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ABSTRACT 

 This thesis begins with a technoeconomic analysis (TEA) of bio-based sorbic acid 

(SA). The initial TEA focused only on SA, and did not attempt generalizations. However the 

experience of building the SA TEA inspired development of a more general tool designed for 

early-stage TEA’s of hybrid biological/chemical systems for producing bio-based chemicals, 

as proposed by the founders of the NSF Engineering Research Center for Biorenewable 

Chemicals (CBiRC). This early-stage TEA tool, named BioPET (Biorenewables Process 

Evaluation Tool), was designed for the purpose of conducting rapid early-stage economic 

analyses of these hybrid systems. BioPET was validated against a commercial economic 

analysis tool, SuperPro Designer®, and against published literature. BioPET was 

subsequently used to evaluate a recently developed pathway for bio-based styrene. BioPET 

fills a critical niche in the evolving bio-based chemicals industry. This is because there is a 

need for low-cost tools capable of early-stage estimations of the economics for novel 

bioprocess systems. Such a tool can provide valuable insight into nascent projects.  

This thesis is prepared in paper format, and is comprised of three manuscripts, as 

follow: The first paper was an evaluation of the economics of bio-based sorbic acid 

production. Sorbic acid has a growing market in food preservatives mainly due to health 

concerns about benzoic acid, currently-used food and cosmetic preservative. While bio-based 

sorbic acid has reached proof-of-concept stage, little has been done to understand the costs of 

a commercial-scale process and the economic feasibility of such a venture. A spreadsheet 

model was created for the purpose of conducting this evaluation and understanding how 

critical biokinetic parameters influence the final estimated selling price. Based on current 
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values of these parameters, we appear far from producing a product that can be sold at 

commercial scale. However, by assuming improvements in key parameters that reflect 

experience with other fermentative systems, bio-based sorbic acid becomes cost competitive 

with current petroleum-based sorbic acid. Production costs were most sensitive to those 

parameters governing the overall yield of sorbic acid in this process. In the long-term 

projection, primary costs were almost equally shared amongst feedstock, separation, and 

catalysis. Improving yields for this process will be required to make this process 

economically feasible, but also vital will be improving all kinetic parameters in order to 

achieve cost competitiveness.  

 The second paper explored the development of a robust but simple spreadsheet model 

(BioPET) to perform early-stage TEA of candidate processes for biorenewable chemical 

production. In the early-stage development of new technologies, a feasibility study or order-

of-magnitude evaluation TEA is conducted to determine whether further development of that 

technology is warranted. With the number of new technologies and pathways being 

developed in the realm of industrial biotechnology, a tool that can provide a rapid estimation 

of a new technology has great value in delivering feedback to scientists and companies alike. 

Using basic inputs governing fermentation (e.g. productivity, titer, yield), separation (e.g. 

distribution coefficient, relative volatility, purity, yield), and catalysis (e.g. selectivity, 

conversion, type of catalyst), an estimate of a production price can be determined. This early-

stage TEA tool was built in Microsoft Excel® and evaluated for accuracy and precision 

against SuperPro Designer® and the BREW project from the EU, using ethanol, succinic 

acid, and adipic acid as target chemicals. Processes were simulated as close to the BREW 

assumptions as possible. BioPET had accurate results against SuperPro Designer®, providing 
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an R2 between the two tools of 0.9995. BioPET had minor deviances from BREW project 

projected selling prices of the evaluated chemicals, but the results were within the range of 

error for BioPET-derived estimates.  

 The third paper describes the application of BioPET to the evaluation of bio-based 

styrene. Bio-based styrene is a drop-in replacement chemical that remains in the early stages 

of development. Given basic knowledge of the properties of chemicals used in the process 

and general knowledge of the biokinetic limitations of the host organism, the styrene process 

was evaluated in BioPET at conservative commercial-scale values to evaluate the 

competitiveness of such a method of production. The results suggest bio-based styrene could 

be competitive with current petroleum-based prices at predicted selling price of 1.82 USD  

kg-1. A Monte Carlo analysis provided insight into the uncertainty of the process and 

estimated an the standard deviation to be  ±0.44 USD kg-1. The majority of the cost of bio-

based styrene arises out of the feedstock due to the small maximum yield of fermentation and 

relatively simple process design. While current production values might not yet be 

commercially feasible, values of bio-based styrene have potential to surpass the current 

petroleum-based styrene production.  Additional research into the metabolic pathways 

governing biostyrene production will enable a reduction in the uncertainty of the cost 

estimate. At present, the BioPET results on bio-based styrene, and rising prices of petroleum-

based styrene, suggest that bio-based styrene may well be cost-competitive in the future.
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

An increasing population and dependence on products synthesized from a barrel of oil 

has created a great interest in understanding the total amount of available hydrocarbon resources 

(Rogner, 1997). It has been suggested that while fossil carbon reserves remain plentiful, the cost 

of extracting these less readily available resources will be potentially cost prohibitive (Rogner, 

2012). This information has led to a surge in research exploring the replacement of the 

hydrocarbon-derived products with ones derived from renewable carbon (i.e., photosynthetically-

derived). With a vast quantity of the barrel of oil producing multiple sources of liquid-fuels, 

researching bio-based energy has taken precedence over research into other bio-based products 

(Nikolau et al., 2008). A major portion of the liquid fuels being consumed is utilized in 

passenger vehicles. One potential replacement for liquid fuels utilizes fermentation of 

biologically-derived sugars (predominantly from sugarcane in Brazil and from corn-starch in the 

US) to produce ethanol, a viable fuel for spark-ignition internal combustion engines (Hsieh et al., 

2002; Yüksel and Yüksel, 2004). During the US oil crisis in the 1970’s, an increased number of 

investigations were conducted to understand the economics of industrial fermentation (Cysewski 

and Wilke, 1978; Maiorella et al., 1984). With a subsequent decline in oil prices bringing 

relatively inexpensive fuels back to the US market, interest in fermentation-derived fuels waned. 

However, in the early 2000’s, a variety of global economic factors and policy responses greatly 

increased interest in ethanol and in other fermentation-derived compounds. A large number of 

studies focused on how to extract the sugars for fermentation, and others have focused on 

process design to improve the economic competitiveness of fermentatively-derived fuel 

compounds (Huang et al., 2009; Jiang et al., 2011; National Renewable Energy et al., 2000; 

Qureshi and Blaschek, 2000). Another way of improving the economic competitiveness of 
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fermentation-derived compounds is to compete with petroleum-based value-added products 

known as petrochemicals (Landucci et al., 1994; Werpy and Petersen, 2004). While fuel-like 

compounds have been studied extensively, and have a plethora of process details available in the 

literature, the process details and economics of value-added products from biomass are not as 

well understood. This is compounded by the diversity of physical and chemical properties in this 

realm, making understanding all potential processes is an incremental venture (Choi and Lee, 

1997; Datta et al., 1995; Van Wegen et al., 1998). 

Production of value-added products from biomass, or bio-based chemicals, has been 

greatly aided through the advent of a new field known as metabolic engineering. Metabolic 

engineering employs techniques using recombinant DNA to better understand the organisms 

utilized for the fermentation processes and aims to improve the economics of such situations by 

improving stress responses of organisms to their environment, productivities, titers, and yields 

(Jarboe et al., 2010; Nielsen, 2001; Purvis et al., 2005; Sánchez et al., 2005). Allied fields of 

biotechnology such as plant biotechnology (sometimes referred to as green biotech) and medical 

biotechnology (sometimes referred to as red biotech) have made tremendous improvements 

through similar techniques implemented in their respective field. This field, known as industrial, 

or white, biotechnology, is making similar improvements but the diversity of compounds and 

economic challenges of white biotech are arguably greater than in green or red biotech. While 

red biotechnology may use fermentation, the target compounds are typically extremely high-

value, produced in low quantity, and not economically attainable by non-biotech methods 

(Werner, 2004). In contrast, the products of industrial biotechnology must be economically 

competitive with their petro-based counterpart. Green biotech is aimed at incremental 
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improvements to a previous system and therefore does not have to design from the ground up as 

does industrial biotechnology.  

Producing compounds of interest directly via fermentation has been the primary focus of 

current research in industrial biotechnology, although alternative methods do exist (Choi and 

Lee, 1997; Kazi et al., 2011; Rivas et al., 2004; Song and Lee, 2006; Straathof et al., 2005). 

However, fermentative methods for producing bio-based chemicals are capital intensive and 

financially risky; this has led to the idea of biorefineries. A biorefinery is functionally similar to 

a petroleum refinery, in that a portion of the incoming feedstock is diverted to fuels, while the 

other can be diverted to bio-based chemicals (Kamm and Kamm, 2007). This should reduce the 

amount of capital spent per product developed and decrease risk by having a more diverse 

portfolio of chemicals. One method of accomplishing this concept of a biorefinery is to develop 

“platform” chemicals; a chemical that serves as an intermediate to a variety of other chemicals 

(Nikolau et al., 2008).  Work has been done on developing chemicals from both the fermentation 

and catalytic side that would serve as platform chemicals (Chia et al., 2012; Marr and Liu, 2011; 

Nikolau et al., 2008) 

As the opportunity for chemicals to be produced via fermentation and catalytically 

manipulated continues to expand, understanding the economics behind the development of such 

processes could provide insight into potential bottlenecks and limitations of such an approach. 

Current methods for conducting technoeconomic analyses (TEA), such as Aspen™ and SuperPro 

Designer®, are extremely powerful, and have the ability to consider detailed mass and energy 

balances on each unit operation in the modeled system. However, these detailed methods are also 

relatively time-consuming and limited in scope because of the extensive amount of detail they 

both require and produce. When limited amounts of data are available, a simple flowchart may 
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be the best way of capturing uncertainty while still providing an estimate until adequate 

measures are acquired and can be used in the prior methods (Bunger, 2012). The NSF 

Engineering Research Center for Biorenewable Chemicals (CBiRC) is working on developing a 

greater understanding of not just the science between producing these new and novel chemical 

pathways, but in understanding the economics of producing chemicals through such pathways.  

CBiRC is positioned as a research center developing translational technology that aims to 

transform the chemical industry through the development of platform chemicals. To achieve this 

goal, CBiRC has created testbeds as proof-of-concept platforms that integrate fermentation and 

catalytic routes, and as a method of exploring this new research space. One such testbed aims to 

produce sorbic acid via a combined fermentative-catalytic route. This route aims to examine 

triacetic acid lactone (TAL) as a potential platform chemical and explore the diverse catalytic 

opportunities. TAL is within a family of molecules known as pyrone, and a significant amount of 

work within CBiRC has focused on improving fermentative pyrone production via enzymology 

and metabolic engineering. Sorbic acid was chosen as a final target product because of its drop-

in capabilities. This can be beneficial because drop-in chemicals have identical chemical 

formulas and structures to the chemical already in place and are of decreased technical risk to 

develop. In contrast, chemicals known as functional replacements are molecules that offer 

similar properties as the current market chemical but do not have an identical structure. An 

example of a functional replacement would be NatureWorks™ poly-lactide molecule, which can 

be made into plastic utensils capable of replacing polystyrene utensils, but slight differences in 

properties will exist between the polymers because of the different monomer base for the 

polymers.  
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As a translational research facility, improving methods for evaluating the economics of 

new chemicals via this combined fermentative-catalytic route is a necessity. Initial design will 

attempt to develop a model for evaluating sorbic acid via this combined fermentative-catalytic 

route. The nature of translational research inherently limits the amount of available data for 

estimating process economics, and the main platform for evaluating the economics will be based 

in Microsoft Excel® to meet the desired qualities in this evaluation tool. Using Excel will make 

the evaluation tool useful to an extremely wide customer base because of the plethora of 

computers running various versions of Microsoft Excel®. The ideal model will offer ease of use, 

transparency, and accuracy. While a programming language known as Visual BASIC for 

Applications (VBA) does exist within the Microsoft framework, VBA can limit the transparency, 

and many operations can be executed without the need for VBA. For this reason VBA was 

intentionally avoided in the model. This decision also resulted in a model that provides 

instantaneous feedback as inputs are changed in the cell.  

A tool that evaluates the CBiRC sorbic acid process would provide insight into the future 

economics of bio-based chemicals, but the knowledge provided would be limited to that of a 

single process. Under this presumption, new spreadsheets or process flow diagrams would have 

to be created for each new process design and operate under their respective guised assumptions 

(Choi and Lee, 1997; Maiorella et al., 1984). While often times a TEA only examines a single 

new technology, considering process alternatives within the same framework can provide more 

insight into the process and economics of the product and feasibility. Due to the length of time 

required to conduct a TEA, considering process alternatives becomes difficult and cumbersome 

due to missing details and process know-how. By providing a single tool that can provide 

economic evaluations for multiple process designs, the model greatly reduces time to evaluation. 
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This tool could effectively act as a platform for future evaluations and be adapted as necessary 

using knowledge of the specific process in mind.  

A candidate for a tool as aforementioned would be bio-based styrene from Escherichia 

coli because of its early stage in development. Bio-based styrene has for the first time been 

successfully synthesized using a new metabolic pathway to produce this chemical that has 

previously only been produced from petroleum sources (McKenna and Nielsen, 2011). Styrene 

biosynthesis is currently limited by toxicity, but may have significant commercial implications. 

To be able to use the tool and quantify uncertainty in this pathway would display the potential of 

the tool for TEA and bio-based styrene.  

With advancements in the development of new industrial biotechnologies, development 

of new techniques for evaluating the feasibility of these advancements is vital. These new 

techniques should mesh with the level of currently available data while building on previous 

industrial know-how. The ability to integrate these two items will allow better evaluation of new 

opportunities within this burgeoning technological space.  

Objectives	
  

The research objectives for this thesis were: 

² Develop a spreadsheet-based economic model for sorbic acid via the CBiRC process 

² Develop a general economic model for potential fermentation bioprocesses and validate 

between literature and current modeling techniques 

² Evaluate the potential of bio-based styrene as a future bulk chemical from biorenewable 

resources using previously developed tool 
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Thesis	
  Organization	
  

 This thesis contains a general introduction and literature review, three research articles, 

and a general conclusion. The introduction contains a general overview of the field of industrial 

technology, the objectives for this thesis, and the author’s role in each paper.  

 For consistency and simplicity, all papers in this thesis use a citation style and 

subheadings appropriate to the flagship journal of the ASABE professional society; at the time of 

submission, each will be adjusted accordingly to the formatting requirements of the target 

journal. The first paper, A Coarse Technoeconomic Model of a Combined Fermentation-

Catalysis Route to Sorbic Acid, is available as a meeting paper from the 2012 ASABE 

International Meeting. This paper examined and evaluated the overall complexity of approaching 

a commercially-viable bio-based sorbic acid process. The second paper, Development of a 

Biorenewables Process Evaluation Tool: BioPET, works through the development of an early-

stage cost estimation tool for bio-based chemicals. The new tool, BioPET, is then validated 

against another commercial tool and literature values. The target journal for this paper is 

Biofuels, Bioproducts & Biorefining. The third paper, Techno-economic Evaluation of Bio-Based 

Styrene from Escherichia coli, is targeted to The Journal of Industrial Microbiology, and focuses 

on an early-stage TEA of bio-based styrene. This paper examines the uncertainty in production 

of styrene using commercial-scale biokinetic parameters and the economic feasibility and 

potential pitfalls of this new technology.  

Author’s	
  Role	
  

 The primary author under advisement of the co-authors composed all of the papers 

presented in this thesis. The spreadsheets and tools were also developed by the primary author 
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under guidance from the major professor. The major professor suggested the approach of 

building a coarse TEA tool, and provided detailed editing of each of the manuscripts. 
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CHAPTER 2: A COARSE TECHNOECONOMIC MODEL OF A 

COMBINED FERMENTATION-CATALYSIS ROUTE TO SORBIC ACID 

Introduction 

As petroleum continues to rise in price, bulk chemical production from biorenewable 

feedstocks becomes increasingly attractive. While bulk chemicals use less than 5% of a barrel of 

oil, they generate nearly 50% of the economic activity resulting from refining that barrel. This 

creates potential for the derivation of chemicals from biomass on an economic basis with greater 

ease than fuel because of the greater profit margin per unit, and because the total demand for 

carbon for chemicals is much lower than that for fuel. While the investigation for chemicals from 

biomass is nothing new (Cysewski and Wilke, 1978; Maiorella et al., 1984), new tools for 

improving biocatalysts have been steadily developed. These new tools (Jones and Kompala, 

1999; Nevoigt, 2008) that serve metabolic engineers can enable rapid advancements in our 

knowledge base and a few (de Wit et al., 2010) have sought to predict where current research 

exists along the learning curve to a mature technology. Yet, little information exists regarding the 

production cost of bulk chemicals via these novel routes. While several projects have looked into 

the overall market potential of these biocatalyst-produced chemicals (Patel, 2006; Werpy and 

Petersen, 2004), the scope of the studies has been limited to chemicals that can be produced via 

biocatalysts only; no chemical catalysis step has been needed to bring these to market. 

Additionally, some scoping has been done on the direct catalysis of fructose to chemicals (Kazi 

et al., 2011), but it does not take advantage of producing upgraded intermediates from 

biocatalysis.  
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 Recent technoeconomic work has focused on the short-term development of these 

chemicals, and on fuels (Jun et al., 2007; Song and Lee, 2006; Van Wegen et al., 1998), but there 

has been limited focus on single-site (Delhomme et al., 2009) or “one-pot”(Marr and Liu, 2011) 

processes where chemical upgrading of these products occurs at the same plant as the production 

of the intermediate. While the “one-pot” process focuses more on commodity chemicals rather 

than on bulk chemicals, the principles remain the same. The “one-pot” approach of combining 

biocatalysis and chemical catalysis into a single plant design can realize significant benefits over 

multiple unit operations both economically and from a lifecycle point of view. While the 

lifecycle analysis (LCA) must still be evaluated independently for each process, the Economic-

Input-Output LCA (EIO-LCA) developed at Carnegie-Mellon University suggests that, in 

general, cheaper processes imply lower impacts (especially when changes in cost stay within the 

same sector – as with purchasing a smaller fermentation tank). The process uncertainties in the 

nascent industrial biotechnology sector likely present greater uncertainty than the EIO-LCA 

itself, so another reason to develop a coarse techno-economic assessment (TEA) of a sequential 

biological-chemical process is to help serve as a marker for economic and renewability 

improvements in the developing industry.  

 As with most economic ventures in the chemical industry, a first-pass, or coarse 

assessment, is needed to assess viability and identify limiting steps in the process, thereby 

guiding the development process. Researchers within the NSF Engineering Research Center for 

Biorenewable Chemicals (CBiRC) have identified and bench-validated several potential end-

products from a sequential process train after examining plausible paths and connections 

between biologically producible compounds and chemical catalysis. One such product is sorbic 

acid, on which this coarse economic model is focused. Current sorbic acid production involves 
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the use of petrochemical feedstocks to produce a combination of sorbic acid and sorbate salts 

that both serve as anti-microbial agents in the food industry (Bohnet, 2003). Results from the 

coarse model are benchmarked against commercial sorbic acid prices of approximately   

$4.50kg-1, the commercial prices resulting from a process that utilizes ketene generation to 

polymer formation (Dorko et al., 2000). 

Materials	
  and	
  Methods	
  

 The model developed for the purpose of evaluating the sequential sorbic acid production 

train incorporates key parameters from laboratory studies, such as yield, titer, selectivity, and 

conversion. These inputs fixed the parameterization of the model around which assumptions and 

best design practices were implemented to characterize the entire process. The model evaluates 

sorbic acid production in an optimistic manner for the purposes of providing insights into key 

bottleneck in the proposed process. In so doing, the model may provide early-stage feedback to 

guide future research and design of this process. No final purification process exists for sorbic 

acid for this potential route, but many have been speculated. Specifically, the butyl sorbate that 

comes from the catalysis step must be hydrolyzed and purified, but the design and economic 

evaluation of this stage is extremely difficult as no lab data exists. While hydrolysis remains a 

trivial step, by simple addition of water to push the equilibrium between the ester and the acid 

towards the acid, the sorbic acid partitions to the organic solvent (Dharmadhikari, 1992). To 

move the sorbic acid to the aqueous solution, salts have been used (Hans Fernholz, 1973) to 

increase crystallization efficiency. These final purification steps create a distillate stream 

containing water and n-butanol (hereafter referred to just as butanol), hydrolysis streams 

containing water with salts, butanol, and product, and eventually a product stream along with a 

wastewater stream. For cost estimation, the butanol lost to the butyl sorbate is non-trivial because 
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sorbic acid binds at a 1:1 molar ratio, and recovery of this butanol must occur via a recovery and 

recycle loop to be economically viable. Butanol can be recovered from water through 

decantation assuming that no catalysis steps are inhibited by butanol saturated with water; 

however with the presence of salts, separation is no longer trivial. Salts possess the ability to foul 

the catalyst, which cannot be overlooked in the design process. Overall uncertainty exists 

regarding purification techniques, catalyst fouling, and solvent choice, but these issues were not 

considered in detail in this work. 

Processes 

Fermentation	
  
 The process initiates with the microbial conversion of D-glucose to 4-Hydroxy-6-methyl-

2-pyrone but is commonly and hereafter referred to as triacetic acid lactone, or TAL. We 

assumed that a strain of S. cerevisiae would be used as a biocatalyst, and that it would be realistic 

for such an organism to achieve a productivity, titer, and yield of 0.02 g·L-1·hr-1, 1.0 g·L-1, 0.10 

gTAL·gglucose. Due to the organism’s growth requirements, the media utilized is YEP complex 

media, although improvements are expected to reduce these requirements (DaSilva personal 

communication). 

Separation	
  
While separation has not been studied extensively, bench-scale separations have been 

conducted so that biologically-produced TAL can be subjected to subsequent catalysis (Dumesic 

personal communication). The bench methods used two adsorption columns to recover TAL and 

remove impurities from spent fermentation broth. While uncertainties exist regarding the full-

scale implementation of extraction and separation methods, bench-scale proof of concept has 

been achieved. 
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Catalysis-­‐Hydrogenation	
  &	
  Solid	
  Acid	
  	
  
         As with separations, details of the methods and current performance of the multi-stage 

catalyst system will not be presented here because of pending peer-reviewed publications. 

Current studies are investigating multiple catalysts to improve rate, selectivity, conversion, and 

non-fouling surfaces that present opportunities for significant economic and process 

improvements (Dumesic, personal communication).   

Purification	
  
 As of this writing, no product has yet been purified, nor has the product sorbic acid been 

created. The butyl sorbate must be hydrolyzed, but upon hydrolysis, the sorbic acid remains 

primarily in the organic phase. A likely solution to this will incorporate distillation prior to 

hydrolysis and then exploit the temperature dependent solubility of sorbic acid in aqueous 

solution. Distillation of butyl sorbate in butanol will produce butanol in the distillate and butyl 

sorbate in the bottoms. Further investigation of this in lab scale studies will provide greater 

insight to the purification process.  
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Model	
   	
  

 This model provided an estimate of, and insight into, the production cost of sorbic acid 

(reported on a $/kg basis) from TAL via the process illustrated in Figure 1. To construct the 

process flow sheet Figure 1, the process assumed that fermentation is the first step in which TAL 

is synthesized. The broth from fermentation then undergoes a solids separation prior to loading 

into the adsorption columns. In the first column, the product is adsorbed and the remaining broth 

and constituents are sent to wastewater. The product is then desorbed into butanol, after which 

the butanol/TAL mixture flows through the second adsorption column for amino acid removal 

prior to catalysis. In catalysis, the solution flows through a hydrogenation reactor where TAL 

reacts to form HMTP. The butanol/HMTP mixture then enters two stages of solid acid catalysis 

where HMTP undergoes a condensation reaction and then a ring opening at a higher temperature, 

Figure 1: Simplified process diagram for proposed sorbic acid process and associated mass 
flows. Red lettering indicates mass flows leaving the system. 
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resulting in butyl sorbate. Prior to the final transformation into sorbic acid, the butanol solvent 

must be removed. To remove the butanol, distillation is employed to exploit the large relative 

volatility between the solvent and solute molecules, with the butyl sorbate being the bottoms 

stream. The butyl sorbate is then mixed with water to achieve hydrolysis to sorbic acid. Due to 

its temperature-dependent solubility in water, sorbic acid can be purified from the aqueous 

solution by a crystallization step involving chilling the solution to ambient temperature with no 

use of refrigerants. The resulting sorbic acid crystals will then be dried and packaged. A great 

deal of uncertainty is associated with the purification steps following catalysis, as no lab studies 

have been conducted on this process, and this portion of the process is not modeled.  

 To approach the design, it was first determined that typical sizes of sorbic acid plants are 

presently in the range of 3,000 to 18,000 Mg per year. An annual production of 19,800 Mg per 

year (60,000 kg/day) was selected to constrain process flows, with this relatively large size 

chosen for the benefit of scale and to keep up with an anticipated market expansion due to sorbic 

acid outcompeting benzoic acid as a preservative used in food processing market. This annual 

flow rate was used to constrain the necessary design process to size components within the plant. 

To cost key unit operations, standard scaling laws were used, which correlate equipment cost to 

size (Peters et al., 2003) in Equation 1: 

C! =
  !!
!!
×C!!                                                                           (1) 

Where: 

 Cn = new cost for newly sized piece of equipment 

 Sn = new size of equipment 
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 So = size of equipment where previous cost data exists 

 Co = cost of equipment where previous data exists 

 n = empirically-derived cost exponent 

The two unit operations that utilize the exponent are the fermenters and the catalytic reactors 

which have exponents of 0.54 and 0.44 respectively (Peters et al., 2003).  

Other unit operations less critical to the economics have been approximated in step 

changes and have been chosen at indicative sizes relevant to the base-case scenario (i.e. largest 

size available). The model computed upstream flows working backward from the assumed 

annual productivity, via assumptions about yield at each major unit operation. Yields of minor 

unit operations, such as centrifuges and pumps, are assumed to be 100%. The overall approach in 

this model computed major equipment costs (i.e., price paid to the manufacturer of the piece of 

equipment) for each unit operation, then to convert the total cost of all these pieces of equipment 

into a total plant cost via a Lang factor (Peters et al., 2003) which accounts for factors such as 

labor costs for installation, engineering expenses and construction overhead, and auxiliary 

facility costs. This establishes a total cost of construction for a new plant, complete with all 

major and minor facilities, on previously undeveloped land. Alternative methods can account for 

individual installation factors or delineate how much of the capital is directed towards individual 

plant construction processes; The Lang factor is a simplified aggregate of all these individual 

processes.  
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Overall Operating and Economic Assumptions  

With capital costs computed as described above (i.e., determine total purchase cost of 

unit operations, convert to overall installed cost via Lang factor), total annual capital payments 

were computed assuming a 10 year, 10% internal rate of return. Overall plant operating time is 

needed to compute process flows, and annual operating hours and unscheduled downtime were 

assumed as shown in Table 2 below. Labor costs were estimated as a fraction of total capital 

invested (Table 1). While plant downtime and labor might be better estimated on the basis of 

single pieces of equipment (Peters et al., 2003), the uncertainty of the models inclusion of every 

piece of equipment, the actual operating hours for each piece of equipment, and amount of 

supervision required for each piece of equipment, was beyond the scope of this project.  

Table 1: Key Economic and Plant Performance Parameters 

Assumption Value Unit Source 
Internal Rate of Return (IRR) 10% yr-1 (Kazi et al., 2010) 
Operating Hours 7920 hrs (Choi and Lee, 1997) 
Unscheduled Downtime 1.1 hrtotal/hruptime (Van Wegen et al., 1998) 
Operating Labor 10% $ yr-1/$Capital (Peters et al., 2003) 
Lang Factor 3.0 $/$Capital (Qureshi and Blaschek, 2000) 

The operating-time parameters, along with annual production, guided the sizing of all the 

individual unit operations, thus providing baseline equipment costs, which were then converted 

into overall capital requirements as described previously. Overall capital requirements were then 

converted into annualized capital requirements via an amortization at the assumed IRR and 10-yr 

payout, while the labor factor in Table 1 was used to compute an annual labor cost. 

Fermentation 

 Fermentation was calculated using Equation 2. 
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!!" = !
!
  (2) 

Where: 

 t = fermentation titer (g/L) 

 v = production rate of product in fermentation (g/L/hr) 

Fermentation time was amended by a downtime percentage, to account for time required for 

removal of broth, sterilization, and filling of new media. Fermenter working volume was 

assumed to be 80% of the total vessel volume.  

The glucose loading per fermenter for the system was derived in Equation 3. 

!"#$%&' = !
!!"

  (3) 

Where:  

 Yps = yield of product on substrate (kgproduct/kgsubstrate)   

Although CO2 and cells production can be calculated, by-product economic value is not 

considered in this model. With fermentation producing the key intermediate necessary for all 

subsequent steps, the total number of annual batches was calculated using Equation 4. 

N! =
!!
!!"

 (4) 

Where: 

 Nb = number of annual batches produced 

 Nd = number of days of plant operation (days) 
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 tfm = total time to complete a fermentation batch (days) 

Knowing the number of batches run annually, the final titer (assumed previously), and the 

overall plant productivity, and correcting for any mass losses between fermentation and final 

product, the total working reactor volume was computed. Combining this with the maximum 

allowable fermenter working volume allowed computation of the required number of 

fermentation vessels. The cost of these vessels was found as described previously. Additional 

pieces of equipment such as stirring motors and compressors are sized according to Table 2 and 

the total capital cost associated with the entire fermentation step becomes the summation of all 

these expenses. 

Table 2: Fermentation Parameters 

Assumption Value Unit Source 
Corn Steep Liquor Inoculation 1% w/w (Rivas et al., 2004) 
Maximum Fermenter Volume 3785 m3 (Humbird et al., 2011) 
Usable Fermenter Volume 80% v/v (Cysewski and Wilke, 

1978) 
Downtime Between Batches 20% hr/hr (Castilho et al., 2000) 
Cell Mass Yield 0.5×(1− !!") gcells/gsubstrate (Patel, 2006) 
CO2 Mass Yield 0.5×(1− !!") gCO2/gsubstrate (Patel, 2006) 

Separation 

 As extensive lab data is not currently available on the adsorption process utilized for 

separation and the adsorption columns are similar to that of activated carbon, an activated carbon 

adsorption process was mimicked for a similar compound. The compound modeled was 

resorcinol as resorcinol is fairly closely related to TAL. Then from this extrapolation, modeling 

of the adsorption process can derive parameters from an activated carbon process using the 

Freundlich isotherm equation. 
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AR =   K! A !/! (5) 

Where:  

 AR = adsorption ratio (kg product adsorbed/ Mg adsorbent) 

 Kf = Freundlich coefficient 

 [A] = concentration of product in solution (kg/m3) 

 n = Freundlich exponent 

The absorption efficiency is then characterized by the exponential decay function that is then 

translated to a time needed to capture a certain amount of our product by solving the equation for 

adsorption duration: 

!" = τ×(1− θ)  (6) 

Where: 

 AD = adsorption duration 

  τ = adsorption time constant (hrs) 

 θ = the percent of product capture desired (%)  
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Table 3: Separation Parameters   

Assumption Value Unit Source 
Freundlich Constant (Kf) 34.83 kgTAL/Mgcarbon (Kumar et al., 2003) 
Freundlich Exponent (1/n) 0.23 dimensionless (Kumar et al., 2003) 
Adsorption Time Constant 16 hr-1 (Kumar et al., 2003) 
Apparent Density 0.977 Mg/m3 (Kumar et al., 2003) 
Max Column Size 628 m3 (Peters et al., 2003) 
Acetone Use 1% kgacetone/kgbutanol guess 

Significant uncertainty exists in this portion of the model, particularly in regard to the 

methionine content of the fermentation broth in a full-scale system, and these must be addressed 

in future feasibility studies as lab data becomes available. While both columns were modeled 

using data for resorcinol to mimic TAL, and the second column was exclusively for removal of 

methionine, this was our approximation of the process. Significant uncertainty exists in this 

portion of the model, particularly in regard to the methionine content of the fermentation broth in 

a full-scale system, and these must be addressed in future feasibility studies as lab data becomes 

available. 

Catalysis-­‐Hydrogenation	
  

 A concurrent plug flow reactor was assumed for the hydrogenation, similar to that used in 

glucose to sorbitol systems (James C. Chao, 1982). We assumed the capital and operating costs 

of this recovery loop to be negligible. Reactor size was computed by a combination of packing 

density, catalytic rate, and percent catalyst. Using the necessary volume of reactor to achieve a 

complete reaction, the volume was then translated to a large tube heat exchanger. Using an 

internal diameter of two inches and the max reactor size listed below, size and quantity of 

reactors could be determined per Equation 7 below: 
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×
!"!"#"$%&#
!!!"#!"#$

  (7) 

Table 4: Catalysis-Hydrogenation Parameters 

Assumption Value Unit Source 
Packing Density 400 kg/m3  (Merck, 2012) 
Max Reactor Size 1000 m2 (Peters et al., 2003) 

Catalysis-Solid Acid  

 For solid acid catalysis, plug flow reactors were assumed, operating at moderate 

temperatures (80 – 200°C). With the large flow of daily solvent and low solubility of TAL in the 

initial butanol, both of these steps were sized based on hydraulic limitations provided by the 

manufacturer. The catalytic reactors were modeled as heat exchangers consisting of two inch 

internal diameter tubes, and costs were computed accordingly. 

Table 5: Catalysis - Solid Acid Parameters 

Assumption Value Unit Source 
Liquid Hourly Space Volume (LHSV) 8 m3

liquid/m3
catalyst (Haas, 2005) 

Max Reactor Size 1000 m2 (Peters et al., 2003) 

Purification 

As little literature on butyl sorbate exists, the relative volatility for these two solutions 

was estimated by the boiling point method (Halvorsen and Skogestad, 2000). The resulting 

relative volatility is 13.4. The high relative volatility meant that a total of eight stages appeared 

to be optimal based upon basic distillation theory and MATLAB® code developed previously 

(Bequette, 1998). The resulting distillate was 99.91 mol/mol butanol, and the bottoms were 

5.19% mol/mol butanol. To reach this bottoms purity, a reboil equivalent to the initial molar flow 
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rate of butanol was used. The result of the optimal case presented here used a reboil of 5.3 

kmol/min.  

Table 6: Purification Parameters 

Assumption Value Unit Source 
Relative Volatility 13.4  (Halvorsen and Skogestad, 2000) 
Equilibrium Stages 8 HETP Calculated 

Operating Costs 

 Operating costs are volatile, being dependent on factors such as corn yields, oil prices, 

and other market demands for grain and biomass. Feedstock prices were gathered from ICIS and 

literature (Peters et al., 2003), and are listed in Table 7. 

Table 7: Prices of key process inputs 

Assumption Value Unit Source 
Glucose 0.34 $/kg  
Corn Steep Liquor 0.04 $/kg (Humbird et al., 2011) 
Water 5.3 $/1000kg (Peters et al., 2003) 
Acetone 1.39 $/kg ICIS 
Hydrogen 2.00 $/kg (Doty, 2004) 
Butanol 1.98 $/kg ICIS 
Process Steam (790 kPa) 4.4 $/1000kg (Peters et al., 2003) 
Electricity 0.06 $/kWh (Peters et al., 2003) 
Wastewater 5.3 $/1000kg (Peters et al., 2003) 

A sensitivity analysis was conducted for each case with a ±5% adjustment of every parameter 

(except for annual production) in the model. The results are reported in terms of percent change 

in minimum selling price (MSP), i.e., the sensitivity coefficients are reported for each of the 

parameters studied. 

 As the model aims to provide insight and early feedback, three scenarios were 

investigated to explore the impact of likely parameter changes and how the process economics 
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improved. The baseline scenario used estimates of readily attainable parameter values, while 

short-term and long-term scenarios examined process economics assuming medium and large 

(respectively) improvements in process parameters such as yield and catalyst life. The baseline 

scenario estimates how far current technology is from target economic viability, while the long-

term scenario illustrates how the process economics might look once industrially viable 

performance parameters have been achieved, and can provide feedback on current design 

decisions. The short-term scenario illustrates how small changes in key parameters can provide 

large gains in economic viability. This intermediate scenario is important because it has the 

potential to speak to pilot-scale plants and startup companies looking to make the last jump from 

the short-term to long-term values. The scenarios are listed below with changes from one 

scenario to the next being highlighted in yellow. 

 
Figure 2: Summary of scenarios investigated in this work showing key parameter values. 

Changes between scenarios are highlighted in yellow text. 
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Results 

 Results from each scenario were evaluated under three distinct sets of assumptions. In the 

non-ideal separation (NIS), non-ideal catalysis (NIC) case, the separation and catalysis yields 

were set to whatever value was used in the scenario. In the NIS & ideal catalysis (IC) case, 

catalysis yields were set to 100%. In the ideal separation (IS) and IC case, both separation and 

catalysis yields were set to 100%.  

Current Case 

In the current scenario, the largest portions of the cost come from fermentation and glucose. The 

difference between the NIS & NIC case and the IS &IC case illustrates the large cost of the yield 

losses in separation and catalysis. Figure 3 displays this descending trend from right to left in the 

various scenarios of ideal and non-ideal yields.  

Figure 3: Cost Distributions for Three Scenarios in the Current Case. IS = ideal separation, IC = 

ideal catalysis, NIS = non-ideal separation, NIC = non-ideal catalysis. See text for additional 

details. 
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Figure 4 provides a breakdown of the base cost into feedstock (glucose, fermentation, separation, 

and catalysis costs (each bar). Furthermore, each component cost is broken into the charges due 

to losses in fermentation (lowest segment of each bar), separation (middle segment of each bar), 

and catalysis (top segment of each bar). Figure 5 illustrates a trickledown effect, namely that as 

product is lost at each stage, not only does more product have to be made, but the entire scale of 

the project has to increase to account for such losses. Note that catalytic losses make up over 

50% of all costs in the current scenario. 

 
Figure 4: Respective distribution of costs due to yield losses out of fermentation, separation, and 

catalysis for the current case of sorbic acid 

The top 10 most sensitive parameters are listed in Figure 5. A majority of these parameters are 

associated with fermentation due to the high cost of fermentation in the current case. The second 

sensitivity analysis, Figure 6, sets out to examine how current inputs are affecting the model. The 

largest of these appearing to be parameters affecting yields in catalysis, and apparent similar 

values for terms in fermentation with a slight tendency toward titer.  
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Figure 5: Sensitivity coefficients for model parameters given a ±5% change for the current case 

of sorbic acid 

 

 
Figure 6: Sensitivity coefficients for model inputs given a ±5% change for the current case of 

sorbic acid 

Short-term Case 

 This case takes an aim at improved inputs for fermentation due to its previously high cost 

in the current case. Resultantly, fermentation costs are significantly diminished with the greatest 

costs arising out of the feedstock and separation. However due to only improvements in the life 
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of the catalyst improving in the catalysis steps, over 50% of the NIS and NIC scenario still arises 

out of the yield losses due to catalysis. Figure 8 illustrates how the magnitude of this effect can 

inhibit the economic feasibility of the process and that if this effect can be ignored; the MSP 

drops below $5kg-1.  

 
Figure 7: Cost Distributions for Three Scenarios in the Short-Term Case. IS = ideal separation, 

IC = ideal catalysis, NIS = non-ideal separation, NIC = non-ideal catalysis. See text for 

additional details. 

 
Figure 8: Respective distribution of costs due to yield losses out of fermentation, separation, and 

catalysis for the short-term case of sorbic acid 
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 The sensitivity analysis for this scenario is notably different than the one conducted for 

the current scenario. The greater costs came out of separation and glucose, of to which now the 

model attributes a greater sensitivity. The TAL molecule’s solubility in the solvent is critical in 

this scenario, and we also do not see as many of the key fermentation parameters as previously 

seen in the current scenario. Figure 10 continues this scheme as the yield losses in catalysis 

remain the most significant of the parameters followed by the yield of the product on glucose. 

Fermentation inputs have had a drastic shift, now more notably sensitive to yields on glucose 

than the productivity or titer 

 
Figure 9: Sensitivity coefficients for model parameters given a ±5% change for the short-term 

case of sorbic acid 
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Figure 10: Sensitivity coefficients for model inputs given a ±5% change for the short-term case 

of sorbic acid 

Long-term Case 

 With long term projections and following the sensitivity of our previous parameters, 

productivity was increased, titer was minimally increased, and yields were significantly 

increased in fermentation and catalysis. The lifespan of the catalyst was also increased for an all-

around improvement in catalysis. These increases are demonstrated by Figure 11 and the 

minimal change between NIS and NIC to IS and IC; the largest costs occurring in the catalysis of 

TAL. No longer do the yield losses due to catalysis make up greater than 50% of the base cost, 

but rather, the cost results from the baseline fermentation.  
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Figure 11: Cost Distributions for Three Scenarios in the Long-Term Case. IS = ideal separation, 

IC = ideal catalysis, NIS = non-ideal separation, NIC = non-ideal catalysis. See text for 

additional details. 

 
Figure 12: Respective distribution of costs due to yield losses out of fermentation, separation, 

and catalysis for the long-term case of sorbic acid 

 In the sensitivity analysis conducted for this case, costs are still arising mainly out of 

separation and therefore parameters regarding separation represent the greatest deal of 
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sensitivity. As productivity and titer have increased, their sensitivity is less than most of the top 

10 parameters for this case. The yields for fermentation and catalysis will continue to remain 

sensitive through all cases because of the trickledown effect through all stages. This also should 

help describe the rest of the parameters and their sensitivity as the rest of the parameters must be 

less sensitive than time constant for adsorption at ±0.14% change in MSP.  

 
Figure 13: Sensitivity coefficients for model parameters given a ±5% change for the long-term 

case of sorbic acid 

 
Figure 14: Sensitivity coefficients for model inputs given a ±5% change for the long-term case of 

sorbic acid 
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Discussion 

 With sorbic acid prices soaring at a maximum around $4.50 kg-1, this process becomes 

economically feasible in the long-term scenario with a best production price of $3.27 kg-1. This 

production price corresponds to the NIS, IC of the long-term scenario because the yield losses in 

catalysis can feasibly be recovered with continued research. Separation losses cannot actually be 

recovered because the design of adsorption columns using an isotherm requires knowledge about 

the desired amount of recovered product. Larger scale designs might incorporate breakthrough 

curves, but the limitation of knowledge around this subject prohibited that. With current lab-

scale results, the process is far from commercialization with yield losses more than doubling the 

scale of the entire process, fermentation producing minimal amounts of TAL, and extremely 

slow production of TAL in fermentation. Improvements to these fermentation parameters can 

drastically reduce the base price as seen in the short-term scenario providing a quick jump to 

numbers not as far off from commercial prices. The progression to the long-term case increases 

yields such that the base-case scenario arrives within the realm of viability. However, additional 

capital costs will be incurred to provide a final purification of this product which may add more 

costs, but the recovery of butanol from the molecule of butyl sorbate will also recognize 

significant savings.  

 The current scenario suffers from large capital costs due to low productivity from 

fermentation. As productivity metrics improve, the cost decreases in a non-linear fashion. As 

separation appears to stand out in the short and long-term scenarios, further examination of these 

steps might provide the biggest insight into future technoeconomics of the same and similar 

processes. While the model only takes into consideration replacement of the activated carbon 

adsorbent once per year, where it has been suggested that there might actually be a correlation 
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between number of times the carbon is regenerated and carbon loss (Narbaitz and Benedek, 

1983). Cost in catalysis can stand to be further examined but the costs are attributed to the 

production of butyl sorbate and less than $0.15 kg-1 are a result of reactors and catalysts. It has 

been examined though that the lifespan of the catalysts are vital to this. With a life of 1-year, the 

catalyst cost increases to near $0.50 kg-1. Ultimately another portion of significant cost is the use 

of acetone to wash and elute the amino acids off the columns. The amount of acetone use comes 

into question as the baseline cost in the long-term scenario is sensitive to its use and cost while 

very little data on the use of acetone exists. Further investigation of this process would benefit 

greatly from better understanding of activated carbon regeneration for the projection of long-

term prices.  

 As the process improves, the inputs do not linearly transform the price, but rather follow 

an exponentially decay curve to a minimum achievable price. This indicates that while these 

small changes in inputs cause large shifts in the cost from the base-case, large improvements 

from the long-term case will see very minimal improvement in the base cost. This kind of 

relationship also validates not examining further cases beyond the identified long-term as the 

exponential relationship will only make minimal improvements in the process. However, it 

should be noted that these continued improvements will continue to improve the economics of 

such an endeavor, but tradeoffs between the investment into the research and the resulting 

improvement of the process should then be evaluated.  

Conclusions 

 While final entry into the market will require overcoming some technological hurdles, 

this economic analysis suggests the potential feasibility of sorbic acid via TAL. Many 

uncertainties exist around this project, but the first pass analysis of this project presents the 
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plausibility of achieving MSP’s of less than $4 kg-1. One study on the economic feasibility of 

this process will not be enough to confirm the viability projected in this study. Further studies 

should not only target improving the process, but confirming values that present the most 

sensitivity in the long-term scenario to decrease the risk associated with building a new chemical 

plant. The recommendation would also iteratively conduct economic feasibility analysis as the 

project continues to make progress to take into account the economic volatility of many projects, 

and bring to light new insights developed between each of the iterations. Economic analysis is 

not a one-pass process, but rather a continuous process that must undergo continuous revision 

from research and this is the first pass analysis of a potential route to sorbic acid.  
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CHAPTER 3: DEVELOPMENT OF A BIORENEWABLES PROCESS 

EVALUATION TOOL: BIOPET 

Introduction	
   	
  

The creation of chemical plants for bio-based chemicals represents an opportunity to 

produce value-added products from sugars. These chemicals represent an attractive alternative to 

biofuels because of their higher market prices compared to biofuels. In 2004, Werpy and 

Petersen identified ten chemicals that presented the greatest short-term opportunity for bio-based 

chemical production in the U.S., spurring tremendous efforts to increase the economic viability 

of these bio-based chemicals (Hermann and Patel, 2007; Jun et al., 2007; Sánchez et al., 2005; 

Song and Lee, 2006; Werpy and Petersen, 2004). Aggressive research and development efforts 

have led to increasing productivities and yields for these chemicals, but little is known about the 

economics of producing these bio-based chemicals at commercial scale.  

Of the bio-based chemicals, ethanol provides a great segue to understanding the 

economics because of its large-scale deployment as a 1st-generation biofuel. Ethanol has been 

well studied with papers on topics ranging from process improvements, to technoeconomic 

analyses (TEAs), to life-cycle assessments, and can therefore provide a level of fundamental 

knowledge that may inform studies about future bio-based chemical opportunities (Kazi et al., 

2010; Kwiatkowski et al., 2006; Mangat et al., 2010; Michael et al., 2007). Robust TEA’s, in 

particular, have the ability to illuminate process bottlenecks and to clarify how process 

alternatives will impact the production costs. These TEA’s require extensive knowledge of 

process parameters and design details only available during the latter stages of a project after 
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many years of research have illuminated such facts. However, early-stage cost estimation is 

critical to helping companies and applied academic research centers chart a course through 

translational research and towards economic viability. 

As engineers develop and enhance our ability to convert sugar into chemicals via 

metabolic pathways (Nielsen, 2001), (Bozell and Petersen, 2010) or with novel hybrid 

fermentative-catalytic processes in advanced biorefineries (Nikolau et al., 2008); comprehensive 

and accurate data of these operations at significant scale will be years away. And yet, strong 

evidence regarding the economic viability of a particular chemical is needed early in the process 

to warrant investment of time and money. Using simplified estimations, one can provide an 

early-stage TEA. Strong TEA capabilities exist commercially in tools such as Aspen Economic 

Analyzer™ and Intelligen SuperPro Designer®, both of which provide estimations of capital and 

operating costs. These tools also require a level of detail that is typically unavailable at early 

stages in process evaluation. While preliminary cost evaluation methods have been outlined by 

several authors (Peters et al., 2003; Turton et al., 2010), we are unaware of any widely-available 

early-stage TEA model or tool for bio-based chemicals. To address this gap, we developed a 

spreadsheet-based model to provide early-stage TEAs of bio-based chemicals, named BioPET 

(Biorenewables Process Evaluation Tool). Key criteria used in the development of BioPET were 

ease of use and minimal data inputs for process evaluations. To operate the tool, users need a 

basic knowledge (or educated guesses) for each unit operation comprising their overall process 

design of interest. Once developed, BioPET was compared against SuperPro Designer® and 

results from the BREW project for a suite of three chemicals: ethanol, succinic acid, and adipic 

acid (Patel, 2006).  
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Methods	
   	
  

In keeping with the vision of the NSF Engineering Research Center for Biorenewable 

Chemicals (CBiRC), the model focuses on combined fermentative-catalytic processes by 

assuming a directly fermentable source regardless of initial feedstock that can accommodate any 

process described within the CBiRC area of research pictured in Figure 1.  

 
Figure 1: CBiRC’s focus in chemical commodity value chain 

 It is noteworthy that the model does not consider upstream processes such as starch 

hydrolysis or pretreatment and hydrolysis of lignocellulosic biomass – these were considered 

outside the scope of the model and the feedstock costs were considered as a lumped parameter to 

include the costs of the initial source and conversion technology. BioPET assumes the following 

carbon flow: fermentation, followed by a separation stage, followed by up to three catalytic 

processes, finishing with up to two purification stages. All stages can be toggled on and off to 

allow for process flexibility. Due to the inherent complexity of the separation, catalysis, and 

purification processes, an approach was taken to accommodate this complexity while allowing 



44 
 

 

for a relatively simple user interface: First, the separation and purification choices in BioPET are 

limited to a menu of 2 – 4 items as shown in Table 1. Second, BioPET incorporates multiple 

assumptions about each separation and catalytic unit operation that allow for minimal input from 

the user. Finally, BioPET only considers a stream consisting of a primary product and solvent. 

This binary system uses mass balance equations and relationships to characterize all steps post-

fermentation. 

Table 1: Separation and Purification Unit Operations 

Separation Primary Purification Secondary Purification 
Adsorption Adsorption Crystallization 
Distillation Crystallization Distillation 
In-Situ Distillation  
Liquid-Liquid Extraction Liquid-Liquid Extraction  

A list of the key inputs is listed in Table 2. Using these inputs, and the assumptions and 

equations described in the following sections, process cost estimations can be made.  

Table 2: Input Variables Necessary for Unit Operations 

Unit Operation Input Variable Input Variable Input Variable Input Variable 
Fermentation Productivity Titer Yield - 

Adsorption Freundlich 
Coefficient 

Freundlich 
Exponent 

Yield - 

Crystallization Mass Separation 
(Y/N) 

Purity Yield Separating 
Agent Use 

Distillation Relative Volatility Purity Yield - 
Liquid-Liquid  Distribution 

Coefficient 
Fraction in 

Extract 
Yield - 

Catalysis Solid Acid/Base Selectivity Conversion Commercial 
Resin 

Hydrogenation Ni-Raney 
Platinum 
Palladium 

Unless otherwise specified, a standard scale-factor approach, as embodied in Equation 1 

(Peters et al., 2003), was used to adjust capital costs based on unit operation size.  
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C! =
  !!
!!
×C!! (1) 

Where: 

 Cn = new cost for newly sized piece of equipment 

 Sn = new size of equipment 

 So = size of equipment where previous cost data exists 

 Co = cost of equipment where previous data exists 

 n = empirically-derived cost exponent 

Individual exponents are listed for each component (Peters et al., 2003) in the following sections, 

and all materials of construction are assumed to be stainless steel grade 304 to account for the 

reactivity of biological molecules.  

Fermentation	
  

Using productivity, titer, and yield, BioPET computes baseline fermentation time and 

sugar demand. The baseline fermentation time is then increased by 20% to account for downtime 

needed for vessel emptying, cleaning, and refilling. The required fermentation volume is 

computed based on the required mass flow of product and on the downtime-corrected 

productivity. The number of equal-volume fermenters necessary is then calculated; each primary 

fermenter is also associated with a seed fermenter having a volume that is 10% of the primary 

fermenter.  

 



46 
 

 

Table 3: Fermenter Assumptions 

Maximum Size 3785 m3 (Humbird et al., 2011) 
Usable Percentage 80% m3 

used/ m3
purchased (Cysewski and Wilke, 

1978) 
Capital cost of 757 m3 Vessel 590,000 $ (Humbird et al., 2011) 

Cost Exponent 0.54 Dimensionless (Humbird et al., 2011) 
Downtime 20% Downtime/Uptime (Castilho et al., 2000) 

Following the series of Equations 2-5, the number of fermenters and their respective size can be 

calculated.  

V!" = !!
!!" !"!" !! !"

 (2) 

Where: 

Vfm = annual volume of fermentation media (m3)  

mT = annual production of fermentation product (kg) 

cfm = final titer of fermentation product (kg/m3) 

FVfm = useable fraction of fermenter volume (dimensionless, purchased volume/usable 

volume) 

ηT = mass conversion efficiency (dimensionless, kg final prod./kg fermentation prod.) 

MR = mass ratio (dimensionless, molecular weight of final product/molecular weight of 

molecule produced in fermentation)  

N! =
!!
!!"

 (3) 

Where: 
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 Nb = number of annual batches produced 

 Nd = number of days of plant operation (days) 

 tfm = total time to complete a fermentation batch (days) 

N!" = Round  Up !!"
!!  ×  !!"#

 (4) 

Where: 

 Nfm = number of fermenters required 

 Vmax = maximum attainable volume in a purchased fermenter (m3) 

S!" =    !!"
!!  ×  !!

 (5) 

Where: 

Sfm = equally-sized volume of the fermenters (m3) 

The media sugar requirement is back-calculated using the input titers and predicted yield. 

Additional nutrients are supplied in the form of corn steep liquor, a common supplement for 

various micronutrients, and are added at a rate of 1% w/w.  

Centrifugation	
  

The model includes a centrifugation stage immediately downstream of fermentation to 

account for removal of cell mass from the broth, which cannot be deselected. All feedstock that 

does not end up in the final fermentation product is assumed to be converted into cell mass and 

metabolic by-products that are then combined into a single stream and separated out. 
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Centrifugation energy requirements and size are approximated for a disc-stack centrifuge using 

Table 4.  

Table 4: Centrifuge Assumptions 

Volumetric Energy Requirement 1.2 kWh/m3
throughput  (Peters et al., 2003) 

Maximum Centrifuge Size 400 kW (Peters et al., 2003) 
75.5 kW Centrifuge 140,400 $ (Peters et al., 2003) 

Cost Exponent 0.67 Dimensionless (Peters et al., 2003) 

N! =   
!"!"  ×  !!"

!!
  ×   !"!

!!
 (6) 

Where: 

 Nc = number of centrifuges  

 td = fermentation downtime (hrs, time used for cleaning and refilling) 

 VEc = Centrifuge volumetric energy requirement (kWh/m3 fermentation liquid) 

 Vm = Maximum attainable size of a centrifuge 

Adsorption	
  

Adsorption is typically used to remove dilute contaminants or products from a stream – 

and large-scale adsorption is primarily focused on pollutant removal rather than product 

recovery. When increasingly large adsorption column volumes are needed, we assumed they are 

achieved by adding multiple additional units, not by simply making a single unit larger. The 

number of columns computed in BioPET is done so with non-integer results allowed (e.g., a 

plant could have 8.6 columns). 
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Table 5: Adsorption Assumptions 

Time Constant 16 hrs-1 (Kumar et al., 2003) 
Apparent Density of Adsorbent 0.977 Mg/m3 (Kumar et al., 2003) 

Maximum Size of Column 628 m3 (Peters et al., 2003) 
628 m3 Column 109,200 $ (Peters et al., 2003) 

While exotic resins can be used for adsorption systems, at large scale and high 

throughput, their upfront costs may not exceed their benefits. Activated carbon is frequently used 

in large-scale adsorption systems; the cost of the adsorbent in the model therefore follows that of 

activated carbon with a cost of $1.00/kg. To calculate the quantity of adsorbent required, 

Equations 7-8 are used. 

AR =   K! A !/! (7) 

Where:  

 AR = adsorption ratio (kg product adsorbed/ Mg adsorbent) 

 Kf = Freundlich coefficient 

 [A] = concentration of product in solution (kg/m3) 

 n = Freundlich exponent 

NA=  
! !!  ×   !" !!!!   ×  !!  

YA × AR × !!
 (8)  

Where:  

 NA = adsorbent needed (Mg) 

 !! = adsorption time constant (hrs-1) 
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 YA = adsorption yield 

 mp = mass of product per batch (kg) 

Adsorption columns use various techniques to provide separation such as size, charge, and 

specialized ligands. A majority of these techniques requires adsorbent regeneration or cleaning 

similar to that of activated carbon and commercial resins (Haas, 2008). As this regenerating 

solution imparts activity back to the adsorbent, the solution is considered to be consumed 

annually at a rate of twice the sum of the volume of all adsorption columns.  

Crystallization	
  

Crystallization is a viable separation technique for several of the compounds evaluated by 

both the BREW project and the United States Department of Energy, and potentially many more 

bio-based chemicals (Patel, 2006; Werpy and Petersen, 2004). Several techniques in particular 

exist for producing crystals from their respective solution. Two of these techniques rely on steam 

for cooling or evaporation of the solvent to generate a saturated solution from whence the 

crystals can then be separated. Another method relies on the addition of a mass-separating agent 

to the solution to precipitate the crystal of interest out. This method utilizes less energy but often 

produces a secondary product at the expense of the mass-separating agent. Crystallizers come in 

such drastically different configurations to provide different levels of separation based on 

product requirements that  often a highly specific crystallizer design must be implemented 

(Jones, 2002). As this highly specialized process does not easily lend itself to process design, an 

external forced circulation crystallizer was chosen as an optimistic choice because of its ability to 

run continuously and at a high production rate, typically between 5000 kg hr-1 and 50,000 kg hr-1 

(Walas, 1990). The cost of external forced circulation crystallizers follows Equation 9.  
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$! = 4! !.!"!!.!"#$ !"!!.!"#$ !"! !  (Walas, 1990) (9) 

Where:  

 $c = cost of crystallizer 

 X = flow rate of crystals (klb hr-1) 

Table 6: Crystallization Assumptions 

Maximum Crystallizer Size 50,000 kg hr-1 (Walas, 1990) 
 Dryer 408 kgproduct/hr 158,000 $ (Genskow, 2008) 

Increase in Dryer Cost/kgproduct 112 $ kg-1 Unpublished Analysis 
kgsteam/kgproduct 2/4 kg kg-1  

While crystallization can produce very pure products, often the crystals must still be purified 

from the solvent. Dryers are required to finish separation and purification of the product. An 

examination of dryers from Perry’s Chemical Engineering Handbook (Genskow, 2008) provided 

a cost and a linear relationship (data not shown) between crystal production and cost of 112 

$/kgproduction. The steam requirements were set to 2 kgsteam/kgproduct for a process using 

precipitation and 4 kgsteam/kgproduct for temperature-sensitive crystallization. These values were 

multiplied by the inverse of the purity of the crystallization step to obtain annual steam 

requirements.  

Distillation	
  

Distillation represents a well-characterized process unit operation within chemical 

engineering and can be estimated using the Fenske-Underwood sizing calculations as represented 

by Equation 10 (Peters et al., 2003). Fenske-Underwood assumes a constant relative volatility to 

construct the necessary number of equilibrium stages. Using Table 7 for costs and combining it 

with Equations 10 - 11, a distillation tower cost can be calculated.  
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Table 7: Distillation Assumptions 

Murphee’s Tray Efficiency 50% Dimensionless  
Distance Between Trays 0.5 m  

Maximum Column Height 55 m  
10m Column 195,000 $  

Cost Exponent 0.62 Dimensionless  
Sieve Tray Cost 3900 $  

Tray Multiplier 

1.25 <30 Trays  
0.98 30≤n≤60 

Trays 
 

0.97 >60 Trays  

N!"# =
!"#  

!!
!!

!!
!!

!"# !
 (10) 

Where:  

 Nmin = minimum number of stages 

 Xb = fraction of product in the bottoms 

 Xd = fraction of product in distillate 

 Yb = fraction of solute in bottoms 

 Yd = fraction of solute in distillate 

 α = relative volatility of product and distillate 

N!"#$!% =
!!"#
!!"#$

 (11) 

Where: 

 Nactual = actual number of sieve trays required 

 !!"#$ = Murphee tray efficiency 
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While these equations can be used to predict the tower capital costs, these equations cannot 

account for the energy requirements of the condenser and reboilers. Nor can condensers and 

reboilers be sized without further process details. It can be theorized that the annual cost of steam 

ranges from 137% to 191% the amortized cost of the column (Kookos, 2003). A value of 150% 

was chosen for BioPET. The capital cost of the heat exchanger can be approximated similarly as 

approximately 100% of the capital cost of the column bare module (Kookos, 2003).  

Liquid-­‐Liquid	
  Extraction	
  

Liquid-liquid extraction represents a separation method  applicable to potential 

fermentation products such as succinic acid (Kurzrock and Weuster-Botz, 2010). Utilizing the 

Kremser assumptions and the necessary inputs as listed in Table 8, a calculation using Equations 

12 and 13 (Albright, 2009) can calculate the necessary sizing requirement of an extraction 

column.  

Table 8: Liquid-Liquid Extraction Assumptions 

Murphee’s Tray Efficiency 10% Dimensionless  
Distance Between Stages 0.5 m  

Maximum Column Height 55 m  
10m Column 195,000 $  

Cost Exponent 0.62 Dimensionless  
Sieve Tray Cost 3900 $  

Tray Multiplier 
1.25 <30 Trays  
0.98 30≤n≤60 Trays  
0.97 >60 Trays  

E! =
!!"!
!

 (12) 

Where:  

 Ee = extraction factor 
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 KDi = distribution coefficient of the product in its respective solvent 

 E = extract flow rate 

 R = raffinate flow rate 

N!"# =
!" !!!!!!!

!!
!"!!

− 1 (13) 

Where:  

 ϕ! = fraction of product not extracted 

After the extraction column has been sized, it is then adjusted using an efficiency calculation as 

described by Equation 11.  

Catalysis	
  

The chemical reaction pathways for bio-based chemicals are typically more temperature-

sensitive than those of petrochemical pathways (Chia et al., 2012). This temperature sensitive 

property implies widespread use of isothermal packed-bed reactors for catalysis. To model these 

reactors, a large tube heat exchanger is used. A standard 2 in. tube was used so that the available 

internal packing volume was 102 m2/m3 of available heat exchange area. A solvent density of 

810 kg/m3, typical of many organic solvents, such as n-butanol, was applied if the separation step 

prior was adsorption; otherwise the solvent density was that of water. In the packing of catalytic 

reactors, several common catalysts were chosen for different types of reactions: hydrogenation, 

solid acid, and solid base. As solid acid and solid base catalysts are both resin-based, all 

associated properties were considered identical to one another. An analysis of Amberlyst™ 

catalysts of both solid acid and solid base was conducted and no significance in differences of 
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packing density or LHSV was discovered. A constant liquid-hourly-space-volume, LHSV, was 

assumed for all catalysts and packing density was varied by catalyst as follows: solid acid/base - 

719.5 kg/m3, 5% platinum - 810 kg/m3, 10% palladium - 400 kg/m3 –, 90% nickel/raney -1200 

kg/m3.  

Table 9: Catalysis Assumptions 

Solvent Density 810 kg/m3  
Bed Volumes (LHSV) 5.2 m3 

solution/ m3
resin Unpublished Analysis 

Percent Usable Reactor 70% Dimensionless  
Maximum Surface Area 1000 m2 (Peters et al., 2003) 

880 m2 Reactor 149,500 $ (Peters et al., 2003) 
Cost Exponent 0.44 Dimensionless (Peters et al., 2003) 

Cost	
  

Chemical plants incur two significant types of costs; capital and operating costs. Often 

operating expenses can dominate the total cost of production, such as utilities and feedstocks, 

accounting for greater than 75% of total manufacturing costs (Cysewski and Wilke, 1978). To 

account for these costs and other major pieces of specific unit operations, such as the metal for a 

catalyst, a list of assumed costs is described in Table 10. These, while potentially 

overgeneralizing, provide a basis for evaluating tradeoffs of processes under identical 

assumptions.  
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Table 10: Cost of Key Materials and Supplies 

 $/kg 
Plant Utilities  
Water 0.00053 
Electricity* 0.06 
Wastewater 0.00053 
Steam 0.0044 
Fermentation  
Feedstock 0.15 
Corn Steep Liquor 0.2 
Separation  
Activated Carbon 1 
Commercial Resin 15 
Solvent 1 
Extractant 1 
Resin Regenerating Solution 0.3 
Catalysts  
Ni-Raney 40 
Platinum 50000 
Palladium 22600 
Commercial Resin 10 

 *Unit is $ kWh-1 

Model	
  Comparison:	
  Approach	
  

SuperPro Designer® is a chemical process simulation program capable of providing 

detailed information on process design. SuperPro was used as a benchmark for BioPET for 

evaluating BioPET’s performance. However, without knowing all the process details or knowing 

the source of feedstock, a simplified SuperPro model must be used. An existing ethanol plant 

model (Kwiatkowski et al., 2006) was used as comparison to the model displayed in Figure 2. 

These costs were distributed near identical with an increase in utilities cost of the simplified 

model due to the lack of heat integration and plant-wide pinch analysis. Pinch analysis has 

previously shown approximately 30% reduction in utilities, and accounting for this magnitude of 

savings appears to bring these values into proximity of one another (Kemp, 2007; Khan and 

Riverol, 2007). With simplified models being a modest representation of their detailed 
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counterparts, simplified models were then evaluated in SuperPro Designer® and compared to 

BioPET using the following chemicals: ethanol, succinic acid, and adipic acid.  

While SuperPro provides a level of comparison that is necessary for validation of a 

simulation tool, this provides limited validation of final product cost. To provide another 

benchmark for cost estimation, the BREW project was used in accordance with its assumptions 

to provide a cost-comparison of each product (Patel, 2006). This allows for all comparisons to be 

conducted both over a range of chemicals and fermentable sugar cost. BREW will measure the 

accuracy while SuperPro analyzes the precision, and between both they will provide a foundation 

for evaluating BioPET as an early-stage cost-estimation tool for biorenewable processes.  

Model	
  Comparison:	
  Ethanol	
  

Ethanol represents a well-studied process with corn ethanol representing a bulk of the 

studies and is often used in the fuels industry but can also see application in chemical synthesis 

(Cysewski and Wilke, 1978; Hamelinck et al., 2005; Maiorella et al., 1984). Ethanol is converted 

in a one-step fermentation process and then run into a series of distillation columns to provide 

pure ethanol as seen in Figure 2. The ethanol process designed is to produce 40 million gallons 

per year (MGY) with 5% denaturant to be added prior to the final product (Kwiatkowski et al., 

2006). The process takes an input of yeast, glucose, and water to the fermenter and is aerated at 

0.20 volumes of air per volume of liquid (at STD). This is converted into 100 g/L ethanol and 

yeast. The liquid is sent to a holding tank and then on through to a heater and the first of the 

distillation columns. Using a series of two columns to remove a majority of water, a molecular 

sieve removes the remaining water to content of <0.5% g/g. The ethanol is finally sent onto a 

holding tank to be blended with denaturant and sold.  
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Figure 2: SuperPro process flow diagram for ethanol 

BioPET uses a spreadsheet and effectively mimics basic process flow diagrams (PFDs). Basic 

inputs are required of the user as suggested in Table 2, and are described for the simulated 

ethanol scenario in Table 11.   

Table 11: BioPET Inputs – Ethanol 

Input Variable Value Source 
Production Size 40 MGY (119.1 KTA) (Kwiatkowski et al., 2006) 
Operating Days 330 days  
Internal Rate of Return 10%  
Plant Operating Life 10 years  
Mass Ratio 1  
Fermentation   
Productivity 2 g/L/hr  
Titer 100 g/L  
Yield 0.51 g/g Max. Theor. Yield 
Separation Distillation  
Relative Volatility 10 (Kwiatkowski et al., 2006) 
Purity 0.5 (Kwiatkowski et al., 2006) 
Yield 99.9% (Kwiatkowski et al., 2006) 
Catalysis A -> C N/A  
Primary Purification Distillation  
Relative Volatility 10  
Purity 0.95 Azeotropic Mixture 
Yield 99.9%  
Secondary Purification  N/A  
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Model	
  Comparison:	
  Succinic	
  Acid	
  

Succinic acid is considered to be a potential new source for polymeric material (Werpy 

and Petersen, 2004) and is in the process of being commercialized by several companies such as 

Myriant and BioAmber each of who is constructing bio-based succinic acid plants at present. 

Succinic acid represents many opportunities for chemical intermediates that serve bulk 

chemicals, food additives, and pharmaceuticals (Delhomme et al., 2009; Song and Lee, 2006). 

By re-engineering E. coli, the highest yields of succinic acid were obtained and approach 1.6 

mol/mol of succinic acid per mole glucose (Sánchez et al., 2006). While ethanol uses a Lang 

Factor of 3, more complex operations will consist of increased cost and a more conservative 

estimates of this might use a Lang Factor of 6 as was chosen for succinic acid (Peters et al., 

2003).  

The process shown in Figure 3, produces 63.5 g/L of succinate per batch at a production 

rate of 2.54 g L-1 hr-1 (Zhu et al., 2011) in fermentation. The broth is separated from the cells in a 

disc-stack centrifuge prior to adding sulfuric acid to precipitate calcium sulfate and making 

succinic acid (Fujita and Wada, 2011). While this process does produce a stream of non-product, 

current alternatives prove too energy intensive (Glassner and Datta, 1989). However the gypsum 

may have use in a variety of industries such as food preservation, concrete, and at sufficient 

purity biomedical applications (Aguilera and Karel, 1997; Aı̈tcin, 2000; Coetzee, 1980; Kurzrock 

and Weuster-Botz, 2010). To conduct this purification process, the initial gypsum is removed 

with the first crystallizer and disc-stack centrifuge followed by crystallization of succinic acid 

removal and drying. The crystal solution has inverse solubility relationships between calcium 

sulfate and succinic acid that constrains the temperatures and order of separation of these two 

chemicals (Fujita and Wada, 2011).  
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Figure 3: SuperPro process flow diagram for succinic acid 

 BioPET again uses inputs to mimic Figure 3, and these are shown in Table 12 for succinic acid. 

Of the key differences, BioPET does not include centrifugation steps for the each crystallizer 

process that can potentially underestimate the process economics.  

Table 12: BioPET Inputs – Succinic Acid 

Input Variable Value Source 
Production Size 15 KTA  
Operating Days 330 days  
Internal Rate of Return 10%  
Plant Operating Life 10 years  
Mass Ratio 1  
Fermentation   
Productivity 2.54 g/L/hr (Zhu et al., 2011) 
Titer 63.5 g/L (Zhu et al., 2011) 
Yield 1.049 g/g (Zhu et al., 2011) 
Separation N/A  
Catalysis A -> C N/A  
Primary Purification Crystallization  
Mass Separation 1 kg agent/kgproduct  
Purity 0.5 (Fujita and Wada, 2011) 
Yield 99% (Fujita and Wada, 2011) 
Secondary Purification Crystallization  
Energy Separation  (Fujita and Wada, 2011) 
Purity 0.5 (Fujita and Wada, 2011) 
Yield 99.9% (Fujita and Wada, 2011) 
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Model	
  Comparison:	
  Adipic	
  Acid	
  

Adipic acid is a valuable compound that represents a precursor to 6,6-nylon, a 

petrochemical that is steadily increasing in cost. It has been suggested that bio-production is 

expected to be cost-neutral with a crude oil price of approximately 40 $/bbl (Guzman, 2010). 

While limited data exists on microorganisms synthesizing cis-cis muconic acid, a precursor to 

adipic acid, fermentation values for productivity and titer were chosen in the range of prior 

chemicals. Conservative values are 2 g/L/hr and 40 g/L respectively. This titer is near optimistic 

values for the BREW project and experiences near ethanol-like productivity values (Patel, 2006). 

Cis-cis muconic acid yield was assumed to be 90% of theoretical maximum on a molar basis 

(Patel, 2006). From cis-cis muconic acid, hydrogenation has been demonstrated over a platinum 

catalyst to yield adipic acid (Draths and Frost, 1994). For purification of adipic acid from the 

catalyst effluent, exploitation of the temperature sensitivity of adipic acid was assumed to be the 

best method of separation (Musser, 2000). The assumed PFD is shown in Figure 4 and describes 

everything from fermentation, catalysis, to final purification.  

Figure 4: SuperPro process flow diagram for adipic acid 

BioPET is able to mimic Figure 4 with the inputs listed in Table 13 and is also able to 

account for the catalyst that is not directly accounted for in SuperPro without extra 
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programming. The mass ratio accounts for the increase in, or in other cases a decrease, mass 

added to the cis-cis muconic acid to convert it to adipic acid. The mass of adipic acid is 1.03 

times that of cis-cis muconic acid.  

Table 13: BioPET inputs – Adipic Acid 

Input Variable Value Source 
Production Size 15 KTA  
Operating Days 330 days  
Internal Rate of Return 10%  
Plant Operating Life 10 years  
Mass Ratio 1.0283  
Fermentation   
Productivity 2 g/L/hr  
Titer 40 g/L (Hermann and Patel, 2007) 
Yield .47 g/g (Patel, 2006) 
Separation N/A  
Catalysis A  Hydrogenation on 

Platinum 
(Draths and Frost, 1994) 

Selectivity 99% (Draths and Frost, 1994) 
Conversion 90% (Draths and Frost, 1994) 
Catalyst Life 5-years  
Primary Purification Crystallization  
Energy Separation   
Purity 0.5  
Yield 99.9%  

Ethanol	
  Comparison	
  

For overall cost, BioPET produced an ethanol production cost estimate within 1% of 

SuperPro Designer® under the same assumptions. The majority of the cost was a result of the 

feedstock for both models. The most significant differences were in the capital and utilities costs. 

Nutrients and labor were both within 5% of each other and appeared to produce adequate results.  
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Table 14: Comparison of SuperPro and BioPET output for ethanol production. 

Ethanol SuperPro BioPET Error Between 
Models (%) 

Item Value 
($/kg) 

% of total 
cost 

Value 
($/kg) 

% of total 
cost 

 

Feedstock 0.309 59% 0.297 57% 3.8% 
Capital + 
Overhead 

0.043 8% 0.147 28% 241.9% 

Nutrients 0.062 12% 0.035 7% 43.5% 
Labor 0.043 8% 0.024 5% 44.1% 
Utilities 0.065 12% 0.017 3% 73.8% 
Total 0.52 100% 0.52 100% 0.0% 

An additional benefit of BioPET was its ability to discretize costs according to the major steps 

within a process. The breakout of these costs is listed Table 15 and produces feedstock costs 

closer to 70%; similar to the described cost by Cyweski and Wilke (1978). The next major cost 

was the result of fermentation; which must account for fermenters, centrifuges, and 

micronutrients. Separation accounts for the least amount in the production of ethanol, but 

represents the largest amount of utilities consumed.   

Table 15: Ethanol Results: BioPET 

Ethanol Value 
($/kg) 

% 

Feedstock 0.36 69% 
Fermentation Cost 0.13 24% 
Separation Cost 0.04 7% 
Total 0.52 100% 
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Figure 5: Comparison of the economics between BioPET and SuperPro process models for 

ethanol 

Succinic	
  Acid	
  Comparison	
  

The BioPET analysis of succinic acid did not produce the same cost, but was within 1% 

of SuperPro estimates. Feedstock estimates were again near identical, with utilities and capital 

differing by less than 5%. The largest margin of difference was a result of the nutrient and 

separating agents and the costs of labor. The large labor costs from SuperPro arise out of the 

multiple separation steps, which are categorized as labor intensive.  

Table 16: Succinic Acid 

Succinic Acid SuperPro BioPET Error Between 
Models (%) 

Item Value 
($/kg) 

% Value 
($/kg) 

%  

Feedstock 0.141 12% 0.143 12% 1.4% 
Capital + Overhead 0.526 43% 0.463 38% 12.0% 
Nutrients + Separating Agents 0.169 14% 0.351 28% 107.7% 
Labor 0.281 23% 0.206 17% 26.7% 
Utilities 0.096 8% 0.061 5% 36.5% 
Total 1.21 100% 1.23 100% 1.7% 
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The BioPET breakout of costs placed minimal emphasis on the feedstock as a result of 

the large yield of succinic acid on glucose and carbon dioxide. The largest cost is a derivative of 

separating succinic acid in a two-step crystallization process, which in turn also incorporates the 

largest number of unit operations. Fermentation accounted for an almost equal percentage of 

final product cost as in ethanol.  

Table 17: Succinic Acid Results: BioPET 

Succinic Acid Value ($/kg) % 
Feedstock 0.17 14% 
Fermentation Cost 0.32 26% 
Separation Cost 0.74 60% 
Total 1.23 100% 

   

Figure 6: Comparison of the economics between BioPET and SuperPro process models for 

succinic acid 

Adipic	
  Acid	
  Comparison	
  

The comparisons in a more complex process that not only includes fermentation and 

separation but also catalysis produced the largest amount of variance between SuperPro and 
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BioPET. Feedstock, nutrients, and utilities all were within 5% of each other. Larger variations 

occurred in capital and overhead, labor, and catalyst costs. This process also had the largest 

discrepancy of cost to producing the main product. The costs are similar though and represent 

similar performance at an early-stage analysis.  

Table 18: Adipic Acid 

Adipic Acid SuperPro BioPET Error Between 
Models (%) 

Item Value 
($/kg) 

% Value 
($/kg) 

%  

Feedstock 0.379 28% 0.349 24% 7.9% 
Capital + Overhead 0.424 24% 0.501 35% 18.2% 
Nutrients 0.136 11% 0.088 6% 35.2% 
Labor 0.401 34% 0.155 11% 61.3% 
Utilities 0.045 3% 0.075 5% 66.7% 
Catalyst - - 0.276 19%  
Total 1.39 100% 1.44 100% 3.6% 

BioPET described a cost of adipic acid to be nearly evenly split between feedstock, 

fermentation, separation, and catalyst cost. Fermentation produced a 26% of final product cost 

again. The separation represents a decreased portion of the cost with fewer unit operations 

selected within BioPET. Catalyst costs, while the most uncertain due to the minimal input to 

BioPET, represented a significant portion of the final cost.  

Table 19: Adipic Acid Results: BioPET 

Adipic Acid Value ($/kg) % 
Feedstock 0.42 29% 
Fermentation Cost 0.38 26% 
Separation Cost 0.24 17% 
Catalysis Cost 0.40 28% 
Total 1.44 100% 
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Figure 7: Comparison of the economics between BioPET and SuperPro process models for 

adipic acid 

Discussion	
  

BioPET vs. SuperPro 

 
Figure 8: Regression of predicted selling price for ethanol, succinic acid, and adipic acid for 

BioPET and SuperPro Designer® modeling tools (SuperPro error bars, +25/-15%; BioPET error 

bars, +35/-20%) 
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Examining the final production cost of each product and the expected ranges of 

uncertainty in product cost, Figure 8 illustrates how preliminary cost estimation can afford a 

reasonable prediction of cost at early-stages in process development. These error bars are often 

within the realm of expected uncertainty as processes begin their progress towards 

commercialization and will gradually narrow as more detailed information is acquired.  

The largest source of error tended to be in operating expenses as opposed to fixed costs 

which can be expected as operating expenditures tend to have a larger impact on final cost due to 

the annual occurrence versus the one-time expenditure that is amortized. Another portion that is 

difficult to account for is the rapid automation that can be seen by much of the petrochemical 

industry that would result in decreased labor cost with minimal increases in fixed costs. 

However, to account for automation would require industrial survey and may potentially provide 

labor, albeit maybe more accurate, but not representative of any commercial modeling program 

available.  

The major benefit of a tool such as BioPET is the ability to generalize bioprocessing for 

future bio-based products and biorefinery innovations with instantaneous feedback. This model 

may only consider one product stream and no feedstock conversion, but may see future 

adaptations to address this. A multiple-product biorefinery is not a business model that has been 

adopted yet, but could potentially lead to more economically feasible production of biofuels with 

value-added products such as petrochemical drop-in chemicals.  

Conducting a sensitivity analysis on the production size of the facility modeled in 

BioPET as well as the feedstock cost produced fairly linear relationships due to the linear nature 

of the majority of the model. The sensitivity of production size shown in Figure 9, appears in line 
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with published data (Gallagher et al., 2005) with an overall plant exponent for ethanol of 0.83. 

The other processes appear to reach a minimum and then experience a cost that fluctuates more 

as a result of the construction of BioPET rather than scale. This may describe a process that is 

more attached to equipment and overhead than the extremely feedstock dependent process of 

ethanol. Fitting trendlines through the data in Figure 9 using a power law produced poor fitting 

equations (R2<0.7) for the non-ethanol processes whereas ethanol approached an R2 of 0.94.  

Figure 9: Sensitivity of production capacity to selling price for ethanol, succinic acid, and adipic 

acid using the BioPET tool 

Figure 10 depicts the sensitivity to feedstock cost from BioPET with succinic acid being 

the least sensitive. This is a result of a higher yield of the product on glucose than the other 

processes and appears in accord with predictions about costs (Guzman, 2010). This also shows 

the power of a preliminary estimation of product cost to provide a range of costs and ballpark a 

sensitivity to key parameters such a feedstock cost.  
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Figure 10: Sensitivity of feedstock cost for ethanol, succinic acid, and adipic acid using the 

BioPET tool 

BioPET vs. BREW Project 

The accuracy of the BREW project can provide a certain level of validation of the 

accuracy of BioPET. While exacts results should not be expected as is seen in many other 

TEA’s, a general trend should at least be visible considering the likeness of the studies. The 

greatest difference between the cost estimated by the BREW project and the cost estimated by 

BioPET was the ethanol process. This is most likely due to the lack of extra processing of co-

products that often accompanies ethanol processing which is supported by the consistent 

difference between the two costs across all ranges of fermentable sugar cost. Succinic acid has 

near identical estimations to the BREW project, while adipic acid approached BREW estimates 

at higher levels of feedstock cost. BioPET predicts adipic acid may be more sensitive to 

feedstock costs than that of the BREW project analyses.  
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Figure 11: Sensitivity of BioPET and BREW project models to different purchase prices of 

fermentable sugars for ethanol.  

Figure 12: Sensitivity of BioPET and BREW project models to different purchase prices of 

fermentable sugars for succinic acid.  
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Figure 13: Sensitivity of BioPET and BREW project models to different purchase prices of 

fermentable sugars for adipic acid. 

Conclusion	
  

A new tool for preliminary cost estimation has been developed and tested against 

modeling software and published results of previous cost-estimations for these processes. The 

results displayed a tool capable of predicting feedstock and capital cost near identical to 

programs such as SuperPro Designer®. While incapable of replacing a program such as SuperPro 

Designer® due to the level of detail that a modeling program as such can produce, the value of 

preliminary models for early-stage process development has been shown. BioPET has also been 

shown to produce results within the range of previous studies helping further validate this 

technique. To improve further preliminary estimations of bio-based products, it would be a 

valuable tool to add in items such as a feedstock decisions and an integrated life-cycle 

assessment to promote understanding of economic and life-cycle tradeoffs of a new chemical 

processes.  
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CHAPTER 4: TECHNOECONOMIC EVALUTION OF BIO-BASED 

STYRENE PRODUCTION FROM ESCHERICHIA COLI 

Introduction	
  

Biorenewable fuels and chemicals have received a great deal of attention in the recent 

years due to political and economic concerns over depleting petroleum supplies (Kazi et al., 

2011; Rogner, 2012). Although the traditional focus has largely been on the development of fuels 

from renewable sources, such as ethanol or biodiesel, a new surge of research has focused on the 

production of chemicals as “value-added” products from biomass (Werpy and Petersen, 2004). 

Many methods for producing bulk chemicals from biomass have been proposed and/or 

successfully implemented, including thermochemical, biochemical, and catalytic approaches, as 

well as hybrids of these methods (Brown et al., 2012; Kazi et al., 2011; Nikolau et al., 2008; Xie 

et al., 2006). Bulk chemicals typically have a slightly to greatly higher value per unit mass than 

do fuels, and serve markets that are significantly smaller on the basis of total demand for carbon. 

This is exemplified by the observation that the bulk chemicals market is approximately the same 

economic value as the fuels market, despite using only 1/20th  as much carbon (Nikolau et al., 

2008).  

Chemical production via biochemical routes has grown from the historical success of 

ethanol fermentation, while benefitting from ongoing improvements in the fields of synthetic 

biology and metabolic engineering. Ever-expanding genetic toolkits and novel predictive tools, 

have led to enhanced fermentation kinetics, elevated titers and yields, improved tolerance to 

environmental stresses and product-toxicities, and novel metabolic pathways for the production 

of non-natural compounds (Nielsen, 2001). Several products have been successfully 
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commercialized with the aid of these new technologies; including polylactide (NatureWorks™), 

1, 3 propanediol (DuPont), and succinic acid (BioAmber). Many other bio-based chemicals in 

the development pipeline may also have the potential to one-day reach commercial success; 

however, not before significant improvements can be made with respect to critical biological 

parameters and cost-effective scale-up methods. Technoeconomic assessments (TEA’s) can help 

to bridge the gap between research and commercialization by illuminating bottlenecks and 

opportunities in a bioprocessing scheme (Hermann and Patel, 2007; Kazi et al., 2010; Kazi et al., 

2011). A challenge for TEA is that these studies usually require significantly more information 

than is readily available in the early-stages of process development. Such process uncertainties 

can cause errors in the analysis that the reader and the author may not be aware of (Bunger, 

2012). To overcome these opaque and complex models, simplified models can instead be 

developed to generate a greater level of transparency of the various assumptions and inherent 

uncertainty in the process evaluation with minor sacrifices in the precision of the estimate. In 

cases relevant to early-stages of development, a simpler model can perform nearly as well as the 

commercially available tools such as SuperPro Designer® (Claypool, 2013).   

Although it remains in the early stages of development, styrene has recently emerged as a 

commercially viable bio-derived chemical candidate with great potential (McKenna and Nielsen, 

2011). With an annual consumption greater than 5.8 million metric tons in the United States 

alone, styrene is an important monomer and platform chemical used across many different 

industries, and is produced primarily from petroleum-derived ethylene and benzene (Chen, 

2000). With current styrene prices in the range of 1.74 – 1.83 USD kg-1, and future price hikes 

expected, some authors suggest bio-based styrene may become an economic alternative (Balboa, 

2013). While the current state of bio-based styrene is far from commercial-scale production, 
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investigation into the economic performance of this new bioproduction pathway is of great 

interest to the research community and industry alike.  

Through de novo pathway design, the non-natural styrene biosynthesis pathway was 

recently engineered using the bacterium Escherichia coli as the biocatalyst platform (McKenna 

and Nielsen, 2011). By extension of the endogenous L-phenylalanine pathway, styrene is 

produced via trans-cinnamate with the aid of two heterologous enzymes (McKenna and Nielsen, 

2011). As the maximum theoretical yield of L-phenylalanine on glucose is 0.55 g/g, styrene 

could be produced at a maximum theoretical yield ranging from 0.26 to 0.346 g/g (Báez-Viveros 

et al., 2004; McKenna and Nielsen, 2011; Nielsen, 2013). A significant problem currently 

hindering high-titer production of bio-styrene arises due to its significant toxicity against E. coli 

(McKenna and Nielsen, 2011). The toxicity limit against E. coli has been predicted to be ~300 

mg/L, and with maximum titers by first-generation strains already approaching this 

concentration, toxicity looms as a critical limiting factor in styrene biosynthesis. However, since 

the solubility of styrene in water is a mere 320 mg/L at operating temperatures, if the E. coli can 

be engineered to withstand only slightly higher styrene concentrations, spontaneous phase 

separation would simultaneously ensure toxic concentrations would no longer limit bio-styrene 

production while greatly facilitating downstream - or even in situ - product recovery. 

Furthermore, as water is highly insoluble in styrene the resultant product would consist of 

extremely high purity styrene (>99.8%), suitable for most polymer standards (Chen, 2000).  

In this work we have applied the Biorenewables Process Evaluation Tool (BioPET), 

which is a spreadsheet-based tool for early-stage evaluation of biorenewable processes, to 

examine the potential of bio-styrene production, and to illustrate key process bottlenecks 

(Claypool, 2013). Combining the available knowledge of the physical properties of styrene, as 
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well as factors relevant to and influencing styrene biosynthesis, BioPET can facilitate an 

evaluation of the commercial-scale economics of such a venture. This paper will investigate what 

benchmarks will need to be reached for commercialization of biorenewable styrene and the 

likely minimum estimated selling price (MESP) anticipated through such a route. 

Methods	
  

Styrene bioproduction will incorporate both fermentation and separation processes. The 

method of separation at commercial-scale is likely to exploit the mutual insolubilities of styrene 

and water, much like between fatty acid esters and glycerin in biodiesel production (Marchetti et 

al., 2008). To implement this economic analysis, the framework of BioPET was chosen and 

modified to include a decanter separation technique downstream of fermentation. Using 

published rules of thumb and economic equations as previously presented in BioPET, a decanter 

was sized and cost estimations provided (Claypool, 2013; Woods, 2007).  

The decanter was assumed to operate at 32°C and to have two phases represented by 

styrene and water. The two phases assume all properties of water and styrene respectively and a 

bubble diameter of styrene in the continuous water phase of 150 µm. As the properties of these 

two components led to a settling velocity greater than 4 mm/s, a terminal settling velocity of 4 

mm/s was chosen. Due to expected low flow rates over the range of operation and the large 

settling velocity, a vertical column decanter was assumed. The necessary area of interface 

between the two phases was calculated using Equation 1.  

A! =   
!!
!!

 (1) 

Where Ai = the area of interface, m2,  
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 ud = the terminal settling velocity, m/s, 

 Vc = the volumetric flow rate of the continuous phase, m3/s.  

This area was assumed to be the cross-sectional area of the column with an L/D of 5. The 

cost calculations were then as follows using values from a previous-described decanter with a 

continuous phase flow rate of 12 L/s at an original adjusted cost for stainless 304 of 285,000 

USD (Woods, 2007). The exponential relationship for decanters follows an exponent of 0.84 and 

follows Equation 2 (Peters et al., 2003).  

C! =
  !!
!!
×C!! (2) 

Where: 

 Cn = new cost for newly sized piece of equipment 

 Sn = new size of equipment 

 So = size of equipment where previous cost data exists 

 Co = cost of equipment where previous data exists 

 n = empirically-derived cost exponent 

This equation uses the previous knowledge of the decanter cost and applies it over a range of 

continuous phase flow rates between 1.2 and 40 L/s (Woods, 2007).  

A styrene bioproduction process was designed using the expected values in and examined 

over the entire range, worst-case to best-case, using a Monte Carlo approach with 2000 

simulations.  
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Table 1: Base-Case (expected value) and range of parameter values for Monte-Carlo analysis of 

the economics of styrene bioproduction. 

Parameters Expected Value Worst-Case for 
Value 

Best Case for 
Value 

Annual Production 
(kilotonnes/yr) 

45 22.5 67.5 

Operating Days (days) 345 327.75 362.25 
Internal Rate of Return (%) 15 21 9 
Plant Operating Life (yrs) 7 3.5 10.5 
Lang Factor (dimensionless) 5 6.5 3.5 
Productivity (g/L/hr) 2 1.4 2.6 
Titer (g/L) 50 35 65 
Yield (g/g) 0.25 0.225 0.275 
Density of Product (g/L) 0.888 0.879 0.897 
Product Purity (wt.%) 0.999 0.998 0.999 
Product Solubility (wt.%) 0.4x10-3 0.52x10-3 0.28x10-3 

Glucose ($/kg) 0.3 0.45 0.15 
Corn Steep Liquor ($/kg) 0.2 0.3 0.1 

Results	
  and	
  Discussion	
  

Using the base-case assumptions (leftmost numerical values in Table 1), BioPET 

estimated an MESP of 1.82 USD kg-1 for 99.9% pure styrene monomer. It is predicted that the 

process will employ two fermenters of approximately 2040 m3 each operating for 276 batches 

per year. Due to the estimated ease of separation, it is expected that a single decanter should be 

adequate for the size and titer values estimated. No alternative products are considered to be 

produced or interfere with product purity (McKenna and Nielsen, 2011).  
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Table 2: Capital Expenditures 

Section Capital Costs  
(in Million 
USD) 

Fermentation 14.7 
-Fermenters 10.1 
-Seed Fermenters 3.7  
-Holding Tanks 0.9  

Separation 6.8  
-Centrifuges 4.2  
-Decanters 2.6  

The total capital investment for all installed equipment for the expected values was 21.5 million 

USD with the worst-case values estimating a cost of 19.3 million USD, because the worst-case 

scenario assumed annual production of 50% of base-case. The capital requirements per unit 

annual production are nearly twice as large for the worst-case scenario. The largest capital 

expenditure arose out of fermentation with an installed cost of 14.7 million USD as seen in Table 

2. These expenditures are under the estimated Lang Factor of 5, a method that aggregates all 

installation factors into a single multiplier, which is in accordance with suggested liquid-liquid 

processing systems, but may be closer to 3 as is estimated for corn-grain ethanol (National 

Renewable Energy et al., 2000; Peters et al., 2003) – we therefore consider our capital cost 

estimate to be fairly conservative. Lack of prior information to further guide the estimates is not 

available and leads to a large range of uncertainty.   
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Table 3: Annual Expenses 

Section Annual 
Expenses (in 
Million USD) 

Feedstock 54.0  
Fermentation 7.3  

-Amortized Capital 3.5  
-Utilities and Nutrients (non-feedstock) 3.8  

Separation 2.4  
-Amortized Capital 2.0  
-Utilities 0.3  

Plant Expenses 15.9  
-Plant Overhead 7.4  
-General Expenses 6.8  
-Maintenance, Patents, Operating 

Supplies 
1.7  

Labor 2.2  

Feedstock was a dominating factor in the operation of the styrene plant accounting for 

67%, or 54 Million USD, of the total annual expenditures, as seen in Table 3. In line with the 

comparison to biodiesel, simple processing systems become heavily dependent on feedstock and 

can be estimated at upwards of 90% of the annual expenses (Marchetti et al., 2008). These 

estimates from BioPET for bio-based styrene also result in approximately similar breakdown of 

costs as a percentage, as the estimate of ethanol from BioPET (Claypool, 2013). The cost of 

feedstock (assumed to be pure glucose) corresponds to approximately 6.00 USD bu-1, or 240 

USD Mg-1. Although any glucose feedstock could be chosen, if corn was the resulting choice the 

required number of bushels would be approximately 60,000 acres of corn or <1% of the 

harvested land in Iowa for corn grain in 2011(Department of Agriculture, 2011). If these 

statistics hold true for future years, this would correspond to a styrene plant in Iowa being able to 

acquire all necessary feedstock within an 8.8-mile radius.  
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As uncertainty exists both in the BioPET and the assumed values, both a sensitivity 

analysis and Monte Carlo simulation were conducted to evaluate the validity and sensitive points 

of error. The sensitivity analysis was conducted by adjusting parameters individually by ±1%, 

and measuring a percent change in the output of the MESP. The top five most sensitive 

parameters were identified and displayed in Figure 1. The usable fraction of fermenter, assumed 

to be used at 80% of total volume, was the most sensitive parameter. The 80% value was  

assumed to leave head room for foaming and aeration issues as done by other authors (Cysewski 

and Wilke, 1978). Yield of product on substrate was another key parameter with significant 

uncertainty stemming from the uncertainty in the yield of L-phenylalanine (Nielsen, 2013).  

Figure 1: Top five sensitivity coefficients using a ±1% change in BioPET model under expected 

values for bioproduction of styrene (x-axis represents measured change in MESP). 

The Monte Carlo simulation produced an estimated MESP of 1.82 USD kg-1 product with 

a standard deviation of 0.44 USD kg-1. As shown in Figure 1, the yield of product on substrate 

and cost of feedstock are major driving factors for the large variation in the MESP.  
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Overall, the economic analysis of bioproduction of styrene expressed potential 

commercial feasibility at modest fermentation productivities, titers, and yields. Smaller bio-

based chemical plants, such as succinic acid, are being built at annual production rates of 34 Mg 

per year, but larger plants will most likely be constructed because of the benefits of economies of 

scale (BioAmber, 2012; Haldi and Whitcomb, 1967). It seems likely that production values out 

of fermentation can likely exceed predicted values due to the phase separation limiting product 

inhibition, which can be seen in other fermentations where no phase separation occurs 

(Levenspiel, 1980). However toxicity is currently the limiting case to production and must be 

overcome to achieve any competitive commercial values.  

Toxicity has presented issues historically and one method of keen interest to researchers 

is to use in-situ extraction, or in-situ product removal (ISPR), that extracts the toxic product of 

interest into a second phase, typically a biocompatible solvent, in order to limit the effect of the 

toxic product (Brennan et al., 2012). While the economics of ISPR might become practical when 

the product of interest is high-value, the cost of biocompatible ISPR agents and their respective 

reduction in fermentation volumes per purchased volume, it does not seem a prospective path for 

bio-based styrene. Alternative methods of overcoming the toxicity must be sought (Jarboe et al., 

2011). 

Another key risk is feedstock purchase price. Over the past decade, corn prices have 

ranged 1.75 to nearly 7 USD bu-1 (four-fold) while oil prices have ranged from approximately 25 

– 125 USD bbl-1 (five-fold). This may be a weak spot in the future of styrene in that the 

economics are sensitive to volatile feedstock prices, but with improvements in the decomposition 

of lignocellulosic feedstocks, these new feedstocks may prove cost competitive for fermentable 

sugars (Rezaei et al., 2011). Projected costs for these lignocellulosic feedstocks have even been 



87 
 

 

estimated as being three times less expensive than corn starch at 2.50 USD bu-1 from corn grain 

(Lynd et al., 1999). It seems probable that between corn grains historical price and estimated 

prices for lignocellulosic sugars, the estimated cost to produce bio-based styrene has a potential 

future with a variety of feedstocks.  

While the major costs are associated with feedstock and yields, alternative driving factors 

are capital costs. Bio-based styrene represents a fairly simple process design that mimics corn-

grain ethanol in that the general process consists of fermentation and a single separation unit 

operation. Another factor that may also mimic ethanol is the Lang Factor of which will reduce 

the estimates to produce bio-based styrene (National Renewable Energy et al., 2000). The push 

to create new bio-based products can have a major impact on its own industry by driving the 

capital costs of fermenters down via an increased available supply, although the demand may 

outweigh this benefit.  

Conclusion	
  

A 45 kilotonne per annum bio-based styrene plant is estimated to produce 99.9% pure 

styrene monomer at a MESP of 1.82 USD kg-1. This price is competitive with current styrene 

monomer prices in today’s market (Balboa, 2013). Considering uncertainties of details around 

final construction costs and key fermentation parameters, the estimate for bio-based styrene is 

1.82 ± 0.44 USD kg-1. This matches current market values for styrene and presents a great 

opportunity for investment while still possessing a great amount of risk. While an overarching 

amount of uncertainty in product yield can limit the competitiveness of the future selling price of 

commercial-scale bio-based styrene, initial toxicity presents a barricade to achieving the 

necessary production values.  Future research should be targeted towards addressing or 

overcoming this limitation. 
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CHAPTER 5: GENERAL CONCLUSIONS 

The field of industrial biotechnology is growing rapidly. Yet despite the gains in 

understanding subjects from enzyme design to metabolic engineering, early-stage 

technoeconomic evaluation remains an area that has been poorly explored. In this work, a robust 

and easy-to-use spreadsheet-based TEA for biorenewable chemicals was developed and 

validated. Chapter 2 examines a preliminary spreadsheet-based approach for analyzing the 

economics of a combined fermentative-catalytic route to producing sorbic acid. This 

spreadsheet-based analysis demonstrated the feasibility of utilizing a coarse technoeconomic 

approach for evaluating processes within this new industry. The model helped illustrate the 

importance of overall yield because of the cascading effect that low yield has on the required size 

of all upstream processes. With the development of metabolic engineering, it becomes increasing 

likely that more of the chemical synthesis can be done in vivo, and trade-offs between capital 

costs, productivity, and yield must be considered carefully. The cost predicted out of the model 

suggested a plausible outcome in the long-term scenario for sorbic acid. The plausible outcome 

for such a scenario suggests that future work should continue on such a project.  

Influenced by Chapter 2, Chapter 3 describes the development of a more general model 

for evaluating bio-based chemical production. Based on the Chapter 2 experience, a common 

framework was employed, involving: Fermentation, Separation, Catalysis, and Purification. 

These key processes defined the structure of the resulting model, which was termed BioPET 

(Biorenewables Process Evaluation Tool). The level of detail available at early stages in 

development dictated that BioPET be operable with relatively minimal amounts of process 

detail. While tools are only as good as the operator and the information they are provided, 
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BioPET was built for ease of use and validated against SuperPro Designer® to reflect how given 

the same information, similar outputs could be generated. BioPET was also analyzed against 

other literature values in order to measure the accuracy at which it could predict values. The 

analysis against literature and alternative software provided feedback on both the precision and 

accuracy of the tool at hand and demonstrated good correlation for both. This tool also 

demonstrated the potential variability in the cost distribution of bio-based chemicals.  

To demonstrate the potential of BioPET for predicting costs on a novel bioprocess, 

Chapter 4 focused on a chemical that has direct market potential as an intermediate molecule, 

and further developed BioPET by adding sensitivity analysis and a Monte Carlo simulation into 

the model. BioPET also required the addition of decantation, a common unit operation for 

separating immiscible liquids. The addition of the sensitivity analysis and Monte Carlo 

simulation required the addition of VBA code to generate this level of analysis, but did so 

without sacrificing the benefit of instantaneous feedback to the user. The economic promise of 

the bioproduction of styrene was demonstrated through the analysis, as was the significant (± 

25%) uncertainty associated with the estimate.  

Overall a platform has been developed for evaluating bio-based chemicals from which 

can be adapted to provide early-stage insight into future endeavors. The platform, BioPET, 

provides rapid feedback, sensitivity and Monte Carlo analysis for the biorenewables industry that 

may help guide and inform future decisions. 
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