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NOMENCLATURE 
 

             Dilution rate or inverse residence time  

             Flow rate  

           The "half-velocity constant"—the value of S when   

             Product concentration  

             The concentration of the limiting substrate for growth 

            Initial concentration of the limiting substrate for growth 

             Cell concentration (dry weight basis) 

            Initial cell concentration (dry weight basis) 

             The working volume of reactor vessel 

         Yield coefficient (mass product formed/mass substrate consumed) 

          Yield coefficient (mass cell produced/mass substrate consumed) 

                Cultivation time 

               Growth associated product formation constant 

               Non-growth associated product formation constant 

                Specific growth rate of the microorganisms 

          Maximum specific growth rate of the microorganisms 
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ABSTRACT 

 

Acetic acid derived from fast pyrolysis of lignocelulosic biomass is a promising 

substrate for microalgae Chlamydomonas reinhardtii fermentation for producing lipid-rich 

biomass.  However, pyrolytic-acetate-containing substrate has an extremely complex 

composition and highly inhibitory to microorganism due to the various toxic contaminants. 

In this dissertation, this work is to improve the C. reinhardtii fermentation performance 

through various detoxification practice for enhancing the fermentability of the C. reinhardtii. 

The inhibitory mechanisms of toxic compounds to the algal culture were also studied. Finally, 

the algal fermentation on pyrolytic acetic acid was optimized though the development of 

various fermentation strategies.    

When growing in raw bio-oil without any detoxification treatment, the algae can only 

tolerate up to 0.1 wt% of pyrolytic acetic acid stream.  Alkaline treatment and oxidative 

treatment were applied to detoxification of pyrolytic acetic acid substrate. Addition of KOH, 

NaOH or Ca(OH)2 can significantly reduce the toxicity and improved algal  fermentability by 

20, 40 and 55 times, respectively.  Alkali species used, treatment pH and treatment 

temperature were found all influencing the effectiveness of the alkali treatment.   

When oxidative treatment was further applied to NaOH-treated pyrolytic acetic acid 

substrate, the maximum cell density and biomass productivity was improved under each level 

inclusion of treated pyrolytic substrate although the cell still cannot tolerate the higher 

inclusion of the pyrolytic substrate. It was also found that directed evolution of algal strain 

increased the tolerance of algae strain; the maximum tolerance level of pyrolytic substrate by 
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the evolved strain increased to 5.5wt% as comparted to the maximum tolerant level of 4% by 

the wild type strain.   

Studies also show that the contaminant compounds in crude acetic acid substrate such 

as furans, phenols, ketones, aldehydes, ethers, esters, alcohols were contributing the 

inhibition of pyrolytic acetic acid stream. Such an inhibitory was mainly due to the cell 

membrane damage. Reemoval of these compounds by by various detoxification methods 

developed above was mainly t through oxidation and precipitation The result also shows that 

the disruption of cell membrane integrity is correlated with algal growth inhibition caused by 

the pyrolytic acetic acid, and the enhanced growth performance of algal strain after directed 

evolution and surfactant protection may due to the enhanced ability to keep the cell 

membrane integrity.  

Different fermentation strategies were used for heterotrophic microalgal fermentation 

using pyrolytic acetic acid as substrate.  Perfusion culture with partially bleeding of algal 

cells from the reactor resulted in a 2.05 g/day/L of biomass productivity, 10 times higher than 

that in the batch culture process. In summary, this work demonstrated that pyrolytic acetic 

acid is a feasible substrate for producing lipid-rich biomass though the fermentation of 

microalga C. reinhardtii. 
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CHAPTER 1 GENERAL INTRODUCTION 

1.1 Thermochemical-biological conversion of lignocellulosic biomass for fuels and chemicals  

1.1.1 Hybrid processing 

Worldwide increasing demand of petroleum is in the risk of volatile prices, depletion of 

high quality of oil resources, environmental concerns and energy security (Anwar et al., 2014; 

Balan., 2014; Bardhan et al., 2015). Arising effort from government agencies, industry and 

research institute has been pursued to promote the production of environmental-friendly sources 

as replacement for fossil fuels. As a potential feedstock for biofuels production, lignocellulosic 

biomass is abundantly available, non- edible, bio-renewable and carbon neutral. Thus, the 

conversion of lignocellulosic biomass into fuels and chemicals has gained more and more 

interest in the recent years (Sims et al., 2010). 

Producing fuels and chemicals from lignocellulosic biomass is often achieved through 

biochemical pathways, which commonly consists of three steps: pretreatment of biomass to 

break down its recalcitrance, enzymatic hydrolysis of treated biomass into reducing sugars, and 

fermentation of sugars into desirable products (Saxena et al., 2009). This process, however, is 

limited by several technical and economic barriers such as the high costs for pretreatment and 

enzymes, lack of robust microbes capable of fermenting mixed sugars (hexose and pentose), and 

under-utilization of lignin compounds in the biomass (Kato et al., 2014; Naik et al., 2010; Sarkar 

et al., 2012).  

Thermochemical processing, like combustion, gasification, liquefaction and fast pyrolysis, 

is another promising method to convert lignocellulosic biomass into fuels. With heat and/or 

pressure used to decompose biomass, and sometimes boosted by chemical catalyst, 

thermochemical processing can avoid almost all of the disadvantages of biochemical processing 
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listed above (Jarboe et al., 2011a); however, the economic viability is always a challenge due to 

the high capital cost and high energy input for thermochemical processing. 

A thermochemical biological hybrid processing for lignocellulosic biomass is recently 

proposed as an alternative to conquer the problem in current lignocellulosic biomass conversion 

process. It involves the use of thermochemical processing to break down lignocellulosic biomass 

into fermentable intermediates, and utilization of those intermediates as carbon sources in 

biochemical processing (fermentation) for producing fuels and chemicals. (Jarboe et al., 2011a). 

The first step of thermochemical processing can overcome the recalcitrance of lignocellulosic 

biomass and utilize lignin that is commonly treated as waste byproducts, while second stage of 

biological processing is featured with high product selectivity of the biological catalyst. 

Common studies about hybrid processing including fast-pyrolysis-bio-oil-fermentation and 

gasification-syngas-fermentation.  

Fast pyrolysis is the thermal decomposition of biomass in the absence of oxygen. This 

process can convert biomass into an energy rich liquid (bio-oil), a flammable gas (syngas) and a 

carbon- and nutrient-rich solid (biochar) (Brown & Brown, 2013). The raw bio-oil is an extreme 

complex mix of chemical compounds.  Some component substrates, such as levoglucosan and 

acetic acid, are promising to be used as fermentative substrates to produce various fuels and 

chemicals (Layton et al., 2011; Lian et al., 2013b; Lian et al., 2012b; Liang et al., 2013; Zhao et 

al., 2013c). 

Gasification is a process that lignocellulosic biomass is converted to syngas under high 

temperature (>700 °C) and controlled amount of oxygen and/or steam. Syngas, the product of 

gasification, is a flammable gas mixture mainly composed of carbon monoxide (CO), hydrogen 

(H2) and carbon dioxide (CO2). Syngas has the potential to be converted into fuels and chemicals, 
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particularly bioethanol, via biocatalysts fermentation. Due to the low solubility of CO and H2 in 

water, gas-to-liquid mass transfer limitation needs to be conquered to allow for successful syngas 

fermentation (Shen, 2013). 

1.1.2. Lignocellulosic biomass composition 

Biomass resources can be categorized into four groups: i) woody biomass such as forest 

residues; ii) agricultural residue; iii) organic waste, such as animal waste and sewage sludge, and 

iv) aquaculture, like algae and seaweeds. As one the most abundant renewable energy resources 

on earth, current estimated global biofuel production from lignocellulosic biomass can potential 

reach to 15–70 EJ final transport fuel energy with 30–140 EJ primary energy (Deng et al., 

2015).The chemical composition of lignocellulosic biomass varies depending on the initial 

feedstock and is also largely affected by the conversion methods used. (Goyal et al., 2008).  

Lignocellulose is composed of three major compounds, cellulose, hemicellulose and 

lignin. The structure of each compound is shown on Figure 1-1. The composition of 

lignocellulose derived from various types of biomass was listed on Table 1-1 (Iqbal et al., 2013). 

Cellulose is a linear polymer of β-1,4-D-glucopyranose units with the formula (C6H10O5)n. The 

chain length varies from 300 to 1700 units for wood pulp, while from 800 to 10,000 units for 

bacterial cellulose. Reported average molecular weight of cellulose is around 100,000 (Goyal et 

al., 2008). Cellulose consists of crystalline and amorphous regions and is very rigid. As the 

largest constituent of plant cell, the rigidity of cellulose protects plant cell from interiors.  

Hemicellulose is a branching polymer of various monosaccharides, including glucose, 

mannose, xylose, galactose, arabinose, and rhamnose. The chain length of hemicellulose varies 

from 500 to 3,000. Hemicellulose has an amorphous structure and not as rigid as cellulose. The 

https://en.wikipedia.org/wiki/Crystalline
https://en.wikipedia.org/wiki/Amorphous_solid
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main role of hemicellulose is to strengthen the cell wall by interaction with cellulose and lignin 

(Scheller & Ulvskov, 2010). 

Lignin is a complex, cross-linked polymer aromatic rings, corresponding approximately 

to the formula (C31H34O11)n. The monomers are p-coumaryl alcohol, coniferyl alcohol, and 

sinapyl alcohol, which are methoxylated to various degrees. The molecular masses of lignin is in 

excess of 10,000 units. The rigidity of lignin imparts strength to plant cell and do not rot easily.  

1.1.3. Fast pyrolysis 

Among different types of lignocellulose processing, fast pyrolysis shows a promising 

process for biomass-to-biofuel conversion (Braimakis et al., 2014; Nanda et al., 2014). Fast 

pyrolysis is carried out under moderate temperature (~500 ℃) and high heating rate (tens to 

hundreds of ℃/s), biomass is decomposed in the absence of oxygen, while syngas (13~25 wt%), 

bio-oil (60~75 wt%) and biochar (12~25 wt%) are produced (Sarat Chandra et al.; Xiu & 

Shahbazi, 2012). Fast pyrolysis is featured of very high heating rates and heat transfer rate, 

carefully controlled reaction temperature to maximize liquid yield (60~75%) for most biomass, 

short hot vapor residence time (less than 2s), rapid removal of product char and rapid cooling of 

vapors. The main product of fats pyrolysis, bio-oil, can be used as feedstock to produce fossil 

fuel substitute through upgrading (Xiu & Shahbazi, 2012), valuable chemicals through extraction 

(Wang et al., 2014; Xiu & Shahbazi, 2012), and fuels and bulk chemicals through fermentation 

(Jarboe et al., 2011a).  Use of bio-oil as road deicers was also reported. (Oehr & Barrass, 1992).  

1.1.4. Bio-oil characterization and chemical compositions  

Bio-oil derived from lignocellulosic biomass is commonly a sticky, dark brown liquid. 

The property of bio-oil is depended on the initial feedstock. Water content of the bio-oil is 

ranging from about 15 wt% to an upper limit of about 30–50 wt% . High water content would 
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reduce bio-oil viscosity and improve bio-oil stability.  On the other hand, however, the high 

water content leads to the high oxygen content and low heating value of bio-oil. The viscosity of 

the bio-oil can vary from as low as 25 m2 s−1 to as high as 1000 m2 s−1 (40 °C). The oxygen 

content of bio-oil is around 35~40 wt%. The higher heating value of bio-oil is about 17 MJ/kg, 

which is about 37% that of crude oil (Czernik & Bridgwater, 2004; Venderbosch & Prins, 2010). 

Bio-oil has 42% of the energy content of fuel oil on a weight basis; however, due to the high 

density of bio-oil (~1200 kg t−1), on a volumetric basis, bio-oil contains 61% of that in fuel oil 

In general, bio-oil has a very complex chemical composition, including anhydrosugars, 

carboxylic acids, pyrans, furans and phenolics and as well as other trace amount of compounds. 

Major compounds in bio-oil can be quantified via GC-FID equipped with MS. The organic 

chemical composition of bio-oil derived from lignocellulosic biomass is listed at Table 1-2 

(Goyal et al., 2008). 

The formation mechanisms of major compounds in bio-oil gains lots of interests. 

Previous study shows that during fast pyrolysis, cellulose undergoes two phases of 

decomposition reactions. During the first phase, depolymerization and dehydration reactions  

occur with the corresponding C5-C6 products being produced, mainly anhydrosugars, pyrans and 

furans (Mettler et al., 2012). These products are not stable under pyrolytic conditions and are 

further decomposed in the following cracking phase. The chemicals produced during the second 

decomposition phase are mainly aliphatic oxygenated C2-C4 organic compounds as well as some 

other light species/gases (Shen et all., 2012). As to hemicellulose decomposition, the 

predominant product is acetic acid. Fast pyrolysis of lignin leads to the yield of aromatic 

compounds with guaiacyl-units or phenolic-units. Some small molecules, such as methanol, 

acetic acid, and acetone are produced during decomposition of lignin (Mohan et al., 2006). 
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Pyrolytic bio-oil is composed of a complex mixture of organic compounds that provide 

both the potential and challenge for its utilization. Bio-oil has potential as a fuel substitute 

without additional processing, but can also be upgraded to higher value fuel such as biodiesel 

(Xiu & Shahbazi, 2012). Additionally higher value chemicals can be extracted from bio-oil 

(Wang et al., 2014; Xiu & Shahbazi, 2012). Previous study shows that bio-oil contains 

significant amount of anhydrosugars and carboxylic acids, which are suitable for fermentation. 

Acetic acid derived from bio-oil can also be used as road deicers. The phenolic oligomers 

contained in bio-oil can be upgraded into hydrocarbon, which can be further refined into drop-in 

fuels by using existing petroleum refining technology and infrastructure (Mortensen et al., 2011). 

1.1.5 Bio-oil utilization:  

Due to its unstable physical properties and complex chemical composition, the utilization 

of pyrolytic bio-oil often faces challenges (Lehto et al., 2014). Unlike conventional fuels, bio-oil 

is featured by high oxygen content, high solids content, high viscosity and high chemical 

instability, which may adversely affect bio-oil fuel quality. Some physical or chemical 

techniques can be used to upgrade pyrolytic bio-oil prior to convert into transport fuel. The 

hybrid processing proposed hereby apply pyrolytic bio-oil in biological utilization for bioenergy 

or value-added chemical production. 

Physical and chemical upgrading to transport fuel: Physical filtration can be applied to 

reduce the ash content to less than 0.01 wt%. Solvent addition is helpful to homogenise bio-oil 

and reduce the viscosity of bio-oil. Bio-oil emulsified with diesel oil with the aid of surfactants 

can be applied as transport fuel or a fuel used in no-need-for-modification engines. Catalytic 

upgrading of bio-oil to conventional transport fuel, such as biodiesel, requires full deoxygenation 
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and conventional refining. The principle of catalytic upgrading of bio-oil is reject oxygen reject 

oxygen as H2O via hydrotreating or rejects oxygen as CO2 via zeolite cracking.  

Biochemical utilization: Biochemical upgrading of bio-oil can be realized via 

fermentation with bacteria, yeast or microalgae to produce bioethanol, carboxylic acids or 

polymers. Various pyrolysis derived compounds, such as anhydrosugars and carboxylic acids, 

have been explored as potential fermentation substrates, which made hybrid processing of 

lignocellulosic biomass possible. Improve the fermentability of bio-oil can be achieved by two 

different ways: detoxification of bio-oil and adapt biocatalyst to tolerate to the toxicity of  

pyrolytic substrate. Some physical, chemical and combinations methods have been applied to 

bio-oil detoxification. In addition, metabolic engineering were used to improve the biocatalysts 

robustness. Previous study about hybrid processing was reviewed and listed in Table 1-3. In the 

following section (Section 1.2), the various aspects of biological utilization of pyrolytic 

substrates are discussed.   

1.2 Bio-oil fermentation process 

1.2.1 Fermentable substrates from pyrolytic bio-oil 

The fermentability of anhydrosugars, 1,6-anhydro-β-D-glucose or levoglucosan, have been 

widely investigated. The concentration levoglucosan in pyrolytic bio-oil can reach ~30 wt% on a 

moisture-free basis (Liang, 2012), which shows a great potential for pyrolytic levoglucosan to be 

used as a carbon resource in fermentation.  

Acetic acid is a suitable fermentation substrate for some biocatalysts. (He et al., 2009; 

Nakamura et al., 2011; Chen and Johns, 1996), although it is undesirable from energy production 

of view in the fast pyrolysis process due to its low energy density and extensive corrosion 

possibility. Utilization of acetic acid has been demonstrated in yeast (Lian et al., 2012a) or 
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microalgae fermentation (Liang et al., 2013; Zhao et al., 2013a; Zhao et al., 2015) for producing 

lipid-rich biomass. 

Glycolaldehyde present in pyrolysis bio-oil is another potential fermentative substrate. 

The concentration of glycolaldehyde was within the rage of 5-13 wt% in wood-derived pyrolysis 

oil has been reported (Zhang et al., 2011). Vitasari (2012) developed a lab-scale conceptual 

process to isolate glycolaldehyde from pyrolysis bio-oil, and this renewable glycolaldehyde can 

be utilized as fermentation feedstock for ethylene glycol production (Vitasari et al., 2012) 

Acetol composes 8 wt% of softwood-derived pyrolysis bio-oil. It is well known that l,2-

propanediol can be produced via bioreduction of acetol under the mediation of baker’s yeast. The 

lab-scale was developed 70 years ago, in which a large amount of sucrose (100 g/L) is needed as 

energy source and the yield was 5-6g/L (Levene & Walti). Kometanik et al. (1993) developed a 

large-scale system for l,2-propanediol production from acetol in a bubble-column reactor (10 L), 

in which 300 mM of ethanol is needed as energy source and the yield increased to 220 g/L 

(Kometani et al., 1993). In addition, acetol was found to be reduced to R(–)–1,2–propanediol via 

Clostridium thermosaccharolyticum (Cameron & Cooney, 1986). 

1.2.2. Inhibition of crude pyrolytic substrates  

The fermentation of pyrolytic bio-oil via alga C. reinhardtii is hindered by the toxicity of 

pyrolytic bio-oil. For example, previous study showed that pyrolytic acetic acid over 0.01 wt% 

inhibited the microalgae growth (Liang et al., 2013). Thermal conversion process. to the 

complex composition of bio-oil and imitation of analytical methods, only a few toxic compounds, 

such as methanol, furfural, 5-HMF, phenolic compounds and carboxylic acids has been 

identified, with a large potential toxic compounds still being unknown. A rigorous Identification 

of compounds in bio-oil, and investigation of these compounds on microorganism morphology 
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and genotype property change are needed to better understand the inhibitory mechanisms and 

conquer pyrolytic substrate inhibition on cell growth.  

Previous research on the mechanism of inhibition on microorganism culture might be 

helpful to understand the inhibitory effect of bio-oil on algal fermentation. Inhibitors from 

lignocellulosic dehydrates, lignin derived sugars, bio-oil and syngas hinder the biochemical 

processing of lignocellulosic biomass and hence impede biofuel and biochemical production. 

Research has been done to investigate the mechanism behind the inhibition on bacteria, fungi 

and microalgae. 

As the product of fast pyrolysis of lignocellulosic biomass, acetic acid at certain level has 

proved to inhibition to microbial fermentation. Acetic acid-rich pyrolytic bio-oil contains ~80 

mg/L acetic acid, 10 times as high as the concentration for pure acetic acid to completely inhibit 

the growth of C. reinhardtii (Zhao et al., 2013). Culture of E. coli can be inhibited by acetic acid 

at a concentration even as low as 50 mM. Inhibition of other organisms has also been reported. 

For example, yeast used in wine fermentation such as Saccharomyces cerevisiae can be inhibited 

by high levels of acetic acid secreted by other competitor yeasts (Peter Piper, 2001).  

The inhibition of acetate on yeast growth was explained by intracellular accumulation of 

H+ and CH3COO-. Acetic acid presents in yeast fermentation broth with pH lower than 4.75 (pKa 

of acetic acid) as its uncharged form, CH3COOH, which is freely permeable to cell membrane. 

The difference of CH3COOH concentration outside and inside cells drive the CH3COOH 

entering cell membrane via diffusion until same concentration of CH3COOH is achieved on both 

sides of cell membrane. Under the relatively high pH inside the cell membrane, H+ and 

CH3COO- were produced via CH3COOH dissociation and accumulated to very high levels for its 

relatively low permeability to cell membrane. The accumulation of H+ and CH3COO- would lead 
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to intracellularly acidification, free radical increase, and high turgor pressure, and thus cell 

growth inhibition. Yeast species protect cells from the inhibition of acetic acid by consuming 

acetate, changing cell envelope to limit CH3COOH diffusional entry or catalytically accelerating 

CH3COOH extruding.  

Lipophilic weak acids inhibit cell growth more likely through a different mechanism 

from acetic acid inhibition. When the broth pH is 4.5, sorbate (pKa=4.76) even at a low 

concentration, can disorder cell membrane structure and completely inhibit cell growth. In 

addition, sorbate may affect respiratory chain function and glycolysis pathway, and bring 

oxidative stress and severe energy depletion respectively to yeast cells. Associated with oxygen, 

lipophilic weak acid can affect membrane transport processes and energy coupling. 

Intracellularly acidification was not found in sorbate-treated yeast cells. The difference of acetic 

acid and lipophilic acid inhibition mechanism is more apparent when at neutral pH. When pH of 

the broth is 7, both acetic acid and sorbate are completely dissociated. The acetic acid shows 

slight inhibition and provides a potential fermentation substrate. While sorbate still shows 

notable threat on yeast cell growth. In addition, it is reported that palmitoleic acid may increase 

cell osmotic pressure, leading to plasmolysis and destroy of cell wall and cell membrane. 

Acetate inhibition on E. coli culture has been previously studied. For batch culture 

(pH<4.3), significant inhibition on E. coli growth was found when acetic acid concentration is 

above 20 mM. As to continuous culture (pH 6), E. coli cell growth can still be inhibited but 

fourfold concentration of acetate is needed compared to low pH culture. It was reported that the 

inhibition may come from acetate anion accumulation, which was mainly driven by the 

difference of extracellular pH (~6) and intracellular pH (6.8~7.6), or ΔpH. High acetate tolerance 



11 

 

 

 

E. coli species was expected to have the ability both to decrease intracellular pH and then 

decrease ΔpH, and metabolic system to tolerant low intracellular pH.  

In addition to acetic acid, other compounds in bio-oil also exhibit strong inhibition to 

microorganisms. Phenolic compounds were reported to have adverse effect on bacteria, fungi 

and microalgal cell membrane integrity. The degree of inhibition depend on the category, 

lipophilicity and degree of ionization and the specific chemical structure of phenolic compounds. 

Reported lowest effective concentration for phenolic acid, phenyl aldehyde and polyphenolics to 

significantly decrease the viability of cell are 250 mg/L, 50 mg/L and 0.25 mg/L. These phenolic 

compounds may to inhibit the biosynthesis and simultaneously bind with target structural 

component of membrane, i.e. ergosterol, to disrupt cell membrane integrity. Also the decrease of 

cell membrane integrity resulted from phenolic compounds may be associated with increased 

intracellular pH, ion leakage, proton influx, oxidative stress and membrane depolarization. With 

a concentration of 20g/L in SF5, phenolic compounds may significantly decrease the cell 

viability and inhibit cell growth.  

In summary, short chain carboxylic acids (formic acid, acetic acid and propanoic acid) 

can lead to intracellular acidification, free radical increase, and high turgor pressure; lipophilic 

weak acids (phenolic acids) may affect respiratory chain function glycolysis pathway, increase 

cell osmotic pressure, and bring oxidative stress to cells; and phenolic compounds have also been 

reported to damage the cell membrane structure by inhibiting the biosysthesis of structural 

components and/or binding the structural components, which causes an increase in leakage 

through the membrane. Most of the reported damage described above are related to the cell 

viability, which can be evaluated by microscopic or cytometric examination of cells stained with 

dyes or other chemicals.  



12 

 

 

 

1.2.3. Detoxification of bio-oil through various treatments 

Previous study showed that inhibitory compounds removal by absorbent treatment 

(Prosen et al., 1993), solvent extraction (Lian et al., 2010), acid treatment- (Prosen et al., 1993) 

alkali treatment (Chi et al., 2013), or combination of some methods, followed by levoglucosan 

hydrolyzation to glucose (Lian et al., 2010; Prosen et al., 1993), can significantly improve the 

fungi, E. coli and yeasts fermentation of pyrolytic levoglucosan for bioethanol or lipids 

production. Treated pyrolytic anhydrosugars has been reported for bioethanol production through 

yeast (Lian et al., 2013; Luque et al., 2014; Sukhbaatar et al., 2014) and E. coli (Chang et al., 

2015; Chi et al., 2013; Jarboe et al., 2011a; Rover et al., 2014; Wang et al., 2012), and for 

producing lipids through yeast fermentation (Lian et al., 2013). 

Aqueous extract: Solvent extraction is utilized to separate a mixture of compounds with 

solubility difference in immiscible solvents. In bio-oil detoxification, solvent extraction was used 

to remove fermentation inhibitors and separate fermentation substrates such as lignin (Prosen et 

al., 1993), phenolics (Lian et al., 2010), carboxylic acids (Chan & Duff, 2010), and recovery of 

glycolaldehyde (Vitasari et al., 2012).  

Distillation: Distillation can separate component substances with different boiling points 

from a liquid mixture by selective evaporation and condensation. To simplify the bio-oil 

composition and facilitate further bio-oil refinery, a fractionation system has been developed in 

Iowa State University to separate raw bio-oil into different stage fractions (SFs) with distinct 

chemical and physical properties (Pollard et al., 2012). For example, the stage fraction 1 (SF1) 

contains the majority of levoglucosan and phenolic oligomers; while stage fraction 5 (SF5) 

contains the majority of water and acetic acid (Pollard et al., 2012). The whole system is shown 
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on Figure 1-2. The composition of different stage fractions are listed on Table 1-4 (Pollard et al., 

2012).  

Due to the complex nature, stage fractionations of pyrolytic bio-oil are still toxic and not 

ready to be applied in biological processing. Thus, distillation was commonly used in 

combination with other treatment methods, such as activated carbon adsorbent, solvent 

extraction or overliming (Chan & Duff, 2010; Chi et al., 2013; Liang et al., 2013; Vitasari et al., 

2012). 

Adsorption: Activated carbon has strong absorption capability due to its high degree of 

microporosity. It is widely applied for metal extraction, water purification, medicine, wastewater 

purification, filters, filter masks, and hydrocarbon adsorption. Previous study has shown that 

activated carbon is an efficient absorbent, and can absorb many compounds such as formic acid, 

acetic acid, phenols, furfural and HMF (Lee et al., 2011; Dąbrowski et al., 2005). Thus it is 

promising to mitigate the toxicity of pyrolytic bio-oil via activated carbon absorption of part of 

the inhibitory compounds. Activated carbon has been applied to detoxify pyrolytic substrates 

(Lian et al., 2010; Lian et al., 2012b; Liang et al., 2013) along with some other treatment 

methods. Activated biochar, the solid product of fast pyrolysis, instead of activated carbon, can 

be used as the adsorbent to detoxify pyrolytic substrates, which decrease the atmospheric carbon 

levels. 

Acid hydrolysis: Acid hydrolysis can be used to convert levoglucosan, the most common 

pyrolytic sugar, into glucose (Bennett et al., 2009; Wang et al., 2012). Bennett et al. (Bennett et 

al., 2009) quantified the relationship between glucose yield and the effect of time, temperature 

and sulphuric acid concentration. Wang et al. (2012) established an economic analysis for the 

fermentation of pyrolytic sugar, detoxified through both water extraction and acid hydrolysis, 
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and the cost of ethanol in a large scale plant is approximately $14 per gallon, which makes the 

whole processing not feasible.  

Overliming: Overliming is established to precipitate inhibitors via adding Ca(OH)2. It is 

widely used for detoxification of cellulose hydrolysates (Huang et al., 2009; Okuda et al., 2008; 

Wang et al., 2012), hemicellulose hydrolysates (Amartey & Jeffries, 1996; Martinez et al., 2000; 

Mohagheghi et al., 2006), lignocellulosic hydrolysates (Millati et al., 2002; Palmqvist & Hahn-

Hägerdal, 2000a; Ranatunga et al., 2000) and pyrolytic bio-oil (Chi et al., 2013; Islam et al., 

2015; Zhao et al., 2015) for following microbial fermentation. The significant improvement of 

substrates fermentability is commonly attributed to the neutralization of carboxylic acids and 

removal of furans, phenolics and other inhibitors as well. 

Oxidative treatment: Remarkable unsaturated bonds, like double bands (-C=C-), 

aldehyde group (-CHO), ketone group (-C=O) and hydroxyl group (R-OH, Ar-OH) can be found 

from structures of identified compounds, which implies the possibility of bio-oil detoxification 

via oxidation. For example, phenolic compounds are present in fast pyrolysis bio-oil from 

decomposition of lignocellulosic biomass. They were implicated as causing compounds of 

solution taste and odor (Chrostowski et al., 1983) as well as the inhibition on microorganism 

fermentation (Liang et al., 2013; Palmqvist & Hahn-Hägerdal, 2000b; Zhao et al., 2013b). 

Phenolic compounds were as well known for being vulnerable under oxidative reagents. For 

example, ozone is reported to efficiently oxidize aqueous phenolics through hydroxylation, 

degradation and oxidative coupling pathways (Chrostowski et al., 1983). The toxicity of SF5 

may come from aldehydes, ketones and phenolic compounds, and oxidative methods are 

promising for bio-oil detoxification. 
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Membrane technology: Membrane technology, driven by hydrostatic pressure, chemical 

potential gradient or thermal gradient, has been widely applied for biorefining and bioenergy 

production, particularly in common bioprocessing of biomass to ethanol (He et al., 2012). He et 

al. (2012) summarized the application of membrane process in inhibitor removal for 

detoxification of biomass hydrolysate, and the effectively removed inhibitors include acetic acid, 

formic acid, levulinic acid, furfural and hydroxymethylfurfural. With the advantage of high 

detoxification efficiency, possible inhibitor recovery, simple operation and ease of scale-up, 

membrane technology is promising to treat pyrolytic bio-oil. 

Air stripping:  Air stripping is used to convert volatile liquids, characterized by low 

aqueous solubility and high vapor pressure, into gasses. Wang et al. (2012) (Wang et al., 2012) 

established a stripping tower system to remove volatile compounds, such as acetic and formic 

acids, from aqueous fraction of pyrolytic bio-oil prior to pyrolytic sugar fermentation. However, 

due to water evaporation, air stripping cannot decrease the concentration of volatile inhibitors 

low enough for successful fermentation. 

Combination of different methods: Bio-oil detoxification can also be realized 

commonly by a combination of several detoxification methods. Prosen et al. (1993) (Prosen et al., 

1993) treated woody pyrolytic bio-oil through aqueous extraction, activated carbon adsorption 

and acid hydrolysis prior to fungi or yeast fermentation, which resulted to significant 

improvement on cell growth and biomass yields.  Recently, Lian et al. (2010) (Lian et al., 2010) 

employed 1) solvent extraction (separate pyrolytic anhydrosugars from phenolics), 2) acid 

hydrolysis (convert anhydrosugars to glucose), 3) alkali treatment (neutralize pH), and 4) 

activated carbon adsorption (remove inhibitors), to detoxify pyrolytic sugar for following yeast 

fermentation and ethanol and lipids production. 
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1.2.4. Strain improvement to enhance microorganism tolerance to toxicity of pyrolytic substrates 

In order to increase the fermentability of bio-oil, biocatalysts with high tolerance to the 

inhibitors are needed. The strong biocatalysts can be obtained through metabolic engineering 

technology. Due to the various types of toxic compounds contained in bio-oil, the mechanism of 

inhibition can hardly be investigated via rational metabolic engineering, whereas applying 

inhibitor-sensitive biocatalyst to metabolic evolution for high tolerance strain seems promising. 

In addition, the inhibition mechanism and metabolic change can be investigated via reverse 

engineering technology on inhibitor-resistant biocatalyst and thus the metabolic change can be 

implemented to other biocatalysts for required fermentation and product. In fact, metabolic 

evolution for strain with enhance tolerance to bio-oil based substrates has been reported for 

bioethanol (Chan & Duff, 2010), lipids (Liang et al., 2013) and carboxylic acid production 

(NAKAGAWA et al., 1984; Zhuang et al., 2001). 

Metabolic evolution, or directed evolution, is widely used for enhancing biocatalysts’ 

tolerance to inhibitory compounds (Miller et al., 2010; Miller et al., 2009a; Miller et al., 2009b). 

Directed evolution can be applied to synthetic biology at different levels such as protein, 

pathway, network, and whole cell (Cobb et al., 2012; Cobb et al., 2013). The principle of 

directed evolution is similar to that for Darwinian evolution process but on a much smaller scale 

and a much shorter time. In a typical directed evolution process, one or some types of inhibitor-

sensitive biocatalysts would be cultured under selective pressure, when genomic DNA acquired 

randomized mutations and expressed in the biocatalysts. Via appropriate screening or selection 

methods, such as sub-culture under gradually increased growth pressure, mutations with 

particular properties to tolerant or confer the growth pressures would accumulate and become 

dominant in the culture. Single variant would be isolated and applied in production. The 
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genotype change of robust strain would be analyzed to investigate the benefit from directed 

evolution (Cobb et al., 2012; Cobb et al., 2013; Liang, 2012). 

1.3 Fermentation of microalgae for lipids production 

1.3.1. The heterotrophic alga Clamydomonas reinhardtii  

The alga Clamydomonas reinhardtii is widely used as a model strain for various cell 

culture system and genetic modification study (Rochaix, 1995). Wild type of C. reinhardtii is 

oval-shaped green unicellular algae, and featured that cells can be cultured phototropically (light 

with CO2 as the carbon source), heterotrophically (dark with acetate as the carbon source), or 

mixotrophically (light with both CO2 and acetate as carbon sources) (Rochaix, 1995). In addition, 

genetic tools and techniques for C. reinhardtii have been studied in deep and reviewed 

comprehensively (Mussgnug, 2015). In particular, C. reinhardtii cells can be used as model 

organism in metabolic modification for enhanced biolipid production because of its well-defined 

genetics (Work et al., 2010). Thus C. reinhardtii is a suitable platform to utilize pyrolytic acetic 

acid for biolipid production. 

Sager and Granick (Sager & Granick, 1953) investigated the heterotrophic growth of C. 

reinhardtii with 15 mM of acetate under a series of pH. Chen et al. (Chen & Johns, 1994) 

reported significant substrate inhibition of C. reinhardtii by > 0.4 g/L acetate in heterotrophic 

culture, and conducted a single-stage continuous culture (1 L) with steady state cell density of 

0.4 g/L and maximum cell productivity of 0.02 g/L/hr. Also, previous study showed that genetic 

modification can improve the lipid contents of C. reinhardtii from 20 wt% (Li-Beisson et al., 

2015) to 25-30% (Liang et al., 2013) of dry biomass. Liang et al (Liang et al., 2013) investigated 

the fermentability of pyrolytic acetate via C. reinhardtii for biolipids production, used activated 
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carbon to remove fermentation inhibitors in pyrolytic bio-oil and established directed evolution 

to obtain strains with enhanced tolerance to pyrolytic substrate. 

1.3.2. Common fermentation strategies 

Batch culture: Batch culture is where strain seeds and substrates, including carbon 

source, energy source and nutrients are added to a reactor only once before harvesting. Strength 

of batch culture includes low energy cost, less labor needed and less water used, low overall cost, 

quite simple system, easy to handle, low contamination risk. The weaknesses of batch culture is 

mainly low productivity. The differential equations for batch culture are listed below. 

If the only product is microbial cell (Blanch, 1996), the cell growth and the substrate 

consumption can be written as  

 

 

If the culture forms a product partially growth and non-growth associated with growth 

rate, then the substrate consumption and production formation can be written as 

 

 

 

Fed-batch culture: Fed-batch culture is process in which one or more nutrients are 

supplied to the bioreactor during cultivation to compensate the depletion of the nutrient(s).  The 

major advantage of fed-batch culture is to control the limiting substrate concentration at optimal 
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level and to achieve higher productivity than batch culture. However, the cell yield and product 

yield can be decreased if feeding flow rate is high. 

If the only product is microbial cell, the cell growth and the substrate consumption can be 

wirten as (Blanch, 1996) 

 

 

If the culture forms a product partially growth and non-growth associated with growth 

rate, then 

 

 

 

Continuous culture: In a continuous culture, fresh media are fed to the bioreactor while 

the broth is removed, the flow rates of influent and effluent are usually maintained constant to 

keep the reactor working volume unchanged. Continuous culture shows a way to obtain high 

cell/product productivity; however, the cell density is commonly low due to constant elution of 

the cells and/or products. 

if the only product is microbial cell, the biomass and the substrate change can be written 

as (Blanch, 1996) 
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When the volumetric feed rates, into and from the vessel, ,  are maintained 

constant and dilution rate is  and , the equations can be simplified as  

            

 

where , or dilution rate , is between  and . 

In the culture where the product formation is partially growth and non-growth associated, 

the product formation can be written as 

 

 

Perfusion culture: Perfusion culture refers to isolation of cells from spent medium and 

retaining cells in the bioreactor, with continuously feeding fresh medium to and withdrawing 

spend medium from the reactor. It can be operated at batch or continuous mode to improve cell 

density and productivity. Different techniques can be used for isolation of cells, such as i) 

capillary fibers and membranes to bind cells, ii) filtration systems to separate cells and media, 

and iii) techniques to concentrate cells via centrifuge or precipitation. The strength of batch 

culture with cell perfusion includes very high cell density and alleviation of metabolites 

inhibition (Wen & Chen, 2001). The weakness of this culture method includes no cell 

productivity; the separation system can be very expensive (for example, hollow fiber membrane); 

media with high cell density can easily clog the separation system 
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As to cell growth kinetics, if the microbial cells does not produce any product, is the cell 

growth and substrate consumption can be written as  

 

 

When the volumetric feed rates, , into and from the vessel are maintained 

constant and equal  , and , the equations can be simplified as    

  

 

If the culture forms a product partially growth and non-growth associated with growth 

rate, then 

 

 

 

Perfusion strategy with cell bleeding: Wen and Chen (2001) have evaluated the 

microalgae heterotrophic growth in a combined operation of perfusion and particle cell bleeding 

in order to achieve both high cell density and productivity. The strength of this system includes i) 

optimal productivity can be obtained via adjusting parameters, ii) both high cell density and high 

cell/product productivity can be obtained, which means the highest maximum possible 

conversion rates per unit reactor volume; iii) high tolerance to toxic media when high cells 

density is achieved; and iv) alleviating metabolites inhibition. However, this system has some 
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weakness includes: i) complex system; ii) high overall cost than other systems due to high 

energy, labor, and water requirement; iii) expensive perfusion system such as hollow fiber 

membrane; and iv) concern about the efficiency and clogging of cell perfusion system. 

As to differential equations, if the only product are microbial cells  

 

 

When the volumetric feed rates, , into and from the vessel are 

maintained constant and keep , and , the equations can be 

simplified as 

 

 

If the culture forms a product partially associated with growth and non-growth associated, 

then 
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Table 1-1 The composition of lignocellulose derived from various types of biomass 

 

Lignocellulosic 

material 

Lignin (%) Hemicellulose 

(%) 

Cellulose (%) Reference 

Sugar cane bagasse 20 25 42 Kim & Day (2011) 

Sweet sorghum 21 27 45 Kim & Day (2011) 

Hardwood 18–25 24–40 40–55 Malherbe & Cloete (2002) 

Softwood 25–35 25–35 45-50 Malherbe & Cloete (2002) 

Corn cobs 15 35 45 Prassad et al. (2007) 

Corn stover 19 26 38 Zhu et al. (2005) 

Rice straw 18 24 32.1 Prassad et al. (2007) 

Nut shells 30–40 25–30 25–30 Abbasi & Abbasi, (2010) 

Newspaper 18–30 25–40 40–55 Howard et al. (2003) 

Grasses 10–30 25–50 25–40 Malherbe & Cloete (2002) 

Wheat straw 16–21 26–32 29–35 McKendry (2002) 

Banana waste 14 14.8 13.2 John et al. (2006) 

Bagasse 23.33 16.52 54.87 Guimarães et al. (2009) 

Sponge gourd fibres 15.46 17.44 66.59 Guimarães et al. (2009) 

 

(Iqbal et al., 2013) 
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Table 1-2 The organic chemical composition of different lignocellulosic biomass 

Type Chemicals 

Acids Formic, acetic propanoic, hexanoic, benzoic, etc. 

esters 

Methyl formate, methyl propionate, butyrolactone, methyl n-butyrate, 

velerolactone, etc 

Alcohols Methanol, ethanol, 2-propene-1-ol, isobutanol, etc 

Ketones 

Acetone, 2-butanone, 2-butaone, 2-pentanone, 2-cyclopentanone, 2,3-

pentenedione, 2-hexanone, cyclo-hyxanone, etc 

Aldehydes Formaldehyde, acetaldehyde, 2-butenal, pentanal, ethanedial, etc 

phenols Phenol, methyl substituted phenols 

alkenes 

2-methyl propene, dimethylcyclopentene, alpha-pinene, etc., 

Aromatics: benzene, toluene, xylenes, nphthalenes, phenanthrene, 

fluoranthrene, chrysene, etc 

Nitrogen compounds Ammonia, methylamine, pyridine, methylpyridine, etc 

Furans Furan, 2-methyl furan, 2-furanone, furfural, furfural alcohol, etc 

guaiacols 2-methoxy phenol, 4-methyl guaiacol, ethyl guaiacol, eugenol, etc 

Syringols Methyl syringol, 4-ethyl syringol, propyl syringol, etc 

Sugars Levoglucosan, glucose, fructose,D-xylose, D-arabinose, etc 

Miscellaneous 

oxygenates 

Hydroxyacetaldehyde, hydroxyacetone, dimethyl acetal, acetal, methyl 

cyclopentenolone, etc 

 

 

(Goyal et al., 2008)
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Table 1-3 Previous study about biological utilization of pyrolytic  

 
Product Strain Productivity 

 

Yield 

 

Reference Material  Detoxification 

Ethanol Escherichia 

coli ACCC 

11177 

 0.93 g/L·h−1 0.41 g 

ethanol/g 

glucose 

(Chang et al., 

2015) 

Cotton Acid hydrolysis 

Ba(OH)2 neutralization 

Ethyl acetate extraction 

Ethanol Saccharomyces 

pastorianus 

12.12 g/L 0.50 g 

ethanol/g 

glucose 

(Sukhbaatar et 

al., 2014) 

Clear pinewood 

particles of 1–

3 mm 

Solvent 

extraction/Membrane 

filtration/Freeze-drying 

Ethanol Escherichia 

coli KO11+ lgk  

0.65 ± 0.08 g/L N/A (Chi et al., 

2013) 

Softwood Overliming 

Ethanol S. cerevisiae D

SM 1334  

 20 g/L 0.21 g 

ethanol/g 

glucose 

(Luque et al., 

2014) 

Pine wood Fractionation 

Extraction via cold 

water and then ethyl 

acetate 

Acid hydrolysis 

Ba(OH)2 neutralization 

Ethanol Escherichia 

coli KO11+ lgk  

0.9±0.2 g L−1 N/A (Rover et al., 

2014) 

Hardwood Fractionation 

Water washes 

Overliming 

Ethanol  S. cerevisiae  N/A 0.473 g 

ethanol/g 

glucose 

(Lian et al., 

2010) 

Acid washed 

poplar 

Solvent extraction 

Hydrolysis 

Adsorption on activated 

carbon 

Ethanol S. pastorianus 

ATCC 2345 

N/A 0.4 g 

ethanol/g 

glucose  

(Wang et al., 

2012) 

Loblolly pine 

particles 

Water extraction 

Acid hydrolysis 

Air stripping 

Activated carbon 

Extraction 

Microbial digestion 

Adaptive evolution 

Ethanol Saccharomyces 

cerevisiae T2 

N/A 0.45 ± 

0.05 g 

ethanol/g 

glucose 

(Chan & Duff, 

2010) 

N/A Water extraction 

Acid hydrolysis 

Overliming 

Extraction with organic 

solvents 

Adaptive evolution of 

yeast 

 

Ethanol Saccharomyces 

cerevisiae T2 

N/A 0.45 ± 0.0

5 g 

ethanol/g 

glucose  

(Zhuang et al., 

2001) 

N/A Liquid–liquid 

extraction 

Acid hydrolysis 

Adaptive evolution  

Overliming 

Extraction with organic 

solvents 

Adaptive evolution of 

yeast 

 

Fatty 

acids 

Chlamydomona

s reinhardtii 

N/A 20 g/g cell 

dry weight 

(Zhao et al., 

2013) 

Softwood NaOH treatment  

Fatty 

acids 

Chlamydomona

s reinhardtii 

N/A 20 g/g cell 

dry weight 

(Liang et al., 

2013) 

Softwood Activated carbon 

adsorption 
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Table 1-3 (continued) 

Lipids oleaginous 

yeasts 

Rhodosporidiu

m toruloides 

and 

Rhodotorula 

glutinis 

0.78 g/L N/A (Lian et al., 

2013) 

 

Douglas Fir 

wood 

Ethyl acetate extraction 

Rotary evaporation 

Activated carbon 

Lipids Cryptococcus 

curvatus 

2.2 g/L N/A (Lian et al., 

2012) 

Pelletized wood Neutralization 

Distillation 

Activated carbon 

adsorption  

Lipids Cryptococcus 

curvatus and 

Rhodotorula 

glutinis 

N/A 0.167 g 

lipids/g 

sugar 

(Lian et al., 

2010) 

acid washed 

poplar 

Solvent extraction 

Hydrolysis 

Adsorption on activated 

carbon 

PHA 

(Polyhyd

roxyalka

noates) 

A 

predominance 

of 

Betaproteobact

eria class and 

Amaricoccus 

genus  

0.27 g/L·d−1 47% cell 

dry weight 

(Moita Fidalgo 

et al., 2014) 

Chicken beds Distillation  

Citric 

acid 

Aspergillus 

niger (A. niger) 

CBX-209 

N/A 0.42 g 

ethanol/g 

glucose 

(Yang et al., 

2014) 

Corn stover Biological treatment: 

Phanerochaete 

chrysosporium (P. 

chrysosporium) is 

desirable to decrease 

the content of other 

compounds except 

levoglucosan  

 Itaconic 

acid 

 Aspergillus 

terreus K26 

N/A Theoretica

l yield as 

glucose 

(NAKAGAW

A et al., 1984) 

Cellulose tar N/A 
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Table 1-4 Mass distribution of red oak bio-oil fractions  

Collected from the fluid bed reactor with the fractionating bio-oil recovery system (Pollard et al., 

2012) 

 

Stage fraction (SF) Wt % 

SF 1 21 

SF 2 26.5 

SF 3 5.46 

SF 4 11.1 

SF 5 36 
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Figure 1-1 Chemical structure of lignocellulosic material. 

a) Building blocks/units of lignin; b) Xylose unit of hemicellulose; and c) Cellulose (Iqbal et al., 

2013) 

a) 

 
b)  
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Figure 1-2 Stage fraction system in Iowa State University (Pollard et al., 2012) 
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CHAPTER 2 MICROALGAE FERMENTATION OF ACETIC ACID-RICH PYROLYTIC 

BIO-OIL: REDUCING BIO-OIL TOXICITY BY ALKALI TREATMENT 

Published on Environmental Progress & Sustainable Energy 

XuefeiZhao, Zhanyou Chi, Marjorie Rover, Robert Brown, Laura Jarboe, Zhiyou Wen 

Abstract 

Bio-oil derived from fast pyrolysis of lignocellulosic biomass contains various substrates that can 

be fermented to produce fuels and chemicals. The goal of this research was to utilize an acetic 

acid-rich fraction of bio-oil for the growth and lipid production of microalga Chlamydomonas 

reinhardtii. As various toxic compounds are contained in the bio-oil, the algal cells cannot 

survive in medium containing this bio-oil fraction even at a low level (0.05 wt%). An alkali-

based treatment with sodium hydroxide was used to reduce the toxicity and enhance its 

fermentability by microalgae. It was found that treating the acetic acid-rich bio-oil fraction by 

adjusting pH to 10 greatly improved the algal growth. The algae can thrive in medium containing 

4 wt% alkali-treated acetic acid-rich bio-oil fraction. When using a metabolic-evolved algal 

strain with high level of toxicity tolerance, the algae were even capable of growing in medium 

containing 5.5 wt% alkali-treated bio-oil fraction. At this level, 100% of the acetic acid had been 

replaced by bio-oil. The algal biomass grown in medium containing alkali-treated bio-oil fraction 

exhibited fatty acid profilessimilar to those of the control in which pure acetic acid was used, but 

the total fatty acid content was lower. The benefit of alkali treatment for enhancing algal growth 

was confirmed to be due, at least partially, to the removal of toxic compounds in bio-oil such as 

furfural, acetol,phenolics, and 5-hydroxymethylfurfural (HMF). Collectively, the results showed 

that fast pyrolysis-microalgal fermentation is a viable approach for producing lipid from 
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lignocellulosic biomass. Moreover, alkali-based treatment is an effective method for reducing 

bio-oil toxicity, and thereby, greatly enhancing the fermentability of bio-oil by algae.  

 

Keywords: Pyrolysis, Bio-oil, Acetic acid, Chlamydomonas reinhardtii, Alkali treatment 
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2.1 Introduction 

In recent years, the production of fuels from microalgae has garnered extensive interest 

[1]. Most of the research in this area use photoautotrophic cultures, i.e., algal cells grown in open 

ponds or enclosed photobioreactors using CO2 and light as carbon and energy sources. Although 

this culture mode has advantages of CO2 sequestration and avoidance of competition with arable 

land, the commercialization of photoautotrophic algal culture is facing challenges such as low 

biomass productivity and high costs for the harvesting and dewatering of the biomass [2]. 

Heterotrophic culture, in which organic carbon sources such as sugars or organic acids 

are used as carbon and energy sources, is an attractive alternative to photoautotrophic growth 

because it eliminates the requirement for light and offers the possibility of greatly increasing cell 

density and productivity [3]. A heterotrophic batch culture may be further modified for a high-

cell-density culture such as a fed-batch, chemostat, or perfusion culture. The development of 

high-cell-density cultures for lipid production would also result in lower costs for lipid recovery. 

In heterotrophic culture, the use of in-expensive carbon sources is crucial to make the 

process cost effective. By-products such as crude glycerol from the production of biodiesel are 

an ideal carbon source for producing high-value niche products such as omega-3 polyunsaturated 

fatty acids [4, 5]. However, for producing of commodities like fuels, the supply of substrate for 

algal culture needs to be large and sustainable. Bio-oil from the fast pyrolysis of lignocellulosic 

biomass pyrolysis represents such a substrate.  

Production of fermentable sugars from lignocellulosic biomass has been studied for 

several decades [6]. The majority of this research has focused on the cellulosic hydrolysis, 

whereby the biomass is pretreated to disrupt its recalcitrant structure, then further processed with 
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enzymatic hydrolysis. There are several major challenges for this route, such as high costs for 

pretreatment and enzyme [7, 8]and under-utilization of lignin in the biomass [9]. 

An alternative to this biological approach to releasing sugars from lignocellulose is fast 

pyrolysis, which used heat to deconstruct biomass. Fast pyrolysis occurs at a high temperature 

(400-500°C) and heating rate producing an energy-rich liquid (bio-oil) as the major product [10]. 

Bio-oil contains a variety of compounds suitable as fermentation substrates including 

levoglucosan and acetic acid [11-15]. Compared to enzymatic hydrolysis to produce fermentable 

substrates, fast pyrolysis has several advantages including feedstock flexibility and the 

conversion of lignin into useful co-product. 

Recently, researchers at Iowa State University have developed a unique system to 

fractionate bio-oil into five stage fractions (SF) with distinctive physical and chemical 

characteristics [16]. The first stage fraction  (SF1) concentrates the anhydro-sugar levoglucosan, 

which has been used as substrate for E. coli fermentation to ethanol [11, 12]; while the last stage 

fraction (SF5) concentrates  acetic acid and is suitable for the heterotrophic growth of the 

microalga Chlamydomonas reinhardtiias for lipid production [17, 18]. While using these so-

called pyrolytic substrates as fermentation substrates is very appealing, one major challenge is 

that the bio-oil contains fermentation inhibitors such as furfural, furans and phenolic compounds 

[11]. Furthermore, due to the extreme chemical complexity of bio-oil, those inhibitory 

compounds are difficult to identify, complicating their removal. To address this limitation, 

various methods such as activated carbon adsorption [19] have been used to reduce the toxicity 

by eliminating those inhibitory compounds. Another approach is to increase the microorganism 

tolerance to those toxicity compounds through metabolic evolution of the strain [19].  
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The phenomenon of toxicity has also been observed for hydrolysates derived from acid 

and enzymatic hydrolysis of lignocellulosic biomass. Various methods have been studied for 

reducing this toxicity [20]. Among those methods, alkali treatment has proved effective, 

particularly for detoxifying the acid-treated hydrolysate [21]. The aim of this work is to evaluate 

the effectiveness of alkali treatment for reducing the toxicity of fermentation substrates derived 

from bio-oil for the production of algae-based lipids.   

2.2 Materials and methods  

Preparation and storage of acetic-acid-rich bio-oil stage fraction 

The bio-oil used in this work was derived from fast pyrolysis of mixed softwood. The 

acetic acid-rich stage fraction of the bio-oil (SF5) was prepared in the fractionating bio-oil 

recovery system described in a previous publication [16], and stored in 1-L Nalgene HDPE 

bottles at 4oC. The samples were mixed by hand shaking prior to use.  

Microorganism, medium, and seed culture 

 The microalga C. reinhardtii ST21 was provided by Dr. Martin Spalding at Iowa State 

University. The strain was maintained on an agar slant at 4oC under 12/12 dark/light cycle, and 

transferred to 250-mL Erlenmeyer flasks containing 50 mL tris-acetate-phosphate (TAP) 

medium with 1 mL/L acetic acid [22]for preparation of the seed culture. The pH of the medium 

was adjusted to 7 prior to autoclaving at 121oC for 15 minutes. The flasks were placed in an 

orbital shaker (200 rpm) at 25oC. Although cells can grow in complete darkness, the addition of 

light promotes cell growth, so continuous illumination at 110-120 μmol s−1m−2 was used. 

Previous research has developed a metabolic evolution approach for enhancing the 

toxicity tolerance of algae cells through incremental increases in SF5 concentrations in the 

medium [19]. The evolved strain, here designated as C. reinhardtii YL01, has been shown 



41 

 

 

 

greatly improved tolerance to bio-oil toxins. In this work, both strains (ST21 and YL01) were 

used in the evaluation of the effectiveness of alkali treatment of SF5 on algal growth.    

Alkali treatment of SF5  

SF5 (100 mL) was placed into 150-mL beakers and adjusted to varying pH levels (4.0, 

6.0, 8.0 and 10.0) with sodium hydroxide (solid pellets), per experimental set-up. The pH-

adjusted solutions were then centrifuged in 50-mL centrifuge tubes at 750 g for 5 minutes. The 

supernatant was transferred to fresh tubes and stored at 4oC prior to being used as acetate 

substrate for algal culture.  

Microalgae culture on alkali-treated SF5 

Microalgae were cultured in 24-well multiwell plates.  Each well added 1 mL TAP 

medium containing alkali-treated SF5. Previous research in our laboratory has shown that 

optimal acetic acid concentration for algal growth in the TAP medium was 4 mL/L (data not 

shown). Therefore, the acetic-acid-rich SF5 was added to the medium in such a way to bring the 

total acetic acid concentration to 4 mL/L. The concentration of SF5 in medium was based on 

wt%. After SF5 addition, the TAP medium was adjusted topH7.0 prior to filtrationthrougha0.45-

μm membrane filter. Each well was then inoculated with 0.1 mL algae seed. The plates were 

placed on an orbital shaker (130 rpm) at 25oC with continuous illumination at 110-120 μmol 

s−1m−2. Algal growth was monitored by measuring the optical density (OD) of the cultureineach 

well using a BioTek EL×800 microplate reader (Winooski, VT) at 730 nm. The OD of a control 

well containing cell-free TAP medium (with SF5 addition) was monitored to provide a 

calibration for a baseline OD reading. Three replicates were made for each culture condition to 

provide data for statistical analysis. 
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Analyses 

The water content of SF5 was measured as described previously[19]. The chemical 

compositions of  raw and alkali-treated SF5 were identified by gas chromatography/mass 

spectroscopy using the method published by Pollard et al. [16], and quantified by gas 

chromatography equipped with a flame ionization detector, as described previously [19]. Formic 

acid and acetic acid in the SF5 were analyzed by a Dionex ion chromatography ICS 5000 system 

(Sunnyvale, CA) with a DionexIonPac® ICE-AS1 column (4250 mm) [19]. The concentration 

of total phenolic compounds was measured by a colorimetric method as described previously 

[23]. As one of the most important phenols identified by GC/MS, vanillin was chosen as the 

calibration standard.  

2.3 Results and discussion  

Characterization of SF5 

As shown in Table 2-1, SF5 contained 63.1%water. Most of the chemicals commonly 

found in lignocellulosic hydrolysates derived from the pretreatment-hydrolysis process, such as 

organic acids, methanol, furfural, acetol, HMF, and phenolics, were also found in SF5. About 

20% of the compounds in SF5 could not be identifiable by GC/MS, indicating the extreme 

complexity of bio-oil. 

The high acetic acid content of SF5 led us to investigate the feasibility of using this 

stream as a substrate for the microalga C. reinhardtii, which is capable of using acetic acid as a 

carbon source for heterotrophic culture [24, 25]. C. reinhardtii has also been widely studied as a 

model strain for lipid fuel production due to its fast growth rate and readiness for genetic 

manipulation [17, 18]. However, since SF5 also contains a variety of known and unknown 

compounds (Table 2-1) that may inhibit the growth of C. reinhardtii, therefore,the cell growth 
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performance of C. reinhardtii with SF5 as the acetic acid source needed to be tested. Both the 

original strain (ST21) and the metabolic-evolved strain (YL01) [19] were tested for SF5 

fermentability. 

Feasibility of algal growth on raw SF5 

Figure 2-1A shows the cell growth of the strain ST21 on TAP media containing varying 

levels of SF5. At 0.03% and 0.05% of SF5 loading, the algae reached a maximum cell density 

similar to that of the control, although they had a longer lag phase and lower growth rate than the 

control. When 0.1% SF5was added to the medium, however, the algal growth was completely 

inhibited after 4-5 days. Figure 2-1B shows the cell growth of the strain YL01 in media with 

varying levels of SF5. As this strain has been adapted to the toxicity of SF5 through metabolic 

evolution [19], it can grow at SF5 levels up to 0.2% without significant inhibition, although cell 

growth was mildly inhibited at 0.5% SF5 (Figure 2-1B). 

The above results indicate that the bio-oil fraction SF5 had strong inhibitory effects on 

algal growth, for both cell density and cell growth rate. Even the strain YL01 that had been 

modified through vigorous metabolic evolution was also inhibited at certain levels of SF5, 

although overall growth performance of this strain was much better than that of ST21. To better 

utilize SF5 as an effective acetic acid source, an alkali treatment was developed for removing the 

inhibitory compounds and the effects of this treatment on algal growth improvement was studied.  

Effects of elevated pH treatment of SF5 on algal growth 

The effects of alkali treatment of SF5 on algal growth were studied by adjusting the pH 

of SF5 solution to 4.0, 6.0, 8.0, and 10.0, and growing the algae in medium supplemented with 

the alkali-treated SF5. The algal growth in medium containing raw SF5 (with original pH 2) was 

designated as control. At each pH treatment level, the concentration of SF5 was incrementally 
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increased until it reached a “threshold” level at which the cell growth was completely inhibited 

with no viable cells existing after 2-3 days of incubation. As shown in Figure 2-2, at pH 2, 4, and 

6, the cells grew in medium containing up to 0.05% SF5, and no cell growth occurs when SF5 

reaches 0.1%. When SF5 pH was adjusted to 8, however, the cells survived at the 0.1% SF5 level, 

indicating that higher pH greatly reduces the toxicity of the SF5. The benefit of alkali treatment 

of SF5 was more appreciable when pH was increased to 10. At this pH level, algae cells were 

able to grow in medium containing up to 4% SF5 (Figure 2-2).   

Figure 2-2 also indicates that at low pH levels (pH= 2, 4, and 6), the maximum cell 

density remained relatively unchanged when SF5 loading increased from 0.3% to 0.5% (Figure 

2-2A). The inhibition of cell growth by SF5 was mainly evidenced in cell growth productivity 

and specific cell growth rate (Figures 2-2B and 2-2C). At higher pH levels (pH=8 and 10), 

increasing SF5 loading reduced maximum cell density (Figure 2-2A) along with cell growth 

productivity and specific cell growth rate (Figures 2-2B and 2-2C).  

Improved algal growth on SF5 treated with alkali at pH 10 

Figure 2-2 indicates that a significant improvement of cell growth occurred when SF5 

was treated by increasing its pH level. In particular, when SF5 was adjusted to pH 10, a value 

commonly used in the alkali treatment for lignocellulosic hydrolysates [21], the algal cells were 

able to survive in medium containing up to 4% SF5. Based on the acetic acid content in SF5 

(Table 2-1), this represents SF5 providing 75% of the acetic acid found in the growth medium (4 

mL/L), the highest replacement achieved for C. reinhardtii ST21. To further increase the amount 

of acetic acid provided by SF5, we grew the strain C. reinhardtii YL01, which has been 

developed with higher tolerance for bio-oil toxicity [19], in medium containing 5.5% of alkali-

treated SF5 (pH 10). This represents SF5 providing 100% of the acetic acid in the TAP medium. 



45 

 

 

 

Figure 2-3 shows a comparison of cell growth performance of ST21 and YL01 strains at 

varying SF5 levels. The strain C. reinhardtii ST21 can grow in medium containing 1% - 4% of 

SF5, although maximum cell density and cell growth rate decrease with increasing SF5 level. 

However, this strain could not survive in medium increased to 5.5%. The strain YL01 shows a 

much better growth performance than ST21, with similar growth being observed in the medium 

containing 4% and 5.5% of SF5.   

The fatty acid composition of the two algal strains growing in medium with the highest-

possible SF5 levels were further analyzed in an effort to evaluate the potential for producing 

lipid-based biofuel from bio-oil. The fatty acid profile of the strain ST21 growing in SF5-free 

medium was also evaluated as a control. As shown in Table 2-2, the control culture had higher 

total fatty acid (TFA) content than the SF5-containing cultures, indicating that the inhibitory 

effects of SF5 on the growth of C. reinhardtii extend beyond growth to impact lipid synthesis as 

well. Such a low fatty acid content in the SF5-containing medium was also reported in previous 

study [19], which may be related to certain bio-oil compounds such as acetol. It has been 

reported that acetol may promote the lipid synthesis although it inhibited growth of the yeast 

Lipomycesstarkeyi[15]. Alkali-treatment removes those lipid-synthesis promoters, which 

eventually resulted in lower lipid content.   

Table 2-2 also shows that the TFA content and fatty acid profile of the two strains, ST21 

and YL01, were similar, with palmitic acid (C16:0), oleic acid (C18:1), linoleic acid (18:2), and 

α-linolenic acid (C18:3) constituting the major fatty acids. The metabolically-evolved strains 

possess fatty acid synthesis pathways similar to those of the un-evolved strain.  

Collectively, the results shown in Figures 2-2 and 2-3 demonstrate that alkali treatment is 

an effective method for reducing the toxicity and enhancing the fermentability of the bio-oil 



46 

 

 

 

fraction SF5. In the following section, the mechanism for alkali detoxification of bio-oil is 

investigated. 

The mechanism of the alkali treatment for detoxification of SF5 and enhanced algal growth 

Figure 2-4 shows the concentrations of major compounds contained in SF5 after alkali 

treatment. The results demonstrate that the compounds respond differently to alkali treatment. 

For example, alkali treatment didnot significantly (P>0.05) change the levels of acetic acid, 

formic acid, and methanol in SF5 (Figures 2-4A-4C). The concentrations of furfural and acetol 

leveled off for pH in the range of 2-8, but dropped significantly (P>0.05) when pH increased to 

10 (Figures 2-4D-4E). The concentration of phenolics decreased gradually with pH increasing 

from 2-10 (Figure 2-4F), and HMF was almost entirely removed at every pH level (Figure 2-4G).  

The above results indicate that alkali treatment at pH 10 most effectively removed 

inhibitory compounds like furfural, acetol, phenolics, and HMF. This may explain why this pH 

level resulted in the highest improvement in the algal growth shown in Figures 2-2 and 2-3.To 

further confirm this hypothesis, an additional algal culture experiment was performed.  Each 

potential inhibitor was added back to the culture medium (containing 1% and 4% alkali-treated 

SF5 at pH 10) and algal growth performance was then evaluated. A mix of these four compounds 

was also added to the culture in order to test their combined effect on algal growth.   

As shown in Figure 2-5, when SF5 concentration was at 1%, addition of HMF, furfural, 

phenolics, acetol, and their mixture, all reduced the maximum cell density, cell productivity, and 

specific growth rate although the cells could still survive. Each of the four individual compounds 

effected similar degrees of inhibition; the mix of the four compounds resulted in a more 

pronounced decrease of cell growth, indicating the combined inhibitory effect. When the algal 

cells were incubated in medium containing 4% alkali-treated SF5, further addition of those four 
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compounds completely inhibited cell growth, with no viable cells observable after 2-3 days of 

incubation. The 4% SF5 level had already created a more inhibitory condition for algal growth 

than was present at the 1% SF5 level. Thus, even a slight addition of individual inhibitors would 

intensify the inhibitory effects and lead to no growth of algae cells. Collectively considering the 

data in Figures 2-2, 2-4, and 2-5, it is clear that the improvement of algal fermentability upon 

media containing alkali-treating SF5 (at pH 10) is mainly due to the removal of HMF, furfural, 

phenolics, and acetolfrom the raw bio-oil fraction SF5.  

 

2.4 Conclusions  

In summary, this study demonstrated that alkali treatment, particularly at pH 10, is a 

feasible and effective method for detoxification of the acetic acid-rich fraction of bio-oil for 

improved growth of the microalga C. reinhardtii. Detoxification was mainly due to removal of 

HMF, furfural, phenolics, and acetol from the bio-oil fraction. As a result of this detoxification, it 

was possible to grow the metabolically evolved strain C. reinhardtii YL01on media in which the 

acetic acid was completely derived from the bio-oil fraction. This result suggests a new pathway 

for fermentative production of biofuels and biobased chemicals through pyrolytic substrates.  
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Table 2-1 Chemical characterization of SF5 

 

Chemical compounds wt% 

Water 63.12±1.00 

Acetic acid 7.53±0.17 

Formic acid 1.22±0.06 

Methanol 1.49±1.42 

Furfural 0.20±0.02 

Acetol 5.06±0.18 

5-Hydroxymethylfurfural (HMF) 0.28±0.09 

Total phenolics 2.09±0.02 

Unknown compounds 21.72±1.03 

Mass closure 100 

Data are means of three replicates ± standard deviations. 
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Table 2-2 Fatty acid composition change under different levels of alkali-treated SF5  

Fatty acid  

(%TFA) 

ST21 

Control 

ST21 

4% SF5 

YL01 

5.5% SF5 

16:0 30.02±0.13 30.97 31.43±0.93 

18:0   3.85±0.11 2.03   3.45±0.40 

18:1 (trans) 10.74±0.20  9.93   11.10±1.66 

18:1 (cis)   9.82±0.57 7.65 4.82±0.27 

18:2 20.50±0.49 13.07 11.45±0.81 

18:3 18.99±1.06 28.33 29.13±3.91 

20:0   6.08±0.19  8.02   8.61±0.15 

TFA (%DW) 20.01±0.55  10.37 9.82±0.54 

Data are presented as means of three replicates ± standard deviations. 

Fatty acid  

(%TFA) 

ST21 

Control 

ST21 

4% SF5 

YL01 

5.5% SF5 

16:0 30.02±0.13 31.00±0.31 20.63±1.73 

18:0   3.85±0.11 3.06±0.02   4.31±0.10 

18:1 (trans) 10.74±0.20   8.37±0.09   5.46±0.05 

18:1 (cis)   9.82±0.57   9.65±0.31 20.29±1.24 

18:2 20.50±0.49 18.94±0.18 23.65±2.54 

18:3 18.99±1.06 23.23±0.67 19.51±1.15 

20:0   6.08±0.19   5.76±0.12   6.17±0.86 

TFA (%DW) 20.01±0.55   9.75±0.32 11.74±1.00 
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Figure 2-1 Growth of different strain under different level of SF5 

C.reinhardtii strain ST21 (A) and strain YL01 (B) in TAP medium containing different level of 

SF5. Data are means of three replicates and error bars show standard deviations. 
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Figure 2-2 Algae growth on medium containing different levels of treated SF5  

Strain: C. reinhardtii strain ST21 (A): maximum cell density; (B): biomass productivity; (C): 

specific growth rate (µ). Data are means of three replicates and error bars show standard 

deviations. 
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Figure 2-3 Different strain growth under different levels of treated SF5  

Data are means of three replicates, and error bars show standard deviations. 
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Figure 2-4 Concentration of various compounds in SF5 after treated with alkali at pH 10.  

Data are means of three replicates and error bars show standard deviations. 
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Figure 2-5 Algal growth with treated SF5 and different contaminants  

The SF5 level in the medium was 1% and 4%, respectively.  

(A): maximum cell density; (B): biomass productivity; (C): specific growth rate (µ). Data are 

means of three replicates and error bars show standard deviations. 
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CHAPTER 3 ALKALINE TREATMENT FOR DETOXIFICATION OF ACETIC ACID-RICH 

PYROLYTIC BIO-OIL FOR MICROALGAE FERMENTATION: EFFECTS OF ALKALINE 

SPECIES AND THE DETOXIFICATION MECHANISMS 

Published on Biomass and Bioenergy 

Xuefei Zhao, Kirsten Davis, Robert Brown, Laura Jarboe, Zhiyou Wen 

 

 

Abstract 

Bio-oil derived from Pyrolysis of lignocellulosic biomass contains appreciable amounts 

acetic acid, which can be used as substrate for growing microlagae Chlamydomonas reinhardtii. 

However, the toxic compounds in the bio-oil inhibit the cell growth. This work is to develop 

alkaline treatment methods to reduce the toxicity and improve fermentability of acetic acid rich 

bio-oil.  When growing in raw bio-oil without any detoxification treatment, the algae can only 

tolerate up to 0.1 wt% of bio-oil.  Treatment with KOH, NaOH and Ca(OH)2 significantly 

reduced the toxicity and consequently improved the fermentability of bio-oil. The bio-oil tolerant 

level by microalgae depended on the alkali species used. Among the three alkali species, 

Ca(OH)2 proved the most effective detoxification reagent. Inhibitory compounds such as furans, 

phenols, ketones, aldehydes, ethers, esters, alcohols were removed by Ca(OH)2 treatment 

through precipitation. The detoxification mechanisms by the Ca(OH)2 -based treatment were also 

explored.  The synergistic effect of alkaline pH, high temperature, and presence of Ca2+ played 

an important role for the precipitation of those compounds, and the consequent detoxification.  

Collectively, the results shows alkali, particularly Ca(OH)2-based, treatment is an effective for 

reducing the toxicity of the pyrolysis derived bio-oil as fermentative substrate for microalgae 
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growth. The microalgae can tolerant Ca(OH) 2-treated bio-oil up to 5.5 wt%, which was 55 times 

higher than algal tolerance level of untreated bio-oil.  

 

 

Keywords: Acetic acid, Alkali treatment, Lignocellulosic biomass, Fermentation, Microalgae, 

Pyrolysis 
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3.1 Introduction 

Producing fuels and chemicals from lignocellulosic biomass is often achieved through 

biochemical pathways, which are commonly composed of three steps: pretreatment of biomass to 

break down its recalcitrant structure; enzymatic hydrolysis of pretreated biomass into reducing 

sugars; and fermentation of the sugars into various desired products [1]. This process is limited 

by several technical and economic barriers such as the high costs for pretreatment and enzymes, 

lack of robust microbes capable of fermenting mixed sugars (hexose and pentose), and under-

utilization of lignin compounds in the biomass [2,3,4]. 

Thermochemically-based fast pyrolysis is another method converting lignocellulosic 

biomass into fuels. Fast pyrolysis is the thermal decomposition of biomass in the absence of 

oxygen, the process can convert biomass into an energy rich liquid (bio-oil), a flammable gas 

mix (syngas) and a carbon- and nutrient-rich solid (biochar) [5]. Raw bio-oil is an extremely 

complex mix of chemical compounds. The phenolic oligomers contained in bio-oil can be 

upgraded into hydrocarbon, which can be further refined into drop-in fuels by using existing 

petroleum refining technology and infrastructure [6], while other compounds such as 

levoglucosan and acetic acid, can also be used as fermentative substrates to produce various fuels 

and chemicals [7,8,9,10,11]. 

To simplify the bio-oil composition and facilitate further bio-oil refinery, a fractionation 

system has been developed in Iowa State University to separate raw bio-oil into different stage 

fractions (SFs) with distinct chemical and physical properties [12]. For example, the stage 

fraction 1 (SF1) contains the majority of levoglucosan and phenolic oligomers; while stage 

fraction 5 (SF5) contains the majority of water and acetic acid [12]. The acetic acid contained in 

the bio-oil is often undesirable due to its high corrosiveness and low heating value [13]. 
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Researchers have attempted to use bio-oil derived acetic acid as road deicers [14]. As a 

fermentative substrate, the bio-oil derived acetic acid has also been used for microorganism 

fermentation. For example, Lian et al. (2012) explored yeast fermentation using pyrolytic acetic 

acid. Our research team also reported the use of acetic acid contained in bio-oil fraction SF5 for 

the growth of microalga Chlamydomonas reinhardtii [10,11]. The purpose of using C. 

reinhardtii as model organism in these studies is that the algal species is amenable for genetic 

manipulations [15,16,17], therefore, it is possible to elucidate the genomic response of the algal 

cells to this unique substrate.  Such an underlying mechanism can then be used as guidance for 

developing genetic manipulation strategies for other microorganisms to improve the utilization 

efficiency of the pyrolysis-derived acetic acid.  

Use of acetic acid rich bio-oil fraction (SF5) as pyrolytic substrates for microorganism 

growth, however, still faces a major challenge; i.e., the inhibition of cell growth by the toxic 

compounds contained in the bio-oil [10,11,18]. Some identified compounds in bio-oil such as 

phenols and furfural have proven inhibition for microorganism growth, while other compounds 

are difficult to identify and may also be inhibitory to microorganism growth.  

In the near term, the practical approach for efficient utilization of SF5 is to develop 

various treatment methods for reducing its toxicity. Our previous research has shown that various 

treatment methods such as activated carbon adsorption [10] and sodium hydroxide (NaOH) can 

effectively reduce the toxicity of raw SF5 for the alga C. reinhardtii fermentation [11]. However, 

development of an appropriate detoxification method should also consider the process economics. 

For example, treatment of SF5 by NaOH is very efficient in terms of removing toxic compounds 

such as furfural, phenols, acetol, and HFM [11]. From an economic production point of view, 

however, NaOH is a relatively expensive alkali species, and thus, will entail a significant process 
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cost. To develop cost effective treatment methods, it is appealing to explore less expensive alkali 

species while achieving the similar removing efficiency. In addition, the underlying mechanism 

of those alkali-based treatments for reducing the toxicity should also be explored. The main 

objective of this study is to evaluate the various alkaline species for reducing the toxicity while 

improving fermentability of SF5. The mechanism of detoxification with each alkali, particularly 

Ca(OH)2, was also investigated.   

3.2 Materials and methods  

Microalgae subculture and the effects of acetic acid concentration on cell growth 

 Microalga C. reinhardtii ST21 strain was provided by Dr. Martin Spalding from Iowa 

State University. The strain was used due to its high lipid content and thus, the potential of being 

used as biofuel feedstock [10,11]. The strain was stored on an agar slant at 4oC under 12/12 

light/dark cycle. To prepare the seed culture, the cells were transferred to 250-mL Erlenmeyer 

flasks containing 50-mL tris-acetate-phosphate (TAP) medium containing 1 g/L acetic acid. 

Here, we approximate 1 mL pure glacial acetic acid as 1g of acetic acid. The medium pH was 

adjusted to 7 before autoclaving at 121oC for 15 min. The flasks were placed in an orbital shaker 

(200 rpm) at 25oC with continuous illumination at 110–120 µmol s-1 m-2.   

Initial work was performed to test the effects of initial acetic acid concentration on the 

microalgae growth. TAP medium containing acetic acid was adjusted to pH 7 via NaOH solution 

and then filtered via 0.22 µm membrane for sterilization. Cells were grown in 24-well plates.  

Under aseptic conditions, each well in the plate was added with 1 mL medium containing 

different levels of acetic acid and 0.1 ml algae seed. The plates were placed on an orbital shaker 

with a speed of 130 rpm. The temperature was set at 25oC with continuous illumination at 110-

120 μmol s−1m−2. The optical density of the culture at 730 nm (OD730) were measured via a 
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BioTek EL×800 microplate reader (Winooski, VT) on daily basis. The OD730 value was then 

converted into biomass yield (cell dry weight concentration, g/L) through a correlation curve. All 

the experiment was performed in triplicates.  

Preparation of raw bio-oil and acetic-acid-rich bio-oil stage fraction SF5 

The pyrolysis and bio-oil fractionation system for preparing acetic acid-rich stage 

fraction 5 (SF5) were described previously [12]. The pyrolysis feedstock was a mix of softwood 

including pine, aspen, poplar, birch, and maple. The SF5 was collected in 1-L Nalgene HDPE 

bottles and stored at 4oC for later use.  

Alkaline treatment of SF5  

SF5 solution was transferred to a 100-ml beaker. Different alkali species including NaOH, 

KOH and Ca(OH)2 (in the form of dry power) were respectively added to the solution to reach 

pH 10.  Approximately 140 g of each base was needed for treating 1 L of SF5 solution.  The 

solution temperature increased to around 80oC shortly after alkali addition (within 10 minutes). 

The solution was stirred with a magnetic stir bar for about 1 hour until the temperature reduced 

and stabilized at room temperature. The treated SF5 solution was then centrifuged at 750 g for 5 

minutes to remove the precipitants. The supernatants were then neutralized to pH 7.0 with HCl 

solutions and stored at 4oC prior to use.  This stock solution contained 7.3 wt% of acetic acid.   

Microalgae culture on acetic acid-rich SF5 

The algal growth in acetic acid-rich SF5 solution was also performed in 24-well plates.  

To prepare medium containing different levels of pyrolytic acetic acid, a certain volume of 

alkali-treated SF5 stock solution was mixed with 0.1 mL acetic acid-free concentrated (10x) TAP 

salts solution.  Additional reagent grade acetic acid was added to ensure the total acetic acid in 

the final culture medium was maintained at the same level (4 g/L). Distilled water was further 
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added to make the final volume of the medium to 1mL in each well.  The solutions were filtered 

through 0.22 µm membrane before added to the well. The final medium pH was 7.0.  Each well 

in the plate was inoculated with 0.1 ml algae seed.  

Chemical compounds analysis  

Water content of SF5 was measured by Karl Fischer titration (Karl Fischer MKS-500). 

Major chemical compounds contained in FS5 were analyzed by either a gas chromatography (for 

acetol, methanol, furfural, furfural alcohol and 5-hydroxymethylfurfural) or an ion 

chromatography (for acetic acid and formic acid). The detailed procedures for the above analyses 

were described previously [10]. 

Further identification and quantification of trace amount of compounds were conducted 

with an Agilent 6890 GC coupled with a Micromass® GCT mass spectrometer (Waters 

Corporation, Milford, MA, USA). The separation of chemicals was realized by an Agilent DB-5 

non-polar capillary column (27.5m × 0.25 mm × 0.25 μm). The methods for chemical separation, 

measurement and analysis were reported previously [19]. 

The concentration of total phenolic compounds was evaluated using a colorimetric 

method [10]. As one of the most important phenols identified by GC-MS, vanillin was chosen as 

the calibration standard.  

3.3 Results and discussion 

Effects of acetic acid concentration on cell growth 

In order to maximize use of acetic acid obtained from bio-oil as a substrate for the 

heterotrophic growth of Chlamydomonas reinhardtii, it is desirable that the addition of SF5 to 

TAP medium can provide sufficient (but not inhibitory) amount of acetic acid.  Therefore, the 

initial study in this work is to evaluate the effects of acetic acid concentration on the growth the 
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C. reinhardtii so that the addition of SF5 to the medium can be optimized. The acetic acid 

concentration in a typical TAP medium was 1 g/L. In this work, the acetic acid concentration 

was evaluated within a wide spectrum ranging from 0.5 to 12 g/L. An autotrophic control culture 

without acetic acid was also performed to confirm the acetic acid was indeed used by the algae 

as a carbon source. However, as light illumination was applied for this control culture, all the 

other acetic acid-containing culture was also illuminated with the same intensity of the duration 

of the light so that a same baseline comparison can be achieved.    

Figure 3-1A shows that the autotrophic control culture reached to the maximum cell 

density at day 5. When acetic acid was added to the medium, the cell growth performance was 

greatly improved, acetic acid ranging from 1-4 g/L resulted in a similar exponential growth 

pattern, but the acetic acid concentration above 4 g/L resulted in cell growth inhibition.  For 

example, at 6 g/L acetic acid, the cells exhibited a slower exponential phase although the 

maximum cell density still reached to a comparable level as 1-4 g/L acetic acid cases.  Acetic 

acid at 12 g/L completely inhibited the cells growth.  Figure 3-1B shows the time course of 

acetic acid consumption. Acetic acid was completely consumed within the range of 0.5-4 g/L of 

initial acetic acid, indicating the acetic acid was the limiting substrates. When initial acetic acid 

concentration exceeded 4 g/L, however, significant amount of residual acetic acid was observed 

at the end of culture.  

The cell growth kinetics in terms of specific growth rate and maximum cell density was 

summarized in Figure 3-2. It clearly shows that 4 g/L is the optimal concentration of acetic acid 

for the growth C. reinhardtii in TAP medium.  In the following work, 4 g/L was chosen as the 

acetic acid concentration in the culture medium.  
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Effects of alkaline treatment on the reduction of major inhibitory compounds in SF5 and the 

subsequent improvement of fermentability  

Multiple compounds contained in SF5, such as acetol, furfural, phenolic compounds, and 

5-hydroxymethylfurfural (HMF), have been proven to be inhibitory to the growth of C. 

reinhardtii [10,11]. The inhibition was exhibited by either the individual compound or the 

combined effects of different compounds [11]. Based on the previous finding that treatment of 

SF5 by sodium hydroxide reduced the toxicity of raw SF5 and enhanced its fermentability for C. 

reinhardtii [11]. we expanded the scope of work to the treatment of SF5 by different alkaline 

species (NaOH, KOH, and Ca(OH)2). 

To evaluate the effects of alkali treatment on the reduction of toxic compounds contained 

in SF5, the concentrations of major compounds in SF5 including acetol, phenols, furfural, formic 

acid, acetic acid, and methanol before and after treatment were presented. As shown in Figure 3-

3, acetol, phenolics and furfural were significantly removed from SF5 with the three alkali 

treatments, with Ca(OH)2 resulting in the most reduction of acetol and phenols. However, the 

alkaline treatment did not reduce the content of acetic acid, formic acid, and methanol in SF5, 

and even caused increases of certain compounds such as formic acid and methanol (Figure 3-3). 

This may be due to the decomposition of methyl esters and/or ethers [20,21]. Fortunately, as 

these three compounds have not shown significant inhibition to the algal growth [10,11], alkaline 

treatment can still be regarded as an effective way for detoxification of SF5. It should be noted 

that HMF in the raw SF5 was not detected after treatment.  

The effect of alkali treatment on the improvement of the fermentability of SF5 was 

further evaluated. For each type of alkali treatment, different levels of alkali-treated-SF5 were 

added to the medium to determine the highest levels that algae cells can tolerate.  At each SF5 
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level, the specific growth rate and maximum cell density were determined as the evaluation of 

the cell growth performance.  It is worth noting that as alkali-treated SF5 contained a fixed 

amount of acetic acid (7.3 wt%, see Section 2.3), different levels of SF5 would contribute 

different levels of acetic acid in the medium. To avoid the possible cell growth fluctuation 

caused by different levels of acetic acid in medium, additional reagent grade acetic acid was 

added to the medium to ensure the total acetic acid concentration in each culture was maintained 

the same (4 g/L).  This practice will ensure that the algal growth will only represent the effect of 

alkali-based detoxification on the cell growth.  

As shown in Figure 3-4A, when untreated SF5 was added to the culture medium, the 

algal cells can only tolerate SF5 level up to 0.1wt%. The cell growth was completely inhibited at 

0.2 wt% SF5. For KOH treated SF5, the cells could grow in medium with up to 2.0 wt% 

although the specific growth rate reduced to a certain degree at this level (Figure 3-4B). Figure 

3-4C shows that SF5 treated by NaOH resulted in a better fermentability as the cells tolerated up 

to 4.0wt% SF5 although the specific growth rate and cell density reduced at this level.  When 

SF5 was treated by Ca(OH)2, its fermentability was further improved compared to NaOH 

treatment, as higher cell density and specific growth rate were achieved at 2% and 4% SF5, 

respectively (Figure 3-4D); the algal cells could even survive in medium containing 5.5 wt% SF5 

(Figure 3-4D), at which level all the acetic acid (4 g/L) in the TAP medium was provided from 

SF5.  

Collectively, the above results indicate that alkaline treatment of SF5 greatly improved 

algal fermentability (Figure 3-4). This improvement is thought to be due to the decrease in major 

toxic compounds in SF5 by alkaline treatment (Figure 3-3). Indeed, our previous research has 

confirmed that compounds in SF5 such as phenols, furfural and acetol were inhibitory for the 
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algal growth [11]. However, the inhibition reported in the previous studies was rather qualitative, 

without quantitative correlation between the cell growth and the toxic compound concentration 

[11]. In this work, we quantitatively correlated the maximum cell density and specific growth 

rate as functions of the residual concentrations of the major toxic compounds including acetol, 

phenols, and furfural (Figure 3-5). Here, the concentrations of residual toxic compound in the 

medium were obtained by considering the levels of SF5 added to the medium and the toxic 

compounds in the SF5 after alkaline treatment. As shown in Figure 3-4, both the maximum cell 

density and specific growth rate show a negative relationship with the residual concentrations of 

acetol, furfural, and phenols. The P values for the slope for each sub-figure are less than 0.05, 

further confirming the inhibitory effects of those compounds on the algal growth.  

Comprehensive analysis of chemical compounds in SF5 before and after Ca(OH)2 treatment 

The results shown in Figures 3-3~3-5 show that several major compounds in SF5 

inhibited the algal growth, while alkaline treatment reduced this inhibition. However, there are 

still many other compounds contained in SF5 not identified but may also play a role in the cell 

growth inhibition. Therefore, a thorough analysis of the chemical composition of SF5 before and 

after alkaline treatment was performed. Here, we focused on Ca(OH)2-based treatment as it is the 

most effective method among the three alkaline treatments.   

As shown in Table 3-1, the untreated SF5 contained various types of organic compounds, 

such as organic acids, furans, ketones, phenols, aldehydes, ethers, esters, and alcohols. Many of 

these organic compounds have been reported to inhibit microorganism growth. Organic acids 

such as formic acid, acetic acid, propionic acid and glyceric acid present in raw SF5 have been 

reported to lead to the excessively low pH and thus, inhibit cell growth [22,23]. Furans and 

ketones have also shown inhibition in various microorganism fermentation including yeast, E. 
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coli, and microalgae [24,25]. Furfural is converted to furfural alcohol via microbial 

transformation and thus inhibits yeast respiration [26].  Furanone can affect the bioluminescence 

of E. coli by replacing furanone-like compounds from the receptor. As a matter of fact, furanone 

has been widely used to inhibit the formation of E. coli biofilm [25].  Phenolics can damage the 

integrity of cell membranes, resulting in the lysis of microorganism [24], while aldehydes inhibit 

microorganism growth through their chemical reactivity causing plasma membrane leakage [23]. 

The compounds presented in Table 3-1 have also been reported to have synergistic inhibitory 

effects on microorganism growth.  For example, furans and aldehydes can aggregate the toxicity 

of other compounds [23,24]. 

After treatment by Ca(OH)2, a majority of the compounds in SF5 were partially or 

completely removed except acetoin and ethyl acetate (Table 3-1). Compared to the untreated SF5, 

treatment by Ca(OH)2 resulted in a higher concentration of acetoin. Ethyl acetate did not exist in 

the untreated SF5 but generated during the treatment. The reason for the elevated levels of 

acetoin and ethyl acetate may be due to the specific chemical reactions that occurred during 

treatment, resulting in the production of these two compounds. Overall, the results in Table 3-1 

confirms that Ca(OH)2 treatment is effective in reducing several inhibitory compounds in SF5 

and increasing its fermentability.  

Mechanisms of improved detoxification effect by Ca(OH)2-treatment 

The above results show that alkaline treatment, particularly Ca(OH)2 treatment, is an 

effective method to remove the inhibitory compounds and improve fermentability of SF5. It was 

noted that a significant precipitation occurred during alkaline treatment of SF5. The precipitation 

of the inhibitory compounds was considered the major mechanism for alkali-based detoxification 

[11]. Similar results were also observed in the biochemical pathway for cellulosic ethanol 



69 

 

 

 

production, where a significant precipitation of aromatic and aliphatic carboxylic acid were 

formed when dilute-acid treated hydrolysate was neutralized by Ca(OH)2 [27]. 

Compared to NaOH- and KOH-treatment, Ca(OH)2 treatment resulted in more 

precipitants and better SF5fermentability. Here, we hypothesize that the Ca(OH)2-induced 

precipitation was caused not only by the high pH effect, but also by the temperature effect and 

Ca2+ effect. During the treatment, we found that the temperature of the solution increased sharply 

from room temperature (~ 25oC) to 80oC. Such as a high temperature can facilitate precipitation 

reactions with high activation energy requirement [28]. It has also been reported that calcium ion 

can react with certain inhibitory compounds to form insoluble precipitants such as the calcium 

half-salt, PhO-Ca-OH [29]. 

A set of experiments was conducted to test the above hypothesis. As shown in Table 3-2, 

to evaluate the pH effect, Ca(OH)2 was replaced by NaOH to avoid the interference of Ca2+, 

while temperature was maintained around room temperature (25oC) by slowly adding a small 

amount of alkali and quickly dissipating the heat generated through a water batch heat exchanger. 

The treated SF5 solution was then used for algal culture; the maximum tolerant concentration 

(MTC) of SF5 by algal cells was used to as indicator to evaluate the detoxification effect. As 

shown in Table 3-2, the MTC value for the pH treatment greatly increased compared to the 

control, indicating significant role of alkaline effect during the SF5 detoxification.  

The temperature effect on the detoxification of SF5 was performed by increasing SF5 

solution to 80oC without pH adjustment or Ca2+ inclusion. This treatment did not reduce toxicity 

of the SF5 as the MTC values were almost unchanged compared to the control (Table 3-2). To 

create the calcium effect, CaCl2, instead of Ca(OH)2, was added to the SF5 solution at 25oC. 
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Again, no precipitation in SF5 or MTC improvement was observed (Table 3-2), indicating that 

Ca2+ ion alone does not contribute the detoxification of SF5.  

The above results show either temperature or calcium alone did not contribute the 

detoxification. The synergistic effects of pH with temperature and/or calcium were further 

studied.  As shown in Table 3-2, the pH-temperature treatment greatly increased the MTC value 

to 4.0, but the pH-calcium treatment did not improve the MTC as compared to the pH effect only.  

However, the synergistic effect on detoxification became more significant when all the three 

factors (pH, temperature, and calcium) were combined (Table 3-2), which explains why 

Ca(OH)2-based treatment resulted in a better detoxification effect than the other two alkaline 

species.  

Collectively, the results in Table 3-2 indicate that the pH effect is the ultimate mechanism 

for Ca(OH)2-based detoxification for SF5, while high temperature and presence of calcium also 

played roles in detoxification.  These factors synergistically enhanced the precipitation of 

inhibitory compounds in SF5. Indeed, as an effective flocculation reagent, Ca(OH)2  has been 

used in wastewater treatment for removing suspended solid and organics. The mechanism behind 

this flocculation is that Ca(OH)2  effectively destabilizes colloidal materials, leading to the 

consequent agglomeration and settlement of small particles [30]. In the biochemical conversion 

of lignocellulosic biomass to biofuel, Ca(OH)2 has also been used as an effective reagent to 

reduce the toxicity of the enzymatic hydrolysates [31,32,33]. The present study reveals that 

Ca(OH)2 is also an effective reagent for detoxification of pyrolysis-derived bio-oil fractions.    

Fatty acid analyses 

To further evaluate the potential for producing lipid-based biofuel, the fatty acid 

composition of C. reinhardtiias grown in medium containing 5.5% SF5 treated by Ca(OH)2 were 
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analyzed. The fatty acid profile of the algae grown in SF5-free medium was determined as a 

control. As shown in Table 3-3, the percentage of total fatty acid in algal cells grown in 

Ca(OH)2-treated SF5 was approximately half of that in the control culture, indicating that the 

inhibitory effects of SF5 on the growth of C. reinhardtii extended beyond growth to lipid 

synthesis as well. Such a low fatty acid content derived from the SF5-containing medium was 

also reported in our previous studies [10,11]. However, the fatty acid profiles of the cells grown 

in different media were similar, with palmitic acid (C16:0), oleic acid (C18:1), linoleic acid 

(C18:2), and α-linolenic acid (C18:3) being the major fatty acids. In conclusion, alkaline 

treatment decreased the concentration of total fatty acid in C. reinhardtii without notably 

changing the fatty acid profile. 

 

3.4 Conclusions 

This work showed that alkali-, particularly Ca(OH)2-, treatment can greatly reduce the 

toxicity and improve fermentability of SF5. When SF5 was treated by Ca(OH)2, its 

fermentability was improved to the greatest level and algal cells could grow in medium 

containing up to 5.5 wt% SF5, where all the acetic acid in the medium was replaced by SF5. The 

detoxification effect by Ca(OH)2 was due to the removal of various compounds including furans, 

phenols, ketones, aldehydes, ethers, esters, and alcohols. The synergistic effects of alkaline pH, 

high temperature, and presence of Ca2+ contribute to the high effectiveness of detoxification by 

Ca(OH)2.  
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Table 3-1 GC-MS analysis of chemical compounds in SF5 a 

Retention 

Time (min) 

Compound identified 

 

CAS # 

 

Peak Area in 

Untreated SF5 

Peak Area in 

Treated SF5 

2.30 Acetic acid 64-19-7 4686±1591 6782±82 

2.67 Acetol 116-09-6 3423±332 606±304 

3.29 Acetoin 513-86-0 107±14 210±32 

3.57 n-Propyl acetate 109-60-4 671±92  

3.66 2-Butanone, 4-hydroxy-3-methyl- 3393-64-4 1968±396  

3.86 unknown NA 94±22  

4.59 Alpha-monopropionin 624-47-5 2604±1111  

4.70 2-Methyl[1,3,4]oxadiazole 3451-51-2 87±79  

5.01 Succindialdehyde 638-37-9 202±80  

5.18 Methylolacetone 68648-26-0 108±38  

5.31 1,2-Cyclopentanediol, trans- 5057-99-8 135±33  

5.43 Methyl 2-methoxypropenoate 80-62-6 75±52  

5.48 unknown NA 97±26  

6.87 Furfural 98-01-1 2463±742  

7.61 Ethane, 1,1,1-trimethoxy- 1445-45-0 399±78  

7.99 Butanal, 2-ethyl- 97-96-1 139±55  

8.49 Glycidyl methyl ether 930-37-0 57±26  

8.59 Acetol acetate 592-20-1 198±25  

9.05 Furan, tetrahydro-2,5-dimethoxy- 696-59-3 271±123  

9.68 1,2-Epoxy-3-propyl acetate 6387-89-9 96±27  

9.80 Furan, tetrahydro-2,5-dimethoxy- 696-59-3 234±75  

10.23 unknown NA 386±112  

10.35 2(5H)-Furanone 497-23-4 1189±151  

10.45 Ketone, 2-furyl methyl 1192-62-7 198±7  

10.64 unknown NA 152±90  

10.85 2-Cyclohexen-1-ol 822-67-3 65±30  

11.06 Pentanal, 2,4-dimethyl- 32749-94-3 277±124  

11.20 1,2-Cyclopentanedione 3008-40-0 92±79  

11.78 2(5H)-Furanone, 5-methyl- 591-11-7 190±31  

12.65 1,2-Ethanediol, monoacetate 542-59-6 115±37  

12.86 unknown NA 805±199  

13.15 unknown NA 148±94  

13.32 unknown NA 169±26  

13.68 2(5H)-Furanone, 3-methyl- 22122-36-7 196±33  

14.30 Phenol 108-95-2 124±49  

14.61 unknown NA 66±30  

14.78 Ethyl Acetate 141-78-6  746±48 

15.11 Silane, ethoxytrimethyl- 1825-62-3 75±40  

http://www.commonchemistry.org/ChemicalDetail.aspx?ref=80-62-6
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Table 3-1 (continued) 

Retention 

Time (min) 

Compound identified 

 

CAS # 

 

Peak Area in 

Untreated SF5 

Peak Area in 

Treated SF5 

16.37 2-Cyclopenten-1-one, 2-hydroxy-3-methyl- 80-71-7 125±141  

16.93 2-Cyclopenten-1-one, 2,3-dimethyl- 1121-05-7 64±33  

17.13 4-Methyl-5H-furan-2-one 6124-79-4 102±21  

17.43 Hexanal dimethyl acetal 1599-47-9 82±25  

17.90 2-Deoxy-D-galactose 1949-89-9 99±49  

18.08 Phenol, 2-methyl- 95-48-7 101±69  

19.60 Phenol, 2-methoxy- 90-05-1 283±277  

20.68 2,6-Dimethyl-1,6-heptadien-4-ol acetate 70187-91-6 137±71  
 

a Data are mean ± standard deviation of three replicates  
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Table 3-2 Evaluation of parameter effect on the detoxification of SF5 during overliming  

 Treatment parameters MTC a 

Effect(s) pH Chemical used Temperature (wt%) 

Control 2  None 25oC  0.1 

pH effect 10 NaOH   25oC  2.0 

Temperature effect 2 None 80oC 0.1 

Calcium effect 2 CaCl2 25oC 0.1 

pH + Temperature effects 10 NaOH 80oC 4.0 

pH + Calcium effect 10 Ca(OH)2 25oC 2.0 

pH + Temperature + Calcium effects 10 Ca(OH)2 80oC 5.5 

a MTC: Maximum tolerant concentration, the highest concentration of SF5 added to the TAP 

medium that the algal cells can grow without significant inhibition. 
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Table 3-3 Fatty acid composition and total fatty acid (TFA) content of C. reinhardtii  

Grown in TAP medium supplemented with reagent grade of acetic acid (4 ml/L) (control) and 

the Ca(OH)2-treated SF5 (5.5wt%) with the final acetic acid concentration at 4 ml/L.  

 Algal fatty acid composition (%) a 

Fatty acid  Control Treated SF5 

16:0 30.02±0.13 28.13±2.53 

18:0   3.85±0.11   3.89±0.41 

18:1 (trans) 10.74±0.20   5.12±1.19   

18:1 (cis)   9.82±0.57 12.71±2.22 

18:2 20.50±0.49 25.84±1.13 

18:3 18.99±1.06 16.27±0.12 

20:0   6.08±0.19   5.12±1.19   

TFA content (%DW) 20.01±0.55   9.31±2.54 

a Data are mean ± standard deviation of three replicates  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



78 

 

 

 

 

 

 
 

 

 

Figure 3-1 Cell performance with differetn initial aceitic acind concentraitons   

Data are means of three replicates and error bars show standard deviations. Cell grwoth (A) and 

acetic acid consumption (B) 

(A) 

(B) 
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Figure 3-2 Effects of initial acetic acid concentration  

Specific growth rate and maximum cell density of C. reinhardtii included.  

Data are means of three replicates and error bars show standard deviations. 
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Figure 3-3 The concentration of major compounds in SF5 after alkaline treatment  

Data are means of three replicates and error bars show standard deviations. 
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Figure 3-4 Algae growth performance under different concentrations of treated SF5  

(A) untreated SF5; (B) SF5 treated by KOH; (C) SF5 treated by NaOH; (D) SF5 treated by Ca 

(OH)2.  Bars: specific growth rate; Lines: maximum cell density.  Data are means of three 

replicates and error bars show standard deviations. 
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Figure 3-5 Cell growth as functions of the concentration of potential inhibitors 

(Maximum cell density and specific growth rate included) 

(A) and (B): Acetol. (C) and (D): Phenolic compounds; (E) and (F): Furfural. The scattered 

points are the experimental data; the solid lines are the regression line; the dash lines: boundary 

with 95% confident interval.  

 

(C) (D) 

(E) (F) 

(A) (B) 

Y = 0.723 – 7.83 X  

(R2=0.57, P=0.004) 

 

Y = 0.914 – 12.8 X  

(R2=0.87, P=0.000) 

 

Y = 0.865 – 184 X  

(R2=0.65, P=0.002) 

 

Y = 1.083 – 254 X  

(R2=0.81, P=0.000) 

 

Y = 1.092 – 16.1 X  

(R2=0.91, P=0.000) 

 

Y = 0.827 – 9.16 X  

(R2=0.52, P=0.008) 
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CHAPTER 4 PYROLYTIC BIO-OIL DE-TOXICITY FOR LIPIDS PRODUCTION: 

IMPROVEMENT OF ALGAL FERMENTABILITY OF BIO-OIL BY DIFFERENT 

OXIDATIVE PROCESSES 

 

Abstract 

Pyrolytic acetate derived from lingo-cellulosic biomass is a promising substrate for microalgae 

fermentation of lipids production.  However, pyrolytic-acetate-containing bio-oil has an 

extremely complex composition and high inhibition on microorganism fermentation.  In this 

study, three different oxidation processes, bleach oxidation, ozone oxidation and Fenton’s 

process, were used to remove the contaminants in pyrolytic bio-oil.  Based on microalgal 

fermentation test, ozone oxidation was proved to be the best methods for further optimization. 

With 3 hour ozone treatment under pH 10, the fermentability of pyrolytic-acetate-rich Stage 

Fractionation of bio-oil (SF5) was increased from 0.05 wt% to 5.5 wt%. Chemical identification 

and quantification for untreated and treated SF5 was done to investigate the mechanism of ozone 

oxidation.  Potential inhibitive compounds, like aldehydes, ketones and phenolics, were proved 

to be removed partially or completely via ozone oxidation under basic pH. 
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4.1 Introduction 

Lignocellulosic biomass represents a potential feedstock for biofuel production [1-4], 

which can also aid in reduction of greenhouse gas emission and mitigation of climate change [5]. 

Among different types of lignocellulose processing, fast pyrolysis shows a promising process for 

biomass-to-biofuel conversion [6, 7]. Under moderate temperature and high heating rate, 

biomass is decomposed in the absence of oxygen, while syngas (13~25 wt%), bio-oil (60~70 

wt%) and biochar (12~25 wt%) are produced [8, 9]. Bio-oil has potential as a fuel substitute 

without additional processing, but can also be upgraded to higher value fuel such as biodiesel [9] 

Additionally higher value chemicals can be extracted from bio-oi [9, 10].  However, the 

utilization of pyrolytic bio-oil faces a major challenge due to its unstable physical properties and 

complex chemical composition [11]. 

Raw bio-oil contains a variety of anhydrosugars and carboxylic acids, which can serve as 

carbon substrates for microorganism fermentation [12-16]. To better study and utilize fast 

pyrolysis bio-oil, a unique fractionation system has been developed at Iowa State University [17]. 

This system can fractionate raw bio-oil into five stage fractions, each with different chemical 

compositions and fermentabilities [17]. One of the most promising fermentable stage fractions is 

stage fraction 5 which is rich in acetic acid.  This acetic acid rich fraction can be utilized for 

biolipid production through microalgae fermentation [15-17]. Microalga Chlamydomonas 

reinhardtii (C. reinhardtii), has been previously heterotrophically grown on acetic acid [18] and 

demonstrated overproduction of lipids as a result of genetic modification [19-22]. Thus it is a 

prospective candidate to ferment SF5.   

Although SF5 shows promise as a fermentable substrate, a major hurdle is its complexity.  

It is composed of hundreds of chemicals, some of which result in high inhibition on microalgae 
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fermentation [12, 15, 16]. In previous research, a fermentability test of SF5 was established 

growing C. reinhardtii in flask-scale. The microalga could only survive under 0.05 wt% of SF5 

and it was determined that acetol, furfural, hydroxymethylfurfural and phenolic compounds 

present in SF5 were toxic and caused inhibition of microalgal growth [15, 16]. Due to the 

complexity of bio-oil, ~30 wt% of chemical compounds are still unknown and the inhibition of 

SF5 cannot be completely explained based on previous research [15, 16].  

Methods to promote better fermentability in bio-oil are to either modification of 

microbial genotypes or to detoxify the bio-oil by different chemical or physical methods. 

Directed evolution improved the tolerance of C. reinhardtii to facilitate marginal improvements 

in bio-oil fermentability from 0.05 wt% to 0.5 wt% [15, 16]. However detoxification has shown 

to considerably improve bio-oil fermentability in comparison to genetic modification.  For 

example, activated carbon adsorption decreased the concentration of several inhibitors in SF5 

and 1.0 wt% of SF5 can be tolerated by cells. [15] and NaOH treatment increased the maximum 

tolerable concentration (MTC) of SF5 to 4.0 wt% [16]. It should be noted that the best reported 

fermentability of SF5 occurred when an evolved strain was cultured in alkaline treated SF5, 

which resulted in a MTC of 5.5 wt%. In this research we investigate the use of oxidation as a 

new alternative treatment method to detoxify bio-oil.  

It is known that various inhibitors contained in the acetic acid rich bio-oil fraction such as 

phenols are highly reductive compounds. Oxidation of those reducing substances into less-toxic 

compounds can therefore, provide a possible effective detoxification method for bio-oil.  As a 

matter of fact, oxidation with various chemical oxidants has been widely applied in wastewater 

treatment [23-25] to remove compounds such as carboxylic acids, chlorides and sulfides as well 

as aromatic compounds. Indeed some of the same compounds that are removed in wastewater are 
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also present in pyrolytic bio-oil. The goal of this work was to evaluate oxidizing agents such as, 

hydrogen peroxide, bleach and ozone, to detoxify bio-oil. The optimization and mechanism of 

the oxidative treatment was also explored.  

4.2 Materials and methods  

Microalgae culture and monitoring  

 The microalga C. reinhardtii ST 21 strain used in this work was obtained from Dr. 

Martin Spalding’s laboratory at Iowa State University. Seed culture was established in in 250-

mL Erlenmeyer flasks containing 50-mL tris-acetate-phosphate (TAP) medium under previously 

described procedure [16]. C. reinhardtii growth test was performed in 24-well plates with 1 ml 

medium and 0.1 ml algal seed in each well. The multi-well plates were placed at an orbital 

shaker with a speed of 130 rpm. Ambient temperature was set at 25oC. Continuous illumination 

at 110-120 μmol s−1m−2 was provided. The optical density of each well at 730 nm (OD730) were 

measured via a BioTek EL×800 microplate reader (Winooski, VT) on daily basis. Each test was 

performed in triplicates for statistical analysis.  

SF5 preparation and storage  

The fast pyrolysis and bio-oil stage fractionation were done at Central Iowa Research and 

Demonstration Farms by Dr Robert C. Brown’s group. [17] The acetic-acid-rich SF5 was 

collected in 1-L Nalgene HDPE bottles.  It was stored at 4oC and would be shaken up before 

each use.  

Oxidation methods for treating bio-oil fraction  

SF5 was completely mixed and divided into three bottles equally. SF5 in the first bottle 

was kept at pH 2, while solid NaOH powders were added to bottle 2 and 3 to adjust the pH to 7 
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and 10, respectively. Then each bottle of SF5 was centrifuged at 750 g for 5 minutes to remove 

sediments.  

4.5 ml of SF5 (pH 2, 7 or 10) was transferred to 15 ml centrifuge tube for treatment by 

liquid oxidants, Fenton’s reagent or bleach. 1.5 g/L of H2O2 and 0.75 g/L FeSO4 were achieved 

for Fenton’s reagent treatment. While the concentration of NaClO in bleach treatment is set as 

0.5%. Extra DI water was added to each centrifuge tube to make the final volume as 5 ml. Then 

the centrifuge tubes were put at water bathes at 40oC during 3-hour treatment. Triplicates were 

made for statistical analysis. As to gaseous oxidants, which is ozone in this work, 100 ml SF5 

was transferred to 1-L glass bottle for oxidation. Then 0.1 ml antifoam was added into the reactor 

to restrain bubble production. 10 CFH of Air was sent to ozone generator. The gas from the 

outlet of ozone generator contains 30% O3 and 70% air. The mix of O3 and air were sent to glass 

bottle for SF5 oxidation. The treatment of SF5 continued for 8 hours for each bench. At 0, 0.5, 1, 

3, 5, 8 h, the loss of the reaction bulk was replenished by DI-water prior to triple sample 

collection. All of the samples were stored at 4oC before the measurement and fermentation. 

Chemical Analyses 

The water content of SF5 was measured by previously described Karl Fisher analysis. 

Some compounds were quantified by gas chromatography with published method. Carboxylic 

acids were analyzed by a Dionex ion chromatography ICS 5000 system (Sunnyvale, CA) 

equipped with a DionexIonPac® ICE-AS1 column (4250 mm) [26]. The concentrations of total 

phenolics were measured by a published colorimetric method with vanillin as the calibration 

standard. Further investigation was done by Gas chromatography/Mass spectroscopy analysis 

[14]. 
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4.3 Results and discussion 

Characterization of chemical compounds in SF5 

SF5 is the aqueous stage fractionation of fast-pyrolysis bio-oil. It is reported that SF5 is 

composed of ~60% of water and many other chemicals with different properties [15, 16]. In 

order for better detoxification and fermentability of SF5, tentative identification via GC-MS was 

done in this work (Table 4-1). About forty compounds was identified, most of which are esters, 

acids, aldehydes, ketones and phenolics. Some aldehydes, ketones and phenolics were identified 

at previous bio-oil study too [14, 17, 27-31]. What’s more, some of these compounds were 

reported as inhibitive compounds for microorganism fermentation [32-35]. Removal of these 

compounds might be helpful to improve the fermentability of SF5.  

Remarkable unsaturated bonds, like double bands (-C=C-), aldehyde group (-CHO), 

ketone group (-C=O) and hydroxyl group (R-OH, Ar-OH) can be found from structures of 

identified compounds, which implies the possibility of bio-oil detoxification via oxidation. For 

example, phenolic compounds are present in fast pyrolysis bio-oil from decomposition of 

lignincellulosic biomass. They were implicated as causing compounds of solution taste and odor 

[36] as well as the inhibition on microorganism fermentation [15, 16, 34]. Phenolic compounds 

were as well known for being vulnerable under oxidative reagents. For example, ozone is 

reported to efficiently oxidize aqueous phenolics through hydroxylation, degradation and 

oxidative coupling pathways [36].  In conclusion, the toxicity of SF5 may come from aldehydes, 

ketones and phenolic compounds, and oxidative methods are promising for bio-oil detoxification. 

Effectiveness of different oxidative treatments on SF5 fermentability enhancement  

In electrochemistry, standard electrode potential (E0) is used to indicate the strength of 

oxidizing and reducing agent.  Chemicals with high standard electrode potential are active 
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oxidants, which were potentially effective to remove the aldehydes, ketones and phenolic 

compounds. With apparently high standard electrode potential, Fenton’s reagent, bleach and 

ozone were applied to SF5 treatment in this work. For these oxidants, the working pH of the 

solution would affect the reactant type and oxidation efficiency significantly. The reaction and 

standard electrode potential for each oxidant under different solution pH were listed at Table 4-2. 

SF5 under acidic pH (2), neutral pH (7) or basic pH (10) were treated by Bleach, Ozone 

and Fenton’s reagent, respectively. Because of the complexity of bio-oil, the concentration of 

one or several compounds cannot represent the comprehensive toxicity of SF5. Thus in order to 

investigate the detoxification efficiency of each treatment, the MTC (maximum concentration of 

SF5 in medium which can be tolerated by microalgae) of all treated SF5 were tested. Higher 

MTC indicates higher fermentability and less toxicity of the media, and is corresponding to 

better treatment of SF5. The MTC of each sample were shown on Figure 4-2. 

Sodium hypochlorite (NaClO) is the major compound of household bleach. Under acidic 

and basic pH, the major oxidative reactant is HClO and ClO- respectively. The two oxidizing 

agents show different standard electrode potentials. HClO, the oxidant appeared at acidic 

solution has higher oxidation abilities than ClO-, which works at basic solution (Table 4-2). 

However, the MTC of SF5 with bleach treatment under acidic, neutral and basic pH are 0.1%, 

0.2% and 4%, respectively (Figure 4-2). Then the bleach treatment efficiency cannot be 

explained only by the work of sodium hypochlorite, the contribution of the pH adjustment via 

solid NaOH powder to the detoxification of SF5 is unignorable.  

As to ozone treatment, two oxidizing actions might happen during ozonation procedure: 

direct reaction between molecular O3 and inhibitants, and radical way between hydroxyl radicals, 

which were generated via O3 decomposition, and inhibitive compounds. Hydroxyl radicals, 
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rapidly generated from molecular ozone under basic pH, is very reactive oxidizing agent and can 

improve the ozone oxidation of contaminants significantly. In this work, better SF5 

detoxification results for ozonation was obtained under alkaline pH, which improves the 

fermentability of SF5 from 0.10% to 5.5%. As a result, the radical oxidation coupled with 

increased pH via solid NaOH powder is promising for SF5 detoxification. 

As to Fenton’s reagent, the presence of Fe2+ at acidic solution gives rise to the sustained 

formation of .OH and .HO2, leading to high oxidation efficiency (Guido, 2008) of H2O2. 

However, the best detoxification of SF5 via Fenton’s reagent happened under basic pH. SF5 with 

pH 10 treated via Fenton’s reagent can improve the MTC of SF5 to 4.0%. Therefore the 

detoxification efficiency of each treatment is decided both by both oxidation and pH change of 

SF5 via solid NaOH powder. 

Under acidic pH (pH 2), all of the treatments increased the fermentability of SF5 to 0.1 

wt%. Under neutral pH (pH 7), 0.2 wt% or more of treated SF5 can be tolerated by microalgae 

cells. SF5 treated by Fenton’s reagent shows the highest fermentability due to the formation of 

intermediate hydroxyl radical and hydroperoxyl radical during oxidation of SF5. While oxidated 

under basic pH (pH10), higher improved fermentibility of SF5 was approached. After the 

treatment of Bleach, Ozone and Fenton’s reagent, 4.0, 5.5 and 2,0 wt% of SF5 can be tolerated in 

microalgal culture, respectively. In conclusion, all of these three oxidants were proved as an 

efficient oxidant for SF5 treatment under basic pH and ozone is the most efficient one.  

There are several factors to be considered before the application of these oxidants, such 

as the environmental effect. Bleach treatment has hidden dangers caused by the vitalization of 

gaseous Cl2. For Fenton’s reagent, it is an environmentally-safe oxidant but there are problems 

such as stoichiometric excess of hydrogen peroxide and the need of disposal significant 
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quantities of ferric salts. Ozone is a reliable and environmental-friendly oxidants technically 

applied (73,Guido 2008) and it shows the best improvement on the fermentability of SF5 under 

basic pH.  Based on the comprehensive comparison of detoxification efficiency, environmental 

influence and effect on subsequent medium preparation, ozone was chosen as the best oxidants 

in SF5 treatment. The further optimization and mechanism investigate of ozone treatment were 

shown in following paragraph. 

Optimization of ozone-based oxidative treatment conditions  

The fermentation of ST 21 at TAP medium with addition of raw SF5 (pH 2) was set as 

the control. Due to the toxicity of raw SF5, there is no microalga growth at control group when 

the addition of SF5 is 0.1 wt% (Figure 4-2a). While the dosage of ozone was set as the maximum 

ozone production of the instrument, the optimization of ozone treatment focused on treatment 

time under different solution pH. The initial solution pH was set as 2, 4, 6, 7, 8 and 10. Sample 

would be taken at t=0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8 hr. The fermentability of these samples was tested 

and shown at Figure 4-3. 

pH adjustment of SF5 was done 5 min, during which the temperature of SF5 could 

increase from 25 ℃ (pH=2) to as high as 80 ℃ (pH=10). After pH adjustment, SF5 samples 

would stand for a while until cool down to room temperature. The pH change with the addition 

of NaOH was recorded and shown on Figure 4-4. The pH of SF5 were quite stable at pH 4~6 and 

pH 10, which might be due to the existence of formic acid (pKa=3.75), acetic acid (pKa=4.75), 

Propanoic acid (pKa=4.87), and phenol (pKa=9.80), m-cresol (pKa=10.09) and other derivatives. 

For SF5 with initial solution pH 2, no solid NaOH was needed to adjust pH. After ozone 

oxidation, the pH of SF5 was decreased to 1.45. However, the fermentability of SF5 is no better 

than the control group (Figure 4-3a). Similar fermentation result was found for pH 4 and 6. To 
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get neutral solution, ~70 g solid NaOH was added to adjust raw SF5 pH to 7, which had no 

benefit to the fermentability of SF5. While after ozone oxidation of neutralized SF5, no matter 

how long the oxidation is, ST 21 can survive at medium with 0.1% of SF5 (Figure 4-3b-1) but 

not at medium with 0.2% of SF5 (Figure 4-3b-2).  

Significant improvement on fermentability were found in basic SF5, which needs about 

80 or 140 g NaOH per 1L raw SF5 to adjust pH from 2 to 8 or 10, respectively. The 

fermentability of SF5 pH 8 with ozone treatment was 1.0 wt%. While 5.5 wt% of basic SF5 

(pH=10) without ozone treatment can be tolerated by microalgae. The benefit might come from 

the precipitation of inhibitive compounds under basic pH. Based on Figure 4-6c, it was shown 

that ozone oxidation of basic SF5 within 3 hours can significantly further improve the microalgal 

growth performance (both maximum cell density and specific growth rate, P<0.05) but no 

increase on MTC of SF5 (Figure 4-3b).  

Mechanism of ozone-based oxidative treatment  

Concentration change of compounds in ozone-based oxidative treatment  

GC-MS analysis was done for both untreated SF5 and SF5 with pH 10 and 3 hours ozone 

oxidation (Table 4-1). The result shows that most of the compounds can be partially and 

completely removed via this treatment. To explore the efficiency of each effect on inhibitors 

removal, the concentration change of major compounds during ozone treatment were further 

quantified to investigate the toxicity change of SF5. Compounds identified in SF5 were mainly 

ketones, aldehydes and phenolics compounds, which were reported as fermentation inhibitors. 

Acetol and furfural, mostly identified compounds and proved to have inhibition on ST 21 

fermentation, were used to represent ketones and aldehydes. The weight percentage of these two 

compounds was obtained by calibration on GC. The total phenolics compounds, which was 
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reported to disarrange microalgal membrane fluidity, was obtained by spectrophotometer with 

vanillin as the calibration standard. 

The concentrations of inhibitors in different SF5 solutions were shown at Figure 4-5. 

Adjusting pH of SF5 from 2 to 10 via NaOH can remove 42 wt% of acetol, 65 wt% of furfural 

and 21 wt% of total phenolics. While ozone oxidation can increase the removal of acetol, 

furfural and total phenolics to 67 wt%, 100 wt% and 70 wt%. Based on the concentration change, 

the conclusion can be drawn that pH adjustment can significantly remove all of these three types 

of compounds, while the main effect of ozone oxidation is significantly improve of total 

phenolics removal efficiency. 

Phenols removal via ozone-based oxidative treatment  

The concentration change of phenols under ozone-based oxidative treatment was shown 

on Figure 4-7. pH increase can significantly decrease the total phenols concentration. With pH 

adjusted to 4, 6, 7, 8, 10, the removal rate of phenols is 14.9, 28.7, 39.6, 40.0, 49.0 wt%, 

respectively. With ozone treatment, phenols was mostly removed with the first 3 hour and then 

achieve stable phase. The aqueous phenolics in this work might be degradated to smaller 

molecular carboxylic acid such as acetic acid, for the acetate concentration is increasing with the 

ozone oxidation (Figure 4-7d). 

 

4.4 Conclusions 

This study demonstrated that ozone treatment is the most feasible oxidative method for 

detoxification of fast pyrolysis bio-oil. With 3 hour ozone treatment under pH 10, the 

fermentability of Stage Fractionation 5 of bio-oil was increased from 0.05 wt% to 4.0 wt%. 

Based on the GC-MS identification, the inhibition of SF5 is mainly from ketones, aldehydes and 
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phenolics. Adjusting pH from 2 to 10 can significantly remove these inhibitors and improve the 

fermentability SF5. Ozone treatment under basic pH mainly works on further oxidation of 

phenolics compound to ameliorate the maximum cell density and algal productivity. In summary, 

this result shows an effective oxidative method to improve the fermentative production of 

biofuels and biobased chemicals through pyrolytic substrates.  
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Table 4-1 Tentative identification of SF5 compounds by GC-MS  

Retention 

Time 

(min) 

Compound 

identified 

 

CAS # 

 Structure Reference 

Concentration 

(raw SF5 pH 2, no 

ozone treatment) 

Concentration 

(treated SF5 pH 

10, Ozone  

treatment =3 hr) 

Percentage of 

residual to 

original 

2.43 

Acetic acid 

ethenyl 

ester 108-05-4  6 

 

2921±353 

 

86±3 

2.96%* 

2.82 Acetic acid 69-14-7  1,3,4,5,6 

 

 

2822±470 

 

 

3851±449 

136.47% 

3.21 Acetol 116-609-6  2,3,4 

 

 

8499±456 

 

 

15749±6357   

53.97% 

3.62 

Propanoic 

acid 79-09-4   

 

190±70 

 

 

0* 

3.83 Acetoin 513-86-0  5,6 

 

180±34 

 

385±140 

214.53% 

4.64 

Butanal, 3-

hydroxy- 203-530-2   

 

97±17 

 

 

0* 

5.13 

2-

Butanone, 

1-hydroxy- 5077-67-8   

 

224±36 

 

246±12 

109.78% 

5.41 

Methallyl 

acetate 820-71-3   

 

490±112 

 

 

0* 

5.54 

Succindiald

ehyde 638-37-9  2,6 

 

622±17 

 0* 

5.68 

Methylolac

etone 68648-26-0  6 

 

382±31 

 

325±13 

84.90% 

5.99 

Acetaldehy

de, 

(methylami

no)-, 

dimethyl 

acetal 122-07-6   

 

180±60 

 

 

0* 

6.81 

3-

Furaldehyd

e 498-60-2   

 

4953±91 

 0* 

7.22 Furfural 98-01-1  1,3,4,5,6 

 

316±42 

 

150±63 

47.54% 

8.38 

2-

Heptanone, 

3-methyl- 2371-19-9   

 

144±4 

 

 

0* 

8.94 

Methylacet

ylacetone 815-57-6   

 

155±12 

 0* 

9.97 

Acetic acid, 

hexyl ester 88230-35-7   

 

861±326 

 0* 

Samples were 50 times diluted; peaks with area <85 were neglected 

*means the difference between original and residual is significant 
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Table 4-1 (continued) 

Retention 

Time 

(min) 

Compound 

identified 

 

CAS # 

 Structure Reference 

Concentration 

(raw SF5 pH 2, no 

ozone treatment) 

Concentration 

(treated SF5 pH 

10, Ozone  

treatment =3 hr) 

Percentage of 

residual to 

original 

10.42 

Ethanone, 

1-(2-

furanyl)- 1192-62-7  6 

 

130±32 

 0* 

10.63 

2(5H)-

Furanone 497-23-4  2,4,6 

 

1927±224 

 

422±2 

21.87%* 

11.08 

2-

Cyclohexen

-1-ol 822-67-3  6 

 

 

135±15 

 0* 

11.93 

4,4-

Dimethylpe

nt-2-enal 22597-46-2   

 

110±16 

 0* 

13.01 

Spiro[2.4]h

eptan-4-one 5771-32-4   

 

132±30 

 0* 

13.18 

2-

Furaldehyd

e, 5-

methyl- 620-02-0  1,5 

 

154±39 

 0* 

13.88 

2(5H)-

Furanone, 

3-methyl- 22122-36-7  5,6 

 

116±5 

 0* 

14.75 

3,3-

Diethoxy-

1-propanol 16777-87-0   

 

313±35 

 

377±39 

120.58% 

15.24 

Ketone, 

methyl 2-

methyl-1,3-

oxothiolan-

2-yl 33266-06-7   

 

 

314±38 

 0* 

17.24 

2(5H)-

Furanone, 

4-methyl- 6124-79-4   2,6 

 

230±4 

 0* 

17.88 

Hexanoic 

acid, 3-

hydroxy-5-

methyl-, 

methyl 

ester 2615-71-6   

 

 

190±22 

 0* 

18.03 

Phenol, 3-

methyl- (m-

cresol) 108-39-4  4,5 

 

 

479±55 

0*  

18.56 

Acetopheno

ne 98-86-2   

 

 

218±112 

0*  

19.13 

2,5-

Cyclohexad

iene-1,4-

diol 63453-92-9   

 

 

131±25 

0*  
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Table 4-1 (continued) 

 

Retention 

Time 

(min) 

Compound 

identified 

 

CAS # 

 Structure Reference 

Concentration 

(raw SF5 pH 2, no 

ozone treatment) 

Concentration 

(treated SF5 pH 

10, Ozone  

treatment =3 hr) 

Percentage of 

residual to 

original 

19.61 

Phenol, 2-

methoxy- 90-05-1  4,5,6,8 

 

921±88 

0*  

20.74 

2,4-

Diacetoxyp

entane 7371-86-0   

 

248±56 

0*  

22.89 

Phenol, 3,4-

dimethyl- 95-65-8  4,5 

 

120±13 

0*  

24.81 

Phenol, 2-

methoxy-4-

methyl- 93-51-6  4,5 

 

155±32 

0*  

25.30 

1,3-

Dioxane-5-

methanol, 

5-ethyl- 5187-23-5   

 

106±11 

0*  

28.99 

exo-

Norborneol, 

acetate 34640-76-1   

 

117±3 

0*  
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Table 4-2 Standard reduction potentials of major oxidants at different pH 

 

Species pH Electrode reaction Standard potential value 

NaClO 

Acidic 
ClO- + 2H+ + 2e- → Cl- + 

H2O 
1.698 

Alkaline 
ClO- + H2O + 2e- → Cl- + 

2OH- 
0.841 

O3 

Acidic O3 + 2H+ + 2e- → O2 + H2O 2.076 

Alkaline 
O3 + H2O + 2e- → O2 + 2OH- 1.240 

.HO + e- → OH- 2.310 

H2O2 
Acidic 

H2O2 + 2H+ + 2e- → 2H2O 1.776 

.HO2 + H+ + e- → H2O2 1.495 

.HO + e- → OH- 2.310 

Alkaline HO2
-
 + H2O + 2e- → 3OH- 0.878 
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Figure 4-1 Sketch of ozone treatment 
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Figure 4-2 Microalgae growth under untreated SF5 
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Figure 4-3 Microalgae growth under H2O2 treated SF5 

 

 

(A) Initial pH=2; (B) Initial pH=7; (C) Initial pH=10 
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Figure 4-4 Microalgae growth under Bleach treated SF5 

(A) Initial pH=2; (B) Initial pH=7; (C) Initial pH=10 
 



105 

 

 

 

 

 
 

 
 

Figure 4-5 SF5 fermentation result for optimization of ozone treatment 
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Figure 4-6 SF5 pH change with the addition of solid NaOH 
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Figure 4-7 SF5 pH change after 8 hour ozone treatment 
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Figure 4-8 Compare of the fermentability of SF5 under different treatment time 

 



109 

 

 

 

 

 

 

 
 

Figure 4-9 Concentration change of major inhibitors in SF5 

 

When concentration is zero, the number was represented as 0.01wt% in statistical test. 
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Figure 4-10 Concentration change of phenols in SF5 
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CHAPTER 5 TOXIC EFFECT OF PYROLYTIC BIO-OIL ON CELL GROWTH AND 

MEMBRANE PROPERTY IN MICROALGAE CHLAMYDOMONAS REINHARDTII 

 

Abstract 

Acetic acid derived from fast pyrolysis of lignocellulosic biomass is a promising 

substrate for microalgae fermentation for producing lipid-rich biomass.  However, crude 

pyrolytic acetic acid solution has an extremely complex composition and contains various toxic 

compounds inhibiting algal growth.  In this work, the inhibitory mechanisms caused by pyrolytic 

acetic acid, and methods of protect cells from such an inhibition was studied.  It was found that 

acetic acid itself served a carbon source for boosting algal cell growth, but also caused cell 

membrane leakage, and thus inhibit the cell growth. The optimal acetic acid concentration for 

highest cell density was 4g/L. Overliming treatment of crude pyrolytic acetic acid stream 

increase the algal growth which corresponding reduce the cell membrane leakage. Direct 

evolution of algal strain also increase the cells’ tolerance to the pyrolytic acetic acid solution 

with enhance cell membrane integrity. Statistical analysis shows that there was a correlation 

between the cell growth performance and the membrane integrity (leakage) but not membrane 

fluidity. The addition of the cytoprectactant such as Pluronic F68 and Pluronic F127 can enhance 

the cell membrane integrity and thus enhance the cell growth when growing in pyrolytic acetic 

acid substrate Collectively, this work indicate that the cell membrane is one major reason for the 

toxicity of pyrolytic acetic acid when being used for algal culture. To better use this promising 

pyrolytic substrate, a cell membrane of microorganism need to be strengthened though either 

strain improvement or addition of membrane protectant reagents.  
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5.1 Introduction 

Conversion lignocellulosic biomass to fuels and chemicals has been traditionally 

achieved through biochemical or thermochemical pathways.  In biochemical process, biomass is 

converted to reducing sugars through pretreatment and enzymatic hydrolysis followed by 

microbial fermentation into fuels. In thermochemical process, biomass is treated by pyrolysis or 

gasification to produce intermediates such as bio-oil or syngas, which are further upgraded into 

drop-in fuels. As an alternative to these conventional processes, a sequential thermochemical-

biochemical processes creates a carbon-efficient pathway for producing fuel products [1]. This 

new process can be a fast pyrolysis of biomass into pyrolytic substrates followed by microbial 

fermentation, or a gasification of biomass into syngas followed by syngas fermentation.  

Pyrolysis-pyrolytic substrates fermentation represent a promising hybrid process. The 

process has several advantages including feedstock flexibility, utilization of both the 

carbohydrates and lignin in biomass, opportunities for distributed processing and promising 

economic analysis [2]. Various pyrolysis derived compounds have been explored as potential 

fermentation substrates. For example, anhydrosugars such as levoglucosan has been used for 

bioethanol production through yeast [3-5] and E. coli [6-10], acetic acid have been utilized in 

yeast [11] or microalgae fermentation for producing lipid-rich biomass [12-14].  

Currently, the major challenge in the pyrolysis-fermentation hybrid process is the toxicity 

of the contaminant compounds in crude pyrolytic substrate [10, 13, 14]. Raw crude pyrolytic 

substrate stream is an extremely complicated system containing compounds such as acetol, 

furfural, phenolics, 5- hydroxymethylfurfural (5-HMF), and many unidentified compounds [4]. 

Some of those compounds have been reported to readily impede the microbial growth. For 

example, 5-HMF and furfural reacts with NADH in microbial cells and reduced to furfural 
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alcohols, which decreased the reductive power (i.e. NADH) and growth of microorganisms such 

as hydrogen producing bacteria [15] and S. cerevisiae [16]. Furanic compounds are known for 

deactivating cell replication, inducing DNA damage, and inhibiting the key enzymes for central 

carbon metabolism [16]. Phenolic compounds cause the inhibition by altering the permeability of 

the cell membrane and/or generating reactive oxygen species [16, 17].  

Various approaches have been developed to mitigate the inhibitory effects of pyrolytic 

substrates.  For example, crude pyrolytic substrates solution can be fractionated to enrich specific 

substrates with reduced inhibitory compounds [18]. Inhibitory compounds can be extracted 

through solvent extraction [7, 19] and adsorbed via activated carbon or biochar [7, 14, 20]. Air 

stripping was used to remove volatile compounds such as  short chain organic acids [7], while 

overliming was used to mitigate the toxicity of pyrolytic sugars [10] and acetic acid [13] through 

precipitation of the inhibitory compounds. In addition to those treatment methods, researchers 

has also developed directed evolution approach to obtain robust strains  tolerant high level of 

inhibitory compounds contained in pyrolytic substrates [13]. 

Although practical approaches reducing the toxicity of crude pyrolytic substrates have 

been well developed, the mechanism of the toxicity is still poorly understood. Previous studies 

on elucidating inhibitory mechanisms have been focusing specific compound with chemical 

defined medium, the mechanism of inhibition caused by a complex system like crude pyrolytic 

substrate has not been reported. It has been reported that membrane fluidity and integrity change 

is one of the important reasons causing the inhibition of many microbial cells ([21-23]). 

Therefore, the aim of this work is provide a deep insight of the inhibitory mechanism of crude 

pyrolytic substrate by evaluating the cell membrane property change. The microalga 
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(Chlamydomonas reinhardtii) fermentation using pyrolytic acetic acid as substrate was used as a 

mode system [24-27].  

5.2. Materials and Methods  

Microalgae culture  

The microalga strain C. reinhardtii ST 21 was obtained from Dr. Martin Spalding’s 

laboratory at Iowa State University. The metabolic evolved strain,  C. reinhardtii YL01, with 

enhanced tolerance to the  toxicity of the pyrolytic acetic acid solution, was developed in our 

previous research [28]. Both of the two strains were maintained in tris-acetate-phosphate (TAP) 

medium under the conditions described previously [29].  

To evaluate the cell membrane properties of the algal strains, the seed was inoculated into 

medium containing pyrolytic acetic acid solution. The cells were grown in 250-mL Erlenmeyer 

flasks containing 50 ml medium. The flasks were incubated in an orbital shaker (130 rpm) at 

25oC. A continuous illumination at 110-120 μmol s−1 m−2 was also provided create a mixotrophic 

condition in order to further promote the cell growth. The cell density was determined at 730 nm 

(OD730) using spectrophotometer. Each test was performed in triplicates for statistical analysis.  

Preparation and detoxification of acetic acid rich pyrolytic substrate    

A fast pyrolysis and stage fractionation unit was used to pyrolyze softwood and prepare 

acetic acid rich pyrolytic substrate stream [18].  The unit pyrolyze the biomass and fraction the 

crude bio-oil into 5 distinct stage fraction (SF).  Stage fraction #5 (SF5) was rich in acetic acid. 

Crude SF5 solution was collected in 1-L Nalgene HDPE bottles and stored at 4oC prior use.  

Crude SF5 was treated by overliming operation to reduce its toxicity [13].  In brief, SF5 

solution was transferred to a 100-ml beaker at room temperature (25oC). Approximate 140 g dry 

powder of Ca(OH)2 was added to the solution to reach pH10. The temperature of the solution 
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increased to 80oC shortly after Ca(OH)2 addition. The solution was then stirred for about 1 hour 

until the temperature returned to room temperature, and then centrifuged at 750 g for 5 minutes 

to remove the precipitants. The supernatants designated as “Treated SF5” were transferred into 

fresh 50-ml tubes and stored at 4oC prior to use.  

Measurement of cell brane leakage and fluidity  

The membrane properties of algal cells including leakage and fluidity were measured in 

this work. A SYTOX Green Nucleic Acid stain method [30] was used to evaluate cell membrane 

leakage. In brief, algal cells grown at mid-exponential phase were harvested by centrifugation at 

4800 g for 5 min and rinsed with PBS buffer (pH 7.0) for three times to reach a final cell density 

of OD730=0.4. The cell suspension was then mixed with 0.5 µM SYTOX Green dye (Invitrogen) 

and incubated at room temperature for 30 min under a dark condition. The cells were then 

measured using a Becton Dickinson FACS Vantage flow cytometer equipped with 488 nm 

excitation. As SYTOX Green dye can only pass through damaged cell membrane and emits 

green fluorescence after embedded in the nucleic acids, the SYTOX positive cells indicate the 

cell membrane-damaged cells, which can be distinguished the intact cells (without cell 

membrane damage).  

Mid-log phase cells were also harvested for measuring cell membrane fluidity based on 

the method described previously [30]. . The broth were centrifuged and cell pellets were washed 

three time by PBS (pH=7.4) at 4 °C. The density of the PBS-washed cell samples were adjusted 

to OD730=0.4. 1,6-diphenyl-1,3,5-hexatriene (DPH) dye was dissolved in tetrahydrofuran (THF) 

with a final concentration of 1 mM to prepare DPH-THF stock solution. 20 µL of DPH-TMA 

solution was added to 1 mL sample to make a final concentration of DPH to 2x10-7 M. Then 

samples were loaded in 96-well plate analyzed with aSynergy 2.0 Microplate reader, where IVH 
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(horizontal position, Ex=360 nm) and IVV (vertical position Em=450nm) were measured. The 

membrane polarization ratio can be calculated by P=(IVV - IVHG)/(IVV + IVHG), where G=1 

in this case [31]. 

Transmission Electron Microscopy (TEM) of algal cells. 

Algal cells were collected and incubated with 2% glutaraldehyde (w/v) and 2% 

paraformaldehyde (w/v) in 0.1M cacodylate buffer, pH 7.2 for 48 hours at 4°C.  After incubation, 

cells were pelleted and re-suspended in 1% agarose to concentrate cells together. The agarose 

was chilled at 4°C for 15 min to solidify. The firm agar was cut into 1mm×1mm cubes which 

were then treated as follows. Samples were rinsed 3 times in 0.1M cacodylate buffer and then 

post-fixed in 1% osmium tetroxide in 0.1 M cacodylate buffer for 1 hour at room temperature.  

The samples were rinsed in deionized distilled water and stained with 2% aqueous uranyl acetate 

for 1 hour, then dehydrated in a graded ethanol series, cleared with ultra-pure acetone, infiltrated 

and embedded using EPON epoxy resin (Electron Microscopy Sciences, Ft. Washington, 

PA).  Resin blocks were polymerized for 48 hours at 65°C.  Thick and ultrathin sections were 

made using a Leica UC6 ultramicrotome (Mager Scientific, Dexter, MI). Ultrathin sections were 

collected onto carbon film copper grids and images were captured using a JEOL 2100 scanning 

and transmission electron microscope (Japan Electron Optic Laboratories, Peabody, MA). 

Statistical Analysis  

All the tests were performed in triplicates, with the results being presented as the mean ± SD.  

Three-way analysis of variance (ANOVA) and T test were done by the software R (V3.0.2). A p-

value less than 0.05 was considered significant.  

 

5.3. Result and discussion  
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Cell membrane properties under different acetic acid concentrations 

C. reinhardtii was capable of growing heterotrophically using acetic acid as a carbon 

source. To investigate the effect of toxic compounds on the cell membrane properties, it is 

necessary to understand the cell membrane properties as a function of acetic acid. Indeed, high 

concentration of acetic acid has shown inhibitory effect on the culture C. reinhardtii [13].  

As shown in Figure 1, C. reinhardtii was grown in medium containing acetic acid 

ranging from 0-12 g/L. The maximum cell density increased with the acetic acid concentration 

from 0 to 4 g/L, and decreased with further increase of the acetic acid concentration. The 

biomass yield kept decreasing with the increase of reagent acetic acid concentration. The 

SYTOX results show that the percentage of the SYTOX positive cells increased with acetic acid, 

indicating that the cell membrane become vulnerable with the addition of acetic acid. At 8 and 

12 g/L acetic acid concentration levels, most of the cells are permeable to SYTOX green, 

indicating the cell membrane integrity was severely damaged. Correspondingly, the cell growth 

was also significantly inhibited, presenting significantly decreased maximum cell density and 

biomass yield.  The cell membrane fluidity did not change significantly (p>0.05) under different 

concentration of reagent acetic acid. 

Figure 1 shows that 4 g/L acetic acid concentration resulted in the best cell growth 

performance. This concentration was used through the result of studies in this work. In cased of 

different levels SF5 (containing 8 wt% acetic acid) was added to the culture, additional reagent 

grade acetic acid was supplemented to ensure the total acetic acid concentration was fixed at 4/L.   

Effects of detoxification treatment of the pyrolytic acetic acid on cell membrane properties   

One of major challenges in utilization of pyrolytic acetic acid is the inhibitory residual 

compounds contained in crude substrate solution, which significant inhibited cell growth [12-14]. 
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Figure 2 shows the growth and the SYTOX results of C. reinhardtii ST 21 strain grown in TAP 

medium containing different levels raw and treated SF5 solution. As shown in the figure, 

addition of 0.1% of raw SF5 resulted in a 43% decrease of mid log phase cell density, which was 

associated with increase in SYTOX positive cells from 37% to 53%. When raw SF5 

concentration increased to 0.4%, the cell growth was completely inhibited and the SYTOX 

positive cells reached to 100%.  

Our previous research has shown that over-liming (Ca(OH)2) treatment is an effective 

way to reduce the toxicity of raw SF5 through removing toxic compounds such as furfural, 5-

HMF and phenols and the fermentability of SF5 was increased from 0.1 wt% to 5.5 wt% [13].  In 

this work, the cell growth improvement and the cell membrane property change as a result of 

over-liming treatment were correlated. As shown in Figure 2, when algal cells were grown in 

over-liming treated SF5, the cells can tolerate much higher levels of SF5 (up to 4.0 wt%) 

compared to the raw SF5. For example, 0.4 wt% of raw SF5 leads to completely cell membrane 

integrity broken while the cells grown under 0.4 wt% of treated SF5 shows similar growth 

performance and the membrane property as control (P>0.05).  The correlation between the cell 

growth and the SYTOX data indicate that the cell growth inhibition can be explained by the 

disruption of cell membrane properties. 

However, high percentage of treated SF5 can still bring adverse effect on cell growth 

performance and cell membrane integrity. When the concentration of treated SF5 is increased to 

1.0 wt%, even though the maximum cell density can still keep the same as control, the increase 

of SYTOX positive cell percentage leads to 70% decrease of biomass yield. When the 

concentration of treated SF5 achieved 4.0 wt%, more than 80% of cells are SYTOX positive, 
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which is corresponding to significantly decreased maximum cell density, and 95% decrease of 

biomass yield. Other strategies are needed to enhance cell membrane for better cell growth. 

Effects of metabolic evolution of the algal strain to on the cell membrane property  

The algal strain ST21 was further evolved in order to enhance its tolerance to the raw SF5 

solution [12, 14]. The cell growth and the membrane property of the wild strain ST21 and the 

evolved strain YL01 were respectively compared under two conditions: without SF5 addition (4 

g/L reagent grade acetic acid being added instead); and with SF5 addition (0.4 wt% SF5 plus 

additional 3.71g/L reagent acetic acid to reach a total final acetic acid concentration as 4 g/L).    

Figure 3 shows the cell growth and cell membrane properties changes of ST21 and YL01 

strains when reagent grade acetic acid was used. The evolved strain had an overall higher cell 

density and biomass yield than the wild strain (Figure 3A and 3B). Figure 3C shows that the 

percentage of SYTOX positive cells of the evolved strain YL01 was less than that of the wild 

strain ST21. No significant difference was found on cell fluidity among alive cells under 

different culture conditions. 

Figure 4 the cell growth performance and membrane properties of the wild strain and 

evolved strain when 0.4% SF5 was added. Overall, the trends of these parameters were similar 

trends as those when growing in reagent grade acetic acid (Figure 3), except that the growth of 

wild strain was completely inhibited with SYTOX positive cells reached to almost 100%.   

Improvement of cell membrane integrity by polymeric cyto-pretectant  

The above results indicate that the inhibition of algal growth by the crude pyrolytic acetic 

acid stream is associated with membrane property of algal cells. To confirm this mechanism, we 

further tested the use of cell membrane protectant to protect the cell from damaging, and thus 

increase the cell growth performance in the SF5-containing medium. Some polymeric protectants, 
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such Pluronic F68 and Pluronic F127 have been used as effective protectants in mammalian cell 

culture by interacting with cell membrane without adversely affecting cell growth [32]. In this 

work, these pluronic polymers were used to protect algal cell from membrane damage caused by 

the inhibitory compounds in pyrolytic substrates.  

As shown in Figure 5A, when the cells were grow in medium without SF5 addition 

(control), i.e., only regent grade acetic acid was used, the cell growth from the protectant-free 

medium was not significantly different from those growing protectant-containing culture. 

However, when 0.2% raw SF5 was added to the medium, the growth of the cells without 

protectant was significantly inhibited, while the cells added with Pluronic F68 and Pluronic F127 

resulted in the similar growth performance as those in the control culture. For the evolved algal 

strain added with 4.0 wt% treated SF5, cells could keep alive even without protectant addition. 

However, the cell growth is poor compare to those addition with Pluronic F68 and Pluronic F127. 

The biomass yield showed similar trend as cell growth.  Figure 5C shows that the percentage of 

the SYTOX positive cells reduced significantly (P<0.05) when Pluronic F68 and Pluronic F127 

were added to the medium throughout all the experimental conditions tested. The data clearly 

indicate that the two Pluronic polymers protected cells via avoiding cell membrane leakage, 

which resulted in an improved cell growth. Overall, the protective effect of the two Pluronic 

acids were similar when raw SF5 was used in the medium, while at 4% treated SF5, the Pluronic 

F127 had a better protection than Pluronic F68 which is evident from the lower STYOX positive 

cells when this protectant was used (Figure 5C).  Figure 5D shows that there are no significant 

change of the membrane fluidity of algal cell treated with different types of protectants.   

Correlation of the cell growth and membrane properties under different conditions   
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Previously results showed that the cell growth inhibition is related to the change of cell 

membrane properties such as membrane leakage and fluidity. However, studies on quantitative 

analysis of the relationship between cell growth and the membrane properties is very limited. In 

this work, the correlation between cell growth (represented by maximum cell density and 

biomass yield) and cell membrane property (represented by cell membrane leakage and cell 

membrane fluidity) were statistically analyzed and the results are presented in Figure 6. As 

shown in the Figure, based on the linear regression, the cell growth is significantly (P<0.05) 

correlated with the damage on cell membrane integrity, but is insignificant (P>0.05) with cell 

membrane fluidity. As a matter of fact, the results presented in previous sections indicate that the 

cell membrane fluidity from samples are very similar among different culture conditions 

investigated. The result shows that algal cells growth under the presence of pyrolytic acetate can 

be disrupted by the broken of cell membrane; however, as long as algal cells are alive, the cell 

membrane would keep similar fluidity.  

 

Cell membrane visualization  

The above SYTOX results indicate that the inhibitory effect of SF5 on the algal growth 

was mainly due to the cell membrane damage caused by the toxic compounds contained in SF5. 

We further used transmission electron microscopy (TEM) to visualize the cell membrane change. 

As shown in Figure 7A, the wild strain cells growing in SF5-free medium showed a cohesive 

morphology with minimal cell membrane damage.  With the addition of the 0.2% raw SF5, the 

cells were not viable with severe damage was observed in the membrane and organelle (Figure 

7B). Under the same concentration of raw SF5, however, the addition of protectant Pluronic F68 

significantly improved the cell integrity even though some damage of cell membrane and loss of 
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part of cytoplasm were still observed (Figure 7C).  Figure 7D indicated that the evolved strain 

(YL01) basically kept its integrity even treated with a higher SF5 concentrations (4%), indicating 

the significant gain of tolerance to crude pyrolytic substrate solution.    

5.4 Discussion  

Use of pyrolytic substrate for microbial fermentation is a promising technology for 

producing fuels and chemicals from lignocellulosic biomass. However, this technology is 

currently impeded by the toxicity of the crude pyrolytic substrate steam, due to various 

contaminant compounds resulted from the biomass pyrolysis [1]. The investigation of the 

microbial growth inhibition mechanism is necessary to improve the effectiveness of hybrid 

processing. Previous study mostly focused on using the model contaminant compounds to their 

study the inhibitory effect on bacteria or yeast growth, and most of these model compounds were 

the derivatives during biochemical processing of lignocellulosic biomass or syngas fermentation. 

In this work, we used the “real” mix of the inhibitory compounds derived from the fast pyrolysis 

of lignocellulosic bio mass, which is more presentative.   

It is reported that cell growth inhibition is related to cell membrane property change 

under chemical stress. For example, various phenolic compounds were reported to have adverse 

effect on bacteria, fungi and microalgal cell membrane integrity. The degree of inhibition 

depends on the media pH, and lipophilicity, degree of ionization and the specific chemical 

structure of phenolic compounds [33].  

The mechanisms how phenolic compounds inhibit yeast cell growth is investigated with 

thymol as the model compound [34]. The inhibition can be carried out through decrease cell 

membrane structural compounds or activating specific signaling pathways in yeast cells. As to 

cell membrane lesion, pyrolytic compounds can inhibit the biosynthesis of ergosterol or binding 
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with ergosterol, a key structural component in cell membrane. Based on this mechanism, the 

decrease of cell membrane integrity resulted from phenolic compounds may be associated 

membrane fluidity change because ergosterol regulates membrane fluidity.  Thus it is quite 

possible that pyrolytic acetate (with 2 wt% phenolic compounds) can significantly affect the cell 

membrane property and inhibit cell growth. 

When evaluating the damage of pyrolytic substrate on cell membrane, the cell 

membrane-damaging effect from acetic acid also needs to be considered, although this 

compound was also serving as the carbon source for algal cells.  Our result (Figure 1) shows that 

for the culture of C. reinhardtii, acetic acid served as both a cell growth “booster” (as a carbon 

source) and cell growth inhibitor (as damaging the cell membrane integrity) Within the range of 

1~4 g/L acetic acid, the cell growth increase may overcome the damage of cell membrane, as a 

result, the maximum cell density increased with the acetic acid concentration.  When the 

concentration of acetic acid exceeded 4 g/L, the cell membrane integrity damage become severe 

and thus, the cell density appeared to reduce.  

When studying the toxic effects of pyrolytic acetate solution SF5 on the cell membrane 

properties, SF5 was blended with reagent acetic acid to reach a 4g/L total acetic acid 

concentration in the medium. It was found that 0.2 wt% of raw SF5 can severely damage the cell 

membrane integrity and lead to completely death of algal cells (Figure 5). Through overliming 

treatment, a large amount of contaminant compounds in SF5 were removed [13], thus 

overliming-treated SF5 significantly decreased damage on cell membrane integrity (Figure 2). In 

another word, the SF5 concentration that cells can tolerate increased.  

Compared to wild strain direct evolution algal strain showed significantly decrease in cell 

membrane leakage when treating same concentration of pyrolytic acetate. The maximum SF5 
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concentration that the evolved algal strain can tolerate also increased as compared to the wild 

strain. However, the evolved strain shows no significant change of cell membrane fluidity 

(P>0.05). Previous results have shown that evolved strain can tolerate higher concentration of 

SF5 but without providing the mechanism behind such an enhanced tolerance [14] . The results 

obtained in this work demonstrated that the directed evolution enable the algal strain the ability 

to strengthen cell membrane. Regardless the leakage is resulted from pyrolytic acetic acid or 

pure acetic acid, and this ability can be passed on to next generation during the continuous 

evolution process [35]. The result indicates that during direct evolution C. reinhardtii cells 

obtained some changes on its membrane property and these changes are associated with 

metabolic events happened under the toxic stress. The ability of evolved strain obtained from 

direct evolution under a specific type of toxic stress might be applied to increase tolerance to 

another type of toxic stress, as the inhibition mechanism is the fundamental mechanism for those 

toxic effects.   

Our results also shows that cytoprotectant also benefit membrane integrity of algal cells. 

Some cytoprotectants have been reported to strengthen cell membrane under stress. For example, 

Pluronic F68, a polymeric substance containing polyol group, was used as an effective protectant 

in animal cell culture by generating a layer of a Pluronic polyol on the cell surface without 

adverse effect on cell growth  [32]. The protective effect is hypothesized to be associated with 

the polyols interaction with cell membrane [36]. In this work, it was found that pluronic 

substances such as Pluronic F68 and Pluronic F127 were capable of protecting membrane 

damage of algal cell as well. A small amount of cytoprotectant significantly improved the algal 

cell membrane integrity under different stressful conditions caused by crude pyrolytic acetic acid 

solution (Figure 5). Such a protective effect led to improved growth performance of algal cell 
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with presence of pyrolytic acetate. It should be noted that such a protective effect varies based on 

the protectant types, chemical stresses conditions and culture time.  

5.5 Conclusions  

This study demonstrated that the growth performance and ability to uptake of acetic acid 

as carbon source of algal cells disruption by pyrolytic acetate might be realized through the 

broken of cell membrane. Overliming treatment of SF5, direct evolution and addition of organic 

protectants are possible methods, which can significantly protect cell membrane integrity and 

improve the cells tolerance of SF5 to 40 g/L, 4 g/L and 2 g/L, respectively. The mechanism 

behind each methods are quite different and need further investigation. 
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Figure 5-1 Comparison of wild type under different concentrations of acetic acid 

 

 

A) Biomass; B) Yield; C) Membrane leakage; D) Membrane fluidity 
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Figure 5-2 Comparison of cell performance under raw/treated SF5 

 

 

 A) Biomass; B) Yield; C) Membrane leakage; D) Membrane fluidity 
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Figure 5-3 Comparison of wild type and evolved strain under TAP medium.  

 

 

 

A) Biomass; B) Yield; C) Membrane leakage; D) Membrane fluidity 
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Figure 5-4 Comparison of wild type and evolved strain under 0.4 wt% of raw SF5  

 

 

A) Biomass; B) Yield; C) Membrane leakage; D) Membrane fluidity 
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Figure 5-5 Comparison of cells under different types of protectants 

 

5a) Growth 5b) Yield 5c) Leakage 5d) Fluidity 
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Figure 5-6 Relationship between Growth and membrane property of algae cells  

 

(wild type; culture day <10; acetate concentration is 4 g/L)  

 

6a) growth ~leakage 6b) yield ~ leakage 6c) growth ~fluidity 6d) yield ~fluidity 
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Figure 8 TEM figures 
 

A: control (wild type under pure TAP medium) 

B: wild type under 2 g/L of untreated SF5 

C: wild type under 2 g/L of untreated SF5 with 0.2 wt% of Pluronic F68 addition 

D: evolved strain under 4 g/L of untreated SF5 

 

 

 

Figure 5-7 Visualization of cell membrane integrity by transmission electron microscopy 

 

A: control (wild type under pure TAP medium) 

B: wild type under 2 g/L of untreated SF5 

C: wild type under 2 g/L of untreated SF5 with 0.2 wt% of Pluronic F68 addition 

D: evolved strain under 4 g/L of untreated SF5 
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CHAPTER 6 PERFUSION STRATEGY TO IMPROVE MICROALGAE FERMENTATION 

OF DETOXIFIED PYROLYTIC BIO-OIL 

 

 

Abstract 

Pyrolytic acetate derived from lingo-cellulosic biomass is a promising substrate for 

microalgae fermentation of lipids production.  However, pyrolytic-acetate-containing bio-oil has 

an extremely complex composition and high inhibition on microorganism fermentation.  This 

study demonstrated different types of cultivation in microalgal mixotrophic growth for utilization 

of fast pyrolysis bio-oil, like two stage fed batch, continuous cultivation perfusion strategy with 

cell retention by hollow fiber membrane and the combination of all these cultivation strategies. 

As a result, 2.05 g/day/L, as 10 times high cell productivity as batch culture can be achieved. In 

summary, this result shows an effective cultivation method to improve the fermentative 

production of biofuels and biobased chemicals through microalgal fermentation with pyrolytic 

substrates. 
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6.1 Introduction 

Bioenergy and biochemical production from lignocellulosic biomass gains more and 

more attention recently (Neha Srivastava, 2015; Prashant Katiyar2015; Na Wei, 2015 

Gholamreza Salehi Jouzani 2015; Davide Dionisi, 2015 Furkan 2015). In 2014, the global 

production of bioethanol and biodiesel increased by 6.0% and 10.3%, respectively (BP 2015). 

The production of fatty acid, lactic acid, PHA and PHB, and biolipid and so on from 

biorenewable biomass, drawn considerable interest as potential substitute as that produced by 

chemical manufacturing. Lignocellulosic biomass, as waste residues from agriculture, 

forestry and energy crop systems, is an abundant worldwide biorenewable resource for 

production of second generation biofuel [Sonil Nanda , 2015; 26]. With significant 

improvement in conversion technologies and efficiency, lignocellulosic biomass can provide 

a major proportion of the future energy supply (250–500 EJ per year by 2050) [27]. 

Hybrid processing, converting lignocellulosic biomass to syngas or bio-oil by 

thermochemical processing, followed by bioenergy and biochemical production through 

micro-organism fermentation, is a promising way to utilize lignocellulosic biomass. For 

example, through fast pyrolysis, at moderate temperature, absence of oxygen and high 

heating rate, lignocellulosic biomass can be converted to syngas (13~25 wt%), bio-oil (60~70 

wt%) and biochar (12~25 wt%)  [8, 9]. During syngas fermentation, microorganism catalyst 

can produce ethanol, acetic acid and other byproducts such as butanol and butyrate through 

acetyl-CoA pathway. 

Inhibition of bio-oil on fermentation is unavoidable. Bio-oil can be fractionated into 

different portions suitable for different fermentation goals, such as antisugar rich portion 
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fermentation for bioethanol production and acetic acid rich portion fermentation for fatty acid 

production.  

However, there is a main challenge for biochemical processing of syngas or bio-oil, 

which is their high inhibition on cell growth. As to acetic acid portion of bio-oil, it contains 

hundreds of ketones, aldehydes, and phenols as well as acids, which might be the inhibitors 

to limit cell growth through broking cell membrane integrity. Due to its complexity, even 

after adsorption/oxidative/alkaline treatment, only a small amount of bio-oil, or its portions 

can be used as the carbon resource during fermentation. Further strategy is needed for better 

utilization of bio-oil and higher productivity of bioenergy and biochemical. 

Cell retention fermenters, with decoupling of hydraulic retention time (HRT) and 

solid retention time (SRT) might be potential to increase to achieve the goal listed in last 

paragraph. It is reported that cells can be entrapped in calcium alginate beads, leading to SRT 

>> HRT for continuous ethanol production with 38 g/L average cell density. Cell retention 

via membranes, hollow fiber membrane or depth filter perfusion system can hold all of the 

cell in the bioreactor while spending used media out. Settling of cell by gravity especially 

enhanced by flocculation or aggregation has already applied in commercialized ethanol 

plants. Among these cell retention systems, hollow fiber membrane perfusion system, with 

media flow tangentially to membrane, has the advantage to cycle big volume of media while 

the rate to spending used media is low, but faces the challenge of overgrowth of  cells, and 

consequently membrane fouling.  

Fermenters with perfusion culture can be applied in mixotrophic culture of 

microalgae for acetic acid rich pyrolytic bio-oil portion utilization, with capability of using 

high amount of pyrolytic acetic acid and high productivity of biochemical. This work is 
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aiming to test the toxicity of acetic acid rich bio-oil portion, apply perfusion culture system 

design to fermenters and optimize the continuous production of bioenergy and biochemical 

with Microalga Chlamydomonas reinhardtii (C. reinhardtii) as the employed strain.  

2. Materials and methods  

Microalgae culture and monitoring  

 The microalga C. reinhardtii ST 21 strain used in this work was obtained from Dr. 

Martin Spalding’s laboratory at Iowa State University. Seed culture was established in in 

250-mL Erlenmeyer flasks containing 50-mL tris-acetate-phosphate (TAP) medium under 

previously described procedure [1]. C. reinhardtii growth test was performed in flasks with 

50 ml medium and 5 ml algal seed in each well. The flasks were shaken by an orbital shaker 

with a speed of 130 rpm. Ambient temperature was set at 25oC. Continuous illumination at 

110-120 μmol s−1m−2 was provided. The optical density of each sample at 730 nm (OD730) 

were measured via spectrophotometer. Each test was performed in triplicates for statistical 

analysis. 

SF5 preparation and storage  

The fast pyrolysis and bio-oil stage fractionation were done at Central Iowa Research 

and Demonstration Farms by Dr Robert C. Brown’s group. [2] The acetic-acid-rich SF5 was 

collected in 1-L Nalgene HDPE bottles.  It was stored at 4oC and would be shaken up before 

each use.  

Alkaline treatment of SF5  

SF5 solution was transferred to a 100-ml beaker. Different alkali species including NaOH, 

KOH and Ca(OH)2 (in the form of dry power) were respectively added to the solution to 

reach pH 10. The solution temperature increased to around 80oC shortly after alkali addition 
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(within 10 minutes). The solution was stirred with a magnetic stir bar for about 1 hour until 

the temperature reduced and stabilized at room temperature. The treated SF5 solution was 

then centrifuged at 750 g for 5 minutes to remove the precipitants. The supernatants were 

transferred into fresh 50-ml tubes and stored at 4 oC prior to use.   

Fermentation parameters 

The fermentation was carried out in a bioreactor with 3L working volume. All of the 

media was autoclaved uner 121 ℃ for 2 hours. The growth parameters of algal cell were 

listed as below: Batch a) microalgae fermentation with pure TAP medium (4 g/L acetic acid); 

Batch b) microalgae fermentation with TAP medium (3.1 g/L acetic acid) + 1 wt% of treated 

SF5 (0.9 g/L acetic acid); Fed batch c) microalgae fermentation with pure TAP medium (3.1 

g/L acetic acid) for 7 days and then added 1 wt% of treated SF5 (0.9 g/L acetic acid); 

Bleeding d) Bleeding rate = 0.1 ~ 0.7 day-1 (0.2 ~1.4 mL/min); Perfusion e) Perfusion rate = 

0.7 day-1   (1.4 mL/min); Perfusion culture with cell bleeding f) Bleeding rate = 0.1 ~ 0.7 day-

1 (0.2 ~1.4 mL/min) while Perfusion rate = 0.7 day-1   (1.4 mL/min). During the fermentation, 

the temperature was controlled at 20 ℃. Air was bubbled to the fermenter with a flow rate of. 

Continuous illumination at ~100 μmol s−1m−2 was provided. Samples were taken every half 

days for batch culture, and one sample per day was taken when dilution rate is not zero. The 

optical density of each sample at 730 nm (OD730) were measured via spectrophotometer. 

Each test was performed in triplicates for statistical analysis. 

3. Results and Discussion  

Utilization of acetic acid of Chlamydomonas reinhardtii 

            Many microalgae strains were reported to have heterotrophic metabolism, or a ‘dark 

mechanism’, which is essentially the same as non-photosynthetic organisms. Daniela et al. 
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(2015) reviewed a bunch of microalgae species capable of utilize organic carbon sources to 

achieve high productivity of biomass and value-added products. The benefits of heterotrophic 

growth are less lighting and O2 requirement, high cell density and productivity, easy-

operation bioreactors and low costs. As to C. reinhardtii, the algal species is potential for 

bio-lipids and protein production through heterotrophic growth with acetate as the carbon 

source. In addition, the species is amenable for genetic manipulations [15,16,17] for new 

strain with higher productivity or resistance to toxic effect from substrate or product.  

As a result, C. reinhardtii is suitable as a model strain in heterotrophic growth test for 

bioenergy and biochemical production. In this work, due to the providing of light to cells, the 

cultivation is composed both by heterotrophic growth and autotrophic photosynthesis. The 

cells during mixotrophic cultivation can utilize both oxygen from common air and CO2 

generated during heterotrophic growth. Based on previously reported flask culture, the total 

fatty acid concentration of C. reinhardtii can achieve 20 wt% of biomass when cultured with 

pure TAP media and only 10 wt% of biomass when more than 1wt% of pyrolytic bio-oil 

acetic acid rich portion was added. The cultivation of C. reinhardtii in different types of 

bioreactors were listed at Table 6-1. 

The cultivation of C. reinhardtii was established in a batch bioreactor with acetate as 

the carbon substrate as control. After a 3 day lag phase, the strain started growing 

exponentially with a specific growth rate of 0.70 day-1. After 8 day culture, the cell density 

become stable and the growth rate decreased to zero. The maximum cell density is achieved 

at day 9, which is 4.13 g/L. All of the cells were harvested at day 10 and the maximum cell 

productivity was 1.38 g/L/day. The maximum productivity of fatty acid may achieve 0.28 

g/L/day. 
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Then C. reinhardtii was used to test mixotrophic growth with pyrolytic acetate as 

carbon resource. It is reported that SF5 contains lots of toxic compounds, such as weak 

carboxylic acids, aldehydes, ketones and phenols, which can inhibit microalgae cell growth 

through broking cell membrane integrity and adversely affecting cell breath and so on. Based 

on previous multiwall plate culture and flask culture result, C. reinhardtii cannot tolerate 

more than 0.1 wt% of untreated SF5. In batch culture with 1 wt% of untreated SF5, 

inoculated cells become dead at day 2 (data not shown). 

After alkaline treatment, the toxicity of SF5 decreased significantly. When C. 

reinhardtii was cultured with 1 wt% of overlimed SF5, cell growth was found. 5 day were 

cost for this strain to get adapted to the environment and start rapid growth with a specific 

growth rate of 0.41 day-1. After 12 day culture, the cell density become stable and the growth 

rate decreased to zero. The maximum cell density is achieved at day 12, which is 2.23 g/L. 

All of the cells were harvested at day 13 and the cell maximum productivity was 0.20 

g/L/day. The maximum productivity of fatty acid may achieve 0.02 g/L/day. Compared to 

control batch fermentation, the growth performance and product formation was significantly 

limited by 1 wt% addition of SF5, even already detoxified by overliming. Thus some 

fermentation strategies for further increasing of utilization of SF5 and productivity of 

biomass and product are needed. 

Fed-batch 

Fed batch cultivation provides an effective technique for high cell density 

fermentation. It is reported to be commercialized in pharmaceutical and protein production. 

By controlling the rate of the addition of carbon and energy source, osmotic or toxic effects 

from substrate can be eliminated. In addition, with higher cell density, the substrate 
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inhibitory effect per cell would be lower compared to batch cultivation. Fed batch strategy 

improves the productivity of product formed strictly associated with cell growth.  

As to bioreactor where product accumulation is negatively correlated to the cell 

density, or product accumulation and cell density would be affected differently by the culture 

condition, fed batch cultivation can also be effective to improving the productivity. Lipid 

usually accumulated at the cost of cell density. It is reported that high lipid accumulation is 

corresponding to low cell density and vice versa in C. reinhaditii. Astaxanthin can be 

produced from heterotrophic growth of microalga, Haematococcus pluvialis with acetate; 

however, high light density is needed for astaxanthin accumulation but inhibitory to 

immature cells growth. Multiple fed batch stage in sequential mode may solve these 

problems. 

In this work, C. reinhaditii was cultured in two stages. At the first stage, this strain 

was inoculated into the 3 L bioreactor, and cultured with pure TAP media like a batch culture 

for one week, when the cell density is about 3.21 g/L. And then 30 mL of overlimed SF5 was 

added to the fermenter and the second culture stage started. After another 3 day culture, the 

cell growth is almost stopped. The maximum cell density is achieved at day 10, which is 5.45 

g/L. The maximum cell productivity was 1.64 g/L/day. The total productivity of fatty acid 

may achieve 0.16 g/L/day. 

Compared to the batch culture with 1 wt% of overlimed SF5, it is clear that both high 

cell density and high productivity was achieved via fed batch cultivation. However, there are 

still several drawbacks for this type of bioreactors. Firstly, with the accumulation of cells and 

products, inhibitory effect may emerge due to high concentration of metabolites and product. 

Secondly, the scaling up of fed batch cultivation will occupy large amount of area. Both of 
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these two problems were reported to be solved via perfusion technology. Last but not the 

least, no productivity can be obtained during fed batch cultivation. Continuous culture 

following the fed batch cultivation when high cell density is achieved may provide a chance 

to optimize the cell productivity. 

Continuous culture for improved productivity 

Continuous cultivation can achieve optimized productivity but low cell density. 

Microalgal biomass production in large-scale generanlly is in continuous culture via raceway 

ponds (Terry and Raymond, 1985; Molina Grima, 1999) and tubular photobioreactors 

(Molina Grima et al., 1999, Tredici, 1999 and Sánchez Mirón et al., 1999). Biomass increase 

via photosynthesis during daylight and as much as 25% of biomass might be lost during the 

night via respiration. Another advantage of continuous culture is that reliable measurement of 

bioenergy and biochemical productivity can be achieved during steady state.  

In this work, a range of dilution rates were applied to mixotrophic cultivation. The 

growth and acetic acid concentration change was shown on Figure 6-3. With dilution rate is 0, 

the steady state cell density is about 5.70 g/L. With the increase of dilution rate, the steady 

state cell density decreased. Cell washing out happened when dilution rate is 0.35 day-1. The 

optimized cell productivity, 0.43 g/L/day was achieved when dilution rate 0.15 day-1. 

Compared to the two stage fed batch cultivation, the cell density where optimized cell 

productivity is achieved is lower in continuous culture. Optimized cell productivity in 

continuous cell culture is less than the cell productivity in two state fed batch cultivation due 

to the high toxicity per cell from SF5.  

Perfusion culture for improved density  
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Perfusion strategy can be applied in bioreactors for high cell productivity and 

eliminated metabolite inhibition. Perfusion culture with hollow fiber membrane retention cell 

is reported to be applied to yeast fermentation for bioethanol production, microalgae 

mixothrophic culture for enhanced astaxanthin and fatty acid production. However, perfusion 

culture with hollow fiber membrane retention of cells for high cell density cultures meets the 

major challenge: membrane fouling and decreased light density. Reported methods to clean 

membrane are pressure pulsing and backwashing, which are applied in commercial 

monoclonal antibody production by animal cells and commercial wastewater treatment 

plants, respectively. 

In this work, after 25 day culture, the cell density can be stable and achieve ~30 g/L, 

which is as 10 times high as batch culture. However, all of the cells were hold and transfer 

back to the bioreactor, no cell productivity during perfusion cultivation. If harvested at day 

26, the theoretical productivity is ~1.14 g/day/L. Since perfusion strategy is helpful to 

increase cell density and eliminate metabolites inhibition, adding it to continuous cultivation 

and the optimized cell productivity might be further improved.  

Combination of Bleeding culture and Perfusion culture 

In this investigation, perfusion rate was set as 0.7 day-1, the bleeding rate varies from 

0.1 to 0.5 day-1 (Figure 6-5). With perfusion strategy, all of the cells were kept inside of the 

hollow fiber membrane and transferred back the bioreactor. The cell retention brings several 

benefits to continuous cultivation. Firstly, washing out cells from the bioreactor is hard. 

When bleeding rate is 0.5 day-1, the cell density is still as high as 2.77 g/L. Secondly, the 

advantage from two stage adding of pure TAP media and SF5 at cell density is kept, which 

means inhibition form SF5 on cell basis is eliminated. Thirdly, the optimized cell 
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productivity and fatty acid productivity is increased to 2.05 g/L/day, which is as 10 times as 

that in batch cultivation. Last but not the least, the yield on acetic acid basis improved a lot 

when perfusion strategy is added to continuous culture (Figure 6-7). 

6.4 Conclusions 

This study demonstrated different types of cultivation in microalgal mixotrophic 

growth for utilization of fast pyrolysis bio-oil. Two stage fed batch cultivation is helpful to 

increase cell density rapidly and eliminate the substrate inhibition on cell basis. Continuous 

cultivation provide the chance to optimize cell productivity but cell density needs to be 

improved. Perfusion strategy with cell retention by hollow fiber membrane leads to as 10 

times high cell density as batch culture but no cell productivity. The combination of all these 

cultivation strategies show as 10 times high cell productivity as batch culture. In summary, 

this result shows an effective cultivation method to improve the fermentative production of 

biofuels and biobased chemicals through pyrolytic substrates.  
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Table 6-1 Growth performance of algal cell in different types of bioreactors  

 

Batch a) microalgae fermentation with pure TAP medium (4 g/L acetic acid); Batch b) 

microalgae fermentation with TAP medium (3.1 g/L acetic acid) + 1 wt% of treated SF5 (0.9 

g/L acetic acid); Batch c) microalgae fermentation with pure TAP medium (3.1 g/L acetic 

acid) for 7 days and then added 1 wt% of treated SF5 (0.9 g/L acetic acid); Bleeding) 

Bleeding rate = 0.1 ~ 0.7 day-1 (0.2 ~1.4 mL/min); Perfusion) Perfusion rate = 0.7 day-1   (1.4 

mL/min); Perfusion culture with cell bleeding) Bleeding rate = 0.1 ~ 0.7 day-1 (0.2 ~1.4 

mL/min) while Perfusion rate = 0.7 day-1   (1.4 mL/min) 

 

Fermentation Max Cell Density (g/L) Productivity (g/L/day) Specific Growth Rate (day-1) Yield (gcell/gacetate) 

Batch a 4.24±0.07 0.48±0.01 0.70  

Batch b 2.23±0.00 0.19±0.00* 0.41 0.40±0.08 

Fed-Batch  5.49±0.07 0.55±0.01 ----  

Bleeding 

(continuous) 
3.00±0.07 0.43±0.01  0.61±0.03 

Perfusion 32.12±0.06 1.14±0.01(26)   

Perfusion culture 

with cell bleeding 
10.08±0.09 2.05±0.04  0.75±0.02 
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Figure 6-1 Growth and substrate utilization of algal cell in batch culture.  

A) microalgae fermentation with pure TAP medium (4 g/L acetic acid);  

B) microalgae fermentation with TAP medium (3.1 g/L acetic acid) + 1 wt% of treated SF5 

(0.9 g/L acetic acid) 
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Figure 6-2 Growth and substrate utilization of algal cell in fed batch culture.  

Microalgae fermentation with pure TAP medium (3.1 g/L acetic acid) for 7 days and then 

added 1 wt% of treated SF5 (0.9 g/L acetic acid) 
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Figure 6-3 Growth and substrate utilization of algal cell in continuous (bleeding) culture  

Bleeding rate = 0.1 ~ 0.7 day-1 (0.2 ~1.4 mL/min)  
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Figure 6-4 Growth and substrate utilization of algal cell in perfusion culture  

 

With Perfusion rate = 0.7 day-1   (1.4 mL/min)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



153 

 

 

 

 

 

Figure 6-5 Optimization of algal fermentation in continuous reactor with cell perfusion  

 

Bleeding rate = 0.1 ~ 0.7 day-1 (0.2 ~1.4 mL/min) while Perfusion rate = 0.7 day-1   (1.4 

mL/min) 
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Figure 6-6 Optimization of algal fermentation in continuous culture  

 

 

With Perfusion rate = 0 for bleeding culture only 

With Perfusion rate = 0.7 day-1   (1.4 mL/min) for bleeding culture with cell perfusion 

 

 

Bleeding rate = 0.1 ~ 0.7 day-1 (0.2 ~1.4 mL/min) /Continuous feeding rate = 0.1 ~ 0.7 day-1 

(0.2 ~1.4 mL/min) 
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Figure 6-7 Yield change for bleeding culture and perfusion & bleeding culture 
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CHAPTER 7 GENERAL CONCLUSIONS 

7.1 General conclusions 

The present body of work focused on lipid rich algal biomass production from 

lignocellulosic biomass. Based on the concept of hybrid processing, fermentative substrate 

(acetic acid) is produced through thermochemical decomposition of lignocellulose, and 

biochemical utilization of this substrate is used to produce liquid rich biomass of the 

microalga Chlamydomonas reinhardtii. 

Alkali treatment, or NaOH neutralization particularly to pH 10, is a feasible and 

effective method for detoxification of the acetic acid-rich fraction of bio-oil for improved 

growth of the microalga C. reinhardtii. Detoxification was mainly due to removal of HMF, 

furfural, phenolics, and acetol from the bio-oil fraction. As a result of this detoxification, it 

was possible to grow the metabolically evolved strain C. reinhardtii YL01 on media in which 

the acetic acid was completely derived from the bio-oil fraction. This result suggests a new 

pathway for fermentative production of biofuels and biobased chemicals through pyrolytic 

substrates.  

Compared to NaOH neutralization, overliming treatment can further reduce the 

toxicity and improve fermentability of SF5. When SF5 was treated by Ca(OH)2, its 

fermentability was improved to the greatest level and algal cells could grow in medium 

containing up to 5.5 wt% SF5, where all the acetic acid in the medium was replaced by SF5. 

The detoxification effect by Ca(OH)2 was due to the removal of various compounds 

including furans, phenols, ketones, aldehydes, ethers, esters, and alcohols. The synergistic 

effects of alkaline pH, high temperature, and presence of Ca2+ contribute to the high 

effectiveness of detoxification by Ca(OH)2.  
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Among different oxidative treatment, ozone oxidation is the most feasible oxidative 

method for detoxification of fast pyrolysis bio-oil. With 3 hour ozone treatment under pH 10, 

the fermentability of Stage Fractionation 5 of bio-oil was increased from 0.05 wt% to 4.0 

wt%. Based on the GC-MS identification, the inhibition of SF5 is mainly from ketones, 

aldehydes and phenolics. Adjusting pH from 2 to 10 can significantly remove these inhibitors 

and improve the fermentability SF5. Ozone treatment under basic pH mainly works on 

further oxidation of phenolics compound to ameliorate the maximum cell density and algal 

productivity. In summary, this result shows an effective oxidative method to improve the 

fermentative production of biofuels and biobased chemicals through pyrolytic substrates.  

The growth performance and ability to uptake of acetic acid as carbon source by algal 

cells might be inhibited due to the damage of cell membrane. Overliming treatment of SF5, 

direct evolution and addition of organic protectants are possible methods, which can 

significantly protect cell membrane integrity and improve the cells tolerance of SF5 to 40 g/L, 

4 g/L and 2 g/L, respectively. The mechanism behind each methods are quite different and 

need further investigation. 

Cultivation of C. reinhardtii in different types of bioreactors for utilization of fast 

pyrolysis bio-oil are tested. Two-stage fed batch cultivation is helpful to increase cell density 

rapidly and eliminate the substrate inhibition on cell basis. Continuous cultivation provide 

the chance to optimize cell productivity but cell density needs to be improved. Perfusion 

strategy with cell retention by hollow fiber membrane leads to as 10 times high cell density 

as batch culture but no cell productivity. The combination of all these cultivation strategies 

show as 10 times high cell productivity as batch culture. In summary, this result shows an 
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effective cultivation method to improve the fermentative production of biofuels and biobased 

chemicals through pyrolytic substrates.  

 

7.2 Future work 

Additional work is recommended for further study about hybrid processing of 

lignocellulosic biomass for producing liqud-rich algae biomass.  

i) Combination of physical and chemical methods can be applied in order to detoxify 

acetic acid-rich fraction of pyrolytic bio-oil (SF5). For example, the inhibitors in SF5 can be 

removed via a series of treatments, composed of overliming, ozone oxidation and then 

activated carbon adsorption, for better fermentability.   

ii) Additional insight on the inhibitory effect on cells is needed to understand the 

inhibition mechanism and thus find appropriate methods to protect cells from the damage. 

Cell membrane integrity disruption is supposed to be one of the reasons why cells are 

damaged when exposed to certain levels of SF5. Other inhibition pathway, such as ROS 

increase, intracellular pH increase and osmic pressure increase, may also explain the adverse 

effect of SF5. 

iii) Reverse engineering, providing tool kits to check the genes responsible for 

enhance tolerance to pyrolytic substrate is necessary. These genes can be isolated and applied 

to other microorganism to improve their tolerance to pyrolytic substrate as well as other types 

of toxic media. 

iv) Based on metabolic engineering tool kits, produce high value products from 

pyrolytic substrate via bioreactors equipped with perfusion strategy. With improved 

utilization efficiency, increased yield and higher revenue, the commercialization of hybrid 

processing can be realized.   
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