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ABSTRACT 

 

 Within-row plant spacing plays an important role in uniform distribution of water 

and nutrients among plants, hence affects the final crop yield. While manual in-field 

manual measurements of within-row plant spacing is time and labor intensive, little work 

has been carried out to automate the process. An automated system is developed using a 

state-of-the-art 3D vision sensor that accurately measures within-row corn plant spacing. 

The system is capable of processing about 1200 images captured from a 61 m crop row 

containing approximately 280 corn plants in about three and half minutes. 

Stocking density of laying hens in egg production remains an area of 

investigation from the standpoints of ensuring hen’s ability to perform natural behaviors 

and production economic efficiency. It is therefore of socio-economic importance to 

quantify the effect of stocking density on laying hens behaviors and thus wellbeing. In 

this study, a novel method for automatic quantification of stocking density effect on 

some natural laying hen behaviors such as locomotion, perching, feeding, drinking and 

nesting is explored. Image processing techniques are employed on top view images 

captured with a state-of-the-art time-of-flight (TOF) of light based 3D vision camera for 

identification as well as tracking of individual hens housed in a 1.2 m × 1.2 m pen. A 

Radio Frequency Identification (RFID) sensor grid consisting of 20 antennas installed 

underneath the pen floor is used as a recovery system in situations where the imaging 

system fails to maintain identities of the hens.
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CHAPTER 1 

 INTRODUCTION 

 

Dissertation Outline 

This dissertation is organized as a compilation of five journal articles related to 

the research studies focusing on inter-plant spacing sensing and laying hen behavior 

monitoring. Chapter 1 provides a brief introduction and also lists the research objectives 

of the studies. (Chapter 2 and Chapter 3) discuss image processing techniques developed 

for within-row inter-plant spacing sensing of corn plants in early growth stages. The 

third article (Chapter 4) details image processing algorithm developed for identification 

of cotton plant stems. The last two articles (Chapter 5 and Chapter 6) describe 

algorithms for visual monitoring of laying hens to support automatic quantification of 

stocking-density effects on their behavior. Final conclusions from the research and 

recommendations for future research are presented in Chapter 7. 

 

Inter-plant Spacing Sensing 

Spacing variability, rate of emergence, and plant population are the most 

common characteristics used by producers in evaluating planter performance. 

Mechanisms and maintenance along with planting speed all may influence seed 

singulation and placement and can additionally affect plant spacing and emergence 

variability, and such variability may ultimately affect plant growth and grain yield. 

Uniform plant spacing is always desired for equal distribution of water and nutrients 
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among plants, but the effect of within-row plant spacing variability on grain yield is 

unclear. Vanderlip et al. (1988) found that grain yield decreased when the standard 

deviation of within-row plant distribution exceeded 2.5 inches. Nielsen (1991) suggested 

that loss due to uneven plant spacing averaged 2.5 bu/acre if the standard deviation of 

within-row plant distribution was increased by an inch. Krall et al. (1977) and Doerge et 

al. (2002) documented similar effects of plant-spacing variability, with reported yield 

losses averaging 3.4 bu/acre for every inch of increase in the standard deviation of 

within-row plant distribution. 

The gaps within crop rows not only cause higher plant space variability but also 

dramatically lower overall plant populations, thereby leading to lower grain yield. On 

the other hand, Nafziger (1996) concluded that double seed drops can actually have a 

positive effect on grain yield up to some undefined upper threshold of plant population. 

There are contradicting reports over the cumulative effects of gaps and multiple seed 

drops in a field, especially when the plant population is within the optimum range, 

28,000 to 32,000 plants per acre. 

Recently, Lauer and Rankin (2004) concluded that it appeared that effects of 

plant spacing variability on corn grain yield were negligible. Similar conclusions were 

reported in Liu et al. (2004a). A subsequent study by Liu et al. (2004b) contradicted this 

assertion with the conclusion that there is a significant linear yield loss of 1.5 bu/acre for 

every inch of increase in standard deviation of plant distribution due to uneven plant 

spacing. Nielsen (2005) validated his previous studies and documented the rate of yield 

loss of 2.2 bu/acre for every inch increase in standard deviation of plant distribution. 
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In contrast, uneven emergence almost always reduces grain yield, with early-

emerging plants unable to compensate for the lower yield of late-emerging plants. Carter 

et al. (1989) and Nafziger at al. (1991) reported a yield loss of 6-9% and 6-8%, 

respectively, in corn plants when within-row emergence of one-half to three-quarters of 

plants was delayed by 1½  weeks. Ford and Hicks (1992) reported a yield loss of 9.4 

bu/acre when emergence of one-half of the plants was delayed by a week and 23.4 

bu/acre when it was delayed by 2 weeks. However, the authors also stated that the yield 

reduction was not significant enough to justify replanting since yields from uneven-

emerging stands were similar to yields from late-planted uniformly-emerging stands. 

As stated by Barge and Thomison (2001), the most friendly method for 

determining planters’ spacing performance is to measure the distance between plants in 

the field. The ideal way would be to measure seed-to-seed distance, which would require 

uprooting of the plants to locate seeds. However, the process of acquiring manual 

measurements of plant-to-plant spacing is labor-intensive, time-consuming and prone to 

human errors. Therefore, development of an automated sensing system for collecting 

plant-to-plant spacing data is desirable. 

Planter manufacturers and researchers have been working closely to develop 

computer vision-based automatic inter-plant spacing sensing systems. Current systems 

mostly utilize top-view images obtained from a stereo rig or a video camera. These 

systems are highly sensitive to color variations introduced by shadow formations and 

glares, making them usable only for a limited time frame, perhaps within a day. Color-

based segmentation of top-view plant images becomes challenging when plant canopies 
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begin occluding each other and making it difficult to identify the plant centers. 

Specifically, current 2D color vision-based systems (Tang & Tian, 2008a, 2008b) use 

top-view images only, record crop-row video, generate a mosaicked crop row image by 

using the background portions, i.e., the soil surface, of the image frames, and then 

automatically measure the plant spacing utilizing color information. Plants and plant 

centers are then segmented and subsequently plant row center lines are fitted for plant 

identification. Though these systems perform well under well-controlled conditions 

(proper crop size and color, proper background composition and proper time of a day), 

their system performances are constrained by a range of external factors: 

1) Image acquisition platform stability: Tang and Tian (2008a, 2008b) used a 

modified two-wheeled bicycle that required close operator attention to maintain the 

stability of the platform.  

2) Controlled lighting and wind conditions: Tang and Tian (2008a, 2008b) used 

an umbrella for casting a shadow over the imaging area, while Shrestha and Steward 

(2003) did not cover the imaging area at all. Color rendering was poor and inconsistent 

when sun light components changed rapidly during early mornings and late afternoons. 

Severe wind conditions can also deform plant leaves, making corn plant center detection 

difficult and inaccurate.  

3) Shrestha and Steward (2003) and, Tang and Tian (2008a, 2008b) both used a 

camcorder (a device not really designed for industrial computer vision) to record crop 

rows and then digitized the analog video signal into digital video frames. Color fidelity 

was adversely affected during multiple signal conversions.  
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4) Corn plant recognition and stem center detection: Current systems rely on 

color only for corn plant identification and center cluster detection. This approach 

generally works well when corn plants are between growth stages from V1 to V2 (about 

one week after emergence when plants contain 1-2 leaves), but it also requires good 

growth conditions, i.e., limited water and nutrient stresses, and ideal lighting and wind 

conditions upon sensing.  

Using color alone appears to be inadequate to cope with the complexity of field 

conditions that lead to both color variations and color fading, e.g. drought, nutrient 

deficiency, spray damage, residue under decomposing, mossy soil patches, etc. Crop-

row detection is important since it makes use of planting geometry (most generally a 

straight line) to enhance the capability for plant detection. The current crop-row 

detection method is constrained by color-based crop plant and center cluster 

identification. Though geometric features such as average plant size and compactness 

can be used, crop-row line fitting can fail drastically when background noise from weed 

patches, algae, or moisturized residue overpopulate the number of true corn plants 

during the process. Mistakenly-fitted crop rows can require a large number of manual 

corrections in using the current system. Jin and Tang (2009) proposed a real-time corn 

plant sensing approach using a stereo camera. They reported a 96% success rate in 

correctly detecting the corn plants, and a maximum distance error in locating the plant 

centers of 0.05 m and 0.01 m for 74.6% and 62.3% of detected plants, respectively. 
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Research Objectives 

The overall goal of this research was to develop a methodology for automatic 

measurement of distances between corn plants in early growth stages using time-of-

flight light based 3D camera. The objectives of the work were to:  

1) Develop a system that automatically detects corn plants in a crop row and 

measures within-row spacing between the plants,  

2) Determine the system’s performance in detecting plant-stem centers, and  

3) Determine the system’s inter-plant distance measurement accuracy by 

comparing system measurements with ground distance measurements 

collected from the fields 

 

Laying Hen Behavior Monitoring 

In their natural environment, chickens are known to live in small groups 

spending considerable amount of time scratching and foraging for food. They also 

exhibit inheritable behaviors such as dust bathing and pre-laying nesting. Chickens and 

other domestic birds raised for commercial purpose are kept in a wide array of housing 

systems and the physical environment in these systems varies considerably. Farmyard 

and free-range housing systems allow birds to move more freely through their 

environment. In such systems birds typically have access to natural daylight, a variety of 

substrates, are usually kept at a lower stocking density (SD), and can be exposed to 

extreme weather conditions and predation. Most commercial housing systems, on the 

other hand, are complete confinement houses in which birds are generally kept at 
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relatively higher stocking densities, while their environment is automatically controlled 

in an effort to achieve optimal thermal conditions, nutrition, and protection from 

predator, pathogens and adverse weather conditions. 

In the United States and globally laying hens are primarily housed in 

conventional cages also known as battery cages. Conventional cages provide smaller 

group size resulting in lower levels of aggression and cannibalism. Cage systems are 

known to improve overall well-being of the birds through improved hygiene (Appleby, 

1998). The higher egg-production and stocking-density capacity of cage systems also 

make them economically favorable. In these housing systems large numbers of birds can 

be efficiently housed in confinement with highly-mechanized feed and water systems, 

and with manure collected and removed automatically (Cooper & Albentosa, 2003). 

However, cage systems restrict many natural behaviors such as foraging, roosting, 

nesting and perching, which decreases animal welfare. There is thus growing pressure 

from animal well-being and consumer groups advocating the banning of conventional 

cage systems in the poultry industry. The European Union (EU) imposed a ban on 

battery-cage systems starting early 2012. Alternative housing systems such as furnished 

cages and colony housing have become the de facto housing systems in the EU, and are 

emerging in North America and other countries. 

In a study of White Leghorns, Cunningham and Vantienhoven (1983) showed 

that the number of occurrences of conspecific head-pecking was higher in shallow cages 

(31.8 cm from front to back) compared to deep cages (50.8 cm from front to back). 

Bareham (1976) designed an experimental furnished cage with a horizontal floor, an 
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extended height with access to food and water provided on two levels, and two perches 

and nesting boxes. The study showed that the White Leghorn laying-strain birds kept in 

the experimental cage exhibited more movement, reflex activity, preening and sitting, 

but less feeding, drinking, pecking, pushing and other stereotypical behavior compared 

to those kept in conventional cages.  

Pohle and Cheng (2009) recently conducted a comparative study of effects of 

furnished cages and battery cages on White Leghorn chicken behavior. Their study 

showed that birds housed in battery cages spent more time walking than those housed in 

furnished cages. In contrast, the birds housed in furnished cages spent more time feeding 

than those housed in battery cages. Drinking behavior was significantly affected by age, 

with birds housed in the furnished cages showing a decreased in time spent drinking at 

40 weeks of age. At the age of 50 weeks, the level of preening behavior was higher in 

the birds housed in the furnished cages, while the birds housed in battery cages spent 

more time performing exploratory pecking behavior. These researchers did not observe 

dust-bathing behavior in either housing system, while in furnished housing systems the 

hens exhibited exploratory pecking, resting, and preening behaviors in dust-bathing 

areas.  

Appleby et al. (2002) reported that birds performed foraging, resting, and 

standing behaviors in the dustbath rather than dust-bathing behavior. Pohle and Cheng 

(2009) suggested that birds highly selected for egg production, such as White Leghorns 

in battery cage systems might have adapted to the production environment with reduced 

dustbathing behavior when compared with behavior in more natural environments. 
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Braastad (1990) reported that birds spent 25% to 41% of each day on perches. In 

a similar study, Appleby (1998) reported that more than 80% of birds perched at night, 

while Duncan et al. (1992) reported that up to 99% of birds perched at night. Pohle and 

Cheng (2009) also reported that the hens in their study spent a considerable amount of 

time on perches. Birds are known to use branches for resting and avoiding predators or 

aggressive peers in their natural environments, so perching is considered to be an 

inherent behavior. 

Yue and Duncan (2003) reported that birds without nestboxes exhibited 

frustration behavior (stereotyped pacing) compared to those provided with nestboxes. 

Cooper and Appleby (1997) indicated that birds were motivated to lay eggs in nestboxes 

and exhibited nest-searching behavior when nestboxes were not available. 

Visual monitoring of laying-hen movements for behavioral analysis appears to be 

unsatisfactory for several reasons. First, the presence of human observers affects 

behavior and movement of laying hens. Second, during night-time, when lights are off, it 

is difficult to observe their movements. Third, it is both time and labor intensive to 

observe laying hens for a prolonged period of time, although video cameras can be used 

to avoid the effects of human presence on laying-hen behavior and movement. Similarly, 

infrared cameras can be used for low or no-light conditions. However, the time-

consuming nature of human analysis of video recordings is still a problem. Therefore, a 

system to automatically track individual laying hens and extract their behavior and 

movement data is indispensable. 
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Monitoring laying hens is particularly difficult since their behaviors are 

unpredictable and their movements cannot be expected to follow regular paths. The 

behavior of laying hens consists of sporadic walking, feeding, and drinking, interspersed 

by resting and less frequent activities that include wing-flapping, dust-bathing, and peer 

interaction. 

Tracking multiple laying hens for behavior monitoring is a challenging task with 

interesting features from a computer-vision perspective. Segmenting laying hens from 

the background can be difficult because the litter on which the hens live can often be of 

similar intensity to that of their feathers. Laying hens tend to flock together, and because 

they are not highly-mobile animals, difficulty in separating individual hens can persist 

and be prolonged. Conversely, hens may make sudden and quick moves, thereby 

creating a discontinued trajectory that can create difficulty in tracking. 

 The literature on classical multi-target tracking is based on the use of data-

association after foreground detection in the image. Uchida et al. (2000) proposed a 

robust method for tracking many pedestrians by viewing them from an upper oblique 

angle. They extracted individuals using background subtraction. When pedestrians 

overlapped each other, they robustly tracked targets based on their trajectories. However, 

poultry do not move for long time periods while remaining in contact, and they may alter 

their trajectories randomly.  

Computer vision has been applied to tracking animals. Sumpter et al. (1997) 

tracked a group of animal at a high frame rate. Sergeant et al. (1998) developed a 

poultry-tracking system in which a camera was placed above the poultry group. They 
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detected poultry silhouettes based on color information and segmented these silhouettes 

by using the information on the contours of the silhouette. Fujii et al. (2009) used a 

computer-vision technique based on particle filters to track multiple laying hens, but that 

system was not able to track laying hens over a prolonged period of time. 

 

Research Objectives 

The primary goal of this study was to develop a methodology for automatic 

quantification of stocking density effects on common laying-hen behaviors using light 

based time-of-flight camera and RFID antenna network. The objectives were to:  

1) Develop a tracking system capable of tracking individual laying hens housed 

in groups of 5 and 10, 

2) Extract common laying-hen behaviors such as locomotion, perching, nesting, 

feeding, and drinking, and 

3) Analyze the effects of stocking density on extracted laying-hen behaviors 
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CHAPTER 2 

 AUTOMATIC INTER-PLANT SPACING SENSING AT EARLY GROWTH 

STAGES USING A 3D VISION SENSOR 

A paper published in Computer and Electronics in Agriculture
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Abstract 

An inter-plant spacing sensing system using a TOF (time of flight) of light based 

3D sensor was developed. The 3D sensor was capable of capturing distance information, 

intensity and amplitude data in a single shot. The side view depth images captured were 

stitched together using distance information from a wheel encoder in conjunction with a 

feature-based image sequencing process for the stem location identification. One 

obvious advantage of the system over current color-based 2D systems was the use of 

depth images for plant identification, which was less sensitive to color variations. A 

covered cart was designed to prevent the sunlight from directly shedding on the plants 

and reduce the interference from the wind, which in turn made the system usable 

throughout the day. The vertical camera position was easily adjustable making the 

system suitable to work with plants at different growth stages. 

The use of side-view images made the system capable of detecting inclined 

plants and therefore, boosted the performance of the system in precisely locating the 

stem centers, which in turn minimized the measurement errors. The measurement  
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accuracy demonstrated the system superiority over the current systems which make use 

of top-view images for inter-plant spacing sensing. 

The use of side-view images made the system capable of detecting inclined 

plants and therefore, boosted the performance of the system in precisely locating the 

stem centers, which in turn minimized the measurement errors. The measurement 

accuracy demonstrated the system superiority over the current systems which make use 

of top-view images for inter-plant spacing sensing. The system achieved an overall mean 

root mean squared error (RMSE) of 0.017 m with a mean plant misidentification ratio of 

2.2 %. The coefficient of determination (R
2
) was 0.95 between the in-field manual 

distance measurements and the system distance estimates.  

Keywords. 3D, machine vision, corn plant spacing sensing, early growth stages, 

image processing 

 

Introduction 

Uniform plant spacing is always desired for equal distribution of water and 

nutrients among plants. Researchers in the past have shown that variations in plant 

spacing result in significant variation in final crop yields. Vanderlipet al. (1988) found 

that grain yield decreased when standard deviation of within-row plant distribution 

exceeded 2.5 inches. Nielsen (1991) suggested that loss due to uneven plant spacing 

averaged 2.5 bushels per acre for every inch increase in standard deviation of within-row 

plant distribution. Doerge et al. (2002) documented similar effects of plant space 
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variability, with reported yield losses averaging 3.4 bushels per acre for every inch 

increase in standard deviation of within-row plant distribution. 

The gaps within crop rows not only cause higher plant space variability but also 

dramatically lower overall plant populations, thereby leading to lower grain yield. On 

the other hand, Nafziger (1996) concluded that double seed drops can actually have a 

positive effect on grain yield up to some undefined upper threshold of plant population. 

There are contradicting reports over the cumulative effects of gaps and multiple seed 

drops in a field, especially when the plant population is within the optimum range, 

28,000 to 32,000 plants per acre. 

Recently, Lauer and Rankin (2004) concluded that the effects of plant spacing 

variability on corn grain yield were negligible. Similar conclusions were reported in Liu 

et al. (2004a). Subsequent study by Liu et al. (2004b) contradicted this with the 

conclusion that a significant linear yield loss of 1.5 bushels per acre for every inch 

increase in standard deviation of plant distribution due to uneven plant spacing. Nielsen 

(2005) validated his previous studies and documented the rate of yield loss of 2.2 

bushels per acre for every inch increase in standard deviation of plant distribution.  

As stated in Barge and Thomison (2001), the friendliest method to determine 

planters’ spacing performance is by measuring the distance between plants in the field. 

The ideal way would be to measure seed-to-seed distance, which would require 

uprooting of the plants to locate seeds. However, the process of acquiring manual 

measurements of plant-to-plant spacing is labor intensive, time consuming and prone to 
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human errors. Therefore, an automated sensing system for collecting plant-to-plant 

spacing data is desirable. 

Planter manufacturers and researchers have been working closely to develop 

computer vision-based automatic inter-plant spacing sensing systems. Current systems 

mostly utilize top-view images using a stereo rig, or a video camera. These systems are 

highly sensitive to color variations introduced by shadow formations and glares, making 

them usable only for a limited time frame within a day. Color-based segmentation of 

top-view plant images becomes challenging when plant canopies start occluding each 

other, thereby making it difficult to identify the plant centers. Specifically, the current 

2D color vision-based systems (Tang & Tian, 2008a, 2008b) use top view images only, 

record crop row video, generate a mosaicked crop row image by using the background 

portions, i.e., the soil surface, of the image frames; and then automatically measure the 

plant spacing via utilizing color information, where plants and plant centers are 

segmented and subsequently plant row center-line are fitted for plant identification. 

Though the systems perform well under well controlled conditions (proper crop size and 

color, proper background composition and proper time of a day), the systems 

performances are constrained by a range of external factors: 1) Image acquisition 

platform stability: Tang and Tian (2008a, 2008b) used a modified two-wheeled bicycle 

which required a close attention from operators to maintain the stability of the platform. 

2) Controlled lighting and wind conditions: Tang and Tian (2008a, 2008b) made use of 

an umbrella for casting a shadow over imaging area, whereas Shrestha and Steward 

(2003) did not cover the imaging area at all. Color rendering was poor and inconsistent 
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when sun light components change rapidly during early mornings and late afternoons. 

Severe wind conditions can also deform plant leaves, making corn plant center detection 

difficult and inaccurate. 3) Shrestha and Steward (2003) and, Tang and Tian (2008a, 

2008b) both used a camcorder (a device not really designed for industrial computer 

vision) to record crop rows and then digitized analog video signal into digital video 

frames. Color fidelity was adversely affected during multiple signal conversions. 4) Corn 

plant recognition and stem center detection: Current systems rely on color only for corn 

plant identification and center cluster detection. Generally it works well when corn 

plants are between growth stages from v1 to v2 (about one week after emergence when 

plants contain 1-2 leaves), but it also requires good growth conditions, i.e., limited water 

and nutrient stresses, and ideal lighting and wind conditions upon sensing. Using color 

alone appears to be inadequate to cope with the complexity of field conditions that lead 

to both color variations and color fading, e.g. drought, nutrient deficiency, spray 

damage, residue under decomposing, mossy soil patches, etc. Crop row detection is 

important as it makes use of planting geometry (most times a straight line) to enhance 

the ability of plant detection. The current crop row detection method is constrained by 

color-based crop plant and center cluster identification. Though geometric features such 

as average plant size and compactness are used, crop row line fitting can fail drastically 

when background noise from weed patches, algae, moisturized residue over populate the 

number of true corn plants during the process. Mistakenly fitted crop rows can lead to a 

large number of manual corrections in using the current system. Jin and Tang (2009) 

proposed a real-time corn plant sensing using a stereo camera. The authors reported 96% 



19 

success rate in correctly detecting the corn plants, and maximum distance error, in 

locating the plant centers of 0.05 m and 0.01 m for 74.6% and 62.3% of detected plants 

respectively. 

The overall goal of the research was to develop a system for automatic 

measurement of distances between corn plants in early growth stages. The objectives of 

the work were to: 1) determine the system’s performance in detecting plant stem centers, 

and 2) determine the system’s inter-plant distance measurement accuracy by comparing 

the system measurements with the ground distance measurements collected from the 

fields. 

 

Materials and Methods 

The system consists of five major steps: 1) image acquisition; 2) image pre-

processing; 3) stem location identification; 4) image mosaicking; and5) inter-plant 

distance measurement. The side-view images of plants along crop rows were captured. 

The acquired images were pre-processed to differentiate plant segments from 

background and soil. The segmented images were used to identify stem locations, 

mosaic them together and finally measure distance between the identified plants. Sub-

steps involved in each step are shown in figure 1. The image acquisition component was 

written in C++ whereas the components for offline processing (steps 2-5) were written in 

C#. The major steps involved are described in details in the following sections.
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a. Side view images were acquired at every 100 encoder counts 

(approximately 0.05 m along the crop row direction) 

a. Radial distortion was corrected. 

b. Distance information was used to remove background from 

depth image. 

c. Region-of-interest, for further processing, was defined. 

d. Smaller regions were discarded and smaller holes were filled. 

e. Morphological closing was performed to obtain smooth object 

boundaries. 

a. Object skeleton was generated and pruned. 

b. Terminal points of the skeleton were found. 

c. Starting from the bottom point, segmented depth image was 

traversed to find the candidate stem location. 

a. Mosaicked image was generated either by matching the 

identified stems in two consecutive images or by using the 

encoder reading to calculate distance traveled by the cart 

between the images. 

a. Inter-plant distances between the identified plants were 

calculated. 

b. The calculated distances were compared with manual 

measurements from the field to compute measurement accuracy. 

 

Figure 1. Steps involved in automatic inter-plant distance measurement algorithm 

 

Image Acquisition 

A state-of-the-art 3D imaging sensor, SwissRanger SR4000 (MESA Imaging 

AG, Zuerich, Switzerland), based on TOF (time of flight) of light principle was used to 

capture 3D spatial data plus intensity and amplitude images of the scene 

simulataneously. SR4000 measures distance using indirect (phase-shift based) TOF 

measurement. Continuously modulated light waves are sent out from illumination light 

emitting diodes (LEDs). Charged coupled device (CCD)/complementary metal oxide 

(CMOS) imaging sensor measures the phase shift of returned signal at each pixel. The 

returned signal amplitude A is smaller than the emitted signal amplitude E as shown in 

figure 2. There is an offset of B with respect to emitted signal mainly due to additional 
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background light. The received signal is modulated four times per cycle with each 

sample shifted by 90°  phase angle. Phase shift ϕ and the distance are calculated using 

equations 1 and 2, respectively (Buttgen et al., 2005). 

 

Figure 2. Principle of the time of flight measurement based on continuously modulated 

signals 
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where 0 1 2, ,A A A and 3A are four samples of received signal, c is the speed of light, fmod  is 

the modulation frequency of the emitted signal and λ is its wavelength. The spatial data 

are acquired in Cartesian coordinates with its origin at the center of the frontal face of 

the camera. The 3D TOF sensor is superior to conventional stereo vision sensor as it 

does not rely on non-uniform texture feature for non-ambiguous disparity map 

generation, which is particularly useful for the application as plant leaves often present 



22 

somewhat uniform texture. The self-calibrating optical design of the sensor 

automatically corrects for environmental fluctuations such as illumination conditions. 

The camera has rather small, 43.6 ( ) 34.6 ( )h v° × ° FOV (field of view). With this FOV, it 

can capture an area of 0.40 m x 0.31 m if placed 0.50 m away from the scene. The 

camera is capable of capturing x, y, z (or depth) images along with intensity and 

amplitude images with a resolution of 176 x 144 pixels. The amplitude image contains 

for each pixel a 16-bit integer representing the strength of the reflected signal by the 

object. Its values are low when the strengths of the reflected signals are weak.  

A three-wheeled steerable cart was designed. The imaging area was fully covered 

to avoid undesired effects of direct sunlight during image acquisition. The covered 

platform also minimized the effect of wind on plant postures. A high-resolution (4096 

counts/rev.) encoder was mounted on the rear left wheel of the cart. The wheel 

circumference was 2.02 m. The encoder reading was used to trigger the camera to 

capture side view images at every 100 encoder counts, which was equivalent to 

approximately 0.05 m translation along the crop row. A leveler was used in front of the 

wheel, on which the encoder was mounted, to allow a smooth rolling as shown in figure 

3. The cart was pushed manually at about 1.5 m/s. The sensor was mounted at about 0.10 

m from the ground and about 0.55 m away from the crop row, with the frontal face of 

the camera facing the crop row. The vertical and lateral positions of the camera from the 

crop row were adjustable. The camera and the encoder were connected to a tablet laptop 

through USB 2.0 interfaces. Two 12 V batteries were used to power the devices. The 

batteries were connected in parallel.  
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(a) (b) 

Figure 3. Three-wheeled inter-plant distance measurement platform: (a) CAD model 

showing an encoder attached to the rear wheel and a leveler mounted in front of it; and 

(b) the real cart in action in one of the test fields 

 

Image Pre-processing 

The images captured from the camera suffered radial distortion, specifically, 

Barrel distortion, where the points moved from their correct positions towards the center 

of the image, as if the image was projected on a spherical surface. Some cameras do in-

camera distortion correction, before any file is written, while others such as SR4000 

require post-processing of the images to correct the distortion. Lens parameters need to 

be known to correct the distortion. Barrel distortion inherent to the images captured by 

SR4000 was adequately corrected by applying a simple transformation using equations 3 

and 4 provided by the camera manufacturer.  
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where, (xi, yi) are the corrected image coordinates corresponding to the scene points (xw, 

yw), f is the focal length and p is the pixel-pitch of the camera, and c is the distance from 

the frontal face of the camera to the imaging area inside the camera. The equations 

project the measured points in Cartesian coordinates onto their respective image 

locations in X-Y image plane. The projected image (figure 4b) was larger in size than 

the originally captured image (figure 4a). The missing points along the curves were 

recovered using averaging based interpolation method in both horizontal and vertical 

directions. The interpolated image was then cropped from the center to obtain the 

corrected image in its original size, i.e., 176 x 144 pixels as shown in figure 4c. 

 

 

 

(a) (b) (c) 

Figure 4. Barrel distortion correction: (a) original (distance) image with visible 

distortion; (b) size of the image increased after distortion correction; and (c) final 

corrected image after interpolation and cropping 

 

The background was removed from the depth image using distance threshold of 

0.6 m (i.e., about 0.05 m behind the crop row). Any pixel beyond the threshold value 

was considered a background pixel (figure 5b). The image was scanned from the bottom 

until the number of foreground pixels along the scan line were less than 50% of the 

image width (figure 5c). The scanning removed nearly all the soil content from the 



25 

image. ROI (region of interest) was defined from this line to one-third of image height 

above the line, where the influence of the leaves was minimal. The ROI boundary was 

10 pixels, which is equivalent to the half the diameter of plant stem, inside from both left 

and right edges of the image (figure 5d). As the final pre-processing step, morphological 

closing operation was carried out within the ROI to remove noisy regions and obtain 

smooth object boundaries (figure 5e). 

  

 

(a) (b) (c) 

  

(d) (e) 

Figure 5. Image pre-processing: (a) corrected distance image; (b) segmented image after 

background removal; (c) soil region removed; (d) ROI defined; and € noise removed 

Stem Identification 

The foreground regions within the ROI were labeled and processed individually. 

First, skeleton of a region was generated by using a parallel thinning algorithm  based on 

8-connectivity (Rosenfeld, 1975) and noisy protrusions were pruned. Regions containing 

ROI 
10 pixels 10 pixels 

h/3 

h 
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less than half the height of the ROI in their skeletons were deemed unimportant and 

discarded. Next, terminal points of the skeleton were determined. Points which lied 

above the center line of the ROI were grouped as top points and those below the center 

line were grouped as bottom points (figure 6a). Depending on the number of top and 

bottom points two different approaches were used to determine stem locations. 

Scenario 1: When there was one top point and one bottom point, centroid and 

orientation of the skeleton were determined. Starting from the bottom point, the 

segmented depth image was traversed upwards passing through the centroid in the 

direction guided by the orientation of the skeleton. The region was considered a 

candidate stem, if the number of pixels along the traverse line was more than two-third 

of the height of the image (figure 6b, left plant). 

Scenario 2: When there were multiple top points, the segmented depth image 

was traversed so that the traverse lines originating from the bottom point passed through 

all the top points. The longest traverse line which met the length threshold, i.e., two-third 

of the height of the image was considered as the probable stem location and its direction 

gave the orientation of the plant (figure 6b, right plant).
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(a) (b) (c) 

  

(d) (e) 

Figure 6. Stem location identification: (a) skeletonization of objects within the ROI; (b) 

upward traverse lines approximating candidate stem locations; (c) downward traverse 

lines finding the soil-plant intersection; (d) image generated by taking 8 most significant 

bits of intensity image that adequately suppressed background and soil regions; and (e) 

identified stem locations 

 

If the orientation of the candidate stem location, given by the direction of the line 

connecting the bottom and the top points, was within 15± ° from the vertical, it was 

processed further to determine stem center, i.e., point where stem intersect with soil 

surface. From the bottom point, along the direction guided by the orientation of the 

traverse line, it was traversed down to locate the intersection point. The most significant 

8-bit values of the amplitude image (figure 6d) which adequately suppressed soil and 

background regions was used to identify the stem-soil intersection. The image was 
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traversed downward starting from the bottom point along the stem orientation until a 

black pixel was found. The identified stem-soil intersection point was the stem center 

(figure 6c). 

 

Image Mosaicking 

There was significant overlapping between the images when they were captured 

at approximately 100 encoder counts (i.e., approximately 0.05 m along the crop row 

direction). These images were stitched together to recover spatial information of each 

plant in the crop row. Mosaicking was required for distance measurement between the 

plants especially when the plants came from two different images. One of the common 

methods used to mosaic images is correlation-based template matching. In this method, a 

template window is chosen on an image and its best match is searched on the next 

image.The effectiveness of this method depends on the stability of the chosen template. 

Plant regions, especially the leaves, are not stable in the sense that wind tends to blow 

them and their postures change from frame to frame. Tang and Tian (2008a, 2008b) used 

soil surface to find a window with the highest variance and searched its match in the 

next image. With side view images the soil surface occupied less than 10% of the images 

and has a perspective view that can change drastically at slightly different camera view 

angles, therefore it was not possible to use soil surface for correlation-based matching 

and hence image mosaciking. 

A new image mosaciking algorithm based on encoder data and the results of stem 

identification was developed. Though a high resolution encoder was used, the encoder 
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data was not sufficient for mosaicking images. First, there was inherent cummulative 

distance measurement error associated with encoder sensing. Second, there occurred 

counting error depending on soil conditions, error due to slippage when the soil was wet 

and error due to bumps when the soil was rough. Third, the plants in the crop row did 

not lie in the same plane along the camera’s viewing direction and they appeared 

different from different viewing angles. When mosaciked based on encoder data alone, 

the mosaicked image appeared unrealistic (splits and halves) at places where the 

mosaicking took place on plant regions. Therefore, a sensor fusion approach was 

adapted where the encoder reading was used to approximate horizontal distance traveled 

by the cart between the images. The stem locations sensed by the image processing 

algorithm were then matched using the information provided by the encoder. A 30 pixel 

wide search space was created with the probable stem location as its center. The image 

being processed is termed as current image, and the one that was processed immediately 

before is termed as previous image.The mosaicking algorithm is explained with the help 

of some examples below: 

Scenario 1: In the simplest case, when at least one stem was identified in both the 

previous and the current images, the location of last stem in the previous image was 

matched with one of the identified stems in the current image. The probable stem 

location was identified based on the fact that there was certain offset between the two 

image as they were captured from the view points which were approximately 0.05 m 

apart.  The encoder reading was used to define a search space around the probable stem 

location. The two images were stitched at the matched stem location (figure 7). 
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(a) (b) (c) 

Figure 7. Mosaicking when stem match was available: (a) Last stem in the previous 

image; (b) search space boundary defined in the current image based on encoder reading; 

(c) mosaicked image, left portion came from the previous image and right portion came 

from the current image 

 

Scenario 2: When there was only one stem identified in the previous image and it 

was not visible in the current image, the center of the previous image was used at the 

mosaic location. The encoder reading was used to determine the distance covered by the 

cart between the two images, which in turn was used to approximate the corresponding 

mosaic location on the current image (figure 8). Similar approach was utilized when 

there was no stems identified in the previous image but at least one stem was found in 

the current image (a plant was identified after a large gap) and also in the situation when 

no stems were identified in both the previous and the current images (images between 

the plants separated by a large gap) (figure 8). 
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(a) (b) (c) 

Figure 8. Mosaicking when stem match was not available: (a) center of the previous 

image was chosen as mosaic location; (b) corresponding mosaic location on the current 

image was found using encoder reading, and (c) mosaicked image, left portion was from 

the previous image and right portion was from the current image 

 

Inter-plant Distance Measurement 

An algorithm was developed to measure distances between the identified stem 

locations. The distance between any two plants were calculated along the same 

horizontal line. Among the two plants, one with the stem center further from the bottom 

edge of the image was used as the basis and a point on the other plant along the direction 

of the traverse line was found (figure 9). These points in image coordinates were then 

transformed to world coordinates using equations 5 and 6, which were derived from 

equations 3 and 4 respectively. The Euclidean distance formula given by equation 7 was 

used to calculate the distance between the plants. 
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Figure 9. Distance between the plants was calculated along the same horizontal line 
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where (xw, yw) are the scene points corresponding to the image points(xi, yi), f is the focal 

length and p is the pixel-pitch of the camera, and c is the distance from the frontal face 

of the camera to the imaging area inside the camera. Since the distance was calculated 

on the same horizontal line, the middle term of equation 5 turned out to be zero. The 

algorithm took different approaches to deal with different situations in order to 

accurately calculate the distances. The distance measurement was not trivial especially 

when the plants came from two different images. The horizontal distance traveled by the 

cart between the plants was required to be tracked before it was possible to measure 



33 

distance between these plants. Some of the interesting situations are described below 

with examples: 

Scenario 1: When the last stem identified in the previous image was closer to the 

left edge of the image than the distance covered by the cart, there was a possibility that 

the stem was not identified in the current image. The center of the previous image was 

used as the mosaicking location and its corresponding location on the current image was 

found using encoder data. The distance between the first stem identified in the current 

image and the mosaicking location in that image was calculated. It was then added to the 

distance between the last stem identifed in the previous image and the mosaicking 

location in that image. This gave the distance between the last plant in the previous 

image and the first plant identified in the current image (figure 10). 

 

(a) (b) (c) 

Figure 10. Distance calculation between plants appearing in different images: (a) 

distance of the last plant in previous image to its center, i.e., the mosaic location; (d) 

distance of the corresponding mosaic location in current image to the first plant 

identified in it; and (d) total distance between then plants in mosaicked image 
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Scenario 2: When a plant was identifed in an image after one or many images 

were processed without any plants identified, the distance between the last plant 

identified and the newest plant identified were calculated using equation 8. First, the 

distance between the last stem identifed and the mosaicking location, i.e., the center of 

the image on which the plant was identified, was calculated. Next, for each image where 

the stem identification algorithm did not find a plant, the distance between the point that 

corresponded to the previous mosaic location and its center was calculated. Finally, the 

distance between the point that matched with the previous mosaic location and the first 

plant identified after the gap was calculated.  The sum of all the distances gave the 

distance between the two plants separated by at least one blank image. 

1 21

n

ii
d d d d

=
= + ∆ +∑       (8) 

where d1 is the distance of the last stem identified to the mosaic location of the image, 

each 
i

d∆ represents the distance traveled by the cart between the images, and d2 is the 

distance of the mosaic location on the current image to the first stem identified on it. 

Scenario 1 is a special case of scenario 2, when the middle term of equation 6 becomes 

zero, i.e., when there is no blank image between the plants, but the plants still appear in 

two different images. 

 

Experiments and Results 

Images were captured from three different test fields located in Ames, IA, 

Moline, IL, and Carlyle, IL. In Ames and Carlyle test fields manual weeding was carried 
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out, where as in Moline test field weeds were controlled using herbicides (4-5 days prior 

to planting and 20-21 days after planting) before the images were captured. When the 

images were captured, corn plants were between v4-v6 growth stages in Ames 

(September 2009), between v3-v4 in Moline (October 2009) and Carlyle (July 2010). 

Images captured from nine 6 m long segments, three from each test field, were used for 

the experiment. In-field manual measurement was taken by laying down tape measure 

along a crop row and speaking the distances out loud to an audio recorder. The manual 

measurement was later used to calculate error in distance measured by the system. A 

processed crop row segment with all correctly identified corn plants are shown in figure 

11. The shorter lines at top portion of the images represent the mosaic locations and the 

labeled longer lines at the bottom portion of the images represent stem locations. 

 

 

 

Figure 11. A processed crop row segment consisting of 31 corn plants: the objects 

before the first and the last plants are the segment markers. 
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The experimental results are shown in table 1, where Lm is manually measured 

crop row segment length, i.e., from the first plant to the last plant in the segment, Lc is 

system calculated crop row segment distance, N is total number of plants in the segment, 

Nf is total number for non-plants detected falsely as plants, Nm is total number missed or 

undetected plants,  Rm is plant misidentification ratio calculated using equation 9, and 

RMSE is root mean squared error in inter-plant distance measurement. 

*100%
f m

m

N N
R

N

+ 
=  
 

      (9) 

Table 1. Inter-plant distance measurement field test results 

Location Lm 

 (m) 

Lc  

(m) 

N Nf Nm Rm  

(%) 

RMSE 

(m) 

Ames, 

IA 

6.11 6.04 33 0 1 3.03 0.017 

6.02 5.95 32 1 0 3.12 0.016 

6.26 6.19 30 1 0 3.33 0.017 

Moline, 

IL 

5.90 5.97 35 0 0 0.00 0.017 

5.98 6.03 31 0 0 0.00 0.021 

5.70 5.81 37 0 1 2.70 0.023 

Carlyle, 6.05 6.08 38 1 0 2.63 0.018 

IL 6.03 6.25 40 0 0 0.00 0.014 

 6.10 6.28 41 0 2 4.88 0.013 

        

Overall      2.21 0.017 

 

The system achieved a mean plant misidentification ratio of 2.21% across the 

crop row segments. The false-positive plant identification often occurred due to long 

plant canopies hanging sideways (figure 12a). Plant identification errors due to 

undetected plants occurred in situations where one of the plants was not detected by the 

system when. For example, when two plants were growing less than one hundredth of a 
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meter away from each other (figure 12b), or when a plant was considerably short (figure 

12c), or when a plant was tilted by more than 15± ° (figure 12d). 

  

(a) (b) 

  

(c) (d) 

Figure 12. Plant misidentification situations: (a) long plant canopy identified as a plant; 

(b) two plants growing too close to each other identified as one; (c) considerably short 

plant undetected, and (d) considerably tilted plant undetected 

 

Overall mean RMSE of 0.017 m was achieved with the maximum being 0.023 m 

and the minimum being 0.013 m. The algorithm was able to estimate lengths of the crop 

row segments, at the end of inter-plant distance measurement, with an accuracy of up to 

+0.03 m (i.e., 0.5 %). The maximum error in the estimation of +0.22 m (i.e., 3.6 %) 

occurred when  most of the plants in the row segment were tilted in one direction 
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resulting in inter-plant distance measurement errors between most of the plant pairs to be 

positive. 

The system was able to measure inter-plant distance with minimum error of  

±0.03 m with maximum error being ±0.06 m. The larger error occurred when the system 

failed to use plant pixel, and instead used a pixel from the soil while calculating the 

distance, or the system failed to determine the plant center accurately due to clutters near 

the plant soil intersection. More than 70 % of the measurements errors were between 

±0.02 m.  The system measured distance estimates were regressed onto manual in-field 

measurements, the linear model coefficient of determination (R
2
) was found to be 0.95. 

 

Conclusions 

The results demonstrate that the use of 3D vision system can accurately measure 

the spacing between the plants in a crop row with overall mean RMSE of 0.017 m and 

mean plant misidentification ratio of 2.2%.  If the imaging area is covered properly and 

the camera is protected from the direct sunlight, the camera can capture images at any 

point of the day, in any illumination condition. The working mechanism of TOF cameras 

is color independent and is free from the limitations of systems which rely on color only 

for plant identification and center cluster detection. Using color alone appears to be 

inadequate to cope with the complexity of field conditions that lead to both color 

variations and color fading. 

The system captures images from the side so that plants and soil intersections are 

always visible. This approach allows the system to accurately detect the stem centers 
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when the plants are inclined within 15± ° from the vertical axis. The performances of 

systems which work on top view images are severely affected when the plants are 

inclined. These systems fail to accurately identify the stem centers and hence measure 

the inter-plant spacing. 

The system, however, cannot precisely locate the doubles or triples. The system 

can be modified to process more than one image at a time. When multiple images are 

processed at a time, the same plant is actually being viewed from more than one angle, 

which increases the chances of finding the plants which are occluded by other plants. 

Currently, the system is tested on fields where weeds were completely removed 

either manually of using herbicides. As for the future work the authors plan to make the 

system robust enough to perform satisfactorily in real field conditions with weeds and 

residues from previous crops. 
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Abstract 

Within-row plant spacing plays important role in uniform distribution of water 

and nutrients among plants, hence affects the final crop yield. While manual in-field 

measurements of within-row plant spacing is time and labor intensive, little work has 

been carried out to automate the process. We have attempted to develop an automatic 

system making use of a state-of-the-art 3D vision sensor that accurately measures 

within-row corn plant spacing. The system is robust to outdoor illumination conditions 

and can be used at any point of time on a given day. Based on small scale experiments in 

fields, this system can measure the within-row corn plant spacing with a mean ( ±

standard deviation) error of 1.60 ± 2.19 cm. The root mean squared error was 2.19 cm. 

Keywords. Spacing Sensing, Inter-plant Spacing, Within-row, 3D Computer 

Vision, Time-of-flight 

 

Introduction 

Plants compete among themselves for water and nutrients. Evenly spaced plants 
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therefore, plays an important role in uniform distribution of the water and nutrients 

required for proper growth. Researchers have studied the effect of plant standing 

variability (PSV) on final crop yield. Most notably, Nielsen (1991) reported that there 

was a reduction of about 2.5 bushels per acre for every inch increase in standard 

deviation of within-row plant spacing. Doerge et al. (2001) found similar effects of plant 

space variability on grain yield, where they reported a loss of 3.4 bushels per acre for 

every inch increase in standard deviation of within-row plant distribution. The effect of 

PSV on final crop yield however, is not conclusive as there exists some studies (Lauer & 

Rankin, 2004 and Liu et al. 2004a) where the authors reported that the effects of plant 

spacing variability on corn grain yield was negligible. Subsequent studies by Nielsen 

(2005) and Liu et al. (2004b), reported a yield loss of 2.2 bushels per acre and 1.5 

bushels per acre, respectively, for every inch increase in standard deviation of plant 

spacing. 

While planter manufacturers are concerned about the performance of their 

planters, till today they rely on in-field manual measurements of within-row plant 

spacing for evaluation of planter performance. Typically, manual measurements are 

carried about by laying down a tape measure along a crop row and recording inter-plant 

spacing on a notebook or an audio recorder. Manual methods are time and labor 

intensive, and at the same time subject to human error. It takes about 25 minutes to 

manually measure inter-plant spacing of a typical 200 feet crop row with around 280-

290 plants, including time of recording and entering measurement data into a 

spreadsheet. 
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Little work has been done in automating the inter-plant spacing sensing process. 

Shrestha and Steward (2003) and Tang and Tian (2008a, 2008b) used image processing 

techniques using top view images to automatically measure inter-plant spacing. Their 

approach relied solely on color information to detect plants on images, which affected 

the robustness of the system when the outdoor illumination conditions changed. Also the 

accuracy of locating stem centers suffered, especially when the canopies of adjacent 

plants got interconnected. Jian and Tang (2009) developed a corn plant sensing system 

using a stereo camera with a 96 % correct detection rate. In previous work, Nakarmi and 

Tang (2012), the authors took a different approach using a state-of-the-art 3D sensor 

based on time-of-flight (TOF) of light to automatically measure within-row corn plant 

spacing. The system did not rely on color information and used side view images instead 

to accurately locate stem centers on the images. The system performance however, was 

affected by outdoor illumination conditions, long hanging plant canopies and multiple 

plants growing together. 

In this paper, a new within-row corn plant spacing sensing system is presented 

that can perform at any point of time on a given day without being affected by outdoor 

illumination conditions, and at the same time whose performance is not severely affected 

by hanging canopies. The system performance was validated against manual 

measurements taken from multiple 61 m (200 feet) long corn plant rows.
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Materials and Methods 

A three-wheeled cart, as depicted in figure 1, was designed such that the imaging 

area was covered to prevent direct sunlight shining on the plants. A tunnel like structure 

was made. While pushing the cart along a crop row, special attention was given so that 

crop row always remained more or less at the center of the tunnel. The tunnel also 

ensured minimum effect of the wind on plant postures. The wall of the tunnel facing the 

camera was covered by a soft fabric material which resulted in uniform depth data on the 

wall. A high resolution, 4096 counts per revolution encoder was mounted on one of the 

rear wheels of the cart and was used to trigger image capturing. 

 

Figure 1. CAD model of a three-wheeled data acquisition platform 

 

A time-of-flight (TOF) of light based 3D camera (CamCube2
TM

 from PMD 

Technologies, Siegen, Germany) was mounted about 10 cm above the ground and at 

about 50 cm away from crop row. Each image was captured at about 100 encoder counts 

which was approximately 5 cm along the crop row direction. The corn plants were in v3-

v4 (3-4 weeks) growth stage, and herbicides were used kill weeds a week prior to 

capturing images from the field. The system was developed using C# as a programming 
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language and Microsoft Visual Studio 2010 development environment in Microsoft 

Windows 7 platform. An algorithm for within-row corn plant spacing sensing was 

developed which consisted of a four-step process as listed in table 1. First, the captured 

images were segmented to separate plants from the background. In the next step, the 

plant stem centers were localized. The images were then mosaicked together and finally 

inter-plant spacing was computed. For the sake of completeness, the operating principle 

of the 3D camera will be presented in the next section and a detailed description of the 

algorithm will be presented in the following sections. 

Table 1. Four-step within-row corn plant spacing sensing algorithm 

Image segmentation 

a. Discard upper quarter of image to reduce the effect of long plant 

canopies 

b. Separate plants from background and soil using depth and 

amplitude values, respectively. 

c. Group foreground regions into separate plants and discard smaller 

regions 

  

Stem center identification 

a. Find Hough lines on segmented image 

b. Group Hough lines for each plant on the image 

c. Select Hough line that approximates stem center 

d. Trim plant regions around the Hough lines 

  

Image mosaicking 

a. Find common plant in three consecutive images 

b. If found, mosaic at common plant location, otherwise use 

encoder data to mosaic them 

Inter-plant spacing 

measurement 

a. Calculate variance of depth values along stem skeleton and use it 

as a score for each identified plant 

b. For two plants appearing in an image, sum the plant scores to 

assign score to the distance between them 

c. Calculate distance scores for the plants in every image they 

appear 

d. Use the distance with the lowest variance as the best available 

distance between the plants 
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The sensor sends out modulated light waves from light emitting diodes (LEDs), 

and the imaging sensor measures the phase shift of returned signal at each pixel to 

calculate distance of the target object (Buttgen et al, 2005, Ringbeck, 2007 & Hansard et 

al, 2012). The sensor comes pre-calibrated and by default operates at a 20 MHz 

modulating frequency. Suppression of background illumination (SBI) implemented in 

the camera model allows the sensor to automatically correct for environmental 

fluctuations such as illumination conditions and makes it suitable for outdoor 

applications. This TOF sensor and other similar TOF sensors are superior to 

conventional stereo vision systems as they do not rely on non-uniform texture feature for 

non-ambiguous disparity map generation, which is particularly useful for the application 

as plant canopies that often present somewhat uniform texture. The sensor captures 

spatial data in Cartesian coordinates with its origin at the center of the frontal face of the 

camera. Along with spatial data, the camera also captures amplitude image, which 

contains for each pixel a value representing the strength of the reflected signal by the 

object. The amplitude values are low when the strengths of the reflected signals are 

weak. The camera has a rather small field of view (FOV), 40 ̊ (h) × 40 ̊ (v) and captures 

images with 204 × 204 pixel spatial resolution. 

Integration time is one of the most important and only available internal camera 

parameter that could be adjusted. It describes the time period in which incoming photons 

are detected for one measurement cycle to derive phase shift and the corresponding 

distance. If the integration time is set too low, the amplitudes of related pixels decrease 

and distances for distance objects cannot be measured. On the other hand, if the 
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integration time is too high, oversaturation is observed and measurements fail. 

Therefore, integration time needs to be carefully selected before acquiring images. 

 

Image Segmentation 

Samples of depth image, amplitude image, background and soil removed image 

and final segmented image are shown in figure 2. The captured images were processed 

to separate plants from the background and soil. The top quarter of the images were 

discarded to reduce the effect of leaves in plant localization and stem center 

identification.  

   

(a) (b) 

  

(c) (d) 

Figure 2. Image segmentation: (a) depth image with pseudocolor, blue color represents 

closer and red represents farther pixels; (b) amplitude image; (c) image with upper 

quarter discarded, background and soil removed; (d) final segmented image 
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A depth threshold at 5 cm in front of the tunnel wall was used to segment the 

middle half of the image. The fact that the lower quarter of the image mostly contained 

soil region and that amplitude values of soil pixels were significantly lower than those of 

plant pixels, an amplitude threshold of 500 was used to separate plant regions from the 

soil. Basically, depth and amplitude values were used to segment plants from the 

background and the soil, respectively. Region growing algorithm was used to group 

connected pixels together and smaller isolated region were removed (Heijden, 1995). 

 

Stem Center Identification 

For stem center identification Hough lines (Duda and Hart, 1972) were found on 

segmented images. Search for the Hough lines were limited to ±15 ̊ from the vertical, 

which allowed for the identification of plants inclined up to 15 ̊ left and right of the 

vertical and also improved the computation time. Identified Hough lines were grouped 

together based on their proximity. X values of the lower ends of the Hough lines in each 

group were sorted and one with the median value was used as the best line passing 

through the center of the plant stem. The plant regions were then trimmed around the 

best Hough line by taking 10 pixels on each side of the line. Skeleton of the trimmed 

plant regions were computed and the lower most point on the skeleton was used as the 

stem center. A sample of a segmented image, its identified Hough lines, plant regions 

trimmed around the best Hough lines, and skeletons of the trimmed plant regions are 

illustrated in figure 3. 
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(a) (b) 

  

(c) (d) 

Figure 3. Stem center identification: (a) segmented image; (b) identified Hough lines; 

(c) plant regions trimmed around the best Hough lines; (d) skeletons of trimmed plant 

regions 

 

Challenges in Accurately Locating Stem Centers 

Figure 5 depicts two typical cases which were required to be resolved for the 

robustness in stem center identification and hence for improving inter-plant spacing 

measurement accuracy of the system. In the first case, it was observed that plant leaves 

at times occluded the stems, which prevented the system from accurately locating the 

stem center. When the adjacent images were processed, the system however, was able to 

locate the stem centers without difficulty. The scenario is illustrated in figure 4a. In the 

second case, a few cases of multiple plants growing together were observed. The system 
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was not able to detect two plants on the first two images shown in figure 4b, while it was 

able to detect both the plants in the third image. To resolve the issues, for subsequent 

image mosaicking and inter-plant spacing measurement steps, an algorithm was 

developed such that the system considered multiple images, image in hand and its two 

neighbors, instead of relying on a single image for identification of plant centers. 

   

 (a)  

   

 (b)  

Figure 4. Typical issues in stem center identification: (a) plant leaves occluding a stem; 

(b) multiple plants growing together 

 

Image Mosaicking 

The images were stitched together to form a mosaicked image. In each step three 

images were considered for mosaicking. Image grouping scheme is shown in figure 5. 
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The identified stem locations were used to mosaic the images where possible, and 

encoder data was used when stem location information was not available. The multi-

view approach was used to account for cases shown in figure 5 as well as to improve 

distance calculation accuracy, which will be discussed in the next section. The 

mosaicking scheme was based on the flowchart shown in figure 6. 

 

● 

 

Figure 5. Image grouping: three images at a time 

 

First, a common plant was searched in the three images in hand. If it was found, 

the first and the third images were stitched at the common plant location and the mosaic 

image was formed from these two images, while the second image was completely 

discarded for image mosaicking purpose. Figure 7 illustrates the scenario where (a) a 

common plant in the three images is marked and (b) identified stem locations are marked 

by lower lines and a mosaic location is marked by the upper line. 

 

 

 

1 2 3 4 6 7 5 
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Figure 6. A flowchart of image mosaicking scheme 

Match plants in three images 

Common plant? 
Mosaic first & third images at the 

common plant location 

Match plants in first two images 

Mosaic first & second images at 

the common plant location 

Mosaic first two images at the 

middle of the first image 

Match plants in last two images 

Mosaic last two images at the 

middle of the second image 

Mosaic second and third images at 

the common plant location 

Common plant? 

Common plant? 

Yes 

Yes 

Yes 

No 

No 

No 
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(a) 

 

(b) 

Figure 7. Image mosaicking when there is a common plant: (a) three consecutive images 

with a common plant; (b) mosaicked image formed by stitching the first and the third 

images 

 

When a common plant was not found in all three images, a common plant was 

searched between the first and the second images. If found the two images were stitched 

at the common plant location. In order to stitch the second and the third image, a mosaic 

location on the third image was determined as a location corresponding to the middle of 

the second image. For this purpose, encoder data was used to calculate the translation 

between the two images along the crop row direction. The case is depicted in figure 8. 

Similar scheme was used, when there was no common plant between the first and the 

second images.  
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(a) 

 

(b) 

Figure 8. Image mosaicking when there is a common plant between two images: (a) 

three consecutive images with a common plant in the first and the second images; (b) 

mosaicked image formed by stitching the first and the second images at their common 

plant location (upper left line) and, the second and the third images at the middle of the 

second image and its corresponding location in the third image (upper right line) 

 

When there was no common plant between all three images, the images were 

mosaicked entirely based on the encoder data. The case is shown in figure 9. The first 

and the second images were mosaicked at the middle of the first image and its 

corresponding location on the second image. Similarly, the second and the third images 

were mosaicked at the middle of the second image and its corresponding location on the 

third image. 
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(a) 

 

(b) 

Figure 9. Image mosaicking when there is no common plant between images: (a) three 

consecutive images with no common plant between them; (b) mosaicked image formed 

by stitching the first and the second images at the middle of the first image and its 

corresponding location in the second image (upper left line) and, the second and the third 

images at the middle of the second image and its corresponding location in the third 

image (upper right line) 

 

Inter-plant Spacing Measurement 

The multi-view approach was used in used to calculate the distances between the 

plants as well. The idea was to calculate distances between any two plants in all the 

images in which they were visible and pick the one that the algorithm indicated as the 

best. The identified stems were assigned with scores based on the variation of depth 

values along the skeletons up to 5 cm up from the lowermost point of the skeleton. In 
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absence of noise, due to occluding leaves, direct sunlight etc., depth variance along a 

stem was expected to be small. Therefore, smaller the depth variance higher is the 

chance of having good inter-plant spacing measurement. While measuring the distances 

between any two plants, the depth variances of the plants were summed up to assign 

score to the distance measured between them. Every time the same two plants appeared 

on different images, the distance scores were saved, and the distance with the lowest 

score was selected to be the best available measurement. The process is illustrated in 

figure 10. The distance measured between the plants on the first image was selected as 

the best available distance as the calculated depth variance along the stems was the 

lowest. The depth variance on the third image was the highest due to the leaf that 

occluded the stem of the first plant. The distance between the plants measured in the 

field was 20.21 cm, and the system measured distance was 20.09 cm. 

   

(a) (b) (c) 

Figure 10. Inter-plant spacing measurement using multi-view approach: (a) with depth 

variance of 6.32 and measured distance 20.09 cm; (b) with depth variance of 10.87 and 

measured distance 20.38 cm; (c) with depth variance of 4070.37 and measured distance 

26.41 cm. In-field manual measurement was 20.21 cm which is closest to the distance 

selected by the system in the first image 
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Four 61 m (200 ft) long corn rows were used for the performance evaluation of 

the system. Data collection was done in June, 2011 on a test field in Illinois. The system 

measurements were compared against in-field manual measurements to calculate mean 

and standard deviation of error. Misidentification rate was calculated to determine the 

percentage of manual correction. The misidentification rate was computed using 

Equation 3. 

 
m f

m

N N
R

N

+
=      (3) 

where mN  is total number of missed plants,
f

N is total number of false-positive detection 

and N is total number of plants in a row. 

 

Results and Discussion 

There were no false detection in all the rows, while the system did not detect 

some plants which were shorter than the threshold used. The average mean ± standard 

deviation of error was 1.60 ± 2.19 cm, and the root mean squared error (RMSE) was 2.54 

cm. The results of the experiment are listed in table 2, where c
N

 is number of correct 

plant detections. 

Table 2. Average within-row corn plant distance measurement error. 

Row N  c
N  mN   

f
N  

mR  
Mean error 

(cm) 

RMSE  

(cm) 

1 288 284 4 0 1.38 % 1.20 2.12 

2 273 265 8 0 2.93 % 1.14 2.03 

3 270 267 3 0 1.10 % 2.14 3.25 

4 266 264 2 0 0.75 % 1.43 2.77 

Average 274    1.54 % 1.60 2.54 
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Conclusions 

With the multi-view approach, the system was able to resolve issues imposed by 

long hanging plant canopies and doubles (two plants growing together). The multi-view 

approach also helped to improve the accuracy of the stem center identification, and 

hence inter-plant spacing measurements. The average misidentification rate was 1.54 % 

with no false detections. The missed plants were mostly the shorter plants. The presence 

of shorter weeds and dead but standing weeds did not affect the performance of the 

system. The system took about three minutes to capture images from a typical 61 m (200 

ft) crop row containing an average of 275 plants and about 3 and ½ minutes which was 

significantly compared to 25 minutes required to collected manual measurements. 

The use of TOF camera as opposed to conventional stereo camera proved 

advantageous as TOF camera was robust to outdoor illumination conditions. However, 

the imaging area was needed to be properly covered so that direct sunlight did not shine 

on plants. It was noticed that integration time needed to be adjusted depending on the 

sunlight conditions so as to capture better data. While in the morning and the evening 

hours integration time of 800 - 1000 sµ  was found to give better data, during middle of 

the day when the sunlight intensity was very strong in the month of June, when the data 

was collected, integration time of 300 - 500 sµ  was used. 
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CHAPTER 4 

STEM DETECTION ALGORITHM FOR COTTON PLANTS: PROOF OF CONCEPT 

A manuscript prepared for submission to Computers and Electronics in Agriculture 

A. D. Nakarmi, L. Tang 

 

Abstract 

Plant population, row spacing, and within-row interplant distance can affect final 

yield. Automated plant population measurement and within-row interplant distance 

measurement have potential for assessments of in-field variation of plant emergence and 

planter performance. A non-invasive machine vision system was developed to detect 

cotton plants in side-view images. A time-of-flight of light based 3D camera was used to 

capture images of cotton plants at V3 to V4 stages. The image processing algorithm 

developed was capable of detecting cotton plants in low weed infestation field 

conditions. The acquired images were processed to compute “vesselness” measure. 

Curvilinear structures were detected on “vesselness” image. The center pixels of the 

curvilinear structures were computed followed by line-fitting and edge-linking step. 

Finally, Hough lines were computed to detect the cotton stem profiles. Over a set of 

sample images containing 100 cotton plants, the system correctly detected 93 plants and 

misidentified seven of them, with two false-positive detections. 

Keywords: cotton plant; stem detection; image processing; vesselness; Hough 

line 
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Introduction 

Plant population, row spacing, and within-row interplant distance can affect final 

yield. Researchers in the past have investigated automated population measurement and 

within-row interplant spacing sensing systems. Suduth et al. (2000) developed a 

combine-mounted mechanical sensor to map corn plant population at harvest. Shrestha 

and Steward (2003) developed image processing algorithms for automatic corn plant 

population measurement system. Tang and Tian (2008a, 2008b), Jin and Tang (2009), 

and Nakarmi and Tang (2012) developed image processing algorithms for interplant 

spacing sensing of corn plants within a row using video camera, stereo camera, and light 

based time-of-flight 3D camera, respectively. 

Detection of cotton stems from images is particularly challenging as leaves tend 

to occlude their stem profiles. McCarthy et al. (2009) used image processing techniques 

to detect stems and measure internode length. In their research, images were captured by 

forcing the main stem into a glass window which allowed the leaves to move away from 

the stem, thereby getting clear stem profile. 

The objective of the study was to develop image processing algorithms for 

automatic detection of cotton plant stems using a time-of-flight of light based 3D sensor. 

 

Materials and Methods 

An image processing algorithm has been developed to automatically detect 

cotton stem centers from images acquired in non-invasive manner using a time-of-flight 

of light based 3D camera. 
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The algorithm developed for detection of cotton plant stems involves three major 

steps: (a) computation of “vesselness” measure; (b) detection of curvilinear structures; 

and (c) edge linking and line fitting on detected curvilinear structures. 

In the first step, significant lines, which most likely correspond to stems and/or 

branches, were extracted from the images. Amplitude images, which provide the 

strength of signals returned back to camera sensor, were used for the image processing 

purpose. Eigenvalues of Hessian matrix ( )H was implemented to extract curvilinear 

structures.  
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xy yy
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for each image pixel, and I is the pixel amplitude value. The 

eigenvalues detect the principal direction of local second-order image structure. The 

image second-order derivatives were computed by convolving the image with the 

derivatives of a Gaussian kernel of standard deviation σ . Steger (1998) used this 

technique for automatic road extraction from aerial images. Sato et al. (1997) and Frangi 

et al. (1998) used the technique for automatic extraction of blood vessels from medical 

images.  

 

Computation of Vesselness Measure 

The input image was then transformed using the vesselness measure 0( )V of 

Hessian eigenvalues Frangi et al. (1998). Vesselness is a measure of the likelihood of a 
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pixel belonging to a tubular structure, in this case a plant stem. Vesselness measure was 

computed using equation 2: 

2

2 2
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exp 1 exp otherwise
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The vesselness measure consists of two criteria: the “blobness” measure is the 

ratio of the Hessian matrix eigenvalues, and the second-order “structuredness” is the 

Frobenius matrix norm of the Hessian matrix. 
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where D is the dimension of the image, in this case 2D = . The blobness measure 

accounts for the deviation from a blob-like structure but cannot distinguish between a 

line and a plate-like pattern. The ratio attains its maximum for a blob-like structure and 

is zero whenever 1 0λ ≈ . The second-order structuredness gives a low response where 

there is no image structure or where there is low image contrast. Parameters β and c in 

equation 2 are thresholds that control the filter’s sensitivity to Rβ and S , respectively. 

1 2λ λ<  are eigenvalues of Hessian matrix H . The vesselness measure was filtered 

using a threshold to ignore lower responses and highlight the image structures. Figure 1 
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shows sample images after computation of vesselness measure. The images were 

obtained using 1σ = , 0.5β = and 65c = . The vesselness measure was set to zero for all

0 0.005V < . 

   

   

   
(a) (b) (c) 

Figure 1. Vesselness measure: (a) amplitude images of cotton plants; (b) outputs of 

vesselness measure computation; (c) outputs after vesselness measure was filtered. 
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Curvilinear Structures Detection 

The filtered image was then used to detect center lines. At the center of line 

profile, the first directional derivative in the direction perpendicular to the line, n̂ , 

should be zero and the second directional derivative should be a large absolute value 

(Steger, 1998), 1998). In 2D image, the direction perpendicular to a line is given by: 

( )ˆ ,
x y

n n n=  with ( )
2

, 1x yn n =     (5) 

which is the unit eigenvector corresponding to the eigenvalue of maximum absolute 

value. A quadratic polynomial is used to determine whether the first derivative along 

( ),
x y

n n vanished within the given pixel. The point is given by: 

( ) ( ), ,
x y x y

p p tn tn=       (6) 

where 
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If ( ) 1 1 1 1
, , ,

2 2 2 2
x y

p p
   

∈ − × −      
, i.e., if zero-crossing occurs within pixel 

boundaries, then it is declared a line point. Figure 2 depicts the images after center lines 

were detected. 
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(a) (b) (c) 

Figure 2. Center line detection: (a) amplitude images; (b) filtered vesselness measure, 

and (c) center lines on vesselness measure 

 

Edge Linking and Line Fitting 

In the next step, Steger curves were thinned to obtain single pixel wide curves. 

Ends and junctions of the curved were then determined. “Hop-along” method (Jain, 
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Kasturi, & Schunck, 1995) was used for line fitting. For this purpose, ordered edge list 

was extracted using 8-way connected component based curve tracing. The hop-along 

algorithm steps along an ordered edge list and either appends edges to the existing 

calculated line if the edge points follow the same direction, or starts a new line if there is 

a significant change in direction of the edge points. Hence, a curve is represented as a 

sequence of straight lines joined end-to-end. A line segment parameterized by the 

coordinates of the end points is given by: 

( ) ( )1 1 1 1 0k k k kx y y y x x y x y x− + − + − =     (8) 

The distance of any point ( ),i ix y  from the line segment is 
r

d
D

= , where 

( ) ( )1 1 1 1i k i k k kr x y y y x x y x y x= − + − + −     (9) 

and 

( ) ( )
2 2

1 1k kD x x y y= − + −      (10) 

Normalized maximum error, 
max

i i
d

D
ε =  was used to measure goodness of fit. 

The line segment was split at the edge point which is farthest from the line joining the 

end points, if ε  was above some given threshold. The result of line fitting is shown in 

figure 3. 
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(a) (b) (c) 

Figure 3. Line fitting: (1) amplitude images; (b) Steger curvilinear structures, and (c) 

fitted center lines. 

 

Stem Detection 

In the last step, cotton plant stems were detected using Hough transform (Duda & 

Hart, 1972). The Hough transform uses a voting mechanism to identify strong linear 
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features in an image and is effective even in presence of large amount of noise (Jain et 

al., 1995). Figure 4 depicts cotton plant stems detected on three image samples. 

   

   

   

(a) (b) (c) 

Figure 4. Stem detection: (a) amplitude images; (b) fitted center lines and (c) detected 

stems. 
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Each pixel in line fitted image contributes a vote to an element ( ),n nr θ of an 

accumulator array of size r  by θ  entries where 

2 2
nr x y= +      (11) 

1tan
y

x
θ −  

=  
 

      (12) 

The Hough parameters were chosen such that only lines which were within 15± �  

where detected.  

 

Experiments and Results 

In a small-scale experiment conducted on a field data, the system detected 93 

plants out of 100. The seven plants which went undetected were either too short, or 

largely occluded by leaves. Figure 5 shows examples of undetected plants. In the top 

row, the plant on the right was not detected as the stem profile was almost completely 

occluded by the leaves. In the bottom row, the plant on the left was too short for the 

system to identify it as a plant.
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(a) (b) 

Figure 5. Undetected plants: (a) amplitude images, and (b) occluded and short plants 

were not detected. 

 

There were two occurrences of false detections in situations where weeds with 

straight line profile were growing close to the cotton plants. Figure 6 depicts situations 

where the system detected weeds with straight line profile as cotton plants. The thick 

blue lines represent false detections. 
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(a) (b) 

Figure 6. False detections: (a) amplitude images, and (b) weeds caused false detections. 

Conclusions 

In this paper, image processing algorithms for stem detection for cotton plants 

were developed using images acquired from light based time-of-flight camera. The 

system was able to detect 93 plants out of 100 plants, and there were two occurrences of 

false detection. The system can be used for plant population measurement and with 

appropriate image mosaicking technique it can also be used for within-row inter-plant 

spacing measurement.
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Abstract 

Space needs for laying hens without affecting their natural behaviors is one of the 

most debatable topics among egg producers and advocates of animal welfare. 

Quantification of stocking density effect on natural behaviors of laying hens is hence 

deemed vital. Offline video analysis is one of the most common approaches used to track 

and register laying hen behaviors. However, such manual video analysis techniques are 

labor and time intensive. Needless to say, the number of target objects that can be 

tracked simultaneously is limited to a small number. In this paper, we propose a novel 

method for tracking of multiple laying hens using a sensor fusion approach. Image 

processing techniques were employed on top view images captured by a state-of-the-art 

time-of-flight (TOF) of light based 3D vision sensor for identification as well as tracking 

of individual hens housed in a 1.2 m by 1.2 m pen. A Radio Frequency Identification 

(RFID) sensor grid consisting of 20 antennas installed underneath the pen was used as a 

recovery system in situations where the imaging system failed to maintain identities of 

some hens. Each hen was uniquely tagged with a passive RFID transponder which was  
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attached to the lower part of its leg. 

Keywords. laying hen, tracking, time-of-flight, 3D vision, stocking density, sensor 

fusion, RFID 

 

Introduction 

Visual monitoring of laying hen movements for behavioral analysis appears to be 

unsatisfactory for several reasons. First, presence of human observers may affect 

behavior and movement of laying hens. Second, during night time when lights are off, it 

is difficult to observe their movements. Third, it is time and labor intensive task to 

observe laying hens for a prolonged period of time. Video cameras can be used to avoid 

the effects of human presence on laying hen behaviors and movements. Similarly, 

infrared cameras can be used for low or no light conditions. The time consuming nature 

of human analysis of video recordings, however is still a problem. Therefore, a system 

that automatically tracks individual laying hens and extracts their behavior and 

movement data is valuable. 

Monitoring laying hens is particularly difficult as their behaviors are flexible and 

their movements cannot be expected to follow regular paths. The behavior of laying hens 

consists of periods of walking, feeding, and drinking interspersed by resting and less 

frequent activities including wing flapping, dust bathing, perching, nesting and social 

interaction. 

Tracking multiple laying hens for behavior monitoring is a challenging task with 

interesting features from computer vision perspective. Segmenting laying hens from the 
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background can be difficult as the litter on which the hens live can often be of similar 

intensity as that of their feathers. Laying hens tend to flock together, and because laying 

hens are not highly mobile animals, difficulty in separating individual hens can persist 

for prolonged time. Conversely, certain hens may make sudden and quick motor 

patterns, thereby creating discontinued trajectory, which can create difficulties in 

tracking as well. 

 Literature on classical multi-target tracking is based on the use of data-

association after foreground detection in the image. Uchida et al. (2000) proposed a 

robust method for tracking many pedestrians by viewing from an upper oblique angle. 

They extracted individuals by background subtraction. When pedestrians overlapped 

each other, they tracked targets robustly based on their trajectories. However, poultry do 

not move for long time periods while remaining in contact and they alter trajectories 

randomly.  

Computer vision has been applied to tracking animals. Sumpter et al. (1997) 

tracked a group of animal at high frame rate. Sergeant et al. (1998) developed a poultry 

tracking system in which a camera was placed above poultry. They detected poultry 

silhouettes based on color information and segmented the silhouettes of poultry by using 

the information on the contours of the silhouette. Fujii et al. (2009) used a computer 

vision technique based on particle filters to track multiple laying hens. However, their 

system was not able to track laying hens for prolonged period of time. 

The objective of the study was to develop a tracking system capable of tracking 

individual laying hen housed in a group. As a part of a larger project the tracking system 
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can be used for automatic quantification of stocking density effect on certain laying hen 

behaviors. 

 

Materials and Methods 

The laying hens tracking system consisted of hardware and software subsystems. 

The hardware subsystem consisted of a mechanical framework of experimental pen, 

electronic devices (imaging system, RFID components, and communication modules), 

and a computer. The software subsystem consisted of data acquisition component and 

offline data processing component. Figure 1 shows a schematic diagram of the tracking 

system. 

 
Figure 1. A schematic diagram of laying hens tracking system 
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Experimental Pen Design 

A 1.2 m by 1.2 m pen was designed to house multiple laying hens (figure 2). A 

61 cm long feeder was attached outside the north wall, and a water source was mounted 

on the south wall from inside. A 1.2 m by 0.31 cm long nestbox was placed just outside 

the east wall. Two entrances to the nestbox were at the north and the south side. The 

nestbox entrances were 15 cm above the floor. A perch was placed inside the pen 20 cm 

from the west wall and 25 cm above the floor. Saw dust was used as substrate material 

on the pen. Accumulated litter was cleaned every 2 weeks.  

(a)  (b) 

Figure 2. 1.2 m by 1.2 m pen: (a) layout of the pen with nest-box and perch, and (b) 

actual pen before adding nestbox and perch

N 

S 

W E 
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RFID Antenna Network Design and Interfacing 

A total of 20 antennas (RI-ANT-G02E-30, Texas Instruments, USA) were used 

to create an antenna grid with 18 antennas laid underneath the floor and other antennas 

were mounted beneath the entrances to the nest box. The 18 antennas on the floor were 

30 cm apart from center to center. Due to close proximity of operation, antennas 

severely interfered with each other. Walls wrapped with aluminum foil were created 

around each antenna to reduce the interference. However, this reduced read range of the 

antenna significantly, from 28 cm to 9 cm, which resulted in dead regions between 

antennas where the antennas would not detect any tags. Figure 3 shows layout of 18 

antennas installed on the floor. The inner circles represent the read range of the antennas 

during operation, and the dead regions are shown in black. 

  

(a) (b) 

Figure 3. RFID antenna grid: (a) antenna layout with 5 clusters labeled A through E, and 

(b) 18 antennas installed on the floor 
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A 4-antenna cluster was created which was then connected to a RFID reader (RI-

STU-251B, Texas Instruments, USA) via a 4-channel multiplexer (RI-MOD-TX8A, 

Texas Instruments, USA). Five such clusters were created. Figure 4 shows a layout of 

the cluster and interfacing of the cluster with other devices used in the RFID system. The 

communication protocol between the 4-channel multiplexers and the RFID readers was 

RS485. The readers were configured to work in Master/Slave synchronization scheme, 

with the first reader working as the Master and all others as the slaves. This 

configuration allowed the system to read all 20 antennas in less than half a second. With 

a 4-channel multiplexer 5 antennas, one from each cluster could be read simultaneously. 

 

Figure 4. A schematic diagram of 4 antenna cluster with master/slave synchronization 

configuration between RFID readers 
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The RFID readers were connected to serial to Ethernet servers (VESR901, B&B 

Electronics, USA), and finally interfaced to the computer using an off-the-shelf Ethernet 

hub. Each serial to Ethernet server was assigned a unique IP address. The 

communication protocol between the RFID readers and the serial-to-Ethernet servers 

was RS485, while TCP/IP was the Ethernet protocol used for interfacing the RFID 

clusters with the computer. Figure 5 shows the instrumentation used in RFID network. 

 

Figure 5. RFID system instrumentation 

 

Imaging Device and Interfacing 

A state-of-the-art 3D imaging sensor, CamCube3
TM

 (PMDTec, Germany), based 

on TOF (time of flight) of light principle was mounted ~1.85 m from the floor to cover 

Ethernet servers 

 RFID readers 

Ethernet hub 

Multiplexers 
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1.2 m by 1.2 m pen area. The imaging sensor was connected to the computer using 

USB2.0 communication protocol. 

 

Software Development  

As previously stated, the software subsystem consisted of two components: data 

acquisition and offline data processing. The data acquisition component consisted to two 

independently running threads, one for image acquisition and the other for RFID data 

acquisition. 

 

Data Acquisition System 

Multithreading programming technique allowed the data acquisition system to 

handle multiple tasks simultaneously, in order to ensure maximum data acquisition 

speed since multiple RFID antennas were required in this application. Multithreading 

programming with uniquely configured device IPs enabled the computer to scan data 

from RFID readers in different threads. The RFID readers kept transmitting RFID tag 

numbers to TCP/IP socket, and the computer did not have to poll each RFID reader, 

which essentially enabled the system to operate at a maximum sampling speed. The 

image acquisition thread acquired images at ~5 FPS. Each frame was sequentially 

numbered and stored in the user specified file path. 

The RFID data acquisition thread was run first and manually ensured that all the 

devices were working correctly. The image acquisition thread was then run. The main 

program thread then created a record for each RFID tag that consisted ImagePath: user 
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specified path where the images were stored, ImageNo: frame number, TagID: RFID tag 

number, AntennaID: RFID antenna that read the tag, and TimeStamp: time at which the 

frame was captured. The records were stored into the RFID data table in the database. 

 

Data Processing System 

The offline data processing component primarily consisted of image processing 

algorithms. The images were read from the user specified folder and were processed for 

hen detection. For each frame corresponding RFID data was fetched from the RFID data 

table in the database. The centroid of a detected hen was used to locate the closest RFID 

antenna, which in turn was used to associate the hen with its corresponding RFID tag. 

For each processed frame, the system created a tracking record that consisted 

ImagePath, ImageNo, HenID: 1 through 5 for SD5, and 1 through 10 for SD10, TagID, 

CentroidX: x-coordinate of hen pixel mass, CentroidY: y-cordinate of hen pixel mass, 

MajorAxisLength: major axis of the ellipse fitted on the hen pixel mass, 

MinorAxisLength: minor axis of the ellipse fitted on the hen pixel mass, Heading: 

heading direction of the hen (0-359 degrees), and TimeStamp. The records were then 

stored into the Tracking data table in the database. 

 

Image Processing Algorithm Overview 

The images were subjected to background subtraction method for foreground 

detection. The foreground image was filtered using anisotropic diffusion filter which 

essentially helped in enhancing object edges. The filtered image was then segmented 
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using modified watershed algorithm. Regions in close vicinity were merged to form 

laying hens on the first frame. In subsequent frames, overlapping of pixels between the 

previously identified hen regions and currently segmented watershed regions were used 

to detect laying hens. As the frames were captured at 5 FPS, between frames movements 

of the hens were limited therefore the algorithm sufficiently tracked the hens. 

 

Noise Reduction 

In order to alleviate over-segmentation caused by contaminated noises in 

watershed transform, usually a filter is employed that can effectively reduce noise and 

preserve important edge information. Although linear filtering can reduce noise in the 

image, it usually causes blurring and possibly fusing of important edges. Perona and 

Malik (1990) and Gilboa et al. (2001) reported that diffusion filters were more effective 

in smoothing noise while preserving necessary edge information. In this study, a 

diffusion filter (Gilboa et al., 2001) was adopted to reduce the noise effect (figure 6). 

  

(a) (b) 

Figure 6. Noise reduction: (a) original distance image, and (b) image after application of 

anisotropic diffusion filter 
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Foreground Detection and Gradient Computation 

A background subtraction technique was used to detect foreground objects. An 

image of the pen was taken without laying hens in it and it was subtracted from the 

image with hens to segment out foreground. A median filter was used to eliminate 

smaller regions from the foreground image. Foreground pixels were grouped to form 

connected components. In the first frame, area threshold was used to decide if a 

connected component contained one or multiple hens. For subsequent frames, its vicinity 

was scanned to see if there were other hens around that region in previous frame. Figure 

7 depicts foreground objects detected after background subtraction. 

(a) (b) (c) 

Figure 7. Foreground detection: (a) background image; (b) image with laying hens, and 

(c) detected foreground hens. 

 

The components which were larger and could be formed from multiple hens were 

selected for further processing. In the next step, Sobel gradient operator was used to 

compute a gradient magnitude image. The operator used two 3 ×  3 kernel which were 

convolved with the original image to calculate approximations of the derivatives, in 
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horizontal (equation 1) and vertical (equation 2) directions, respectively. The resulting 

gradient approximations were then combined to compute the gradient magnitude 

(equation 3). The gradient magnitude image was then used for watershed transformation.  

Figure 8 shows gradient magnitude computed on selected foreground objects, which 

were then subjected to watershed transformation. 

1 0 1

2 0 2

1 0 1

xG I

− 
 = − ∗ 
 − 

      (1) 

1 2 1

0 0 0

1 2 1

yG I

 
 = ∗ 
 − − − 

     (2) 

2 2

x y
G G G= +       (3) 

where Gx and Gy are gradient approximations in horizontal and vertical directions, 

respectively, I is the original image, and G is the gradient magnitude. 
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(a) (b) (c) 

Figure 8. Gradient computation: (a) foreground objects; (b) objects selected for gradient 

computation based on size, and (c) gradient magnitude image. Top row for laying hens 

at SD5 and bottom rows for SD10. 

 

Foreground Segmentation 

When multiple hens flocked together, it was challenging to separate them before 

they could be tracked. Edge-based segmentation methods require strong edge 

information for good segmentation results, which was not always the case, when hens 

come in contact of each other, due to the texture of their feathers. The watershed 

transformation on the other hand works well in such situations, but is plagued with 

slower computation and over-segmentation problems. 
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A watershed transformation is an image operation based on mathematical 

morphology that is also regarded as the rain falling on a landscape with each drop 

dripping down the steepest path toward a body of water called catchment basin. Classic 

watershed algorithms are based on successive complete scannings of the image under 

processing. At each step, all the pixels are scanned one after another in a predetermined 

order, generally a progressive scan or an interlaced scan. These algorithms do not run in 

a fixed number of iterations, and this number is often very large. The fast watershed 

algorithm proposed by Vincent and Soille (1991), on the other hand, is designed such 

that it does not require scanning the entire image at every iteration. Rather, it allows 

random access to the pixels of an image and direct access to the neighbors of a given 

pixel, thereby significantly increasing the efficiency. The fast watershed algorithm is 

summarized below. 

Employing the previously described analogy, when a water drop flows down 

along a relief, it will flow into the region minimum. Vincent and Soille (1991) watershed 

segmentation method is based on immersion simulations; starting from the lowest 

altitude, the water will progressively fill the different catchment basins of the image. 

There are two steps involved in the immersion algorithm: sorting and flooding. In the 

sorting step, the image pixels are sorted in ascending order according to their grayscale 

values, which enables a direct access to the pixels at a certain gray level. The minimum 

and maximum grayscale values, hmin and hmax, respectively, are also computed. In the 

flooding step, the algorithm progressively floods the catchment basins of the image. The 

algorithm is composed of fast computation of geodesic influence zones and breadth-first 
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scanning of all pixels in the order of altitude (their grayscale values), thereby assigning a 

distinct label to each minimum and its associated catchment basin. This process is 

implemented level-by-level using a FIFO (first-in-first-out) queue of pixels. The output 

is an image demarcated by the label of the catchment basins. A dam is built to prevent 

the basins from merging when two floods originating from different catchment basins 

meet.  

Let :
I

I D → � be a grayscale image, with 
min

h and 
max

h the minimum and 

maximum gray levels, respectively. Starting at the gray level 
min

h h= , the catchment 

basins with the minima of I are successively expanded up until 
max

h h= . Let 
h

X denote 

the union of the set of catchment basins computed at level h. A connected component of 

the threshold set 
1h

T + at level h + 1 can either be a new minimum, or an extension of a 

catchment basin in 
h

X : in the latter case geodesic influence zone of 
h

X within 
1h

T + , 

1hT
IZ

+
, is computed, resulting in an update 

1h
X + . Let MIN

h
 denote the union of all 

regional minima at altitude h. The recursive algorithm explained above is defined in 

equation 4 and 5. 

min minmin{ | ( ) }
h I h

X p D I p h T= ∈ = =      (4) 

11 1MIN ( )
hh h T h

X IZ X
++ += ∪ ,  min max[ , )h h h∈     (5) 

The watershed transform of I, ( )W I , is the complement of 
maxh

X in DI, i.e., the set 

of points of DI which do not belong to any catchment basin, and is given by equation 6. 
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max
( ) \I hW I D X=       (6) 

According to recursive equations 1 and 2, it is the case that at level h + 1 all non-

basin pixels (i.e., all pixels in 1h
T +  except those in 

h
X ) are potential candidates to get 

assigned to a catchment basin in step h + 1. Therefore, it allows the pixels with gray 

level h h′ ≤  which are not yet part of a basin after processing level h, are merged with 

some basin at the higher level h + 1.  

  

  

(a) (b) 

Figure 9. Segmentation using watershed transformation: (a) gradient magnitude image, 

and (b) image after watershed transformation with black watershed lines and catchment 

basins in color. Top row for laying hens at SD5 and bottom row for SD10. 
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Pixels which, in a given iteration, are equidistant to at least two nearest basins 

may provisionally be labeled as “watershed” pixels. However, in the next iteration this 

label may change again. A definitive labeling of a pixel as “watershed” pixel can only 

happen after all levels have been processed. Figure 9 shows watershed transformation 

results with watershed lines in black and catchment basins in color. Fast watershed 

segmented algorithm, however still suffers from over-segmentation problem. 

Therefore, the segmented watershed partitions need to be merged to form individual 

hen regions. 

 

Vision-based Tracking 

After watershed transformation of the foreground image, on the very first frame, 

the regions in close vicinity were merged to form laying hen regions. Large partitions 

were considered as probable hen regions and merging of such partitions were avoided. 

Area and orientation information along with mean height were used during the process. 

In subsequent images, overlapping between the previously identified hen regions and 

watershed regions were used to merge regions and form individual hens. As the images 

were acquired at ~5 FPS, the relative movements of the hens between consecutive 

frames were limited, and the algorithm, in most cases, was able to track individual hens. 

When the hens made sudden quick movements, it was difficult to associate watershed 

regions to previously identified hens. In such situations, information from RFID antenna 

network was used to recover the identities of lost birds. RFID network was also used in 

recovering hen identities when multiple hens were in next-box and one more exited the 
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nest-box. The vision system was unable to maintain hen identities in such situations. The 

system would then maintain a separate list to restore information of the hens without 

identities. As soon as the RFID system picked up their tags and their identities were 

recovered, the corresponding information saved in the list was merged to the main list 

that stored the tracking information. Figure 10 shows hens detected and identified in 

groups of 5 and 10, respectively. Figure 11 shows laying hens identified in different 

frames in groups of 5 and 10, respectively. 

  

  

(a) (b) 

Figure 10. Hen detection and identification: (a) segmented hens, and (b) hens labeled for 

tracking. Top row for hens at SD5 and bottom row for SD10. 
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(a) 
 

   
 

(b) 
 

Figure 11. Laying hen identification at different times: (a) from left to right, five hens 

identified in frames numbers 0, 1000, and 4000, respectively, and (b) from left to right, 

ten hens identified in frames numbers, 0, 500, and 1000, respectively. 

 

Hen Identity Recovery using RFID Antenna Network 

A passive RFID glass transponder (RI-TRP-WEHP-30, Texas Instruments, USA) 

with a unique number was taped around the lower part of the hen’s leg. When the hen 

stands within the read range of an antenna, the tag number is read and its approximate 

position is known based on the location of the antenna that reads the tag. The RFID 

antenna network therefore was helpful in locating the hens in situations when the visual 

tracking failed to correctly track them. The RFID antenna network was also used to track 
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hens moving in and out of the nestbox. When multiple hens were in the nestbox and one 

of them appeared in the camera view, it was not possible to maintain the identity if the 

hen, until its tag was read by one of the antennas. 

 

Experiments and Results 

Figure 12 shows the error distribution between the manually located 

centroids and those generated automatically, where in total 600 images from each 

stocking densities were used for the comparison. Frames where the software 

detected more than 5 cm travel was used, which accounted for 95 centroids in case 

of 5 hens and 176 centroids in case of 10 hens, respectively. From this distribution, 

95% of the centroids lie within 4 pixels, i.e., less than 4 cm, of the manually 

selected centroids. It was also noted that the manual selection of centroids were 

expected to exhibit an error of ± 3 pixels. 

Figure 13 and Figure 14 depict the comparison of manually extracted trajectories 

and software generated trajectories for laying hens housed in groups of 5 and 10, 

respectively. In case of 10 hens, one of the hens was in nest-box through out the image 

sequence. The filled circles represent the positions of the laying hens at the first frames, 

while the filled diamonds represents the positions at the last frames. It can be seen in 

these figures that the manual and the software generated trajectories are essentially the 

same. 
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Figure 12. Error distribution between manually extracted and software detected 

centroids. 
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Figure 13. Trajectories of laying hens at SD5. 

 

Figure 14. Trajectories of laying hens at SD10. 
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The visual tracking of the laying hens appeared to work simply using frame to 

frame correspondence based on overlapping of pixels between consecutive frames given 

that the hens were correctly identified in the first frame. There were situations where 

visual tracking was unable to maintain the identities of the hens. One such case is shown 

in Figure 15, where one of the hens in the nest-box exited and appeared on the main 

floor.  

  

(a) (b) 

  

(c) (d) 

Figure 15. Recovering hen identity when one of the hens in nest-box exited: (a) in frame 

401 hen 6 was enter the next-box; (b) in frame 402 hen 6 entered the nest-box; (c) in 

frame 475 one of the hens in the next-box exited, and (d) in frame 484 the hen that 

exited the nest-box was identified as hen 9 
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In this particular scenario, the visual tracking system did not know which hens among 

those in the nest-box exited while it still kept track of the hen but without identifying 

which hen it was. Once the RFID system detected the tag attached to the hen, the system 

then maintained its identity. The tracking data associated with hen, between the frame it 

lost its identity and the frame when RFID system recovered its identity, was temporarily 

stored in a separate table in the database. Once its identity was recovered, this data was 

then moved into the main data table where the tracking data of hens were correctly 

associated with their identities. 

In another case, when certain hens made sudden quick movements, the visual 

system failed to keep track of the hens bu simply using frame to frame correspondence 

based on overlapped pixels. In one particular scenario shown in figure 16, hen 6  

  

(a) (b) 

Figure 16. Maintaining hen identification when it made a sudden quick movement: (a) 

frame 651 before hen 6 made a sudden movement, and (b) in frame 652, hen 8 appeared 

at hen 6’s location in frame 651. Identities of the two hens were maintained with the help 

of RFID network 
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appeared to make sudden quick movement between two consecutive frames and when 

frame to frame correspondence was used hen 8 was misidentified as hen 6. In this case 

as well, the RFID system was used to recover the identities of the hens as it was able to 

read the tags attached to the hens at their correct positions. 

 

Conclusions 

As a part of a larger project aimed at automatic quantification laying hen 

behaviors for the purpose of stocking density effect, we developed a sensor fusion 

approach to track laying hens housed in groups of 5 and 10. Due to the varying nature of 

appearance related to their posture and their social behavior of performing activities in 

groups, detecting individual laying hens housed in groups was a difficult task. The image 

processing techniques developed based on the depth images however was able to 

satisfactorily detect and identify individual hens with the occasional help from the 

developed RFID system, when necessary. The developed tracking system can be used in 

extracting behaviors of laying hens, and thereby is useful for automatic quantification of 

stocking density effects on certain behaviors such as locomotion, feeding, drinking and 

nesting. 
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Abstract 

Stocking density of laying hens in egg production remains an area of 

investigation from the standpoints of ensuring hen’s ability to perform natural behaviors 

and production economic efficiency. It is therefore of socio-economic importance to 

quantify the effect of stocking density on laying hens behaviors and thus wellbeing. 

Video recording and manual video analysis is the most common approach used to track 

and register laying hen behaviors. However, such manual video analyses are resource 

intensive and are prone to human error. The number of target objects that can be tracked 

simultaneously is also limited to a small number. In this study, we explore a novel 

method for automatic quantification of certain behaviors of individual laying hens in a 

group-housed setting (1.2 m × 1.2 m pen), such as locomotion, perching, feeding, 

drinking and nesting. Image processing techniques are employed on top-view images 

captured with a state-of-the-art time-of-flight (ToF) of light based 3D vision camera for 

identification as well as tracking of individual birds in the group with a passive Radio 

Frequency Identification (RFID) system. Each hen is tagged with a unique RFID  
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transponder attached to the lower part of her leg. A RFID sensor grid consisting of 20 

antennas installed underneath the pen floor is used as a recovery system in situations 

where the imaging system fails to maintain identities of the birds. Spatial as well as 

temporal data are used to extract the afore-mentioned behaviors of each bird. To test the 

performance of the tracking system, we examined the effects of two stocking densities 

and perching space on bird behaviors, 2880 cm
2
-hen

-1
 vs. 1440 cm

2
-hen

-1
 and 24.4 cm 

vs. 12.2 cm per hen perch, corresponding to five hens vs. ten hens in the 1.2 m × 1.2 m 

pen, respectively. The system is able to discern the impact of the physical environment 

(space allocation) on behaviors of the birds. Of particular interest is that the two stocking 

densities tested did not affect the characteristics of hen’s movement. 

 

Keywords: Laying hen, Stocking density, Behavior monitoring, 3D vision, RFID 

 

Introduction 

Spatial requirement for laying hens and its impact on their welfare remains one 

of the most debatable topics among egg producers and advocates of animal welfare. 

With the 2012 European Union ban on conventional cages for laying hens and recent 

developments in the U.S., non-cage or alternative housing systems are likely to become 

more predominant (Zimmerman et al., 2006). The United Egg Producers (UEP) and 

consumer food chain McDonald’s put forward welfare guidelines in 2000. The UEP 

guidelines recommended that cage floor space be increased over a five-year period 

ending in 2008 from the U.S. industry standard of 348 cm
2
-hen

-1
 to a range of 432 to 555 
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cm
2
-hen

-1
 (UEP, 2000). While McDonald’s Recommended Welfare Practices call for 

cage floor space of 465 cm
2
-hen

-1
 (McDonald’s, 2000). The European Union (EU) on 

the other hand, recommended cage floor space for conventional cages to be 550 cm
2
-

hen
-1

 until 2012 (Hy-Line, 2003). Without large-scale experiments, it is difficult to assert 

if increasing the cage floor space actually improves the welfare of laying hens. A broad 

range of different potential indicators of welfare needs to be considered before the effect 

of stocking density (SD) can be assessed. 

 

Researchers have explored many possible indicators of welfare and methods of 

measurement. Behavior is one such important indicator of animal welfare. Xin and 

Ikeguchi (2001) developed a measurement system to quantify feeding behavior of 

individual poultry in order to study effects of biophysical factors such as light, ration, 

noise, and thermal variables. Gates and Xin (2001) developed and tested algorithms for 

determining individual feeding statistics and pecking behavior from time-series 

recordings of feed weight. Puma et al. (2001) developed an instrumentation system to 

study dynamic feeding and drinking behaviors of individual birds. Persyn et al. (2004) 

used the measurement system and computational algorithm developed by Xin and 

Ikeguchi (2001) to quantify feeding behaviors of pullets and laying hens with or without 

beak trimming. Cook et al. (2006) adapted and expanded the behavior measurement 

system and analytical algorithm developed by Persyn et al. (2004) to investigate stocking 

density effects on feeding behavior of group-housed laying hens. Liu et al. (2013) 
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developed an instrumentation system to study perching behaviors of group-housed 

laying hens. 

Behavioral characteristics are usually evaluated using audio-visual tools by a 

human observer which is time and labor intensive, subjective to human judgment and 

only applicable for a limited observation period (Abrahamsson, 1996). Quantification of 

animal behavior, and hence animal welfare, in livestock using image processing brings 

along specific problems. Animal appearance varies according to their posture, which 

makes processing and interpretation of images difficult (Van der Stuyft, 1991). 

Researchers have used visual monitoring to study group behaviors of animals. Image 

processing techniques have been used to monitor the weight distribution in poultry 

flocks (De Wet et al., 2003; Chedad et al., 2003), spatial distribution of pigs (Shao et al., 

1998; Hu and Xin, 2000), and trajectory of a flock of poultry (Vaughan et al, 2000). 

Monitoring behavior of an individual animal within a group requires tracking of the 

animal. This problem can be alleviated by constraining the animal of interest so that it is 

in a standard position with no other animals around. This has been applied on pigs to 

monitor the weight (Schofield et al., 1999) and back fat (Frost et al., 2004). Leroy et al. 

(2005) developed automatic computer vision technique to track individual laying hen 

and detect six different behavior phenotypes, namely standing, sitting, sitting, sleeping, 

grooming, scratching and pecking. The system study, however, was still conducted to 

monitor behaviors of individually caged hen. However, for freely moving animals such 

as laying hens in a cage, constraints are impractical. Sergeant et al. (1998) used an 

adaptive image segmentation technique to estimate the trajectory of a limited number of 
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broiler chickens in video images. The correspondences of animals between two 

subsequent images were determined using a set of simple heuristics. These techniques 

were further enhanced as model-based tracking, which allows for more robust and 

accurate shape tracking, including locations on the animal body which are not detectable 

through image features (Tillett et al., 1997). 

The objective of the study was to develop an automatic tracking and behavior 

monitoring system of individual hens housed in groups. For experimental purpose, the 

hens were housed in groups of five or ten, where each hen was tracked, and her 

perching, nesting, feeding/drinking and movement behaviors were monitored. 

 

Materials and Methods 

Experimental equipment and setup 

A 1.2 m by 1.2 m pen was designed to house multiple laying hens (figure 1). A 

61 cm long feeder was attached outside the north wall, and a water source (two nipple 

drinkers) was mounted on the inside of the south wall. A 1.2 m by 0.31 m nestbox was 

placed just outside the east wall. Entrances (exits) to the nestbox were kept at the north 

and the south side. The nestbox entrances were 15 cm above the floor. A perch was 

placed inside the pen 20 cm from the west wall and 25 cm above the floor.  Saw dust 

was used as bedding material of the pen floor.  An identical pen was made to house hens 

before moving into the test pen for data collection. Fluorescent lighting at the intensity 

10-12 lux in the open area and 1-2 lux in the next box was on at 06:00h and off at 

22:00h, i.e., 16L:8D. Resource allowance for hens in the experiment is shown in table 1. 



107 

 

 

(a) (b) 

Figure 1. A schematic and photographical representation of the experimental pen 

 

Table 1. Resource allowance for hens in the experimental pen compared to conventional 

cage, aviary, and enriched colony houses 

Parameter Experimental Conventional Aviary Enriched 

 SD5 SD10    

Wire mesh floor space (cm
2
 hen

-1
) - - 568 633 643 

Litter floor space (cm
2
 hen

-1
) 2880 1400 - 505 - 

Nest space (cm
2
 hen

-1
) 743.2 371.6 - 86 58 

Perch space (cm hen
-1

) 24.4 12.2 - 12.5 11.0 

Feed trough space (cm hen
-1

) 12.2 6.1 10.2 10.2 12.0 

Nipple drinker （ hens drinker
-1）  2.5 5 6 8.9 7.5 
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Laying hens used in this study were 32 weeks old White Leghorns weighing 

approximately 1.4 kg at procurement. A total of 15 hens were housed in groups of five 

and ten, respectively, in two identical pens. First, five birds were housed in the test pen 

and ten birds were housed in the holding pen. After three days of data collection, five 

other birds from the holding pen were moved into the primary pen, and data were 

collected for three days with ten birds in the test pen as well. The hens were acclimatized 

for at least five days between data collection. The hens were fed twice a day at 09:00h 

and 17:00h. Eggs were collected once a day at 17:00h. The litter was cleaned every 2 

weeks. 

The images were captured for 18 hours per day, with ten hours of light time and 

eight hours of dark time. Images were not captured while feeding the hens and collecting 

eggs from the pen. It was observed that not all eggs were laid in the nest box and 

occurrence of egg eating was noticed. Therefore, it was necessary for eggs laid on the 

floor to be collected every day. The hens were then given enough time to settle down 

before the images were captured. During the capture of each frame, tags read by RFID 

sensor network were also recorded. The records were stored in the database and accessed 

later during image processing phase to determine hen locations and identities. 

A total of 20 antennas (RI-ANT-G02E-30, Texas Instruments, USA) were used 

to create an antenna grid with 18 antennas laid underneath the pen floor and the 

remaining two antennas were mounted beneath the entrances to the nest box. The 18 

antennas on the floor were 30 cm apart from each other. Five clusters of 4-antenna were 

created which were then connected to a RFID reader (RI-STU-251B, Texas Instruments, 
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USA) via a 4-channel multiplexer (RI-MOD-TX8A, Texas Instruments, USA).  Figure 

3(a) shows a layout of the clusters and their interfacing with other devices used in the 

RFID system. The readers were configured to work in Master/Slave synchronization 

scheme, with the first reader working as the Master and all others as the slaves. This 

configuration allowed the system to read all 20 antennas in less than 0.5 s. With the 4-

channel multiplexers connected to each of the RFID reader, five antennas, one per 

cluster, could be read simultaneously. The read time per channel of the multiplexer was 

0.1 s. The RFID readers were connected to serial to Ethernet servers (VESR901, B&B 

Electronics, USA), and finally interfaced to the computer using an off-the-shelf Ethernet 

hub. 

A state-of-the-art 3D imaging sensor, Cambube3 (PMDTec, Germany), based on 

TOF (time of flight) of light principle was mounted above a 1.2 m by 1.2 m pen. The 

camera was used to capture distance images at ~5 FPS (frames per second). The system 

was developed in Microsoft Visual Studio 2010 using C#.Net as the primary 

programming language and Microsoft SQL Server 2008 as the backend database 

management system. 

 

Overview of the algorithm 

The acquired images were processed offline to detect individual birds in the pen. 

Each hen was tracked and its activity at each frame was extracted and stored in the 

database for further analysis. The development of the automatic algorithm for behavior 

extraction consisted of three steps as shown in figure 2. In the image pre-processing step, 



110 

the acquired images were treated with a diffusion filter (Gilboa et al., 2001) to reduce 

image noise while maintaining edge features. The filtered images were then subject to 

background subtraction to extract foreground objects. Gradient magnitudes of 

foreground images were then computed. In the second step, Watershed segmentation 

algorithm based on immersion was employed on gradient magnitude images to divide 

foreground images into partitions with similar heights. Size of the foreground object was 

used as the primary criterion to determine whether it was used for Watershed 

segmentation. Simple heuristics based on centroid, height similarity, orientation, size 

and major axis length were used to group close by partitions to form hen regions. In the 

next step, overlapping of the partitions in consecutive images was then utilized to track 

individual hens. In the last step, spatial information along with heading direction was 

used to determine hen activity in a given frame. In situations where the visual system 

was unable to keep track of the hens due to quick sudden movements of the hen, RFID 

sensor network was used to recover hen identities. For the RFID sensor network to 

recover the hen identities, the system should already have read the tags attached to the 

hens. Depending on initial hen locations with respect to RFID antennas, it would take 

several frames to several hundred frames before all the tags were read. If a hen was on 

perch, inside next box, or outside the reading range (10 cm radius from the center of the 

antenna) of its closest RFID antenna, it would not be detected. When more than one hen 

was inside the next box and one of them exited, the vision system could not determine its 

identity. The system then maintained a separate list of the unidentified hens. As the 
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unidentified hen moved along and RFID network read its tag, its identity was then 

recovered, and the corresponding data were saved (Nakarmi et al., 2013). 

Centroid of each detected hen area was computed and compared with 

corresponding centroids in subsequent frames to calculate hen movements. A list of 

centroids was maintained for each hen. When the movement between the centroid in 

hand and the last centroid in the list was larger than 5 cm, it was added to the centroid 

list. The 5 cm threshold was used to filter out smaller movements, which were 

considered to be noise due to erroneous centroid extraction.
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(a) (b) 

   

(c) (d) (e) 

   

(f) (g) (h) 

Figure 2. Laying hens identification algorithm: (a) Distance image; (b) Background 

image; (c) Noise reduced image; (d) Foreground image; (e) Gradient magnitude image; 

(f) Watershed partitions; (g) Detected hens; (h) Uniquely identified hens 
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Experiments and Results 

The system was able to track individual hens and extract their behaviors such as 

perching, nesting, feeding, drinking and movement. The SD effect was examined by 

comparing behavioral data of the same 5 hens used in both the SD levels. Figure 3 shows 

the time spent by the hens in feeding area on different days. The graph clearly indicates 

that the hens spent more time in feeding area when housed in a group of 5 than when 

housed in a group of 10. 

 

Figure 3. Time spent at feeder by 5 hens on different days when housed at SD5 or SD10 

 

Figures 4, 5, 6 and 7 depict time budgets of perching, nesting, feeding and 

drinking behaviors, respectively. The shaded block along the horizontal axis indicates 

the dark hours of the day. Figure 4 clearly shows that the hens spent longer time on 

perch at night than during the day. The data also show that the hens spent 348 ± 240 min-

hen
-1

-day
-1

 and 265 ± 158 min-hen
-1

-day
-1

 on perch when housed at SD5 and SD10, 
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respectively, presumably due to the available perch space. Similarly, figure 5 depicts 

time budget of nesting behavior. The hens spent longer time in nest box between 10:00h 

and 11:00h and the time spent in nest box slowly declined. It was observed that only 3-4 

hens spent most of their time on perch at night, while some hens spent entire time in nest 

box or on floor at night despite having enough perch space. The data revealed that the 

hens spent 99 ± 165 min-hen
-1

-day
-1

 and 78 ± 142 min-hen
-1

-day
-1

 in nest box when 

housed at SD5 and SD10, respectively. Figure 6 shows time budget of feeding behavior. 

The feeding behavior seems consistent throughout the day, with nearly zero activity at 

night. It can be seen that the hens spent 87 ± 21 min-hen
-1

-day
-1

 and 60 ± 17 min-hen
-1

-

day
-1

 in feeding area when housed in groups of 5 and 10, respectively. Similarly, as 

shown in figure 7, drinking behavior seems consistent throughout the day and was nearly 

zero at night. The hens spent 32 ± 12 min-hen
-1

-day
-1

 and 27 ± 11 min-hen
-1

-day
-1

 in 

drinking area when housed at SD5 and SD10, respectively. 
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Figure 4. Perching-behavior time budget of hens housed in group of 5 or 10 hens 

 

 

Figure 5. Nesting-behavior time budget of hens housed in group of 5 or 10 hens 
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Figure 6. Feeding-behavior time budget of hens housed in group of 5 or 10 hens 

 

 

Figure 7. Drinking-behavior time budget of hens housed in group of 5 or 10 hens 
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Figure 8 depicts time budget of movement. The hens seemed to move 499 ± 236 

m-hen
-1

-day
-1

 and 540 ± 160 m-hen
-1

-day
-1

 when housed in group of 5 and 10, 

respectively. 

 

Figure 8. Movement time budget of hens housed in group of 5 or 10 hens in a 1.2 m × 

1.2 m pen 

 

Figure 9 shows comparison between distributions of movement by the hens 

housed at SD5 and SD10 filtered at 5 cm to ignore smaller movements which could be 

the result of erroneous centroid extraction. It was observed that about 90% of the 

movements made by the hens during the day (10 hr-day
-1

) were less than 10 cm long 

when they were housed in group of 5, while about 85% of the movements were less than 

10 cm long when housed in group of 10. 
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Figure 9. Comparison of movement by hens housed at stocking density of 5 or 10 in a 

1.2 m × 1.2 m pen. 

 

Figure 10 shows average time spent by the hens performing different activities. 

The same 5 hens on average spent 32% and 25% of their time on perch when housed in 

groups of 5 and 10, respectively. Similarly, the hens on average spent 9% and 7% of 
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Figure 10. Average time spent by birds performing different activities 

 

The statistical analysis of the data showed that SD effect was significant on 

perching behavior of the laying hens (P = 0.0023). The hens spent more time on perch at 

SD5 (348 min) compared to SD10 (265 min). This is not surprising because of the 

limited perch space. Similarly, SD effect was prominent on feeding behavior (P < 

0.0001), 87 min at SD5 and 60 min at SD10. The increased pressure for feeding space 

was seen on hens in SD10. On the other hand, SD effect was insignificant on nesting or 

drinking behaviors (P = 0.3597 and 0.1366, respectively). The result also show that SD 

did not affect movement of the hens for the given floor space of 1.2 m × 1.2 m (P = 

0.2422).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SD5 SD10

T
im

e
 S

p
e

n
t 

p
e

r 
A

ct
iv

it
y

Stocking Density

Other

Water

Feeder

Nest

Perch



120 

Table 2. Stocking density effect on laying hen behaviors. 

Behavior Stocking Density Effect 

Perching Yes (p=0.0023) 

Nesting No (p=0.3597) 

Feeding Yes (p<0.0001) 

Drinking No (p=0.1366) 

Movement No (p=0.2422) 

 

Conclusions 

In this study, we developed a system that automatically extracts behaviors, such 

as locomotion, perching, nesting, feeding and drinking, of hens housed in groups of 5 

and 10, thereby quantifying stocking density effects on their behaviors. The system has 

been demonstrated to track and maintain identities of individual hens, which is critical 

for extraction of time budgets of individual hen behaviors. This unique tracking system 

will enhance researchers’ ability to examine the impact of physical and management 

factors on behaviors and well-being of group-housed animals. 
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CHAPTER 7  

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

 

In this study, computer-vision and image-processing techniques were applied to 

develop automatic inter-plant spacing-sensing of corn plants at early growth stages and 

automatic quantification of stocking-density effects on certain laying-hen behaviors 

including locomotion, perching, nesting, feeding, and drinking.  

The automatic inter-plant spacing-sensing system for corn plants used a light-

based time-of-flight (TOF) vision sensor mounted on a three-wheeled image acquisition 

platform. The platform was designed in such a way that the effects of direct sunlight and 

wind were reduced and it could therefore be used at any point of time in a given day. 

The system was capable of accurately detecting corn plants between v2 and v4 in their 

growth stages (20-35 cm tall), and of measuring inter-plant distances. The major 

challenges encountered were attributed to long plant canopies occluding the stem profile, 

multiple plants emerging at the same location, and uneven emergence of the plants that 

led to a misidentification rate of up to 4%. While the multi-view approach used helped 

reduce effects of long canopies and could detect doubles, the system still missed 

considerably late-emerging plants. 

The system for automatic quantification of stocking-density effects on laying-hen 

behaviors was developed using a sensor-fusion approach. A vision system was used as a 

primary sensor for tracking multiple laying hens and extracting their behaviors, while the 
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RFID antenna grid was used as a recovery mechanism to help maintain identities of 

laying hens when the vision system failed to do so. Tracking multiple laying hens was a 

challenging task from a computer-vision perspective since, a) the hens had similar 

images; 2) the hens appeared to differ in different frames based on their postures; 3) the 

nesting hens entered and exited the scene; and 4) some hens were partially or fully 

occluded when they were positioned beneath the perching hens. The hens were exposed 

to a photo period of 16 hours starting at 6:00h. They were fed twice a day at 9:00h and 

17:00h pm and eggs were removed once a day during the evening feeding session. 

Images and RFID data were acquired for 18 hours per day for a total of 3 days for each 

stocking density. Data was not collected from 8:00h to 10:00h in the morning and from 

16:00h to 20:00h in the evening to allow the hens to settle down after being disturbed 

during feed refilling and egg removal. The hens were extremely disturbed during the egg 

removal process because an operator had to use a probe to pull eggs from the cage floor. 

The statistical analysis of the data revealed that the stocking-density effect was 

significant with respect to perching and feeding behaviors of the laying hens, but was 

insignificant with respect to their nesting and drinking behaviors as well as to their 

locomotion. 

 



126 

Recommendations 

 

Inter-plant Spacing Sensing 

The developed within-row inter-plant spacing sensing system was capable of 

accurately detecting stem centers of corn plants which lying within 15± �  from vertical 

and at least 20 cm tall. The multi-view approach helped the system to detect doubles and 

to reduce the effect of long-hanging canopies that occluded stem profiles.  

• The images acquired from the field were processed offline. The acquisition frame 

rate was about 18 frames per second and the processing rate was about 6 frames 

per second. For the system to be capable of real-time operation, the algorithm 

must be optimized and/or implemented in hardware. 

• To keep the misidentification rate low, the system was designed to ignore plants 

shorter than 20 cm. The system was incapable of distinguishing between weeds 

and corn plants. A sophisticated object-recognition algorithm could help 

eliminate this shortcoming. 

• The image-acquisition platform was pushed manually in the direction of the crop 

row. In the future this platform could be modified to mount on a tractor or on an 

auto-guidance system provided with a path-planning algorithm.
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Hen Behavior Monitoring 

The hen-behavior monitoring system developed for automatic quantification of 

stocking-density effects on laying-hen behaviors was capable of tracking individual 

laying hens and extracting their behaviors in each frame.  

• The images were acquired at about 5 frames per second and the offline 

processing rate was about 3 frames per second. For the system to be capable of 

working in real-time, the algorithm must be optimized and/or implemented in 

hardware. 

• Feed refilling and egg removal were not mechanized, so the researcher was 

required to enter the laboratory twice a day. The egg-removal process was 

extremely disturbing to the hens and they were therefore given several hours to 

settle down after this activity. In the future, to support data collection over a full 

24-hour interval, the feed refilling and egg-removal processes must be 

mechanized. 

• The system was able to extract certain laying-hen behaviors such as perching, 

nesting, feeding, drinking, and locomotion. These behaviors were basically 

extracted using spatial information of the laying hens from the vision and RFID 

data. To extract other typical laying behaviors such as wingflapping and 

preening, a dynamic model of each behavior must be developed. 
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