
Graduate Theses and Dissertations Graduate College

2012

Grain wagon fill detection using ultrasonic sensors
John David Gaard
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/etd

Part of the Agriculture Commons, Bioresource and Agricultural Engineering Commons, and the
Electrical and Electronics Commons

This Thesis is brought to you for free and open access by the Graduate College at Iowa State University Digital Repository. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Gaard, John David, "Grain wagon fill detection using ultrasonic sensors" (2012). Graduate Theses and Dissertations. 12745.
http://lib.dr.iastate.edu/etd/12745

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12745&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12745&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12745&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/grad?utm_source=lib.dr.iastate.edu%2Fetd%2F12745&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12745&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=lib.dr.iastate.edu%2Fetd%2F12745&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1056?utm_source=lib.dr.iastate.edu%2Fetd%2F12745&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Fetd%2F12745&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd/12745?utm_source=lib.dr.iastate.edu%2Fetd%2F12745&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Grain wagon fill detection using ultrasonic sensors

by

John David Gaard

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Agricultural Engineering (Advanced Machinery Engineering)

Program of Study Committee:

Stuart J. Birrell, Major Professor

Brian L. Steward

Max D. Morris

Iowa State University

Ames, Iowa

 2012

Copyright © John David Gaard, 2012. All rights reserved.

ii

Table of Contents

LIST OF FIGURES iii

LIST OF TABLES iv

INTRODUCTION 1

LITERATURE REVIEW 3

Vision Systems 3

Ultrasonic Applications 4

Ultrasonic Feature Detection Methods 8

Existing Patents 10

OBJECTIVES 12

MATERIALS 13

METHODS AND ANALYSIS 16

Test Procedure 16

Data Analysis 19

RESULTS 27

CONCLUSIONS 35

 Summary 35

 Recommendations for Future Work 36

APPENDIX A. Predicted and Actual Z values Summary Table 38

APPENDIX B. Linear Prediction Fit Tables 40

APPENDIX C. MATLAB Code 44

REFERENCES 113

iii

List of Figures

Figure 1. Pepperl and Fuchs UC6000-30GM-IUR2-V15 ultrasonic sensor. 14

Figure 2. Sensors installed in rotating base. 15

Figure 3. The ultrasonic sensor package. 15

Figure 4. Sensor package mounted on combine harvester unloading auger. 17

Figure 5. Sensor positions where data was collected. 17

Figure 6. View of grain pile inside wagon from front of wagon. 18

Figure 7. View of grain from rear of wagon. 18

Figure 8. Sensor mount dimensions. 20

Figure 9. Flow chart of data analysis. 21

Figure 10. Each color represents a different sensor. 22

Figure 11. Groups combined into Surface Groups. 24

Figure 12. Horizontal edge identified in red. 25

Figure 13. Second order surface fitted to grain and line fitted to edge. 26

Figure 14. Grain depth was measured at each intersection of a gridline. 27

Figure 15. Measured actual grain surface and wagon edges plotted in Matlab. 28

Figure 16. Sensor positions where data was collected. 28

Figure 17. Front and side edges were identified at position six. 30

Figure 18. Sensor may have received reflections from front of wagon edge. 30

Figure 19. Distance measured assumed to be on the centerline of sensor. 33

Figure 20. Error versus distance from centerline of sensor assembly. 33

Figure 21. Near wagon edge, rear wagon edge, and grain correctly identified. 35

iv

List of Tables

Table 1. Results summary table. 29

Table 2. Grain surface fit summary. 32

Table 3. Predicted and actual Z values summary table 38

Table 4. Linear fit between predicted and actual z values at Position 6 40

Table 5. Linear fit between predicted and actual z values at Position 7 40

Table 6. Linear fit between predicted and actual z values at Position 8 41

Table 7. Linear fit between predicted and actual z values at Position 9 41

Table 8. Linear fit between predicted and actual z values at Position 10 42

Table 9. Linear fit between predicted and actual z values at Position 11 42

Table 10. Linear fit between predicted and actual z values at Position 12 43

1

Introduction

In 2011, 88.4x hectares in the US were harvested with a combine harvester

(USDA-NASS, 2012), of which 34.0x hectares were corn. In search of efficiency,

agricultural producers have turned to “unloading on-the-go” which consists of a truck

and trailer or tractor and wagon traveling alongside the combine and the combine grain

tank being emptied into the trailer or wagon while the combine is moving and

harvesting corn. This adds another task for the combine operator, and increases

operator stress and fatigue. Not only does the operator have to watch gauges and

monitors and steer the combine, the operator now has to make the sure the unloading

auger is actually unloading grain into the wagon and not missing the wagon. A well-

practiced team consisting of a combine operator and tractor driver can make this

operation work, but when one person is inexperienced, the operational capacity of the

combine can be significantly decreased. In addition, on-the-go unloading can

significantly increase operator fatigue resulting from many hours working in the field,

adding to the decrease in combine productivity.

Therefore, a sensing system which allows for automatic even filling of the wagon

and automatically shutting off the unloading auger when the wagon is full is desirable,

and has the potential to significantly increase combine productivity. Different sensing

solutions have been considered. A system using the known GPS position and heading of

the combine and the wagon and geometric properties of the wagon for automated

control has been patented by Claas of Germany (Behnke, et al., 2004). The same patent

2

also describes a distance sensor mounted to the side of the combine sensing the

distance between the combine and wagon.

Distance measuring devices mounted on the wagon edges to measure the

distance down to the grain were considered. These systems would require a

microprocessor to gather the information and to wirelessly transmit the information to

another microprocessor mounted on the combine. Maintaining consistent and reliable

communication between the tractor and combine could be an issue. Outfitting multiple

wagons with the sensor and transmitter system would be costly, and would require the

manual input of calibration information such as wagon dimensions. The system could

transmit fill level information to the combine, but still does not know where the

unloading auger is relative to the wagon to ensure even filling.

A sensor package mounted on the unloading auger would deliver depth and

geometric information of the wagon to a combine mounted microprocessor that would

also control the automatic function of the auger. This system would allow for any type

of wagon or cart or truck to pull alongside the combine. Only one control system has to

be purchased and mounted on the combine. This requires a sensor system capable of

determining the grain cart edge locations, and the grain levels within the carts. A

number of different sensing technologies including machine vision, radar, or ultrasonic

sensing technologies are possible candidates.

3

A monocular vision system which uses a camera mounted either on the combine

or the unloading auger and image processing techniques could be used to extract

features such as the wagon edges and the grain level inside is one option. However,

these systems would not have any depth information unlike a stereo camera system

which uses two cameras to triangulate points in the image to develop three-dimensional

profiles. An alternative is integration of two-dimensional image processing techniques

with depth information from auxiliary sensors to produce a three-dimensional scene.

Other three-dimensional image generating systems could include using multiple depth

measuring devices, such as ultrasonic sensors or laser sensors, to recreate the three-

dimensional scene.

Literature Review

Vision Systems

 Vision systems using cameras are used in a wide variety of applications including

facial recognition and identification systems, feature detection, vehicle guidance

systems, medical image processing, and in manufacturing and control. In

manufacturing, vision systems have been utilized for a variety of uses such as: object

recognition, part dimension inspection, identification of relative position among objects,

general work piece manipulation, and even robot position sensing using a known

calibration mark on a robot arm (Nilsson and Holmberg, 1994). Vision systems are also

used in robot guidance applications such as home cleaning robots and indoor service

robots (Ahn et al., 2008).

4

 Although camera vision systems have been successful in a large number of

applications, they do have shortcomings, particularly when operating in an outdoor

environment. Camera systems have difficulty in dealing with changes in scene

illumination and are very sensitive to changes in ambient light intensity and direction.

They also suffer from slow update rates due to high computational burdens (Ahn et al.,

2008). The alternative is to lower the computational burden at the expense of feature

detection accuracy. The proposed application on a combine harvester will experience a

large amount of dust in the air. Camera vision systems are easily affected by dust: dust

can shroud the view of the desired object and dust can collect on the lens of the camera

degrading the effectiveness of the camera system.

Ultrasonic Applications

 An ultrasonic sensor transmits a sound wave at frequencies above 20 kHz,

beyond the range of most humans hearing ability (Banner Engineering, 2011).

Ultrasonic sensors can be driven up to 10 MHz for non-destructive testing of materials,

which consists of finding cracks, mechanical flaws, material thickness, and elastic and

metallurgical properties of metals (Krautkrämer and Krautkrämer, 1969). Paul Langevin

(1918), a French scientist commissioned by the naval forces of France during WW I to

develop a system to detect submerged German u-boats, is credited as the father of

acoustical imaging technology (Langevin, 1918). Though others were first to

experiment, Langevin was the first to succeed by using piezoelectric transducers

5

operating at resonance which created an adequately intense acoustical transmitting

beam.

 Ultrasonic sensors have been found to be useful in automotive applications in

determining occupant position and occupant velocity during a crash. When combined

with the vehicle’s crash sensors, ultrasonic sensors add to the airbag control

methodology (Breed et al., 1997). They can also be found on the outside of the vehicle

used as crash avoidance devices and to detect obstructions in blind spots. As early as

1964, patents were issued detailing ultrasonic sensors mounted at the rear of a vehicle

to detect obstacles when the vehicle is travelling in reverse (Grieg, 1964; Cudworth,

1965). Modern automobiles also have “active cruise control” whereby a distance sensor

mounted on the front of the vehicle is used as an additional input to the vehicle speed

controller (Laiou et al., 2009). When the vehicle approaches another vehicle the speed

controller will automatically slow the vehicle to maintain a safe distance behind the

vehicle ahead.

Ultrasonic sensors are very useful in the marine industry to map the sea floor

and to detect man-made objects such as mines (Murino and Trucco, 2000). Multiple

sensors are used to recreate a three-dimensional scene. By adjusting the output

frequency and amplitude, ultrasonic sensors can be used for long-range, two-

dimensional object detection.

6

The medical industry uses ultrasonic sensors to create two-dimensional images

of the human body. Speed of sound, attenuation, and impedance depend on the body

tissue the sound wave is passing through. By using these attributes a 2D image of the

human body can be created (Quistgaard, 1997). Either a “scanning” transducer or a

fixed array is used to create a B-scan (brightness) image of the area of interest. The

brightness of each pixel corresponds to the strength of the reflected sound wave

(Schueler et al., 1984). An array consisting of between 48 and 200 active elements is

used to transmit and receive steered and focused acoustic beams. A “phased array”

uses a small aperture (transmitting elements surrounded by receiving elements) around

15 mm, and forms beams originating from a single point. A “linear array” utilizes a

larger aperture around 40 mm, uses more elements than the phased array, and forms

acoustic beams normal to the flat surface of the transducer. A “curved linear array” is a

linear array formed over a convex curved surface which provides a wider field of view.

Three-dimensional images are created by layering two-dimensional images together.

However, three-dimensional images prove difficult to create due to excessive processing

time (Schueler et al., 1984). Many 3D imaging solutions also suffer from low SNR (signal

to noise ratio) because diverging sound waves are used and energy is lost in the soft

biological tissue (Lu, 1997).

Ultrasonic sensors have also been used in the robotic field, both in industrial

applications and autonomous vehicle applications. In industrial applications, genetic

algorithms such as neural networks are used in identifying objects found on conveyer

7

belts, their orientation, and other features (Brudka and Pacut, 2002). Brudka and Pacut

(2002) outline a system which uses an array of 40 ultrasonic sensors in order to achieve

high enough resolution. By using certain algorithms, inexpensive ultrasonic sensors can

be used in controlled industrial applications. In autonomous robot vehicle applications,

ultrasonic sensors can be fused with a vision system for many benefits (Ahn et al., 2008).

Ultrasonic sensors are an inexpensive alternative to a stereo camera, add to the

accuracy of the vision system, and allow for lowering of the update rate of the vision

camera.

Ultrasonic sensors have also been used in autonomous vehicles as standalone

sensing devices. By using as few as one to three ultrasonic sensors, the autonomous

vehicle can guide itself around its closed environment collecting information about the

environment’s boundaries and obstacles. A grid map is built and constantly updated

using this method (Borenstein and Koren, 1991). The poor spatial resolution of the

ultrasonic sensor limits the grid map, so researchers have reduced the two dimensional

grid down to a weighted polar histogram which shows the polar obstacle density in a

given direction. Obviously, a fully automated vehicle which requires no training to build

a world map is desirable. By creating an array of sensors in a circle around the vehicle,

the overlap of cones allows for an increase in resolution on an autonomous vehicle

(Bank, 2002). The sensor array can then create a 360 degree view of the world around

vehicle and the vehicle can make guidance decisions in real time. Prassler et al. (1999)

outline an intelligent autonomous wheel chair for transporting elderly and disabled

8

persons in crowded public environments. The environment is very dynamic where

thousands of people and objects are constantly moving, requiring the system to detect

obstacles and make guidance decisions quickly and in real time. The group of

researchers hopes to extend the design to a people taxi in crowded airports. Bank and

others also developed a hospital bed guided by ultrasonic sensors (Bank et al., 1999).

Ultrasonic Feature Detection Methods

In reconstructing three-dimensional scenes in underwater applications, three

algorithms and corresponding sensor set-ups have been identified in accurately creating

three-dimensional scenes (Murino and Truco, 2000). An “acoustic lens” algorithm is

used with an acoustic lens and retina of acoustic sensors. The “focused beam-forming”

algorithm and the “acoustic holography” algorithm are used with a two-dimensional

array of sensors. In both cases, in order to recreate a three-dimensional scene with

acceptable spatial resolution, the number of sensors can reach the thousands,

increasing the hardware cost and being computationally intensive. This may be

acceptable for mapping a static item such as the sea floor, but for mapping the grain

inside the wagon, a sufficiently fast update rate is very important. Computational

approaches have been developed to reduce the number of sensors, but systems

currently on the market still contain up to 1600 sensors. Regardless of the sensor

system, underwater imaging systems usually employ statistical methods which take

advantage of the known physical characteristics of objects in order to perform

segmentation and scene reconstruction. For example, man-made objects tend to have

9

less texture, and therefore return less speckle noise, than natural occurring objects such

as the sea floor. Other methods involve frequency analysis in which different surfaces

return a unique frequency signature. With a high enough resolution, typical image

processing techniques such as feature extraction, edge detection, and classification are

used. In Bank’s previously mentioned system, the Hough transform is used to find

edges, but only in two-dimensions (Bank, 2002).

The Canny edge detector, a breakthrough edge detection method when

introduced in 1986, first smoothed the image with a Gaussian filter. Edges were then

identified by finding the local maxima of the gradient (Canny, 1986). The Canny edge

detector suffers from having to manually select a scaling factor which determines the

amount of smoothing. As the scaling factor is increased, the sensitivity to noise is

decreased but the error in the edge detection increases. As the scaling factor decreases,

the reverse is true (Yi et al., 2009). Canny and other techniques have trouble detecting

edges in the presence of noise and when edges are near to each other or cross each

other. (Ziou and Tabbone, 1998). The Gaussian filtering causes edges close to each

other to distort into a single edge. Gaussian filtering also leads to difficulty in

determining the orientation of edges, particularly when they cross each other at edges

and intersections.

Edge detection in three dimensions is an area of active research. Bahnisch et al.

(2009) explains edge detection in three dimensions lacks either speed or accuracy.

Extending the Canny edge detector to three dimensions is straightforward but is

10

computationally intensive. The alternative is to lower the computational burden at the

expense of accuracy. New methods continue to be developed, as interest in processing

biomedical images is quite high (Cheng and Ma, 2010).

Existing Patents

Existing patents led us to a vision system, and to focus on a sensor package that

is fixed to the unloading auger. Therefore, the vision system will mount rigidly to the

spout and will not move independent of the spout or the combine. A 1996 patent by

Claas of Germany details a spout control system with an optical/acoustic range finder

sensor package mounted on the spout (Pollklas, 1996). The sensor package moves

independently of the spout. Another patent from Claas in 1998 outlines a similar

system, but with a sensor package mounted on the combine (Pollklas, 1998). The

sensor package moves relative to the combine and provides a scanning function,

viewing the wagon that the combine is filling. As already mentioned, a third patent

from Claas describes a spout control system which uses GPS position of the combine

and fill cart to determine spout position (Behnke et al., 2004). This precluded us from

using GPS position of any vehicle to control spout position. Fortunately, John Deere

holds a 2005 patent describing a spout control system utilizing image processing (Alexia

et al., 2005).

A sensor package using ultrasonic sensors was chosen over a camera system.

Dust and lighting issues with cameras favored ultrasonics. Ultrasonic sensors are not

without their faults, however. Sensors can be easily misled by multiple reflections in

11

moderately complex environments (Knoll, 1991). Sound waves reflect away from the

sensor when reflecting off a surface not orthogonal to the sensor. Ultrasonic sensors

suffer from poor spatial resolution due to the cone shape of the propagating sound

wave. And, ultrasonic sensors experience divergence problems which result in

distorted images (Brudka and Pacut, 1999). A camera vision system is still possible if

the dust and lighting issues are resolved. An adjustable aperture could partly solve the

lighting issue, although operation after dark would still only be possible if adequate

lighting was mounted on the combine. Filtering can partly overcome the dust issue, but

dust collecting on the camera lens would still need to be resolved.

12

Objectives

The goal of this project was to build a low-cost ultrasonic sensor package that

could accurately identify and model wagon edges and the grain contained in the wagon.

In production-ready form, this system could control automatically the swing of the

unloading auger to be able to fill the wagon evenly and to avoid the ends of the wagon,

and finally, alert the operator and shut off the unloading auger when the wagon is full.

To accomplish these items, the following tasks must be completed:

1. Design, develop, and test an ultrasonic sensor package.

2. Develop an algorithm to correctly identify and model the wagon edges using

distance information obtained by the ultrasonic sensors.

3. Develop an algorithm to identify and accurately model the grain surface

inside the wagon using distance information obtained by the ultrasonic

sensors.

4. Using the calculated wagon edge model and grain surface model, determine

the grain depth below a particular wagon edge.

13

Materials

 The sensor used in this project was the UC6000-30GM-IUR2-V15 ultrasonic

sensor from Pepperl and Fuchs, Mannheim, Germany (Figure 1). The UC6000 has a

sensing range of 350 mm to 6000 mm, operates at 65 kHz and has a beam angle of 13

degrees. This sensor was chosen for its distance range, its robustness, and its ability to

withstand outdoor weather. The sensor outputs an analog voltage proportional to the

distance sensed. The sensor uses internal conditioning to create a very repeatable and

consistent measurement.

 It was determined that an angle of vision of 104 degrees was necessary to

properly view the wagon. This was accomplished with a set of four sensors mounted in

a rotating base, in which each sensor was mounted at different fixed angles to the axis

of rotation: 6.5 degrees, 19.5 degrees, 32.5 degrees, and 45.5 degrees (Figure 2). This

created no overlap or under lap between sensors, and the resolution of each sensor

along its circular travel path was limited to the update rate of the sensor, which was

approximately 3.0 Hz.

A small electrical motor, part number 6409K13 (McMaster-Carr, Elmhurst,

Illinois) rotated the sensor base at approximately 4 revolutions per minute and an

HB6M -1000 rotary encoder (US Digital, Vancouver, Washington) recorded the sensor

position. An Orbex Group (Fremont, CA) 12 circuit hollow bore slip ring, part number

512-1200, allowed for communication between the sensors and the data acquisition

device while the sensor base rotated. A USB-1408FS data acquisition device

14

(Measurement Computing Corporation, Norton, Massachusetts) was used to record the

data (Figure 3). The encoder and the outputs of the sensors were connected to the

analog inputs of the USB-1408FS and those channels were measured and recorded at

536 Hz. The encoder channels were digital outputs which consisted of an Index, A, and

B signal. The Index channel goes high once every revolution; A and B channels pulse

1000 times per revolution. The analog sampling rate was increased until the digital

pulses from the encoder could be read. The digital outputs of the encoder and the

analog output of the ultrasonic sensors were all read on the analog channels of the USB-

1408FS to make post processing simpler.

Figure 1. Pepperl and Fuchs UC6000-30GM-IUR2-V15 ultrasonic sensor.

15

Figure 2. Sensors installed in rotating base.

Figure 3. The ultrasonic sensor package with encoder, electrical motor, and USB1408FS
data acquisition device.

16

Methods and Analysis

Test Procedure

The sensor package was mounted on the unloading auger of a John Deere 9860

STS combine harvester (Deere and Company, Moline, Illinois) approximately 1.2 meters

from the end of the auger and approximately 4.9 meters from the auger pivot point

(Figure 4). A 640 bushel Brent gravity wagon (Unverferth Manufacturing, Kalida, Ohio)

filled with shelled corn was positioned under the unloading auger. The sensor package

viewed a different section of the wagon at each different measurement position. The

range of positions selected was typical for unloading grain into a wagon (Figure 5). Data

was collected at each position. The analog output of each sensor was recorded for one

revolution of the sensor package.

Earlier testing revealed that having the center of rotation of the sensor package

perpendicular to the ground produced the best results. This position provided more

dynamic depth information at the expense of a reduced sensing window. Testing with

the sensor package mounted more diagonal to the ground to gain a larger sensing

window produced less dynamic depth information which proved to be undesirable.

17

Figure 4. Sensor package mounted on combine harvester unloading auger.

Figure 5. Red dots represent sensor positions relative to the wagon edges while data
was collected. Blue dots at positions thirteen through fifteen represent sensor
position while data was collected with grain flowing from unloading auger.

18

Figure 6. View of grain pile inside wagon from front of wagon.

Figure 7. View of grain from rear of wagon.

19

Data Analysis

 The data consisted of values of seven analog channels collected at 536 Hz. The

data, located in a comma delimited file, was opened in Matlab for processing. The

encoder produced 1000 pulses per revolution, so the analog value of each sensor was

sampled at each encoder pulse. The analog array was then down-sampled to 56

samples per revolution giving an angular resolution of 1 sample per 6.4 degrees. Each

analog value was then assigned to the correct angular value in radians. The analog

values were converted from a binary value to a distance in millimeters using equations

(1) and (2). The data acquisition board used 14 bit channels that had a voltage range of

-10 to +10 volts. The voltage to distance equation was determined from the theoretical

calibration of the sensor and confirmed with empirical testing in the laboratory.

 (

) (1)

 () () (2)

The x, y, and z coordinates were then calculated using the known geometry of

the sensor plate and the measured position of the sensor package provided by the

encoder. Although the ultrasonic sensor distance response could be from any object

within the sensor response cone (+/- 6 degrees), the nominal x,y,z location equations 3-

5, assumed a reflection from the center of the response cone. The nominal x,y,z

location of the response surface was estimated with the following equations:

20

 () () (3)

 (√()) (4)

 (√()) (5)

Where, dist=distance returned from sensor
 SH=fixed height of sensor head from center of sensor plate
 FSA=fixed sensor angle measured from rotation axis
 radius=distance of sensor from center of rotation
 Θ=angle returned from encoder

Figure 8. Sensor mount dimensions where, SH = fixed height of sensor head from
center of plate, FSA = fixed sensor angle relative to rotation axis, and radius = distance
of sensor from center of rotation.

 Once the nominal x,y,z location of the response surface was estimated, a process

was developed to extract the desired information. Features were extracted from the

data; then the features were labeled as wagon edge or grain. It was assumed that the

grain would form a consistent, smooth surface which could be easily distinguished from

the wagon edges. The flow chart in Figure 9 provides a summary of the procedure.

21

Figure 9. Flow chart of data analysis.

 The points were then segmented into groups within each sensor. The resultant

vector of all three coordinates was found and the first and second derivative of the

resultant vector was calculated:

 () √

 √

 (6)

 () √

 √

 (7)

 √

 √

A pair of corresponding negative and positive peaks of the second derivative

above a particular threshold specified the end of one group and the start of another

Groups combined into Surface

Groups to find continuous surfaces

across multiple sensors using binning.

 Features within each sensor

identified, labeled as Groups.

Surface Groups were classified as

grain or wagon edge using geometric

properties.

Second-order polynomial fitted to the

points identified as grain. Grain

depth was calculated.

22

group (Figure 10). These groups were determined to find the possible location where

the sensor response distance moved from one continuous surface to a different surface.

Figure 10. Each color circle represents a different sensor. Solid purple circles
represent last points in each group.

 Points from all four sensors were combined into one array and labeled according

to sensor number and group number which were determined from the second

derivative of the resultant vector. Once the points were separated into groups, the

points were then combined into one array in order to recognize continuous surfaces

across different sensors.

 To find continuous surfaces across different sensors, the points were separated

into bins in the x and y direction. It was assumed that the wagon edges were parallel

with the defined axes. This would make the binning method the most effective at

recognizing edges. The derivative, dz/dx and dz/dy, was calculated within the bins to

further classify the points. The x and y ranges of the points were divided into sixteen

equal parts; sixteen rows were created in the y direction and sixteen columns were

23

created in the y direction. The width of the rows and columns depended on the full

range divided by sixteen, but were approximately 120 mm wide. The points from the

sensor forming the outside ring determined the number of rows or columns. The

smaller the width of the column or row represented, the greater the maximum

resolution/accuracy possible. However, the maximum number of rows and columns was

limited if each row and column was required to have at least one point from the outside

ring. In these tests, the smallest possible width was approximately 120mm wide while

still including a point from the outside ring in each column or row.

For the columns, the x value was ignored, the points were assumed to be

collinear. The derivative, dz/dy was found for each point in each column. The same was

true for the rows, and dz/dx was found for each point in each row. If the derivative was

below a certain threshold, the two groups that the two points belonged to were

considered a match; above the threshold the groups were considered a non-match. The

matches and non-matches were weighted against each other to combine the groups

into new surface groups. Each surface group was assumed to be reflections from the

same surface plane (i.e. wagon edge or grain surface). To check against false matches,

the most populous surface group was tested. For each group within the surface group,

matches and non-matches were found between it and the other groups. If the non-

matches outnumbered the matches, the matching group pair was thrown out and the

most populous surface group was recalculated. The excluded matching group pairs

were then replaced in the array and the remaining surface groups were calculated.

24

Individual groups not matched up were labeled as a surface group also. Surface groups

with less than three points were excluded from further processing. The surface groups

now had to be classified as grain or an edge (Figure 11).

Figure 11. Groups combined into Surface Groups. Green points are one group, blue
points are another, and red points are a third group.

 Since the y axis was set in line with the axial direction of the auger and the x axis

perpendicular to it, the edges of the wagon were assumed to be parallel to the x or y

axes. So, surface groups were classified by comparing the ratio of the range in the x

direction to the range in the y direction. A surface group with an x-y ratio close to one

was considered as grain. A range was set enclosing a ratio of one; within the range the

surface group was classified as grain, and outside the range the surface group was

classified as an edge. The range was set wide so that anything classified as an edge was

definitely an edge, while an actual edge could be misclassified as grain. If the surface

group was classified as potential grain, the number of sensors that made up the surface

group was examined. If the surface group consisted of just one sensor, it was simply

25

classified as grain. If the surface group consisted of more than one sensor, the x-y ratio

was checked again with a tighter grain classification range. This was done because

edges which were found by two sensors had an x-y ratio closer to 1 than edges found

with just one sensor (Figure 12). This also prevented surface groups which consisted of

one sensor and an x-y ratio further away from 1 from being misclassified as edges.

Surface groups classified as an edge were also classified at that time as a vertical edge

(front or rear edge of wagon) or a horizontal edge (near or far edge of wagon).

Figure 12. Horizontal edge identified in red. Edge was found by two sensors. Grain
identified in yellow.

 If more than one horizontal or vertical edge was identified, false edges were

identified and thrown out. False edges were merely found by calculating the average z

value of each edge and the edge with the highest z value was considered the true edge

and all others were considered false. Horizontal and vertical edges were also compared

against each other. If the average z value of each differed by more than 100 mm, the

lower of the two was thrown out.

26

 With true edges and true grain identified, grain depth could now be calculated.

A second order polynomial was fitted to the points identified as grain. A line was fitted

to the edges in two different orientations, x by z and y by z. The two line equations

were combined to form a three-dimensional line equation (Figure 13). In production

form, the grain depth, which is the difference in height between the edge and the grain,

could now be calculated at the midpoint of the edge. For evaluation purposes, the grain

depth was calculated at the point of measured grain depth nearest to the midpoint of

the edge.

Figure 13. Second order surface fitted to grain and line fitted to edge.

27

Results

The sensor package was successfully developed and tested. Data was collected

at representative locations with the sensor package looking into a wagon. A grid

pattern was created and the grain depth below the top wagon edge was measured at

intersection points on the grid (Figure 14). At each new sensor position the distance to

three of the four wagon corners was measured, which determined the position of the

wagon relative to the sensors. The predicted grain surface could then be compared to

the known points on the grid, and the predicted grain-edge intersection could be

compared to the known grain-edge intersection. The measured grain surface profile is

depicted in Figure 15.

Figure 14. Grain depth was measured at each intersection of a gridline and at the
intersection of the gridline with a wagon edge.

28

Figure 15: Measured actual grain surface and wagon edges plotted in Matlab.

Figure 16. Red dots represent sensor positions relative to the wagon edges while data
was collected. Blue dots at positions thirteen through fifteen represent sensor
position while data was collected with grain flowing from unloading auger.

No sensor measurements were received at positions 1 and 5. With the sensors

at the front corner of the wagon, it is assumed that the sound waves were refracted

because the wagon surfaces were at too great of an angle to reflect the sound waves

back to the ultrasonic transducer. The sensor package was outside the wagon at

positions two through four; therefore, no grain was detected. The edge was

successfully detected within 53 mm for positions two through four.

29

Table 1. Results summary table. All numbers are in millimeters in the z direction with
the sensor being the origin. Average error in Grain Depth (edge to grain distance) was
within 75 millimeters.

 Edges were successfully identified at all positions except for one and five. The

average error between the actual edge z height and the predicted edge z height was

27.2 mm across all sensor positions. The error was calculated at the measured value

closest to the midpoint of the sensing range. At positions six and fifteen, the side and

end edge of the wagon were both successfully identified (Figure 17). In positions 12

and 13, the sensor may have been receiving reflections from an end edge, but the edge

was dropped due to its height being lower than the other sensed edge (Figure 18). A

false edge was identified in position 11. A surface group of points were segmented out,

rather than combined with other grain groups. The surface group passed the x-y ratio

test and was identified as an edge.

30

Figure 17. Front and side edges were identified at position six. Actual wagon edges
are indicated by grey lines. Points indentified as grain are in yellow. Blue points are
the measured grain surface.

Figure 18. Sensor may have received reflections from front wagon edge but the
surface group was dropped due to selection criteria at position thirteen. Blue
outlined circles with no color fill inside represent unclassified measurement points.

31

 A second order polynomial was fitted to the points identified as grain. The

second order surface was then compared to the measured grain depth points (Figure

14) that were enclosed by the sensor range in the x and y direction. The predicted

surface (z) was calculated using the second order prediction equation at the x and y

coordinates of each measured grain depth point. For all positions, the predicted surface

points were compared to the nine measured points in JMP statistical software by fitting

a first order linear regression to the measured points versus the predicted points. The

RMSE ranged from a best of 69.19 mm up to a high of 1011.06 mm (Table 2). The

particularly poor RMSE of 1011.06 at position 9 results from too few points being

identified as grain, resulting in a poor fit. This was of no consequence since the system

properly identified that the sensors were outside the wagon edges and therefore no

grain should be flowing from the unloading auger. This analysis was also restricted by

limited degrees of freedom. The model accounted for one degree of freedom out of a

total of only nine.

32

Table 2. Grain surface fit summary for static grain tests.

 Further skewing results was the cone angle of each ultrasonic sensor. By the

nature of a propagating sound wave, the sensing window of the sensor widens as the

distance from the sensor is increased. When the sound wave reflects off a surface not

orthogonal to the sensor, the distance predicted is shorter than the actual distance

because the distance is assumed to be on the centerline of the sensor (Figure 19). This

effect worsens as the angle between the sensor and the reflecting surface increases.

Therefore, the sensors mounted at greater angles in the sensor mounting plate under-

predicted distance more than the sensors mounted more perpendicular to the sensor

mounting plate. Figure 20 shows a second order model fit to error between predicted

values and measured values versus the distance from the centerline of the sensor

assembly. R2 value of the second order fit was 0.70. This graphic shows that the

33

distance became more under-predicted the further away from the centerline of the

sensor package.

Figure 19. Distance measured assumed to be on the centerline of the sensor.

Figure 20. Error between predicted value and measured value versus distance from
centerline of sensor assembly. R2 of second order fit was 0.70.

34

 Next, the grain surface equation was solved where the grain surface met the

wagon edge and at the measured grain-edge intersection nearest to the middle of the

sensing range. Because of the poor grain surface fit, the grain-edge measurement was

calculated at one point and at the center of the sensing range. The grain-edge

intersection was calculated at the measured grain depth nearest to the center of the

sensing range only for comparison. The average grain-edge intersection error was 94.5

mm, with the worst error being 222.3 mm and the least error being 7.8 mm

 Combining the wagon edge z position and the grain-edge intersection created

the grain depth measurement which a controller would use to decide when the wagon

was full. The average error for grain depth was 72.4 mm, with -251.5 mm being the

greatest error and -4.6 mm being the least error.

Data was collected at positions thirteen through fifteen while grain was flowing

out of the unloading auger to confirm that the system would function properly. At each

position the grain and the wagon edges were correctly identified (Figure 21). No

numbers exist to report as the grain depth was not constant.

35

Figure 21. Near wagon edge, rear wagon edge, and grain correctly identified at
position 15 while grain was flowing.

Conclusions

Summary

 A low cost ultrasonic sensor package was successfully developed and tested.

This project showed that this sensor package could sense the wagon edge and the grain

surface inside to determine the grain depth. The grain depth information could then be

used to automatically control the swing of the unloading auger. It was shown that

these features could be successfully extracted even with the low number of sensing

elements. The wagon edges were identified with an acceptable amount of error in the

predicted z height. The grain surface was predicted with a disappointing amount of

36

error. Perhaps the error induced by the sensor cone angle could be reduced by more

processing. By using the angle between the predicted surface and the sensor, the

amount of the cone angle error could be predicted and the sensed distance from each

sensor adjusted accordingly. When the edge prediction and the grain-edge intersection

prediction were combined, the grain depth was predicted with an average error of 72.4

mm, which is a workable amount of error. The error of 72.4 mm means the grain depth

was under-predicted. Of the eight grain depth predictions, six were under-predicted,

which is desirable as an input to a controller which will turn off grain flow automatically

once grain depth reaches a pre-determined limit. It is helpful that the system under-

predicts consistently so that it behaves consistently for the user and a simple offset can

be applied to tune the system to the user’s liking.

Recommendations for Future Work

 The effects of the cone angle need to be reduced with further processing. Once

this is done and the grain surface can be predicted with greater accuracy, more

automatic control could be done. The control system could start by filling the wagon on

one end. Once one end of the wagon was full, the profile of the grain could be sensed,

and the auger automatically swung away from the edge of the wagon or the speed of

the combine adjusted. This could continue until the wagon is filled evenly.

 The update rate of the sensors also needs to be increased to allow for real time

control system decisions. The current system updates once every 15 seconds or at

0.067 Hz. The speed of rotation of the sensor base could be increased, but the accuracy

37

of the distance measurement would have to be analyzed. A critical look at the sensor

package is also needed to reduce cost and increase robustness for the real-world

environment. The rotating aspect of the sensor package adds complexity and reduces

reliability. A static array of a larger number of ultrasonic sensors could be pursued.

 The feature extraction methodology needs to become more robust and be less

based on assumptions. The ideal methodology would identify wagon edges regardless

of wagon orientation relative to the combine, regardless of wagon tilt relative to the

combine (from a front view), and regardless of the type of grain contained in the wagon.

Different grains would present different grain pile shapes and different reflective

properties.

38

APPENDIX A

Table 3: Predicted and actual Z values summary table.

UNITS ARE IN MILLIMETERS

x y actual z predict z

 Position 6 1 569 -237 -1140 -995

 2 569 442 -1039 -989

 3 569 1122 -1039 -737

 4 -278 -237 -1065 -1016

 5 -278 442 -1014 -967

 6 -278 1122 -861 -672

 7 -1124 -237 -1065 -720

 8 -1124 442 -912 -627

 9 -1124 1122 -709 -289

 Position 7 1 913 -267 -1070 -869

 2 913 412 -917 -752

 3 913 1092 -714 -416

 4 66 -267 -1044 -1036

 5 66 412 -968 -956

 6 66 1092 -866 -657

 7 -781 -267 -1197 -854

 8 -781 412 -1070 -812

 9 -781 1092 -968 -549

 Position 8 1 527 -282 -1199 -1150

 2 527 397 -1072 -1063

 3 527 1077 -970 -773

 4 -319 -282 -1326 -1224

 5 -319 397 -1199 -1144

 6 -319 1077 -1072 -862

 7 -1166 -282 -1326 -918

 8 -1166 397 -1351 -846

 9 -1166 1077 -1376 -572

39

Table 3 continued

 UNITS ARE IN MILLIMETERS

x y actual z predict z

 Position 9 1 -683 -693 -1165 -1001

 2 -683 -14 -1064 -1260

 3 -683 666 -1064 -1306

 4 -1530 -693 -1090 -718

 5 -1530 -14 -1039 -572

 6 -1530 666 -886 -214

 7 -2376 -693 -1090 1087

 8 -2376 -14 -937 1637

 9 -2376 666 -734 2400

 Position 10 1 1057 -732 -1152 -805

 2 1057 -53 -1051 -840

 3 1057 627 -1051 -739

 4 210 -732 -1077 -915

 5 210 -53 -1026 -916

 6 210 627 -873 -781

 7 -636 -732 -1077 -822

 8 -636 -53 -924 -788

 9 -636 627 -721 -620

 Position 11 1 1106 -785 -1057 -604

 2 1106 -106 -904 -689

 3 1106 574 -701 -555

 4 259 -785 -1031 -862

 5 259 -106 -955 -945

 6 259 574 -853 -810

 7 -588 -785 -1184 -920

 8 -588 -106 -1057 -1001

 9 -588 574 -955 -864

 Position 12 1 575 -775 -1148 -996

 2 575 -96 -1021 -1051

 3 575 584 -919 -912

 4 -271 -775 -1275 -1053

 5 -271 -96 -1148 -1124

 6 -271 584 -1021 -1003

 7 -1118 -775 -1275 -712

 8 -1118 -96 -1300 -801

 9 -1118 584 -1325 -696

40

APPENDIX B

Table 4: Linear fit between predicted and actual z values at Position 6.

 Table 5: Linear fit between predicted and actual z values at Position 7.

Bivariate Fit of predict By actual

Linear Fit
predict = 774.90635 + 1.581387*actual

Summary of Fit

RSquare 0.758908
RSquare Adj 0.724466
Root Mean Square Error 126.2007
Mean of Response -779.07
Observations (or Sum Wgts) 9

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 350935.13 350935 22.0345
Error 7 111486.34 15927 Prob > F
C. Total 8 462421.47 0.0022*

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 774.90635 333.7114 2.32 0.0532
actual 1.581387 0.336889 4.69 0.0022*

Bivariate Fit of predict By actual

Linear Fit
predict = 219.29279 + 1.007048*actual

Summary of Fit

RSquare 0.50646
RSquare Adj 0.435954
Root Mean Square Error 148.1158
Mean of Response -766.943
Observations (or Sum Wgts) 9

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 157588.10 157588 7.1832
Error 7 153568.12 21938 Prob > F
C. Total 8 311156.22 0.0315*

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 219.29279 371.2742 0.59 0.5733
actual 1.007048 0.375742 2.68 0.0315*

41

Table 6: Linear fit between predicted and actual z values at Position 8.

Table 7: Linear fit between predicted and actual z values at Position 9.

Bivariate Fit of predict By actual

Linear Fit
predict = -1054.652 - 0.0862194*actual

Summary of Fit

RSquare 0.003517
RSquare Adj -0.13884
Root Mean Square Error 226.3599
Mean of Response -950.317
Observations (or Sum Wgts) 9

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 1265.82 1265.8 0.0247
Error 7 358671.49 51238.8 Prob > F
C. Total 8 359937.31 0.8795

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept -1054.652 668.0852 -1.58 0.1584
actual -0.086219 0.548554 -0.16 0.8795

Bivariate Fit of predict By actual

Linear Fit
predict = 7445.703 + 7.3832842*actual

Summary of Fit

RSquare 0.516689
RSquare Adj 0.447644
Root Mean Square Error 1011.055
Mean of Response 5.813618
Observations (or Sum Wgts) 9

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 7649793 7649793 7.4834
Error 7 7155626 1022232 Prob > F
C. Total 8 14805420 0.0291*

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 7445.703 2740.473 2.72 0.0299*
actual 7.3832842 2.698979 2.74 0.0291*

42

Table 8: Linear fit between predicted and actual z values at Position 10.

Table 9: Linear fit between predicted and actual z values at Position 11.

Bivariate Fit of predict By actual

Linear Fit
predict = -328.1422 + 0.477226*actual

Summary of Fit

RSquare 0.488149
RSquare Adj 0.415028
Root Mean Square Error 69.19035
Mean of Response -802.823
Observations (or Sum Wgts) 9

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 31959.405 31959.4 6.6759
Error 7 33511.136 4787.3 Prob > F
C. Total 8 65470.542 0.0363*

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept -328.1422 185.1584 -1.77 0.1196
actual 0.477226 0.184701 2.58 0.0363*

Bivariate Fit of predict By actual

Linear Fit
predict = -190.0089 + 0.6370341*actual

Summary of Fit

RSquare 0.324079
RSquare Adj 0.227518
Root Mean Square Error 137.0718
Mean of Response -805.596
Observations (or Sum Wgts) 9

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 63059.20 63059.2 3.3562
Error 7 131520.72 18788.7 Prob > F
C. Total 8 194579.92 0.1096

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept -190.0089 339.1109 -0.56 0.5927
actual 0.6370341 0.347725 1.83 0.1096

43

Table 10: Linear fit between predicted and actual z values at Position 12.

Bivariate Fit of predict By actual

Linear Fit
predict = -1563.632 - 0.5488871*actual

Summary of Fit

RSquare 0.261129
RSquare Adj 0.155576
Root Mean Square Error 144.0028
Mean of Response -927.411
Observations (or Sum Wgts) 9

Analysis of Variance
Source DF Sum of Squares Mean Square F Ratio
Model 1 51301.12 51301.1 2.4739
Error 7 145157.71 20736.8 Prob > F
C. Total 8 196458.83 0.1597

Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept -1563.632 407.3355 -3.84 0.0064*
actual -0.548887 0.348972 -1.57 0.1597

44

APPENDIX C

MATLAB CODE

clear all
raw=xlsread('PFtest_15_analog.csv');

%find the index pulse
[M,N]=size(raw); %longest dimension in array
s=0;
for a=1:M;
 if raw(a,1)>11470;
 if s==0;
 start=a;
 s=1;
 else
 finish=a;
 end
 end
end

%pull out a sample at every encoder pulse
a=1;
old=0;
for x=start:finish;
 if raw(x,2)>11470;
 if x==old+1;
 else
 sensor(a,1)=raw(x,4);
 sensor(a,2)=raw(x,5);
 sensor(a,3)=raw(x,6);
 sensor(a,4)=raw(x,7);
 a=a+1;
 end
 old=x;
 end
end

%pull out a sample at a specified interval
a=1;
x=1;
sensor_condense(a,1)=x;
sensor_condense(a,2)=sensor(x,1);
sensor_condense(a,3)=sensor(x,2);
sensor_condense(a,4)=sensor(x,3);
sensor_condense(a,5)=sensor(x,4);
a=2;
old=0;
for x=1:1000;
 if x==old+18;
 sensor_condense(a,1)=x;
 sensor_condense(a,2)=sensor(x,1);
 sensor_condense(a,3)=sensor(x,2);
 sensor_condense(a,4)=sensor(x,3);

45

 sensor_condense(a,5)=sensor(x,4);
 a=a+1;
 old=x;
 end
end

ind1=0;
ind2=0;
ind3=0;
ind4=0;
ind_reject=0;

%convert binary to mm
sensor_condense_mm(:,2:5)=(sensor_condense(:,2:5))*.689697-5300;
%convert encoder pulse to radian
sensor_condense_mm(:,1)=(sensor_condense(:,1))/159.155;

%find x,y,z, coordinates
 [M,N]=size(sensor_condense_mm);
 a=1;
 %sensor 1
 for x=1:M;
 if sensor_condense_mm(x,2)>50;
 if sensor_condense_mm(x,2)<6000;
 H=sensor_condense_mm(x,2)+63.5; %offset from plate
 sa=0.113446; %fixed sensor angle
 z1=-(H*cos(sa));
 if z1>-2500
 ind1=1;
 coord_array1(a,3)=-(H*cos(sa));
 Z=coord_array1(a,3);
 delay=0.17; %(0.33) response delay in radians
 offset=3.14159264;
 theta=sensor_condense_mm(x,1)-offset-delay;
 radius=95.2; %sensor radius
 coord_array1(a,1)=((((H^2)-

(Z^2))^0.5)+radius)*sin(theta);
 coord_array1(a,2)=((((H^2)-

(Z^2))^0.5)+radius)*cos(theta);
 a=a+1;
 end
 end
 end
 end
%sensor 2
a=1;
for x=1:M;
 if sensor_condense_mm(x,3)>50;
 if sensor_condense_mm(x,3)<6000;
 H=sensor_condense_mm(x,3)+54.0;
 sa=0.340339; %fixed sensor angle
 z2=-(H*cos(sa));
 if z2>-2500
 ind2=1;
 coord_array2(a,3)=-(H*cos(sa));

46

 Z=coord_array2(a,3);
 delay=0.17; %(0.33) response delay in radians
 offset=4.71238898;
 theta=sensor_condense_mm(x,1)-offset-delay;
 radius=106.0; %sensor radius
 coord_array2(a,1)=((((H^2)-

(Z^2))^0.5)+radius)*sin(theta);
 coord_array2(a,2)=((((H^2)-

(Z^2))^0.5)+radius)*cos(theta);
 a=a+1;
 end
 end
 end
end
 %sensor 3
 a=1;
 b=1;
 for x=1:M;
 if sensor_condense_mm(x,4)>50;
 if sensor_condense_mm(x,4)<6000; %5840
 H=sensor_condense_mm(x,4)+50.8;
 sa=0.567232; %fixed sensor angle
 z3=-(H*cos(sa));
 if z3>-2500
 ind3=1;
 coord_array3(a,3)=-(H*cos(sa));
 Z=coord_array3(a,3);
 delay=0.17; %(0.33) response delay in radians
 offset=0;
 theta=sensor_condense_mm(x,1)-offset-delay;
 radius=115.3; %sensor radius
 coord_array3(a,1)=((((H^2)-

(Z^2))^0.5)+radius)*sin(theta);
 coord_array3(a,2)=((((H^2)-

(Z^2))^0.5)+radius)*cos(theta);
 a=a+1;
 else
 ind_reject=1;
 reject3(b,3)=-(H*cos(sa));
 Z=reject3(b,3);
 delay=0.17; %(0.33) response delay in radians
 offset=0;
 theta=sensor_condense_mm(x,1)-offset-delay;
 radius=115.3; %sensor radius
 reject3(b,1)=((((H^2)-(Z^2))^0.5)+radius)*sin(theta);
 reject3(b,2)=((((H^2)-(Z^2))^0.5)+radius)*cos(theta);
 b=b+1;
 end
 end
 end
 end
 %sensor 4
 a=1;
 for x=1:M;
 if sensor_condense_mm(x,5)>50;

47

 if sensor_condense_mm(x,5)<6000; %5840
 H=sensor_condense_mm(x,5)+50.8;
 sa=0.7941248; %fixed sensor angle
 z4=-(H*cos(sa));
 if z4>-2500
 ind4=1;
 coord_array4(a,3)=-(H*cos(sa));
 Z=coord_array4(a,3);
 delay=0.17; %(0.33) response delay in radians
 offset=1.570796;
 theta=sensor_condense_mm(x,1)-offset-delay;
 radius=124.2; %sensor radius
 coord_array4(a,1)=((((H^2)-

(Z^2))^0.5)+radius)*sin(theta);
 coord_array4(a,2)=((((H^2)-

(Z^2))^0.5)+radius)*cos(theta);
 a=a+1;
 end
 end
 end
 end
% Sensor 1

%%%
if ind1==1
 % FIND HYPOTENUSE
 [M,N]=size(coord_array1);
 for x=1:M

hyp1(x,1)=((coord_array1(x,1))^2+(coord_array1(x,2))^2+(coord_array1(x,

3))^2)^0.5;
 end

 %find frist derivative
 [M,N]=size(hyp1);
 for x=2:M;
 b=x-1;
 hyp1_deriv(b,1)=hyp1(x,1)-hyp1(b,1);
 end

 %find second derivative
 hyp1_deriv2(1,1)=0;
 [M,N]=size(hyp1_deriv);
 for x=2:M;
 b=x-1;
 hyp1_deriv2(b,1)=hyp1_deriv(x,1)-hyp1_deriv(b,1);
 end

 %find peaks
 [M,N]=size(hyp1_deriv2);
 a=1;
 hyp1_peak(1,1)=0;
 for x=1:M;
 if hyp1_deriv2(x,1)>24;
 hyp1_peak(a,1)=x;
 hyp1_peak(a,2)=hyp1_deriv2(x,1);

48

 a=a+1;
 else
 if hyp1_deriv2(x,1)<-24;
 hyp1_peak(a,1)=x;
 hyp1_peak(a,2)=hyp1_deriv2(x,1);
 a=a+1;
 end
 end
 end

 % find pairs, add points to peak_array1
 [M,N]=size(hyp1_peak);
 hyp1_peak(M+1,1)=0;
 hyp1_peak(M+2,1)=0;
 a=1;
 peak_array1(1,1)=1;
 for x=1:M;
 if hyp1_peak(x,1)+1==hyp1_peak(x+1,1);
 if hyp1_peak(x,2)>0;
 if hyp1_peak(x+1,2)<0;
 peak_array1(a,1)=hyp1_peak(x+1,1);
 a=a+1;
 end
 else
 if hyp1_peak(x+1,2)>0;
 peak_array1(a,1)=hyp1_peak(x+1,1);
 a=a+1;
 end
 end
 else
 % if pair is seperated by 2
 if hyp1_peak(x,1)+2==hyp1_peak(x+1,1);
 if hyp1_peak(x,2)>0;
 if hyp1_peak(x+1,2)<0;
 peak_array1(a,1)=hyp1_peak(x,1)+1;
 a=a+1;
 end
 else
 if hyp1_peak(x+1,2)>0;
 peak_array1(a,1)=hyp1_peak(x,1)+1;
 a=a+1;
 end
 end
 end
 % if pair is seperated by 3
 if hyp1_peak(x,1)+3==hyp1_peak(x+1,1);
 if hyp1_peak(x,2)>0;
 if hyp1_peak(x+1,2)<0;
 peak_array1(a,1)=hyp1_peak(x,1)+1;
 a=a+1;
 end
 else
 if hyp1_peak(x+1,2)>0;
 peak_array1(a,1)=hyp1_peak(x,1)+1;
 a=a+1;

49

 end
 end
 end
 end
 end

 %%% CONFIGURE PEAK ARRAYS into something usable
 [M,N]=size(peak_array1);
 for x=1:M;
 peak_array1a(x)=peak_array1(x,1);
 end
 peak_array1b=sort(peak_array1a);

end
% Sensor 2

%%%
if ind2==1
 % FIND HYPOTENUSE
 [M,N]=size(coord_array2);
 for x=1:M

hyp2(x,1)=((coord_array2(x,1))^2+(coord_array2(x,2))^2+(coord_array2(x,

3))^2)^0.5;
 end

 %find frist derivative
 [M,N]=size(hyp2);
 for x=2:M;
 b=x-1;
 hyp2_deriv(b,1)=hyp2(x,1)-hyp2(b,1);
 end

 %find second derivative
 hyp2_deriv2(1,1)=0;
 [M,N]=size(hyp2_deriv);
 for x=2:M;
 b=x-1;
 hyp2_deriv2(b,1)=hyp2_deriv(x,1)-hyp2_deriv(b,1);
 end

 %find peaks
 [M,N]=size(hyp2_deriv2);
 a=1;
 hyp2_peak(1,1)=0;
 for x=1:M;
 if hyp2_deriv2(x,1)>24;
 hyp2_peak(a,1)=x;
 hyp2_peak(a,2)=hyp2_deriv2(x,1);
 a=a+1;
 else
 if hyp2_deriv2(x,1)<-24;
 hyp2_peak(a,1)=x;
 hyp2_peak(a,2)=hyp2_deriv2(x,1);
 a=a+1;

50

 end
 end
 end

 % find pairs, add points to peak_array2
 [M,N]=size(hyp2_peak);
 hyp2_peak(M+1,1)=0;
 hyp2_peak(M+2,1)=0;
 a=1;
 peak_array2(1,1)=1;
 for x=1:M;
 if hyp2_peak(x,1)+1==hyp2_peak(x+1,1);
 if hyp2_peak(x,2)>0;
 if hyp2_peak(x+1,2)<0;
 peak_array2(a,1)=hyp2_peak(x+1,1);
 a=a+1;
 end
 else
 if hyp2_peak(x+1,2)>0;
 peak_array2(a,1)=hyp2_peak(x+1,1);
 a=a+1;
 end
 end
 else
 % if pair is seperated by 2
 if hyp2_peak(x,1)+2==hyp2_peak(x+1,1);
 if hyp2_peak(x,2)>0;
 if hyp2_peak(x+1,2)<0;
 peak_array2(a,1)=hyp2_peak(x,1)+1;
 a=a+1;
 end
 else
 if hyp2_peak(x+1,2)>0;
 peak_array2(a,1)=hyp2_peak(x,1)+1;
 a=a+1;
 end
 end
 end
 % if pair is seperated by 3
 if hyp2_peak(x,1)+3==hyp2_peak(x+1,1);
 if hyp2_peak(x,2)>0;
 if hyp2_peak(x+1,2)<0;
 peak_array2(a,1)=hyp2_peak(x,1)+1;
 a=a+1;
 end
 else
 if hyp2_peak(x+1,2)>0;
 peak_array2(a,1)=hyp2_peak(x,1)+1;
 a=a+1;
 end
 end
 end
 end
 end

51

 %%% CONFIGURE PEAK ARRAYS into something usable
 [M,N]=size(peak_array2);
 for x=1:M;
 peak_array2a(x)=peak_array2(x,1);
 end
 peak_array2b=sort(peak_array2a);

end
% Sensor 3

%%%
if ind3==1;
 % FIND HYPOTENUSE
 [M,N]=size(coord_array3);
 for x=1:M

hyp3(x,1)=((coord_array3(x,1))^2+(coord_array3(x,2))^2+(coord_array3(x,

3))^2)^0.5;
 end

 %find frist derivative
 [M,N]=size(hyp3);
 for x=2:M;
 b=x-1;
 hyp3_deriv(b,1)=hyp3(x,1)-hyp3(b,1);
 end

 %find second derivative
 hyp3_deriv2(1,1)=0;
 [M,N]=size(hyp3_deriv);
 for x=2:M;
 b=x-1;
 hyp3_deriv2(b,1)=hyp3_deriv(x,1)-hyp3_deriv(b,1);
 end

 %find peaks
 [M,N]=size(hyp3_deriv2);
 a=1;
 hyp3_peak(1,1)=1;
 for x=1:M;
 if hyp3_deriv2(x,1)>24;
 hyp3_peak(a,1)=x;
 hyp3_peak(a,2)=hyp3_deriv2(x,1);
 a=a+1;
 else
 if hyp3_deriv2(x,1)<-24;
 hyp3_peak(a,1)=x;
 hyp3_peak(a,2)=hyp3_deriv2(x,1);
 a=a+1;
 end
 end
 end

 % find pairs, add points to peak_array3
 [M,N]=size(hyp3_peak);

52

 hyp3_peak(M+1,1)=0;
 hyp3_peak(M+2,1)=0;
 a=1;
 peak_array3(1,1)=0;
 for x=1:M;
 if hyp3_peak(x,1)+1==hyp3_peak(x+1,1);
 if hyp3_peak(x,2)>0;
 if hyp3_peak(x+1,2)<0;
 peak_array3(a,1)=hyp3_peak(x+1,1);
 a=a+1;
 end
 else
 if hyp3_peak(x+1,2)>0;
 peak_array3(a,1)=hyp3_peak(x+1,1);
 a=a+1;
 end
 end
 else
 % if pair is seperated by 2
 if hyp3_peak(x,1)+2==hyp3_peak(x+1,1);
 if hyp3_peak(x,2)>0;
 if hyp3_peak(x+1,2)<0;
 peak_array3(a,1)=hyp3_peak(x,1)+1;
 a=a+1;
 end
 else
 if hyp3_peak(x+1,2)>0;
 peak_array3(a,1)=hyp3_peak(x,1)+1;
 a=a+1;
 end
 end
 end
 % if pair is seperated by 3
 if hyp3_peak(x,1)+3==hyp3_peak(x+1,1);
 if hyp3_peak(x,2)>0;
 if hyp3_peak(x+1,2)<0;
 peak_array3(a,1)=hyp3_peak(x,1)+1;
 a=a+1;
 end
 else
 if hyp3_peak(x+1,2)>0;
 peak_array3(a,1)=hyp3_peak(x,1)+1;
 a=a+1;
 end
 end
 end
 end
 end

 %%% CONFIGURE PEAK ARRAYS into something usable
 [M,N]=size(peak_array3);
 for x=1:M;
 peak_array3a(x)=peak_array3(x,1);
 end
 peak_array3b=sort(peak_array3a);

53

end
% Sensor 4

%%%
if ind4==1
 % FIND HYPOTENUSE
 [M,N]=size(coord_array4);
 for x=1:M

hyp4(x,1)=((coord_array4(x,1))^2+(coord_array4(x,2))^2+(coord_array4(x,

3))^2)^0.5;
 end

 %find frist derivative
 [M,N]=size(hyp4);
 for x=2:M;
 b=x-1;
 hyp4_deriv(b,1)=hyp4(x,1)-hyp4(b,1);
 end

 %find second derivative
 hyp4_deriv2(1,1)=0;
 [M,N]=size(hyp4_deriv);
 for x=2:M;
 b=x-1;
 hyp4_deriv2(b,1)=hyp4_deriv(x,1)-hyp4_deriv(b,1);
 end

 %find peaks
 [M,N]=size(hyp4_deriv2);
 a=1;
 hyp4_peak(1,1)=1;
 for x=1:M;
 if hyp4_deriv2(x,1)>24;
 hyp4_peak(a,1)=x;
 hyp4_peak(a,2)=hyp4_deriv2(x,1);
 a=a+1;
 else
 if hyp4_deriv2(x,1)<-24;
 hyp4_peak(a,1)=x;
 hyp4_peak(a,2)=hyp4_deriv2(x,1);
 a=a+1;
 end
 end
 end

 % find pairs, add points to peak_array4
 [M,N]=size(hyp4_peak);
 hyp4_peak(M+1,1)=0;
 hyp4_peak(M+2,1)=0;
 a=1;
 peak_array4(1,1)=0;
 for x=1:M;
 if hyp4_peak(x,1)+1==hyp4_peak(x+1,1);

54

 if hyp4_peak(x,2)>0;
 if hyp4_peak(x+1,2)<0;
 peak_array4(a,1)=hyp4_peak(x+1,1);
 a=a+1;
 end
 else
 if hyp4_peak(x+1,2)>0;
 peak_array4(a,1)=hyp4_peak(x+1,1);
 a=a+1;
 end
 end
 else
 if hyp4_peak(x,1)+2==hyp4_peak(x+1,1);
 if hyp4_peak(x,2)>0;
 if hyp4_peak(x+1,2)<0;
 peak_array4(a,1)=hyp4_peak(x+1,1);
 a=a+1;
 end
 else
 if hyp4_peak(x+1,2)>0;
 peak_array4(a,1)=hyp4_peak(x+1,1);
 a=a+1;
 end
 end
 end
 if hyp4_peak(x,1)+3==hyp4_peak(x+1,1);
 if hyp4_peak(x,2)>0;
 if hyp4_peak(x+1,2)<0;
 peak_array4(a,1)=hyp4_peak(x+1,1);
 a=a+1;
 end
 else
 if hyp4_peak(x+1,2)>0;
 peak_array4(a,1)=hyp4_peak(x+1,1);
 a=a+1;
 end
 end
 end
 end
 end

 %%% CONFIGURE PEAK ARRAYS into something usable
 [M,N]=size(peak_array4);
 for x=1:M;
 peak_array4a(x)=peak_array4(x,1);
 end
 peak_array4b=sort(peak_array4a);

end
%%
%%% Pull peak points out to graph
%%
if ind1==1
 [M,N]=size(peak_array1b);
 graph_array(1,1)=coord_array1(1,1);

55

 graph_array(1,2)=coord_array1(1,2);
 graph_array(1,3)=coord_array1(1,3);
 a=2;
 for x=1:N;
 b=peak_array1b(x);
 graph_array(a,1)=coord_array1(b,1);
 graph_array(a,2)=coord_array1(b,2);
 graph_array(a,3)=coord_array1(b,3);
 a=a+1;
 end
end

if ind2==1
 [M,N]=size(peak_array2b);
 graph_array(a,1)=coord_array2(1,1);
 graph_array(a,2)=coord_array2(1,2);
 graph_array(a,3)=coord_array2(1,3);
 a=a+1;
 for x=1:N;
 b=peak_array2b(x);
 graph_array(a,1)=coord_array2(b,1);
 graph_array(a,2)=coord_array2(b,2);
 graph_array(a,3)=coord_array2(b,3);
 a=a+1;
 end
end

if ind3==1
 [M,N]=size(peak_array3b);
 [M1,N1]=size(coord_array3);
 graph_array(a,1)=coord_array3(M1,1);
 graph_array(a,2)=coord_array3(M1,2);
 graph_array(a,3)=coord_array3(M1,3);
 a=a+1;
 for x=1:N;
 b=peak_array3b(x);
 graph_array(a,1)=coord_array3(b,1);
 graph_array(a,2)=coord_array3(b,2);
 graph_array(a,3)=coord_array3(b,3);
 a=a+1;
 end
end

if ind4==1
 [M,N]=size(peak_array4b);
 [M1,N1]=size(coord_array4);
 graph_array(a,1)=coord_array4(M1,1);
 graph_array(a,2)=coord_array4(M1,2);
 graph_array(a,3)=coord_array4(M1,3);
 a=a+1;
 for x=1:N;
 b=peak_array4b(x);
 graph_array(a,1)=coord_array4(b,1);
 graph_array(a,2)=coord_array4(b,2);
 graph_array(a,3)=coord_array4(b,3);

56

 a=a+1;
 end
end
%%%

%%%%
% IDENTIFY groups
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ind1==1
 %assign group numbers
 [M,N]=size(peak_array1b);
 [M1,N1]=size(coord_array1);
 b=1;
 c=101;
 for x=1:M1
 group_array1(x,1)=coord_array1(x,1);
 group_array1(x,2)=coord_array1(x,2);
 group_array1(x,3)=coord_array1(x,3);
 group_array1(x,4)=c;
 if b==N+1
 else
 if peak_array1b(b)==x;
 c=c+1;
 b=b+1;
 end
 end
 end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ind2==1
 %assign group numbers
 [M,N]=size(peak_array2b);
 [M1,N1]=size(coord_array2);
 b=1;
 c=201;
 for x=1:M1
 group_array2(x,1)=coord_array2(x,1);
 group_array2(x,2)=coord_array2(x,2);
 group_array2(x,3)=coord_array2(x,3);
 group_array2(x,4)=c;
 if b==N+1
 else
 if peak_array2b(b)==x;
 c=c+1;
 b=b+1;
 end
 end
 end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ind3==1
 %assign group numbers
 [M,N]=size(peak_array3b);
 [M1,N1]=size(coord_array3);
 b=1;
 c=301;

57

 for x=1:M1
 group_array3(x,1)=coord_array3(x,1);
 group_array3(x,2)=coord_array3(x,2);
 group_array3(x,3)=coord_array3(x,3);
 group_array3(x,4)=c;
 if b==N+1
 else
 if peak_array3b(b)==x;
 c=c+1;
 b=b+1;
 end
 end
 end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ind4==1
 %assign group numbers
 [M,N]=size(peak_array4b);
 [M1,N1]=size(coord_array4);
 b=1;
 c=401;
 for x=1:M1
 group_array4(x,1)=coord_array4(x,1);
 group_array4(x,2)=coord_array4(x,2);
 group_array4(x,3)=coord_array4(x,3);
 group_array4(x,4)=c;
 if b==N+1
 else
 if peak_array4b(b)==x;
 c=c+1;
 b=b+1;
 end
 end
 end
end

%%% check for erroneous points (sensor 3 dropped points)
if ind_reject==1
 reject3_2=sort(reject3);
 [M,N]=size(reject3_2);
 max_x=reject3_2(M,1);
 min_x=reject3_2(1,1);
 max_y=reject3_2(M,2);
 min_y=reject3_2(1,2);

 x_range=max_x-min_x;
 y_range=max_y-min_y;

 if x_range>y_range
 group_array3_2=sort(group_array3);
 group_min_y=group_array3_2(1,2);
 [M,N]=size(group_array4);
 a=1;
 for x=1:M
 if group_array4(x,2)>group_min_y

58

 group_array4_buffer(a,1)=group_array4(x,1);
 group_array4_buffer(a,2)=group_array4(x,2);
 group_array4_buffer(a,3)=group_array4(x,3);
 group_array4_buffer(a,4)=group_array4(x,4);
 a=a+1;
 end
 end

 clear group_array4
 group_array4=group_array4_buffer;
 clear coord_array4
 coord_array4(:,1)=group_array4(:,1);
 coord_array4(:,2)=group_array4(:,2);
 coord_array4(:,3)=group_array4(:,3);
 end

 if y_range>x_range
 group_array3_2=sort(group_array3);
 [M,N]=size(group_array3_2);
 group_max_x=group_array3_2(M,1);
 [M,N]=size(group_array4);
 a=1;
 for x=1:M
 if group_array4(x,1)<group_max_x
 group_array4_buffer(a,1)=group_array4(x,1);
 group_array4_buffer(a,2)=group_array4(x,2);
 group_array4_buffer(a,3)=group_array4(x,3);
 group_array4_buffer(a,4)=group_array4(x,4);
 a=a+1;
 end
 end

 clear group_array4
 group_array4=group_array4_buffer;
 clear coord_array4
 coord_array4(:,1)=group_array4(:,1);
 coord_array4(:,2)=group_array4(:,2);
 coord_array4(:,3)=group_array4(:,3);
 end
end
%%%

%%%
%COMBINE individual sensors into one GROUP array
a=1;
if ind1==1
 [M,N]=size(group_array1);
 for x=1:M
 group_array(a,1)=group_array1(x,1);
 group_array(a,2)=group_array1(x,2);
 group_array(a,3)=group_array1(x,3);
 group_array(a,4)=group_array1(x,4);
 a=a+1;
 end
end
if ind2==1

59

 [M,N]=size(group_array2);
 for x=1:M
 group_array(a,1)=group_array2(x,1);
 group_array(a,2)=group_array2(x,2);
 group_array(a,3)=group_array2(x,3);
 group_array(a,4)=group_array2(x,4);
 a=a+1;
 end
end
if ind3==1
 [M,N]=size(group_array3);
 for x=1:M
 group_array(a,1)=group_array3(x,1);
 group_array(a,2)=group_array3(x,2);
 group_array(a,3)=group_array3(x,3);
 group_array(a,4)=group_array3(x,4);
 a=a+1;
 end
end
if ind4==1
 [M,N]=size(group_array4);
 for x=1:M
 group_array(a,1)=group_array4(x,1);
 group_array(a,2)=group_array4(x,2);
 group_array(a,3)=group_array4(x,3);
 group_array(a,4)=group_array4(x,4);
 a=a+1;
 end
end
%%%

%%%
if ind1==1
 scatter3(coord_array1(:,1),coord_array1(:,2),coord_array1(:,3));
 xlabel('X');
 ylabel('Y');
 zlabel('Z');
 grid on
 hold on;
end
if ind2==1
scatter3(coord_array2(:,1),coord_array2(:,2),coord_array2(:,3));
 xlabel('X');
 ylabel('Y');
 zlabel('Z');
 grid on
 hold on;
end
if ind3==1
scatter3(coord_array3(:,1),coord_array3(:,2),coord_array3(:,3));
 xlabel('X');
 ylabel('Y');
 zlabel('Z');
 grid on
 hold on;
end

60

if ind4==1
scatter3(coord_array4(:,1),coord_array4(:,2),coord_array4(:,3));
 xlabel('X');
 ylabel('Y');
 zlabel('Z');
 grid on
 hold on;
end
scatter3(graph_array(:,1),graph_array(:,2),graph_array(:,3),'filled');

Start new M-file

clear all
%%%%%%%%%%%%%%%%%%%%%%%%%%%
 num=4;
input=load('pos4.mat');
raw=input.group_array;
%%%%%%%%%%%%%%%%%%%%%%%%%%%
max=max(raw);
min=min(raw);

xrange=max(1,1)-min(1,1);
yrange=max(1,2)-min(1,2);

deltax=xrange/16+.07; %0.07 makes last group +1 beyond last point
deltay=yrange/16+.07; %0.07 makes last group +1 beyond last point

xmin=min(1,1)-1;
ymin=min(1,2)-1;

xmax=max(1,1)+1; %for plotting
ymax=max(1,2)+1; %for plotting

[M,N]=size(raw);
for x=1:M
 raw(x,5)=x;
end
%%%%%%%%% GROUPS IN X DIRECTION %%%%%%%%%%%%
for x=1:M
 if raw(x,1)>xmin
 if raw(x,1)<xmin+deltax
 raw(x,6)=1;
 else
 if raw(x,1)<xmin+2*deltax
 raw(x,6)=2;
 else
 if raw(x,1)<xmin+3*deltax
 raw(x,6)=3;
 else
 if raw(x,1)<xmin+4*deltax
 raw(x,6)=4;
 else
 if raw(x,1)<xmin+5*deltax
 raw(x,6)=5;

61

 else
 if raw(x,1)<xmin+6*deltax
 raw(x,6)=6;
 else
 if raw(x,1)<xmin+7*deltax
 raw(x,6)=7;
 else
 if raw(x,1)<xmin+8*deltax
 raw(x,6)=8;
 else
 if raw(x,1)<xmin+9*deltax
 raw(x,6)=9;
 else
 if raw(x,1)<xmin+10*deltax
 raw(x,6)=10;
 else
 if

raw(x,1)<xmin+11*deltax
 raw(x,6)=11;
 else
 if

raw(x,1)<xmin+12*deltax
 raw(x,6)=12;
 else
 if

raw(x,1)<xmin+13*deltax

raw(x,6)=13;
 else
 if

raw(x,1)<xmin+14*deltax

raw(x,6)=14;
 else
 if

raw(x,1)<xmin+15*deltax

raw(x,6)=15;
 else
 if

raw(x,1)<xmin+16*deltax

raw(x,6)=16;
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end

62

 end
 end
 end
 end
 end
end

%%%%%%%%% GROUPS IN Y DIRECTION %%%%%%%%%%%%

for x=1:M
 if raw(x,2)>ymin
 if raw(x,2)<ymin+deltay
 raw(x,7)=1;
 else
 if raw(x,2)<ymin+2*deltay
 raw(x,7)=2;
 else
 if raw(x,2)<ymin+3*deltay
 raw(x,7)=3;
 else
 if raw(x,2)<ymin+4*deltay
 raw(x,7)=4;
 else
 if raw(x,2)<ymin+5*deltay
 raw(x,7)=5;
 else
 if raw(x,2)<ymin+6*deltay
 raw(x,7)=6;
 else
 if raw(x,2)<ymin+7*deltay
 raw(x,7)=7;
 else
 if raw(x,2)<ymin+8*deltay
 raw(x,7)=8;
 else
 if raw(x,2)<ymin+9*deltay
 raw(x,7)=9;
 else
 if raw(x,2)<ymin+10*deltay
 raw(x,7)=10;
 else
 if

raw(x,2)<ymin+11*deltay
 raw(x,7)=11;
 else
 if

raw(x,2)<ymin+12*deltay
 raw(x,7)=12;
 else
 if

raw(x,2)<ymin+13*deltay

raw(x,7)=13;
 else

63

 if

raw(x,2)<ymin+14*deltay

raw(x,7)=14;
 else
 if

raw(x,2)<ymin+15*deltay

raw(x,7)=15;
 else
 if

raw(x,2)<ymin+16*deltay

raw(x,7)=16;
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
 end
end
%%%

%%%
%%% Pull points out into each row or column
a=1;
b=1;
c=1;
d=1;
e=1;
f=1;
g=1;
h=1;
i=1;
j=1;
k=1;
l=1;
m=1;
n=1;
o=1;
p=1;

column1(1,7)=0;
column2(1,7)=0;
column3(1,7)=0;

64

column4(1,7)=0;
column5(1,7)=0;
column6(1,7)=0;
column7(1,7)=0;
column8(1,7)=0;
column9(1,7)=0;
column10(1,7)=0;
column11(1,7)=0;
column12(1,7)=0;
column13(1,7)=0;
column14(1,7)=0;
column15(1,7)=0;
column16(1,7)=0;

for x=1:M
 if raw(x,6)==1
 column1(a,:)=raw(x,:);
 a=a+1;
 end
 if raw(x,6)==2
 column2(b,:)=raw(x,:);
 b=b+1;
 end
 if raw(x,6)==3
 column3(c,:)=raw(x,:);
 c=c+1;
 end
 if raw(x,6)==4
 column4(d,:)=raw(x,:);
 d=d+1;
 end
 if raw(x,6)==5
 column5(e,:)=raw(x,:);
 e=e+1;
 end
 if raw(x,6)==6
 column6(f,:)=raw(x,:);
 f=f+1;
 end
 if raw(x,6)==7
 column7(g,:)=raw(x,:);
 g=g+1;
 end
 if raw(x,6)==8
 column8(h,:)=raw(x,:);
 h=h+1;
 end
 if raw(x,6)==9
 column9(i,:)=raw(x,:);
 i=i+1;
 end
 if raw(x,6)==10
 column10(j,:)=raw(x,:);
 j=j+1;
 end

65

 if raw(x,6)==11
 column11(k,:)=raw(x,:);
 k=k+1;
 end
 if raw(x,6)==12
 column12(l,:)=raw(x,:);
 l=l+1;
 end
 if raw(x,6)==13
 column13(m,:)=raw(x,:);
 m=m+1;
 end
 if raw(x,6)==14
 column14(n,:)=raw(x,:);
 n=n+1;
 end
 if raw(x,6)==15
 column15(o,:)=raw(x,:);
 o=o+1;
 end
 if raw(x,6)==16
 column16(p,:)=raw(x,:);
 p=p+1;
 end
end

a=1;
b=1;
c=1;
d=1;
e=1;
f=1;
g=1;
h=1;
i=1;
j=1;
k=1;
l=1;
m=1;
n=1;
o=1;
p=1;

row1(1,7)=0;
row2(1,7)=0;
row3(1,7)=0;
row4(1,7)=0;
row5(1,7)=0;
row6(1,7)=0;
row7(1,7)=0;
row8(1,7)=0;
row9(1,7)=0;
row10(1,7)=0;
row11(1,7)=0;
row12(1,7)=0;

66

row13(1,7)=0;
row14(1,7)=0;
row15(1,7)=0;
row16(1,7)=0;

for x=1:M
 if raw(x,7)==1
 row1(a,:)=raw(x,:);
 a=a+1;
 end
 if raw(x,7)==2
 row2(b,:)=raw(x,:);
 b=b+1;
 end
 if raw(x,7)==3
 row3(c,:)=raw(x,:);
 c=c+1;
 end
 if raw(x,7)==4
 row4(d,:)=raw(x,:);
 d=d+1;
 end
 if raw(x,7)==5
 row5(e,:)=raw(x,:);
 e=e+1;
 end
 if raw(x,7)==6
 row6(f,:)=raw(x,:);
 f=f+1;
 end
 if raw(x,7)==7
 row7(g,:)=raw(x,:);
 g=g+1;
 end
 if raw(x,7)==8
 row8(h,:)=raw(x,:);
 h=h+1;
 end
 if raw(x,7)==9
 row9(i,:)=raw(x,:);
 i=i+1;
 end
 if raw(x,7)==10
 row10(j,:)=raw(x,:);
 j=j+1;
 end
 if raw(x,7)==11
 row11(k,:)=raw(x,:);
 k=k+1;
 end
 if raw(x,7)==12
 row12(l,:)=raw(x,:);
 l=l+1;
 end
 if raw(x,7)==13

67

 row13(m,:)=raw(x,:);
 m=m+1;
 end
 if raw(x,7)==14
 row14(n,:)=raw(x,:);
 n=n+1;
 end
 if raw(x,7)==15
 row15(o,:)=raw(x,:);
 o=o+1;
 end
 if raw(x,7)==16
 row16(p,:)=raw(x,:);
 p=p+1;
 end
end
%%%

%%
%%% SORT ACCORDING TO Y (for columns), X (for rows)
column1=sortrows(column1,2);
column2=sortrows(column2,2);
column3=sortrows(column3,2);
column4=sortrows(column4,2);
column5=sortrows(column5,2);
column6=sortrows(column6,2);
column7=sortrows(column7,2);
column8=sortrows(column8,2);

column9=sortrows(column9,2);
column10=sortrows(column10,2);
column11=sortrows(column11,2);
column12=sortrows(column12,2);
column13=sortrows(column13,2);
column14=sortrows(column14,2);
column15=sortrows(column15,2);
column16=sortrows(column16,2);

row1=sortrows(row1,1);
row2=sortrows(row2,1);
row3=sortrows(row3,1);
row4=sortrows(row4,1);
row5=sortrows(row5,1);
row6=sortrows(row6,1);
row7=sortrows(row7,1);
row8=sortrows(row8,1);

row9=sortrows(row9,1);
row10=sortrows(row10,1);
row11=sortrows(row11,1);
row12=sortrows(row12,1);
row13=sortrows(row13,1);
row14=sortrows(row14,1);
row15=sortrows(row15,1);
row16=sortrows(row16,1);

68

%%%

%%%
%%% FIND DERIVATIVE (dz/dy for column, dz/dx for row)
column1(1,8)=0;
[M,N]=size(column1);
for x=2:M
 column1(x,8)=(column1(x,3)-column1(x-1,3))/(column1(x,2)-column1(x-

1,2));
end
column2(1,8)=0;
[M,N]=size(column2);
for x=2:M
 column2(x,8)=(column2(x,3)-column2(x-1,3))/(column2(x,2)-column2(x-

1,2));
end
column3(1,8)=0;
[M,N]=size(column3);
for x=2:M
 column3(x,8)=(column3(x,3)-column3(x-1,3))/(column3(x,2)-column3(x-

1,2));
end
column4(1,8)=0;
[M,N]=size(column4);
for x=2:M
 column4(x,8)=(column4(x,3)-column4(x-1,3))/(column4(x,2)-column4(x-

1,2));
end
column5(1,8)=0;
[M,N]=size(column5);
for x=2:M
 column5(x,8)=(column5(x,3)-column5(x-1,3))/(column5(x,2)-column5(x-

1,2));
end
column6(1,8)=0;
[M,N]=size(column6);
for x=2:M
 column6(x,8)=(column6(x,3)-column6(x-1,3))/(column6(x,2)-column6(x-

1,2));
end
column7(1,8)=0;
[M,N]=size(column7);
for x=2:M
 column7(x,8)=(column7(x,3)-column7(x-1,3))/(column7(x,2)-column7(x-

1,2));
end
column8(1,8)=0;
[M,N]=size(column8);
for x=2:M
 column8(x,8)=(column8(x,3)-column8(x-1,3))/(column8(x,2)-column8(x-

1,2));
end
column9(1,8)=0;
[M,N]=size(column9);
for x=2:M

69

 column9(x,8)=(column9(x,3)-column9(x-1,3))/(column9(x,2)-column9(x-

1,2));
end
column10(1,8)=0;
[M,N]=size(column10);
for x=2:M
 column10(x,8)=(column10(x,3)-column10(x-1,3))/(column10(x,2)-

column10(x-1,2));
end
column11(1,8)=0;
[M,N]=size(column11);
for x=2:M
 column11(x,8)=(column11(x,3)-column11(x-1,3))/(column11(x,2)-

column11(x-1,2));
end
column12(1,8)=0;
[M,N]=size(column12);
for x=2:M
 column12(x,8)=(column12(x,3)-column12(x-1,3))/(column12(x,2)-

column12(x-1,2));
end
column13(1,8)=0;
[M,N]=size(column13);
for x=2:M
 column13(x,8)=(column13(x,3)-column13(x-1,3))/(column13(x,2)-

column13(x-1,2));
end
column14(1,8)=0;
[M,N]=size(column14);
for x=2:M
 column14(x,8)=(column14(x,3)-column14(x-1,3))/(column14(x,2)-

column14(x-1,2));
end
column15(1,8)=0;
[M,N]=size(column15);
for x=2:M
 column15(x,8)=(column15(x,3)-column15(x-1,3))/(column15(x,2)-

column15(x-1,2));
end
column16(1,8)=0;
[M,N]=size(column16);
for x=2:M
 column16(x,8)=(column16(x,3)-column16(x-1,3))/(column16(x,2)-

column16(x-1,2));
end
%%%%%%%%%%%%%%%%%%%%
row1(1,8)=0;
[M,N]=size(row1);
for x=2:M
 row1(x,8)=(row1(x,3)-row1(x-1,3))/(row1(x,1)-row1(x-1,1));
end
row2(1,8)=0;
[M,N]=size(row2);
for x=2:M
 row2(x,8)=(row2(x,3)-row2(x-1,3))/(row2(x,1)-row2(x-1,1));

70

end
row3(1,8)=0;
[M,N]=size(row3);
for x=2:M
 row3(x,8)=(row3(x,3)-row3(x-1,3))/(row3(x,1)-row3(x-1,1));
end
row4(1,8)=0;
[M,N]=size(row4);
for x=2:M
 row4(x,8)=(row4(x,3)-row4(x-1,3))/(row4(x,1)-row4(x-1,1));
end
row5(1,8)=0;
[M,N]=size(row5);
for x=2:M
 row5(x,8)=(row5(x,3)-row5(x-1,3))/(row5(x,1)-row5(x-1,1));
end
row6(1,8)=0;
[M,N]=size(row6);
for x=2:M
 row6(x,8)=(row6(x,3)-row6(x-1,3))/(row6(x,1)-row6(x-1,1));
end
row7(1,8)=0;
[M,N]=size(row7);
for x=2:M
 row7(x,8)=(row7(x,3)-row7(x-1,3))/(row7(x,1)-row7(x-1,1));
end
row8(1,8)=0;
[M,N]=size(row8);
for x=2:M
 row8(x,8)=(row8(x,3)-row8(x-1,3))/(row8(x,1)-row8(x-1,1));
end
row9(1,8)=0;
[M,N]=size(row9);
for x=2:M
 row9(x,8)=(row9(x,3)-row9(x-1,3))/(row9(x,1)-row9(x-1,1));
end
row10(1,8)=0;
[M,N]=size(row10);
for x=2:M
 row10(x,8)=(row10(x,3)-row10(x-1,3))/(row10(x,1)-row10(x-1,1));
end
row11(1,8)=0;
[M,N]=size(row11);
for x=2:M
 row11(x,8)=(row11(x,3)-row11(x-1,3))/(row11(x,1)-row11(x-1,1));
end
row12(1,8)=0;
[M,N]=size(row12);
for x=2:M
 row12(x,8)=(row12(x,3)-row12(x-1,3))/(row12(x,1)-row12(x-1,1));
end
row13(1,8)=0;
[M,N]=size(row13);
for x=2:M
 row13(x,8)=(row13(x,3)-row13(x-1,3))/(row13(x,1)-row13(x-1,1));

71

end
row14(1,8)=0;
[M,N]=size(row14);
for x=2:M
 row14(x,8)=(row14(x,3)-row14(x-1,3))/(row14(x,1)-row14(x-1,1));
end
row15(1,8)=0;
[M,N]=size(row15);
for x=2:M
 row15(x,8)=(row15(x,3)-row15(x-1,3))/(row15(x,1)-row15(x-1,1));
end
row16(1,8)=0;
[M,N]=size(row16);
for x=2:M
 row16(x,8)=(row16(x,3)-row16(x-1,3))/(row16(x,1)-row16(x-1,1));
end
%%%

%%%
%%% Combine column gradients into one array and plot
%%% COLUMNS
[M,N]=size(column1);
a=1;
for x=1:M
 combine_col(a,:)=column1(x,:);
 a=a+1;
end
[M,N]=size(column2);
for x=1:M
 combine_col(a,:)=column2(x,:);
 a=a+1;
end
[M,N]=size(column3);
for x=1:M
 combine_col(a,:)=column3(x,:);
 a=a+1;
end
[M,N]=size(column4);
for x=1:M
 combine_col(a,:)=column4(x,:);
 a=a+1;
end
[M,N]=size(column5);
for x=1:M
 combine_col(a,:)=column5(x,:);
 a=a+1;
end
[M,N]=size(column6);
for x=1:M
 combine_col(a,:)=column6(x,:);
 a=a+1;
end
[M,N]=size(column7);
for x=1:M
 combine_col(a,:)=column7(x,:);
 a=a+1;

72

end
[M,N]=size(column8);
for x=1:M
 combine_col(a,:)=column8(x,:);
 a=a+1;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[M,N]=size(column9);
for x=1:M
 combine_col(a,:)=column9(x,:);
 a=a+1;
end
[M,N]=size(column10);
for x=1:M
 combine_col(a,:)=column10(x,:);
 a=a+1;
end
[M,N]=size(column11);
for x=1:M
 combine_col(a,:)=column11(x,:);
 a=a+1;
end
[M,N]=size(column12);
for x=1:M
 combine_col(a,:)=column12(x,:);
 a=a+1;
end
[M,N]=size(column13);
for x=1:M
 combine_col(a,:)=column13(x,:);
 a=a+1;
end
[M,N]=size(column14);
for x=1:M
 combine_col(a,:)=column14(x,:);
 a=a+1;
end
[M,N]=size(column15);
for x=1:M
 combine_col(a,:)=column15(x,:);
 a=a+1;
end
[M,N]=size(column16);
for x=1:M
 combine_col(a,:)=column16(x,:);
 a=a+1;
end

%%% ROWS
[M,N]=size(row1);
a=1;
for x=1:M
 combine_row(a,:)=row1(x,:);
 a=a+1;
end

73

[M,N]=size(row2);
for x=1:M
 combine_row(a,:)=row2(x,:);
 a=a+1;
end
[M,N]=size(row3);
for x=1:M
 combine_row(a,:)=row3(x,:);
 a=a+1;
end
[M,N]=size(row4);
for x=1:M
 combine_row(a,:)=row4(x,:);
 a=a+1;
end
[M,N]=size(row5);
for x=1:M
 combine_row(a,:)=row5(x,:);
 a=a+1;
end
[M,N]=size(row6);
for x=1:M
 combine_row(a,:)=row6(x,:);
 a=a+1;
end
[M,N]=size(row7);
for x=1:M
 combine_row(a,:)=row7(x,:);
 a=a+1;
end
[M,N]=size(row8);
for x=1:M
 combine_row(a,:)=row8(x,:);
 a=a+1;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[M,N]=size(row9);
for x=1:M
 combine_row(a,:)=row9(x,:);
 a=a+1;
end
[M,N]=size(row10);
for x=1:M
 combine_row(a,:)=row10(x,:);
 a=a+1;
end
[M,N]=size(row11);
for x=1:M
 combine_row(a,:)=row11(x,:);
 a=a+1;
end
[M,N]=size(row12);
for x=1:M
 combine_row(a,:)=row12(x,:);
 a=a+1;

74

end
[M,N]=size(row13);
for x=1:M
 combine_row(a,:)=row13(x,:);
 a=a+1;
end
[M,N]=size(row14);
for x=1:M
 combine_row(a,:)=row14(x,:);
 a=a+1;
end
[M,N]=size(row15);
for x=1:M
 combine_row(a,:)=row15(x,:);
 a=a+1;
end
[M,N]=size(row16);
for x=1:M
 combine_row(a,:)=row16(x,:);
 a=a+1;
end
%%%

%%%
%%% combine groups using GRADIENT
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% COLUMNS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[M,N]=size(combine_col);
a=1;
b=1;
for x=2:M
 if combine_col(x,8)>.42
 if combine_col(x,6)==combine_col(x-1,6) %group edge
 non_match(a,1)=combine_col(x,4);
 non_match(a,2)=combine_col(x-1,4);
 a=a+1;
 end
 else
 if combine_col(x,8)<-.42
 if combine_col(x,6)==combine_col(x-1,6) %group edge
 non_match(a,1)=combine_col(x,4);
 non_match(a,2)=combine_col(x-1,4);
 a=a+1;
 end
 else
 if combine_col(x,6)==combine_col(x-1,6) %group edge
 match(b,1)=combine_col(x,4);
 match(b,2)=combine_col(x-1,4);
 b=b+1;
 end
 end
 end
end
%%% Eliminate group pairs (401,401)
match1(1,1)=0;
match1(1,2)=0;

75

[M,N]=size(match);
a=1;
for x=1:M
 if match(x,1)==match(x,2)
 else
 match1(a,1)=match(x,1);
 match1(a,2)=match(x,2);
 a=a+1;
 end
end

non_match1(1,1)=0;
non_match1(1,2)=0;
[M,N]=size(non_match);
a=1;
for x=1:M
 if non_match(x,1)==non_match(x,2)
 else
 non_match1(a,1)=non_match(x,1);
 non_match1(a,2)=non_match(x,2);
 a=a+1;
 end
end
%%% Sort each row (lower group number first)
[M,N]=size(match1);
a=1;

for x=1:M
 if match1(x,1)>match1(x,2)
 match2(a,1)=match1(x,2);
 match2(a,2)=match1(x,1);
 a=a+1;
 else
 match2(a,1)=match1(x,1);
 match2(a,2)=match1(x,2);
 a=a+1;
 end
end

[M,N]=size(non_match1);
a=1;

for x=1:M
 if non_match1(x,1)>non_match1(x,2)
 non_match2(a,1)=non_match1(x,2);
 non_match2(a,2)=non_match1(x,1);
 a=a+1;
 else
 non_match2(a,1)=non_match1(x,1);
 non_match2(a,2)=non_match1(x,2);
 a=a+1;
 end
end
%%% Sort by first row

76

match2=sortrows(match2,1);
non_match2=sortrows(non_match2,1);
%%% Combine pairs
[M,N]=size(match2);
a=2;
b=0;
row=0;
match3(1,1)=match2(1,1);
match3(1,2)=match2(1,2);
match3(1,3)=1;

for x=2:1:M
 [M1,N1]=size(match3);
 for y=1:1:M1
 if match3(y,1)==match2(x,1)
 if match3(y,2)==match2(x,2)
 row=y;
 b=1;
 end
 end
 end

 if b==1;
 match3(row,3)=match3(row,3)+1;
 b=0;
 else
 match3(a,1)=match2(x,1);
 match3(a,2)=match2(x,2);
 match3(a,3)=1;
 a=a+1;
 b=0;
 end
end

[M,N]=size(non_match2);
a=2;
b=0;
row=0;
non_match3(1,1)=non_match2(1,1);
non_match3(1,2)=non_match2(1,2);
non_match3(1,3)=1;

for x=2:1:M
 [M1,N1]=size(non_match3);
 for y=1:1:M1
 if non_match3(y,1)==non_match2(x,1)
 if non_match3(y,2)==non_match2(x,2)
 row=y;
 b=1;
 end
 end
 end

 if b==1;

77

 non_match3(row,3)=non_match3(row,3)+1;
 b=0;
 else
 non_match3(a,1)=non_match2(x,1);
 non_match3(a,2)=non_match2(x,2);
 non_match3(a,3)=1;
 a=a+1;
 b=0;
 end
end
%%%%%%%%%%%%%%%%%% REPEAT PROCEDURE ON ROWS

%%%%%%%%%%%%%%%%%%%%%%%%
[M,N]=size(combine_row);
a=1;
b=1;
for x=2:M
 if combine_row(x,8)>.42 %.65
 if combine_row(x,7)==combine_row(x-1,7) %group edge
 rnon_match(a,1)=combine_row(x,4);
 rnon_match(a,2)=combine_row(x-1,4);
 a=a+1;
 end
 else
 if combine_row(x,8)<-.42 %.65
 if combine_row(x,7)==combine_row(x-1,7) %group edge
 rnon_match(a,1)=combine_row(x,4);
 rnon_match(a,2)=combine_row(x-1,4);
 a=a+1;
 end
 else
 if combine_row(x,7)==combine_row(x-1,7) %group edge
 if abs(combine_row(x,1)-combine_row(x-1,1))<1000
 rmatch(b,1)=combine_row(x,4);
 rmatch(b,2)=combine_row(x-1,4);
 b=b+1;
 end
 end
 end
 end
end
%%% Eliminate group pairs (401,401)
rmatch1(1,1)=0;
rmatch1(1,2)=0;
[M,N]=size(rmatch);
a=1;

for x=1:M
 if rmatch(x,1)==rmatch(x,2)
 else
 rmatch1(a,1)=rmatch(x,1);
 rmatch1(a,2)=rmatch(x,2);
 a=a+1;
 end
end

78

rnon_match1(1,1)=0;
rnon_match1(1,2)=0;
[M,N]=size(rnon_match);
a=1;

for x=1:M
 if rnon_match(x,1)==rnon_match(x,2)
 else
 rnon_match1(a,1)=rnon_match(x,1);
 rnon_match1(a,2)=rnon_match(x,2);
 a=a+1;
 end
end
%%% Sort each row (lower group number first)
[M,N]=size(rmatch1);
a=1;

for x=1:M
 if rmatch1(x,1)>rmatch1(x,2)
 rmatch2(a,1)=rmatch1(x,2);
 rmatch2(a,2)=rmatch1(x,1);
 a=a+1;
 else
 rmatch2(a,1)=rmatch1(x,1);
 rmatch2(a,2)=rmatch1(x,2);
 a=a+1;
 end
end

[M,N]=size(rnon_match1);
a=1;

for x=1:M
 if rnon_match1(x,1)>rnon_match1(x,2)
 rnon_match2(a,1)=rnon_match1(x,2);
 rnon_match2(a,2)=rnon_match1(x,1);
 a=a+1;
 else
 rnon_match2(a,1)=rnon_match1(x,1);
 rnon_match2(a,2)=rnon_match1(x,2);
 a=a+1;
 end
end
%%% Sort by first row
rmatch2=sortrows(rmatch2,1);
rnon_match2=sortrows(rnon_match2,1);
%%% Combine pairs
[M,N]=size(rmatch2);
a=2;
b=0;
row=0;
rmatch3(1,1)=rmatch2(1,1);
rmatch3(1,2)=rmatch2(1,2);
rmatch3(1,3)=1;

79

for x=2:1:M
 [M1,N1]=size(rmatch3);
 for y=1:1:M1
 if rmatch3(y,1)==rmatch2(x,1)
 if rmatch3(y,2)==rmatch2(x,2)
 row=y;
 b=1;
 end
 end
 end

 if b==1;
 rmatch3(row,3)=rmatch3(row,3)+1;
 b=0;
 else
 rmatch3(a,1)=rmatch2(x,1);
 rmatch3(a,2)=rmatch2(x,2);
 rmatch3(a,3)=1;
 a=a+1;
 b=0;
 end
end

[M,N]=size(rnon_match2);
a=2;
b=0;
row=0;
rnon_match3(1,1)=rnon_match2(1,1);
rnon_match3(1,2)=rnon_match2(1,2);
rnon_match3(1,3)=1;

for x=2:1:M
 [M1,N1]=size(rnon_match3);
 for y=1:1:M1
 if rnon_match3(y,1)==rnon_match2(x,1)
 if rnon_match3(y,2)==rnon_match2(x,2)
 row=y;
 b=1;
 end
 end
 end

 if b==1;
 rnon_match3(row,3)=rnon_match3(row,3)+1;
 b=0;
 else
 rnon_match3(a,1)=rnon_match2(x,1);
 rnon_match3(a,2)=rnon_match2(x,2);
 rnon_match3(a,3)=1;
 a=a+1;
 b=0;
 end
end

80

%%%

%%%
%%%%%% combine match and non-match from rows and columns

%%%%%%%%
combine_match(:,1)=match3(:,1);
combine_match(:,2)=match3(:,2);
combine_match(:,3)=match3(:,3);

[M,N]=size(rmatch3);
[M1,N1]=size(combine_match);
a=M1+1;
b=0;
row=0;

for x=1:1:M
 for y=1:1:M1
 if combine_match(y,1)==rmatch3(x,1)
 if combine_match(y,2)==rmatch3(x,2)
 row=y;
 b=1;
 end
 end
 end

 if b==1;
 combine_match(row,3)=combine_match(row,3)+rmatch3(x,3);
 b=0;
 else
 combine_match(a,1)=rmatch3(x,1);
 combine_match(a,2)=rmatch3(x,2);
 combine_match(a,3)=rmatch3(x,3);
 a=a+1;
 b=0;
 end
end
%%% REPEAT FOR ROWS
combine_non_match(:,1)=non_match3(:,1);
combine_non_match(:,2)=non_match3(:,2);
combine_non_match(:,3)=non_match3(:,3);

[M,N]=size(rnon_match3);
[M1,N1]=size(combine_non_match);
a=M1+1;
b=0;
row=0;

for x=1:1:M
 for y=1:1:M1
 if combine_non_match(y,1)==rnon_match3(x,1)
 if combine_non_match(y,2)==rnon_match3(x,2)
 row=y;
 b=1;
 end
 end

81

 end

 if b==1;

combine_non_match(row,3)=combine_non_match(row,3)+rnon_match3(x,3);
 b=0;
 else
 combine_non_match(a,1)=rnon_match3(x,1);
 combine_non_match(a,2)=rnon_match3(x,2);
 combine_non_match(a,3)=rnon_match3(x,3);
 a=a+1;
 b=0;
 end
end
%%% Sort by first row
combine_match2=sortrows(combine_match,1);
combine_non_match2=sortrows(combine_non_match,1);
%%% Combine match and non-match to determine if groups match
%%% check match against non-match
[M,N]=size(combine_match2);
[M1,N1]=size(combine_non_match2);
a=1;
b=0;
row=0;

for x=1:1:M
 for y=1:1:M1
 if combine_non_match2(y,1)==combine_match2(x,1)
 if combine_non_match2(y,2)==combine_match2(x,2)
 row=y;
 b=1;
 end
 end
 end

 if b==1;
 combine(a,1)=combine_match2(x,1);
 combine(a,2)=combine_match2(x,2);
 combine(a,3)=combine_match2(x,3);
 combine(a,4)=combine_non_match2(row,3);
 a=a+1;
 b=0;
 else
 combine(a,1)=combine_match2(x,1);
 combine(a,2)=combine_match2(x,2);
 combine(a,3)=combine_match2(x,3);
 combine(a,4)=0;
 a=a+1;
 b=0;
 end
end
%%% Check non-match against match (continue filling 'combine')
b=0;

82

for y=1:1:M1
 for x=1:1:M
 if combine_non_match2(y,1)==combine_match2(x,1)
 if combine_non_match2(y,2)==combine_match2(x,2)
 b=1;
 end
 end
 end

 if b==1;
 b=0;
 else
 combine(a,1)=combine_non_match2(y,1);
 combine(a,2)=combine_non_match2(y,2);
 combine(a,3)=0;
 combine(a,4)=combine_non_match2(y,3);
 a=a+1;
 b=0;
 end
end
%%%%%%%%%%%%%%%%%%%% create a group array

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
class_group(1,1)=combine(1,1);
[M,N]=size(class_group);
[M1,N1]=size(combine);
for x=1:M1
 fill(x,1)=0;
end
x=1;

while x<=N %class_group column
 y=1;
 a=2;
 while y<=M %class_group row
 for z=1:M1 %combine row
 if combine(z,1)==class_group(y,x)
 if combine(z,3)>combine(z,4)
 if fill(z,1)==0
 class_group(a,x)=combine(z,2);
 fill(z,1)=1;
 a=a+1;

 end
 end
 end
 if combine(z,2)==class_group(y,x)
 if combine(z,3)>combine(z,4)
 if fill(z,1)==0
 class_group(a,x)=combine(z,1);
 fill(z,1)=1;
 a=a+1;

 end
 end

83

 end
 end
 [M,N]=size(class_group);
 y=y+1;
 if y>M
 for aa=1:M1
 if fill(aa,1)==0;
 if combine(aa,3)>combine(aa,4)
 class_group(1,x+1)=combine(aa,1);
 end
 end
 end
 end
 end
 [M,N]=size(class_group);
 x=x+1;
end
%%% ELIMINATE DOUBLES
[M,N]=size(class_group);

b=0;
row=0;

for v=1:1:N
 a=2;
 class_group2(1,v)=class_group(1,v);
 for x=2:1:M
 [M1,N1]=size(class_group2);
 for y=1:1:M1
 if class_group2(y,v)==class_group(x,v)
 b=1;
 end
 end

 if b==1;
 b=0;
 else
 class_group2(a,v)=class_group(x,v);
 a=a+1;
 b=0;
 end
 end
end

class_group3=sort(class_group2,1);
%%
%%% TEST most populous group to see if they belong together
%%% Find number of groups in each column
[M,N]=size(class_group3);
for x=1:N %class_group3 column
 a=0;
 for y=1:M %class_group3 row
 if class_group3(y,x)>0
 a=a+1;

84

 end
 end
 class_group3_count(1,x)=a;
end

%%% find the most populous column
[M,N]=size(class_group3_count);
class_group3_pop(1,1)=class_group3_count(1,1);
class_group3_pop(2,1)=1;
for x=1:N
 if class_group3_count(1,x)>class_group3_pop(1,1)
 class_group3_pop(1,1)=class_group3_count(1,x);
 class_group3_pop(2,1)=x;
 end
end
%%% find number of matches and non-matches
[M,N]=size(class_group3);
[M1,N1]=size(combine);
row=1;
x=class_group3_pop(2,1);

class_group3_buffer(:,row)=class_group3(:,x);
class_group3_buffer(:,row+1)=0;
class_group3_buffer(:,row+2)=0;
for y=1:M %class_group3 row
 for z=1:M %class_group3 row
 %%
 for a=1:M1 %combine
 if class_group3(y,x)==combine(a,1)
 if class_group3(z,x)==combine(a,2)

class_group3_buffer(y,row+1)=combine(a,3)+class_group3_buffer(y,row+1);

class_group3_buffer(y,row+2)=combine(a,4)+class_group3_buffer(y,row+2);
 end
 end
 if class_group3(y,x)==combine(a,2)
 if class_group3(z,x)==combine(a,1)

class_group3_buffer(y,row+1)=combine(a,3)+class_group3_buffer(y,row+1);

class_group3_buffer(y,row+2)=combine(a,4)+class_group3_buffer(y,row+2);
 end
 end
 end
 %%
 end
end
%%% remove rejected groups; fill 'reject' array
reject(1,1)=0;
[M,N]=size(class_group3_buffer);
a=1;
b=1;
for x=1:M
 if class_group3_buffer(x,2)>class_group3_buffer(x,3);

85

 class_group3_buffer2(a,1)=class_group3_buffer(x,1);
 a=a+1;
 else
 reject(b,1)=class_group3_buffer(x,1);
 b=b+1;
 end
end
%%% Scrub rejected groups from 'combine'
combine_scrub(:,:)=combine(:,:);
[M,N]=size(reject);
[M1,N1]=size(combine_scrub);

for x=1:M
 for y=1:M1
 if combine_scrub(y,1)==reject(x,1)
 combine_scrub(y,3)=0;
 combine_scrub(y,4)=0;
 end
 if combine_scrub(y,2)==reject(x,1)
 combine_scrub(y,3)=0;
 combine_scrub(y,4)=0;
 end
 end
end
%%% RECALCULATE 'class_group' column one (class_group_new)
class_group_new(1,1)=class_group3_buffer2(1,1);

[M,N]=size(class_group_new);
[M1,N1]=size(combine_scrub);

for x=1:M1
 fill(x,1)=0;
end

x=1;
y=1;
a=2;
while y<=M %class_group10 row
 for z=1:M1 %combine_scrub row
 if combine_scrub(z,1)==class_group_new(y,x)
 if combine_scrub(z,3)>combine_scrub(z,4)
 if fill(z,1)==0
 class_group_new(a,x)=combine_scrub(z,2);
 fill(z,1)=1;
 a=a+1;

 end
 end
 end
 if combine_scrub(z,2)==class_group_new(y,x)
 if combine_scrub(z,3)>combine_scrub(z,4)
 if fill(z,1)==0
 class_group_new(a,x)=combine_scrub(z,1);
 fill(z,1)=1;

86

 a=a+1;

 end
 end
 end
 end
 [M,N]=size(class_group_new);
 y=y+1;
end
%%% set 'fill' to 1 if rejected group matches with column 1
[R,C]=size(reject);
for x=1:R
 for y=1:M1
 if combine(y,1)==reject(R,1)
 for z=1:M
 if combine(y,2)==class_group_new(M,1)
 fill(y,1)=1;
 end
 end
 end
 if combine(y,2)==reject(R,1)
 for z=1:M
 if combine(y,1)==class_group_new(M,1)
 fill(y,1)=1;
 end
 end
 end
 end
end
%%% second column (go back to combine)
[M,N]=size(class_group_new);
b=0;
for aa=1:M1
 if fill(aa,1)==0;
 if combine(aa,3)>combine(aa,4)
 for bb=1:M
 if combine(aa,1)==class_group_new(bb,1)
 b=1;
 end
 end
 if b==1
 b=0;
 else
 class_group_new(1,2)=combine(aa,1);
 b=0;
 end
 end
 end
end
[M,N]=size(class_group_new);
x=2;
c=0;
while x<=N %class_group column
 y=1;
 a=2;

87

 while y<=M %class_group10 row
 for z=1:M1 %combine row

 if combine(z,1)==class_group_new(y,x)
 if combine(z,3)>combine(z,4)
 if fill(z,1)==0
 for cc=1:N
 for bb=1:M
 if combine(z,2)==class_group_new(bb,cc)
 b=1;
 end
 end
 end
 if b==1
 b=0;
 else
 class_group_new(a,x)=combine(z,2);
 b=0;
 c=1;
 fill(z,1)=1;
 a=a+1;
 end
 end
 end
 end

 if combine(z,2)==class_group_new(y,x)
 if combine(z,3)>combine(z,4)
 if fill(z,1)==0
 for cc=1:N
 for bb=1:M
 if combine(z,1)==class_group_new(bb,cc)
 b=1;
 end
 end
 end
 if b==1
 b=0;
 else
 class_group_new(a,x)=combine(z,1);
 b=0;
 c=1;
 fill(z,1)=1;
 a=a+1;
 end
 end
 end
 end

 end

 %%% set up for next column
 [M,N]=size(class_group_new);
 y=y+1;

88

 if y>M
 if c==1;
 for aa=1:M1
 if fill(aa,1)==0;
 if combine(aa,3)>combine(aa,4)
 for cc=1:N
 for bb=1:M
 if

combine(aa,1)==class_group_new(bb,cc)
 b=1;
 end
 end
 end
 if b==1
 b=0;
 else
 class_group_new(1,x+1)=combine(aa,1);
 b=0;
 c=0;
 end
 end
 end
 end
 c=0;
 end
 end
 end
 [M,N]=size(class_group_new);
 x=x+1;
end
%%% ELIMINATE DOUBLES
[M,N]=size(class_group_new);
b=0;
for v=1:1:N
 a=2;
 class_group_new2(1,v)=class_group_new(1,v);
 for x=2:1:M
 [M1,N1]=size(class_group_new2);
 for y=1:1:M1
 if class_group_new2(y,v)==class_group_new(x,v)
 b=1;
 end
 end

 if b==1;
 b=0;
 else
 class_group_new2(a,v)=class_group_new(x,v);
 a=a+1;
 b=0;
 end
 end
end
class_group_new3=sort(class_group_new2,1);

89

%%%

%%%
%%%%%% label RAW with appropriate group numbers to graph

%%%%%%%%
 [M,N]=size(class_group_new3);
[M1,N1]=size(raw);
for g=1:1:N
 for x=1:1:M
 for y=1:1:M1

 if raw(y,4)==class_group_new3(x,g)
 raw(y,8)=g;
 end

 end
 end
end
%%% find single groups (labeled as group zero)
clear buffer
a=1;
ind=0;
for x=1:1:M1
 if raw(x,8)==0
 buffer(a,1)=raw(x,4);
 a=a+1;
 ind=1;
 end
end

if ind==1
 [M,N]=size(buffer);
 a=2;
 b=0;
 row=0;
 buffer2(1,1)=buffer(1,1);
 buffer2(1,2)=1;

 for x=2:1:M
 [M1,N1]=size(buffer2);
 for y=1:1:M1
 if buffer2(y,1)==buffer(x,1)
 row=y;
 b=1;
 end
 end

 if b==1;
 buffer2(row,2)=buffer2(row,2)+1;
 b=0;
 else
 buffer2(a,1)=buffer(x,1);
 buffer2(a,2)=1;
 a=a+1;
 b=0;

90

 end
 end
 %%% drop single groups with 3 or less points
 [M,N]=size(buffer2);
 a=1;
 buffer3(1,1)=0;
 for x=1:1:M
 if buffer2(x,2)>3
 buffer3(1,a)=buffer2(x,1);
 a=a+1;
 end
 end
 %%% label points in RAW with single groups (over 3 points)
 [M,N]=size(buffer3);
 [M1,N1]=size(raw);
 [M2,N2]=size(class_group_new3);

 for g=1:1:N
 for y=1:1:M1
 if raw(y,4)==buffer3(1,g)
 raw(y,8)=g+N2;
 end
 end
 end
end
%%% find amount of points in each group
[M,N]=size(raw);
a=2;
b=0;
row=0;
cumul(1,1)=raw(1,8);
cumul(1,2)=1;
for x=2:1:M
 [M1,N1]=size(cumul);
 for y=1:1:M1
 if cumul(y,1)==raw(x,8)
 row=y;
 b=1;
 end
 end

 if b==1;
 cumul(row,2)=cumul(row,2)+1;
 b=0;
 else
 cumul(a,1)=raw(x,8);
 cumul(a,2)=1;
 a=a+1;
 b=0;
 end
end
%%% eliminate groups with 3 or less points
[M,N]=size(cumul);
drop_group(1,1)=0;
a=1;

91

for x=1:1:M
 if cumul(x,2)<4
 drop_group(a,1)=cumul(x,1);
 a=a+1;
 end
end

[M,N]=size(drop_group);
[M1,N1]=size(raw);
for x=1:1:M
 for y=1:1:M1
 if raw(y,8)==drop_group(x,1)
 raw(y,8)=0;
 end
 end
end

%%% Sort (cumul1)
[M,N]=size(cumul);
a=1;
for x=1:1:M
 if cumul(x,1)==0
 else
 if cumul(x,2)>3
 cumul1(a,1)=cumul(x,1);
 cumul1(a,2)=cumul(x,2);
 a=a+1;
 end
 end
end
cumul2=sortrows(cumul1,-2);
%%%

%%%
%%%% IDENTIFY GROUPS AS GRAIN OR EDGE

%%%%
%%% find x coordinates of each group
[M,N]=size(raw);
[M1,N1]=size(cumul2);
col=1;
a=1;
for x=1:1:M1
 for y=1:1:M
 if raw(y,8)==cumul2(x,1)
 group_x(a,col)=raw(y,1);
 a=a+1;
 end
 end
 col=col+1;
 a=1;
end
%%% find max and min of x of each group
group_x2=sort(group_x,1);
[M,N]=size(group_x2);
rev=M;
ind_min=0;

92

ind_max=0;
for x=1:1:N %%% group_x2 column
 for y=1:1:M %%% group_x2 row
 if ind_min==0;
 if group_x2(y,x)==0;
 else
 group_x_limits(1,x)=group_x2(y,x);
 ind_min=1;
 end
 end
 if ind_max==0;
 if group_x2(rev,x)==0;
 else
 group_x_limits(2,x)=group_x2(rev,x);
 ind_max=1;
 end
 end
 rev=rev-1;
 end
 ind_min=0;
 ind_max=0;
 rev=M;
end
%%% find range in x direction
[M,N]=size(group_x_limits);
for x=1:1:N %%% group_x_limits2 column
 group_x_range(1,x)=group_x_limits(2,x)-group_x_limits(1,x);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% find y coordinates of each group
[M,N]=size(raw);
[M1,N1]=size(cumul2);
col=1;
a=1;
for x=1:1:M1
 for y=1:1:M
 if raw(y,8)==cumul2(x,1)
 group_y(a,col)=raw(y,2);
 a=a+1;
 end
 end
 col=col+1;
 a=1;
end
%%% find max and min of y of each group
group_y2=sort(group_y,1);
[M,N]=size(group_y2);
rev=M;
ind_min=0;
ind_max=0;
for x=1:1:N %%% group_y2 column
 for y=1:1:M %%% group_y2 row
 if ind_min==0;
 if group_y2(y,x)==0;
 else

93

 group_y_limits(1,x)=group_y2(y,x);
 ind_min=1;
 end
 end
 if ind_max==0;
 if group_y2(rev,x)==0;
 else
 group_y_limits(2,x)=group_y2(rev,x);
 ind_max=1;
 end
 end
 rev=rev-1;
 end
 ind_min=0;
 ind_max=0;
 rev=M;
end
%%% find range in y direction
[M,N]=size(group_y_limits);
for x=1:1:N %%% group_y_limits2 column
 group_y_range(1,x)=group_y_limits(2,x)-group_y_limits(1,x);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% find z coordinates of each group
[M,N]=size(raw);
[M1,N1]=size(cumul2);
col=1;
a=1;
for x=1:1:M1
 for y=1:1:M
 if raw(y,8)==cumul2(x,1)
 group_z(a,col)=raw(y,3);
 a=a+1;
 end
 end
 col=col+1;
 a=1;
end
%%% find max and min of z of each group
group_z2=sort(group_z,1);
[M,N]=size(group_z2);
rev=M;
ind_min=0;
ind_max=0;
for x=1:1:N %%% group_z2 column
 for y=1:1:M %%% group_z2 row
 if ind_min==0;
 if group_z2(y,x)==0;
 else
 group_z_limits(1,x)=group_z2(y,x);
 ind_min=1;
 end
 end
 if ind_max==0;

94

 if group_z2(rev,x)==0;
 else
 group_z_limits(2,x)=group_z2(rev,x);
 ind_max=1;
 end
 end
 rev=rev-1;
 end
 ind_min=0;
 ind_max=0;
 rev=M;
end
%%% find range in z direction
[M,N]=size(group_z_limits);
for x=1:1:N %%% group_z_limits2 column
 group_z_range(1,x)=group_z_limits(2,x)-group_z_limits(1,x);
end
%%%

%%%
%%% find ratio between x and y
[M,N]=size(group_x_range);
for x=1:1:N
 group_xy_ratio(1,x)=group_x_range(1,x)/group_y_range(1,x);
end

%%% determine if edge and direction
[M,N]=size(group_xy_ratio);
a=1;
b=1;
c=1;
yes_horiz_edge=0;
yes_vert_edge=0;
yes_grain=0;
for x=1:1:N
 if group_xy_ratio(1,x)>3.0; %1.7
 group_horiz_edge(a,1)=x;
 group_horiz_edge(a,2)=group_xy_ratio(1,x);
 a=a+1;
 yes_horiz_edge=1;
 else
 if group_xy_ratio(1,x)<0.27 %.5
 group_vertical_edge(b,1)=x;
 group_vertical_edge(b,2)=group_xy_ratio(1,x);
 b=b+1;
 yes_vert_edge=1;
 else
 [M1,N1]=size(raw);
 var=1;
 num_group=0;
 for y=1:M1
 if raw(y,8)==cumul2(x,1)
 dif=abs(raw(y,4)-var);
 if dif>85
 var=raw(y,4);
 num_group=num_group+1;

95

 end
 end
 end
 if num_group>1
 if group_xy_ratio(1,x)>1.538; %1.7
 group_horiz_edge(a,1)=x;
 group_horiz_edge(a,2)=group_xy_ratio(1,x);
 a=a+1;
 yes_horiz_edge=1;
 else
 if group_xy_ratio(1,x)<0.45 %.5
 group_vertical_edge(b,1)=x;
 group_vertical_edge(b,2)=group_xy_ratio(1,x);
 b=b+1;
 yes_vert_edge=1;
 else
 group_grain(c,1)=x;
 group_grain(c,2)=group_xy_ratio(1,x);
 c=c+1;
 yes_grain=1;
 end
 end
 else
 group_grain(c,1)=x;
 group_grain(c,2)=group_xy_ratio(1,x);
 c=c+1;
 yes_grain=1;
 end
 end
 end
end
%%% Find average z
[M,N]=size(group_z2);
group_z_sum(1,:)=group_z2(1,:);

for x=1:1:N
 a=1;
 for y=2:1:M
 if group_z2(y,x)==0
 else
 a=a+1;
 group_z_sum(1,x)=group_z2(y,x)+group_z_sum(1,x);
 end
 end
 group_z_avg(1,x)=group_z_sum(1,x)/a;
end
%%% Find highest edge
if yes_horiz_edge==1;
 [M,N]=size(group_horiz_edge);
 for x=1:1:M
 col=group_horiz_edge(x,1);
 group_horiz_edge(x,3)=group_z_avg(1,col);
 end
 group_horiz_edge2=sortrows(group_horiz_edge,-3);
end

96

if yes_vert_edge==1;
 [M,N]=size(group_vertical_edge);
 for x=1:1:M
 col=group_vertical_edge(x,1);
 group_vertical_edge(x,3)=group_z_avg(1,col);
 end
 group_vertical_edge2=sortrows(group_vertical_edge,-3);
end
%%% CHECK for false edge: find delta between vert and horz edges
if yes_horiz_edge==1;
 if yes_vert_edge==1;
 group_delta=group_horiz_edge2(1,3)-group_vertical_edge2(1,3);
 if group_delta>100
 yes_vert_edge=0;
 end
 if group_delta<-100
 yes_horiz_edge=0;
 end
 end
end
%%%
if yes_horiz_edge==1;
 horiz_edge_group=group_horiz_edge2(1,1);

 [M,N]=size(raw);
 a=1;
 for x=1:1:M
 if raw(x,8)==cumul2(horiz_edge_group,1)
 raw_horiz_edge(a,1)=raw(x,1);
 raw_horiz_edge(a,2)=raw(x,2);
 raw_horiz_edge(a,3)=raw(x,3);
 a=a+1;
 end
 end
 %%% p = polyfit(x,y,n)
 %%% fit y by x

horiz_line_fit_coeff1=polyfit(raw_horiz_edge(:,1),raw_horiz_edge(:,2),1

);
 %%% fit z by x

horiz_line_fit_coeff2=polyfit(raw_horiz_edge(:,1),raw_horiz_edge(:,3),1

);

 a=1;
 for x=-1500:50:1500
 horiz_edge(a,1)=x;

horiz_edge(a,2)=horiz_line_fit_coeff1(1,1)*x+horiz_line_fit_coeff1(1,2)

;

horiz_edge(a,3)=horiz_line_fit_coeff2(1,1)*x+horiz_line_fit_coeff2(1,2)

;
 a=a+1;

97

 end
end
%%% repeat for vertical edge
if yes_vert_edge==1;
 vert_edge_group=group_vertical_edge2(1,1);

 [M,N]=size(raw);
 a=1;
 for x=1:1:M
 if raw(x,8)==cumul2(vert_edge_group,1)
 raw_vert_edge(a,1)=raw(x,1);
 raw_vert_edge(a,2)=raw(x,2);
 raw_vert_edge(a,3)=raw(x,3);
 a=a+1;
 end
 end
 %%% p = polyfit(x,y,n)
 %%% fit x by y

vert_line_fit_coeff1=polyfit(raw_vert_edge(:,2),raw_vert_edge(:,1),1);
 %%% fit z by y

vert_line_fit_coeff2=polyfit(raw_vert_edge(:,2),raw_vert_edge(:,3),1);
 a=1;
 for x=-1500:50:1500

vert_edge(a,1)=vert_line_fit_coeff1(1,1)*x+vert_line_fit_coeff1(1,2);
 vert_edge(a,2)=x;

vert_edge(a,3)=vert_line_fit_coeff2(1,1)*x+vert_line_fit_coeff2(1,2);
 a=a+1;
 end
end
%%%

%%%
%%%% PLOT!!!
figure,scatter3(raw(:,1),raw(:,2),raw(:,3));
xlabel('X');
ylabel('Y');
zlabel('Z');
axis([-1500 1500 -1500 1500 -3000 0])
grid on
hold on

[M,N]=size(raw);
[M1,N1]=size(cumul2);

if M1>=1
 a=1;
 for x=1:1:M
 if raw(x,8)==cumul2(1,1)
 raw_group_one(a,1)=raw(x,1);

98

 raw_group_one(a,2)=raw(x,2);
 raw_group_one(a,3)=raw(x,3);
 a=a+1;
 end
 end
 scatter3(raw_group_one(:,1),raw_group_one(:,2),raw_group_one(:,3),

'filled');
end
if M1>=2
 a=1;
 for x=1:1:M
 if raw(x,8)==cumul2(2,1)
 raw_group_two(a,1)=raw(x,1);
 raw_group_two(a,2)=raw(x,2);
 raw_group_two(a,3)=raw(x,3);
 a=a+1;
 end
 end
 scatter3(raw_group_two(:,1),raw_group_two(:,2),raw_group_two(:,3),

'filled');
end
if M1>=3
 a=1;
 for x=1:1:M
 if raw(x,8)==cumul2(3,1)
 raw_group_three(a,1)=raw(x,1);
 raw_group_three(a,2)=raw(x,2);
 raw_group_three(a,3)=raw(x,3);
 a=a+1;
 end
 end

scatter3(raw_group_three(:,1),raw_group_three(:,2),raw_group_three(:,3)

, 'filled');
end
if M1>=4
 a=1;
 for x=1:1:M
 if raw(x,8)==cumul2(4,1)
 raw_group_four(a,1)=raw(x,1);
 raw_group_four(a,2)=raw(x,2);
 raw_group_four(a,3)=raw(x,3);
 a=a+1;
 end
 end

scatter3(raw_group_four(:,1),raw_group_four(:,2),raw_group_four(:,3),

'filled');
end
if M1>=5
 a=1;
 for x=1:1:M
 if raw(x,8)==cumul2(5,1)
 raw_group_five(a,1)=raw(x,1);
 raw_group_five(a,2)=raw(x,2);

99

 raw_group_five(a,3)=raw(x,3);
 a=a+1;
 end
 end

scatter3(raw_group_five(:,1),raw_group_five(:,2),raw_group_five(:,3),

'filled');
end
if M1>=6
 a=1;
 for x=1:1:M
 if raw(x,8)==cumul2(6,1)
 raw_group_six(a,1)=raw(x,1);
 raw_group_six(a,2)=raw(x,2);
 raw_group_six(a,3)=raw(x,3);
 a=a+1;
 end
 end
 scatter3(raw_group_six(:,1),raw_group_six(:,2),raw_group_six(:,3),

'filled');
end
if M1>=7
 a=1;
 for x=1:1:M
 if raw(x,8)==cumul2(7,1)
 raw_group_seven(a,1)=raw(x,1);
 raw_group_seven(a,2)=raw(x,2);
 raw_group_seven(a,3)=raw(x,3);
 a=a+1;
 end
 end

scatter3(raw_group_seven(:,1),raw_group_seven(:,2),raw_group_seven(:,3)

, 'filled');
end
if M1>=8
 a=1;
 for x=1:1:M
 if raw(x,8)==cumul2(8,1)
 raw_group_eight(a,1)=raw(x,1);
 raw_group_eight(a,2)=raw(x,2);
 raw_group_eight(a,3)=raw(x,3);
 a=a+1;
 end
 end

scatter3(raw_group_eight(:,1),raw_group_eight(:,2),raw_group_eight(:,3)

, 'filled');
end

if yes_horiz_edge==1;
 scatter3(horiz_edge(:,1),horiz_edge(:,2),horiz_edge(:,3),5,

'filled','MarkerFaceColor',[0 0 0]);
end

100

if yes_vert_edge==1;
 scatter3(vert_edge(:,1),vert_edge(:,2),vert_edge(:,3),5,

'filled','MarkerFaceColor',[0 0 0]);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if num==2
 Fx=808; %FRONT edge (1 x)
 Rx=-4272; %REAR edge (3 x)
 Ny=726; %NEAR edge (3 y)
 Fy=3444; %FAR edge (1 y)
 Z=-704;
end
if num==3
 Fx=2357; %FRONT edge (1 x)
 Rx=-2723; %REAR edge (3 x)
 Ny=737; %NEAR edge (3 y)
 Fy=3454; %FAR edge (1 y)
 Z=-726;
end
if num==4
 Fx=4161; %FRONT edge (1 x)
 Rx=-922; %REAR edge (3 x)
 Ny=744; %NEAR edge (3 y)
 Fy=3462; %FAR edge (1 y)
 Z=-739;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if num==5
 Fx=-627; %FRONT edge (1 x)
 Rx=-5707; %REAR edge (3 x)
 Ny=-221; %NEAR edge (3 y)
 Fy=2497; %FAR edge (1 y)
 Z=-665;
end
if num==6
 Fx=569; %FRONT edge (1 x)
 Rx=-4511; %REAR edge (3 x)
 Ny=-237; %NEAR edge (3 y)
 Fy=2479; %FAR edge (1 y)
 Z=-709;
end
if num==7
 Fx=2606; %FRONT edge (1 x)
 Rx=-2474; %REAR edge (3 x)
 Ny=-267; %NEAR edge (3 y)
 Fy=2451; %FAR edge (1 y)
 Z=-714;
end
if num==8
 Fx=3914; %FRONT edge (1 x)
 Rx=-1166; %REAR edge (3 x)
 Ny=-282; %NEAR edge (3 y)
 Fy=2436; %FAR edge (1 y)
 Z=-716;

101

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if num==9
 Fx=-683; %FRONT edge (1 x)
 Rx=-5763; %REAR edge (3 x)
 Ny=-693; %NEAR edge (3 y)
 Fy=2024; %FAR edge (1 y)
 Z=-734;
end
if num==10
 Fx=1057; %FRONT edge (1 x)
 Rx=-4023; %REAR edge (3 x)
 Ny=-732; %NEAR edge (3 y)
 Fy=1986; %FAR edge (1 y)
 Z=-721;
end
if num==11
 Fx=2799; %FRONT edge (1 x)
 Rx=-2281; %REAR edge (3 x)
 Ny=-785; %NEAR edge (3 y)
 Fy=1933; %FAR edge (1 y)
 Z=-701;
end
if num==12
 Fx=3962; %FRONT edge (1 x)
 Rx=-1092; %REAR edge (3 x)
 Ny=-775; %NEAR edge (3 y)
 Fy=1943; %FAR edge (1 y)
 Z=-665;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if num==13
 Fx=945; %FRONT edge (1 x)
 Rx=-4135; %REAR edge (3 x)
 Ny=-361; %NEAR edge (3 y)
 Fy=2357; %FAR edge (1 y)
 Z=-635;
end
if num==14
 Fx=2746; %FRONT edge (1 x)
 Rx=-2334; %REAR edge (3 x)
 Ny=-409; %NEAR edge (3 y)
 Fy=2309; %FAR edge (1 y)
 Z=-673;
end
if num==15
 Fx=4153; %FRONT edge (1 x)
 Rx=-927; %REAR edge (3 x)
 Ny=-412; %NEAR edge (3 y)
 Fy=2306; %FAR edge (1 y)
 Z=-630;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
actual_grain(1,1)=Fx;
actual_grain(1,2)=Ny;

102

actual_grain(1,3)=Z-431;
actual_grain(2,1)=Fx;
actual_grain(2,2)=Ny+679.45;
actual_grain(2,3)=Z-330;
actual_grain(3,1)=Fx;
actual_grain(3,2)=Ny+1358.9;
actual_grain(3,3)=Z-330;
actual_grain(4,1)=Fx;
actual_grain(4,2)=Ny+2038.35;
actual_grain(4,3)=Z-305;
actual_grain(5,1)=Fx;
actual_grain(5,2)=Ny+2717.8;
actual_grain(5,3)=Z-406;

actual_grain(6,1)=Fx-846.66;
actual_grain(6,2)=Ny;
actual_grain(6,3)=Z-356;
actual_grain(7,1)=Fx-846.66;
actual_grain(7,2)=Ny+679.45;
actual_grain(7,3)=Z-305;
actual_grain(8,1)=Fx-846.66;
actual_grain(8,2)=Ny+1358.9;
actual_grain(8,3)=Z-152;
actual_grain(9,1)=Fx-846.66;
actual_grain(9,2)=Ny+2038.35;
actual_grain(9,3)=Z-229;
actual_grain(10,1)=Fx-846.66;
actual_grain(10,2)=Ny+2717.8;
actual_grain(10,3)=Z-356;

actual_grain(11,1)=Fx-1693.3;
actual_grain(11,2)=Ny;
actual_grain(11,3)=Z-356;
actual_grain(12,1)=Fx-1693.3;
actual_grain(12,2)=Ny+679.45;
actual_grain(12,3)=Z-203;
actual_grain(13,1)=Fx-1693.3;
actual_grain(13,2)=Ny+1358.9;
actual_grain(13,3)=Z;
actual_grain(14,1)=Fx-1693.3;
actual_grain(14,2)=Ny+2038.35;
actual_grain(14,3)=Z-178;
actual_grain(15,1)=Fx-1693.3;
actual_grain(15,2)=Ny+2717.8;
actual_grain(15,3)=Z-279;

actual_grain(16,1)=Fx-2540;
actual_grain(16,2)=Ny;
actual_grain(16,3)=Z-330;
actual_grain(17,1)=Fx-2540;
actual_grain(17,2)=Ny+679.45;
actual_grain(17,3)=Z-254;
actual_grain(18,1)=Fx-2540;
actual_grain(18,2)=Ny+1358.9;
actual_grain(18,3)=Z-152;

103

actual_grain(19,1)=Fx-2540;
actual_grain(19,2)=Ny+2038.35;
actual_grain(19,3)=Z-254;
actual_grain(20,1)=Fx-2540;
actual_grain(20,2)=Ny+2717.8;
actual_grain(20,3)=Z-305;

actual_grain(21,1)=Fx-3386.6;
actual_grain(21,2)=Ny;
actual_grain(21,3)=Z-483;
actual_grain(22,1)=Fx-3386.6;
actual_grain(22,2)=Ny+679.45;
actual_grain(22,3)=Z-356;
actual_grain(23,1)=Fx-3386.6;
actual_grain(23,2)=Ny+1358.9;
actual_grain(23,3)=Z-254;
actual_grain(24,1)=Fx-3386.6;
actual_grain(24,2)=Ny+2038.35;
actual_grain(24,3)=Z-406;
actual_grain(25,1)=Fx-3386.6;
actual_grain(25,2)=Ny+2717.8;
actual_grain(25,3)=Z-483;

actual_grain(26,1)=Fx-4233.3;
actual_grain(26,2)=Ny;
actual_grain(26,3)=Z-610;
actual_grain(27,1)=Fx-4233.3;
actual_grain(27,2)=Ny+679.45;
actual_grain(27,3)=Z-483;
actual_grain(28,1)=Fx-4233.3;
actual_grain(28,2)=Ny+1358.9;
actual_grain(28,3)=Z-356;
actual_grain(29,1)=Fx-4233.3;
actual_grain(29,2)=Ny+2038.35;
actual_grain(29,3)=Z-483;
actual_grain(30,1)=Fx-4233.3;
actual_grain(30,2)=Ny+2717.8;
actual_grain(30,3)=Z-584;

actual_grain(31,1)=Fx-5080;
actual_grain(31,2)=Ny;
actual_grain(31,3)=Z-610;
actual_grain(32,1)=Fx-5080;
actual_grain(32,2)=Ny+679.45;
actual_grain(32,3)=Z-635;
actual_grain(33,1)=Fx-5080;
actual_grain(33,2)=Ny+1358.9;
actual_grain(33,3)=Z-660;
actual_grain(34,1)=Fx-5080;
actual_grain(34,2)=Ny+2038.35;
actual_grain(34,3)=Z-559;
actual_grain(35,1)=Fx-5080;
actual_grain(35,2)=Ny+2717.8;
actual_grain(35,3)=Z-610;
%%% PLOT for PAPER

104

figure,scatter3(raw(:,1),raw(:,2),raw(:,3));
xlabel('X');
ylabel('Y');
zlabel('Z');
axis([-1500 1500 -1500 1500 -3000 0])
grid on
hold on
if yes_grain==1
 [M,N]=size(group_grain);
 [M1,N1]=size(raw);
 b=1;
 c=1;
 for x=1:1:M
 a=cumul2(group_grain(x,1),1);
 for y=1:1:M1
 if raw(y,8)==a
 raw_grain(b,1)=raw(y,1);
 raw_grain(b,2)=raw(y,2);
 raw_grain(b,3)=raw(y,3);
 b=b+1;
 end
 end
 end
 scatter3(raw_grain(:,1),raw_grain(:,2),raw_grain(:,3),

'filled','MarkerFaceColor',[1 1 0]);
end

if yes_horiz_edge==1;

scatter3(raw_horiz_edge(:,1),raw_horiz_edge(:,2),raw_horiz_edge(:,3),

'filled','MarkerFaceColor',[1 0 0]);
 scatter3(horiz_edge(:,1),horiz_edge(:,2),horiz_edge(:,3),5,

'filled','MarkerFaceColor',[0 0 0]);
end

if yes_vert_edge==1;
 scatter3(raw_vert_edge(:,1),raw_vert_edge(:,2),raw_vert_edge(:,3),

'filled','MarkerFaceColor',[1 0 1]);
 scatter3(vert_edge(:,1),vert_edge(:,2),vert_edge(:,3),5,

'filled','MarkerFaceColor',[0 0 0]);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% PLOT actual wagon edges
a=1;
for x=Rx:60:Fx
 near_wag(a,1)=x;
 near_wag(a,2)=Ny;
 near_wag(a,3)=Z;
 far_wag(a,1)=x;
 far_wag(a,2)=Fy;
 far_wag(a,3)=Z;
 a=a+1;
end

a=1;

105

for y=Ny:40:Fy
 front_wag(a,1)=Fx;
 front_wag(a,2)=y;
 front_wag(a,3)=Z;

 rear_wag(a,1)=Rx;
 rear_wag(a,2)=y;
 rear_wag(a,3)=Z;
 a=a+1;
end

scatter3(near_wag(:,1),near_wag(:,2),near_wag(:,3),5,

'filled','MarkerFaceColor',[0.5 0.5 0.5]);
scatter3(far_wag(:,1),far_wag(:,2),far_wag(:,3),5,

'filled','MarkerFaceColor',[0.5 0.5 0.5]);
scatter3(front_wag(:,1),front_wag(:,2),front_wag(:,3),5,

'filled','MarkerFaceColor',[0.5 0.5 0.5]);
scatter3(rear_wag(:,1),rear_wag(:,2),rear_wag(:,3),5,

'filled','MarkerFaceColor',[0.5 0.5 0.5]);
if num<13
 scatter3(actual_grain(:,1),actual_grain(:,2),actual_grain(:,3),50,

'filled','MarkerFaceColor',[0 0 1]);
end
%%%%%%%%%%%%% pull out grain for SURFACE PLOT

%%%%%%%%%%%%%%%%%%%%%%%%%
%%% z=f(x,y)
if yes_grain==1
 x=raw_grain(:,1);
 y=raw_grain(:,2);
 [M,N]=size(raw_grain);
 for a=1:1:M
 x2(a,1)=x(a,1)*x(a,1);
 y2(a,1)=y(a,1)*y(a,1);
 xy(a,1)=x(a,1)*y(a,1);
 end

 X=[ones(size(x2)) x2 y2 xy x y];
 poly_coef=X\raw_grain(:,3);
 a=1;
 for x=-1500:100:1500
 b=-1500;
 for y=1:1:31
 grain_surf(a,1)=x;
 grain_surf(a,2)=b;

grain_surf(a,3)=poly_coef(1,1)+poly_coef(2,1)*x*x+poly_coef(3,1)*b*b+po

ly_coef(4,1)*x*b+poly_coef(5,1)*x+poly_coef(6,1)*b;
 a=a+1;
 b=b+100;
 end
 end
 [M,N]=size(grain_surf);
 a=1;

106

 row=1;
 for x=1:1:M
 if a==32
 row=row+1;
 a=1;
 end
 grain_surf_z(a,row)=grain_surf(x,3);
 a=a+1;
 end

 a=1;
 for x=-1500:100:1500
 grain_surf_x(a,1)=x;
 grain_surf_y(a,1)=x;
 a=a+1;
 end

 figure,scatter3(raw(:,1),raw(:,2),raw(:,3));
 xlabel('X');
 ylabel('Y');
 zlabel('Z');
 axis([-1500 1500 -1500 1500 -3000 0])
 grid on
 hold on
 surf(grain_surf_x,grain_surf_y,grain_surf_z);

 scatter3(raw_grain(:,1),raw_grain(:,2),raw_grain(:,3),

'filled','MarkerFaceColor',[1 1 0]);

 if yes_horiz_edge==1;

scatter3(raw_horiz_edge(:,1),raw_horiz_edge(:,2),raw_horiz_edge(:,3),

'filled','MarkerFaceColor',[1 0 0]);
 scatter3(horiz_edge(:,1),horiz_edge(:,2),horiz_edge(:,3),5,

'filled','MarkerFaceColor',[0 0 0]);
 end

 if yes_vert_edge==1;

scatter3(raw_vert_edge(:,1),raw_vert_edge(:,2),raw_vert_edge(:,3),

'filled','MarkerFaceColor',[1 0 1]);
 scatter3(vert_edge(:,1),vert_edge(:,2),vert_edge(:,3),5,

'filled','MarkerFaceColor',[0 0 0]);
 end

end
%%%

%%%%
%%% compare predicted grain to actual grain

upper_x=0;
lower_x=0;
a=0;

107

c(1)=0;
c(2)=0;
c(3)=0;
c(4)=0;
c(5)=0;
c(6)=0;
c(7)=0;

while a<3
 a=0;
 upper_x=upper_x+10;
 lower_x=lower_x-10;
 if actual_grain(1,1)>lower_x
 if actual_grain(1,1)<upper_x
 a=a+1;
 c(1)=1;
 end
 end
 if actual_grain(6,1)>lower_x
 if actual_grain(6,1)<upper_x
 a=a+1;
 c(2)=1;
 end
 end
 if actual_grain(11,1)>lower_x
 if actual_grain(11,1)<upper_x
 a=a+1;
 c(3)=1;
 end
 end
 if actual_grain(16,1)>lower_x
 if actual_grain(16,1)<upper_x
 a=a+1;
 c(4)=1;
 end
 end
 if actual_grain(21,1)>lower_x
 if actual_grain(21,1)<upper_x
 a=a+1;
 c(5)=1;
 end
 end
 if actual_grain(26,1)>lower_x
 if actual_grain(26,1)<upper_x
 a=a+1;
 c(6)=1;
 end
 end
 if actual_grain(31,1)>lower_x
 if actual_grain(31,1)<upper_x
 a=a+1;
 c(7)=1;
 end
 end
end

108

upper_y=0;
lower_y=0;
a=0;
r(1)=0;
r(2)=0;
r(3)=0;
r(4)=0;
r(5)=0;

while a<3
 a=0;
 upper_y=upper_y+10;
 lower_y=lower_y-10;
 if actual_grain(1,1)>lower_y
 if actual_grain(1,2)<upper_y
 a=a+1;
 r(1)=1;
 end
 end
 if actual_grain(6,1)>lower_y
 if actual_grain(2,2)<upper_y
 a=a+1;
 r(2)=1;
 end
 end
 if actual_grain(11,1)>lower_y
 if actual_grain(3,2)<upper_y
 a=a+1;
 r(3)=1;
 end
 end
 if actual_grain(16,1)>lower_y
 if actual_grain(4,2)<upper_y
 a=a+1;
 r(4)=1;
 end
 end
 if actual_grain(21,1)>lower_y
 if actual_grain(5,2)<upper_y
 a=a+1;
 r(5)=1;
 end
 end
end

for x=1:7
 if c(x)==1
 colo=(x-1)*5+1;
 actual_grain(colo,4)=1;
 actual_grain(colo+1,4)=1;
 actual_grain(colo+2,4)=1;
 actual_grain(colo+3,4)=1;
 actual_grain(colo+4,4)=1;
 end

109

end

for x=1:5
 if r(x)==1
 actual_grain(x,5)=1;
 actual_grain(x+5,5)=1;
 actual_grain(x+10,5)=1;
 actual_grain(x+15,5)=1;
 actual_grain(x+20,5)=1;
 actual_grain(x+25,5)=1;
 actual_grain(x+30,5)=1;
 end
end

a=1;
for y=1:35
 x=actual_grain(y,1);
 b=actual_grain(y,2);

actual_grain(y,6)=poly_coef(1,1)+poly_coef(2,1)*x*x+poly_coef(3,1)*b*b+

poly_coef(4,1)*x*b+poly_coef(5,1)*x+poly_coef(6,1)*b;
 if actual_grain(y,4)==1
 if actual_grain(y,5)==1
 plot_actual(a,1)=actual_grain(y,1);
 plot_actual(a,2)=actual_grain(y,2);
 plot_actual(a,3)=actual_grain(y,3);
 compare(a,1)=actual_grain(y,3);
 compare(a,2)=actual_grain(y,6);

compare(a,3)=(((actual_grain(y,1))^2)+((actual_grain(y,2))^2))^.5;
 compare(a,4)=compare(a,2)-compare(a,1);
 a=a+1;
 end
 end
end

figure,scatter3(raw(:,1),raw(:,2),raw(:,3));
xlabel('X');
ylabel('Y');
zlabel('Z');
axis([-1500 1500 -1500 1500 -3000 0])
grid on
hold on
scatter3(plot_actual(:,1),plot_actual(:,2),plot_actual(:,3),

'filled','MarkerFaceColor',[0 0 0]);
%%%

%%%%
if yes_horiz_edge==1;

x_midpoint=(group_x_limits(2,horiz_edge_group)+group_x_limits(1,horiz_e

dge_group))/2;
 edge_upper_x=x_midpoint;
 edge_lower_x=x_midpoint;
 a=0;

110

 while a<3
 a=0;
 edge_upper_x=edge_upper_x+10;
 edge_lower_x=edge_lower_x-10;
 if actual_grain(1,1)>edge_lower_x
 if actual_grain(1,1)<edge_upper_x
 a=a+1;
 actual_grain(1,7)=1;
 end
 end
 if actual_grain(6,1)>edge_lower_x
 if actual_grain(6,1)<edge_upper_x
 a=a+1;
 actual_grain(6,7)=1;
 end
 end
 if actual_grain(11,1)>edge_lower_x
 if actual_grain(11,1)<edge_upper_x
 a=a+1;
 actual_grain(11,7)=1;
 end
 end
 if actual_grain(16,1)>edge_lower_x
 if actual_grain(16,1)<edge_upper_x
 a=a+1;
 actual_grain(16,7)=1;
 end
 end
 if actual_grain(21,1)>edge_lower_x
 if actual_grain(21,1)<edge_upper_x
 a=a+1;
 actual_grain(21,7)=1;
 end
 end
 if actual_grain(26,1)>edge_lower_x
 if actual_grain(26,1)<edge_upper_x
 a=a+1;
 actual_grain(26,7)=1;
 end
 end
 if actual_grain(31,1)>edge_lower_x
 if actual_grain(31,1)<edge_upper_x
 a=a+1;
 actual_grain(31,7)=1;
 end
 end
 if a==1
 c=1;
 for b=1:35
 if actual_grain(b,7)==1
 compare_horiz_edge(c,1)=actual_grain(b,1); %%%x
 compare_horiz_edge(c,2)=actual_grain(b,3);

%%%actual grain-edge

111

 compare_horiz_edge(c,3)=actual_grain(b,6);

%%%predict grain-edge
 compare_horiz_edge(c,4)=near_wag(1,3);

%%%actual edge
 x=compare_horiz_edge(c,1);

compare_horiz_edge(c,5)=horiz_line_fit_coeff2(1,1)*x+horiz_line_fit_coe

ff2(1,2); %%%predicted edge
 c=c+1;
 end
 end
 end
 end

 a=1;
 for y=1:35
 if actual_grain(y,7)==1
 compare_edgeh(a,1)=actual_grain(y,1);
 compare_edgeh(a,2)=actual_grain(y,2);
 compare_edgeh(a,3)=actual_grain(y,3);
 compare_edgeh(a,4)=actual_grain(y,6);
 a=a+1;
 end
 end

end
if yes_vert_edge==1;

y_midpoint=(group_y_limits(2,vert_edge_group)+group_y_limits(1,vert_edg

e_group))/2;
 edge_upper_y=y_midpoint;
 edge_lower_y=y_midpoint;
 a=0;

 while a<3
 a=0;
 edge_upper_y=edge_upper_y+10;
 edge_lower_y=edge_lower_y-10;
 if actual_grain(1,2)>edge_lower_y
 if actual_grain(1,2)<edge_upper_y
 a=a+1;
 actual_grain(1,8)=1;
 end
 end
 if actual_grain(2,2)>edge_lower_y
 if actual_grain(2,2)<edge_upper_y
 a=a+1;
 actual_grain(2,8)=1;
 end
 end
 if actual_grain(3,2)>edge_lower_y
 if actual_grain(3,2)<edge_upper_y
 a=a+1;
 actual_grain(3,8)=1;
 end

112

 end
 if actual_grain(4,2)>edge_lower_y
 if actual_grain(4,2)<edge_upper_y
 a=a+1;
 actual_grain(4,8)=1;
 end
 end
 if actual_grain(5,2)>edge_lower_y
 if actual_grain(5,2)<edge_upper_y
 a=a+1;
 actual_grain(5,8)=1;
 end
 end
 if a==1
 c=1;
 for b=1:35
 if actual_grain(b,8)==1
 compare_vert_edge(c,1)=actual_grain(b,2); %%%y
 compare_vert_edge(c,2)=actual_grain(b,3);

%%%actual grain-edge
 compare_vert_edge(c,3)=actual_grain(b,6);

%%%predict grain-edge
 compare_vert_edge(c,4)=front_wag(1,3);

%%%actual edge
 x=compare_vert_edge(c,1);

compare_vert_edge(c,5)=vert_line_fit_coeff2(1,1)*x+vert_line_fit_coeff2

(1,2); %%%predicted edge
 c=c+1;
 end
 end
 end
 end

 a=1;
 for y=1:35
 if actual_grain(y,8)==1
 compare_edgev(a,1)=actual_grain(y,1); %%% plus 30 for

back edge
 compare_edgev(a,2)=actual_grain(y,2);
 compare_edgev(a,3)=actual_grain(y,3);
 compare_edgev(a,4)=actual_grain(y,6);
 a=a+1;
 end
 end

end

113

References

Ahn, S., J. Choi, N.L. Doh, and W.K. Chung. 2008. A Practical Approach for EFK-SLAM in

an Indoor Environment: Fusing Ultrasonic Sensors and Stereo Camera.

Autonomous Robots 24: 315-335.

Alexia, B.M., A.J. Brislen, J.R. Wicking, and W.J. Frandsen. 2005. Image Processing Spout

Control System. US Patent No. 6,943,824 B2.

Bähnisch, C., P. Stelldinger, U. Köthe. 2009. Fast and Accurate 3D Edge Detection for

Surface Reconstruction. Pattern Recognition 31st DAGM Symposium 2009

Proceedings, 111-120. Paderborn, Germany: DAGM.

Bank, D. 2002. A Novel Ultrasonic Sensing System for Autonomous Mobil Systems. IEEE

Sensors Journal 2(6): 597-606.

Bank, D., M. Strobel, and E. Prassler. 1999. AutoBed-An Automatically Guided Hospital

Bed. IASTED International Conference on Robotic Applications, 324-329. Calgary,

Alberta: International Association of Science and Technology for Development.

Banner Engineering. 2011. Q&A: Ultrasonic Basics. Available at:

http://www.bannerengineering.com/training/faq.php?faqID=34&div=1.

Accessed 6 June 2011.

Behnke, W., N. Diekhans, J. Huster, and G. Quincke. 2004. Automatic Adjustment of a

Transfer Device on an Agricultural Harvesting Machine. US Patent No.

6,682,416,B2.

Borenstion, J., and Y. Koren. 1991. The Vector Field Histogram-Fast Obstacle Avoidance

for Mobile Robots. IEEE Transactions on Robotics and Automation 7 (3): 278-288.

Breed, D., V. Castelli, W. Johnson, W. DuVall, R.M. Patel. 1997. Vehicle Occupant

Position and Velocity Sensor. US Patent No. 5,653,462.

Brudka, M., and A. Pacut. 2002. Intelligent Robot Control Using Ultrasonic

Measurements. IEEE Transactions on Instrumentation and Measurement 51(3):

454-459.

Canny, J. 1986. A Computational Approach to Edge Detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence 8(6): 679-698.

114

Cheng, L., L. Wang, and Y. Ma. 2010. A New Strategy for Boundary Surface Detection in

3D Biomedical Images. IEEE 2010 3rd International Conference on Biomedical

Engineering and Informatics, 51-55. Piscataway, New Jersey: IEEE.

Cudworth, A.L. 1965. Device for Indicating Objects Rearwardly of a Vehicle. US Patent

No. 3,226,673.

Grieg, D. 1964. Distance Measuring Device. US Patent No. 3,122,719.

Knoll, A.C. 1991. Ultrasonic Holography Techniques for Localizing and Imaging Solid

Objects. IEEE Transactions on Robotics and Automation 7(4): 449-467.

Krautkrämer, J., and H. Krautkrämer. 1969. Ultrasonic Testing of Materials. New York,

New York: Springer-Verlage.

Langevin, P. 1918. French patent: 505 703.

Laiou, M., A. Meske, and F. Langer. 2009. Method for Controlling Speed and/or Distance

in Motor Vehicles. US Patent Application Publication No. US 2009/0228185 A1.

Lu, J. 1997. 2D and 3D High Frame Rate Imaging with Limited Defraction Beams. IEEE

Transactions on Ultrasonics, Ferroelectronics, and Frequency Controls 44(4): 839-

856.

Murino, V., and Trucco, A. 2000. Three-Dimensional Image Generation and Processing in

Underwater Acoustic Vision. Proceedings of the IEEE 88 (12): 1903-1946.

Nilsson, A., and P. Holmberg. 1994. Combining a Stable 2-D Vision Camera and an

Ultrasonic Range Detector for 3-D Position Estimation. IEEE Transactions on

Instrumentation and Measurement 43(2): 272-276.

Pollklas, M. 1996. Device for Automatic Filling of Containers. US Patent No. 5,575,316.

Pollklas, M. 1998. Device for Automatic Filling of Load Containers. US Patent No.

5,749,783.

Prassler, E., J. Sholz, M. Strobel, and P. Fiorini. 1999. An Intelligent (Semi-) Autonomous

Passenger Transportation System. IEEE International Conference on Intelligent

Transportation Systems: 374-379. Piscataway, New Jersey: IEEE.

Quistgaard, J.U. 1997. Signal Acquisition and Processing in Medical Diagnostic

Ultrasound. IEEE Signal Processing Magazine 14: 67-74.

115

Schueller, C.F., H. Lee, and G. Wade. 1984. Fundamentals of Digital Ultrasonic Imaging.

IEEE Transactions on Sonics and Ultrasonics 31(4): 195-217.

USDA-NASS. 2012. Crop Production. Washington, D.C.: USDA National Agricultural

Statistics Service.

Yi, S., D. Labate, G.R. Easley, and H. Krim. 2009. A Shearlet Approach to Edge Analysis

and Detection. IEEE Transactions on Image Processing 18(5): 929-941.

Ziou, D., and S. Tabbone. 1998. Edge Detection Techniques-An Overview. International

Journal of Pattern Recognition and Image Analysis 8(4): 537-559.

	2012
	Grain wagon fill detection using ultrasonic sensors
	John David Gaard
	Recommended Citation

	tmp.1369943643.pdf.uAQH4

