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Chapter 1. Introduction 

In the past, optimizing the efficiency of crop production focused on one single machine. 

Today, machine manufacturer’s focus has shifted to optimizing the performance of a 

complete field operation through coordinated machine operations.  

The focus of this project was on the harvest operation, where resource usage is 

typically the highest. With modern grain harvest systems, combine operators often unload 

grain while continuing to harvest crop (unloading-on-the-go). In order to achieve this, the 

combine operator must coordinate machine speed and placement with the grain cart operator 

for accurate placement of grain into the cart. The combine operator manages on/off control of 

the unloading auger with in-cab controls as the well as the placement of the grain by 

changing the speed of the combine relative to the cart. 

This project developed an autonomous machine positioning system that controlled the 

relative position of a combine to a grain cart during unloading-on-the-go. This was achieved 

by developing a control model which made small adjustments to the ground speed of the 

combine to achieve relative position shifts.  

The control system was able to consistently achieve the desired accuracy of ±40 cm while 

limiting the differential engine loading due to position shifts to less than 10% of the rated 

engine power. In addition, the system was tuned to make position shifts at a similar rate as 

that of an operator during traditional operation.  

Analysis was performed on the step response characteristics of the system across 

treatment factors of ground speed, allowable range of speed, and engine load.  The results 

showed a statistically insignificant impact of ground speed and engine load, while range of 

speed did have a statistically significant impact on response time.  

 This result of this project was a system that allowed the combine operator to completely 

remove attention from the combine’s relative positioning to the grain cart during a grain 

unloading cycle. 

  



2 

 

 

Chapter 2. Literature Review 

2.1.  Relative Position Control in Other Industries 

2.1.1. Automotive: Adaptive Cruise Control 

Adaptive Cruise Control (ACC) was first made commercially available in 1998 and is 

now available in various levels from nearly every major automotive manufacturer (Vollrath, 

Schleicher and Gelau 2011). ACC is an extension of the traditional cruise control system, 

which simplifies driving by relieving the driver of the task of maintaining constant speed. 

ACC further simplifies the task of driving a car because it relieves the driver of the task of 

continual awareness of the car’s relative velocity to other vehicles. 

When the car is on the open roadway, ACC performs like traditional cruise control by 

maintaining a constant vehicle speed set by the driver. The primary difference is that if a car 

with ACC approaches a slower moving vehicle it will automatically decelerate to maintain a 

constant time gap between the vehicles. The constant time gap is defined as the time required 

for the front edge of the car to reach the current location of the back edge of the vehicle 

ahead in the path of travel. If the deceleration due to the drivetrain and aerodynamic drag is 

insufficient to slow the vehicle at the rate required by ACC, the brakes will be applied to help 

avoid a collision, as shown in Figure 2.1 (Bauer 2003). If the slower vehicle exits the path of 

travel, ACC allows the traditional cruise control system to accelerate the vehicle back to the 

speed set point.   
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Figure 2.1: Audi Adaptive Cruise Control with Brake Assist (Photo credit: Audi) 

 

2.1.2. Adaptive Cruise Control hardware  

  ACC requires only a few additional pieces of hardware to make the system fully 

functional. The most critical piece of hardware is that which detects the distance from other 

vehicles on the road.  In preliminary systems, both RADAR (Radio Detection and Ranging) 

and SONAR (Sound Navigation and Ranging) were tested, but RADAR was found to be 

superior due to its performance in adverse weather conditions (fog, rain, snow, etc.). The 

other piece of hardware that all ACC systems have is a dedicated ACC unit. Often, the 

control unit is integrated into the RADAR hardware, as is the Bosch ACC system shown in 

Figure 2.2. (Bauer 2003) 



4 

 

 

 

Figure 2.2 Bosch long-range RADAR sensor and ACC control unit 

(Photo credit: Robert Bosch GmbH)  

As the performance of ACC systems continues to improve, manufacturers have 

started using additional sensing technologies such as infrared, and stereo-camera based 

systems to obtain as much information as possible about the surrounding environment. 

Stereo-camera based systems have been put in place to gather information about the vehicle’s 

position in the highway lane and detection of vehicles approaching from the rear (Onken and 

Schulte 2010).  

In order to ensure reliable ACC system performance across changing road conditions, 

the Electronic Stability Program (ESP) provides ACC important sensor signals regarding the 

dynamic handling of the vehicle. These signals typically include information regarding yaw 

rate, lateral acceleration, wheel speed, and steering angle. (Bauer 2003) 

The remaining piece for a fully functional ACC system is integration with the engine 

and transmission controller, as well as the brake controller. Typically the brakes do not have 

a dedicated controller, so ACC will send braking commands to the ESP, which will decide if 

the braking commands are safe to execute. With these integrations, the current production 

ACC system has been a success by achieving robust and stable control even across varying 

road surface co-efficient of frictions (wet, dry, or icy) and cornering conditions (Auckland, et 

al. 2005). The result is a system that is safe to operate and can typically provide better control 

than human manual operation. 
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2.1.3. Adaptive Cruise Control for Heavy-Duty Vehicles 

 ACC systems are being developed to broaden the range of ACC application, 

particularly in the area of heavy duty vehicles. Heavy-duty vehicles require a very different 

set of system parameters due to higher weight-to-power ratio, the much larger vehicle mass, 

as well as the amount that vehicle mass can change (up to 400% variance depending on 

payload ). Bengea et. al.(2006) of Eaton Corporation has developed a control system that 

moved away from the typical control system architecture, which used throttle and brake 

signals, to a control system that used engine torque as the control signal to address the unique 

heavy duty vehicle parameters. Engine torque can be controlled through the torque limiting 

command (during positive torque) and the engine retarder (to achieve negative torque), both 

signals are available through the J1939 standardized Controller Area Network (CAN) bus. As 

with other ACC systems, this ACC system works in conjunction with the traditional cruise 

control system which maintains vehicle speed to a driver speed set point. The ACC system 

only has the capacity to limit the torque requests sent from the cruise control system. For 

accelerations, the traditional cruise control system is used to bring the vehicle back up to the 

speed set point. (Bengea, et al. 2006) 

2.1.4. Adaptive Cruise Control Current Progress 

A further development in the field of ACC is Cooperative Adaptive Cruise Control 

(CACC), which can communicate with other vehicles traveling in close proximity. It is 

expected that CACC can enhance and help promote stable flow in heavy traffic environments 

by eliminating driving behavior that varies on an individual level. However, a production 

system of CACC is several years away. Significant developmental work is still needed to 

develop the technologies to be used, and gain adequate knowledge to properly design a 

control model for optimum traffic flow. (Pueboobpaphan and Arem 2010) 

2.1.5. Mining: Autonomous Mining Vehicles 

In the mining industry, autonomous systems have been developed to increase 

employee safety and mining efficiency. The dangerous work of mining can be eliminated by 

implementing these autonomous systems, which allow work vehicles to be monitored from a 

remote location, away from the hazardous situations a mine presents.  Also, many mines deal 
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with a continual labor shortage due to the remote locations of the mines. This problem can be 

partially fixed with these autonomous systems which no longer require employees to perform 

monotonous tasks, but instead allow one employee to monitor the work of multiple 

machines.    

 The Caterpillar MineStar system provides technology for remote control, semi-

autonomous, and autonomous control systems. In the completely integrated solutions, the 

machines are directed where to go and what to do, but an on-board intelligence system 

decides how to navigate and accomplish the task.  

For underground mining, the Caterpillar Minestar system is a semi-autonomous 

system that allows a single operator to control and monitor multiple wheel loaders. During 

the typical load-haul-dump cycle the operator completes the load and dump tasks from a 

remote control station. During the haul portion, the machine is controlled autonomously to 

drive from the loading location to dumping location. Not only does this technology provide 

mines with improved worker safety, but also improved equipment use and efficiency as the 

equipment does not stop for shift changes or evacuation times needed following a blast 

(Caterpillar 2011). 

For open pit mining the Caterpillar Minestar system provides a completely 

autonomous solution that allows trucks to haul without an operator. In order to avoid 

collisions with other vehicles and objects, the Minestar Detect system works to recognize 

possible hazards in the vehicles path of travel through several means. For short range 

detection the vehicle is outfitted with radar sensors to notify the system when an object is 

detected.  For long range detection the trucks use the Global Navigation Satellite System 

(GNSS) (currently a combination of the United States’ GPS system and the Russian 

GLONASS system) for navigation and to locate other trucks and mine assets. For all non-

permanent mine equipment (service trucks, portable equipment) individual electronic tags are 

attached allowing both the autonomous system and remote operators to recognize the 

location of all vehicles in the mine. (Engineering and Mining Journal 2011) 
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Figure 2.3 A Cat Mining Truck using Minestar software and GNSS position information to 

operator autonomously. (Photo credit: Caterpillar)  

Kotmastu first announced their Autonomous Haulage System (AHS) early in 2008, 

and has since deployed the system to two open-pit mines, one in Chile, the other in Australia. 

Both mines were located in very remote locations where securing sufficient manpower was a 

difficult task. For the operation located in Australia, all trucks are controlled via a remote 

operations center over 600 miles away in Perth, where labor resources are much more 

abundant.  

The Kotmatsu AHS system provides fleet management for all vehicles in the mine, 

and position control for dump trucks. These dump trucks are equipped with GNSS receivers 

to receive position data, obstacle detection systems, and a wireless network which allows 

machines to communicate with each other. When the trucks near the loading spot, they are 

automatically guided to the bucket of the GNSS equipped excavator or wheel loader. The 

system is still labeled as proprietary, and is not commercially available for purchase by 

mining companies (Komatsu 2011). 
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Figure 2.4: Overview of the Komatsu Autonomous Haulage System (Photo credit: Komatsu) 

 

2.2. Combine Speed Control Systems to Optimize Crop Flow 

Combine speed control systems are not a new area of development for the harvesting 

industry. Starting in the 1970’s and moving forward, several manufacturers have put 

development resources into combine speed control systems used to maintain optimal crop 

flow through the machine. 

2.2.1. Early Combine Speed Control Systems  

In 1971, two patents were filed for a control system to automatically control combine 

ground speed by inventors working for Massey Ferguson.  E. L. Elfes patented a system 

which used vacuum tubes to amplify grain loss signals. (Stone, Benneweis and Bergeijk 

2008).   These grain loss signals were transmitted to a controller that converted the signal to 
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an output proportional to the grain impacting the sensor. This output was sent to a solenoid 

valve that controlled a hydraulically operated variable speed drive. (Elfes 1971) Also in 

1971, Franz Herbsthofer patented a similar system which used grain loss signals as the 

control system input. In this case, the ground speed control was achieved using a solenoid 

which actuated the control for a variable V-belt drive, attached to the drive wheels. This 

system used an additional solenoid to switch a two-stage governor on the engine to increase 

the speed of the threshing drum assembly (Herbsthofer 1971).    

 In 1978 R. G. Fardal of International Harvester patented a system which used an 

analog circuit to monitor separator and feed load sensors in addition to the grain loss 

monitors. These analog signals were then processed by a machine speed controller which 

determined a change in vehicle speed to improve threshing quality. The combine drive 

wheels were propelled with a hydrostatic transmission which had a control element linked to 

a hydraulic cylinder driven by a signal from the feedrate control system. (Fardal and Rickerd 

1978)  

Although neither system received strong industry acceptance, these early steps by 

manufacturers such as Massey Ferguson and International Harvester paved the way for future 

autonomy in combine speed control. 

2.2.2. Modern Combine Speed Control Systems 

In the current market, there are combine speed control systems available from two 

manufacturers. These systems have nearly the identical purpose that inventors at Massey 

Ferguson and International Harvester had 40 years prior; automatically determine and 

maintain optimal crop flow through the machine.   

John Deere’s Harvest Smart system was the first to the market as an optional feature on 

the 70 series combines, model year 2008 (John Deere 2007). The system uses separator load, 

grain loss sensors, and engine load to automatically determine the desired changes in ground 

speed. These signals are all available on the machine’s CAN bus, and are processed by the 

Harvest Smart Controller, which then outputs a desired ground speed to the ProDrive 

transmission controller. (Taylor, Hobby and Schrock 2005)  

New Holland’s IntelliCruise system was released as an optional feature on their 8000 and 

9000 series combines, model year 2010. New Holland’s system operates in a very similar 
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manner to the John Deere Harvest Smart system by monitoring several machine load and 

grain quality indicators to determine an optimum speed. The New Holland system claims to 

have an improved response time to changing crop conditions by also monitoring the power 

demand of the header drive. (New Holland 2011)  

 

Figure 2.5: New Holland’s IntelliCruise system automatically matches forward speed to crop 

load. (Photo credit: CNH) 

2.3. Coordinated Machine Positioning in Agriculture 

2.3.1. Semi-Autonomous Tractor/Grain Cart Systems 

In the last two years, there has been significant development for coordinated 

positioning of machinery in the agricultural industry, specifically relating to the positioning 

of a grain cart relative to a combine. These systems have been developed to aid operators 

when unloading-on-the-go. Recently, both CNH and John Deere have announced systems 

with this capability (systems marketed as Case IH Vehicle-to-Vehicle (V2V) and John Deere 

Machine Sync). In these systems the combine is a central master, and it can cycle control 

between multiple tractor/grain cart slaves, through an in-field wireless network and vehicle 

GPS information. Prior to engagement, the slave must enter an operational zone near the 

combine, and signal that the tractor/grain cart is ready to receive position commands through 

a user input. When operating these machines in synchronization, the combine operator 

continues harvesting grain as normal, while the tractor autonomously steers and adjusts speed 

to position itself in a desired location to the combine. As the grain cart fills, either the 

combine or tractor operator is allowed to nudge their position in order to achieve an optimal 

cart fill. Although both systems still require an operator to remain in the cab of the tractor to 

engage the system upon approaching a desired master, the tractor operator is no longer 
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responsible for any machine control once the system is engaged. (CNH North America 2010) 

(Deere & Company 2011) 

 

Figure 2.6: Case IH V2V system overview (Photo Credit: CNH) 

2.3.2. Fully Autonomous Tractor/Grain Cart Systems 

In order to further automate grain unloading operations Kinze Manufacturing Inc. and 

Jaybridge Robotics are working to develop a solution for grain unloading that will position 

the tractor/ grain cart in a desired position relative to the combine, without the need of an 

operator in the tractor cab. The system uses a set of sensors to ensure that the tractor does not 

run into permanent obstacles or other field equipment. The object detection sensors used by 

the system have just recently become cost-effective because of their large adaptation in the 

automotive industry for ACC systems. Although Kinze and Jaybridge have announced the 

system and demonstrated its functionality, no production date for the system has been set. 

(Berry, 2011). 
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Figure 2.7: Kinze/Jaybridge system demonstration of completely autonomous tractor control 

(Photo credit: Kinze Manufacturing) 

2.4. Conclusion 

In the past decade, great strides have been taken towards vehicle autonomy. In the 

automotive industry production relative position control systems that are robust and reliable 

are now available to customers. The ACC market continues to grow to more automotive 

models as further system improvements are made and the system price decreases due to 

increased volumes and decreasing sensor prices. For this project specifically, the approach to 

a heavy-duty ACC system was of interest. The high weight-to-power ratio is similar to that of 

modern farm equipment and the control system developed by Bengea et. al. (2006)of Eaton 

Corporation indicated the importance of understanding engine power requirements during 

relative vehicle positioning.  

 In the mining industry, the mines adapting the autonomous systems are able to see a 

safer working environment, increased mine efficiency, and less labor supply problems. 

In agriculture too, great strides have been made. However, the industry has yet to provide 

a relative position control system that is open to the public. For the systems discussed in 

sections 2.3.1 and 2.3.2 there are concerns about the complexity, reliability and price of 

systems that require additional hardware on each field vehicle to create the complete in-field 

wireless network.   Although Case IH and John Deere have both announced systems that 

achieve this functionality, a final, market-ready solution has yet to be provided to customers.   



13 

 

 

Chapter 3. Objectives 

With modern grain harvest systems, combine operators’ often unload grain while 

continuing to harvest crop. In order to achieve this, the combine operator must operate 

equipment in synchronization with the cart operator for accurate placement of grain into a 

cart. The combine operator manages on/off control of the unloading auger with in-cab 

controls as the well as the placement of the grain by changing the speed of the combine 

relative to the cart. This system demands a high level of operator attention and often distracts 

from the grain harvest itself. The result is a process operating at less than maximum 

efficiency and operator fatigue. 

 The long-term goal of the research project is to enhance the efficiency of agricultural 

machine systems. The specific goal is to develop an active combine speed control system 

which will automatically control the relative position of the combine to a grain cart. This will 

be achieved through vehicle response analysis, controller development, and field testing. 

Three specific objectives have been defined to fulfill the requirements of this project: 

Objective 1: Develop a method for combine speed control and quantify ability to 

control relative position via combine speed.  

A safe and reliable means to control the combine speed will be developed and data 

will be collected and analyzed to determine machine power requirements for achieving 

changes in ground speed and relative position. Upon completing analysis of the data, the 

ability to control the combine speed as a means to achieve a desired relative cart position will 

be determined.  Ability to control will be defined using the metrics of machine response 

times, power requirements, and accuracy of machine placement relative to a cart.  

Objective 2: Develop a control strategy architecture for active combine speed control. 

Using the knowledge from the preliminary study, a control strategy will be developed 

to minimize the relative position error, while also limiting the power requirements to propel 

the machine. This control strategy will be implemented using reliable machine speed control 

techniques.   

Objective 3: Validate system performance under normal field disturbances  

Upon completion of control system design and installation, the system will be 

validated and fully tested in typical field conditions. In each of these tests, relative position 
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error, and system power requirements will be monitored and used to quantify the 

effectiveness of the control system. 

This research is innovative because no manufacturer to date provides a relative 

positioning system for combines. When complete, this project should reduce the amount of 

operator attention to grain unloading, boost machine productivity by optimizing the grain 

unloading process, and improve the accuracy of grain placement. 
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Chapter 4. Combine Speed Control Development 

4.1. Introduction 

To meet the objectives described in chapter 3, a method had to be developed to control a 

relative position to a grain cart via combine speed. This chapter will address parts of both 

objective 1 and 2, which involved developing a safe and reliable means to control the 

combine ground speed from a relative position control model. 

Successful objective completion will involve consistent speed control on a software and 

hardware platform that is suitable for the development of a relative position control model. 

4.2. Background 

For the last several decades, the drive train transmission of combines for all major 

agricultural manufacturers has been a hydrostatic drive system. This transmission type has 

been selected because of the infinitely variable drive ratios that allow machine operators to 

make smooth and precise speed adjustments to account for changing crop and field 

conditions. This transmission is ideal for a simple speed control system as it allows for large 

range of speed without having to switch gears or engine throttle levels. The operator makes 

these adjustments by controlling the position of a lever located in the combine cab. This lever 

is typically referred to as the hydro handle and it controls the desired speed of the combine 

by adjusting the angle of the swash plate in the hydraulic motor used for machine propulsion, 

known as a hydrostatic transmission.  

On combines today, two methods are used to link the hydro handle to the swash plate on 

the hydrostatic transmission. The first is propel-by-cable and is the method used on the 

majority of combines. With this method, the hydro handle is physically linked to the swash 

plate by a cable. The second method is a system recently adopted by combine manufacturers 

that is part of a larger trend taking place in many industries to move away from traditional 

mechanical control, to electronic control, known as “x-by-wire”. For the discussions 

following, x-by-wire used for combine speed control will be referred to as propel-by-wire. 

On these machines, a rotary potentiometer is attached to the hydro handle (Figure 4.1) and 

outputs an analog voltage proportional to the position of the hydro handle. This analog signal 



16 

 

 

is provided as an input to an electronic control unit (ECU). This ECU interprets the analog 

voltage and outputs commands to an actuator controlling the position of the swash plate. 

 

Figure 4.1: Hydro Handle setup for propel-by-wire 

All model development was done on a John Deere 9870 combine with a factory installed 

propel-by-wire hydrostat control system. To control the speed of this machine, the wiring 

harness that connected the rotary potentiometer to the machine controller was tied into a 

custom harness to allow control of the analog signal sent to the machine controller. In all the 

control systems designed, the system operated in two discrete states depending on the 

position of a system enable switch. If the system was disabled, the output of the control 

model sent to the machine controller was identical to the input from the hydro handle rotary 

potentiometer. When the system was enabled the control system would output an altered 

analog signal to the machine controller to adjust ground speed.  By using this means of 

control, the only physical modification made on the machine was the installation of a 

modified wiring harness that allowed for control from the developed combine speed 

controller. In the case of a hardware or software failure, an emergency stop allowed this 

harness to be bypassed by the factory harnessing. 

Before beginning the control development it was important to identify the magnitude and 

accuracy of the position shifts required in a typical grain unloading event. Although the 

metrics set were subjective, typical harvest situations and conditions were examined to 

POT 
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determine these metrics. It was important to define these metric early in the project to guide 

control model development. First, the magnitude of the relative position changes was 

examined. Initially, it was attempted to establish the magnitude based on the size of a typical 

grain cart, but it is difficult to determine the size of a typical grain cart due to the variety of 

equipment sizes used by farmers today.  For example, one of the leading grain handling 

equipment manufacturers (Brent by Unverferth Manufacturing Company) currently produces 

grain carts ranging from 550 bu. to 2000 bu. (Figure 4.2), which have fillable lengths of 3.82 

m and 9.75 m, respectively (Brent Equipment 2012). 

 

Figure 4.2: Brent 2000 bu. grain cart with a fillable length of 9.75 m (Photo credit: The Mitchell 

Farm) 

With this wide range of lengths it was decided that magnitude of the relative position shift 

should not be grain cart specific, but rather based on a typical relative position shift that an 

operator would make to shift from a full section of the cart to a section that is less full. It was 

estimated that for the smallest cart (3.82 m) an operator would only need to make one major 

relative position shift during the unload cycle, while for the largest cart an operator might 

need three major relative position shifts. Assuming a non-fillable area near each edge, a 

standard relative position shift of 3.0 m was set.  

The speed at which the relative position shift needed to take place was determined by 

examining how fast a shift would need to take place in order to avoid a spill due to 

overfilling. It was estimated after filling the first fill location, no more than 10% of the 

volume (50 bu. for the smallest cart) should be added to the cart prior to reaching the desired 

location. With the highest unloading rates around 3.5 bu./s, the maximum time for a major 
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relative position shift was rounded to 14 seconds. Therefore, the following performance 

metric was set: 

 The active combine speed control system will complete a 3m relative position 

shift in 14 seconds or less.  

To determine the required accuracy of the control system, the width of the stream of grain 

exiting the unloading auger was examined. It was estimated that the width of this grain 

stream was 40 cm, and that a sufficient accuracy of the control system would be the width of 

the grain stream. The following metric was established: 

 The active combine speed control system will be able to achieve a relative 

position accuracy of ±40cm. 

In addition a metric was developed to limit the amount of impact the active combine 

speed control system could have on engine load. From machine harvest data it was known 

that in a typical grain harvest situation the average engine load ranges between 70% and 

90%. Therefore, if the speed control model induces increases in engine load of greater than 

10% there would be a high risk of overloading the engine and crop separator. As a result the 

following metric was defined: 

 The active combine speed control system will complete relative positioning 

without causing a differential engine load greater than 10% of the rated engine 

power. 

4.3. Methods and Materials 

4.3.1. Control Design with the Measurement Computing USB-1408FS 

The model development for this system was done in MATLAB Simulink. The 

Simulink model offered several advantages for the model development and editing. Simulink 

uses model based software development and allows for accelerated model development with 

the use of standardized block libraries and a more visual model layout. The use of block 

libraries greatly decreases the amount of time spent developing a model by allowing the 

developer to focus on model structure and functionality, rather than individual lines of code. 

Simulink also allows for model development in a hierarchical design which is very useful for 

model organization as models grow larger and more complex (Figure 4.3 shows the inputs 
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block of the preliminary active speed control model). The Simulink model can run on any PC 

with the required software licensing.  

Simulink also offered the ability to interface directly with common logging and 

control hardware components. In the lower portion of Figure 4.3 analog, digital, and CAN 

input blocks are used to directly input signals into the control model. 

 

Figure 4.3: Simulink hierarchical model design of the ‘Inputs’ block 
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The controlled analog signal was output from a Simulink model that resided on a 

laptop computer and interfaced with a Measurement Computing USB-1408FS. The USB-

1408FS provided 16 channels of digital I/O, 4 channels of double ended 14-bit analog input, 

and 2 channels of 12-bit analog output. 

A system layout is provided on in Figure 4.4. Two analog input channels were used to 

read the output signal of the rotary potentiometer indicating the location of the hydro handle, 

one digital input was used to read the position of the system engage switch, and two analog 

outputs were used to transmit an analog voltage to the machine controller, which indicated 

the desired location of the hydro handle according to the Simulink model.  

 

Figure 4.4: System layout for the control model running from Simulink 

Additional machine information was provided to the Simulink model via a Vector 

CANcaseXL. The CANcaseXL directly interfaced with the laptop computer and the 

Simulink control model. The CANcaseXL made all CAN messages on the combine CANbus 

available to the model and also provided filtering capabilities to limit the messages input to 

the model. The CANcaseXL interfaced directly with Vector CANalyzer software, which was 

used for data logging.  

In Table 4.1 the CAN signals input to the model for either control or data collection 

are given. All of the signals listed were easily accessible due to the standardization of 

nonproprietary CAN messages through the J1939 CAN standard. 
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Table 4.1: CAN signals input into Simulink model 

PGN 
Source 

Address 
Message 

Rate Signal Name Start Bit Length Units 

61443 0 20 Hz 
Engine Percent Load At 

Current Speed 16 8 % 

65256 28 5 Hz Nav. Based Vehicle Speed 16 16 kph 

65265 23 10 Hz Wheel Based Vehicle Speed 8 16 kph 

65266 0 10 Hz Fuel Rate 0 16 L/h 

 

All of the signals listed in Table 4.1 were part of messages with additional signals in 

each message. However, those signals were not relevant data, and were discarded. The 

‘Engine Percent Load At Current Speed’ signal was limited to a data range of 0-100. This 

signal is a ratio of the current engine load to the rated engine power. It is important to note 

that due to the power bulge of an engine, additional power is available beyond the data limit 

of 100.  

4.3.2. Control Design with the dSPACE MicroAutoBox 

The dSPACE MicroAutoBox (MAB) is a stand-alone unit designed specifically for 

prototype model development. The MAB offered adequate I/O options with channels for 

Analog in/out, Digital in/out, and CAN.  

The control model development for this system was done in MATLAB Simulink. 

MATLAB Simulink can load applications specific to the MAB, which allow Simulink to 

auto generate C code from Simulink models and directly load the generated file onto the 

MAB. Once a model has been loaded to the MAB, it begins running the model once power is 

supplied, just like an ECU. The MAB included ControlDesk, a software package that was 

used as a user interface software for diagnostics, data logging, and changing user inputs. 

A system layout is provided on in Figure 4.5. Two analog input channels were used to 

read the output signal of the rotary potentiometer indicating the position of the hydro handle, 

one digital input was used to read the position of a system engage switch, and two analog 

outputs were used to transmit an analog voltage to the machine controller, which indicated 

the desired location of the hydro handle according to the control model. The MAB was 

connected to the combine CAN bus to receive machine information needed for data logging 

and control model inputs. 
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Figure 4.5: System layout for the control model running on the dSPACE MicroAutoBox 

4.3.3. Grain Cart Velocity Input  

To provide the model input requirement of grain cart velocity (described in section 

5.2.2), tractor GPS velocity was wirelessly transmitted to the cab of the combine. 

To accomplish this, two custom ECUs were built and programmed to be wired 

directly to wireless radios. The two ECUs used the identical hardware, but each had unique 

code specific to the system needs in each vehicle. The tractor GPS velocity is transmitted on 

the Tractor Implement Bus using standardized CAN message identification as specified in 

the CAN standard J1939. Table 4.2 specifies the message definition. 

Table 4.2: CAN message used to receive tractor velocity 

PGN 
Source 

Address 
Message 

Rate Signal Name Start Bit Length Units 

65256 28 5 Hz Compass Bearing 0 16 degrees 

   
Nav. Based Vehicle Speed 16 16 kph 

   Pitch 32 16 degrees 

   Altitude 48 16 meters 

 

In order to transmit the tractor GPS wirelessly, the data was converted from CAN to 

serial data format. This conversion was done on a custom ECU which output serial data to a 

MaxStream XStream-PKG radio. The radio was used to both transmit data from the tractor 

cab and receive the data in the combine cab. Once the data was received in the combine cab, 
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it was converted back to CAN data format and placed on the combine bus. In order to avoid 

interference with messages transmitted from other ECUs on the combine bus, an open PGN 

(60416) and Source Address (126) were used to transmit the message with the same 

definition as it was received (Table 4.2) This process is summarized in Figure 4.6. 

 

Figure 4.6: Wireless transmission of tractor GPS speed to the combine 

4.3.4. Grain Cart Tracking 

To track the location of both the front and back edges of the grain cart, a stereo camera 

based tracking system from the National Robotics Engineering Center (NREC) at Carnegie 

Mellon University was used. The tracking camera was mounted on the side of the combine 

near the grain tank (Figure 4.7).  

 

 

Figure 4.7: Tracking camera mounted on the side of the combine. 

The tracking camera provided image data to a laptop dedicated to processing the images. 

The images were processed and the x, y, and z coordinates of the front and back edge were 

output via serial data. Using the standard machinery coordinate definitions, x was parallel to 
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the path of travel, y was perpendicular to the path of travel, and z was vertical.  The distance 

provided was the distance relative to the lens of the camera in units of cm.   

In order to track the cart, targets were attached to the side of the cart. Three targets were 

used each with a unique design to indicate the front, middle, and back of the cart (Figure 

4.8).  

 

 

Figure 4.8: Grain cart with three targets installed for tracking 

 

4.4. Results  

The testing of the combine speed control system was completed outside of the grain 

harvest season, and all data presented in the two following sections was collected on a dirt 

test track. 

4.4.1. Adjusting Combine Speed 

In the test shown in Figure 4.9, a specific simulated hydro handle position was 

commanded from a Simulink model input. The result was a step input command received by 

the machine controller. It is important to understand that the ‘desired speed’ plotted was not a 

variable input into the control model, but rather a reference line that was added after the data 

collected. The ‘desired speed’ steps correlate to when the steps in the hydro handle were 

input, and the magnitude was dependent on the final steady state of the GPS speed. As 

shown, the speed adjustment method worked very well with quick and consistent response, 
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with minimal overshoot from the machine upon simulating an altered hydro handle position.  

Several tests similar to that shown in Figure 4.9 were conducted to ensure consistent and safe 

operation of the speed control.    

 

Figure 4.9: Plot of combine GPS and the step hydro handle command 

 

4.4.2. Cart Position and Speed Input 

The cart speed and relative position were successfully input into the control model. With 

the input signals of combine GPS speed, tractor (grain cart) GPS speed, and relative position, 

the accuracy of the cart tracking could be confirmed. It was assumed that both the combine 

GPS speed, and tractor GPS speed were accurate and that the paths of travel were parallel. 

The distance to the edge of the cart could be calculated using Equation 4.1 by summing the 

relative velocity and multiplying by the fixed time step of the model (in this case 0.2 

seconds) as shown in Equation 4.1. 

Equation 4.1: Distance to a cart edge 

              ∑(                 )    
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The initial distance to a cart edge,   , was the distance input to the model when the cart 

was first detected at t = 0 s. Variables           and          are the velocities of the tractor 

and combine used to calculate relative velocity. The output is the theoretical distance to a cart 

edge. 

An example is shown in Figure 4.10. The distance plotted is the distance to the front edge 

of the cart. In this test, the cart was initially out of view of the tracking camera, and then 

approaches from the rear. While the cart is out of view, no tracking information can be 

provided. Once the cart enters the cameras field of view, a distance to the front edge is 

provided (t = 20.6) and the first data value provided is set as    in the edge calculation. In 

Figure 4.10 both positive and negative relative velocities are experienced throughout relative 

position range of approximately 10m. In all cases the real-time tracking data and the 

theoretical data provide nearly identical front x coordinate values which indicate a robust and 

accurate cart tracking system.  

 

Figure 4.10: Plot indicating the accuracy of the NREC cart tracking  
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4.5. Conclusion 

The objectives of this chapter were successfully met.  The Simulink software platform 

proved to be adequate for model development and was easily compatible with the hardware 

platforms presented. In order to meet model input requirements of relative velocity and 

relative position, systems were either developed or integrated with to provide these inputs in 

a reliable manner. Through the test shown in Figure 4.10, these inputs were proven to be 

accurate. Through these components, speed control was successfully achieved. The systems 

proved to be a safe and reliable means of commanding the combine speed.  
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Chapter 5. Preliminary Control System Design 

5.1. Introduction 

The work of this chapter is primarily focused on the completion of objective 2. The 

feasibility of a combine relative position control system was investigated through a series of 

control systems using different inputs. The objective of these tests was to establish baseline 

relative positioning performance. The performance was evaluated based on the accuracy and 

responsiveness of the control system as well as machine response characteristics of engine 

loading and acceleration.  With the knowledge gained from the different model inputs, 

several model features were developed and tested to improve performance and demonstrate 

the best possible control strategy architecture. 

To successfully complete the goals of this chapter, data would need to be collected to 

demonstrate the control system’s ability to meet the three performance metrics:  

 Control relative position within ± 40 cm of desired location 

          <10% 

 Rise time for a 3m shift in 14 seconds or less 

5.2. Methods and Materials 

5.2.1. Desired Ground Speed Input 

Prior to the development of any position control, an assessment of the speed control and 

machine response times were made. This system used the hardware set described in section 

4.3.1. The control model allowed the user to command a desired speed through an input of 

the Simulink model. The control model then used proportional control to command the 

simulated hydro handle position, which was output to the machine controller as an analog 

voltage, thus commanding a speed change.  
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Figure 5.1: Model layout with desired speed as control input 

 

5.2.2. Tractor Velocity Input  

The hardware and system layout described in section 4.3.3 was used to input the 

tractor velocity into the control model. Calculating the relative position was achieved by 

summing the differential velocity of the combine to the tractor during fixed time steps. Upon 

system engagement, the model assumed a position error of 0. From that time forward, any 

relative velocity was used to calculate a total relative position error, as shown in Equation 5.1 

 

Equation 5.1: Position error calculated from relative velocity 

              ∑(                 )  

  

   

 

 

 The control model used the input scheduling function which is described later in 

section 5.2.5. The controller using an error input of relative position used proportional 

derivative (PD) control to calculate control signal. Derivative control signal was added to 

avoid overshoot of the desired relative position. The controller using an error input of relative 

velocity used P control to calculate control signal. For relative velocity, P control only is 

sufficient because the control mode directly adjusts velocity.  
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Figure 5.2: Model layout with relative velocity as a control input 

 

5.2.3. Acceleration Limiting Model Feature 

In order to limit the control signal required to achieve relative position shifts, a model 

development was made to limit the acceleration of the combine. The control signal is defined 

as the engine power, and the engine power consists of two components, a steady-state 

component, and a differential component: 

 

Equation 5.2:  

                                   

 

The steady-state engine power,               , is the engine power required to maintain a 

constant speed immediately after achieving a desired speed.                is calculated by 

taking the average of the ‘Engine Percent Load at Current Speed’ CAN signal once the 

system reached steady state and up until the next step was commanded. The differential 

engine power,         , is the amount of additional power beyond                required to 

achieve the desired speed.  
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In order to achieve the               metric, the magnitude of force, or acceleration, 

needed to achieve a desired step in ground speed, would need to be limited. The control 

model did not have the ability to directly control the rate at which the speed changes. Rather, 

the control model was designed to limit the rate at which the hydro handle location was 

moved forward or backward. This was implemented using a rate limiter from Simulink’s 

block library which was added to the output of the model to provide maximum and minimum 

rates at which the position of the hydro handle could change. 

5.2.4. Saturation Model Feature 

In normal field operations, the combine operates within a tight range of speed to optimize 

machinery efficiency while preventing engine and separator overloading. To replicate this 

sort of machine control, a control model development was made which allowed the combine 

operator to input a minimum and maximum desired ground speed. With the ability to only 

control the position of the hydro handle rather than speed directly it was determined that 

precise speed control was not feasible for this project. Instead, the position of the hydro 

handle was held constant once either a minimum or maximum speed state was reached. Once 

inside the minimum or maximum speed limit state, the state was not exited until the control 

signal was exerted in the opposite direction. Control signal commands were used as exit 

conditions rather than speed because the combine ground speed will fluctuate due to terrain 

or harvest conditions even while the hydro handle position remains constant. The result was a 

system that was not expected to precisely control the maximum and minimum ground speed 

of the combine, but rather an allowable range in which the control model was allowed to 

adjust the position of the hydro handle. This model development was defined as the 

saturation model feature. The Stateflow diagram in Figure 5.3 shows the discrete operation 

states of the saturation model feature.  



32 

 

 

 

Figure 5.3: Saturation model feature Stateflow diagram 

 

5.2.5. Input Scheduling Model Feature 

In typical unloading-on-the-go field operations, the relative velocity of the combine to 

the grain cart is quite small (less than 1 mph). However, this relative velocity is constantly 

changing due to varying terrain, field conditions, and manually operated machine speed 

control. When the relative position error is large, the singular input of cart relative position 

error is a reliable means of control because the changes in relative velocity have a negligible 

impact on the control effort. As the error becomes small, controlling based on relative 

position becomes less effective due to lack of responsiveness to small changes in relative 

velocity. The lack of responsiveness is due to the fact that relative position control is based 

on errors already present. On the contrary, relative velocity as an error input offers the 

advantage of allowing the control system to predict a position error. For example, if the 

relative position error is 0, and the relative velocity is 0.5 mph, a relative position control 

system would exert no control signal, whereas the relative velocity control would 

immediately begin slowing the machine velocity because of the known error a relative 

velocity not equal to zero will induce.  In order to optimize the control system to best use 

these inputs, a model development was completed where multiple inputs to the control model 

could be used to maximize the benefit of the each inputs response characteristics.  
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The implementation of the input scheduling used two discrete states, one controlling 

based on relative position, the other based on relative velocity. The transition between these 

two discrete states occurred at a position error of 40 cm, the desired relative position 

accuracy. A high-level Stateflow diagram of the gain scheduling is shown in Figure 5.4 

 

Figure 5.4: Input Scheduling Stateflow diagram 

Two separate Embedded MATLAB functions were used in the Simulink model to 

determine the control signal required during each of these states as shown in Figure 5.5. 

These two functions used PID control and contained the identical internal code. The 

“Engaged” input was connected to a system enable switch. Upon engagement the block 

would output the necessary control to minimize input error, upon disengagement; the block 

output was held at zero. The remaining four inputs were for the PID function (P, I, and D 

gains as well as Error). 
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Figure 5.5: Embedded MATLAB Functions used for PID control 

 

5.2.6. Gain Scheduling Model Feature 

At small position errors, it was observed that the variance in relative position often 

resulted in highly variable D control signal. In the plot shown in Figure 5.6, the system was 

operating with small relative position error (<40cm) over a 30 second time period. During 

that time span the P control signal is shown to be relatively constant (proportional to error), 

while the D control signal is highly variable. When P and D are summed for PD control, the 

result is a control signal that is highly variable even while the relative position changes only 

by small amounts. The majority of this variability is a result of the D control signal. In order 

to smooth the control signal, a model development was made to schedule the gains at small 

relative position errors. The goal with this model development was to reduce or completely 

eliminate the variability attributed to the differential control signal. 
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Figure 5.6: Plot of P and D control signal with small relative position error (<40cm) 

 

5.3. Results 

5.3.1. Desired Ground Speed Input 

The development and testing of the desired ground speed input was completed outside of 

the grain harvest season, and all data presented in this section was collected on a dirt test 

track. A typical result for the combine desired speed input model is shown in Figure 5.7. The 

controller was tuned to optimize the system for typical response characteristics, specifically a 

quick response time, and small overshoot were desired.  
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Figure 5.7: Step response to commanded speed changes 

 

Table 5.1:  Step Response characteristics of plot shown in Figure 5.7 

Step 
range 
(kph) 

Start time 
(s) 

Rise time 
 (0%-100%)  Overshoot (%)          ( ) 

Maximum 
Acceleration 

(kph/s) 

1-9 4.24 2.23  1.4 28 5.3 

9-14.9 13.07 2.02 2.4 52 4.7 

 

No specific metrics were set for this exploratory stage of the project. Both rise time, and 

overshoot (values given in Table 5.1) were better than expected and considered more than 

adequate for the desired control. Although the response was very good, the change in engine 

load due to the speed change (        ) was very high. This test documented the most rapid 

machine response possible. 
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Tests were also completed with the desired speed input to quantify the delay time of the 

machine response. The delay time of the machine was defined as the difference between a 

step input of the position of the hydro handle, and when the speed of the machine began to 

increase (Figure 5.8). This delay time was important to understand because it was an 

unavoidable physical constraint that attributed to delay in the response time of the control 

system.  

 

Figure 5.8: Typical speed command step response 

A series of tests were performed at wide range of initial ground speeds (0.4-15 kph) and 
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Table 5.2: Machine delay in speed response 

Initial Speed 
(kph) 

Delay 
Time (s) 

Positive 
Step 

Negative 
Step 

0.4 0.54 X  

1.0 0.54 X  

1.0 0.63 X  

2.5 0.50 X  

5.4 0.53  X 

5.9 0.48 X  

5.9 0.35  X 

8.7 0.61 X  

8.7 0.51  X 

9.0 0.60  X 

10.0 0.45  X 

15.0 0.52  X 

 

 From the results listed in Table 5.2, the delay time average and standard deviation for 

the positive step, negative step, and combine total were calculated (Table 5.3). With the GPS 

speed CAN message updating at a rate of only 5 Hz, much of the variation can be attributed 

to signal delay. Although it was important to recognize this physical constraint of the system, 

it was determined that an average delay in response of 0.52 s would not significantly hinder 

development or impact final performance. 

Table 5.3: Machine delay in speed response 

Speed Change 
Direction 

 Average Delay 
Time (s) 

Standard Deviation (s) 

Positive 0.55 0.05 

Negative 0.49 0.08 

Combined  0.52 0.07 

 

5.3.2. Acceleration Limiting Model Feature 

The development and testing of the acceleration limiting model feature was completed 

outside of the grain harvest season, and all data presented in this section was collected on a 

dirt test track. A typical result for the acceleration limiting model is shown in Figure 5.9.  

The response characteristics for the step responses shown are given in Table 5.4.  
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Figure 5.9: Step response characteristics with acceleration limiting control model 

 

Table 5.4:  Step Response characteristics of plot shown in Figure 5.9 

Step 
range 
(kph) 

Start time 
(s) 

Rise time 
 (0%-100%)  Overshoot (%)          ( ) 

Maximum 
Acceleration 

(kph/s) 

3-6 23.01 5.47 2.3 2 1.0 

6-9 32.26 6.82 - 3.1 .95 

9-3 42.56 8.41 2.8 - -.96 

3-9 57.68 11.7 - 3.9 1.1 

 

The response times were much slower than the control model without acceleration 

limiting, with the maximum acceleration values approximately five times lower. The 

acceleration limiting did succeed in dramatically reducing the         . The difference in 

response is clear to see in Figure 5.10, which gives a comparison between the two systems 

responding to a step input of a desired speed of 9 kph. The resulting data from acceleration 
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limiting model feature provided the information needed to satisfy the requirements of the 

             metric.  

 

Figure 5.10: Comparison of model response with and without acceleration limiter 

In addition, the acceleration limiting function served to increase operator comfort 

with the system by decreasing the amount of detectable acceleration. A study done by the 

University Hospital Maastricht of the Netherlands found the acceleration detection threshold 

for anterior-posterior (fore-aft) movement to be 9.7 cm/s
2
 (0.35 kph/s) (Kingma 2005). 

Although this threshold is still lower than the maximum acceleration values observed with 

the acceleration limiting function enabled (approximately 1 kph/s), they are much closer to 

the threshold than the maximum acceleration values observed with the acceleration model 

feature disabled (approximately 5 kph/s). In addition, it is believed that a machine operator’s 

acceleration detection threshold would be higher than that found in the study due to machine 

vibrations and travel over uneven terrain.  
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5.3.3. Relative Velocity Input and Input Scheduling Model Feature 

The development and testing of the relative velocity input and input scheduling model 

feature was completed outside of the grain harvest season, and all data presented in this 

section was collected on a dirt test track. A typical result for this control system is shown in 

Figure 5.11. In this test case the system was enabled at t = 110 s, which set the relative 

position error to 0 m. In order to induce relative position error into the system, the lead 

vehicle rapidly increased speed by a fixed speed step. The tractor used (John Deere 8230R) 

featured an infinitely variable transmission (IVT) which allowed the tractor operator to easily 

command changes in a desired speed set point. In the test, the tractor began at 1 mph and 

steps were in 1 mph increments up to 5 mph. For unit consistency, all speeds (mph) were 

converted to metric units (kph) in the plot shown in Figure 5.11. 

 

Figure 5.11: Response for control model using relative velocity 
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Response characteristics are given in Table 5.5. The rise time is the span of time from the 

start time of the speed step until the error returns to zero. In these tests the          metric 

was satisfied as well as desired response times.  

Table 5.5:  Step Response characteristics of plot shown in Figure 5.11 

Step 
range 
(kph) 

Start 
time(s) 

Rise time 
 (0%-100%)(s)           ( ) 

Maximum 
Acceleration 

(kph/s) 

1-2 121.2 9.83 2 0.64 

2-3 145.21 10.14 1.75 1.02 

3-4 164.71 10.46 3.25 1.01 

4-5 181.81 10.58 6 0.68 

 

The input scheduling was successful in generating a control system that had desirable 

response characteristics at both large and small magnitude relative position errors. Upon 

examination of the data it was clear to see the positive impact of the input scheduling, as 

shown in Figure 5.12. In the plot a relative position step input of +3m is given near t = 180 s. 

From t = 180-190 s, the input scheduling uses the position based control and the control 

signal begins as a large positive and decrease as the machine approaches the desired position. 

At t = 190 s (position error = 40 cm) the inputs are switched, and control signal significantly 

decreases to minimize the relative velocity, and succeeds in matching the tractor velocity in 

approximately 2 seconds.  If the relative position control would have remained as the control 

input, significant overshoot would have occurred. The only way to avoid this overshoot 

would be to decrease the P gain, which would have increased response time.  Instead, with 

relative velocity as the control input once the position error was less than 40 cm, the relative 

velocity was rapidly decreased resulting in precise relative position control and an overshoot 

of only 17 cm. 
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Figure 5.12: Input scheduling enabled at a relative position error of 40 cm. 

One detail not shown in data is the error that accumulated between the calculated 

relative position and the actual relative position. Relative position error would accumulate in 

this system because of small differences in the GPS speed of the tractor and the combine.  

Any difference between the two GPS systems was an error in relative velocity, which was 

summed to produce the relative position. After the control model would run for a several 

minutes a visible error in the relative position was accumulated.   Although it was very 

difficult to measure the exact size of this error, Figure 5.13 provides a plot in which the 

tractor and combine were parked side by side, where the true vehicle speed is 0 kph. 

Although the errors in speed are small, in 11 seconds the calculated position error was 35 cm, 

while neither vehicle had physically moved. 
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John Deere SF1 signal while the combine receiver used the higher quality John Deere SF2 

signal.  Both signals were received using John Deere Starfire iTC receivers. 

 

Figure 5.13: Calculated position error while both vehicles are stationary 

Valuable control model development was still completed using this input. However, 

the accumulated position error indicated the necessity of having a real-time cart tracking 

system as part of the final solution for relative cart positioning. 

5.3.4. Saturation Model Feature 

The development and testing of the saturation model feature was completed during 

the grain harvest season, and all data presented in this section was collected while harvesting 

crop in normal field conditions. The saturation model feature worked to prevent large speed 

changes and deviations from the desired speed, but it did not provide precise control of the 

minimum and maximum speeds due to the delay in drivetrain speed response discussed in 

5.3.1. In Figure 5.14 an example in which the speed limit is reached for both the maximum 
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the delayed response in the drivetrain, the speed continues to increase another 0.73 kph (0.45 

mph). Similarly, at t = 100.6 s, the minimum speed is reached and the position of the hydro 

handle is saturated (70% forward), but due to the delay in response of the drivetrain, the 

speed continues to decrease another 0.54 kph (0.34 mph).  

 

Figure 5.14: Saturation model feature for a range of 8.0±0.32 kph (5.0±0.2 mph)  

 The overshoot of the speed limits was an issue in every test case where the maximum 

or minimum speed was reached, but the size of the overshoot was largely dependent on the 

magnitude of the acceleration when the speed limit point was reached. Although this model 

feature was not extremely precise, it was successful for protecting the machine from 

excessive speed change commands during the operation of the active speed control system.  

5.3.5. Gain Scheduling Model Feature 

The development and testing of the gain scheduling model feature was completed 

during the grain harvest season, and all data presented in this section was collected while 

harvesting crop in normal field conditions. The gain scheduling model feature was setup to 

use PD control for relative position errors greater than a magnitude of 50 cm. For errors of 

magnitude smaller than 50 cm, D control was eliminated completely in order to provide the 

more stable control characteristics of P control. The gains used for P and D were based on the 
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gain value analysis completed in section 6.3.1. Based on this analysis, the recommended P 

gain value of 30 and D gain value of 300 were used.  A typical result for the model 

development using the gain scheduling is shown in Figure 5.15. In order to monitor the 

effects of the gain scheduling feature, the input data was replayed back into the control model 

using the control model without gain scheduling. The difference between the control signal 

of these two models was plotted as “Control Signal Difference” in Figure 5.15 and was equal 

to the control signal of the model with gain scheduling minus the model without gain 

scheduling. Upon the step input of a 3 m change in desired location, the response of the two 

models is identical up until t = 128 s. At t = 128 s, the relative position error reaches the gain 

scheduling transition of 50 cm, which results in different control signal.  The control signal 

of the system using gain scheduling was a small negative due to the negative relative 

position, but the system without gain scheduling had a positive control power due to the large 

D control signal attributed to matching the relative velocities.  

 

Figure 5.15: Plot of difference between control signal of models with and without gain 

scheduling 
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The gain scheduling control model functioned correctly, but the response it produced 

was less desirable than the control model without gain scheduling. The gain scheduling 

resulted in a response that would consistently overshoot the desired location. This overshoot 

was due to the P control exerting control power in the direction of the error, even when the 

error was small and the relative velocity large. At t = 128 s in Figure 5.15 the effects of the 

gain scheduling are evident, where the relative velocity is being minimized prior to t = 128 s, 

but at t = 128 s the control power is exerted to increase the relative velocity due to the gain 

scheduling. It is not until t = 132 s that the P control power begins decreasing the relative 

velocity due to a negative position error. The delayed control action to minimize the relative 

velocity resulted in an overshoot of the desired location by 38 cm. Although the exact 

response of the other control model cannot be known, it is predicted to have a smaller 

overshoot due to the difference in control power shown after t = 128 s.  

The difference between the control models with and without gain scheduling was 

evident in the results from the field testing completed. In Figure 5.16 an interval plot is 

shown for control with (1) and without (0) gain scheduling, plotted versus the maximum 

overshoot. In some tests of the control model without gain scheduling the desired location 

was never reached due to the D-gain for the control model without gain scheduling. In these 

cases, this undershoot was recorded as a negative overshoot.   
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Figure 5.16: Interval plot of Gain Scheduling vs. Maximum Overshoot 

 The gain scheduling had a statistically significant impact on the maximum overshoot, 

with a P-value of 0.000. The average and standard deviation overshoot (µ,σ) of the control 

model running without gain scheduling (0) was -0.57% , 4.07% whereas the overshoot of the 

control model running with gain scheduling (1) was 14.95% , 3.45%.  Although the gain 

scheduling did succeed in eliminating the derivative gain at small relative position errors, the 

end result was a control system with significantly reduced control accuracy.  

In order to improve the gain scheduling feature, further development would be 

recommended to make the gain schedule a composite of the two gain types as opposed to the 

discrete approach that was taken. In this composite gain schedule, instead of completely 

eliminating the derivative gain at a position error of 50 cm, the percentage of the derivative 

gain used in the control signal would be decreased at a linear rate as the position error 

continued to decrease.  It is assumed that this composite gain schedule would decrease the 

impact of the highly variable derivative gain at small position errors, while still avoiding 

overshoot.   
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5.4. Conclusions 

From the various inputs and model features presented in this chapter, several conclusions 

can be drawn and a recommendation made for the ideal control strategy architecture to be 

used as the final combine active speed control model, and which successfully completes the 

requirements of objective 2 presented in Chapter 3. 

The ground speed input provided the information necessary to gain a basic understanding 

of machine response characteristics. The data provided the information necessary to 

understand the physical delays of the system as well as the impact of rapid speed changes on 

engine load. The acceleration limiting model feature was designed to limit the          due 

to speed changes and the model feature successfully accomplished that goal. The acceleration 

limiting model feature did significantly reduce response time, but it was believed that the 

response metric set in the introduction of this chapter was still feasible. 

The relative velocity model input provided the information necessary to provide inputs 

that allowed the control model to accurately achieve a relative position. Due to the addition 

of this model input, the control model was able to quickly respond to changes in speed of 

either vehicle which greatly improved the system performance when operating with small 

relative position errors. In addition, the relative velocity input allowed the input scheduling 

model feature to be created which eliminated overshoot due to relative position based control 

and gave a model response that met the accuracy metric of ±40cm.  

The saturation model feature worked as designed and did successfully prevent large 

changes in the ground speed of the combine. Although, there was variation in peak ground 

speed, the model feature was adequate for the requirements of this project. 

The gain scheduling model feature worked as designed, but the performance was not at 

an acceptable level for continued use in the final control system, as the overshoot often 

exceeded the accuracy metric of ±40 cm. Although the purpose of the gain scheduling is still 

valid, the model feature would need to have the improvements mentioned in section 5.3.5 

prior to implementation. 

The models and data collected in this preliminary design provided the knowledge needed 

to determine the feasibility of the project and what performance levels could be expected in 

the final design. The results of these tests met the objectives listed in the beginning of the 
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chapter and provided sufficient data to design a robust final control system. Following the 

completion of the Chapter 5 goals, it was determined that the final control system should use 

both relative position and velocity as model inputs, the acceleration limiting, input 

scheduling, and saturation model features. 
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Chapter 6. Final Control System Design and Testing 

6.1. Introduction 

The final control system design was done on the MicroAutoBox, as described in section 

4.3.2. This system was used because of the ability to integrate with the NREC cart tracking 

system. The final control system was designed using the three metrics listed below.  In order 

to avoid the input scheduling model development impacting data quality (input scheduling 

occurred at ± 40 cm), response time was defined as the rise time only when the relative 

position error was an input, known to be from 0.4 m-2.6 m for the 3 m step size. Therefore 

the response time was defined as rise time (13.3%-86.7%), which accounted for 73.4% of 

response and in Figure 6.1. In order to account for this change, the required time to achieve 

this percent of the shift was adjusted from 14 to 10 seconds. 

 Control relative position within ± 40 cm of desired location 

          <10% 

 Rise time (13.3%-86.7%) for a 3m shift in 10 seconds or less 

 

The focus of this chapter was to complete the third and final research objective, which 

required the system performance to be validated in normal field conditions. The model was 

developed using the knowledge gained from the preliminary control design and results.  
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Following tuning of the control system gains both in and out of crop situations; the system 

performance was then evaluated in crop.  In order to analyze the system performance, the 

following treatment factors were used:  

 Desired Speed and Engine Loading 

 Ranges of the Saturation Model Feature 

 Direction of Relative Position Commands 

6.2. Methods and Materials 

6.2.1. Final Control System Design 

The final control system development was heavily based on the knowledge gained from 

the data of testing the preliminary control system. The control model ran on the MAB (4.3.2) 

and used the NREC cart tracking system (4.3.4) and the tractor and combine GPS velocity 

were used to calculate the relative velocity input (4.3.3). The model used the acceleration rate 

limiter (5.2.3) to achieve the           <10% metric. The model also used the input 

scheduling model feature to optimize response (5.2.5).  A system layout is provided in Figure 

6.1. 

 

Figure 6.1: Final Control Model Layout 

 

6.2.2. Desired Speed and Engine Loading 

The amount of load placed on the engine was believed to impact the ability of the 

machine to accelerate and change speeds because of limited power availability.  The load 
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placed on the engine is not a parameter that is easily or accurately controlled due to 

continuously changing crop and terrain conditions while harvesting. In order to test this 

parameter, relative position step inputs were given at three discrete speeds 3.0, 4.0 and 5.0 

mph. For unit consistency, these speeds were converted to metric units (4.8 kph, 6.4 kph, and 

8.0 kph). 3 meter step inputs were used for all repetitions and the saturation range limit was 

set to 1.6 kph (1 mph). The following hypothesis was tested: 

 As the average engine load increases the rise time will also increase. 

6.2.3. Saturation Model Feature 

The saturation model feature was applied in all field tests to avoid overloading the 

engine and crop separator. The saturation was enabled at three discrete levels above and 

below the desired speed: ±0.32 kph, ±0.8 kph, and ±1.6 kph (0.2 mph, 0.5 mph, and 1.0 

mph). Although the control model could not directly limit the combine ground speed, by 

holding the hydro handle position constant once the limit was reached, the following three 

hypotheses were tested:  

  As the range of the saturation model feature increases, the          observed 

during a step input will also increase. 

 As the range of saturation model feature increases, steady state error will also 

increase. 

 As the range of the saturation model feature increases, the rise time will 

decrease. 

6.2.4. Direction of Relative Position Command 

 The direction in which the relative position commands were given was alternated 

between forward and reverse commands with an equal magnitude of 3.0 m. This was done 

with the intent of gaining knowledge on the impacts of accelerating and decelerating the 

machine while harvesting crop. Although the control model was developed and tuned to limit 

the impact of the model commands on the engine load, it was expected that the effects of 

relative positioning would still be evident in both the engine load data as well as rise time.  

For the engine load data it was known that accelerations (positive relative position 

commands) would produce a positive          and decelerations (negative relative position 
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commands) would produce a negative          so no hypothesis was set to be tested; rather, 

a simple statistical analysis of the data to indicate the magnitude and variations of           

during the step inputs would be completed. In all of these tests the control range limit was 

held constant at ±1.6 kph (1.0 mph). The following hypothesis was formed to test the rise 

time: 

 The relative position shifts given in the forward direction will have a slower 

rise time than those given in the reverse direction.  

6.3. Results 

6.3.1. Control Gains 

When tuning the gains of the controller, a wide range of values were tested. Many of 

these gain values resulted in either an extremely under or over damped system response. In 

these cases, the NREC cart tracking would not function because the targets would exit the 

camera’s field of view, and the test would be aborted.  In between these extremes, a range for 

both the proportional and derivative gains was identified that would result in a control system 

that could maintain a relative position of the combine that allowed the NREC cart tracking 

system to function.  

The following two sections are the data that was collected while inside the functional 

ranges. All tests were conducted using a relative position shift step input of +3m. Only 

forward relative positions shifts were tested because this was identified to be the more 

difficult test condition due to the required machine acceleration. The data presented is 

intended to be a justification for the proportional and derivative gains used in the control 

model.  

6.3.1.1. Proportional Gain Tuning 

For the tests to determine the optimum proportional gain, the derivative gain was held 

constant at a value determined to be in the center of the operational range (300). The first set 

of tests was done without harvesting crop. An operational range for the P gain was set to 10-

40, and four data sets were collected at P values of 10, 20, 30, and 40.  The results are shown 

in Figure 6.2 and Table 6.1. 
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Figure 6.2: Varied P Gain with constant D Gain (300)  

Table 6.1:  Step Response characteristics of plot shown in Figure 6.2 

P 
Rise time 

 (0%-100%) (s) 

Maximum 
Overshoot (%) 

10 35.6 - 

20 20.6  6.8 

30 8.3 6.7 

40 5.7 19.8 

 

The data collected at a low engine load indicated that both over damped and under 

damped system responses were achieved. However, the response with the lowest P gain was 

extremely slow, so the operational range was adjusted to a range of 15-60 for the tests 

completed while harvesting crop in order to achieve a broader range of response 

characteristics. Four data sets were collected at P values of 15, 30, 45, and 60.  During these 

tests the derivative gain was held constant at a value of 300. The results are shown in Figure 

6.3 and Table 6.2. 
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Figure 6.3: Varied P Gain with constant D Gain (300) while harvesting crop 

Table 6.2: Step Response characteristics of plot shown in Figure 6.3 

P 
Rise time 

 (0%-100%) (s) 
Maximum 

Overshoot (%) 

15 - - 

30 11.0 6.3 

45 7.3 41.5 

60 6.6 40.3 

 

The results for both the tests done in crop and out of crop were consistent with a 

proportional gain value of 30 providing the most desirable response characteristics by 

providing a relatively quick response and small overshoot. The machine responded 

noticeably slower while harvesting crop and under a much higher engine load. This delayed 

response not only increased the rise time, but also the overshoot due to lag in machine 

response. In order to prevent engine overloading and slugging the machine with crop, the 

acceleration limiting model function was engaged for all tests completed while harvesting. 
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The impact of this function can be seen in the nearly identical rise characteristics for the tests 

completed with the P gain set to 45 and 60.   

6.3.1.2. Derivative Gain Tuning 

For the tests to determine the optimum derivative gain, the proportional gain was held 

constant at a value determined to be in the center of the operational range (30). The first set 

of tests was done without harvesting crop. An operational range for the D gain was set to 

150-600, and four data sets were prepared to be collected at D values of 150, 300, 450, and 

600. No data was collected for the D gain of 600 because the response was very over damped 

and the test was aborted.  The results for D gains of 150, 300, and 450 are shown in Figure 

6.4 and Table 6.3. 

 

Figure 6.4: Varied D gain with constant P Gain (30) 

 

-100

0

100

200

300

400

500

0 5 10 15 20 25 30 35

R
e

la
ti

ve
 P

o
si

ti
o

n
 (

cm
) 

Time (s) 

D 150 D 300 D 450



58 

 

 

Table 6.3: Step response characteristics of the plot shown in Figure 6.3 

D 
Rise time 

 (0%-100%) (s) 

Maximum 
Overshoot (%) 

150 7.6 20.6 

300 8.3 6.7 

450 15.8 - 

 

The data collected at a low engine load indicated that both over damped and under 

damped system responses were achieved. A second set of derivative gain tests was conducted 

while harvesting crop with gain values identical to the out of crop test (150, 300, 450).  

During these tests the proportional gain was held constant at a value of 30. The results are 

shown in Figure 6.5 and Table 6.4. 

 

Figure 6.5: Varied D gain with constant P Gain (30) while harvesting crop 
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Table 6.4: Step response characteristics of the plot shown in Figure 6.5 

D 
Rise time 

 (0%-100%) (s) 
Maximum 

Overshoot (%) 

150 9.0 50.7 

300 11.0 6.3 

450 -  - 

 

The results for both the tests done in crop and out of crop were consistent with a 

derivative gain value of 300 providing the most desirable response characteristics by 

providing a relative quick response and small overshoot. The response for the derivative gain 

of 150, responded quickly, but resulted in an overshoot of 50.7%, which was much greater 

than the accuracy metric of 40 cm (13.33% overshoot for a 3.0 m step). The machine 

responded slower while harvesting crop and under a much higher engine load. This delayed 

response not only increased the rise time, but also the overshoot in the under damped case 

with the D gain set at 150. These tests provided the data necessary to confirm gain values that 

would be appropriate for field operation. Following this gain analysis, all field tests were 

conducted with a P gain of 30 and a D gain of 300. 

6.3.2. Control System Response Analysis 

6.3.2.1. Desired Speed and Engine Loading 

Hypothesis: As the average engine load increases the rise time will also increase. 

The first step in analyzing the impact of engine loading on response time was to 

evaluate the impact the harvest speed (control input) had on engine load. The harvest speed 

had a statistically significant impact on the average engine load with a P-value of 0.000, as 

indicated by the 95% confidence interval plot in Figure 6.6. 
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Figure 6.6: Interval plot for the steady state engine load at three harvest speeds 

The varying harvest speeds were able to provide a wide range of typical harvesting 

engine loads (65%-85%) sufficient to conduct the analysis of engine load impact on the rise 

time. Four step inputs of magnitude 3m were used at each harvest speed, two in the forward 

direction and two in the reverse direction. Because the engine load could not be controlled 

precisely an interval plot was created for ranges of steady state engine load. In Figure 6.7 

three engine loading ranges were used to organize the data (61%-70%, 71%-80%, and 81-

90%). The impact of the engine load on rise time was found to be statistically insignificant 

with a P-value of 0.421.  Although this was an unexpected outcome, it was a positive result 

for the active speed control model as it indicated repeatable and consistent performance 

across a wide range of typical engine loads.  
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Figure 6.7: Interval plot for the rise time observed at three ranges of steady state engine load. 

 

6.3.2.2. Saturation Model Feature 

Hypothesis: As the range of the saturation model feature increases, the          observed 

during a step input will also increase. 

Tests adjusting the range of the saturation model feature indicated that there was not a 

statistical impact on the          by the saturation ranges at a 95% confidence interval 

(Figure 6.8), as the hypothesis tested resulted in a P-value of 0.166. This can be partially 

explained by understanding that the magnitude of            was driven by the both 

magnitude of the acceleration and the change in velocity. Although the saturation model 

feature did have some control of the magnitude of the relative velocity, it did not have any 

control of the magnitude of the acceleration, thus limiting its ability to impact        .  A 

smaller confidence interval was observed as the saturation range increased, which was likely 

due to the inaccuracy of ground speed control of saturation model feature. As the size of the 

saturation range increases, the amount of impact and limiting it had on the control system 

decreases. In Figure 6.9 the response for two step inputs of -3 meters and two inputs for +3 
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meters highlight the difference between the largest (1.60 kph) and smallest (0.32 kph) 

saturation ranges. In left plot, the ground speed rarely reaches the outer bounds of the 

controllable range and the ground speed response is very consistent, as compared to the right 

plot where the minimum and maximum bounds are reached in every step response and there 

is greater variation in the ground speed during relative position shifts.  
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Figure 6.8: Interval plot for the          observed during step responses using three discrete 

saturation ranges.  

 

Figure 6.9: Impact of the saturation range. Range of ± 1.60 kph (left) and range of ±0.32 kph 

(right) 
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Hypothesis: As the range of saturation model feature increases, steady state error will also 

increase. 

The steady state error was calculated by averaging the first three seconds of position 

data once a relative velocity of 0.0±0.1 kph was reached. With the input scheduling function 

enabled, the steady state error would remain constant as long as the relative position was 

within ±40 cm of the desired location.  Control range limiting resulted in a weak statistically 

significant impact on steady state error by the control ranges with a P value of 0.062. A 95% 

confidence interval for the data is shown in Figure 6.10. The positive correlation of the data 

can be explained by recognizing the increased relative velocity associated with the larger 

control ranges. The positive linear correlation is not stronger due to inconsistency in the 

relative velocity with which the control model approached the desired location. This 

inconsistency is believed to be caused by small variations in ground speed of both the 

combine and the grain cart as they travel across the field as well as inconsistency in the 

maximum and minimum ground speed allowed by the saturation model feature.    
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Figure 6.10: Interval plot for the steady state error observed during step responses using three 

discrete control ranges. 
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Hypothesis: As the range of the saturation model feature increases, the rise time will 

decrease. 

Control range limiting tests indicated a statistically significant impact on rise time 

with a P-value 0.000. A 95% confidence interval for the data is shown in Figure 6.11, and 

indicated a negative correlation of the data. This response was expected because the control 

range limiting impacted the maximum relative velocity that could be achieved during a step 

response.  
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Figure 6.11: Interval plot for the rise time (13.3%-86.7%) observed during step responses using 

three discrete saturation ranges. 

 

6.3.2.3. Direction of Relative Position Command 

Hypothesis: The relative position shifts given in the forward direction will have a slower rise 

time than those given in the reverse direction.  

To examine the magnitude and consistency of the         across the relative position 

commands the average          and standard deviation (σ) was calculated.  The          , σ 
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was -7.185 , 1.023 for the relative position shifts of -3.00 m and 7.312 , 1.073 for the relative 

position shifts of 3.00 m indicating very consistent           and machine response across all 

the relative position commands given.  

Tests of the direction of the relative position command showed a statistically significant 

impact on the rise time to a step input with a P-value of 0.088. This result was the opposite of 

the expected outcome as it was assumed that a positive change in relative velocity would take 

longer to achieve than a negative change in relative velocity. This result could most likely be 

explained by a more in depth understanding of the hydrostatic transmission on the combine. 

The results indicate that the transmission tended to accelerate machine faster than decelerate. 

Yet, with the average difference in rise time less than one second (-3.00avg=7.35s, 

3.00avg=6.40s), overall the machine performed consistently. This data also indicated the 

robustness of the control model by maintaining consistent response characteristics across 

changing relative position commands and engine loading situations.  

3.00-3.00

8.0

7.5

7.0

6.5

6.0

5.5

Step (m)

R
is

e
 T

im
e

 1
3

.3
%

-8
6

.7
%

 (
s
)

95% CI for the Mean

 

Figure 6.12: Interval plot for the rise time (13.3%-86.7%) observed during response to step 

inputs of +3.0m and -3.0m. 
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6.3.2.4. Control System Accuracy  

The control system accuracy was evaluated by examining the relative position errors once 

a steady state was reached. In all the tests a relative position step input was given, the model 

would respond and reach steady state. Once steady state was reached, the test was allowed to 

continue for approximately 60 seconds while the combine continued to harvest crop and the 

grain cart traveled parallel at a near constant velocity. This data indicated the accuracy and 

ability of the control system to respond to normal field disturbances such as changing terrain 

and crop load. This procedure was conducted 12 times and resulted in a total of nearly 13 

minutes of steady state data where control model controlled the speed of the combine. The 

average relative position error and standard deviation for each test is shown in Figure 6.13. 

The average relative position error varied from -23.86 cm to 28.72 cm across the 12 tests. In 

all of the steady state data, any relative position errors >40 cm or <-40 cm were recorded 

because these data points were outside the accuracy metric. The total percentage of time in 

which the control model operated outside of the ±40 cm metric in these 12 tests was 4.36%. 

 

Figure 6.13: Plot of relative position error during steady state operation of relative position 

control model. 
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6.4. Conclusions 

The field data and analysis presented in this chapter provided the information 

necessary to satisfy the three required metrics outlined in the chapter introduction, as well 

as the thesis objectives stated in Chapter 3.   

The control system accuracy metric of ±40 cm was satisfied as shown by the data in 

6.3.2.4. The control system was able to achieve a common desired relative position shift 

of 3 m without overshooting or undershooting the desired location by more than 40cm. 

Once the control system reached steady state, it was very successful in keeping the 

relative position error less than 40 cm by only allowing a position error > 40 cm or <-40 

cm 4.36% of the time.  

The          <10% metric was satisfied in 17 out of the 18 test cases as shown by the 

data presented in 6.3.2.2, with the one exception exceeding the metric by only 2% 

         . Based on these results, it was determined that the acceleration limiting model 

function designed to limit differential engine load was a success. Keeping in mind that 

         <10% metric was set in order to guide model design and development, not as an 

inflexible model requirement, it was determined that meeting the metric nearly 95% of 

time was sufficient.  

The response time metric of achieving a relative position shift of 3 m in 10 seconds 

was achieved in two of the three tests cases as shown in 6.3.2.2. The ranges used for the 

saturation model function had a statistically significant impact on the rise time, and due 

to the metric definition it would be recommended to avoid using a saturation range of 

±0.32 kph due to the slow response.   

The three objectives outlined in Chapter 3 were all successfully completed. The 

success of objective 1 was clear in the preliminary testing as well as the final field 

testing. In all tests, the control method of altering the analog voltage to the machine 

control proved to a safe a reliable means of speed control. The control model 

development completed in Chapter 5 successfully generated a control model architecture 

that proved to be a successful control design for relative position control. The control 

model was designed to allow for model features to be added addressing specific control 

issues as they surfaced. The final result was a control system that had the necessary 
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features in place to meet all three of the design metrics, which successfully completed 

objective 2. Field tests were conducted in multiple field locations and on multiple days in 

order to observe system performance across a normal set of field conditions. In all of the 

tests cases, the system performed well, allowing for active combine speed control to 

successfully control the relative position to a grain cart within the specified design 

metrics, thus accomplishing objective 3. With all three project objectives successfully 

completed, the design and development work of this project was concluded. 

With the completion of the project, several additional steps were identified as 

possible future work. It is believed that the gain scheduling could still improve 

performance, but refinement of the feature is needed. A possible first step would be to 

reduce the gain of D at a linear rate as the position error decreases, as opposed to the 

current method which eliminates the D gain once reaching the gain scheduling threshold.   

Also, a similar development is recommended for the input scheduling model feature. In 

examining Figure 6.13 it clear to see that once a position error less than 40 cm is reached, 

the relative position error changes very little. In order to improve upon this even more, it 

is suggested that the input scheduling model feature also use a composite of both position 

and velocity error inputs to determine control signal, which would likely reduce the 

average error observed when relative position errors are ±40 cm of the desired location.  

Additional work is also needed to improve the saturation model feature. Although the 

model feature did accomplish the goal to avoid large speed changes, it lacked precise 

control of ground speed to match the user inputs of minimum and maximum speed. It is 

believed that this feature could be improved by using the ground speed and acceleration 

to predict when the combine will reach a minimum or maximum speed. This prediction 

would allow the feature to avoid the large ground speed overshoot observed using the 

current design.  

With the review of model performance and results upon the project completion, an 

ideal system operating configuration can be recommended. In this configuration, it would 

be recommended to use inputs of both relative position and velocity as both of these 

inputs were required in order to achieve optimum response. The acceleration limiting 

model feature should be implemented in the same form in which it was designed and 
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used in this project. The input scheduling and saturation model features, could be used in 

their current form, but the recommendations suggested earlier should be implemented to 

further improve performance. The gain scheduling model would need to have the 

suggested changes made before using this feature, as the model feature as designed had a 

significant negative impact of system performance.  

Overall, the project was a success. The active combine speed control system allowed 

for accurate relative positioning of a grain cart across typical field conditions, an 

innovative accomplishment not seen to date by any combine manufacturer.  
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