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ABSTRACT 

 Mechanization has enabled many crops to be grown on a large scale due to the 

development and utilization of mechanical crop cultivation, harvesting, and processing 

technology.  However, the development and utilization of specialty crops is commonly 

obstructed by the lack of harvesting technology available to mechanically harvest the crop.  

Post-harvest processing of harvested material also poses a challenge for the development of 

many crops.  One such specialty crop that remains under-utilized due to the lack of 

mechanical harvesting and processing systems is Physalis alkekengi, or Chinese lantern.  

 Chinese lantern, a herbaceous perennial plant growing to heights of 30 – 110 cm, 

produces white flowers that result in a papery, inflated sepal that surrounds and encapsulates 

a berry. This arrangement, consisting of a sepal and berry, known as a lantern, has been 

identified as an excellent source of carotenoids. These carotenoids exist at a high 

concentration within the sepal, but not within the berry.  A large volume of crop is required 

in order to realize the opportunities within these carotenoids. In order to be grown as a source 

of carotenoids, Chinese lantern must be grown over large productions acres with the lanterns 

harvested and processed mechanically.     

 This research focused on the development and testing of two systems: a mechanized 

harvesting system capable of detaching the lanterns from the plant stem and conveying them 

to a collection container, and a post-harvest processing system capable of separating the 

sepals from the berry.   While several harvesting systems were developed, all were based on 

the same fundamental stripping method.  Results from harvesting systems tests have shown 

that Chinese lantern can be harvested successfully by utilizing stripping elements and a 

header specifically designed for the crop.   Two separation systems were developed and 
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tested as part of this research work. The results from this testing indicate that the sepals can 

be separated from the berry at a high efficiency through utilization of a differential drying 

and abrasion process.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

 The invention of modern crop machinery has driven the agricultural industry to new 

heights. Driven by demand to produce a higher volume of product, mechanization of 

agricultural processes has been at the forefront of the agricultural industry.  Mechanization of 

the harvesting process has allowed a variety of different crops to be grown on a commercial 

scale while reducing the overall labor and production costs. Historically, rising wages and the 

physical limits of hand harvesting have driven the need for mechanization in many crop 

industries. However, due to a lack of technology and mechanization, many specialty crops 

such as fruits, vegetables, tomatillos, and marigolds are still harvested and processed 

manually by hand. Harvesting these crops is the most labor-constrained operation in modern 

agriculture today. Constrained by labor needed to manually harvest crops; the size, location, 

and production volume of many operations is limited tremendously. The amount of labor 

needed for commercial hand-harvesting often approaches 50 percent of the total annual labor 

requirements for crop production, depending on the crop.  The location of many specialty 

crop operations has been limited to areas where labor is abundant and relatively inexpensive. 

Historically, these areas have been third-world and developing countries. Hourly wages for 

employees and field laborers are rising around the globe, and very few areas remain where 

hand-harvesting of crops is economically feasible. High labor costs and low productivity of 

hand-harvesting has also limited the expansion and advancement of many specialty crops. To 

advance and utilize the potential of many specialty crops, the production process must 
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become economically feasible on a commercial scale.   However, many opportunities within 

specialty crops remain unrealized due to the lack of a mechanical harvesting system.  

Developing safe, efficient, and cost effective mechanical harvesters is a top priority to allow 

for expansion of specialty crop industries. 

 

1.2 Characteristics of Chinese Lantern 

 One such specialty crop that remains under-utilized due to the lack of mechanical harvesting 

and processing systems is Physalis alkekengi, or Chinese lantern. Chinese lantern is a 

herbaceous perennial plant growing to heights of 30 – 110 cm depending on growing 

conditions (Figure 1.1).  Widely known as a popular ornamental plant, Chinese lantern 

produces white flowers, each resulting in a lantern with an average diameter of 1.72 cm.  A 

papery, fused sepal comprised of sepals surrounds and encapsulates the berry creating a shell. 

This arrangement of a berry with attached sepals is commonly referred to as a lantern (Figure 

1.2).  Throughout plant growth, the berry and sepals change pigment and color, changing 

Figure 1.1: Top portion of Chinese lantern 

plant 

Figure 1.2: Typical Chinese lanterns with ruler 
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from green to a reddish-orange. Throughout maturity, the sepal retains strength and moisture 

and remaining fibrous.  However, after being detached from the plant stem, the sepal begins 

to lose moisture and dehydrate, becoming brittle and weak.  

  Chinese lantern has been identified as an excellent source of specific carotenoids 

desired for medicinal and pharmaceutical purposes. These carotenoids exist within the 

reddish-orange pigment of the berry and sepals. The concentration of the carotenoids 

increases throughout the maturity cycle, reaching a plateau before decreasing as the plant 

nears the end of the growing season. It has been found that the sepal has a significantly 

higher concentration of desired carotenoids.  These carotenoids are most easily extracted 

utilizing processes commonly used throughout the industry. However, Chinese lantern 

berries do not contain sufficient amounts of carotenoids to make extraction economical.  The 

berries have also shown to be unsuitable for the extraction process.   Therefore, effective and 

efficient berry/sepal separation is a vital process that must precede carotenoid extraction to 

achieve the required overall extraction efficiency and retain carotenoid quality.  

Plant characteristics are very dependent on soil, weather, and cultivation conditions.  

When grown on a large scale, several methods of planting are utilized for crop establishment 

and expansion.  Chinese lantern plants, are generally planted using a plug type transplanter 

machine for initial establishment during the first growing season. Inter-row spacing is set at 

76.2 cm or 91.4 cm.   Very little competition occurs between plants which results in a low-

lying, vine type crop (Figure 1.3).  Crop height is minimal as plants tend to branch and grow 

horizontal with respect to the ground. As the first growing season progresses, rhizomes 

expand and grow horizontally underground, expanding radially from each transplanted plug.  

If left underground, these rhizomes will survive until the following growing season and serve 
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as the base for new shoots and buds.  The result is a second year crop of vertical, single 

stemmed (SVS) Chinese lantern plants (Figure 1.4). Crop height is mainly dependent on the 

availability of water and ranges from 30 to110 cm.   The vertical structure of the second year 

crop is due to increased competition for soil space and sunlight.    

 

Rhizomes can be utilized as propagation material for establishing and expanding 

Chinese lantern crops.  When used to expand a crop, rhizomes are dug up using a potato or 

rhizome digging machine. This occurs after the growing season has ended and harvest has 

been completed.  The rhizomes are then placed into a root/rhizome transplanting machine 

that chops the rhizomes into smaller lengths and places them back into the ground in rows.   

Depending on desired planting density, effective crop area can be increased by as much a 

factor of 10.  However, this type of trans-planting and crop expansion technique generally 

yields a sparse and vine type crop requiring two years before a vertical structure is obtained. 

Figure 1.3: First year Chinese lantern crop Figure 1.4: Second year Chinese lantern crop  
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This indicates that crop geometry and density are very dependent on cultivation techniques 

and physiological age of the starting material.    

To be grown as a commercially viable source of carotenoids, Chinese lantern plants 

must be grown over large productions acres with the lanterns harvested and processed 

mechanically.   Currently, Chinese lantern is grown on minimal acres and specific areas of 

China where it is hand-harvested.  Post-harvest separation of the berry and sepal is also done 

manually by hand.  Hand-harvesting and manual processing over large production acres is 

not a feasible option for cultivation of this crop in the United States. This research focused on 

the development of a mechanized harvesting system and post-harvest processing system to 

separate the sepals from the berry.   A variety of harvesting techniques were investigated 

including vibratory/shaking and stripping/combing systems in order to determine which 

harvesting technique would be best suited for harvesting Chinese lanterns.   Several test 

stands and machines were designed and fabricated to test the concepts developed throughout 

this research work.   
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CHAPTER 2:  REVIEW OF LITERATURE 

 

2.1 Fruit Harvesting Systems and Methods 

 The fruit growing industry remains to be one of the few agricultural industries in 

which the harvesting process remains un-mechanized.  Most fruit grown to be sold as fresh 

produce is manually harvested by hand to prevent damage to the fruit.  However, many 

different techniques and methods are used to harvest fruit mechanically when it is feasible.  

Mechanical shakers have been used in many fruit crops with success. This differentiation 

between hand-harvesting and mechanical harvesting within a single crop can be seen in great 

depth within the coffee industry.   

 Harvesting of coffee is predominantly completed by hand-picking, similar to current 

Chinese lantern harvesting.   Hand-harvesting allows for selectivity during the harvest 

process.  Only ripe coffee berries can be harvested, leaving the unripen berries on the coffee 

tree to ripen and be harvested at a later date. This creates a higher quality end product that is 

highly desired and financially rewarded within the coffee industry.  Other methods that have 

been employed to aid hand harvesting include; waiting for the berries to drop to the ground 

and then gathering them, beating the coffee berries off branches with long poles, or stripping 

berries together with leaves and winnowing later (Wrigley, 1988).  Many of these methods 

are rarely used because of their destructive nature which reduces production and diminishes 

end product quality. This holds true for Chinese lantern crops as well.  Carotenoids in the 

lanterns begin to decay once the lantern is detached from the main plant stem (Cloud, 2011).  

Once detached from the plant stem, exposure to sunlight increases the rate of this decay, 
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eliminating many alternative harvesting methods.  In many cases, the high cost and short 

supply of labor may justify the desire for mechanical harvesters by many growers (Cargill, 

1999).   

   Most mechanical coffee harvesters use slight variations of similar vibration technology 

employed throughout the fruit and nut growing industry. Coffee harvesters are generally 

designed to straddle a single row of trees and remove the fruit from the tree as the tree passes 

through the machines. As the tree enters the harvester, it is met by two vertical shaker 

columns with radially protruding plastic fingers (Figure 2.1).  The plastic fingers impact the 

trees, causing an excitation force to detach the wanted coffee fruit.   This harvesting method 

is similar to most vibration harvesting techniques utilized throughout the fruit and nut 

industry.   The basic principle is to accelerate each fruit so that the inertia force developed is 

greater than the bonding force between the fruit/nut and tree (Kepner et al, 1987).  The 

excitation force is typically derived from the cyclic oscillation of either a crank slider or two 

opposite rotating eccentric masses connected to the tree to be harvested (Thomson, 1988).   

As fruits are detached from the plant they drop vertically through the plant onto catching 

Figure 2.1: Coffee harvester with shaker columns Figure 2.2: Coffee harvester catch panel floor 
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units near ground level.  The catching units used in shaker harvesting are collection surfaces 

below the shaker that extend under the tree, covering the drop area of the fruits (Cargill, 

1999).  In the case of the coffee harvester, the catching units are intricate plastic panels that 

individually rotate around a pivot point, allowing the trunk of each tree to pass through the 

machine (Figure 2.2).  A conveyor system continuously transfers the harvested fruits to a 

collection wagon towed between the adjacent rows of trees.  

 There are limits to this type of mechanical harvesting process. Generally, vibratory 

harvesting systems perform well in crops that have low fruit detachment forces, low crop 

density, and require minimal vibration to detach desired crop materials.  Excessive vibration 

is likely to cause damage to the plant/tree and reduce future production. To reduce vibration 

requirements, it is common practice to apply the power source to shake one tree at a time 

(Den Hartog, 1985).  Mechanical vibratory systems also require crops to be grown in rows 

for several reasons including the following; machinery must be able to move throughout the 

crop, catch units must be placed under each plant/tree being vibrated in order to collect 

detached crop, the vibration columns or clamps must have ample access to the crop. These 

requirements limit the number or crops that can be effectively harvested using vibratory 

techniques.   

Mechanical harvesters utilizing shaker or vibratory technology have been used to 

harvest a variety of other crops including; apples, peaches, pears, plums, prunes, apricots, 

grapes, lemons, grapefruit, olives, and many others.  However, due to the non-selective 

nature of vibratory harvesting, all of the available fruit is generally harvested during the 

initial pass through the crop.  This generally diminishes quality and subsequently reduces the 

market price received for the product.  This has become a major challenge for many 
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producers and attempts have been made to reduce the amount of immature fruit harvested. In 

many crops, ripe fruits are easier to detach than unripen fruits, hence, in developing 

principles for a mechanical shaker, it is necessary to determine the optimal mechanical 

parameters.   

The use of robotics has been growing steadily as technology has improved.  Many 

harvesting systems have been developed to utilize robotics and computer vision systems. 

While this type of harvesting system offers a solution to many of the problems and 

challenges of mechanical harvesting, there are restrictions on the type of crop that can be 

harvested.  This type of bulk harvesting requires, in addition to the canopy-like growth habit, 

uniform fruit ripeness at harvest, firm and tough fruit, high resistance to damage, and 

short/stiff limbs (Peterson, 2005).  Chinese lanterns pose another challenge due to the fact 

that they retain a strong attachment bond while growing on flexible stems instead of trees or 

brushes.  This arrangement makes detachment of the lantern difficult without harming the 

main plant stem.   Crop density also impacts the efficiency of robotic harvesting systems.  

Robotic harvesting works well in low density crops where a limited number or large fruits 

are available.  High density crops present challenges as the number of required operations 

and computing power is increased. As crop density increases, the number of harvesting 

cycles per second required to maintain acceptable harvesting rate also increases.     While 

robotic and computer vision technology offer solutions for many of the problems associated 

with mechanical harvesting, several challenges remain.  According to Sarig (1993), the major 

problems with robotic picking that must be solved include recognizing and locating the fruit, 

detaching it according to prescribed criteria without damaging the fruit or the tree.  

Unstructured crops present another challenge.  In unstructured crops, fruits are distributed 
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throughout the canopy in a random manner, making it essentially impossible to explicitly 

model (Plebe, 2001).  In addition to these challenges, the robotic system needs to be 

economically sound to warrant its use as an alternative method to hand picking.   These 

limitations, coupled with the characteristics of the Chinese lantern plants reduce the 

possibility of a developing a successful robotic harvesting system capable of achieving 

desired throughput and efficiency.  

 

2.2 Stripping Header Systems 

Another approach that has been widely researched and implemented is stripping fruit 

or grain from the plant stem.  Stripping is a very old harvesting concept that continues to 

challenge designers through the centuries (Tado et al;, 1998).  These challenges include 

designing stripping headers that are capable of harvesting crops in a wide variety of 

conditions. Stripping harvesters have mainly been developed for the small grains and cereal 

crops.  These crops are easily stripped because of their SVS and uniform grain diameters.  

One of the most influential developments in stripping technology is the Silsoe 

stripper. Initial investigations of this design began at Silsoe Research Institute in the UK in 

1984 (Tado et al;, 1988).  The Silsoe design utilizes a rotor that is rotated about an axis 

perpendicular to the direction of harvester travel (Figure 2.3).  Flexible arrowhead stripping 

elements are mounted on the rotor and essentially comb through the crop, stripping the grain 

from the plant stem.  The arrowhead stripping elements consist of a molded thermoplastic 

material forming a “V” shape with a circular recess at the base (Tado et al;, 1988). These are 

commonly referred to as keyhole stripping teeth (Figure 2.3).  The size of the circular recess 
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is directly related to the size of the crop being harvested.  This parameter can be adjusted to 

compliment the specific crop being harvested.  

The efficiency of operation is directly related on the ability of the stripping elements 

to collect only the wanted grain, leaving behind all other material.  Plant damage during 

stripping can cause large amounts of unwanted material to be collected with the grain.  For 

this reason, it has been customary to make the comb plates of a thermoplastic material, which 

causes little, if any damage to the crop stems (Shelbourne, 2001).  

The most popular production machine using this stripping technology is the 

Shelbourne Reynolds stripper header.  This header is currently being used to harvest cereal, 

rice, grass seed, and other small grain crops.  Shelbourne Reynolds stripper headers are 

attached to mainstream production combines and operated in a similar fashion to regular 

cutter-bar headers. This technology has shown to be very productive and efficient in widely 

varying conditions.  In Germany, research at Halle showed that combine capacity could be 

increased by 70 to 90% with the stripper header (Papesch, 1995).  This is mainly due to the 

reduced amount of material other than grain (MOG) entering the threshing components of the 

Figure 2.3: Side view of Silsoe stripping header and keyhole teeth 
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combine.  Reducing MOG enables grain to be cleaned better than when harvesting with 

conventional cutter-bar headers.  However, performance of the stripper is more sensitive to 

machine settings as well as crop and weather conditions (Tado et al;, 1988).  

There are many parameters to be explored when adapting stripping technology for 

other crops.  Extensive work has shown that the application of the rotary stripping system can 

be extended to include the harvesting of other crops (Klinner et al;, 1987).  Data needs to be 

collected from the crop to be harvested in order to design the correct stripping elements. The 

rotational speed of the transversely mounted rotor will need to be adjusted for different 

conditions existing within the crop to be harvested.  Further research and development is 

needed in order to apply and optimize this technology for various specialty crops. 

While many stripping systems have been developed for self-propelled, large scale 

harvesters, others have focused on creating an aid to the hand-picking laborer.  Merritt (1995) 

developed a hand held unit with powered oscillating rake member having extending tines to 

strip fruit from branches.  This apparatus is aimed to aid the harvest of olives and like fruit.  

Figure 2.4: Cifarelli SC800 portable stem vibrator Figure 2.5: PSV end-effector rake fingers 
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Similar devices have been developed such as the portable stem vibrator (PSV) for use in 

small fruit and berry harvesting (Figure 2.4).  These types of devices aid the manual 

harvesting process and dramatically increase harvesting efficiencies.  A small internal 

combustion engine creates hydraulic pressure which is utilized to oscillate an end-effector.  

Many types of end-effectors are utilized including c-clamps that attach to branches and also 

rake fingers that strip through the branches while oscillating (Figure 2.5).  Oliveros (2005) 

has shown that the use of PSV devices to harvest coffee can increase harvest efficiencies by 

up to 458.3% over traditional hand harvesting methods.  It was also shown that an 80% 

reduction in labor requirements can also be achieved by utilizing PSV’s.  However, although 

PSV devices have shown to be advantageous during the detachment phase of harvest, the 

collection phase remains completely manual and labor intensive.    

 

2.3 Crop Separation Systems 

 While developing a mechanized harvesting system continues to be a hurdle 

throughout many crop growing industries, processing harvested crop material also continues 

to be an ever present issue.  Many crops require an immediate post-harvest processing to 

create an end product suitable for market. These processes generally include at least one of 

the following; removing any unwanted material that was collected during harvesting, drying 

material to desired moisture content, crushing or grinding crop material to desired particle 

size.  In the case of Chinese lantern, the post-harvest processing includes removing unwanted 

materials from the harvested lanterns and separating the sepals from the berry to create a dual 

path material stream.  
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 Many types of systems exist to separate and process crop materials.  In grain and 

cereal crops, threshing technology is utilized to loosen grain from the stalk and chaff that 

surrounds it.  Both major styles of threshing mechanisms, cylinder or rotor and concave, 

move the crop between the surface of a rotating cylinder and an open mesh concave.  Action 

in the threshing area detaches grain from other plant material by impact force and separates 

the detached free grain from other crop material (Kutz, 2007).   Although most of the grain 

has been detached in the threshing area, it must still be removed from the MOG in order to 

reach performance and market criteria. There are two separation processes commonly used: 

gravity dependent straw walkers or rotary separation (Kutz, 2007).  Straw walkers consist of 

sieve sections that oscillate up and down with the addition of longitudinal movement.  This 

movement shakes the remaining grain from the crop mat consisting of grain and MOG.  

Rotary separation utilizes centrifugal force to move heavier grain through the concave and 

into collection systems.  Straw walker separation systems exhibit potential for use in 

separating detached, harvested lanterns from unwanted materials such as stems and leaves.  

Threshing systems work well when small, dense, and hard crop materials are 

processed.  However, the physical impacts and turbulent nature would almost certainly crush 

Chinese lantern berries and greatly decrease extraction efficiencies.  While separation 

systems are heavily developed and proven throughout the grain and cereal crop industries, 

very little work has been done to develop commercial scale separation or de-husking 

mechanisms in the fruit or berry industries.  In order for many fruits or berries to be 

processed or sold, it is desirable to remove the sepals.  In some cases, the sepal is of value 

while the berry is not desired.   A fruit husking machine capable of removing the outer 

wrapper of onions, oranges and similar fruit was developed by Crawford (1944).  Wang 
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(1966) investigated mechanical de-husking for Physalis peruviana, Cape gooseberry, also 

known in Hawaii as Poha. Belonging to the same genus, Physalis, Chinese lantern (Physalis 

alkekengi) exhibits many of the same characteristics as cape gooseberry plants.  The 

immature green berry is relatively strong, while the mature berry is soft and easily damaged 

by impact or external forces.  The sepal remains flexible and is able to withstand strong 

tensile forces throughout the maturation cycle.  Because the sepals and berry possess 

different frictional coefficients, it was determined that removal of the cape gooseberry sepals 

could be accomplished using counter-rotating frictional rollers (Wang 1966).  As seen in 

figure 2.6, counter-rotating rollers pinch the sepal, pulling it down and through the rollers 

while the berry remains above the rollers due to the resolution of forces.  The force required 

to detach the husk from the berry must also be considered when analyzing this type of 

separation system.  The frictional coefficients of the rollers and interaction with the sepal 

must be so that enough frictional force is generated to prevent slippage of the sepals between 

the rollers. It was observed that effective and efficient separation occurred when the sepal –

berry pair was introduced to the rollers in a sideways orientation. However, when a sepal-

berry pair was introduced with a tip-end first orientation, the entire pair was pinched and 

Figure 2.6: Counter-rotating friction roller 

separation system 

Rotation Rotation 

Roller Roller 

Figure 2.7: Lantern and rollers, tip-down 
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pulled through the roller, crushing the berry (Figure 2.7).  

In the study conducted by Wang (1966), it was found that if a cut was introduced on 

the sepal before the sepal-berry pair was dropped on the rollers, the cut on the sepal would 

provide an escape for the berry, even if introduced to the rollers tip-end first. Two oxygen-

acetylene torch nozzles were used to produce small flames to induce a cut or slit on the sepal.  

This pre-cutting method proved to be effective even when the sepal-berry pair dropped tip 

end first onto the rollers.  However, this type of pre-cutting would most likely damage or 

destroy the sepals, reducing the amount of carotenoids available for extraction, which is 

unacceptable as it is the product of interest.  A similar mechanical separation system 

described by Flores (2007) is designed to remove the sepals from a tomatillo (Physalis 

philadelphica).  Also being from the Physalis genus, tomatillos exhibit many of the same 

characteristics as a Chinese lantern.  Instead of cutting the sepals as a pre-treatment to 

counter-rotating rollers, the tomatillos were soaked in water for a period of time to soften the 

Fruit Husk 

Figure 2.8: Friction rollers and pressure belt (Granger, 2002) 

Pressure Belt 

Friction Rollers 
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sepals and allow for a more efficient separation.   

A similar mechanical separation system for small fruits was described by Granger 

(2002).  Fruit and sepal pairs are soaked in water as a pre-treatment for separation by 

counter-rotating friction rollers. Once soaked with water, the fruit and sepal pairs are directed 

on top of the friction rollers and beneath a pressure belt.  The pressure belt, which is 

comprised of a series of interlinked flaps, exerts appropriate pressure onto the fruits so they 

can be captured by the pinching rollers lying directly underneath (Granger, 2002).  As seen in 

Figure 2.8, the spacing between the pressure belt and rollers must be set in accordance with 

the diameter of the fruit being processed.  Flores (2007) utilized a similar pressure belt 

system that continuously engages and directs the tomatillos onto the counter-rotating rollers 

(Figure 2.9).  Such continuous engagement with the rollers results in a more thorough 

removal of the sepals of the tomatillo fruit (Flores, 2007).   

 

While all three systems described by Flores (2007), Wang (1966), and Granger 

(2002) utilize counter-rotating rollers to create frictional force and detach the sepals from the 

Figure 2.9: Friction rollers and engagement belt (Flores, 2007) 
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berry, several differences do exist between the systems. These differences can be seen in the 

direction of crop material flow with respect to the counter-rotating rollers.  The system 

developed by Granger (2002) and Wang (1966) moves crop material parallel with respect to 

the roller axis.  Any individual cape gooseberry comes into contact with only one pair of 

rollers.  The tomatillo husking machine developed by Flores (2007) moves crop material 

perpendicular to the roller axis (Figure 2.9).  Tomatillos come into contact with each pair of 

rollers within the system.  Advantages may exist within this type of system because of the 

increased probability of successful de-husking created by contact with multiple pairs of 

counter-rotating friction rollers.  
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CHAPTER 3:  OBJECTIVES 

 

The goal of this research project was to develop a mechanical harvesting and post-

harvest processing system for Chinese lantern that will enable commercial production and 

advancement of the crop. To accomplish this goal, three specific objectives were derived.  

The specific objectives of this research project were as follows: 

 Objective #1: Develop and fabricate a small scale mechanical harvest system 

capable of detaching the sepal and berry from the main plant stem. Tasks 

supporting this objective include: 

o Design and develop stripping elements capable of detaching Chinese 

lanterns from plant stem.  

o Determine system feasibility through field testing.   

o Analyze performance and determine improvements for scaled up 

harvesting system.  

 Objective #2: Develop and fabricate a self-propelled mechanical harvesting 

system capable of continuous harvest and conveyance of crop material. Tasks 

supporting this objective include: 

o Conduct field tests across different field conditions and crop varieties.  

o Collect data and observations in order to make data driven decisions 

for improvements and modifications to the harvesting system.  

o Analyze performance of the system to determine best operating 

parameters and conditions.  
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o Continuously improve harvesting system to achieve acceptable 

stripping and harvesting efficiencies. 

 Objective #3: Develop a post-harvest processing system capable of 

mechanically separating the sepals from the berry. Tasks supporting this 

objective include: 

o Conduct initial system tests to investigate effects of component 

parameters 

o Collect data for system analysis  and improvement 

o Optimize operating parameters through testing and observations 

The long term focus of this research project is to develop feasible, economical 

systems that will allow Chinese lantern and other similar crops to be grown on a commercial 

scale.  Having the ability to harvest and process these crops mechanically will allow for the 

advancement of the crops and a realization of the many opportunities they hold.  
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CHAPTER 4:  HARVESTING SYSTEM DEVELOPMENT 

 

For Chinese lantern to be grown on a commercial scale as a source of carotenoids, the 

harvesting process must be mechanized. Mechanically harvesting Chinese lantern requires: 

detachment of the berry and sepals from the main plant stem, and conveyance of the 

harvested material to a collection container or vehicle. Several agronomic characteristics of 

Chinese lantern were analyzed in order to determine the best approach for mechanical 

harvesting.   

The attachment force of the lantern to the main plant stem is quite high, indicating 

that a large frequency and amplitude would be required to detach the lantern using vibration.   

The absence of stiff members or stems in the plant to transfer vibratory motion also 

discourages the use of vibration as a harvesting method. Vibratory harvesting methods also 

require the use of a catch mechanism to collect and transport harvested material.  Lanterns 

are dispersed throughout the main plant stem, starting approximately 4-6 inches vertically 

above the ground.  The close proximity of lanterns to the ground makes designing and 

developing collection mechanisms difficult.   Once established, Chinese lantern is very 

invasive and grows randomly much like an alfalfa field.  This random placement and lack of 

rows makes delivering vibration to each individual plant stem a challenge.   

The SVS of Chinese lantern plants are very similar to grain and cereal crops which 

lend themselves well to mechanical harvesting by stripping methods.  A stripping header 

harvesting system is also able to handle random placement and crop growth.  Utilizing 

stripping fingers to comb through the stems, the berries can be used as a catch point and 
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allow the stripping fingers to apply a detachment force to the lantern.   This section will focus 

on the design and development of a stripping type harvester system for Chinese lantern.   

 

4.1 Stripping Finger Design and Development 

 Stripping fingers are the core of many stripping header and harvester systems.   They 

serve several purposes during crop harvest: comb through and individualize plant stems, 

catch and apply detachment force to desired crop materials, and deliver detached material to 

a collection system.  Many times, stripping fingers are individualized for each crop, designed 

to maximize harvest efficiency and decrease the collection of unwanted crop materials.  

Utilizing the correct stripping finger elements can optimize machine performance.    

 In order to correctly design stripping fingers for Chinese lantern several 

characteristics must be known about the crop. These characteristics include main plant stem 

and berry diameters.  The stem diameter determines the size of opening leading to the 

keyhole component of the stripping finger while the berry diameter determines the size of the 

keyhole.  In order to collect this data, 100 lanterns were examined and measured while 100 

main plant stems were also measured.  The results of this data collection can be seen in Table 

4.1.  All measurements were taken from 2011 crop material using a digital caliper and scale.    

Parameter
Berry + Calyx 

Weight (g)

Berry + Calyx 

Diameter (mm)

Berry Diameter 

(mm)

Berry Weight 

(g)

Calyx 

Weight (g)

Main Stem 

Diameter (mm)

Range 5.84 28.93 9.93 5.25 0.59 4.85

Std Dev 1.19 4.33 2.11 1.11 0.10 1.06

Average 3.22 23.87 17.42 2.84 0.36 6.99

Table 4.1: Chinese lantern characteristics 
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 The stripping fingers were designed using Pro-Engineer software (Parametric 

Technology Corporation, Needham, MA) and can be seen in Figure 4.1.  Taking into account 

the average berry diameter and standard deviation, the keyhole diameter of the stripping 

fingers was set to 12.7 mm.  At 4.72 mm smaller than the average berry diameter and 

5.71mm larger than the average stem diameter, the keyholes were designed to catch and 

detach the lanterns while allowing stems to slide through freely.  Assuming a normal 

distribution of berry diameters, the keyhole stripping fingers are capable of detaching 

approximately 95% of all berries.  The opening leading to the keyhole was designed to be 

10.41mm, slightly smaller than the keyhole itself.  This smaller opening creates a “cup” and 

increases the surface area over which the detachment force can be applied.  It also deters 

larger debris or weed stems from entering the keyhole and causing plugging.    

  

Figure 4.1: Keyhole stripping finger 
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As is with most cutting or stripping elements, the stripping fingers were designed to be 

modular and interchangeable. This design allows all stripping elements to be identical and 

easily interchanged in case of breakage.  At 15.25 cm wide, the fingers are designed to be 

attached directly next to each other on a reel or other harvesting mechanism. The stripping 

units were designed to meet at the center of the keyhole, retaining strength in the narrow, 

extending fingers.   This mating design is very similar to the stripping elements used in the 

Silsoe and Shelbourne stripping systems.  However, the design differs greatly in the curved 

nature of the stripping finger.  The curvature is modeled much like a human hand when 

stripping fruit or berries off stems.  Utilizing a curved stripping finger allows the detachment 

force applied to the Chinese lantern berry to be directed into the curved, cupping portion of 

the stripping finger.   In order to minimize stripping fingers digging into the soil, the tips of 

the protruding fingers were designed with a slight curvature.  

 Several manufacturing methods were considered to fabricate the stripping fingers.  

However, due to the curved nature and multiple radii along the keyholes and fingers, 

machining and other metal forming methods were found to be time-consuming and cost-

inefficient.  Several rapid prototyping methods offered solutions to produce small quantities 

without incurring significant investment costs. Through analysis of these rapid prototyping 

methods, selective laser sintering was chosen to produce the first batch of stripping fingers.   

 Selective Laser Sintering (SLS) is an additive manufacturing technology that uses a 

high power laser to fuse plastic, ceramic, or glass powders into a 3-dimensional 

object.  Cross-sections of the part are scanned using data generated from a 3-D CAD file.  

The laser then selectively sinters material together to form the part structure as indicated in 

the CAD file.  After each cross-section is scanned the powder bed is lowered by one layer 
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thickness, a new layer of material is applied on top, with the process repeated until the part is 

completed. This process is capable of producing working prototypes that can endure field 

testing.  In order to build strength into the stripping fingers, glass filled nylon was selected as 

the material for fabrication.  This type of manufacturing process and material resulted in a 

robust stripping finger. The stripping fingers were manufactured by GPI Prototype and 

Manufacturing Services in Chicago, IL.  SLS proved to be very cost-efficient when 

producing small quantities of the stripping fingers.  However, as this project progress a larger 

quantity of stripping fingers was required.   

Injection molding, a process designed for high volume and throughput, was chosen as 

the process to produce the higher quantities of stripping fingers required.  Zytel 70G33 HSIL 

NC010 was injected into an aluminum mold to produce the stripping fingers.   Zytel, a 33% 

glass-reinforced nylon, produced a very rigid stripping finger required by the crop stripping 

and detachment process.  This manufacturing was also conducted by GPI Prototype and 

Manufacturing Services.  

 

4.2 Rotary Harvester Design 

While a mechanical harvesting system has never been developed for Chinese lantern, 

several other harvesting systems have been developed utilizing stripping technology. These 

systems utilize a horizontal, rotating reel to which stripping elements are attached. Using the 

principles established by these systems, a small hand- powered mechanical harvesting system 

was developed.  The goal of this system was to test the feasibility and performance of the 

stripping fingers. 
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The keyhole stripping fingers were designed to be attached to a horizontal rotating 

reel, allowing them to comb through the crop while detaching Chinese lanterns.  Attaching 

the fingers to a reel was accomplished by welding six attachment plates to a length of 6.35cm 

OD tubing. These attachment plates were placed in 60 degree increments around the reel.  

During rotation, the stripping fingers enter the crop and direct plant stems into the keyhole 

portion of the stripping finger.  Once in the keyhole portion, detachment force can be applied 

to the berry of the Chinese lantern as the plant stem slides through the keyhole. The 

detachment force can be described as perpendicular to the surface of the stripping finger at 

the keyhole.   

When attached to a rotating reel, the detachment force is quickly directed toward the 

center of the reel as the stripping fingers are rotated through the crop.  Directing the 

detachment force towards the center of the reel assists with the collection of detached fruit 

Figure 4.2: Rotation of stripping finger reel, -30 to 0 degrees 
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and reduces harvesting losses due to detached fruit falling out of the stripping fingers.  As the 

stripping fingers and reel are rotated approximately 30 degrees, -30 to 0 degrees, the 

stripping fingers are inserted into the crop material (Figure 4.2). 

  Through this portion of reel rotation the detachment force is directed slightly away 

from the center of the reel.  However, when rotated from 0 degrees to 30 degrees, the 

detachment force becomes directed into the reel (Figure 4.3).  The curvature of the stripping 

fingers creates this change direction of the detachment force and attempts to reduce 

collection losses occurring after detachment.  As the reel and stripping finger rotation 

approaches 60 degrees the detachment force continues to be directed towards the center of 

the reel (Figure 4.4).  Past 60 degrees the stripping fingers begin to exit the crop and plant 

stems.  The curvature of the stripping fingers also becomes critical throughout this portion of 

rotation. The stripping fingers are curved in order to retain the detached Chinese lanterns and 

convey them to a collection system or hopper.  

0˚ 

X 

Y 

Rotation 

X 

Y 

0˚ 30˚ 

Rotation 

Figure 4.3: Rotation of stripping finger reel, 0 to 30 degrees 

Detachment Force 
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Depending on rotational speed of the stripping fingers and reel, two methods were 

developed to remove the detached Chinese lanterns from the reel and fingers.  When a high 

rotational speed is utilized, the harvesting system is designed to utilize centrifugal force to 

convey the detached lanterns to a collection system.  A set of dislodging fingers were 

designed to help remove detached lanterns when a low rotational speed is required. The 

dislodging fingers are a mirror image of the stripping finger geometry.  Offsetting the 

dislodging fingers horizontally places them between the stripping fingers and dislodges any 

stuck material.  These were mounted using adjustable brackets to allow for horizontal, 

vertical, and angular adjustment.  Integration of the dislodging finger mounts into the 

stripping reel mounts enables a single adjustment of vertical height for the entire harvesting 

system.  The stripping fingers were also developed to accommodate deflection shields to 

Figure 4.4: Rotation of stripping finger reel, 60 and 90 degrees  
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keep detached Chinese lanterns from falling too far in-between successive rows of stripping 

fingers. These deflection shields simply bolt on to successive rows of stripping fingers and 

can be easily added or removed as needed.  Figure 4.5 and 4.6 display Pro-Engineer models 

of the dislodging fingers and deflection shields respectively.   

A small test platform was fabricated using these principles for testing and validating 

the stripping fingers during the fall 2011 harvest.  The stripping reel utilized six rows of four 

stripping fingers, equally spaced around the reel center tube.  This arrangement resulted in an 

effective harvesting width of 53.34 cm.  The reel was hand-powered using a crank to permit 

variable rotational speed.   A 1:1 gear ratio was utilized between the hand-crank and stripping 

reel. The stripping reel height was made to be adjustable with a range of finger to ground 

Dislodging Fingers 

Figure 4.5: Dislodging fingers and 

stripping reel 

Deflection Shields 

Figure 4.6: Deflection shields and stripping reel 
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clearance of 0 to 30 cm.  A cross section view of this harvesting system can be seen in Figure 

4.7.  

 

4.3 Integrated Harvesting and Conveyance Design 

 During initial testing of the rotary system, significant loss of harvested material was 

seen in the transition portion of the harvester, between the stripping finger reel and collection 

hopper. In order to combat these losses, another small test platform was developed alongside 

the rotary reel harvester during the first year of testing, fall 2011.  This design integrated crop 

harvesting and conveyance into one singular system.  Stripping fingers were attached to a 

conveyor belt system comprised of roller chain, attachment links, angle iron cross bar slats, 

and rubber belting.  Attachment links, inserted every 25.4 cm into two lengths of roller chain, 

provided attachment points for angle iron cross bar slats.   Stripping fingers were then 

Figure 4.7: Rotary harvester cross-section view 
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attached to the slats while rubber belting was attached between slats.   The chain and slat 

system was then positioned on a pair of shafts and sprockets.  Rotating one of the shafts 

propelled the conveyor belt, moving the keyhole stripping fingers through the crop and 

conveying the detached crop to a collection hopper or material handling system. In order to 

keep standing crop material engaged with the stripping fingers a rotating reel was added to 

the front of the system.   This reel comprised of six strip brushes equally spaced around a 

center cylinder.  Rotating opposite of the stripping fingers, the reel fed standing crop material 

into the stripping finger conveyor belt. A cross section view of this harvesting system can be 

seen in Figure 4.8.  Attaching the stripping fingers to a chain and rubber belting system 

creates a conveyor that elevates the detached Chinese lanterns.  Elevating the harvested crop 

material also allows the collection hopper to elevated, resulting in higher ground clearance.  

Similar to the rotary system previously discussed, the rotation of the stripping fingers around 

Rotation 

Rotation 

Collection 

Hopper 

Direction of Harvester 

Travel 

Figure 4.8: Integrated harvester and conveyance system 
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the lower shaft causes the detachment force to be directed into the conveyance and rubber 

belting system.  Harvesting width was also the same as the rotary system, 53.34 cm, or 4 

stripping finger units wide.  Figure 4.9 displays this machine in a Chinese lantern test plot.  

 In order to achieve constant harvesting system rotation speed, the stripping finger belt 

and conveyor system was powered by a 12 VDC high torque right-angle gear motor (Buyers 

Products, Mentor, Ohio).  An internal 90:1 gear ratio reduced the rotational speed of the 

output shaft to 40 revolutions per minute (RPM).  Capable of producing a maximum of 

213.54 N·m of torque, this motor proved to be more than adequate to power the harvesting 

system. Power was supplied to the motor via a 12 VDC battery mounted on top of the 

harvesting unit.  An extension cord was used as a tether between the battery on the harvester 

and a battery in a pickup truck.  The pickup truck engine was left running during harvesting 

Figure 4.9: Integrated harvesting and conveyance test platform 
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to charge the batteries and provide a constant source of power to the battery on the harvester.  

The front reel was also powered by this electric motor.  Forward motion of the harvester was 

achieved by manually pushing the harvester or towing it behind a small tractor.  When towed 

behind a tractor, forward speed was limited to 1 mile per hour (MPH).   

  Due to the output shaft speed of the motor already being reduced, no further 

reduction was necessary.  A 1:1 gear ratio was utilized to drive the stripping finger conveyor 

belt system.  Using #60-15 tooth sprockets to drive the stripping finger belt system resulted 

in a belt linear velocity of 12.7 meters/minute.  To keep crop material firmly engaged with 

the stripping fingers, a 1.60:1 gear ratio was used to drive the front reel from the stripping 

finger belt system.  This gear ratio resulted in a rotational speed of 64 RPM.  25.4 cm strip 

brushes and a 5.08 center tube were used to fabricate the front reel, resulting in an overall 

diameter of 30.48cm and linear velocity at the outer edges of 61.28 meters/minute.   

To account for a variety of crop conditions, the front reel mounting system was 

designed so that the reel itself could be adjusted in both the vertical and horizontal directions.  

The vertical proximity of the stripping fingers to the ground could also be adjusted by raising 

or lowering the lower shaft of the stripping finger belt system.  The front reel and stripping 

finger belt speeds can be adjusted by swapping out drive sprockets and subsequently 

changing the gear ratios. However, these speeds were never changed during testing.  

The collection hopper was designed to be removable from the main harvesting unit.  

This allowed for the hopper to be easily emptied and cleaned out.  The removable hopper 

design also provided easy access to the stripping finger belt system for any necessary 

maintenance or repairs. 
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4.4 Self-Propelled Harvester Design and Development 

In order to scale up the harvesting system and conduct larger scale tests, a self-

propelled harvesting platform was required.   The design and development of this machine 

took place after the initial testing of the stripping fingers and harvesting system was 

completed in fall 2011.   The self-propelled harvesting platform was designed to facilitate 

continuous harvest and conveyance of Chinese lantern crop material.  This section includes 

and explains details about the design and development of the self-propelled harvester test 

platform and header.  

 4.4.1 Power Unit Design and Development 

 The driving factor behind the power unit design was a fully customized machine 

capable of meeting the requirements of the harvesting system.  Designing a custom machine 

allowed for several key features to be integrated, resulting in better flexibility and machine 

performance.  These factors drove the decision to build a custom machine rather than utilize 

a power unit already manufactured and available in the equipment industry.   The design is 

fully flexible and allows for custom headers to be attached to the front and material hopper s 

or trailers to be connected to the rear (Figure 4.10).  The self-propelled power unit consisted 

of a 4 wheeled vehicle that includes an operator station, 3-point header attachment and lift 

mechanism, trailer and material handling attachments, and front mounted auxiliary hydraulic 

hookup.  Power unit and header width were limited to 1.52 m to allow for compatibility when 

working with first year Chinese lantern crop transplanted on 0.76 m row spacing.  The 

wheelbase of the power unit was designed to be relatively short, 1.01 m, to allow for easy 

maneuvering and a tight turning radius.  
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Figure 4.11: 3-Point header attachment system 

Figure 4.10: Self-propelled power unit, header, and hopper trailer 

Header 

Power Unit 

Hopper 
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Two hydraulic cylinders provide approximately 45.72 cm of vertical header lift while 

a third hydraulic cylinder acting as a top link provides 45degrees of fore-aft header tilt and 

rotation (Figure 4.11).  This range of motion allowed the header to be adjusted for varying 

crop height and conditions.  

A conveyance system was also designed into the power unit. This system consisted of 

two separate conveyors designed to remove material from the header at the front of the 

power unit and transfer it to a hopper located at the rear of the power unit.  The first and 

forward mounted conveyor floats with the header throughout the vertical height range and 

header tilt rotation.  Harvested material is collected from the header and conveyed along the 

forward mounted conveyor.  Material is then transferred to the second, rear mounted 

conveyor that moves the material to the collection hopper at the rear of the machine. The 

elevation of the rear conveyor spout can be adjusted via a hydraulic cylinder.  The forward 

mounted conveyor is powered by a hydraulic motor, allowing for variable speed.  The rear 

mounted conveyor is powered by the driveshaft of the forward mounted conveyor.  Both 

conveyors utilize the same size belting drive pulleys.  A gear ratio of 0.90:1 was achieved 

using sprockets and roller drive chain to ensure that material would not accumulate in the 

transition between conveyors.  

Power for the entire self-propelled harvesting system was provided by a 3 cylinder 

Lombardini LDW1603 diesel engine (Lombardini, Reggio Emilia, Italy). With a 

displacement of 1,649 cm
3
, this engine provided approximately 29.5 kW (40.1HP) and 111.9 

N·m (82.5 ft-lb) at 1600 RPM.  This engine was mounted rear-facing and slightly behind the 

rear wheels to distribute weight and account for the weight of the header.  
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 4.4.2 Hydraulic System Design 

 The self-propelled power unit utilized a hydraulic pump to power all machine 

functionality including propulsion, steering, conveyor drives, and header functions. Sauer 

Danfoss (Neumünster, Germany) hydraulic components were utilized for the majority of the 

hydraulic system. A full hydraulic component list can be seen in Appendix A.  A series 45 

axial piston pump was mated directly to the Lombardini engine using a SAE B – 2 bolt 

bellhousing mount.  A hydraulic schematic for the self-propelled harvester is shown in figure 

4.12.  Reference numbers and descriptions are listed for each major component.  The model 

L25C hydraulic pump had a displacement of 25 cm
3
 / revolution that provided hydraulic flow 

to a bank of PVG 32 load independent proportional valves.   

The PVG 32 valve block included a number of different modules. A closed center 

pump side module was attached to the valve bank to manage hydraulic flow from the pump.  

This pump side module included a pressure port (P) and tank return port (T) as well as a load 

sensing (LS) port.  During operation oil flowed from the pump (10) to the pump side module 

(11). Oil was provided to the valve bank (9) and returned through the tank port on pump side 

module.  The load sensing port on the pump side module allowed pump output flow to be 

adjusted in order to maintain constant pressure. The valve bank provided hydraulic flow to 

various hydraulic cylinders and motors throughout the self-propelled harvester. The valves 

were controlled using proportional valve electric actuation modules.  Individual hydraulic 

wheel motors were used drive each of the four wheels.  Each set of two hydraulic motors, 

right and left side, were connected in series to conserve hydraulic flow. With a displacement 

of 463.75 cm
3
/rev, the White Hydraulic (White Drive Products Hopkinsville, Kentucky) RE 

series wheel motors provided a theoretical torque of 1272.2 N·m at 17.2 MPa  



 

 

3
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1 2

10

543

9

876

PT LS11
Reference Number Description

1 Left side wheel motors, 2 White Hydraulics RE Series Wheel Motors, Displacemen = 463.75 cm3/rev each, connected in series

2 Right side wheel motors, 2 White Hydraulics RE Series Wheel Motors, Displacement = 463.75 cm3/rev each, connected in series

3 Header lift hydraulic cylinders, 25.4 cm stroke, 5.08 cm bore, 2.86 cm rod

4 Header tilt hydraulic cylinder, 25.4 cm stroke, 5.08 cm bore, 2.86 cm rod

5 Rear conveyor elevation hydraulic cylinder

6 Header stripping finger belt hydraulic motor

7 Header auger hydraulic motor

8 Conveyor drive hydraulic motor

9 Sauer Danfoss valve block, 8 - 157B6530 basic modules

10 Sauer Danfoss series 45 axial piston pump, Model L25C, Displacement = 25 cm3 / rev

11 Sauer Danfoss 157B5914 pump side module, pressure, tank, load sensing ports  

Figure 4.12: Self-propelled power unit hydraulic schematic 
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 4.4.3 Controls System Design 

The operator station of the self-propelled power unit provided controls for propulsion, 

steering, header lift and tilt, auxiliary hydraulics, and conveyor functions.  The self-propelled 

power unit utilized Sauer Danfoss Plus +1 compliant electronics and software to establish a 

fully integrated controls package. Two JS700 joysticks, one right handed and one left 

handed, were utilized to provide operator control of all machine functionality.  A DP600 

provided a user interface. This interface provided real time machine information and also 

allowed for machine operating parameters to be adjusted.  The JS7000 joysticks and DP600 

display interfaced with a MC088-015 microcontroller.  A detailed component list for all 

mobile electronics utilized can be seen in Appendix A. The MC088-015 microcontroller was 

also utilized to interface with the Sauer Danfoss PVE electric actuators and control hydraulic 

flow for each valve.  Header height and speed sensors were also connected to the MC088-15.  

A controls program for the power unit was developed using Sauer Danfoss PLUS +1 Guide 

software. This program was then downloaded to the MC088-15 microcontroller.  

A CAN bus network was developed for communications between the MC088-015 

microcontroller, JS7000 joysticks, and DP600 display.   A service port was added to allow 

software changes to be made using a laptop computer and CAN to USB converter.  An 

overview of this CAN bus network can be seen in figure 4.13.  

Several safety features were built into the machine control program.  A “propel 

engage” function was utilized in order to stop any unexpected movement of the power unit.   
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Sauer-Danfoss JS7000

Right Joystick
Sauer-Danfoss JS7000

CAN High

CAN Low

120 Ω 
Resistor

120 Ω 
Resistor

Operator Interface
Sauer-Danfoss DP600 Display

Vehicle Microcontroller
Sauer-Danfoss

MC088-15

Sauer Danfoss 
CG150

CAN/USB Converter

 

Figure 4.13: CAN bus network overview 

 

This button must be pressed momentarily in order to engage propulsion, and allow hydraulic 

flow to be directed to the wheel motors.  Using this function prevented movement of the 

power unit if either of the joysticks is bumped when climbing in or out of the power unit 

operator station.   All electrical power to the controls network was directed through a master 

electrical power disconnect that could be disconnected easily if unpredicted machine 

movement or equipment failure was experienced.   A vehicle speed limiter function was also 

utilized not only for safety reasons, but also to act as an aid while harvesting.  When 

engaged, this limiting function allowed the operator to push the joysticks full forward to 

achieve a preset, constant speed.  The maximum vehicle speed parameter could be set 

through the operator interface.   A full list of machine functionality control can be seen in 

table 4.2.  Explanations and locations of joystick buttons and functionality can be seen in 

figure 4.14.  
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Table 4.2: Joystick functionality 

Left Joystick JS7000 

Input Function Notes 

Y-Axis Position Left wheels forward/reverse Y-Axis is forward/reverse on joystick 

Button 1 Conveyor on/off Latched function 

Button 2 Conveyor elevation down Momentary function 

Button 3 Conveyor elevation up Momentary function 

Button 4 Vehicle speed limiter on/off Latched function 

Button 5 Propel on/off Latched function, "on" allows wheel movement 

   
Right Joystick JS7000 

Input Function Notes 

Y-Axis Position Right wheels forward/reverse Y-Axis is forward/reverse on joystick 

T-Axis Position Header up/down Proportional roller switch 

Button 1 Header on/off Latched function 

Button 4 Header tilt back Momentary function 

Button 5 Header tilt forward Momentary function 

Button 8 Auto header height engage Latched function 

 

5 

4 

3 

2 

1 

Y-Axis - 

Y-Axis + 

T-Axis  

Figure 4.14: Sauer Danfoss JS700 joystick buttons 
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Automatic header height control was designed into the control system in order to maintain 

correct header height during harvesting. This was accomplished by utilizing a rotary 

potentiometer and linkage arm.  A skid was fabricated to contact and run along the ground to 

provide positive indication of header height (Figure 4.15)   Automatic header height could be 

engaged by the operator pressing button #8 on the right joystick.  The header would then 

adjust to the correct height accordingly.  The height of the header during automatic mode 

could be adjusted through the DP600 operator interface.  The rotational speed of the header 

stripping finger belt was determined utilizing a Cherry GS100102 magnetic pickup sensor 

(Cherry, Auerbach, Germany) and sprocket (Figure 4.16). The rotational speed of the 

stripping finger belt drive shaft and also the linear velocity of the stripping finger belt were 

calculated and displayed on the operator interface screen.   Rotational speed and therefore 

linear velocity of the stripping finger belt could be adjusted through the user interface.  

 +5 VDC sensor power, ground, and sense line inputs were provided by the 

microcontroller.  A complete wiring schematic of the power unit can be seen in figure 4.17.  

Figure 4.16: Header rotational speed 

sensor and sprocket 

Figure 4.15: Automatic header 

height sensor and skid assembly 
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Figure 4.17: Self-Propelled power unit wiring schematic
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 4.4.4 Header Design and Development 

 In order to harvest Chinese lanterns a header was designed and fabricated. The header 

utilized several key features identified during fall 2011 testing of the smaller hand-propelled 

harvester units previously discussed.   This header was designed to be attached to and 

powered by the self-propelled power unit. Based on a 1.52 m working width, the header was 

designed to harvest first year crop transplanted on 0.762 m row spacing, or second year and 

older crops resembling an alfalfa type crop.  Stripping fingers designed for the smaller test 

platforms were utilized on the header.  However, due to the larger width and size of the 

header a larger volume of stripping fingers were required.  In order to manufacture the large 

volume of fingers required, an injection molding process was utilized to produce high 

quality, functional stripping fingers.   

 The header system was designed to integrate the harvesting, collection, and 

conveyance systems.  A stripping finger belt system with a modified geometry was utilized 

as the main harvesting portion of the header.  The stripping finger belt system comprised of 

three sets of roller chain and attachment links routed around a set of four drive shafts and 

sprockets.  Diamond Chain (Diamond Chain Company, Indianapolis, Indiana) B2 attachment 

links were installed into #60 roller chain every 30.48 cm. This style of attachment link can be 

seen in figure 4.18.  Angle iron was then attached to the attachment links on each of the three 

Figure 4.18: B2 attachment links in roller chain 
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chains to serve as attachment point for the stripping fingers.  As the drive shafts and 

sprockets were rotated the stripping fingers moved with the roller chain around the drive 

shaft geometry and through the Chinese lantern crop. The drive shaft and roller chain 

geometry can be seen in figure 4.19.  Figure 4.20 displays a Pro-Engineer cut away model of 

the header.  Rubber belting was installed between successive sets of stripping fingers to act 

as a conveyor and catch harvested material. After stripping material off the crop stems, 

detached crop material was conveyed to the rear of the head by the stripping finger belt 

system.  Harvested crop material was then transferred to a latitudinal screw auger that 

conveyed material to the left side of the header. Upon reaching the left side of the header, 

material dropped through a cutout in the auger trough onto the forward mounted conveyor of 

the power unit.  Material was then transferred to the collection hopper by the power unit 

conveyors.  

Figure 4.19: Side view of stripping 

header roller chain geometry 

Figure 4.20: Header cut away CAD model 
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 The geometry of the roller chain and stripping finger belt system was designed to 

accomplish several objectives.  An annotated cut-away side view of the harvesting header 

can be seen in figure 4.21.  In order to capture and detach the low lying lanterns, the 

harvesting portion of the geometry was designed to insert the fingers into the crop at a 

minimal vertical distance from the ground (1).  After insertion into the crop, the stripping 

finger belt system makes a 90 degree rotation around a drive shaft and sprocket (1).  The 

stripping fingers are rotated through the crop, effectively combing and detaching the Chinese 

lanterns.  The fingers are then elevated vertically through the crop stems, detaching and 

capturing the detached material by creating a “cup” between the stripping fingers and rubber 

belting (2). Cylinder brushes (3) are rotated against the backside of the stripping fingers to 

dislodge any material stuck in the fingers.  As the stripping fingers reach the rear of the 

header they are rotated over a screw auger (5) and the harvested crop material is transferred 

to the auger (4).    

Direction of Harvester Travel 

5 

Rotation 

1 

2 

3 4 

Figure 4.21: Annotated side view of harvesting header 
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After initial testing several modifications and improvements were made to the 

stripping header.  Rotating cylindrical brushes were added to the top portion of the header in 

order to dislodge material that had become stuck in the stripping fingers. These brushes are 

located in the top portion of the header as seen in Figure 4.22.  The drive system for these 

brushes was tied directly to the stripping finger belt drive shaft.  Utilizing a direct drive 

maintained the correct gear ratio throughout the range of stripping finger belt speeds.  A pin 

and guide system was developed and installed on the header to prevent deflection of the 

angle iron stripping finger mounts and roller chains themselves.   Two pins were added to 

each end of the angle iron stripping finger mounts, spaced approximately 6.35 cm apart. A 

guide system was fabricated from 2.54 cm thick ultra-high molecular weight (UHMW) 

plastic (Figure 4.23).  The guide channel system was designed to accept the guide pins and 

prevent deflection throughout the insertion into the crop and stripping portions of the 

stripping finger belt geometry.  Both of these modifications improved the harvesting 

reliability of the header.

Figure 4.22: Stripping header with cylindrical 

dislodging brushes. Without guide pin system.  

Figure 4.23: Stripping header with guide 

channels installed 
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CHAPTER 5: SEPARATION SYSTEM DESIGN AND DEVELOPMENT 
 

Chinese lantern sepals serve as a primary source of carotenoids, containing a high 

concentration of carotenoids while the berry does not.  Carotenoid extraction requires the 

berry and sepals be separated to streamline the process and increase efficiencies.  Therefore, 

for commercial extraction of the carotenoids to be economically feasible, a mechanized 

system to separate the sepals from the berry must be integrated into the post harvesting 

process.  To be effective, the system must be capable of accepting recently harvested lanterns 

and separating the sepals from the berry with minimal material loss and damage.  A modular, 

self-contained system is also desired to minimize dependency on support systems or material 

handling.  With these objectives, two separation systems were developed and fabricated.  

One system utilized counter-rotating frictional rollers to mechanically separate the sepals 

from the berry.  Multiple rollers were placed next to each other to create a multi-channel 

separation bed.  Two material handling and feeding systems were developed to deliver 

lanterns to the roller bed.  The other system consisted of two processes, differential drying of 

the sepals and berry and an abrasion process to remove the dried sepals from the berry. 

Several aspects of each system will be discussed throughout this section.  

 

5.1 Frictional Roller Separation System Design 

After analysis of previous crop separation work concerning plants within the Physalis 

genus, a system was designed utilizing many of the same principles previously developed.  

The frictional coefficients of the berry and sepals were determined to be significantly 

different, indicating separation could be accomplished using frictional rollers. The 
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berry/sepal separation system developed consisted of a bank of counter-rotating rollers 

mounted in a frame.  This frame was designed hold the rollers with the ability to rotate 45 

degrees around a pivot point located at one end of the roller bank. Lantern stems and sepals 

are pinched by the rollers and pulled down through the rollers into a sepal collection system, 

and allowing the berries to be collected in a secondary collection container.   

 5.1.1 Roller Design  

In order to correctly size the counter-rotating rollers, several interactions were 

examined.  The forces acting on a Chinese lantern berry when resting on counter-rotating 

rollers can be seen in figure 5.1 as examined by Wang (1966).  

  Where:  

A, B = counter-rotating rollers 

S = Chinese lantern berry 

W = weight of berry, S 

r = radius of rollers, A and B 

rB = radius of berry, S 

θ = angle between berry S and rollers A and B 

Figure 5.1: Roller and berry free body diagram (Wang, 1966) 
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F = frictional force between berry and rollers 

μ = kinetic frictional coefficient between berry S and rollers A and B 

The balanced vertical forces of the berry and rollers results in equation 5.1: 

 

  (     )     (     ) Equation 5.1 

Considering the frictional coefficient μ and the normal force N yields: 

       Equation 5.2 

Because the weight of the berry is greater than 0, combining equation 5.1 and 5.2 results in: 

   (
    

 
     )      Equation 5.3 

         Equation 5.4 

And: 

      
√((    )    )

 
 √

  
 
(  

  
 
) Equation 5.5 

Combining equation 5.4 and 5.5 yields: 

 √
  
 
(  

  
 
)     Equation 5.6 

As seen in equation 5.5, rB is the radius of the Chinese lantern berry and is not variable.  The 

kinetic frictional coefficient μ is positive and determined by the surface of the counter-

rotating frictional rollers. Therefore, equation 5.6 determines the maximum radius of the 

frictional rollers.  The values of frictional coefficients between the Chinese lantern berry and 

the surfaces of the frictional rollers become of interest.  These values can be estimated 

utilizing cape gooseberry data obtained by Wang (1966).  Cape gooseberry plants belong to 
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the same genus, Physalis, and also exhibit characteristics similar to Chinese lanterns. The 

frictional coefficient data collected by Wang (1966) can be seen in figure 5.2 and table 5.1. 

 

Table 5.1: Frictional coefficient data for cape gooseberry and sepal (Wang, 1966) 

Line Test Kinetic Friction Coefficient, μx 

A Berry and Neoprene (Durometer 60, Shore A) μA = 0.78 

B Berry and Neoprene (Dry Cell)   μB = 0.625 

C Sepal and Neoprene (Durometer 60, Shore A)                    μC = 1.3 

D sepal and Neoprene (Dry Cell) μD = 1.04 

 

Equation 5.6 was utilized to determine the maximum radius of the frictional rollers.  The 

lower value of rB and the kinetic frictional coefficients of the berry and neoprene, μA and μB, 

should be used.  Using the data collected previously, as shown in table 4.1, the minimum 

berry diameter was found to be 12.37 mm (0.487 in).  Therefore rB = 6.185 mm (0.2435 in) 

and    μB = 0.625.  Substituting these values into equation 5.6 where X = 
  

 
 yields equation 

5.7: 

Figure 5.2: Load force vs. pulling force on cape 

gooseberry (Wang, 1966) 
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       (     )  Equation 5.7 

Solving for X results in the maximum roller diameter that will satisfy the limiting conditions 

of            (1.34 in).  However, the horizontal forces must also be considered.  Wang 

(1966) found that the maximum horizontal force, FH-Max, that berries could withstand to be 

approximately 8.9 – 11.1 N (2-2.5lbf).  As seen in figure 5.2, the horizontal forces can be 

explained by equation 5.8, where FH represents the horizontal force applied to the berry by 

the rollers. 

     (           ) Equation 5.8 

Combining equations 5.1, 5.2, and 5.58 results in equation 5.9:  

     
        

      
 Equation 5.9 

However when considering FH-Max, equation 5.9 can be expressed as: 

         
        

      
>0 

Equation 5.10 

Due to the fact that FH-Max must be greater than zero and μ cannot be negative, equation 5.9 

can be determined as true.  Equation 5.10 can be rewritten:  

 
        

      
 
      
 

 Equation 5.11 

  While W in equation 5.11 is usually expressed as the weight of the berry, the 

downward force of separation must also be considered during the instant the sepal is being 

pulled off the berry.  This force of separation is highly influenced by the rotational speed of 

the rollers and the speed at which the sepal is detached.  Thus, satisfying the conditions of 

equation 5.11 must be determined through experimental testing of different frictional roller 

rotational speeds.  This testing will be discussed in future chapters.  
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 The rollers for the separation system were sized to satisfy the constraints of equation 

5.7.  The initial separation system was built with 20.63 mm (0.8125 in) radius steel rollers. 

12.7 mm diameter drive shafts were utilized to for each roller.  Steel endplates were 

machined to accept 2 bolt flange bearings that held the roller drive shafts.  The bearings 

could be adjusted to vary the distance between successive rollers. However, due to the design 

of the spur gear drive system, adjustment was limited to a range of 41.275 – 42.545 mm 

roller center to successive roller center distance. Suction was provided to an air box 

fabricated underneath the rollers in an attempt to pull lanterns into the rollers.  A cut-away 

isometric view of the initial separation system can be seen in figure 5.3.  

Figure 5.3: Cut-away isometric view of the initial 

separation system 

1 

1: Frictional Rollers 

2: Spur gear drive bank 

2
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 The drive system for the rollers consisted of a bank of spur gears, with each 

individual spur gear located at the end of a roller driveshaft (Figure 5.4). The bank of spur 

gears was driven by a roller chain sprocket attached to a roller driveshaft in the center of the 

bank of rollers.  Power was provided by a Dayton (Dayton Electric Mfg. Co., Niles, Illinois) 

3N017BD industrial electric motor.  A Schneider Electric (Schneider Electric, Rueil-

Malmaison, France) ATV12HO75M2 variable frequency drive was utilized to provide 

rotational speed control.   This separation system was developed for validation and proof of 

concept testing that was completed during spring 2011.  

 Utilizing the results and experience from the initial separation system and testing a 

second system was developed and fabricated for further testing and commercial use in fall 

2012. This system comprised of a similar frictional roller bank and drive system.  The rollers 

were machined from steel bar stock and had a radius of 15.875 mm (0.625 in). Machining the 

frictional rollers allowed for tighter tolerances to be held between successive rollers. The 

outside surface of the frictional rollers was knurled to increase the kinetic friction coefficient.   

The rollers were spaced 31.75 mm (1.25 in) center to center in the roller bank, making 

successive roller touch.   The steel endplates of the roller bank were machined to accept 

Figure 5.4: Separation system 

spur gear bank and drive 

sprocket 
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flange bearings with a spacing tolerance of 31.75 ± 0.127 mm center to center distance.  A 

similar spur gear drive system was utilized to rotate the frictional rollers.  Power to the spur 

gear bank was again provided by a Dayton 3N017BD industrial electric motor and Schneider 

Electric ATV12HO75M2 variable frequency drive.  However, several additions were made 

in order to increase throughput and ease material handling. A 1:8.64 gear reduction ratio 

between the electric motor and main roller drive sprocket increased the torque applied to the 

spur gear bank to handle the increased material throughput.   A material hopper and feeder 

system was also added above the roller bank. 

5.1.2 Feeding System Design  

 Two feeding systems were designed to deliver lanterns to the frictional roller bed.  

The initial system comprised of two sets of conveyor belts.  These belts attempted to 

singulate the lanterns and deliver them individually to the frictional roller bed.  A hopper was 

fabricated on top of the first set of conveyor belts to provide a steady supply of material.  An 

alternative feeding system was developed in an attempt to orient the lanterns before 

delivering them to the roller bed. This system utilized a feeding tube and vibratory table to 

orient and direct lanterns.   Both feeding systems will be discussed throughout this section.  

 In order to increase material throughput and separation efficiency a material feeder 

was developed and attached on top of the bank of frictional rollers. The feeder consisted of 

two sets of five conveying belts mounted above the frictional rollers. John Deere (John 

Deere, Moline, Illinois) A67976 seed delivery belts were utilized to singulate and convey the 

Chinese lanterns (Figure 5.5).  The lugs on the conveyor belts assisted with singulation of the 

lanterns due to their spacing with respect to the average length of a lantern. The first set of 

conveyor belts conveyed lanterns from the material hopper to the top of the frictional roller 
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bank, dropping the lanterns onto the rollers individually.  The conveyor belt lugs moved the 

lanterns and separated berries along the first half of the roller bank.  The second set of 

conveyor belts, located toward the rear of the roller bank, conveyed lanterns and separated 

berries down the remainder of the rollers. The second set of conveyor belts were positioned 

closer to the rollers in an attempt increase separation efficiency by providing down pressure 

on any un-separated lanterns.  The conveyor belt system was powered by a Dayton 

3N017BD electric motor and Schneider Electric ATVHO75M2 variable frequency drive 

(Figure 5.6). 

A material hopper was attached to the conveying belt frame and allowed Chinese 

lanterns to be loaded and conveyed to the rollers by the belts. The belts were separated by 

dividers positioned to guide the lanterns into the correct roller channels for separation.  

Correct belt spacing was also maintained by these dividers.  A diagram of the feeder and 

material hopper system can be seen in figure 5.7. 

Figure 5.5: Feeder system 

conveying belts 

Figure 5.6: Roller and feeder 

system variable speed drives 
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An alternative method of feeding the lanterns onto the roller bed was also developed.  

During several preliminary tests it was noted that Chinese lanterns had a tendency to orient 

stem first when on a vibration table.  Therefore a vibration table was set up to orient and feed 

lanterns onto bed of frictional rollers.  A chute was fabricated to bridge the gap between the 

vibration table and roller bed.  To maintain correct orientation and positioning, channels were 

added directly to the chute.  Chinese lanterns were fed onto the table with a tube positioned 

perpendicular to the vibration table (Figure 5.8).  An Eriez (Eriez Manufacturing Company, 

Erie, Pennsylvania) series HI-VI model 15A vibration unit was utilized to provide vibration. 

A custom table top was fabricated to match the width of the existing frictional roller bed. 

220-grit sandpaper was glued to the top of the table to assist with orientation and movement 

of the lanterns.  The vibration unit controls provided user input control of the vibration 

amplitude.  Testing and analysis of this system as a feeding mechanism will be further 

discussed in the following chapters.  

Rotation 

Hopper 

Rotation 

Roller Bank 

Figure 5.7: Material feeder, conveying belts, and roller bank diagram 



58 

 

 

5.3 Drying and Abrasion Separation 

 Through interaction with Chinese lanterns it was observed that the sepal begins to dry 

out and become brittle once the lantern is detached from the plant stem. The sepals can then 

be easily crumbled away from the berry and stem.  The berry retains moisture and remains 

intact during this process.  However, the berry does begin to shrivel up after extended periods 

of time, similar to a raisin.  The difference in the moisture retaining characteristics between 

the berry and sepals spurred discussions that led to the development of an alternative method 

for berry/sepal separation.  This method includes drying the whole lantern to a specific point, 

at which the sepal is brittle while the berry retains moisture and strength.  After drying, the 

lanterns are subjected to an abrasion process to fragment the sepal and detach it from the 

berry and stem. While very little work exists that investigates differential drying and abrasion 

as a process to remove and separate sepals from fruit, it was decided to investigate this 

method further.  

10 degrees 

Tube 
Height 

Feeding Tube ID = 4 
Inches 

Vibration Table 

Figure 5.8: Diagram of vibration 

table and feeding tube set up 

Figure 5.9: Vibration table and feeding tube 
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 While there is a multitude of commercially available drying equipment, a majority 

use the same basic principles to dry material; heat and aeration. Aeration, passing air through 

material, allows water to be removed and carried away from the material.  Heating air lowers 

the relative humidity of the air, increasing the drying rate and water carrying capacity.  Air 

temperature and airflow rate, primary drying system parameters, become of interest when 

developing a drying system for Chinese lantern.  However, moisture content of the sepals and 

berry become the primary value to quantify drying efforts.  Because different drying 

techniques can be applied to achieve similar results, moisture content of the sepals and berry 

becomes the measure to base the amount of actual material drying achieved by the system.   

 A variety of abrasion processes exist for separation of crop and commercial products.  

Many of these systems are designed to separate and classify different materials of different 

shape or size.  For this application, an abrasion process to remove the dried sepals from the 

berry is required.  The goal of the abrasion process is to completely separate the sepals from 

the berry effectively creating two separate component streams, while minimizing berry 

damage and cross contamination between the two components.  
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CHAPTER 6: METHODS AND MATERIALS 

 

6.1 Harvester Testing, Experimental Runs 

 The harvesting units were tested over the course of two harvest seasons, fall 2011 and 

fall 2012.   The manual rotary harvesting prototype and electric motor powered integrated 

system were tested on small test plots throughout the late summer and fall 2011 harvest 

season. These units were tested on small test plots, approximately 6 m wide and 30 m in 

length.  The plots contained first year crop material that had been transplanted the in spring 

2011.  All the test plots were generally located in the central Iowa, in the Des Moines 

vicinity.  Kemin Industries, the industry sponsor for this project, was responsible for the 

cultivation and agronomic details of the crop.  The exception to this was the initial testing of 

the rotary harvester system completed at the Franzenburg location near Van Horne, Iowa.  

The self-propelled harvester was tested during fall 2012 in large scale plots, generally 

0.4-1.0 ha in size. These were second year growth plots, established from rhizomes left in the 

ground after the first year harvest. The rhizomes were left untouched since initial 

transplanting and plot establishment in spring 2011.  

 

 6.1.1 Rotary Harvester Testing 

The manually powered rotary harvester prototype was tested on third year crop 

material at the Franzenburg residence near Van Horne, Iowa.  Approximate GPS coordinates 

for the testing location are as follows: N 42.017736, W 92.126284.  The crop was originally 

being grown for ornamental purposes, but was discovered by Kemin Industries staff and 
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offered to our research team for validation testing purposes. The data collected during this 

testing was not done in a manner that permitted statistical analysis of operational parameters. 

This was due to the hand-powering of the unit and inability to maintain a distinct constant 

reel speed and forward ground speed.  However, the data collected did serve as validation of 

the stripping finger concept and very meaningful insight was gained into the harvester 

development.  

 The third year growth plot was dense and very well established (Figure 6.1). The 

plant structure consisted of SVS plants.  Stem branching was very minimal throughout the 

plot.  Average plant height was measured to be approximately 45-61 cm.  Lantern growth 

started approximately 10 cm above ground level and populated the plant stems at a rate of 2-

4 lanterns per individual stem. Due to the nature of the crop, no evidence of crop rows was 

observed throughout the test plot.  Plant and stem density very closely resembled an 

established alfalfa crop.  A complex and very well established rhizome system was observed 

when individual plants were dug up.  

 Testing of the rotary harvesting system consisted of two sets of three runs, for a total 

of six recorded test runs.  Three test runs were completed without the deflection shields 

Figure 6.1: Franzenburg third year test plot 
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installed, while the other three runs were completed with them installed.   Several other small 

test runs were initially completed to get a feel for the system and observe the harvester-crop 

interactions.  The six recorded runs were completed on sub-sample test plots that were 

marked out of the larger plot.  The width of the six test plots was dictated by the width of the 

rotary harvester, 0.60m.  The overall size of the six test plots was 0.60m wide by 5.0 m long. 

 Before testing, the test plot to be harvested was examined for lanterns lying on the 

ground. These were carefully removed from the plot so that data collection would not be 

skewed. After making a single pass through the test plot, the collected lanterns were counted 

(M).   The lanterns that were not collected were also counted, with a distinction made 

between those on the ground and those still attached to the stem.  The lanterns lying on the 

ground after testing was completed were ruled as harvesting losses (D), being detached from 

the stem but lost in harvesting process. The lanterns still attached to the plant stem were 

denoted as left on plant (LOP).  The stripping efficiency (SE) was then calculated as seen in 

equation 6.1: 

    (
   

       
)      Equation 6.1 

Where: 

 M = number of lanterns harvested by the machine 

 D = number of lanterns detached by the machine, but lost or dropped 

 LOP = number of lanterns left on the plant stem 

How well the rotary header conveyed the detached lanterns to the collection hopper was 

another important factor when evaluating the performance of the overall system.  The overall 

efficiency (OE) was calculated utilizing equation 6.2.  
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    (
 

       
)      Equation 6.2 

Several figures of this testing can be seen below. 

 

 6.1.2 Integrated Harvesting and Collection System Testing 

The integrated harvesting and collection system prototype was tested in the fall 

2011on several different test plots throughout central and south-central Iowa. These test plots 

were first year growth plots, grown rhizomes transplanted in spring 2011.  Grown and 

managed by Kemin Industries, the plots were designated for harvesting system research as 

well as agronomic and genetic research purposes.  Overall plot size was approximately 6.0 m 

by 30.0 m.  However, smaller sub-sample plots were used for data collection in a similar 

fashion as done with the rotary harvester testing.  A description and location for each test plot 

can be seen in Table 6.1. 

 

 

Figure 6.2: Testing of the rotary 

harvesting system 

Figure 6.3: Rotary harvester 

validation testing 
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Table 6.1: Test plot names, locations, and landscape descriptions for integrated harvesting system 

Test Plot Name Latitude Longitude Landscape Description 

Kemin Summerset 41.440736 -93.554555 Bottom Ground 

Kemin North Summerset 41.47452 -93.534818 Hilltop/Hillside 

McGinnis Location 41.354233 -93.491394 Hilltop/Hillside 

Kerber Location 41.309343 -95.648932 Bottom Ground 

The first year growth of these plots differed greatly from the third year growth 

observed at the Franzenburg location.  The crop consisted of sparse, low lying plants with 

excessive branching from the main stem.  Plant growth was horizontal and spread radially 

from the main stem along the ground. This type of growth was mainly due to a lack of intra 

and inter-row competition between plants.  Plants were not forced to grow vertical in order to 

reach the necessary sunlight. Plant height averaged less than 30 cm.  Lantern population per 

plant was very dependent on location and weather experienced throughout the growing 

season.  Several images of the first year crop can be seen below.  

 Three tests runs were completed at each location, with the exception being the Kerber 

location.  No data was collected at the Kerber location due to the poor plant quality.  Data 

collections procedures were identical to those used during testing of the rotary harvesting 

Figure 6.4: First year crop test plots Figure 6.5: First year test plot plants in rows 
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system.   System efficiencies were calculated using equations 6.1 and 6.2.   

 6.1.3 Self-Propelled Harvester Testing 

 The self-propelled harvesting system was tested throughout the fall 2012 harvest 

season. Second-year growth test plots were utilized for all testing.  The harvesting system 

was tested at two locations seen in table 6.2.  The test plots utilized for testing were 

cultivated for harvester testing and development as well as agronomic and genetic research. 

The second-year crop growth consisted of mainly vertical, single stemmed plants.  Due to a 

lack of precipitation throughout the 2012 growing season, the Kemin Summerset location 

was irrigated using a lateral move irrigation system. Irrigation of this test plot resulted in a 

tall, dense, and lush crop (Figure 6.6). The Kemin Walter location was not irrigated, resulting 

in a shorter, less dense crop (Figure 6.7).  The test plot also started to become very dry and 

brittle at the end of the growing season.  

Table 6.2: Test plot names, locations, and landscape descriptions for self-propelled harvester  testing  

   

Test Plot Name Latitude Longitude Landscape Description 

Kemin Summerset 41.440736 -93.554555 Bottom Ground 

Kemin Walter Location 41.387384 -93.626572 Hilltop/Hillside 

Figure 6.7: Kemin Walter location test plot Figure 6.6: Kemin Summerset location test plot 
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Initial testing of the self-propelled harvesting system was completed at the Kemin 

Walter location.  Due to the lack of precipitation throughout the growing season, the crop 

matured earlier than the crops at other test locations. Crop height also suffered due to a lack 

of moisture.  Average crop height for the test plot was approximately 60 cm.  The plant stems 

contained very few leaves, most of which had turned brown and shriveled up.  Several small 

validation tests were run to gain familiarity with the harvesting system and interactions with 

the crop. No data was collected on these tests.  Before data collection testing, six allotments 

measuring 1.52 m by 30.48 m were marked out for each test run.  Each plot was harvested 

and data was collected on harvested lanterns, dropped lanterns, and lanterns left on the plant 

stem.  These tests were completed using the initial header design, without the guide pins and 

channels installed. The maximum vehicle speed function was utilized during this testing to 

minimize errors and losses due to irregular harvester speed.  Approximate forward vehicle 

speed during tests was measured to be 1.0 km/h.   A wooden box hopper was placed on the 

harvester trailer to collect the harvested lantern from the conveyor system.  In order to 

improve collected lantern cleanliness a fan was added to the spout of the rear conveyor.  

Debris and unwanted materials were blown out of the harvested material stream and directed 

away from the collection hopper.  

Further testing of the self-propelled harvester was completed at the Kemin 

Summerset location. Irrigation of the crop resulted in a SVS plants.  Average crop height for 

the test plot was approximately 81cm.  A large volume of leaves were present throughout the 

crop. However, the leaves tended to be in the top ¼ of the plant stems, leaving the lower ¾ of 

the plants stems bare of leaves.  Lanterns populated the plant stems at a rate of 6-12 lanterns 

per stem, starting approximately 15cm from the ground.   Several challenges arose during 
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testing at the Kemin Summerset location. Due to the dense and lush crop, the header had 

difficulty effectively combing through the crop material. The thick crop material and stems 

created an immense resistance and caused deflection of the roller chain stripping finger 

system.  As a result several header components failed or bent, causing multiple machine 

shutdowns for repairs. Therefore, only two tests were completed with data collection at the 

Kemin Summerset location.  Small test plots measuring 1.52 m by 20 m were measured out 

for these tests.  Data collection procedures were identical to those followed during testing of 

the rotary harvesting system.  During this testing the guide pin and channel header concept 

was developed.  

The guide pins and channels strengthened the stripping finger drive system and 

reduced deflection dramatically.  A small portion of the crop was saved for testing once 

modifications and improvements had been made. Several short tests were completed after the 

guide system was installed.  No header breakage of failure was experienced during these 

tests.  Several figures of the self-propelled harvester testing can be seen below.  

Figure 6.8: Test plots after initial testing at 

Kemin Walter location 

Figure 6.9: Testing at the Kemin Summerset 

location, without guide system installed 
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6.3 Roller Separation System Initial Testing, Experimental Runs 

 Several initial tests were completed using the frictional roller separation system.  

These tests were completed with open rollers, before the feeding system was developed or 

fabricated.  The rollers utilized for these tests had a smooth, finished steel surface and an 

outer diameter of 41.28mm.  A total of 12 runs were completed, with runs #10-12 utilizing 

the optimum settings.  Two different lantern orientations were used for test runs 1-9.  Five 

lanterns were placed on the rollers with a random orientation while another five were placed 

with a stem-down orientation, inserting the stem into the pinch point created by the rollers.  

The number of successful separations was then recorded.  A successful separation was 

defined as a complete separation of the sepals from the berry, without crushing the berry.  

The test parameters for test runs 1-9 can be seen in table 6.3.  Separation efficiencies were 

calculated for random and stem down orientations.  Overall separation efficiency was also 

calculated.  

Table 6.3: Machine parameters, experimental tests 1-9;l 

Run  
Roller Angle 

(Degrees) 
Air Suction 
(in/water) 

Roller 
Speed 

Roller 
RPM 

1 30 0 Low  20 

2 30 25 Low  20 

3 30 25 Low  20 

4 30 0 Medium 40 

5 30 25 Medium 40 

6 30 25 Medium 40 

7 30 0 High  60 

8 30 25 High  60 

9 30 25 High  60 
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 After analysis of the results, three additional test runs were completed using the 

optimum machine parameters to maximize overall separation efficiency. These tests were 

completed by placing ten lanterns stem down on the roller bed. The results from these tests 

were analyzed in a similar fashion.  

 

6.4 Roller Separation System, Design of Experiments 

 A larger separation system was developed for further testing.  Frictional rollers were 

machined from steel bar stock specifically for the separation system.  Several changes were 

made to the roller design to improve functionality. The frictional roller outer diameter was 

reduced to 31.75 mm in an attempt to reduce crushing of the berry.  A diamond pattern 

knurling was machined into the outer surfaces of the roller to increase the frictional force on 

the stem and sepals. (Figure 6.10)    A feeder belt and hopper system was developed to 

increase machine throughput and control feeding rate.  After completion of the preliminary 

experimental test runs a complete design of experiments (DOE) was developed for the 

complete separation system.  The DOE was based on two experimental factors, roller speed 

and feeder belt speed.  Three levels of each factor were used to create the 3x3 full factorial 

DOE.  Two additional center point runs were added to the DOE to provide a measure of 

Figure 6.10: Diamond pattern knurling added to frictional roller shafts 
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process stability and inherent variability. Each test run was replicated three times, resulting in 

44 total test runs. (Table 6.4) 

Table 6.4: DOE separation machine parameters 

Test Run 
Factor Level 

Pattern 

Roller 
Speed 
(RPM) 

Roller surface 
linear speed 

(cm/min) 

Feeder Belt 
Linear Speed 

(cm/min) 

1 31 30 298.6 375.4 

2 21 20 199 375.4 

3 0 20 199 750.8 

4 31 30 298.6 375.4 

5 12 10 99.5 750.8 

6 23 20 199 1126.2 

7 32 30 298.6 750.8 

8 13 10 99.5 1126.2 

9 13 10 99.5 1126.2 

10 21 20 199 375.4 

11 13 10 99.5 1126.2 

12 32 30 298.6 750.8 

13 21 20 199 375.4 

14 12 10 99.5 750.8 

15 32 30 298.6 750.8 

16 32 30 298.6 750.8 

17 33 30 298.6 1126.2 

18 22 20 199 750.8 

19 0 20 199 750.8 

20 22 20 199 750.8 

21 11 10 99.5 375.4 

22 21 20 199 375.4 

23 33 30 298.6 1126.2 

24 0 20 199 750.8 

25 12 10 99.5 750.8 

26 0 20 199 750.8 

27 11 10 99.5 375.4 

28 12 10 99.5 750.8 

29 0 20 199 750.8 

30 13 10 99.5 1126.2 

31 31 30 298.6 375.4 

32 0 20 199 750.8 

33 11 10 99.5 375.4 
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Table 6.4 (cont.): DOE machine parameters 

Test Run 
Factor Level 

Pattern 

Roller 
Speed 
(RPM) 

Roller surface 
linear speed 

(cm/min) 

Feeder Belt 
Linear Speed 

(cm/min) 

34 23 20 199 1126.2 

35 33 30 298.6 1126.2 

36 31 30 298.6 375.4 

37 0 20 199 750.8 

38 0 20 199 750.8 

39 22 20 199 750.8 

40 23 20 199 1126.2 

41 33 30 298.6 1126.2 

42 22 20 199 750.8 

43 23 20 199 1126.2 

44 11 10 99.5 375.4 

 

 A test consists of setting the variable frequency drives to the correct output, feeding 

50 lanterns into the hopper and feeder system, allowing the machine to process the material.  

Once through the machine, the separated berries and un-separated lanterns were counted to 

determine machine performance. Due to an inability to successfully re-process partially 

crushed berries, partial crushage of the berry was recorded as a crushed berry.  The 

separation efficiency for the frictional roller system can be described by equation 6.3.  

                       (    )  (
 

 
)      Equation 6.3 

Where: 

 F = number of fully separated, intact berries 

 T = number of total lanterns in test run 
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The number of crushed berries was determined by equation 6.4.  

                 (  )  (  (   )) Equation 6.4 

 U = number of un-separated lanterns  

After the conclusion of each test the separation machine was cleaned out and allowed 

to run for approximately 5 minutes to clear any remaining lanterns or material.  The roller 

and feeder belt speed was increased outside of the test parameters to ensure all material had 

been cleared before beginning the next test run.  

 

6.5 Vibration Orientation and Feeding 

 Several initial tests were completed to gain a familiarity with the vibration table and 

the effects on Chinese lanterns.  It was through this testing that a range of acceptable 

vibration amplitudes for lantern orientation was discovered.  Along with several other 

observations, a primitive DOE was developed to test lantern orientation and feeding 

capabilities of the system. This DOE consisted of two variables: feeding tube height from 

vibration table and vibration table amplitude.   The full DOE can be seen in table 6.5.   While 

table 6.5 shows tests arranged according to test number, during actual testing the tests were 

completed in a random order.   A test consisted of loading 25 lanterns into the feeding tube, 

setting the vibration table characteristics, and allowing the lanterns to feed out of the tube and 

down the vibration table.  A slide was fabricated at the bottom of the feeding tube to stop the 

flow of lanterns until the vibration amplitude was set, at which time the slide was then 

opened so that the feeding tube was completely unobstructed.  Lanterns were then allowed to 

flow freely out of the feeding tube and onto the vibration table.   
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Table 6.5: Vibration orientation and feeding DOE parameters 

Test # Tube Height (cm) Amplitude (mm) 

1 2.54 0.61 

2 2.54 0.61 

3 2.54 0.61 

4 2.54 0.91 

5 2.54 0.91 

6 2.54 0.91 

7 2.54 1.22 

8 2.54 1.22 

9 2.54 1.22 

10 3.18 0.61 

11 3.18 0.61 

12 3.18 0.61 

13 3.18 0.91 

14 3.18 0.91 

15 3.18 0.91 

16 3.18 1.22 

17 3.18 1.22 

18 3.18 1.22 

19 3.81 0.61 

20 3.81 0.61 

21 3.81 0.61 

22 3.81 0.91 

23 3.81 0.91 

24 3.81 0.91 

25 3.81 1.22 

26 3.81 1.22 

27 3.81 1.22 

28 4.45 0.61 

29 4.45 0.61 

30 4.45 0.61 

31 4.45 0.91 

32 4.45 0.91 

33 4.45 0.91 

34 4.45 1.22 

35 4.45 1.22 

36 4.45 1.22 
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For analysis and data collection, each test was videotaped.  During analysis, the 

orientation of each lantern as it exited the vibration table was recorded.  The orientation of 

each lantern was classified as an angle, with 0° being defined as completely stem first.  

Classification angles for each individual lantern were: 0°, 45°, 90°, 135°, and 180°.   

Lanterns that were orientated 0° and 45° were also denoted as having “correct” orientation 

and able to orientated stem first into the rollers.  Lanterns having an orientation of 90°, 135°, 

or 180° were denoted as having “random” orientation.   The number of lanterns stuck in the 

feeding tube and the number of lanterns stuck on the vibration table, not orientated,  were 

also recorded for each test.  The vibration table was allowed to operate for 2:00 minutes 

during each test before it was shut off and the results analyzed.  Throughput time for the 25 

lanterns was also extracted from the video of each test.   These results were then utilized to 

calculate estimated separation efficiency and throughput for a separation system comprised 

of a vibration table feeding a bed of frictional rollers.   Estimated separation efficiency(EST) 

for each test was calculated as described by equation 6.4.  

     ((     )  (     ))      Equation 6.4 

Where:  

 EST = Estimated separation efficiency, % 

 C = number of correctly orientated lanterns 

 R = number of randomly orientated lanterns 

 SEC = separation efficiency for correctly orientated lanterns, stem first* 

 SER = separation efficiency for randomly orientated lanterns* 

 *SEC  and SER were determined from previous testing 
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The feed rate (FR) for each test was calculated using the time extracted from the 

video analysis.  Feed rate is defined as the amount of material that could be supplied to the 

system per amount of time.  Feed rate is described by equation 6.5.  

    ((
 

 
)      )     Equation 6.5 

 Where: 

  FR = Feed rate, kg lanterns/hour/foot of system width 

  L = number of lanterns in test, constant, 25 

T = time required for lanterns to move out of feeding tube and across vibration 

table 

WL = Average weight of a lantern 

 Separated throughput (ST) for each test was calculated by utilizing the EST and FR 

values as seen in equation 6.6 

    (      ) Equation 6.6 

 Return throughput (RT), the fraction of the federate that does not get separated on the 

first pass through the system, was calculated as seen in equation 6.7.  

      (      ) Equation 6.7 

Each test was also analyzed for feasibility.  This analysis identified sets of parameters 

that could possibly be implemented into a large scale separation process.  Feasibility was 

defined by the following set of parameters.  

 Estimated separation efficiency above 60.00% 

 Less than 5.00% of lanterns stuck in tube 

 Correct orientation above 30.00% 
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After the conclusion of each test the lanterns were collected and reloaded into the 

feeding tube for the next test.  The same lanterns were utilized for all vibration orientation 

tests in order to minimize variation caused by irregularities in lantern characteristics. 

   

6.6 Drying and Abrasion Separation Testing  

Due to the lack of Chinese lantern material, initial testing of the drying and abrasion 

separation system was completed utilizing Cape gooseberry material.   Cape gooseberries, 

belonging to the same family, are very similar to Chinese lanterns and exhibit many of the 

same characteristics.   Cape gooseberries are readily available on the market and can be 

purchased through a commercial distributer year-round.   While a small amount of Chinese 

lantern material was available during testing, it was determined that the concept could be 

validated before testing any Chinese lanterns.  The drying and abrasion testing requires a 

relatively large volume of material to complete each test, while also being destructive.  Once 

a sample is dried and sent through the abrasion process it is unusable for any future testing.   

After the concept was validated using Cape gooseberry material, tests were conducted using 

Chinese lanterns material to validate the process and optimize the parameters for Chinese 

Lanterns.  

Testing consisted of two separate processes, drying and abrasion. The drying process 

for all testing was completed utilizing a Thermo-Scientific (Thermo Fisher Scientific, 

Waltham, Massachusetts) Heratherm OGS750 gravity convection oven.  A single layer of 

material was spread evenly over the drying racks and allowed to dry for the specified amount 

of time.  The abrasion process was completed using a Seedburo (Seedburo Equipment 
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Company, Des Plaines, Illinois) pellet durability tester, product code PDT. (Figure 6.11 and 

6.12)  This tester is generally used to predict the amount of fines produced by handling 

pellets before feeding time. However, the tester was utilized to provide a standard method of 

abrasion, utilized for all abrasion tests.  Compliant with ASAE standard S269.5 (ASABE 

Standards, 2007), this machine consists of four chambers measuring 25.4cm long * 13.97 cm 

wide * 25.4 cm deep. The chambers are rotated by an electric motor at 50 RPM.  

 Each test consisted of drying 50 whole Cape gooseberries or Chinese lanterns.  The 

drying parameters, temperature and residence time, were specified for each test by the DOE 

that was being completed.  After drying, the material was removed from the dryer and 

allowed to cool.   The material was then loaded into one of the pellet durability tester 

chambers with five rubber balls.  The rubber balls had an outside diameter of 33.50 mm.  The 

hardness of the rubber balls was determined using a Durometer.  The hardness of the outside 

surface was found to be 35A while the hardness of the inner rubber material was determined 

to be 30A.  For concept validation testing, the tester was allowed to rotate for five minutes.  

The abrasion residence time was varied during optimization of the process for Chinese 

Figure 6.11: Seedburo pellet durability tester Figure 6.12: Inside of Seedburo 

tester chamber 
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lantern.   Material was then collected from the chamber and sorted.  Intact, full berries were 

removed from the material and counted.  The remaining material was sieved to produce three 

portions of different particle size: above 7.62 cm, between 7.62 and 5.08 cm, and fines 

consisting of material below 5.08 cm particle size.  The material used in each test was 

weighed before and after each step in the drying and abrasion processes, drying and abrasion.   

Analysis was also completed on material that had been dried, but not put through the 

abrasion process.  The material was manually separated into three distinct portions: berry, 

sepal, and stem.  The resulting portions were weighed individually to determine the ratio of 

each portion to the total gooseberry or lantern.  These ratios were then used to estimate and 

predict results of the drying and abrasion process.  The ratios were also used to determine 

contamination of the sepal portion, the amount of berry material that had broken down during 

abrasion and remained with the sepal material.  The same can be said for estimating the 

amount of sepal still attached to the berries and stem after abrasion.  

 When optimizing the system for Chinese lanterns, the amount of sepal remaining on 

the berry and stem was determined by manually removing the sepal by hand and weighing 

the removed material. This allowed for actual separation efficiency for the differential drying 

and abrasion to be calculated using equation 6.8.  

       1-(SA/(SA+SD)) Equation 6.8 

Where:  

 SEDA = Separation efficiency of differential drying and abrasion system 

 SD = Total sepal weight detached during abrasion  

 SA = Total sepal weight still attached to berry after abrasion 
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 Initial testing of the drying and abrasion separation process consisted of four different 

tests, each replicated three times for a total of 12 tests.  Two drying temperatures, 85 and 

100˚ C were used along with two drying residence times, 6 and 18 hours.  The DOE for this 

set of tests can be seen in table 6.6.  While the test runs in table 6.6 are organized by test 

number, tests were completed in a random order during actual testing.  These tests were 

completed using Cape gooseberry material to validate the overall process as a method for 

separating an outer sepal from an inner berry.   

Table 6.6: Drying and Abrasion Process, Initial Testing Parameters, completed with cape gooseberry 

material 

Test # Repetition # Temperature (˚C) Residence Time (hour) 

1 1 100 6 

2 2 100 6 

3 3 100 6 

4 1 100 18 

5 2 100 18 

6 3 100 18 

7 1 85 6 

8 2 85 6 

9 3 85 6 

10 1 85 18 

11 2 85 18 

12 3 85 18 

 

Optimization of the process parameters was completed using Chinese lantern 

material.  In order to optimize the process parameters, results needed to be collected over a 

wide range of parameters, requiring many tests.  These tests were also designed to define a 

relationship between moisture content of both components and separation efficiency, also 

requiring testing over a wide range of moisture contents.  Due to these requirements and the 
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small amount of Chinese lantern material, each test was limited to 10 lanterns.  26 total tests 

were completed over a wide range of parameters as seen in table 6.7.    

Table 6.7: Differential drying and abrasion process testing, validation testing completed with Chinese 

lantern material 

Test # Drying Temp (˚C) Drying Residence Time (hours) Tumbling Time (min) 

1 55 6 N/A 

2 55 6 N/A 

3 55 6 N/A 

4 70 6 N/A 

5 70 6 N/A 

6 70 6 N/A 

7 85 1 5 

8 85 2 5 

9 85 2 15 

10 85 4 5 

11 85 4 5 

12 85 4 15 

13 85 6 5 

14 85 6 5 

15 85 6 15 

16 100 2 5 

17 100 4 5 

18 100 6 5 

19 115 0.5 5 

20 115 0.5 15 

21 115 1 5 

22 115 2 5 

23 115 2 5 

24 115 4 5 

25 115 4 5 

26 115 4 15 

27 115 4 15 

28 115 4 15 

29 115 6 5 

30 115 6 5 

31 115 6 15 

32 115 6 15 
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These tests were conducted and analyzed in a similar fashion to the concept 

validation tests completed with cape gooseberries.  However, due to being in cold storage for 

an extended period, the Chinese lantern material was significantly drier than freshly 

harvested material.  In order to counteract this effect, the Chinese lantern material was re-

hydrated to moisture contents similar to those recorded during harvest before the differential 

drying process.  These moisture contents were approximately 40.00 and 75.00% for the 

sepals and berry, respectively.  No separation tests were completed for Tests 1-6. Due to 

limited material, material that had been dried at 55 and 70˚C was utilized solely for the 

investigation of cis-zeaxanthin formation as a result of the drying process.   

These tests were aimed not only to define a relationship between moisture content 

and separation efficiency, but also to investigate the effects of temperature and time on the 

formation of cis-zeaxanthin and degradation of usable product. Re-hydrating the Chinese 

lantern material and simulating recently harvested material also allowed for a more realistic 

analysis of cis-zeaxanthin formation to be completed.  Due to the molecule formation, cis-

Zeaxanthin is considered unusable and a direct loss of product.  It is understood that exposing 

Chinese lantern material to high temperatures tends to cause trans-zeaxanthin to convert to 

the higher energy cis-zeaxanthin state.  However, the relationship between drying 

temperature, drying residence time and the rate at which trans-zeaxanthin converts to cis-

zeaxanthin remains to be investigated and defined. This work aims to define this relationship 

and determine the significant factor in cis-zeaxanthin formation.  The formation of cis-

zeaxanthin was analyzed by an outside laboratory.  The testing results were analyzed using 

extraction and analysis procedures developed specifically for the analysis of zeaxanthin and 
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the molecular characteristics.  These results were then communicated between research teams 

for further analysis and discussion.  
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CHAPTER 7: RESULTS AND DISCUSSION 

7.1 Harvester Experimental Runs 

 Testing of the various harvesting systems yielded good data as well as a number of 

observations.  While a formal DOE was never completed for the harvesting systems, a good 

amount of data was collected in order to validate the stripping system and components as a 

viable option for mechanized harvesting of Chinese lantern.  The following section will 

discuss the results and observations collected during testing of the harvester systems.   

 7.1.1 Rotary Harvester Testing 

 The rotary harvesting system testing took place September 9, 2011 at the Franzenburg 

farm near Van Horne, Iowa.  The rotary system performed very well in the 3
rd

 year, single 

stemmed vertical crop.  The stripping fingers were able to comb through the plant stems and 

detach the lanterns with ease.  The results from the six test runs completed can be seen in 

table 7.1. 

Table 7.1: Test results, rotary harvesting system 

Test # 
Deflection 

Shields 
Installed 

Harvested 
Lanterns (M) 

Dropped 
Lanterns (D) 

Lanterns left 
on plant 

(LOP) 

Stripping 
Efficiency 

(SE) % 

Overall 
Efficiency 

(OE) % 

1 No 49 53 4 96.23 46.23 

2 No 42 63 2 98.13 39.25 

3 No 41 44 7 92.39 44.57 

    
 

  Tests 1-3 Average 44.00 53.33 4.33 95.58 43.35 

    
 

  4 Yes 67 38 5 95.45 60.91 

5 Yes 64 32 0 100.00 66.67 

6 Yes 70 32 2 98.08 67.31 

    
 

  Tests 4-6 Average 67.00 34.00 2.33 97.84 64.96 

Overall Average 55.5 43.66 3.33 96.71 54.16 
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During tests 1-3 it was observed that lanterns were falling into the center of the 

stripping reel after being detached from the plant stem.  The lanterns become lodged near the 

center of the reel and would fall out until they rotated past the collection hopper system.  

These lanterns would subsequently fall onto the ground and be counted as dropped lanterns.  

While the stripping efficiency of the rotary system was very high during these tests, 

averaging 95.58%, the overall efficiency suffered due to losses of dropped lanterns.   

After tests 1 through 3 it was determined that deflection shields could be fabricated to 

reduce losses.  Deflection shields were quickly fabricated and installed on the rotary stripping 

finger reel.  Tests 4 through 6 were completed after the fabrication and installation of the 

deflection shields.  A significant improvement in overall efficiency, approximately 21.61%, 

resulted from the use of deflection shields.  The deflection shields reduced the number of 

dropped lanterns while having no negative effect on stripping efficiency.  

The stripping finger concept was validated through this initial testing.  The stripping 

fingers performed very well, reaching a stripping efficiency of 97.84%.    The single-

stemmed vertical crop structure was very conducive to harvesting by means of stripping and 

combing.  The complex and robust rhizome root system of the crop prevented plants from 

being up-rooted during stripping. The harvested material in the collection hopper was 

relatively clean, containing very few leaves and other debris.  The maturity and canopy 

structure of the crop limited foliage and leaves.  In this test plot, the crop structure allows 

leaves to slide through the keyhole section of the stripping fingers without being detached.  

 Due to the stripping finger reel being powered by manually by hand, a constant 

rotational speed could not be achieved.  However, during preliminary testing it was evident 

that a faster rotational speed did not increase stripping or overall efficiency.  A very slow 
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rotational speed tended to increase dropping losses due to a lack of centrifugal force to 

transport the lanterns into the collection hopper.  

 7.1.2 Integrated Harvesting and Collection System Testing 

 Testing of the integrated harvesting and collection system took place throughout 

September and November 2011, and at several locations.  All of the testing was completed 

on first year, plug transplanted crop.  The crop structure was very short and branched, 

creating a vine like structure horizontal to the ground.  Throughout testing it became evident 

that plant structure has a direct impact on stripping efficiency.  This was seen in all tests 

completed on the first year crop.  The stripping fingers would catch the plants underneath a 

branch node, resulting in the plant being ripped from the ground and entangled in the 

stripping fingers.  The vine like branches also became tangled in the stripping fingers, 

decreasing stripping efficiency. (Figures 7.1, 7.2)  During testing it was noted that snoots 

may be capable of elevating the low lying branches, making them more suitable for 

harvesting. Several iterations of snoots were fabricated and tested on various occasions with 

no increase in stripping or overall efficiency.  The observations collected through testing on 

Figure 7.1: Chinese lantern branches tangled 

in stripping fingers 

Figure 7.2: Chinese lantern branches tangled 

in stripping fingers 
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first year crop material confirmed that a single-stemmed, vertical crop structure is ideal for 

stripping harvester systems.  

 Insect control also became an issue throughout the 2011 harvesting season.  Several 

of the test plots became infested with fruit worms that damaged or completely ate the berry 

inside of the calyx.  Without berries upon which to apply detachment force, the stripping 

fingers were incapable of detaching the lanterns.  A significant reduction in stripping 

efficiency was seen in these areas.  Quantitative results from the testing of the integrated 

harvesting and collection system can be seen in table 7.2.   

 

Table 7.2: Test results, integrated harvesting system 

Location  Test # 
Harvested 
Lanterns 

(M) 

Dropped 
Lanterns 

(D) 

Lanterns 
left on 

plant (LOP) 

Stripping 
Efficiency (SE) 

% 

Overall 
Efficiency (OE) 

% 

Kemin 
Summerset 

1 39 9 26 64.86 52.70 

2 25 10 21 62.50 44.64 

3 24 4 20 58.33 50.00 

Average 

 
29.33 7.67 22.33 61.90 49.12 

 
      

Kemin North 
Summerset 

1 35 12 27 63.51 47.30 

2 33 9 22 65.63 51.56 

3 27 7 19 64.15 50.94 

Average 

 
31.67 9.33 22.67 64.43 49.93 

 
      

McGinnis 
Location 

1 43 9 29 64.20 53.09 

2 47 12 31 65.56 52.22 

3 39 7 27 63.01 53.42 

Average 
 

43.00 9.33 29.00 64.26 52.91 

       Overall Average   34.67 8.78 24.67 63.53 50.65 

 

Average stripping efficiency of the integrated harvesting system was reduced 

approximately 33.18 % due to the branched, vine like crop structure.  Overall efficiency also 
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decreased slightly relative to the rotary system due to the reduction in stripping efficiency.   

However, collection system losses were reduced dramatically.  Collection system losses due 

to dropped lanterns were calculated as a percentage of stripped lanterns lost during the 

collection process, described by equation 7.1. Table 7.3 displays and compares the collection 

losses between the rotary and integrated harvesting systems due to dropped lanterns or 

lanterns detached but not collected.  Observations during testing on very dry crop conditions 

concluded that lanterns can become detached from the plant stem if the stem is impacted with 

a strong force or subjected to harsh vibration.  Many times lanterns detached by these 

methods would be lost and not collected.   During testing of the rotary harvesting system, 

collection losses were reduced from 52.46 to 62.90 %, a reduction of 19.56% due to the 

installation of the deflection shields.  The integrated harvesting and collection system further 

reduced collection losses from 32.90 to 12.89%, a 20.01% reduction.  This reduction in 

collection losses proved the advantage of utilizing a stripping finger belt to harvest and 

transfer crop material to a collection hopper 

                   (  )   (
 

       
)      Equation 7.1 

 

Table 7.3: Comparison of average collection losses for 2011 harvesting systems 

Machine Average Collection Losses (CE) % 

Rotary harvester without deflection shields 52.46% 

Rotary harvester with deflection shields 32.90% 

Integrated belt harvesting and collection system 12.89% 

 

 The results from testing of both the rotary and integrated harvesting systems 

influenced the design and development of the self-propelled harvesting header.  The stripping 

fingers were proven to be capable of combing through plant stems and detaching lanterns, 
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provided that the crop structure is suitable for stripping.  While the rotary system experienced 

high collection losses, the integrated harvesting and collection system reduced collection 

losses. The stripping finger belt system proved to be efficient at conveying the harvested 

material to a collection or hopper system. All of these factors and observations were taken 

into account during the development of the self-propelled harvester and header.  Many 

aspects of the integrated harvesting system, such as the stripping finger belt system, were 

designed into the harvesting header in an attempt to maximize overall efficiency.  

 7.1.3 Self-Propelled Harvester Testing 

Testing of the self-propelled harvester took place September through November 

2012.  The tests were completed on second year growth test plots.  The crop structure was 

mainly vertical, single stemmed plants throughout the test plots.   

Preliminary tests were completed at the Walter location with the self-propelled 

harvester. The purpose of these tests was to gain familiarity with the system and identify any 

areas of the system in need of major improvement.  Several areas of improvement were 

identified during this initial testing.  The conveyor drive and mount system was damaged 

during transport due to vibrations and road turbulence.  The mounting and drive systems 

were improved and strengthened.  A stand was designed and fabricated to stabilize the 

conveyor system during transport. It was also determined that a steady forward ground speed 

was necessary to minimize losses due to dropped lanterns. Abrupt changes in forward ground 

speed caused the stripping fingers to impact the plant stems violently, detaching the lanterns 

off the plant stem and onto the ground.  The forward ground speed limiting function was 

developed and integrated into the machine control program as a result of this testing.   

Observations during preliminary testing also indicated that header height had a significant 
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impact on stripping efficiency.  In order to successfully strip and collect the low lying 

lanterns the header was required to be as low to the ground as possible.  Controlling header 

height manually proved to be a difficult task.   Automatic header height control was 

developed to keep the header at a constant distance from the ground without relying on 

operator input during actual crop harvesting.  This feature also eliminated abrupt changes that 

occurred when the operator manually adjusted header height.  

After preliminary testing was completed, test runs were completed at the Walter 

location on August 14, 2012.  The crop at the Walter location was very "poor", meaning 

short stems and a low density of stems. The header had no problems combing the stripping 

fingers through the second year, vertical stemmed crop and detaching lanterns, resulting in an 

average stripping efficiency of 95.50%.  Losses were seen when lanterns were close to the 

ground, below what the header could strip. Losses were also seen when the fingers impacted 

the lanterns harshly and threw them forward, out of the header. On average, 13.49% of the 

harvested lanterns were lost due to these problems and determined to be collection losses.   A 

full set of quantitative results from this testing can be seen in table 7.4. 

 

Table 7.4: Test results, self-propelled harvester, Walter location 

Test # 
Harvested 
Lanterns 

(M) 

Dropped 
Lanterns 

(D) 

Lanterns left 
on plant 

(LOP) 

Stripping 
Efficiency 

(SE) % 

Collection 
Losses (CL) 

% 

Overall 
Efficiency 

(OE) % 

1 920 138 50 95.49 12.45 83.03 

2 813 306 58 95.07 26.00 69.07 

3 1314 244 70 95.70 14.99 80.71 

4 1190 104 51 96.21 7.73 88.48 

5 975 92 27 97.53 8.41 89.12 

6 1405 207 121 93.02 11.94 81.07 

       Average 1102.83 181.83 62.83 95.50 13.49 81.92 
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 A second round of testing was attempted at the Kemin Summerset location on August 

20, 2012.  The second year crop at the Kemin Summerset location was very dense due to 

irrigation throughout the growing season.  The crop had a very high plant stem density and 

large volume of leaves attached to the stems.  The stripping header had multiple problems 

combing through the dense crop.  The large volume of stems and leaves tended to become 

lodged in the keyhole portion of the stripping finger, creating an immense amount of drag 

and resistance.   The drag on the stripping fingers caused deflection in the roller chain drive 

system, damaging several drive shafts and components.  The plant stems also remained in the 

combing and stripping area of the header even after they had been completely stripped of 

lanterns.  These stems contributed to the drag and resistance.   

 The harvester was moved to an area of the test plot that had a less dense crop 

structure.  Two test runs were completed before the stripping finger belt drive system 

experienced a major failure.  The results from this testing can be seen in table 7.5.   Although 

both stripping and overall efficiency suffered due to the dense crop, several key observations 

were made during this testing. It was evident that several improvements and modifications 

were necessary to handle the increased load created by the dense crop.  

 

Table 7.5: Test results, self-propelled harvester, Kemin Summerset location - 8-20-12 

Test # 
Harvested 
Lanterns 

(M) 

Dropped 
Lanterns 

(D) 

Lanterns left 
on plant 

(LOP) 

Stripping 
Efficiency 

(SE) % 

Collection 
Losses (CL) 

% 

Overall 
Efficiency 

(OE) % 

1 1327 194 243 86.22 11.00 75.23 

2 1282 306 369 81.14 15.64 65.51 

       Average 1304.50 250.00 306.00 83.68 13.44 70.37 
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The modifications and improvements that were made: 

 The drive system was strengthened by adding braces and carrier bearings to the drive 

shafts. These bearings were added to minimize deflection of the drive shafts and 

increase the load carrying capacity.  

 A larger displacement hydraulic motor was utilized to drive the stripping finger belt.  

Throughout testing it was observed that more torque was necessary to power the 

stripping fingers through the dense crop.  This motor effectively increased the 

available torque without requiring a higher hydraulic pressure.  

 The stripping finger belt system was redesigned with more robust components.  

Larger roller chain was utilized to drive the system.  The rubber belt mounting system 

was redesigned for greater flexibility and functionality.  

 A guide and pin system was developed and installed on the header. This system 

utilized guide pins and channels to stabilize and control the orientation of the 

stripping fingers through the harvesting portion of the header geometry.  This system 

minimized deflection of the entire stripping finger belts system and created a very 

robust harvesting header.  

 A push bar was added to the front of the harvesting header to remove stripped plant 

stems from the stripping fingers and reduce system load.  The push bar was mounted 

approximately 7.62 cm from the ground and spanned the width of the header.  
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After the changes were completed, the self-propelled harvesting system was tested 

again at the Kemin Summerset location on October 16, 2012.  The harvesting system 

performed relatively well throughout these tests.  No breakages were experienced during 

this testing.  The modifications to the header allowed the stripping fingers to pull through 

the thick crop, combing the plant stems and detaching lanterns. Deflection was 

minimized as a result of the guide pin and channel system.  Results of the two tests 

completed after the modifications can be seen in table 7.6.   The stripping efficiency of 

the harvester decreased slightly after the modifications were made. This is most likely 

due to the reduced flexibility of the stripping finger belt system.  Before the guide pin and 

channel system were installed, deflection was allowed in the stripping finger belt.   This 

deflection allowed the fingers bend with the crop load, resulting in more lanterns being 

stripped.   After the modifications were made to the header, deflection of the stripping 

finger belt was minimized, resulting in a more forceful movement of the stripping fingers 

through the crop.  The increased impact from this movement likely impacted the plant 

stems harshly, detaching the lanterns before they could be collected by the stripping 

fingers.  The crop was also past maturity and consisted of very dry and brittle plant and 

lantern stems.  The dry and brittle lantern stems were easily broken by impacting the 

plant stem, resulting in many lanterns being dropped on the ground.  Collection losses 

increased during these tests, likely due to the brittle crop and plugging of the header cross 

auger. The cross auger became plugged with weeds and grass stems, causing lanterns to 

be thrown over the front lip of the auger tube and onto the ground.  
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Table 7.6: Testing results, self-propelled harvester, Kemin Summerset location - 9-16-12 

Test # 
Harvested 

Lanterns (M) 

Dropped 
Lanterns 

(D) 

Lanterns left 
on plant 

(LOP) 

Stripping 
Efficiency 

(SE) % 

Overall 
Efficiency 

(OE) % 

Collection 
Losses (CL) 

% 

1 864 211 245 81.44 65.45 15.98 

2 1163 306 425 77.56 61.40 16.16 

       Average 1013.50 258.50 335.00 79.50 63.43 16.09 

 

7.2 Harvester Systems Testing Observations 

 While the different harvesting systems were tested at different times and locations, 

their performance can still be evaluated by comparing stripping efficiency, collection losses, 

and overall efficiency.  This comparison can be seen in table 7.7 and figure 7.3.   Table 7.7 

contains the averages for each system, over all the test runs completed by the system.  

 

Table 7.7: Harvesting systems comparison, testing results 

Harvesting System 
Stripping Efficiency 

(SE) % 
Collection Losses (CL) 

% 
Overall Efficiency (OE) 

% 

Rotary Harvester w/o 
deflection shields 

95.58 52.46 43.35 

Rotary Harvester with 
deflection shields  

97.84 32.90 64.96 

Integrated harvesting and 
collection system 

63.53 12.89 50.65 

Self-propelled Harvester 89.48 14.53 74.95 
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Figure 7.3: Harvesting systems performance comparison 

 

When comparing the harvesting systems, it can be seen that stripping efficiency 

remained fairly constant across all systems.  The exception to this comparison is the 

integrated harvesting and collection system.   The stripping efficiency of this system was 

likely reduced by the short, branched crop structure of the tests plots used during testing.  

The harvesting system was improved with each new development and iteration of the system.  

This can be clearly seen by the decrease in collection losses.  The collection losses of the 

rotary system decreased drastically when deflection shields were utilized.  Collection losses 

were further decreased by the integrated harvesting and collection machine through the use 

of the stripping finger belt system.  Collection losses for the self-propelled harvester were 

slightly higher, on average, than the integrated harvesting and collection machine.  This may 

be partially due to the challenges of the dense and lush crop structure of the test plots used 
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for testing of the self-propelled harvester.   Lanterns lost to plugging of the header cross-

auger also had a negative impact on collection losses.   However, when comparing overall 

efficiencies, a steady increase can be seen with each new harvesting system.  Once again, the 

exception to this increase is the overall efficiency of the integrated harvesting and collection 

machine.  The overall efficiency of this machine was significantly impacted by the reduction 

in stripping efficiency previously discussed.    

7.3 Roller Separation System, Experimental Tests 

 The experimental tests of the separation system were completed to validate the 

frictional roller concept and provide insight into several important parameters such as roller 

diameter, roller rotational speed, and roller surface characteristics.  Nine initial tests were 

completed using three roller speed levels.  As seen in table 7.8, a roller speed of 30 rpm 

yielded the highest overall separation efficiency.  However, it became very evident that 

orientation of the lanterns as they were introduced to the rollers had a very significant impact 

on separation efficiency.  Orientating the lanterns “stem down” resulted in an average 

separation efficiency of 69%.  Random orientation of the lanterns yielded an average 

separation efficiency of 40%, 29% lower than the separation efficiency of stem down 

orientated lanterns. Three more test runs were completed using the optimum machine 

parameters identified in test runs 1-9.  Results from the optimized parameter testing are 

displayed in table 7.9.   All ten lanterns were orientated stem down in tests 10-12 in order to 

develop optimum parameter scenario separation efficiency. The results from the 

experimental runs indicated that introducing the lanterns stem-down to the rollers yielded the 

highest separation efficiency.    
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Table 7.8: Testing results, separation system parameter investigation - roller bed angle, roller rpm 

Run  
Roller 
Angle 

(Degrees) 

Air 
Suction 

(in/water) 

Roller 
RPM 

Stem 
Down % 

Separation 

Random 
Orientation % 

Separation 

Overall  % 
Separated 

1 30 0 15 60% 0% 60% 

2 30 25 15 80% 40% 60% 

3 30 25 15 60% 60% 60% 

Average 
   

67% 33% 60% 

       4 30 0 30 40% 80% 60% 

5 30 25 30 100% 60% 80% 

6 30 25 30 80% 20% 50% 

Average 
   

73% 53% 63% 

       7 30 0 45 80% 60% 70% 

8 30 25 45 80% 0% 40% 

9 30 25 45 40% 40% 40% 

Average 
   

67% 33% 50% 

        

Table 7.9: Testing results, separation system – optimized parameters 

Run 
Angle 

(degrees) 

Air 
Suction 

(in/water) 

Roller 
RPM 

Guards 
Stem Down 

% 
Separation 

Overall  % Separated 

10 30 25 30 Yes  90% 90% 

11 30 25 30 Yes  100% 100% 

12 30 25 30 Yes  90% 90% 

       Average         93% 93% 

 

Several other experimental tests were completed to test other machine parameters.  

During one group of these tests the frictional rollers were spaced so that a 0.254 mm gap 

existed between adjacent rollers.  The idea behind the spacing was to allow the sepals to pass 

between the rollers without become crushed and torn apart.  However, the gap between the 

rollers reduced the frictional force and pinching ability of the rollers, drastically reducing 

separation efficiency.  This idea was subsequently discarded.  
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Another set of tests were completed using polyurethane rollers.  These rollers were 

fabricated using polyurethane tubes and an inner drive shaft.  The polyurethane tubes were 

sized to fit tightly over the steel drive shafts so that no epoxy or fixing method was 

necessary.  The polyurethane tubes were manufactured with to a 60A Durometer hardness 

rating.  During testing, the polyurethane tubes proved to be too soft to pinch and pull the 

sepals from the berry and stem.  The lack of frictional force created by the polyurethane 

rollers resulted in very few lanterns being successfully separated. The polyurethane rollers 

were discarded in favor of steel rollers.  This testing eventually led to the machining of steel 

rollers and knurling of the outer surface.  

 The knurled outer surface of the rollers increased the kinetic frictional 

coefficient.   This increased friction was necessary to effectively pull the outer sepal material 

into the roller pinch point. The knurled steel rollers achieved the best separation efficiency of 

any of the rollers tested.  These rollers were utilized for testing and completion of the full 

DOE designed to optimize system parameters.  

7.4 Roller Separation System, Design of Experiments 

 A full factorial DOE was completed to investigate the performance of the frictional 

rollers and feeder separation system.  The effect of the factors, roller speed and feeder belt 

speed, on % un-separated lanterns and % full berries recovered was examined.  Three levels 

of each factor were utilized for the testing.  Roller speed levels of 30, 20, and 10 rpm were 

utilized for testing.   Feeder belt linear velocity levels of 112.62, 75.08, and 37.54 m/min  
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0 20 75.08 10.00% 30.00% 60.0%

0 20 75.08 24.00% 30.00% 46.0%

0 20 75.08 12.00% 38.00% 50.0%

0 20 75.08 12.00% 44.00% 44.0%

0 20 75.08 18.00% 48.00% 34.0%

0 20 75.08 18.00% 56.00% 26.0%

0 20 75.08 24.00% 64.00% 12.0%

0 20 75.08 18.00% 66.00% 16.0%

11 10 37.54 12.00% 48.00% 40.0%

11 10 37.54 34.00% 66.00% 0.0%

11 10 37.54 22.00% 68.00% 10.0%

11 10 37.54 12.00% 72.00% 16.0%

12 10 75.08 24.00% 30.00% 46.0%

12 10 75.08 4.00% 34.00% 62.0%

12 10 75.08 20.00% 40.00% 40.0%

12 10 75.08 12.00% 42.00% 46.0%

13 10 112.62 24.00% 36.00% 40.0%

13 10 112.62 12.00% 52.00% 36.0%

13 10 112.62 24.00% 54.00% 22.0%

13 10 112.62 24.00% 56.00% 20.0%

21 20 37.54 24.00% 18.00% 58.0%

21 20 37.54 22.00% 44.00% 34.0%

21 20 37.54 28.00% 46.00% 26.0%

21 20 37.54 46.00% 54.00% 0.0%

22 20 75.08 16.00% 38.00% 46.0%

22 20 75.08 18.00% 42.00% 40.0%

22 20 75.08 16.00% 46.00% 38.0%

22 20 75.08 18.00% 60.00% 22.0%

23 20 112.62 32.00% 42.00% 26.0%

23 20 112.62 14.00% 44.00% 42.0%

23 20 112.62 12.00% 46.00% 42.0%

23 20 112.62 18.00% 66.00% 16.0%

31 30 37.54 16.00% 16.00% 68.0%

31 30 37.54 26.00% 30.00% 44.0%

31 30 37.54 14.00% 42.00% 44.0%

31 30 37.54 18.00% 60.00% 22.0%

32 30 75.08 14.00% 24.00% 62.0%

32 30 75.08 16.00% 26.00% 58.0%

32 30 75.08 22.00% 46.00% 32.0%

32 30 75.08 34.00% 54.00% 12.0%

33 30 112.62 22.00% 30.00% 48.0%

33 30 112.62 28.00% 32.00% 40.0%

33 30 112.62 26.00% 44.00% 30.0%

33 30 112.62 20.00% 44.00% 36.0%

% Full 

Berries

% Crushed 

Berries
Pattern Roller Speed (rpm)

Feeder Belt Linear Velocity 

(cm/min) 

% Un-separated 

Lanterns

Table 7.10: Roller Separation System full DOE results 
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were also used for testing.  Each parameter combination was replicated there times, with an 

additional two center point runs added as a measure of process stability.   A full set of 

quantitative results can be seen in table 7.10.   Percentages of un-separated lanterns and full 

berries are both provided on the right side of the table.  While table 7.10 is sorted according 

to pattern, the tests were completed in a randomized order.  

 A statistical analysis was conducted to ascertain any statistical significance among the 

data and factor levels.   The analysis was completed utilizing JMP (SAS Institute, Cary, 

North Carolina) software. A standard least squares model analysis was applied to the data.   

This analysis provides a least square fit with an analysis of variance for the model.  The 

results of the ANOVA analysis can be seen in table 7.11.  

Table 7.11: ANOVA results for un-separated lanterns and full berries response.  Roller speed and feeder 

belt speed utilized as factors.  

Response Effect DF SS F Ratio p > F 

Un-Separated Lanterns Roller Speed 1 10.667 0.691 0.4105 

 
Feeder Belt Speed 1 3.375 0.2188 0.6425 

  Roller Speed *Feeder Belt Speed 1 5.0625 0.3283 0.5699 

Full Berries Roller Speed 1 234.375 5.5022 0.024* 

 
Feeder Belt Speed 1 3.375 0.0792 0.779 

  Roller Speed *Feeder Belt Speed 1 52.562 1.234 0.273 
*Significant at 0.10 level 

 When utilizing a p value ≤0.10 to signify statistical significance, it is seen that only 

roller speed become significant in relation to the number of full berries recovered after each 

test.  This indicates that roller speed has a statistically significant effect on the severity and 

level of berry crushage.   Therefore, all insignificant effects were removed in order to 

examine roller speed as the only main effect.   A t-test was also performed to compare the 

means of every treatment to the means of every other treatment.  The t- test examined the 

differences in roller speed levels and their effect on the number of full berries recovered.   



100 

 

The confidence coefficient, α, was set to 0.10 for this analysis.  The results of this analysis 

can be seen in tables 7.12 and 7.13.    As seen in table 7.13, roller speed levels 30 and 10 are 

not connected by any level.  This indicates that roller speed 30 and 10 are statistically 

different from each other, the difference between their means is larger than the expected 

standard error.  The results also conclude that there is no statistical difference between roller 

speeds 30 and 20.   There is also not a statistical difference between 20 and 10.   However, 

the analysis did recognize a statistical difference between 30 and 10. The conclusion from 

this analysis is that a larger range of roller speeds may need to be tested in order to obtain a 

larger range of means and overall variation.  The effect of roller speed on full berries can also 

be graphically depicted as seen in figure 7.4 

 

 

Table 7.12: Separation system model utilizing roller speed as single main effect 

Source DF SS Mean Square F Ratio p < F 

Model 1 17.273 17.235 5.594 0.0227* 

Error 42 1742.533 
   C. Total 43 1759.807       

   *Significant at 0.10 level 

 

Table 7.13: Roller speed t-test results effect on full berries 

Roller Speed Level Level Mean 

10 A 24.917 

20       A   B 23.05 

30              B 18.667 
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Figure 7.4: Effect of roller speed on berry damage, roller speed vs. Percent full berries recovered 

  

Figure 7.4 displays the effect of roller speed on the percentage of full berries 

recovered.  Due to the fact that crushed berries are unacceptable for further downstream 

processing, this data can also be recognized as the effect of roller speed on separation 

efficiency.   

An important point to emphasize in this data is that one of the main goals of this 

testing is to maximize separated lanterns, while minimizing crushed berries.  Due to the fact 

that crushed berries cause many downstream processing problems, reducing berry damage 

and crushage becomes a major point of interest.   The amount of crushed berries is explained 

previously be equation 6.4.  The effects of roller speed on percent crushed berries can be seen 

in figure 7.5.  While these effects were not found to be statistically significant, the data does 

display slight trends that may explain some of the interactions. As seen, the percentage of 
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crushed berries is minimized when feeder belt and roller speeds are reduced.   However, 

when roller speed is held constant at 10 rpm, berry damage is reduced as feeder belt speed is 

increased from 75.08 to 112.62 m/min.  This is most likely caused by the reduction of roller 

bed exposure time of the lantern.   A higher feeder belt speed also has a tendency to cause 

tumbling of the lanterns, which may increase the possibility of the stem getting caught in the 

rollers, increasing the chances for a successful separation.  

Further analysis of the data leads to the investigation of the factor effects on the 

percentage of un-separated lanterns (Figure 7.6).  Again, these effects were not found to be 

statistically significant at the α = 0.10 level, but several trends are displayed in the data.  This 

analysis also displays evidence that a relatively slow roller speeds and feeder belt speed yield 

the best results.  In this case, the desired result is to minimize the percentage of un-separated 

lanterns.  

 

Figure 7.5: Effect of roller speed and feeder belt speed on percentage of crushed berries 

10

20

30

15%

25%

35%

45%

55%

37.54

75.08

112.62

Roller speed  
(rpm) 

P
e

rc
e

n
ta

ge
 c

ru
sh

e
d

 b
e

rr
ie

s 

Feeder belt speed (m/min) 

Effect of roller speed and feeder belt speed on berry damage 

55%-60%

45%-55%

35%-45%

25%-35%

15%-25%



103 

 

 

Figure 7.6: Effect of roller speed and feeder belt speed on percentage of un-separated lanterns 

 

Overall, for the separation system developed and tested for this project, the data 

indicates that separation efficiency, the percentage of full berries recovered, can be 

maximized by utilizing relatively slow roller speeds, below 20 rpm, and feeder belt linear 

velocities below 75.08 m/min.   

7.5 Vibration Orientation and Feeding Testing 

 Testing of the vibration table feeding system was completed to investigate an 

alternative feeding mechanism to deliver lanterns to the frictional roller bed.  The goal of the 

vibration feeding system was to orient the lanterns stem first, in order to maximize separation 

efficiency.   Preliminary testing identified three vibration amplitudes with potential for 

orientating lanterns.  These amplitudes were tested in conjunction with a feeding tube in 

order to test feeding tube height and feasibility of the system. The feeding tube was utilized 

to simulate a bulk feeding environment and investigate any bridging issues. The resulting 

10

20

30

13%
15%
18%
20%
23%
25%
28%

37.54

75.08

112.62

Roller speed  
(rpm) 

P
e

rc
e

n
ta

ge
 u

n
-s

e
p

ar
at

e
d

 la
n

te
rn

s 

Feeder belt speed (m/min) 

Effect of roller speed and feeder belt speed on un-separated 
Lanterns 

25%-28%

23%-25%

20%-23%

18%-20%

15%-18%

13%-15%



104 

 

lantern orientation for each tube height can be seen in figures 7.7 through 7.10. Average 

orientation and separation efficiency data for each set of three tests from the vibration 

orientation and feeding testing can be seen in table 7.14.  The raw data and orientation data 

collected from this testing can be seen in Appendix A.  A total of 36 tests were completed for 

this set of tests.  During several of the tests lanterns remained trapped between the bottom of 

the feeding tube and vibration table.  The lanterns were unable to move from out under the 

feeding tube and continue down the vibration table.  These lanterns were denoted as “stuck in 

tube” during data collection.   Severe material grouping and bunching was observed during 

two of the tests.   Data was not able to be collected for these tests.  Each test was evaluated 

for feasibility according to the benchmarks defined previously.   Three parameter 

combinations were found to produce results that met or exceeded the feasibility benchmarks.  

The tests that were found to feasible can be found in table.  The data from these tests was 

further investigated in order to derive estimated feed rate and throughput values.  
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Figure 7.7: Orientation results, 2.54cm tube height 

 

Figure 7.8: Orientation testing results, 3.18 cm tube height 
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Figure 7.10: Orientation testing results, 4.45 cm tube height 

Figure 7.9: Orientation testing results, 3.81 cm tube height 
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Table 7.14: Vibration orientation and feeding test results including: average lantern orientation, estimated separation efficiency, and overall 

feasibility 

Parameter 
combination 

set 

Tube 
Height 
(cm) 

Amplitude 
(mm) 

Average % 
Lanterns 
Correct 

Orientation 

Average % 
Lanterns 
Random 

Orientation 

% 
Lanterns 
stuck in 

tube 

% Lanterns 
not 

orientated 

Estimated Average 
Separation 

Efficiency %, First 
pass 

Feasible 

1 2.54 0.61 2.67% 53.30% 92.00% 2.67% 23.81% NO 

2 2.54 0.91 25.33% 44.00% 30.67% 4.00% 41.23% NO 

3 2.54 1.22 41.33% 54.67% 4.00% 1.33% 60.43% YES 

4 3.18 0.61 18.67% 26.67% 54.67% 4.00% 28.09% NO 

5 3.18 0.91 38.67% 60.00% 1.33% 6.67% 60.08% YES 

6 3.18 1.22 32.00% 68.00% 0.00% 4.00% 57.06% NO 

7 3.81 0.61 6.67% 93.30% 84.00% 1.33% 43.54% NO 

8 3.81 0.91 48.00% 52.00% 0.00% 10.67% 65.58% YES 

9 3.81 1.22 Not feasible, severe grouping and bunching of material.  NO 

10 4.45 0.61 32.00% 68.00% 0.00% 14.67% 57.06% NO 

11 4.45 0.91 36.00% 64.00% 0.00% 5.33% 59.19% NO 

12 4.45 1.22 Not feasible, severe grouping and bunching of material.  NO 
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Table 7.15: Vibration orientation and feeding testing results, feed rate and throughput analysis for feasible parameters 

Tube 
Height 
(cm) 

Amplitude 
(mm) 

Estimated 
Sep. 

Efficiency 
% 

 Estimated 
Average Sep. 
Efficiency % 

Separation 
Efficiency 
Standard 
Deviation 

Feedrate 
(kg/hr/footwidth) 

Separated 
Throughput, First 

Pass (kg 
lanterns/hr/foot 

width) 

Un-Separated Return 
Throughput (kg 

lanterns/hr/footwidth) 

2.54 1.22 58.12% 

60.43% 2.02% 

15.11 

13.64 8.93 2.54 1.22 61.85% 28.70 

2.54 1.22 61.32% 23.92 

3.18 0.91 55.46% 

60.08% 4.14% 

35.88 

21.99 14.61 3.18 0.91 61.32% 26.09 

3.18 0.91 63.45% 47.84 

3.81 0.91 67.72% 

65.58% 3.69% 

35.88 

25.27 13.26 3.81 0.91 61.32% 47.84 

3.81 0.91 67.72% 31.89 

        Overall Average   62.03%   32.57 20.30 12.27 
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 The three sets tests that were identified as feasible were analyzed to determine 

estimated feed rate and separated throughput under optimum operating parameters.  These 

values can be seen in table 7.15.  The feedrate seen in table 7.15 values correspond to the 

amount of material that could be provided to the vibration table in order sustain a steady flow 

of material to the frictional roller bed.  The estimated separated throughput values define the 

amount of material that will be successfully separated by the vibration table and frictional 

roller system, on the first pass through the system. The material that is not separated on the 

first pass and requires multiple passes through the system is represented by the un-separated 

return throughput column.   These values can also be seen in figure 7.11.  

 

Figure 7.11: Estimated separated (blue) and return throughput (red), feasible separation system 
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 As seen in figure 7.11, the estimated separated throughput increases as tube height 

increases.  This trend is caused by the ability for material to flow more easily out of the 

feeding tube onto the vibration tube.  This decreases the time required for material to clear 

the feeding tube, subsequently increasing the throughput.  However, un-separated throughput 

also increases as a result.  The larger volume of return material requires a larger material 

handling system to recycle the un-separated material for multiple passes through the 

separation system.  It has also been noted, through observations that separation efficiency 

decreases for material after the first pass.  While no data has been formally collected to 

validate this claim, this decrease in separation efficiency presents many areas of investigation 

in the future.  

 Overall, several challenges have been presented through this testing.  It has been 

found that lantern orientation is difficult to maintain from the vibration table to the frictional 

roller bed.  This is a result of lanterns tending to tumble down an incline, rather than sliding 

neatly.  As a result, the percentage of lanterns orientated correctly could be reduced during 

the transition from vibration table to frictional roller bed, decreasing separation efficiency.   

While higher vibration amplitudes have shown to improve correct lantern orientation, a 

threshold does exist for vibration amplitudes.  At amplitudes above 1.22mm lanterns tend to 

bounce around the vibration table, rather than orientating.  This effectively negates the 

purpose of the vibration table and attempt at orientating the lanterns.   The physical 

characteristics have also shown to affect efforts to orient the lanterns using vibration.   While 

no tests have been focused at formally explaining these interactions, the interactions between 

size, weight, and shape were apparent during testing.   The variation that all these challenges 

present create an orientation system that is very susceptible to changing crop conditions and 
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also operating conditions.  The physical characteristics of the harvested lanterns not only 

introduce variation that affects the orientation, they also introduce variation to and affect the 

friction roller bed surface.  Different size lanterns and berries may require rollers of different 

sizes and surface frictional coefficients.  However, the system has proven to be successful at 

orientating and separating lanterns at certain efficiency levels.  

 

7.6 Differential Drying and Abrasion Concept Validation Testing 

Concept validation of the drying and abrasion separation process was accomplished 

by completing the simple 2x2 DOE outlined in table 6.6.  The results of this testing were 

very promising and provided a good understanding of the system and interactions between 

the two processes, drying and abrasion.  A full set of quantitative results from this testing can 

be seen in table 7.16.  

Table 7.16 displays several results for each test completed.  The weight after abrasion 

represents the total weight of all material recovered after abrasion. The percentage of intact 

berries recovered indicates the percentage of the total number of full berries that were 

recovered from the material after abrasion testing.  Any partial or broken berries were not 

included in this assessment and were included in the sepal and other material fraction 

weights.   Total sepal weight displays the total weight of all material after the intact berries 

were removed.  The three fractions of sepal material can also be seen in table 7.16.



 

 

 

1
1
2
 

Table 7.16: Drying and abrasion initial testing results, % berries recovered intact and fraction weights 

Repetition # 
Temp 
(˚C) 

Residence 
Time 

(hours) 

Weight 
after 

abrasion 
(g) 

% of berries 
recovered 

intact 

Berry 
weight 

(g) 

Total 
sepal 

weight 
(g) 

Fraction 
above 3/16 
weight (g) 

Fraction 3/16 - 
2/16 weight (g) 

Fraction 
below 2/16 
weight (g) 

1 85 6 70.34 100.00% 65.14 5.17 2.45 0.87 1.81 

2 85 6 68.27 100.00% 63.52 4.64 2.16 0.76 1.61 

3 85 6 76.99 98.00% 72.02 4.85 1.92 1.04 1.80 

Average     71.87 99.33% 66.89 4.89 2.18 0.89 1.74 

1 100 6 53.22 98.00% 47.83 5.27 2.74 0.68 1.77 

2 100 6 49.50 100.00% 45.82 3.69 1.73 0.63 1.24 

3 100 6 53.70 100.00% 48.62 5.06 2.02 0.84 2.10 

Average     52.14 99.33% 47.42 4.67 2.16 0.72 1.70 

Residence time 
group average     

62.00 99.33% 57.16 4.78 2.17 0.80 1.72 

          1 85 18 41.02 84.00% 26.55 14.47 2.47 1.40 10.56 

2 85 18 43.04 90.00% 29.95 13.15 2.65 1.03 9.34 

3 85 18 45.55 96.00% 32.72 12.78 2.25 1.04 9.40 

Average     43.20 90.00% 29.74 13.47 2.46 1.16 9.77 

1 100 18 41.24 74.00% 10.53 30.70 2.67 1.39 26.56 

2 100 18 40.92 70.00% 11.15 29.66 3.34 1.96 24.13 

3 100 18 41.36 50.00% 8.6 32.60 3.52 2.53 26.32 

Average     41.17 64.67% 10.09 30.99 3.18 1.96 25.67 

Residence time 
group average     

42.19 77.33% 19.92 22.23 2.82 1.56 17.72 

                    

Overall average  
    

52.10 88.33% 38.54 13.50 2.49 1.18 9.72 
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Figure 7.12: Comparison of drying time vs. percentage of berries recovered intact 

 

A distinct relationship between drying time and percentage of intact berries recovered 

becomes evident when examining table 7.16 and figure 7.12.   The percentage of berries 

recovered intact suffers significantly when drying time is increased from 6 to 18 hours.   This 

decrease in percentage of berries recovered intact is a result of extensive drying creating dry 

and brittle berries.  The dry and brittle berries break apart during the abrasion process and 

become included in the sepal material.  However, when drying residence time is limited to 6 

hours the percentage of berries recovered intact is much higher, averaging 99.33%.  

A sepal to berry weight ratio was derived by manually hand separating 15 cape 

gooseberries and weighing the individual berry and sepal separately.  This material was dried 

at 100˚C for 6 hours.  The resulting ratio for sepal to berry weight was 0.166. This ratio was 

then used to determine the expected berry weight and total sepal weight.  In addition, this 

information was then used to calculate the estimated sepal contamination by broken up, 

crushed berries.  Inversely, the amount of sepal material still attached to the intact berries and 
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stems could also be calculated.  The results for this analysis of the initial tests can be seen in 

table 7.17.  

  Table 7.17: Estimated contamination of separation materials 

Temperature 
(˚C) 

Residence 
Time (hr) 

Expected 
Berry 

Weight 
(g) 

Berry 
weight 

(g) 

Expected 
sepal 

weight 
(g) 

Total 
sepal 

weight 
(g) 

Estimated 
Berry 

material in 
sepal (g) 

Estimated 
sepal 

material left 
on berries (g) 

100 6 44.41 47.83 8.81 5.27 0.00 3.42 

100 6 41.30 45.82 8.20 3.69 0.00 4.52 

100 6 44.81 48.62 8.89 5.06 0.00 3.81 

100 18 34.41 10.53 6.83 30.7 23.88 0 

100 18 34.15 11.15 6.77 29.66 23.00 0 

100 18 34.51 8.6 6.85 32.6 25.91 0 

85 6 58.69 65.14 11.65 5.17 0.00 6.45 

85 6 56.97 63.52 11.30 4.64 0.00 6.55 

85 6 64.24 72.02 12.75 4.85 0.00 7.78 

85 18 34.23 26.55 6.79 14.47 7.68 0 

85 18 35.91 29.95 7.13 13.15 5.96 0 

85 18 38.01 32.72 7.54 12.78 5.29 0 

 

 It can be estimated that when a lower residence time was utilized, sepal material was 

left attached to the berries, and not fully separated.  This estimation was confirmed using 

pictures of the resulting materials after abrasion.  During the longer residence times the 

berries became dry and brittle, allowing them to break up and become fragmented during 

abrasion. This can be seen as the estimated berry material in sepal in table 7.17.  These 

numbers indicate that berries had broken up into small pieces and become mixed in with the 

sepal material fractions.  A noticeable difference could also be seen between the shorter and 

longer drying residence times.  Berries subjected to the 18 hour residence time became 

blackened and slightly charred while berries subjected to a 6 hour residence time retained 
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their original color.   This difference in berry color and appearance can be seen in figure 7.13 

and 7.14. 

 

  

When analyzing the 100° C drying and abrasion tests, a noticeable difference can be 

seen in both the percentage of berries recovered intact and also the volume and color of the 

fine sepal material.  The fine sepal material of the 18 hour residence test is darker than the 

shorter 6 hour residence test.  This can be attributed to the darkened berries becoming broken 

Figure 7.13: Drying and abrasion testing results, 100 C 

Figure 7.14: Drying and abrasion testing results, 85 C 



116 

 

 

up and incorporated with the fine sepal material.  This fragmentation of the berries and 

contamination of the sepal material is unacceptable and would undoubtedly have a significant 

negative impact on extraction efficiency of zeaxanthin.   

 Several experimental tests were conducted following the completion of the main 

drying and abrasion DOE.  A sample of un-dried cape gooseberries was placed in the 

durability tester without any rubber balls and allowed to rotate for five minutes.  No 

separation of the sepal from the berries was observed.   Rubber balls were then added to 

sample and the durability tester was rotated for another five minutes.  The rubber balls 

crushed the berries and did not increase separation of the sepal.  This testing confirmed that 

drying of the material is a critical process that must precede abrasion.   Cape gooseberries 

were then dried and placed in the durability tester without rubber balls.  After 10 minutes of 

rotation, minimal separation of the sepal had occurred.  This test confirmed that the rubber 

balls were also critical to separation efficiency. 

 Overall, the drying and abrasion process has proven to be an effective system to 

separate sepal material from the berry.  While several process parameters remain to be 

optimized to maximize separation efficiency, this work provides a base to move forward with 

the optimization.  

 

7.6 Differential Drying and Abrasion Optimization Testing 

 Proven as an effective method for separation of cape gooseberry material, the 

differential drying and abrasion system was then optimized using Chinese lantern material.  

This testing was completed with three goals: (1) validate the system is effective for 

separating Chinese lantern sepal from berries, (2) determine optimum moisture content 
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values for chinese lantern berries and sepal to be dried to in order to achieve a high level of 

separation, and (3) define the relationship between drying temperature, drying residence time 

and the rate of cis-zeaxanthin formation.   

 A full set of quantitative results from this testing can be seen in Appendix A, Table 

A.4.  These results include: separation efficiency, % berries recovered intact, berry moisture 

content, sepal moisture content, as well as the drying and abrasion process parameters.   

Several relationships become very evident when examining these results.  As seen in figure 

7.15, berry moisture content has a significant impact on % berries recovered intact.  When 

moisture content of the berries falls below ~ 16.00% berries begin to fragment and shatter, 

contaminating the separated sepal material. On the upper end of the moisture content range, 

berries above ~ 45.00 – 50.00% moisture content tend to be too wet and become smashed 

during the abrasion process.   

 

Figure 7.15: Berry moisture content vs. % berries recovered intact, 5 (blue) and 15 (red) minute abrasion 

times 
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 Moving forward with larger scale testing and commercial processing, the target range 

for berry moisture content can be conservatively defined as between 20.00 and 35.00 %.  

Drying berries to this moisture content has minimized berry loss and sepal contamination 

during the abrasion process.  

 When analyzing the sepal moisture content and separation efficiency results, a target 

moisture content can be defined for the sepal.  As seen in figure 7.16, separation efficiency is 

maximized when the sepal is dried below 6.00 % moisture content.  However several data 

points do exist for sepal dried below 6.00% moisture content where separation efficiency 

suffers and is below ~65.00%.  However, these points are for tests that utilized a 5 minute 

abrasion residence time.   It is believed that these separation efficiencies could be increased 

significantly by increasing the abrasion residence time slightly.  

 

Figure 7.16: Sepal moisture content vs. separation efficiency, 5 (blue) and 15 (red) minute abrasion times 
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 Investigation into the effects of drying temperature and residence time on cis-

zeaxanthin formation was completed using a standard least squares ANOVA analysis as well 

as a T-test for the different temperature and time levels. The results of the ANOVA analysis 

are displayed in table 7.18. The analysis indicates that drying temperature is the only 

statistically significant effect on cis-zeaxanthin. This main effect is significant well beyond 

α=0.05 level. It can also be seen that neither drying residence time, nor the interaction 

between drying temperature and time has a statistically significant impact on cis-zeaxanthin 

formation. The conclusion from this testing is that temperature is the main factor that impacts 

and determines the rate of cis-zeaxanthin formation.  

 

Table 7.18: ANOVA analysis of cis-zeaxanthin formation data 

 

 T-tests were completed for each factor, drying temperature and drying residence time, 

in order to fully understand their effect on cis-zeaxanthin formation. The results from these 

tests can be seen in tables 7.19 and 7.20.  As seen in table 7.19, all levels of drying 

temperature were proven to have a statistically different impact on cis-zeaxanthin formation.    

Table 7.19: T-test analysis, effect of temperature on cis-zeaxanthin formed 

Temperature Level Level % Cis Zeaxanthin Formed Mean 

115 A 17.97 

100             B 14.18 

85                         C 11.86 

70                                    D 3.1667 

55                                              E -0.06 
 

 

Source DF Sum of Squares F ratio Prob > F 
Temperature (°C) 1 168.0556 58.3867 < 0.001 

Residence Time (Hours) 1 2.7222 0.9458 0.3409 
Temperature * Residence Time 1 4.9408 1.7166 0.2031 
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Table 7.20: T-test analysis: effect of residence time on cis-zeaxanthin formed 

Residence Time (hours) Level Level % Cis Zeaxanthin Formed Mean 

4 A 15.33 
6 A 14.72 
2 A 13.94 

 

Table 7.20 displays the t-test analysis completed for the effect of the drying residence 

time levels on cis-zeaxanthin. This analysis confirms the earlier conclusion made from the 

ANOVA analysis and re-iterates the fact that drying residence time does not have a 

statistically significant effect on cis-zeaxanthin. No drying residence times were found to be 

statistically different from any other level.  

Further investigation of table 7.19 reveals a direct relationship between drying 

Figure 7.17: % cis-zeaxanthin formation vs. Drying temperature 

y = 0.3133x - 17.173 
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temperature and cis-zeaxanthin. As temperature increases, cis-zeaxanthin formation increases 

also.  This relationship can be further investigated by examination for figure 7.17.  Due to the 

analysis results’ indicating that drying residence time is not a significant factor effecting cis-

zeaxanthin formation, data can be averaged at each drying temperature level to create one 

data point per level. Figure 7.17 was developed using these methods. The relationship 

between drying temperature and % cis-zeaxanthin formed during drying becomes very 

evident when examining figure 7.17.  It becomes evident that cis-zeaxanthin can be 

minimized by utilizing drying temperatures below 55˚C 

An investigation of the drying rates of both the sepals and berries can be seen in 

figure 7.18.  The initial moisture content of the sepals and berries prior to drying was 40% 

and 75%, respectively. As seen, a considerable amount of time is required to remove 

moisture from the berries, while the sepals dry down very quickly.  This information 

validates the differential drying approach to removing moisture from the sepal and berry 

material, at different rates.  It is this difference in moisture removal rates that allows the 

differential drying and abrasion process to achieve successful separation.  

Overall, the differential drying and abrasion system has been proven capable of 

separating the outer sepal from the inner berry, effectively creating two component streams 

with minimal to zero cross contamination between components.  When material is dried to 

within the recommended moisture contents, below 5.5% for sepal and between 20-30% for 

berries, the separation method is capable of achieving separation efficiencies of 98.36%.  

Degradation of zeaxanthin during the drying process can be minimized by utilizing 
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temperatures of 55˚C and below. 

 

Figure 7.18: Moisture content of sepals and berries vs. drying residence time. 
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CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

The goal of this research work was the development of a mechanical harvesting and 

post-harvest processing system for Chinese lantern that will allow for commercial production 

and advancement of the crop.  In order to achieve this goal, several systems and machines 

were developed, fabricated and tested.  Throughout observation and testing, improvements 

were continuously made to each system in order to maximize performance.  Conclusions for 

both the mechanical harvesting and post-harvest separation systems will be discussed 

throughout this section 

 8.1.1 Mechanical Harvesting System 

 Over the course of two harvest seasons, three mechanical harvesting systems for 

Chinese lantern were developed and tested. The manual powered rotary harvesting system 

provided a platform for initial testing of the specifically designed stripping fingers.  The 

results of this testing essentially proved that a stripping method could the utilized to remove 

Chinese lanterns from plant stems.   The stripping fingers performed very well, achieving an 

average stripping efficiency of 96.71%.   However, high collection losses were also observed 

during testing.  The development and testing of the integrated harvesting and collection belt 

system reduced these collection losses.  While challenging crop conditions and differences in 

plant geometry significantly reduced stripping efficiency, several key observations during 

testing allowed improvements to be made throughout the entire system.  These improvements 

were utilized in the development and testing of the self-propelled harvesting system.  
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 The self-propelled harvested was tested in dense, second year crop.  This crop 

provided many challenges that drove the development of the guide and pin header system. 

This system increased harvesting efficiency while stabilizing the finger position and 

immensely improving header durability.  

 Overall, the testing of each harvesting system has proven that Chinese lanterns can be 

successfully harvested using a stripping method. The stripping fingers are capable of 

combing through Chinese lantern crop and detaching whole lanterns with high efficiency.   

However, plant geometry and crop density have a significant impact on both stripping 

efficiency and overall system performance.  Crops consisting of  SVS are ideal for a 

harvesting system that utilizes stripping technology to remove wanted material.  Branched 

and low-lying crops reduce stripping efficiency and tend to become entangled in the stripping 

elements of the header.   Both header designs testing throughout this work have shown 

potential to be highly effective for harvesting Chinese lanterns with minimal additional 

development.   The fundamental result of the harvesting system research is that mechanical 

harvesting of Chinese lanterns can be accomplished utilizing specifically designed stripping 

elements and header system.  

 8.1.2 Post-harvest Separation System 

 Several methods of removing the sepal from the berry were investigated throughout 

this research work.  Both the frictional roller and the drying and abrasion methods proved to 

be effective at separating the sepal from the berry.   

The frictional roller system was developed very heavily and utilized for separation of 

the entire 2012 Chinese lantern crop.  Very high separation efficiencies can be achieved with 

the frictional roller method if lanterns are orientated correctly, stem first, when presented to 
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the rollers.  However, separation efficiency suffers greatly when lanterns are delivered to the 

rollers with a random orientation.  A disadvantage of the frictional roller separation system is 

potential for and rate of berry crushage during separation. This crushage introduces unwanted 

materials into the separated sepal stream and is unacceptable for further downstream 

processing.   The major limiting factor for this system has proven to be the orientation of the 

lanterns.  

The drying and abrasion method proved to be a highly effective method to separate 

the sepal from the berry.  Separation efficiencies for this system exceeded that of the 

frictional roller method.   The drying and abrasion system offers better process and parameter 

control when compared to the frictional roller method.  Drying parameters; temperature, 

time, and airflow, can be optimized in order to maximize separation efficiency and minimize 

berry breakage and fragmentation.   The limiting factor for this process involves the effect of 

drying on the zeaxanthin content of the sepal.  However, degradation of the zeaxanthin 

content can most likely be minimized through the use of drying parameters that minimize the 

temperature at which the material is exposed to.  

Overall, the drying and abrasion method has proven to be the most effective method 

for separation of the sepal from the berry.   When material is dried to the correct moisture 

content, testing of this system has resulted in separation efficiencies of 98.36% with zero 

berry fragmentation.  The two processes involved in the system, differential drying and 

abrasion, can be developed to commercial scale and adapted to create a continuous flow 

process that is necessary to achieve high throughput.   The overall conclusion of the 

separation system research work is that drying and abrasion has been proven to be highly 

efficient at mechanically removing the sepal from the berry.   
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8.2 Recommendations 

This research work provided a considerable amount of information and insight on both 

the mechanical harvesting and post-processing of Chinese Lanterns.   However, further study 

is recommended in order to increase the performance and efficiencies of both systems.  A full 

scale DOE is needed to fully analyze and understand the performance of the mechanical 

harvesting system in regards to machine parameters. The harvesting header and stripping belt 

movement path could be modified to include the best aspects of the rotary system while 

retaining the stripping finger belt system to convey harvested material.  

Recommendations for further study and improvement of the mechanical harvesting 

system are as follows: 

 Develop two modified header designs for the self-propelled harvester. 

o Large scale rotary header  

o Modified harvesting and collection belt design with guide and pin system  

 Complete a full scale DOE to compare the performance of the two headers harvesting 

in similar crop conditions.  

 Investigate the effect of machine parameters on stripping and overall efficiencies. 

o Stripping finger linear speed 

o Forward machine speed 

 Utilize a conveyor belt to move material across the header to minimize material 

wrapping and plugging of the header. 

 Utilize standard components for harvesting headers to facilitate scale-up of the 

system. 
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 Use of a defoliant on the Chinese lantern crop may reduce the amount of foliage 

throughout the crop structure. Resulting in a lower load on the harvesting header.  

Further investigation of the separation system is necessary to optimize process 

parameters and increase separation efficiency.  Recommendations for further study and 

investigation of the separation system are as follows: 

 Investigate the effects of airflow rate during drying on drying time and subsequent 

separation efficiency. 

 Develop and test a continuous flow drying and abrasion system using moisture 

content of incoming and outgoing material as a reference to determine drying 

parameters and achieve maximum separation efficiency.  

 Integrate the moisture content guidelines developed throughout this work into a 

commercial scale separation system.  
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APPENDIX  
 

Table A-1: Self-propelled harvester hydraulic component list 

Hydraulic System Components 

Component Manufacturer Part # Quantity Description 

Main hydraulic 
pump 

Sauer Danfoss 
LRR025CLS2315NNN3C2

C2BGANKNBNNNNNN 
1 

Series 45 axial piston 
pump 

Valve block Sauer Danfoss 157B6530 8 PVG 32 basic module 

Valve block Sauer Danfoss 157B5914 1 Pump side module 

Valve block Sauer Danfoss 157B2020 1 End plate 

Valve block Sauer Danfoss 157B2265 8 
Shock and suction valve 

assembly 

Valve spool Sauer Danfoss 157B7002 4 PVG 32 valve spool 

Valve spool Sauer Danfoss 157B7003 4 PVG 32 valve spool 

Cylinder Maxim 218-306 2 Header lift cylinders 

Cylinder Maxim 218-306 1 Header tilt cylinder 

Cylinder 
  

1 
Conveyor elevation 

cylinder 

Motor Char Lynn 104-3099-006 1 Main header belt drive 

Motor Char Lynn 101-1706 1 Header auger drive 

Motor Char Lynn 101-1706 1 Conveyor drive motor 

Heat 
Exchanger 

ASA Hydraulics 1B021373 1 Hydraulic fluid cooler 
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Table A-2: Self-propelled harvester engine and electronic components 

Component Manufacturer Part # Quantity Description 

     Engine Component 

Diesel Engine Lombardini 1603 LDW 1 
3 cylinder diesel 

engine 

     
Mobile Electronic Components 

Joystick Sauer Danfoss 
JS7000M1SMNNNNCANJ90TV
NNVRB5TRTBTBTYTYNNNNN

NNNNNPNSBN 
1 

Right machine 
control joystick 

Joystick Sauer Danfoss 
JS7000M1SMNNNNCANJ93TV
NNVRB5TRTBTBTYTYNNNNN

NNNNNPNSBN 
1 

Left machine 
control joystick 

Display Sauer Danfoss DP600SAC2V2KS 1 
Operator station 

display 

Microcontroller Sauer Danfoss MC088-015 1 
Machine 

microcontroller 

Valve Actuator Sauer Danfoss 157B4735 8 
PVE electronic 
valve actuator 
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Table A-3: Vibration orientation testing results: tube height, vibration amplitude, percentage of lanterns by orientation 

Parameters Percentage of lanterns 

Test 
# 

Tube 
Height 
(cm) 

Amplitude 
(mm) 

0° 
(stem 
first) 

45° 90° 135° 180° 
Stuck 

in tube 
Stuck on 

table 

0° 
(stem 
first) 

45° 90°  135° 180° 

1 2.54 0.61 0.0% 4.0% 4.0% 0.0% 4.0% 88.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

2 2.54 0.61 0.0% 4.0% 0.0% 0.0% 0.0% 96.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

3 2.54 0.61 0.0% 0.0% 0.0% 0.0% 0.0% 92.0% 8.0% 0.0% 0.0% 4.0% 0.0% 4.0% 

4 2.54 0.91 0.0% 4.0% 8.0% 4.0% 0.0% 76.0% 8.0% 4.0% 0.0% 4.0% 0.0% 0.0% 

5 2.54 0.91 20.0% 4.0% 32.0% 12.0% 24.0% 8.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

6 2.54 0.91 20.0% 20.0% 28.0% 12.0% 8.0% 8.0% 4.0% 0.0% 4.0% 0.0% 0.0% 0.0% 

7 2.54 1.22 20.0% 16.0% 12.0% 20.0% 20.0% 8.0% 4.0% 4.0% 0.0% 0.0% 0.0% 0.0% 

8 2.54 1.22 20.0% 24.0% 20.0% 20.0% 12.0% 4.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

9 2.54 1.22 20.0% 20.0% 16.0% 32.0% 12.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

10 3.18 0.61 4.0% 4.0% 4.0% 0.0% 0.0% 88.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

11 3.18 0.61 8.0% 0.0% 8.0% 4.0% 4.0% 76.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

12 3.18 0.61 24.0% 8.0% 28.0% 12.0% 16.0% 0.0% 12.0% 8.0% 0.0% 0.0% 0.0% 4.0% 

13 3.18 0.91 20.0% 12.0% 32.0% 16.0% 8.0% 4.0% 8.0% 0.0% 0.0% 0.0% 8.0% 0.0% 

14 3.18 0.91 16.0% 12.0% 20.0% 20.0% 20.0% 0.0% 12.0% 8.0% 4.0% 0.0% 0.0% 0.0% 

15 3.18 0.91 16.0% 20.0% 20.0% 16.0% 20.0% 0.0% 0.0% 8.0% 0.0% 0.0% 0.0% 0.0% 

16 3.18 1.22 16.0% 8.0% 24.0% 32.0% 16.0% 0.0% 4.0% 0.0% 4.0% 0.0% 0.0% 0.0% 

17 3.18 1.22 16.0% 16.0% 28.0% 24.0% 16.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

18 3.18 1.22 12.0% 20.0% 24.0% 16.0% 20.0% 0.0% 8.0% 4.0% 0.0% 0.0% 4.0% 0.0% 

19 3.81 0.61 4.0% 0.0% 0.0% 8.0% 0.0% 84.0% 4.0% 0.0% 0.0% 0.0% 0.0% 4.0% 

20 3.81 0.61 8.0% 4.0% 4.0% 4.0% 0.0% 80.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

21 3.81 0.61 0.0% 4.0% 0.0% 4.0% 4.0% 88.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

22 3.81 0.91 12.0% 24.0% 8.0% 12.0% 12.0% 0.0% 32.0% 4.0% 12.0% 0.0% 4.0% 12.0% 

23 3.81 0.91 20.0% 20.0% 44.0% 8.0% 8.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

24 3.81 0.91 20.0% 32.0% 28.0% 12.0% 8.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
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Table A-3 Cont.: Vibration orientation testing results: tube height, vibration amplitude, percentage of lanterns by orientation 

Parameters Percentage of lanterns 

Test 
# 

Tube 
Height 
(cm) 

Amplitude 
(mm) 

0° 
(stem 
first) 

45° 90° 135° 180° 
Stuck 

in tube 
Stuck on 

table 

0° 
(stem 
first) 

45° 90°  135° 180° 

25 3.81 1.22 

Unable to tell, one group of lanterns falling off vibration table.  Not feasible 26 3.81 1.22 

27 3.81 1.22 

28 4.45 0.61 8.0% 28.0% 32.0% 12.0% 8.0% 0.0% 12.0% 0.0% 0.0% 8.0% 0.0% 4.0% 

29 4.45 0.61 12.0% 8.0% 32.0% 20.0% 4.0% 0.0% 24.0% 12.0% 0.0% 8.0% 4.0% 0.0% 

30 4.45 0.61 8.0% 16.0% 48.0% 8.0% 12.0% 0.0% 8.0% 0.0% 4.0% 4.0% 0.0% 0.0% 

31 4.45 0.91 12.0% 16.0% 32.0% 20.0% 12.0% 0.0% 8.0% 0.0% 0.0% 4.0% 4.0% 0.0% 

32 4.45 0.91 20.0% 16.0% 40.0% 8.0% 8.0% 0.0% 8.0% 0.0% 8.0% 0.0% 0.0% 0.0% 

33 4.45 0.91 20.0% 16.0% 28.0% 12.0% 24.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

34 4.45 1.22 

Unable to tell, one group of lanterns falling off vibration table.  Not feasible 35 4.45 1.22 

36 4.45 1.22 
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Table A-4: Differential drying and abrasion system testing results, optimization tests completed with Chinese lantern material 

Test 
# 

Drying Temp 
(˚C) 

Drying Residence 
Time (hours) 

Tumbling Time 
(min) 

Separation 
Efficiency 

% Berries 
Recovered Intact 

Berry MC, % Sepal MC, % 

1 55 6 N/A N/A N/A 

65.5 6.3 2 55 6 N/A N/A N/A 

3 55 6 N/A N/A N/A 

4 70 6 N/A N/A N/A 

59.4 6.4 5 70 6 N/A N/A N/A 

6 70 6 N/A N/A N/A 

7 85 1 5 44.51% 50.00% 64.23 15.21 

8 85 2 5 41.74% 100.00% 61.7 7.6 

9 85 2 15 63.04% 60.00% 63.00 15.29 

10 85 4 5 69.61% 100.00% 46.85 7.42 

11 85 4 5 58.94% 100.00% 54.4 7.5 

12 85 4 15 59.93% 60.00% 51.28 9.29 

13 85 6 5 98.36% 100.00% 17.01 6.25 

14 85 6 5 65.11% 100.00% 32.7 6.6 

15 85 6 15 97.47% 90.00% 14.84 6.31 

16 100 2 5 61.01% 100.00% 55.9 4.5 

17 100 4 5 36.36% 100.00% 23.7 6.1 

18 100 6 5 94.20% 80.00% 12.3 5.8 

19 115 0.5 5 24.13% 50.00% 64.92 14.2 

20 115 0.5 15 33.22% 30.00% 66.92 15.8 

21 115 1 5 47.17% 50.00% 65.78 14.45 

22 115 2 5 55.24% 100.00% 47.2 5 

23 115 2 5 51.32% 90.00% 51.74 8.8 

24 115 4 5 95.39% 100.00% 25.08 5.08 
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Table A-4 Cont.: Differential drying and abrasion system testing results, optimization tests completed with Chinese lantern material 

 

 

 

 

Test 
# 

Drying Temp 
(˚C) 

Drying Residence 
Time (hours) 

Tumbling Time 
(min) 

Separation 
Efficiency 

% Berries Recovered 
Intact 

Berry MC, % 
Sepal 
MC, % 

25 115 4 5 83.82% 100.00% 16.7 4.3 

26 115 4 15 95.48% 90.00% 32.13 4.59 

27 115 4 15 95.00% 100.00% 36.73 5.05 

28 115 4 15 93.98% 100.00% 23.78 5.49 

29 115 6 5 100.00% 10.00% 2.03 6.42 

30 115 6 5 99.46% 20.0% 2.9 3.7 

31 115 6 15 99.20% 20.00% 2.82 5.12 

32 115 6 15 98.73% 10.00% 2.22 5.43 
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