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ABSTRACT 

It is widely known that soil erosion is an issue of concern in soil and water quality, 

affecting agriculture and natural resources. Thus, scientific efforts must take into 

consideration the high-resolution elevation dataset in order to implement a precision 

conservation approach effectively. New advances such as LiDAR products have provided a 

basic source of information to enable researchers to identify small erosional landscape 

features. To fill this gap, this study developed a methodology based on data mining of 

hydrologic and topographic attributes associated with concentrated flow path identification to 

distinguish classic gully side walls and bed areas. At 0.91 Km
2
 region of the Keigley Branch-

South Skunk River watershed, an area with gullies, we computed profile curvature, mean 

slope deviation, stream power index, and aspect gridded in 1-m pixel from Iowa LiDAR 

project. CLARA (CLustering LARge Applications) algorithm. An unsupervised clustering 

approach was employed on 913,495 points splitting the dataset in six groups, the number in 

agreement with within-group sum of squared error (WSS) statistical technique. In addition, a 

new threshold criteria termed gully concentrated flow (GCF) based upon data distribution of 

flow accumulation and mean overall slope were introduced to produce polylines that 

identified the main hydrographic flow paths, corresponding to the gully beds. Cluster #6 was 

classified as gully side walls. After distinguishing gullies and cliffs areas among points 

belonging to cluster 6, all six gullies were satisfactorily identified. The proposed 

methodology improves on existent techniques because identifies distinct parts of gullies 

which include side walls and bed zone.  

Another important concept is assessing gully slope stability in order to generate 

useful information for precision conservation planning. Although limit-equilibrium concept 
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has been used widely in rock mechanics its application in precision conservation structures is 

relatively new. This study evaluated  two multi-temporal surveys in a Western Iowa gullied 

area  under the approach of soil stability regarding precision conservation practice The study 

computed factor of safety (FS) at the gully area, including headcut and gully side walls using 

digital elevation models originated from  surveys conducted in 1999 and 2014.  

Outcomes of this assessment have revealed significantly less instability of the actual 

slopes compared to 1999 survey slopes. The internal friction angle (θ) had the largest effect 

on slope stability factor (S.D.1999 = 0.18, S.D.2014 = 0.24), according the sensitivity analysis, 

compared to variations of soil cohesion, failure plane angle and slab thickness. In addition, 

critically instable slopes within gully, based on units of the slope standard deviation, as a 

threshold, have produced an area of 61 m
2
  and 396 m

2 
 considering the threshold of one and 

two slope standard deviation, respectively. The majority of these critical areas were located 

near the headcut and in the border of side walls. Based on current literature, association of 

processed material (geotextile) and crop cover with high root density might be an alternative 

to improve slope instability, but empirical tests are necessary to validate this approach. 

Nevertheless, the slope instability must include other factors that capture the dynamics of 

failure.  

 .
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CHAPTER 1.  INTRODUCTION 

1.1 Soil Erosion  

It is widely known that soil erosion is an issue in soil and water quality that affects 

agriculture and natural resources. Due to erosion, valuable topsoil and its intrinsic organic 

matter are removed and the newly exposed soil may present imbalanced nutrients which 

compromise yield productivity. The eroded soil sediments also add toxic substances to 

natural water bodies and increase turbidity and toxicity (Lal & Lowery, 1999). Even though 

from 1982 to 1997 there was a 40% soil erosion reduction in the Unites States as announced 

by the EPA (2009), there is still room for improvement in mitigating environmental 

degradation. Furthermore, high soil losses by erosion are still reported in Asia, Africa and 

South America (30-40 ton ha -1 year -1) as estimated by Pimentel et al. (1995), largely due to 

inappropriate land use. 

Soil erosion is related to factors such as soil properties, topography, drainage, 

precipitation and land use (Toy, Foster, & Renard, 2002). However, the interaction among 

those properties has been found complex and remains an object of research. Likewise, the 

knowledge and judgments from experts and local people are crucial for employing effective 

methodologies to understand and mitigate this process over time. For the most part, classical 

models of soil loss analyze sheet and rill erosion. However, gully erosion contributes a 

disproportional yield of sediment at watershed scales (Pimentel et al. 1995) For this feature, 

additional factors contribute to the geometry of gully instability, such as groundwater 

sapping and tension crack development (Istanbulluoglu et al., 2005).  

The empirical measurements for modeling soil erosion at large scales, such as 

watershed, are expensive and time consuming. Furthermore, land use and soil coverage are 
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frequently field-scale estimated and changing seasonally. Thus, other less costly technologies 

are desirable, especially in places where fine-resolution topographic variables, soil and 

climate attributes not are available. One example of this advance has been reported by Watts 

et al. (2011) who increased the accuracy of recognition of conservation tillage incorporation 

high temporal MODIS series in his analysis. Furthermore, Nachtergaele and Poesen (1999)  

reported the potential assessment of soil losses by ephemeral gully erosion using aerial 

imaginary. Recently, cutting-edge computer system techniques have been applied in 

agricultural and environmental applications, such as fuzzy logic. This technique certainly can 

be used in soil erosion that needs to overcome sharp boundary problems.  

Specifically in gully research, Poesen et al. (2003) reported that those features 

generated between 10 and 95% of total eroded sediment mass in a watershed scale but, 

conversely, in that study the gullies channels occupied less than 5% of the total watershed 

area. Not only do these features contribute for the decreasing of the catchment area, but they 

are also considered effective links of runoff and sediment among watersheds and river 

systems.  

1.2 Gully Erosion Process 

Gullies are an extreme form of soil erosion that degrades diverse environments and 

compromise crop productivity. Predominantly, gully erosion happens in concentrated 

overland flow. The permanent or classic type of gully is described as a small, steep-sided 

channel that cannot be crossed by ordinary farm machinery ( FAO, 1965; Soil Science 

Society of America, 2012) as depicted in Fig. 1.1. Additionally, the weather action, soil 

formation and land use are strongly correlated with phenomena that carry large amounts of 

eroded sediments at the valley bottoms.  
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Fig 1. 1  (a) Bowl-shaped headcut of the gully viewed looking upstream from the foot of the 

western gully bank; (b) Wooded lower reaches of the mapped section of the gully 

looking downstream. (Source: Thomas et al., 2004) 

Complementarily, Poesen et al. (2003) pointed out that gullies represent a clear issue 

of exceeding threshold. In another words, this geomorphic process occurs when rainfall, flow 

accumulation, and slope are in extreme magnitude. They are also affected  by wetting-drying 

and freezing-thawing cycles (Poel et al., 1986; Thomas et al., 2009)  

As a unique geomorphic feature in the landscape, very often the footprints of gullies 

are not identified accurately by traditional remote sensing techniques. To  help answer this 

question, recently light detection and ranging (LiDAR) has been used to map and estimate 

gully erosion ( Galzki et al., 2011; James et al., 2007; Perroy et al., 2010). Remote sensing 

through high resolution ASTER imagery also has been applied to produce qualitative erosion 

risk maps (Bouaziz et al., 2009) through a combination of the factors that most influence soil 

erosion (i.e., topography, soil type, land use, climate and vegetation index).  

In addition to the gully location issue at large scales, gully widening may occur in 

different manners. Gully widening is associated with mass-wasting processes of their walls. 

Specifically for loess and loess alluvium in Western Iowa, three types were described by  

Bradford and Piest (1980): deep-seated slumps, trapezoidal slab failures and pop-out failures 
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(Fig. 1.2). The movement in deep-seated slumps is made by slides that collapse along a 

concave-upward, circular plane, turning in way that the wasting mass moves downward and 

the toe moves outward. The trapezoidal slab failures are small blocks located on the bank top 

that are detached by deep tension cracks. Ultimately, the pop-out failures consist of small 

blocks of soil that detach from the base of the gully wall forming a bowl-shaped alcove. The 

same authors advocate that the gully-wall collapses are produced by increments of water 

content through the soil due to rainfall or snowmelt infiltration. 

  

 

 

(a) Deep-seated Slump failures          (b) Trapezoidal slab failure     c)  Pop-up failures 
 

Fig 1. 2. Schematic representation of main gullies mass-wasting processes gullies in Western 

Iowa 

 

1.3 Precision Conservation 

Precision Conservation (PC) deals with the implementation of conservation 

management practices upon the landscape or agricultural areas. This broader concept 

embraces the technologies applied in precision farming and focuses not only on maximizing 

yield but also on interconnecting cycles and flows of energy in order to reduce environment 

impact (Berry et al., 2003). 

The precision conservation idea was conceived under troublesome facts that project 

increasing demands for food during the 21st century and also a 60% reduction of per capita 

arable land by the year 2050 (Lal et al.,1999). Because precision conservation uses the same 

set of technologies of precision farming in an enlarged spatial resolution, it has the potential 
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to integrate site-specific fields with off-site conservation practices to support watershed 

sustainability. Therefore, it is crucial to incorporate spatial variability of soil, hydrologic and 

topographic properties when designing conservation practices such as buffers, filter strips, 

grassed waterways and terraces. Furthermore, precision conservation must be able to identify 

features with small footprints, such as gullies. The identification of these critical areas might 

be a challenge due to the hydrologic complexity and variability across landscapes. However, 

fine-resolution elevation measurements such as those obtained with LiDAR have been shown 

to be useful for topographic indices determination under precision conservation context 

(James et al., 2007). 

Related to the yield issue, Quine and Zhang (2002) found a complex relationship 

between spatial erosion on crop yield. Eroded areas were assessed with lower yields due to 

nutrient depletion but also lower yields were related to high soil aggregation. Zhou et al. 

(2011) investigated the effectiveness and cost-benefit of conservation management practices 

considering sediment reduction. Using the WEPP model, they revealed that additional 

conservation practices are crucial for reducing sediment when using chisel plow management 

with a corn-soybean rotation. Although the authors highlighted that the implementation of 

conservation practice may be expensive, the benefits of soil loss and off-site impacts are 

valuable. As a regional example, Arbuckle et al. (2011) strongly suggested the use of 

conservation practices at the farm level to prevent soil fertility loss and sustained resilience. 

Consequently, these studies indicate clearly that precision conservation practices must 

respond to spatial erosion under intensive cropping in a practical and tangible way.  
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1.4 Soil Erosion Models 

The mathematical description of the soil erosion has been represented by several 

models that are useful to design erosion control structures, impoundments, and 

environmental planning and assessment. The most widely known and used is the Universal 

Soil Loss Equation (USLE) which estimates a long-term average annual soil loss per unit 

area by a product of five factors. The factors used in USLE are: rainfall and runoff factor (R), 

soil erodibility (K), topography (LS), crop cover and management (C) and effect of cultural 

practices (P). Primarily based on field-scale experiments, USLE and its modified forms do 

not account for deposition, one of the important processes in a modern soil erosion theory. 

The lack of sediment deposition estimates inspired new development of process-based 

simulation models for soil erosion (Nearing et al., 1990). In addition, the USLE is for 

estimation of sheet and rill erosion only. 

Poesen et al. (2003) reported several attempts employed to model gully erosion. One 

of them was proposed by Sidorchuk (2001) to calculate the amount of sediment eroded. The 

method, called the stable gully model, computes the final development state of gully flow 

line networks. In this model, crucial variables for the understanding of the gully are also 

calculated, such as the bed critical velocity of erosion initiation and the stable slopes of a 

gully profile. Nevertheless, Poesen et al. (2003) pointed out that, even though those 

initiatives have been made to develop empirical and process-based models to estimate gully 

erosion, there is still a need for more research effort to create reliable models. 

1.5 Data Mining Applied to Soil Erosion 

Agricultural and environmental processes if monitored in high temporal frequency or 

spatial scale will produce massive data volume. Thus, advanced techniques of data analysis 
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and modeling are required to visualize and analyze this information producing reliable 

predictions about those phenomena.   

This is the main purpose of an interdisciplinary field called data mining which 

enables the discovery of new patterns from large datasets (Han & Kamber, 2006). Data 

mining intersects methods such as artificial intelligence, machine learning, statistics and 

database systems. Spatial data mining is the branch of data mining that aims to analyze large 

geographical databases and extract implicit information from spatial data. It is important to 

point out that the complexity of spatial data and intrinsic spatial relationships limit the 

usefulness of conventional data mining techniques for extracting spatial patterns, thus, the 

need for advanced study is strong. 

The application of data mining methods for soil erosion issues is recent (Rouet et al., 

2009). Processed SPOT satellite images are used to produce erosion hazard maps using 

attribute ranking and association rules mining. Licznar and Nearing (2003) obtained similar 

outcomes of soil erosion compared to WEPP model using artificial neural network (ANN) 

model; however, a high quality and quantity of available data were required. Another 

application of ANN estimating soil erosion, dissolved phosphorus and nitrate in runoff was 

provided by Kim and Gilley (2008). Outcomes from this neural network model revealed a 

positive correlation of eroded sediments with rainfall and runoff. However, a major drawback 

using ANN studies is a lack of physical relations produced by the model’s results which can 

misguide conclusions about the erosional process. 
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1.6 Objectives 

The overall goal of this research was to create an innovative model to asses, with 

confidence, classic gullies identification and slope stability modelling. The objectives to 

achieve this goal were to: 

1. Develop a methodology to identify areas (pixels) in the landscape that are prone to 

classical gully erosion, using influential variables of terrain and hydrologic attributes 

derived from LiDAR digital elevation model. An unsupervised clustering approach 

was employed as way to group points with most spatial similarity and a new threshold 

to map gully side walls were proposed (gully concentrated flow, or GCF). Ground 

truthing of actual gullies was used to validate the model.   

2. Evaluate slope stability analysis in two multi-temporal surveys (1999 and 2014) in a 

gullied area at Western Iowa regarding to precision conservation management.   
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CHAPTER 2.  IDENTIFICATION OF CLASSIC GULLY USING 

AIRBORNE LiDAR DATA, TERRAIN ANALYSIS, AND SPATIAL 

CLUSTERING TECHNIQUES UNDER DENSE VEGETATION AREA 
 

A paper to be submitted to the Transactions of the ASABE Journal 

Laurimar Gonçalves Vendrusculo, Amy Kaleita, Monica Haddad 

 

Abstract 

LiDAR high-resolution elevation products have been providing an important source 

of information to enable researchers to identify small erosional landscape features. Such 

features, especially classical gullies, are responsible for delivering a large percentage of 

sediment to streams, depending on the scale of the watershed. Identification of gullies is very 

likely to optimize placement of soil and water conservation structures. It was hypothesized 

that gullies throughout a given terrain have a similar topography, hydrography, and paths of 

concentrated flow erosion. Thus, locating gullies in natural landscapes can be performed by 

using spatial combinations of those parameters computed from high-resolution LiDAR 

elevation along with zones of concentrated flow (e.g., gully bed). Using a 0.91 Km
2
 region of 

the Keigley Branch-South Skunk River (KBSSR) watershed, an area populated with classical 

gullies, we computed profile curvature, mean slope deviation, stream power index, and 

aspect at a 1-m pixel level. CLARA (CLustering LARge Applications) algorithm, an 

unsupervised clustering approach, was employed on 913,495 points splitting the dataset in 

six groups. The partition number is in agreement with within-group sum of squared error 

(WSS) statistical technique. Outcomes from MANOVA analysis (Wilks F= 0.33, p < 0.0001) 

provided strong evidence of non-similarity among six groups. In addition, a new threshold 

criteria termed gully concentrated flow (GCF) based upon data distribution of flow 

accumulation and mean overall slope identified the main hydrographic flow paths, 
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correspond to the gullies beds. Points belonging to cluster #6 were classified as gully side 

walls because they surrounded GCF lines and also it had maximum first quartile of mean 

slope deviance among other clusters. The whole gully feature was classified intercepting 

GCF lines with cluster #6 area. 

2.1 Introduction 

Accuracy in locating classical gullies increases the efficiency of targeting 

conservation practices for reducing soil erosion from agricultural fields and drainage areas. 

Generally, classical gully erosion (e.g., permanent gullies) is very likely to degrade precious 

water and soil resources through transport and deposition of topsoil with high organic matter 

(Kakembo, Xanga, and Rowntree 2009; Poesen et al. 2003). Previous studies have indicated 

that sediments from small gully features account for 10 to 94% of total sediment yield in 

some watersheds (Poesen et al., 2003;Thomas et al., 2004) 

Gully channels are characterized by U-,V-, and trapezoidal-shaped cross-sections and 

steep wall sides. Development of these gullies is predominantly controlled by surface runoff 

that produces concentrated overland flows that cut channels (Kirkby and Bracken, 2009). 

However, several studies have shown that other factors, including topographic and 

hydrological attributes, soil parent material and land use can also control gully development ( 

(Chaplot 2013; Poesen et al., 2003; Valentin et al.Li 2005; Vandaele et al., 1996; 

Vandekerckhove et al., 1998, 2000).  

Despite the significance of these features, only a few erosion models account for such 

channel-sediment losses. These include: AnnAgNPS (Annual Agricultural Non-Point Source 

pollution), WEPP (Water Erosion Prediction Project), EGEM (ephemeral gully erosion 

model), and CREAMS (Chemicals, Runoff, and Erosion from Agricultural Management 
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Systems). Most of these models compute sediment yield initiated by small open channels or 

ephemeral gullies. They also require user determination of gully locations. Therefore, efforts 

using the compound topographic index (CTI) threshold have been initiated to implement 

automatic location of ephemeral gully channel starting points (Momm et al., 2013; Svoray et 

al., 2012). An approach for identifying the location and length of ephemeral gullies 

incorporating a process-based simulation of overland flow and combining factors such as 

drainage area, surface roughness, slope, and soil critical shear stress  has been proposed by 

Daggupati et al. (2014).  

 One source for predetermined classical gully locations and other erosional linear or 

point features (e.g., escarpment, gravel pit, boulder spot, sinkhole, etc.) in the United States  

could be based on the electronic database entitled Natural Resources Conservation Service 

Soil Survey Geographic – SSURGO (Soil Survey Staff 2014). A classical gully, for example, 

is defined by a line in a shapefile format. Although there is a rigid certification process 

underlying this database, intricate gully morphology obtained from SSURGO data is not 

clearly revealed. Furthermore, this database is static and does not account for gully changes 

or development of new features.  

For more detailed mapping of intricate gully morphology, recently-developed 

technologies such as airborne and ground LiDAR (Light Detection And Ranging) cloud 

points may be useful in modeling and mapping soil erosion patterns. The advantages of 

LiDAR compared to GPS, satellite imagery and field surveying are mainly: high vertical and 

horizontal accuracy, fast acquisition, able to collect elevation data even in dense canopy, no-

weather limited, and higher data density among others. Although this is a potentially useful 

data source, for long-term monitoring applications in large areas this technology is quite 
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expensive and, thus, feasible primarily for governmental institutions (Baruch and Filin 2011). 

Recent studies related to water and soil quality have applied LiDAR, with the majority 

utilizing first and second derivatives of elevation to produce slope, curvature, or stream-

power index. For example, James et al. (2007) tested the capability of LiDAR technology for 

mapping headwater channels and gully systems under dense vegetation in South Carolina, 

and further validated the approach with field surveys using differential GPS and cross 

sections. Galzki, Birr, and Mulla (2011), processed LiDAR-based terrain attributes to 

identify ephemeral gullies in hydrologically-connected areas located in Minnesota 

watersheds. Using binary classification (e.g., gully, non-gully), a study conducted by Baruch 

and Filin (2011) presented an unsupervised model for gully extraction within alluvial 

landscapes where LiDAR-derivated terrain roughness was used to detect gully presence. That 

study also included concentrated flow path tracking and flow path selection to ascertain flow 

connectivity. Generating 0.5-m resolution digital elevation models from LiDAR transects,  

Eustace, Pringle, and Witte (2009) classified gully presence and volume for each pixel at the 

Fitzroy catchment in Queensland. Furthermore, a random-forest algorithm was used in part 

of transects sections to discover correlation between gullies and ancillary variables. In a few 

selected sites of the same catchment, Johansen et al. (2012) compared gully extent over a 3-

year period. They used an image-processing approach in which a pixel-based object-resizing 

algorithm identified gully edges from DTM raster images. 

The amount of data generated by LiDAR systems can reach a few millions points per 

square kilometer, and standard desktop computer systems are not prepared to extract 

meaningful knowledge from these massive datasets. To handle such amounts of data,  

advances in data-mining are being developed to enable the discovery of new patterns from 
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large datasets (Han and Kamber, 2006). Data mining integrates methods such as artificial 

intelligence, machine learning, statistics, and database systems. Spatial data mining is a 

branch of data mining that focuses on analyzing large geographical databases and extracting 

implicit information from spatial data. The complexity of spatial data and intrinsic spatial 

relationships limit the usefulness of conventional data-mining techniques for extracting 

spatial patterns, thus specific data mining tools for spatial data handling are needed. Shruthi 

et al. (2011) applied a rule-set of slope, drainage area, NDVI and texture contrast to identify 

gully edges from IKONOS and GEOEYE-1 images in a sub-humid region in Morocco. 

Although their algorithm is able to successfully detect gully main lines, it has a few 

limitations. It is topographically region-dependent, requires user-defined image thresholds, 

and an empirical process to remove false positives. Subsequently, to improve subjectivity 

caused by threshold determination, Shruthi et al. (2014) used Random Forest object-oriented 

analysis, a semi-automated classification method to identify gully boundaries from medium-

resolution imagery. Svoray et al. (2012) also obtained better prediction capability with a 

decision-tree algorithm rather than a traditional topographic threshold technique. This 

database included environmental, climatic and human-induced variables. Mararakanye and 

Nethengwe (2012) tested image objective, an image-based feature-extraction technique, at 

gullied sites obtained from SPOT 5 satellite imagery. Vendrusculo and Kaleita (2013) 

compared three unsupervised classification approaches: centroid (K-means and Fuzzy K-

means) and medoid (CLARA) to identify gully location in a field scale watershed at a 

Treynor, Iowa site. A 1-m digital elevation model was used to calculate topographic and 

hydrologic attributes. At a much larger pixel resolution (4 x 4 km), Vrieling et al. (2007) 

used ASTER imagery to identify gully sites in a Brazilian cerrados, a vast tropical savanna, 
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using a maximum-likelihood supervised classification approach. Based in traditional 

statistics, Lucà et al.(2011) employed bivariate and logistic regression analyses to test 

occurrence of gullies incorporating in their model diverse attributes such as lithology, land 

use, slope, and aspect-splitting point and polygon observation in training and validation sets. 

In applications where part of the objects population is previously labeled, supervised 

classification is employed. This involves grouping of observations that are similar to one 

another. A supervised approach then uses a training set of observations to produce an 

inferring function for classifying unlabeled observations. Conversely, few studies have 

employed unsupervised approaches to classify gully erosion features (Shruthi et al., 2011, 

2014). Unsupervised classification searches for hidden structure in unlabeled data. Because 

they are unique geomorphic features in the landscape, the footprints of gullies are very often 

not accurately identified at large scale. Determining their structure without prior knowledge 

fits into an unsupervised classification approach that was applied in the current study. 

We selected the clustering large application (CLARA) algorithm, proposed by 

Kaufman and Rousseeuw (1990), to discern gully-clustering among diverse landscape 

features. To deal with computer memory limitations, CLARA draws multiple samples from 

the dataset. From each sample, it arbitrarily chooses k objects, in the initial parameter 

definition, to form a number of clusters from the original dataset as representative objects 

and then assigns each remaining object to the group at the nearest distance. Then, for each 

representative object, the algorithm randomly selects a non-representative object and 

computes the total cost of swapping a representative object with the random object. The 

group memberships are updated accordingly and the process continues until a specific 

criterion is reached. The CLARA’s drawback lies in its dependence on sample size and 
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sample quality (e.g., unbiased sample) as well as the requirement that the user set up number 

of clusters. 

The CLARA algorithm is a k-medoid method. These methods minimize the average 

dissimilarities between cluster points to the most representative point in the cluster. A 

medoid point is one of the original points corresponding to the one least dissimilar from all 

data points. A different approach is given to centroid methods (k-centers). To identify the 

centroid points, the arithmetic average of point position individually for each dimension 

(variable) is computed by each cluster. The computed centroid is not necessarily one of the 

original data points. (Gullo and Tagarelli, 2012). However, according Kaufman and 

Rousseeuw (1990), k-medoid based algorithms are superior to k-centroid methods because 

they have a more robust sum of squared error A compared to a centroid approach. In 

addition, the clusters are not too elongated which allow for better characterization of all 

points within clusters. One consequence of a more compact cluster shape is the outliers are 

more easily isolated which can form clusters with more internal similarity.  

We hypothesized that gullies throughout a given terrain have similar topography, 

hydrography, and size and shape of concentrated flow paths in its bed. Thus, identification of 

gullies in the landscape might be accurately performed by using spatially- combinations of 

those parameters computed from high-resolution LiDAR elevation associated with zones 

concentrated flow (e.g., gully bed). Most studies have also focused on DEM-based image 

processing rather than on assigning attribute values to the LiDAR cloud points mostly 

because raster image processing is faster. However, we developed a novel technique that 

initially locates high slope gradient areas based on a data-mining approach using topographic 

and hydrologic parameters at pixel points computed from airborne LiDAR data, and later 
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refines the gully location by its concentrated flow path within gully bed.  The methodology 

was validated through ground truth field survey. The main contributions of this study are to: 

(a) to present a methodology to process gullies dataset, and (b) to evaluate the accuracy of 

the proposed technique. The next section describes the study area, LiDAR dataset processing, 

and data-mining techniques.  

2.2 Material and Methods 

2.2.1 Area description 

 

A study area was selected with a high density of classical incised gullies with steep 

cross-sections. Most of the gullies in the study area have a well-defined thalweg which 

represents the line of lowest elevation usually in the gully bed. This area (449,166.511 m E, 

4,655,742.51 m N) corresponds to a 0.91 Km
2
 portion of the Keigley Branch-South Skunk 

River (KBSSR) watershed located east of the city of Ames, Iowa as shown in Fig. 2.1. This 

area is currently used only for recreational purposes. 

The study area is located in the Iowa and Minnesota Till prairies common resource 

area (CRA). This region as defined by United States Department of Agriculture – Natural 

Resources Conservation Service (USDA – NRCS) is characterized by loamy soils formed in 

glacial till, with unique features such as potholes and lacustrine areas. The mean annual 

rainfall ranges from 790 to 840 mm. Rainfall distribution is irregular, with high-intensity 

rainstorms during late spring and summer seasons, as reported in the soil survey of Story 

County, Iowa. The annual daily average temperature is 8.3
O 

C. Hayden-Storden complex, 

Coland-Terril complex, Lester, and Hayden are the most extensive soil types in the study 

area landscape. Hayden soils vary from gently sloping to very steep, are typically well-

drained on the upland side, and typically comprise a considerable number of gullies and deep  
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Fig. 2.1  Site map showing the location of KBSSR watershed among Iowa counties, USA and 

detail of study area with gully networks identified by SSURGO lines (dotted lines) 

and field-surveyed patches (bold-lines). Note that the largest gully in the top left of 

insect figure it was surveyed in its top edge and floor flow patch because it was in a 

trapezoidal shape. 

 
 

 

 



26 

 

 

drainage ways. Lester soils follow the same slope pattern as Hayden soils; they furthermore 

present convex side slopes along streams and upland drainage ways. Conversely, Storden 

soils primarily exhibit convex side slopes bordering similar landscapes. 

Analysis of SSURGO gully lines in this area, as a starting point, revealed that all the 

pre-identified gully lines lie only in Hayden-Storden loams (25
 
to 50% slopes). Therefore, 

there is no variation in soil properties under these gullies in the SSURGO data. Without 

supplemental soil data, we were unable to incorporate any variables related to soil properties.  

The study area is comprised of a mixed collection of isolated and networked classical 

gullies. Field surveys were carried out at the study site to delineate the perimeters of the bank 

and bottom line of the gullies as illustrated in Fig.2.1. Surveys were mainly performed in 

March and April of 2014, in early spring before leaf-out. Therefore, access to the top edges 

and bottom area and observation of morphological aspects were facilitated due to lack of 

leaves on shrubs and trees. A few rainfall events during the survey campaign revealed active 

erosion process due to recent landslides, and sediment trace deposition and erosion in the 

drainage floor along with well-defined sharp walls/ sediment transport occurring mainly in 

the gully floors. V and trapezoidal-shaped gullies were found in the study site. Our strategy 

during this gully survey was to first delineate only the bottom of V-shaped gullies (Fig 2.2a) 

because their walls were steep. For trapezoidal-shaped gullies, both the edge and bottom 

points were collected. The survey was done using a Garmin eTrex legend handheld GPS 

receiver with 7 meter precision. We initially collected elevation and coordinate points, and in 

a post-processing procedure those points were transformed into polylines trough ArcGis 10. 

There were sites with visible high-flow concentration; showing recent soil loss in wall sides 

(Fig. 2.2b). 
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(a)                                                                    (b) 

Fig. 2.2  (a) Example of V-shaped gully and (b) concentrated flow path between two gully 

branches. Images taken at leaf-off condition in April, 2014. As shown in the 

images, the area is fully covered by leaves and hardwoods and the gully floors are 

still muddy and exhibit ephemeral flow. 

 

The six non-connected gullies in the study area can be visually distinguished in the 

hillshade image depicted in Fig 2.3a. However, an additional gully (number 3 in Fig. 2.3b) 

was noticed in the study area. In addition, it can be noted that this area is under dense canopy 

vegetation (Fig. 2.3b). 

During the survey activity, we observed gully faces from recent landslides showing 

exposed tree roots as well as drainage bottoms with unconsolidated soil material mostly 

under dense layers of dry leaves. Furthermore, head cuts were observed at an early 

developmental stage, confirming that gullies were active. A small amount of flow was noted 

at the widest gully bottom while only saturated surfaces or muddy-covered areas were found 

in the remainder. However, further investigation was performed to attempt to determine 

controlling processes of flow within gullies.   
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(a)                                                                    (b) 

Fig. 2.3  (a) Elevation hillshade map of KBSSR portion area at Story County, Iowa, derived 

from the LiDAR One Meter Digital Elevation Model highlighting gullies classified 

at SSURGO (dotted lines); (b) 2013 National Agriculture Imagery Program (NAIP) 

Four-Band Aerial Photography with field-surveyed pathways (bold lines). 

 

2.3 Data Processing 

2.3.1 Data collection and preparation  

 

An Airborne LiDAR dataset, originally at 1.4 m average bare-earth data spacing and 

later gridded to 1 m, was obtained for the study area from the Iowa LiDAR Consortium 

(available at archive http://geotree2.geog.uni.edu/lidar/). The point clouds were in a LASer 

file format (LAS) containing X and Y coordinates (UTM Zone 15N nad83), orthometric 

elevation Z (NADV88), return level (1, 2, or 12), and intensity (0-255). More than 913,000 
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4 

5 

6 
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http://geotree2.geog.uni.edu/lidar/
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data points of LiDAR elevation in that area formed the basis for computing the digital 

elevation model.  

We applied a procedure tailored to smoothing topography in forested environments. 

The smoothing procedure was necessary to remove points that represented tops of high 

vegetation and consequently hid the topographic surface below. We applied the approach to 

extract vegetation implemented by Evans and Hudak (2007) using the multiscale curvature 

classification (MCC) algorithm. This command-line tool evaluates local-point deviations 

from a mean surface and interactively erases points above this surface from the ground class. 

The two parameters required by MCC are nominal-point spacing obtained from the LAS file 

and curvature tolerance, the maximum height allowed above the mean surface for a point to 

be classified as a ground point. Valid values of curvature tolerance range from 0 to 1. MCC 

algorithm used raw elevation points from LiDAR. The resulting bare-earth surface data 

points were all then interpolated to a 1-m resolution digital elevation model (DEM) in 

ArcGIS 10 Environment.  

The methodology proposed in this study starts with identifying areas with high slope 

gradient which are based on a combination of hydrologic and terrain variables. Due to 

accentuated slopes, flow water velocity, might be high and these areas are likely to place 

linear erosional features such as gullies, ravines and cliffs. Next compute 1-m bare-earth 

DEM and then calculate the following four features to apply in the data clustering process: 

 Stream power index (SPI):  Predicts the erosive power of overland flow leading to 

potential erosion through soil scouring (Wilson and Gallant, 2000; Wischmeier and 

Smith, 1978). SPI is defined as ln (As/ β) where As is the local upslope area draining 

through a certain point per unit length and β is the local slope. Kakembo et al. (2009) 
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experiment found high values of SPI in the bottomland of gully systems with low 

slopes. Conversely, the stream power index exhibits low values in upland convex 

hillslope areas. 

 Mean slope deviation:  Defined as the difference between individual slopes from 

mean global slope computed at all points within study area. Primarily, slope has great 

significance for hydrology and geomorphology because it affects velocity of surface 

and subsurface water flow Kakembo et al. (2009)  reported positive correlation 

between slope gradient and gully depth in an African catchment. Additionally, 

Santisteban et al. (2005) have found positive relationship in a linear regression 

analysis between topographic indices and eroded sediments in ephemeral gullies from 

four small to medium-size watersheds in Spain. The goal of the mean deviation, a 

measure of dispersion, is indicate how different the local slopes are from their 

regional mean.  In this way we captured locations with abrupt changes in slope. 

 Profile curvature (m
-1

):  Corresponds to the second derivative of slope and it is 

parallel to the direction of the maximum slope. Negative values characterize surfaces 

upwardly convex; therefore, decrease flow velocity in these areas. Profile curvature 

has been reported as significant in controlling flow acceleration and sediment 

transport ( Istanbulluoglu et al., 2008; Wilson and Gallant, 2000). 

 Hillslope aspect:  A ψ or slope aspect that corresponds to the direction of steepest 

descent measured in degrees clockwise from north ranging from 0
0
 to 360

o 
(Hengl 

and Reuter, 2009). Additionally, slope aspect represents different degrees of 

insolation resulting from sunny versus shaded slopes. Numerous empirical studies 

have examined the influence of slope aspect on soil erosion (Besler, 1987; 
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Istanbulluoglu et al., 2008; Weaver, 1991). They concluded that north-facing slopes 

tend to be more eroded than south-facing slopes, primarily due to differences in soil 

moisture fluctuations. Likewise, Churchill (1982) reported differences in landslide or 

failure patterns on south-facing versus north-facing slopes. This study in the white 

river badlands of South Dakota reported that north-facing slopes experienced highly 

intensive failures or landslides compared to south-facing slopes, where high-

frequency failures occurred but carried smaller amounts of sediment. Causes for this 

aspect-induced difference are related to variations in antecedent soil moisture that 

leads to soil disaggregation. However, several researchers found opposite patterns. 

Istanbulluoglu et al. (2008) found south-facing slopes in asymmetric valleys in central 

New Mexico were more prone to erosion compared to north-facing slopes, even 

though the former were steeper. Patton and Schümm (1975) described greater 

stability of steeper slopes facing north because of denser vegetation coverage 

compared to those facing south. In this study, the aspect values for each point were 

coded generalizing the main cardinal directions as follows: 

 315
0
 - 360

0
  and  0

0
  to 45

0
  is equal to 1 (north-faces) 

 46
0
  to 135

0
 is equal to 2 (east-faces) 

 136
0
  to 225

0
  is equal to 3 (south-faces) 

 226
0
  to 314

0
  is equal to 4 (west-faces) 

All four variables were created from a raster-smoothed DEM; the value of pixel 

points in the remaining four variables map were then transformed to point values to be 

processed in the next step. As the outcome of this process, we produced a dataset textual file 
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of 913,494 observations with SPI, mean slope deviation, profile curvature, and hillslope 

aspect point values along with geographical coordinates.  

2.3.2 Classification methods 

 

We decided to test unsupervised classification methods to extract gully features 

because gullies are distinct features in geometric and hydrologic nature compared to the 

surround landscape. Unsupervised classification can be useful when a training area is not 

available which means that there is no previous field survey at this area. Generally, in data 

mining using unsupervised methods no target object is previously introduced; instead there is 

a search for a pattern or intrinsic structure among parameters or objects forming groups or 

clusters.  

Following a previous preliminary study (Vendrusculo and Kaleita, 2013) that compared 

diverse types of unsupervised classifiers, the CLARA algorithm, described above, was 

selected as the classification approach. In our prior study, this algorithm was superior 

compared to centroid approaches like K-means and Fuzzy K-means in our previous study. 

However, because of clustering algorithm complexity, enormous computer memory and 

processing times are required. CLARA algorithm uses the sampling approach to alleviate 

these problems. The classification of the gullied areas was performed using “Cluster” 

package available at R Statistic package (R Development Team 2011). A script written in the 

R programing language was used for this purpose. Since CLARA, like many other clustering 

algorithms, begins with assigning random initial values in the first run to its centroid points, a 

fixed seed (s=110) was used to permit reproducible results of the CLARA clustering. 

Since the CLARA algorithm requires the user to provide the number of clusters, we 

used the minimization of within-group sum of squared error (WSS) to determine how many 
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groups were statistically distinct from one another (Mortazavi and Jalili, 2014). WSS is one 

similarity measure that evaluates how well a clustering algorithm may perform. The 

algorithm calculates the distance from each classified observation to its representative cluster 

point. Mainly, as the number of cluster increases, the WSS decrease, because clusters 

become smaller and better defined. Thus, an adequate cluster number can be selected from 

the point where error decreases drastically. Finally, a multivariate analysis of variance 

(MANOVA) using the R package HSAUR was conducted to determine if the cluster were 

statistically different, thus the null hypothesis was rejected. The null hypothesis in this 

context asserts that the means of clusters were similar 

After the CLARA classification process, the steps outlined in the following sections 

were used to identify data groups under the gully threshold criteria.  

2.3.3 Threshold model to identify concentrated flow path within a gully channel bed  

Since the computed flow accumulation given by ArcGis produces the weight of all 

cells flowing into each downslope cell for the study area, we proposed a general threshold 

model to identify gully concentrated flow paths (GCF) present only in the channel gully bed. 

Thus, we identified the flow accumulation that is likely to occur in the gully channel. To do 

this, the proposed threshold criteria selecting higher values of flow accumulation in places 

where the slope is also greater than the mean area slope. The mean slope computed to the 

study area is 6.14
o
. This approach combines statistical data distribution with topographic and 

hydrologic gully characteristics. 

Therefore, in order to select the range of high flow accumulation values, we sorted 

and divided the values of flow-concentrated paths into 10 parts according to a Natural Jenks 

classification. Thus, each break in the flow accumulation values represented 10% of the 
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population. Then, using trial-error approach, we removed the 10% lowest values of flow 

accumulation, after that 20% of the lowest values and so on. For each tentative, we plotted in 

ArcGis the remaining values to observe if the flow paths, formed by flow accumulation cells, 

had spatial proximity with the surveyed gully beds. The trial-error approach revealed that the 

lowest 10% (first group) of flow accumulation values removal (10 % lowest values of flow 

accumulation < 5500 m
2
) associated to the local slope greater than mean slope was the 

nearest and obtained approximately similar  length comparing with the surveyed gullies beds.  

A few spurious pixels were manually eliminated. Although10 was selected as a partition 

number, a conservative approach is still an educated guess. Scenarios using partitions > 10 

and consequent removal of the lowest 10% of values produced an extended concentrated 

flow patch. 

The proposed methodology described above to gully identification is summarized in 

the framework illustrated in Fig. 2.4. 

2.3.4 Validation methods 

 

Initially, we tested whether the flow path defined by LiDAR DEM was consistent 

with the survey procedure, e.g., GPS gullies pathways, since the SSURGO polylines seemed 

somewhat broad to be used as a basis of concentrated flow. Trough visual analysis we can 

infer that SSURGO polylines follow the spatial distribution of soil units and consequently 

might be shifted from the real gully bottom if some soil classification error occurred. For this 

reason, SSURGO were used only for reference purpose. 

For this reason, the validation purpose only compared features surveyed during field 

work.   

 



35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4  General framework including  three stages of the gully morphology with include the 

identification of side walls cluster from CLARA identification and gully 

concentrated flow (GCF) polylines finalizing with the spatial intersection of these 

gully elements.  
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2.4 Results and Discussion 

2.4.1 Comparing field survey and gully concentrated flow paths  

Fieldwork has identified seven classic gullies and threshold GCF procedure computed 

six main paths with concentrated flow in the same surveyed area. The longest edge and 

channel length were 1981 m and 608.3 m (#1), respectively. The shortest length was 32 

meters (#3) which was not identified by the GCF threshold procedure. The mean length of 

seven gullies was mean = 327.8 m with standard deviation of 269.75mm, as shown in Table 

2.1. An in situ investigation supported by a 3D visualization using LiDAR DEM confirmed 

the composite of a trapezoidal shape for the largest gully and a V-shape for the remaining 

gullies.  

 

Table 2.1  Statistics of surveyed polylines and GCF in the study area 

 
Gully 

Identification 

GPS Survey length 

(m) 

GCF polylines 

length (m) 

Difference
¥ 

(m) 

Shape 

1 1,981 *, 608.3 ** 962.67*** - Trapezoidal 

2       203.78 *         92.34      111.44 V 

3    32 *     0   32 V 

4       145.09 *      45.9      99.2 V 

5       785.26 *      527.67      257.59 V 

6       262.02 * 160 102 V 

7       258.57 *      171.12        87.45 V 

Total  4,275.92 1,959.7 2,315.3  

*Top edge measured separately ** Bottom measured separately *** edge and bottom computed 
¥ 
Positive values represents increase regarding values obtained from survey. 

 



37 

 

 

From visual analysis of Fig. 2.5, it is apparent that pathways of gully bottoms exhibit 

a meandering channel form. These landscape units have a more intricate pattern than 

computed water flow lines, suggesting that the terrain had changed between the time of the 

LiDAR flight and the 2014 survey.  

Nevertheless, the computed polylines were generally in agreement with the surveyed 

locations of the bottoms of the V-shaped gullies based in visual analysis. Thus, concentrate 

flow path (GCF) can be used as a bottom in V-shaped gullies for this area.  

 

 

(a) (b) 

Fig. 2.5  Map with original flow accumulation (a) and gully concentrated flow polylines 

computed (black lines) by the threshold procedure compared with the fieldwork 

paths (red lines).  
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Figure 2.5 (a) shows the original flow accumulation map produced by ArcGis from 

flow direction and elevation maps. After execution of GCF procedure at the GIS, the 

resulting polylines are depicted in Fig. 2.5 (b) which reveal, when compared with field work, 

a much simpler bottom line of gullies existent in that area.  

The analysis of distance between the survey channel bed and concentrated flow path 

lines in the largest (#1) gully is depicted in Fig. 2.6. Using the GIS environment, the largest 

distances were identified at points that seemed to rapidly change in flow direction, identified 

during field work. Among seven gullies, only gully line #1 had a headcut completely crossed 

by the computed polylines. For the remainder of the gully headcuts, the distances are in the 

range of 23 to 122 m downhill from the flow accumulation starting point. Furthermore, a 

much larger flow-contributing path than the gully length itself, computed from the 

concentrated flow network, might explain the greater lengths observed in gullies 1 and 5. 

Although there was a computed weak power function, R
2
 =0.03 (Fig. 2.7), it might suggest 

dynamic change in the local landscape. The difference might also be explained due to data 

acquisition errors, including those of both GPS devices and LiDAR.  

An additional comparison among the total length of each gully from the field work 

survey and the computed GCF paths are shown in Figure 2.6. Despite of the great total length 

difference between GCF (2,315 m) and fieldwork, R squared is high  for the linear regression 

line that predict length GCF with slope around 0.7.  
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Fig. 2.6  Distance variation in the largest gully (#1) at KSSBR study area between bed-path 

survey and flow-accumulation streamlines exceeding 5000 m
2
 (e.g. high flow). The 

first point corresponds to the headcut and further points head toward the South 

Skunk River.   

 

 

 

 
 

 

Fig. 2.7  Linear regression models among six measured classic gully length and predicted 

gully concentrated flow (GCF) lines.  
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2.4.2 Statistical analysis of terrain attributes 

 

General statistics of terrain and hydrologic attributes are displayed in Table 2.2. Over 

the 913,494 points, the elevation ranged between 270 m in the Northeast portion and 300 m 

in the Southwest portion of the study area. SPI ranged between -7 and 7.8 with negative or 

lower values near gully banks (Fig. 2.8 a). Data distribution, through histogram analysis, 

exhibits a left-skewed histogram in mean slope deviation characterizing median slope 

gradient less than mean global slope (6.14
 o
). The mean slope deviation also has high data 

variability from the average (S.D:9.6). Aspect after coding process presented a mean equal to 

2 with small standard deviation (S.D.: 1.22). Profile curvature showed a highly concentrated 

range of points.  

Table 2.2  General statistics for study area considering terrain attributes of elevation above 

sea level (Z); stream power index (SPI); mean slope deviation, aspect and profile 

curvature (Curv pr) 

 
  Z     SPI Mean slope deviation Aspect coded Curv pr 

Statistic (m) m radian Degree dimensionless   m m
2
  

Mean 283 -4.6   0.00 2.13      0.9 

SD     8.9   1.6   9.64 1.22    21.7 

Min 270.5 -7  -6.15 0 -664 

Median  -5  -3.83 2       0 

Max 300.2   7.8 65.56 4   609.5 

 

The median SPI is close to the average mean considering the whole study area despite 

of the many upper outliers (values superior to 75
th

 quartile). The SPI long upper whisker 

means that values varied amongst the most positive quartile group. The data are left skewed, 

meaning that area have SPI values occurring inferior to median (Fig. 2.8a). The coded aspect 

boxplot demonstrated that there is no preference for a specific slope face in this region (Fig. 

2.8b). Zero average of mean slope deviation representing the null difference between global 
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and local slope was found, despite of the numerous outliers in the 3
rd

 percentile of boxplot 

(Fig. 2.8c). Deviation of slope mean and profile curvature boxplot shows majority of data 

concentrated around mean and median values. Profile curvature is the one that holds the 

greatest variability among the variables from the average (Fig. 2.8d). 

 

 
Fig. 2.8  Descriptive statistics of four variables used in the clustering considering the entire 

study area. 
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From a visual interpretation, the stream power index map reveals the high runoff 

contribution located in the gully bed originating from uphill land (Fig. 2.9 a). Highly-

negative values of profile curvature represent concave surfaces and are distinguishable near 

the floor areas of gully features (Fig. 2.9 b), which are in agreement with the Kakembo et al. 

(2009) study. Conversely, positive curvature values or convex shapes represent surrounding 

concave surfaces forming a visible dendritic pattern in the study area (Fig 2.9 c). High 

variations in mean slope deviation gradient, similar to slope attribute, occurs near the survey 

flow path, in good agreement with both the fieldwork and digital elevation model (Fig 2.9 d). 

In general, North and East slope faces in gully banks are dominant.  

2.4.3 Classification accuracy 

 

An analysis of the WSS curve reveals that a substantially decreased error is reached 

around six clusters (Fig. 2.10) in this study area. Therefore, we set the cluster number as six 

during unsupervised CLARA clustering procedure using terrain and hydrologic parameters. 

The variables were computed at point level from airborne LiDAR data. A few spikes can be 

noted in the WSS graphic (e.g., 19, 29, 36 groups) which suggest the increasing partitioning 

is sensitive to the spatial nature of the data.  

Large variations in mean slope, such as at gully edges or beds, were shown in cluster 

boxplots. Pixels clustered at cluster 4 are found on steep slope edges. There is a gradual slope 

gradient among cluster 4, 5 and 6, as can be observed in Table 2.3, where the points 

belonging to the later cluster cover the majority of gullied areas. According to the coded 

aspect boxplot (Fig. 2.11), the data distribution is very similar among clusters with the same 

median values which represent that all clusters have representatives of slopes facing the four 

directions (North, South, East, and West. A larger data variation is observed in profile 
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(a)                                      (b) 

    
(c )                                         (d) 

Fig. 2.9  Maps of (a) Stream power index, (b) profile curvature (c) aspect (d) mean slope 

deviation at the study area from 1-m LiDAR data. The black lines in the maps 

represent the survey paths from field work.  
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Fig. 2.10  Sum of squares error curve between representative centroid point and observation 

labeled in each cluster. According elbow technique the lowest adequate number of 

clusters is equal to 6. 

 

curvature at clusters 4 and 5, although the data distribution shown in Fig. 2.11 is masked by 

the presence of high and low values (outliers). Clusters 2 and 5 have only positive values, 

and the largest standard deviation is exhibited by cluster 4 whereas the lowest is cluster 1. 

However, clusters 1, 2, and 6 include both convex (profile curv < 0) and concave (profile 

curv < 0) shapes that might lead to erosion and soil redistribution (Table 2.3). 

 

0 10 20 30 40 50

0
e

+
0

0
2

e
+

1
3

4
e

+
1

3
6

e
+

1
3

8
e

+
1

3
1

e
+

1
4

Number of Clusters

W
it
h

in
 g

ro
u

p
s
 s

u
m

 o
f 
s
q

u
a

re
s

Number of adequate clusters = 6 



45 

 

 

Table 2.3  Summary statistics of topographic and hydrologic information by classes in the 

study area. 

 

Statistic 
1 

n= 57,9651 

2 

n=127,726 

3 

n= 87,548 

4 

n=11,219 

5 

n=24,070 

6 

n=83,280 

Min Curv:-7.4 

S:-6.14 

Asp: 0 

SPI: -7 

Curv: 3.04 

S:-6.12 

Asp: 0 

SPI:-7 

Curv: -49.5 

S:-6.13 

Asp: 0 

SPI:  -6.9 

Curv: -663.8 

S: -6 

Asp: 1 

SPI: -6.9 

Curv: 24.8 

S:-6 

Asp:0 

SPI:-6.7 

Curv: -36.6 

S:6 

Asp:0 

SPI: -5.74 

Mean Curv:0.08 

S: -4.18 

Asp: 2 

SPI:-4.8 

Curv: 12.2 

S: -0.85 

Asp: 2.4 

SPI: -4.21 

Curv: -15 

S:0.7 

Asp:2.37 

SPI:-5.8 

Curv:-92.5 

S:26 

Asp: 2.37 

SPI: -4.6 

Curv: 67.75 

S:19.4 

Asp:2.4 

SPI: -3 

Curv: -1 

S: 20.6 

Asp: 2.11 

SPI: -3.4 

Max Curv: 5.7 

S:6.67 

Asp: 4 

SPI: 6.66 

Curv: 35 

S: 17.6 

Asp:4 

SPI: 6.9 

Curv: -4.2 

S: 26.2 

Asp:4 

SPI: 6.7 

Curv:-35 

S: 63 

Asp:4 

SPI: 4.83 

Curv: 609.5 

S: 65.6 

Asp:4 

SPI: 7.8 

Curv:26  

S:58.3 

Asp:4 

SPI:7.1 

SD Curv:1.82 

S:2.27 

Asp:1.3 

SPI:1.9 

Curv: 6.33 

S:4 

Asp1: 

SPI:2 

Curv:8.6 

S:5.4 

Asp:1 

SPI:1.22 

Curv:75.3 

S:16.3 

Asp:1 

SPI:1.27 

Curv:63.5 

S:14.8 

Asp: 1.1 

SPI: 2.1 

Curv:11 

S:9 

Asp1: 

SPI:1.4 

n represents the number of observations in each cluster. Curv: Curvature, S: Mean slope deviation, 

Asp: Aspect, SPI: Stream power index\ 
 

 A MANOVA statistical analysis was employed on the classified original data to test 

whether the groups in the study area should be considered to be different. Results from the 

MANOVA showed that population means for each cluster differed significantly (Wilks 

F=0.33, p <0.0001); thus, hypothesis H0 was rejected. The six groups found in the clustering 

process were not similar. 

Another approach to visualizing the partitioning results is depicted in Fig. 2.12, where 

data are shown in a bivariate plot of principal components. The five attributes are reduced to 

the two principal components which, in this case, would explain 56.2 % of the point 

variability. The points, as shown in Fig.2.12, represent the best examples of the clustering 

process. There are a few combinations that are clearly differentiated, such as 1 and 5 or 2 and 

3; however, there is an overlap between clusters 6 and 5. 
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Fig. 2.11  Box plots of attributes used in CLARA unsupervised clustering distributed by 

cluster. The boxplot shows the data extremes (whiskers and the points for extreme 

cases), lower and upper quartiles, and the median.  
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2.4.4 Gully classification 

The final classification resulting from the CLARA clustering in the study area under 

gully erosion is shown in Figure 2.13a. The gully walls cluster was selected as the area 

surrounding GCF lines and also the maximum first quartile (25%) of mean slope deviance. 

The cluster that met this requirements was cluster 6. Additionally, points classified as cluster 

6 formed the larger area compared with points of cluster 4 and 5 that were placed in the 

gullies and cliff edges. The approach to compute GCF lines effectively removed areas in 

urban portion of study area. Initially, due the roofs elevation differences, those points were 

also classified as cluster 6; however, after executing GCF threshold, those roof zones were 

excluded as potential gullied areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.12  Bivariate plot of principal components according the eight groups classified by  

CLARA method.  
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(a) 
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(b) 

Fig. 2.13  (a) Final study area classified with six groups; (b) refined areas formed by points 

in cluster 6 and classified as gully side walls (blue areas). The bold lines represent 

the GCF polylines obtained by the general threshold.  
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Nevertheless, there were still two types of linear features in the area with points 

classified as cluster 6. There were gullies and two cliffs classified as special features in 

SSURGO database. Thus, to separate the two different features, flow direction was used to 

distinguish flow that contributes to the gullies and also reach the cliffs, as illustrated in Fig. 

2.13b. Therefore, the methodology presented is suitable to identifying the whole gully 

morphology including side walls and bed areas. The majority of the literature referencing 

classical gully location map this feature as a whole feature. This second contribution is 

important for design of precision conservation structures that enable engineers to rank the 

priorities in the bed or side walls areas according effectivity and financial resources 

available. 

2.4.5 Precision conservation application 

The use of precision conservation structures in the area are due to outcomes obtained 

by the proposed methodology which include location of critical hillslopes that are potential 

areas of shallow landslides and erosion due particle detachment. With exception of winter, 

the surrounding area of gullies is located under dense forest. This condition might avoid a 

solution based in filter or buffer strips around the gullies edges because of issues due to 

vegetation establishment resulting from a restricted amount of sunlight.  

After identification of gully morphology, it can be noted visually that points located 

in cluster 3 are placed in the gullies’ edges; in addition, this cluster obtained the lowest SPI, 

which implies high slopes. Thus, slope stabilization with geotextile or natural fiber blankets 

is a possible solution in this area. Goddard (2005) also emphasized this landscape position 

approach to precision conservation purposes. Alternatively, it is possible to use existing trees 

and shrub debris at locations parallel to contour lines as suggested by Swift et al. (1993). An  
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example, as depicted in Fig. 2.14, shows where the areas of cluster 3 are placed and their 

dimensions. This information can reduce time and optimize resources for conservation 

structures also providing crucial information for possible scenarios of soil erosion controls 

placement. 

  

 

Fig. 2.14  Clustered area surrounding Gully #3 with a cross section of its open channel. The 

gully edge has points classified as 3 and can be chosen to soil control structures 

placement. 

 

 

2.5 Conclusions 

This study proposed a semi-automated gully identification procedure based on data 

mining of hydraulic and topographic combined to gully bed concentrated flow path derived 

from high-resolution elevation data (LiDAR). The contribution this study provides is a novel 

combination of four variables: coded aspect, mean slope deviation, stream power index and 
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profile curvature applied at centroid-clustering approach, implemented by CLARA. 

However, this non-time consuming technique is computer memory demanding, but can be 

used at a location of high delivery source of sediments such as gullies. In addition to the 

relatively complex targets in the study area (e.g., residences roofs, cliffs, roads, etc.) this 

methodology identified all six surveyed gullies. The only drawback of this technique is that it 

was not able to identify the bed zone of gully #3, and it also required an additional step to 

partitioning of cluster 6 in order to distinguish gullies and cliffs. Additional benefits from the 

proposed methodology are the effective identification of the gully as an open channel 

comprised by side walls and a bed path. Under a precision conservation approach, there is  a 

need to consider gully location as more than the entire feature as currently cited by several 

studies ( James, Watson, and Hansen 2007; Mararakanye and Nethengwe, 2012, Momm et 

al., 2013; Pike et al. 2012). Therefore, as expected, areas with high slope gradient located 

primarily in the border, can be identified as targets to conservation practices like geotextiles 

or natural fiber blankets (#cluster 3).   

It is, indeed, critical to perform vulnerable areas mapping to broader audiences such 

as conservationists, engineers, researchers, and especially farmers to help mitigate damage 

resulting from gully erosion, a fast-changing landscape processes. Identification of degraded 

areas also helps enhance soil and water conservation structures placement and management 

practices.  

High-resolution elevation measurements, similar to LiDAR, can significantly change 

the way that landscape features are classified nowadays. Elements not identified in the past 

because of the abstraction due to lower resolution (e.g., USGS 30 m contour lines), can now 

be more intensive, related in terms of hydrological and topographical similarities with such 
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features as in the real world. The proposed methodology may be useful for other applications 

such as landscape analysis. Because the number of classes used in the data-mining process 

provides a range of spatial scales, many classes may capture microsites’ features. 

Conversely, a smaller number of classes might be used to emulate a watershed or even an 

entire landscape.   

Hyperspectral data are also newly available through the LiDAR spectrometer, so 

evaluation of sensitive models is required to discover various features related to soil erosion.  

Monitoring gullied areas also requires a time series of LiDAR data. One future solution 

tailored to small or medium-sized areas might be to obtain LiDAR series using unmanned 

aerial vehicles (UAV) instrumented with thermal camera or LiDAR devices. 

Soil cover is highly correlated with topsoil resistance, especially under highly-

concentrated flow conditions that lead to runoff and soil erosion (Knapen and Poesen, 2009). 

Therefore, an inexpensive, reliable, and indirect approach to quantify ground cover or 

vegetation and its variation in space and time will be an object of further investigation as this 

study continues. 

Finally, our conclusions only apply to KBSSR study areas with steep-slope 

topography. Future research activities could test the robustness of our methodology through 

similar evaluations in other areas with different soil and topographic characteristics. In 

addition, one remaining research could be carried out to apply our clustering algorithm to 

large spatial databases to identify clusters with arbitrary shapes and minimal numbers of 

input parameters. 
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CHAPTER 3.  EVALUATING GULLY SLOPE STABILITY IN MULTI-

TEMPORAL SURVEY BOUNDARIES FOR PRECISION 

CONSERVATION PURPOSE 
 

A paper to be submitted to the Journal of Earth Surface Processes and Landforms 

Laurimar Gonçalves Vendrusculo, Amy Kaleita 

 

Abstract 

A large amount of sediment that originates from gully side walls and headcut causes 

concerns related to soil and water quality. However, little attention has been paid to soil 

mechanics associate to the gully slopes.  The goal of this study was evaluate the slope 

stability analysis approach  in two multi-temporal surveys carried out in a western Iowa 

gullied area considering a precision conservation purpose The study computed spatial 

failures (Factor of safety indices) at gully head and gully walls of digital elevation models in 

surveys conducted in 1999 and 2014. Outcomes of this assessment has shown significance 

less instability in the actual slopes compared to 1999 survey slopes. Internal friction angle (θ) 

had the largest effect on slope stability factor (S.D.1999 = 0.18, S.D.2014 = 0.24), according the 

sensitivity analysis, compared to variations of soil cohesion, failure plane angle and slab 

thickness.  In addition, critical instable slopes within gully, based on units of the slope 

standard deviation as threshold have produced  area of 61 m
2
  and 396 m

2 
  considering the 

threshold of one and two slope standard deviation, respectively. This critical areas were 

located majority near the headcut and in the side walls.  Based on current literature, 

association of processed material and crop cover with high root density might be an 

alternative to improve slope instability, but empirical tests are necessary to validate this 

approach.   
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3.1 Introduction 

Slope failures are difficult to predict and causes social and economic losses in 

addition to environmental degradation (Glenn et al. 2006). One important limiting factor in 

understand slope retreat, regarding to gullying, is its complex interaction with soil properties 

and local environment which including topography and climate. Conversely, its damages, 

without distinction, impact population worldwide. In a global scale, USA account for 15% of 

the total economic annual property damage due landslides which reaches tens of billions of 

dollars (ITC, 1996).  

  In a regional scale, mapping slope stability in areas located in the vicinity of 

agricultural lands play a major role for management practices.  Classical gully is a feature in 

the landscape that generate disproportioned yield of sediments in the watershed (Galzki et al., 

2011), thus it require priority in this modeling due its importance in erosion process. Those 

features are significant drainage channels susceptible to erosion caused by runoff. Their steep 

side walls and the channel head are locations that experience considerable morphological 

changes, typically, after intense rainfall events and freeze-thaw cycles (Bradford and Piest, 

1977, 1980). Many are the reasons that influence classic gully widening, deepening, and 

lately stabilization. The leading causes are related to gully-head retreat, upslope sediment 

movement, hydraulic shear threshold obtained by overland flow on the rim and on the high 

steep walls, downward mass wasting of walls, and local process at headcut such as rain 

splash, plunge tools or even biological activity. Also seepage and tunneling contribute for the 

process of gully erosion (Oostwoud et al., 2001). Channel head is defined by Montgomery 

and Dietrich (1988) as the most distant upslope location of a channel steep wall banks. The 

same authors have found that a threshold controls to channel initiation. This threshold is 



61 

 

 

based on the inverse relation between the contributing drainage area and the local valley 

slope. However,  Di Stefano et al. (2000) have pointed out that physical process of sediment 

transport on hillslopes are not similar to transport within gully network.   

Studies have been employed to understand the mechanism of gully-retreat through 

parameter such as degree slope, slope height, soil density, and strength (Shit and Maiti, 2012; 

Bradford and Piest, 1980). There are phases associated to this process that might be triggered 

by high kinetic flow energy, especially, during high intensity rainfall events: (i) failure of 

gully head and banks (ii) sediment being carry through channels by overland-flow (iii) 

degradation of the channel which takes to lowering gully bottom surface with debris and 

sediments deposition. Furthermore, after phase I, has been reported a block of soil 

overhanging at headcut, solely hold by plant roots, that late will collapse due to desiccation 

cracks or deterioration of roots strength.  Positive pore-water pressure caused by runoff water 

is considered vital to start mass failure of gully head and stream banks  (Simon and Box, 

2006). The previous study also has suggested that positive pore-water pressure is associated 

to macrospores infiltration and crack evolution. Other important factor to consider mass fall 

is due to antecedent moisture conditions, therefore, heavy rainfall precipitation, solely, is not 

enough to trigger mass movement if you have prior dry conditions (Simon and Box, 2006).  

Furthermore, climate response and dynamic in land-use also alter the location of the channel 

head (Montgomery and Dietrich, 1992).  As result, study carry out by  Molina et al.(2009) 

found that fluctuations in sediment deposition is explained significantly by vegetation cover 

in gully bottom at southern Ecuadorian Andes. 

Failures in gully slope has been studied under the perspective of plan failure theory 

(Istanbulluoglu et al., 2005; Bradford and Piest, 1977; Bradford et al., 1973). Chaplot (2013) 
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also evaluated impact of terrain morphology, parent material and soil types in the gully side 

wall retreat. Gully slopes are susceptible to resisting forces such as gravitational due to soil 

mass, weight of water when infiltration and, water table rise and seepage forces of 

percolating water. Therefore, studies have been early employed to explain instability of 

slopes in loess regions (Bradford and Piest, 1977; Lohnes and Handy, 1968). This concept is 

based in soil mechanics which is explained by geometrical conditions to produce rock or 

gully edge to collapse. The tension crack frequently placed in gully areas are in upper surface 

as described by Hoek and Bray (1981). This study use the same simplification conditions 

described by Hoek and Bray (1981)  where water is present only along of failure surface and 

considered the rest of slope mass as impermeable. Thomas et al. (2009) pointed out that the 

crack depth are difficult to measure, however, their experiment found out the depth close to 

the water table in a valley-bottom gully at western Iowa. In that way, mathematical equation 

from  slope geometry can simulate conditions where slope are  completely drained or when 

water from heave rain storm event fill in the crack as depicted in Fig. 3.1. 

 

 

 

  

 

 

 

(a)                                                                          (b) 

Fig. 3.1  (a) Geometry of the slope with tension crack placed in upper slope surface and (b) 

diagram forces showing the relationship of resisting and driving forces to a generic 

trapezoidal failure surface.  
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The factor of safety (FS) employ a similar analogy of a block in an inclined lane 

which to stabilize must to have an equilibrium forces. It is calculated by the coefficient of 

total force resisting sliding to the total force tending to sliding movement. 

    
                                 

                
  (1) 

Where  

A = (H – Z)* cosec      (2) 

   
 

 
                    (3) 

   
 

 
    

  (4) 

Where z is computed in H and x terms: 

                 (5) 

A first approximation of critical head (Z crit) need for slab failure, considering h the 

height of the topo of the bank above the datum is: 

               (6) 

Assuming that the tension crack in located in the upper slope surface  

   
 

 
         

 

 
 
 
                             (7) 

Where c is the cohesion of the loess alluvium, A is the length of failure surface, W is 

the total weight of the sliding slab,     the angle of the failure surface      
 

 
 ),     is the 

actual slope, U is the mean water pressure normal to the failure surface and, V  is mean water 
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pressure in the tension crack (Hoek and Bray, 1981). Considering Z the depth of the tension 

crack and      w are the unit weights of the slab and water.  These values were also the 

baseline of Thomas et al. (2009) study. 

Under dry conditions, we considered that there are no forces in the tension crack and 

sliding surface, even though we account for some level of soil moisture, no significant force 

related to pressure is created. In this case, the forces V and U are zero and the equation 1 can 

be written by: 

   
   

      
                    (8) 

Conversely, when water is present only in the tension crack or slab failure after a long 

dry period and assuming that the rest of the slab besides the crack area is impermeable, the 

significant force will be only due to the tension crack. The uplift force, in this case, can be 

neglected (U=0). So, equation 1 is reduced to: 

   
                               

                
  (9) 

Nowadays, advances in limit-equilibrium modelling are integrated to geographic 

information systems (GIS) and rather to deal with calculation in a single slope it can process 

medium and large areas at once. One example is CHASM (Combined hydrology and stability 

model, implemented in web-based GIS, is a physically-based model with two-dimensional 

landscape (Thiebes et al. 2013). It is use Bishop's simplified circular method to perform 

landslide analyses and prediction trough Factor of Safety computation.  

It is critical to assume that all the measurements must to be in a unique spatial scale. 

There are many long-term experiments that collect their variables using local and very 

precise coordinate system (e.g. Tomer et al., 2005). In order to adjust these measurements to 
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actual source of information (e.g. LiDAR), the process of coordinate transformation from one 

system to another is indispensable.  When the survey has produced only X, Y coordinates, 

the two-dimensional transformation is employed.  If vertical or elevation measurements are 

included so, three-dimensional coordinate’s transformation is recommended. The former 

transformation imply operations of scaling, rotation and translation. In case of more than 2 

control points exists, the least square solution can be applied.  Least square adjustment is a 

mathematically superior method that give the most probable values for unknown points 

placed in a local coordinate system that need to be transformed in a actual GPS system. The 

three-dimensional conformal coordinate transformation (e.g. seven-parameter similarity 

transformation) produce lower RMS errors of rotations, translations and scale factor of x, y 

and Z axes (Ghilani and Wolf, 2006).  

Considerable modeling tools has been developed to understand landscape changes 

over time. However, there is little investigation on modeling classic gully slopes stability 

with high resolution elevation data and limit equilibrium methods. Furthermore, a few studies 

are focused only in the gully headcut height evolution (Rengers and Tucker 2014; Campo-

Bescós et al., 2013) rather than processing the entire gullied area. Thus, tools that deal with 

high spatial resolution and incorporate the entire gullied area will help also to implement 

precision conservation practices in needed areas.  

Early study has pointed out that gully wall stability knowledge advances are achieved 

according diverse areas: soil characteristics evolved of the mass failure, techniques to 

compute slope stability, leading factors of gully development, and use of field measurements 

(Skempton, A. W. and Hutchinson 1969). This study will focus only the second area through 

the use of factor of safety approach.  
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The goal of this study is evaluate the slope stability analysis approach  in two multi-

temporal surveys located in a western Iowa gullied area for precision conservation purpose 

The study simulated spatial failures of gully head and gully walls of digital elevation models 

with 15-year of spam.  The surveys were obtained with GPS receptor device and from Iowa 

Light Detection and Ranging (LiDAR) campaign carried out on February of 1999 and May 

of 2014 respectively. Furthermore, to investigate spatial distribution of critical instable slope 

in the site area we has employed a cutoff elevation based on multiple of slope standard 

deviation.  

3.2 Material and Methods 

3.2.1 Study site 

The study area, a field-scale watershed (0.31 Km
2
), was chosen due the incidence an 

gully and its location in the Loess Hills landform at Treynor County, IA (41° 9' 44.54"N, 95° 

38' 19.94" W). Entitled as Watershed #1 (Fig. 3.2), this field is one of four study areas 

established by the U.S. Department of Agriculture Research Service (USDA-ARS), in 1964 

and nowadays is managed by a private farmer. This site  one of most worldwide instrumented 

and therefore research documented related to gully erosion and runoff under conventional  

and no-tillage treatments (Poel et al. 1986; Kdrlen et al. 1964; Tomer et al. 2005). The main 

goal of USDA at the period of experiment was to analyze the impacts of conservation 

practices in runoff and water-induced soil erosion. Thus, the watershed was instrumented in 

1965 to provide measurements of runoff, base flow and sediment concentration
1
. These 

measurements were quantified using broad-crested V-notch weirs located at the base of each 

                                                 
1
 Data available at: <http://hrsl.ba.ars.usda.gov/wdc/ia.htm#Treynor> 
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watershed where the gullies channels are located. Precipitation was measured by rain gauges 

placed in the watershed perimeter. Since 1963 to 1995, watershed 1 was managed in 

continuous corn and conventional tillage. From 1996, a no-tillage with rotation of corn and 

soybean has started (Tomer et al. 2006). The causes and processes of the long-term growth of 

this valley-bottom gully are described by Thomas et al. (2004). Temporal yield variability 

among all watersheds is widely explored by Tomer et al. (2005), and recently,  Tomer et al. 

(2007) conducted experiment in riparian buffers placed in this site with the objective to 

quantify sediment accumulation and respective phosphorus. Related to the gully location in 

Treynor site, it can be noticed that drainage area outlet is oriented towards south in the 

bottom of Fig. 3.2.  

        

Fig. 3.2  (a) Hillshade of Treynor site Pottawattamie County, Iowa derived from the LiDAR 

One Meter Digital Elevation Model. (b) 2011 National Agriculture Imagery 

Program (NAIP) Four-Band Aerial Photography highlighting boundaries of 

watershed #1 boundary (light line).  
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With authorization of the actual land owner, a topographic survey was conducted on 

May, 7
th

, 2014 in watershed 1, Treynor, IA. A GPS Garmin GPSMAP 62sc receiver device 

with horizontal accuracy of 5 meters was used to collect elevation points in the gully edges 

and gully floor. The gully bed flow path was defined using existent surface stream flow in 

this area. Points were set in universal transverse Mercator (UTM) coordinate system. 

3.2.2 Gully perimeters coordinate adjustments in past surveys 

Thomas et al. (2004) data were used in our study. The dataset include elevation points 

and lines of gullies perimeter both in shapefiles format. They consolidated surveys in a single 

map file, represented as lines, from the boundaries of Treynor site gully top edges. However, 

all the lines, that registered the widening of this gully over the period of 1964 to 2000, were 

collected in a local coordinate system. To aggregate recent topographic and hydrologic 

features based on high resolution data it was crucial employ a technique that transfer local 

2D and 3-dimensional coordinate system to GPS coordinate systems. For this purpose a two 

and three-dimensional conformal coordinate transformation were employed according steps 

discussed in Ghilani & Wolf (2006). 

The three-dimensional conformal coordinate transformation requires seven 

parameters - three rotations, three translations, and one scale factor. The rotation matrix is 

obtained using three two-dimension rotations successively around x, y, and z axes. Fig. 3.3 

shows examples of rotation            about the x, y, and z axes expressed in matrix format.  
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(a)                                            (b)                                                   (c) 

 

 

 

 

Fig. 3.3  Examples of  (a)     (b)    (c)     rotation in three-dimensional conformal 

coordinate transformation extracted from  Ghilani and Wolf (2006). 

 

The rotation     about x axis can be expressed in matrix form (Fig 3.3a) 

           (10) 
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Fig. 3.3b shows the rotation     about axis y expressed in matrix format 
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Where  

     
  

  

  

        
     

 
     

 
 
 
 
 
      

 
     

    

Fig. 3.3c illustrates, the rotation     about axis z expressed in matrix format 

            (12) 
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Substituting Equation (a) into (b) and turn into (c) yields 

                       (13) 

Multiplying matrices               in equation (d) result in a single rotation matrix 

R for the transformation whose individual elements can be obtained by 

    

   

   

   

 

   

   

   

 

   

   

   

     (14) 

Where 

                  

                                    

                                   

                   

                                   

                                  

             

                   

                  

Taking advantage of the rotation matrix which is orthogonal, we can use one of its 

property that is inverse is equal to its transpose. So, using its transpose form and multiplying 

matrix X by a scale factor, S, also adding translation factor Tx, Ty, and Tz it was possible to 
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convert values to a common origin yields. The following mathematical equation consider this 

transformation 

                            

                             (15) 

                            

Equation set (15) contain seven unknowns variables (S, θ1, θ2, θ3, T1, T2, T3 ). For a 

unique solution the same number of equations must to be written. Other requirement is a 

minimum of two control stations with known XY coordinates (e.g. UTM), and also local xy 

coordinates (e.g. Cartesian).  Meeting the requirement of number control points, a least-

squares solution can be applied. The equations (15) are nonlinear considering their unknown 

variables and therefore have to be linearized in order to find theirs a solution.  The linearized 

equations are described following for each point 
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Where  
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In this study, initially, individual line correspondent to an individual survey was 

converted in a sequence of points spaced by 1 meter, to be consistent with further steps as 

illustrated by Fig. 3.4. Each sequence of points was lately adjusted to a WGS83 datum by 3D 

or 2D conformal coordinate transformation trough least square approximation technique. 

 Elevation values and Northing and Easting coordinates of 47 controls stations with 

known coordinate values in a local and reference coordinate system were used to adjust 

coordinates in unknown local points. Survey performed in 1999 which have captured 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4  Individual lines regarding to November, 1964 and October, 1965 survey 

consolidated by Thomas et al. (2004) transformed in this study in equal-spaced 

points sequence.  
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elevation variable was the only one to be transformed trough 3D coordinate transformation. 

The others survey only contained Northing and Easting coordinates information, so two-

dimensional transformation was employed.  

It is worthy to mention that some surveys, available from Thomas et al.( 2004) were 

not performed in the entire gully perimeter as depicted in Fig. 3.5. So, at that time, the 

outcome survey encompassed only a few lines. So, for this study, we supposed that newly 

eroded areas were composed by the actual line plus the previous surveys. This step was 

executed using the actual polylines to reconstitute the entire perimeter in each survey. A few 

times, we have to digitize manually the parts of the perimeter, however, dealing to not 

introduce new errors in the perimeter position.    

 

Fig. 3.5  Set of gully perimeters showing the partial surveys executed, for instance, survey 

lines produced at April 1979 and 1980 campaigns. 

 

1979 Survey 

1980 Survey 
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This study focused in the surveys carried out in February, 1999 and May, 2014. The 

later besides the topographic in situ survey also the LiDAR-based digital elevation model (n= 

330,678, mean point spacing = 1.4 m), was produced in the gully area. The digital elevation 

model produced to former survey was originated by GPS points collected by Thomas et al. 

(2004) within the same gully area (n= 1,200). Both surveys used IDW interpolation 

technique to produce elevation and slope maps, gridded at 1-m grid for individual pixels. In 

addition, it was performed a procedure tailored to smoothing topography in dense vegetated 

environments. The smoothing procedure deal to remove points that were lying in high 

vegetation and consequently hidden bare topography. We applied the approach to extract 

vegetation implemented by Evans & Hudak (2007) using the multiscale curvature 

classification (MCC) algorithm. 

3.2.3 Factor of safety computation and implications to precision conservation 

In this study, topography is represented by a set of independent points with 1-m pixel 

resolution. We considered that computed factor of safety equal to one represents a limiting 

equilibrium. In this condition there is a balance between the forces tending to sliding the 

slope and the one resisting to this failure. FS greater than one, the slope is consider stable 

because the force to resist to slide is greater than the force trying to slide the block. Slope 

instability occur when a plan failure is given, as expected, with factor of safety smaller than 

1. So, this is the threshold condition to trigger elevation development and gully edges 

displacement.  In this way, gully edge wide by the same scale of slab thickness (x). This is 

considered an instable geometry condition and plan failures happen by gravitational and 

resistant forces.  
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Since this research is focused in the same watershed of Thomas et al.(2009) study, we 

assume the same boundary conditions for the majority of  attributes values required by 

Equations 8 and 9. The attributes values are: friction angle (θ = 22.9
0
), failure plane angle ( 

ψp=45° + θ/2), height of the banks top above the datum used for measured head (H = 5 m), 

unit weight of the water (γw = 9.81 KN/ m
3
), unit weight of the dry slab (γdry = 13  KN/ m

3
), 

unit weight of the slab with 50% water content (γ 50% sat = 15.5 81 KN/ m
3
), minimum range 

of slab thickness (x = 0.3 m), and critical head required for bank failure (Z crit = 3. 54 m) and, 

depth of the tension crack (Z = 2 m). The later, height of failure is reported by Poel et al. 

(1986) as between 3 and 4 meters. Slab (H) height values were calculated trough focal 

analysis function available at ArcGis using a rectangle shape (2x2 pixel cell) which calculate 

the range of elevation at pixels neighborhood. Slope was computed from digital elevation 

model obtained at Thomas et al. (2009) field work. Automation of factor of safety estimates 

was implemented through a R script.  

Pixels points with the computed factor of safety values considered instable ( 0 < FS < 

1) are target of precision conservation practices. In this study, we simulated two threshold 

conditions considering points that exceeded one and two multiple of slope standard deviation 

of slope once the data follow Gaussian distribution. 

3.3 Results and Discussion 

The surveys described at Thomas et al. (2009) work were transformed through  two- 

and three-dimensional conformal technique according data availability. The computed length 

after the transformation is shown in Table 3.1. The maximum error from original length to 

transformed is 12.4 % related to 1973-year, May survey and the minimum is 1.1 % in 1980 

survey. The total average of length difference is 2.84%.  The transformation error for all 
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surveys were around 0.01 for rotations at x and y axis. Thus, the approach taken in this study 

was able to transpose the survey at local coordinates system to UTM without significant 

differences.  

Comparing the digital elevation models of  1999 and 2014 survey, this study found 

out that computed slopes in the gully edge points originated from 2014 survey had higher 

maximum, and mean values (Smean=29.62
0
, Smax=75.43

0
) compared to 1999 survey (Fig. 3.6). 

The difference between the mean elevation at the study period of 2014 and 1999 survey is 

4.8 m. There is strong evidence that paired means of slopes and elevation in both survey are 

not similar (p value < 0.01). Furthermore, the methods of obtain these slopes were different. 

In a former survey the slopes were calculated from airborne-LiDAR campaign (n= 330,678, 

Table 3.1  Survey timeline with gully length obtained from Thomas et al. (2004) set of 

perimeters and transformed with two-dimensional conformal transformation. 

 
Survey 

Year 

Survey 

Month 

Original surveyed 

perimeter length 

(m) 

Transformed 

perimeter 

length (m) 

Difference 

(%) 

1965 April 100.52 97.701 2.8 

1965 August 124.95 121.53 2.7 

1966 July 137.1 134.46 1.9 

1967 May 140 136.33 2.6 

1967 November 170.82 167.53 1.9 

1970 February 181.15 178.263 1.7 

1970 December 191.8 189.52 1.2 

1971 December 199.5 195.854 1.8 

1972 May 207 202.511 2.1 

1973 May 223.5 252.349 12.4 

1974 November 208.1* 216.87 4.21 

1979 April 236 232.989 1.27 

1980 - 247.6 244.864 1.1 

1999 February 445.7 436.363 2 

1999 July 461 439.934 4.6 

1999 November 451.7* 441.977 2.15 

2000 October 448.57* 439.669 2 

*The headcut was not delineated from these surveys, only the parallel two lines of wall 

banks. So, the real length might be greater than those described here.  
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mean point spacing = 1.4 m) for the whole watershed 1, while in the later a dense grid of 

points was collected manually (n=1742) mainly into the gully feature. Considering only the 

gullied area, each digital elevation model was discretized in 3986 points for 2014 survey and 

3128 for 1999-survey with 1-m pixel size. 

The slope elevation related to 1999 survey, depicted in Fig. 3.7a, revealed clear 

pattern of lower and flat elevation in the gully channel bed comparing to the side walls. In 

addition, steep side walls are located in both sides of headcut. The LiDAR-derived slope map 

(Fig 3.7b) showed a much detailed terrain. However, because the original slope map was 

noisy due to  presence of high vegetation captured by LiDAR survey it was necessary smooth 

slope values using the multiscale curvature (Evans and Hudak 2007) approach. A small and 

narrow channel was mapped as extension of gully headcut in 2014. Since the Figure 3.7b 

map was obtained overlapping the GPS pathway with LiDAR Digital elevation model, we 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6  Boxplots showing the dataset distribution of elevation and slopes in gully edges 

both from survey periods on 1999 and 2014. 
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(a)                                                           (b) 

Fig 3.7  Slope map and gully perimeter at the gullied area in Treynor site on (a) February, 

1999 originated from Thomas et al. (2009) study, and (b) May, 2014 from LiDAR 

data. 

 

have noted some area with small slope, probably errors due GPS resolution and LiDAR 

inaccuracy. 

Since we decided to include the extended gully headcut at 2014 where it was 

observed recent side wall erosion, the area (3991.87 m
2
) and perimeter (728.5 m) were larger 

and longer compared with 1999 survey area  (3134 m
2
) and perimeter ( 475.8 m). 

Spatial distribution of computed factor of safety in the whole gullied area on 1999 

and 20014 survey is shown in Fig. 3.8  Excluding the negative computed FS, which represent 

small slopes that are not prone to sliding,  totalized 81.3% of the pixels on 1999 survey that 

had FS < 1 against 78.2 % on 2014 survey, both regarding to partially saturated conditions.  
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(a)                                                                          (b) 

 

 

            (c )                                                                         (d) 

Fig 3.8  Spatial distribution of factor of safety regarding to partially saturated failure (γw = 

15.5 KN/m
3
) on 1999 (a,b), and 2014 survey (c,d) under dry conditions. Negative 

values were computed and are placed mainly in the gully bed.   
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Therefore, comparing FS maps of both survey, Treynor site had experienced a 

reduction of points prone to slope failure according slope equilibrium technique over time. In 

addition, Welch's t-test employed between 1999 and 2014 factor of datasets, for both water 

content conditions, obtained p-value < 0.001 which agree with the alternative hypothesis that 

the surveys have statistically different mean values.Commission errors, GPS accuracy, and 

the intrinsic morphologic-entropic landscape changes may explain the reasons because 1999 

survey perimeter is not totally confined in 2014 gully perimeter as illustrated in Fig. 3.8. For 

example, it was noticed from field work that the distinct branch, located in west portion of 

gully that appeared in 1999 survey is, at the time of this study, surrounded by a strip grassed 

area which stabilized gully erosion and smooth slope angles. In addition, concentrated flow 

shown in Fig. 3.8 reveals that points selected from factor of safety greater than 1 are in the 

patch or very close to the concentrated flow path.  

Related to the data distribution of slope stability, histograms depicted in Fig. 3.9 

showed that instable slopes (0 < FS < 1) at LiDAR DEM (2014 survey) had average height of 

0.92 m with mean slope of 30
o
; the maximum slope it was 57

o
 and highest side wall height of 

3 m.  Conversely, stable slopes (FS > 0) in the same survey had shorter mean side walls (0.5 

m) and were less steep angles (21
o
). Flat areas, mainly located in the gully bed (FS < 0), were 

evenly distributed with the smaller mean height (0.3 m) and mean slope (16.7
 o
). Similar data 

distribution of slope and slopes height at 1999 survey, not shown here, were found similar 

compared to 2014.  

3.3.1 Sensitivity analysis 

Although several studies have been performed in Treynor site (Thomas et al., 2009; 

Thomas et al. 2004; Bradford et al.,1973; Bradford and Piest, 1977) related to slope stability,  
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Fig 3. 9  Histograms of slab height (m) and slope (degrees) at Treynor site on May, 2014 at 

dry and partially saturated  conditions  coded in  a) negative FS (n=961) b) instable 

slopes (n=1761) c) stable slopes (n=370).  

 

there are still some limitations into many variables values which cause uncertainty on 

simulations outcomes. Furthermore, there are different effects in slope equilibrium due to soil 

and topographic variables variation. Gray and Megahan's (1980) study suggested that models 

of slope instability are most susceptible to soil cohesion, root cohesion, soil depth, and slope 

angle. Bradfort and Piest (1977) also, stressed out that elevation of water table/phreatic 

surface decrease the ratio of resisting forces to the driving forces resulting in a slope failure. 

Many are the variables critical to study to simulation purposes. Therefore, we evaluate here 
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only the effects of internal friction, angle, soil cohesion, failure plane angle, and crack 

thickness. In order to proceed the sensitivity analysis, one parameter is changed while others 

are held constant.  We used tests of direct shear strength results performed by Bradford and 

Piest (1980) on loess alluvium of the Deforest Formation. The range of friction angles is 15
o
 

to 23
o
 with cohesion varying from 7 to 13.8 KPa, respectively. Thickness of the slab varies 

from 50 to 450 mm consistent with was found by (Bradford and Piest, 1980) in the loessial 

area in Western Iowa and failure plane angle ranged from 30
 o
 to 70

o
. In this study, the 

sensitivity analysis was performed in one point chosen at each survey. Those were instable 

points according slope instability analysis.  The results showed in Figure 3.10 are associated 

to the point with highest elevation near to the sidewalls. This point has the following 

boundary conditions: x=278336.7 m, y=4560582 m; elevation difference: 2.51 m; 

slope=53.3
o
; FS = 0.32.  

Sensitivity analysis underscores the importance of the four keys factors affecting 

slope failure in the gully topography. Variance analysis demonstrated that changes in the 

internal friction angle (θ) have the largest effect on slope stability factor (S.D.1999 = 0.18, 

S.D.2014 = 0.24) comparing to variations of soil cohesion, failure plane angle and slab 

thickness.  The variable θ was the only one that increase factor of safety, even though the 

slopes are still instable. Increase of soil cohesion which imply decrease of water content 

produced an unexpected decrease of factor of safety of 114-fold. 

If the weight of the slab varies from to 13 (dry slopes) to 15.5 KN/m
3
 (partially 

saturated slopes), failures volumes increases of 7.13% in 1999 survey and 7.53% at 2014 

survey. Figure 3.10a and b show the changes of factor of safety distribution caused by 

16.13% variation in unit weight in different water content.  



83 

 

 

  

 

Fig. 3.10  Impacts of variables uncertainties on slope instability: (a) internal friction angle, 

(θ) b) soil cohesion,  c) failure plane angle, (ψp) and, d) slab thickness, (x) at 1999 

survey. 

 

The approach given in this study is different from that implemented in Tomer et al., 

2007). In Tomer’s work a multispecies riparian buffer, including switch grasses and trees, 

were installed in the west side of gully at watershed 1 dealing capture sediment and 

phosphorus from runoff  events . Rather than design a crop cover outside of the gullied area; 

and, since this area is unlikely to be used as a farmland, we presented areas within the gully  
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Fig. 3.11 Empirical cumulative distribution (CDF) of factor of safety on 1999 and 2014 

surveys at Treynor gullied area.  
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that are instable, so requiring an alternative approach. The areas were simulated computing 

the difference of one (S1SD= 9.95
 o
) and two units of standard deviation of slope dataset from 

maximum slope (Smax = 57.6
o
) for 2014 survey (Fig. 3.11). 

3.3.2  Critical instable slopes for precision agriculture purpose 

The maps with instable points represented by pixels that exceeded one and two 

standard deviation of maximum slope considering partially saturated as a conservative 

scenario are illustrated in Fig. 3.12.  With one standard deviation, 61 pixels were found and 

with condition with two SD, 396 pixels (1 pixel =1m
2
) were found. The majority of the 

points in both condition area located in the headcut and side walls, however, not necessary 

cover the entire gully perimeter. So, this approach seems to fits in the conservation 

agriculture concept and prioritize areas that are more prone to failure due their geometrical 

features.  

Since the gullied area has greater slope gradient, structures that increase soil stress 

shear and internal friction angle are required. Chen et al. (2010) empirical outcomes testing 

diverse material have found that woven mat with fertilizer strips is the material with greatest 

soil erosion resistant, for slopes of 35
o
. Additionally, De Baets et al. (2011) study have 

identified ryegrass, rye, oats and white mustard as the most appropriate plants for control 

high overland flow due their root density. Therefore, a strategy for control concentrated flow 

erosion that combine rigid structure, for instance, geotextile and crop cover with high root 

density seems suitable to sites that does not exhibits  flashy stream flow when high intensity 

rainfall events occur. 
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Fig. 3.12  Factor of  safety maps with selected pixels considered instable slopes that are  (a) 

one and (b) two standard deviation of elevation  from maximum slope (Smax = 

57.6o)  at 2014 survey.  

 

3.4 Conclusions 

High uncertainty on mass failure on steep slope which  impact soil and water quality 

have been promoting research studies  that take into account spatial variability in agricultural 

and natural environments to implement precision conservation practices.. The main objective 

of this study was assess slope stability analysis in two multi-temporal surveys at a site 

located at western Iowa gullied area for precision conservation purpose. The study computed 

spatial failures (Factor of Safety index) in gully head, side walls, and bed using digital 

elevation models with 15-year spam. The surveys were obtained with GPS receptor device 

(a) (b) 
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and from Iowa Light Detection and Ranging (LiDAR) campaign carried out on February of 

1999 and May of 2014 respectively 

The main contributions of this study were: 1. The evaluation of two distinct 

topographic surveys was conducted in Treynor site under the perspective of slope instability 

in an entire gullied area. Many studies have computed FS for a few points in the study area 

instead (Bradford et al., 1973; Istanbulluoglu, 2005; Thomas et al., 2009). Outcomes of this 

assessment has shown statistically significance less instability  in the actual slopes compared 

to 1999 survey slopes These results are based on the computed factor of safety index under 

dry and partially saturated conditions. 2. The computation of critical instable slopes within 

gully, based on multiples of the slope standard deviation as threshold. Thus, maps showing 

spatial distribution of instable slopes points were produced. One unit of slop standard 

deviation produced 61 m
2
 with slopes ranging from 57.6

 o
 to 47.7

o
 of more instable area. Two 

units of slope standard deviation threshold has produced a 396 m
2  

 area with slopes varying 

from 57.6
 o
 to 37.7

o
.  

Relevant findings, including the good efficiency of natural or processed material to 

hold high slope gradient associated with high density root system cover plants, corroborate 

with the approach to prioritize conservation practice in needed areas as presented in this 

study. However, further empirical studies are need to test this approach. Considering that 

precision conservation is a relatively new concept, the use of slope instability is a novelty 

presented for this research considering natural environment affected by agricultural lands. 

Internal friction angle (θ) had the largest effect on slope stability factor (S.D.1999 = 0.18, 

S.D.2014 = 0.24), according the sensitivity analysis, compared to variations of soil cohesion, 

failure plane angle and slab thickness 
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As an intermediate result we highlight the transformation of past gully perimeters to 

actual coordinate systems obtained low error rates (mean = 2.14%) of x, y coordinate axis. 

So, the previous perimeters of gully monitoring over 36 year consolidated by Thomas et al. 

(2009) were converted in WGS84 coordinate system and available to be fully  integrated with 

other layers of information such as Iowa high resolution elevation LiDAR data and soil 

survey provided by USDA 

In conclusion, this simplified methodology was able to confirm field observation 

where zones in the vicinity of head walls are the most instable and have shown recent slope 

slumping due to rainfall events. Other factors must be included in the limit equilibrium 

model in order to obtain more realistic pattern of gully failure. As future research we will 

include the dynamics of failure in the headcut and side wall due to infiltration and seepage 

process. Rengers and Tucker (2014), for example reported the gully floor vegetation as a best 

model fit to trigger gully headcut dynamics. Include precipitation events with more 

granularity, considering intensity (mm/hour) rather than daily total precipitation and 

antecedent moisture will be further research.  
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CHAPTER 4.  CONCLUSIONS 

In Chapter 2 a methodology was proposed to map classical gullies based on data 

mining of hydraulic and topographic parameters derived from high-resolution elevation data 

(LiDAR). An unsupervised classification termed CLARA (Large databases applications) was 

employed to group different topographic areas in the landscape. Since the clustering 

technique capture mostly the converting flow in gully edges we proposed a simple threshold 

approach to fuse the flow patch in the gully floor and map the full feature.   

The methodology was validated with field work and shows that the approach to 

delineate concentrated gully flow (GCF) in the gully floor was consistent with observed data. 

Investigating the predictive power of supervised classifiers a few were performed and among 

linear discriminant analysis and logistic regression, the regression classification tree showed 

the larger overall classification accuracy (Acc = 99.99%) with the highest sensitivity and 

specificity (99.54% and 99.99 %) respectively 

Chapter 3 evaluated the limit-equilibrium approach in topographic data of two multi-

temporal surveys carried out in a western Iowa gullied area considering precision 

conservation purpose The study computed spatial failures (Factor of safety indices) at gully 

head and gully walls of digital elevation models in surveys conducted in 1999 and 2014. 

Outcomes of this assessment has shown significance less instability of the actual slopes 

compared to 1999 survey slopes. Internal friction angle (θ) had the largest effect on slope 

stability factor (S.D.1999 = 0.18, S.D.2014 = 0.24), according the sensitivity analysis, compared 

to variations of soil cohesion, failure plane angle and slab thickness.  In addition, critical 

instable slopes within gully, based on units of the slope standard deviation as threshold have 

produced  area of 61 m
2
  and 396 m

2 
  considering the threshold of one and two slope 
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standard deviation, respectively. These critical areas were located majority near the headcut 

and in the border of side walls.  Based on current literature, association of processed material 

(geotextile) and crop cover with high root density might be an alternative to improve slope 

instability, but empirical tests are necessary to validate this approach.  An intermediate 

outcome described in this chapter was a good performance of least squares technique 

employed to transform local coordinate systems in actual WGS83 datum. The mean error 

was 2.14% between original length survey and transformed ones.  However, the slope 

instability must include other factors that capture e dynamics of failure in the headcut and 

side wall due to infiltration and seepage process and climate impacts. 

Lastly, even though, this study have only performed data mining with functions 

available in R package is clear that there is a need for algorithm that can better handle big 

data set. For instance, unsupervised or supervised classifier that deal with proximity matrix 

(e.g. Partitioning around Medoids – PAM, random forest) require a huge amount of RAM 

memory.  
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APPENDIX A. RANKING METHOD 
 

## original Ranking method.R  

## Article 1  - R script 

##  Classification script applied to gullies in Ames,IA study area – Besides Large application 

## clustering  (CLARA)  there are other clustering  techniques such as K-means  

## and Fuzzy clustering. Also, WSS statistics to search for adequate cluster number. 

##  by Laurimar G. Vendrusculo 

##  ABE, ISU - 01/20/2014 – Last version 

 

 

library("cluster") 

require(cluster) 

 

## Reading the original csv files from ArcGis with coordinates and variable values 

twi      <- read.csv(file="C:/ sk_idf_twi.txt",header = TRUE, sep = ",") 

spi      <- read.csv(file="C:/sk_idf_spi.txt",header = TRUE, sep = ",") 

curvprf  <- read.csv(file="C:/sk_idf_prcur.txt",header = TRUE, sep = ",") 

slop2    <- read.csv(file="C:/ sk_idf_slope.txt",header = TRUE, sep = ",") 

aspect   <- read.csv(file="C:/sk_idf_aspec.txt",header = TRUE, sep = ",") 

intens   <-read.csv(file="C:/ sk_intensity_join.txt",header = TRUE, sep = ",") 

flowacc  <-read.csv(file="C:/ sk_idf_facp.txt",header = TRUE, sep = ",") 

elevR     <-read.csv(file="C:/ sk_idf_elev.txt",header = TRUE, sep = ",") 

 

## Reading the first five rows and dimensions of dataset (# cols and # rows) 

head(inten)  ;dim(inten) 

head(curv)   ;dim(curv) 

head(slop2)  ;dim(slop2) 

head(spi)    ;dim(spi) 

head(twi)    ;dim(twi) 

head(aspect) ;dim(aspect) 

head(flowacc);dim(flowacc) 

head(elevR); dim(elevR) 

 

sort.elev <- elevR[order(elevR$POINT_X),] 

head(sort.elev) 

#      FID POINTID GRID_CODE  POINT_X POINT_Y 

#2577 2576    2577   279.311 449165.9 4655710 

#3401 3400    3401   279.560 449165.9 4655709 

#4225 4224    4225   279.637 449165.9 4655708 

#5049 5048    5049   279.833 449165.9 4655707 

#5873 5872    5873   279.875 449165.9 4655706 

 

### timing function in R 

tic() 

for (i in 1:50) mad(stats::runif(500)) 
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toc() 

 

plot(sort.elev$POINT_X[1:4000],sort.elev$POINT_Y[1:4000]) 

 

## Pre-processing dataset selecting only the colunm needed 

## Select only the variable values and creating a new dataset with all of them (all_ar1) 

inten1   <- intens[,11]; head(inten1) 

curv1    <- curvprf[,3]; head(curv1) 

slope1   <- slop2[,3]; head(slope1) 

spi1     <- spi[,3]; head(spi1) 

twi1     <- twi[,3]; head(twi1) 

aspect1  <- aspect[,3]; head(aspect1) 

flowacc1 <- flowacc[,3]; head(flowacc1) 

elev <- elevR[,3]; head(elev)    

 

aspect2 <- aspect1 

head(aspect2) 

## recoding aspect to only four values (0 = nothing, 1 = North, 2= East, 3= South and 4= 

West) 

## 315 - 360  -- 0 to 45 is equal to 1 

## 46 to 135             is equal to 2 

## 136 to 225            is equal to 3 

## 226 to 314            is equal to 4 

 

aspect2[aspect1 >= 315 & aspect1 <= 360] <- 1 

aspect2[aspect2 == 315] <- 1 

aspect2[aspect1 >= 0   & aspect1 <= 45.99999]  <- 1 

aspect2[aspect1 >= 46  & aspect1 <= 135.99999] <- 2 

aspect2[aspect1 >= 136 & aspect1 <= 225.99999] <- 3 

aspect2[aspect1 >= 226 & aspect1 <= 314.99999] <- 4 

aspect2[aspect1 <= 0 ] <- 0 ## flat areas 

 

head(aspect2) 

summary(aspect2) 

hist(aspect2) 

 

## asp4 <- subset(aspect2, aspect1>= 226 & aspect1 <= 314.999) 

## asp5 <- subset(aspect2, aspect1>= 314.999 & aspect1<= 315 ) 

 

## Joining all the previous attributes (curvature, slope, aspect, spi, twi, intensity and flow 

accumulation 

all_ar1  <- cbind(curv1,slope1,aspect1,spi1,twi1,inten1,flowacc1,elev); 

head(all_ar1) 

summary(all_ar1) 

dim(all_ar1) 
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### Deviation of mean slope  

### population standard deviation = sqrt(Somatory (X - xmean)^2)/Nobserv) 

mean(slope1) 

## Slope: Mean   : 6.1468 

##Deviation_from_mean = X - mean(slope1) 

Dev_meanSl = slope1 - mean(slope1) 

head(Dev_meanSl) 

 

all_ar1 <- cbind(curv1,slope1,aspect1,spi1,twi1,inten1, flowacc1,Dev_meanSl,aspect2); 

head(all_ar1) 

summary(all_ar1) 

 

hist(spi1, data=all_ar1) 

hist(Dev_meanSl, data=all_ar1) 

quartile(spi1, data=all_ar1) 

 

### Box plot of the whole set 

##final version of the figures 

par(mfrow=c(1,2)) 

boxplot(spi1,data=all_ar1, main="",  xlab="(a) Stream power index", ylab="SPI")  

boxplot(aspect1,data=all_ar1, main="" , xlab=" (b) Coded aspect", ylab="Aspect") 

boxplot(Dev_meanSl,data=all_ar1, main="" ,xlab="(c) Deviation of mean slope", 

ylab="Slope") 

boxplot(curv1,data=all_ar1, main="" , xlab="(d) Profile curvature", ylab="Profile 

Curvature") 

 

### CLARA clustering using cluster package - seed set up for outcomes reproducibility 

purpose 

library("cluster") 

require(cluster) 

## run CLARA 

set.seed(110) 

 

##  1             2       3            4        5       6           7               8               9 

## curv1, slope1, aspect1, spi1, twi1, inten1, flowacc1,Dev_meanSl,aspect2 

cluN = 6 # number of clusters 

## Clustering using CLARA at the following variables: curvature, deviation mean 

 ## slope, aspect and SPI 

clarax1  <- clara(all_ar1[,c(1,8,9,4)]  , cluN , metric = "euclidean",stand = FALSE, samples = 

200, sampsize = min(5000, 40 + 2 * 8) ) 

Inis_clara <-  as.data.frame(cbind(curvprf[,4:5],all_ar1[,c(1,8,9,4)],slope1,elev, cluster = 

clarax1$cluster)) 

##%% renaming cluster colunms 

#colnames(Inis_clara) <- c("PointX","PointY","curvprf","slopeD","aspect2","spi","cluster") 

colnames(Inis_clara) <- 

c("PointX","PointY","curvprf","Dev_meanSl","aspect2","spi","slop","elev","cluster") 
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head(Inis_clara) 

summary(Inis_clara) 

summary(subset(Inis_clara, clarax1$cluster == 2),na.rm=TRUE)# example of summary by 

each cluster 

 

sd(subset(Inis_clara$curvprf, clarax1$cluster    == 4),na.rm=TRUE)# example of summary 

by eac 

sd(subset(Inis_clara$Dev_meanSl, clarax1$cluster == 6),na.rm=TRUE)# example of 

summary by eac 

sd(subset(Inis_clara$aspect2, clarax1$cluster    == 6),na.rm=TRUE)# example of summary 

by eac 

sd(subset(Inis_clara$spi, clarax1$cluster        == 6),na.rm=TRUE)# example of summary by 

eac 

 

hist(Inis_clara$Dev_meanSl) 

hist(Inis_clara$aspect1) 

#write.csv(Inis_clara, file="C:/Users/laurimarvend/users/laurimar1/summer2012/skunk-

river_MCC/clustering/clara_skunk_16894_6.csv") 

 

##final version of the figures 

par(mfrow=c(2,2)) 

boxplot(spi~clarax1$cluster,data=Inis_clara, main="Stream Power Index",  xlab="# Cluster", 

ylab="SPI")  

boxplot(aspect2~clarax1$cluster,data=Inis_clara, main="Coded aspect" , xlab="# Cluster", 

ylab="Aspect") 

boxplot(Dev_meanSl~clarax1$cluster,data=Inis_clara, main="Deviation of mean Slope" 

,xlab="# Cluster", ylab="Slope") 

boxplot(curvprf~clarax1$cluster,data=Inis_clara, main="Profile curvature" , xlab="# 

Cluster", ylab="Curvature") 

boxplot(elev~clarax1$cluster,data=Inis_clara, main="Elevation" , xlab="# Cluster", 

ylab="Elevation") 

box_dm <- boxplot(Dev_meanSl~clarax1$cluster,data=Inis_clara, main="Mean slope 

deviation" , xlab="# Cluster", ylab="Elevation") 

 

## multivariable analysis 

Y <- cbind(curv1, Dev_meanSl, aspect2, spi1);head(Y) 

  

summary(manova(Y ~ cluster , data = Inis_clara), test = "Hotelling-Lawley") 

summary(manova(Y ~ cluster , data = Inis_clara), test = "Wilks") 

 

#              Df Hotelling-Lawley approx F num Df den Df    Pr(>F)     

#cluster        1           2.0343   464589      4 913489 < 2.2e-16 *** 

#Residuals 913492                                                       

 

# The p--value associated with the Hotelling-Lawley statistic is less than 5%  

# and there is strong evidence that #the mean vectors of the two variables 
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# are not the same in the clusters. 

 

tapply(Inis_clara$spi, Inis_clara14$cluster, mean) 

tapply(Inis_clara$aspect2, Inis_clara14$cluster, mean)  

tapply(Inis_clara$Dev_meanSl, Inis_clara14$cluster, mean)  

tapply(Inis_clara$curvprf, Inis_clara14$cluster, mean)  

 

### Principal components 

## Print cluster characteristics 

clarax1$medoids; print(clarax1) 

Inis_clara14$cluster14 

## Distribution of points in each cluster 255463 + 241961 + 168235 + 247835 

### best for 4 classes 

best_sample <- data.frame(c(Inis_clara[c( 

  29119,  29481,  76901,  78643,  91690, 139779, 161802, 188174, 217321, 235943, 

 237643, 265577, 269187, 293385, 294263, 317568, 389688, 389827, 398999, 418848, 

 437651, 446349, 450656, 455967, 484026, 487901, 489127, 499735, 507791, 541259, 

 548130, 572969, 594351, 597125, 629422, 653926, 657759, 658275, 660143, 680256, 

 727467, 744863, 751846, 752097, 754745, 781159, 809399, 835646, 856359, 870159, 

 895444, 899695, 902915, 906191, 907501, 911794),])) 

head(best_sample);dim(best_sample) 

## Plot the scatter plot of all variables coded  by cluster 

plot(best_sample[,c(1,2,3,4,6)],col=best_sample$cluster) 

points(best_sample$cluster, col = 1:4, pch = 10, cex = 2) 

 

## Plot 2 Principal components of best samples data 

clusplot(best_sample,best_sample$cluster,color=TRUE, shade=TRUE, labels=2, lines=0) 

color=TRUE 

## Plot 2 Principal components of  original data 

clusplot(all_ar1[,c(1,2,3,4,6)], fit$cluster, adiss = TRUE, 

col=(c("yellow","darkgreen","red","blue","pink","gray", "darkblue","orange")), 

shade=TRUE, labels=2, lines=0) 

 

#### EXTRACTING SUMMARY of classical statistic in the clustered dataset 

 

summary(subset(Inis_clara, clarax1$cluster == 1),na.rm=TRUE) 

summary(subset(Inis_clara, clarax1$cluster == 2),na.rm=TRUE) 

summary(subset(Inis_clara, clarax1$cluster == 3),na.rm=TRUE) 

summary(subset(Inis_clara, clarax1$cluster == 4),na.rm=TRUE) 

summary(subset(Inis_clara, clarax1$cluster == 5),na.rm=TRUE) 

summary(subset(Inis_clara, clarax1$cluster == 6),na.rm=TRUE) 

 

 

 

 

 



99 

 

 

APPENDIX B.  GULLY LOCATION DATASET 

 
## Exploratory task of gully location using supervised methods 

## Article 1  - R script 

##  Exploratory task of gully location using supervised methods applied to gullies at the 

Study are in  Ames,IA  

## Linear discriminant analysis (MASS package);logistic regression (nnet package), ## 

regression tree (rpart Package) 

##  by Laurimar G. Vendrusculo 

##  ABE, ISU – 08/17/2014 – Last version 

 

# Routine to reading the gully dataset 

#### GPS paths transformed in points 1 meter apart 

gul_gps3  <-read.csv(file="C:/gully_slope_aspec.txt ",header = TRUE, sep = ",") 

gul_gps4  <-read.csv(file="C:/ gully_spi.txt",header = TRUE, sep = ",") 

gul_gps5  <-read.csv(file="C:/ gully_curvat.txt",header = TRUE, sep = ",") 

 

head(gul_gps3);dim(gul_gps3) ## Slope and aspect 

head(gul_gps4);dim(gul_gps4) ## SPI 

head(gul_gps5);dim(gul_gps5) ## profile curvature 

 

# Worked variables 

#aspect - profile curvature - mean slope deviation - SPI 

##slope, aspect,spi,curv 

gul_gps_red = cbind(gul_gps3[,c(7,8,10,14)],gul_gps4[,c(10)],gul_gps5[,c(10)]) 

head(gul_gps_red) 

colnames(gul_gps_red) = c("PointX","PointY","slope","asp","spi","curv") 

summary(gul_gps_red) 

 

### Deviation of MEAN 

### population standard deviation = sqrt(Somatory (X - xmean)^2)/Nobserv) 

mean(slope1) 

## Slope: Mean   : 6.1468 

##Deviation_from_mean = X - 6.1468 

 

Dev_meanSlG = gul_gps_red[,3] - 6.1468 

head(Dev_meanSlG) 

 

## recoding aspect to only four values (0 = nothing, 1 = North, 2= East, 3= South and 4= 

West) 

## 315 - 360  -- 0 to 45 is equal to 1 

## 46 to 135             is equal to 2 

## 136 to 225            is equal to 3 

## 226 to 314            is equal to 4 

 

aspect11 <- gul_gps_red[,4] 
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aspect22 <- gul_gps_red[,4]  

aspect22[aspect11 >= 315 & aspect11 <= 360] <- 1 

aspect22[aspect11 == 315] <- 1 

aspect22[aspect11 >= 0   & aspect11 <= 45.99999]  <- 1 

aspect22[aspect11 >= 46  & aspect11 <= 135.99999] <- 2 

aspect22[aspect11 >= 136 & aspect11 <= 225.99999] <- 3 

aspect22[aspect11 >= 226 & aspect11 <= 314.99999] <- 4 

aspect22[aspect11 <= 0 ] <- 0 ## flat areas 

 

head(aspect22);dim(aspect22) 

summary(aspect22) 

hist(aspect22) 

 

##slope, aspect,spi,curv,cluster1 means gully bottom 

gul_gps1 = 

cbind(gul_gps5[,c(10)],Dev_meanSlG,aspect22,gul_gps4[,c(10)],rep(1,length(aspect22))) 

head(gul_gps1);dim(gul_gps1) 

colnames(gul_gps1) = c( "curv","slopeD","asp","spi","cl") 

summary(gul_gps1) 

 

## all_arR comes from appendix A script  

gull_tot = rbind(all_arR, gul_gps1) 

head(gull_tot) 

dim(gull_tot) 

  

### Sampling processing - Taking 30% of each class at training phase and leaving 

### 70% to test 

 

set.seed(503) ## set for outcomes reproducibility 

 

cl1 = gull_tot[which(gull_tot[,5]=="1"),];  dim(cl1) 

cl2 = gull_tot[which(gull_tot[,5]=="2"),];  dim(cl2); 

 

indx.cl1 = sample(seq_len(nrow(cl1)),size = floor(0.3*2279)) 

indx.cl2 = sample(seq_len(nrow(cl2)),size = floor(0.3*913494)) 

 

train_cl1 = cl1[indx.cl1,]  ;dim(train_cl1) 

test_cl1  = cl1[-indx.cl1,] ;dim(test_cl1) 

 

train_cl2 = cl2[indx.cl2,]   ;dim(train_cl2) 

test_cl2  = cl2[-indx.cl2,] ;dim(test_cl2) 

 

train_tot = data.frame(rbind(train_cl1,train_cl2)) 

test_tot  = data.frame(rbind(test_cl1,test_cl2)) 

dim(test_tot)[1] 

summary(train_tot) 
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summary(test_tot) 

 

# Plotting the histogram of the test and train sets  

hist(test_tot[,5], border="red") 

table(test_tot[,5]) 

hist(train_tot[,5], border="red") 

table(train_tot[,5]) 

 

# Linear discriminant analysis (LDA)  

library(MASS) 

require(MASS) 

 

# LDA applied in  train and test sets 

gull.ldat<-lda(V5~.,train_tot) 

table(train_tot[,5],predict(gull.ldat,train_tot)$class) 

#         1      2 

#  1     11    672 

#  2    393 273655 

par(mfrow=c(1,2)) 

plot(predict(gull.ldat,train_tot,dimen=2)$x, pch=as.character(train_tot[,5])) 

title("True class") 

plot(predict(gull.ldat,train_tot,dimen=2)$x,pch=as.character(predict(gull.ldat,train_tot,dimen

=2)$class)) 

title("Predicted class") 

 

gull.ldatest<-lda(V5~.,test_tot) # the variable 6 has equal values (fiber) 

table(test_tot[,5],predict(gull.ldatest,test_tot)$class) 

#         1      2 

#  1      6   1590 

#  2    376 639070 

(6*100)/(6+376) # 1.570681 % 

(639070*100)/(1590+639070) #99.75182% 

 

# Overall error - Error  

z<-table(test_tot[,5],predict(gull.ldatest,test_tot)$class) 

((1-sum(diag(z)))/dim(test_tot)[1])*-100 # 99.69316 

 

# Appling Test and Train set for logistic regression 

library(nnet) 

gull_totf = data.frame(gull_tot) 

gull.log<-multinom(V5~.,data=gull_totf) 

table(gull_tot[,5],predict(gull_tot[,-5])) 

plot(gull.log) 

 

gull.logtr<-multinom(V5~.,train_tot) 

table(train_tot[,5],predict(gull.logtr,train_tot, type="class")) 
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#         1      2 

#  1      2    681 

#  2     65 273983 

 

gull.logtest<-multinom(V5~.,test_tot) 

table(test_tot[,5],predict(gull.logtest,test_tot, type="class")) 

#         1      2 

#  1      7   1589 

#  2    157 639289 

 

Sensitivity= 7/(7+1589)*100 # 0.4385965 % 

Specificity= 639289/(1590+639070) *100 # 99.78 

 

(7*100)/(7+157) #4.268293 

(639289*100)/(1589+639289) #99.75206 

 

# Overall error 

z<-table(test_tot[,5],predict(gull.logtr,test_tot, type="class")) 

((1-sum(diag(z)))/dim(test_tot)[1])*-100 #99.72779 

 

# Appling Test and Train set for Classification Tree  

 

# Using train dataset - tree 

gull.rptr <- rpart(V5~., data=train_tot, method="class", parms=list(split=' information')) 

gull.rptr  

 

# table for the train - tree 

table(train_tot[,5],predict(gull.rptr, type="class")) 

 #        1      2 

 # 1    592     91 

 # 2     24 274024 

sensitivity (true positive - total number of observations of classe 1 

 

# table for the test - tree 

gull.rpts <- rpart(V5~., data=test_tot, method="class", parms=list(split=' information')) 

table(test_tot[,5],predict(gull.rpts,test_tot,type="class")) 

#         1      2 

#  1   1326    270 

#  2      6 639440 

sensitivity (true positive - total number of observations of classe 1 

Sensitivity= 1326 /(1326+6)*100 # 99.54 

Specificity= 639289/(270+639070) *100 # 99.99 

 

 

# Overall error - Error  

z<-table(test_tot[,5],predict(gull.rpts ,test_tot, type="class")) 
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((1-sum(diag(z)))/dim(test_tot)[1])*-100 # 99.95679% 

 

p-value for the values of sensitivity and specificity 

specify = c(99.97,99.78,99.99) 

t.test(specify) 

 

sensity = c(1.57, 0.44,99.54) 

t.test(sensity)  

 

# Random Forest  

library(randomForest) 

require(randomForest) 

### Require a vector of size 1 GB 

gull.rf <- randomForest(factor(V5) ~ ., data=train_tot,importance=TRUE, 

proximity=TRUE,mtry=3) 

print(gull.rf) 

 

gull.rf$importance 

# importance attribute can be used to construct parallel coordinate and 2D tour 

 

head(gull.rf$votes) 

 

# table for the train - tree 

gull.rfTr <- randomForest(factor(V5) ~ ., data=train_tot,importance=TRUE, 

proximity=FALSE,mtry=2) 

table(train_tot[,5],predict(gull.rfTr , type="class")) 

 

# table for the test - tree 

gull.rfTs <- randomForest(factor(V5) ~ ., data=train_tot,importance=TRUE, 

proximity=TRUE,mtry=3) 

table(test_tot[,5],predict(gull.rfTs ,test_tot,type="class")) 

 

# Overall error - Random Forest 

z<-table(test_tot[,5],predict(gull.rf,test_tot, type="class")) ## error 

1-sum(diag(z))/dim(test_tot)[1] # 9.03 
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APPENDIX C. PLAIN FAILURE FOR GULLY SIDEWALLS 

 
 

## Article 2 – R script 

## Plain failure applied to gully top sidewalls - Equations from Hoek & Bray book 

## Reference: Hoek, E., and J. W. Bray. 1981. Rock Slope Engineering. Revised 4 th.  

##  by Laurimar G. Vendrusculo 

### ABE, ISU - 08/04/2014 

#### Treynor - Entire gully area 

 

## Reading input data: Elevation and slope from LiDAR data preprocessed in ArcGis 10.1 

survey2014 <- 

read.csv(file="C:/Users/laurimarvend/users/laurimar1/summer2012/treynor_site_MCC/surve

y2014/slab_height2014.txt",header = TRUE, sep = ",") 

head(survey2014 ); dim(survey2014 ) 

#hist(survey2014$GRID_CODE) 

sortS2014 <- sort(survey2014$GRID_CODE);sortS2014  

head(survey2014) 

 

## Focal analysis obtained the elevation around a pixel of 2x2 

slope2014 <- 

read.csv(file="C:/Users/laurimarvend/users/laurimar1/summer2012/treynor_site_MCC/surve

y2014/slope2014.txt",header = TRUE, sep = ",") 

head(slope2014); dim(slope2014) 

#hist(slope2014$GRID_CODE) 

sortE2014 <- sort(slope2014$GRID_CODE);sortE2014  

head(slope2014) 

 

survey_2014 <- cbind(survey2014[,c(4,5,3)],slope2014[,3]); head(survey_2014) 

colnames(survey_2014) <- c("PointX","PointY","elev","slope"); 

dim(survey_2014) 

 

##### Treynor boundaries conditions according Thomas et al. (2009) work ######  

x         = 300/1000 ;x ## meters Slab thickness 

rad       = (3.1415/180); rad 

phiF      = survey_2014$slope*rad; phiF       

phiP      = (45 + (22.15/2))*rad;phiP    

tetha     = 22.15*rad;tetha ## angle of friction  

cotphiF   = 1/tan(phiF);cotphiF    

cotphiP   = 1/tan(phiP);cotphiP    

sinphiP   = sin(phiP);sinphiP    

cosphiP   = cos(phiP);cosphiP    

cosecphiP = 1/sin(phiP);cosecphiP  

tanphiP   = tan(phiP);tanphiP 

 

H = survey_2014$elev;H 
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### Values in SI 

C         =   7.9  # kPa  Cohesion 

Z         =  (H - x*tan(tetha));Z  

#Zw    = (Zcrit - h + Z) ,m depth of water filled tension crack - worst scenario - From Eq. 7 

from Thomas (2004) 

Zw       = (3.54  - 5 + Z);Zw  

yw        = 9.81        # KN/m3 unit weight of the water N/m3 

y            = 13          # KN/m3  unit weight of the slab dry N/m3 

y            = 15.5        # KN/m3 unit weight of the slab with 50% water content  

 

W = (1/2)*y*H^2 * ( (1-(Z/H)^2)*cotphiP - cotphiF ); W 

A = (H - Z)*cosecphiP;A 

U = (1/2)*yw*Zw *A; U 

V = (1/2)*yw*(Zw^2); V 

 

## Estimation of  Factor of safety 

F = ((C*A) + ((W*cosphiP - U - V*sinphiP)* tan(tetha))) / (W*sinphiP + V*cosphiP)  ;F 

 

hist(F) 

## Seaching for a FS occurrence greater than 1 

GreatFS <- F[which(F >= 1)];GreatFS 

SmallFS <- F[which(F < 0)];SmallFS  

###  Rearranging the equations in a dimensioneless 

 

P = (1-Z/H)*cosecphiP     ;P 

R = (yw/y)*(Zw/Z)*(Z/H)   ; R 

S = (Zw/Z)*(Z/H)*sinphiP  ; S 

Q = ((1- (Z/H)^2)*cotphiP - cotphiF)*sinphiP ;Q 

 

## Factor of safety 

FS.dim =  (((2*C)/(y*H))*P + (Q*cotphiP - R*(P+S))*tan(tetha) )/(Q + R*S*cotphiP);F  

 

GreatFS.dim <- F[which(F >= 1)];GreatFS.dim 

boxplot(F) 

 

### Recoding FS values between zero to 1.4 value 

FS.rec = FS.dim;FS.rec 

FS.rec = F 

FS.rec[FS.rec<=0] = 0.0 

FS.rec[FS.rec>0 & FS.rec<=0.1] = 0.1 

FS.rec[FS.rec>0.1 & FS.rec<=0.2] = 0.2 

FS.rec[FS.rec>0.2 & FS.rec<=0.3] = 0.3 

FS.rec[FS.rec>0.3 & FS.rec<=0.4] = 0.4 

FS.rec[FS.rec>0.4 & FS.rec<=0.5] = 0.5 

FS.rec[FS.rec>0.5 & FS.rec<=0.6] = 0.6 



106 

 

 

FS.rec[FS.rec>0.6 & FS.rec<=0.7] = 0.7 

FS.rec[FS.rec>0.7 & FS.rec<=0.8] = 0.8 

FS.rec[FS.rec>0.8 & FS.rec<=0.9] = 0.9 

FS.rec[FS.rec>0.9 & FS.rec<=1] = 1 

FS.rec[FS.rec>1 & FS.rec<=1.1] = 1.1 

FS.rec[FS.rec>1.1 & FS.rec<=1.2] = 1.2 

FS.rec[FS.rec>1.2 & FS.rec<=1.3] = 1.3 

FS.rec[FS.rec>1.3 ] = 1.4;FS.rec 

 

survey2014FS.dim <- cbind(survey_2014,F,FS.rec); head(survey2014FS.dim) 

colnames(survey2014FS.dim ) <- c("PointX","PointY","elev","slope","FS","FSC"); 

hist(survey2014FS.dim$FSC) 

 

######### Plotting the associated FS in a Easting and Northing 

h <- qplot( PointX, PointY, data=survey2014FS.dim, geom="point",colour=factor(FS.rec), 

xlab="UTM Easting, (meters) ", ylab=" UTM Northing, (meters) ", labels=FS.rec, main = " - 

1999 Survey " )  

h + scale_colour_manual( values = c("0.0" = "black","0.1" = "red","0.2" = "red","0.3" = 

"red","0.4" = "red","0.5" = "red","0.6" = "blue","0.7" = "darkorchid","0.8" = "black","0.9" = 

"darkolivegreen4","1" = "yellow","1.1" = "orange","1.2" = "darksalmon","1.3" = 

"sienna","1.4" = "lawngreen","1.5" = "lawngreen" )) 

 

###  

par(mfrow=c(3,2)) 

 

FS.lzero <- survey2014FS.dim[which(survey2014FS.dim[,'FSC'] == 0), ]; FS.lzero 

dim(FS.lzero) 

# mean(FS.lzero$elev) 

#[1] 0.9223632 

# mean(FS.lzero$slope) 

#[1] 29.02021 

hist(FS.lzero$elev, breaks=50,xlab="Slab height (m)", main="Factor of safety < 0") 

hist(FS.lzero$slope,breaks=50,xlab="Slab slope (degree)", main="Factor of safety < 0") 

 

FS.one =survey2014FS.dim[which(survey2014FS.dim[,'FSC'] >0 

&survey2014FS.dim[,'FSC'] <=1 ), ]; head(FS.one)  

dim(FS.one); max(FS.one$elev);max(FS.one$slope);sd(FS.one$FS); 

sd(FS.one$slope)#9.956563 

# y= 13 

#[1] 1977    6 

#[1] 3.041016 

#[1] 57.61907 

## 57.61907 - 9.956563 = 47.66251  One standard deviation with y - 15.5 

### 57.61907 - 2*9.956563 = 37.70594 two standard deviation with y - 15.5 

 

# y=15.5 
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[1] 2126    6 

## (2126*100)/1977 - 100  = -7.5 

 

# max(FS.one$slope) 

#[1] 57.61907 

# max(FS.one$elev) 

#[1] 3.041016 

# mean(FS.one$elev) 

#[1] 0.9223632 

# mean(FS.one$slope) 

#[1] 29.02021 

 

hist(FS.one$elev, breaks=50,xlab="Slab height (m)", main="0 <FS < 1 - Instable slopes ") 

hist(FS.one$slope,breaks=50,xlab="Slab slope (degree)", main="0 <FS < 1 - Instable 

slopes") 

 

FS.Gone <- survey2014FS.dim[which(survey2014FS.dim[,'FSC'] > 1), ]; FS.Gone  

dim(FS.Gone); max(FS.Gone$elev);max(FS.Gone$slope) 

 

# max(FS.Gone$slope) 

#[1]  51.60528 

# max(FS.Gone$elev) 

#[1] 3.041016 

# mean(FS.Gone$elev) 

#[1] 0.9223632 

# mean(FS.Gone$slope) 

#[1] 29.02021 

 

hist(FS.Gone$elev, breaks=50,xlab="Slab height (m)", main="Factor of safety > 1 - Stable 

slopes") 

hist(FS.Gone$slope,breaks=50,xlab="Slab slope (degree)", main="Factor of safety >1 - 

Stable slopes") 

 

plot(ecdf(survey2014FS.dim[,'FSC'])) 

hist(survey2014FS.dim[,'FSC']) 

plot.ecdf(survey2014FS.dim[,'FSC'],datadensity="density") 

 

## Export the Factor safety computed and information associated 

write.csv(survey2014FS.dim, file="C:/survey2014FS15.csv") 

 

## Cumulative histogram  

 

## Plot the density and cumulative density 

d <- density(na.omit(survey2014FS.dim[,'FSC'])) 

lines(x = d$x, y = d$y * length(survey2014FS.dim) * diff(h$breaks)[1], lwd = 2) 

lines(x = d$x, y = cumsum(d$y)/max(cumsum(d$y)) * length(x), lwd = 2) 
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FSC.sat2014 = survey2014FS.dim[,'FSC']; head(FSC.sat2014) 

FSC.dry2014 = survey2014FS.dim[,'FSC'] 

 

## Cummulative density line 

library(Hmisc) 

require(Hmisc) 

 

Ecdf(FSC.sat2014, xlab="Factor of Safety - LiDAR-based DEM",ylab="Cumulative Area 

(%)",col="black") 

par(new=TRUE) 

Ecdf(FSC.dry2014,xlab="",ylab="", col="dark grey") 

 

hist(survey2014$GRID_CODE,xlab="Factor of Safety - LiDAR-based 

DEM",ylab="Cumulative Area (%)",col="grey", title="") 

par(new=TRUE) 

Ecdf(survey2014$GRID_CODE,xlab="", ylab="", col="black") 

 

hist(FSC.sat2014,xlab="Factor of Safety - LiDAR-based DEM",ylab="Cumulative Area 

(%)",col="grey", title="") 

par(new=TRUE) 

Ecdf(FSC.sat2014,xlab="", ylab="", col="black") 

 

## Sensitivity analysis 

 

# The point with highest slope placed in the 2014 perimeter (x=278325.7197 

#y=4560571.001,# elevation difference: 2.15, slope=57 o,FS = 0.26) was chosen to 

investigate #influence # of shear stress and drive force due to rainfall. 

 

survey2014FS.dim[891,] 

#         PointX      PointY       elev       slope        FS            FSC 

891     278325.7197  4560571.001  2.15402222  56.99679565  0.2610528502  0.3 

## Friction angle 15 to 23 and cohesion varies from 7 to 13.8 KPa.  

 

x         = 300/1000 ;x ## meters Slab thickness 

rad       = (3.1415/180); rad 

phiF      = 56.99679565*rad; phiF  

tetha     = 22.15;tetha ## angle of friction       

#phiP      = 70*rad 

phiP      = (45 + (22.15/2))*rad;phiP    

cotphiF   = 1/tan(phiF);cotphiF    

cotphiP   = 1/tan(phiP);cotphiP    

sinphiP   = sin(phiP);sinphiP    

cosphiP   = cos(phiP);cosphiP    

cosecphiP = 1/sin(phiP);cosecphiP  
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tanphiP   = tan(phiP);tanphiP 

 

### Values in SI 

H = 2.15402222;H 

C      =  7.9  # kPa  Cohesion 

Z      =  (H - x*tan(tetha));Z  

#Zw    = (Zcrit - h + Z) ,m depth of water filled tension crack - worst scenario - From Eq. 7 

from Thomas (2004) 

Zw     = (3.54  - 5 + Z);Zw  

yw     = 9.81        # KN/m3 unit weight of the water N/m3 

#y      = 13          # KN/m3  unit weight of the slab dry N/m3 

y      = 15.5        # KN/m3 unit weight of the slab with 50% water content  

 

W = (1/2)*y*H^2 * ( (1-(Z/H)^2)*cotphiP - cotphiF ); W 

A = (H - Z)*cosecphiP;A 

U = (1/2)*yw*Zw *A; U 

V = (1/2)*yw*(Zw^2); V 

 

## Factor of safety 

F = ((C*A) + ((W*cosphiP - U - V*sinphiP)* tan(tetha))) / (W*sinphiP + V*cosphiP)  ;F 

 

## considering Saturated condition 

Frict_angle   = c(15,16,17,18,19,20,21,22,23)  # 9 intervals is tetha 

cohesion      = c(7,7.75,8.5,9.26, 10,10.75,11.5, 12.3,13.8) # 9 intervals (C)  

phiPV = c(30,35,40,45,50,55,60,65,70) # failure plane angle (45 + tetha/2) 

 

FS_VTetha     = 

c(0.2587968576,0.2762166607,0.2937045078,0.3112685116,0.3289167302,0.3466571569,0

.3644977045,0.3824461859,0.4005102875) 

FS_VCohesion  = 

c(0.4114891518,0.4008302407,0.3901713295,0.3793702996,0.3688535072,0.3581945961,0

.3475356849,0.3361661797,0.3148483574) 

FS_VphiP      = 

c(0.6767636311,0.5662985558,0.4763638426,0.4014429443,0.3374609933,0.2815299558,0

.2315797578,0.1860878062,0.1438980464) 

 

var(FS_VTetha);var(FS_VCohesion);var(FS_VphiP) 

sd(FS_VTetha);sd(FS_VCohesion);sd(FS_VphiP) 

 

## Student Test 

t.test(FS_VTetha) 

t.test(FS_VCohesion) 

t.test(FS_VphiP) 

 

## Scatter plots with regression line and coefficient of determination (R2) 

par(mfrow = c(1,3)) 
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scatter2D(FS_VTetha,Frict_angle, bty = "g", col = "black", pch = 18, cex = 2, ylab="Internal 

Friction Angle(Degree)", xlab="Factor of Safety")  

abline(lm(Frict_angle~FS_VTetha),col="black",lty=2) 

 

scatter2D(FS_VCohesion,cohesion, bty = "g", col = "black", pch = 18, cex = 2, ylab="Soil 

cohesion (KPa) ", xlab="Factor of Safety")  

abline(lm(cohesion~FS_VCohesion),col="black",lty=2) 

 

scatter2D(FS_VphiP,phiPV, bty = "g", col = "black", pch = 18, cex = 2, ylab="failure plane 

angle(Degree)", xlab="Factor of Safety")  

abline(lm(phiPV~FS_VphiP),col="black",lty=2) 
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