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ABSTRACT 

Renewable fuel production is essential to improve the energy independence of the 

United States.  Cellulosic ethanol is renewable fuel that is gaining traction in the commercial 

fuels industry.  This fuel can be made from agricultural residues and dedicated energy crops 

widely available in the Midwestern United States.  The biofuels industry is already moving to 

meet these federal biofuels mandates and to establish sustainable biomass feedstock supply 

chains.  Two companies have scheduled to build dedicated cellulosic ethanol refineries in 

Iowa.  This initial phase of a biofuels supply chain is currently in its infancy and will require 

significant efficiency improvements and enhancement to current methods to ensure 

profitability.  The resulting harvest costs, transportation costs and material quality all have 

significant impact on the cellulosic ethanol industry. 

The objective of the first chapter of this thesis was to determine the best method for 

semi-automated and large scale analysis of machinery management parameters.  Electronic 

data logging of GPS position and CAN messages provides the timing and operational status 

needed for calculation of machinery management terms.  Additional information like fuel 

rate, engine speed, hydraulic flow, or specific implement parameters can also be captured.  

This data enables detailed performance evaluation.  GIS software was used to query the 

dataset.  Appropriate spatial selections and parameter filters were defined for each 

performance parameter.  This ensured measurement of productivity terms in conformance to 

ASABE Machinery Management Standards.   

The objective of the second chapter was to quantify and provide detailed information 

on the performance of corn stover collection equipment during industrial scale harvest 

operations.  Current equipment developed for the hay and forage industry can be used to 



vii 

 

harvest corn stover.  Understanding the performance characteristics of this repurposed forage 

equipment is critically important for the continued development of the cellulosic ethanol 

industry.  Two windrowers, two square balers, and a bale collection system were evaluated as 

part of a 2010 partial corn stover residue harvest.  An examination of machine operation 

allows researchers to calculate management parameters like field capacity, field efficiency, 

and fuel consumption. 

The combined methods and results developed and reported in these articles can be 

used to aid with equipment selection, develop economic models, and help managers estimate 

operating costs associated with process scale up.  With accurate performance data on specific 

equipment, modelers can evaluate the impact of different harvesting scenarios.  This can help 

certify that the prescribed and implement methods are practical, achievable, and sustainable. 
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CHAPTER 1. GENERAL INTRODUCTION AND REVIEW OF 

LITERATURE 

Renewable fuels have become an important part of the United States economy.  In 

2010, ethanol alone accounted for nine percent of non-diesel transportation fuel used in the 

United States (EIA, 2012).  The significance of renewable transportation fuel has been 

recognized by congress as an important step in energy independence.  The Energy 

Independence and Security Act of 2007 outlines a plan to increase renewable fuel production 

through the year 2022.  An important part of this plan is the increased production of 

cellulosic ethanol.   

Cellulosic ethanol is a renewable fuel created from the cellulose and hemi-cellulose 

available in fibrous plant materials.  The United States Department of Energy and 

Department of Agriculture indicate that corn stover, a residue left after grain harvest, is an 

underutilized source of cellulose widely available in the Midwestern United States (USDA, 

2005).   

Iowa is the national leader in ethanol production with 25 percent of the nation’s 

ethanol being produced in Iowa biorefineries (Nebraska Energy Office, 2012).  Iowa is also 

well poised to enter the cellulosic ethanol market.  Two companies have developed plans to 

construct cellulosic ethanol plants and have begun work to develop feedstock supply chains.  

Both plants will require large amounts of corn stover, 300,000 – 400,000 tons per year per 

plant, to operate at capacity.  This huge need for feedstock requires the partial collection of 

corn stover from over 150,000 acres around each refinery during nearly the same seasonal 

time interval as grain harvest.  Harvesting at this high level of production requires a 
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significant amount of organization, management, equipment and labor.  Understanding the 

performance and cost of biomass harvesting equipment is of high importance to the industry.  

Obtaining relevant and accurate measures of operation will help managers design harvesting 

systems, control costs, and ultimately allow the corn stover supply chain to develop and 

succeed. 

In order to understand the operating costs and supply chain dynamics associated with 

a corn stover supply chain, a 2,300 acre corn stover harvest was conducted in central Iowa in 

2010 to determine the logistics requirements of industrial multi-pass baling.  Multi-pass bale 

harvesting is one of the most common and scalable harvesting options for stover collection.  

Multi-pass operations utilize windrowing equipment to gather the stover and a baler to 

densify the material.  A variety of harvesting methods were used to condition and bale the 

corn stover.  Each tractor in this multi-pass bale harvest was instrumented to obtain the 

desired productivity data.  GIS tools and methods were developed to synthesize collected 

data into terms and values necessary for operation management. 

Objectives 

The objectives for this research were as follows: 

 Determine methods to extract performance metrics through GIS analysis 

 Assess how performance metrics obtained in a production setting can be used to 

derive standard management terms 

 Quantify the performance of corn stover harvesting equipment 

 Develop a required equipment set for a corn stover supply chain 
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Thesis Organization 

This thesis contains a general introduction, two research articles, and a general 

conclusion, as well as cited references and acknowledgments.  The general introduction 

includes the objectives of the thesis, a description of the thesis organization, an explanation 

of the authors’ role in each article and a brief literature review. 

The first article entitled “Using GIS Tools for Analysis of Machinery Logistic 

Parameters” will be submitted to Computers and Electronics in Agriculture.  This article 

describes how performance metrics can be extracted from spatial datasets.  The second 

article, “Logistical and Productivity Analysis of Multi-Pass Corn Stover Harvesting 

Systems”, will be submitted to the Applied Engineering in Agriculture journal.  This article 

describes the performance of corn stover collection equipment during a production scale 

harvest in the fall of 2010.  References for each section are included at the end of each 

chapter.  

Authors’ Role 

The primary author, with the guidance, support, and assistance of co-authors 

composed all of the research articles presented in this thesis.  Unless otherwise indicated, all 

procedures were performed by the primary author. 

Dr. Matthew Darr conceived the original idea for performance measurement through 

spatial analysis.  Dr. Matthew Darr also provided continual guidance throughout the result 

analysis and also provided writing and editing assistance.   
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Literature Review 

Performance Metrics 

Analysis and comparison of equipment systems requires a thorough understanding 

and standardization of performance metrics.  Full definition of performance metrics will 

enable cross system comparison and ensure accuracy of results.  To serve this purpose, the 

American Society of Agricultural and Biological Engineers have developed several standards 

documents that aim to clearly define and explain machinery management terms like field 

capacity, field speed, field efficiency, and operating width.  ASABE standard S495.1 

provides a glossary of performance terms that can be used to analyze agricultural systems.  

These terms are explained in further detail in an accompanying engineering practice 

document, ASABE standard EP496.3.  Adherence to these standards is helpful as analysis 

results are used for purposes such as: machinery management, system design, economic 

modeling, biomass supply chain development, and countless others. 

The performance terms described can be utilized to develop ideal harvesting systems 

that optimize equipment sets for maximum functionality.  Buckmaster (2006) developed a 

model that was used to size a forage harvesting system.  This model incorporates equipment 

performance metrics to optimize a harvest to storage system.  Another model was developed 

by Sogaard et.al (2004) to optimize farm mechanization.  The accuracy of this model is 

related to the accuracy of the provided input values.  These inputs include experimentally 

obtained performance metrics described in the related ASABE standards. 

Machinery performance data is also useful beyond system modeling activities.  The 

same operational information used for system development can provide value and impact to 
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individual operators.  Taylor et. al (2002) developed methods to aid in farm management.  

Taylor explained how machinery performance indicators can be used to aid in machinery 

selection and implementation of support equipment. 

Iowa State University Extension has developed an extensive tool that is designed to 

aid farm operators in effective management of all farm operations.  A portion of this Ag 

Decision Maker is designed to help manage equipment needs and estimate costs.  Machinery 

performance calculations and previously published experimental results are synthesized into 

modules that help estimate the time and economic requirements of farm operation.   

The need for corn stover collection in Iowa is rapidly approaching and researchers are 

working to determine the impact and cost of the activities associated with partial stover 

collection.  This corn stover supply chain is affected by a variety of factors and economic 

models are challenged to evaluate how these factors should be combined and scaled to 

produce the most realistic results.  Supply chain models like the corn stover model developed 

by Sokhansanj et. al (2002) or the switchgrass model developed by Cundiff et. al (1996) 

utilize custom harvest rate surveys to compile cost data.  Custom harvest rate surveys are 

compiled based upon averages of costs charged for services rather than the calculated cost to 

run the equipment. 

Data Collection 

Evaluation of machinery performance parameters is typically accomplished through 

some method of experimental data collection.  The method in which this data is obtained has 

grown and improved along with the technology available to researchers.  Renoll (1969) 

developed a method in which to use operation timing to calculate performance parameters.  
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The machinery operation was subdivided into core events (i.e. field travel, turning) and the 

time required for each event was recorded (Renoll, 1969).   

This time-motion style analysis was very useful and is still very effective for the 

calculation of basic performance metrics.  Time-motion studies require judicious researcher 

oversight.  Harrigan (2003) utilized ride-in researchers to record time data for each activity in 

a corn silage harvesting operation.  The timing data is combined with static information 

about the experimental region. 

Global Positioning Systems (GPS) have rapidly become an important tool for 

agricultural operations.  This tool has impacted the methods of agricultural data collection.  

Many farm operators utilize GPS based guidance systems for field operations.  The yield 

monitors and mapping displays that are a part of guidance systems can be used to calculate 

performance metrics (Grisso, 2002).  Timing information that was used with previous 

evaluation methods can be extracted from these guidance systems.  Taylor et. al (2002) used 

data collected from a combine yield monitor to collect time-motion data and also measure 

additional performance parameters.  Taylor was able to extract average harvest speeds and 

area information from his dataset through the use of GIS software tools. 

Other researchers have utilized spatial data collection methods to their advantage.  

Amiama et. al (2008) utilized a custom telemetry system to collect performance parameters 

from a self-propelled forage harvester.  The system utilized data collection through a direct 

connection to several sensors pre-existing on the machine.  Additional aftermarket sensors 

were added to gain further analysis capability (Amiama, 2008).  Like Taylor, Amiama used 

software tools to extract the data inputs necessary to derive standardized performance 

parameters. 
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Modern tractors are controlled by several microcontrollers that communicate on a 

controller area network (CAN).  These controllers work together to synchronize activity on 

the tractor.  The communication messages that are transmitted on the CAN bus can be a 

valuable source of information.  These messages contain continuously updating information 

on engine performance, transmission activity, implement status, hydraulic system activity, 

navigation, PTO status, fuel rate and many others.  Webster (2011) used spatially collected 

CAN data to assess a range of performance metrics.  The additional availability of fuel 

consumption information allowed Webster to perform a full cost analysis and breakdown 

using the CAN parameters. 

Previous methods to obtain operational fuel consumption involved additional fuel 

flow meters or fuel tank top off methods.  Dumas et. al (1983) developed a method to 

determine the average fuel consumption of an experimental area.  The tractor fuel tank was 

filled at the experiment start and refilled after the experiment was complete to obtain the 

volume of fuel consumed. 

Kichler et. al (2007) created a system to measure  the flow rate of fuel pumped to the 

combustion chambers.  This measured flow rate and spatial information was recorded on a 

data acquisition system.  GIS software was used for parameter extraction.  
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CHAPTER 2: USING GIS TOOLS FOR ANALYSIS OF MACHINERY 

LOGISTIC PARAMETERS 

A paper to be submitted to Computers and Electronics in Agriculture Journal 

 

Kevin Peyton, Matthew Darr 

Abstract 

The performance evaluation of agricultural machinery aims to provide information 

about equipment capacity, efficiency, and variable costs when conducting standard field 

operations.  An accurate assessment of agricultural machinery performance is a key factor in 

the development of system level supply chain models for agricultural and biofuels products.  

The method for collection of machinery operational data has transformed throughout the last 

century.  Dated methods using stopwatches, clocks, and timers have been replaced by spatial 

data analysis.  Electronic data logging of GPS position and CAN messages provides the 

timing and operational status needed for calculation of machinery management terms.  

Additional information like fuel rate, engine speed, hydraulic flow, or specific implement 

parameters can also be captured.  This data enables detailed performance evaluation of 

machinery systems.   

GIS software provides a platform to perform the spatial querying and data filtering 

necessary for accurate analysis.  Appropriate spatial selections and parameter filters were 

defined for each performance parameter.  This ensured measurement of productivity terms in 

conformance to ASABE Machinery Management Standards.  The establishment of spatial 
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analysis techniques facilitates future process automation and real time calculation of 

performance terms. 

Introduction 

The performance evaluation of agricultural machinery aims to provide information 

about equipment capacity, efficiency, and variable costs when conducting standard field 

operations.  An accurate assessment of agricultural machinery performance is a key factor in 

the development of system level supply chain models for agricultural and biofuels products.  

Currently standards exist which provide core definitions of machinery productivity terms and 

document general performance parameters for many standard agricultural practices.  ASABE 

Standard S495.1, Uniform Terminology for Agricultural Machinery Management, was 

developed to provide standardized definitions of machinery assessment metrics.  ASABE 

Standard EP496.3, Agricultural Machinery Management, was produced to demonstrate how 

measured data can be used to calculate the terms developed in S495.1.  These machinery 

management standards have been used for a range of decision making tools including farm 

operations (Buckmaster, 2006), (Sogaard et. al, 2004), farm production economics (Iowa 

State University Extension, 2012), and biomass feedstock supply chains (Cundiff et. al, 

1996).   

While current standards do provide a starting point for machinery management, the 

performance data and crop applications that are included in the standard are dated and limited 

in scope (Grisso et. al, 2002).  These limitations yield application constraints on the use of 

standards data outside of these standard parameter areas.  For biomass feedstock 

development in particular, very little field data on machinery performance exists.  Key 
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generalized machinery performance metrics for field capacity, field efficiency, and 

productivity can be applied across many sectors of biomass supply chains.  Additionally, 

simple variable cost functions such as fuel usage and breakdown intervals are very useful for 

complete documentation of system operation and optimization.      

 Effective area field capacity is a measure of the amount of area per unit time a 

machine can process (ASABE, 2005).  Effective area capacity is a function of machine in-

field speed during steady state conditions, the working width of the implement and field 

efficiency.  In-field steady state speed is measured during an active pass of a specific 

machine in the central portion of the field.  The field efficiency parameter applies capacity 

losses associated with headland operations and turning as well as inefficiencies from swath 

overlap.  A simplified measure of effective field capacity is the total amount of area covered 

divided by the total time it took to complete that area including the time the machine was 

operating on the headlands.  The theoretical area field capacity is measured in a similar 

manner, although without including the field efficiency term.  The theoretical area field 

capacity is helpful in directly comparing the peak potential capacity of machines under 

steady state conditions and without biases caused by field efficiencies that may be more 

spatially dependent than machinery specific.   

Effective material capacity is similar to area capacity, although it is measured in mass 

throughput rather than area coverage (ASABE, 2006).  This term is a better measure of 

capacity for harvesting or material collection operations where the yield of the crop will have 

a significant impact on rate at which area is covered.  Effective material capacity is expressed 

as a function of the field speed, implement width, crop production yield, and field efficiency.  
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Like the area capacity, a theoretical material capacity also exists which represents the steady 

state crop harvesting capacity.   

Field efficiency is defined a ratio between the effective field capacity and the 

theoretical field capacity (ASABE, 2005).  This value could also be determined from a time 

basis; the ratio between the theoretical time necessary and the time spent in the field  

(Sirvasta et. al, 1993).  The general methodology for determining field efficiency is to 

directly measure the effective field capacity and to calculate a theoretical field capacity based 

on a segment of steady state performance.  Once both field capacity parameters are directly 

measured the resulting field efficiency is calculated.  Although calculated specifically to a 

single machinery function, the true field efficiency and capacity level will be dependent on 

local operating conditions such as soil suitability, field slope and shape, and specific 

machinery settings among others.  These spatial factors are one reason why the estimates for 

capacity and efficiency in standards are highly variable.   

True operational speed and the resulting material capacity at that speed is an 

important component in accurate determination of field capacity and other management 

calculations.  This operational speed, or field speed, is the average travel rate for a machine 

operating continuously under normal conditions.  This average should not include 

disturbances or interruptions in travel (ASABE, 2005).   

The method for collection of machinery operational data has transformed throughout 

the last century.  Past methods have utilized stopwatches, clocks, and careful oversight by an 

in-field researcher to collect field operation timing data (Renoll, 1969).  This timing data is 

combined with information on the area of farmland covered and equipment details to 

calculate performance parameters.  Global Positioning Systems (GPS) have changed the way 



14 

 

that operational data can be collected.  Many farmers utilize GPS based guidance systems for 

field operations.  The yield monitors and mapping displays that are a part of guidance 

systems can be used to calculate performance metrics (Grisso et. al, 2001).  The evaluation of 

these performance indicators can lead to better machinery management decisions (Taylor et. 

al, 2002).  The position information can be combined with other inputs for more in depth 

analysis.  Physical switches and sensors can be placed on a machine and tied directly into the 

data logger to indicate exact machine operation at each position in the field (Amiama et.al, 

2008).  Additional performance metrics can be calculated as supplementary data is available.   

Fuel consumption, typically reported in volume per area, can be determined by filling 

a fuel tank at the beginning and end of an experiment (Dumas et. al, 1983).  However, real 

time sensors can be installed and used to measure the instantaneous flow rate of fuel pumped 

to the engine (Kichler et. al, 2007).  Another method is available to obtain fuel consumption 

information on modern tractors.  Modern tractors are controlled by several microcontrollers 

that communicate on a controller area network (CAN).  These controllers work together to 

synchronize activity on the tractor.  The communication messages that are transmitted on the 

CAN bus can be a valuable source of information.  These messages contain continuously 

updating information on engine performance, transmission activity, implement status, 

hydraulic system activity, navigation, PTO status, and many others.  For example, one 

message indicates the current fuel consumption rate (Webster, 2011).   

The demonstrated capability for GPS based systems with integrated CAN parameter 

logging provides a unique platform for improved determination of machinery management 

parameters such as field capacity and efficiency.  Although the data structures and tools are 

in place, additional work is required to develop specific data manipulation criteria that can 
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serve as standardized methods for rapidly assessing field level performance parameters.  

These rapid assessment tools will lead to a broader assessment of machinery performance for 

specific operations like biomass harvesting and will provide the framework to identify spatial 

influences and supply chain optimizations.  

Research Objective 

The research objective of this study is to establish a protocol for determination of 

effective and theoretical field area and material capacity for agricultural machinery based on 

analysis of machinery performance parameters commercially available through GPS and 

CAN based data acquisition systems.  For the purpose of this research objective, a case study 

example of corn stover biomass harvesting systems was used. 

Materials  

Machinery Parameter Data Collection 

Embedded CAN and GPS data logging systems were used to collect specific 

machinery parameters.    The embedded and stand-alone nature of the loggers allowed units 

to be deployed into field level production environments with no additional input from 

equipment operators.  Information transmitted from GPS through an RS-232 serial interface 

and from the vehicle Implement CAN bus was recorded simultaneously.  Connection to the 

vehicle CAN bus provided continual information about the current status and operation of the 

tractor and implement.    Specific machinery attributes collected included vehicle position as 

well as operational parameters for speed, engine loading and performance, and implement 
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engagement among others.  Table 1 provides detail on the parameters of interest and 

indicates what source was used to collect each attribute. 

Table 1: Description and source of recorded parameters 

 

 

For material capacity determination the harvest rate of the crop was also required.  

ISOBUS virtual terminal (VT) update messages were recorded from the CAN bus to provide 

key information related to location of bale tie-off events.  Individual bale drop locations were 

integrated into larger harvest areas to determine total bales per unit of area harvested.  When 

combined with an average mass per bale the in-field yield of biomass material could be 

directly calculated and enabled the determination of effective material capacity. 

Software Analysis and Filtering 

Geographic information system (GIS) software was used for direct spatial analysis of 

the collected harvest data.  Each machinery specific parameter was associated with a specific 

GPS location and recorded as a new attribute with a one second temporal resolution.  GIS 

PGN Start Bit Length (Bits) D0 D1 D2

Latitude RS-232 - - - - - -

Longitude RS-232 - - - - - -

GPS Speed RS-232 - - - - - -

Engine Load CAN 61443 16 8 - - -

Engine Speed CAN 61444 24 16 - - -

Engine Torque CAN 61444 16 8 - - -

Hydraulic SCV Flow CAN 65040 0 8 - - -

PTO Speed CAN 65091 0 16 - - -

Engine Hours CAN 65253 0 32 - - -

Fuel Consumption CAN 65266 0 16 - - -

AGCO Flywheel Speed ISOBUS VT 59174 24 8 168 251 46

AGCO Flakes Per Current Bale ISOBUS VT 59174 24 8 168 249 46

AGCO Lifetime Bale Counter ISOBUS VT 59174 24 8 168 249 3

Krone Flakes Per Bale ISOBUS VT 59174 24 8 168 99 86

Krone Bale Count ISOBUS VT 59174 24 8 168 85 86

Data Byte Filter ValuesCAN Parameters
Data Source
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software allows for fast and efficient spatial querying of machinery performance data and can 

be automated to provide specific reporting functions.  Attributes can serve both categorical 

and continuous variable roles.  An example of a categorical variable would be the binary 

on/off state of the tractor rear PTO which determines the engaged state of a rotary powered 

implement.  An example of a continuous variable would be vehicle speed which changes 

throughout the field operation.  All GIS examples presented in this paper were completed 

using the SMS Advanced GIS software package commercially available from Ag Leader 

Technology (Ames, IA).    Figure 1 shows an example output from a baler dataset that shows 

the travel speed for each second of operation in the field.   

 

Figure 1: Example attribute map of baler speed data 
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Case Study Data Set 

From the 2,300 acres that were harvested in the fall of 2010, five representative fields 

were selected to demonstrate the GIS based machinery performance methods presented in 

this paper.  The harvest operations in these fields included windrowing, baling, and stacking 

at the field edge. All data was generated during the fall 2010 corn harvest in central Iowa.  

Experimental treatments were predefined within production fields and included 20 acre 

blocks of harvest area to ensure sufficient steady state conditions.  Results presented in this 

paper are summary results for individual treatment zones.  Additional statistical analysis of 

all treatment zones across the experimental season can be used to conclude specific 

production differences between harvest equipment systems. 

GIS data analysis also enables identity preservation of treatments factors in 

machinery productivity experiments.  In the field shown in Figure 1, a change in swath width 

is visible between the right third and the remaining left section of the field.  This indicates a 

change in experiment or operation.  A reference of the related windrowing dataset shown in 

Figure 2 confirms the operation change and shows that a rake operated in the left portion of 

the field and a flail chopper operated in the right third creating a larger windrow and thus a 

larger swath width. Understanding, documenting, and querying the dataset in relation to these 

different field zones was essential for accurate evaluation of baler performance under these 

separate production scenarios. 
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Figure 2: Example map of windrowing operational area 

Results 

Area and material capacity calculations require vehicle speed, functional width, 

harvest rate, and efficiency to be known.  GIS sampling strategies and queries were used to 

accurately assess each of these core parameters.  Specific query tools enabled segmentation 

of steady state and total field operation time which supported direct assessment of capacity 

values.  Results for each of these core parameters is presented in this paper with examples 

focused on biomass harvesting operations.  However, the methods used are generic and can 
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be applied broadly to other agricultural machinery operations such as sprayers, planters, 

tillage tools, and grain harvesting equipment.  

Area Selection 

Spatial data analysis allows the selection of data points based on geographical area.  

This spatial selection function is useful in the examination of performance parameters.  Some 

performance metrics require a query of data at different levels of machine operation.  

Geographical location, speed clues, and engagement indicators can help software distinguish 

between different levels of operation.  These engagement indicators could be a specific CAN 

message, a sensor input, or even an aftermarket switch.  Example indicators include non-zero 

PTO speed, hydraulic flow, or thresher speed. 

Specific metrics are only associated with the steady state, functional activity of the 

machine.  In this case the dataset is filtered to include only the area in the central section of 

the field that has a positive engagement indicator.  Other management terms are associated 

with all active data points throughout the field.  This spatial selection would include the 

activity on the headlands of the field in addition to the steady state points in the center of the 

field.    

Operational Speed 

Field speed is the average rate of machine travel in the field during an uninterrupted 

period of functional activity (ASABE, 2005).  This occurs while the vehicle is traveling in 

the steady state, central section of the field.  In order to determine the average field speed of 

the equipment, spatial software was used to query the steady state, functional data.  If 

appropriate CAN data for the engagement state is available, the query can be performed by 



21 

 

directly utilizing this information.  Otherwise, ground speed can serve as an alternative 

engagement indicator.  Low or zero speed data indicates non-operational data that needs to 

be removed.  It is advisable to also screen for low speed data even if a CAN engagement 

parameter is used to select active production areas.  A distribution of vehicle speed within 

this interior field area often highlight anomalies associated with real field operations (Figure 

3).  Breakdown and other real stoppage events will result in recorded data points with zero 

actual velocity.  These low speed data points represent interruptions in functional activity and 

should not be included the determination of field speed.     
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Figure 3: Example speed data histogram before stoppage filtering 

Data filtering methods on the queried steady state area of the field were used to 

remove outliers at or near zero velocity.  Through inspection of several field speed 

histograms, 2.5 mph was chosen as the standard threshold velocity for biomass harvesting 

operations to delineate between active and inactive field states within the central operating 

area.  This velocity fell below the active speed range for all equipment analyzed.  After these 
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points are filtered a mean can be obtained that represents the field speed as defined by 

ASABE S495.1.  Figure 4 demonstrates a mean that accurately represents the travel speed of 

the tractor while operational in a specific experimental zone.   
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Figure 4: Example speed data histogram after stoppage filtering 

A comparison of five randomly selected field zones within the case study data set was 

conducted to evaluate the impact of zero speed events within field scale experimental trials.  

Results, shown in Table 2, indicate that the frequency of stop events are random, but do have 

a significant influence on the calculated average vehicle speed.  A large number of low speed 

events will have an impact on the reported average.   
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Table 2: Impact of filtering on five experimental zones 

 

Operational Width 

Operational width, or effective width, is the width across the implement over which 

the machine actually works (ASABE, 2005).  This is the width of the implement that is 

actually utilized on an area of the field not previously covered.  Measurement of operational 

width should occur in the central section of the field during regular operation.  This 

measurement can be easily accomplished in most GIS software packages by using a distance 

measurement tool.  The software measurement tool can be used to measure the distance 

across a series of regular passes in a direction perpendicular to the travel direction.  Figure 5 

shows a GIS tool being used to obtain the desired distance.  The tractor in Figure 5 example 

traveled through the field with a bearing of 0.0 or 180.0 degrees.   

Experiment 

Number

Sample 

Count
Mean Std Dev

Sample 

Count
Mean Std Dev

1 6875 3.854 3.29 3965 6.634 0.6877

2 802 5.41 2.19 687 6.26 0.7074

3 2810 3.172 3.503 1262 6.953 1.126

4 5420 1.521 2.239 1654 4.858 0.5717

5 4071 3.272 2.09 2993 4.427 0.947

Filtered Speed DataRaw Speed Data
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Figure 5: A GIS measurement too being used to measure operational width 

The distance should be measured across several passes through the field for two 

reasons.  Software tools are more accurately used across longer distances and thus data 

quality is improved.  Measurement across several passes allows an average of the 

experimental zone to be taken in one step which improves data collection efficiency and 

reduces sample noise.  The distance measured divided by the number of passes measured 

provides an accurate evaluation of the effective operating width. 

Effective width can be compared to the theoretical operating width of the implement.  

Difference between effective and theoretical operating widths is not a metric of equipment 

capacity, but rather a measure of equipment operator skill.  These two values can be used to 

calculate the swath efficiency of that operation.  Swath efficiency was calculated for each 

experiment using this developed equation: 
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 (1) 

where Es = swath efficiency, decimal 

 wt = theoretical swath width, m 

 we = effective swath width, m 

Although overlap efficiency is a part of the overall field efficiency, it is beneficial to 

calculate separately.  The implementation of an automated GPS guidance or steering system 

can eliminate overlap and effectively improve this term to one.  Consequently, the overlap 

efficiency can be used by precision agriculture professionals to determine payback on 

guidance equipment implementation. 

Harvest Rate 

Harvest rate is a description of how much material, or crop, is being processed per 

unit of time.  This term takes on a variety of forms in different harvesting systems.  In the 

biomass harvesting case study, the harvest rate refers to the amount of corn stover that was 

processed or baled in one hour.  This rate could be calculated in a common mass per time 

format and reported as tons of stover per hour.  Baling systems present a second harvest rate 

metric associated with individual bale creation.  The harvest rate could be expressed in the 

unit per time value of bales per hour.   

The unitized approach is an option that can be calculated using GIS data exclusively.  

When a baler nears the end of a bale, a series of discrete events execute to complete one bale 

and start the next.  The baler control system senses and controls these events through signals 

transmitted on the ISOBUS network on the baler.  These signals, recorded by the logging 

equipment, can be used to discern the number of bales created in the experimental zone.  
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Some of the ISOBUS VT messages listed in Table 1 can be used to distinguish the bale end 

event within the GIS software.  The bale count messages will increase by one at bale end 

while the flakes per bale messages will reset to zero.   

ISOBUS VT messages are only transmitted across the bus when the value changes.  

For example, after bale number 1234 is complete, one message will be sent that indicates the 

bale count is 1234, instead of a message containing this information transmitted at a 

continual rate.  This allows a simple sample count query in the GIS software package to 

return the total number of bales created in an experimental area. 

This area based measurement necessitates an assessment of time required to harvest 

the area.  ASABE S495.1 defines field time as the time spent in the field from the start of a 

functional activity to the end of the functional activity.  However, ASABE EP496.3 clarifies 

that field time does not include repairs, preventive maintenance, or daily service.  Thus, field 

time is the time spent underway in the central part of the field and on the headlands.  If a 

complete data set is available, field time can be obtained by performing a query including 

headlands and filtering out low speed points as described previously.  The number of data 

points active after filtering was recorded as the number of seconds required to complete the 

zone.  This calculation of field time was available due to the 1 hertz recording frequency of 

the logging equipment.  With both pieces of information, the total number of bales and the 

field time, the unitized harvest rate can be calculated in bales per hour.  

In order to evaluate harvest rate on a mass per time basis, additional sensor 

information is necessary.  Sometimes sensor technology can be used to calculate a mass 

based harvest rate in real time.  Grain combines have integrated sensing technology that is 
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able to measure the flow rate of material through the combine.  This flow rate of material is 

synonymous with a mass based harvest rate. 

Theoretical Area and Material Capacity 

ASABE S495.1 defines theoretical field capacity as the rate of performance obtained 

if a machine performs its function 100% of the time at a given operating speed using 100% 

of its theoretical width.  This term, which defines the maximum area capacity of a machine, 

is designed to be the best that the equipment can perform.  The theoretical area capacity of 

the machine is measured in an area per time value, for example, hectares per hour.   

This standard expands to describe a theoretical material capacity which combines the 

area capacity term with crop yield.  The material capacity value describes the material 

processing rate of the machine.  After combination with yield, the hectare per hour term is 

transformed into a ton per hour term.  Whether an area capacity or a material capacity values 

is used depends on the type of equipment under analysis.  Both types of capacities were used 

in the assessment of the corn stover harvesting example.  The area capacity term is 

appropriate for windrowing equipment where width is the prevailing factor.  However, baling 

performance is better related to crop throughput and thus it is better to use a material capacity 

for baler evaluation. 

Theoretical field capacity is not designed to account for any non-productive time in 

the field.  Turning on headlands and swath overlap is not included in this term.  The 

operating speed calculated previously is a good fit for theoretical capacity evaluation.  This 

speed was calculated from operational data points in the central, steady state portion of the 

field.  The theoretical area capacity is the product of operating speed and maximum 
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implement width.  The theoretical material capacity can be determined by calculating the 

product of the area capacity and the average yield of the material harvested.  Table 3 

provides an example of the two types of theoretical capacities calculated for a single baler. 

Table 3: Example baler theoretical capacities 

 

Effective Area and Material Capacity 

Effective field capacity is a term that describes actual machine performance as 

completed in a field.  This is a term that allows managers and operators to understand what 

sort of capacity can be realistic obtained during equipment operation.  However, effective 

field capacity is not designed to account for all non-productive events necessary to complete 

harvesting operations.  According to ASABE Standard EP496.3, field efficiency accounts for 

swath overlap, operator ability, turning, and field characteristics.  Road travel, major repairs, 

preventive maintenance, and daily service activities are not included.  The standard describes 

effective field capacity simply as the theoretical field capacity multiplied by the field 

efficiency.  This method requires the use of an assumed field efficiency selected from a wide 

range of possible values.   

As with the theoretical capacity, the effective capacity can be calculated on an area 

basis as well as a material basis.  The units of effective area capacity are hectares per hour 

while material capacity values are reported in tons per hour.  Spatially collected data 

Experiment 

Number

Theoretical Area 

Capacity (ha/hr)

Theoretical Material 

Capacity (ton/hr)

1 4.7 14.8

2 5.0 15.0

3 5.9 14.3

4 6.7 14.9

5 5.7 14.3
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provides an opportunity to calculate the effective field capacity directly from production data 

rather than make field efficiency assumptions.  An area measurement GIS software tool can 

be used to calculate the area of the field that the implement was functional in.  If the entire 

field was harvested, the area value for calculation is the same as the size of the field.  The 

effective capacity term includes turning on headlands and overlap, but does not include non-

operational, low speed data points.  The field time described previously as a part of harvest 

rate evaluation is also an appropriate term for effective capacity evaluation.  The effective 

field area capacity is equal to the area factor divided by the time factor.   

Effective material capacity can be calculated from a field level as well.  In order to 

understand the total mass of stover collected the unitized harvest rate in bales per hour can be 

combined with an average bale mass.  This bale mass is not a value that can be accurately 

collected using available real time sensors.  This metric depends on external values provided 

by the user.  This external term can transform the harvest rate into the effective material 

capacity in tons per hour. 

Efficiency 

ASABE S495.1 describes field efficiency as the ratio between the effective field 

capacity and the theoretical field capacity.  The overall field efficiency can be accurately 

calculated from the spatially determined field capacity values.  This term incorporates the 

inefficiencies associated with regular, in-field machine operation.  Turning on headlands, 

swath overlap, operator skill, and field conditions are incorporated as part of this metric.  

Transportation between fields, machine repair, preventative maintenance, and daily service is 

not included as part of this term.  A calculation of field efficiency for windrowing operations 
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in five example fields is shown in Table 4.  This term can be useful to managers with the 

knowledge that allowance for service and breakdown is required in addition to the field 

efficiency term.  Updated field efficiencies can be used to help transform the easily obtained 

theoretical field capacity to the more useful effective capacity on new or different equipment. 

Table 4: Windrower field efficiency calculation for five example fields 

 

Fuel Consumption 

While understanding the timing aspect of harvest operations is essential for decision 

makers, fuel use is also a notable consideration as fuel consumption contributes to the 

variable cost of an operation.  Understanding the fuel consumption characteristics of field 

machinery is more straightforward than understanding the capacity of the machine.  The 

primary fuel use occurs while the equipment is in full operation within the experimental 

zone.  Therefore, a spatial query of data excluding headlands and non-operational data points 

provided an appropriate source of information for this metric.  Fuel consumption is an 

available message on the CAN bus that was recorded with the logging equipment.  Details of 

this message are displayed in Table 1.  This value was averaged to provide an understanding 

of fuel consumption rates in each experiment.  The volume per time metric is suitable for 

most equipment although this value can be transformed to other useful terms.  For example, 

Table 5 shows an example from corn stover collection where a L/ton term was calculated 

Experiment 

Number

Theoretical Field 

Capacity (ha/hr)

Effective Field 

Capacity (ha/hr)

Field 

Efficiency

1 5.24 4.62 0.88

2 5.46 4.66 0.85

3 4.69 3.74 0.80

4 4.84 4.02 0.83

5 5.23 4.25 0.81
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from the product of the L/hr fuel consumption rate and tons/hr harvest rate.  This type of term 

can provide additional value to economic models. 

Table 5: Average baler fuel consumptions for five example fields 

 

Conclusion 

The use of Global Positioning Systems has brought about a new era of machinery 

management data collection.  The ability to accurately time and track equipment spatially 

eases and improves the data collection process.  This information is further improved by 

harnessing the operational data streams available on controller area networks.  Linking 

position to operational data allows for more in-depth analysis than previously possible.   

GIS software can be used to perform queries and extract data for machine 

performance analysis.  Standard queries and filters for each performance metric were 

developed to ensure analysis conforming to ASABE standards for machinery management.  

Definition of the parameters for each metric facilitates the future automation of spatial data 

analysis. 

In order to calculate in-field parameters like operational speed and fuel consumption 

the GIS software was used to remove headland areas and non-engaged data points.  The data 

was then filtered to remove low speed data points before the average of speed or fuel 

consumption was made.  These values can then be used for calculation of management terms 

Experiment 

Number

Fuel Consumption 

(L/hr)

Fuel Consumption 

(L/ton)

1 27.94 1.27

2 24.35 1.64

3 21.89 1.04

4 21.91 1.66

5 22.33 1.64
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like theoretical area and material field capacity.  For entire zone parameters like effective 

field capacity the same low speed filtering process was completed, but on a selection of data 

including the headlands.  The measurements made within the GIS software were direct inputs 

into calculations of performance metrics. 

GPS data alone allows a number of management terms to be evaluated including field 

speed, effective swath width, overlap efficiency, and theoretical field capacity.  With the 

addition of CAN data logging additional performance metrics like harvest rate, effective field 

capacity, field efficiency, and average fuel consumption can be calculated. 

Performance metrics provide farm operators and industry managers with information 

necessary to plan and organize field operations.  The importance of accurate, realistic 

information is increasingly important as operations are scaled to multiple machines and 

larger harvesting areas.  This type of capacity, efficiency, and fuel consumption information 

is essential to the continual development and improvement of agricultural industries.   
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CHAPTER 3: LOGISTICAL AND PRODUCTIVITY ANALYSIS OF 

MULTI-PASS CORN STOVER HARVESTING SYSTEMS 

A paper to be submitted to Applied Engineering in Agriculture  

 

Kevin Peyton, Matthew Darr 

Abstract 

Renewable fuel production is essential to improve the energy independence of the 

United States.  Cellulosic ethanol is renewable fuel that is gaining feasibility and traction in 

the commercial fuels industry.  This fuel can be produced from agricultural residues or 

dedicated energy crops widely available in the Midwestern United States.  The biofuels 

industry is already moving to meet federal biofuels mandates and to establish a biomass 

feedstock supply chain.  Two companies have scheduled to build dedicated cellulosic ethanol 

refineries in Iowa.  This initial phase of a biofuels supply chain is currently in its infancy and 

will require significant efficiency improvements and enhancement to current methods to 

ensure profitability.  The resulting harvest costs, transportation costs and material quality all 

have significant impact on the cellulosic ethanol industry. 

Current equipment developed for the hay and forage industry can be used to harvest 

corn stover in a multi-pass configuration.  Two windrowers, two square balers, and a bale 

collection system were evaluated as part of a 2010 experimental corn stover harvest.  

Understanding the performance characteristics of this repurposed forage equipment is 

critically important for the continued development of the cellulosic ethanol industry.  An 

examination of machine operation allows researchers to calculate management parameters 
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like field capacity, field efficiency, and fuel consumption.  Standardized management metrics 

can be used to develop economic models and help managers estimate operating costs 

associated with process scale up. 

A systems level analysis of the equipment combinations indicate that at an industrial 

scale the type of windrowing equipment has a significant impact on the capital, labor, and 

variable costs associated with harvesting activities.  With accurate performance data on 

specific equipment, modelers can evaluate the impact of different harvesting scenarios.  This 

can help certify that the production methods are practical, achievable, and sustainable. 

Introduction  

Renewable fuel production is essential to improve the energy independence of the 

United States.  The Midwestern United States is already heavily involved in lowering the 

dependence on oil through the production of renewable fuels like ethanol.  Ethanol derived 

from corn grain is already an important part of the nation’s renewable transportation fuel 

portfolio.  Cellulosic ethanol is another fuel that is gaining feasibility and traction in the 

commercial fuels industry.  This renewable fuel is created from the cellulose and hemi-

cellulose available in fibrous plant materials.  The Energy Independence and Security Act of 

2007 mandates that cellulosic ethanol increase in production through year 2022 (EISA, 

2007).  This act requires that cellulosic fuel production meet a volume capacity of 250 

million gallons by 2011 and a further increase to 16 billion gallons by 2022. 

The ability to economically harvest and transport biomass feedstock is essential to the 

development of commercial scale cellulosic ethanol production in the Midwestern United 

States.  This initial phase of a biofuels supply chain is currently in its infancy and will require 
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significant efficiency improvements and enhancement to current methods to ensure 

profitability.  The resulting harvest costs, transportation costs and material quality all have a 

significant impact on the cellulosic ethanol industry.  The long term sustainability and cost 

competitiveness of the cellulosic ethanol industry will be directly related to these harvest and 

transportation activities. 

The Midwestern United States has already experienced industry movement to meet 

these federal biofuels mandates and to establish a biomass feedstock supply chain.  Two 

companies have scheduled to build dedicated cellulosic ethanol refineries in Iowa.  POET 

Biorefining announced the development of a 25 million gallon per year cellulosic ethanol 

facility slated to begin production in 2013.  This facility will generate renewable fuel from 

corncobs, leaves and husks, the material left after grain harvest and commonly referred to as 

corn stover (POET, 2011).  A second company has also selected Iowa as the location for a 

cellulosic ethanol facility.  DuPont Cellulosic Ethanol (DCE) has purchased land and is 

launching programs to develop a corn stover supply chain throughout central Iowa.  DCE has 

developed a pre-commercial facility in Tennessee that is currently generating ethanol from 

cellulosic sources.  This same technology will be used in the Iowa commercial scale facility 

(DDCE, 2011). 

Corn stover is a viable cellulosic ethanol feedstock due to its widespread available in 

the Midwestern United States.  While it is important to maintain partial residue cover in the 

field for erosion control and organic matter return, a portion of this residue can be harvested 

with manageable effects.  A joint study conducted by the United States Department of 

Energy and the United States Department of Agriculture indicates that corn stover is an 

underutilized source of cellulose with approximately 75 million dry tons available for harvest 
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at a sustainable collection rate (USDA, 2005).  Sokhansanj reports that only about 6% of 

stover is currently harvested (Sokhansanj et. al,2002). 

Iowa already leads the nation in biofuel production capacity and is poised to play a 

large role in the development of cellulosic biofuels as almost a quarter of the harvestable 

corn stover in the nation is located in Iowa (Tyndall et. al,2011).  Tyndall found that 

currently only 17% of Iowa’s farmers who participated in a survey are interested in 

harvesting biomass, however, an additional 37% are undecided.  This indicates that increased 

understanding and education will be essential to the success of the cellulosic ethanol industry 

in Iowa. 

Current equipment developed for the hay and forage industry can be used to harvest 

corn stover.  This equipment lends itself to multiple, separate operations to accomplish a 

specific element of harvest.  A multiple pass corn stover collection system would require a 

combine to first harvest the grain, then a windrower would merge corn stover on the ground 

into strips on the field followed by a baler that would collect the corn stover in the merged 

strips and produce individual bales.  Flail style choppers and bar rakes are two common 

equipment solutions used to form a windrow.  Multiple baler types are available for 

densification of the windrowed material.  Round balers, small square balers, and large square 

balers have been evaluated for use in corn stover (Tyndall et. al,2011). 

Understanding the performance characteristics of this repurposed forage equipment is 

critically important for the continued development of the cellulosic ethanol industry.  An 

examination of machine operation allows researchers to calculate management parameters 

described in ASABE Standard S495.1.  The parameters can be utilized to determine optimal 

equipment sets and design efficient harvesting systems (Buckmaster, 2006), (Sogaard et. al, 
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2004).  These equipment performance indicators can also be used by farm owners and 

industry managers to aid in machinery selection and implementation of support equipment 

(Taylor et. al, 2002). 

Standardized management metrics can also be used to develop economic models and 

help managers estimate operating costs.  Tools like Iowa State University Extension’s Ag 

Decision Maker utilize performance data to estimate crop production costs.  Extrapolation of 

performance terms into cost estimations or scale up models necessitates the accurate 

evaluation of performance parameters such as harvest capacity and fuel consumption rate. 

Windrowing and baling is only part of the corn stover process.  Bale collection and 

transportation is a significant portion of the cost associated with biomass collection 

(Sokhansanj et. al, 2002).  The ability to efficiently collect and transfer corn stover bales to 

storage will be an important consideration for Iowa farmers and industry developers due to 

the high volumes and short time interval of a commercial corn stover harvest. 

Harvest timeliness is an important factor in industrial corn stover collection.  A 

cellulosic ethanol plant of the size that POET and DDCE are considering will require 

300,000 – 400,000 tons per year in order to operate at capacity.  At a sustainable target 

harvest rate of 2 ton/ac, this will require the partial harvest of corn stover from over 150,000 

acres within the same period as grain harvest.  The combination of two passes of harvesting 

equipment and the operation of bale collection equipment over this area represents significant 

organization, management, equipment, and labor costs.  A critical assessment of realistic cost 

and time requirement metrics for all aspects of a corn stover supply chain will improve the 

ability of farmers and industry leaders to make informed decisions and will lead to a more 

economically viable biomass feedstock supply.   
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Research Objective 

A significant need exists for accurate and detailed corn stover harvest and collection 

performance information.   The objective of this research is to quantify and provide detailed 

information on the performance of corn stover collection equipment during industrial scale 

harvest operations.  Spatial data evaluation will be used to directly assess the productivity of 

multi-pass baling systems.  The metrics developed through this research can be used to 

develop accurate economic models and productivity estimates to help design and structure a 

corn stover supply chain in central Iowa. 

Methods and Materials 

A production scale research harvest of approximately 2,300 acres was designed to 

develop metrics for multi-pass corn stover harvesting performance using commercially 

available equipment.  The multi-pass corn stover collection system begins with a windrowing 

operation to collect the material from a swath through the field into a single, narrow 

windrow.  This is followed by the baling operation which densifies the material from the 

windrow into a bale.  The final stage of the experimental evaluation was the bale collection 

systems used to move the bales from throughout the field to the field edge.  An experimental 

plan was developed to measure the effects of different equipment combinations on the 

harvesting system.  The specifications for each of the three types of equipment are explained 

in the following sections of this document. 

Each power unit in the experiment was instrumented with logging equipment that 

recorded GPS and CAN signals.  The loggers accessed several key parameters including 

position, travel speed, engine speed, and fuel consumption rate.  Spatial data analysis allows 
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for detailed measurement of field management characteristics.  This data was analyzed using 

GIS software to create reports of machine performance.  Chapter 2 details the procedure used 

to calculate management metrics including field capacities, swath widths, average fuel 

consumption, and several other terms. 

Windrowers 

Two windrowing systems were evaluated as part of the 2010 harvest.  The Twinstar 

model 2027-G2 basket rake, pictured in Figure 6, was used for raking operations.  A 

hydraulically powered basket rake is well suited for partial corn stover collection as the 

height can be modified to control collection rate and soil contamination.  This rake has a 

maximum operating width of 8.2 meters (27 feet) and was pulled with an 89 kW (120 hp) 

Challenger MT475B tractor.   

The MT475B was the only tractor in the experiment in which the logging system was 

not able to record CAN.  This prevented the recording of an implement engagement message.  

In this case the speed data was used to determine machine engagement.  The GPS signal 

allowed for timing data to be collected for analysis of the majority of the performance 

metrics as described in Chapter 2. 
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Figure 6: Twinstar hydraulically powered basket rake in corn stover 

In this study the powered basket rake was compared to a type of machine that was 

designed for use in corn stalks.  The flail shredder, sometimes known as a stalk chopper, is 

used to mitigate residue problems by reducing the particle size of infield residue.  Some flail 

shredding systems have been improved to include windrowing capabilities on the shredder.  

The shredder used in the 2010 study was a Hiniker 5620 Windrower model with a 6.1 meter 

(20 ft) operating width which is pictured in Figure 7.  A 151 PTO kW (205 hp) Challenger 

MT645C tractor was used to pull the shredder.  The side discharge feature of this system 

allows the operator to combine two passes from opposite travel directions into a single 

windrow.  The data collected from the shredder was analyzed using the procedure outlined in 

Chapter 2.   
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Figure 7: Hiniker windrowing flail shredder in corn stover 

Balers 

The baler is the core biomass collection machine and the heart of multi-pass 

harvesting operations.  The baler collects loose material from a windrow and bundles the 

material into a denser package that can be easily moved and transported.  Bales created by 

the baler come in a variety of sizes and shapes including round and rectangular.  Each size 

and shape of bale has a place and purpose where that particular package is best utilized.  

Large rectangular bales measuring 3 feet by 4 feet by 8 feet provide a unit that can be moved 

and transported safely and easily within industrial biomass supply chains.  This was the 

prevailing factor in the selection of the 3 foot by 4 foot size baler that was used in the 2010 

study.  Many production balers create a similarly sized large square bale, but it is important 

to consider bales from different machines unique.  Differences in the design and operation of 

each baler suggest that the bales from different balers need to be evaluated separately.   
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Two different brands of balers with significantly different operation were evaluated.  

The first baler evaluated was a Massey Ferguson MF 2170 square baler pictured in Figure 8.  

This baler had a recommended power requirement of 123 kW (165 hp) and was pulled with a 

151 PTO kw (205 hp) Challenger MT 645C. 

 

Figure 8: Massey Ferguson MF 2170 baler during the 2010 harvest 

 A baler from Krone was also evaluated during the 2010 harvest.  This Krone 1290 

XC/HDP baler, pictured in Figure 9, had a power requirement of 147 kw (200 hp) and was 

pulled with a slightly larger tractor.  The tractor used was a 166 PTO kW (225 hp) 

Challenger MT655C.  The Krone baler included the Krone X-Cut system which reduces the 

particle size of material entering the bale by implementing feed tines and a knife bank in the 

material intake stream.  This extra function requires additional power beyond standard baler 

operation, but helps to generate a bale with different, and potentially more desirable, 

characteristics. 
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Figure 9: Krone 1290 XC/HDP baler during the 2010 harvest 

Bale Collection 

A variety of equipment is capable of moving bales across the field, but equipment 

developed for the hay and forage industry was specifically designed for this task and 

provides industrial scale productivity.  This equipment gathers a number of bales from the 

baler drop locations and stacks these bales in an organized fashion.  The 16K Plus Bale 

Runner manufactured by Morris Industries is a tractor towed unit designed to gather and 

stack bales.  This system, shown in Figure 10, collects 12 bales from across the field and 

stacks them in 6 bale tall configurations at the field edge in a single cycle. 
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Figure 10: Morris Industries 16K Plus Bale Runner adding bales to a stack 

Bale collection equipment randomly traverses the field and collects individual bales 

during each cycle.  This random nature requires the use of slightly different analysis 

methods.  Unit level metrics are the most appropriate for this type of equipment.  The bale 

collection system performs independent of bale weight.  For this reason, a bales per hour 

metric provides the most direct measure of productivity.  GPS timing data was still used to 

calculated performance parameters in this case. 

Moisture is an important consideration in corn stover harvesting as it impacts the 

overall quality of the feedstock.  Moisture can impact the way material flows through 

machinery, the mass of the material being collected, and the storability of the corn stover.  

The harvest research work was conducted throughout the full harvest season with a range of 

stover moisture contents experienced.  Although this factor is important, it was not used as a 

factor in the evaluated experiments. 
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The prescribed experimental plan specified the windrowing, baling, and bale 

collection operation for each experimental zone.  These experimental zones were 

approximately 20 acre sub-sections of research fields.  Table 6 details the number of zones 

and the area from which data was successfully collected for each piece of equipment.    The 

baling systems are related to windrowing type and it was important to collect information 

from all four combinations of baler and windrower.  Table 7 indicates the four combinations 

tested and the number of zones from which data was successfully collected.  The Krone baler 

arrived later in the harvest season and was therefore included in fewer experiments relative to 

the Massey Fergusson baler. 

Table 6: Summary of data collected 

  

Table 7: Summary of baler experimental combinations 

 

Results 

The 2010 research harvest started September 14 and continued for 58 days into mid-

November when wet conditions prevented any further baling.  Weather in central Iowa was 

Equipment
Zones 

Completed

Acres 

Completed

Twinstar Basket Rake 15 320

Hiniker Flail Shredder 14 280

Massey Fergusson Baler 28 590

Krone Baler 9 220

Bale Collection 30 -

Windrower Baler
Zones 

Completed

Twinstar Basket Rake Massey Fergusson Baler 14

Twinstar Basket Rake Krone Baler 5

Hiniker Flail Shredder Massey Fergusson Baler 14

Hiniker Flail Shredder Krone Baler 4
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generally dry with 38 of the 58 days fully available for field work.  The timing of the rain 

events is included as a part of Figure 11. 

The infield equipment operation was performed by a custom harvesting team with 

extensive experience in corn stover baling.  During the 38 days of baling the crew covered 

2,300 acres across the central Iowa region.  This area yielded a total of 6,500 bales of varying 

types and quality.  Although research focused, effort was taken to ensure that field operation 

of the equipment was performed at typical production level.  The moisture content of the 

baled corn stover dropped quickly at the beginning of the harvest season.  Occasional rain 

events did affect the moisture content of the available material throughout the harvest period 

with spikes in stover moisture corresponding to discrete rain events. 
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Figure 11: Bale moisture content over harvest season 
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Windrowing 

Operational speed of the windrowing units was determined by the custom harvesting 

operators based on manufacturer recommendations and field conditions.  Speeds were 

selected in the field to maximize performance of each piece of equipment and achieve the 

desired harvest rate.  Harvest data indicates that the flail shredder was generally able to move 

across the field at a faster pace.  Figure 12 demonstrates that although field conditions cause 

a moderate amount of variability, the shredder operates at higher average speeds.  The small 

p-value in the ANOVA table shown in Table 8 indicates significant difference in operational 

speed between the two windrowing levels. 

 

Figure 12: Operational speed of windrowing equipment 

Table 8: ANOVA table for operational speed of windrowing equipment 
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Interval Plot of Windrower Speed

Source DF Sum of Mean Square F Ratio Prob. > F

Windrower 1 2.4774 2.4774 5.67 0.025

Error 25 10.929 0.4372

Total 26 13.4064
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Although the shredder tended to have a higher field speed, it is important to note that 

the effective operating widths of the two pieces of equipment affect how much area is 

covered by that equipment.  GIS data was used to calculate the effective swath width of each 

implement.  The rake was able to consistently merge 7.3 meters of material into a windrow 

while the shredder merged windrows 5.9 meters wide.  Although it produced a smaller 

windrow, the shredder was able to better maximize the operational potential of the 

equipment.  The shredder achieved an overlap efficiency of 95 percent while the overlap 

efficiency of the rake was only 89 percent.  Although the shredder traveled faster and was 

more efficient, the extra width of the raking system allowed it to produce a higher area 

capacity.  Figure 13 shows both the theoretical and the effective area field capacities as 

defined in ASABE standard EP496.3 (ASABE, 2006).  The theoretical area field capacity is 

based on maximum operating width and speed while the effective area field capacities are as 

measured by total time required to complete field operations.  Table 9 and Table 10 list the 

ANOVA parameters for Theoretical and Effective field capacities for windrowing 

equipment.  A sufficiently small p-value provides evidence of significant differences in 

theoretical field capacity across windrowing operations at the 5% level.  However, a larger p-

value indicates that the effect of the windrowing factor on effective field capacity is not 

significant at the same 5% level, but does indicate significance at the 10% level. 
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Figure 13: Field capacities of windrowing equipment 

Table 9: ANOVA table for Theoretical Field Capacity of windrowing equipment 

 

Table 10: ANOVA table for Effective Field Capacity of windrowing equipment 

 

Fuel consumption is also an important metric in determining variable costs of the 

operation.  Fuel use was not measured on the rake tractor, but was available on the tractor 

used with the shredder.  Data for shredder fuel consumption data was collected and is 

displayed in Figure 14.  The average fuel consumption rate for all fields was 23.1 L/hr.  
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Source DF Sum of Mean Square F Ratio Prob. > F

Windrower 1 3.4782 3.4782 6.42 0.018
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Total 26 17.0272

Source DF Sum of Mean Square F Ratio Prob. > F

Windrower 1 1.9408 1.9408 3.34 0.079

Error 27 15.6994 0.5815

Total 28 17.6403
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Variability did exist with a minimum fuel consumption of 15.5 L/hr and a maximum fuel 

consumption of 28.9 L/hr.   
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Figure 14: Fuel consumption of tractor pulling shredder 

Baling 

The two baling systems were both operated by the custom harvesting crew based on 

manufacturer recommendations and previous experience with corn stover baling equipment.  

Operational speeds were selected to best match the feed rate of material into the baler.  

Results indicate that the feed rate requirements were similar for both balers and that the 

windrower swath size is more dominant in the determination of baler operational speed.  

Figure 15 demonstrates no statistical difference between the mean speeds between balers 

under the same windrowing method that is reflected in the p-value of 0.86 for the baler factor 

in Table 11.  A slight trend of higher operational speed under raked windrowing conditions is 

shown in Figure 15, but the p-value for the windrowing factor in Table 11 indicates low 
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significance.  This slight trend can be explained by the amount of material in the windrow.  

The side by side windrowing capability of the flail shredder allowed for 11.8 meters of the 

field to be combined into a single windrow for baler pick up.  The smaller 7.5 meter windrow 

size of the rake may require the baler to increase speed to maintain an appropriate feed rate in 

some instances. 
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Figure 15: Operational speed of baling equipment 

Table 11: ANOVA table for baler speed by windrowing and baling type 

 

The extra field width gained by the dual windrow system offered by the side 

discharge flail shredder provides a field capacity advantage to the shredding system.  Both 

baling systems were able to realize a greater rate of field coverage behind a shredding 

system.  The theoretical field capacity was calculated for the four baler and windrower 

Source DF Sum of Mean Square F Ratio Prob. > F

Windrower 1 5.433 5.536 11.66 0.208

Baler 1 0.105 0.105 0.03 0.861

Error 27 89.843 3.328

Total 29 95.381
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combinations.  Any overlap inefficiencies were attributed to the windrowing system and 

should not be attributed to the baling system.  Equation 1, developed in ASABE EP496.3 was 

used to calculate theoretical area capacity, but the effective swath width of the implement 

was used in place of the implement working width.  This substitution was implemented to 

prevent experimental variations in windrow size from biasing the calculation. 

    
  

  
 (2) 

Where Ct = theoretical capacity, ha/h 

 s = field speed, km/hr 

 w = implement working width, m 

Figure 16 shows the trend of improved baler field capacity behind the shredder.  The 

larger confidence interval in the shredder and Krone baler example is due to a low sample 

size of four experimental zones.  This increased capacity for the baler to complete baling 

operations more efficiently behind a shredder is an important management decision when 

designing commercial scale biomass feedstock supply chains.  The baling systems both have 

very similar field capacities under the same windrowing type, but vary between windrowers.  

This indicates that the windrowing type is the determining factor for field capacity which is 

supported by the small p-value for windrowing in Table 12. 
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Figure 16: Theoretical field capacity of baling operations 

Table 12: ANOVA table for baler theoretical field capacity by windrowing and baler type 

 

Although the field capacities of the baling systems are similar, the systems maintain 

important differences that affect the overall stover collection system.  The X-Cut system and 

the higher plunger forces of the Krone baler create denser bales.  Bales created by the 

Massey Fergusson baler contained, on average, 384 kg (844 lb) of dry matter while the 

Krone system generated denser bales with 508 kg (1117 lb) of dry matter per bale.  More 

material per bale is highly desirable due to the inverse relationship with the number of bales 

that need to be collected, stacked, transported and stored throughout the entire stover 

collection system.  Information presented earlier in this article indicates similar operational 

speeds and field capacities between the two baling systems.  If field capacity similarities and 

Source DF Sum of Mean Square F Ratio Prob. > F

Windrower 1 24.026 24.437 7.63 0.01

Baler 1 0.427 0.427 0.13 0.718

Error 27 86.49 3.203

Total 29 110.942
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bale differences are considered the Krone baler will generate bales at a lower rate than the 

Massey Fergusson baler.  Effective bale production rates were calculated for each experiment 

conducted.  The total number of bales created in each zone was divided by the time required 

to perform that baling operation.  The results, shown in Figure 17, do show a higher bale 

generation rate for the Massey Fergusson as expected.  This is supported by a low p-value in 

the ANOVA analysis for the baler shown in Table 13.  It is also evident the windrowing type 

is not a significant factor.  This measured rate accounts for all field efficiency variation and 

fluctuating field conditions. 

 

Figure 17: Bale production rate of two baling systems 

Table 13: ANOVA table for bale production rate  by windrowing and baler type 
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Source DF Sum of Mean Square F Ratio Prob. > F

Windrower 1 25.9 44.3 0.36 0.553

Baler 1 644.7 644.7 5.22 0.029

Error 35 4325.6 123.6

Total 37 4996.2
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The effective material capacity of each harvesting system can be determined as the 

product of the average dry mass per bale and the bale production rate.  Material capacity, or 

throughput, is an excellent metric for comparison of baling systems.  Supply chain design 

decisions should be made based on material capacity rather than area capacity because 

variability induced by fields, harvest seasons, and crop quality are all taken into account.  A 

summary for effective material capacity is displayed in Figure 18.  This figure, along with 

high p-values in Table 14, indicates that no significant differences exist between the four 

combinations of equipment. 
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Figure 18: Material throughput for bale collection systems 

Table 14: ANOVA table for material throughput by windrowing and baler type 

 

 

Source DF Sum of Mean Square F Ratio Prob. > F

Windrower 1 2.31 1.71 0.05 0.833

Baler 1 5.61 5.61 0.15 0.703

Error 37 1407.91 38.05

Total 39 1415.83
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The fuel consumption for baler operation was monitored throughout the 2010 harvest 

season on both the Krone and the Massey Fergusson baler.  As Figure 19 indicates, the 

tractor on the Krone baler used 80% more fuel than the tractor pulling the Massey Fergusson.  

This increase in fuel consumption corresponds to the increase in material capacity previously 

identified for these two baling platforms.  Additionally, the Krone baler required extra power 

for the X-cut system which was unique to this baler.  

 

Figure 19: Fuel consumptions of two balers in corn stover 

Similar trends exist when fuel consumption is evaluated on a material basis.  The fuel 

consumptions metric was combined with the material throughput for each experimental zone.  

This liter per ton value displayed in Figure 20 can be very useful in estimating the baler fuel 

cost for a large corn stover collection operation as well as provide key information for 

bioenergy life cycle analysis.   
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Figure 20: Baler fuel consumption for two balers on material basis 

Bale Collection 

Prompt removal of bales from the field is especially important in corn stover 

collection systems in the Midwest.  Short harvest windows and fall tillage requirements 

necessitate dedicated bale removal systems.  Understanding the capacity of these systems 

allows for better understanding of the machinery necessary for a stover collection supply 

chain.  Manufacturers often indicate productivity values in bales per hour.  This number is 

appropriate in comparison to a ton per hour or ton per area as the bale collection systems are 

not as affected by variable material properties such as bale density.  However, performance 

does vary between different crop types so it is important to understand performance in corn 

stover. 

Bale collection is a cyclical process of several operations instead of a linear activity 

like windrowing and baling.  This requires an alternative spatial analysis process to obtain 

performance information.  General performance data can be obtained by measuring the 
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amount of time spent in the zone and the total number of bales stacked.  A summary of each 

zone’s performance in bales per hour is shown in Figure 21.  The large variation in stack rate 

can be attributed to a variety of factors; operator skill, field size, and field shape all play 

important roles in determining the stack rate.  During the 2010 harvest with varied 

conditions, the stacking equipment was able to obtain an average stack rate of 65 bales per 

hour.  This considered the movement of bales from across the field to the field edge.  Over 

the road transportation was not considered. 

 

Figure 21: Productivity of a ProAg Bale Runner collection system 

Similar variation exists in the fuel consumption data for the tractor pulling the ProAg 

Bale Runner.  Figure 22 shows the average fuel consumption data for 32 of the experimental 

zones.  The average fuel consumption rate was 17.5 L/hr with a minimum fuel consumption 

of 10.9 L/hr and a maximum of 31.0 L/hr. 
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Figure 22: Average fuel consumption for bale collection operations 

System Analysis 

The information obtained from each part of the corn stover harvesting system can 

help provide insight into how a large scale harvesting operation should be structured.  A 

consumer like a cellulosic ethanol plant needs a certain amount of material to operate for an 

entire year.  If the sole feedstock is corn stover, this material must be collected in a relatively 

short harvest window.  A case study was conducted to understand the scale of harvest 

machinery necessary to accomplish the collection of 100,000 tons of dry corn stover in one 

season.  This value was selected as an example value and is approximately one third of the 

corn stover required to maintain full operation at one plant for a year.  Several assumptions 

were necessary in order to complete this analysis.  It was assumed that 30 working days were 

available for corn stover collection based on an examination of historical Iowa grain harvest 

length.  It was also assumed that the windrower and stacker could operate for 11 hours each 
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day and the baler could operate for 10 hours each day.  These values were estimations based 

upon observations of in-field activity during the fall of 2010.   

To complete this system analysis, it was necessary to use information external to the 

data collection system.  The bale density typical of each baler was used to approximate the 

number of bales needed to package 100,000 tons of stover.  In order to calculate the required 

equipment set for windrowing and baling, the mean effective material capacity in tons per 

hour for each piece of equipment was combined with the amount of stover collection 

required and the daily operational timing to determine the number of implements needed.  

The number of bales created in each scenario was divided by the bales per hour stack rate of 

the bale collection equipment and combined with operational time to determine the number 

of bale collection units needed.   

In each scenario the total number of implements was summed to determine the 

number of tractors needed in each situation.  This allots a tractor to each implement and 

assumes that implements do not share a tractor.  Although economic models may optimize 

this practice, it is likely that this will remain the case due to the size and time requirements of 

the harvest.  Table 15 summarizes the amount of equipment necessary to harvest this amount 

of corn stover within a single season harvest window. 

Table 15: Number of units needed to harvest 100,000 tons of stover 

 

 

Baler

Windrower Rake Shredder Rake Shredder

Bales Needed

Windrowers Needed 18.0 29.4 18.0 29.4

Balers Needed 23.0 17.4 18.6 20.7

Stackers Needed

Tractors Needed 49.3 55.1 47.6 61.1

Krone Massey Fergusson

8.3 11.0

236,967178,891
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When 100,000 tons of stover is transformed into harvesting requirements the scale of 

this activity becomes much easier to visualize.  In order to harvest this amount of stover 

during a short harvest season, 45 – 65 sets of equipment will need to be deployed, depending 

on the final configuration.  These differences in equipment requirements are an important 

part of supply chain development.  Additional equipment represents additional capital and 

labor requirements.  However economic impact modeling is necessary to determine if other 

external factors are of greater economic significance.  Bale quality or bale quantity could 

become a factor that overrides the economics of a system. 

For example, the number of bales in each system is a major factor.  To help visualize 

the quantity of bales necessary at this scale of harvest, one could imagine the space needed to 

store these bales.  If 200,000 bales were stacked six bales high and packed into a single stack, 

the bales would cover 25 acres.  Each additional bale is another package that needs to be 

loaded, transported, and stored.  The differences between these two systems results in an 

extra 1600 semi loads of bales and seven more acres of storage required.  These system level 

differences are important considerations and affect the entire stover collection supply chain. 

Conclusion 

Production scale harvests like the one completed in 2010 are useful in obtaining 

realistic machinery management information.  Tractors can easily be instrumented with data 

logging equipment to collect GPS and CAN data from the power units.  GIS software can be 

used to extract management parameters from the spatial data collected from these loggers.  

These management terms are calculated in accordance with ASABE standards. 
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Analysis of the metrics calculated and the treatment factors associated with those 

metrics allowed for a system level analysis.  Windrowing equipment is an important start to 

the multi-pass harvesting system.  In the 2010 study, the basket rake was able to achieve a 

higher field capacity than the flail shredder.  It was clear that the windrower characteristics 

have an impact on the field capacity of the baling systems. 

The baler type has a significant impact on the entire corn stover harvesting system.  

The Krone baler was able to achieve a higher density bale.  Although the Krone baler did 

have significantly lower bales per hour numbers, the higher density allowed the balers to 

achieve similar material throughput rates.  This increased density appeared to come at a cost 

of increased fuel consumption.  Although this increased fuel consumption raises the variable 

costs on this equipment, it is important to consider the impacts on the entire supply chain. 

A systems level analysis of the harvesting operation starts to evaluate impact factors 

on the supply chain of industrial corn stover harvesting.  It is clear that equipment selection 

at the windrowing and baling level have impacts on the labor and equipment requirements to 

harvest corn stover at a certain tonnage level.  The analysis of this study was performed up to 

the field edge.  It is important to note that the bale density can have a large impact on the 

corn stover supply chain.  A lower density requires more trucking, storage, and handling 

costs that are associated with an increased number of bales. 

The types of performance metrics determined in this study are extremely valuable in 

the development of economic and supply chain models.  With accurate performance data, 

modelers can evaluate the impact of equipment selection on the entire system.  It is important 

for work to continue to evaluate the impact of other harvesting systems and other operational 
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interactions.  Through the use of spatial data it is possible to evaluate performance metrics 

beyond what is defined in ASABE standards. 
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CHAPTER 4: GENERAL CONCLUSION 

General Discussion 

It is clear that energy independence and reduced consumption of non-renewable 

resources is important to the United States.  The mandates initiated by the United State 

Congress will ensure that the non-renewable transportation fuel industry will continue to 

grow into the future.  Cellulosic ethanol is poised to be an important part of the growth in this 

industry.  Multi-faceted research will have significant impacts on the shaping of this new 

industry.  The need for detailed information about all parts of the cellulosic supply chain is 

driven by a desire to perform efficiently, effectively, and sustainably. 

Corn stover is a significant source of cellulose in the Midwestern United States.  

Understanding the effort and expense associated with a partial corn stover harvest is essential 

to supply chain development.  In Chapter 2, “Using GIS Tools for Analysis of Machinery 

Logistic Parameters”, methods were developed to collect and analyze machinery 

performance data.  The spatial logging equipment can be deployed on production equipment 

without a supervision requirement; this facilitates the collection of data from large 

experimental zones.  GIS software has the capability to handle large datasets and manage 

multiple operations in the same experimental zone or field.   

Chapter 2 defines the appropriate spatial queries and filters necessary to collect 

specific parameters necessary for management term calculation in accordance to ASABE 

Standards.  The standardized queries established lend themselves to rapid analysis of 

machinery parameters.  This enables evaluation of larger quantities of data which leads to 

better performances assessments.  The standardized methods also lend themselves to 
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implementation in automated systems that could measure parameters of interest in real time.  

The spatial analysis method of data collection facilitates evaluation of terms beyond the 

current management metrics defined in the ASABE Standards.  As spatial performance 

analysis becomes more commonplace, standards could be updated and developed to account 

for the expanded functionality. 

Currently published performance values list wide ranges of capacity and efficiency 

for generalized equipment operations.  These wide ranging, general values are useful for 

small scale farming operations, but tend to be too broad for industrial harvesting operations.  

Chapter 3, “Logistical and Productivity Analysis of Multi-Pass Corn Stover Harvest 

Systems,” provides calculations of performance metrics for specific harvesting scenarios.  

This type of unique performance measure is essential to the creation of biomass supply 

chains.  The values determined as part of this research can be implemented directly into 

economic and impact models.  These models can then provide realistic evaluations on the 

impact of different harvesting scenarios. 

The accuracy of these models is important to industry efforts in the Midwestern 

United States.  This will ensure success as harvesting operations are scaled from the meager 

2,300 acres harvesting in 2010 to full production levels requiring partial harvest of over 

150,000 acres.  It is essential to understand the implications of each decision in the supply 

chain to certify that the prescribed and implemented methods are practical, achievable, and 

sustainable. 
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