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ABSTRACT 

 

 The food supply requirement of a growing global population leads to an increasing 

demand for agricultural crops. Without enlarging the current cultivated area, the only way to 

satisfy the needs of increasing food demand is to improve the yield per acre. Production, 

fertilization, and choosing productive crops are feasible approaches. How to pick the 

beneficial genotypes turns out to be a genetic optimization problem, so a biological tool is 

needed to study the function of crop genes and for the particular purpose of identifying genes 

important for agronomy traits. Virus-induced gene silencing (VIGS) can be used as such a 

tool by knocking down gene expression of genes to test their functions.  

The use of VIGS and other functional genomics approaches in corn plants has 

increased the need for determining how to rapidly associate genes with traits. A significant 

amount of observation, comparison, and data analysis are required for such corn genetic 

studies. An autonomous maize functional genomics system with the capacity to collect data 

collection, measure parameters, and identify virus-plants should be developed. This research 

project established a system combining sensors with customized algorithms that can 

distinguish a viral infected plant and measure parameters of maize plants.  

An industrial robot arm was used to collect data in multiple views with 3D sensors. Hand-eye 

calibration between a 2D color camera and the robot arm was performed to transform 

different camera coordinates into arm-based coordinates. TCP socket-based software written 

in Visual C ++ was developed at both the robot arm side and the PC side to perform 

behavioral bidirectional real-time communication.  
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A 3D time-of-flight (ToF) camera was used to reconstruct the corn plant model. The 

point clouds of corn plants, in different views, were merged into one representation through a 

homogeneous transform matrix. Functions of a pass-through filter and a statistical outlier 

removal filter were called from the Point Cloud Library to remove background and random 

noise. An algorithm for leaf and stem segmentation based on the morphological 

characteristics of corn plants was developed. A least-squares method was used to fit the 

skeletons of leaves for computation of parameters such as leaf length and numbers.  

After locating the leaf center, the arm is made ready to position the 2D camera for 

color imaging. Color-based segmentation was applied to pick up a rectangular interest of area 

on the leaf image. The algorithm computing the Gray-Level Co-occurrence Matrix (GLCM) 

value of the leaf image was implemented using the OPENCV library. After training, Bayes 

classification was used to identify the infected corn plant leaf based on GLCM value.  

The System User Interface is capable of generating data collection commands, 3D 

reconstruction, parameter table output, color image acquisition control, specific leaf-probing 

and infected corn leaf diagnosis. This application was developed under a Qt cross-platform 

environment with multithreading between tasks, making the interface user-friendly and 

efficient.     
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CHAPTER 1. INTRODUCTION: THESIS FORMATTING 

 

1.1 Introduction 

By the year 2050, a 70% increase in crop production will be required to meet the 

needs of a growing global population (Furbank, et al., 2009). Moreover, by 2050 cropland 

area may decrease slightly in developed countries (Balmford, et al., 2005). Biofuels will also 

be more widely used, increasing crop production demand (Sticklen, 2007). A feasible 

approach to satisfy the demand for crops would be to boost yield per acre without enlarging 

the agricultural area. Genetic optimization is an important tool for discovery of crop strains 

beneficial to increased production. A phenotyping platform for associating crop genes with 

traits could assistant humans in improving crop plant yields. 

“Phenotype” is defined as “a composite of an organism’s observable characteristics or 

traits, such as its morphology, biochemical or physiological properties, phenology, behavior, 

and products of behavior.” The plant phenotype contains traits of growth, development, 

tolerance, resistance, yield, and parameters based on observation and measurement. For 

example, the direct observation and measurement parameters could include leaf traits 

(Jansen, et al., 2009), fruit characteristics (Brewer, et al., 2006), yield-related traits (Duan, et 

al., 2011), root morphology (Walter, et al., 2009), biomass (Menzel, et al., 2009), biotic and 

abiotic stress response (Rao, et al., 2013) and photosynthetic efficiency (Bauriegel, et al., 

2011).  

Imaging technologies and automation have many applications in screening systems, 

horticultural production systems, and elsewhere in the food industry supply chain 

(Arvidsson, et al., 2011). In the past decade, researchers and commercial companies have 
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developed automated phenotyping systems and applied them to greenhouses and growth 

chambers. These phenotyping platforms were able not only to research small rosette plants 

like Arabidopsishalophila (Granier, et al., 2006) but also cereal crops (Deikman, et al., 2012). 

The most commonly used approach for trait extraction is color segmentation. A plant disease 

severity estimation platform based on digital photography has been developed to analyze and 

classify leaf rust levels (Bock, et al., 2010). Thermal imaging has also been used in a 

phenotyping system for studying plant surface temperature and maize adaption to drought 

(Jose, et al., 2012). A near-infrared camera technique was utilized in a high-throughput 

image platform for dissecting the components of crop plant growth and drought responses 

(Dijun, et al., 2010).  

Unlike color images that only include 2D information, a 3D camera technique could 

provide plant structural information. Currently, four types of 3D sensors: stereo cameras, 

laser sensors, light field cameras and ToF cameras, are used in phenotyping systems. A 

stereo imaging system was applied to measurement of the zenith leaf angle distribution of a 

closed soybean canopy (Biskup et al., 2007). The two major challenges in applying stereo 

methods in agriculture are mismatch or occlusion problems resulting from a plant’s leaf 

texture and outdoor lighting conditions.  

LIDAR scanners are powerful and unsusceptible to sunlight, and an automatic 

phenotyping system is capable of modeling tomato canopies and extracting leaf inclination 

angles based on 3D data from a high resolution portable scanning LIDAR (Omasa, et al., 

2012). LIDAR sensors have already been applied in large-scale phenotyping systems to 

estimate the height of trees and structural parameters of forests (Hopkinson, et al., 2004). The 
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capture processing of a LIDAR scanner requires the plant to be static and unmoving, but it is 

difficult to satisfy this outdoor condition on windy days. 

The 3D light field camera is transformed from a normal camera by placing a micro 

lens array in front of an image sensor. PhenoBot utilized a 3D light field camera (Raytrix) to 

measure the phenotypic characteristic, stem thickness, leaf length, and number of flowers per 

bunch, of tomato plants. The advantage of the Raytrix 3D light field camera is its high 

resolution, minimal occlusion, and adaptability, but it is very expensive and incapable of 

calculating depth in real time (Polder, et al., 2013). 

The ToF 3D camera is a new-technique product that has become widely used in 

industrial and entertainment fields over the last several decades. It measures depth by 

computing the time difference between emitted near-infrared light and reflected light. 

Microsoft Corporation launched the new generation Kinect Version 2, implemented using a 

ToF technique, for its X-box game system. Kinect V2 is a composite sensor that includes a 

color camera, a near-infrared camera and a ToF camera.  The PMD Camcube (PDM Tec, 

Germany) and the SR_4000/4500 series (MESA Imaging AG, Switzerland) are two 

commonly used ToF cameras. Alenya, et al., (2011) developed a phenotyping system 

including a ToF camera, a color camera, and an industrial robot arm. This system combined 

3D spatial data with a color image and used the color and depth information to segment a 

single 3D leaf from a whole plant. The limitation of the ToF camera is its low resolution and 

susceptibility to sunlight, so it is usually used under indoor conditions.  
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1.2 Research Objectives 

The overall goal of this research is to develop an automatic phenotyping system. This 

system should be capable of measuring corn plant phenotypical parameters, leaf length and 

stem height, and diagnosing virus-infected plants. The research goal can be divided into three 

main objectives: 

(1) To finish setting up the system with a 3D camera, a color camera, an industrial 

robot arm, and a complete data collection and background noise removal function. 

To calibrate the hand-eye relationships among the cameras and the robot arm. To 

merge multiple views of a corn plant points cloud and visualization of a clear 3D 

corn model into a user interface. 

(2) To segment the leaves and stem and measure plant morphology parameters, leaf 

length, and stem height. The result table would be displayed in a user-friendly 

interface. 

(3) To use the Gray-level Co-occurrence Matrix (GLCM) method to analyze the 

texture of leaves and implement Bayes classification to distinguish infected corn 

plant leaves. 

 

1.3 Thesis Overview 

Chapter 2 describes the system set-up, robot, and camera hand-eye calibration, along 

with the details of transforming point clouds from multiple views into arm-based coordinates. 

Algorithms for background and noise removal, leaves and stem segmentation, and leaf skull 

skeleton curve-fitting are also discussed, along with system module design and analysis of 

results.  
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Chapter 3 covers the development of the infected plant leaf diagnostic system. It 

describes the method of computing the color camera viewpoint based on leaf surface normal 

and centroid point. Chapter 3 also introduces leaf color image segmentation and GLCM 

value extraction and finally discusses how to set the training set and testing set in Bayes 

classification. 

Chapter 4 provides general conclusions as well as suggestions for future research.   

 

REFERENCES 

Alenya, G., B. Dellen, and C. Torras. 2011. 3D modelling of leaves from color and ToF data 
for robotized plant measuring. In 2011 IEEE International Conference on Robotics 
and Automation. Shanghai, China: IEEE. 

 
Araus JL, Serret MD, Edmeades GO. 2012. Phenotyping maize for adaptation to drought. 

Front. Plant Physiol. 3:305 
 
Arvidsson S, Perez-Rodriguez P, Mueller-Roeber B. 2011. A growth phenotyping pipeline 

for Arabidopsis thaliana integrating image analysis and rosette area modeling for 
robust quantification of genotype effects. New Phytol. 191:895–907 

 
Balmford, A., Green, Rhys. E. and Scharlemann, J. P. W. (2005), Sparing land for nature: 

exploring the potential impact of changes in agricultural yield on the area needed for 
crop production. Global Change Biology, 11: 1594–1605. Doi: 10.1111/j.1365-
2486.2005.001035.x 

 
Bauriegel, E.; Giebel, A.; Herppich, W.B. Hyperspectral and chlorophyll fluorescence 

imaging to analyze the impact of fusarium culmorum on the photosynthetic integrity 
of infected wheat ears. Sensors 2011, 11, 3765–3779. 

 
Biskup B, Scharr H, Schurr U, Rascher U. 2007. A stereo imaging system for measuring 

structural parameters of plant canopies. Plant Cell Environ. 30:1299–308 
 
Brewer, M.T.; Lang, L.; Fujimura, K.; Dujmovic, N.; Gray, S.; midrib der Knaap, E. 

Development of a controlled vocabulary and software application to analyze fruit 
shape variation in tomato and other plant species. Plant Physiol. 2006, 141, 15–25. 

 
Bock CH, Poole GH, Parker PE, Gottwald TR. 2010. Plant disease severity estimated 

visually, by digital photography and image analysis, and by hyperspectral imaging. 
Crit. Rev. Plant Sci. 29:59–107 



6 

 

 
Deikman J, Petracek M, Heard JE. 2012. Drought tolerance through biotechnology: 

improving translation from the laboratory to farmers’ fields. Curr. Opin. Biotechnol. 
23:243–50 

 
Dijun Chen, Kerstin Neumann, Swetlana Friedel, Benjamin Kilian, Ming Chen, Thomas 

Altmann, and Christian Klukas Dissecting the Phenotypic Components of Crop Plant 
Growth and Drought Responses Based on High-Throughput Image Analysis Plant 
Cell tpc.114.129601; First Published on December 11, 2014; 
doi:10.1105/tpc.114.129601 

 
Duan, L.F.; Yang, W.N.; Huang, C.L.; Liu, Q. A novel machine-vision-based facility for the 

automatic evaluation of yield-related traits in rice. Plant Methods 2011, 7, doi: 
10.1186/1746-4811-7-44. 

Furbank, R. T., S. von Caemmerer, J. Sheehy, and G. Edwards. 2009. C-4 rice: A challenge 
for plant phenomics. Functional Plant Biology 36(10-11):845-856. 

 
Granier C, Aguirrezabal L, Chenu K, Cookson SJ, Dauzat M, et al. 2006. PHENOPSIS, an 

automated platform for reproducible phenotyping of plant responses to soil water 
deficit in Arabidopsis thaliana permitted the identification of an accession with low 
sensitivity to soil water deficit. New Phytol. 169:623–35 

 
Hopkinson, C., L. Chasmer, C. Young-Pow, and P. Treitz. 2004. Assessing forest metrics 

with a ground-based scanning Lidar. Canadian Journal of Forest Research-Revue 
Canadienne De Recherché Forestiere 34(3):573-583.  

 
Jansen, M.; Gilmer, F.; Biskup, B.; Nagel, K.A.; Rascher, U.; Fischbach, A.; Briem, S.; 

Dreissen, G.; Tittmann, S.; Braun, S. Simultaneous phenotyping of leaf growth and 
chlorophyll fluorescence via growscreen fluoro allows detection of stress tolerance in 
arabidopsis thaliana and other rosette plants. Funct. Plant Biol. 2009, 36, 902–914. 

 
Menzel, M.I.; Tittmann, S.; Buehler, J.; Preis, S.; Wolters, N.; Jahnke, S.; Walter, A.; 

Chlubek, A.; Leon, A.; Hermes, N. Non-invasive determination of plant biomass with 
microwave resonators. Plant Cell Environ. 2009, 32, 368–379. 

 
Omasa K, Hosoi F, Konishi A. 2007. 3D LIDAR imaging for detecting and understanding 

plant responses and canopy structure. J. Exp. Bot. 58:881–98 
 
Polder G, Lensink D, Veldhuisen B. 2013. PhenoBot – a robot system for phenotyping large 

tomato plants in the greenhouse using a 3D light field camera. Wageningen UR 
Glastuinbouw/ENZA Zaden, 2013 Phenodays Meeting, 2013-10-16/ 2013-10-18 

 
Rao, N.K.S.; Laxman, R.H. Phenotyping horticultural crops for abiotic stress tolerance. In 

Climate-Resilient Horticulture: Adaptation and Mitigation Strategies; Springer: 
Berlin/Heidelberg, Germany, 2013; pp. 147–157. 

 



7 

 

Sticklen, M. B. 2007. Feedstock crop genetic engineering for alcohol fuels. Crop Science 
47(6):2238-2248.  

 
Wikipedia Phenotype. http://en.wikipedia.org/wiki/Phenotype 
 
Walter, A.; Silk, W.K.; Schurr, U. Environmental effects on spatial and temporal patterns of 

leaf and root growth. Ann. Rev. Plant Biol. 2009, 60, 279–304. 
 
 
 
 
 



8 

 

 
CHAPTER 2. DEVELOPMENT OF AN AUTOMATIC MAIZE SEEDLING 

PHENOTYPING PLATFROM USING 3D VISION AND AN INDUSTRIAL 

ROBOT ARM  

 
2.1 Abstract 

Crop breeding plays an important role in modern agriculture, improving plant 

adaptability and increasing yield. Optimizing genes is the key step in discovery of beneficial 

genetic traits for increasing crop production. Associating genes and their functions requires a 

mountain of observation and measurement of the phenotypes, a repetitive and error-prone job 

if performed manually. An automated seedling phenotyping system aims at replacing manual 

measurement, reducing the sampling time and increasing the allowable work time. In this 

research study, we developed an automated maize seedling phenotyping platform based on a 

ToF camera and an industrial robot arm. A ToF camera is mounted on the end-effector of the 

robot arm. The arm positions the ToF camera to different viewpoints for acquiring 3D data.  

A camera-to-arm transformation matrix is calculated from hand-eye calibration and applied 

to transfer different viewpoints into an arm base coordinate frame. Filters remove the 

background and noise in the merged seedling point clouds. 3D-to-2D projection and the x-

axis pixel density distribution method is used to segment the stem and leaves. Finally, 

separated leaves are fitted with 3D curves for parameter measurement. This platform was 

tested on a sample of 60 maize plants at early growth stages (V2~V5).  

Keywords: Phenotyping, Maize breeding, 3D reconstruction, Point clouds, robot arm, 

ToF camera 
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2.2 Introduction 

Breeders and ecologists have been studying plant phenotyping for many years. High-

throughput phenotyping for evaluating hundreds of genotypes is routine in plant breeding 

(Foundation and Mcb, 2011). Ijiri, et al., (2005) developed an application for modeling 

flowers in 3D. This system could picture the layout of floral components on a flower, helping 

botanists concisely describe the structure of flowers quickly and easily. Some groups of 

researchers provided 3D models of rice plants from images and barley plants from 3D 

sensors. Watanabe, et al., (2005) used a 3D digitizer to measure rice plant structure to specify 

rice plant architecture and to find suitable functions for describing its 3D growth at all stages. 

Recently, plant phenotyping has gained more attention because of the development of 

advanced sensors and robotic data collecting and monitoring methodology. Ulrich, et al., 

(2011) used 3D LIDAR sensors to develop an application for dealing with detection and 

segmentation of plants and ground. Their result showed that this application could assist 

agricultural robots used for localization, mapping and navigation. Yann, et al., (2012) 

proposed an algorithm based on 3D data to do plant segmentation from a top view. In that 

experiment, the leaves of yucca and apple trees at different depths could be segmented and 

distinguished very well. 

There are a variety of methods for corn plant phenotype discovery and 3D 

visualization. Dornbusch, et al., (2007) improved the modeling function of the shape of corn 

plant’s leaves and stems and proposed a new method for function parameterization function 

from a 3D point cloud of the plants. Although they achieved excellent results, the image 

cannot be automatically captured, and this approach was not proven to apply to all kinds of 

corn plants. De Moraes Frasson, et al., (2010) also developed an application to build detailed 
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three-dimensional digital models of corn plants by using an unmodified commercial digital 

camera and software. 3D reconstruction of plants is the first step; this provides the 

morphology and position information, and the goal is to perform operations on the plant 

(such as probing and cutting of the plant). Aleny`a, et al., (2011) used ToF depth data to 

perform quadratic surface fitting applied to segmenting plant images. Their result showed 

that the obtained surface fit well with target leaf and the candidate leaf could be approached 

by a robot-mounted camera using location information. This work proved that combining 

dense color data and depth data could provide a good 3D approximation to automatically 

complete plant measurements.    

One potential application is to use the phenotype information for guiding an 

agricultural or biological robot. Teng, et al., (2011) treated normalized centroid-contour 

distance as the classification feature for sorting different leaves in their system. Their leaf 

segmentation and classification system combined 3D information and color character for leaf 

classification; it is not, however, fully automatic. Klose, et al., (2009) constructed an outdoor 

automatic plant phenotyping system. They concluded that ToF cameras could also be useful 

in outdoor field conditions like direct sunlight. Their system could also collect data while 

moving at a speed of 3.6 km/h, meaning that it could be used in combination with an 

autonomous field robot. 

This research is focused on developing a fully automatic maize seedling phenotyping 

platform capable of outputting maize seedlings’ morphological traits, including number of 

leaves, leaf length, and stem height.  
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2.3 Materials and Method 

An overview of the platform is shown in Figure 2.1. The system contains a time-of-

flight (ToF) camera (SR_4000, MESA Imaging, Switzerland), an industrial robot arm 

(RV_3SD, Mitsubishi, Japan), and a computer station. After the “Acquire 3D data” button is 

pressed at the user interface, the system sends commands to the robot arm, including 

commands to specific positions with various poses to acquire a 3D point cloud from these 

viewpoints. The point clouds are then transformed and merged into arm base coordinates. 

The platform performs filtering, stem and leaf segmentation, phenotype output, and 

visualization.  

   

Figure 2.1. Hardware set-up (left) and software interface (right). 

 
2.3.1 Data collection station setup 

 Figure 2.2 shows how the ToF camera connects to the end-effector of the robot arm. 

The aluminum mounting bracket (McMaster-Carr, USA) has a 90 degree “L” shape with 5-

inch width and ¼-inch depth. It was designed and machined by Manual Mills (Clausing, 

USA), with 4 holes on one side connecting to the robot arm end-effector, and 3 holes on the 

other side for fixing the ToF camera. 
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Figure 2.2 ToF camera mounted on the end-effector of the robot arm (left), the ToF camera coordinate (right, 

this figure is from the ToF camera manual). 
 

The ToF camera (Product number: 00400001, MESA imaging, Switzerland) uses a 

USB communication port and operates at a 30 MHz frequency. The detection range is 0.1 ~ 

5.0 m, and the calibrated range is 0.8 ~ 5.0 m. Its absolute accuracy is ± 10 mm and it has 

less than 0.5 mm/°C drift with temperature. The repeatability of central pixels is around 4 

mm and 7 mm (max). The field of view is 43° (h) × 34°. All the parameters mentioned above 

are tested at 25° (SR_4000 Manual). 

 The illumination wavelength of this ToF camera is 850 nm and its maximum frame 

rate is 50 FPS. The pixel array size is 176 (h) × 144 (v). The pixel pitch is 40 µm and the 

angular resolution is 0.24°. The operating temperature range is +10°C to +50°C (SR_4000 

Manual).  

2.3.2 Hand-eye transformation matrix 

 To estimate the 3D position and orientation of the target object related to the robot 

base coordinate frame, it is essential to know the relationships between the robot end-effector 

and the robot base, between the camera and the robot end-effector, and between the target 

object and the camera. The transformation matrix between the robot end-effector and the 

base frame can be read from the robot controller output without any programming or 
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computing. The main function of the ToF camera is to output the 3D point clouds that 

provide the position and orientation of the target object in the camera coordinate frame. Thus, 

the transformation matrix of camera and robot end-effector must be measured or calibrated to 

transfer target object position and orientation information to the robot base frame.   

2.3.2.1 Dimension method     

The accuracy of the Manual Mills machined mounting bracket is ±0.127 mm (±0.005 

inch). According to the dimensions and coordinate definition of the ToF camera in the 

manual, the original point at the center of the surface and the xyz directions are shown in the 

figure 2.2. The transformation matrix from camera xyz coordinate (Figure 2.3) to robot arm 

end-effector is calculated and represented as a rotation matrix and a transformation matrix.  

0.9998,0.0174, 0.0006

0.0175, 0.9992,0.0349

0.0000,0.0349,0.9994
DR

− − 
 = − − 
  

                                                                               2.1 

30.69

69.03

120.96
DT

− 
 = − 
  

     , where the unit is mm.                                                                   2.2                         

2.3.2.2 Fully vision-based calibration 

 In the normal camera calibration, there are two main outputs, i.e., intrinsic and 

extrinsic parameters. The intrinsic parameter is used to calibrate lens distortion, while the 

extrinsic parameter can be used to associate the camera position with 3D world space. 

Vision-based robot hand-eye calibration applies the normal camera calibration extrinsic 

parameters and the constant relationship between camera frame and robot end-effector frame. 

We used Hand-Eye calibration Toolbox (Christian W, 2006) to calculate the camera to robot 

end-effector transformation matrix. 
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Figure 2.3. Hand-eye calibration, relationship between camera coordinate and robot arm base coordinate. 

This toolbox would solve 8 set of homogeneous transform equations: AX=XB, where 

X is the unknown and target matrix. The final result of the camera-related-to-robot end-

effector transform matrix had an error of less than 20 mm in each direction. 

The toolbox uses the reference pattern method to locate the original location and 

direction of the coordinate. However, this method becomes less effective when dealing with 

cameras with lower resolution because the algorithm relies on the accuracy of detection of 

metric features such as corner and circle center. Larger error is generated when detecting and 

locating those features in a low-resolution image acquired by a ToF camera; the SR_4000 has 

a resolution of only 176×144.   

 

Figure 2.4. ToF camera amplitude image of a checkerboard with low resolution 
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Comparing these two calibration methods, the error of the dimension method is 

apparently smaller than that of the vision-based ToF camera. Kahn, et al., (2014) reported 

that there is an approximately 10mm error of SR_4000 2D and 3D image-based hand-eye 

calibration in their experiment. The dimension method was therefore applied in this project. 

 

2.3.3 System layouts and communication  

 This system contains four hierarchy modules: a main control module and user 

interface, a robot arm control module, a ToF camera control module, and a data processing 

module. The entire system works using multiple threads in which the central module is the 

main thread and submodules are the child threads; it is written in the Qt development 

environment using the programing language C++. 

 

Figure 2.5. System overview 
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2.3.3.1 Main control layer 

 This main module and interface is a central controller responsible for communication 

with the robot arm, decision-making for ToF camera action, and triggering data processing 

and result visualization.  

 In user operation, the main control layout sends a request instruction to the robot arm 

control module that would then produce a program for jogging the arm to specific positions. 

Meanwhile, the robot arm could send its current positon to the main control module in real 

time. A judgment is made in the main control layer as to whether the arm properly 

determines the target sampling position. As soon as the arm determines the target locations, 

the main control module would send a request instruction to the ToF camera control module 

for acquiring 3D image. When the 3D images of multiple views are ready, the processing 

module begins filtering, leaf and stem segmentation, and parameter computation. Finally, the 

phenotype result and 3D reconstruction model are shown as a table and zoom in/out 

visualization window in the user interface. 

 The HMI (Human-machine interaction) interface is designed to be user-friendly; it 

contains robot arm controller IP and port setting, command buttons, camera status-checking, 

a phenotype parameter output table, and 3D model visualization.   

2.3.3.2 Robot arm control module 

 The Mitsubishi RV3S is an industrial vertical 6-joint robot arm with a maximum 

speed of 5.5 m/s and 0.02 mm position repeatability. The programming platform, RT 

ToolBox2 (Mitsubishi, Japan), is an independent software package with its own uniform 

robot programming language. It is impossible to use the RT-toolbox in our platform, because 

our system requires real-time communication, online decision-making, and path planning. 



17 

 

We therefore applied robot protocol and send protocol commands to the robot controller 

through a TCP socket. The advantage of the robot protocol code is that programmers can 

embed the command in their customized software with other computer languages. 

 The robot arm controller works as a TCP server and the robot control module works 

as a TCP client;  they are connected by Ethernet cable. In the communication mechanism, the 

client must open a channel using an “OPEN=TOLL” command, followed by operation 

enable, turning on servo, movement programming, turning off servo and disconnection. 

Figure 2.6 shows the robot arm protocol programming structure. The robot controller returns 

feedback for every client request instruction using: Qok<Answer> or QeR<Error No.>.  

 

Figure 2.6. Robot arm programming flow chart. 
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2.3.3.3 ToF camera control module and data processing module 

 The SR_4000 (MESA Imaging AG, Switzerland) is a 3D camera based on a Time-of-

Flight principle. The camera works as an active IR-light illumination source, and the object 

of study reflects the IR light back to the camera sensor. The camera measures the time taken 

for the light to travel between transmitting and receiving. The data output from SR_4000 is a 

176×144 matrix, with each element including x, y, and z values.  

 The camera control module constantly provides a status signal to the main control 

module after the system turns on. When these two conditions are satisfied: camera status is 

set to “succeed” and when the robot arm has arrived at the target positon, the central module 

generates an event and the camera module triggers the sensor to acquire an image in response 

to this event. A calibrated output stream will be transmitted to the camera module from the 

sensor though a USB connection. The data generates a “<positon No>.pcd” file in memory 

and the camera module will send an event to the main module after completing image 

acquisition. 

 When the main module responds to the imaging completion event, the data 

processing module becomes active; the details of the processing algorithm are discussed in 

the next chapter. Processing results will be transmitted to the main module for visualization 

on the user interface.  

 

2.3.4 3D image pre-processing and segmentation  

 Point cloud pre-processing and leaf-stem segmentation is one component of the data 

processing module. Pre-processing provides background and noise filtering as well as 
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multiple-views data merging. In the leaf-stem segmentation algorithm, we first project 3D 

data into the 2D z-y plane, then apply the y-axis pixels density distribution method to obtain 

stem positions on the y-axis. After isolating the stem point clouds, the remaining points will 

be separated into several leaf clusters. 

2.3.4.1 Multi-view images 

 To reconstruct more details, multi-view images instead of a single front view are 

produced. The standard field of view range of the SR_4000 ToF camera is 43° (horizontal) × 

34° (vertical). The maize seedling is placed 550~800 mm in front of the origin of the robot 

arm base coordinate; the distance between the center of the sensor and the plant is 800 mm. 

The movement of the robot arm is 0~859 mm of independent freedom along the z axis, -

642~642mm of independent freedom along the y axis, and -330~642 mm of independent 

freedom along the x axis. In fact, the movement is limited when all 6 joints work together, 

and the range is complex and changeable when considering the axis rotations, i.e., yaw, pitch, 

and roll, of the end-effector frame. In this project the system acquired the 3D plant data from 

3 views of the object. The corn plant is placed in front of the robot arm. Figure 2.7 shows the 

right, middle and left views of the plant in robot arm base coordinates. 

   

Figure 2.7. 3D data acquisition in multi-views. 

 At each viewpoint, the robot arm produces a homogenous transformation matrix to 

describe the relationship between the end-effector frame and the robot arm base coordinates. 
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All data from different viewpoints can be transformed into base coordinates by implementing 

Equation 2.3: 

[ ] [ ]* | * |

1 1

cam to end end to base

base Camera

x x

y y
R T R T

z z − − − −

   
   
   =
   
   
   

                                                              2.3 

The camera to end-effector transformation matrix is calculated by a calibration method, and 

the end-effector to base transformation matrix is produced by the robot arm controller. 

 

2.3.4.2 Background and noise removal 

 The working area is a rectangle 250 mm long by 150 mm wide in front of the origin 

of the robot base coordinate along the +x axis direction. The maximum height and width of 

the corn seedling are set to be 600 mm and 500 mm. We then only retain the points inside the 

range of the cuboid, i.e., within a range of 250 mm (width) × 500 mm (length) × 600 mm 

(height) to eliminate the table and wall backgrounds. 

 It is typical for a ToF to generate point clouds with varying densities; the raw data of 

the corn point cloud always contains a few sparsely-distributed outlier points. The statistical 

outlier removal algorithm treats a point as outlier or inlier according to the distance to its k-

nearest neighbors (Rusu, et al., 2008). This threshold is set as µ + βσ, where µ is the average 

and the σ is the standard deviation of the k neighbor distances. The k-nearest neighbors 

distance value of sparse points is normally greater than the threshold, µ + βσ.  

The value of β represents the key effect of the filtering results. If the β is too small, only a 

few noise points are removed; if too high, some points of the plant could be mistakenly 
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removed. We used k = 10 and β = 10 as filter parameters, as recommended in the literature 

(Chaivivatrakul et al. 2014). 

2.3.4.3 Leaf and stem segmentation 

 Parameter computation and trait extraction are based on segmentation, because an 

individual component, such as one leaf, is easier to morphologically analyze. In 3D leaf and 

stem segmentation, Chaivivatrakul, et al., (2014) sliced the corn point cloud from stem 

bottom to leaf top, and performed least-squares ellipse fitting for each module. The linked 

ellipses with close center and semi-major axis length are considered as stem parts. Li (2014) 

projected the 3D corn point cloud into 6 binary images from 0, 60, 120, 180, 240, and 300 

degree view angles. If a straight line has over 50 pixels and inclination angle is between -5° 

and +5°, this system would treat this line as the stem. 

 In our segmentation algorithm, the corn point cloud is projected as a binary image. 

The white pixels belonging to the plant are given value 1 and the black pixels are given value 

0 in the image. In this research, the stems of our corn plants normally lie at angles between 

85°~95° with respect to ground.  
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Figure 2.8. 2D projection binary image 

We next calculate how many white pixels there are in each unit in the y direction, generating 

a pixel density distribution map along the y axis. Because the stem part is approximately 

vertical, it must have the highest density in the distribution map. The y value of the highest 

density area is the location of the stem on the y axis (Figure 2.8), so we can obtain the stem 

by retaining the points in this interval.   

Y 

Z 
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Figure 2.9. Projected point distribution in y direction 

 

After extracting the stem point cloud, the remaining points correspond to the leaves. 

To separate the leaf points into several single ones, a clustering method called “Euclidean 

Cluster Extraction” (Rusu, 2009) is applied in this algorithm. The algorithm should define 

how a point belongs to a particular point cluster and why it is different from other point 

clusters. Let pi, pj ∈ Ƥ; if the minimum distance from a set of points pi to pj is larger than the 

threshold dth, pj must belong to another cluster, where the minimum || pi - pj || ≥ dth 

We create a kd-tree T to represent the input leaves point cloud Ƥ and build a list of 

clusters L to store the output. If for a point pi ∈ Ƥ, we add it to a queue Q and search for the 

set pk that is the neighbors of pi in a sphere with radius less than dth. When that step is 

completed, add the Q to the leaf cluster Lk. After traversing all pi, the segmented leaf clusters 

are stored in L. 
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Figure 2.10. Separated leaf clusters 

 

2.3.4.4 Leaf curve fitting and parameter computation 

 Before leaf parameter extraction, the algorithm uses a high-order 3D curve to 

describe the skeleton of each leaf. In the x-y plane, the skeleton of the leaf is a line, and if the 

leaf is viewed in y-z plane, the leaf skeleton is a curve. We can thus split the high-order 3D 

curve into 2 equations: 

 x = k×y +b                                                                                                               2.4 

 z = β0 + β1×y + β2×y2+ … +βk×yk       2.5 
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Figure 2.11. Right is the plant in y-z plane, left is the plant in x-y plane. 

 

 In the y-z plane, the leaf skeleton with greater curvature must have a larger k value. 

There are 97 leaves, ranging in length from 50 mm to 521 mm, chosen randomly to test 

which order is suitable in this project. When compared with the ground-truth, the error 

distribution plot and a summary statistics table are given by: 

 
100%

system output groundtruth
Error

groundtruth

−
= ×
� �                                                                            2.6 

The “second order” mean of error is 0.1316, and is the smaller than that of first order 

(0.1525) and third order (0.1559). The “second order” mean of error is the smallest. Thus we 

set k equal to 3, a condition that is satisfied under most situations.  
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Figure 2.12. Leaf length error distribution with different order value. (Left is 2 order, middle is 3 order, left is 4 

order) 

 

Table 2.1. Leaf length error estimated by different orders fitting (%) 

Quantiles 

k = 2 (second order) k = 3 (third order) k = 4 (forth order) 

100% maximum 48.3818 100% maximum 37.3484 100% maximum 48.3727 

75% quartile 22.3707 75% quartile 21.0474 75% quartile 22.7412 

50% median 11.8846 50% median 11.8308 50% median 12.3604 

25% quartile 6.4128 25% quartile 4.9859 25% quartile 5.0897 

0% minimum 0.5967 0 % minimum 0.0232 0 % minimum 0.4439 

      
  

Summary Statistics       

Mean 15.2481 Mean 13.1608 Mean 15.5949 

Std Dev 11.4582 Std Dev 9.0656 Std Dev 12.0881 

Std Err Mean 1.1634 Std Err Mean 0.9204 Std Err Mean 1.2273 

Upper 95% Mean 17.5574 Upper 95% Mean 14.9880 Upper 95% Mean 18.0313 

Lower 95% Mean 12.9387 Lower 95% Mean 11.3337 Lower 95% Mean 13.1586 

N   97 N   97 N   97 

 

The y range of the leaf is divided into N subsections. For each y value, there are 

corresponding x and z values to make up a leaf point (x, y, z). When these points are 

connected, the curve created is the leaf skeleton. 

  

Figure 2.13. Right red line is the leaf fitting in y-z plane, left red line is the plant in x-y plane. 

 

 Based on the leaf skeleton fitting curve, the length of the leaf is the sum of N 

fractional lengths. 
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 For stem model estimation, we fit it as a cylinder and compensate the bottom part 

through lost filtering. The length of the stem is the highest z value minus the distance 

between the desktop and the bottom of the stem. 

 

Figure 2.14. Stem fitting model. 

 

2.4 Results and Discussion 

 In this section, the detailed experimental setup and operational steps are discussed. 

We describe functional flow to illuminate how the human/machine interface works, a 3D 

image-acquisition procedure, and data processing with final result visualization. The 

experimental objects were 60 maize plants at V2 ~ V5 stages. We provide the result of each 

phenotype for all leaves and plants, analyze the system measurement error related to ground 

truth, and finally draw conclusions. 
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2.4.1 Results and error analysis   

 After placing the plant on the working area of the desk, we power up the robot arm 

controller and check the hardware connection. We then start up the software and check 

communication between the interface and the ToF camera. When the status of the camera is 

indicated as “succeed”, we begin system operation. 

The first step is to press the “Acquire 3D data” button. The robot arm will bring the ToF 

camera to different positions to begin collection of the 3D point cloud plant data. When the 

“process 3D data” button is pressed as shown in Figure 2.15, the software will process the 

data collected. After the process bar indicates 100%, the reconstructed corn plant model will 

be displayed, and the user can then rotate and zoom in/out on this display as desired. The 

stem and different leaves will be labeled with different colors. At the same time, a table will 

display the parameters of the plant, e.g., the lengths of each leaf and the stem height.      

  

Figure 2.15. Working area (left) and Parameter output in the user interface (right). 

 

 We grew 60 maize plants in the growth chamber, and we began to collect data 7 days 

after they sprouted. Every 3 days we measured the plants using the system and they were also 
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measured by hand; the measured parameters included stem height and leaf length. The results 

measured by hand were treated as ground-truth. We took 9 measurements from the plants on 

days 8, 11, 14, 17, 20, 23, 26, 29, and 32. 534 stem heights were measured (2 plants were 

dead on day 29, and 2 plants were dead in day 32), and a total of 1969 leaves were tested 

during this experiment. 

 

Figure 2.16. Error (%) distribution of the stem height (right) and leaf length (left) system measurement 

 

Figure 2.16 is the error distribution of stem height and leaf length. These are half-

normal distributions and their mean and median values are closed. There is no obvious bias 

shown in the error distributions, meaning that the measurements did not overestimate or 

underestimate the true values. 

Table 2.2. Stem height Error table (%) 

Quantiles   Summary Statistics 

100% maximum 43.5500 Mean 13.6721 

75% quartile 19.4917 Std Dev 8.9439 

50% median 12.5129 Std Err Mean 0.3870 

25. % quartile 6.6000 Upper 95% Mean 14.4325 

0% minimum 0.0166 Lower 95% Mean 12.9119 

        N 534 
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Table 2.3. Leaf length Error table (%) 

Quantiles   Summary Statistics 

100% maximum 53.5031 Mean 13.0979 

75 % quartile 19.1725 Std Dev 9.8813 

50% median 11.0794 Std Err Mean 0.2227 

25% quartile 5.0017 Upper 95% Mean 13.5345 

0 % minimum 0 Lower 95% Mean 12.6611 

        N 1969 

 

The stem heights of these corn plants ranged from 30 mm to 220 mm, the length of 

the leaves ranged from 20 mm to 567 mm; a total of 534 stems and 1969 leaves were 

measured. Table 2.2 shows that the error of stem height is 12.5129 % (median value) and 

13.6721 % (mean value). The minimum error between the measurements and ground-truth 

were approximately 0%. More than 75 % of stem height measurements exhibited error less 

than 20%. A quarter of the stem height measurements have very small errors (6.6%). The 

confidence interval (95 %) of the error mean is 12.91 % ~ 14.43%. The leaf length 

measurement error is 11.0794 %( median value) and 13.0979 %( mean value). A quarter of 

the measurements of leaf length have an error of 5 %, and three quarters of the measurements 

have an error rate less than 20 %. However, there are outliers with values over 40% in the 

error distribution. Such large errors usually happened when the stems were as low as 30 ~ 60 

mm. The ToF sensor contributes a 10 mm error, close to the stem height, so a large relative 

error value may occur if stems are low. The error comes from the ToF camera (10 mm), 

filtering and leaf curve fitting. The choice of filter parameters and the order of fitting curve to 

satisfy all situations is difficult because each plant has differently shaped leaves. The surface 

of a corn leaf is not flat, and the fluctuating part of the leaf may have high density. Some 

leaves are more bent than others, so more than 3-order is required to adequately present the 

skeleton. 
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2.4.2 Discussion and Conclusion 

In this project, the results of phenotype extraction for maize seedlings have 

demonstrated the feasibility of this automatic phenotyping system. Three sources make 

contributions to the error: filters, ToF accuracy, and the curve-fitting algorithm. The ToF 

camera we used in this project has a resolution of only 176 × 144, so to improve the accuracy 

of the system, a higher resolution 3D sensor is needed. The filter parameters are also very 

important to the conduct of system measurement. We used pass-through and outlier remover 

filters in this project and, because these two filters are sensitive to plant shape, it is difficult 

to choose fixed values for filter parameters to satisfy all situations. If color data can be used 

to remove the noise the measurement error would decrease. A RGB threshold can be used to 

retain green parts (corn plants) and remove background and noise. This threshold could be 

applied for different shaped plants because the color of the corn plants varies very little. The 

current system considers only the shape of the plant but, in addition to measuring plant 

morphology character, there are several other phenotyping traits we care about. Different 

sensors, such as those in a color camera, are required to observe texture changes of the leaf.  

 In future work, we will execute probing of the plant based using a 3D model of the 

seedlings. The Kinect V2 (Microsoft, USA) is an ideal sensor we may consider; it combines 

a high resolution ToF camera (512 × 424) and color camera (1920 × 1080). The 3D data and 

color data can be transferred into the same coordinate system using built-in functions of its 

SDK. Such a system would be able to acquire both morphology characters and color traits of 

the corn plants at the same time. We should test the system on a wider range of corn plant 

growth stages and try to follow the growth of seedlings. 
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CHAPTER 3. DEVELOPMENT OF AN AUTOMATED MAIZE FUNCTIONAL 

GENOMICS PLATFROM 

 
3.1 Abstract 

Characterizing genes and their functions is an important step required for the 

discovery and introduction of genetic traits beneficial to crop plants and increased 

production. One approach to gene discovery involves the use of viral vectors that can be used 

to overexpress genes or for virus-induced gene silencing to reduce gene expression, creating 

gain-of-function and loss-of-function phenotypes, respectively. Successful use of viral 

vectors in corn plants will create a need to rapidly and efficiently associate many genes with 

phenotypes or traits. This research project combined sensors with custom algorithms to 

implement a system that can distinguish virus-infected plants from non-infected plants, the 

first critical step in construction of an automated phenotyping platform. An industrial robot 

arm positions a Time-of-Flight (ToF) camera to different viewing points to obtain 3D depth 

data from each corn plant. After 3D reconstruction and leaf and stem segmentation, the robot 

arm brings a color camera to the target position to obtain the leaf’s color image. This 

automated maize gene function discovery platform can discern virus-infected and non-

infected maize plants and track their growth as well. The resulting data sets will be used to 

determine if phenotypes induced by overexpression or silencing genes deviate from those of 

control plants.  

Keywords: Phenotyping, virus-infected plant, genes traits, 3D reconstruction, robot 

arm, ToF camera 
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3.2 Introduction 

Crop breeding plays an important role in modern agriculture by improving plant 

adaptation and increasing yields. Phenotype parameters, including leaf and stem size, plant 

height, nutrient intake rate, cereal yield, and disease resistance, are crucial for breeders 

(Foundation and Mcb, 2011). Understanding the relationships between genotypes and crop 

traits is the key to optimization of breeding, but the requirements of mass data collection and 

analysis make manually phenotyping difficult and tedious.  

Benefitting from modern imaging techniques improvement, multi-parameter data and 

multi-dimensional visualization have been achieved. No matter the kind of crop environment, 

e.g., growth chambers, greenhouses, or fields, image techniques are capable of quantifying 

complex traits (Arvidsson, et al., 2011). Current imaging techniques used in plant 

phenotyping include visible imaging, fluorescence imaging, near-infrared imaging, 3D 

imaging, laser imaging, and x-ray tomography (Lei, et al., 2014).  

One popular imaging technique is 3D plant mapping; presently available imaging 

sensors include laser scanners, stereo vision, time-of-flight cameras, and even consumer-

gaming interfaces like Microsoft Kinect (Azzari, et al., 2013). Stereo vision normally 

requires two or more sensors to produce 3D data, and the reconstruction result and depth 

accuracy are dependent on the type of algorithm. Moreover, the surface texture of the object 

can affect the performance of the stereo algorithm. Jin, et al. (2009) have implemented stereo 

imaging in corn plant 3D reconstruction. Their algorithm is able to detect each corn plant and 

find its center in the field using depth information.  

Among stereo imaging techniques, a time-of-fight camera can produce a 3D point 

cloud directly and more quickly. Current ToF camera technique involves obtaining 50 frames 
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per second. Alenya, et al., (2011) mounted a ToF camera on an industrial robot arm for 

indoor plant phenotyping. They combined depth data and RGB images for leaf segmentation. 

After determining the position of the leaf, they drive the robot arm closer to the leaf to obtain 

leaf-surface details. Their work proves that the depth map provided by a ToF camera 

combined with a color image can yield good point cloud data for plant parameter 

measurements. 

A ToF camera has also been used for counting corn plants in the field (Nakarmi, et 

al., 2012). Their system combined depth information with an intensity map to measure the 

spacing between plants in a crop row. This system solved the problem of applying a ToF 

camera under outdoor conditions by using an umbrella to cast a shadow over the imaging 

area. Song, et al., (2011) combined a stereo camera with a ToF camera to estimate a dense 

depth map for automatic plant phenotyping. The ToF image data enhances the performance 

of the stereo camera and their system was able to reconstruct a 3D colored leaf under 

greenhouse conditions.    

Visible imaging techniques have been widely applied in plant science because of their 

low cost and ease of operation (Lei, et al., 2014). Shitala, et al,. (2011) developed an 

automated system to detect the crop diseases based on leaf color image. Their system can 

isolate the diseased region of a leaf by analyzing image energy. Zulkifli, et al., (2013) built 

an imaging processing platform to deal with Chili leaf disease detection issues. They used 

RGB threshold, complementation, edging, and color comparison in diseased region image 

recognition.  

However, up to now there has been no system combining robotic techniques with 3D 

and color imaging for plant phenotyping and infected leaf detection. In this paper, we 
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describe developing an automatic phenotyping platform capable of characterizing maize 

plant traits, detecting infected plants, and probing the leaves.       

 

3.3 Materials and Method 

 An overview of the system is shown in Figure 3.1. It is composed of a time-of-flight 

(ToF) camera (SR_4000, MESA Imaging, Switzerland), an industrial robot am (RV_3SD, 

Mitsubishi, Japan), a color camera (EOS 6D, Canon, Japan), a robot hand (Robohand, 

Destaco, USA), and a computer station. In the HMI (Human-machine interaction) interface, 

the user presses “Acquire 3D data” and “process data” buttons to acquire 3D images through 

the ToF camera. After image processing, the segmented leaves and stem are visualized in the 

window. Depending on user requirements, the robot arm may grasp the selected leaf. The 

robot arm will also be able to approach the leaf center and take a picture using the Canon 6D 

still camera. The system will perform conversion of RGB to HSV, color segmentation, leaf 

region extraction, perform a Gray-level Co-occurrence Matrix (GLCM) parameter analysis, 

and implement Bayes classification. Eventually, the diagnostic result (infected or not) will be 

displayed by the interface. 
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Figure 3.1. Hardware and user interface overview 

 

3.3.1 3D image acquiring and processing 

 After placing the maize plant on the working area, the system will take 3D pictures of 

the plant in multi-views with the ToF camera. The platform applies pass-through filtering and 

statistical outlier removal algorithms to remove the background and noise points. We 

implement a 3D-to-2D projection method and a pixel density distribution map to segment the 

stem and leaves. A 3D curve-fitting algorithm is used to produce plant phenotypic 

parameters. Each leaf point cloud is labeled with a different color in the visualization 

window. System details are discussed in Chapter 2.   
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Figure 3.2. Maize 3D model reconstruction. A is the original data in robot base coordinate. B &C is clean 

plant point cloud after filtering. D is 2D projection map. E is the segmented leaves clusters. F is the leaf 

skeleton fitting.   

 

3.3.2 Canon 6D hand-eye calibration 

 The leaf positon is taken to be the robot base coordinate. To estimate the 3D position 

and orientation of the target object related to the Canon camera coordinate frame, it is 

essential to know the relationship between the camera and the robot end-effector. In addition 

to the low-resolution images from the ToF camera, the Canon 6D can provide high quality 

color images. It is thus feasible to apply a fully vision-based calibration method to calculate 

their transformation matrix, and we used the Hand-Eye calibration Toolbox (Christian W, 

2006) for this purpose.  

A B C 

D E F 
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Figure 3.3. Hand-eye calibration. 

 The robot arm moves the Canon 6D to 10 different positions for chessboard pictures, 

and we record each homogeneous transformation matrix between the robot arm end-effector 

and the base coordinate frame. This toolbox will solve 10 sets of homogeneous transform 

equations of type AX=XB, where X is the target homogenous transformation matrix. 

 

Figure 3.4. Chessboard image 
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Each Canon 6D camera has its own individual optical center even though they are 

manufactured in the same batch. If we assume the center of the lens body to be the optical 

center, the transformation matrix between the camera’s coordinate system and the end-

effector frame can be estimated. With respect to the dimension of the mounting bracket, the 

matrix is described as follows. 

 

 

 

 

 

 

 

Figure 3.5. Canon camera coordinate 
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The transformation matrix estimation obtained from the dimension method matches the 

result from a vision-based calibration method. 

 

3.3.3 Leaf skeleton fitting and probing 

 In Chapter 2, the leaf skeleton was described as a high-order 3D curve, with the leaf 

length estimated as the sum of N curve fractions. It is easy to locate the middle point of the 

fitting curve using the length equation. We obtain a triangle by connecting the first point, the 

final point, and the middle point of the curve. This triangle and the fitting curve are in the 

same plane, called the triangle plane. 

 

Figure 3.6. Leaf skeleton fitting 

 We make the middle point the probing target, and require the robot hand finger to be 

positioned towards the outer normal vector of the triangle plane. The triangle plant normal 

vector is produced by the cross product of two edges of the triangle. In addition to this 

triangle normal vector, we also require the normal vector of the leaf surface at the middle 

point. The leaf surface is curved, so each point has a different normal direction. There are 

many different methods to estimate the surface normal vector; we applied one of the simplest 

algorithms. The normal vector of a point on the surface is can be approximated by the normal 
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of a plane tangent to the surface to that point. We can then solve the normal vector estimation 

problem by least-squares plane fitting (Rusu, 2009). In this project, we call a function, 

“Normal-Estimation (PCL)”, to obtain the normal of the middle point on the leaf surface.  

 

Figure 3.7. Leaf normal vector and gripper center frame  

 Two vectors are known: the normal vector of the triangle plane and the normal vector 

of the middle point of the leaf surface. A third vector can be produced by the cross product of 

these two known normal vectors. We can obtain the homogeneous transformation matrix 

between the leaf middle point frame and the robot arm base coordinates. We then define the 

center point of the gripper finger as the grasping point, and take the y direction of the gripper 

towards the surface to be the normal vector of the leaf. The z direction of the gripper is fixed 

towards the triangle normal vector. The relationships between the base coordinate, the end-

effector coordinate, the gripper center coordinate, and the leaf center coordinate are described 

by the following equations. 

gripper leaf
C C=          3.5 

2 2 2gripper end end base leaf base
H H H× =                                                                                               3.6 
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 The transformation matrix between the gripper and the end-effector can be found 

using dimension method, because the sizes of the Robohand Gripper can be obtained from its 

data sheet; the end-effector position command is produced by Equation 3.7. 

1
2 2 2end base gripper end leaf baseH H H−= ×                                                                            3.7 

  

Figure 3.8. Leaf probing 

 

3.3.4 Leaf color segmentation and GCLM values extraction  

 Similarly to the probing process, the leaf center must first be located. The relationship 

between the leaf center and camera coordinate is known from the hand-eye calibration results 

for the Canon 6D and the robot arm effector. We make the z direction of the camera against 

the leaf surface normal, and the x direction of the camera towards the triangle normal. The 

camera focus distance is fixed at 200 mm to keep the distance between the leaf center and 

camera optical center constant.  

Triangle  
Normal 

Surface 
Normal Y 

Z 
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Figure 3.9. Leaf normal vector and camera frame 

 The leaf image produced by system is shown below in Figure 3.10. The center of the 

image is the intersection of two red lines coinciding with the leaf center. The other reason for 

fixing the focus length is that this produces the clearest leaf surface and a blurry background.   

 

Figure 3.10. Color image acquisition  

 The virus vector is Sugarcane Mosaic Virus (SCMV), and its symptom in infected 

corn plants is a mosaic color pattern on the leaf surface. While an infected sugar cane leaf 

texture changes drastically in the field, the symptom of infected corn leaf is not as obvious, 

so high resolution leaf images and a variety of viewing angles are needed.  
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To analyze the leaf texture, we take a square window of the leaf color image and transform it 

into a gray image.  

   

Figure 3.11. Control leaf color image and texture gray image  

 

   

Figure 3.12. Infected leaf color image and texture gray image 

 A Gray-Level Co-Occurrence Matrix (GLCM) is a statistical tool for describing 

texture characters by considering spatial relationships of pixels in a gray image. We create 

the GLCM by calculating the frequency of pairs of pixels with specific values occurring in 

such a gray image and we can then determine statistical parameters from the matrix 

(Haralick, et al., 1973).  
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Figure 3.13. Gray-Level Co-Occurrence Matrix definition  

 Fourteen textural features have been proposed for the GLCM (Haralick, et al., 1973). 

They include homogeneity, energy, entropy, contrast, variance, correlation, sum average, and 

maximum correlation coefficient.  

 The energy is also sometimes called Uniformity or Angular Second moment. It 

describes the textural uniformity, ranging from 0 to 1. If the gray level distributes in a 

periodic or constant form, the energy value is high.  

2
,i j

i j

Energy P=∑∑                                                                                                                  3.8 

 The Homogeneity is also sometimes called a Inverse Difference Moment. It is 

sensitive to the diagonal elements in the GLCM. When the gray levels of the image are 

relatively the same, homogeneity has its highest value. 

,2

1

1 ( ) i j

i j

Homogeneity P
i j

=
+ −

∑∑                                                                                        3.9 

  In this project, the sugarcane mosaic virus infection creates a discontinuous leaf 

texture. The energy and homogeneity parameters present the periodicity and homogeneity of 
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the gray image, so the energy and homogeneity values of the control leaf image are higher 

than that of the infected leaf image. The values of the energy and homogeneity are 

normalized and shown below in Figure 3.14. 

 

Figure 3.14. Infected and control distribution map 

 

3.3.5 Classification 

 The purpose of classification is to predict the class of a new unknown sample point 

based on the former database that has been separated into different classes. Different 

classification algorithms are implemented depending on the complexity of the database 

distribution; these include the k-nearest neighbor classifier (KNN), the Bayes classifier and 

the neural network (NN) classifier. In this research, the distribution of these two classes is 

separated from the above figure, so we start with a simple classifier, the Naïve Bayes 

classifier, to try to distinguish infected plants from non-infected plants.  
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  KNN is a non-parametric method used in classification; its output is a class 

membership. A new sample point is classified by vote of its k nearest neighbors. When k = 1, 

then this new sample point belongs to its single nearest neighbor. When k = 3 as shown in 

Figure 3.15, then we find its 3 nearest neighbors. There are two red points and only 1 blue 

point, so the new sample point is assigned red. 

 

 

Figure 3.15. Naïve Bayes classification   

 The Naïve Bayes classifier is a simple probabilistic classifier based on Bayes’ 

theorem. We assume there are d classes and determine which class to which the new sample 

point belongs. We then calculate the probability of the new sample point as class k, where k 

ranges from 1 to d based on Bayesian probability, as shown in Equation 3.10. 

1 2
1

1 21

{ } (X | ) (X | ) (X | )
{ | X ,...,X }

{ } (X | ) (X | ) (X | )
d

d K

di

P Y k f Y k f Y k f Y k
P Y k

P Y i f Y i f Y i f Y i
=

= = = =
= =

= = = =∑
�

�

                                3.10 

By assigning d a value of 2, the equation is simplified into Equation 3.11. 

1 1 1 2 1
1 1 2

1 1 1 2 1 2 1 2 2 2

{ X } (X | X ) (X | X )
{ X | X , X }

{ X } (X | X ) (X | X ) { X } (X | X ) (X | X )

P Y f Y f Y
P Y

P Y f Y f Y P Y f Y f Y

= = =
= =

= = = + = = =
     3.11 
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If P{Y=X1|X1, X2} > P {Y=X2|X1, X2}, then we can assign the new sample point Y to 

be of class X1. 

3.3.5 SCMV inoculation and ELISA detection 

The SCMV virus isolate used (strain B of Maize dwarf mosaic virus [MDMV-B] 

designated Iowa 66-188 [ATCC-PV53]) was first isolated in Iowa in 1966 (Ford, et al., 1967; 

Hill, et al., 1973) and maintained in sweet corn (Zea mays L.’ Golden Bantam’). Virus-

infected leaf sap was prepared by grinding infected leaves in 50 mM (millimolar) of 

potassium phosphate buffer, pH 7.0. Mechanical inoculation of two leaf-stage sweet corn 

plants was done by rubbing leaf sap onto new leaves dusted with 600-mesh Carborundum 

(silicon carbide). Plants were maintained in a greenhouse room or a growth chamber at 20-22 

°C with a photoperiod of 16 hours. 

Enzyme-linked immunosorbent assay (ELISA) is a method applied to detection of 

SCMV. Leaf samples of SCMV-infected or mock-treated sweetcorn plants were collected for 

ELISA to detect infection by SCMV using the ELISA reagent set SRA18100 from Agdia. 

Assay was performed following the user guide of the product except for a 1-hour blocking 

step where 5% non-fat milk was added between the coating and sample dispensing steps. 

After adding the PNP substrate, the plate was incubated for 15-20 min and measured on a 

plate reader at 405 nm. Grinding buffer only was used as a negative control and the SCMV-

infected sample used as inoculum was used as a positive control. 

 

3.4 Results and Discussion  

Four batches of corn plants were chosen as experiment objects. There were 20 maize 

plants in batches #1, #2, and #3, and 18 plants in batch #4. Batches #1, #2, #3 were grown in 
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one chamber; they are placed at left, middle and right positions within that chamber. 12 

plants were inoculated by SCMV, 8 plants (mock) each were inoculated by water in batches 

#1, #2, and #3. 7 plants were inoculated by SCMV and 11 plants were inoculated by water in 

batch #4. The plants were inoculated 8 days after sprouting, and observation of the plants 

was begun 1 day after inoculation. The plants were tested every 3 days from the 1st day to the 

25th day.  

 Each plant was placed in the working area of the system. After checking that the 

status of the ToF camera was set to “succeed”, we began to test the plants. We first pressed 

the “Acquire 3D data” button and the system would capture 3D images of the plant in multi-

views. The platform processed the data collected after “process 3D data” was triggered. 

When the process bar was at 100%, the corn plant model was reconstructed and displayed in 

a black window. After then pressing “compute parameter”, a table displayed the phenotypic 

value of this plant, i.e., the lengths of each leaf and the stem height. The user next pressed 

“take color image”, causing the arm to position the color camera and take a picture of the leaf 

center; the picture is displayed in a small window at the left side of the screen. The detection 

result, either “positive” or “negative”, was displayed in the lower right window after 

triggering a “diagnose” button. At the lower right of the interface, there are two buttons: 

“Acquire” and “Gripping”. They are used to locate the target leaf center and drive the robot 

hand to probe the target point.  
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                                   A                                                                                  B 

  

                                 C                                                                                  D 

  

                                E                                                                                   F 

Figure 3.16. System working flow map. A is the 3D image acquiring. B is the plant model visualization. C is 

plant parameter computing. D is acquiring leaf color image. E is diagnosing the infected plant. F is leaf 

probing.   

 
3.4.1 Detection of virus symptoms 

The target leaves are the two leaves on top because the lower leaves are covered by 

upper leaves in the system view.  

3D model reconstruction 

Phenotypic parameter computation 
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During each day when samples are taken, the system reports “positive” or “negative”, 

where “positive” means the probability of “infected” is high and “negative” means the 

probability of “infected” is low for this plant. The leaf symptom pattern of an “infected 

plant” may be reported on different days than for other plants. For example, the pattern 

emerged about 1 week earlier for batch #4 than for batches #1, #2, and #3.  On the 16th day, 

all 60 plants in batches #1, #2, and #3 tested “negative”.  

In batches #1, #2, and #3, plants 1 to 8 were inoculated by water and labeled as A, 

plants 9 to 20 were inoculated by virus reagent and labeled as B. The number “1” in the 

above table means “positive” while “0” means “negative”.  In batch #4, plants 1 to 7 were 

inoculated by and labeled as A, and plants 8 to 18 were inoculated by virus reagent and 

labeled as B. In the final result, we used the average of the 3 values to perform the 

classification. The final result of “diagnose” is shown in the table below.   

One month after inoculation, all plants were sampled for ELISA to detect infection by 

SCMV. As shown in Figure 17, the negative control plants and all the mock-treated plants 

tested had a background OD405 less than 0.20, while the positive control and SCMV-

infected plants had OD405 readings ranging from 1.27 to 1.92, significantly higher than the 

background readings. Ten SCMV-treated plants showed similar OD405 readings as the 

negative control plants, indicating unsuccessful SCMV infection. When leaf symptoms were 

checked to confirm infection, the result correlated well with the ELISA result. The ELISA 

result was treated as the gold standard in this project. 
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Figure 3.17. ELISA result for 4 batches  
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Table 3.1. Batch 1 (every sampling days) diagnose result 

Plant ID 11A 12A 13A 14A 15A 16A 17A 18A 11B 12B 13B 14B 15B 16B 17B 18B 19B 110B 111B 112B 

19 days 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

22 days 0 0 0 1 1 0 0 0 1 1 0 0 0 N/A 0 0 N/A N/A 0 1 

25 days 0 0 1 0 0 0 0 0 1 1 0 0 0 N/A 0 0 N/A N/A N/A 1 

 

 Table 3.2. Batch 2 (every sampling days) diagnose result  

Plant ID 21A 22A 23A 24A 25A 26A 27A 28A 21B 22B 23B 24B 25B 26B 27B 28B 29B 210B 211B 212B 

19 days 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 0 

22 days 0 0 0 0 1 0 0 0 1 1 1 0 0 1 1 1 1 1 0 0 

25 days 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 

 

Table 3.3. Batch 3 (every sampling days) diagnose result 

Plant ID 31A 32A 33A 34A 35A 36A 37A 38A 31B 32B 33B 34B 35B 36B 37B 38B 39B 310B 311B 312B 

19 days 1 0 0 0 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0 1 

22 days 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 

25 days 1 0 1 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 1 1 

 

Table 3.4. Batch 4 (every sampling days) diagnose result 

Plant ID 41A 42A 43A 44A 45A 46A 47A 41B 42B 43B 44B 45B 46B 47B 48B 49B 410B 311B 

19 days 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

22 days 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 

25 days 1 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 0 0 
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Table 3.5. Batch 1 final diagnose result 

Plant ID 11A 12A 13A 14A 15A 16A 17A 18A 11B 12B 13B 14B 15B 16B 17B 18B 19B 110B 111B 112B 

Diagnose C C C C C C C C I I C C C N/A C C N/A N/A N/A I 

Truth C' C' C' C' C' C' C' C' I' I' C' C' C' N/A C' C' N/A N/A N/A I' 

Correction 
             

N/A 
  

N/A N/A N/A 
 

 

Table 3.6. Batch 2 final diagnose result 

Plant ID 21A 22A 23A 24A 25A 26A 27A 28A 21B 22B 23B 24B 25B 26B 27B 28B 29B 210B 211B 212B 

Diagnose C C C C C C C C I C I C C I I C I I C C 

Truth C' C' C' C' C' C' C' C' I' C' I' C' C' I' I' I' I' I' C' C' 

Correction 

                    

 

Table 3.7. Batch 3 final diagnose result 

Plant ID 31A 32A 33A 34A 35A 36A 37A 38A 31B 32B 33B 34B 35B 36B 37B 38B 39B 310B 311B 312B 

Diagnose I C C C C I I C I I I I I C I C C I I I 

Truth C' C' C' C' C' C' C' C' I' C' I' I' I' C' I' C' C' I' I' I' 

Correction 

                    

 

Table 3.8. Batch 4 final diagnose result 

Plant ID 41A 42A 43A 44A 45A 46A 47A 41B 42B 43B 44B 45B 46B 47B 48B 49B 410B 311B 

Diagnose C C I C C C C I C I I I I I I I C C 

Truth C' C' C' C' C' C' C' I' I' I' I' I' I' I' I' I' I' I' 

Correction 
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The first row in Tables 3.5, 3.6, 3.7 and 3.8 are the plant IDs; the second row is the 

diagnostic result from the system, where “C” means control plant and “I” means the infected 

plant. The third row presents ground-true from ELISA test, again with “C’” meaning control 

plant and the “I’” meaning infected plant. The last row shows the correction, where a check 

mark designates a correct result and a cross mark designates an incorrect result. In batches 

#1, #2, and #3, the system detected 18 “infected” plants in group B, while 3 plants were 

considered “infected” in group A. There were 74 cases, 65 correct and 9 incorrect, and the 

accuracy was 87.84%. 

3.4.2 Leaf Probing test 

 We performed a leaf-probing test for batch#1 every sampling day. We tested for 2 

directional errors: absolute error distance between gripper center and leaf center along the 

leaf midrib and the cross midrib.   

 

Figure 3.18. Leaf Probing error definition. 
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Figure 3.19. Leaf Probing error distribution in cross direction (left) and along the midrib direction (right). 

 

 

Table 3.9. Cross Midrib error (mm) 

Quantiles   Summary Statistics 

100% maximum 37 Mean 12.4041 

75% quartile 16.5 Std Dev 5.5868 

50% median 12 Std Err Mean 0.36062 

25. % quartile 8 Upper 95% Mean 13.1145 

0% minimum 3 Lower 95% Mean 11.6937 

        N 240 

 

 

Table 3.10. Along Midrib error(mm) 

Quantiles   Summary Statistics 

100% maximum 84 Mean 23.0166 

75% quartile 30 Std Dev 15.2989 

50% median 19 Std Err Mean 0.9875 

25. % quartile 13 Upper 95% Mean 24.9621 

0% minimum 3 Lower 95% Mean 21.0713 

        N 240 
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There were 240 leaves were tested. The mean of the error along the leaf midrib direction was 

23 mm, and the median of the error was 19 mm. These two values across the midrib direction 

were 12.4 mm (mean) and 12 mm (median). 

3.4.3 SCMV effects tests 

We grew 60 maize plants, labeled as batches #1, #2, and #3. They were grown in one 

growth chamber and placed in the left (batch #1), middle (batch#2), and right (batch #3) 

chamber locations. There were 9 sampling days in the interval from the 1st day to the 25th day 

after the treatment. In each sampling day, the system would output the plant stem height, 

each leaf’s length, for every plant. We also measured these parameters manually to provide a 

gold standard for comparison.  

3.4.3.1 System result 

According to the diagnostic result and plant parameter output, there were 216 plant-

height values in the “control” group and 171 values in the “infected” group. We treated these 

387 height values as observations, with effect factors that included Batch ID, plant ID, days 

of “infected or not”. In this way we attempted to build a linear regression model. 

0 1_ [ / ]Stem Height Intecept Days Infected Yes Noβ β= + × + ×  

Because the testing of effect of “infected” status on plant height was the main activity of 

interest, we were concerned only about “days” and “infected” factors. We set an alpha level 

of 0.05, and used JMP 11 Pro software to run this model. 

Table 3.11. Summary of fit (Height model using system output) 

 

RSquare 0.7494 

Root Mean Square Error 24.7232 

Mean of Response 92.4383 

Observations  378 
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Table 3.12. Parameter estimates (Height model using system output) 

Term   Estimate Std Error t Ratio Prob>|t| 

Intercept 22.3892 6.2297 3.59 0.0468* 

days 5.3986      0.1655 32.6    <.0001* 

infected -1.7401     -1.5096 16.19      0.2566 

 

 

Figure 3.20. Residual V.S. Predicted (Height model using system output) 

Table 3.11 shows that the R-square of this model is 0.7494. This means that there are 

74.94 % samples in the population that can be explained using this model. The root mean 

square estimates the standard deviation of random error. 92.48 mm was the mean value of 

stem height and there were 378 samples observed in this model. Table 3.12 provides the 

coefficients of the factors and p-value forthe F-test. We can see the residula by predicted plot 

(Figure 3.20); there are obvious patterns, so this model is not suitable and should be changed. 

Beacause there are only 9 scales (day of 1, 4, 7, 10, 13, 16, 19, 22, 25) in the factor of “days”, 

less than the response y of stem height (30 mm ~ 220 mm), we transferred the response y 

(stem height) to logarithmic representation. Here is the fixed model: 

0 1( _ ) [ / ]
e

Log Stem Height Intecept Days Infected Yes Noβ β= + × + ×  
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Table 3.13. Summary of fixed model fit (Height model using system output) 

RSquare 0.8067 

Root Mean Square Error 0.2207 

Mean of Response 4.4153 

Observations  378 

 

 

Table 3.14. Parameter estimates of fixed model (Height model using system output) 

Term   Estimate Std Error t Ratio Prob>|t| 

Intercept 3.6653 0.0222 164.81    <.0001* 

days -0.0214 0.01147 -1.87 0.0621 

infected     -0.0211 0.0579 0.0014  39.53 

 

Table 3.15. Effect test of Height fixed model (F-test) 

Source Nparm DF     F Ratio Prob > F 

days 1 1 1562.314 <.0001* 

infected 1 1 3.5014 0.0621 

 

 

Figure 3.21. Residual V.S. Predicted (Height fixed model using system output) 
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Figure 3.22 Quantile-Quantile Plot (Height fixed model using system output) 

The R square is 0.8067, meaning that there are 80 % samples in the population that 

can be explained by this new model. The residula of the predicted plot (Figure 3.21) has no 

obvious pattern. The histogram and normal quantile plots (Figure 3.22) prove that the 

residual of the new model obeys a normal distribution. The new model thus is acceptable. 

The Effect Tests (F test) table shows that the P-values of  “days” are very small and “infected” 

is larger than the alpha value. We fail to reject the hypothesis that the coefficient of “infected” 

is zero at α=0.05.  For leaf length, we built a fixed model as below: 

0 1( _ ) [ / ]
e

Log Leaf length Intecept Days Infected Yes Noβ β= + × + ×  

Table 3.16. Summary of fixed model fit (Leaf length fixed model using system output) 

RSquare 0.7026 

Root Mean Square Error 0.3351 

Mean of Response 5.0409 

Observations  1455 
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Table 3.17. Effect test of fixed leaf length fixed model using system output (F-test) 

Source Nparm DF      F Ratio Prob > F 

days 1 1 446.9407    <.0001* 

Infected 1 1 2.6692    0.1228 

 

            The R-square of this model is 0.7, and the P-value of  “days” is very small and 

“infected” is twice the alpha value. We thus fail to reject the hypothesis that the coefficient of 

“infected” is zero at α=0.05. 

3.4.3.2 Ground-truth result 

 We use the ground-truth of stem height and leaf length and “diagnose” results to run 

the height and length model. The R-square of the height model and length model wer 0.88 

and 0.73, the P-value of “Infected” were 0.1 and 0.22, i.e., greater than α = 0.05. We fail to 

reject the hypothesis that the coefficient of “infected” is zero at α=0.05. 

Table 3.18. Summary of fixed model fit (Height fixed model using manual measurement) 

RSquare 0.8803 

Root Mean Square Error 0.1725 

Mean of Response 4.4154 

Observations  378 

 

Table 3.19. Effect test of fixed height fixed model using manual measurement (F-test) 

Source Nparm DF     F Ratio Prob > F 

days 1 1 2756.505    <.0001* 

infected 1 1 2.7029 0.101 

 

Table 3.20. Summary of fixed model fit (Leaf length fixed model using manual measurement) 

RSquare 0.7301 

Root Mean Square Error 0.3317 

Mean of Response 5.011 

Observations  1713 
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Table 3.21. Effect test of fixed leaf length fixed model using manual measurement (F-test) 

Source Nparm DF F Ratio Prob > F 

days 1 1 792.2429    <.0001* 

Infected 1 1 1.6016 0.2252 

 

In conclusion, there is no evidence to prove that SCMV would affect the maize plant 

with respect to stem height and leaf length during an interval ranging from 8 days to 32 days 

after sprouting. 

3.4.4 Discussion and Conclusion 

 The results show that this platform is feasible for use in a maize-seeding phenotyping 

study. After distinguishing the infected plants, we used phenotypic parameters to build a 

model for analyzing the effects of “infected” on maize plants’ stem height and leaf length. 

The P-values of “infected” were greater than α = 0.05, so we concluded that the “infected” 

status does not affect the stem height and leaf length during V2~V5 growth stages. The 

probing test demonstrates that this system is able to approach the leaf center.  

The infection detection error comes from four sources. The first factor is leaf texture 

image instability. We took a square sample from the leaf image center in this project, based 

on that assumption that an infected plant would have symptoms on its all its leaf surfaces. 

However, some symptoms emerged first at the bottom of the leaf and then appeared on the 

whole leaf after several additional days, so we misdiagnosed some infected plants as control 

plants in the early days of the test. A second source of error resulted from the classifier. It is 

easy to find a line to discriminate between the two classes, infected plants and control plants, 

in the training set, but when we have a large sample size, the overlap of these classes occurs 

and decreases the ability to discriminate. A third error source was the GLCM variables. 

While we used energy and homogeneity as judgmental factors, we could add more variables 
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and attempt to extract additional traits from the images to discriminate between these two 

classes. A fourth error source was caused by biological issues. The training set cannot 

include all symptoms and describe all control leaf patterns. It is probable that control leaves 

may have irregular texture due to environment changes, and such situations are not included 

in our training set. 

In the future, using a more flexible robot arm and a better ToF camera with higher resolution 

would be keys to improving system performance. It is necessary to take more than just one 

center area of a leaf for sampling texture analysis. In addition to the GLCM, we can apply 

other imaging methods to extract traits of the leaf surface. Different classifiers should be 

tested and the training set should be enlarged. We might also optimize the algorithm and 

apply more enhanced programing skills to increase the processing speed.  
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CHAPTER 4. SUMMARY AND CONCLUSIONS 

 

Summary 

This project consisted of two main efforts, maize seeding phenotyping and 

determining the effects of “Infected” status on plant growth. To solve the first problem, I 

used a robot arm and a ToF camera as the main hardware set-up. The biggest challenge was 

achieving suitable communication between the robot arm and personal computer because of 

the need for real-time control. A protocol was applied for the communication function in 

which the robot arm functioned as a server and the computer functioned as a client. 

Commands to control the arm were transferred through a TCP/IP socket. After solving this 

problem, the next issue was how to build a user-friendly interface using a professional 

software approach. QT platform add-in Visual Studio 2010 was used as the programing 

environment. QT is a professional cross-platform application and UI development 

framework; it is very easy to draw windows and controls in the QT environment. Various 

libraries are implemented to support software development. PCL (Point Cloud Library) was 

applied to process 3D data, and some OpenCV functions were used to process color images. 

VTK (The Visualization Toolkit) helped in building the model visualization window. 

The second problem was to analyze the “infected” factor in maize plants’ growth. The 

first issue here is how to distinguish “infected” plants. Texture is the main difference 

between the control plant leaf and the infected plant leaf. The infected plant was inoculated 

with Sugarcane mosaic virus (SCMV); the texture of such a plant leaf exhibits irregular 

broken form, and I used the color and gray images to detect the infected leaf. The challenge 

was how to locate the target leaf. In my algorithm, I used 3D curves to fit the skeleton of the 
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leaf, find the normal to the leaf surface, and build a triangular surface to build the leaf center 

frame. In this way, the positional relationship between the arm and plant leaf were 

established. GLCM was applied to extract and digitize the difference between these two 

types of leaves. The next step was to classify them according to the digitized traits. Based on 

the phenotypic parameters and diagnostic results, I built the stem height and leaf length 

model and performed an effect test on the coefficient of the “infected” factor using JMP Pro 

11. 

 

Discussion and Conclusion 

Errors in the phenotypic parameter measurement came from three sources: point 

cloud filters, ToF camera accuracy, and the leaf skeleton curve-fitting algorithm. The 

accuracy of the measurements are very sensitive to the filter parameters. Pass-through and 

outlier remover filters were used in this project, but since the performance of these filters 

depended on the plants’ shapes, it was difficult to set filter parameters to satisfy all situations. 

If color information could be used to remove the noise and background from the plant 

images, that might decrease the measurement error. Such a color based-method might be 

implemented in different-shaped corn plants because the corn plants’ color has merely 

difference. 

Four sources contributed to infection-detection error. The first source was leaf texture 

image instability. In this project, we only took a square sample of the leaf image to analyze 

texture, but some symptoms of SCMV appeared first at the bottom of the leaf and then 

extended to the whole leaf only after several days. The infected plants were thus 

misdiagnosed as control plants in the early days of the test. The second source of error was 
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the classifier. In the training set, the two classes (infection and control plants) can be 

discriminated by a simple line. When the sample sizes become larger, the overlap of these 

classes occurs and decreases the classifier accuracy. Third, we used energy and homogeneity 

variables from the GLCM for trait extraction. More variables and traits from the leaf image 

could be used to discriminate between these two types of plants. Biological issues also can 

lead to error. The training set did not contain all symptoms of the SCVM or describe all 

control-leaf patterns. The control leaves probably have non-uniform texture because of the 

environment variations, but our training set did not consider these situations. 

This platform has the capacity for reconstructing a 3D model of maize plant during 

V2~V5 growth stages, acquiring the phenotypic parameters, and distinguishing between 

“infected” and “control” plants. There is no evidence to show that the “Infected” factor 

affects the maize plants with respect to stem height and leaf length during V2~V5 stages, 

according to the models.  

In the future, we can improve the platform’s performance by optimizing the 

segmentation algorithm. If we wish the system to work on a wider range of maize growth 

stages and to process more than one plant at a time, a more flexible robot arm and improved 

ToF camera with higher resolution would be necessary. 
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