
Graduate Theses and Dissertations Graduate College

2012

Method to partition between freely suspended
Escherichia coli and Escherichia coli attached to
clay particles
Xiao Liang
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/etd

Part of the Bioresource and Agricultural Engineering Commons, Environmental Engineering
Commons, and the Environmental Sciences Commons

This Thesis is brought to you for free and open access by the Graduate College at Iowa State University Digital Repository. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Liang, Xiao, "Method to partition between freely suspended Escherichia coli and Escherichia coli attached to clay particles" (2012).
Graduate Theses and Dissertations. 12382.
http://lib.dr.iastate.edu/etd/12382

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/grad?utm_source=lib.dr.iastate.edu%2Fetd%2F12382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1056?utm_source=lib.dr.iastate.edu%2Fetd%2F12382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=lib.dr.iastate.edu%2Fetd%2F12382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=lib.dr.iastate.edu%2Fetd%2F12382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/167?utm_source=lib.dr.iastate.edu%2Fetd%2F12382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd/12382?utm_source=lib.dr.iastate.edu%2Fetd%2F12382&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


Method to partition between freely suspended Escherichia coli and Escherichia coli 

attached to clay particles 

by 

Xiao Liang 

 

 

A thesis submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

 

Major: Agricultural Engineering 

 

 

Program of Study Committee: 

Michelle Soupir, Major Professor 

Laura Jarboe 

Chenxu Yu 

 

 

Iowa State University  

Ames, Iowa 

2012 

Copyright © Xiao Liang, 2012. All rights reserved.  



ii 
 

TABLE OF CONTENTS 

LIST OF TABLES                                                                                                                   vi 

LIST OF FIGURES                                                                                                                 vii 

ACKNOWLEDGEMENTS                                                                                                      ix 

ABSTRACT                                                                                                                              x 

CHAPTER 1 GENERAL INTRODCTION                                                                              1 

1.1 Introduction ................................................................................................................ 1 

1.2 Goal and objectives .................................................................................................... 2 

CHAPTER 2 LITERATURE REVIEW                                                                                    3 

2.1 Bacteria............................................................................................................................ 3 

2.1.1 Bacteria and water quality ........................................................................................ 3 

2.1.2 Fecal indicator bacteria ............................................................................................. 4 

2.2 Escherichia coli ............................................................................................................... 9 

2.2.1 Introduction of Escherichia coli ............................................................................... 9 

2.2.2 Sources of E. coli in waters .................................................................................... 10 

2.2.3 Transport and fate of E. coli in the environment .................................................... 10 

2.3 Detection methods ......................................................................................................... 13 

2.3.1 Separation techniques ............................................................................................. 13 

2.3.2 Dispersion techniques ............................................................................................. 15 

2.3.3 Dilution and membrane filtration ........................................................................... 17 

2.3.4 Flow cytometry ....................................................................................................... 17 

2.3.4 Summary ................................................................................................................. 21 

CHAPTER 3 MATERIAL AND METHODS                                                                         22 



iii 
 

3.1 Research considerations ................................................................................................ 22 

3.1.1 Bacteria cultures ..................................................................................................... 22 

3.1.2 Soils ........................................................................................................................ 23 

3.1.3 Selection of experimental partitioning methods ..................................................... 23 

3.1.4 Particle ratios .......................................................................................................... 26 

3.2 Experimental design ...................................................................................................... 27 

3.2.1 Settling (or centrifugation followed by Settling) .................................................... 27 

3.2.2 Flow cytometry ....................................................................................................... 28 

3.3 Calculations and statistical analysis .............................................................................. 29 

3.3.1 Percent attached calculations .................................................................................. 29 

3.3.2 Statistical analysis................................................................................................... 29 

CHAPTER 4 RESULTS AND DISCUSSIONS                                                                     32 

4.1 Results ........................................................................................................................... 32 

4.1.1 Settling method ....................................................................................................... 33 

4.1.2 Flow cytometry ....................................................................................................... 39 

4.1.3 Method comparisons............................................................................................... 46 

4.2 Discussion ..................................................................................................................... 52 

4.2.1 Impacts of clay type on bacteria attachment .......................................................... 52 

4.2.2 Impacts from particle ratios on bacteria attachment ............................................... 53 

4.2.3 Impacts of bacterial cell properties on attachment to particles .............................. 56 

4.2.4 Advantages and limitations of flow cytometry ....................................................... 58 

CHAPTER 5 CONCLUSIONS                                                                                               61 

5.1 General discussion and conclusions .............................................................................. 61 

5.2 Implications and recommendation for future research .................................................. 62 



iv 
 

REFERENCES                                                                                                                        64 

APPENDIX A. RESEARCH CONSIDERATIONS                                                               76 

APPENDIX A1. Absorbance values of soil samples at discrete time ................................ 76 

APPENDIX A2. Bacteria count changes after centrifugation ............................................ 76 

APPENDIX A3. Calculations for soil concentrations by surface area ............................... 77 

APPENDIX B. EXPERIMENTAL DESIGN                                                                          78 

APPENDIX B1. Settling samples ....................................................................................... 78 

APPENDIX B2. Flow cytometry samples .......................................................................... 81 

APPENDIX C. RAW DATA                                                                                                   83 

APPENDIX C1. Percent attached of strain #31 in the settling method .............................. 83 

APPENDIX C2. Percent attached of strain #50 in the settling method .............................. 90 

APPENDIX C3. Percent attached of strain #89 in the settling method .............................. 97 

APPENDIX C4. Percent attached of strain #43888 in the settling method ...................... 104 

APPENDIX C5. Percent attached of strain #31 in flow cytometry .................................. 111 

APPENDIX C6. Percent attached of strain #50 in flow cytometry .................................. 113 

APPENDIX C7. Percent attached of strain #89 in flow cytometry .................................. 115 

APPENDIX D. FLOW CYTOMETRY RESULT ANALYSIS FIGURES                          117 

Appendix D1. Strain #31 ................................................................................................... 117 

Appendix D2. Strain #50 ................................................................................................... 121 

Appendix D3. Strain #89 ................................................................................................... 125 

APPENDIX E. R CODE IN S STATISTICAL TESTS                                                        129 

APPENDIX E1. Statistical tests for data from the settling method .................................. 129 

APPENDIX E2. Statistical tests for data from flow cytometry ........................................ 132 

APPENDIX E3. Statistical tests for method comparisons ................................................ 135 



v 
 

APPENDIX E4. One sample t-tests .................................................................................. 137 

APPENDIX F. DATA TRANSFORMATIONS                                                                   138 

APPENDIX F1. Original data distributions ...................................................................... 138 

APPENDIX F2. Normality tests after transformations ..................................................... 146 

APPENDIX G. THREE-WAY ANOVA TEST RESULTS                                                  156 

APPENDIX G1. Results for natural log attachment ratios by flow cytometry................. 156 

APPENDIX G2. Results for attachment ratios by the settling method ............................. 156 

APPENDIX G3. Results for natural log attachment ratio difference between flow 

cytometry and the settling method .................................................................................... 156 

APPENDIX H. PAIRWISE COMPARISIONS BETWEEN DIFFERENT  SURFACE AREA 

RATIOS                                                                                                                                 157 

APPENDIX I EXAMPLE OF ORIGNIAL DOT PLOTS FROM FLOW CYTOMETRY 

WITH CONTROLS                                                                                                               160 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

LIST OF TABLES 

Table 1. E. coli Criteria (Organisms/100ml of water) .............................................................. 7 

Table 2. Clay particles with key properties ............................................................................ 23 

Table 3. Average percent attached of each variable ............................................................... 33 

Table 4. Attachment difference between different clays in the settling method (p-values are in 

parentheses)............................................................................................................................. 35 

Table 5. Partial pairwise comparisons of attachment ratios between different particle ratios in 

the settling method (only showing the comparisons without significant differences)............ 37 

Table 6. Attachment difference between different strains in the settling method (p-values are 

in parentheses).. ...................................................................................................................... 39 

Table 7. Attachment difference between different clays in flow cytometry (p-values are in 

parentheses)............................................................................................................................. 42 

Table 8. Pairwise comparisons of attachment ratios between different particle ratios from 

flow cytometry (only showing the comparisons without significant differences) .................. 44 

Table 9. Attachment difference between different strains in flow cytometry (p-values are in 

parentheses)............................................................................................................................. 46 

Table 10.  The estimated expense for major cost of 100 samples in two methods. ................ 58 

 

 

 

 

 

 

 

 



vii 
 

LIST OF FIGURES 

Figure 1. Relationships between total coliform, fecal coliform, E. coli, and entercocci. ......... 8 

Figure 2. Schematic of a flow cytometer (modified from Brown and Wittwer, 2000) .......... 19 

Figure 3. Flow chart of the settling method procedures ......................................................... 28 

Figure 4. Scatter plots of attachment ratios from the settling method showing clay particle 

variability. ............................................................................................................................... 34 

Figure 5. Boxplots of attachment ratios in the settling method analyzed by clay type. ......... 36 

Figure 6. Boxplots of attachment ratios from the settling method analyzed by strain. .......... 37 

Figure 7. Scatter plots of attachment ratios from the settling method. ................................... 38 

Figure 8. Average percent attached of strain #31 to Hectorite ............................................... 40 

Figure 9. Ideal dot plot from the flow cytometry separation technique. ................................. 40 

Figure 10. Scatter plots of attachment ratios by from flow cytometry.   ................................ 41 

Figure 11. Boxplots of attachment ratios analyzed by clay type from samples collected using 

flow cytometry separation technique. ..................................................................................... 43 

Figure 12. Boxplots of attachment ratios analyzed by strain from samples collected using 

flow cytometry separation technique. ..................................................................................... 44 

Figure 13. Scatter plots of attachment ratios from the flow cytometry separation technique. 

................................................................................................................................................. 45 

Figure 14. Residuals vs. fitted values for the natural log attachment ratio differences between 

flow cytometry and the settling method (surface area 1 and 2 removed). .............................. 47 

Figure 15. Scatter plot of the natural log attachment ratio differences between flow cytometry 

and the settling method. .......................................................................................................... 48 

Figure 16A. Boxplots of natural log attachment ratio differences between flow cytometry and 

the settling method by clay type. ............................................................................................ 49 



viii 
 

Figure 16B. Boxplots of natural log attachment ratio differences between flow cytometry and 

the settling method by strain. .................................................................................................. 49 

Figure 16C. Boxplots of natural log attachment ratio differences between flow cytometry and 

the settling method by surface area ratio ................................................................................ 51 

Figure 17A. Histogram of E. coli strain #31 attachment to Montmorillonite K-10 over three 

different particle ratio. ............................................................................................................ 55 

Figure 17B. Histogram of E. coli strain #31 attachment to Kaolin over three different particle 

ratio. ........................................................................................................................................ 55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

ACKNOWLEDGEMENTS 

 First, I would like to thank my advisor, Michelle Soupir, for all her support and 

guidance throughout my M.S. programs, for creating and supporting a research environment 

in our laboratory. Thanks to this research environment that I have succeeded and enjoyed my 

experience as a master student.  

 I would also like to thank my committee members Laura Jarboe and Chenxu Yu for 

their advices and support.  

 Many thanks to Shawn Rigby for his efforts in flow cytometry operations and 

analysis and to Wei Zhang for her work in statistical analysis.  

 Special thanks to Amy Cervantes, Claire Hruby, Jason Garder, Joshua Claypool, 

Rohith Gali, and Pramod Pandey for always answering question, providing assistance in the 

laboratory work as well as analyzing results.  

 Thanks to Nathan Willey and Amanda Homan for providing assistance in laboratory 

work. Thanks for your diligence and responsibility.  

 Finally, I would like to thank my parents, for their love, support, encouragement, and 

patience while I lived so far away from home during my study in Iowa State University.  

 This research was partially funded by United States National Science Foundation.  

 

 

 

 

 

 

 

 



x 
 

ABSTRACT 

Currently, about 29% of waters across the United States are impaired because of 

elevated bacterial levels (USEPA, 2009). While attachment of bacteria to particulates is one 

likely mode of transport through the environment, understanding of environmental transport 

mechanisms is lacking. Previous studies have shown that some bacteria preferentially attach 

to sediment but a standard procedure does not exist to separate attached and unattached 

bacteria. In this project, we are developing a practical and accurate method to distinguish and 

quantify between E. coli attached to clay particles and E. coli freely suspended in solution. 

Two methods to detect differences between unattached and attached E. coli were compared, 

settling (or centrifugation followed by settling) and flow cytometry. Each method was tested 

using three environmental strains collected from swine facilities and one research strain of E. 

coli (ATCC 43888, E. coli O157:H7 with Shiga-like toxin I and II removed); four clay 

particles: Hectorite (diameter: 1 μm, surface area: 63 m
2
/g), Kaolinite (diameter: 1.25 μm, 

surface area: 11.2 m
2
/g), Ca-Montmorillonite (diameter: 3 μm, surface area: 84 m

2
/g), 

Montmorillonite K-10 (diameter: 6 μm, surface area:  240 m
2
/g); and a range of surface area 

ratios (clay particle surface area to E. coli surface area).  

From the results, E. coli were more likely to attach to clay particles with smaller sizes. 

As the surface area ratio increased from 1 to 1,000, the attachment ratio increased with 

greatest attachment occurring at a clay particle surface area to E. coli surface area ratio of 

1,000, where and an average of 59% of cells were attached. Moreover, the attachment ratio 

reached a maximum value of 99.8% for E. coli attachment to Kaolinite. When comparing the 

results of the two methods, the detected attachment ratios were always lower when using the 

flow cytometry method, especially for Hectorite, the smallest particle size tested in this 

project. The main limitation of the settling method is its inability to detect viable but non-

culturable cells while the inability to discriminate live and dead cells in the main reason for 

the underestimated attachment fractions by flow cytometry method. Nevertheless, the 

increasing trend in attachment ratio from flow cytometry was similar to the results from the 

settling method. Our results indicate that flow cytometry is a rapid and accurate method to 

test the attachment ratio of E. coli to clay particles, but the method is still in need of further 

development.  
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CHAPTER 1 GENERAL INTRODCTION 

1.1 Introduction  

 Currently, 72,305 miles and 29% of impaired streams are contaminated by pathogens 

(USEPA, 2009), and pathogens are the leading cause of impairments in rivers and streams in 

United States. Waterborne human pathogens are microorganisms that are transmitted to 

people through drinking water or recreational water activities, including swimming, fishing, 

and boating. Pathogenic bacteria cause illnesses including but not limited to common 

gastroenteritis and diarrhea, typhoid fever, and dermatitis (Rosen, 2001; Pond, 2005). These 

diseases have posed a critical threat to public health. Diarrheal disease accounts for nearly 

1.5 million of the 9 million children under the age of 5 who die needlessly each year across 

the world (UNIEF/WHO, 2009) and the infection of diarrheal is spread through contaminated 

food or drinking water. These diseases are not confined solely to undeveloped countries 

without modern water and sanitation systems. In the United States, between 1999 and 2000, 

there were 36 outbreaks of waterborne disease associated with drinking water and 59 

outbreaks due to recreational water use (CDC, 2002).  It is important to monitor waters 

across the United States for the presence of these pathogens in order to identify the original 

sources of the pathogens and the contaminated waters.  

  Monitoring bacteria is essential for environmental protection, but analysis of 

pathogens is difficult, time-consuming, expensive and potentially hazardous to workers 

(Myers et al., 2007). Fecal coliform was previously the most common indicator to evaluate 

water quality. E. coli, however, is accepted more extensively. E. coli was recommended as 

the primary indicators of fecal contamination in fresh waters in the U.S in 1986 by the U.S. 

EPA (USEPA, 1986).  According to the Iowa water quality standard (USEPA, 2011), water 

bodies with a geometric mean of E. coli concentration higher than 126 CFU(colony forming 

units)/100 ml or with a single sample concentration higher than 235 CFU/100 ml will be 

considered impaired for primary and children’s recreational use, and will require a plan for 

remediation.   

 Agriculture is a significant contributor of bacteria in the environment. Two major 

sources of bacteria in streams are from land application of manure from confined animal 
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systems and direct deposit by grazing animals (Soupir et al., 2006). Previous studies have 

shown that some bacteria preferentially attach to sediment (Gagliardi and Karns, 2000; 

Soupir et al., 2010; Liu et al., 2011). Bacteria attached to particulates tend to be more 

resistant to environmental changes such as ultraviolet radiation and such protection can 

increase bacterial survivals. From current knowledge, bacteria attachments in the aquatic 

environment could be influenced by various factors, including genetic, chemical, and 

physical factors, such as temperature, bacterial genotype, soil particle size, organic matter, 

water content, pH, and dissolved nutrients (Pachepsky et al., 2006). While attachment of 

bacteria to particulates is one likely mode of transport through the environment, 

understanding of environmental transport mechanisms is lacking. The impacts on bacterial 

attachments from most of these factors remain unknown. Moreover, currently, a standard 

procedure does not exist to separate attached and unattached E. coli.  

1.2 Goal and objectives 

 The overall goal of the study was to develop a practical and accurate method to 

distinguish and quantify between E. coli attached to clay particles and E. coli freely 

suspended in solution. The specific objectives were to:  

 Develop standard procedures  for each suitable method; and 

 Determine bacteria self-factors, such as genotype, and environmental factors, 

including clay type and concentrations, which impact bacteria attachment to clay 

particles;  

 Compare flow cytometry and standard settling/centrifugation separation methods to 

partition between E. coli attached to clay particles and E. coli freely suspended in 

solution.  
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CHAPTER 2 LITERATURE REVIEW 

2.1 Bacteria  

2.1.1 Bacteria and water quality 

 Bacteria are a large domain of microscopic, single-celled, prokaryote microorganisms 

that display a wide range of metabolic types, geometric shapes and environmental habitats. 

There are approximately five nonillion (5×10
30

) bacteria on earth, forming a biomass on earth, 

which exceeds that of all plants and animals (Hogan, 2010).Bacteria are ubiquitous in 

numerous environments and perform various complex actions, some of which are beneficial 

and some harmful. Certain bacteria, the Azotobacter on the roots of certain plants can convert 

nitrogen into a usable form (nitrogen fixation) (Halversen, 1927; Newton et al., 1953). A vast 

majority of the bacteria are rendered harmless by the protective effects of the immune system 

of humans. However, those that are infectious disease producing are referred to as pathogenic. 

Pathogenic bacteria cause illnesses including but not limited to typhoid fever, dysentery and 

gastroenteritis (Pond, 2005). Viruses, prion, some protozoans and fungus can also be 

pathogenic.   

 Pathogenic contamination of water has long been a concern to the public. Concern is 

increasing worldwide due to the outbreak of waterborne diseases. During the 1920's-1960's, 

Salmonella typhi, the bacillus which causes typhoid fever was considered a major problem in 

drinking water supplies (Craun, 1986) According to World Health Organization (WHO), 

diarrheal disease alone accounts for an estimated 4.1% of the total disability-adjusted life 

year (DALY) global burden of disease and is responsible for the death of 1.8 million people 

per year(WHO, 2004), while 88% of that burden is caused by consumption of unsafe 

drinking water. The infection of diarrheal is spread through contaminated food or drinking 

water. Diarrheal disease accounts for nearly 1.5 million of the 9 million children under the 

age of 5 who die needlessly each year across the world(UNIEF/WHO, 2009). 

 In recent years, scientists have identified a large number of pathogens responsible for 

waterborne disease outbreaks, and researches have focused on identifying their sources, 

development of resistance to water disinfection, and removal from drinking water supplies. 

The common bacterial infections of water diseases include E. coli infection, cholera, and 
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typhoid fever. Bathing, contact recreation, washing, and drinking can result in infection if the 

water is contaminated. Contact recreation and drinking uses are considered to be the two 

major routes of infection. E. coli outbreaks, most of which have been caused by a specific 

strain of E. coli bacteria such as E. coli O157:H7, have received much media coverage 

(WSDH, 2010). A number of E. coli O157:H7 outbreaks have been reported from 

recreational use of polluted waters, particularly in swimming pools that were not adequately 

chlorinated. Moreover, from 1982 to 2002, 15% outbreaks of E. coli O157:H7 were due to 

drinking water exposure, which resulted in 1290 illnesses (Reynolds, 2008). The acute 

diseases followed the infection include Hemolytic uremic syndrome with possible long-term 

sequelae (Pond, 2005) and E. coli O157 gastroenteritis.   

 In 1974, the U.S. Congress passed the Safe Drinking Water Act (SDWA) which 

requires the U.S Environmental Protection Agency (U.S. EPA) to determine the criteria of 

contaminants in drinking water. And both the SDWA and the Clean Water Acts (CWA) 

address pathogenic contamination of the United States’ waterbodies. The CWA protects 

surface water for drinking, recreation, and aquatic food source uses while the SDWA enabled 

regulation of contaminations of finished drinking water and protection of source waters. In 

1986, the USEPA identified that the acceptable risk levels for recreational waters at 8 illness 

per 100 swimmers in fresh waters and 19 per 100 in marine waters (USEPA, 1986). Since 

then, the USEPA has continued to modify water quality criteria for pathogens and pathogen 

indicators.  

2.1.2 Fecal indicator bacteria 

 Based on above demonstrations, monitoring pathogenic microorganisms is essential.  

But there are some limitations on detecting all pathogens in water: (i) it is time-consuming 

and needs laborious analyses; (ii) large numbers of potential pathogens require many types of 

test and analyses; (iii) it needs large sample volumes and sample pre-concentration since 

pathogens are always present in relatively low concentrations; (iv) it may pose potential 

health hazards (Myers et al., 2007). Because of these difficulties in detecting the broad range 

of human pathogens, pathogen indicators are required and used to set water quality standards.  
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 Indicators are physical, or chemical parameters whose presence at a level above 

specified limit may reflect a problem in the treatment process or in the integrity of the 

distribution system (USEPA, 2006). According to U.S. EPA, to be an ideal assessor of fecal 

contamination, an indicator organism should meet as many of the following criteria as 

possible:  

(i) The organism should be present whenever intestinal pathogens are present 

(USEPA, 2006; Myers et al., 2007; Payment, 2011);  

(ii) The organism could be used for all types of waters (USEPA, 2006; Myers et al., 

2007); 

(iii) The organism should not be a pathogenic microorganism (to minimize the health 

risk to analysts) (Payment, 2011); 

(iv) The organism should have a longer survival time than the hardiest enteric 

pathogen (USEPA, 2006; Myers et al., 2007);  

(v) The organism should not grow/ multiply in water (USEPA, 2006; Payment, 2011);  

(vi) The organism should be found in warm-blooded animals’ intestines (USEPA, 

2006; Myers et al., 2007); 

(vii) The method of test the organism should be easy and inexpensive to perform 

(USEPA, 2006; Myers et al., 2007; Payment, 2011); 

(viii) The density of the indicator organism should have some direct relationship to the 

degree of fecal pollution (USEPA, 2006; Payment, 2011);  

 The four indicators most commonly used today are total coliforms, fecal coliforms, 

Escherichia coli (E. coli), and enterococci. 

2.1.2.1 Total coliforms and fecal coliforms  

 Coliform bacteria are part of the Enterobacteriaceae and live in the lower intestines of 

warm-blooded animals. They are Gram-negative, oxidase-negative, non-spore forming rods, 

that ferment lactose with gas production at 35-37˚C after 48h (WHO, 2008; Cabral, 2010). 

Coliforms can be found in the aquatic environment, in soil and on vegetation. Although 

coliform bacteria are not usually pathogenic themselves, their presence indicates fecal 

contamination, perhaps accompanied by disease-causing pathogens. Since the 1920s, total 
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and fecal coliforms are the standard microbial indicators of water quality (Reynolds, 2003). 

However, the usefulness of total coliforms as an indicator of fecal contamination depends on 

the extent to which the bacteria species found are fecal and human in origin. Therefore, total 

coliforms are no longer recommended as an indicator for recreational waters (USEPA, 2010).  

 Fecal coliform bacteria are a subgroup of coliform bacteria.  They also appear in the 

intestinal tract of warm-blooded animals. Fecal coliforms, which are outside of a warm-

blooded host, have a shorter life expectancy compared to total coliform bacteria which are 

associated with the digestive tract of humans or animals. The bacteria in fecal category are 

usually nonpathogenic, but also include pathogens such as E. coli O157:H7. The existence of 

fecal coliforms indicates fecal contamination and of the potential presence of enteric 

pathogens, especially bacterial pathogens. For recreational waters, fecal coliform bacteria 

were the primary bacteria indicator until relatively recently, when U.S. EPA began 

recommending E. coli and enterococci as better indicators of health risk from water contact 

(USEPA, 2010). Some states, such as New Hampshire, are still using fecal coliforms as the 

indicator bacteria (NHDES, 2003).  

2.1.2.2 Escherichia coli and enterococci 

The traditional indicators test should be abandoned because: (1) total coliform test 

can detect bacteria that have no connection with fecal pollution; (2) the detection of fecal 

coliforms must be carried out at 44.5˚C, and positive results confirmed by identification to 

species levels in order to exclude false positives (Leclerc et al., 2001; Cabral, 2010). Thus, in 

1986, USPEA recommended new indicator bacteria, Escherichia coli or E. coli, which is a 

single species within the fecal coliforms bacteria, and enterococci, a group of fecal 

streptococci group in the intestinal tract of warm-blooded animals.  

E. coli and Enterococci were recommended as indicators of fecal contamination in 

water system in the U.S in 1986 by the U.S. EPA (USEPA, 1986). E. coli is the only true and 

reliable indicator of fecal pollution in environmental waters so far (Cabral, 2010).  The E. 

coli Criteria Table for Iowa when the Class “A1”, “A2”, “A3”, or “B(CW)”  uses is listed in 

the Table 1 (USEPA, 2011). And the Figure 1 shows the total coliform, fecal coliform, E. 

coli, and entercocci.  
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Table 1. E. coli Criteria (Organisms/100ml of water) 

Use of Category Geometric Mean Sample Maximum 

Class A1   

3/15 - 11/15 126 235 

11/16 – 3/14 Does not apply Does not apply 

Class A2 (Only)   

3/15 - 11/15 630 2880 

11/16 – 3/14 Does not apply Does not apply 

Class A2 and B(CW)   

Year-Round 630 2880 

Class A3   

3/15 - 11/15 126 235 

11/16 – 3/14 Does not apply Does not apply 

Class A1 - Primary Contact Recreational Use  

Class A2 - Secondary Contact Recreational Use  

Class A3 - Children’s Recreational Use 

Class B(CW) – Cold Water Aquatic Life 
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Figure 1. Relationships between total coliform, fecal coliform, E. coli, and entercocci.  

The figure showed that both E. coli, and entercocci are belong to total coliform bacteria, 

and E. coli are also fecal coliform bacteria, which is a subgroup of total coliform.  

2.1.2.3 Limitations of pathogenic indicators 

 In recent years, studies have identified some limitations of using pathogenic 

indicators to predict the presence of enteric pathogens in water systems.  

 Coliform bacteria were referred to belong to the genera Escherichia, Citrobacter, 

Klebsiella and Enterobacter, but this group is also including other genera, such as Serratia 

and Hafnia. Thus, the total coliform group includes both fecal and environmental species 

(WHO, 2008). Total coliform counts are not an accurate measure of fecal pollution since it 

can detect bacteria that have no connection with fecal pollution (Cabral, 2010).  Moreover, 

many pathogens of public health concern do not behave like fecal indicators and have no 

absolute indicator of their presence, only a probability of their co-occurrence (Payment, 

2011).For example, fecal coliforms are not a reliable indicator during anaerobic digestion 

because viral pathogens tend to have a greater survivability than fecal coliforms(NHDES, 

2003).  

Total Coliform Bacteria 

Fecal Coliform Bacteria 

E. coli 

Enterococci 
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2.2 Escherichia coli 

2.2.1 Introduction of Escherichia coli 

 Gram staining is an empirical method of differentiating bacterial species into two 

large groups, Gram-positive and Gram- negative, based on the chemical and physical 

properties of their cell walls. Escherichia coli, commonly abbreviated E. coli, is a large and 

diverse group of Gram-negative rod-shaped bacteria that are commonly found in the lower 

intestine of warm-blooded organisms.  E. coli can grow in the media with glucose as the only 

organic component while wild type E. coli have no growth factor requirement and can 

transform glucose into all macromolecular components for constructing the cell through 

metabolism(Todar, 2011). Moreover, E. coli are facultative anaerobe and then can grow in 

the presence or absence of O2. Under anaerobic conditions they will grow by means of 

fermentation or anaerobic respiration in which NO3, NO2 or fumarate as final electron 

acceptors for respiratory process(Todar, 2011). Thus, E. coli can adapt both the intestinal 

and extraintestinal environments with such characteristics. 

 At this time, there are over 700 genetically different types of E. coli that have been 

identified. For many years after the first description the in 19
th

 century, E. coli were simply 

considered to be a commensal organism in the intestine. However, a strain of E. coli that was 

first shown to be the pathogen that caused an outbreak of diarrhea among infants in 1935. 

Diseases caused by various strains of E. coli include not only diarrhea but also urinary tract 

infections (UTIs) and neonatal meningitis. E. coli are responsible for 90 percent of UTIs, 

neonatal meningitis in  1/300 infants and an unknown number of diarrheal illnesses(Reynolds, 

2008; Todar, 2009). As mentioned previously, among the pathogenic strains, E. coli O157: 

H7 from the intestinal tract of warm-blooded animals has attracted more attention.  This 

strain is primarily spread to people by consuming unpasteurized milk or undercooked beef 

and can lead to severe diarrhea, Hemolytic uremic with possible sequelae, E. coli O157 

gastroenteritis. Uropathogenic strains of E. coli (UPEC) are the most common cause of non-

hospital-acquired urinary tract infection. This unique group can enter into the urinary tract 

and ascend to colonize the bladder, causing cystitis. Or these bacteria may ascend the ureter 

to infect the kidneys causing pyelonephritis (Vigil et al., 2011).  
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 According to the criteria of indicator organism, E. coli bacteria are good indicator 

organisms of fecal contamination since they generally live longer than pathogens, are found 

in greater numbers, and are less risky to collect or culture. They can be distinguished from 

most other coliforms by their ability to ferment lactose at 44.5 ℃ in the fecal coliform test, as 

well as by their growth and color reaction on certain types of culture media such as mTEC 

plates. Monitoring for E. coli is an easy and cost-effective method for citizens and 

professionals. E. coli were recommended for use as an indicator of fecal contamination in 

water system in the U.S in 1986 by the USEPA (USEPA, 1986). Studies indicated that E. coli 

were more closely correlated with swimming-related illnesses than the total coliform bacteria, 

and U.S. EPA later recommended that E. coli be used as the indicator of choice in freshwater 

recreational areas.    

2.2.2 Sources of E. coli in waters   

 E. coli in water can originate from the intestinal tracts of both humans (Ramchandani 

et al., 2005) and other warm-blooded animals, E .coli originating from livestock have been 

detected in surface waters (Ram, 2008), ground-water on or near swine farms and in runoff 

from research plots with highly and sparsely vegetated grassland (Soupir and Mostaghimi, 

2011). Other common sources of E. coli in the environment include pets and wildlife, septic 

tanks, leaking sewer lines, wastewater treatment plans, and combined sewer overflow (CSOs).  

Two major sources of bacteria in streams are from land application of manure from confined 

animal systems and direct deposit by grazing animals (Soupir et al., 2006). 

2.2.3 Transport and fate of E. coli in the environment   

Enteric bacteria from animal waste can enter water systems via runoff from the 

grazed and manure-amended land (Sherer et al., 1992).  The transport of E. coli from point 

and nonpoint sources to surface water is becoming a concern in the U.S.  The EPA’s National 

Water Quality Inventory report (USEPA, 2009) reported that 72,305 miles and 29% of 

impaired streams are contaminated by pathogens, and pathogens are the leading cause of 

impairments in rivers and streams in the U.S.  

 Manure-borne bacteria can be transported to surface water via attaching to soil and 

organic particles (Liu et al., 2011) or in the freely suspended, or unattached state. Pathogenic 
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microorganisms in land-applied human and animal wastes can also enter groundwater system 

by infiltration (Bolster et al., 2009). Thus, it is of great importance to understand the 

transport mechanism and fate for E. coli, which is a commonly accepted pathogenic indicator, 

to assist the development of best management practices. Additionally, development of 

partitioning method between unattached and attached bacteria can help with total maximum 

daily loads (TMDL) to reduce pathogen concentrations in waters (Soupir and Mostaghimi, 

2003).  

E. coli are released to the environment along with manure in which manure can serve 

as carriers, abode, and food for microbes (Pachepsky et al., 2006). The transport of bacteria 

in soils has been reported to enhance after attaching to manure (Gagliardi and Karns, 2000; 

Guber et al., 2005). At least 60% of attached E. coli were found to be associated with manure 

colloids (based on an 8 to 62 micron particle size category) regardless of soil texture (Soupir 

et al., 2010). Manure type is also a factor which impacts the E. coli concentration after 

releasing from manure. A study on pastureland indicated that the release plots of dairy farm 

(with a history of liquid dairy manure application) had significantly higher concentrations of 

E. coli than the runoff plots located at a turkey farm (which also had a history of poultry litter 

application). The authors also found that turkey litter treatment had the largest percentage of 

source E. coli released by a simulated rainfall event (Soupir and Mostaghimi, 2003).  For the 

different duration after manure application(4-12 weeks), the fecal coliform concentrations 

released by simulated rainfall decreased approximately exponentially in response to 

increasing time between the manure applications and rainfall simulations (Edwards et al., 

2000).  

One of the factors affecting bacterial transport is attachment to soil particles 

(Pachepsky et al., 2008).  After release from manure, microorganisms can move freely in 

water or attach to suspended soil and manure particles (Jeng et al., 2005; Hipsey et al., 2006; 

Pachepsky et al., 2008). A previous study has found that 10-20% of the fecal coliform cells 

adsorbed to the suspended particles in untreated stormwater runoff (Schillinger and Gannon, 

1985). The fecal bacteria in stream sediment can be 10-10,000 times higher than that in water 

column (Davies and Bavor, 2000; Bai and Lung, 2005). Bacterial attachment to soil particles 

results in increased settling velocities and the sedimentation of attached bacteria may be a 
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critical disappearance mechanism in contaminated surface waters (Schillinger and Gannon, 

1985). Bacteria in bottom sediments are also protected from the destructive action of 

ultraviolet radiation (Bitton et al., 1972).  Therefore, E. coli attached to large particles may 

pose less threat to environment (Muirhead et al., 2005) and have a longer life expectancy.  

There are several health considerations regarding the presence of bacteria in stream 

and lake bottom sediments. Dredging, gathering up bottom sediment in shallow seas and 

fresh water areas, has been shown to greatly increase concentrations of indicator bacteria by 

resuspending sediment (Grimes, 1975). Action of wind, currents, boats, and swimmers may 

also result in resuspension of bottom bacteria (Schillinger and Gannon, 1985), which could 

pose a health hazard in recreational areas.  

The importance of E. coli as a pathogenic indicator has led to numerous studies 

investigating at cell properties and the corresponding transport behavior of this organism 

(Bolster et al., 2009). Bacteria attachment to particles in the aquatic environment can be 

influenced by various factors, including both chemical and physical factors, such as 

temperature, predators, antibiosis, organic matter, water content, pH, and dissolved 

nutrients(Pachepsky et al., 2006). For example, for the range of 4°C to 37°C, the survival 

duration decrease corresponding to the  temperature increase (Flint, 1987).  Next, I will 

discuss some currently known properties which may impact the attachments in details.  

a. Soil particle size 

Previous researches had demonstrated that the soil particle size plays an important 

role in bacterial attachment. Bacterial attachment is greater for  particles with 

sizes up to 330 μm than for coarse-grained sand (~1000 μm) (Fontes et al., 1991).   

The existences of fine soil particles and high organic matter have been shown to 

increase E. coli survival (Sherer et al., 1992) in water bodies.  From a study on E. 

coli attachment to five sediment fractions in fresh stormwater, it was found that 

80% of attached E. coli were associated with the silt fraction, 18% with clay 

fraction, and only 2% with the sand fraction (Jeng et al., 2005). In urban storm 

water runoff, fecal indicator bacteria were adsorbed predominantly to fine clay 

particles (<2 µm) (Muirhead et al., 2006). 
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b. Bacteria genes 

Genotypes also impact the bacterial attachment in aquatic environment. Genes 

that encode various types of pili, fimbriae, and other surface proteins are 

responsible for bacterial attachment to other bacteria, host tissues, or other 

surfaces (Garcia and LeBouguenec, 1996). The expression of Ag 43, one of the 

adhesion genes, was found to significantly impact the bacterial attachment to 

quartz particles (Lutterodt et al., 2009).  Moreover, Cook et al. (2011) evaluated 

15 genes for 17 E. coli isolates following transport through saturated porous 

media and found that highest attachment efficiency was also associated with 

targeted genes including surface exclusion (traT) and the siderophore iroNE. coli  as 

well as adhesion genes(Cook et al., 2011).  

c. Cell sphericity 

At present, difference exists in cell sphericity have been observed to impact on 

bacterial attachment. In one study by Bolster et al, cell sphericity and width 

showed a significant relation to bacterial attachment (Bolster et al., 2009). 

However, no relation between attachment and cell sphericity was indicated in a 

study of 54 E. coli isolates (Foppen et al., 2010).  Lutterodt et al. (2009) studied 

cell sphericity of 6 E. coli strains obtained from a soil used for cattle grazing and 

found cell sphericity did not significantly correlate with attaching efficiency.  

2.3 Detection methods 

 Previous studies have shown that some bacteria preferentially attach to sediment and 

organic particles; however, and a variety of techniques have been used to assess attachment 

including centrifugation, settling, and filtration. Additionally, a variety of chemical and 

physical dispersion techniques are used to release attached cells from particulates for 

enumeration of the total concentration.  

2.3.1 Separation techniques  

2.3.1.1 Centrifugation 

 Centrifugation is a process that involves the use of the centrifugal force for the 

separation of mixtures with a centrifuge, in this application, used for determining the amount 
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of bacteria that are sediment-attached (Faegri et al., 1977; Schillinger and Gannon, 1985). 

Bacteria in the supernatant were considered suspended, and the difference between this 

concentration and the total concentration was assumed to be the attached bacteria portion 

(Soupir et al., 2008). However, centrifugation has some drawbacks in application. Significant 

losses of cell number under centrifugation exceeding 190* g as centrifugation speed and 1 

min as the total centrifuge time have been observed to occur (Lunau et al., 2005). Unattached 

bacteria have a similar diameter as clay particles, so it can be difficult to determine proper 

centrifuge speed and time to partition attached and unattached bacteria (Henry, 2004).  

A study of recovery of benthic bacteria with stream bed sediments used a technique 

called Nycodenz density gradient centrifugation to separated attached and unattached 

bacteria (Amalfitano and Fazi, 2008). The authors used 1ml Nycodenz as a density gradient 

medium placed beneath 1ml of sediment and of pre-filtered water. Tubes were centrifuged 

(14,000* g) for 90 min at 4℃. Next, the layers of supernatant, cells, Nycodenz cushion and 

sediment (described from top to bottom) were distinct when observed against a light source. 

Another centrifuging technique called dispersion-density-gradient centrifugation was used in 

a study of ammonia-oxidizing bacteria attachment to clay loam soil (Aakra et al., 2000). First, 

soil samples were diluted and dispersed using a blender at 22,000 rpm for 10 min. Second, a 

200 ml sample of soil dilution was centrifuged at 7,000 rpm for 3 hours. In this step, 40 ml 

Nycodenz solution was also used as density gradient medium and placed beneath the 

sediment and of pre-filtered water. As a result, planktonic bacteria remained suspended and 

the soil containing attached bacteria had settled below the Nycodenz cushion. Gentle 

spinning at 500 ×g for 10 min was used to limit changes in bacterial culturability and particle 

size distribution due to shear and pelletization (Fries et al., 2006).  

2.3.1.2 Settling 

 According to the Stoke’s Law, particles with different size and density have different 

settling velocities:  
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 Where:  

 v is the particles' settling velocity (m/s) (vertically downwards if ρp > ρf, upwards 

if ρp < ρf ), 

    is the particle’s diameter (m),  

 μ is the viscosity of medium (kg/m×s), 

 g is the gravitational acceleration (m/s
2
), 

 ρp is the mass density of the particles (kg/m
3
), and 

 ρf is the mass density of the fluid (kg/m
3
). 

 A study by Liu et al. (2010) used Stoke’s equation to determine the settling time for 

quartz to separate free-suspended E. coli from quartz-attached E. coli (Liu et al., 2010) 

2.3.1.3 Filtration 

Filtration is characterized by its ability to remove particles via a sieving mechanism 

based on the size of the membrane pores relative to that of the particulate matter (USEPA, 

2005).  Qualls et al. (1983) defined the unattached bacteria as cells able to pass through an 

eight-micron screen(Qualls et al., 1983). Since a typical E. coli cell is 1.1 to 1.5μm wide by  

2 to 6 μm long, the previous definition may include not only free bacteria but also those 

sorbed to very small particles or even small bioflocculated clumps (Soupir et al., 2008). 

Multiple screen filtrations can also be a useful tool. In 2008, Soupir et al. conducted a 

filtration system for distinguishing E. coli in environmental soil samples: a Mini- Sieve 

Microsieve set with a number 35 mesh screen was used to retain particle larger than coarse 

sand (>500μm); a number 230 mesh was used to retain medium, fine and very fine sand (63-

500μm); an 8μm filter was used to retain fine, medium, and silt particles; a 3μm filter was 

used to retain clay and very fine silt particles. 

2.3.2 Dispersion techniques 

Techniques to detach bacteria from particulates are mainly focused on soil samples, 

due to agricultural and bioremediation studies (Mayr et al., 1999; Aakra et al., 2000; 

Caracciolo et al., 2005). The attachment of bacteria, especially pathogens to sediment makes 

http://en.wikipedia.org/wiki/Earth%27s_gravity
http://en.wikipedia.org/wiki/Mass_density
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detection and enumeration of cells difficult. For instance, when enumerated by culture 

techniques, bacteria attached to sediment particles may not be randomly distributed across 

the surface of the media (Craig et al., 2002). Therefore, chemical and physical dispersion 

techniques have been developed for releasing attached and bioflocculated cells from soil 

particles to estimate the total number of cells. Recent research is focused on cell recovery and 

minimizing cell loss during treatment (Amalfitano and Fazi, 2008).  

2.3.2.1 Chemical techniques 

 Chemical agents are often used to loosen the strong hydrogen binding, van der Waals, 

electrostatic and chemical forces that tie cells and particles together.  Previous researchers 

have found that Tween 20 at 0.5% concentration (Amalfitano and Fazi, 2008), Tween 80 at 

0.02% concentration (BD, 2008), or Tween 85 at 0.01% concentration (Soupir et al., 2008), 

can all achieve satisfactory dispersing effects. Chemical dispersion agents are also used in 

combination with physical methods (Lindahl and Bakken, 1995).  

2.3.2.2 Physical techniques 

 Previous physical dispersion techniques have included treatment with a waring 

blender, had or orbital shaker, sonication probe, or ultrasonic bath treatment. A waring 

blender was used for homogenization of the sample. It shakes the sample with glass beads, or 

disruption of aggregates by mild ultrasonic treatment (Lindahl and Bakken, 1995). Physical 

entrapment of bacteria in small pores can be mechanically disrupted by horizontal and orbital 

shakers or ultrasonic baths (Epstein and Rossel, 1995; Kuwae and Hosokawa, 1999; Buesing 

and Gessner, 2003; Kalyuzhnaya et al., 2006). The procedure of shaking can last for 30 min 

at 720rpm (Amalfitano and Fazi, 2008) or 10 min with using hand shaker. Ultrasonic 

treatment can be conducted for several durations (0.5, 2, 6, 10 min) (Soupir et al., 2008). 

Craig et al. used sediment samples from recreational coastal sites to evaluate some physical 

techniques to separate micro-organisms from sediment particles, including hand shaking, 

treatment by sonication bath for 6 and 10 min, respectively, and by sonication probe for 15 s 

and 1 min, respectively. As a result, the most successful method, when the sediments 

consisted mainly of sand, is sonication bath for 10 min (Craig et al., 2002). 
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2.3.3 Dilution and membrane filtration  

 Dilution has been used frequently in laboratory to compensate for bacteria masking 

effects as well as the enumeration of bacteria. In the bacteria enumeration analyses, dilution 

is necessary in order to obtain concentrations within the measureable range of each analytical 

technique (Characklis et al., 2005). For example, the seawater samples collected from sites 

on the coast were diluted 50 to 250 times with particle-free seawater to obtain the final 

concentration (Kuwae and Hosokawa, 1999). Dilution is also necessary for chemical 

dispersion methods (Soupir et al., 2008)  and other techniques used to partition the attached 

and freely suspended bacteria for soft sediment (Griebler et al., 2001).  

 A membrane filtration process is defined by two basic criteria:  

1. The filtration system must be a pressure- or vacuum-driven process and remove 

particulate matter larger than 1 mm using an, engineered barrier, primarily via a size 

exclusion mechanism (USEPA, 2004);  

2. The process must have a measurable removal efficiency of a target organism that can be 

verified through the application of a direct integrity test(USEPA, 2004).  

For enumeration of bacteria, 0.45 μm pore size membrane filters are commonly used 

(Alhadidi et al., 2011; Peeva et al., 2011).  

2.3.4 Flow cytometry   

 Flow cytometry is powerful technique for measuring and analyzing multiple 

parameters of individual cells (or any other particles, including nuclei, microorganisms, 

chromosome preparations, and latex beads) (Brown and Wittwer, 2000). The flow cytometer 

performs simultaneous multiparametric analysis by passing thousands of cells and particles 

per second through a laser beam and capturing the light as each cell/ particle emerges. Thus 

the flow cytometry software such as BD FACSCanto Clinical Software((BD, Franklin Lakes, 

NJ), can analyze the collected data statistically and report physical and/ or chemical 

characteristics such as phenotype, relative size, relative granularity or internal complexity, 

and relative fluorescence intensity (Brown and Wittwer, 2000).  



18 
 

2.3.4.1 Principle of flow cytometry 

 Fluorescent dyes such as SYTO green-fluorescent nucleic acid stains may bind or 

intercalate with different cellular components during sample preparation. A single 

wavelength of illuminating light, usually a laser, is directed onto a hydrodynamically-focused 

stream of fluid. As a suspended cell or particle from 0.2 to 150 microns passes through the 

light source at interrogation point, it will scatter light at all angles(BD, 2000). Several 

detectors are aimed at the point where the stream passes through the laser beam. Emitted 

light is scattered in all directions and is collected via optics that direct the light to a series of 

filters and dichroic mirrors that isolate particular wavelength bands (Brown and Wittwer, 

2000). Emitted light that is scattered in the forward direction is collected by one forward 

scatter channel (FSC) in the line with the light beam.  The FSC intensity can be used to 

roughly estimate the particle’s size and distinguish between cellular debris and living cells.  

A number of side scatter channels (SSC), usually located 90 degrees from the laser’s path, 

can collect the light approximately at 90 degree angle to the excitation line and provides 

information about granularity and structural complexity inside the cell.  FSC and SSC are 

both unique for every particle in the stream, and a combination of these two can be used to 

differentiate different cell types in a heterogeneous sample. One or more fluorescent 

detectors can measure the fluorescent chemicals found in the particle or attached to the 

particle and can provide quantitative and qualitative data about fluorochrome-labeled cell 

surface receptors or intracellular molecules such as cytokines and DNA.  

2.3.4.2 Flow cytometers  

A flow cytometer consists of four main components:  

 The fluidics system transports particles in a fluid stream to the laser beam for 

interrogation. It is essential that cells or particles are passed though the laser beam 

one at a time for definite data collection points. To accomplish this, the sample is 

injected into a stream of sheath fluid or saline solution (BD, 2000);  

 The optics system is made up of excitation optics and collection optics.  The 

excitation optics consists of the laser and achromatic lenses for shaping and focusing 

the laser beam. The collection optics consist of a lens to collect light emitted from the 
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particle-laser beam interaction and a system of optical mirrors and filters to route 

specified wavelengths of the collected light to designated optical detectors (BD, 

2000);  

 The electronic system process the light signal that detectors collected and convert it to 

a digitized value that the computer can graph. The scattered light is translated into a 

voltage pulse via linear or log amplification (BD, 2000);   

 The interpretation system of a computer with specialized software can graphically 

represent the values of each parameter after analysis (Marvin). 

Figure 2 shows the schematic of fluid and optical systems of a flow cytometer.  

 

Figure 2. Schematic of a flow cytometer (modified from Brown and Wittwer, 2000)  

2.3.4.3 Applications  

2.3.4.3.1 Flow cytometry application in environmental research  

 Microbiological activity in the natural world is vital in the integrated functioning of 

ecosystems. For example, quantification of total bacterial numbers is basic and essential task 

in several areas of microbiology, including public health, biotechnology, and natural 

environments (Lebaron et al., 1998). But currently, the limitation of quantification is due to 
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unresolved problems in methodologies (Porter et al., 1997). Application of flow cytometry 

can be a useful tool on such work. According to the principles, flow cytometry is appropriate 

for analyzing aquatic samples. Flow cytometry has shown three unique technical properties 

of studies in the microbiology of aquatic systems: “(i) its tremendous velocity to obtain and 

process data; (ii) the sorting capacity of some cytometers, which allows the transfer of 

specific populations or even single cells to a determined location, thus allowing further 

physical, chemical, biological or molecular analysis; and (iii) high-speed multiparametric 

data acquisition and multivariate data analysis” (Vives-Rego et al., 2000). Flow cytometry 

was found to have more rapid and sensitive analyses when compared with epifluorescence 

microscopy in a purified suspension of exacted bacteria (Amalfitano and Fazi, 2008).  Flow 

cytometry is superior to the molecular methods based on PCR because the PCR has the 

effects of inhibitory substances and is more time-consuming (Khan et al., 2010).  

 Flow cytometry has also been used to determine the final cell concentration and 

average biovolume after growing pathogenic bacteria (Escherichia coli O157, Vibrio 

cholerae, or Pseudomonas aeruginosa) using pure cultures as the inoculum (Vital et al., 

2010). Additionally, flow cytometry also has limitations: cost, need for skilled and well-

trained operators, and adequate refrigeration systems for high-powered laser and cell sorters 

(Vives-Rego et al., 2000).  

2.3.4.3.2 SYTO green-fluorescence nucleic acid stains  

 Fluorescence-based microbial detection systems, including flow cytometry, are likely 

to be central to a number of automated microbial detection systems. Recently developed dyes, 

the SYTO series, are likely to become widely used in future as they are excitable at 488 or 

633 nm (the most commonly available upon a fluorescent product is released on cytometers) 

and they appear to exhibit low background staining resulting in high Signal to Noise ratio 

(S/N) (Veal et al., 2000).  

 SYTO green-fluorescent nucleic acid stains are cell-permeant nucleic acid stains that 

show a large fluorescence enhancement upon binding nucleic acids of RNA and DNA in both 

Gram-positive and Gram-negative bacteria. SYTO dyes are compatible with many 

fluorescence-based instruments such as flow cytometry that use laser excitation (Invitrogen, 
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2008). Thus, SYTO dyes have been widely used in environmental research applications with 

flow cytometry.  

Flow cytometry was successfully applied with SYTO 13 as a counting method for 

sediment cell suspension (Amalfitano and Fazi, 2008).In prokaryotic aquatic studies, SYTO 

dye has advantage of greater fluorescence yield than the ethidium homodimer DAPI (49,6-

diamidino-2-phenylindole), which is a common stain in fluorescence microscopy 

(Guindulain et al., 1997). A comparison study showed that SYTO dye is more appropriate to 

be used to stain live bacteria in nonsaline waters than SYBR dyes (Lebaron et al., 1998). 

Another research finding in nucleic acid content of microparticles suggested the utility of 

fluorescent dyes like SYTO 13 for more sensitive quantitative assays because STYO 13 

allowed the detection of 1.5–2.9 times as many particles as did light scatter (UllaL et al., 

2009). 

2.3.4 Summary 

 Although traditional separation methods, centrifugation, filtration, and filtration are 

commonly used in the lab to partition between unattached and attached bacteria to 

particulates, they still have the following limitations. Firstly, the operations are complicated 

and need to be completed by skilled technicians. Additionally, long time exposure to bacteria, 

especially pathogenic strains, may threat the operators’ health. Secondly, the operations are 

time-consuming. In the settling method, the small size particles need up to several hours to 

settle out completely. Moreover, in this group of methods, the enumerations are operated by 

plate counting, which involves dilution, spread-plating, and manual colony count. This 

method requires at least 24 hours before the results can be interpreted and it’s time-

consuming and labor intensive. Thirdly, we cannot estimate the cell changes during 

operations. For instance, the fraction in the centrifugation method can damage the cells.  

Therefore, the traditional separation methods need to be substitute by a rapid and accurate 

technique. From this point, flow cytometry can be a potential option.   
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CHAPTER 3 MATERIAL AND METHODS 

3.1 Research considerations  

 The ability of bacteria to attach to clay particles depends on several properties, 

including the cells, particles, and the environment. We consider each of these in the 

experimental design. Properties of the bacteria were varied by using different environmental 

and a known pathogenic strain (strain #31, #50, #89, and #43888); experiments were 

conducted on four different pure soil particles (Kaolin, Hectorite, Ca-Montmorillonite, and 

Montmorillonite K-10); and the environmental considerations such as nutrient and 

temperature (Luria-Bertain or Tryptic Soy medium for environmental strains and #43888, 

respectively; 37°C) were held constant. This study was conducted in laboratory conditions, 

with many of these properties controlled.  

3.1.1 Bacteria cultures  

 In this project, three environmental strains and one pathogenic strain were used to 

evaluate the attachment efficiency.   

 The environmental isolates were collected from swine waste from five swine facilities 

in Iowa in 2008 and 2009. Two hundred and three isolates were obtained from the samples 

which had been analyzed by membrane filtration, EPA Method 1603, on modified mTEC 

agar (USEPA, 2002) and preserved in 25% glycerol stocks at -80˚C for further investigations. 

Three strains were selected from these 203 isolates. In a previous study, selected strains, #31, 

#50, and #89 showed the highest attachment fractions (>99%) to quartz particles (Liu et al., 

2011). A pathogenic strain was also considered, ATCC
TM

 #43888, which is a genetically 

modified version of E. coli O157:H7, which does not produce either Shiga-like toxin I or II 

and does not possess the genes for these toxins. To eliminate the variability between the 

strains, only one pure culture isolate of the four was test at any one time.  

 Growth in a nutrients broth simulates development of cell appendages and attachment 

abilities more than growth on an agar media (Schillinger and Gannon, 1985). Therefore, a 

stock suspension of E. coli was grown for 24 hours at 37 ˚C to reach the stationary stage on 

the growth curve prior to all experiments in Luria-Bertain broth (BD, Franklin Lakes, NJ; Cat. 
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No. 244610) and Tryptic Soy broth (BD, Franklin Lakes, NJ; Cat. No. 211825), for 

environmental strains and serotype O157:H7, respectively.  

3.1.2 Soils  

 Soil properties, such as particle size, organic content, nutrient availability, and pH can 

greatly impact the attachment of microorganisms (Muirhead et al., 2006). Four clays were 

selected for the project (Table 2). To cover diversity range of soil properties, the selected 

clay particles have different particle size, belong to three different mineral groups, and were 

from either commercial or natural resources.  

Table 2. Clay particles with key properties 

 

Clay Particles 

 

Source 

Average 

Diameter  

(μm) 

Density 

(g ml
-1

) 

Surface 

area   

(m
2
/g) 

Hectorite San Bernaridino County, California 

The Clay Mineral Society, SHCa-1 

1 2.2 63 

Kaolin Acoros Organics, #211740010 1.25 2.6 11.2 

Ca-Montmorillonite Gonzales County, Texas 

The Clay Mineral Society, STx-1b  

3 2.4 84 

Montmorillonite K-10 Acoros Organics, #233170050 6 2.4 240 

3.1.3 Selection of experimental partitioning methods 

 Possible partitioning methods discussed in the previous section were settling, 

centrifugation, flow cytometry, and filtration combined with chemical or physical dispersion 

treatment. Clay has the smallest particle size among fine-grained soils. Therefore, filtration is 

not an appropriate method in this project since unattached bacteria (freely suspended E. coli 

with 1.1 to 1.5μm wide by 2 to 6 μm long) are similar in size to the clay particles for this 

study (1 to 6 μm diameter).  

 Flow cytometry is rapid and powerful technique for measuring and analyzing 

multiple parameters of individual cells and it previously performed well when used as a 

technique to separate between E. coli  attached to particles and free E. coli when the substrate 
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was polystyrene beads (6-10 μm diameter) (Tysman, unpublished data). However, flow 

cytometry has not been previously examined as a technique for partitioning between 

unattached E. coli and E. coli attached to clay particles.  

3.1.3.1 Determination of settling times 

 In the previous studies, Stoke’s equation has been used to determine the time for E. 

coli attached to quartz particles to settle out of solution (Liu et al., 2011). Preliminary 

calculations of the settling time for E. coli attached to clay particles using Stoke’s equation, 

found that calculated times were not sufficient to achieve clear supernatants.   

 At this point, force balance of a single particle was considered: 

)(tLmgvma  
 

 where  

 m is particle mass,  

 γ is coefficient for Stokes’ law 6πηR, R is particle radius and η is viscosity,  

 (In Stokes’ law, frictional force Fd= 6πηRv, where v is the particle’s settling velocity) 

 α is particle acceleration,  

 v is settling velocity, 

  g is gravitational acceleration and  

  L(t) is Brownian motion. 

  Thus, the four terms in the equation originates from inertia, viscous drag, gravity and 

Brownian motion due to collision from solvent molecule. 

 This equation has an analytical solution: 
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 If we take the average of the velocity for a large amount of particles, the last term will 

drop out, since )(tL  is cause by random impacts of small molecules.  We can use just Stokes’ 
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law, and we have terminal velocity, or sediment rate of /mgv  , which indicates smaller 

particles will require in a longer time to settle. However, the Brownian motion has a stronger 

dependency on particle size 3~ R  than gravitational term (mg) ~ R . Brownian motion would 

dominate for small particles, and random noise would dominate the sedimentation rate 

measure results. 

 Therefore, for large particles in the aquatic environment the gravity is dominant for 

sedimentation, while for small particles, the impacts of water molecule on particles from 

random directions cannot be ignored. Therefore, the settling times obtained from Stoke’s 

Law tended to underestimate the actual settling time required.  

 A Spectophotometer (HACH, Loveland, CO; model DR2800) was then used to 

determine sufficient settling times for clay particles to settle completely. The concentrations 

of clay suspensions, which were with surface area ratio 1000 (clay surface area to E. coli), 

were selected to test the settling time. Clay suspensions with clay concentration 1.25 g/L 

Hectorite, 7.5 g/L Kaolin, 1.0 g/L Ca-Montmorillonite, or 0.35 g/L Montmorillonite K-10 

and phosphate-buffer water (HACH, Loveland, CO; Cat. No. 21431-66), mixed up to 15 ml 

and were placed in 15 ml centrifuge tubes on a polystyrene foam holder after shaking by 

hand.  The absorbency values were then tested under single wave length of 400nm every 0.5 

h. The suitable settling time was set based on two stable readings of absorbency value. The 

appropriate settling times were: 60 min for Montmorillonite K-10, 150 min for Ca-

Montmorillonite, 390 min for Hectorite, and 5760 min (2 days) for Kaolinite. The 

absorbency values for the settling tests are provided in Appendix A1.  

3.1.3.2 Determination of centrifuge speed and time 

 From Section 3.1.3.1, it was determined that the settling time for removal of the 

Kaolin clay suspension required 5760 min (2 days). To eliminate the possible variability, 

such as bacterial regrowth or decay that could potentially occur over a 2 day period, 

centrifugation was investigated prior to settling to shorten the settling time.   

 To determine an appropriate centrifuge speed and time, 50 ml samples with E. coli 

strain #31 with concentration 10
7
 CFU ml

-1
 and phosphate-buffered water (HACH, Loveland, 

CO; Cat. No. 21431-66) were used. Several combinations of centrifuge speed and time were 
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compared, 300 rpm for 5 min, 400 rpm for 3 min, 300rpm for 8 min, and 300rpm for 10 min 

in a refrigerated centrifuge (Eppendorf, Hauppauge, NY; model 5702R). After centrifugation, 

1 ml of supernatant was serially diluted in 9 ml test tubes of phosphate-buffered water five 

times. The cell concentrations were tested using standard membrane filtration techniques 

(0.45 µm filter) and compared with the control group which was not centrifuged.  The change 

was acceptable if the percent of E. coli concentration change was less than 5%, thus the 

combination of “300 rpm + 5 min” was selected. Next the settling time for Kaolin was tested 

following the method in Section 3.1.3.1 again, except that the sample was centrifuged at 300 

rpm for 5 min before settling. As a result, the combination of “300 rpm + 5 min” shortened 

the settling time for Kaolin suspensions to 18 hr (1080 min). The changes in concentrations 

for different “centrifuge speed + time” combinations are provided in Appendix A2.  

3.1.4 Particle ratios  

 In this project, surface area was taken into consideration as one particle factor. 

Surface area ratios (clay particle surface area to E. coli surface area) were set at 1, 2, 50, 100, 

200, 500, and 1000 for the settling method and 1, 2, 5, 10, 25, 50, 100, 150, 200, 300, 400, 

and 500 for the flow cytometry method.  Fewer surface area ratios were used in the settling 

method because the settling experiments were much more time-consuming. The surface area 

of E. coli was estimated to be 6×10
-12

 m
2
 and the surface area of the clay particles was 

calculated using the surface area values provided in Table 3-1. The calculations for E. coli 

surface area and 1:1 surface are ratio are provided in Appendix A3.  

 In previous researches, the surface area of clay particles was always calculated using 

the density and average radius with assuming particle spherical in shape. But after calculation, 

the surface areas for all four clays were different from the surface areas given by 

manufacturers. The differences can be caused by: (1) the clay particles are not spherical in 

shape; (2) variability exists in particle sizes even in the same clay type. Therefore, in this 

study, surface areas given by manufacturers were selected to calculate the surface area ratios 

and clay concentrations. In lab scale, the surface area of fined-grained soils can be tested by 

the Ethylene Glycol Monoethyl Ether method (Cerato and Lutenegger, 2002).  
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3.2 Experimental design  

 Strain #31, #50, #89, and #43888 were used in the settling method while #31, #50, 

and #89 were used in flow cytometry. Each strain was transferred into a sterile 15-ml conical 

tube containing Lysogeny broth or Tryptic Soy broth for growth at 37˚C in a isotemp 

incubator (Fisher Scientific, Fair Lawn, New Jerseyk; model 625D) for 24 hr.  Samples were 

removed and centrifuged for 3 min at 2,000 rpm (Eppendorf, Hauppauge, NY; model 5702R) 

at 4 ˚C. The supernatant was discarded, and 10 ml of phosphate-buffered water was added to 

each pellet. The pellet was resuspended by vortexing at 2000 rpm. The resuspened cells were 

diluted to a 0.5 McFarland standard (approximately 1.0×10
8
 CFU ml

-1
) according to the 

Clinical and Laboratory Standards Institute (January 2006) using phosphate-buffered water.  

3.2.1 Settling (or centrifugation followed by Settling)  

 All the four E. coli strains were used in this method.  Diluted E. coli culture, clay 

suspensions, and phosphate-buffered water were mixed up to 50-ml volume samples.  The 

volumes of each component are provided in Appendix A2. The samples were transferred into 

250-ml Erlenmeyer flasks and shaked at 80 rpm for 10 min on orbital shaker to increase 

bacterial particle interactions and attachments.  After shaking, the samples were transferred 

to 50-ml conical tubes and the tubes were placed vertically in racks to allow clay particles to 

settle via gravity for set times except for the samples treated with Kaolin as centrifugation 

required.  After settling in 37°C, 25 ml of supernatant was extracted and placed in a new 

conical tube.  After vortexing for 10 s, 3ml of supernatant was removed and diluted in 27 ml 

phosphate-buffered water and then 1 ml from it was serially diluted in 9 ml phosphate-

buffered water four times. The final concentration was within countable range recommended 

for membrane filtration techniques (APHA, 1999). The remaining 25 ml were added 1 drop 

of Tween 85 in the tube and shaked at 300 rpm for 10 min by handshaker (Eppendorf, 

Hauppauge, NY; model 5702R). The serial dilution procedure was the same as for 

supernatant. The total E. coli concentration in the supernatant and remainder were 

enumerated using 0.45 µm membrane filter (Milipore, Bedford, MA; Cat. No. HAWG047S6) 

by triplication for both supernatant and remainder and recorded as the unattached fraction 

and remainder fraction, respectively. Luria-Bertain agar (BD, Franklin Lakes, NJ; Cat. No. 
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244520) and Tryptic Soy broth (BD, Franklin Lakes, NJ; Cat. No. 236950), were used to 

culture bacteria for environmental strains and serotype O157:H7, respectively. Figure 3 

shows the flow chart of experimental procedures.  

 

Figure 3. Flow chart of the settling method procedures  

(Mont is the abbreviation for Montmorillonite) 

 

3.2.2 Flow cytometry 

 E. coli concentration needs to be determined at first. 10
3
 to 10

7
 CFU ml

-1
 has 

previously been recommended as the optimal concentration of E. coli  in flow cytometer  

(Hussein et al., 2002). According to this, 10
6
 CFU ml

-1 
was selected first but the numbers of 

evens were too low to obtain stable attachment fractions. Therefore, in this project, 10
7
 CFU 

ml
-1

 was used for attached and unattached E. coli detected by flow cytometry. Samples were 

processed using FACSCanto flow cytometer (BD, Franklin Lakes, NJ).  

 The phosphate buffer water was filtered through 0.45 µm filter and  then centrifuged 

at 2500 rpm for 5 minutes at 4ºC  three times to minimize the amount of background 

contamination fluorescence. SYTO dyes 11, 13, and 24 worked best on the test of E. coli 

with Kaolin and a variety of SYTO dyes and SYTO 11 was used as the dye in studying E. 

coli attachment to particulates (Tysman, unpublished data). SYTO 11 green fluorescent 

nucleic acid stain was selected in this study and was filtered through 0.2 µm filter and then 

centrifuged at 2500 rpm for 5 minutes at 4ºC three times. Once the E. coli and soil solutions 
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have been made they are combined in test tubes. The complete list of the different 

combinations of E. coli strains, clay particles and surface area ratios, is provided in Appendix 

B1. Fixed volumes of E. coli, clay, phosphate-buffered water, with/without SYTO 11 were 

added to the tubes to create a test volume of 250 µl for each test tube (BD, Franklin Lakes, 

NJ; Cat. No. 352008). Additionally, for each group, 6 controls were required prior to testing: 

PBS only, PBS+SYTO dye, PBS+ E. coli, PBS+E. coli+ SYTO dye, PBS+ clay, and PBS+ 

clay+ SYTO dye. One example of original plots from flow cytometry showing all 6 controls 

was in Appendix I.  

 Next, 2µL of SYTO 11 was added once the other components were in the test tubes.  

This is done right before the samples analyzed because the SYTO dye is light-sensitive.  

SYTO dye is added to the samples as it permeates the membrane of the E. coli cells and 

allows them to fluoresce at different wavelengths, which helps to identify the E. coli from 

background fluorescence and soil particles. Once the samples have all the components for the 

particular test they are run through the flow cytometer and analyzed. 

3.3 Calculations and statistical analysis 

3.3.1 Percent attached calculations  

 In settling method, the percent attached E. coli was computed as: 

 Percent attached (%) = 
25R 25U-50U

25R 25U
 ×100%= 

R-U

R U
×100% 

 where  

            U is the concentration of E. coli in the unattached fraction (CFU ml
-1

),  

            R is the concentration of E. coli in the remainder fraction (CFU ml
-1

).  

 In flow cytometry method, the percent attached E. coli can be calculated using IVD 

cleared BD FACSCanto system (BD, Franklin Lakes, NJ). 

3.3.2 Statistical analysis 

Statistical analysis of data was performed using R project software (version 2.14.1). 

Firstly, the settling data, flow cytometry data, and the attachments differences between using 

two method data were tested the normality and transformations were needed if the 
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distribution was not normal. Secondly, several statistical tests were applied to determine the 

impact on E. coli attachment to clay particles from each of the variables or interactions.  

3.3.2.1 Data transformations 

The original settling data showed slightly right-skewed distribution (Appendix F1, 

Figures F1-1, F1-2, and F1-3). Natural log and Box-cox (λ=0.39) transformations were 

applied to the settling data. Normality tests (Appendix F2, Figures F2-1, F2-2, F2-3, and F2-

4) show transformations did not improve the normality sufficiently. Therefore, settling data 

was used in the original form when comparing variables within the settling method. 

The original data from flow cytometry method were also right-skewed (Appendix F1, 

Figures F1-4, F1-5, and F1-6). Natural logarithm (natural log) transformation was applied to 

the flow cytometry data and normality tests after log transformation demonstrated perfect 

normality (Appendix F2, Figures F2-5, and F2-6).  

The attachment fraction differences distribution were slightly right-skewed 

(Appendix F1, Figure F1-7, and F1-8). A uniform data format for both the settling data and 

flow cytometry data is required for the method comparison statistics. Natural log 

transformation was applied and it was found that the distribution was almost normal after 

removing the surface area ratio 1 and 2 from the analysis (Appendix F2, Figure F2-7, F2-8, 

F2-9, and F2-10). The clay concentrations for these two samples (surface area ratio 1 and 2) 

were extremely low compared to the concentrations typically observed in environmental 

waters samples. Thus, these two surface area ratios would make little sense in environmental 

applications.  

3.3.2.2 Statistical tests 

Significances was determined at the p<0.05 level for all statistical analysis.  

 One sample t-tests were conducted to determine the method variability between the 

settling and flow cytometry separation techniques. The null hypothesis was that the natural 

log attachment ratios from the two methods are equal for certain variable combinations.  

Two Three-way Anova tests were conducted to test the impacts on attachment ratios 

from each variable (clay type, strain, or surface area ratio) and each interaction (clay type : 
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strain, clay type : surface area ratio, or clay type : strain : surface area ratio) for the settling 

method and flow cytometry method, separately. The null hypothesis was that there would be 

no impact on attachment ratio from each certain variable or interaction.  A third Three-way 

Anova test was conducted to test the impact of natural log attachment ratio difference 

between methods from each variable (clay type, strain, or surface area ratio) and each 

interaction (clay type : strain, clay type : surface area ratio, or clay type : strain : surface area 

ratio).  

Pairwise comparisons were conducted using Tukey’s test for each method. The null 

hypothesis was that there would be no differences of impact on attachment ratio (or natural 

log attachment ratio) between two clays, strains or surface area ratios. Pairwise comparisons 

can also show the difference between expected attachment ratios of two or three certain 

variable interactions (clay type : strain, clay type : surface area ratio, or clay type : strain : 

surface area ratio).  
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CHAPTER 4 RESULTS AND DISCUSSIONS 

4.1 Results  

 The experimental data described in this chapter indicates that the both settling and 

flow cytometry methods were successful in enumerating unattached and attached E. coli. The 

percent attached reached a maximum value of 99.8% for E. coli attachment to Kaolin. 

Moreover, from the three-way Anova (Appendix G), clay type, strain type and surface area 

ratio all impacted the E. coli attachment to clay particles. Our results indicate that flow 

cytometry is a rapid and accurate method to test the attachment ratio of E. coli to clay 

particles.  

 The results are discussed by each method. Within each method, the impacts on 

attachment from each of the factors and their implications are also discussed. Additionally, 

the two methods are compared. The average percent attached of each variable is in Table 3 

while all raw data is in Appendix C.  
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Table 3. Average percent attached of each variable 

 Variable  Settling 

Percent attached 

Flow cytometry 

Percent attached 

Clay Hectorite 42% a - 

Kaolin 43% a 39% a 

Ca-Montmorillonite 26% b 11% b 

Montmorillonite K-10 21% c 5% c 

Strain #31 34% a 28% a 

#50 30% b 14% b 

#89 34% a 12% c 

#43888 35% a - 

Particle: 

E. coli 

ratio 

1 17% a 1% a 

2 18% a 1% b 

5 - 1% c 

10 - 2% d 

25 - 5% e 

50 24% b 13% f 

100 31% c 25% g 

150 - 28% h 

200 35% c 32% i 

300 - 31% ij 

400 - 36% jk 

500 47% d 40% kl 

1000 59% e - 

Average  33% 18% 

* Average percent attached was an average of all values for each variable. 

* Within each column, values with the same letter are not significantly different at the p=0.05 level.  

4.1.1 Settling method  

 The settling method was used to test the attachment ratios for four strains (#31, #50, 

#89, and #43888), four clays (Kaolin, Hectorite, Ca-Montmorillonite, and Montmorillonite 

K-10), and seven surface area ratios (1, 2, 50, 100, 200, 500, and 1000). The average percent 

attached for all variables tested by settling method was 33%. The smallest percent attached 

was 1.55%, which was strain #50 attached to Ca-Montmorillonite with surface area ratio 1:1, 

while the highest was 96.25%, which was strain #50 attached to Hectorite with surface area 

ratio 1000:1.   



34 
 

4.1.1.1 Differences in attachment to clays 

 In the settling method, E. coli was more likely to attach to Kaolin (averaged 43%) and 

Hectorite (averaged 42%) than to Ca-Montmorillonite (averaged 26%) or Montmorillonite K-

10 (averaged 21%), which is shown Figure 4. From the results of the Tuckey’s pairwise, no 

statistically significant difference were observed between the attachment to Kaolin and 

Hectorite (p-value=0.8927) (Table 4).  With considering the key properties for each clay type 

(Table 2), we can conclude from the settling method results that E. coli are more likely attach 

to clay particles with a smaller diameter. 

 

Figure 4. Scatter plots of attachment ratios from the settling method showing clay 

particle variability. Each plot was made for one “strain+ clay” combination by different 

particle: cell surface area ratios. The figure shows that E. coli was more likely to attach 

to Kaolin and Hectorite than to Ca-Montmorillonite and Montmorillonite K-10. 
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Table 4. Attachment difference between different clays in the settling method (p-values 

are in parentheses). The differences were achieved by subtracting “row” from 

“column”. 

Clay Hectorite Kaolin Ca-Mont Mont K-10 

Hectorite - 0.009 (0.8927) -0.156 (0.0000) -0.209 (0.0000) 

Kaolin -0.009 (0.8927) - -0.166 (0.0000) -0.219 (0.0000) 

Ca-Mont 0.156 (0.0000) 0.166 (0.0000) - 0.053 (0.0005) 

Mont K-10 0.209 (0.0000) 0.219 (0.0000) -0.053 (0.0005) - 

* “Mont” is abbreviation for “Montmorillonite” (same as below).  

4.1.1.2 Impact of particle ratio on attachment 

 There were 7 surface area ratios (clay surface area to E. coli surface area) tested in the 

settling method: 1, 2, 50, 100, 200, 500, and 1000.  

From Figure 5, we can conclude that, generally, the ascending trend of percent 

attached was associated with increased particle ratio (all slopes were positive). The ascending 

slope was sharper when the clay type was Hectorite (slope =0.0006) or Kaolin (slope 

=0.0006) than when the clay type was Ca-Montmorillonite or Montmorillonite K-10 (slope 

=0.0002 or 0.0001). From the observations of Figure 6, there were no obvious differences 

between the ascending slopes of different strains. 

We also compared the surface area ratio impacts using Tukey’s pairwise comparison 

test. Percent attached of particle ratio 1 (averaged 17%) and 2 (averaged 18%) and were not 

significantly different from each other; as were particle ratios of 100 (averaged 31%) and 200 

(averaged 35%). Once the surface area ratio increased from 500 to 1000, the percent attached 

increased by 27%, which was the greatest change among neighboring two surface area ratios. 

The partial pairwise comparisons were listed in Table 4, while the whole list was in 

Appendix H. 
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Figure 5. Boxplots of attachment ratios in the settling method analyzed by clay type. 

The plots show the trend for clay type by increasing surface area ratios. All slopes were 

positive, which indicated an ascending trend of attachment fractions was associated 

with increased particle ratios.  
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Figure 6. Boxplots of attachment ratios from the settling method analyzed by strain. 

Each of the plots compares attachment of each strain by different surface area ratios. 

All slopes were greater than 0, which indicated that the ascending trend of attachment 

fractions was associated with increased particle ratio.  

 

Table 5. Partial pairwise comparisons of attachment ratios between different particle 

ratios in the settling method (only showing the comparisons without significant 

differences)  

Method Comparison Difference 95% Confidence Interval p-value 

Lower Limit Upper Limit 

Settling method 

(untransformed) 

2-1 0.01249478 -0.0390342 0.06402374 0.991177 

200-100 0.04642778 -0.0051012 0.09795675 0.107976 

We can conclude that the ascending trend of attachment ratios was associated with 

increased particle ratio and the trend was more significant for clays with smaller particle 

sizes.  
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4.1.1.3 Differences in attachment among strains 

 In the settling method, we tested the attachments of three environmental E. coli 

strains from swine facilities, #31, #50, and #89, as well as #43888 as a pathogenic strain 

purchased from ATCC
TM

.  

 

Figure 7. Scatter plots of attachment ratios from the settling method. Each plot shows 

the relationships between clay, surface area ratio, and strain, which is represented by 

colored dots.  

From result analysis, it is difficult to distinct which strain had the highest attachment 

ratio visually (Figure 8), but the attachment ratios of #50 were consistently lower than the 

ratios of other three strains. The results from the pairwise comparison tests (Table 5) were 

consistent with observations from scatter plots in Figure 7. Strain #43888, #31, and #89 had 

similar attachment ratios which were greater than the attachment ratios of #50. Therefore, the 

genotype of the strain appears to impact the attachment.  

 

 

 



39 
 

Table 6. Attachment difference between different strains in the settling method (p-

values are in parentheses). The differences were achieved by subtracting “row” from 

“column”. 

Strain #31 #50 #89 #43888 

#31 - -0.036 (0.0293) 0.005 (0.9828) 0.014 (0.6857) 

#50 0.036 (0.0293) - 0.041 (0.0098) 0.051 (0.0007) 

#89 -0.005 (0.9828) -0.041 (0.0098) - 0.010 (0.8816) 

#43888 -0.014 (0.6857) 0.051 (0.0007) 0.010 (0.8816) - 

4.1.2 Flow cytometry  

The flow cytometry separation method tested the attachment ratios for three strains 

(#31, #50, and #89), four clays (Kaolin, Hectorite, Ca-Montmorillonite, and Montmorillonite 

K-10), and twelve surface area ratios (1, 2, 5, 10, 25, 50, 100,150, 200, 300, 400, and 

500).The average percent attached tested by flow cytometry was 18%. The percent attached 

ranged from 0.2% to 99.8%. 99.8% was also the highest tested in this study and happened 

when strain #31 attached to Kaolin with surface area ratio 400:1. The dot plots and histogram 

were made for one triplication of every combination (Appendix D).   

4.1.2.1 Differences in attachment to clays 

The percent attached of E. coli to Hectorite were detected by the flow cytometer but 

they were not included in the statistical analysis due to unreasonably low values. As an 

example of strain #31 is shown in Figure 8: the average percent attached from flow 

cytometry were 74% lower than the ratios from the settling method. 

From Table 2, Hectorite has the smallest particle size, with an average diameter 1 μm. 

It is much smaller than the size of E. coli, 2.5μm length and cross section with 1 μm as 

diameter. After attaching to Hectorite particles, the size of E. coli would not change greatly. 

It is difficult to determine the gage limit between “attached” and “unattached” cells (Figure 

9). Therefore, E. coli “attached” to Hectorite are more likely showing in “unattached” area 

than attached E. coli to other three kinds of clay particles. This is the probable reason for the 

lower value of attachment ratios in this method and a potential limitation of the flow 

cytometry method. 



40 
 

 

 
Figure 8. Average percent attached of strain #31 to Hectorite. Each bar 

represented the average percent attached with one surface area ratio.  The attachments 

tested in the settling method were obviously greater than the attachments tested in flow 

cytometry.   

 

 
Figure 9. Ideal dot plot from the flow cytometry separation technique.  
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#31 Settling 21.53% 10.11% 25.60% 38.29% 44.49% 64.85%

#31 Flow cytometer 0.63% 0.70% 12.90% 24.20% 10.07% 7.83%
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Figure 10. Scatter plots of attachment ratios by from flow cytometry.  Each of the plots 

was made for one “strain+ clay” combination by different surface area ratios. We can 

observe that E. coli showed more likely attaching to Kaolin than attaching to Ca-

Montmorillonite and Montmorillonite K-10. 

The scatter plots in Figure 10 show that when using the flow cytometry separation 

technique, Kaolin (averaged 39%) showed the highest attachment fractions to E. coli, 

followed by Ca-Montmorillonite (averaged 11%) and Montmorillonite K-10 (averaged 5%). 

The pairwise comparison confirmed the observations from the plots and showing that were 

significant differences between the attachment ratios to different clay particles (p-value=0). 

Moreover, Ca-Montmorillonite and Montmorillonite K-10 are belonging to the same 

phyllosilicate group of minerals- Montmorillonite. These two clay types shared plenty of 

common characteristics, such as pH and surface charge. The distinct difference is 

Montmorillonite K-10 has much larger particle size (Table 2). In summary, E. coli are more 

likely attach to small size clay particles, which is consistent with the results obtained from 

the settling method experiments.  
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Table 7. Attachment difference between different clays in flow cytometry (p-values are 

in parentheses). The differences were achieved by subtracting “row” from “column”. 

Clay Kaolin Ca-Mont Mont K-10 

Kaolin - -1.266 (0.0000) -1.862 (0.0000) 

Ca-Mont 1.266 (0.0000) - -0.596 (0.0000) 

Mont K-10 -1.862 (0.0000) 0.596 (0.0000) - 

 

4.1.2.2 Impact of particle ratio on attachment 

Because testing the attachment via flow cytometry is less time-consuming work i, 

there were 12 surface area ratios (clay surface area to E. coli surface area) tested in the 

settling method: 1, 2, 5, 10, 25, 50, 100,150, 200, 300, 400, and 500. Surface area ratio 1000 

was not included because of the possibility that inlet tubes might be clogged by high 

concentrations of particles.  

Consistent with the results from settling method experiments, the ascending trend of 

attachment ratios was associated with increased particle ratio (all slopes were greater than 0). 

The ascending slope was sharper when the clay type was Kaolin (slope =0.02) than when the 

clay type was Montmorillonite (slope =0.0003). The same conclusion can be drawn from 

observations from the scatter plots in Figure 11 and 12. There were no obvious differences 

between the ascending slopes of different strains. The surface area ratio impacts were also 

compared through pairwise comparisons. The average percent attached between 

200(averaged 27%) and 300 (averaged 27%), between 300 (averaged 27%) and 400 

(averaged 32%), between 400 (averaged 32%) and 500(averaged 36%) showed no 

statistically significant differences. The increase from surface area ratio 2 and 5 was greatest 

(110%) and statistically significant.  
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Figure 11. Boxplots of attachment ratios analyzed by clay type from samples collected 

using flow cytometry separation technique. Each of the plots shows clay type by 

different surface area ratios. All slopes were positive, which indicated that the 

ascending trend of attachment ratios was associated with increased particle ratio. And 

the slopes of Kaolin was greater than the slopes of Ca-Montmorillonite and 

Montmorillonite K-10.  
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Figure 12. Boxplots of attachment ratios analyzed by strain from samples collected 

using flow cytometry separation technique. Each of the plots was made for one strain 

by different surface area ratios. All slopes were greater than 0, which indicated that the 

ascending trend of attachment ratios was associated with increased particle ratio.  

 

Table 8. Pairwise comparisons of attachment ratios between different particle ratios 

from flow cytometry (only showing the comparisons without significant differences) 

Method Comparison Difference 95% Confidence Interval p-value 

Lower Limit Upper Limit 

Flow 

cytometry 

(natural log 

transformed) 

300-200 0.11876369 -0.049465 0.28699249 0.45683 

400-300 0.15468624 -0.013543 0.32991505 0.10483 

500-400 0.11973391 -0.0.48495 0.28796272 0.44357 

 



45 
 

4.1.2.3 Differences in attachment among strains 

In flow cytometry experiments, only the attachments of three environmental E. coli 

strains, #31, #50, and #89 were tested. Strain #43888 was not considered in this method due 

to laboratory safety consideration.  

The scatter plots in Figure 13 and Tuckey’s pairwise comparison in Table 8, showed 

that #31 had the highest attachment ratios to clay particles while #50 had lower ratios and 

#89 had the lowest. The results differ from the results obtained from the settling experiments, 

in which strain #89 had similar attachment ratios to strain #31. 

 

Figure 13. Scatter plots of attachment ratios from the flow cytometry separation 

technique. Each plot shows the comparison between different surface area ratios and 

each strain was using one color dots. The attachment fractions of strain #31 had the 

highest attachment fractions to clay particles while #50 had lower fractions and #89 had 

the lowest. 
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Table 9. Attachment difference between different strains in flow cytometry (p-values 

are in parentheses). The differences were achieved by subtracting “row” from “column”. 

Strain #31 #50 #89 

#31 - -0.503 (0.0000) -1.161 (0.0000) 

#50 0.503 (0.0000) - -0.658 (0.0000) 

#43888 1.161 (0.0000) 0.658 (0.0000) - 

 

4.1.3 Method comparisons 

 In the method comparisons, surface are ratio 1 and 2 was removed to achieve normal 

distribution and Hectorite were not included in flow cytometry analysis as well as strain 

#43888.  Two methods were compared among the three strains, #31, #50, and #89; three clay 

types, Kaolin, Ca-Montmorillonite, and Montmorillonite K-10; and six surface area ratios 

(clay surface area to E. coli surface area, 1, 2, 50,100, 200, and 500.  The scatter plot of the  

residuals vs. Fitted values for the natural log attachment ratio differences between flow 

cytometry and the settling method results is shown in Figure 14 and indicates a normal 

distribution of data   
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Figure 14. Residuals vs. fitted values for the natural log attachment ratio differences 

between flow cytometry and the settling method (surface area 1 and 2 removed). The 

black reference line was set at residuals=0 which indicates that after surface area 1 and 

2 removed, the distribution of attachment ratio was almost normal.  

 From the scatter plot shown in Figure 15, 73 out of 108 (67.6%) natural log 

attachment ratio differences between flow cytometry and the settling method were below 0.  

We can conclude that generally the attachment ratios achieved from flow cytometer analysis 

had smaller values than the ratios from the settling method. However, there were some 

exceptions. The boxplots analysis by clay type (Figure 16A) showed that when the clay type 

is Kaolin, the attachment ratios among the two methods were similar. The same observation 

occurred for strain #50 (Figure 16B)  and for  surface area ratios 200 and 500 (Figure 16C).  
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Figure 15. Scatter plot of the natural log attachment ratio differences between flow 

cytometry and the settling method. Each plot shows one “strain+ clay” combination by 

different surface area ratios and one blank reference line was set at log difference =0 on 

each of the plots. Majority of the dots were below the reference lines, which indicated 

that majority attachment ratios from flow cytometry were lower than the 

corresponding ratios from the settling method.  
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Figure 16A. Boxplots of natural log attachment ratio differences between flow 

cytometry and the settling method by clay type. The medians in boxplots of Ca- 

Montmorillonite and Montmorillonite K-10 were below 0 while median of Kaolin was a 

little above 0. It showed when the clay type is Kaolin, the attachment ratios got from 

two methods were similar 
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Figure16B. Boxplots of natural log attachment ratio differences between flow cytometry 

and the settling method by strain. The medians in boxplots of #50 and #89 were below 0 

while median of #31 was a little above 0. For strain #31, the attachment ratios from the 

two methods were similar. 
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Figure16C. Boxplots of natural log attachment ratio differences between flow cytometry 

and the settling method by surface area ratio. As the surface area ratio increased from 

50 to 500, the median-log difference value increased and approached to zero, which 

indicated that the attachment ratio difference between using two methods became less 

significant at higher ratios.  

 The results from one sample t-tests were consistent with observations in the plots 

above. When the clay type was Kaolin, the p-value was 0.4421, greater than 0.05. And the p-

value was 0.8745 when the strain was #31.  According to these, no statistically significant 

differences between two methods are observed when the clay type is Kaolin or the strain is 

#31. Each variable and interaction was tested in the one sample t-test. Under most conditions, 

the t values were negative, which indicated that the expected attachment ratio achieved using 

flow cytometry was smaller than the ratio from the settling method. The averaged percent 

attached with three strains, 3 clay particles, and 6 percent attached from the settling method 

was 27% while from the flow cytometry method, it was 19%. The tested ratios using the 

settling method were 44% higher than using flow cytometry on average. However, there 

were still some situations in which percent attached obtained from the flow cytometer were 

greater than from the settling method: clay type was Kaolin (t=0.7774, p-value=0.4421), 

strain #31(t=0.1591, p-value=0.8745), or clay type was Ca-Montmorillonite with strain #50 

(t=3.183, p-value=0.008715). For different surface area ratio (clay particle surface area to E. 
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coli surface area), 200 (t=-2.5583, p=0.01669) and 500 (t=-2.6477, p=0.01359) had similar 

distribution, which indicated with an increase in the surface area ratio, the difference between 

using the flow cytometry and the settling method became less significant.   

4.2 Discussion 

4.2.1 Impacts of clay type on bacteria attachment  

 From Chapter 4.1, we concluded that among the four clay particles used in this study, 

E. coli was more likely to attach to Hectorite and Kaolin than to Ca-Montmorillonite or 

Montmorillonite K-10. Sediment bacterial abundance can be influenced by several variables 

of soils including sediment size, sediment organic content (Schallenberg and Kalff, 1993) 

and surface charge (Pachepsky et al., 2006).   

 In urban storm water runoff, fecal indicator bacteria were adsorbed predominantly to 

fine clay particles (<2 µm) (Muirhead et al., 2006). The author concluded that the reason is 

that bacteria were an important component of flocs, which can support the transport fine 

particles in river systems.  In 2006, Pachepsky et al., conclude that the content of clay 

particle <2 µm is the leading factor affecting bacteria attachment to soil.  Our results were 

consistent with their findings. Kaolin, with average diameter 1 µm, and Hectorite, with 

average diameter 1.25 µm, are more likely attaching to E. coli compared to Ca-

Montmorillonite or Montmorillonite K-10, which both have larger particle size. This 

observation can likely be explained by the surface area: volume ratio:  

            

      
 

    

 
    

 
 

 
 

  where R is the sediment particle radius.  

 From the above equation, smaller particles would have a larger surface area: volume 

ratio. Thus, within the same sediment volume (or weight, because pure sediments share 

similar density), the smaller particle would have more opportunities to attach to bacteria. In 

this project, within the same surface area ratio (clay particles: E. coli), all the samples tested 

had the same clay particle surface area.  But as shown in Table 2, Kaolin and Hectorite have 

smaller surface area (in m
2
/g) than Ca-Montmorillonite and Montmorillonite K-10, which 
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means Kaolin and Hectorite would have more weight and more particles within the same 

surface area. Larger amount of particle can also increase bacteria attachment to particles.  

 Organic content variability can also explain some of the differences between the 

attachment to Kaolin or Hectorite and to Ca-Montmorillonite or Montmorillonite K-10. 

Bacteria are more likely to attach to high organic content particles (Nicholson et al., 2005) as 

their nutrient sources. It was shown previously that Kaolin contains 0.066% organic content a 

dry weight (Bundy, 2011), Hectorite and Montmorillonite contain <0.05% organic content 

(Jaynes and Vance, 1999). Highest bacterial attachment to Kaolin may have likely been 

influenced by the higher organic content of this clay. However, the manufacturers did not 

provide the organic matter information, therefore tests for clay organic matter content is 

recommended for further study.  

 E. coli and clay minerals have a low net negative surface charge over a wide range of 

pH values (Ohman et al., 1981; Unc and Goss, 2004; Pachepsky et al., 2006). Thus, charge-

based attachment from E. coli to clay particles is likely to be hindered. A combination of 

electrostatics combined with hydrophobic effects can overcome the natural repulsion of 

bacteria and particles which express the similar charges at surfaces (Mills, 2003). Therefore, 

surface charge is not considered to play an important role in the E. coli attachments to clay 

particles in this study. 

 As mentioned in Chapter 3, the clay particles are not spherical. So clay shape can be 

another factor which may impact the bacterial attachment. The shape of clay particles can be 

tested by scanning electron microscope.   

4.2.2 Impacts from particle ratios on bacteria attachment 

 Generally, the ascending trend of percent attached was associated with increased 

particle ratios. Since all the clay particles and E. coli are in 1-10 μm size range, the particles’ 

movement in water can be explained by Brownian motion. As the particle number increased, 

the chances for clay particles and E. coli meeting with each other would definitely increase. 

Therefore, the attachment would correspondingly increase.  

 However, there was one exception. In the settling method, the average percent 

attached to Montmorillonite K-10 for surface area ratio 500 was 33% while for surface area 
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ratio 1000 was 24%. The difference might be due to soil aggregation under the high 

concentration of clay particles. Soil aggregation can be caused by microorganisms, which can 

excrete substances that act as glue and bind soil particles together or by electrostatic forces 

from soil particles.  

 We also observed one interesting phenomenon. Histograms of strain attachment to 

Kaolin always had the different patterns with histograms of attachment to Hectorite, Ca-

Montmorillonite and Montmorillonite K-10. Figure 17-A and 17-B show and example with E. 

coli strain #31. In the histograms, three samples with different particle ratios in the same 

“strain   clay” combination were overlayed in one figure. Red, blue, and green curves are 

representing particle ratios 2, 100, and 500, respectively. From Figure 17A, we can observe 

that the percent attached of strain #31 to Montmorillonite K-10 increased when the particle 

ratio increased from 2 to 500, but the three curves shared one peak. However, in Figure 17B, 

in which showed the attachment of strain #31 to Kaolin, the peaks of particle ratio 100 and 

500 curves were different from the peak of particle ratio 2 curve: the peak shifted to right 

when the particle ratio increased from 2 to 500. The peak shifting indicated that sizes of E. 

coli increased sharply after attaching to Kaolin. When considering the small size of Kaolin 

particles, it is possible that several clay particles attached to one E. coli at the same time. 

Moreover, Kaolin has the surface area of11.2 m
2
/g, which is smallest among surface areas of 

four clays (Table 2). Thus, within the same particle ratio, the Kaolin suspension had the 

highest clay particle number, which is consistent with the hypothesis above.  
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Figure 17A. Histogram of E. coli strain #31 attachment to Montmorillonite K-10 over 

three different particle ratio.  

 

 

Figure17B. Histogram of E. coli strain #31 attachment to Kaolin over three different 

particle ratio.  
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4.2.3 Impacts of bacterial cell properties on attachment to particles   

 Different strains also showed different attachments to clay particles. We used three 

environmental strains and one pathogenic strain to evaluate the attachment efficiency in this 

study. The environmental isolates were collected from swine waste from five swine facilities 

in Iowa in 2008 and 2009. Two hundred and three isolates were obtained from the samples 

which had been analyzed by membrane filtration, EPA Method 1603, on modified mTEC 

agar (USEPA, 2002) and preserved in 25% glycerol stocks at -80˚C for further investigation. 

Three strains were selected from these 203 isolates. Selected strains, #31, #50, and #89 

showed the highest attachment fractions (>99%) to quartz particles (Liu et al., 2011) in 

previous study. ATCC
TM

 #43888, which is a genetically modified version of E. coli O157:H7 

from human feces, which does not produce either Shiga-like toxin I or II and does not 

possess the genes for these toxins. This strain was selected to compare attachment behavior 

of a pathogen to those environmental strains.  

 Previous research has indicated that significant genetic variability exists among 

strains of E. coli from different host species (Carson et al., 2001) and even from the same 

host species (Kudva et al., 1997; Galland et al., 2001; Vali et al., 2004; Bolster et al., 2009).  

If the genetic variability results in differences in surface characteristics that impact 

attachment, different strains of E. coli may exhibit difference attachment to clay particles in 

water. However, previous researchers have obtained mixed results of impacts on attachment 

from genes. The underlying genetic basis for bacteria attachment remains unidentified (Liu et 

al., 2011). Therefore, bacterial cell properties, including electrophoretic mobility, cell size 

and shape, hydrophobicity, and surface charge density (Bolster et al., 2009) need to be tested 

in future studies and should be analyzed in combination with the attachment fractions 

obtained from this study  .  

 Electrophoresis is caused by the presence of a charged interface between the particle 

and surrounding fluid. Electrophoretic mobility can influence bacteria attachment to 

negatively charged particles (Vanloosdrecht et al., 1987) and its values can be measured by 

zeta potential analyzer. Cell size is important in bacteria attachment to particles, but the 

effect of changing cell size on attachment highly depends on experimental conditions 
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(Harvey and Garabedian, 1991). Cell shape is measured by the ratio of cell width to cell 

length. More spherical cells are more likely to attach to particles and transport (Weiss et al., 

1995). Bacterial hydrophobicity is an overall parameter for the measurement of bacterial 

attachment to soil particles and high hydrophobicity values are always associated with high 

attachment to mineral particles (Stenstrom, 1989).  Bacteria surface charge has been 

characterized by electrostatics interaction (Dickson and Koohmaraie, 1989) and electrostatics 

combined with hydrophobic effects can overcome the natural repulsion of bacteria and 

particles which express the similar charges at surfaces (Mills, 2003).  

 All strains had consistent attachment when comparing the two methods except for 

strain #89, which exhibited the lowest attachment when tested using the flow cytometry 

method, but had highest attachment when tested using the settling method.  There are two 

possible reasons: E. coli growth or die-off during long period operations impacted the 

attachment ratios of #89; the E. coli attachment was impacted by gene expression.  

The first hypothesis to interpret this inconsistency was that E. coli strain #89 cells 

were more likely to grow or die during the settling times (60 min for Montmorillonite K-10, 

150 min for Ca-Montmorillonite, 390 min for Hectorite, and 1080 min after centrifugation at 

300 rpm for 5 min for Kaolinite). Three one sample t-tests were conducted to determine the 

differences between the attachment ratios determined using the two methods for strain #89, 

for each clay. The group “#89 with Kaolin” showed the smallest difference (t=-2.3531, p-

value=0.03828), followed by “#89 with Ca-Montmorillonite” (t=-8.5097, p-value=  

3.614×10
-6
) and “#89 with Montmorillonite” (t=-17.97, p-value=1.679×10

-9
). As presented in 

Chapter 3, the settling time for Kaolin was longest (1080 min). If E. coli strain #89 cells were 

growing or dying during the settling period, the impact would have been greatest for the 

particle with the longest operation time, and therefore, attachment ratios of Kaolin should 

receive the most impacts. Obviously, the t-tests’ results were discrepant with the first 

hypothesis.  

In 2011, Ping Liu et al.’s study found strain #31 and #50 have no known attachment 

factors while #89 has factor EcpA. EcpA, abbreviation for E. coli common pilus, is 

composed by the subunit protein of yagZ gene (Rendon et al., 2007). EcpA was found to 
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mediate attachment of various E. coli to host cells (Blackburn, 2010) and is one of the 

attachment factors found in E. coli. However, EcpA was shown to be not significantly related 

to attachment to quartz (Liu et al., 2011). Therefore, the second hypothesis was that E. coli 

attachment might receive impacts from EcpA and EcpA expression. This hypothesis needs to 

be confirmed through further studies.  

4.2.4 Advantages and limitations of flow cytometry 

 Generally speaking, the greatest advantage of flow cytometry is the rapidity in which 

large numbers of cells can be analyzed (Macey, 2007). In this study, using flow cytometry 

can shorten the experimental time from up to 1 day to about 1 hour. Moreover, the expenses 

for using two methods were similar (Table 10).  

Table 10.  The estimated expense for major cost of 100 samples in two methods. 

The settling method 

 Reference unit 

expense 

Estimated 

expense 

Petri dishes $142/600 dishes $24 

0.45 µm Filters $244/600 filters $40 

Medium $225/454g  

for 7500 plates 

$3 

Disposable glass tubes $65/1000 $9 

Disposable centrifuge tubes $100/500 $13 

Labor fee $20/hr $200 

Total  $289 

Flow cytometry method 

 Reference unit 

expense 

Estimated 

expense 

SYTO 11 $190/250 µl $170 

250 µl test tubes $60/100 tubes $6 

Labor fee for preparation 

samples 

$20/hr $40 

Machine rent and analysis 

labor fee 

$53/50-60 samples $100 

Total  $316 

 

 Another advantage of flow cytometry compared to the settling method is its ability to 

detect the viable but nonculturable (VBNC) portion of the total cell population. From the 
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comparisons between percent attached using the two methods, the attachments obtained from 

the settling method were always higher than the attachments from flow cytometry. The 

attachment difference between the two methods is possibly due the VBNC portion of cells. 

Culturing bacteria on medium is limited in its in ability to recover metabolically active, intact 

cells that have been exposed to environmental stresses (Oliver, 1993; Khan et al., 2010). The 

settling method using culturing cells on medium agar to enumerate the number in the sample. 

Therefore, culturing cells on medium agar is possibly underestimating the cell count since 

under an appropriate condition, VBNC cells can be resuscitated and become culturable again 

(Barer et al., 1993). For instance, a combination of several amino acid, including methionine, 

glutamine, threonine, serine and asparagine, was suggested to be used for E. coli 

resuscitation (Pinto et al., 2011). From the perspective of VBNC cells, the percent attached 

achieved from the settling method might be less reliable. 

 Flow cytometry also has some disadvantages. It is difficult to discriminate between 

live and dead cells when only using one stain. In this study, SYTO 11 was used as a DNA-

fluorescent stain in flow cytometry method and each event was counted by one fluorescence 

DNA unit. The total E. coli amounts were overestimated because dead cells with DNA could 

also produce the fluorescence. And dead cells undoubtedly had lower properties of 

attachment to soil particles than live cell. Therefore, using flow cytometry likely 

underestimated the attachments of E. coli to clay particles. This is another possible reason for 

the lower attachment fractions obtained from the flow cytometry method. This problem can 

be addressed using a double-staining technique. Live cells have intact membranes and are 

impermeable to dyes such as propidium iodide, which is a cell-impermeant stain that only 

crosses compromised or damaged cell membrane. Another stain, such as Thiazole orange or 

STYO 11, is a cell-permeant dye and can enter all cells. Thus, a combination of these two 

dyes provides a rapid and reliable method for discriminating live and dead bacteria (BD, 

2002).  

 Another limitation of flow cytometry in this study is difficulties associated with gage 

limit determination. Gage limit between free E. coli and E. coli, as shown in Figure 9, is 

determined by particle size difference. When detecting E. coli attachment to Hectorite in this 

study, for example, determination of gage limit between free E. coli and attached E. coli was 



60 
 

difficult due to the small particle size of Hectorite. Hectorite has an average diameter 1 μm, 

which is much smaller than the size of E. coli, 2.5μm length and cross section with 1 μm as 

diameter. After attaching to Hectorite particles, the size of E. coli would not change greatly. 

Inaccurate gage limit can definitely result in incorrect attachments from flow cytometry. 

 Flow cytometry also has limitations if used for on environmental applications. First, 

environmental water samples usually have low bacteria concentrations while 10
3
 to 10

7
 CFU 

ml
-1

 was recommended as the E. coli concentration used in the flow cytometer (Hussein et al., 

2002). Second, for water samples which contain several kinds of bacteria, flow cytometry 

cannot separate different strains using one stain. Recognizing different strains may be 

achieved by multiple-staining techniques, but only if the types and properties of the 

microorganisms are well-known.  

 On the whole, flow cytometry is a new technique to partition between unattached and 

attached bacteria, but further improvements are still need in this method.  
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CHAPTER 5 CONCLUSIONS 

5.1 General discussion and conclusions 

 Two methods, settling (or centrifugation followed by settling) were compared to 

partition between freely suspended E. coli and E. coli attached to clay particles. The overall 

goal of the study was to develop a practical and accurate method to distinguish and quantify 

between E. coli attached to clay particles and E. coli freely suspended in solution. 

 The first objective of this research study as stated in Chapter 1.2 was to develop 

standard procedures for each appropriate method to partition between unattached and 

attached E. coli. Several candidate methods were identified through a review of past research 

on bacteria attached and were summarized in Chapter 2.3. The methods selected as most 

promising for this study were settling (or centrifugation followed by settling). The settling 

method used density differences (or density difference and centrifugal force) to separate 

unattached and attached E. coli. The dispersion treatment combined the chemical surfactant 

Tween-85 and hand shaker. Flow cytometry used the particle size differences and DNA 

fluorescence to separate unattached and attached E. coli. SYTO 11 was selected as the DNA-

staining fluorescent dye.  

  The second objective listed in Chapter 1.2 was to determine factors which can impact 

bacterial attachment to clay particles, and this was achieved through the testing of bacterial 

attachments to clay particles under numerous designed conditions by both methods.  In this 

section, the study demonstrated that: 

 E. coli are more likely to attach to clay particles with smaller sizes.  

 The increase of percent attached was associated with increased particle ratios. 

For small sized clay particles, such as Kaolin, several particles can attach to one 

E. coli at the same time when the clay concentration is high.  

 Different strains of E. coli have different attaching ability to clay particles, even 

for strains which were from the same host species. A series of cell surface 

characteristics for four strains used in this study, such as cell size and shape, and 

surface charge, need to be determined in future researches.  
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The third research objective was to compare flow cytometry and standard 

settling/centrifugation separation methods to partition between E. coli attached to clay 

particles and E. coli freely suspended in solution. After compared to settling method: 

 Flow cytometry is a rapid technique in which large numbers of cells can be 

analyzed which settling method is time-consuming and labor intensive.  

 Flow cytometry can detect the viable but nonculturable (VBNC) portion of cells 

while settling method cannot and therefore the settling method could potentially 

underestimate the bacteria count. 

 Flow cytometry overestimated the total bacteria number and underestimate the 

attachment fractions in this study because flow cytometry cannot discriminate 

between live and dead cells when only using one stain.  

 There are still some hindrances for us to apply flow cytometry on environmental 

water samples. The hindrances include low environmental bacterial concentration 

and strain diversity in environmental water samples.  

5.2 Implications and recommendation for future research  

 There is clearly a need for more information on bacteria attachment to soil particles to 

assist water quality modeling efforts The partitioning methods discussed in this study were 

successful in distinguishing and quantifying clay-adsorbed and freely suspended E. coli and 

could be used in future experiments examining different aspects of bacteria-sediment 

interactions. However, there are still some drawbacks in these two methods. Before a 

standard partitioning method can be established, more research must be conducted. Here are 

some suggestions for further study: 

 Bacterial surface characteristics, including electrophoretic mobility, cell size and 

shape, hydrophobicity, extracellular protein, extracellular sugar, and surface 

charge density, need to be measured and to be analyzed combining with the 

attachment fractions obtained from this study . 

 In flow cytometry, live/dead cell need to be tested. It can help with revising the 

attachment fractions obtained from flow cytometry.  
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 Die-off was not considered in this study. Quantification of the relative rates of 

attached and unattached E. coli die-off is necessary to develop partitioning 

method and assist water quality modeling.  

 Studies need to be conducted for exploring the attachment of actual waterborne 

pathogens since current pathogen indicators and standards are not always 

accurate and sensitive.  
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APPENDIX A. RESEARCH CONSIDERATIONS 

APPENDIX A1. Absorbance values of soil samples at discrete time 

Clay Particles 30 min 60 min 90 min 120 min 150 min 180 min 210 min 

Hectorite - - - - - - - 

Kaolin - - - - - - - 

Ca-Montmorillonite - 0.045 0.035 0.027 0.022 0.022 - 

Montmorillonite K-10 0.027 0.017 0.017 - - - - 

Clay Particles 300 min 390 min 420 min 24 hr 36 hr 48 hr 50 hr 

Hectorite 0.027 0.021 0.021 - - - - 

Kaolin - - 0.258 0.125 0.088 0.022 0.022 

Ca-Montmorillonite - - - - - - - 

Montmorillonite K-10 - - - - - - - 

   

APPENDIX A2. Bacteria count changes after centrifugation 

Group 

(Speed+ Time) 

Colony Forming Unit (CFU ml
-1

) AVG 

(CFU ml
-1

) 

Reduction 

(%) 

Control 1 27 17 19 47 51 54 69 64 50 42.2 - 

300rpm+5 min 29 17 - 41 44 - 62 78 - 45.2 -7 

400 rpm+3 min 21 14 10 32 30 21 61 56 77 35.8 15.2 

Control 2 38 45 44 54 - - - - - 45.25 - 

300 rpm+8 min 38 36 50 29 - - - - - 38.25 15.5 

300 rpm+10 min 35 34 24 43 - - - - - 34 24.9 
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APPENDIX A3. Calculations for soil concentrations by surface area 

E. coli:  

Surface area: ((1.1 μm/2)
2
*3.14*2 μm + (1.5 μm/2)

2
*3.14*6 μm)/2=6 μm

2
=6*10

-12
m

2
 

For 10
7
 ml

-1
 E. coli, the surface area 6*10

-12
m

2
*10

7
 ml

-1
= 6*10

-5
m

2
 ml

-1
 

Kaolin:  

Surface area: 11.2 m
2 

g
-1 

The concentration for 6*10
-5

m
2
 ml

-1
:   5.4*10

-6
g ml

-1
=5.4*10

-3
g L

-1 

 6*10
-3

g L
-1

 selected  

Hectorite:  

Surface area: 63 m
2 

g
-1

 

The concentration for 6*10
-5

m
2
 ml

-1
:   9.5*10

-7
g ml

-1
=9.5*10

-4
g L

-1
 

 1.0*10
-3

g L
-1

 selected 

Ca-Montmorillonite  

Surface area: 84 m
2 

g
-1

 

The concentration for 6*10
-5

m
2
 ml

-1
:   7.1*10

-7
g ml

-1
=7.1*10

-4
g L

-1
 

 8*10
-4

g L
-1

 selected 

Montmorillonite K-10 

Surface area: 240 m
2 

g
-1

 

The concentration for 6*10
-5

m
2
 ml

-1
:   2.5*10

-7
g ml

-1
=2.5*10

-4
g L

-1
 

 2.8*10
-4

 g L
-1

 selected 
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APPENDIX B. EXPERIMENTAL DESIGN 

APPENDIX B1. Settling samples 

 Particle 
Ratio 

Clay 
Clay 

concentration  
Concentration of 

E. coli  
Clay 

suspension  
10

8 ml
-1

E. coli 
suspension 

PBS  

 
  (g L

-1
) (CFU ml

-1
) (ml) (ml) (ml) 

1 

Kaolin 0.12 

0.25*10
7
 0.625 1.25 48.13 

0.5*10
7
 1.25 2.5 46.25 

1.0*10
7
 2.5 5 42.5 

Hectorite 0.05 

0.25*10
7
 0.25 1.25 48.5 

0.5*10
7
 0.5 2.5 47 

1.0*10
7
 1 5 44 

Ca-Mont 0.04 

0.25*10
7
 0.25 1.25 48.5 

0.5*10
7
 0.5 2.5 47 

1.0*10
7
 1 5 44 

Mont  
K-10 

0.014 

0.25*10
7
 0.25 1.25 48.5 

0.5*10
7
 0.5 2.5 47 

1.0*10
7
 1 5 44 

2 

Kaolin 0.12 

0.25*10
7
 1.25 1.25 47.5 

0.5*10
7
 2.5 2.5 45 

1.0*10
7
 5 5 40 

Hectorite 0.05 

0.25*10
7
 0.5 1.25 48.25 

0.5*10
7
 1 2.5 46.5 

1.0*10
7
 2 5 43 

Ca-Mont 0.04 

0.25*10
7
 0.5 1.25 48.25 

0.5*10
7
 1 2.5 46.5 

1.0*10
7
 2 5 43 

Mont K-10 0.014 

0.25*10
7
 0.5 1.25 48.25 

0.5*10
7
 1 2.5 46.5 

1.0*10
7
 2 5 43 

50 

Kaolin 0.6 

0.25*10
7
 6.25 1.25 42.5 

0.5*10
7
 12.5 2.5 35 

1.0*10
7
 25 5 20 

Hectorite 0.25 

0.25*10
7
 2.5 1.25 46.25 

0.5*10
7
 5 2.5 42.5 

1.0*10
7
 10 5 35 

Ca-Mont 0.2 

0.25*10
7
 2.5 1.25 46.25 

0.5*10
7
 5 2.5 42.5 

1.0*10
7
 10 5 35 

Mont K-10 0.07 

0.25*10
7
 2.5 1.25 46.25 

0.5*10
7
 5 2.5 42.5 

1.0*10
7
 10 5 35 
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Particle 
Ratio 

Clay 
Clay 

concentration  
Concentration of 

E. coli  
Clay 

suspension  
10

8
 ml

-1
E. coli 

suspension 
PBS  

    (g L
-1

) (CFU ml
-1

) (ml) (ml) (ml) 

100 

Kaolin 1.2 

0.25*10
7
 6.25 1.25 42.5 

0.5*10
7
 12.5 2.5 35 

1.0*10
7
 25 5 20 

Hectorite 0.25 

0.25*10
7
 5 1.25 43.75 

0.5*10
7
 10 2.5 37.5 

1.0*10
7
 20 5 25 

Ca-Mont 0.2 

0.25*10
7
 5 1.25 43.75 

0.5*10
7
 10 2.5 37.5 

1.0*10
7
 20 5 25 

Mont K-10 0.07 

0.25*10
7
 5 1.25 43.75 

0.5*10
7
 10 2.5 37.5 

1.0*10
7
 20 5 25 

200 

Kaolin 3.75 

0.25*10
7
 4 1.25 44.75 

0.5*10
7
 8 2.5 39.5 

1.0*10
7
 16 5 29 

Hectorite 0.25 

0.25*10
7
 10 1.25 38.75 

0.5*10
7
 20 2.5 27.5 

1.0*10
7
 40 5 5 

Ca-Mont 0.2 

0.25*10
7
 10 1.25 38.75 

0.5*10
7
 20 2.5 27.5 

1.0*10
7
 40 5 5 

Mont K-10 0.07 

0.25*10
7
 10 1.25 38.75 

0.5*10
7
 20 2.5 27.5 

1.0*10
7
 40 5 5 

500 

Kaolin 3.75 

0.25*10
7
 10 1.25 38.75 

0.5*10
7
 20 2.5 27.5 

1.0*10
7
 40 5 5 

Hectorite 0.625 

0.25*10
7
 10 1.25 38.75 

0.5*10
7
 20 2.5 27.5 

1.0*10
7
 40 5 5 

Ca-Mont 0.5 

0.25*10
7
 10 1.25 38.75 

0.5*10
7
 20 2.5 27.5 

1.0*10
7
 40 5 5 

Mont K-10 0.175 

0.25*10
7
 10 1.25 38.75 

0.5*10
7
 20 2.5 27.5 

1.0*10
7
 40 5 5 

       

 
 

 

 
 

     

 



80 
 

Ratio Clay 
Clay 

concentration  
Concentration of 

E. coli  
Clay 

suspension  
10

8
 ml

-1 
E. coli 

suspension 
PBS  

    (g L
-1

) (CFU ml
-1

) (ml) (ml) (ml) 

1000 

Kaolin 7.5 

0.25*10
7
 10 1.25 38.75 

0.5*10
7
 20 2.5 27.5 

1.0*10
7
 40 5 5 

Hectorite 1.25 

0.25*10
7
 10 1.25 38.75 

0.5*10
7
 20 2.5 27.5 

1.0*10
7
 40 5 5 

Ca-Mont 1 

0.25*10
7
 10 1.25 38.75 

0.5*10
7
 20 2.5 27.5 

1.0*10
7
 40 5 5 

Mont K-10 0.35 

0.25*10
7
 10 1.25 38.75 

0.5*10
7
 20 2.5 27.5 

1.0*10
7
 40 5 5 
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APPENDIX B2. Flow cytometry samples 

(Concentrations of clay suspensions:  Montmorillonite K-10 0.175g L
-1

; Ca-Montmorillonite 

0.5g L
-1

; Hectorite 0.625g L
-1

; Kaolin 3.75g L
-1

)   

Surface area Ratio No.  10
8
 ml

-1
  E.  coli suspension (μl) Clay suspension (μl) SYTO 11 (μl) PBS (μl) 

Control 1  0 0 0  250 

  2  0 0 2 248 

  3 25 0  0 225 

  4 25 0 2 223 

 
5 0 0.4 0 249.6 

  6 0 0.4 2 247.6 

1 7 25 0.4 2 222.6 

  8 25 0.4 2 222.6 

  9 25 0.4 2 222.6 

 
10 0 0.8 0 249.2 

  11 0 0.8 2 247.2 

2 12 25 0.8 2 222.2 

  13 25 0.8 2 222.2 

  14 25 0.8 2 222.2 

 
15 0 2 0 248 

  16 0 2 2 246 

5 17 25 2 2 221 

  18 25 2 2 221 

  19 25 2 2 221 

 
20 0 4 0 246 

  21 0 4 2 244 

10 22 25 4 2 219 

  23 25 4 2 219 

  24 25 4 2 219 

 
25 0 10 0 240 

  26 0 10 2 238 

25 27 25 10 2 213 

  28 25 10 2 213 

  29 25 10 2 213 

 
30 0 20 0 230 

  31 0 20 2 228 

50 32 25 20 2 203 

  33 25 20 2 203 

  34 25 20 2 203 

 100 
  

35 0 40 0 210 

36 0 40 2 208 
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100 37 25 40 2 183 

  38 25 40 2 183 

  39 25 40 2 183 

  40 0 60 0 190 

  41 0 60 2 188 

150 42 25 60 2 163 

  43 25 60 2 163 

  44 25 60 2 163 

  45 0 80 0 170 

  46 0 80 2 168 

200 47 25 80 2 143 

  48 25 80 2 143 

  49 25 80 2 143 

  50 0 120 0 130 

  51 0 120 2 128 

300 52 25 120 2 103 

  53 25 120 2 103 

  54 25 120 2 103 

  55 0 160 0 90 

  56 0 160 2 88 

400 57 25 160 2 63 

  58 25 160 2 63 

  59 25 160 2 63 

  60 0 200 0 50 

  61 0 200 2 48 

500 62 25 200 2 23 

  63 25 200 2 23 

  64 25 200 2 23 
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APPENDIX C. RAW DATA 

APPENDIX C1. Percent attached of strain #31 in the settling method 

Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

1 Hectorite  1 0.25*10
7
 16.38% 

1 Hectorite  2 0.5*10
7
 26.74% 

1 Hectorite  3 1*10
7
 27.93% 

1 Hectorite  4 0.25*10
7
 2.94% 

1 Hectorite  5 0.5*10
7
 10.34% 

1 Hectorite  6 1*10
7
 6.43% 

1 Hectorite  7 0.25*10
7
 41.77% 

1 Hectorite  8 0.5*10
7
 48.27% 

1 Hectorite  9 1*10
7
 12.94% 

1 Kaolin 1 0.25*10
7
 29.55% 

1 Kaolin 2 0.5*10
7
 26.00% 

1 Kaolin 3 1*10
7
 0.00% 

1 Kaolin 4 0.25*10
7
 16.67% 

1 Kaolin 5 0.5*10
7
 0.00% 

1 Kaolin 6 1*10
7
 13.61% 

1 Kaolin 7 0.25*10
7
 0.00% 

1 Kaolin 8 0.5*10
7
 16.36% 

1 Kaolin 9 1*10
7
 0.00% 

1 Ca-Mont 1 0.25*10
7
 3.11% 

1 Ca-Mont 2 0.5*10
7
 4.57% 

1 Ca-Mont 3 1*10
7
 11.41% 

1 Ca-Mont 4 0.25*10
7
 4.97% 

1 Ca-Mont 5 0.5*10
7
 7.98% 

1 Ca-Mont 6 1*10
7
 10.33% 

1 Ca-Mont 7 0.25*10
7
 4.95% 

1 Ca-Mont 8 0.5*10
7
 10.96% 

1 Ca-Mont 9 1*10
7
 17.97% 

1 Mont K-10 1 0.25*10
7
 5.88% 

1 Mont K-10 2 0.5*10
7
 11.21% 

1 Mont K-10 3 1*10
7
 18.07% 

1 Mont K-10 4 0.25*10
7
 2.07% 

1 Mont K-10 5 0.5*10
7
 29.55% 

1 Mont K-10 6 1*10
7
 0.00% 

1 Mont K-10 7 0.25*10
7
 4.35% 

1 Mont K-10 8 0.5*10
7
 0.00% 

1 Mont K-10 9 1*10
7
 0.00% 
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Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

2 Hectorite  1 0.25*10
7
 0.00% 

2 Hectorite  2 0.5*10
7
 10.07% 

2 Hectorite  3 1*10
7
 16.14% 

2 Hectorite  4 0.25*10
7
 0.00% 

2 Hectorite  5 0.5*10
7
 19.23% 

2 Hectorite  6 1*10
7
 10.53% 

2 Hectorite  7 0.25*10
7
 21.05% 

2 Hectorite  8 0.5*10
7
 0.00% 

2 Hectorite  9 1*10
7
 13.98% 

2 Kaolin 1 0.25*10
7
 7.59% 

2 Kaolin 2 0.5*10
7
 17.76% 

2 Kaolin 3 1*10
7
 5.33% 

2 Kaolin 4 0.25*10
7
 13.60% 

2 Kaolin 5 0.5*10
7
 21.25% 

2 Kaolin 6 1*10
7
 3.81% 

2 Kaolin 7 0.25*10
7
 33.33% 

2 Kaolin 8 0.5*10
7
 40.37% 

2 Kaolin 9 1*10
7
 0.00% 

2 Ca-Mont 1 0.25*10
7
 34.45% 

2 Ca-Mont 2 0.5*10
7
 36.23% 

2 Ca-Mont 3 1*10
7
 16.52% 

2 Ca-Mont 4 0.25*10
7
 25.68% 

2 Ca-Mont 5 0.5*10
7
 26.72% 

2 Ca-Mont 6 1*10
7
 37.23% 

2 Ca-Mont 7 0.25*10
7
 6.59% 

2 Ca-Mont 8 0.5*10
7
 30.67% 

2 Ca-Mont 9 1*10
7
 4.31% 

2 Mont K-10 1 0.25*10
7
 53.04% 

2 Mont K-10 2 0.5*10
7
 0.00% 

2 Mont K-10 3 1*10
7
 16.78% 

2 Mont K-10 4 0.25*10
7
 5.13% 

2 Mont K-10 5 0.5*10
7
 24.64% 

2 Mont K-10 6 1*10
7
 24.44% 

2 Mont K-10 7 0.25*10
7
 0.00% 

2 Mont K-10 8 0.5*10
7
 0.00% 

2 Mont K-10 9 1*10
7
 25.73% 
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Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

50 Hectorite  1 0.25*10
7
 20.00% 

50 Hectorite  2 0.5*10
7
 35.71% 

50 Hectorite  3 1*10
7
 17.93% 

50 Hectorite  4 0.25*10
7
 14.63% 

50 Hectorite  5 0.5*10
7
 46.99% 

50 Hectorite  6 1*10
7
 20.00% 

50 Hectorite  7 0.25*10
7
 14.55% 

50 Hectorite  8 0.5*10
7
 36.73% 

50 Hectorite  9 1*10
7
 23.91% 

50 Kaolin 1 0.25*10
7
 20.00% 

50 Kaolin 2 0.5*10
7
 35.71% 

50 Kaolin 3 1*10
7
 17.93% 

50 Kaolin 4 0.25*10
7
 14.63% 

50 Kaolin 5 0.5*10
7
 46.99% 

50 Kaolin 6 1*10
7
 20.00% 

50 Kaolin 7 0.25*10
7
 14.55% 

50 Kaolin 8 0.5*10
7
 36.73% 

50 Kaolin 9 1*10
7
 23.91% 

50 Ca-Mont 1 0.25*10
7
 25.37% 

50 Ca-Mont 2 0.5*10
7
 0.00% 

50 Ca-Mont 3 1*10
7
 27.75% 

50 Ca-Mont 4 0.25*10
7
 0.00% 

50 Ca-Mont 5 0.5*10
7
 20.69% 

50 Ca-Mont 6 1*10
7
 0.00% 

50 Ca-Mont 7 0.25*10
7
 22.12% 

50 Ca-Mont 8 0.5*10
7
 27.84% 

50 Ca-Mont 9 1*10
7
 21.54% 

50 Mont K-10 1 0.25*10
7
 10.89% 

50 Mont K-10 2 0.5*10
7
 21.59% 

50 Mont K-10 3 1*10
7
 12.02% 

50 Mont K-10 4 0.25*10
7
 0.00% 

50 Mont K-10 5 0.5*10
7
 36.61% 

50 Mont K-10 6 1*10
7
 21.83% 

50 Mont K-10 7 0.25*10
7
 50.00% 

50 Mont K-10 8 0.5*10
7
 11.11% 

50 Mont K-10 9 1*10
7
 30.41% 
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Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

100 Hectorite  1 0.25*10
7
 26.55% 

100 Hectorite  2 0.5*10
7
 28.70% 

100 Hectorite  3 1*10
7
 53.45% 

100 Hectorite  4 0.25*10
7
 17.14% 

100 Hectorite  5 0.5*10
7
 46.17% 

100 Hectorite  6 1*10
7
 49.78% 

100 Hectorite  7 0.25*10
7
 39.73% 

100 Hectorite  8 0.5*10
7
 40.25% 

100 Hectorite  9 1*10
7
 42.86% 

100 Kaolin 1 0.25*10
7
 4.76% 

100 Kaolin 2 0.5*10
7
 8.17% 

100 Kaolin 3 1*10
7
 23.49% 

100 Kaolin 4 0.25*10
7
 26.63% 

100 Kaolin 5 0.5*10
7
 17.22% 

100 Kaolin 6 1*10
7
 17.30% 

100 Kaolin 7 0.25*10
7
 17.99% 

100 Kaolin 8 0.5*10
7
 29.18% 

100 Kaolin 9 1*10
7
 17.60% 

100 Ca-Mont 1 0.25*10
7
 0.00% 

100 Ca-Mont 2 0.5*10
7
 44.58% 

100 Ca-Mont 3 1*10
7
 7.06% 

100 Ca-Mont 4 0.25*10
7
 55.56% 

100 Ca-Mont 5 0.5*10
7
 29.41% 

100 Ca-Mont 6 1*10
7
 43.07% 

100 Ca-Mont 7 0.25*10
7
 23.53% 

100 Ca-Mont 8 0.5*10
7
 33.33% 

100 Ca-Mont 9 1*10
7
 34.88% 

100 Mont K-10 1 0.25*10
7
 6.67% 

100 Mont K-10 2 0.5*10
7
 12.77% 

100 Mont K-10 3 1*10
7
 18.67% 

100 Mont K-10 4 0.25*10
7
 0.00% 

100 Mont K-10 5 0.5*10
7
 36.36% 

100 Mont K-10 6 1*10
7
 52.69% 

100 Mont K-10 7 0.25*10
7
 15.79% 

100 Mont K-10 8 0.5*10
7
 37.84% 

100 Mont K-10 9 1*10
7
 46.75% 
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Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

200 Hectorite  1 0.25*10
7
 49.55% 

200 Hectorite  2 0.5*10
7
 22.35% 

200 Hectorite  3 1*10
7
 57.86% 

200 Hectorite  4 0.25*10
7
 35.78% 

200 Hectorite  5 0.5*10
7
 66.50% 

200 Hectorite  6 1*10
7
 55.32% 

200 Hectorite  7 0.25*10
7
 31.03% 

200 Hectorite  8 0.5*10
7
 52.49% 

200 Hectorite  9 1*10
7
 29.57% 

200 Kaolin 1 0.25*10
7
 58.33% 

200 Kaolin 2 0.5*10
7
 36.23% 

200 Kaolin 3 1*10
7
 67.12% 

200 Kaolin 4 0.25*10
7
 58.14% 

200 Kaolin 5 0.5*10
7
 61.19% 

200 Kaolin 6 1*10
7
 54.78% 

200 Kaolin 7 0.25*10
7
 43.59% 

200 Kaolin 8 0.5*10
7
 77.78% 

200 Kaolin 9 1*10
7
 56.14% 

200 Ca-Mont 1 0.25*10
7
 0.00% 

200 Ca-Mont 2 0.5*10
7
 36.73% 

200 Ca-Mont 3 1*10
7
 6.72% 

200 Ca-Mont 4 0.25*10
7
 39.53% 

200 Ca-Mont 5 0.5*10
7
 22.11% 

200 Ca-Mont 6 1*10
7
 43.04% 

200 Ca-Mont 7 0.25*10
7
 24.59% 

200 Ca-Mont 8 0.5*10
7
 37.35% 

200 Ca-Mont 9 1*10
7
 9.55% 

200 Mont K-10 1 0.25*10
7
 16.33% 

200 Mont K-10 2 0.5*10
7
 8.55% 

200 Mont K-10 3 1*10
7
 19.90% 

200 Mont K-10 4 0.25*10
7
 21.00% 

200 Mont K-10 5 0.5*10
7
 30.07% 

200 Mont K-10 6 1*10
7
 20.86% 

200 Mont K-10 7 0.25*10
7
 28.57% 

200 Mont K-10 8 0.5*10
7
 9.59% 

200 Mont K-10 9 1*10
7
 25.25% 
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Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

500 Hectorite  1 0.25*10
7
 52.87% 

500 Hectorite  2 0.5*10
7
 72.97% 

500 Hectorite  3 1*10
7
 68.54% 

500 Hectorite  4 0.25*10
7
 59.72% 

500 Hectorite  5 0.5*10
7
 76.95% 

500 Hectorite  6 1*10
7
 54.21% 

500 Hectorite  7 0.25*10
7
 75.95% 

500 Hectorite  8 0.5*10
7
 69.16% 

500 Hectorite  9 1*10
7
 53.23% 

500 Kaolin 1 0.25*10
7
 63.08% 

500 Kaolin 2 0.5*10
7
 91.67% 

500 Kaolin 3 1*10
7
 89.23% 

500 Kaolin 4 0.25*10
7
 73.68% 

500 Kaolin 5 0.5*10
7
 77.33% 

500 Kaolin 6 1*10
7
 88.84% 

500 Kaolin 7 0.25*10
7
 42.22% 

500 Kaolin 8 0.5*10
7
 71.74% 

500 Kaolin 9 1*10
7
 82.20% 

500 Ca-Mont 1 0.25*10
7
 1.45% 

500 Ca-Mont 2 0.5*10
7
 0.00% 

500 Ca-Mont 3 1*10
7
 17.24% 

500 Ca-Mont 4 0.25*10
7
 47.95% 

500 Ca-Mont 5 0.5*10
7
 11.69% 

500 Ca-Mont 6 1*10
7
 21.45% 

500 Ca-Mont 7 0.25*10
7
 9.86% 

500 Ca-Mont 8 0.5*10
7
 40.96% 

500 Ca-Mont 9 1*10
7
 31.37% 

500 Mont K-10 1 0.25*10
7
 77.65% 

500 Mont K-10 2 0.5*10
7
 50.41% 

500 Mont K-10 3 1*10
7
 79.55% 

500 Mont K-10 4 0.25*10
7
 75.63% 

500 Mont K-10 5 0.5*10
7
 62.83% 

500 Mont K-10 6 1*10
7
 81.27% 

500 Mont K-10 7 0.25*10
7
 59.34% 

500 Mont K-10 8 0.5*10
7
 60.00% 

500 Mont K-10 9 1*10
7
 74.44% 
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Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

1000 Hectorite  1 0.25*10
7
 80.33% 

1000 Hectorite  2 0.5*10
7
 100.00% 

1000 Hectorite  3 1*10
7
 43.96% 

1000 Hectorite  4 0.25*10
7
 75.76% 

1000 Hectorite  5 0.5*10
7
 91.03% 

1000 Hectorite  6 1*10
7
 94.07% 

1000 Hectorite  7 0.25*10
7
 78.57% 

1000 Hectorite  8 0.5*10
7
 91.38% 

1000 Hectorite  9 1*10
7
 93.20% 

1000 Kaolin 1 0.25*10
7
 68.09% 

1000 Kaolin 2 0.5*10
7
 88.71% 

1000 Kaolin 3 1*10
7
 95.15% 

1000 Kaolin 4 0.25*10
7
 89.47% 

1000 Kaolin 5 0.5*10
7
 88.79% 

1000 Kaolin 6 1*10
7
 96.61% 

1000 Kaolin 7 0.25*10
7
 84.00% 

1000 Kaolin 8 0.5*10
7
 94.59% 

1000 Kaolin 9 1*10
7
 92.93% 

1000 Ca-Mont 1 0.25*10
7
 22.54% 

1000 Ca-Mont 2 0.5*10
7
 30.23% 

1000 Ca-Mont 3 1*10
7
 52.94% 

1000 Ca-Mont 4 0.25*10
7
 15.92% 

1000 Ca-Mont 5 0.5*10
7
 7.63% 

1000 Ca-Mont 6 1*10
7
 46.97% 

1000 Ca-Mont 7 0.25*10
7
 15.11% 

1000 Ca-Mont 8 0.5*10
7
 32.69% 

1000 Ca-Mont 9 1*10
7
 38.79% 

1000 Mont K-10 1 0.25*10
7
 17.50% 

1000 Mont K-10 2 0.5*10
7
 16.86% 

1000 Mont K-10 3 1*10
7
 55.04% 

1000 Mont K-10 4 0.25*10
7
 0.00% 

1000 Mont K-10 5 0.5*10
7
 43.07% 

1000 Mont K-10 6 1*10
7
 51.25% 

1000 Mont K-10 7 0.25*10
7
 9.30% 

1000 Mont K-10 8 0.5*10
7
 65.20% 

1000 Mont K-10 9 1*10
7
 62.16% 
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APPENDIX C2. Percent attached of strain #50 in the settling method 

Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

1 Hectorite  1 0.25*10
7
 0.00% 

1 Hectorite  2 0.5*10
7
 17.44% 

1 Hectorite  3 1*10
7
 33.33% 

1 Hectorite  4 0.25*10
7
 1.05% 

1 Hectorite  5 0.5*10
7
 0.00% 

1 Hectorite  6 1*10
7
 - 

1 Hectorite  7 0.25*10
7
 19.72% 

1 Hectorite  8 0.5*10
7
 22.99% 

1 Hectorite  9 1*10
7
 16.19% 

1 Kaolin 1 0.25*10
7
 19.69% 

1 Kaolin 2 0.5*10
7
 7.62% 

1 Kaolin 3 1*10
7
 25.34% 

1 Kaolin 4 0.25*10
7
 15.83% 

1 Kaolin 5 0.5*10
7
 0.00% 

1 Kaolin 6 1*10
7
 0.00% 

1 Kaolin 7 0.25*10
7
 32.10% 

1 Kaolin 8 0.5*10
7
 17.62% 

1 Kaolin 9 1*10
7
 0.00% 

1 Ca-Mont 1 0.25*10
7
 4.41% 

1 Ca-Mont 2 0.5*10
7
 1.17% 

1 Ca-Mont 3 1*10
7
 3.67% 

1 Ca-Mont 4 0.25*10
7
 8.11% 

1 Ca-Mont 5 0.5*10
7
 0.00% 

1 Ca-Mont 6 1*10
7
 0.44% 

1 Ca-Mont 7 0.25*10
7
 13.89% 

1 Ca-Mont 8 0.5*10
7
 3.49% 

1 Ca-Mont 9 1*10
7
 6.50% 

1 Mont K-10 1 0.25*10
7
 0.00% 

1 Mont K-10 2 0.5*10
7
 0.00% 

1 Mont K-10 3 1*10
7
 0.00% 

1 Mont K-10 4 0.25*10
7
 29.52% 

1 Mont K-10 5 0.5*10
7
 10.98% 

1 Mont K-10 6 1*10
7
 22.70% 

1 Mont K-10 7 0.25*10
7
 21.74% 

1 Mont K-10 8 0.5*10
7
 0.00% 

1 Mont K-10 9 1*10
7
 7.39% 
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Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

2 Hectorite  1 0.25*10
7
 39.69% 

2 Hectorite  2 0.5*10
7
 0.00% 

2 Hectorite  3 1*10
7
 6.14% 

2 Hectorite  4 0.25*10
7
 0.00% 

2 Hectorite  5 0.5*10
7
 0.00% 

2 Hectorite  6 1*10
7
 9.04% 

2 Hectorite  7 0.25*10
7
 19.28% 

2 Hectorite  8 0.5*10
7
 0.60% 

2 Hectorite  9 1*10
7
 6.16% 

2 Kaolin 1 0.25*10
7
 10.34% 

2 Kaolin 2 0.5*10
7
 28.89% 

2 Kaolin 3 1*10
7
 7.93% 

2 Kaolin 4 0.25*10
7
 10.26% 

2 Kaolin 5 0.5*10
7
 5.97% 

2 Kaolin 6 1*10
7
 34.00% 

2 Kaolin 7 0.25*10
7
 32.71% 

2 Kaolin 8 0.5*10
7
 0.00% 

2 Kaolin 9 1*10
7
 43.61% 

2 Ca-Mont 1 0.25*10
7
 23.64% 

2 Ca-Mont 2 0.5*10
7
 10.58% 

2 Ca-Mont 3 1*10
7
 9.07% 

2 Ca-Mont 4 0.25*10
7
 0.00% 

2 Ca-Mont 5 0.5*10
7
 3.48% 

2 Ca-Mont 6 1*10
7
 18.44% 

2 Ca-Mont 7 0.25*10
7
 0.00% 

2 Ca-Mont 8 0.5*10
7
 0.00% 

2 Ca-Mont 9 1*10
7
 0.00% 

2 Mont K-10 1 0.25*10
7
 19.63% 

2 Mont K-10 2 0.5*10
7
 4.86% 

2 Mont K-10 3 1*10
7
 25.59% 

2 Mont K-10 4 0.25*10
7
 39.46% 

2 Mont K-10 5 0.5*10
7
 0.00% 

2 Mont K-10 6 1*10
7
 11.89% 

2 Mont K-10 7 0.25*10
7
 0.00% 

2 Mont K-10 8 0.5*10
7
 15.38% 

2 Mont K-10 9 1*10
7
 0.00% 
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Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

50 Hectorite  1 0.25*10
7
 36.72% 

50 Hectorite  2 0.5*10
7
 15.30% 

50 Hectorite  3 1*10
7
 38.73% 

50 Hectorite  4 0.25*10
7
 20.31% 

50 Hectorite  5 0.5*10
7
 43.41% 

50 Hectorite  6 1*10
7
 8.01% 

50 Hectorite  7 0.25*10
7
 29.37% 

50 Hectorite  8 0.5*10
7
 42.96% 

50 Hectorite  9 1*10
7
 12.04% 

50 Kaolin 1 0.25*10
7
  

50 Kaolin 2 0.5*10
7
 36.65% 

50 Kaolin 3 1*10
7
 31.02% 

50 Kaolin 4 0.25*10
7
 26.88% 

50 Kaolin 5 0.5*10
7
 24.29% 

50 Kaolin 6 1*10
7
 18.32% 

50 Kaolin 7 0.25*10
7
 22.95% 

50 Kaolin 8 0.5*10
7
 43.28% 

50 Kaolin 9 1*10
7
 21.71% 

50 Ca-Mont 1 0.25*10
7
 0.00% 

50 Ca-Mont 2 0.5*10
7
 26.06% 

50 Ca-Mont 3 1*10
7
 15.26% 

50 Ca-Mont 4 0.25*10
7
 20.00% 

50 Ca-Mont 5 0.5*10
7
 11.25% 

50 Ca-Mont 6 1*10
7
 32.43% 

50 Ca-Mont 7 0.25*10
7
 7.38% 

50 Ca-Mont 8 0.5*10
7
 12.47% 

50 Ca-Mont 9 1*10
7
 13.45% 

50 Mont K-10 1 0.25*10
7
 15.32% 

50 Mont K-10 2 0.5*10
7
 12.90% 

50 Mont K-10 3 1*10
7
 20.26% 

50 Mont K-10 4 0.25*10
7
 28.65% 

50 Mont K-10 5 0.5*10
7
 26.69% 

50 Mont K-10 6 1*10
7
 18.92% 

50 Mont K-10 7 0.25*10
7
 39.74% 

50 Mont K-10 8 0.5*10
7
 9.83% 

50 Mont K-10 9 1*10
7
 46.47% 
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Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

100 Hectorite  1 0.25*10
7
 23.46% 

100 Hectorite  2 0.5*10
7
 35.91% 

100 Hectorite  3 1*10
7
 24.65% 

100 Hectorite  4 0.25*10
7
 0.00% 

100 Hectorite  5 0.5*10
7
 13.01% 

100 Hectorite  6 1*10
7
 0.00% 

100 Hectorite  7 0.25*10
7
 15.48% 

100 Hectorite  8 0.5*10
7
 21.08% 

100 Hectorite  9 1*10
7
 25.00% 

100 Kaolin 1 0.25*10
7
 39.39% 

100 Kaolin 2 0.5*10
7
 46.76% 

100 Kaolin 3 1*10
7
  - 

100 Kaolin 4 0.25*10
7
 33.33% 

100 Kaolin 5 0.5*10
7
 59.73% 

100 Kaolin 6 1*10
7
 49.44% 

100 Kaolin 7 0.25*10
7
 21.74% 

100 Kaolin 8 0.5*10
7
 44.00% 

100 Kaolin 9 1*10
7
  - 

100 Ca-Mont 1 0.25*10
7
 5.88% 

100 Ca-Mont 2 0.5*10
7
 0.00% 

100 Ca-Mont 3 1*10
7
 45.16% 

100 Ca-Mont 4 0.25*10
7
 32.31% 

100 Ca-Mont 5 0.5*10
7
 34.58% 

100 Ca-Mont 6 1*10
7
 0.00% 

100 Ca-Mont 7 0.25*10
7
 37.04% 

100 Ca-Mont 8 0.5*10
7
 4.95% 

100 Ca-Mont 9 1*10
7
 38.16% 

100 Mont K-10 1 0.25*10
7
 33.61% 

100 Mont K-10 2 0.5*10
7
 8.77% 

100 Mont K-10 3 1*10
7
 9.13% 

100 Mont K-10 4 0.25*10
7
 20.81% 

100 Mont K-10 5 0.5*10
7
 6.19% 

100 Mont K-10 6 1*10
7
 22.44% 

100 Mont K-10 7 0.25*10
7
 8.20% 

100 Mont K-10 8 0.5*10
7
 7.94% 

100 Mont K-10 9 1*10
7
 14.56% 
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Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

200 Hectorite  1 0.25*10
7
 62.71% 

200 Hectorite  2 0.5*10
7
 63.27% 

200 Hectorite  3 1*10
7
 56.18% 

200 Hectorite  4 0.25*10
7
 14.69% 

200 Hectorite  5 0.5*10
7
 29.57% 

200 Hectorite  6 1*10
7
 46.04% 

200 Hectorite  7 0.25*10
7
 6.15% 

200 Hectorite  8 0.5*10
7
 36.51% 

200 Hectorite  9 1*10
7
 57.11% 

200 Kaolin 1 0.25*10
7
 64.71% 

200 Kaolin 2 0.5*10
7
 66.67% 

200 Kaolin 3 1*10
7
 48.84% 

200 Kaolin 4 0.25*10
7
 76.92% 

200 Kaolin 5 0.5*10
7
 26.32% 

200 Kaolin 6 1*10
7
 70.00% 

200 Kaolin 7 0.25*10
7
 19.67% 

200 Kaolin 8 0.5*10
7
 48.22% 

200 Kaolin 9 1*10
7
 63.57% 

200 Ca-Mont 1 0.25*10
7
 20.69% 

200 Ca-Mont 2 0.5*10
7
 63.91% 

200 Ca-Mont 3 1*10
7
 71.14% 

200 Ca-Mont 4 0.25*10
7
 36.00% 

200 Ca-Mont 5 0.5*10
7
 54.20% 

200 Ca-Mont 6 1*10
7
 78.01% 

200 Ca-Mont 7 0.25*10
7
 21.74% 

200 Ca-Mont 8 0.5*10
7
 57.47% 

200 Ca-Mont 9 1*10
7
 64.44% 

200 Mont K-10 1 0.25*10
7
 17.95% 

200 Mont K-10 2 0.5*10
7
 40.83% 

200 Mont K-10 3 1*10
7
 4.41% 

200 Mont K-10 4 0.25*10
7
 0.00% 

200 Mont K-10 5 0.5*10
7
 30.23% 

200 Mont K-10 6 1*10
7
 4.76% 

200 Mont K-10 7 0.25*10
7
 0.00% 

200 Mont K-10 8 0.5*10
7
 3.36% 

200 Mont K-10 9 1*10
7
 31.15% 
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Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

500 Hectorite  1 0.25*10
7
 0.00% 

500 Hectorite  2 0.5*10
7
 0.00% 

500 Hectorite  3 1*10
7
 8.96% 

500 Hectorite  4 0.25*10
7
 4.08% 

500 Hectorite  5 0.5*10
7
 0.00% 

500 Hectorite  6 1*10
7
 17.55% 

500 Hectorite  7 0.25*10
7
 8.80% 

500 Hectorite  8 0.5*10
7
 4.27% 

500 Hectorite  9 1*10
7
 26.55% 

500 Kaolin 1 0.25*10
7
 62.57% 

500 Kaolin 2 0.5*10
7
 52.24% 

500 Kaolin 3 1*10
7
 68.21% 

500 Kaolin 4 0.25*10
7
 53.45% 

500 Kaolin 5 0.5*10
7
 67.09% 

500 Kaolin 6 1*10
7
   

500 Kaolin 7 0.25*10
7
 71.76% 

500 Kaolin 8 0.5*10
7
 71.56% 

500 Kaolin 9 1*10
7
   

500 Ca-Mont 1 0.25*10
7
 39.36% 

500 Ca-Mont 2 0.5*10
7
 11.43% 

500 Ca-Mont 3 1*10
7
 27.66% 

500 Ca-Mont 4 0.25*10
7
 34.15% 

500 Ca-Mont 5 0.5*10
7
 56.98% 

500 Ca-Mont 6 1*10
7
 45.16% 

500 Ca-Mont 7 0.25*10
7
 20.70% 

500 Ca-Mont 8 0.5*10
7
 48.48% 

500 Ca-Mont 9 1*10
7
 19.76% 

500 Mont K-10 1 0.25*10
7
 0.00% 

500 Mont K-10 2 0.5*10
7
 23.67% 

500 Mont K-10 3 1*10
7
 17.38% 

500 Mont K-10 4 0.25*10
7
 13.46% 

500 Mont K-10 5 0.5*10
7
 17.46% 

500 Mont K-10 6 1*10
7
 29.89% 

500 Mont K-10 7 0.25*10
7
 0.00% 

500 Mont K-10 8 0.5*10
7
 28.70% 

500 Mont K-10 9 1*10
7
 22.44% 
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Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

1000 Hectorite  1 0.25*10
7
 88.37% 

1000 Hectorite  2 0.5*10
7
 93.97% 

1000 Hectorite  3 1*10
7
 96.20% 

1000 Hectorite  4 0.25*10
7
 83.25% 

1000 Hectorite  5 0.5*10
7
 85.92% 

1000 Hectorite  6 1*10
7
 98.18% 

1000 Hectorite  7 0.25*10
7
 75.37% 

1000 Hectorite  8 0.5*10
7
 95.68% 

1000 Hectorite  9 1*10
7
 94.37% 

1000 Kaolin 1 0.25*10
7
 89.04% 

1000 Kaolin 2 0.5*10
7
 82.35% 

1000 Kaolin 3 1*10
7
 84.62% 

1000 Kaolin 4 0.25*10
7
 86.13% 

1000 Kaolin 5 0.5*10
7
 93.52% 

1000 Kaolin 6 1*10
7
 81.93% 

1000 Kaolin 7 0.25*10
7
 94.24% 

1000 Kaolin 8 0.5*10
7
 88.63% 

1000 Kaolin 9 1*10
7
 88.86% 

1000 Ca-Mont 1 0.25*10
7
 81.82% 

1000 Ca-Mont 2 0.5*10
7
 72.86% 

1000 Ca-Mont 3 1*10
7
 60.00% 

1000 Ca-Mont 4 0.25*10
7
 53.33% 

1000 Ca-Mont 5 0.5*10
7
 86.67% 

1000 Ca-Mont 6 1*10
7
 30.32% 

1000 Ca-Mont 7 0.25*10
7
 50.52% 

1000 Ca-Mont 8 0.5*10
7
 76.47% 

1000 Ca-Mont 9 1*10
7
 66.73% 

1000 Mont K-10 1 0.25*10
7
 39.60% 

1000 Mont K-10 2 0.5*10
7
 17.12% 

1000 Mont K-10 3 1*10
7
 13.84% 

1000 Mont K-10 4 0.25*10
7
 26.86% 

1000 Mont K-10 5 0.5*10
7
 30.46% 

1000 Mont K-10 6 1*10
7
 15.72% 

1000 Mont K-10 7 0.25*10
7
 20.21% 

1000 Mont K-10 8 0.5*10
7
 13.94% 

1000 Mont K-10 9 1*10
7
 0.73% 
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APPENDIX C3. Percent attached of strain #89 in the settling method 

Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

1 Hectorite  1 0.25*10
7
 0.00% 

1 Hectorite  2 0.5*10
7
 13.89% 

1 Hectorite  3 1*10
7
 11.74% 

1 Hectorite  4 0.25*10
7
 24.21% 

1 Hectorite  5 0.5*10
7
 7.83% 

1 Hectorite  6 1*10
7
 18.40% 

1 Hectorite  7 0.25*10
7
 62.50% 

1 Hectorite  8 0.5*10
7
 25.49% 

1 Hectorite  9 1*10
7
 17.47% 

1 Kaolin 1 0.25*10
7
 2.60% 

1 Kaolin 2 0.5*10
7
 11.36% 

1 Kaolin 3 1*10
7
 11.37% 

1 Kaolin 4 0.25*10
7
 10.24% 

1 Kaolin 5 0.5*10
7
 59.18% 

1 Kaolin 6 1*10
7
 0.00% 

1 Kaolin 7 0.25*10
7
 28.13% 

1 Kaolin 8 0.5*10
7
 10.20% 

1 Kaolin 9 1*10
7
 17.93% 

1 Ca-Mont 1 0.25*10
7
 9.33% 

1 Ca-Mont 2 0.5*10
7
 16.92% 

1 Ca-Mont 3 1*10
7
 30.88% 

1 Ca-Mont 4 0.25*10
7
 37.50% 

1 Ca-Mont 5 0.5*10
7
 21.57% 

1 Ca-Mont 6 1*10
7
 22.83% 

1 Ca-Mont 7 0.25*10
7
 18.37% 

1 Ca-Mont 8 0.5*10
7
 25.64% 

1 Ca-Mont 9 1*10
7
 19.65% 

1 Mont K-10 1 0.25*10
7
 14.29% 

1 Mont K-10 2 0.5*10
7
 47.89% 

1 Mont K-10 3 1*10
7
 24.17% 

1 Mont K-10 4 0.25*10
7
 34.02% 

1 Mont K-10 5 0.5*10
7
 0.00% 

1 Mont K-10 6 1*10
7
 2.59% 

1 Mont K-10 7 0.25*10
7
 20.45% 

1 Mont K-10 8 0.5*10
7
 18.87% 

1 Mont K-10 9 1*10
7
 36.12% 

 

 



98 
 

 

Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

2 Hectorite  1 0.25*10
7
 26.32% 

2 Hectorite  2 0.5*10
7
 10.34% 

2 Hectorite  3 1*10
7
 1.74% 

2 Hectorite  4 0.25*10
7
 0.00% 

2 Hectorite  5 0.5*10
7
 0.00% 

2 Hectorite  6 1*10
7
 7.17% 

2 Hectorite  7 0.25*10
7
 43.59% 

2 Hectorite  8 0.5*10
7
 16.55% 

2 Hectorite  9 1*10
7
 1.49% 

2 Kaolin 1 0.25*10
7
 7.22% 

2 Kaolin 2 0.5*10
7
 12.70% 

2 Kaolin 3 1*10
7
 21.85% 

2 Kaolin 4 0.25*10
7
 0.00% 

2 Kaolin 5 0.5*10
7
 0.00% 

2 Kaolin 6 1*10
7
 0.81% 

2 Kaolin 7 0.25*10
7
 39.62% 

2 Kaolin 8 0.5*10
7
 28.36% 

2 Kaolin 9 1*10
7
 16.72% 

2 Ca-Mont 1 0.25*10
7
 24.39% 

2 Ca-Mont 2 0.5*10
7
 25.15% 

2 Ca-Mont 3 1*10
7
 33.07% 

2 Ca-Mont 4 0.25*10
7
 3.90% 

2 Ca-Mont 5 0.5*10
7
 23.66% 

2 Ca-Mont 6 1*10
7
 35.75% 

2 Ca-Mont 7 0.25*10
7
 10.81% 

2 Ca-Mont 8 0.5*10
7
 18.41% 

2 Ca-Mont 9 1*10
7
 16.98% 

2 Mont K-10 1 0.25*10
7
 5.56% 

2 Mont K-10 2 0.5*10
7
 31.40% 

2 Mont K-10 3 1*10
7
 29.72% 

2 Mont K-10 4 0.25*10
7
 21.74% 

2 Mont K-10 5 0.5*10
7
 36.28% 

2 Mont K-10 6 1*10
7
 0.00% 

2 Mont K-10 7 0.25*10
7
 0.00% 

2 Mont K-10 8 0.5*10
7
 37.50% 

2 Mont K-10 9 1*10
7
 25.14% 
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Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

50 Hectorite  1 0.25*10
7
 28.21% 

50 Hectorite  2 0.5*10
7
 50.94% 

50 Hectorite  3 1*10
7
 36.77% 

50 Hectorite  4 0.25*10
7
 0.00% 

50 Hectorite  5 0.5*10
7
 36.07% 

50 Hectorite  6 1*10
7
 59.63% 

50 Hectorite  7 0.25*10
7
 43.75% 

50 Hectorite  8 0.5*10
7
 14.55% 

50 Hectorite  9 1*10
7
 22.46% 

50 Kaolin 1 0.25*10
7
 39.78% 

50 Kaolin 2 0.5*10
7
 34.44% 

50 Kaolin 3 1*10
7
 43.08% 

50 Kaolin 4 0.25*10
7
 43.64% 

50 Kaolin 5 0.5*10
7
 42.44% 

50 Kaolin 6 1*10
7
 28.63% 

50 Kaolin 7 0.25*10
7
 60.53% 

50 Kaolin 8 0.5*10
7
 62.65% 

50 Kaolin 9 1*10
7
 32.90% 

50 Ca-Mont 1 0.25*10
7
 16.36% 

50 Ca-Mont 2 0.5*10
7
 23.53% 

50 Ca-Mont 3 1*10
7
 26.65% 

50 Ca-Mont 4 0.25*10
7
 0.00% 

50 Ca-Mont 5 0.5*10
7
 17.83% 

50 Ca-Mont 6 1*10
7
 9.54% 

50 Ca-Mont 7 0.25*10
7
 26.32% 

50 Ca-Mont 8 0.5*10
7
 0.00% 

50 Ca-Mont 9 1*10
7
 33.73% 

50 Mont K-10 1 0.25*10
7
 28.21% 

50 Mont K-10 2 0.5*10
7
 0.00% 

50 Mont K-10 3 1*10
7
 12.78% 

50 Mont K-10 4 0.25*10
7
 0.00% 

50 Mont K-10 5 0.5*10
7
 11.25% 

50 Mont K-10 6 1*10
7
 3.60% 

50 Mont K-10 7 0.25*10
7
 0.00% 

50 Mont K-10 8 0.5*10
7
 0.00% 

50 Mont K-10 9 1*10
7
 14.89% 
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Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

100 Hectorite  1 0.25*10
7
 20.00% 

100 Hectorite  2 0.5*10
7
 45.16% 

100 Hectorite  3 1*10
7
 35.27% 

100 Hectorite  4 0.25*10
7
 57.89% 

100 Hectorite  5 0.5*10
7
 61.29% 

100 Hectorite  6 1*10
7
   

100 Hectorite  7 0.25*10
7
 45.83% 

100 Hectorite  8 0.5*10
7
 52.86% 

100 Hectorite  9 1*10
7
 68.55% 

100 Kaolin 1 0.25*10
7
 55.22% 

100 Kaolin 2 0.5*10
7
 65.93% 

100 Kaolin 3 1*10
7
 58.33% 

100 Kaolin 4 0.25*10
7
 59.04% 

100 Kaolin 5 0.5*10
7
 35.26% 

100 Kaolin 6 1*10
7
 64.15% 

100 Kaolin 7 0.25*10
7
 32.17% 

100 Kaolin 8 0.5*10
7
 72.13% 

100 Kaolin 9 1*10
7
 48.15% 

100 Ca-Mont 1 0.25*10
7
 32.77% 

100 Ca-Mont 2 0.5*10
7
 21.85% 

100 Ca-Mont 3 1*10
7
 25.40% 

100 Ca-Mont 4 0.25*10
7
 19.63% 

100 Ca-Mont 5 0.5*10
7
 24.44% 

100 Ca-Mont 6 1*10
7
 17.81% 

100 Ca-Mont 7 0.25*10
7
 14.04% 

100 Ca-Mont 8 0.5*10
7
 20.16% 

100 Ca-Mont 9 1*10
7
 17.20% 

100 Mont K-10 1 0.25*10
7
 19.51% 

100 Mont K-10 2 0.5*10
7
 10.89% 

100 Mont K-10 3 1*10
7
 22.45% 

100 Mont K-10 4 0.25*10
7
 30.56% 

100 Mont K-10 5 0.5*10
7
 31.43% 

100 Mont K-10 6 1*10
7
 37.10% 

100 Mont K-10 7 0.25*10
7
 10.34% 

100 Mont K-10 8 0.5*10
7
 19.79% 

100 Mont K-10 9 1*10
7
 25.26% 
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Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

200 Hectorite  1 0.25*10
7
 0.00% 

200 Hectorite  2 0.5*10
7
 50.72% 

200 Hectorite  3 1*10
7
 61.34% 

200 Hectorite  4 0.25*10
7
 60.10% 

200 Hectorite  5 0.5*10
7
 20.90% 

200 Hectorite  6 1*10
7
 0.00% 

200 Hectorite  7 0.25*10
7
 17.91% 

200 Hectorite  8 0.5*10
7
 53.68% 

200 Hectorite  9 1*10
7
 86.25% 

200 Kaolin 1 0.25*10
7
 32.31% 

200 Kaolin 2 0.5*10
7
 36.32% 

200 Kaolin 3 1*10
7
 34.97% 

200 Kaolin 4 0.25*10
7
 28.28% 

200 Kaolin 5 0.5*10
7
 44.83% 

200 Kaolin 6 1*10
7
 43.58% 

200 Kaolin 7 0.25*10
7
 37.93% 

200 Kaolin 8 0.5*10
7
 65.81% 

200 Kaolin 9 1*10
7
 24.04% 

200 Ca-Mont 1 0.25*10
7
 31.75% 

200 Ca-Mont 2 0.5*10
7
 0.00% 

200 Ca-Mont 3 1*10
7
 0.00% 

200 Ca-Mont 4 0.25*10
7
 46.27% 

200 Ca-Mont 5 0.5*10
7
 12.64% 

200 Ca-Mont 6 1*10
7
 29.78% 

200 Ca-Mont 7 0.25*10
7
 0.00% 

200 Ca-Mont 8 0.5*10
7
 0.00% 

200 Ca-Mont 9 1*10
7
 25.00% 

200 Mont K-10 1 0.25*10
7
 0.00% 

200 Mont K-10 2 0.5*10
7
 25.71% 

200 Mont K-10 3 1*10
7
 22.43% 

200 Mont K-10 4 0.25*10
7
 28.77% 

200 Mont K-10 5 0.5*10
7
 0.00% 

200 Mont K-10 6 1*10
7
 14.20% 

200 Mont K-10 7 0.25*10
7
 13.85% 

200 Mont K-10 8 0.5*10
7
 26.95% 

200 Mont K-10 9 1*10
7
 15.57% 
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Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

500 Hectorite  1 0.25*10
7
 71.29% 

500 Hectorite  2 0.5*10
7
 74.03% 

500 Hectorite  3 1*10
7
 89.64% 

500 Hectorite  4 0.25*10
7
 87.12% 

500 Hectorite  5 0.5*10
7
 85.00% 

500 Hectorite  6 1*10
7
 97.20% 

500 Hectorite  7 0.25*10
7
 83.87% 

500 Hectorite  8 0.5*10
7
 84.62% 

500 Hectorite  9 1*10
7
 92.66% 

500 Kaolin 1 0.25*10
7
 75.76% 

500 Kaolin 2 0.5*10
7
 64.79% 

500 Kaolin 3 1*10
7
 82.72% 

500 Kaolin 4 0.25*10
7
 73.68% 

500 Kaolin 5 0.5*10
7
 71.22% 

500 Kaolin 6 1*10
7
 68.66% 

500 Kaolin 7 0.25*10
7
 73.58% 

500 Kaolin 8 0.5*10
7
 84.71% 

500 Kaolin 9 1*10
7
 77.63% 

500 Ca-Mont 1 0.25*10
7
 35.95% 

500 Ca-Mont 2 0.5*10
7
 47.42% 

500 Ca-Mont 3 1*10
7
 14.86% 

500 Ca-Mont 4 0.25*10
7
 67.01% 

500 Ca-Mont 5 0.5*10
7
 31.64% 

500 Ca-Mont 6 1*10
7
 13.45% 

500 Ca-Mont 7 0.25*10
7
 0.00% 

500 Ca-Mont 8 0.5*10
7
 0.00% 

500 Ca-Mont 9 1*10
7
 35.40% 

500 Mont K-10 1 0.25*10
7
 24.56% 

500 Mont K-10 2 0.5*10
7
 36.61% 

500 Mont K-10 3 1*10
7
 47.49% 

500 Mont K-10 4 0.25*10
7
 50.36% 

500 Mont K-10 5 0.5*10
7
 42.54% 

500 Mont K-10 6 1*10
7
 13.48% 

500 Mont K-10 7 0.25*10
7
 41.73% 

500 Mont K-10 8 0.5*10
7
 0.00% 

500 Mont K-10 9 1*10
7
 21.96% 
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Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

1000 Hectorite  1 0.25*10
7
 64.77% 

1000 Hectorite  2 0.5*10
7
 91.30% 

1000 Hectorite  3 1*10
7
 92.33% 

1000 Hectorite  4 0.25*10
7
 71.43% 

1000 Hectorite  5 0.5*10
7
 91.60% 

1000 Hectorite  6 1*10
7
 90.48% 

1000 Hectorite  7 0.25*10
7
 87.30% 

1000 Hectorite  8 0.5*10
7
 94.85% 

1000 Hectorite  9 1*10
7
 97.03% 

1000 Kaolin 1 0.25*10
7
 77.05% 

1000 Kaolin 2 0.5*10
7
 89.16% 

1000 Kaolin 3 1*10
7
 90.61% 

1000 Kaolin 4 0.25*10
7
 91.67% 

1000 Kaolin 5 0.5*10
7
 88.96% 

1000 Kaolin 6 1*10
7
 95.79% 

1000 Kaolin 7 0.25*10
7
 76.47% 

1000 Kaolin 8 0.5*10
7
 90.53% 

1000 Kaolin 9 1*10
7
 87.50% 

1000 Ca-Mont 1 0.25*10
7
 18.64% 

1000 Ca-Mont 2 0.5*10
7
 26.76% 

1000 Ca-Mont 3 1*10
7
 48.26% 

1000 Ca-Mont 4 0.25*10
7
 8.33% 

1000 Ca-Mont 5 0.5*10
7
 13.70% 

1000 Ca-Mont 6 1*10
7
 31.75% 

1000 Ca-Mont 7 0.25*10
7
 20.69% 

1000 Ca-Mont 8 0.5*10
7
 26.51% 

1000 Ca-Mont 9 1*10
7
 35.14% 

1000 Mont K-10 1 0.25*10
7
 26.58% 

1000 Mont K-10 2 0.5*10
7
 27.20% 

1000 Mont K-10 3 1*10
7
 16.33% 

1000 Mont K-10 4 0.25*10
7
 5.75% 

1000 Mont K-10 5 0.5*10
7
 11.22% 

1000 Mont K-10 6 1*10
7
 15.17% 

1000 Mont K-10 7 0.25*10
7
 8.33% 

1000 Mont K-10 8 0.5*10
7
 10.23% 

1000 Mont K-10 9 1*10
7
 19.62% 
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APPENDIX C4. Percent attached of strain #43888 in the settling method 

Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

1 Hectorite  1 0.25*10
7
 3.28% 

1 Hectorite  2 0.5*10
7
 27.65% 

1 Hectorite  3 1*10
7
 27.62% 

1 Hectorite  4 0.25*10
7
 28.38% 

1 Hectorite  5 0.5*10
7
 5.15% 

1 Hectorite  6 1*10
7
 29.10% 

1 Hectorite  7 0.25*10
7
 14.67% 

1 Hectorite  8 0.5*10
7
 23.19% 

1 Hectorite  9 1*10
7
 33.56% 

1 Kaolin 1 0.25*10
7
 0.00% 

1 Kaolin 2 0.5*10
7
 21.89% 

1 Kaolin 3 1*10
7
 36.86% 

1 Kaolin 4 0.25*10
7
 0.00% 

1 Kaolin 5 0.5*10
7
 8.48% 

1 Kaolin 6 1*10
7
 9.69% 

1 Kaolin 7 0.25*10
7
 0.00% 

1 Kaolin 8 0.5*10
7
 3.07% 

1 Kaolin 9 1*10
7
 28.35% 

1 Ca-Mont 1 0.25*10
7
 0.00% 

1 Ca-Mont 2 0.5*10
7
 24.76% 

1 Ca-Mont 3 1*10
7
 37.25% 

1 Ca-Mont 4 0.25*10
7
 87.34% 

1 Ca-Mont 5 0.5*10
7
 30.44% 

1 Ca-Mont 6 1*10
7
 25.08% 

1 Ca-Mont 7 0.25*10
7
 35.00% 

1 Ca-Mont 8 0.5*10
7
 21.51% 

1 Ca-Mont 9 1*10
7
 15.90% 

1 Mont K-10 1 0.25*10
7
 26.00% 

1 Mont K-10 2 0.5*10
7
 58.79% 

1 Mont K-10 3 1*10
7
 24.23% 

1 Mont K-10 4 0.25*10
7
 24.00% 

1 Mont K-10 5 0.5*10
7
 18.18% 

1 Mont K-10 6 1*10
7
 34.33% 

1 Mont K-10 7 0.25*10
7
   

1 Mont K-10 8 0.5*10
7
 29.95% 

1 Mont K-10 9 1*10
7
 15.60% 
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Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

2 Hectorite  1 0.25*10
7
 0.00% 

2 Hectorite  2 0.5*10
7
 75.76% 

2 Hectorite  3 1*10
7
 40.44% 

2 Hectorite  4 0.25*10
7
 45.45% 

2 Hectorite  5 0.5*10
7
 55.22% 

2 Hectorite  6 1*10
7
 63.00% 

2 Hectorite  7 0.25*10
7
 88.24% 

2 Hectorite  8 0.5*10
7
 14.29% 

2 Hectorite  9 1*10
7
 39.52% 

2 Kaolin 1 0.25*10
7
 21.74% 

2 Kaolin 2 0.5*10
7
 14.84% 

2 Kaolin 3 1*10
7
 26.97% 

2 Kaolin 4 0.25*10
7
 0.00% 

2 Kaolin 5 0.5*10
7
 51.52% 

2 Kaolin 6 1*10
7
 35.18% 

2 Kaolin 7 0.25*10
7
 66.67% 

2 Kaolin 8 0.5*10
7
 24.41% 

2 Kaolin 9 1*10
7
 0.00% 

2 Ca-Mont 1 0.25*10
7
 0.00% 

2 Ca-Mont 2 0.5*10
7
 16.67% 

2 Ca-Mont 3 1*10
7
 2.86% 

2 Ca-Mont 4 0.25*10
7
 0.00% 

2 Ca-Mont 5 0.5*10
7
 18.52% 

2 Ca-Mont 6 1*10
7
 0.00% 

2 Ca-Mont 7 0.25*10
7
 33.33% 

2 Ca-Mont 8 0.5*10
7
 0.00% 

2 Ca-Mont 9 1*10
7
 36.36% 

2 Mont K-10 1 0.25*10
7
 17.76% 

2 Mont K-10 2 0.5*10
7
 20.63% 

2 Mont K-10 3 1*10
7
 15.73% 

2 Mont K-10 4 0.25*10
7
 29.90% 

2 Mont K-10 5 0.5*10
7
 4.17% 

2 Mont K-10 6 1*10
7
 8.06% 

2 Mont K-10 7 0.25*10
7
 1.23% 

2 Mont K-10 8 0.5*10
7
 9.80% 

2 Mont K-10 9 1*10
7
 21.39% 
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Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

50 Hectorite  1 0.25*10
7
 50.00% 

50 Hectorite  2 0.5*10
7
 26.83% 

50 Hectorite  3 1*10
7
 39.27% 

50 Hectorite  4 0.25*10
7
 75.34% 

50 Hectorite  5 0.5*10
7
 46.10% 

50 Hectorite  6 1*10
7
 43.46% 

50 Hectorite  7 0.25*10
7
 33.33% 

50 Hectorite  8 0.5*10
7
 29.03% 

50 Hectorite  9 1*10
7
 36.51% 

50 Kaolin 1 0.25*10
7
 33.33% 

50 Kaolin 2 0.5*10
7
 16.67% 

50 Kaolin 3 1*10
7
 73.33% 

50 Kaolin 4 0.25*10
7
 0.00% 

50 Kaolin 5 0.5*10
7
 41.18% 

50 Kaolin 6 1*10
7
 0.00% 

50 Kaolin 7 0.25*10
7
 63.64% 

50 Kaolin 8 0.5*10
7
 0.00% 

50 Kaolin 9 1*10
7
 70.00% 

50 Ca-Mont 1 0.25*10
7
 0.00% 

50 Ca-Mont 2 0.5*10
7
 13.04% 

50 Ca-Mont 3 1*10
7
 34.00% 

50 Ca-Mont 4 0.25*10
7
 0.00% 

50 Ca-Mont 5 0.5*10
7
 30.91% 

50 Ca-Mont 6 1*10
7
 29.69% 

50 Ca-Mont 7 0.25*10
7
 4.76% 

50 Ca-Mont 8 0.5*10
7
 30.91% 

50 Ca-Mont 9 1*10
7
 39.62% 

50 Mont K-10 1 0.25*10
7
 20.00% 

50 Mont K-10 2 0.5*10
7
 0.00% 

50 Mont K-10 3 1*10
7
 0.00% 

50 Mont K-10 4 0.25*10
7
 0.00% 

50 Mont K-10 5 0.5*10
7
 0.00% 

50 Mont K-10 6 1*10
7
 21.43% 

50 Mont K-10 7 0.25*10
7
 11.11% 

50 Mont K-10 8 0.5*10
7
 0.00% 

50 Mont K-10 9 1*10
7
 14.29% 
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Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

100 Hectorite  1 0.25*10
7
 0.00% 

100 Hectorite  2 0.5*10
7
 19.61% 

100 Hectorite  3 1*10
7
 37.97% 

100 Hectorite  4 0.25*10
7
 100.00% 

100 Hectorite  5 0.5*10
7
 24.80% 

100 Hectorite  6 1*10
7
 29.23% 

100 Hectorite  7 0.25*10
7
 88.89% 

100 Hectorite  8 0.5*10
7
 17.72% 

100 Hectorite  9 1*10
7
 17.28% 

100 Kaolin 1 0.25*10
7
 41.82% 

100 Kaolin 2 0.5*10
7
 29.45% 

100 Kaolin 3 1*10
7
 0.00% 

100 Kaolin 4 0.25*10
7
 22.42% 

100 Kaolin 5 0.5*10
7
 22.78% 

100 Kaolin 6 1*10
7
 5.38% 

100 Kaolin 7 0.25*10
7
 21.84% 

100 Kaolin 8 0.5*10
7
 8.16% 

100 Kaolin 9 1*10
7
 37.85% 

100 Ca-Mont 1 0.25*10
7
 0.00% 

100 Ca-Mont 2 0.5*10
7
 50.00% 

100 Ca-Mont 3 1*10
7
 61.70% 

100 Ca-Mont 4 0.25*10
7
 0.00% 

100 Ca-Mont 5 0.5*10
7
 88.24% 

100 Ca-Mont 6 1*10
7
 55.56% 

100 Ca-Mont 7 0.25*10
7
 100.00% 

100 Ca-Mont 8 0.5*10
7
 62.50% 

100 Ca-Mont 9 1*10
7
 58.62% 

100 Mont K-10 1 0.25*10
7
 35.59% 

100 Mont K-10 2 0.5*10
7
 19.84% 

100 Mont K-10 3 1*10
7
 0.00% 

100 Mont K-10 4 0.25*10
7
 22.33% 

100 Mont K-10 5 0.5*10
7
 13.48% 

100 Mont K-10 6 1*10
7
 16.51% 

100 Mont K-10 7 0.25*10
7
 0.00% 

100 Mont K-10 8 0.5*10
7
 17.95% 

100 Mont K-10 9 1*10
7
 6.89% 
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Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

200 Hectorite  1 0.25*10
7
 50.00% 

200 Hectorite  2 0.5*10
7
 49.02% 

200 Hectorite  3 1*10
7
 68.63% 

200 Hectorite  4 0.25*10
7
 25.00% 

200 Hectorite  5 0.5*10
7
 60.78% 

200 Hectorite  6 1*10
7
 62.86% 

200 Hectorite  7 0.25*10
7
 36.00% 

200 Hectorite  8 0.5*10
7
 57.38% 

200 Hectorite  9 1*10
7
 56.10% 

200 Kaolin 1 0.25*10
7
 58.68% 

200 Kaolin 2 0.5*10
7
 47.45% 

200 Kaolin 3 1*10
7
 0.00% 

200 Kaolin 4 0.25*10
7
 38.33% 

200 Kaolin 5 0.5*10
7
 40.08% 

200 Kaolin 6 1*10
7
 27.49% 

200 Kaolin 7 0.25*10
7
 34.92% 

200 Kaolin 8 0.5*10
7
 49.54% 

200 Kaolin 9 1*10
7
 22.29% 

200 Ca-Mont 1 0.25*10
7
 0.00% 

200 Ca-Mont 2 0.5*10
7
 0.00% 

200 Ca-Mont 3 1*10
7
 8.33% 

200 Ca-Mont 4 0.25*10
7
 0.00% 

200 Ca-Mont 5 0.5*10
7
 25.00% 

200 Ca-Mont 6 1*10
7
 17.65% 

200 Ca-Mont 7 0.25*10
7
 100.00% 

200 Ca-Mont 8 0.5*10
7
 25.00% 

200 Ca-Mont 9 1*10
7
 37.50% 

200 Mont K-10 1 0.25*10
7
 33.33% 

200 Mont K-10 2 0.5*10
7
 20.00% 

200 Mont K-10 3 1*10
7
 40.05% 

200 Mont K-10 4 0.25*10
7
 0.00% 

200 Mont K-10 5 0.5*10
7
 0.00% 

200 Mont K-10 6 1*10
7
 30.93% 

200 Mont K-10 7 0.25*10
7
 66.67% 

200 Mont K-10 8 0.5*10
7
 27.27% 

200 Mont K-10 9 1*10
7
 25.93% 
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Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

500 Hectorite  1 0.25*10
7
 0.00% 

500 Hectorite  2 0.5*10
7
 100.00% 

500 Hectorite  3 1*10
7
 100.00% 

500 Hectorite  4 0.25*10
7
 0.00% 

500 Hectorite  5 0.5*10
7
 100.00% 

500 Hectorite  6 1*10
7
 27.27% 

500 Hectorite  7 0.25*10
7
 71.43% 

500 Hectorite  8 0.5*10
7
 100.00% 

500 Hectorite  9 1*10
7
 0.00% 

500 Kaolin 1 0.25*10
7
 84.91% 

500 Kaolin 2 0.5*10
7
 77.78% 

500 Kaolin 3 1*10
7
 80.30% 

500 Kaolin 4 0.25*10
7
 68.60% 

500 Kaolin 5 0.5*10
7
 92.00% 

500 Kaolin 6 1*10
7
 66.67% 

500 Kaolin 7 0.25*10
7
 87.01% 

500 Kaolin 8 0.5*10
7
 75.00% 

500 Kaolin 9 1*10
7
 86.18% 

500 Ca-Mont 1 0.25*10
7
 27.78% 

500 Ca-Mont 2 0.5*10
7
 28.51% 

500 Ca-Mont 3 1*10
7
 15.56% 

500 Ca-Mont 4 0.25*10
7
 16.92% 

500 Ca-Mont 5 0.5*10
7
 17.71% 

500 Ca-Mont 6 1*10
7
 14.72% 

500 Ca-Mont 7 0.25*10
7
 12.33% 

500 Ca-Mont 8 0.5*10
7
 52.83% 

500 Ca-Mont 9 1*10
7
 31.79% 

500 Mont K-10 1 0.25*10
7
 41.41% 

500 Mont K-10 2 0.5*10
7
 10.14% 

500 Mont K-10 3 1*10
7
 18.02% 

500 Mont K-10 4 0.25*10
7
 15.49% 

500 Mont K-10 5 0.5*10
7
 28.89% 

500 Mont K-10 6 1*10
7
 11.89% 

500 Mont K-10 7 0.25*10
7
 0.00% 

500 Mont K-10 8 0.5*10
7
 13.70% 

500 Mont K-10 9 1*10
7
 3.73% 

 

 



110 
 

 

Particle Ratio Clay  Sample No. E. coli Concentration (CFU ml
-1

) Percent attached 

1000 Hectorite  1 0.25*10
7
 91.84% 

1000 Hectorite  2 0.5*10
7
 97.44% 

1000 Hectorite  3 1*10
7
 84.76% 

1000 Hectorite  4 0.25*10
7
 96.15% 

1000 Hectorite  5 0.5*10
7
 98.11% 

1000 Hectorite  6 1*10
7
 91.87% 

1000 Hectorite  7 0.25*10
7
 95.74% 

1000 Hectorite  8 0.5*10
7
 92.59% 

1000 Hectorite  9 1*10
7
 88.89% 

1000 Kaolin 1 0.25*10
7
 60.00% 

1000 Kaolin 2 0.5*10
7
 60.00% 

1000 Kaolin 3 1*10
7
 52.14% 

1000 Kaolin 4 0.25*10
7
 41.67% 

1000 Kaolin 5 0.5*10
7
 47.27% 

1000 Kaolin 6 1*10
7
 73.46% 

1000 Kaolin 7 0.25*10
7
 56.76% 

1000 Kaolin 8 0.5*10
7
 48.57% 

1000 Kaolin 9 1*10
7
 50.98% 

1000 Ca-Mont 1 0.25*10
7
 72.73% 

1000 Ca-Mont 2 0.5*10
7
 71.83% 

1000 Ca-Mont 3 1*10
7
 71.74% 

1000 Ca-Mont 4 0.25*10
7
 58.73% 

1000 Ca-Mont 5 0.5*10
7
 32.26% 

1000 Ca-Mont 6 1*10
7
 51.15% 

1000 Ca-Mont 7 0.25*10
7
 41.67% 

1000 Ca-Mont 8 0.5*10
7
 75.00% 

1000 Ca-Mont 9 1*10
7
 71.31% 

1000 Mont K-10 1 0.25*10
7
 11.32% 

1000 Mont K-10 2 0.5*10
7
 38.35% 

1000 Mont K-10 3 1*10
7
 19.17% 

1000 Mont K-10 4 0.25*10
7
 40.87% 

1000 Mont K-10 5 0.5*10
7
 20.34% 

1000 Mont K-10 6 1*10
7
 32.59% 

1000 Mont K-10 7 0.25*10
7
 15.70% 

1000 Mont K-10 8 0.5*10
7
 40.23% 

1000 Mont K-10 9 1*10
7
 19.42% 
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APPENDIX C5. Percent attached of strain #31 in flow cytometry 

Particle 
Ratio 

Clay  Sample 
No. 

Percent 
attached 

Particle 
Ratio 

Clay  Sample 
No. 

Percent 
attached 

1 Hectorite  1 0.60% 1 Kaolin 1 4.20% 

1 Hectorite  2 0.60% 1 Kaolin 2 0.50% 

1 Hectorite  3 0.60% 1 Kaolin 3 1.10% 

2 Hectorite  1 0.80% 2 Kaolin 1 0.40% 

2 Hectorite  2 0.60% 2 Kaolin 2 0.30% 

2 Hectorite  3 0.70% 2 Kaolin 3 0.30% 

5 Hectorite  1 1.10% 5 Kaolin 1 2.40% 

5 Hectorite  2 1.00% 5 Kaolin 2 2.10% 

5 Hectorite  3 2.00% 5 Kaolin 3 1.80% 

10 Hectorite  1 1.70% 10 Kaolin 1 4.10% 

10 Hectorite  2 2.30% 10 Kaolin 2 4.00% 

10 Hectorite  3 1.90% 10 Kaolin 3 3.70% 

25 Hectorite  1 4.70% 25 Kaolin 1 8.40% 

25 Hectorite  2 4.80% 25 Kaolin 2 7.20% 

25 Hectorite  3 5.00% 25 Kaolin 3 8.30% 

50 Hectorite  1 12.80% 50 Kaolin 1 29.50% 

50 Hectorite  2 13.30% 50 Kaolin 2 33.50% 

50 Hectorite  3 12.60% 50 Kaolin 3 29.30% 

100 Hectorite  1 23.40% 100 Kaolin 1 88.70% 

100 Hectorite  2 27.00% 100 Kaolin 2 94.80% 

100 Hectorite  3 22.20% 100 Kaolin 3 95.20% 

150 Hectorite  1 12.60% 150 Kaolin 1 98.60% 

150 Hectorite  2 10.30% 150 Kaolin 2 99.30% 

150 Hectorite  3 11.20% 150 Kaolin 3 99.20% 

200 Hectorite  1 9.30% 200 Kaolin 1 99.60% 

200 Hectorite  2 9.00% 200 Kaolin 2 99.00% 

200 Hectorite  3 11.90% 200 Kaolin 3 99.40% 

300 Hectorite  1 8.60% 300 Kaolin 1 99.40% 

300 Hectorite  2 3.30% 300 Kaolin 2 99.50% 

300 Hectorite  3 8.90% 300 Kaolin 3 99.60% 

400 Hectorite  1 6.30% 400 Kaolin 1 99.80% 

400 Hectorite  2 4.70% 400 Kaolin 2 99.80% 

400 Hectorite  3 7.60% 400 Kaolin 3 99.80% 

500 Hectorite  1 5.30% 500 Kaolin 1 99.40% 

500 Hectorite  2 8.60% 500 Kaolin 2 99.60% 

500 Hectorite  3 9.60% 500 Kaolin 3 99.50% 
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Particle 
Ratio 

Clay  Sample 
No. 

Percent 
attached 

Particle 
Ratio 

Clay  Sample 
No. 

Percent 
attached 

1 Ca-Mont 1 0.70% 1 Mont K-10 1 0.50% 

1 Ca-Mont 2 0.70% 1 Mont K-10 2 0.40% 

1 Ca-Mont 3 0.70% 1 Mont K-10 3 0.50% 

2 Ca-Mont 1 0.30% 2 Mont K-10 1 0.30% 

2 Ca-Mont 2 0.50% 2 Mont K-10 2 0.50% 

2 Ca-Mont 3 0.20% 2 Mont K-10 3 0.50% 

5 Ca-Mont 1 3.90% 5 Mont K-10 1 0.60% 

5 Ca-Mont 2 4.40% 5 Mont K-10 2 0.60% 

5 Ca-Mont 3 3.60% 5 Mont K-10 3 0.60% 

10 Ca-Mont 1 5.60% 10 Mont K-10 1 0.40% 

10 Ca-Mont 2 6.20% 10 Mont K-10 2 1.00% 

10 Ca-Mont 3 6.70% 10 Mont K-10 3 0.50% 

25 Ca-Mont 1 15.80% 25 Mont K-10 1 1.50% 

25 Ca-Mont 2 14.50% 25 Mont K-10 2 1.30% 

25 Ca-Mont 3 16.50% 25 Mont K-10 3 1.40% 

50 Ca-Mont 1 33.10% 50 Mont K-10 1 2.70% 

50 Ca-Mont 2 30.00% 50 Mont K-10 2 3.20% 

50 Ca-Mont 3 33.40% 50 Mont K-10 3 2.70% 

100 Ca-Mont 1 59.50% 100 Mont K-10 1 5.60% 

100 Ca-Mont 2 56.20% 100 Mont K-10 2 5.40% 

100 Ca-Mont 3 28.50% 100 Mont K-10 3 5.30% 

150 Ca-Mont 1 43.40% 150 Mont K-10 1 7.20% 

150 Ca-Mont 2 52.40% 150 Mont K-10 2 7.80% 

150 Ca-Mont 3 60.40% 150 Mont K-10 3 8.20% 

200 Ca-Mont 1 68.60% 200 Mont K-10 1 10.70% 

200 Ca-Mont 2 61.60% 200 Mont K-10 2 12.80% 

200 Ca-Mont 3 65.60% 200 Mont K-10 3 11.20% 

300 Ca-Mont 1 21.10% 300 Mont K-10 1 16.50% 

300 Ca-Mont 2 14.40% 300 Mont K-10 2 16.70% 

300 Ca-Mont 3 19.20% 300 Mont K-10 3 16.40% 

400 Ca-Mont 1 14.10% 400 Mont K-10 1 20.00% 

400 Ca-Mont 2 13.50% 400 Mont K-10 2 21.30% 

400 Ca-Mont 3 14.40% 400 Mont K-10 3 20.70% 

500 Ca-Mont 1 36.10% 500 Mont K-10 1 24.10% 

500 Ca-Mont 2 21.40% 500 Mont K-10 2 24.10% 

500 Ca-Mont 3 17.60% 500 Mont K-10 3 23.30% 



113 
 

APPENDIX C6. Percent attached of strain #50 in flow cytometry 

Particle 
Ratio 

Clay  Sample 
No. 

Percent 
attached 

Particle 
Ratio 

Clay  Sample 
No. 

Percent 
attached 

1 Hectorite  1 1.30% 1 Kaolin 1 1.10% 

1 Hectorite  2 1.50% 1 Kaolin 2 0.90% 

1 Hectorite  3 1.30% 1 Kaolin 3 0.70% 

2 Hectorite  1 1.60% 2 Kaolin 1 1.20% 

2 Hectorite  2 1.70% 2 Kaolin 2 1.10% 

2 Hectorite  3 2.00% 2 Kaolin 3 0.80% 

5 Hectorite  1 2.40% 5 Kaolin 1 2.50% 

5 Hectorite  2 2.40% 5 Kaolin 2 2.40% 

5 Hectorite  3 2.20% 5 Kaolin 3 2.30% 

10 Hectorite  1 4.30% 10 Kaolin 1 4.50% 

10 Hectorite  2 4.00% 10 Kaolin 2 4.90% 

10 Hectorite  3 4.20% 10 Kaolin 3 4.70% 

25 Hectorite  1 7.00% 25 Kaolin 1 11.60% 

25 Hectorite  2 7.70% 25 Kaolin 2 10.30% 

25 Hectorite  3 7.70% 25 Kaolin 3 9.20% 

50 Hectorite  1 16.80% 50 Kaolin 1 24.20% 

50 Hectorite  2 15.90% 50 Kaolin 2 24.30% 

50 Hectorite  3 12.10% 50 Kaolin 3 29.90% 

100 Hectorite  1 10.50% 100 Kaolin 1 41.30% 

100 Hectorite  2 16.40% 100 Kaolin 2 42.40% 

100 Hectorite  3 15.50% 100 Kaolin 3 43.80% 

150 Hectorite  1 18.30% 150 Kaolin 1 51.10% 

150 Hectorite  2 14.40% 150 Kaolin 2 49.30% 

150 Hectorite  3 13.00% 150 Kaolin 3 48.40% 

200 Hectorite  1 14.20% 200 Kaolin 1 50.30% 

200 Hectorite  2 16.70% 200 Kaolin 2 51.80% 

200 Hectorite  3 13.20% 200 Kaolin 3 53.50% 

300 Hectorite  1 26.00% 300 Kaolin 1 55.20% 

300 Hectorite  2 27.70% 300 Kaolin 2 58.20% 

300 Hectorite  3 25.40% 300 Kaolin 3 57.30% 

400 Hectorite  1 31.20% 400 Kaolin 1 72.00% 

400 Hectorite  2 21.90% 400 Kaolin 2 65.40% 

400 Hectorite  3 43.10% 400 Kaolin 3 60.90% 

500 Hectorite  1 38.20% 500 Kaolin 1 80.60% 

500 Hectorite  2 26.60% 500 Kaolin 2 77.50% 

500 Hectorite  3 25.40% 500 Kaolin 3 78.80% 
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Particle 
Ratio 

Clay  Sample 
No. 

Percent 
attached 

Particle 
Ratio 

Clay  Sample 
No. 

Percent 
attached 

1 Ca-Mont 1 0.40% 1 Mont K-10 1 2.00% 

1 Ca-Mont 2 0.50% 1 Mont K-10 2 1.50% 

1 Ca-Mont 3 0.30% 1 Mont K-10 3 1.50% 

2 Ca-Mont 1 0.20% 2 Mont K-10 1 1.50% 

2 Ca-Mont 2 0.40% 2 Mont K-10 2 1.60% 

2 Ca-Mont 3 0.30% 2 Mont K-10 3 1.60% 

5 Ca-Mont 1 0.50% 5 Mont K-10 1 1.30% 

5 Ca-Mont 2 0.40% 5 Mont K-10 2 1.30% 

5 Ca-Mont 3 0.40% 5 Mont K-10 3 1.30% 

10 Ca-Mont 1 0.80% 10 Mont K-10 1 1.40% 

10 Ca-Mont 2 0.80% 10 Mont K-10 2 1.30% 

10 Ca-Mont 3 0.80% 10 Mont K-10 3 0.90% 

25 Ca-Mont 1 1.80% 25 Mont K-10 1 1.70% 

25 Ca-Mont 2 1.70% 25 Mont K-10 2 1.50% 

25 Ca-Mont 3 1.70% 25 Mont K-10 3 1.50% 

50 Ca-Mont 1 2.50% 50 Mont K-10 1 2.20% 

50 Ca-Mont 2 2.70% 50 Mont K-10 2 2.20% 

50 Ca-Mont 3 3.90% 50 Mont K-10 3 2.40% 

100 Ca-Mont 1 5.60% 100 Mont K-10 1 3.30% 

100 Ca-Mont 2 5.10% 100 Mont K-10 2 3.20% 

100 Ca-Mont 3 4.70% 100 Mont K-10 3 3.50% 

150 Ca-Mont 1 8.00% 150 Mont K-10 1 4.20% 

150 Ca-Mont 2 6.10% 150 Mont K-10 2 4.50% 

150 Ca-Mont 3 6.50% 150 Mont K-10 3 4.70% 

200 Ca-Mont 1 8.70% 200 Mont K-10 1 7.00% 

200 Ca-Mont 2 8.40% 200 Mont K-10 2 6.30% 

200 Ca-Mont 3 7.40% 200 Mont K-10 3 6.70% 

300 Ca-Mont 1 10.50% 300 Mont K-10 1 10.30% 

300 Ca-Mont 2 11.30% 300 Mont K-10 2 9.60% 

300 Ca-Mont 3 10.00% 300 Mont K-10 3 10.00% 

400 Ca-Mont 1 13.80% 400 Mont K-10 1 13.60% 

400 Ca-Mont 2 13.20% 400 Mont K-10 2 12.70% 

400 Ca-Mont 3 14.10% 400 Mont K-10 3 11.90% 

500 Ca-Mont 1 16.60% 500 Mont K-10 1 13.70% 

500 Ca-Mont 2 16.40% 500 Mont K-10 2 14.70% 

500 Ca-Mont 3 15.30% 500 Mont K-10 3 13.50% 
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APPENDIX C7. Percent attached of strain #89 in flow cytometry 

Particle 
Ratio 

Clay  Sample 
No. 

Percent 
attached 

Particle 
Ratio 

Clay  Sample 
No. 

Percent 
attached 

1 Hectorite  1 0.20% 1 Kaolin 1 0.30% 

1 Hectorite  2 0.20% 1 Kaolin 2 0.60% 

1 Hectorite  3 0.30% 1 Kaolin 3 0.30% 

2 Hectorite  1 0.20% 2 Kaolin 1 0.70% 

2 Hectorite  2 0.20% 2 Kaolin 2 0.60% 

2 Hectorite  3 0.30% 2 Kaolin 3 0.80% 

5 Hectorite  1 0.40% 5 Kaolin 1 1.30% 

5 Hectorite  2 0.40% 5 Kaolin 2 1.30% 

5 Hectorite  3 0.30% 5 Kaolin 3 1.10% 

10 Hectorite  1 0.80% 10 Kaolin 1 2.90% 

10 Hectorite  2 1.00% 10 Kaolin 2 3.20% 

10 Hectorite  3 1.00% 10 Kaolin 3 2.80% 

25 Hectorite  1 2.40% 25 Kaolin 1 8.20% 

25 Hectorite  2 1.30% 25 Kaolin 2 7.90% 

25 Hectorite  3 1.80% 25 Kaolin 3 7.70% 

50 Hectorite  1 3.70% 50 Kaolin 1 12.70% 

50 Hectorite  2 2.80% 50 Kaolin 2 13.10% 

50 Hectorite  3 3.10% 50 Kaolin 3 12.60% 

100 Hectorite  1 8.50% 100 Kaolin 1 22.90% 

100 Hectorite  2 8.10% 100 Kaolin 2 23.20% 

100 Hectorite  3 7.30% 100 Kaolin 3 23.10% 

150 Hectorite  1 8.70% 150 Kaolin 1 26.80% 

150 Hectorite  2 9.40% 150 Kaolin 2 28.10% 

150 Hectorite  3 11.20% 150 Kaolin 3 28.70% 

200 Hectorite  1 8.70% 200 Kaolin 1 39.10% 

200 Hectorite  2 9.70% 200 Kaolin 2 41.20% 

200 Hectorite  3 9.30% 200 Kaolin 3 48.30% 

300 Hectorite  1 10.90% 300 Kaolin 1 57.90% 

300 Hectorite  2 9.80% 300 Kaolin 2 63.70% 

300 Hectorite  3 10.40% 300 Kaolin 3 58.40% 

400 Hectorite  1 22.20% 400 Kaolin 1 87.00% 

400 Hectorite  2 22.20% 400 Kaolin 2 86.10% 

400 Hectorite  3 15.90% 400 Kaolin 3 87.30% 

500 Hectorite  1 27.40% 500 Kaolin 1 92.70% 

500 Hectorite  2 28.20% 500 Kaolin 2 92.60% 

500 Hectorite  3 27.30% 500 Kaolin 3 92.30% 
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Particle 
Ratio 

Clay  Sample 
No. 

Percent 
attached 

Particle 
Ratio 

Clay  Sample 
No. 

Percent 
attached 

1 Ca-Mont 1 0.30% 1 Mont K-10 1 0.40% 

1 Ca-Mont 2 0.30% 1 Mont K-10 2 0.30% 

1 Ca-Mont 3 0.30% 1 Mont K-10 3 0.30% 

2 Ca-Mont 1 0.30% 2 Mont K-10 1 0.40% 

2 Ca-Mont 2 0.30% 2 Mont K-10 2 0.40% 

2 Ca-Mont 3 0.30% 2 Mont K-10 3 0.30% 

5 Ca-Mont 1 0.50% 5 Mont K-10 1 0.40% 

5 Ca-Mont 2 0.40% 5 Mont K-10 2 0.30% 

5 Ca-Mont 3 0.50% 5 Mont K-10 3 0.30% 

10 Ca-Mont 1 0.60% 10 Mont K-10 1 0.40% 

10 Ca-Mont 2 0.60% 10 Mont K-10 2 1.10% 

10 Ca-Mont 3 0.30% 10 Mont K-10 3 0.50% 

25 Ca-Mont 1 1.40% 25 Mont K-10 1 0.40% 

25 Ca-Mont 2 1.40% 25 Mont K-10 2 0.30% 

25 Ca-Mont 3 1.60% 25 Mont K-10 3 0.30% 

50 Ca-Mont 1 2.80% 50 Mont K-10 1 0.60% 

50 Ca-Mont 2 3.10% 50 Mont K-10 2 0.50% 

50 Ca-Mont 3 2.90% 50 Mont K-10 3 0.50% 

100 Ca-Mont 1 4.90% 100 Mont K-10 1 1.00% 

100 Ca-Mont 2 4.10% 100 Mont K-10 2 0.90% 

100 Ca-Mont 3 5.30% 100 Mont K-10 3 1.10% 

150 Ca-Mont 1 3.60% 150 Mont K-10 1 1.80% 

150 Ca-Mont 2 5.70% 150 Mont K-10 2 1.20% 

150 Ca-Mont 3 5.20% 150 Mont K-10 3 1.20% 

200 Ca-Mont 1 4.60% 200 Mont K-10 1 1.60% 

200 Ca-Mont 2 4.60% 200 Mont K-10 2 1.60% 

200 Ca-Mont 3 5.60% 200 Mont K-10 3 1.50% 

300 Ca-Mont 1 8.00% 300 Mont K-10 1 2.30% 

300 Ca-Mont 2 7.00% 300 Mont K-10 2 2.80% 

300 Ca-Mont 3 6.90% 300 Mont K-10 3 2.70% 

400 Ca-Mont 1 10.90% 400 Mont K-10 1 3.40% 

400 Ca-Mont 2 7.70% 400 Mont K-10 2 3.40% 

400 Ca-Mont 3 7.90% 400 Mont K-10 3 2.90% 

500 Ca-Mont 1 7.40% 500 Mont K-10 1 3.50% 

500 Ca-Mont 2 7.80% 500 Mont K-10 2 3.20% 

500 Ca-Mont 3 7.00% 500 Mont K-10 3 3.70% 
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APPENDIX D. FLOW CYTOMETRY RESULT ANALYSIS FIGURES 

Appendix D1. Strain #31 

 
(a)                                                      (b)                                                        (c)  

 

                                                                           (d) 

Figure D1-1. Strain #31 with Hectorite. (a) is the dot plot of particle ratio 2, (b) is of 

partilce ratio 100 and (c) is of particle ratio 500. In (a), (b), and (c), each green dot 

shows one attached event while red dots show unattached events.  (d) is the histogram 

with red, blue and green curve for particle ratio 2, 100 and 500, respectively. Gage 

limits were set and labled.  

   
SYTO 11 SYTO 11 SYTO 11 

Optical density 

unattached
attached
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(a)                                                     (b)                                                      (c)  

 

                                                                        (d) 

Figure D1-2. Strain #31 with Kaolin. (a) is the dot plot of particle ratio 2, (b) is of 

partilce ratio 100 and (c) is of particle ratio 500. In (a), (b), and (c), each green dot 

shows one attached event while red dots show unattached events.  (d) is the histogram 

with red, blue and green curve for particle ratio 2, 100 and 500, respectively. Gage 

limits were set and labled.  
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(a)                                                      (b)                                                        (c) 

 

                                                                        (d) 

Figure D1-3. Strain #31 with Ca-Montmorillonite. (a) is the dot plot of particle ratio 2, 

(b) is of partilce ratio 100 and (c) is of particle ratio 500. In (a), (b), and (c), each green 

dot shows one attached event while red dots show unattached events.  (d) is the 

histogram with red, blue and green curve for particle ratio 2, 100 and 500, respectively. 

Gage limits were set and labled.  
 

 

   
SYTO 11 SYTO 11 SYTO 11 

attached
unattached

Optical density 



120 
 

 

 

(a)                                                     (b)                                                       (c)  

 

                                                                         (d) 

Figure D1-3. Strain #31 with Montmorillonite K-10. (a) is the dot plot of particle ratio 2, 

(b) is of partilce ratio 100 and (c) is of particle ratio 500. In (a), (b), and (c), each green 

dot shows one attached event while red dots show unattached events.  (d) is the 

histogram with red, blue and green curve for particle ratio 2, 100 and 500, respectively. 

Gage limits were set and labled.  
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Appendix D2. Strain #50 

 

(a)                                                      (b)                                                      (c) 

 

                                                                      (d) 

Figure D2-1. Strain #50 with Hectorite. (a) is the dot plot of particle ratio 2, (b) is of 

partilce ratio 100 and (c) is of particle ratio 500. In (a), (b), and (c), each green dot 

shows one attached event while red dots show unattached events.  (d) is the histogram 

with red, blue and green curve for particle ratio 2, 100 and 500, respectively. Gage 

limits were set and labled.  
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(a)                                                     (b)                                                      (c) 

 

                                                                         (d) 

Figure D2-2. Strain #50 with Kaolin. (a) is the dot plot of particle ratio 2, (b) is of 

partilce ratio 100 and (c) is of particle ratio 500. In (a), (b), and (c), each green dot 

shows one attached event while red dots show unattached events.  (d) is the histogram 

with red, blue and green curve for particle ratio 2, 100 and 500, respectively. Gage 

limits were set and labled.  
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(a)                                                     (b)                                                       (c) 

 

                                                                      (d) 

Figure D2-3. Strain #50 with Ca-Montmorillonite. (a) is the dot plot of particle ratio 2, 

(b) is of partilce ratio 100 and (c) is of particle ratio 500. In (a), (b), and (c), each green 

dot shows one attached event while red dots show unattached events.  (d) is the 

histogram with red, blue and green curve for particle ratio 2, 100 and 500, respectively. 

Gage limits were set and labled.  
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(a)                                                       (b)                                                      (c) 

 

                                                                     (d) 

Figure D2-4. Strain #50 with Montmorillonite K-10. (a) is the dot plot of particle ratio 2, 

(b) is of partilce ratio 100 and (c) is of particle ratio 500. In (a), (b), and (c), each green 

dot shows one attached event while red dots show unattached events.  (d) is the 

histogram with red, blue and green curve for particle ratio 2, 100 and 500, respectively. 

Gage limits were set and labled.  
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Appendix D3. Strain #89 

 

(a)                                                      (b)                                                        (c) 

 

                                                                      (d) 

Figure D3-1. Strain #89 with Hectorite. (a) is the dot plot of particle ratio 2, (b) is of 

partilce ratio 100 and (c) is of particle ratio 500. In (a), (b), and (c), each green dot 

shows one attached event while red dots show unattached events.  (d) is the histogram 

with red, blue and green curve for particle ratio 2, 100 and 500, respectively. Gage 

limits were set and labled.  
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(a)                                                        (b)                                                      (c) 

 

                                                                           (d) 

Figure D3-2. Strain #89 with Kaolin. (a) is the dot plot of particle ratio 2, (b) is of 

partilce ratio 100 and (c) is of particle ratio 500. In (a), (b), and (c), each green dot 

shows one attached event while red dots show unattached events.  (d) is the histogram 

with red, blue and green curve for particle ratio 2, 100 and 500, respectively. Gage 

limits were set and labled.  
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(a)                                                     (b)                                                         (c) 

 

                                                                      (d) 

Figure D3-3. Strain #89 with Ca-Montmorillonite. (a) is the dot plot of particle ratio 2, 

(b) is of partilce ratio 100 and (c) is of particle ratio 500. In (a), (b), and (c), each green 

dot shows one attached event while red dots show unattached events.  (d) is the 

histogram with red, blue and green curve for particle ratio 2, 100 and 500, respectively. 

Gage limits were set and labled.  
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(a)                                                      (b)                                                        (c) 

 

                                                                     (d) 

Figure D3-4. Strain #89 with Montmorillonite K-10. (a) is the dot plot of particle ratio 2, 

(b) is of partilce ratio 100 and (c) is of particle ratio 500. In (a), (b), and (c), each green 

dot shows one attached event while red dots show unattached events.  (d) is the 

histogram with red, blue and green curve for particle ratio 2, 100 and 500, respectively. 

Gage limits were set and labled.  
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APPENDIX E. R CODE IN S STATISTICAL TESTS 

APPENDIX E1. Statistical tests for data from the settling method 

Table E1-1.  Normality tests 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After comparisons, we used the untransformed data for the settling method.  

#--------------------------------READ SETTLING DATA----------------------------------- 

#Examine normality(histogram and qqplot) 

library(car) 

qqPlot(setdata$Attachment.Ratio.ave,main="QQ.plot for settling data.(336 obs.)") 

hist(setdata$Attachment.Ratio.ave,main="Hitstogram for settling data.(336 obs.)") 

plot(setdata$Ratio,setdata$Attachment.Ratio.ave) 

setdata$Attachment.Ratio.log <- log(setdata$Attachment.Ratio.ave) 

hist(setdata$Attachment.Ratio.log,main="Hitstogram for settling data.(336 obs.)") 

 

#Use log transformation. 

hist(setdata$Attachment.Ratio.log) 

qqPlot(setdata$Attachment.Ratio.log,main="QQ.plot for settling data(log transformed).(336 obs.)") 

hist(setdata$Attachment.Ratio.trans,main="Hitstogram for settling data(log transformed).(336 obs.)") 

 

#some plots 

setdata$Ratio <- as.factor(setdata$Ratio) 

qplot(Ratio,Attachment.Ratio.ave,geom="point",data=setdata,colour=Strain,facets=Clay ~ .) 

qplot(Ratio, Attachment.Ratio.ave, geom="point", data=setdata, facets = Clay ~ Strain) 

qplot(Ratio,Attachment.Ratio.ave, data = setdata,facets =Clay ~ .,geom = "boxplot") 

qplot(Ratio,Attachment.Ratio.ave, data = setdata, facets =Strain ~ .,geom = "boxplot", 

         binwidth = 0.1) 
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Table E1-2.Three-ANOVA test and Tuckey’s pairwise comparison test  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#Three way ANOVA for settling data. 

setdata$Ratio <- as.factor(setdata$Ratio) 

set.lm1 <- lm(Attachment.Ratio.ave~Clay*Strain*Ratio,data=setdata) 

anova(set.lm1) 

plot(set.lm1$residuals) 

set.lm2 <- lm(Attachment.Ratio.log~Clay*Strain*Ratio,data=setdata) 

anova(set.lm2) 

 

#Residual plots after fitting three way ANOVA model 

delivery.res = setdata 

delivery.res$M1.Fit = fitted(set.lm1) 

delivery.res$M1.Resid = resid(set.lm1) 

ggplot(delivery.res, aes(M1.Fit, M1.Resid, colour = Clay)) + 

  geom_point() + xlab("Fitted Values") + ylab("Residuals") + 

  facet_wrap(  ~ Ratio) 

 

delivery.res = setdata 

delivery.res$M1.Fit = fitted(set.lm2) 

delivery.res$M1.Resid = resid(set.lm2) 

ggplot(delivery.res, aes(M1.Fit, M1.Resid, colour = Clay)) + 

  geom_point() + xlab("Fitted Values") + ylab("Residuals") + 

  facet_wrap(  ~ Ratio) 
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Table E1-2 continued. Three-ANOVA test and Tuckey’s pairwise comparison test  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

delivery.res = setdata 

delivery.res$M1.Fit = fitted(set.lm3) 

delivery.res$M1.Resid = resid(set.lm3) 

ggplot(delivery.res, aes(M1.Fit, M1.Resid, colour = Clay)) + 

  geom_point() + xlab("Fitted Values") + ylab("Residuals") + 

  facet_wrap(  ~ Ratio) 

 

##pairwise comparison on original data. 

set.model1<-aov(Attachment.Ratio.ave~Clay*Strain*Ratio,data=setdata) 

set.hsd1 = data.frame(TukeyHSD(set.model1, which = "Clay")$Clay) 

set.hsd2 = data.frame(TukeyHSD(set.model1, which = "Strain")$Strain) 

set.hsd3 = data.frame(TukeyHSD(set.model1, which = "Ratio")$Ratio) 

set.hsd4 = data.frame(TukeyHSD(set.model1, which = "Clay:Strain")$"Clay:Strain") 

set.hsd5 = data.frame(TukeyHSD(set.model1, which = "Clay:Ratio")$"Clay:Ratio") 

set.hsd6 = data.frame(TukeyHSD(set.model1, which = "Strain:Ratio")$"Strain:Ratio") 

set.hsd7 = data.frame(TukeyHSD(set.model1, which = "Clay:Strain:Ratio")$"Clay:Strain:Ratio") 

set.hsd = data.frame(rbind(set.hsd1,set.hsd2,set.hsd3,set.hsd4,set.hsd5,set.hsd6, 

          set.hsd7)) 

write.csv(set.hsd,"set.hsd.csv") 
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APPENDIX E2. Statistical tests for data from flow cytometry  

Table E1-1.  Normality tests 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Natural log transformation was selected for flow cytometry data.  

###--------------------------------READ FCM DATA----------------------------------- 

fcmdata <- read.csv(file.choose(),header=TRUE) 

fcmdata <- subset(fcmdata,Clay != "Hectorite ") 

table(fcmdata$Clay) 

fcmdata$Clay <- as.character(fcmdata$Clay) 

fcmdata$Clay <- as.factor(fcmdata$Clay) 

levels(fcmdata$Clay) 

str(fcmdata) 

#some visudal displays 

fcmdata$Ratio <- as.factor(fcmdata$Ratio) 

qplot(Ratio, Attachment.Ratio,geom="point", data=fcmdata,colour=Strain,facets = Clay ~ .) 

qplot(Ratio, Attachment.Ratio, geom="point", data=fcmdata, facets = Clay ~Strain) 

qplot(Ratio,Attachment.Ratio, data = fcmdata,facets =Clay ~.,geom = "boxplot") 

qplot(Ratio,Attachment.Ratio, data = fcmdata, facets =Strain ~ .,geom = "boxplot") 

#Examine normality.(qq plot and histogram) 

qqPlot(fcmdata$Attachment.Ratio,main="QQ.plot for FCM data.(324 obs.)") 

hist(fcmdata$Attachment.Ratio,main="Hitstogram for FCM data.(324 obs.)") 

#transform FCM data by log transformation. 

ml <- boxcox.fit(fcmdata$Attachment.Ratio) 

fcmdata$Attachment.Ratio.log <- log(fcmdata$Attachment.Ratio) 

hist(fcmdata$Attachment.Ratio) 

hist(fcmdata$Attachment.Ratio.log,main="Hitstogram for settling data(transformed).(324 obs.)") 

qqPlot(fcmdata$Attachment.Ratio.log,main="QQ.plot for FCM data(transformed).(324 obs.)") 
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Table E2-2.Three-ANOVA test and Tuckey’s pairwise comparison test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#three way ANOVA using log transformed data 

fcm.lm2<-lm(Attachment.Ratio.log~Clay*Strain*Ratio,data=fcmdata) 

anova(fcm.lm2)  

qqPlot(fcm.lm2$residuals) 

plot(fcm.lm2$residuals) 

#Residual plots after fitting three way ANOVA model 

delivery.res = fcmdata 

delivery.res$M1.Fit = fitted(fcm.lm2) 

delivery.res$M1.Resid = resid(fcm.lm2) 

ggplot(delivery.res, aes(M1.Fit, M1.Resid, colour = Clay)) + geom_point() + 

  xlab("Fitted Values") + ylab("Residuals") 

ggplot(delivery.res, aes(M1.Fit, M1.Resid, colour = Clay)) + 

  geom_point() + xlab("Fitted Values") + ylab("Residuals") + 

  facet_wrap(  ~ Ratio) 

ggplot(delivery.res, aes(sample = M1.Resid)) + stat_qq() 

delivery.hsd = data.frame(TukeyHSD(fcm.model1, which = "Clay")$Clay) 

delivery.hsd$Comparison = row.names(delivery.hsd) 

ggplot(delivery.hsd, aes(Comparison, y = diff, ymin = lwr, ymax = upr)) + 

  geom_pointrange() + ylab("Difference in Mean Attachment Ratio by Clay")  

delivery.res = fcmdata 

delivery.res$M1.Fit = fitted(fcm.lm1) 

delivery.res$M1.Resid = resid(fcm.lm1) 

ggplot(delivery.res, aes(M1.Fit, M1.Resid, colour = Clay)) + 

  geom_point() + xlab("Fitted Values") + ylab("Residuals") + 

  facet_wrap(  ~ Ratio) 
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Table E2-2 continued. Three-ANOVA test and Tuckey’s pairwise comparison test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

##pairwise comparison on log transformed data. 

fcm.model1<-aov(Attachment.Ratio.log~Clay*Strain*Ratio,data=fcmdata) 

fcm.hsd1 = data.frame(TukeyHSD(fcm.model1, which = "Clay")$Clay) 

fcm.hsd2 = data.frame(TukeyHSD(fcm.model1, which = "Strain")$Strain) 

fcm.hsd3 = data.frame(TukeyHSD(fcm.model1, which = "Ratio")$Ratio) 

fcm.hsd4 = data.frame(TukeyHSD(fcm.model1, which = "Clay:Strain")$"Clay:Strain") 

fcm.hsd5 = data.frame(TukeyHSD(fcm.model1, which = "Clay:Ratio")$"Clay:Ratio") 

fcm.hsd6 = data.frame(TukeyHSD(fcm.model1, which = "Strain:Ratio")$"Strain:Ratio") 

fcm.hsd7 = data.frame(TukeyHSD(fcm.model1, which = "Clay:Strain:Ratio")$"Clay:Strain:Ratio") 

fcm.hsd = data.frame(cbind(fcm.hsd1,fcm.hsd2,fcm.hsd3,fcm.hsd4,fcm.hsd5,fcm.hsd6, 

          fcm.hsd7)) 
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APPENDIX E3. Statistical tests for method comparisons  

Table E3-1. Normality tests 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#------------------------merge two data sets to do method comparison-------------------- 

setdata2 <- read.csv(file.choose()) 

fcmdata2 <- read.csv(file.choose()) 

setdata2$Ratio <- as.factor(setdata2$Ratio) 

fcmdata2$Ratio <- as.factor(fcmdata2$Ratio) 

 

#The response is the difference of attachments ratio of the two methods.Examine the #normality of the 

difference and find that the nomality is not satisfied. 

setdata2$diff <- fcmdata2$Attachment.Ratio-setdata2$Attachment.Ratio 

qqPlot(setdata2$diff,ylab="Attachment.Ratio Difference",main="QQ-Plot of Attachment.Ratio Difference 

between FCM and Settling Method") 

hist(setdata2$diff,xlab="Attachment.Ratio Difference",main="Histogram of Attachment.Ratio Difference 

between FCM and Settling Method") 

 

#logdiff is the difference of log attachments ratio of the two methods.Examine the #normality of the log 

difference and find that the nomality is much better. 

setdata2$logdiff <- fcmdata2$Attachment.Ratio.log-setdata2$Attachment.Ratio.log 

qqPlot(setdata2$logdiff,ylab="Log Attachment.Ratio Difference",main="QQ-Plot of Log Attachment.Ratio 

Difference between FCM and Settling Method") 

hist(setdata2$logdiff,xlab="Log Attachment.Ratio Difference",main="Histogram of Log Attachment.Ratio 

Difference between FCM and Settling Method") 

#remove ratio 1 and ratio 2.Check the normality again.  

setdata3 <- subset(setdata2,Ratio != 1 & Ratio != 2) 

qqPlot(setdata3$logdiff,ylab="Log Attachment.Ratio Difference",main="QQ-Plot of Log Attachment.Ratio 

Difference between FCM and Settling Method(Ratio 1 and 2 removed)") 

hist(setdata3$logdiff,xlab="Log Attachment.Ratio Difference",main="Histogram of Log Attachment.Ratio 

Difference between FCM and Settling Method(Ratio 1 and 2 removed)") 
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Table E3-2. Three-ANOVA test and Tuckey’s pairwise comparison test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#some visual displays. 

plot(setdata3$Clay,setdata3$logdiff,xlab="Clay",ylab="Log difference") 

plot(setdata3$Strain,setdata3$logdiff,xlab="Strain",ylab="Log difference") 

plot(setdata3$Ratio,setdata3$logdiff,xlab="Ratio",ylab="Log difference") 

qplot(Ratio, logdiff, geom="point", data=setdata3,facets = Clay ~ 

Strain) 

#three way ANOVA for the data after removed ratio 1 and ratio 2. 

lm1 <-lm(setdata3$logdiff~Clay*Strain*Ratio,data=setdata3) 

delivery.res = setdata3 

delivery.res$M1.Fit = fitted(lm1) 

delivery.res$M1.Resid = resid(lm1) 

ggplot(delivery.res, aes(M1.Fit, M1.Resid, colour = Clay)) +geom_point() + xlab("Fitted Values") + 

ylab("Residuals")  

 

#pairwise comparison for the data after removed ratio 1 and ratio 2. 

diff.model1<-aov(setdata3$logdiff~Clay*Strain*Ratio,data=setdata3) 

diff.hsd1 = data.frame(TukeyHSD(diff.model1, which = "Clay")$Clay) 

diff.hsd2 = data.frame(TukeyHSD(diff.model1, which = "Strain")$Strain) 

diff.hsd3 = data.frame(TukeyHSD(diff.model1, which = "Ratio")$Ratio) 

diff.hsd4 = data.frame(TukeyHSD(diff.model1, which = "Clay:Strain")$"Clay:Strain") 

diff.hsd5 = data.frame(TukeyHSD(diff.model1, which = "Clay:Ratio")$"Clay:Ratio") 

diff.hsd6 = data.frame(TukeyHSD(diff.model1, which = "Strain:Ratio")$"Strain:Ratio") 

diff.hsd7 = data.frame(TukeyHSD(diff.model1, which = "Clay:Strain:Ratio")$"Clay:Strain:Ratio") 

diff.hsd = data.frame(rbind(diff.hsd1,diff.hsd2,diff.hsd3,diff.hsd4,diff.hsd5,diff.hsd6,diff.hsd7)) 

write.csv(diff.hsd,"diff.hsd.csv") 
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APPENDIX E4. One sample t-tests 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#t test for each clay. 

t.test(subset(setdata3,Clay=="Kaolin")$logdiff) 

t.test(subset(setdata3,Clay=="Ca-Mont")$logdiff) 

t.test(subset(setdata3,Clay=="Mont K-10")$logdiff) 

 

#t test for each strain. 

t.test(subset(setdata3,Strain=="#31")$logdiff) 

t.test(subset(setdata3,Strain=="#50")$logdiff) 

t.test(subset(setdata3,Strain=="#89")$logdiff) 

 

#t test for each ratio. 

t.test(subset(setdata3,Ratio=="50")$logdiff) 

t.test(subset(setdata3,Ratio=="100")$logdiff) 

t.test(subset(setdata3,Ratio=="200")$logdiff) 

t.test(subset(setdata3,Ratio=="500")$logdiff) 

 

#t test for clay and strain combination 

t.test(subset(setdata3,Strain=="#31" & Clay=="Kaolin")$logdiff) 

t.test(subset(setdata3,Strain=="#31" & Clay=="Ca-Mont")$logdiff) 

t.test(subset(setdata3,Strain=="#31" & Clay=="Mont K-10")$logdiff) 

t.test(subset(setdata3,Strain=="#89" & Clay=="Ca-Mont")$logdiff) 

t.test(subset(setdata3,Strain=="#89" & Clay=="Kaolin")$logdiff) 

t.test(subset(setdata3,Strain=="#89" & Clay=="Mont K-10")$logdiff) 
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APPENDIX F. DATA TRANSFORMATIONS 

APPENDIX F1. Original data distributions  

 

 

Figure F1-1. QQ plot of percent attached from the settling method. The dash line was 

not perfectly straight indicating that the distribution was non-normal. 
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Figure F1-2. Histogram of attachment ratios from the settling method. The histogram 

indicated slightly right-skewed distribution.  
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Figure F1-3. Scatter plots of residuals vs. fitted values of attachment ratios from the 

settling method. The plots for each kind of clay have different patterns which indicated 

that the attachment ratios from the settling method did not have a normal distribution. 
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Figure F1-4. QQ plot of attachment ratios from flow cytometry. The dash line was far 

away from the reference line in red, which indicate that the attachment ratios from flow 

cytometry is not normal distribution. 
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Figure F1-5. Histogram of attachment ratios from flow cytometry. The histogram 

showed that the attachment ratios rom flow cytometry was right-skewed. 
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Figure F1-6. Scatter plot of residuals vs. fitted Values of attachment ratio from flow 

cytometry. The plots for each kind of clay have different patterns which indicated that 

the attachment ratios from flow cytometry did not have a normal distribution. 
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Figure F1-7. QQ plot of attachment ratio difference between flow cytometry and the 

settling method.  The dash line was not perfectly straight indicating that the 

distribution was non-normal. 
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Figure F1-8. Histogram of attachment ratio difference between flow cytometry and the 

settling method. The histogram showed that the attachment ratios rom flow cytometry 

was slightly right-skewed. 
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APPENDIX F2. Normality tests after transformations 

 

Figure F2-1. QQ plot for natural log transformed attachment ratios from the settling 

method. The dash line was still not perfectly straight, which indicated that natural log 

transformation was not useful.  
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Figure F2-2. Scatter plot of residuals vs. fitted values for natural log transformed 

attachment ratios from the settling method. The plots for each kind of clay have different 

patterns which indicated that the natural log transformed attachment ratios from the settling 

method did not have a normal distribution. 
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Figure F2-3. QQ plot of Box-cox transformed (λ=0.39) attachment ratios from the 

settling method. The dash line was still not perfectly straight, which indicated that natural 

log transformation was not useful. 
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Figure F2-4. Scatter plot of residuals vs. fitted values for Box-cox transformed (λ=0.39) 

settling data. The plots for each kind of clay have different patterns which indicated that the 

natural log transformed attachment ratios from the settling method did not have a normal 

distribution. 
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Figure F2-5. QQ plot of natural log transformed attachment ratios from flow cytometry. 

The dash line was straight, which indicated that the natural log transformation is suitable for 

the attachment ratios from flow cytometry.   
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Figure F2-6. Scatter plot of residuals vs. fitted values for natural log transformed 

attachment ratios from flow cytometry. The plots have almost the same pattern, which 

indicated that the distribution of natural log transformed attachment ratios had a normal 

distribution.  
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Figure F2-7. QQ plot of natural log transformed attachment ratio differences between 

flow cytometry and the settling method. The dash line was still not perfectly straight, 

which indicated that natural log transformation was not useful. 
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Figure F2-8. Histogram of natural log transformed attachment ratio differences 

between flow cytometry and the settling method. The histogram showed the distribution 

was still right-skewed.  
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Figure F2-9. QQ plot of natural log transformed attachment ratio differences (surface 

area ratio 1 and 2 removed) between flow cytometry and the settling method. The dash 

line was within the reference range (red dash line), which indicated after removing surface 

area ratio 1 and 2, the distribution of natural log transformed attachment ratio difference was 

almost normal.  
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Figure F2-10. Histogram of natural log transformed attachment ratio differences 

(surface area ratio 1 and 2 removed) between flow cytometry and the settling method. 

The histogram indicated after removing surface area ratio 1 and 2, the distribution of natural 

log transformed attachment ratio difference was almost normal.  
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APPENDIX G. THREE-WAY ANOVA TEST RESULTS 

APPENDIX G1. Results for natural log attachment ratios by flow cytometry  

 Df Sum 

Square 

Mean 

Square 

F-value Pr (>F) 

Clay type 2 195.29 97.644 2790.469 < 2.2×10
-16

 

Strain 2 73.20 36.601 1045.987 < 2.2×10
-16

 

Surface area ratio 11 624.13 56.739 1621.472 < 2.2×10
-16

 

Clay type: Strain 4 31.08 7.769 222.027 < 2.2×10
-16

 

Clay type: Surface area ratio 22 2254.41 2.473 70.672 < 2.2×10
-16

 

Strain: Surface area ratio 22 21.31 0.968 27.676 < 2.2×10
-16

 

Clay type: Strain: Surface area 

ratio 

44 21.28 0.484 13.818 < 2.2×10
-16

 

 

APPENDIX G2. Results for attachment ratios by the settling method  

 Df Sum 

Square 

Mean 

Square 

F-value Pr (>F) 

Clay type 3 3.0762 1.02540 142.4468 < 2.2×10
-16

 

Strain 3 0.1253 0.04175 5.8001 0.000779 

Surface area ratio 6 7.0592 1.17653 163.4417 < 2.2×10
-16

 

Clay type: Strain 9 0.8058 0.08954 12.4381 6.022×10
-16

 

Clay type: Surface area ratio 18 2.8876 0.16042 22.2859 <2.2×10
-16

 

Strain: Surface area ratio 18 0.9560 0.05311 7.3781 7.948×10
-15

 

Clay type: Strain: Surface area 

ratio 

54 2.2593 0.04184 5.8121 < 2.2×10
-16

 

 

APPENDIX G3. Results for natural log attachment ratio difference between 

flow cytometry and the settling method  

 Df Sum 

Square 

Mean 

Square 

F-value Pr (>F) 

Clay type 2 55.349 27.6747 168.0975 < 2.2×10
-16

 

Strain 2 39.600 19.7998 120.2649 < 2.2×10
-16

 

Surface area ratio 3 8.194 2.7315 16.5910 2.711×10
-8

 

Clay type: Strain 4 15.588 3.8971 23.6771 1.611×10
-12

 

Clay type: Surface area ratio 6 4.006 0.6677 4.0555 0.0014756 

Strain: Surface area ratio 6 5.390 0.8984 5.4569 0.0001067 

Clay type: Strain: Surface area 

ratio 

12 7.640 0.6367 3.8674 0.0001443 

 



157 
 

APPENDIX H. PAIRWISE COMPARISIONS BETWEEN DIFFERENT 

SURFACE AREA RATIOS 

Method Comparison Difference 95% Confidence Interval p-value 

Lower Limit Upper Limit 

Settling method 

(untransformed) 

2--1 0.01249478 -0.0390342 0.0640237 0.991176963 

50-1 0.07805425 0.0265253 0.1295832 0.000212333 

100-1 0.13638352 0.0848546 0.1879125 3.07E-12 

200-1 0.1828113 0.1312823 0.2343403 0 

500-1 0.3014646 0.2499356 0.3529936 0 

1000-1 0.42824918 0.3767202 0.4797781 0 

50-2 0.06555948 0.0140305 0.1170884 0.003671463 

100-2 0.12388874 0.0723598 0.1754177 2.50E-10 

200-2 0.17031652 0.1187876 0.2218455 5.88E-15 

500-2 0.28896982 0.2374409 0.3404988 0 

1000-2 0.4157544 0.3642254 0.4672834 0 

100-50 0.05832926 0.0068003 0.1098582 0.015355401 

200-50 0.10475705 0.0532281 0.156286 1.27E-07 

500-50 0.22341035 0.1718814 0.2749393 0 

1000-50 0.35019493 0.298666 0.4017239 0 

200-100 0.04642778 -0.0051012 0.0979567 0.107975979 

500-100 0.16508108 0.1135521 0.21661 9.88E-15 

1000-100 0.29186566 0.2403367 0.3433946 0 

500-200 0.1186533 0.0671243 0.1701823 1.47E-09 

1000-200 0.24543788 0.1939089 0.2969668 0 

1000-500 0.12678458 0.0752556 0.1783135 9.20E-11 

Flow 

cytometry 

(natural log 

transformed) 

2--1 -0.200873 -0.369102 -0.032644 0.005932 

5--1 0.5459936 0.377765 0.7142224 5.31E-14 

10--1 0.9627628 0.794534 1.1309916 0 

25-1 1.6129859 1.444757 1.7812147 0 

50-1 2.3101083 2.14188 2.4783371 0 

100-1 2.8900399 2.721811 3.0582687 0 

150-1 3.0880155 2.919787 3.2562443 0 

200-1 3.2940347 3.125806 3.4622635 0 

300-1 3.4127984 3.24457 3.5810272 0 

400-1 3.5674846 3.399256 3.7357134 0 

500-1 3.6872185 3.51899 3.8554473 0 

5--2 0.7468667 0.578638 0.9150955 0 

10--2 1.1636359 0.995407 1.3318647 0 

25-2 1.8138589 1.64563 1.9820877 0 

50-2 2.5109814 2.342753 2.6792102 0 
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100-2 3.0909129 2.922684 3.2591417 0 

150-2 3.2888885 3.12066 3.4571173 0 

200-2 3.4949077 3.326679 3.6631365 0 

300-2 3.6136714 3.445443 3.7819002 0 

400-2 3.7683577 3.600129 3.9365865 0 

500-2 3.8880916 3.719863 4.0563204 0 

10--5 0.4167692 0.24854 0.584998 1.62E-12 

25-5 1.0669923 0.898763 1.2352211 0 

50-5 1.7641147 1.595886 1.9323435 0 

100-5 2.3440463 2.175817 2.5122751 0 

150-5 2.5420219 2.373793 2.7102507 0 

200-5 2.7480411 2.579812 2.9162699 0 

300-5 2.8668048 2.698576 3.0350336 0 

400-5 3.021491 2.853262 3.1897198 0 

500-5 3.1412249 2.972996 3.3094537 0 

25-10 0.6502231 0.481994 0.8184519 0 

50-10 1.3473455 1.179117 1.5155743 0 

100-10 1.9272771 1.759048 2.0955059 0 

150-10 2.1252527 1.957024 2.2934815 0 

200-10 2.3312719 2.163043 2.4995007 0 

 300-10 2.4500356 2.281807 2.6182644 0 

400-10 2.6047218 2.436493 2.7729506 0 

500-10 2.7244557 2.556227 2.8926845 0 

50-25 0.6971224 0.528894 0.8653512 0 

100-25 1.277054 1.108825 1.4452828 0 

150-25 1.4750296 1.306801 1.6432584 0 

200-25 1.6810488 1.51282 1.8492776 0 

300-25 1.7998125 1.631584 1.9680413 0 

400-25 1.9544987 1.78627 2.1227275 0 

500-25 2.0742326 1.906004 2.2424615 0 

100-50 0.5799316 0.411703 0.7481604 4.88E-15 

150-50 0.7779072 0.609678 0.946136 0 

200-50 0.9839264 0.815698 1.1521552 0 

300-50 1.1026901 0.934461 1.2709189 0 

400-50 1.2573763 1.089147 1.4256051 0 

500-50 1.3771102 1.208881 1.545339 0 

150-100 0.1979756 0.029747 0.3662044 0.007298 

200-100 0.4039948 0.235766 0.5722236 7.52E-12 

300-100 0.5227585 0.35453 0.6909873 7.79E-14 

400-100 0.6774447 0.509216 0.8456735 0 

500-100 0.7971786 0.62895 0.9654075 0 

200-150 0.2060192 0.03779 0.374248 0.004073 

300-150 0.3247829 0.156554 0.4930117 6.99E-08 

400-150 0.4794691 0.31124 0.6476979 8.26E-14 

Flow 

cytometry 

(natural log 

transformed) 
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500-150 0.599203 0.430974 0.7674318 0 

300-200 0.1187637 -0.049465 0.2869925 0.456825 

400-200 0.2734499 0.105221 0.4416787 1.30E-05 

500-200 0.3931838 0.224955 0.5614126 2.78E-11 

400-300 0.1546862 -0.013543 0.322915 0.104833 

500-300 0.2744202 0.106191 0.442649 1.18E-05 

500-400 0.1197339 -0.048495 0.2879627 0.44357 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flow 

cytometry 

(natural log 

transformed) 
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APPENDIX I EXAMPLE OF ORIGNIAL DOT PLOTS FROM FLOW 

CYTOMETRY WITH CONTROLS 

 

Figure I-1. Dot plot of PBS only from flow cytometry. 
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Figure I-2. Dot plot of PBS with SYTO 11 from flow cytometry. 
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Figure I-3. Dot plot of PBS and strain #31 at 10
7
 CFU ml

-1
 from flow cytometry. 
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Figure I-4. Dot plot of PBS, strain #31 at 10
7
 CFU ml

-1
, and SYTO 11 from flow 

cytometry. 
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Figure I-5. Dot plot of PBS and Ca-Montmorillonite at 8×10
-4

 g L
-1

 from flow cytometry. 
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Figure I-6. Dot plot of PBS, Ca-Montmorillonite at 8×10
-4

 g L
-1

, and SYTO 11 from 

flow cytometry. 
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Figure I-7. Dot plot of PBS, strain #31 at 10
7
 CFU ml

-1
, Ca-Montmorillonite at 8×10

-4
 g 

L
-1

, and SYTO 11 from flow cytometry (surface area ratio 1). 
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Figure I-8. Dot plot of PBS and Ca-Montmorillonite at 4×10
-2

 g L
-1

 from flow cytometry. 
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Figure I-9. Dot plot of PBS, Ca-Montmorillonite at 4×10
-2

 g L
-1

, and SYTO 11 from 

flow cytometry. 
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Figure I-10. Dot plot of PBS, strain #31 at 10
7
 CFU ml

-1
, Ca-Montmorillonite at 4×10

-2
 g 

L
-1

, and SYTO 11 from flow cytometry (surface area ratio 50). 
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