from the center of the stream using a Horizontal Polycarbonate Water 

Bottle Sampler (2.2 L, Forestry Suppliers Inc., Mississippi, U.S) by lowering the instrument 

from a bridge and collecting the sample from the top of the water column at the center of the 

stream. Sediment samples were collected from the top 2-3 cm of the streambed using a 

Shallow Water Bottom Dredge Sampler (15 cm  15 cm opening, Forestry Suppliers Inc., 

Mississippi, U.S.) at the same location as water samples. Immediately after collection, 

samples were stored at 4°C and analyzed within 24 hours by membrane filtration techniques 

(APHA, 1999) on modified mTEC agar (EPA, method 1603). The E. coli attached to 

streambed particles were detached by stirring the mixture of sediment and purified water 

(ratio 1:1(weight basis)) for 15 minutes at approximately 150 - 200 rpm using a magnetic stir 

bar. The resulting solution was used to enumerate E. coli in the sediment. The methods used 

for extracting E. coli from sediment, and calculations in enumerating E. coli in the sediment 

and water column are described in Appendix I. The E. coli data are shown in Appendix II 

and III. 

4.3 SWAT model application 

The SWAT model was calibrated for a set of parameters for the Squaw Creek Watershed to 

the U.S. Geological Survey gaging station 05470500 (lat 42.02, long 93.63) on Squaw Creek 

in Ames. The calibrated parameters are discussed later. The stream cross section geometry 
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was measured at this location. The input data of precipitation and temperature (minimum and 

maximum) required for the SWAT model were obtained from the Iowa Environmental 

Mesonet (IEM). We used climate data (precipitation and temperature) from four locations: 1) 

Ames (lat 42.02, long – 93.77); 2) Boone (lat 42.05, long -93.85); 3) Gilbert (lat 42.11, long 

– 93.58); and 4) Webster City (lat 42.43, long -93.87) to run the SWAT model. The climate 

monitoring points and gaging station are shown in Figure 4.4. The delineation of the stream 

network and subbasins was performed using a DEM with a 30 m resolution (Fig 4.3a), which 

resulted in a watershed configuration of 31 subbasins. The HRUs were then created by 

combining 2002 land cover map data with STATSGO soil data. All together a total of 250 

HRUs were created (HRU classification of the watershed is described in Appendix IV). 

Figure 4.4 shows the SWAT model setup. The SWAT model was then run on a daily time 

step for 2000 to 2011. In the simulation we used the land cover map of 2002 and the 

STATSGO soil data; however, over the years land cover acreage have changed slightly (i.e., 

increased corn acreage) in Iowa, which may have slight impacts on the overland E. coli 

transport. This model application, however, does not consider those changes. In the 

simulation, we consider the first two years as the initialization period because predictions in 

the initial time period can be erroneous; however, we included these years while calculating 

the flow prediction statistics to maintain the data integrity. Stream flow predictions discussed 

in section 5.1 indicate that the modified SWAT model performed well in Squaw Creek 

Watershed. The predictions of initial years also matched well with observations. 

4.4 SWAT model calibration 

4.4.1 Flow calibration 
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The flow data from 2000 to 2005 was used as the calibration period, and the period from 

2006 to 2011 was used as the validation period. The model was first calibrated for monthly 

average daily flow and then for daily flow. In order to calibrate the model, several model 

parameters, which affect the flow trends, recession, daily peaks, and base flow, were adjusted 

within the recommended ranges. Table 4.1 shows the calibrated, default, and range of the 

parameter values, which were subjected to adjustment while calibrating the model. The 

calibration process adjusted the base flow ratio to the surface runoff, amount of 

evapotranspiration, and total water yield. While predicting stream flow, we calibrated the 

curve number (CN2), soil available water capacity (SOL_AWC), groundwater delay 

coefficient (GW_DELAY), base flow recession coefficient (GW_ALFA), and surface runoff 

lag coefficient (SURLAG). The calibrated parameter values used in stream flow predictions 

are in the same range as other published SWAT model applications in Iowa (Jha et al. 

2010a).  In addition, we estimated the contribution from the tile drains to the stream flow. 

Since Squaw Creek Watershed is an agricultural watershed (≈ 75% of total watershed as 

cropping land), and tile drains are extensively used to reduce the water table in agricultural 

lands located in the Des Moines Lobe of Iowa, flow contribution from tiles is considerable. 

In order to estimate the tile flow, we calibrated the value of depth of subsurface drain 

(DDRAIN), time to drain soil to field capacity (TDRAIN), drain tile lag time (GDRAIN), 

and depth to impervious layer (DEP_IMP). The value of DDRAIN and TDRAIN were set to 

1200 mm and 48 hr, while the value of GDRAIN and DEP_IMP were 24 hr, and 3200 mm, 

respectively. Tile drainage is known to be an important component to the hydrology of the 

Des Moines Lobe landscape region; however, precise estimation of the land areas with  
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Figure 4.4. The watershed map shown was delineated using Digital Elevation Map 

(DEM), land cover map of 2002, and STATSGO soil map using SWAT. The subbasins 

(total 31), HRUs (total 250) and corresponding land use, soils, and slopes are described 

in Appendix IV. The land cover code names shown in this map are the SWAT code 

name for the land cover shown in figure 4.3b. The locations of weather stations (light 

blue circles); gaging station (dark blue circle at the lowest end of the watershed, where 

we collected samples); stream network (blue lines); manure application areas (red 

spherical areas); and SWAT land cover (multi colored areas within the watershed 

boundary).  
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subsurface tile drained in the watershed can be challenging due to the lack of credible 

information on tile drains. The method of selecting the tile drain areas based on soil types 

and slopes are reported elsewhere (Jha et al. 2010b). To simplify simulation, we assumed all 

subbasins/HRUs in the watershed have tile drains, and the quantity of tile flow was regulated 

through the calibration parameters. For estimating channel routing and potential 

evapotranspiration, we used variable storage routing methods and Penman-Monteith method, 

respectively. The USDA Natural Resources Conservation Service runoff curve number 

method was used for partitioning daily precipitation between surface runoff and infiltration. 

The SWAT model selects curve number based on land cover characteristics, which is 

described elsewhere (Neitsch et al., 2005). To compare the prediction with measured flow 

values, we used the coefficient of determination (r
2
) and Nash-Sutcliffe’s coefficient (NSE) 

(Nash and Surtcliffe, 1970). Both r
2
 and NSE are commonly used indicators, particularly in 

hydrological models, for assessing model performance. The NSE is the proportion of 

variance in the measured values that is explained by the predicted values. The NSE is 

considered as a more rigorous fit statistic than the coefficient of determination (USGS 

Scientific Investigation Report 2010 – 5008).The r
2
 indicates the strength of relationship 

between measured and simulated values (based on differences of predicted and measured 

values). The r
2
 can range from 0 to 1, while NSE ranges from – ∞ to 1. A value of one (r

2
 

and NSE) is considered as an indicator for the perfect match between measured and predicted 

values. In addition to NSE and r
2
, we also estimated the correlation coefficients between 

predicted and measured stream flows. Numerous studies are available (Gassman et al., 2007), 

which report the SWAT model’s applicability in predicting stream flow, and results have 

shown that SWAT performs reasonably well, when it has been applied for predicting 
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monthly and annual stream flow. However, relatively low r
2
, and NSE values are reported for 

daily stream flow predictions. For example, Gassman et al. (2007) reviewed several studies, 

which reported r
2
 values ranging from 0.35 to 0.75 for monthly and annual prediction, while  

 

Table 4.1. List of parameter values which were used as calibration parameters. The default 

parameter values in SWAT model, value range, and calibrated values are all shown. The 

parameter range is described in Neitsch et al., (2005). The calibrated values used in 

simulation were obtained by estimating the best r
2
 and NSE values for stream flow 

predictions.  

Parameter Default Range Calibrated value 

Soil available water capacity 

(SOL_AWC) 

Soil database ± 0.04 Reduced by 0.02 

Groundwater delay coefficient 

(GW_DELAY) 

31 days 0 – 100 days 9 days 

Surface runoff lag coefficient 

(SURLAG) 

4 0.1 – 10 6 

Base flow recession coefficient 

(GW_Alfa) 

0.048 0.1 to 1.0 0.8 

Curve number (CN2) Standard list ± 10% - 20% 

Depth of subsurface drain 

(DDRAIN) 

 - 0 – 2000 mm 1200  mm 

Time to drain soil to field capacity 

(TDRAIN) 

- 0 – 72 hr 48 hr 

Drain tile lag time (GDRAIN) - 0 – 100 hr 24 hr 

Depth to impervious layer 

(DEP_IMP) 

- 0 – 6000 mm 3200 mm 

 

r
2
 values ranged from 0.24 to 0.50 for daily predictions. Since our target was to predict daily 

variation in stream E. coli concentrations, which requires stream flow in daily time step, we 

predicted daily stream flow. The daily flow was predicted at the watershed outlet (near the 
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gaging station at sub-basin of 31 as shown in Fig 4.4).  Subsequently we used the daily flow 

to estimate the monthly average daily flow. Both r
2
 and NSE indicators were used during 

model calibration and validation. 4.4.2 Overland E. coli transport calibration 

To improve E. coli predictions, we compared measured and predicted E. coli concentrations 

i.e., estimated of NSE and r
2
 values. The NSE and r

2
 values were improved by changing the 

parameter values (i.e., parameter calibration) [by obtaining the best parameter values within 

the range described in Neitsch et al., 2005]. In order to calibrate the overland E. coli transport 

process, we adjusted seven parameters, which are shown in Table 4.2.  

Table 4.2. Calibrated parameter values linked with overland E. coli transport estimation. The 

parameter ranges, and calibrated values are shown.  

Parameters  Range  Calibrated values 

E. coli partition coefficient (BACTKDDB) 0 – 1 0.36 

Fraction of manure applied to land areas that has active 

colony forming units (BACTSWF) 

0 – 1 0.97 

Width of edge-of-field filter strip (m) 0 – 2 1.5 m 

Peak rate adjustment factor for sediment routing in the 

main channel (PRF) 

0 – 1 0.61 

Linear parameter for calculating the channel sediment 

routing (SPCON) 

1 × 10
-04

 – 0.01 0.0023 

Wash-off fraction for E. coli (WOF)  0 – 1 0.5 

E. coli soil partitioning coefficient (BACTKDQ) 175 175 m
3
/kg 

Temperature adjustment factor (THBACT) 0 –  10 1.07 

E. coli percolation coefficient (BACTMX) 0 – 20 10 

   

Other parameters were set at the default values in SWAT. Parameters such as peak rate 

adjustment factor (PRF) for sediment routing, linear parameter for calculating the channel 

sediment routing (SPCON), and exponent for calculating the channel sediment routing 
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(SPEXP) were respectively 0.61, 0.0023, and 1.06. The E. coli partition coefficient in surface 

runoff (BACTKDQ) and the temperature adjustment factor (TBACT) were set to 175 and 

1.07, respectively. These parameter values were obtained from previous studies, which have 

studied overland E. coli transport (Parajuli et al., 2009; Kim et al., 2010; Coffey et al., 2010; 

Neitsch et al., 2005).  As in this study our primary focus was to develop model for predicting 

E. coli resuspension, the parameter values governing overland transport were obtained from 

previous work. The works of Parajuli et al. (2009a;b), Coffey et al. (2010), and Kim et al. 

(2010) described the range of these parameter values. The bacteria partition coefficient 

(BACTKDDB), which partitions deposited bacteria between soil solution and soil solids was 

set to 0.36 as proposed by Kim et al. (2010), while Parajuli et al. (2009a;b) used 

BACTKDDB of 0.9. The default value of percolation coefficient (BACTMIX) of 10, and 

fraction of manure applied to land areas that has active organisms (BACT_SWF) of 0.97 

(Kim et al. 2010) were used.  

4.4.3 In-stream E. coli transport calibration 

The parameter values used in predicting in-stream E. coli transport process and their 

descriptions are shown in Table 4.3. Some of the values were measured at the sampling 

point, and others were calibrated. The Manning’s roughness coefficient n of 0.014 was used, 

which is a default value of SWAT. We also tested the prediction results at n of 0.036 (the 

previous value used in Pandey et al., 2012b for the same location), a recommended value for 

natural streams in Chow (1959, pp. 112 – 123); however, the impact on prediction was 

negligible. The bulk density of the streambed sediments, expressed as weight per unit 

volume, was determined from wet and dry weight (dried in the oven at approximately 75 
0
C 
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for 2 days) of sediments (Roberts et al. 1998).Based on the previous works of Roberts et al. 

(1998) and Pandey et al. (2012b), the streambed bulk density was set to 1.26 g/cm
3 

for E. coli 

resuspension prediction estimates. The bulk density, however, may change from one sample 

to the other (as shown in Appendix I (Table A)), which can impact predictions. Particle size 

distributions in streambed sediment samples (samples collected at 16 unique locations of the 

Squaw Creek Watershed) were estimated, which is given in Appendix I (Table B). The bulk 

density of the streambed sediments were also analyzed at 14 unique locations of the Squaw 

Creek Watershed, and results are provided in Appendix I (Table A). To estimate the potential 

impacts of bulk density on predictions, we performed a sensitivity analyses (using equation 

14) of the bulk density to the predicted E. coli concentrations (i.e., streambed and water), 

which is described in section 5.2. To identify a range of potential bulk density values, we 

sampled Squaw Creek streambed sediment at 14 locations and calculated the bulk density. 

The data are described in Appendix I. The results show that the average of the bulk density 

was 1.46 g/cm
3
 with standard deviation of 0.29 g/cm

3
 among 14 locations. The bulk density 

varied from 1.05 to 2.09 g/cm
3
. The analysis based on these 14 samples indicates that the 

average of bulk densities at 14 locations is higher (15%) than the bulk density used in the 

simulation (1.26 g/cm
3
) on the day that the samples were collected. For the resuspension 

simulation, the bulk densities of both the zones (upper and lower zones) were assumed to be 

the same (1.26 g/cm
3
).  

The parameter values used in predicting E. coli concentrations are shown in Table 4.3. The 

parameter values were set the same for all the subbasins, HRUs and reaches. To simulate in-

stream E. coli concentrations, the model was initialized by assigning initial E. coli 
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concentrations in the streambed upper and lower zones. The initial E. coli concentrations in 

the streambed upper (ECtl) and lower zones (ECbl) are shown in the Table 4.3. The model 

predicts E. coli concentrations in water column in unit of CFU/100 ml, and in sediment in 

unit of CFU/100 g.  

We assumed that 80% of the E. coli in the water column are attached with suspended 

sediments, which is within the range (80 – 100%) proposed by Hipsey et al. (2008).  Pandey 

et al. (2012b) considered 100% of the stream water column E. coli as attached; the simulation 

performed in the study by Pandey et al. (2012b) was for a single sampling event performed at 

16 locations; however, here we have performed simulation for 10 years (on daily time step), 

which involves in-stream routing and E. coli predictions under different flow conditions. 

Since it is difficult to estimate precise percentages of attached E. coli in the water column 

under different flow conditions (percentages may change in different flow conditions), the 

selection of unique value was required to simplify the simulations.  The slope of the stream 

bed was estimated from Mannings equation to be 2.5 × 10
-04

  as described previously by 

Pandey et al. (2012b). Values of the coefficients a and b were 8.5 × 10 
-16

 m
2
 and 9.07 cm

3
/g, 

respectively, which were obtained from Lick (2009) as stated in section 2.  In order to predict 

the resuspension of sediment particles from the streambed to the water column, the critical 

shear stress of cohesive and non-cohesive sediments was calculated. These estimations 

required knowledge of the particle size to which the E. coli were attached. The particles size 

of 1.5 µm was used in the model simulation, as a result of calibration. We tested the 

prediction for the range from 0.5 to 10 µm particle sizes. The coefficient c1 (coefficient for 

clay effects) of 23 and na (exponent) of 2.0 were obtained through calibration. These values  
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Table 4.3. In-stream E. coli transport parameters. The parameter values (i.e. calibrated, 

assumption, and reference) are shown. These calibrated parameter values were used in the 

final simulation for predicting E. coli concentrations in the streambed sediment and the water 

column. To obtain these calibrated values and verify the predictions, first we ran the 

modified SWAT model with initially assumed values. Next, the model was rerun multiple 

times for calibrating the parameter values (i.e., obtaining the parameter values, which 

improved the predictions). Finally, the calibrated parameter values were used to verify the E. 

coli predictions in streambed sediment and the water column at sampling location (Fig. 4.4).  

Parameter Value Source 

ECtl = initial E. coli conc. in streambed top 

layer (CFU/100 g) 

700 Calibrated 

ECbl =  initial E. coli conc. in streambed 

bottom layer (CFU/100 g) 

500 Calibrated 

ECbl =  initial E. coli conc. in – stream water 

column (CFU/100 ml) 

200 Calibrated 

dsuz = depth of streambed top layer (m) 0.03 Calibrated 

dslz = depth of streambed top layer (m) 0.06 Calibrated 

fuz = fraction of settled E. coli in streambed 

top layer 

0.85 Calibrated 

flz = fraction of settled E. coli in streambed 

bottom layer 

0.15 Calibrated 

a = coefficient for bulk density effect (m
2
) 8.5 × 10

-16
 Lick (2009) 

b = coefficient for bulk density effect (cm
3
/g) 9.07 Lick (2009) 

c1 = coefficient for clay effect (N/m
3
) 8.46 × 10

3
 Lick (2009), computed with 

specific gravity (sg = 2.65) 

c2 = coefficient for clay effect (N/m
2
) 23 calibrated/estimated from Lick 

(2009)  

Eoa = coefficient (m/s) 1 × 10
-6

 Lick (2009) 

S = slope (m/m)  2.5 × 10
-4

 Estimated using Manning’s 

equation at sampling location 

na = erosion coefficient 2.0 Calibrated 

d = particle diameter (µm) 1.5 Calibrated 

n = Manning’s roughness coefficient 0.014 Estimated from Chow (1959) 

µ = water viscosity (Pa s) 8.91 × 10
-4

 Pandey et al. (2012) 

sg = specific gravity of sediment 2.65 Pandey et al. (2012) 

ρs = bulk density of sediment (g/cm
3
) 1.26 Calibrated 

µmax = maximum growth rate constant (d
-1

) 2.4 Hipsey et al. (2008) 

CT1s = growth constants for streambed E. coli 0.003 Calibrated 

CT1w = growth constants for water E. coli 0.055 Calibrated 

CT2s = growth constants for streambed E. coli 0.13 Calibrated 

CT2s = growth constants for streambed E. coli 0.10 Hipsey et al. (2008) 

Tmin = minimum temperature for growth in 

streambed and water (⁰C) 

4 Hipsey et al. (2008) 

Tmax = maximum temperature for growth in 

streambed and water (⁰C) 

35 Hipsey et al. (2008) 
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differ from Pandey et al. (2012b), which used a different dataset for resuspension predictions. 

The c2 value was calculated as proposed in Pandey et al. (2012b).   

To evaluate the model prediction, we used the coefficient of determination (r
2
) and Nash-

Sutcliffe’s efficiency coefficient (NSE) to compare predicted and measured stream flow. We 

targeted an r
2
 value greater than 0.40 for daily stream flow prediction and r

2
 of greater than 

0.75 for monthly average daily stream flow prediction. The target for NSE values for daily 

stream flow prediction was set to greater than 0.35 and for monthly average daily flow 

prediction it was set to greater than 0.70. While comparing predicted and measured E. coli 

concentrations in the streambed sediment and the water column, we calculated the 

percentages of E. coli predictions falling within 1 order of magnitude. Our target was to 

achieve 60% of the predictions within 1 order of magnitude of the observed E. coli values. 

As described by Dorner et al. (2006), E. coli predictions in order – of – magnitude are needed 

for water quality improvement. While predicting E. coli concentrations at watershed scale, 

high precision is not expected. 

5. Results and Discussion  

5.1 Stream flow and water balance 

The results of the annual water balance for the Squaw Creek Watershed, estimated from the 

SWAT run (2000 to 2011), show average annual precipitation of 780 mm, annual surface 

runoff of 60.65 mm, and lateral soil flow of 17.48 mm. The contribution from tile flow and 

ground water was 54.33 and 106.51 mm, respectively. The total annual stream flow (surface 

runoff, lateral flow, tile flow, and ground water flow) was 238.97 mm, which is 21% of the 
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total annual precipitation. Tile flow contribution to the total stream flow was approximately 

23%, and ground water influx contributed approximately 45%. About 68% of the total stream 

flow was as base flow (tile and ground water). The water balance of this study is close to the 

values reported by Jha et al. (2010b). Annual evapotranspiration (608 mm) was 78% of the 

total annual precipitation. These results are similar to the results of other published studies on 

watershed in the same region. For example, Jha et al. (2010a) reported 29% of total annual 

precipitation as stream flow, and 71% of total annual precipitation as evapotranspiration. 

Another study by Jha et al. (2010b) estimated slightly lower base flow contribution (60% of 

the stream flow).  

Figure 4.5 shows a comparison between predicted and measured daily and monthly average 

daily stream flow. The r
2
 and NSE values for monthly average daily flow were 0.99 and 0.75, 

respectively. As expected, the r
2
 and NSE values for daily stream flow were lower (r

2
 = 0.42,  

NSE = 0.39). The correlation coefficient (r) between predicted and measured daily flow was 

0.65. The r value for monthly average daily flow was 0.99.  These results are considered 

satisfactory. The average monthly daily flow prediction is strong as per the suggested criteria 

(NSE of 0.75 or greater very good for monthly flow prediction) (Moriasi et al., 2007). As 

shown in Figure 4.5, the predicted stream flow trends coincide well with measured flow.  
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Figure 4.5. Predicted and measured flow in the Squaw Creek Watershed. The top left figure shows the daily stream flow prediction at 

subbasin 32 (gaging station)(Squaw Creek gaging station), and top right shows comparison and r
2
 values between measured and 

predicted daily flow. The bottom left shows the measured and predicted monthly average daily flows, and bottom right shows a 

comparison and the r
2
 values between observed and predicted monthly average daily stream flow. The calibrated parameter values 

(i.e., SOL_AWC, GW_DELAY, SURLAG, GW_Alfa, CN2, DDRAIN, TDRAIN, GDRAIN, and DEP_IMP) used in stream flow 

predictions are described in Table 4.1. The location of stream flow observation is shown in Figures 4.2 and 4.4. 
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5.2 Streambed and water column E. coli predictions 

Figures 4.6a and 4.6b
 
show the predicted in-stream E. coli concentrations. The daily E. coli 

predictions in the streambed and the water column are shown from 2001 to 2011. Plotting E. 

coli concentrations over a 10 year periods shows the oscillatory nature of E. coli variation in 

the stream. For example, during the summer when flow and temperature were high, E. coli 

concentrations peaked. The measured data of Kim et al. (2010) also demonstrated a cyclic 

behavior of E. coli in streams. Figure 4.6a show variations in the streambed E. coli 

concentrations. The secondary vertical axis shows flow variation, while the primary vertical 

axis shows E. coli concentrations (CFU/100 g) in the upper zone of the streambed.  

Figure 4.6b shows variation in the water column E. coli concentrations. These results show 

that E. coli concentration in the streambed as well as in the water increase with high flow in 

the stream. During high flow events, large amounts of E. coli potentially can be released 

from the streambed to the water column along with resuspended sediment. This increases the 

level of E. coli in the water column. Another potential cause of high levels of E. coli during 

high flow is E. coli transport with overland flow. Previous studies, for example, Soupir et al. 

(2006) reported that runoff from the cropped land which receives manure application can 

lead to high levels of pathogens in stream water, particularly, during strong rainfall events. 

High precipitation can cause intense runoff, which can carry large amount of E. coli attached 

to soil particles from the cropped land into streams. While predicting in-stream water 

pathogen concentrations, a study by Dorner et al. (2006) has modified WATFLOOD 

hydrological model to include a pathogen transport model. In the study, however, the 

processes involved were only overland flow, subsurface flow, and in-stream routing. The 
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conclusions by Dorner et al. (2006) were that the resuspension of microorganisms from 

stream sediments may be of greater importance than land-based sources of pathogens, and 

the authors recommended further study of the resuspension process.  Other notable studies 

such as Muirhead et al. (2004), Bai and Lung (2005), and Jamieson et al. (2005a) have also 

emphasized the importance of streambed E. coli, and the resuspension process. For example, 

Muirhead et al. (2004) created artificial floods in streams during dry weather (in the absence 

of overland flow) and found that resuspension increased E. coli concentrations in stream 

water by several orders of magnitude.  Bai and Lung (2005) studied the impact of sediment 

on the transport of fecal E. coli, and found that the resuspension of sediment and E. coli was 

identical. Similarly, Jamieson et al. (2005a) studied resuspension of sediment-associated E. 

coli in natural streams, and found that high flow increased suspended sediment and E. coli in 

stream water; however, the author proposed that the streambed has a finite supply of 

sediment associated E. coli. 
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Figure 4.6a. Predicted in-stream E. coli concentrations in Squaw Creek and stream flow 

at the gaging station are shown. The figure shows the E. coli concentration (CFU/100 g) 

in the streambed upper zone (red dots), while the blue dotted line shows stream flow. A 

parameter list used in predicting streambed sediment E. coli concentrations are 

provided in Table 4.3.  For streambed sediment E. coli predictions, the values of bulk 

density and particle sizes were set to 1.26 g/cc 0.15 µm, respectively. The parameter 

sensitivities is shown in Figure 4.6c. The location of sediment E. coli and stream flow 

prediction is shown in Figures 4.2 and 4.4.  
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Figure 4.6b. Predicted in-stream E. coli concentrations in Squaw Creek at the gaging 

station and stream flow are shown. Figure shows E. coli concentration in the water 

column (CFU/100 ml). Green dots are E. coli concentrations. Blue dotted line indicates 

stream flow. The parameters used in the water column E. coli predictions are described 

in 4.3. Parameters related to overland flow are described in Table 4.2. The sensitivities 

of the parameters (i.e., bulk densities, erosion coefficient, and particle size) are shown in 

Figure 4.6c. The location of water column E. coli and stream flow prediction is shown in 

Figures 4.2 and 4.4.  
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Sensitivity of parameters important in predicting E. coli resuspension (i.e., sediment bulk 

density (ρs), particle size (d), erosion exponent (na), fraction of streambed sediment E. coli in 

the top layer  i.e., upper zone (fuz), and streambed top depth (dsuz))  to streambed sediment 

and water column E. coli predictions were evaluated. To find the most sensitive parameter, 

parameter values were changed ±15% from the base values given in Table 4.3, and 

corresponding predictions were used to estimate relative sensitivity (Sr) (equation 14).  

Figure 4.7 shows the relative sensitivities of the parameters to the streambed sediment E. coli 

and the water column E. coli. In both predictions (i.e., streambed sediment E. coli and the 

water column E. coli), the Sr values were greater for ρs , and Sr values were relatively small 

for fuz. The ranking of the parameter sensitivities were (highest to lowest) ρs, na, d, dsuz, and fuz.   

In addition, we also estimated changes in E. coli concentrations of sediment and water 

column corresponding to a parameter range (i.e., 15 – 80% increase and decrease from the 

base parameter values). We assessed the impacts of three most sensitive parameters, e.g., 

particle size, bulk density, and erosion exponent on streambed sediment and water column E. 

coli predictions. Table 4.4 shows the changes in sediment and water column E. coli 

predictions corresponding to the changes in input parameters. The input parameters were 

changed from 15 – 80% (i.e., increase and decrease), and corresponding changes in sediment 

and water column E. coli were estimated by implementing the modified SWAT model at the 

Squaw Creek Watershed. When d was increased by 15 to 80%, E. coli in sediment was 

increased by 1×10
2
 to 3×10

2
 %, and E. coli in water was also increased by 1×10

2
 to 3×10

2
 %, 

respectively. However, when d value was decreased by 15 to 80%, sediment E. coli was 

decreased by 9 ×10
1
 to 8 ×10

1
 %, and water E. coli was decreased by 7×10

2
 to 6 %, 
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respectively. The impact of bulk density (i.e., ρs) on predictions was relatively large (i.e., 

large relative sensitivity index). For example, when ρs was increased by 15 to 80%, sediment 

E. coli decreased by 7 ×10
1
 to 4 ×10

1
 %, and water E. coli decreased by 5 to 2%;  

 

Figure 4.6c. Parameter sensitivities to the streambed sediment and water column E. coli 

predictions. Dark black bars show sensitivities to streambed sediment E. coli and light 

gray bars indicate sensitivities to the water column E. coli predictions. In the sensitivity 

analysis the base values of the parameters i.e., ρs, na, d, dsuz, and fuz were set to 1.26 g/cc, 

1.5 µm, 2, 0.85, and 0.030, respectively. Other parameters used in simulation are 

described in Tables 4.1, 4.2, and 4.3.    

 

however, when ρs value was decreased by 15 to 80%, the sediment E. coli was increased by 8 

×10
2
 to 2 ×10

9
 %, and water E. coli was increased by 3 ×10

3
 to 2 ×10

9
 %, respectively. The 

impacts of na  (i.e., erosion exponent) is also shown in Table 4.4. When na was increased by 
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15 to 80%, the sediment E. coli was increased by 1 × 10
2 

 to 1 × 10
4 

%, and water E. coli was 

increased by 3 × 10
2
 to 5 × 10

4 
%, respectively. Decreasing na value by 15 to 80%, resulted in 

reduced E. coli in sediment by 85 to 78%, and in water by 33 to 2%, respectively (Table 4.4).  

Table 4.4. Sensitivities of input parameters to streambed sediment and water column E. coli 

predictions 

 

Parameter    Parameter Parameters   Parameters 

change 

 

increase (+) 

 

d ρs na 

 

d ρs na 

  

decrease (-) 

 

Changes in sediment E. coli 

 

Changes in water E. coli 

    

% 

 

% 

15% 

 

+ 

 

1.E+02 7.E+01 1.E+02 

 

1.E+02 5.E+00 3.E+02 

30% 

 

+ 

 

1.E+02 6.E+01 3.E+02 

 

2.E+02 2.E+00 1.E+03 

45% 

 

+ 

 

2.E+02 5.E+01 8.E+02 

 

2.E+02 2.E+00 3.E+03 

60% 

 

+ 

 

2.E+02 5.E+01 2.E+03 

 

2.E+02 2.E+00 1.E+04 

75% 

 

+ 

 

3.E+02 5.E+01 5.E+03 

 

3.E+02 2.E+00 2.E+04 

80% 

 

+ 

 

3.E+02 4.E+01 1.E+04 

 

3.E+02 2.E+00 5.E+04 

15% 

 

- 

 

9.E+01 8.E+02 8.E+01 

 

7.E+01 3.E+03 3.E+01 

30% 

 

- 

 

8.E+01 2.E+04 8.E+01 

 

5.E+01 7.E+04 1.E+01 

45% 

 

- 

 

8.E+01 7.E+05 8.E+01 

 

3.E+01 2.E+06 5.E+00 

60% 

 

- 

 

8.E+01 2.E+07 8.E+01 

 

2.E+01 4.E+07 3.E+00 

75% 

 

- 

 

8.E+01 2.E+08 8.E+01 

 

1.E+01 3.E+08 2.E+00 

80%   -   8.E+01 2.E+09 8.E+01   6.E+00 2.E+09 2.E+00 

 

Note: Table shows changes in streambed sediment E. coli concentrations and water column 

E. coli concentrations predictions corresponding to changes in input parameters (i.e., particle 

size (d), buld density (ρs), and erosion exponent (na)). To calculate the percentage changes in 

predictions (i.e., E. coli concentrations in sediment and water column), simulations were 

performed for a parameter range (15 – 80% of the base values). Base values of parameters 

are shown in Table 4.3.   
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5.3 Model validation  

The model predictions were verified by comparing the predicted and measured E. coli 

concentrations in the streambed sediment and the water column in the Squaw Creek 

Watershed at gaging station shown in Figures 4.4 and 4.2. Figure 4.7 shows the comparison 

between measured (i.e., estimated from field samples) and predicted E. coli concentrations in 

the upper zone of the streambed sediment. Figure 4.7 (top) shows streambed measured and 

predicted E. coli concentrations (CFU/100g) variation in relation to flow, while Figure 4.7 

(bottom) compares predicted streambed E. coli concentrations with measured streambed E. 

coli concentrations (CFU/100g). To maintain the data integrity, we used all of the measured 

data between 3/2010 and 11/2011 (total sample numbers 55), while comparing with 

measured values. The predictions for water column E. coli are better than streambed 

sediment E. coli concentrations.  Also predicted streambed sediment E. coli are slightly 

higher in spring 2010 than the observed values.  The potential reasons for low observed E. 

coli concentrations in spring 2010 are not known. As shown in the Figure, most of the 

predicted values of E. coli in the streambed are within one order of magnitude of the 

observed values. Analysis shows that approximately 62% of the predictions are within an 

order of magnitude, and 36% of the predictions are within 2 orders of magnitude. Only 2% of 

the predictions fall beyond 2 orders of magnitude. Of course, some predictions are beyond 

one order of magnitude; however, compared to results of previous studies these results are 

much improved over the work of others. The data used for model validation are shown in 

Appendix III. As mentioned by Dorner et al. (2006), order-of-magnitude estimates are what  
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Figure 4.7. Predicted and measured E. coli concentrations in the streambed upper zone 

are shown. The top figure shows predicted (hollow red circles) and measured (filled red 

circles) E. coli concentrations with measured stream flow. The bottom figure shows 

comparison between predicted and measured E. coli concentrations. The small dashed 

blue line shows the 1:1 line, the solid lines show 1 order of magnitude, and the long 

dashed lines show 2 orders of magnitude. The parameter values used in predictions are 

described in Table 4.3 and method used for E. coli observation is described in Appendix 

I. The location of streambed sediment E. coli measurement is shown in Figures 4.2 and 

4.4.  
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are required for water quality improvement, and therefore greater precision is not necessary, nor 

expected in stream water E. coli predictions. In a study by Dorner et al. (2006) E. coli 

prediction varied from 1 to 4 orders of magnitude of the observed values, while in a study by 

Kim et al. (2010), predictions varied from 1 to 3 orders of magnitude of the observed values. 

Both of these studies, however, focused on predicting stream water column E. coli 

concentrations only. Also in Dorner’s study, resuspension process was not included in the 

model. And Kim’s study used a simplified Bagnold’s stream power function for resuspension 

estimation. Figure 4.8 shows the E. coli predictions in the water column of the stream. Figure 

4.8 (top) shows the measured E. coli concentrations from 3/2010 to 12/2011 (total sample 

numbers 80) and predicted E. coli concentrations in relation to stream flow. As shown in the 

figure, the increased flow elevated the E. coli concentrations (CFU/100 ml) in the water 

column similar to the streambed E. coli concentrations. The trend of in-stream water column 

E. coli concentrations corroborate the previous results (Kim et al., 2010; Muirhead et al., 

2005; Bai and Lung, 2005; Jamieson et al., 2005a;b).  Except for the study by Kim et al. 

(2010), other studies did not involve in-stream routing. Kim et al. (2010) included 

resuspension of bacteria from the streambed to the water column; however, the resuspension 

estimation is based on SWAT’s default sediment routing, which uses simplified Bagnold’s 

stream power function. This approach has been criticized for not including the impacts of 

cohesive and non-cohesive properties of sediment as well as the impact of particle sizes in 

estimating resuspension (Ferguson, 2005).   

In our work, we included the impacts of cohesive and non-cohesive sediments properties 

(i.e., critical shear stresses of cohesive and non-cohesive sediments) and particles sizes on 



207 
 

 

2
07

 

critical shear stress estimation, which governed the resuspension of E. coli from the 

streambed to the water column. Figure 4.8 (bottom) shows the comparison between measured 

and predicted values. The analysis shows that 82% of the predictions are within one order of 

magnitude of the predicted values. Another 15% of the predictions are within 2 orders of 

magnitudes, and only 3% of the predictions are beyond 2 orders of magnitude. We also 

predicted E. coli concentrations (the predictions deviated greatly from the observed values, 

therefore the outputs are not listed here) using the original SWAT model (without change), 

which does not include E. coli resuspension. While the original SWAT does not simulate E. 

coli concentrations in the streambed sediment (it predicts E. coli concentrations only in the 

water column without considering the impacts of streambed sediment), the modified SWAT 

simulates E. coli concentrations in the streambed sediment and also includes the impacts of 

resuspension in predicting E. coli concentrations in the water column. In comparison to 

results reported in previous studies (Dorner et al., 2006; Kim et al., 2010; Parajuli  et al., 

2006), the work proposed here and the results are a significant improvement, and we expect 

that the model developed in this study may have significant importance for in- stream E. coli 

prediction and watershed planning. In addition to improving E. coli prediction in the water 

column, we also provided a method to predict E. coli concentrations in the streambed, which 

has never been done. 
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Figure 4.8. Predicted and measured E. coli concentrations in the water column are 

shown. The measurements were taken in the Squaw Creek at gaging station location 

shown in Figure 4.2 and 4.4. The E. coli concentrations were predicted for the same 

location. The top figure shows predicted (hollow blue circles), measured (filled blue 

circles) E. coli concentrations with flow and the bottom figure shows a comparison 

between predicted and measured E. coli concentrations in the water column. The blue 

dashed lines show the 1:1 line, the solid line shows 1 order of magnitude, and the small 

dashed lines show 2 orders of magnitude. The parameter values used in predictions are 

described in Table 4.3 and method used for E. coli observation is described in Appendix 

I. The location of water column E. coli measurement is shown in Figures 4.2 and 4.4.  
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6. Conclusions 

In this study we developed a model for in-stream E. coli predictions. E. coli in the streambed 

and the water column were predicted. The developed model was augmented with the existing 

SWAT model, a hydrological watershed scale model, to improve SWAT bacteria prediction. 

The modified SWAT model was tested in Squaw Creek Watershed to predict stream flow 

and E. coli concentrations in Squaw Creek. The results of the modified SWAT model show 

that E. coli prediction by SWAT was improved. The results were verified by comparing the 

prediction results with measured data. For example, the r
2
 of flow for monthly average daily 

was prediction was 0.99, and for daily prediction it was 0.42. The NSE values for monthly 

average daily and daily predictions were 0.75 and 0.39, respectively. In the streambed, 

approximately 62% of the predicted E. coli are within 1 order of measured values. In the 

water column, 82% of the predicted values are within 1 order of magnitude.  Only 1 and 3% 

of the predicted E. coli are beyond 2 orders of magnitude of measured values in streambed 

and water column, respectively. 

Considering the results and recommendations of previous studies, the work completed here 

has significant importance. We predicted E. coli concentrations in the streambed of the 

stream, which has not yet been published in the peer-reviewed literature.  Several studies 

have proposed the importance of streambed E. coli concentrations, and we found it as 

critically important for understanding of stream E. coli concentrations; however, a model to 

predict streambed E. coli concentrations is lacking, primarily due to the complexity involved 

in streambed E. coli estimation. Another worthwhile point is that previous work on in-stream 

E. coli prediction has suffered from a lack of observed data. Compared to water E. coli data, 
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the availability of data on sediment E. coli concentrations are very scarce. To verify the 

model results, however, measured E. coli data from natural streams is critically important in 

order to improve the in-stream E. coli transport modeling. Our observed E. coli data in the 

streambed and in the water column at same location and same time for multiple years and 

seasons, was crucial to improve the model predictions. Another significant improvement in 

this study was that we estimated the resuspension and settling of E. coli as a function of flow, 

which provided more realistic resuspension estimation at various flow conditions.  

The SWAT model has rarely been used for TMDLs development when waters are impaired 

due to elevated pathogen levels.  This modified version of SWAT will have significant 

importance in improving the understanding of in-stream E. coli fate and transport, and will be 

useful for application of SWAT for TMDLs.  Additionally, the modified version of SWAT 

will be useful for comparison of Best Management Practices (BMP) scenarios necessary for 

EPA-approved watershed management plans.   
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CHAPTER 5. ASSESSING THE IMPACTS OF STREAMBED 

SEDIMENT ON TOTAL Escherichia coli LOADS OVER A RANGE 

OF FLOW CONDITIONS 
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Abstract 

Understanding sediment pathogen levels and their contribution to the water column during 

resuspension is critical for predicting in-stream pathogen levels and the risk to human health. 

The U.S. EPA’s current water quality testing strategies, however, rely on water borne E. coli 

concentrations to assess stream pathogen levels and identify impaired waters. In this work, 

we investigated impacts of streambed sediment on in-stream total E. coli loads using a range 

of flows, sediment/water bacteria fractions, and particle sizes to which bacteria attach to 

assess the impact of E. coli in streambed sediments on water column E. coli levels.  We used 

a simple sediment transport theory to calculate the potential total bacteria concentrations in a 

stream with and without the resuspension process. Results clearly indicate that inclusion of 

resuspending sediment attached bacteria is necessary for watershed assessments and data on 

sediment bacteria concentrations is much needed. When neglecting the streambed sediment 

E. coli concentrations, the model predicted average E. coli loads of 10
7
 (cfu/s); however, 
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when streambed sediment E. coli concentrations were included in the model, the predictions 

ranged from 10
10

 to 10
14

 (cfu/s). To verify the predictions, E. coli data in the streambed 

sediment and the water column were monitored in Squaw Creek, Iowa, USA. Comparisons 

between measured and predicted pathogen loads yielded an R
2
-value of 0.85.  

1.   Introduction 

Elevated pathogen levels are the leading cause of stream water quality impairments in the 

United States. The U.S. Environmental Protection Agency (U.S. EPA) estimates that at least 

748,072 kilometers of streams are contaminated with pathogens, potentially posing a risk to 

human health (USEPA, 2011; Pandey et al., 2012a,b). These estimates, however, could be 

low because current water quality assessment techniques are based upon environmental 

sampling methods which assume that indicator bacteria are entirely present in the freely 

suspended state (Droppo et al., 2011; Bai and Ling, 2005). This approach excludes the 

pathogens entrained in the stream sediment compartment, potentially underestimating the 

human health risk during certain flow regimes (Cabelli, 1983; Droppo et al., 2011).
 
 

The exclusion of bottom sediment bacteria from water quality monitoring programs has led 

to insufficient data to include the resuspension process in watershed scale models typically 

used to set load restrictions and develop watershed management plans.  Implications of this 

are great as currently the burden for water quality improvement is entirely transferred to the 

stakeholders in the watershed. For example, E. coli concentrations in water samples collected 

for health risk assessment may not represent recent pathogenic contamination but may reflect 

historically deposited E. coli transported from upstream resuspension during high flows 

(Droppo et al., 2011). While there is limited knowledge available on the pathogenesis of 
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persistent organisms surviving in stream sediments (Ashbolt et al., 2010), these 

“background” sources should be acknowledged in watershed assessments.  

There is, however, much debate regarding current indicator organisms and their ability to 

represent the potential presence of pathogens.  Current exposure limits have been established 

to protect human health: the EPA defines acceptable recreational limits as those that will 

result in eight or fewer swimming-related gastrointestinal (GI) illnesses out of every 1,000 

swimmers (USEPA, 1986).
 
The current U.S. EPA fresh water quality criteria for E. coli is a 

geometric mean not exceeding 126 cfu/100 ml or no samples exceeding a single sample 

maximum of 235 cfu/100 ml (USEPA, 2001a). Criteria were developed based on U.S. EPA 

measurements of total and highly credible gastrointestinal illnesses (HCGI) which correlated 

with E. coli (p=0.804) in fresh recreational waters (Dufour, 1984).   Others have also 

identified trends between indicator organisms in water and gastrointestinal (GI) illness in 

humans, including vomiting, diarrhea, and fever (Cabelli, 1983; Wade et al., 2006). For 

example, a study by Wade et al (2006) observed significant trends between increased GI 

illness and indicator organisms at the Lake Michigan beach, and a positive trend with 

indicators such as E. coli at the Lake Erie beach. Recent work by Edge et al. (2010) detected 

waterborne pathogens in 80% of water samples with E. coli counts of less than 100 

cfu/100ml. 

Multiple studies have identified high levels of indicator organisms in streambed sediments, 

ranging from 10 to 10,000 times higher than concentrations in the overlying water column 

(Davies et al., 1995; Bai and Lung, 2005), and field experiments have confirmed that bacteria 

associated with the stream sediments resuspend during high flows and contribute an 
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additional bacteria load to the stream water column (Jamieson et al., 2005a;b ; Nagels et al., 

2002).  For example, a study by Wu et al (2009) found that a large number of downstream 

samples were associated with upstream sediment sources of E. coli. Muirhead et al. (2004) 

examined bacteria concentrations during a series of artificial floods in a stream and found 

strong evidence that the stream bed is an important source of E. coli, with high flows 

mobilizing sediment-associated E. coli from the stream bed to the water column. Jamieson et 

al. (2005b) used mathematical models to understand the processes which control E. coli 

transport in natural streams, and concluded that bottom sediment E. coli is a primary source. 

Similarly, Wilkinson et al. (1995) concluded that resuspension of organisms from storage 

within the stream bed are critically important to understanding pathogen dynamics in streams 

and rivers.  

There are limited studies, however, focused on understanding the interactions between 

sediment and water column bacteria (Rehmann and Soupir, 2009; Droppo et al., 2011). Some 

previous studies have proposed using the critical bed shear stress for erosion for calculating 

bacteria resuspension (Wu et al., 2009; Rehmann and Soupir, 2009; Droppo et al., 2011; 

Jamieson et al., 2005b). A study by Cho et al. (2010) emphasized the importance of particle 

sizes, while estimating the in-stream bacteria resuspension. Studies by Bai and Lung (2005) 

and Jamieson et al. (2005b) proposed partitioning coefficients to estimate the ratio of 

attached to freely-suspended bacteria in irreversible and reversible linear adsorption 

processes; however, verification of these coefficients is difficult (Droppo et al., 2011). 

Recent work by Pandey et al. (2012a) modified in-stream sediment transport equations 

derived from the work of Lick (2009) to predict E. coli resuspension, and validated the 
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approach for a natural stream. One of the advantages of this approach is that it is based on 

simple empirical equations, and the parameter values can be verified from field data.   

Currently an assessment differentiating the predicted in-stream pathogen levels with and 

without the resuspension process is lacking.  Here, we developed a model for estimating total 

stream E. coli loads, and performed a scenario analysis to estimate the potential impact of in-

stream E. coli levels due to resuspending bottom sediments using a range of flows, 

sediment/water bacteria fractions, and particle sizes to which bacteria attach. The predictions 

were verified using the observations of the Squaw Creek Watershed, Iowa. The objectives of 

this work are to: 1) to calculate E. coli loads, when E. coli levels in the streambed sediment is 

higher than the water column, 2) verify the pathogen load predictions using measured data of 

E. coli concentrations in the streambed sediment and the water column, 3) and evaluate the 

impacts of streambed sediment characteristics on E. coli load predictions. This exercise 

provides an insightful quantification of the impact sediment pathogens have on stream water 

quality.  

2. Methods 

This work uses the recent bacteria resuspension equations proposed by Pandey et al. (2012a) 

to estimate the total pathogen discharge through a defined surface area of unit stream length 

per unit time, LT (CFU/s). The LT is the sum of two components: 1) water E. coli discharge, 

Lw (CFU/s), and 2) sediment E. coli discharge Ls (CFU/s) as shown in Eq. 1.  

T w sL L L                   (1) 
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The Lw was estimated by multiplying the E. coli concentration in water, Cw (CFU/m
3
), with 

water discharge, Q (m
3
/s) as shown in Eq. 2.  

w wL C Q                   (2) 

To determine Ls, we calculated resuspended E. coli, Rp (CFU/m
2
s), and multiplied it by the 

stream’s wetted surface area, WA (m
2

)  as shown in Eq. 3, (WA = Wp  L); where Wp is the 

wetted perimeter (m) and L (=1 m) is a unit meter of stream length.  

s p AL R W                   (3) 

The Rp was estimated by multiplying the sediment E. coli concentration, Cs (CFU/m
3
), which 

potentially could resuspend, with the sediment erosion rates obtained from sediment transport 

theory proposed by Lick (2009), as described previously by Pandey et al. (2012a).  

0

an

b cn
p s

c cn

R C E
 

 

 
   

 
               (4) 

where, Eo is erosion rate of 10
-4

 cm/s; τb is the bottom shear stress caused by water flow 

(Pa); τcn  and τc are the critical shear stresses (N/m
2
) of non-cohesive and cohesive 

sediments, respectively. The na (= 2.0) is an exponent proposed by Lick (2009) for particle 

size d  432 µm. The τb is estimated from the specific gravity of water,  (N/m
3
), hydraulic 

radius, R (m), and water surface slope, S, (m/m) (τb = ·R·S); τcn was estimated as a function 

of particle size, d (m),  (τcn = d·4.14 ×10
-3

), and τc was estimated using Lick’s approach 
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(equation 3.17 of the chapter 3) (Lick, 2009)
 
 and as described in detail by Pandey et al. 

(2012a).  

      (  
      

  )                   (5) 

where a of 8.5 × 10
-16

, and bc of 9.07 cm
3
/g are constants. In equation 5, Pandey et al. 

(2012a) has added an additional term to include the impacts of clay content, which is 

excluded in this simple analysis for simplifying the simulation. The simplification was made 

due to the fact that critical shear stress of cohesive sediment is primarily governed by bulk 

density and particle size. As shown in chapter 3 (figs 3.5 and 3.6) and chapter 4 (figure 4.7), 

particle size and bulk density are the primary parameters (i.e., with greater sensitivities) 

controlling critical shear stress of cohesive sediment. The slightly simplified equation (eqn 5) 

also includes governing parameters (i.e., bulk density and particle size). To verify the 

changes we tested the both type of equations (with and without clay factors), equation 5 of 

this chapter and equation 3 of chapter 3; however, predictions were not much changed. The R 

was estimated as WsA/WP, where WsA (m
2
) is water surface area for trapezoidal stream (WsA = 

b·dw+z·dw

2
), and Wp (m) is wetted perimeter (Wp = b +2 dw·sqrt(1+z

2
)); the b (m) is stream 

bottom width, z is side slope (hor : ver) and dw (m) is stream water depth (m). The S was 

estimated using Manning’s equation (S
0.5

 = n·Q/R
2/3

·WsA), where n (= 0.036) is Manning’s 

constant for a natural stream (USDA, 1947). The exponent (na) and particle size (d) were 

used as calibration parameters, while verifying the model predictions.  

Since the total E. coli load (LT) was estimated using daily discharge data (average daily rates, 

m
3
/s), the temporal frequency of the model results (LT) is daily. To obtain E. coli 
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concentrations in water samples (Cw), cfu/100 ml was converted to cfu/m
3
; and to obtain E. 

coli concentrations in sediments (Cs) (cfu/m
3
), the E. coli concentration in sediment samples 

(cfu/g ) were multiplied by the bulk density of sediment (1.26×10
6
 g/m

3
). The calculation of 

LT requires load contributions from both sediment attached E. coli and free floating E. coli. In 

the water column, a large number of E. coli cells are considered to be attached with particles. 

For example, a study by Hipsey et al. (2008) suggested that 80 – 90% of the totals E. coli in 

the water column are attached with particles. 

We assumed a particle size of d = 10 µm, which is within the range of cohesive particles; 

Black et al. (2002) reported that most pathogens are attached to cohesive particles. The 

measured stream data (i.e., dw (stage height) and Q (discharge)), for the monitoring period of 

2009 – 2010, used in this study were obtained from the USGS gauging station (05470500) 

(Lat 42°01'23", long 93°37'49") Squaw Creek, Ames, IA. Stream data, Q and dw, used in this 

study are approved by USGS.  To calculate b, we measured stream geometry at the location 

of the gauging station. In WA and WP calculations, we used a z value of 2.0 m; the measured z 

near the gauging stations varied between 2 and 2.5 m during the monitoring period. E. coli 

concentrations were measured weekly (1 -2 times) at Squaw Creek near the USGS gaging 

station from May 2009 to December 2011. To test E. coli levels in the water column, we 

collected water samples from the center of the stream by lowering a Horizontal 

Polycarbonate Water Bottle Sampler (2.2 L, Forestry Suppliers Inc., Mississippi, U.S) from a 

bridge into the center of the stream.  Streambed sediment samples were collected using a 

Shallow Water Bottom Dredge Sampler (15 cm  15 cm opening, Forestry Suppliers Inc., 

Mississippi, U.S.) at the same location as where the water samples were collected. Water and 
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sediment samples were stored at 4°C, and analyzed in triplicate within 24 hours for E. coli 

concentrations. The E. coli attached to stream sediment particles were detached by stirring 

the mixture of sediment and deionized water ratio 1:1(weight basis)) for 15 minutes at 

approximately 200 rpm using a magnetic stir bar. The resulting solution was used to 

enumerate E. coli in the sediment. The E. coli numbers in the water and the sediment were 

enumerated by membrane filtration techniques (APHA, 1999) on modified mTEC agar 

(EPA, method 1603). In Appendix I, we described E. coli measurement methods in the 

sediment and water column. 

Previous studies have reported that the pathogen concentrations in the sediment could be up 

to 10,000 times greater than that in the water column (Kim et al., 2000; Bai and Lung, 2005). 

For this study, we considered E. coli ratios (Psw) between the sediment and the water column 

of 1, 100, and 10,000. The E. coli concentration in the sediment (CFU/100 g) and water 

column (CFU/100 ml) were both converted into CFU/m
3
 for consistent units in the ratios 

(using the sediemnt bulk density of 1.26 g/cc). The procedure adapted in calculating E. coli 

in sediment is described in Appendix I (section 4.2 in lines 5341 – 5381). The method is also 

explained in chapter 3 (lines 2438 – 2468). These ratios were used to estimate the potential 

discharge of sediment attached E. coli (CFU/s) and water column E. coli (CFU/s) from an 

upstream unit cross section on downstream water column E. coli levels.  

The potential E. coli discharges were estimated at the USGS gauging station for the range of 

Psw using “if” and “then” scenarios. For example, a Psw of 1 was used when Cw is equal to Cs. 

We used a Cw value of 235 CFU/100 ml assuming that stream water quality is set at the EPA 

water quality single sample maximum. The changes in the E. coli discharges at different flow 



225 
 

 

2
25

 

conditions were estimated first for Psw of 1, then for a range of Psw values (i.e., Psw of 100 

and 10,000); all assuming sediment concentrations exceed E. coli concentrations in the 

overlying waters. This approach demonstrates the impacts of sediment E. coli on the total E. 

coli discharge, LT, under the condition when the in-stream (water column) E. coli levels are at 

the EPA limit (Cw = 235 CFU/100 ml). While predicting total pathogen load, LT, the 

parameter values used in the model were obtained from the studies by Lick (2009) and 

Pandey et al. (2012a). To calculate the model accuracy, we estimated the model’s predictive 

skill (mskill) (Willmott, 1981) and Nash - Sutcliffe model efficiency (NSE) coefficient (Nash 

and Surcliffe, 1970).   

          
∑        

  
 

∑ (      ̅        ̅ )
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Predicted and observed E. coli loads were used in calculating model skill and NSE.  The oi 

and pi are observed and predicted E. coli loads, while oi overbar indicates average of the 

observed values. While comparing the predicted total E. coli loads and measured E. coli 

loads, we estimated coefficient of determination (r
2
), NSE, and model skill for verifying the 

predictions. Here we have targeted achieving r
2
 values greater than 0.65, NSE values greater 

than 0.50, and model skill greater than 0.50 in order to consider predictions as satisfactory.   

3. Results and Discussion  

Our results confirm that sediment-associated E. coli are a major fraction of the in-stream 

pathogen concentrations. Figure 5.1 shows the total E. coli load (LT), which is the sum of the  
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Figure 5.1. Predicted stream total E. coli load (LT, CFU/s) and water flow (m
3
/s). The 

dashed line shows flow, the thick solid gray line indicates total E. coli load based the on 

current EPA standard when sediment impacts are excluded.  The solid line with 

triangles indicates the E. coli load when the sediment and water column E. coli 

concentration is equal (Psw = 1), the line with diamonds indicates the load when the 

stream bed sediment E. coli concentration is 100 times higher than that of water column 

(Psw = 100), and the line with circles indicates the load when the stream bed sediment E. 

coli concentration is 10,000 times higher than that of the water column (Psw = 10,000).  
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water column E. coli load (Lw) and the resuspending E. coli load (Ls), along with stream flow 

over a period of a year. In the Figure, the EPA standard represents the E. coli discharge at the 

current single sample maximum criteria, reflecting current sampling protocols which only 

consider bacteria in the freely suspended state.  The changes in the total E. coli load with the 

addition of resuspending organisms over the range of flows is included for sediment-water 

ratios (Psw) of 1, 100, and 10,000. As shown in the Figure, the total load when E. coli 

resuspension was included was considerably higher over most of the flow conditions, but 

particularly for higher flows. For instance at sediment-water E. coli ratios of 1 and 100, when 

the flow was 0.54 m
3
/s, the water column E. coli load was equal to the total E. coli load, 

indicating that at low flow the contribution from stream bed as resuspension was negligible, 

particularly, when sediment – associated E. coli concentrations were low. However, as flow 

increases the total E. coli loads were considerably higher than the water column E. coli load. 

For a sediment-water ratio of 1, when the flow was between 0.54 and 9.8  m
3
/s, the water E. 

coli load fraction of the total E. coli load varied between 50 and 100%.  For a sediment-water 

ratio of 100, the water E. coli load was less than 50% of the total E. coli load, even at a 

relatively low flow of 1.93 m
3
/s. At high sediment-water ratios (Psw = 10,000), the water E. 

coli load was less than 50% of total E. coli load at very low flows (less than 0.65 m
3
/s). 

At a flow of 9.97 m
3
/s, the resuspending E. coli load was greater than the water E. coli load 

by a factor of 1, but when flow was increased to 450 m
3
/s, the resuspending E. coli load 

became greater than the water E. coli load by three orders of magnitude (at Psw = 1). 

Moreover, at a sediment-water ratio of 100, the resuspending E. coli load became greater 

than the water E. coli load at a relatively low flow (2.04 m
3
/s); under high flow (450 m

3
/s) 
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conditions, the resuspending E. coli load was greater than the water E. coli load by more than 

five orders of magnitude (7.4 × 10
5
 factors). Similarly, for sediment-water ratios of 10,000, 

the resuspending E. coli load was greater than the water E. coli load during all flow 

conditions, except when flow was less than 0.65 m
3
/s. These results are supported by the 

findings of others and clearly indicate that flow and stream sediment E. coli concentrations 

have a considerable impact on in–stream pathogen levels. For example, Wilcock et al. (1999) 

found that fecal contamination in the stream water column increased 406 times when flow 

was increased from 0.001 m
3
/s to 5.72 m

3
/s, with the majority of the increased bacteria being 

associated with particles.   

Other research, for instance, Mahler et al. (2000) studied sediment associated bacteria in the 

stream bed, and found that during rainy seasons approximately 5 – 100% of the total fecal 

bacteria in streams were associated with sediments. Wilkenson et al. (1995) reported 2 – 25 

times higher fecal bacteria, and Muirhead et al. (2004) found approximately 50 times greater 

bacteria in the water column due to resuspension from the stream bed. Nagels et al. (2002) 

found that approximately 30% of the total bacteria were resuspended from the stream bed to 

the water column. 

In another scenario, we consider the condition when the sediment E. coli concentration is 

equal to the concentration in the water (Cs = 235 CFU/cm
3
, Psw = 1).  Here, the average 

sediment E. coli discharge (i.e., load)  was 2.66 10
10

 (ranging from 4.5 × 10
1
 – 7.9 × 10

12
) 

cfu/s and the average water E. coli discharge was 2.88 10
7
 (ranging from 1.3 × 10

6
 – 1.1 × 

10
9
) cfu/s. This shows that the average sediment E. coli discharge could be three orders of 

magnitude greater than the water E. coli discharge, even under the condition when the stream 
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water meets the EPA single sample maximum standard and sediment E. coli concentrations 

do not exceed the water column E. coli concentration. In the scenario when the sediment 

pathogen concentration is 100 times greater than that of water, the average sediment 

pathogen discharge was 2.66 10
12

 (ranging from 4.5 × 10
3
 – 7.9 × 10

14
) cfu/s; the average 

sediment pathogen discharge was five orders of magnitude greater than the average water 

column pathogen discharge. Similarly, at sediment-water ratios of 10,000, the average 

sediment pathogen discharge was 2.66 10
14

 (with range of 4.5 × 10
5
 – 7.9 × 10

16
) cfu/s, 

seven orders of magnitude greater than the average water pathogen discharge. Clearly, 

contaminated upstream sediments have considerable impacts on downstream  E. coli levels. 

In an interesting case study, Bai and Lung (2005) created a series of artificial high flow 

events in a stream by releasing reservoir water (which eliminated the possibility of bacteria 

contributions from overland flow i.e. runoff from the watershed).  They found that E. coli 

concentrations during peak flow (4.5 m
3
/s) were 14,000 to 16,000 times higher, or four 

orders of magnitude than the baseflow concentrations. These field results align well with the 

findings of our scenario analysis and also emphasize the importance of considering the 

quality of sediments (pathogen concentrations in sediments) when assessing pathogen 

impaired streams. 

We also estimated the total E. coli load, and the fraction of the of total E. coli load due to the 

resuspending sediment E. coli.  Figure 5.2 shows the sediment E. coli fraction (Ls/LT) for 

corresponding total E. coli load and flows, over a range of sediment E. coli concentrations. 

The sediment E. coli fraction increases with flow: at high flows resuspending E. coli 

dominates the total E. coli load. As sediment-water ratios increase, the resuspending E. coli 
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load contribution exceeds the water E. coli load at relatively low flows. In addition to flow, 

the sediment characteristics (i.e., grain size, density, and mineralogy) (Partheniades, 1990) 
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Figure 5.2. The left plot shows the total E. coli load (LT) and sediment E. coli contribution (Ls), and the right plot shows the 

stream flow and sediment E. coli contribution. The solid line shows when the E. coli concentration in the stream bed 

sediment and that of the water column are equal (Psw = 1), the short dash line shows when the E. coli concentrations in the 

stream bed sediments are 100 times higher than that of the water column (Psw = 100), and the dash line with dots 

represents when the E. coli in the stream bed sediments are 10,000 times higher than that of the water column (Psw = 

10,000). 
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play a crucial role in resuspending sediment associated E. coli to the water column. Previous 

studies, for example Cho et al. (2010) and Atwill et al. (2007), have emphasized the need to 

understand the stream bed characteristics while calculating the resuspension of E. coli in 

streams. The total E. coli discharge and resuspending sediment E. coli load shown in Figures 

5.1 and 5.2 were calculated based on the assumption that the E. coli are attached to particles 

10 µm in size; however, streambeds is a representative of a wide range of different particle 

sizes which will have different resuspension rates. The potential impacts of particle size on 

total E. coli discharge are demonstrated in Figure 5.3. In the Figure, we show the total E. coli 

discharge for E. coli attached to average particle sizes of 2, 8, and 20 µm for a single 

sediment-water ratio (i.e., Psw) of 100.  

For the different particle sizes, the critical bed shear stresses are also shown in Figure 5.3. 

Critical stress is a minimum value required to initiate erosion, which depends on the particle 

size (Mehta and Rao, 1985; Shields, 1936) and controls the stream bed particle movement. 

The bed shear stress (τb), which is a function of stream flow is also shown in the Figure. 

Stream bed shear stress (i.e., τb) is a force per unit area exerted by the overlying (Stone et al., 

2011; Mehta and Rao, 1985; Partheniades, 1990). As shown in the figure, the total E. coli 

discharge for small particles (i.e., 2 µm) was lower than for large particles. For instance, for a 

particle size of 2 µm, the mean total E. coli discharge was within 11 orders of magnitude 

(ranging from 1.2710
6
 - 3.15 10

13
); however, when the particle size was increased to 20 

µm, the average total E. coli discharge increased by 2 orders of magnitude, and total E. coli 

discharge ranged from 1.27 10
6
 to 3.15 10

15
 (cfu/s). The E. coli resuspension from larger  
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Figure 5.3. The plot shows the impact of particle sizes on E. coli loads (LT). The total 

load is estimated for the scenario when streambed sediment E. coli concentrations are 

100 times higher than that of water column (Psw = 100). The solid line indicates the 

critical shear stress (secondary y – axis) for different particle sizes shown in the 

secondary x – axis. The long dash line shows E. coli loads when resuspension was 

estimated for a particle size (d) of 20 μm, the medium dash line with single dots 

indicates loads when the particle size considered is 8 μm, and the medium dash line 

with double dots indicates loads for particle sizes of 2 μm.   
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particle sizes is greater because smaller particles exhibit cohesive behavior with increased 

binding forces (Lick, 2009), and thus lower resuspension. Cho et al. (2010) identified 

variation in sediment properties as a factor leading to large differences in quantifying the 

release of E. coli from the stream bed to the water column. For instance, considerable 

differences were reported in the critical bed shear stress (τc) values, when bed shear stress for 

erosion is surpassed, which defines the initiation of E. coli resuspension. The study by Streets 

and Holden (2003) estimated τc of 0.02 – 0.1 Pa, while Bai and Lung (2005) and Jamieson et 

al. (2005b) reported τc values 3 and 16 times greater. We also estimated the potential impact 

of particle size on τc, which is shown in Figure 5.3. The critical shear stress for particle sizes 

less than 5 µm, is considerably higher than that for particle sizes > 5µm. The τc at 2 µm was 

99% greater than that at 5 µm. This increased critical shear stress for smaller particles sizes 

can potentially lower the resuspension of E. coli. Very fine silt (< 8 µm) exhibit strong 

cohesion, while larger silt particles (8-62 µm) are more weakly associated (van Rijn, 2007). 

E. coli are generally thought to be associated with fine sediment particles in the aquatic 

environment (Schillinger and Gannon, 1985; Gannon et al., 1983; Auer and Niehaus, 1993) 

and the work of Atwill et al. (2007) found a significant direct relationship between fine 

particles and E. coli concentrations in stream bed sediments. Therefore, application of the τc 

values of fine particles is a reasonable approach for quantifying E. coli resuspension (Pandey 

et al., 2012a). While the model clearly reflects the observations of other researchers, the 

results for scenarios representative of field conditions in the Squaw Creek Watershed were 

compared to measured E. coli loads.  The measurements of E. coli in the streambed sediment 

and the water column are shown in Figure 5.4 as the ratio between E. coli concentrations in 

the sediment and the water column. Approximately 87% of the water samples exceeded the 
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Figure 5.4. Figure shows ratio between measured E. coli concentration in sediment (Cs) and the water column (Cw). The 

horizontal red line indicates 1:1 line, and blue circles are ratio of E. coli concentrations between sediment and water 

column.   
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single maximum E. coli criteria, and 96% of the samples exceed the geometric mean E. coli 

criteria. In 83% of the collected samples, the sediment E. coli concentrations exceeded the E. 

coli concentrations in the water samples. The ratio between sediment and water samples E. 

coli concentrations varied from 0.11 to 149. The average ratio for the samples was 17 with 

standard deviation of 39. Streambed sediment E. coli concentrations varied from 9.0 × 10
5
 to 

1.0× 10
9
 (cfu/m

3
), while the water column E. coli concentrations varied from 1.8 ×10

5
 to 

7.3×10
7
 (cfu/m

3
) (i.e., 18 – 7267 cfu/100 ml). The average E. coli concentration in the 

streambed sediment was 9.4 × 10
7
 (± 2.4 × 10

8
) (cfu/m

3
), while the average E. coli 

concentration in the water column was 1.7 × 10
7
 (± 1.7 × 10

7
) (cfu/m

3
). 

To validate the model we compared the predictions with the observed E. coli loads, which 

were measured from May 2009 to June 2010 (a total of 23 samples). The data used for model 

validation are shown in Appendix III. The comparison between observed and predicted 

values is shown in Figure 5.5. The model skill (mskill) and Nash-Sutcliffe model efficiency 

coefficient (NSE) values were 0.78 and 0.55, respectively. The coefficient of determination 

(R
2
) value was 0.85. Pandey et al. (2012a) previously demonstrated that the resuspension 

model for predicting the resuspension rate performed well. Previously the model was tested 

for predicting the resuspension rates of E. coli at 16 unique locations in the Squaw Creek 

watershed.  Here, the modified model was applied to a unique location for calculating total 

in-stream E. coli loads.  

The models proposed in chapter 3 and chapters 4 are different than the model proposed for 

total E. coli load estimation. Although the fundamental of E. coli resuspension estimation 

(estimated based on critical shear stresses of cohesive and non-cohesive sediment) remained 
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the same, the model proposed here has different applications and required a different 

formulation. While the work proposed in chapter 3 primarily focuses on developing and 

validating E. coli resuspension equations, here we have modified formulations for predicting 

total E. coli loads in stream water column, and for understanding the potential impacts of 

streambed sediment on the water column. We also estimated the potential impacts of stream 

flow on total E. coli loads and transport. In addition, here we have focused on understanding 

the weaknesses of current EPA method used for assessing in-stream pathogen levels; the 

current EPA method does not include streambed sediment E. coli levels while assessing the 

bacterial impairment in streams. In summary, this simple scenario analysis provides 

insightful understanding of the potential magnitude of E. coli contamination in a stream due 

to sediment resuspension. Sediment E. coli resuspension is a significant source of E. coli 

contamination in stream waters, and ignoring the impact of this source may lead to unfair 

allocation of pollutant loads to stakeholders during watershed assessments.  Incorporation of 

E. coli resuspension in water quality models used to develop watershed management plans is 

imperative for correct identification of point and nonpoint sources of pathogens.  Current 

models which do not include sediment pathogen resuspension while predicting in-stream 

pathogen levels should be applied with great caution. 
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Figure 5.5. The figure shows the comparison between measured and predicted total pathogen loads (LT) with the red line 

indicating the 1:1 line.  Blue circles are E. coli concentrations. Predicted LT is based on particle diameter (d) of 2 µm and 

bulk density of 1.26 g/cc. The LT was estimated as the sum of sediment E. coli load (Ls) and water E. coli load (Lw).  The Ls 

is E. coli load in sediment and the Lw is free floating unattached E. coli load.  Eighty percent of the E. coli in the water 

column were assumed to be attached to sediment particles in the water column (Hipsey et al., 2008). The coefficient of 

determination (R
2
) value of 0.85 indicates that predictions are well matched with measured values.  
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Monitoring bacteria levels in stream sediments will provide much needed data for modeling 

the resuspension process. Current U.S. EPA guidelines for assessing stream water pathogen 

contamination rely solely on analysis of water samples; no effort is made to assess the E. coli 

concentration of stream sediments. However, this work demonstrates the importance of 

quantifying sediment E. coli concentrations to identify circumstances when a potential risk to 

human health is present. Monitoring sediment quality is further important for identifying 

potentially impaired streams since sediment impacts may be negligible at low flows, but 

dominate the total load during high flow conditions.  Further work is recommended to assess 

the role of persistent E. coli in stream bottom sediments.  These bacteria are not 

representative of fresh fecal inputs, but their relation with true pathogens is unknown as they 

may or may not indicate a risk to human health.   

4. Conclusions 

In this study, we demonstrated the impacts of streambed on total in-stream E. coli loads. The 

model was developed to calculate the total in-stream E. coli load. The inclusion of streambed 

sediment E. coli resulted in the increased levels of pathogen load. For example, when 

neglecting the streambed sediment E. coli concentrations, the average E. coli loads was 10
7
 

(cfu/s); however, when streambed sediment E. coli concentrations were included in the 

model, the predictions ranged from 10
10

 to 10
14

 (cfu/s). The model predictions are verified 

using field studies. The model skill (mskill) and Nash-Sutcliffe model efficiency coefficient 

(NSE) values were 0.78 and 0.55, respectively. Results of this study suggest that monitoring 

streambed sediment E. coli concentrations is required in order to improve the assessment of 

in-stream E. coli. 
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CHAPTER 6. ASSESSING THE IMPACTS OF WEATHER PATTERN 

ON IN-STREAM Escherichia coli CONCENTRATIONS 
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Abstract 

Our current weak understanding of in-stream pathogen fate and transport often hinders 

attempts to improve water quality; and moreover, future challenges associated with climate 

warming, may exacerbate water quality conditions. Here we examined variability of in-

stream E. coli concentrations (a pathogen indicator) in the streambed sediment and water 

zones extensively over three years. The E. coli measurements taken in the streambed 

sediment and the water column of the Squaw Creek Watershed were related to air 

temperature, soil temperature, solar radiation, and rainfall to investigate the impacts of 

temperature, solar radiation, and rainfall on in-stream E. coli levels. The results show that 

increase in temperature increases E. coli not only in the water column but also in the 

streambed sediment. Moreover, E. coli in the streambed sediment remained elevated even at 

relatively lower temperature. These results signify that increase in ambient temperature can 

potentially increase E. coli levels in the water bodies, which may results in an increased risk 

to public health. These findings substantiate previous findings that future increases in 

temperature may increase the risks to human health via exposure to water borne pathogens.    
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1. Introduction 

Water borne pathogens are the leading cause of water quality impairments in ambient water 

bodies (USEPA, 2012), and poses serious health risks to human. Understanding how climate 

warming can potentially impact persistence of water borne pathogens, therefore, is critical for 

protection of human health. Many studies have shown linkages between pathogenic disease 

outbreaks (i.e., for human, wild life, terrestrial, and marine biota) and climate warming 

(Vezzulli et al., 2012; Harvell et al., 2002; Daszak et al., 2000; Epstein, 1999). For example, 

data from a study by Harvell et al. (2002), which compiled the World’s major outbreaks from 

1938 to 1997, has shown that more than 50% outbreaks are correlated with high temperature. 

Previous studies have shown the relationships between temperature in East Africa between 

1950 and 1998 and outbreaks of Rift Valley fever (Epstein, 1999). The spread of cholera in 

Bangladesh was found to be related with ocean surface water temperature (Colwell, 1996).  

The El Niño Southern Oscillation (ENSO) has been linked with many disease outbreaks 

including malaria, dengue, and Rift Valley fever (Harvell et al., 2002, Linthicum et al., 

1999). Despite the known sensitivity of pathogens to climate factors such as temperature and 

rainfall, it is challenging to associate climate warming with pathogen contamination, and 

potential health risks (Harvell et al., 2002; Daszak et al., 2000; Epstein, 1999). 

Significant efforts have been made to review the past outbreaks and corresponding climatic 

conditions to improve our understanding how climate variability is potentially related to the 

risk to human health (Vezzulli et al., 2012; Harvell et al., 1999). Studies based on intensive 

measurements of pathogen levels in ambient water bodies for extended periods of time, and 

relating these data to variability in climate (i.e., temperature, rainfall, solar radiation) and 
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pathogen levels (i.e., in the streambed sediment and the water column), however, are lacking. 

Nevertheless, monitoring studies are critical to develop reliable models for predicting future 

changes in waterborne pathogen levels caused by climate warming. 

We addressed this issue by monitoring E. coli (a pathogen indicator) in a natural stream for 

over three years (2009 – 2011) in a field study. The E. coli concentrations in the water 

column and the streambed were measured. The objective of this study is to understand the 

impacts of climate variability (e.g., changes in temperature, solar radiation, and precipitation) 

on the streambed sediment and the water column E. coli concentrations.  

2. Methods and Field Study 

2.1. Study Area 

Streams, and sampling locations in Squaw Creek Watershed, Iowa, USA, are shown in 

Figure 6.1.  The two locations (L1, and L2 of Figure 6.1) indicates sampling points. Samples 

of streambed sediment and the water were collected weekly (1 – 2 times) between May 2009 

and December 2011. In this study we have used E. coli data from the two locations (L1 and 

L2), while in chapter 4 and 5, we have used the data from a single location (L1). We selected 

a single location (i.e., L1) in chapter 4 and 5 because the model requires stream flow data, 

and the gaging station is located at location L1 only. 

The sampling procedure is described in Section 2.2. Figure 6.2 shows the land cover, and 

watershed characteristics. The watershed data were obtained from Natural Resources 

Geographic Information System (NRGIS) library. The Squaw Creek watershed, HUC 10 (ID  
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Figure 6.1. Study area map showing Squaw Creek Watershed, streams, and sampling 

locations. Yellow circles (L1 and L2) indicate two sampling locations. Red color 

boundary indicates watershed area, blue lines indicate stream lines, and light gray color 

lines indicate roads. The sampling locations are shown as red circles.  
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0708010503), has a total drainage area of 592.39 sq km. The basin length and perimeter of 

the watershed is 43.53 km and 134.02 km, respectively, with an average slope of 2.01%. The  

basin relief is 111.51 m, the main channel length is 60.46 km and the total stream length 

within the watershed is 346.72 km. There are 75 first order streams in the watershed. Squaw 

Creek passes through four counties (Story, Webster, Hamilton, and Boone) of Iowa, and is a 

tributary of the South Skunk River. Approximately 0.09%, 0.17% and 0.05% of the 

watershed land area is water, wetland and wetland forest, respectively. Deciduous forest, 

ungrazed grass, grazed grass, CRP grassland, and alfalfa are 2.71%, 10.87%, 2.52%, 1.70%, 

and 1.84%, respectively. Cropping land dominates the watershed, 74% of the watershed is 

under cropping land. Two major crops and corn and soybean rotation, occupies 41%, and 

33% of the land of the watershed, respectively. Other row crops are grown in 0.43% of the 

watershed. Common/industrial, residential, and barren land are 1.67%, 1.27%, and 0.06%, 

respectively. About 87% of the soil in Iowa is fine, and another 8% is sandy. The soils in the 

Squaw Creek Watershed consist of loamy Wisconsin glacial till and clayey lacustrine 

deposits including loam, silty clay, clay loam, and silty clay loam (INRCS, 2011).  

2.2. Sample collection and E. coli enumeration 

Sediment samples from the streambed sediments and the water sample from the center of the 

stream were collected at Locations L1, and L2.  The point L1 (at intersection of Squaw Creek 

and Lincoln Way) and L2 (at the intersection of Squaw Creek and Cameron School Road) 

are shown in Figure 6.1. The L1 receives storm water discharge from the City of Ames urban 

areas; however, the L2 receives the water from the upstream watershed, primary agricultural  
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Figure 6.2. Land cover map of Squaw Creek Watershed.  Dark red circles indicate 

location of confined animal feeding operations; light green circle indicate gaging 

location, blue lines indicate streams, light black lines indicate roads, and dark black line 

indicate watershed boundary. Land covers are shown in multiple colors.  
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lands. The population of Ames in 2010 was 58,965 (US Census, 2010). There are no known 

point pollution sources preceding locations L1 and L2.   

The water samples were collected by lowering a Horizontal Polycarbonate Water Bottle 

Sampler (2.2 L, Forestry Suppliers Inc., Mississippi, U.S) from a bridge into the center of the 

stream. To collect the streambed sediment samples, we used a Shallow Water Bottom Dredge 

Sampler (15 cm  15 cm opening, Forestry Suppliers Inc., Mississippi, U.S). The dredge 

sampler was lowered to the streambed at the same location as water samples. The water 

samples were collected prior to sediment samples in order to avoid streambed sediment 

disturbance, which can potentially cause resuspension of E. coli associated with streambed 

sediment. All samples were analyzed in triplicate. Immediately after collection, samples were 

stored at 4°C and analyzed within 24 hours. To assess the concentration of E. coli in 

sediment, the E. coli attached to particles were detached by stirring the mixture of sediment 

and purified water (ratio 1:1) for 15 minutes at approximately 150-200 rpm using a magnetic 

stir bar. The resulting solution was used to enumerate E. coli in the sediment. The E. coli 

concentrations in the water and the sediment were enumerated by membrane filtration 

techniques (APHA, 1999) on modified mTEC agar (EPA, method 1603). Appendix 1 

provides E. coli enumeration methods.  

2.3. Climate data 

We used weather station in Ames, Iowa (lat 42° 01’48", long 93° 04’48") for obtaining the 

precipitation, air temperature, and soil temperature data of Ames. The data were retrieved 

from Iowa Environmental Mesonet (IEM), Agronomy Department, Iowa State University, 

USA. To obtain daily solar radiation, a LI-COR pyrometer, model LI200X, was used. 
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Temperature data was obtained using a Campbell HMP 45, mounted within a radiation grill 

at 2 m height (IEM, 2012). The sampling locations have a humid climate with an average 

yearly rainfall of 865.4 mm (from 2000 to 2011). The annual air temperature varies from -30 

to 32⁰C (from 2000 to 2011). 

3. Results and Discussion 

Figure 6.3a and 6.3b show E. coli concentrations in the water column and the streambed 

sediment column at two locations. To understand how annual variability in air temperatures 

are related with E. coli in the stream water column and streambed sediment, we graphed E. 

coli concentrations and air temperatures from 2009 to 2011 versus Julian Days (Fig. 6.3c, 

6.3d). As shown in the Figures, the variability in E. coli concentrations in the water column 

follows the changes in air temperature (Fig. 6.3c). Similarly, E. coli concentrations in the 

streambed sediment also increased during high air temperatures (Fig 6.3d).  

While E. coli concentrations in the water column decreased with lower temperatures, E. coli 

in the sediment remained elevated, which indicates that contaminated streambed sediment 

can harbor E. coli even at low temperatures (Fig. 6.3d). The precipitation and stream flow are 

shown in Figure 6.3e, while variability in air and soil temperatures and solar radiation is 

shown in Figure 6.3f.  Spikes in temperature and solar radiation resulted in increased E. coli 

levels in the stream water column as well as in the streambed sediments. Our observed E. coli 

data in the stream water column and the streambed sediment suggests that climate warming 

could potentially increase pathogen contamination in the sediment and the water column of 

ambient water bodies, posing an increased risk to public health.  
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Figure 6.3. E. coli concentrations in stream water column, streambed sediment, air and soil temperatures, solar radiation, 

rainfall, stream flow, and annual changes in E. coli concentrations:  A) red circles and blue diagonals indicate E. coli 

concentrations in water column at locations 1 and 2, respectively; B) orange squares and blue triangles indicate E. coli 

concentrations in the streambed sediment; C) blue diagonals and red circles indicate annual changes (over the three years) 

in the water column E. coli at locations 1 and 2, respectively, and purple line markers indicate air temperature; D) red 

circles and blue diagonals indicate annual changes in E. coli in the streambed sediment at Locations 1 and 2, respectively, 

and purple line markers indicate air temperature; E) blue line and dotted red line indicate stream flow and precipitation, 

respectively; F) dotted blue line indicates air temperature, red line indicates soil temperature, and orange dotted line 

indicates solar radiation.  
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Moreover the intensive monitoring of E. coli in both the streambed sediment and water 

column presented here are rare, but much needed to develop and validate models for  

predicting the impacts of climate warming on human health risks associated with exposure to 

water borne pathogens. 

4. Conclusions 

Here we have shown the impacts of weather pattern on in-stream pathogen contaminations. 

Results show that increase in ambient temperature could potentially result in elevated 

pathogen concentrations in streams as well as in other ambient water bodies (i.e., lakes, 

reservoirs, and even oceans). The data shows that increase in temperature increases 

pathogens not only in the water column but also in the streambed sediment. Moreover, 

pathogens in the contaminated streambed sediment remained elevated even at relatively 

lower temperature, while water pathogens were decreasing. This indicates that bed sediment 

can prolong the contamination time. These results signify that increase in ambient 

temperature may results in an increased risk to public health. The field study and 

observations of E. coli in the streambed sediment and the water column presented here will 

be useful to understand potential impacts of climate warming on pathogen contaminations in 

ambient water bodies 
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CHAPTER 7. GENERAL CONCLUSIONS 

 

The goal of this study was to improve understanding of in-stream E. coli transport. Here we 

have developed models for predicting in-stream E. coli concentrations, which have long been 

considered a challenging task due to complex interactions between stream sediment and 

water columns, and impacts of watershed landscape. The models proposed here predict 

resuspended E. coli from the streambed sediment to the water column, in-stream total E. coli 

loads, and E. coli concentrations in the streambed sediment as well as in the water column. 

We have developed new approaches, which use Geographical Information Systems (GIS) 

and Soil and Water Assessment Tool (SWAT), for predicting in-stream E. coli 

concentrations. In addition, we have carried out an extensive in-stream E. coli monitoring 

program, which is very rare, for determining E. coli concentrations in the streambed sediment 

and the water column for extended period of time. These E. coli measurements were used to 

verify the predictions. Monitored in-stream E. coli data were also used to understand the 

potential relationships between in-stream E. coli concentrations and weather pattern. The 

following sections summarize the methods and significant findings from each of the five 

study objectives. 

7.1. Objective 1: Assess the impacts of watershed indexes and precipitation on spatial 

in-stream E. coli concentrations 

Develop a Geographic Information System (GIS) based model to predict waterborne E. coli 

concentrations in stream water column.   

Hypothesis: Waterborne E. coli concentrations in a stream can be estimated using the 

landscape characteristics of the same stream watershed.  
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Reducing in-stream pathogen contamination requires an understanding of the combined 

impacts of land cover, climatic conditions, and anthropogenic activities at the watershed 

scale. While previous studies have investigated linkages between the landscape and water 

chemistry using the watershed characteristics approach, relationships between watershed 

landscape characteristics and waterborne E. coli levels need further examination to 

understand how watershed indexes potentially impacts in-stream pathogen concentrations.  

Here we have assessed linear relationships between in-stream E. coli water quality data, 

watershed indexes, and rainfall for the Squaw Creek Watershed, IA, USA. The watershed 

indexes consider the undisturbed land cover which encompasses the natural land cover area, 

wetlands, and vegetated stream corridors, and the disturbed land cover extent which includes 

areas receiving manure from confined animal feeding operations (CAFOs), tile-drained areas, 

and areas in cropped and urban land. In addition to disturbed and undisturbed land, we also 

calculated indexes for barren land and slope. Bivariate analysis was used to assess the 

linkage between waterborne E. coli concentrations, watershed indexes and the cumulative 

rainfall 15, 30, 45, and 60 days prior to water sample collection.  

To predict in-stream waterborne E. coli concentrations, we developed multivariate regression 

models, and predictions were compared with the measured E. coli concentrations at 46 

sampling locations over four sampling periods in two years. Results show that areas 

receiving manure, wetlands, drained land, and cropped land all influence in-stream 

waterborne E. coli concentrations significantly (p < 0.001). The coefficient of determination 

was higher when indexes were corrected using the cumulative rainfall 30 days prior to the 

sampling event. Model skill varied from 0.29 to 0.55. More than 95% of the predictions 
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across all spatial locations fall within one order of magnitude of the observed E. coli 

concentrations. This Geographic Information System (GIS) based approach for predicting in-

stream waterborne E. coli concentrations appears to be a useful technique for assessing the 

impacts of land management on water quality. 

7.2. Objective 2: Develop a model for predicting resuspension of E. coli from streambed 

sediments  

Develop a model to predict E. coli resuspension rates from the streambed sediment to the 

water column.  

Hypothesis: In-stream E. coli resuspension rates can be calculated using the stream 

flow properties and characteristics of both cohesive and non-cohesive sediment.   

Predicting in-stream E. coli transport requires understanding of resuspension of E. coli from 

the streambed sediment to the water column of a stream. To improve predictions of in-stream 

E. coli transport, here we have developed a formulation for calculating E. coli resuspension 

rates that accounts for properties of the stream flow and properties of cohesive and non-

cohesive sediment. In E. coli resuspension model, the resuspension rates were expressed as 

the product of the concentrations of E. coli attached to sediment particles and erosion rates, 

which were estimated using sediment transport theory. Model calculates streambed shear 

stress, and critical shear stresses of cohesive and non-cohesive sediments for estimating 

erosion rates.  To verify predicted E. coli resuspension rates, an E. coli monitoring program 

was carried out at 16 locations of the Squaw Creek Watershed, Iowa; the E. coli 

concentrations in the streambed sediment and the water column were measured. Comparisons 

between predicted and inferred (i.e., observed) E. coli resuspension rates show that model 
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performed well. Approximately 81% of the predicted E. coli resuspension rates were within a 

factor of 2 of the inferred values, while all predicted values were within a factor of 5 of the 

inferred values. A relatively higher model skill value of 0.85 indicates that the model predicts 

E. coli resuspension rates successfully, which should help in developing a hydrological 

model for predicting E. coli transport in streams.  

7.3 Objective 3: Improve SWAT for developing TMDLs for bacteria  

Develop a pathogen transport model for improving SWAT for predicting streambed sediment 

and water column E. coli concentrations.  

Hypothesis: Integrating a pathogen transport model, capable of predicting E. coli in the 

streambed sediment as well as in the water column, into Soil and Water Assessment Tool 

(SWAT), can improve in-stream E. coli predictions at the watershed scale. 

Hydrological models capable of predicting streambed sediment E. coli concentrations are 

lacking, potentially due to the complexities involved in modeling interactions between 

streambed sediment and water column E. coli. Here the primary task was to develop a 

hydrological model capable of predicting E. coli concentrations in the streambed sediment 

and the water column. To complete this task, a new approach for predicting E. coli 

concentrations in the streambed sediment and the water column was developed. Firstly, a 

model capable of predicting E. coli resuspension was formulated. Secondly, formulations for 

calculating in-stream E. coli routing, water temperature depended E. coli growth, and 

streambed sediment as well as water column E. coli concentrations were developed. Finally, 

these formulations were programmed in FORTRAN, and were integrated into the Soil and 
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Water Assessment Tool (SWAT), a watershed scale hydrological model, which calculated E. 

coli concentrations in the streambed sediment and the water column.  

The modified SWAT model was applied in the Squaw Creek Watershed. Predictions of 

streambed sediment E. coli, water column E. coli concentrations, and stream flow were 

verified using monitored values. Results show that the modified SWAT is capable of 

predicting in-stream E. coli concentrations (i.e., in streambed sediment and water column).  

Majority of the E. coli predictions was within 1 order magnitude of the observed values. For 

example, approximately 62% of the predicted streambed sediment E. coli concentrations, and 

82% of the predicted water column E. coli concentrations were within 1 order magnitude of 

the measured concentrations. The coefficient of determination (R
2
) for monthly average daily 

flow was 0.99, while for daily flow predictions R
2
 was 0.42. The Nash-Sutcliffe’s efficiency 

(NSE) for monthly average daily and daily flow predictions were 0.75 and 0.39, respectively. 

We anticipate that the new approach developed here, and modified SWAT model, capable of 

predicting the streambed sediment and the water column E. coli concentrations should have 

significant importance in TMDLs development and predicting in-stream E. coli 

concentrations at the watershed scale.  

7.4. Objective 4: Assess the impacts of streambed sediment on in-stream total E. coli 

loads over a range of flow conditions  

Develop a model for predicting in-stream total E. coli loads.  

Hypothesis: Current U.S. EPA methodology for assessing stream water pathogen 

contaminations, which relies solely on analysis of water samples, may underestimate in-

stream pathogen loads.  
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Currently methods, which include both streambed sediment E. coli and water column E. coli, 

to estimate total E. coli loads in streams do not exists. Here we have developed a formulation 

to predict total E. coli loads in streams, which involves both sediment and water column E. 

coli. To calculate total E. coli loads, we have estimated the potential impact of in-stream E. 

coli levels due to resuspending bottom sediments using a range of flow conditions, 

sediment/water bacteria fractions, and particle sizes to which bacteria attach. The predictions 

were verified using E. coli data collected in the Squaw Creek Watershed. The comparisons 

between predicted and observed E. coli loads show that model performed very well. The 

coefficient of determination (R
2
) value was 0.85. The model skill (mskill) and Nash-Sutcliffe 

efficiency (NSE) values were 0.78 and 0.55, respectively. This work provided insightful 

understanding of the potential magnitude of E. coli contamination in a stream caused by 

sediment resuspension. Here we have shown how in-stream E. coli loads are underestimated 

by ignoring the impacts of streambed sediment E. coli. Results suggest that monitoring 

streambed sediment E. coli concentrations is required in order to improve the assessment of 

in-stream E. coli. This work emphasizes the need to improving the United States 

Environmental Protection Agency (USEPA) current water quality testing methodology, 

which currently relies solely on water borne E. coli concentrations to assess stream pathogen 

levels and identify impaired waters. 

7.5 Objective 5: Assess the impacts of weather pattern on in-stream E. coli  

concentrations  

Assess the weather pattern impacts on in-stream E. coli concentrations. 

 Hypothesis: Weather pattern can impact E. coli concentrations in the streambed   

sediment and the water column.  
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Previous studies have shown potential linkages between climate and disease outbreaks. 

However, very few information on how in-stream E. coli concentrations in the streambed 

sediment and the water column changes with weather pattern exists. We addressed this issue 

by monitoring E. coli over extended period of time in the streambed sediment and the water 

column of the Squaw Creek Watershed, and linking these observations with the weather 

pattern. The E. coli concentrations were linked with air temperature, soil temperature, 

precipitation, solar radiation, and stream flow. The observations show that increase in 

temperature resulted in higher level of E. coli not only in the water column but also in the 

streambed sediment. Moreover, E. coli levels in the streambed sediment remained elevated 

even at relatively lower temperatures. These findings signify that increase in ambient 

temperature can potentially increase E. coli levels in the water bodies, which may results in 

an increased risk to public health. These results can be a foundation for propagating future 

research to understand how climate warming can potentially impact pathogen levels in our 

ambient water bodies.   

7.6. Implications of the study 

Here we have developed models, which improve understanding of in-stream E. coli 

contaminations. The E. coli data, which were monitored during this study, are very rare, and 

are much needed data either for validating the models or understanding the impacts of 

weather pattern. The GIS based method developed here can be potentially useful in 

understanding how landscape characteristics of the watershed influence in-stream E. coli 

concentrations.  
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Many of the existing water quality models do not include E. coli resuspension, while 

predicting waterborne E. coli concentrations. We proposed a model for calculating E. coli 

resuspension from the streambed sediment to the water column, which can be potentially 

useful to improve the water quality models. We modified the SWAT model, which has been 

used extensively in the USA for predicting stream flow and nutrients concentrations in 

streams. However, it has rarely been used for TMDLs development when waters are 

impaired due to elevated pathogen levels.  This modified version of SWAT will have 

significant importance in improving the understanding of in-stream E. coli fate and transport, 

and will be useful for application of SWAT for TMDLs.  Additionally, the modified version 

of SWAT will be useful for comparison of Best Management Practices (BMP) scenarios 

necessary for EPA-approved watershed management plans.  

Total E. coli load estimation presented in this study shows that monitoring bacteria levels in 

streambed sediments are required in order to estimate in-stream total E. coli loads and assess 

stream impairment correctly. Current U.S. EPA methodologies for assessing stream water 

pathogen contamination, however, rely solely on analysis of water samples; no effort is made 

to assess the E. coli concentration of stream sediments. However, this work demonstrates the 

importance of quantifying sediment E. coli concentrations to identify circumstances when a 

potential risk to human health is present. We anticipate that the results of this study will be 

useful for both estimating total E. coli loads in streams and embarking monitoring of E. coli 

in the streambed sediment to assess impairment levels.  
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An interesting understanding of weather pattern impacts on in-stream E. coli levels were 

obtained here.  We anticipate these findings will be a foundation for investigating the impacts 

of climate change on pathogen contaminations in the ambient water bodies.  

7.7. Limitations of the study and future research recommendations 

The models proposed here are tested in a watershed, where agriculture is dominant land 

cover; approximately 74% of the watershed is under cropping land. Although the theories 

used in the models are sound, we anticipate that the models developed here will require 

further verifications and calibrations, when implementing in the other watersheds. Therefore, 

we recommend verifying the predictions before making a decision on the land management 

plans pertaining to controlling in-stream E. coli concentrations. For example, study presented 

in chapter 2, uses data of single sampling event from four seasons (i.e., data from single day 

sampling in each season). Although the data has considerable spatial heterogeneity (i.e., 46 

sampling locations), we suggest for verifying the predictions using another datasets.  The 

dataset, which includes relatively more frequent observations, can be useful for validating the 

approach. We do not recommend using the regression equations presented in chapter 2 for 

implementing the land cover change plan in order to control in-stream E. coli concentrations 

without verification using data from the other watershed. Nevertheless, the approach used for 

calculating the watershed indexes and deriving the relationships between in-stream E. coli 

and watershed indexes can be a potentially useful tool to support decision making and 

understanding the relationships between watershed indexes and in-stream E. coli 

concentrations.   
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The data used in Chapter 3, 4, 5, and 6 were obtained by extensive field sampling during this 

study in the Squaw Creek Watershed. The extensive monitored E. coli data used here are 

rare; however, measurements are from single watershed. The models developed here were 

implemented in only one watershed (i.e., Squaw Creek Watershed), further verifications are 

required to evaluate the predictions at the watershed scale. Using the data from another 

watershed will also help in improving the predictions.  

In addition, we used measured data to assess the relationships between weather pattern and 

in-stream E. coli concentrations, which indicated that increase in ambient temperatures, can 

potentially elevate in-stream E. coli levels. Understanding the impacts of climate change on 

in-stream E. coli concentrations, however, will demand relatively large datasets from 

multiple streams before making any strong conclusions. Therefore, we recommend extending 

E. coli monitoring in the streambed sediment and the water column of the Squaw Creek 

Watershed. Many agencies such as EPA and USGS are carrying out waterborne E. coli 

monitoring in the ambient water bodies of the USA; however, the data are very sporadic, and 

understanding the impacts of climate change on pathogen contaminations in ambient water 

bodies will require consistent and more frequent E. coli monitoring in the bed sediment as 

well as in the water column.     
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NOMENCLATURE 
 

Inc  natural cover index [-] 

Anc  Area of natural cover [m
2
] 

Ac  Area of polygon [m
2
] 

Iwl  wetland index [-] 

NWI  national wetland inventory polygon  

HWE  historic wetland index [-] 

Isc  river-stream corridor integrity index [-] 

Avsr  vegetated stream riparian area [m
2
] 

Atsr  total stream riparian area [m
2
] 

Ibr  barren area index [-] 

Abarren  area of barren land [m
2
] 

CAFO  confined animal feeding operations 

Icafo  CAFO index [-] 

Ama  area receiving manure [m
2
] 

Id  drained land index [-] 

Ad  drained area [m
2
] 

Ircc  corn crop index [-] 

Ircs  soybean crop index [-] 

Acc  area under corn crop [m
2
] 

Acs  area under soybean crop [m
2
] 

Iurb  urban area index [-] 
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Aurban  area under urban land cover [m
2
] 

Islope  slope index [-] 

slpavg  average slope (%) 

slpmax             maximum slope (%) 

GIS  Geographic Information System 

a  coefficient for the effects of particle packing on the critical shear stress c [L
2
] 

a1 coefficient in the alternative model of the resuspension rate (eq. 14) [ 131 11TL
 bb

] 

b coefficient for the effects of particle packing on the critical shear stress c [M
-1

 

L
3
] 

b1  exponent in the alternative model of the resuspension rate (equation 14) [-] 

C1  concentration of E. coli in the water column [CFU/m
3
] 

C2  concentration of E. coli in the sediment [CFU/m
3
] 

c3  g(s-1)/6, coefficient for the effect of clay on the critical stress c [M L
-2

 T
-2

] 

c5  coefficient for the effect of clay on the critical stress c [M L
-1

 T
-2

]

Ca  concentration of E. coli attached to sediment in the bed [CFU/m
3
] 

d  diameter of sediment particles to which E. coli attach [L] 

E  erosion rate for sediment [L T
-1

] 

E0  erosion rate at the threshold of erosion [L T
-1

] 

E0a  coefficient in the predicted resuspension rate [L T
-1

] 

fa  fraction of E. coli in the water column that are attached to sediment [-] 

g  acceleration of gravity [L T
-2

] 
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H2  depth of the sediment containing E. coli [L] 

kn2  net growth rate in the sediment [T
-1

] 

N  number of parameters [-] 

n  Manning roughness coefficient [-] 

na  exponent in the predicted resuspension rate [-] 

ns  exponent in the erosion rate for sediment [-] 

Q  discharge [L
3 

T
-1

] 

R  hydraulic radius [L] 

Ra  predicted resuspension rate [CFU L
-2

 T
-1

] 

Rai  inferred resuspension rate [CFU L
-2

 T
-1

] 

aiR   average inferred resuspension rate [CFU L
-2

 T
-1

] 

S  slope [-] 

i
yS   relative sensitivity to yi [-] 

s  specific gravity of sediment particles [-] 

t  time [T] 

T  temperature []

vr  resuspension velocity [L T
-1

] 

ws  settling velocity [L T
-1

] 

yi  generic parameter 

  coefficient relating particle diameter to shear stress [M
-1

 L
2
 T

2
] 

yi  uncertainty in yi 

  water density [M L
-3

] 

b  bulk density of the sediment [M L
-3

] 
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 sum of the squares of the differences between the logarithms of resuspension 

rates 

b  bottom shear stress [M L
-1

 T
-2

] 

c  critical shear stress for cohesive sediment [M L
-1

 T
-2

] 

cn  critical shear stress for non-cohesive sediment [M L
-1

 T
-2

] 

 kn2H2C2/fawsC1, parameter measuring the importance of settling and net 

growth [-] 

b  aexp(bb)/d
2
, contribution of bulk density to the critical shear stress c [-] 

c  c5/c3d, contribution of binding effects of clay to the critical shear stress c [-] 

  Shields parameter [-]  

ECwz   change in E. coli concentrations in the water zone [CFU/d] 

ECsuz   change in E. coli concentrations in upper zone of the streambed [CFU/d]  

ECslz   change in E. coli concentrations in the lower zone of streambed [CFU/d] 

dsuz   depths of streambed upper zone [m] 

dslz   depths of streambed lower zone [m] 

dwz   depth of the water zone [m] 

ECruz   resuspension from the streambed upper zone [CFU/d] 

ECrlz   resuspension from the streambed lower zone [CFU/d] 

ECduz   depositions of E. coli from the water zone to the streambed upper zone 

[CFU/d] 

ECdlz  depositions of E. coli from the water zone to the streambed lower zone 

[CFU/d] 

ECgwz   E. coli growth in the water zone [CFU/d] 

ECguz   E. coli growth in the streambed upper zone [CFU/d] 

ECglz   E. coli growth in the streambed lower zone [CFU/d] 

rsuz   streambed upper surface erosion rate [m/d] 
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TSS  total suspended solid concentrations [g/m
3
] 

Tw   water temperature [⁰C] 

Tair   air temperature [⁰C] 

SOL_AWC  soil available water capacity [-] 

GW_DELAY  groundwater delay coefficient [-] 

SURLAG  surface runoff lag coefficient [-] 

GW_Alfa  base flow recession coefficient [-] 

CN2  curve number [-] 

DDRAIN depth of subsurface drain [mm] 

TDRAIN time to drain soil to field capacity [hr] 

GDRAIN drain tile lag time [hr] 

DEP_IMP  depth to impervious layer [mm] 

BACTKDDB  E. coli partition coefficient  [-] 

BACTSWF   fraction of manure applied to land areas that has active colony forming units  

[-] 

PRF    peak rate adjustment factor for sediment routing in the main channel [-] 

SPCON  linear parameter for calculating the channel sediment routing [-] 

WOF    wash-off fraction for E. coli [-] 

BACTKDQ  E. coli soil partitioning coefficient [m
3
/kg] 

THBACT   temperature adjustment factor [-] 

BACTMX  E. coli percolation coefficient [-] 

TMDL  total maximum daily loads 

SWAT  soil and water assessment tool 

LT total E. coli discharge [CFU/s]  
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Lw water E. coli load [CFU/s]  

Ls resuspending E. coli load [CFU/s]  

Q water discharge [m
3
/s]  

Rp resuspended pathogens [CFU /m
2
s]  

Cw E. coli concentration in water [CFU/m
3
]  

Cs E. coli concentration in sediment [CFU/m
3
]  

WA wetted surface area [m
2
]  

Pws 

 

 

 

 

 

 

E. coli ratio between sediment and water column 

[CFU /m
3
] / [CFU /m

3
] 
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APPENDIX I: Procedures adapted for E. coli enumeration, sample collection, and bulk 

density estimation 

1. Procedure for E. coli analysis 

Summary 

The modified mTEC agar method (i.e., standard EPA method 1603) provides E. coli count in 

water by membrane filtration using modified Membrate-Thermotoleraant E. coli agar 

(modified mTEC). The method gives a direct count of E. coli in ambient water based on the 

development of colonies, which grow on the surface of a membrane filter.  A water sample is 

filtered through the membrane, which retains the E. coli. After filtration, the membrane 

containing the E. coli is placed on a selective and differential agents (i.e., medium), modified 

mTEC Agar. The membrane filter with medium in petri dish is incubated at 35 ± 0.5 °C for 2 

h to resuscitate the injured or stressed bacteria, and then incubated at 44.5 ± 0.2 °C for 22 h. 

The target colonies on modified mTEC agar are red or magenta in color after the incubation 

period (EPA, 2006). 

 

Materials  

 Magnetic stirrer 

 Stirrer bar 

 Weighing scale 

 Pipettes 

 Graduated cylinders 
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 Disposable pipette tips 

 Petri dishes, sterile, prepared with Modified mTEC agar 

 Filtration units (filter base and funnel) 

 Filter flask 

 Sterile, white gridded 0.45 µm membrane filters 

 Sterile forceps 

 Ethanol (for flame-sterilizing forceps) 

 Bunsen burner 

 Thermometer 

 Incubator maintained at 35±0.5°C 

 Water bath maintained at 44.5±0.2°C 

 

Precautions 

Always wear gloves when handling samples containing E. coli.   

Mouth pipetting is prohibited 

General Procedures for Membrane filtration  

1. First sterile filtration units at the beginning of each filtration series to prevent 

accidental contamination.  A filtration series is considered to be interrupted when an 

interval of 30 minutes or longer elapses between sample filtrations. 

2. A sample volume with expected bacterial density will be passed through the 

membrane filter. 
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3. The suggested sample volumes for stream water samples range 5 - 20 ml. 

4. For enumerating E. coli in streambed sediment, prepare a mixture of streambed 

sediment and water (1:1) weight basis in a beaker size of 500 – 1000 ml. 

5. The suggested weight of sediment range from 50 – 100 g. 

6. Mix the sediment and water for 15 minutes using magnetic stirrer with 150 – 200 rpm 

of stirrer bar speed. 

7. The suggested sample volumes for mixture of streambed sediment and water for 

filtration is 0.5 – 2 ml.  

8. Using sterile forceps, place a sterile membrane filter over porous plate of receptacle.  

9. Carefully place matched funnel unit over receptacle and lock it in place. 

10. Filter samples (i.e., water sample, and mixture of sediment and water) under partial 

vacuum. 

11. Rinse the interior surface of the funnel by filtering three 20 to 30 mL of sterile 

dilution water. 

12. Immediately remove membrane filter with sterile forceps and place on culture dishes 

prepared with modified mTEC agar. 

13. Close the dish, invert, and incubate for 2 hours at 35 ± 0.5°C. 

14. Next incubate for 22 hours at 44.5 ± 0.2°C. 

 

2. Sample collection in Squaw Creek Watershed 

The water samples were collected by lowering a Horizontal Polycarbonate Water Bottle 

Sampler (2.2 L, Forestry Suppliers Inc., Mississippi, U.S) (Figure A1) from a bridge into the 
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Figure A1. Sample collection devices: stream water samples were collected using horizontal polycarbonate water bottle 

(left), and streambed sediment samples were collected using Shallow Water Bottom Dredge Sampler (right). 
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center of the stream. To collect the streambed sediment samples, we used a Shallow Water 

Bottom Dredge Sampler (15 cm  15 cm opening, Forestry Suppliers Inc., Mississippi, U.S) 

(Figure A1). The dredge sampler was lowered to the streambed at the same location as water 

samples. The water samples were collected prior to sediment samples in order to avoid 

streambed sediment disturbance, which can potentially cause resuspension of E. coli 

associated with streambed sediment. All samples were analyzed in triplicate. Immediately 

after collection, samples were stored at 4°C and analyzed within 24 hours. 

 

3. Membrane filtration for E. coli enumeration in Squaw Creek Watershed samples 

E. coli in stream water column and streambed sediment column were analyzed.  E. coli were 

enumerated by membrane filtration apparatus and equipment (Figure A2) using modified 

mTEC agar (Difco
TM

, Modified mTEC agar, Becton, Dickinson and Company, Sparks, MD, 

USA). For analyzing E. coli cells in water column, a water sample volume of 10 ml was 

passed through a membrane filter (Millipore, 0.45 µm sterile grided 47 mm, HAG047S6) 

(Figure A2).  For enumerating E. coli in sediment samples, we passed 1 ml volume of 

mixture (sediment and water) through a membrane filter. The procedure for preparing 

mixture of sediment and water is described in section 1 and 4. The membrane filter was then 

placed on the petri dish with modified mTEC agar. Subsequently, petri dish with membrane 

filter was incubated in a water bath (Thermo Scientific, Model 2872, SN 206155-393) 

(Figure B2). The red or magneta colonies on modified mTEC agar were (Figure A3) counted 

using a colony counter (Scienceware, Bel-Art Product, F37862-0000) (Figure B3). 
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Figure A2. Membrane filtrations for E. coli enumeration: upper figure shows 

membrane filtration apparatus and equipment; bottom figure shows petri dish with 

membrane filter (left) and petri dish with modified mTEC agar (right). 
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Figure A3. Membrane filters incubation and E. coli cells: upper figure shows water 

bath used for membrane filter incubation and bottom figure shows E. coli in sediment 

sample (left), E. coli in water samples (right), and colony counter (middle).  
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4. E. coli calculation in water and sediment samples 

4.1. E. coli calculation in a unit volume of water samples 

In order to enumerate E. coli in water sample, we filtered 10 ml water sample through 

membrane filter using membrane filtration device discussed in section 1 and 3. After 

filtration, the membrane filter was placed on a petri dish with modified mTEC agar. After 22 

hours of incubation of the filter and modified mTEC agar dish at 44.5 ± 0.3 ⁰C, E. coli 

colonies grown in membrane filters were counted. Subsequently, we used equation 1 (shown 

below) to obtain E. coli colonies in 100 ml (or 100 g) of stream water sample.  

 

            

                       
 

   

                   
     ……………………………………… (1) 

To calculate the E. coli in per unit m
3
 of water sample, we converted E. coli in 100 ml of 

water samples into E. coli in m
3
 of water samples using equation 2.  

  

            

                  
 

   

                    
           ………………………………… (2) 

4.2. E. coli calculation in a unit volume of sediment samples 

To enumerate E. coli in streambed sediment sample, we mixed 80 g of sediment and 80 g (or 

80 ml) of water in a beaker and stirred the mixture at 150 - 200 rpm using a magnetic stirrer 

(Corning PC -620D) for 15 minutes. Then 1 ml of mixture was passed through a membrane 

filter, and immediately after filtration the filter was placed on a petri dish with modified 

mTEC agar. Subsequently the filter with modified mTEC agar dish was incubated in a water 

bath (Figure A3).  The E. coli colonies grown in the membrane filter were counted (Figure 
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A3). To obtain E. coli colonies in per 100 g of streambed sediment sample, we used equation 

3 for calculations. 

 

   

               
 

   

               
 

                      

             
     ……………………………..(3) 

where total mixture volume (i.e., 80 g of sediment and 80 ml of water was calculated using 

equation 4. 

               
                

                                  
 

  
 
                ……………..(4) 

E. coli concentrations in per m
3
 of sediment volume was calculated using equation 5. 

   

             
  

   

              
                        

     

  
  

     

   ……………….(5) 

The method adapted here for calculating E. coli in sediment does provide an approximate E. 

coli concentration in sediment. Here our assumption is that after stirring sediment of 80 g and 

water of 80 ml, all of the attached E. coli to sediment particles are detached from the particles 

and are uniformly distributed throughout the mixture. This assumption may lead to a degree 

of uncertainty in calculation of sediment E. coli. For example, there is a possibility that a 15 

minutes stirring may not release all of the E. coli attached to sediment into mixture. The other 

source of uncertainty could be caused by 1 ml sample used in filtrations. For instance, we 

used 1 ml of mixture for filtering through membrane filters. There is a possibility that the 

particles of large sizes in mixture (i.e., 80 of sediment and 80 ml of water) were not a part of 

that 1 ml solutions used for filtrations. In calculating E. coli in a unit gram of unit volume of 

sediment, we used a bulk density of 1.26 g/cc. Our measurement shows that bulk density of 
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streambed sediment (Appendix I, Table A) varies from one sample to the other. To 

understand the potential uncertainties in predictions, we have calculated impacts of changes 

in bulk density on sediment and water column E. coli concentrations, which is described in 

chapter 4 (Table 4.4), and readers are encouraged to understand the potential uncertainties 

involved in E. coli measurement and E. coli predictions, while using the models proposed in 

this research.    

5. Bulk density estimation 

For predicting E. coli resuspension from the streambed sediment to the water column, we 

used a calibrated value of bulk density of 1.26 g/cm
3
; the calibration was performed while 

developing resuspension model described in chapter 3.  To understand the variability in 

streambed sediment bulk density from one sample to the other, we calculated the potential 

changes in the bulk density sediment samples. For estimating a range for bulk density of 

streambed sediment of Squaw Creek Watershed, we collected streambed sediment samples at 

14 locations (7 sampling locations in main streams and 7 sampling locations in tributaries of 

the Squaw Creek Watershed). Sampling locations are shown in Figure A4. The streambed 

sediment samples were collected using a soil corer diameter (3.175 cm) and height (25.91 

cm). We drive a soil corer into the streambed and remove the intact core; subsequently the 

sediment core weight and volume were measured. The core volume (205.78 cc) was 

estimated using the volume formula (π r
2
h). The bulk density of the sediments, expressed as 

weight per unit volume, was determined from sediment wet and dry weight (dried in the oven 

at approximately 75°C for 2 days (Roberts et al., 1998). The data are shown in Table A. 
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 ………………………………(3)

     

Results show that the bulk density varies from 1.05 – 2.08 g/cc. The average of the bulk 

density was found to be 1.45 g/cc with standard deviation of 0.29 g/cc. Considering the 

greater variation (i.e., 1.05 – 2.08 g/cc) in bulk density among 14 location shown in Figure 

A3, we expect that the bulk density used in this analyses (1.26 g/cc) may require adjustment 

(or calibration) while predicting in-stream E. coli concentrations in other study areas.   
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Figure A4. Streambed sediment sampling locations: red dots indicate 14 sampling locations: T1, 

T2, T3, T5, T7, T8, and T9 are locations in tributaries; and S1, S2, S3, S4, S5, S6, and S7 are 

locations in main streams. Blue lines indicate streams; light gray lines indicate roads; and dark 

red lined indicates watershed boundary.  
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APPENDIX I: Table A. Bulk density values among 14 locations shown in Figure A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Reference 

Roberts, J., Jepsen, R., Gotthard, D. and Lick, W. (1998) Effects of particle size and bulk density on erosion of quartz particles. 

Journal of Hydraulic Engineering 124(12), 1261-1267. 

U.S. Environmental Protection Agency (2006) Method 1603—Escherichia coli in water by membrane filtration using modified 

membrane-thermotolerant Escherichia coli agar: Washington, D.C., EPA 821-R-06-011, 42 p. 

 

Location ID 
Dish 

Weight (g) 
Wet Sample 
Weight (g) 

Volume 
(cm3) 

Dry Sample + 
Dish Weight (g) 

Dry Sample 
Weight (g) 

Dry Bulk 
Density (g/cm3) 

T1 15.80 352.20 205.78 286.60 270.80 1.32 

T2 16.10 315.10 205.78 232.40 216.30 1.05 

T3 15.70 335.70 205.78 297.20 281.50 1.37 

T5 15.60 577.60 205.78 443.60 428.00 2.08 

T7 16.10 485.70 205.78 403.00 386.90 1.88 

T8 16.10 386.80 205.78 301.10 285.00 1.38 

T9 15.90 401.40 205.78 332.50 316.60 1.54 

S1 14.10 400.40 205.78 326.40 312.30 1.52 

S2 15.70 393.40 205.78 314.60 298.90 1.45 

S3 16.00 327.30 205.78 273.10 257.10 1.25 

S4 16.10 294.60 205.78 235.40 219.30 1.07 

S5 15.70 321.50 205.78 267.70 252.00 1.22 

S6 15.70 394.80 205.78 325.70 310.00 1.51 

S7 16.10 418.20 205.78 360.70 344.60 1.67 

     
AVERAGE 1.45 

     
STDEV 0.29 

http://www.epa.gov/waterscience/methods/method/biological/
http://www.epa.gov/waterscience/methods/method/biological/
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APPENDIX I: Table B. Particle Size Distribution of streambed sediment at 16 locations (T1 – T9 samples were from 

tributaries, and S1 – S7 samples were collected at main streams (Figure A4). 

 

      Gravel % Sand % Fines % mm Coefficient 

Type Date 
Cobbles 

% 
CRS FINE CRS MEDIUM FINE SILT CLAY D(85) D(60) D(50) D(30) D(15) D(10) C(U) C-C 

1 10/16/2010 0 0 1.5 33.8 25.1 21.4 11.3 6.9 3.33 1.78 1.32 0.223 0.0525 0.0132 134.5 2.12 

2 10/16/2010 0 0 1.3 5.1 47.3 26.8 9.7 9.8 1.15 0.557 0.457 0.291 0.017 0.0059 94.8 25.85 

3 10/16/2010 0 22.9 36 10.6 14.2 13.1 3.2 24.1 11.3 7.69 1.89 0.391 0.276 40.85 1.15 

4 10/16/2010 0 0 5.8 16.9 26.1 42.5 6 2.7 2.96 0.566 0.41 0.242 0.147 0.103 5.52 1.01 

5 10/16/2010 0 0 0 0 1.9 59.9 32.2 6 0.224 0.124 0.0989 0.0602 0.0252 0.0116 10.62 2.52 

6 10/17/2010 0 5.4 20.3 24.3 40.2 8.5 1.3 7.58 2.81 2 1 0.547 0.43 6.54 0.83 

7 10/17/2010 0 5.1 15 20.4 39.1 17 3.4 7.07 2.04 1.47 0.701 0.304 0.218 9.33 1.1 

8 10/17/2010 0 0 0 0 13.5 82.2 3.5 0.8 0.41 0.272 0.241 0.19 0.151 0.118 2.3 1.12 

9 10/17/2010 0 0 0 1.3 50 46.2 1.7 0.8 0.831 0.502 0.433 0.319 0.23 0.193 2.6 1.05 

10 10/16/2010 0 0 17.2 15.5 30.1 23.5 9.8 3.9 6.11 1.28 0.707 0.325 0.105 0.0366 34.79 2.27 

11 10/16/2010 0 16.3 21 21.2 29.2 11.2   1.1 20.6 4.23 2.81 1.2 0.488 0.8 11.14 0.89 

12 10/16/2010 0 0 0 2.8 38.1 54.8 3.7 0.6 0.609 0.43 0.382 0.295 0.219 0.185 2.32 1.09 

13 10/17/2010 0 0 0.5 7.8 48 41.7 1.4 0.6 1.3 0.553 0.468 0.342 0.255 0.221 2.51 0.96 

14 10/17/2010 0 0 11.2 21.5 49.5 17.3 0.5 3.96 1.56 1.11 0.582 0.394 0.34 4.59 0.64 

15 10/17/2010 0 0 0 2.3 62.4 34.4 0.3 0.6 0.988 0.599 0.519 0.395 0.309 0.275 2.18 0.95 

16 10/17/2010 0 4.4 20.7 4.5 50.9 18.7   0.8 11.9 0.956 0.756 0.518 0.388 0.345 2.77 0.81 
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Figure A5. Sampling locaitons of 

streambed sediment for particle size 

distribution analysis. 

APPENDIX II: Table A. Streambed sediment and water column E. coli concentrations in Squaw Creek Watershed at 16 
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locations. The data of E. coli presented in this table were used in developing resuspension model described in chapter 3. 

    

 
Sediment 

 
  
 

Water 
       

Location ID Date (CFU/m
3
) 

 
(CFU/m

3
) 

      

1 7/17/2009 1.251E+08 

 
5.750E+06 

   
2 7/17/2009 2.629E+08 

 
6.667E+06 

   
3 7/17/2009 1.620E+08 

 
3.750E+06 

   
4 7/17/2009 3.548E+08 

 
3.583E+06 

   
5 7/17/2009 3.872E+08 

 
4.667E+06 

   
6 7/17/2009 1.627E+08 

 
7.417E+06 

   
7 7/17/2009 9.266E+07 

 
5.467E+07 

   
8 7/17/2009 6.441E+07 

 
3.333E+06 

   
9 7/17/2009 1.876E+08 

 
5.750E+06 

   
10 7/17/2009 1.356E+08 

 
5.667E+06 

   
11 7/17/2009 3.134E+08 

 
3.083E+06 

   
12 7/17/2009 5.273E+07 

 
2.250E+06 

   
13 7/17/2009 4.840E+07 

 
6.083E+06 

   
14 7/17/2009 4.897E+07 

 
4.417E+06 

   
15 7/17/2009 1.846E+07 

 
5.000E+06 

   
16 7/17/2009 4.143E+07   4.083E+06       
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APPENDIX II: Table B. Streambed sediment E. coli concentrations in Squaw Creek Watershed. The data shown in this table 
was used to verify the predictions of the modified SWAT model and the model for predicting total E. coli loads described in 
chapter 4 and 5, respectively. Also this data set was used in chapter 6 for understanding the potential impacts of weather pattern 
in in-stream E. coli concentrations. 
 

  

 
Streambed sediment E. coli concentrations 

 

Date (CFU/100g) Date (CFU/100g) Date (CFU/100g) Date (CFU/100g) 

5/7/2009 837 4/5/2010 119 8/3/2010 2057 4/11/2011 10523 

6/6/2009 179 5/10/2010 72 8/23/2010 1495 4/28/2011 7294 

6/9/2009 4305 5/19/2010 108 8/27/2010 837 5/17/2011 10643 

6/10/2009 1447 5/24/2010 161 9/6/2010 11659 5/19/2011 8371 

6/18/2009 2128 5/26/2010 431 9/8/2010 7953 5/24/2011 7055 

6/22/2009 455 6/4/2010 1088 9/13/2010 12676 6/6/2011 9029 

6/23/2009 442 6/7/2010 305 9/15/2010 10882 6/13/2011 15247 

6/25/2009 657 6/9/2010 1405 9/20/2010 7115 6/16/2011 11540 

7/11/2009 23379 6/11/2010 8921 9/22/2010 36174 6/24/2011 31630 

8/20/2009 29357 6/14/2010 347 9/27/2010 10164 7/1/2011 19671 

9/8/2009 30016 6/16/2010 682 9/29/2010 16503 7/12/2011 15426 

9/9/2009 32886 6/21/2010 1447 10/4/2010 9746 8/25/2011 41854 

9/23/2009 87176 7/8/2010 2523 10/6/2010 2989 9/6/2011 50464 

9/29/2009 35756 7/12/2010 514 10/11/2010 119 9/8/2011 5083 

10/8/2009 156534 7/14/2010 4831 10/13/2010 30792 9/15/2011 24395 

10/13/2009 36473 7/21/2010 1076 11/1/2010 13513 9/20/2011 44246 

10/30/2009 1973 7/26/2010 1458 11/4/2010 20329 10/27/2011 11061 

3/31/2010 455 7/29/2010 1136 4/7/2011 1614 11/11/2011 10763 

 

APPENDIX II: Table C. stream water column E. coli concentration used in chapter 4, 5 and 6.  
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APPENDIX II: Table C (continued) 

           



 
 

 

2
92

 

 

 
E. coli concentrations 

 

Date (CFU/100ml) Date (CFU/100ml) Date (CFU/100ml)   

5/24/2011 101 7/1/2011 613 9/6/2011 44 
  

5/26/2011 773 7/7/2011 1003 9/8/2011 53 
  

6/2/2011 85 7/12/2011 770 9/15/2011 97 
  

6/6/2011 203 7/21/2011 2560 9/20/2011 453 
  

6/13/2011 423 7/28/2011 813 9/27/2011 10 
  

6/16/2011 293 8/1/2011 237 10/27/2011 397 
  

6/20/2011 707 8/8/2011 2667 11/11/2011 603 
  

6/24/2011 356 8/25/2011 5667 11/18/2011 225 
  

6/29/2011 640 9/1/2011 933 12/13/2011 255 
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APPENDIX III: PRAGRAMMING SOURCE CODES  

B1. Subroutine for predicting bacteria concentrations in streambed and water column. 

!!start!! 

subroutine rtbact 
       
!!    ~ ~ ~ PURPOSE ~ ~ ~ 
!!    this subroutine routes E. coli through the stream network (daily) 
!!    subroutine routes was added by Pramod Pandey from Iowa State University, ames, Iowa 
!!    This subroutine simulate in-stream E. coli processes.  
!!    This subroutine predict bacteria concentration in the streambed and in the water column 
!!    ~ ~ ~ INCOMING VARIABLES ~ ~ ~ 
!!    name                |units       |definition 
!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
!!    inum1               |none        |reach number 
!!    inum2               |none        |inflow hydrograph storage location number 
!!    rchdep              |m           |depth of flow on day 
!!    rcharea             |m^2         |cross sectional area of flow 
!!    rchdep              |m           |depth of flow on day 
!!    rchstor(:)          |m^3         |water stored in reach 
!!    rttime              |hr          |reach travel time 
!!    phi(6,:)            |m           |bottom width of main channel 
!!    ch_l2(:)            |km          |length of main channel 
!!    varoute(3,:)        |metric tons |sediment 
!!    tday                |day         |process time in reach 
!!    curyr               |year        |simulation year 
!!    iida                |Julian day  |simulation day 
!!    ~ ~ ~ OUTGOING VARIABLES ~ ~ ~ 
!!    name                |units       |definition 
!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
!!    bsec_tl             |#CFU/100 g  |E. coli concentrations in streambed top layer 
!!    watlp_conc          |#CFU/100 ml |E. coli concentrations in stream water column 
!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
!!    ~ ~ ~ LOCAL DEFINITIONS ~ ~ ~ 
!!    name                |units       |definition 
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!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
!!    ii                  |none          |counter 
!!    jrch                |none          |reach number 
!!    pi                  |3.15159       | pi value 
!!    c3                  |N/m^3         |coefficient for the effect of clay on critial shear stress, tauc 
!!    c5                  |N/m^2         |coefficient for the effect of clay on critial shear stress, tauc 
!!    dp                  |m             |sediment particle diameter 
!!    a                   |m^2           |coefficient for the effects of particle packing on tauc 
!!    b                   |m^3/g         |coefficient for the effects of particle packing on tauc 
!!    gr                  |m/s^2         |acceleration of gravity 
!!    sr                  |-             |specific gravity of sediment particle 
!!    rows                |g/m^3         |bulk density of the sediment 
!!    roww                |g/m^3         |water density 
!!    Eoa                 |m/s           |Coefficient in predicted resuspension rate 
!!    na                  |unit less     |exponenet in predicted resuspension rate 
!!    muw                 |g/(m.s)       |water viscosity 
!!    chn                 |none          |Manning's "n" value for the reach 
!!    chs1                |m/m           |stream bed slope of reach  
!!    dtl                 |m             |depth of top streambed layer 
!!    dbl                 |m             |depth of bottom streambed layer 
!!    hydr                |m             |hydraulic radis 
!!    wetp                |m             |wetted perimeter 
!!    chz                 |-             |change in horizontal distance per unit 
!!                                       |change in vertical distance on channel side 
!!    taub                |g/(m.s^2)     |stream bed shear stress 
!!    tauc                |g/(m.s^2)     |critical shear stress for cohesive sediment 
!!    taunc               |g/(m.s^2)     |critical shear stress for noncohesive sediment 
!!    resvel              |m/s           |resuspension velocity 
!!    setvel              |m/s           |settling velocity 
!!    ressedmass          | g            |resuspended sediment mass 
!!    setsedmass          | g            |settled sediment mass 
!!    resecoli            |10^3 cfu      |resuspended E. coli numbers 
!!    setecoli            |10^3 cfu      |settled E. coli numbers 
!!    bedsedvol           | m^3          |stream bed sediment volume in reach 
!!    bedsedmass          | g            |stream bed sediment mass in reach 
!!    bedsedmass_tl       | g            |stream bed sediment mass in streambed top layer 
!!    bedsedmass_bl       | g            |stream bed sediment mass in streambed bottom layer 
!!    watvol              |m^3 H2O       |water volume in reach 
!!    ressedmass_tl       | g            |resuspended sediment mass from top layer 
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!!    ressedmass_bl       | g            |resuspended sediment mass from bottom layer 
!!    totressedmass       | g            |total resuspended sediment mass from streambed 
!!    sussedcon           |g/m^3         |suspended sediment mass concentration in stream water 
!!    sussedmass          | g            |suspended sediment mass in stream water 
!!    inss                | g/100 ml     |initial suspended sediment concentrations stream water 
!!    sedin               | g            |suspended sediment routing 
!!    setseddmass         | g            |settled sediment mass from the water column to streambed 
!!    sussedcon_afs       | g/m^3        |suspended sediment concentrations after settling 
!!    sussedcon_bfs       | g/m^3        |suspended sediment concentrations before settling 
!!    bsec_tl             |#cfu/g        |E. coli concentrations in streambed top layer 
!!    bsec_bl             |#cfu/g        |E. coli concentrations in streambed bottom layer 
!!    ibsed_tl            |#cfu/g        |initial E. coli concentrations in streambed top layer 
!!    ibsed_bl            |#cfu/g        |initial E. coli concentrations in streambed bottom layer 
!!    bsen_tl             |#cfu          |E. coli numbers in streambed top layer 
!!    bsen_bl             |#cfu          |E. coli numbers in streambed bottom layer 
!!    res_ecn_tl          |#cfu          |resuspended E. coli numbers from streambed top layer 
!!    res_ecn_bl          |#cfu          |resuspended E. coli numbers from streambed bottom layer 
!!    iwatb               |#cfu /100 ml  |initial suspended sediment concentrations stream water 
!!    totwatlp            |#cfu          |total E. coli numbers in water 
!!    unat_ecoli          |#cfu          |unattached E. coli number in water 
!!    at_ecoli            |#cfu          |attached E. coli number in water 
!!    at_ecolicon         |#cfu/100 ml   |attached E. coli concentrations in water 
!!    setlp               |#cfu          |settled E. coli number from the water column to streambed 
!!    wtmp                |deg C         |temperature of water in reach 
!!    netgrowth_wat       |d^-1          |netgrowth of E. coli in water 
!!    netgrowth_sed       |d^-1          |netgrowth of E. coli in sediment 
 
!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
 
!!    ~ ~ ~ SUBROUTINES/FUNCTIONS CALLED ~ ~ ~ 
!!    Intrinsic: Exp, Max, Sqrt, Min 
!!    SWAT: netgrowth_wat, netgrowth_sed 
!!    ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~ 
 
use parm 
      implicit none 
      real, external :: netgrowth_sed, netgrowth_wat 
      integer :: ii, jrch 
      real :: initotwatecoli, inibedsedecoli, inisussed, netwtr, tday 



 
 

 

2
96

 
      real :: totwatecoli, atcwatecoli, atcwatecolicon uatcwatecoli  
      real :: sussedmass, bedsedmass, bedsedvol, acbedsedvol 
      real :: acbedsedmass, taub, tauc, taunc, Eoa, na, resvel, setvel 
      real :: ressedmass, setsedmass, resecoli, setecoli, fa, fua 
      real :: bedsedecoli, bedseddep, acbedseddep 
      real :: wetp, chz, chn, chs1, c3, c5, gr, sr, a, b, dp, rows 
      real :: roww, mu, wtmp, hydr, pi, kp, sedin, qdin,sussedcon 
      real :: bedsedecolicon, totbactp, totbactlp, ressedcon 
      real :: initotwatlp, initotwatp, inibedsedlp, inibedsedp 
      real :: atcwatlp, atcwatp, uatcwatlp, uatcwatp 
      real :: uatcwatlpcon, uatcwatpcon 
      real :: reslp, resp, setlp, setp 
      real :: bedsedlpcon, bedsedpcon, bedsedlp, bedsedp 
      real :: totwatlp, totwatp, atcwatecolicon 
      real :: atcwatlpcon, atcwatpcon, uatcwatecoli, reachwatr 
      real :: wtrin, totbactecoli  
      real :: insussedmass, isedlp_conc, watvol,insussedcon 
      real :: inwatlp_conc, watlp_conc, insedlp_conc 
      real :: sussedmass_bf 
      real :: dtl, dbl, bedsedmass_tl, bedsedmass_bl 
      real :: bsen_tl, bsen_bl, bsec_tl, bsec_bl 
      real :: res_f, nres_f, res_ecn_tl, res_ecn_bl 
      real :: ressedmass_tl, ressedmass_bl  
      real :: ibsen_tl, ibsen_bl, ibsec_tl, ibsec_bl 
      real :: ibsec, ibsen, bsen, bsec 
      real :: wen, wec, in_bedseden, bedseden 
      real :: in_bedsedec, bedsedec, sussedcon_bs 
      real :: sussedcon_as, outfract, fen_tl, fen_bl 
      real :: watlp_end, bsec_tl_end, watlp_conc1 
      real :: sedin1,  sussedmass_bs, totwatlp1 
      real :: inwatlp_conc1, sussedcon_bfs,sussedcon_afs 
      real :: totressedmass, sussedcon_t1, sussedcon_ar 
      real :: ibsedtl, ibsedbl, iwatb, intss 
      real :: unat_ecoli, at_ecoli, at_ecolicon     
      real :: sussedcon_avr, totwatlpcon_ar  
       
      jrch = 0 
      jrch = inum1 
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   !!  all initial values starts 
        pi = 3.14159 
        c3 = 8452.      !!pi * roww * gr * (sr - 1.)/6. 
        c5 = 23. 
        dp = 1.5E-06      !! m 
        bedseddep = 0.10 !! m 
        acbedseddep = 0.02  !!m 
        a = 8.5E-16  
        b = 9.07 
        gr = 9.81 
        sr = 2.65 
        rows = 1.26 !g/cm3 
        roww = 998. 
        Eoa = 1E-06 
        mu = 8.91E-04 
        na = 2. 
        kp = 0.01 
        chn = 0.036 
        chs1 = 2.8E-04 
        dtl = 0.03 
        dbl = 0.06 
        fen_tl = 0.80 
        fen_bl = 1 - fen_tl 
        res_f = 0.75 
 
       hydr = 0. 
       chz = 2. 
       wetp = 0. 
!!       hydraulic radius calculations 
         if(rchdep > 0.0001) then !!change3/14/2002 
         wetp = phi(6,jrch) + 2. * rchdep * Sqrt (1. + chz * chz)     !m 
         hydr = rcharea / wetp               !!m 
         else 
         hydr = 0. !m 
         endif          
  !!  hydraulic radius calculation ends !! tested 
     
  !!  shear stress calculations begins 
         taunc = 0. 
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         taub = 0. 
         tauc = 0. 
         taunc = 414. * dp !Pa 
         taub = roww * gr * hydr * chs1  !pa 
         tauc = taunc * (1. + (a * Exp(b*rows)/(dp * dp)) + (c5/c3*dp)) !! pa 
  !!  shear stress calculations ends 
   
  !! resuspension velocity calculation starts 
       resvel = 0. 
       resvel = Eoa * ((taub - taunc)/(tauc - taunc))**na 
   !! resuspension velocity calculation ends !! tested 
   
  !! settling velocity calculation starts 
      setvel = 0. 
      setvel = gr * dp * dp * roww * (sr - 1.)/(18. * mu)   
   !! settling velocity calculation ends !! tested 
  
  !! make resuspension and settling velocities zero, when  no water 
       if(rchdep <0.01) then !!change3/14/2002 
           resvel = 0. 
           setvel = 0. 
       else 
           setvel = setvel 
           resvel = resvel 
       endif 
  !!end zeroing 
   
  !! calculation bedsediment volume and mass 
        bedsedvol = 0. 
        bedsedmass = 0. 
        bedsedvol = wetp *ch_l2(jrch) * (dtl + dbl) !m3 
        bedsedmass = bedsedvol * rows * 1000000.   !g 
        bedsedmass_tl = 0. 
        bedsedmass_bl = 0. 
        bedsedmass_tl = wetp * ch_l2(jrch)*dtl*rows*1000000. 
        bedsedmass_bl = wetp *ch_l2(jrch)*dbl*rows*1000000. 
 !! calculation bedsediment volume and mass ends !! tested 
   
 !! calculate resuspended mass 
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          tday = 0. 
          tday = rttime / 24. 
          if(tday > 1.) tday = 1. 
          ressedmass = 0. 
          ressedmass = wetp *ch_l2(jrch) * resvel * rows * 1000000.  
          ressedmass = ressedmass * tday * 24. * 3600.  
           
          if(ressedmass >= bedsedmass_tl) then 
          ressedmass_tl = bedsedmass_tl 
          ressedmass_bl = ressedmass - bedsedmass_tl 
          else 
           ressedmass_tl = ressedmass 
           ressedmass_bl = 0. 
          endif 
!!       resuspended mass calculations ends !! tested 
           
!!       initial water volume calculations 
         watvol = 0. 
         watvol = varoute(2,inum2) * (1. - rnum1) + rchstor(jrch)    
!!       water volume calculations ends !! tested 
!!       conditions when no water, then resuspension would be zero 
!        if(wetp >0.01) then  
           totressedmass = ressedmass_tl + ressedmass_bl 
!          ressedmass_tl = ressedmass_tl 
!          ressedmass_bl = ressedmass_bl 
!         else 
!          totressedmass = 0. 
!          ressedmass_tl = 0. 
!         ressedmass_bl = 0. 
!         endif 
!!        conditiosn ends 
 
!!        this testing done to chek resuspended mass after resuspension 
          if(watvol .GE. 0.01) then  
          sussedcon_ar = totressedmass/watvol 
          else 
          sussedcon_ar = 0. 
          endif 
!!        testing ends 
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 !! initialisation suspended sediment conc. 
      if(curyr == 1. .and. iida == 1. ) then 
          sussedcon = 200. !!g/m3 or mg/l 
      else 
          sussedcon =  intss 
      endif    
       
 !! initialisatoin ends 
 !! sediment routing, which is estimated on rtsed subroutines 
         sedin = 0. 
         sedin = varoute(3,inum2) * (1.- rnum1) !!tones 
         sedin = sedin * 1000000.  !!grams 
 !!  sediment routing ends   
 !! suspended sediment mass calculations 
         sussedmass = 0. 
         sussedmass = sedin + rchstor(jrch) * sussedcon + totressedmass 
!!  conditiosn if no water then suspended conc is zero after routing 
         if(watvol .LE. 1.) then 
         sussedcon_bfs = 0.     
         else 
         sussedcon_bfs = sussedmass/watvol 
         endif 
         sussedcon_avr = sussedcon_bfs 
!!     conditions ends !! tested 
!!     incorporate settling in suspended mass 
        
         setsedmass = 0. 
         setsedmass = sussedmass*(setvel/rchdep)*tday*3600. * 24.  
         if(rchdep .LE. 0.02) setsedmass = 0. !!change3/14/2002 
!!      conditions to include settling of sediment 
         If(setsedmass .LE.  sussedmass) then 
!         setsedmass = setsedmass 
         sussedmass = sussedmass - setsedmass  
         else 
!         setsedmass = setsedmass    
!         setsedmass = sussedmass 
         sussedmass = 0. 
         endif   
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!         sussedmass = MAX(10., sussedmass) 
!!      conditions to include settling of sediment ends 
 
!!      conditions for no water 
         if(watvol .GE. 1.) then 
!        sussedcon_bs = sussedmass/watvol 
           sussedcon = sussedmass/watvol 
!          sussedmass_bs = sussedmass 
          else 
!         sussedcon_bs = 0. 
          sussedcon = 0. 
!         sussedmass_bs = 0. 
          endif 
!!      conditions for no water end   
!!      suspended sediment conc after settling  
         sussedcon_afs = sussedcon 
!        sussedcon_t1 = sussedcon 
         intss = sussedcon_afs 
!!       suspended sediment conc after settling ends 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
    
           if(curyr == 1 .and. iida == 1.) then 
           bsec_tl = 700. !! cfu/g 
           bsec_bl = 500. !! cfu/g 
           else 
           bsec_tl = ibsedtl  !! insedconctl(jrch) 
           bsec_bl = ibsedbl  !!insedconcbl(jrch) 
           endif 
            
            
            
           bsen_tl = 0. 
           bsen_bl = 0. 
           bsen_tl =  bsec_tl * bedsedmass_tl 
           bsen_bl =  bsec_bl * bedsedmass_bl 
            
           bsen_tl = max(100000000000., bsen_tl)        !! later on 3/6/2012 
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           bsen_bl = max(100000., bsen_bl)    
            
           res_ecn_tl = 0. 
           res_ecn_bl = 0. 
            
           if(rchdep .GE. 0.02) then 
           res_ecn_tl = ressedmass_tl * bsec_tl  
           res_ecn_bl = ressedmass_bl * bsec_bl  
           else 
           res_ecn_tl = 0. 
           res_ecn_bl = 0. 
           endif 
            
           bsen_tl = bsen_tl - res_ecn_tl 
           bsen_bl = bsen_bl - res_ecn_bl 
            
  !       bsen_tl = max(100000., bsen_tl)        !! later on 3/6/2012 
  !       bsen_bl = max(1E6, bsen_bl)   
            
           !! later on 3/6/2012 
           if(curyr == 1. .and. iida == 1.) then 
           watlp_conc = 200. !! CFU/100 ml 
           else 
           watlp_conc = iwatb       !!inwatconc(jrch) 
           endif  
            
!          if(watvol > 1.) then 
!            watlp_conc =  watlp_conc 
!          else 
!            watlp_conc = 0. 
!          endif 
              
          totwatlp = 0. 
          totwatlp = varoute(19,inum2) * varoute(2,inum2)               & 
     &        *(1.- rnum1)*10000. + watlp_conc * rchstor(jrch)*10000. 
          totwatlp = max(100000000000., totwatlp) 
          totwatlp = totwatlp + res_ecn_tl + res_ecn_bl  
          
          unat_ecoli = totwatlp * 0.20 
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          at_ecoli = totwatlp * 0.80 
          at_ecolicon = at_ecoli/watvol 
           
          atcwatlpcon = at_ecolicon / sussedcon_bfs 
           
!          totwatlpcon_ar = totwatlp /watvol !!CFU/m3 
!          atcwatlpcon = totwatlpcon_ar /sussedcon_afs  !!CFU/g 
           
           
 
  !       fa = kp * sussedcon_avr / (1. + kp * sussedcon_avr) 
          setlp = 0.         
          setlp = setsedmass * atcwatlpcon  
           
          if(setlp .LE.  totwatlp) then 
!          totwatlp = totwatlp - setlp 
          totwatlp = unat_ecoli + at_ecoli - setlp 
          else 
          totwatlp = 0. 
          endif 
!          totwatlp = max(100.,totwatlp) !! later on 3/6/2012 
           
           wtmp = 0. 
           wtmp = 5.0 + 0.75 * tmpav(jrch) 
           if (wtmp <= 0.) wtmp = 0.1 
            
          totwatlp = totwatlp * netgrowth_wat(wtmp)  !! GROWTH NEW 
!pkp_3_13_12           totwatlp = max(100000., totwatlp) 
     
          watlp_conc = totwatlp /(watvol * 10000.) 
 !         watlp_conc = max(10., watlp_conc) 
 !         if(watlp_conc < 1.) watlp_conc = 1. 
          iwatb = 0. 
          iwatb = watlp_conc 
          bsen_tl = bsen_tl + setlp * 0.85 
!          bsen_tl = max(1E14, bsen_tl) 
           
          bsen_tl = bsen_tl * netgrowth_sed(wtmp) 
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          bsen_bl = bsen_bl + setlp * 0.15 
           
          bsen_bl = bsen_bl * netgrowth_sed(wtmp) 
!          bsen_tl = bsen_tl * netgrowth(wtmp) !! GROWTH NEW 
!          bsen_tl = max(1000000., bsen_tl) 
!          bsen_bl = bsen_bl * netgrowth(wtmp) !! GROWTH NEW 
!          bsen_bl = Max(0., bsen_bl)         
           bsec_tl = bsen_tl/bedsedmass_tl  
           bsec_bl = bsen_bl/bedsedmass_bl 
!           bsec_tl = max(10., bsec_tl) 
!           if(bsec_tl < 1.) bsec_tl = 1. 
!           if(bsec_bl < 1.) bsec_bl = 1. 
            ibsedtl = 0. 
            ibsedbl = 0. 
           ibsedtl = bsec_tl  
           ibsedbl = bsec_bl 
  !! bedsediment E. coli initializatiotn ends 
  
 !! bedsediment E. coli number calculations starts 
          
         rch_bactp(jrch) =  0. 
         rch_bactlp(jrch) = 0. 
         rch_bactp(jrch) = bsec_tl * 100 !! CFU/100 g 
         rch_bactlp(jrch) = watlp_conc 
!        rch_bactp(jrch) = sussedcon_bfs 
!        rch_bactlp(jrch) = sussedcon_afs 
!        if(watvol > 0.01) then 
!        rch_bactp(jrch) = bsec_tl 
!         rch_bactlp(jrch) = watlp_conc 
!        else 
 !       rch_bactp(jrch) = 0. 
!        rch_bactlp(jrch) = 0. 
 !       endif 
 
    
      return 
      end 
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!!end!! 

 

B2. Function for predicting bacteria E. coli net growth in streambed.  

!!start!! 
function netgrowth_sed(tmp) 
       
!!    ~ ~ ~ PURPOSE ~ ~ ~ 
!!    this function estimate net ecoli growth for a given temperature in streambed 
!!    Equation is from Hipsey (2009) 
 
!!    ~ ~ ~ INCOMING VARIABLES ~ ~ ~ 
!!    name        |units         |definition 
!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
!!    tmp         |deg C         |temperature on current day 
!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
 
!!    ~ ~ ~ LOCAL DEFINITIONS ~ ~ ~ 
!!    name        |units         |definition 
!!    kg          |1/day         |growth rate  
!!    mumax       |1/day         |maximum growth rate at 20 deg C  
!!    CT1         |-             |species specific constants controlling 
!!                                the exact shape of the function   
!!    CT2         |-             |species specific constants controlling 
!!                                the exact shape of the function    
!!    Tmin        |deg C         |minimum temperature for growth     
!!    Tmax        |deg C         |maximum temperature for growth    
!!    Theta       |-             |theta controls the sensitivity of kd to temperature  
!!    kd          |1/day         |dark death rate    
!!    kd20        |1/day         |dark death rate at 20 deg C   
!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
!!    ~ ~ ~ OUTGOING VARIABLES ~ ~ ~ 
!!    name        |units         |definition 
!!    netgrowth   |1/day         |netgrowth of E. coli corresponding to temperature 
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!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
!!    Intrinsic: Abs, Exp  
!!    ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~ 
 
      real, intent (in) :: tmp 
      real :: netgrowth_sed 
      real :: kg, mumax, CT1, CT2, Tmin, Tmax 
      real :: theta, kd, kd20, wtemp 
      mumax = 2.4 
      Tmin = 4. 
      Tmax = 35. 
      CT1 = 0.003 
      CT2 = 0.13 
      kd20 = 0.48 
      theta = 1.15 
      kd20 = 0. 
 
      !! growth rate estimation 
      wtemp = tmp 
      if(wtemp < 4.) then 
          wtemp = 4. 
      else 
          wtemp = tmp 
      endif 
       
      kg = 0. 
      kg = mumax*(CT1*(wtemp-Tmin)*(1. - Exp(CT2 * (wtemp - Tmax))))**2 
       
      !! death rate estimation 
       
      kd = 0. 
      kd = kd20 * theta ** (wtemp - 20.) 
  
 !     If (wtemp < Tmin .and. wtemp > Tmax) then 
!          kg = 0. 
!      end if 
            
      !! netgrowth estimation 
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      netgrowth_sed = 0. 
      netgrowth_sed = kg !!    - kd 
      netgrowth_sed = Abs(netgrowth_sed) 
      return 
      end 
 

!!end!! 

 

B3. Function for predicting bacteria net growth in water column. 

!!start!!  

function netgrowth_wat(tmp) 
       
!!    ~ ~ ~ PURPOSE ~ ~ ~ 
!!    this function estimate net ecoli growth for a given temperature in water 
!!    Equation is from Hipsey (2009) 
 
!!    ~ ~ ~ INCOMING VARIABLES ~ ~ ~ 
!!    name        |units         |definition 
!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
!!    tmp         |deg C         |temperature on current day 
!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
 
!!    ~ ~ ~ LOCAL DEFINITIONS ~ ~ ~ 
!!    name        |units         |definition 
!!    kg          |1/day         |growth rate  
!!    mumax       |1/day         |maximum growth rate at 20 deg C  
!!    CT1         |-             |species specific constants controlling 
!!                                the exact shape of the function   
!!    CT2         |-             |species specific constants controlling 
!!                                the exact shape of the function    
!!    Tmin        |deg C         |minimum temperature for growth     
!!    Tmax        |deg C         |maximum temperature for growth    
!!    Theta       |-             |theta controls the sensitivity of kd to temperature  
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!!    kd          |1/day         |dark death rate    
!!    kd20        |1/day         |dark death rate at 20 deg C   
!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
!!    ~ ~ ~ OUTGOING VARIABLES ~ ~ ~ 
!!    name        |units         |definition 
!!    netgrowth   |1/day         |netgrowth of E. coli corresponding to temperature 
!!    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
!!    Intrinsic: Abs, Exp  
!!    ~ ~ ~ ~ ~ ~ END SPECIFICATIONS ~ ~ ~ ~ ~ ~ 
 
      real, intent (in) :: tmp 
      real :: netgrowth_wat 
      real :: kg, mumax, CT1, CT2, Tmin, Tmax 
      real :: theta, kd, kd20, wtemp 
      mumax = 2.4 
      Tmin = 4. 
      Tmax = 35. 
      CT1 = 0.055 
      CT2 = 0.1 
      kd20 = 0.48 
      theta = 1.15 
      kd20 = 0. 
 
      !! growth rate estimation 
      wtemp = tmp 
      if(wtemp < 4.) then 
          wtemp = 4. 
      else 
          wtemp = tmp 
      endif 
       
      kg = 0. 
      kg = mumax*(CT1*(wtemp-Tmin)*(1. - Exp(CT2 * (wtemp - Tmax))))**2 
       
      !! death rate estimation 
       
      kd = 0. 
      kd = kd20 * theta ** (wtemp - 20.) 
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 !     If (wtemp < Tmin .and. wtemp > Tmax) then 
!          kg = 0. 
!      end if 
            
      !! netgrowth estimation 
           
      netgrowth_wat = 0. 
      netgrowth_wat = kg !!    - kd 
      netgrowth_wat = Abs(netgrowth_wat) 
      return 
      end 
 

!!end!!  
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APPENDIX IV: HRU details of SWAT simulation. 
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