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ABSTRACT 

 

 The appearance of foam on the surface of deep pit swine manure storages throughout 

the United States and Canada is a serious concern for the pork industry. In addition to 

logistical issues caused by foam accumulation in deep pits, manure foam has the capacity to 

trap gases produced by the anaerobic decomposition of manure, leading to dangerous 

flammable gas concentrations upon agitation or foam disturbance. Recent flash fires and 

explosions at several swine facilities have created a pressing need to understand and mitigate 

the causes of foaming deep pits.  

A number of hypotheses regarding the contributing factors of foam formation exist. 

These include the presence of surface active agents (proteins, volatile fatty acids, detergents, 

lipids, biosurfactants, etc.) that enable foam generation, the presence of hydrophobic solids 

that stabilize foam, the presence of certain feed components that may contribute to the 

foaming mechanism, the rate of biogas production from the waste, or any combination of 

these and other physical, chemical, and microbiological characteristics of the manure slurry. 

Despite a broad understanding of the aspects of foaming systems, there is a lack of 

knowledge of the mechanism that causes foam to stabilize in anaerobic environments. The 

objective of this research was to better understand foaming manure systems from a “three-

phase system” approach; that is, to research the solid, liquid, and gas phases of swine manure 

in deep pits and how they contribute to stabilized foam. Foam mitigation strategies were 

considered after these aspects of foaming systems were investigated. 

 The two studies presented in this thesis included extensive analysis of swine manure 

sampled from both commercial deep pits and controlled dietary studies. The first study was a 

field study, with manure samples collected from over 50 swine facilities in Iowa over 13 

months. These samples were analyzed for a number of parameters including temperature, pH, 

total and volatile solids, short-chain and long-chain fatty acid concentration, biochemical 

methane potential, methane production rate, surface tension, foaming capacity index, and 

foam stability. An extensive database was compiled so that these parameters could be 

compared based on the extent of foam accumulation at the sampling site. The second study 

involved a controlled dietary study, where the impact of carbohydrate and protein sources on 

foaming parameters was measured. The results allowed us to understand the direct impact of 
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feed components on swine manure parameters, as well as to compare the manure collected 

from these controlled trials to samples taken from commercial deep pits. 

 As a whole, these studies showed that swine manure from barns with foam 

accumulation exhibited significantly different trends in many biological and physicochemical 

parameters when compared to manure from non-foaming barns. Most notably, the rate at 

which biogas was generated in foaming barns was much greater than in non-foaming barns, 

indicating a much greater presence of the “gas phase” in foaming barns. At the same time, 

non-foaming barns showed a greater potential for cumulative biogas production and larger 

concentrations of important substrate such as short-chain fatty acids. Taken together, we see 

that the microbial consortium in foaming barns allows them to function as more efficient 

digesters, producing a greater methane flux through foaming pits, which is the driving force 

of foam formation. Manure collected from the surface of foaming systems was also able to 

produce foam at a greater capacity in laboratory tests when compared to manure from non-

foaming systems, and also showed an enhanced ability to stabilize in the testing apparatus. 

These tests and others indicated an accumulation of a surfactant and/or stabilizing agent at 

the surface of foaming barns which promotes foam generation and stability. Other important 

differences in the temperature trends, pH, solids profiles, and surface tension measurements 

led to a greater understanding of the behavior of foaming swine manure deep pits. Overall, 

this knowledge can lead to more directed solutions, specifically in exploring sustainable 

ways to control the activity of the microbial community within deep pits.
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CHAPTER 1 

 

 INTRODUCTION  

 

 Deep pit manure storages are an important aspect of swine production in the Midwestern 

United States and Canada. They are located directly beneath swine facilities, allowing manure to 

drop through slatted floors into the concrete storage volume. Deep pits allow producers to store 

manure for extended periods (6-12 months) so that it can later be pumped and applied to 

croplands as a fertilizer to promote crop growth (Jackson et al., 2000). Due to the prevalence of 

corn-soybean crop rotations in areas that use deep pits, land application is usually limited to the 

spring before planting or the fall after harvest. Despite the convenient long-term storage provided 

by these structures, they are also associated with many operational and environmental concerns 

for swine producers. Ammonia, hydrogen sulfide, carbon dioxide, and methane emissions can 

lead to health concerns within barns as well as larger scale environmental concerns with regard 

to greenhouse gas emissions (Jungbluth et al., 2001, Zhao et al. 2005). Other issues include the 

efficient pumping and safe handling of manure while applying to it to croplands, as it is a cost-

intensive process with the potential for environmental spills. 

 In the past five years, foam accumulation on the surface of deep pit manure storages has 

been frequently reported, with the largest concentration of reports occurring in Midwestern states 

such as Iowa, Minnesota, and Illinois (Moody et al., 2009). The foam is described as a dark-

brown or gray, viscous fluid with mid-sized bubbles entrained throughout (Robert et al., 2011). 

A picture of this foam is shown in Figure 1.  

 

Figure 1. Foam accumulation in a deep pit as seen from a pump-out location. 
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Foam accumulation in deep pits has implications for logistical, environmental, and 

safety-related aspects of swine production. From a logistical standpoint, foam effectively reduces 

the storage volume available in the deep pits, forcing producers to pump and apply manure 

during untimely seasonal windows. Foam has also been shown to trap gaseous emissions from 

the manure slurry as well as affect the overall performance of the system in terms of solids 

settling and waste stabilization (Ganidi et al., 2009). Finally, foam accumulation has been linked 

to a number of flash fire and explosion incidents (Moody et al., 2009). When sudden foam 

agitation and collapse occurs, explosive concentrations of methane gas are achievable in the 

barn. Coupled with a spark source from equipment (electrical systems, space heaters, etc.) or 

activity (welding, grinding, manure pumping, or general maintenance) in the barn, flames can 

occur in the foam, spread quickly, and even cause explosions. 

Unfortunately, the body of knowledge regarding foaming deep pit swine manure storages 

is limited. This lack of knowledge is the result of the biological and chemical complexities of 

anaerobic systems as well as the relatively recent nature of deep pit foaming occurrences. 

However, the formation of nuisance foams in anaerobic systems used in other applications is a 

relatively well-established body of research, particularly in municipal or industrial anaerobic 

digesters. In order to conceptualize foam occurrences in municipal wastewater treatment 

applications, Davenport et al. (2008) and other research groups have described foam formation 

with a “three-phase system” framework. In anaerobic systems such as digesters or manure 

storages, the gas phase consists of a mixture of carbon dioxide, methane, and other trace gases 

(or “biogas”) that is produced as a result of the decomposition of organic matter by the microbial 

community. The bubbles of biogas travel through the liquid phase to the surface, where surface 

active agents (or “surfactants”) increase the activity at the liquid-atmosphere interface, 

consequently lowering the surface tension of the waste slurry. The biogas is then encapsulated 

into a foam formation at the interface, which is thought to be stabilized by the presence of 

hydrophobic solids which prevent the drainage of liquid back into the waste slurry. In this way, 

stabile foams systems require critical aspects of all three phases to occur simultaneously. The 

systematic nature of this three-phase system approach is helpful in charactering the occurrence of 

foam in anaerobic systems. Thus, this framework was the foundation of the research presented 

within this thesis. 
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RESEARCH OBJECTIVES 

 The overall goal of this project was to gain a better understanding of foaming systems in 

order to prevent foam formation in deep pit swine manure storages. An investigation into the 

specific causes and mechanisms of foam occurrence should help to bring about the most 

effective, long-term solution to the problem. To this end, manure samples were collected from 

both commercial deep pits and controlled feeding trials to determine the impact of diet 

composition on the input into deep pits, as well as the physical, chemical, and biological 

characteristics of swine manure as it occurs in anaerobic storage systems. The objectives of both 

the field and diet studies are given below. 

 

Field Study 

 Create an extensive database of swine manure characteristics for samples collected from 

multiples depths of commercial deep pits once a month for approximately one year. 

Parameters were chosen based on their hypothesized importance to foam formation, 

including aspects from each of the three phases involved in foam formation. 

 Develop a lab-scale foaming apparatus that accurately simulates the process of foam 

formation in deep pits by controlling the gas phase of the experimental setup. This 

foaming apparatus allowed for the development of two new experimental parameters: 

foam capacity and stability. 

 Statistically evaluate the differences between foaming and non-foaming barns for each 

parameter in the database. This included a critical evaluation of the foaming capacity and 

stability test as an accurate reflection of the behavior of the manure in the field. 

 Recommend potential solutions to foaming deep pits based on the understanding gained 

from the study. 

 

Diet Study 

 Control feed composition in a number of dietary trials to evaluate different protein and 

carbohydrate sources and levels, including components such as amino acids, corn-

soybean meal, corn-canola meal, barley-soybean meal, and dried distillers grains with 

solubles (DDGS). 
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 Evaluate the impacts of diet on important foam-related parameters including gas 

production rates, foaming capacity and stability, surface tension, and solids content. 

 

THESIS ORGANIZATION 

 Chapter 2 is a literature review which will highlight existing research in this area by 

breaking down foaming systems into the three phases discussed above. Much of the knowledge 

presented in the literature review is taken from research investigating biological foam formation 

in municipal anaerobic digesters, discussing contributing factors that translate to deep pit 

systems including surface active agents, hydrophobic solids, and other system parameters. The 

final section discusses the ability of swine manure to produce biogas in various reactor and barn-

scale setups. 

 Chapters 3 and 4 address the research objectives outlined above, respectively. Chapter 3 

is titled “An Evaluation of the Physicochemical and Biological Characteristics of Foaming Swine 

Manure” and will be submitted to the Journal of Environmental Quality. This study highlights 

the differences between manure from foaming and non-foaming barns, particularly in gas 

production trends throughout the 13-month sampling period. In addition, the performance of the 

bench-top foaming capacity and stability test is evaluated. Chapter 4 is titled “The Impact of 

Carbohydrate and Protein Source on Swine Manure Foaming Properties” and will be submitted 

to Transactions of the ASABE. This study characterized the impact of diet composition on 

foaming-related parameters of manure. Also, comparisons were made between foaming manures 

collected from commercial deep pits and those collected from the diet study. Throughout the 

thesis, references are included at the end of each chapter. 
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CHAPTER 2 

 

 A REVIEW OF THE FACTORS CONTRIBUTING TO FOAM FORMATION IN 

ANAEROBIC SYSTEMS 

 

 

AN OVERVIEW OF ANAEROBIC SYSTEMS AND FOAMING 

Anaerobic systems are utilized in many applications of waste storage, treatment, and 

stabilization in various industries in the United States. In most instances, the production of 

biogas as a usable source of energy is exploited as a low-cost supplement to other forms of 

power production. In most agricultural applications, the main use of anaerobic systems is for 

animal waste storage during times between land applications. The emission of gases and odors 

from these manure storages, along with the proper disposal of the stored waste, are among the 

primary environmental concerns in livestock operations today. In most swine finishing facilities 

in the Midwestern United States, deep pit storages are located below production buildings and 

are used for manure storage for time periods ranging from six to twelve months. 

In recent years, the accumulation of foam on top of these manure storages has been 

reported with increasing frequency (Moody et al., 2009). This foam accumulation poses a 

number of problems that must be addressed from a managerial standpoint. For example, foam 

can significantly reduce the amount of storage available in deep pits. As a result, the manure 

pumping and application cycle is stressed, forcing the producer to apply manure during untimely 

seasonal windows or seek other means of storage. 

According to Ganidi et al. (2009), foam accumulation also has an impact on the overall 

characteristics and efficiency of anaerobic systems. First, the biogas (consisting mostly of 

methane and carbon dioxide) produced during the digestion of manure is known to be trapped 

within the viscous foam layer. Also, the mechanism that causes foaming in the system often 

leads to an inverted solids profile, creating biological “dead zones” in the manure storage and 

reducing the active volume. This, in turn, leads to reduced organic decomposition, negatively 

affecting the performance of the system. In addition, there are a number of secondary 

inconveniences associated with foam accumulation, such as aesthetic and odor problems, 

operator safety concerns, equipment damage, and the associated costs of cleanup and 

remediation (Ganidi et al., 2009, Boe et al., 2012). 
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Finally, biological foam formation on deep pit storages has implications for the gaseous 

emissions and overall safety at swine facilities. The flammable gases (most significantly 

methane) produced by the anaerobic decomposition of the manure are captured in the foam 

matrix. Depending on the amount of gas that is trapped in a given barn, dangerous gas 

concentrations are achievable as a result of a sudden breakage of foam. In some cases, foam 

agitation or breakage along with a spark source has caused flash fires or explosions in swine 

facilities (Moody et al., 2009). 

 

Foam as a Three-Phase System 

Davenport et al. (2002 & 2008) described a helpful means of characterizing foam systems 

in three phases. The initiation of foam production occurs as a result of both the gas and liquid 

phases of the system. In an anaerobic system, the gas phase is bubbles of biogas produced due to 

methanogenic activity. When a certain concentration of surface active agents (or “surfactants”) is 

present in the wastewater foam production occurs. This results from a lowering of the surface 

tension of the solution due to increased activity at the liquid-gas interface, with surfactants 

literally “holding” the surface together (Bamforth, 2004) and encapsulating bubbles produced in 

the gas phase (Moeller et al., 2012). Finally, solids in the form of hydrophobic substances 

(assumed to be hydrophobic bacteria in activated sludge foams according to Davenport et al., 

2002) serve to stabilize the foam that is produced by preventing drainage back into the liquid 

layer. The nature of foam as a three-phase system is illustrated below (Figure 1) with a 

wastewater sample that was mechanically aerated to induce stable foam accumulation in the 

Animal Waste Management Laboratory at Iowa State University. 

 

Figure 1. A lab-scale illustration of a three-phase foam (AWML, Iowa State University). 
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All three phrases are a prerequisite for foaming, so a complete explanation of the 

presence of stable foam in deep pits must address these prerequisites accordingly. Unfortunately, 

the exact mechanism for foaming in deep pits is unknown due to the fact that it is a relatively 

recent phenomenon. Along these lines, this review will investigate foam formation within the 

framework of the three-phase system described above, with the most relevant research done in 

each phase summarized. First the liquid and solid phase contributions are addressed by reviewing 

research which investigates foam formation in related anaerobic systems, such as municipal 

anaerobic digesters. Next, the rate of biogas production from swine manure is examined by 

reviewing studies in that topic area. Finally, gaps in current knowledge and future research needs 

are discussed in light of the literature discussed in this review. 

 

FACTORS CONTRIBUTING TO FOAMING IN ANAEROBIC SYSTEMS 

Much of the current knowledge of foam formation in anaerobic systems is derived from 

extensive research of waste activated sludge treatment plants, where biological foam formation is 

a relatively common phenomenon. Many researchers attribute foaming systems to a combination 

of surface activated agents in the liquid phase and hydrophobic particles in the solid phase 

(Horozov, 2007, Ganidi et al., 2009, Dalmau et al., 2010, Di Bella et al., 2011, Hutzler et al., 

2011, etc.). Essentially, foam in waste treatment plants can be described as floating biomass, as 

the main mechanism of biological foam stability is thought to involve filamentous bacteria with 

hydrophobic cell surfaces attaching to gas bubbles and rising to the surface of the system 

(Davenport et al., 2002). The presence of these bacteria on the gas-liquid interface of the system, 

as well as the presence of surface active agents, is thought to increase surface activity 

(consequently lowering surface tension) and stabilize foam (Ganidi et al., 2009, Boe et al., 2012). 

Heard et al. (2008), though, showed that bacteria cannot lead to foam formation in the absence of 

a surfactant, which reinforces that both of these substances are important for persisting foam 

systems. 

Grady et al. (2011) identified a number of the specific species of microorganisms as well 

as chemical constituents that serve as the liquid and solid phases of foam formation in activated 

sludge systems. Surface active agents include detergents, fats, oils, and biosurfactants produced 

during metabolic processes of the biomass. Foam stabilizing bacteria include Actinobacteria with 
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hydrophobic characteristics. Both filamentous Gordonia spp. and Microthrix parvicella species 

have also been associated with foaming events, and are seen as primary causes of foaming in 

many activated sludge systems (Heard et al., 2008). 

While a direct relationship between activated sludge foaming and foam production in 

anaerobic digesters has not been proven, it has been shown that the basic principles of foam 

formation as a three-phase system are helpful as a starting point in any foaming system, 

including deep pit manure storages. In this way, the potential causes of foaming in anaerobic 

digesters can be analyzed from the perspective of a general anaerobic system and compared 

accordingly. This will be the approach in the following sections.  

 

Surface Active Agents (Liquid Phase) 

The term “surface active agents” encompasses substances including both surfactants and 

“biosurfactants.” Surfactants are substances that are introduced externally into the system. As 

previously mentioned, examples include substances such as oils, greases, detergents, volatile 

fatty acids, and long-chain fatty acids. On the other hand, biosurfactants include substances 

produced during microbial metabolism such as polysaccharides, proteins, and lipid complexes. 

The amphipathic nature of surfactants allows them to contain both water soluble and water 

insoluble components. This characteristic makes them important for foam formation and 

stability, specifically with respect to film generation and film thickness between bubbles in a 

foam matrix (Bamforth, 2004). 

Davenport et al. (2008) described both the hydrophobic and hydrophilic nature of 

surfactants. The hydrophobic ends of surface active agents are attracted to the gas phase of the 

system, while the hydrophilic ends move towards the liquid phase. These properties, in turn, 

have a direct effect on the surface tension on the solution by increasing the amount of chemical 

activity at the surface. The authors continued their discussion by describing a concept called the 

critical micelle concentration. The critical micelle concentration (cmc) gives a measure of 

surface tension with respect to the concentration of surface active agents in a solution. At 

concentrations lower than the cmc, surface activity is low enough to prevent the formation of 

foam in a three-phase system. However, when the cmc threshold is surpassed, surface activity is 

increased and foaming may occur when the gas phase is introduced to the system. As an 
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illustration of this concept, Glaser et al. (2007) tested the cmc for bovine serum albumin (BSA) 

by varying volumes of the protein in solution and mechanically aerating the mixtures. Foam 

production was monitored, and an extensive characterization of the foam was performed, 

confirming that this protein is a viable example of a surface active agent. 

There are a number of other surface active agents relevant to anaerobic digester systems, 

including volatile fatty acids (primarily acetic acid), lipids, and detergents (Ganidi et al., 2009, 

Boe et al., 2012). It is important to note, however, that the accumulation of surfactants in an 

anaerobic system is directly tied to the overall activity of the system. The accumulation of 

surfactants can occur by a number of simple or complex mechanisms. For instance, the 

accumulation of acetic acid in an anaerobic system would likely indicate a breakdown in the 

methanogenesis process, which in turn has implications for the biogas production of the system.  

Along the same lines, the accumulation of chemical constituents in a specific system 

depends on both the degradability and availability of the substance of interest. An example of 

this concept is the presence of detergents in the system of interest. Detergents have relatively low 

degradability in anaerobic systems (Ganidi et al., 2009), which may cause one to conclude that 

they would be a potential cause of foaming. However, in a complete systems approach to 

municipal treatment plants, detergents would rarely accumulate in anaerobic reactors because of 

the fact that they are highly degradable in aerobic waste-activated sludge processes preceding the 

digester. By comparison, the direct input of cleaning chemicals into anaerobic deep pits may be a 

serious concern with respect to foaming potential. 

Another example is the presence of building block compounds in anaerobic digesters. 

Proteins are less biodegradable than lipids and fibers, and in this way, are more prone to 

accumulation. In addition, proteins have been shown to act as foam forming and stabilizing 

agents (Bamforth, 2004; Glaser et al., 2007; Ganidi et al., 2009). Also, lipids have been shown to 

decrease the tendency for waste to foam in experimental setups (Boe et al., 2012), but have a 

strong impact on the organic loading, biogas production, and surface activity of anaerobic 

systems which could lead to a higher risk of foam formation (Chipasa and Mędrzycka, 2006). 

The presence of these compounds in deep pit manure storages also generates very important ties 

between foaming deep pits and the feed components used within the facility. For example, Kerr 

et al. (2006) found that varying protein and cellulose levels in the feed composition of swine 
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affected acetic acid concentrations in the manure collected during a controlled feeding trial. 

Related organic chemical concentrations and the overall pH of the manure were also shown to be 

affected by the varying levels of dietary cellulose and crude protein in the swine diets. 

Finally, the occurrence of biosurfactants (primarily EPS, or extracellular polymeric 

substances) in deep pits could potentially be tied to foaming events as a critical surface active 

agent. According to Sheng et al. (2010), EPS are a dynamic, complex group of polymers 

produced by microorganisms that occur outside of cells and within microbial aggregates. The 

different macromolecules associated with EPS include polysaccharides, carbohydrates, proteins, 

humic substances, nucleic acids, and lipids. EPS play a significant role in the physicochemical 

properties of the biomass, including the ability for the cells to flocculate, settle, and adsorb 

substances. EPS bind cells together in a complex matrix which retains water and food sources, 

allowing cells to avoid dewatering and starvation. These functions of EPS may be particularly 

important in deep pits, where water use has been reduced in the past number of years (Robert et 

al., 2011), and access to food sources is competitive.  

The loosely bound outer layer of EPS has been described as a “loose and dispersible 

slime layer” by Sheng et al. (2010). Öner (2013) elaborated the description of the physical 

characteristics of extracellular polysaccharides by describing industrial applications of EPS 

including use as thickeners, bioadhesives, stabilizers, and gelling agents. Both of these 

descriptions are consistent with biological foams, which are sticky, viscous fluids that are solids 

enriched (Robert et al., 2011). In addition, EPS can also play an important role in the surface 

characteristics of wastewater solutions, as excreted biosurfactants may lead to films at the gas-

liquid interface, lowering the surface tension of the solution (Neu, 1996, Heart et al., 2008). This, 

of course, has implications for the foaming ability of the system. Elevated levels of biosurfactant 

production can occur during times of rapid biological growth, biological instability, organic 

overloading, or nutrient deficiency (Ganidi et al., 2009, Heard et al., 2008). The amount and 

quality of EPS produced in biological systems is influenced by a number of factors including the 

type of substrate, nutrient levels, growth phase of the bacteria, sludge age, and oxygen levels, 

with aerobic zones producing more EPS (Rittmann et al., 1987, Sheng et al., 2010).  

Di Bella et al. (2010) studied the relationship between EPS concentrations and biological 

foam formation in Membrane Bioreactor (MBR) processes. As opposed to many studies linking 
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filamentous bacteria to foaming events in municipal treatment plants, this group found no 

relationship between foam-forming microorganisms and foaming reactors. Instead, the group 

found that foaming events were strongly correlated with high EPS concentrations in the aeration 

tanks at the treatment plants. In addition, this group showed several positive correlations between 

EPS concentration and foam indices used by the group to characterize the foam, including scum 

indices, foam ratings, and foam power measurements. Heard et al. (2008) also suggested the 

importance of biosurfactants in biological foaming systems. The groups noticed that the surface 

tension of waste solutions decreased during the exponential growth phase of the bacterial strains 

used in the study. They correlated this decrease in surface tension with biosurfactant production, 

and showed that samples were able to produce stable foam at this time. 

The concepts discussed above illustrate the fact that the foaming potential of a system 

with respect to surface active agents varies substantially as the components of the system interact 

and as important system parameters of the slurry change in time (Bamforth, 2004). In general, 

the effect of different types of surface active agents on foaming events in anaerobic digesters is 

unknown because of the complexity of the systems, and existing literature in this area is limited 

for this reason. However, whereas the input of anaerobic systems in municipal settings consists 

of both primary (raw organics) and secondary settled waste (waste activated sludge), the input of 

deep pit manure storages consists entirely of animal feces and urine, wasted feed and water, and 

wash waters from cleaning the barn. In this way, an investigation into the specific surface active 

agents present within a foaming deep pit may be more focused than an investigation into a 

municipal anaerobic digester. 

 

Hydrophobic Solids (Solid Phase) 

The hydrophobic nature of the surfaces of certain bacteria and particles is an important 

aspect of foaming research in municipal wastewater treatment plants. As mentioned in the 

introduction of this section, Gordonia and M. parvicella have been identified as likely species 

that cause foaming in municipal systems. The mechanism for the production and stabilization of 

foam with respect to hydrophobic bacteria is relatively straight forward. As the hydrophobic 

properties of the cell wall drive these bacteria to the gas-liquid interface of digesters, they 

simultaneously lower the surface tension of the sludge and stabilize any existing foam by 
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preventing liquid drainage (Heard et al., 2008). To compound the foaming mechanism, any 

biosurfactants that the Gordonia and M. parvicella produce during metabolism create greater 

foaming potential. These filamentous microorganisms are introduced in municipal AD systems 

by surplus activated sludge (SAS) (Ganidi et al., 2011). Although these organisms are primarily 

obligatory aerobes, literature has shown that they are able to survive in anaerobic conditions.  

Hernandez and Jenkins (1994) were able to prove this survival in a laboratory scale batch 

digester. In their experiment, the bacteria survived with only a 37% filament reduction. 

Furthermore, they were able to produce large amounts of foam at the same concentration of 

Gordonia spp. in a field-scale, municipal digester. This study establishes an important link 

between foaming in anaerobic digestion and foaming in different biological environments, which 

is important to the basis of this review. In fact, the foaming mechanism could be the same in 

significantly different systems if the activity of the bacteria of interest is similar in both. If this is 

the case, foaming in anaerobic systems as a whole may be understood more fully. 

Heard et al. (2009) investigated the “hydrophobicity” of G. amarae and R. erythropolis 

cells. This research group had difficulty with this measurement because of the filamentous nature 

of the bacteria tested. However, the separation of certain bacterial species into the foaming and 

non-foaming partitions of the system was able to be replicated consistently, which allowed the 

group to measure the mass of bacteria in both the foam and liquid layers. This paper established 

a practical means to estimate the bacterial communities present in stable foams through 

partitioning, which was a strong indicator of the hydrophobic nature of certain species’ cell 

walls. At the same time, this study illustrated the fact that testing potential foaming causes can be 

difficult and tedious. This is certainly another reason why the body of research with regard to 

foaming anaerobic systems is limited. 

Davenport et al. (2008) studied a threshold concept for hydrophobic mycolata cells with 

respect to the critical micelle concentration concept presented for above for surface active agents. 

They exploited the fact that the cells were much more easily controlled than the gas and liquid 

phases in wastewater, which are always present. Mycolata species were controlled on a density 

basis and analyzed with respect to an empirical threshold established for mycolata. The group 

was able to show that the threshold applied for the more hydrophobic species, while the less 

hydrophobic mycolata did not stabilize foam in large numbers. For hydrophobic species in 
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general, foaming sites were typically correlated with an abundance of mycolata. The reverse was 

also shown to be true for non-foaming sites. These results are illustrated in Figure 2. 

 

Figure 2. Mycolata concentration vs. site foaming from Davenport et al. (2008). 

 

A number of research groups have investigated the effectiveness of small particles as 

foam stabilizers in lieu of conventional surfactants (Bindal et al., 2002, Blute et al., 2007, Blute 

et al., 2009). The effect of colloidal particles on the production of foam in the absence of surface 

active agents was investigated by Bindal et al. (2002). The group mechanically aerated samples 

with suspended silica particles in order to determine a sample’s “foaminess” based on the 

concentration and size of particles in the sample. The experimental setup is shown in Figure 3. 

“Foaminess” was defined as the volume of air retained in the foam bubbles per unit volume of 

the suspension during steady state aeration conditions. According to Bindal et al. (2002), foam 

formation in the hydrophilic silica solution occurred when a particle layer formed inside the 

foam lamella. This provided structural reinforcement against coalescence that led to foam 

stability. The study showed that foaminess was directly proportional to the concentration of the 

suspended particles and inversely proportional to particle size. However, the introduction of 

different sizes of particles into the solution led to a sharp decrease in foam stability due to the 

rupturing of the particle layer’s structure. Similar studies were conducted by Blute et al. (2007 

and 2009), who found that the surface charges of particles and the degree of agglomeration had 
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important implications for foam generation. They also emphasized the importance of the pH of 

the solution (with acidic solutions showing more foaming potential), surface tension of the 

solution, and the concentration of silica particles. 

 

 

Figure 3. Foam aeration setup from Bindal et al. (2002). 

 

Up to this point, only the relative concentrations of various types of hydrophobic bacteria 

and particles have been extensively researched with respect to the foaming potential of systems. 

There is still much research that is needed when considering a foaming system, especially 

considering the potential interaction between hydrophobic solids and surface active agents. For 

example, the excess production of a biosurfactant by bacteria which accumulate at the gas-liquid 

interface can cause a compounding effect of foam production and stability (Heard et al., 2008). 

In this way, biosurfactant production could be an important precursor to stable foam 

accumulation. Further research in this particular area will be important in order to better 

understand the foaming mechanism in anaerobic systems. 
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Organic Loading Rate and Other Operational Parameters 

Mismanagement of the rate of organic loading to digesters is recognized as one of the 

primary causes of foaming in municipal settings. This phenomenon can also occur in a similar 

way in swine facilities, with a direct connection to the components and grind size of the animal 

feed. An organic “shock” loading leads to an accumulation of compounds that have not been 

degraded by the biomass. Of course, if the compounds have the ability to enhance the production 

or stability of foam, there is a greater chance of excess foam formation. As an illustration, the 

accumulation of filamentous solids and microorganisms during full-scale foaming events is 

represented in Table 1. 

 

Ganidi et al. (2011) examined the relationship between organic loading rate and foam 

depth in a field-scale, mesophilic wastewater treatment facility. Also, bench-scale reactors were 

studied simultaneously, with a more complete analysis of substrate and microbial community 

involved at this level. The group’s objective was to establish a critical threshold of organic 

loading rate that initiated foam formation and stabilization. The full scale digester was monitored 

over a 15 month period for foaming events. The bench-scale digesters were loaded with samples 

from the full scale reactor, and extensively analyzed. The main experiments measured foam 

production of multiple organic load rates, as well as volatile fatty acids (VFAs) and filamentous 

bacteria concentrations. The organic load rate of 5 kg VS m
-3

 was able to consistently produce 

foam, although the amount of foam produced was highly variable. The 2.5 kg VS m
-3 

sample 

only produced foam occasionally, while the sample of lower organic loading and the control 

Monitored Parameter Foam Layer Sludge During Foaming Sludge (Normal Conditions) 

pH - 7.3 7.2 

Total Alkalinity (g/L) - 3.3 3.5 

Total Solids (%) 6.0 2.2 2.4 

Volatile Solids (%) 70 60 55 

Filament Abundance 5 0-1 0-1 

Table 1. Characteristics of foam and sludge during foaming and non-foaming events from Westlund et al. (1998). 
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never produced a foaming event. Despite frequent foaming events in the bench-scale models, the 

full scale digester only recorded one foaming event, raising questions about the relationship of 

scale to municipal foaming issues. In this case, though, the group hypothesized a critical 

threshold of 2.5 kg VS m
-3

 for the wastewater being studied.  

While the concept of shock loading to anaerobic digesters is understood from a 

theoretical standpoint, it is only demonstrated in the literature on a case-by-case basis. In the 

study above, the group concluded that a threshold was established at 2.5 kg VS m
-3

, but they 

didn’t prove that this threshold applied to other reactor situations with different types of inputs 

and waste components. One of the main difficulties in establishing a critical organic loading rate 

for anaerobic digesters is that the quality and characteristics of the reactor and sludge input vary 

in nearly every application. For this reason, the optimal operating conditions with respect to 

organic loading rates can vary substantially for various systems, and avoiding the formation of 

foam due to shock loading is essentially a case-by-case determination (Pagilla et al., 1997, Grady 

et al., 2011).  

Mixing is another important operational parameter with regard to foam formation in AD. 

Mixing serves to maintain suspension of sludge particles in order to optimize contact with the 

biomass. Optimal mixing conditions help to avoid dead zones in the AD, increasing the active 

volume of the digester. Pagilla et al. (1997) studied various mixing conditions in anaerobic 

digesters by comparing gas-mixed and mechanically-mixed setups. When all other operating 

conditions were held constant, the group proved that the gas-mixed digester accumulated much 

more foam than the mechanically-mixed digester. The group also discussed the dangers of over-

mixing and poor mixing. Poor mixing caused stratification of the solids and liquids in the 

digester leading to the accumulation of surface active agents at the liquid gas interface due to 

poor substrate degradation in that area. On the other hand, over-mixing introduced sufficient 

bubbles to transport hydrophobic substances to the surface which enhanced foam stabilization.  

Another operating condition that is important in relation to anaerobic digester foaming is 

temperature. Chae et al. (2008) studied the temperature effects on biogas yields during the AD of 

swine manure in the mesophilic temperature range. In general, they found that gas production 

increased with increasing temperature and decreased with decreasing temperature. This trend is 

apparent in Figure 4 below.  
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Figure 4. Gas production trends based on temperature from Chae et al. (2008). 

 

In addition, biogas production rate was able to resume to previous rates after the temperature was 

dropped and then restored to the original value. With regard to system performance, an increase 

in biogas production could lead to increased foaming by way of increasing the presence of the 

gas phase of the system. Also, temperature fluctuations due to operational failures may 

negatively affect the activity of the microbial community, leading to a buildup of surface active 

agents and increased cell rupture, subsequently increasing the foaming potential of the system. 

Moeller et al. (2012) cited a specific example of foam formation in a biogas plant due to an 

increase in temperature from 35°C to 38°C, suggesting that the sudden temperature change upset 

the microbial community and released mucilage and storage substances from within the bacterial 

cells. 

 

BIOGAS PRODUCTION OF SWINE MANURE 

Up to this point in the review, literature regarding the liquid and solid portions of the 

three-phase system approach to foaming anaerobic systems has been covered. However, all three 

aspects of this framework must be present in order for stable foam to accumulate on a system. 

Unlike the solid and liquid phases, the source of the gas phase of foaming deep pits is relatively 

well understood. Biogas is produced during the methanogenesis process in anaerobic systems. 

During this process (Figure 5), complex organic matter is broken down to simpler compounds 
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and eventually converted to a mixture of methane, carbon dioxide, and other trace gases (Grady 

et al., 2011). This “biogas” is the driving force of foaming systems. 

 

Figure 5. Methanogenesis process in an anaerobic environment from Chemistry for Clean Environment. 

 

Methane emissions are important in many areas of study, particularly with respect to 

greenhouse gas concerns. While gas emission levels from swine manure storages are not directly 

relevant to this study, the methanogenic activity and gas production within the manure (as well 

as the factors affecting this activity) is particularly important for understanding the gas phase of 

foaming systems. Barret et al. (2012) studied two outdoor swine manure storage systems with 

regard to their physicochemical and microbiological characteristics over a 150-day period. They 

identified many of the challenges of understanding methanogenic activity in swine manure, 

including how characteristics such as manure composition, swine diet and antibiotic use, 

temperature, surface accumulation, and sampling depth influenced the microbial communities 

and biogas production. In addition to understanding these characteristics, differentiating between 
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the most abundant microorganisms and those that are the most active in methanogenesis was 

shown to be very difficult from an analytical standpoint. However, this group chose to monitor 

the temporal dynamics of both bacterial and archaeal communities, assuming that shifts in the 

community composition would help identify the most active groups in the methane generating 

processes. They found significantly higher concentrations of parameters such as total and volatile 

solids concentration, TCOD, ammoniacal and organic nitrogen, and alkalinity with increasing 

depth into the slurry, which is intuitive based on the solids profile of typical manure storages. 

This group also found that archaeal communities related to the genus Methanoculleus increased 

over time across all samples, varied in population based on phylotype and sampling depth, and 

were found to be the main contributors to methanogenesis. According to Barret et al. (2012), 

these results indicate that the hydrogenotrophic pathway was dominant, and that this genus may 

act as a potential “biomarker” for methanogenic activity. This study confirms both the 

complexity and importance of understanding methanogenic activity in relation to the gas phase 

of foaming systems. 

As mentioned in previous sections of this review, components of the diets fed to animals 

have a strong tie to the chemical aspects of the resulting manure. These ties are also true of the 

biological aspects of deep pit storage systems, and the ability for the methanogens to produce 

biogas. One feed component of particular interest when it comes to foaming deep pits is dried 

distillers grains with solubles (DDGS). Jarret et al. (2011) investigated the effects of DDGS in 

swine diet, particularly with regard to the waste characteristics and methane production potential. 

This group showed that the incorporation of DDGS in swine diets increases the total amount of 

manure by a significant amount, as well as a corresponding increase in the organic matter 

excreted. The methane production potential of the manure produced from diets incorporating 

DDGS was reduced per unit of organic matter excreted. However, the cumulative effect of 

adding DDGS to pig diets actually increased the potential methane production per unit volume 

because of the increased organic content of the manure produced.  

Other studies have established the link between the types of carbohydrates consumed by 

the animal and the methane production of manure (Kebreab et al., 2006), with fiber fermentation 

enhancing the methanogenesis process when compared to soluble carbohydrates. Hindrichsen et 

al. (2004) also showed that the level of lignification (related to the availability of nutrients to 
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methanogens) had important implications for the level and rate of methane production of 

manures fermented in a lab setting. The results of their fermentation studies confirmed that 

greater lignification reduced particle degradation (i.e. soybean hull-based manures yielded the 

highest fiber degradation because of its low lignification and accessible structure). The 

differences in methane production of the various manures produced from differing carbohydrate-

based diets also showed that the interactions between the carbohydrate degrading microbes and 

methanogenic archaea was strongly affected by the type of carbohydrate compound that was 

being digested. 

 

Biogas Production of Swine Manure in Various Reactor Setups 

There are many examples of research groups that have investigated the biogas production 

capability of swine manure in various reactor setups (Nasir et al., 2012). A number of examples 

are presented below, with a summary of the reviewed data and biogas production values 

presented in Table 2. The magnitudes of biogas and methane production compiled in this table 

serve as a baseline for comparing values generated from manure collected from industrial deep 

pit swine manure storages. 

The effect of temperature on the digestion of swine manure was studied by Chae et al. 

(2008). In addition to general temperature trends, the group found specific quantities of methane 

gas yield by the small, 1 L stirred batch reactors used in the study. For temperatures of 25°C, 

30°C, and 35°C, the reactors yielded 0.33, 0.39, and 0.40 m
3
 CH4/kg of volatile solids (VS) 

added, respectively. Hansen et al. (1998) also investigated the effects of temperature on 

anaerobic digestion efficiency. As a part of the study, two different 3 L, continuous stirred tank 

reactors (CSTRs) were maintained at various temperatures, giving different methane yields at 

identical hydraulic retention times. The reactor held at 55°C produced 0.07 m
3
 CH4/kg VS 

added, while the reactor held at 37°C yielded 0.19 m
3
 CH4/kg VS added. These studies 

illustrated the importance of temperature with respect to microbial activity, substrate availability, 

and gas production in anaerobic systems. 

The methane productivity of manures from different types of livestock was evaluated by 

Moller et al. (2004). A simple 1.1 L batch reactor setup was utilized and held at mesophilic 

temperature conditions (approximately 35°C). The swine manure slurry yielded 0.28 and 0.36 



 

 

Reference Waste Description Reactor Type Reactor Size (L) T (⁰C) O LR (kg VS/m
3 

day) HRT (d) VS/CO D Removed (%) Biogas Methane Gas Production Units

Andara et al. (1999) Solid Fraction Stirred Batch 245 35 1.45 60.0 65.0 - 0.17 m
3
/kg VS added

Andara et al. (1999) Solid Fraction
Non-Stirred 

Batch
565 35 0.80 60.0 61.0 - 0.18 m

3
/kg VS added

Chae et al. (2008) Manure Slurry Stirred Batch 1 25 - 20.0 44.0 - 0.33 m
3
/kg VS added

Chae et al. (2008) Manure Slurry Stirred Batch 1 30 - 20.0 55.0 - 0.39 m
3
/kg VS added

Chae et al. (2008) Manure Slurry Stirred Batch 1 35 - 20.0 61.0 - 0.40 m
3
/kg VS added

Ferrer et al. (2009)
Manure Slurry + 

Water
Batch 225 23 - 80.0 - 0.07 0.01 m

3
/kg VS added

Ferrer et al. (2009)
Manure Slurry + 

Urine
Batch 225 33 - 80.0 - 0.08 0.04 m

3
/kg VS added

Francese et al. (2000)
Manure Slurry + 

Fish Oil
CSTR 5 30 - 15.0 56.0 0.25 0.16 m

3
/kg VS added

Guo et al. (2012) Manure Slurry CSTR 5 20 - - - 0.24 m
3
/kg ODM

Guo et al. (2012) Manure Slurry CSTR 5 37 - - - 0.28 m
3
/kg ODM

Guo et al. (2012) Manure Slurry Biogas Plant 800000 25 0.60 35.0 - 0.58 0.36 m
3
/kg ODM

Hansen et al. (1998) Manure Slurry CSTR 3 55 - 15.0 - - 0.07 m
3
/kg VS added

Hansen et al. (1998) Manure Slurry CSTR 3 37 - 15.0 - - 0.19 m
3
/kg VS added

Hill et al. (2000) Liquid Fraction
Dispersed 

Growth AF
300 35 3.02 5.0 51.6 - 0.36 m

3
/kg VS added

Hill et al. (2000) Liquid Fraction
Dispersed 

Growth AF
300 35 5.01 3.0 42.6 - 0.30 m

3
/kg VS added

Hill et al. (2000) Liquid Fraction
Dispersed 

Growth AF
300 35 7.50 2.0 34.5 - 0.22 m

3
/kg VS added

Kaparaju et al. (2005)
Manure Slurry +   

Potato Tuber
CSTR 3.5 35 2.00 26.0 - 0.53 0.32 m

3
/kg VS added

Kaparaju et al. (2005) Manure Slurry CSTR 3.5 35 2.00 44.0 - 0.22 0.14 m
3
/kg VS added

Lansing et al. (2010)
Manure Slurry + 

Cooking Grease
Tubular PE Bags 250 26 0.78 40.0 95.4 0.46 0.31 m

3
/kg VS added

Masse et al. (2000) Manure Slurry ASBR 40 17 2.30 28.0 77.0 - 0.26 m
3
/kg VS added

Masse et al. (2000) Manure Slurry ASBR 40 17 2.30 28.0 77.0 - 0.21 m
3
/kg VS added

Masse et al. (2003) Liquid Fraction ASBR 42 10 1.10 15.0 45.4 0.10 0.08 m
3
/TCOD added

Masse et al. (2003) Liquid Fraction ASBR 42 20 1.20 15.0 54.2 0.35 0.27 m
3
/TCOD added

Moller et al. (2004) Manure Slurry Batch 1.1 35 - - - - 0.36 m
3
/kg VS added

Moller et al. (2004) Manure Slurry Batch 1.1 35 - - - - 0.28 m
3
/kg VS added

Moller et al. (2007) Manure Slurry 1-stage LS 130 53 4.00 23.1 52.0 - 0.32 m
3
/kg VS added

Moller et al. (2007) High Solids Mix 2-stage HS 130 53 4.00 23.3 44.0 - 0.20 m
3
/kg VS added

Pagilla et al. (2000) Manure Slurry 1-stage 10 37 - 15.0 - - 0.25 m
3
/kg VS added

Pagilla et al. (2000) Manure Slurry 2-stage 10 37 - 15.0 - - 0.39 m
3
/kg VS added

Table 2.  Summary of biogas and methane production data for swine manure. 

2
2
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m
3 
CH4/kg VS added for sows and pigs, respectively. Another study conducted by Moller et 

al. (2007) sought to enhance the methane yield of the digestion process by comparing the 

performance of swine manure slurry with solids enriched swine manure. The experiment was 

performed in pilot digesters held at temperatures in the thermophilic range. The high solids 

mix went through a two-stage system while the low solids mix only went through one stage. 

The high solids mix produced 0.20 m
3
 CH4/kg VS added compared to a much larger value of 

0.32 m
3
 CH4/kg VS added for the low solids mix. Pagilla et al. (2000) also used a multistage 

approach for the comparison of swine manure performance in mesophilic digestion 

conditions. In this case, the single-stage reactor produced 0.25 m
3
 CH4/kg VS added while 

the two-stage system produced 0.39 m
3
 CH4/kg VS added. These research groups illustrated 

important differences in the digestibility of feed in different animals, as well as the resulting 

effects on the solids content and substrate availability in the manure. Also, the results 

indicated that the solids concentration of the manure slurry and the level of hydrolysis 

occurring in the system had important effects on biogas production. 

A number of studies represented in Table 2 illustrate the importance of system 

operating conditions in optimizing biogas production. A novel reactor setup was explored by 

Hill et al. (2000) in using a dispersed growth anaerobic fermentation reactor to digest the 

liquid fraction of swine waste at different hydraulic retention times (HRTs). This study 

sought to better understand the reactor conditions that would cause a bacterial washout or 

organic overloading. The results showed that at HRT values of 5, 3, and 2 days, the reactor 

yielded 0.36, 0.30, and 0.22 m
3
 CH4/kg VS added, respectively, at 35°C. Another group 

(Masse et al., 2000) researched the performance of a sequencing batch reactor (40 L) at the 

psychrophilic temperature range while investigating the effect of antibiotics on the system. 

This study yielded values of 0.21 and 0.26 m
3
 CH4/kg VS added for different test runs with 

this setup. In a follow-up study, Masse et al. (2003) invested the effects of temperature 

fluctuations on the methane production of a similar reactor setup. In this study, the system 

produced 0.08 m
3
 CH4/TCOD added at 10°C and 0.27 m

3
 CH4/TCOD added at 20°C. 

Biogas production of swine manure has also been evaluated by various groups in 

pilot-scale and industrial-scale applications. Andara et al. (1999) conducted a study that 

characterized the organic stabilization of the solid fraction of swine manure in pilot scale 

reactors. The temperature within the reactor was maintained at the mesophilic temperature 
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range, and the organic loading rates were controlled for both stirred and non-stirred reactors. 

The biogas production efficiency was similar for both reactors, yielding 0.17 and 0.18 m
3
 

methane gas per kg volatile solids (VS) added to the system for the stirred and unstirred 

reactors, respectively. Ferrer et al. (2009) investigated the biogas production of swine manure 

in low-cost setup with limited resources in order to analyze the feasibility of a pilot scale 

digester in a developing country. Dry manure was diluted with urine (to measure the 

performance of a less water-dependent process) and compared with manure diluted with 

water. The low-cost reactors were sized at 225 L and held at ambient temperatures within a 

greenhouse to save on heating costs. The cumulative gas production from the pilot scale 

reactor for each setup was 0.01 m
3
 CH4/kg VS added for the water dilution and 0.04 m

3
 

CH4/kg VS added for the urine dilution. These values are relatively low when compared to 

other studies reviewed in this section. Another study conducted by Guo et al. (2012) 

evaluated the performance of an agricultural biogas plant in China supplied with solid pig 

manure collected from a farm nearby. The plant consisted of four large reactors (250 m
3
) fed 

semi-continuously with the organic dry matter (ODM) after it was diluted slightly. The 

biogas plant itself produced 0.36 m
3
 CH4/kg ODM, while 5 L bench-scale reactors produced 

comparative gas production rates of 0.24 m
3
 CH4/kg ODM at 20°C and 0.28 m

3
 CH4/kg 

ODM at 37°C.  

A number of other groups have attempted to mix swine manure with other organic 

additives, in a process termed “co-digestion.” Francese et al. (2000) co-digested swine 

manure with fish oil waste and bentonite from an oil filtration process. The experiment was 

conducted in a 5 L CSTR, yielding 0.25 m
3
 biogas/kg VS added and 0.16 m

3
 CH4/kg VS 

added. Another study by Kaparaju et al. (2005) compared the co-digestion of swine manure, 

potato tuber, and associated waste with the digestion of swine manure alone. This study 

showed that the co-digested manure was able to produce 0.32 m
3
 CH4/kg VS added, while 

the isolated manure produced 0.14 m
3
 CH4/kg VS added. Finally, Lansing et al. (2010) 

studied the co-digestion of swine manure with cooking grease in tubular polyethylene (PE) 

bags. The reactors in this low-cost application were able to produce 0.31 m
3
 CH4/kg VS 

added. 
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Barn-scale Reduction of Methane Emissions 

It is also important to mention that many research groups have investigated the 

reduction of methane emissions from manure storages on a barn scale. Berg et al. (2006) 

found that the most effective way to reduce methane emissions from swine slurry in a 

laboratory setting was to acidify it by adding organic acid combined with various coverings, 

recommending pH values below 6.0 to significantly reduce methane gas emissions. Ottosen 

et al. (2009) also saw a significant reduction in methane gas emissions after acidifying 

manure samples. Martinez et al. (2003) were able to achieve methane reductions of 20-100% 

by employing techniques such as mechanical separation, dilution, chemical addition, and 

aeration prior to storage. Other research groups have investigated ventilation strategies to 

maintain lower temperatures in the barn throughout the year, more frequent slurry removal 

and cleaning of pits to prevent formation of extensive bacterial communities, and alternative 

solids handling strategies (Haeussermann et al., 2006, Laguë, 2003). 

One important group of chemicals that have been used to mitigate methane emissions 

from animal manures are ionophores, most commonly in the form of monensin. These 

antibiotics deplete microbial populations by attaching themselves to the lipid bilayer of the 

cell membranes, causing a depletion of energy production and cell death (Russell and 

Strobel, 1989). On a larger scale, ionophores can significantly affect the microbial 

community within manure storages, and disrupt methane generation. However, the effects of 

antibiotic addition are relatively short-lived due to the development of resistance to the 

antibiotics, making such a solution only temporary (Massé et al., 2000, Kebreab et al., 2006). 

 

CONCLUSIONS AND RESEARCH IMPLICATIONS 

Foaming in deep pit swine manure storages is a growing problem with serious 

implications for the effective storage of manure and overall safety in swine facilities. In this 

way, a better understanding of the exact mechanism of foam formation and the most 

prevalent factors that contribute to that formation is very desirable. As was mentioned 

throughout this review, however, the existing literature available in this topic area is limited. 

The complexity of anaerobic systems and the dynamic nature of their physical, chemical, and 

biological constituents contribute to the continued speculation with respect to foam 
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accumulation in various anaerobic environments. In addition, it was shown that 

comprehensive testing procedures are often difficult to develop and implement. 

Despite a general lack of certainty regarding the mechanism of foaming in anaerobic 

systems, an understanding of foaming systems as three-phase systems was shown to be 

helpful in understanding foam theory. In this way, a more extensive database of knowledge 

about foam formation in municipal anaerobic digesters was able to contribute to the general 

knowledge of foaming anaerobic systems and how that knowledge may apply to deep pit 

manure storages. In order to move from the general three-phase system framework presented 

in this review toward a specific solution to foaming deep pits, much research is needed to 

address specific knowledge gaps in this area. These research needs and knowledge gaps are 

listed below in question form: 

 What specific substances are acting as surface acting agents in deep pits? Are they 

derived from the feed components, other external inputs into the pit, or biological 

processes within the pit? 

 What specific substances are serving to stabilize foam produced on the surface of the 

deep pit? Is it a microbiological phenomenon, or is some other hydrophobic solid 

stabilizing the foam? 

 Is the methane production capacity of foaming pits enhanced when compared to non-

foaming pits? If so, why is this the case? 

 Is there a practical, cost-effective, and environmentally friendly means to remediate 

foam accumulation in deep pits? 
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CHAPTER 3 

 

 AN EVALUATION OF THE PHYSICOCHEMICAL AND BIOLOGICAL 

CHARACTERISTICS OF FOAMING SWINE MANURE 

 

Modified from a paper to be submitted to the Journal of Environmental Quality 
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Abstract. Foam accumulation on deep pit manure storages is an increasing concern for 

swine producers because of the logistical and safety-related problems it creates. To 

investigate this phenomenon, samples of swine manure were collected from over 50 swine 

production facilities in Iowa with varying levels of foam accumulation over a 13-month 

period. Samples were tested for a number of physical, chemical, and biological parameters 

including temperature, pH, total and volatile solids, volatile fatty acid concentration, 

biochemical methane potential, methane production rate, surface tension, foaming capacity 

index, and foam stability. Statistical analysis indicated that manure collected from facilities 

with foam accumulation produced methane at significantly (p < 0.05) faster rates than non-

foaming manures (0.148 ± 0.004 and 0.049 ± 0.003 L CH4 L slurry
-1

 day
-1

 respectively, 

average ± standard error), and consequently had significantly (p < 0.05) greater fluxes of 

biogas moving through the manure volume. The biochemical methane production assay 

suggested that manure from foaming pits had less potential to generate methane (123 ± 9 mL 

CH4 g VS
-1

) than non-foaming pits (150 ± 9 mL CH4 g VS
-1

) while VFA concentrations were 

significantly lower in foaming pits (4200 ± 570 mg kg
-1

) than non-foaming pits (9470 ± 730 

mg kg
-1

). These assays suggest enhanced anaerobic digestion efficiency from foaming barns. 

Other assays such as surface tension and foaming capacity indicated the accumulation of a 

surfactant at the manure-air interface of foaming deep pits, which may be capturing biogas 

bubbles generated within the manure. 
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INTRODUCTION 

In past three to five years, there have been increased reports of foam accumulation on 

the surface of deep pit swine manure storages in the United States and Canada. This foam is 

concerning from an operational standpoint, as foam reduces useable manure storage space, 

forcing farm managers to pump manure out of the pits more frequently. There are also 

serious safety concerns, as the foam traps the gasses produced by methanogens in the manure 

slurry, yielding potentially explosive concentrations of methane after collapses of the foam 

layer (Moody et al., 2009). Examples of this foam are shown in Figure 1. In general, foam 

observed in the field is a dark-brown or gray, solids-rich, viscous fluid with mid-sized 

bubbles entrained throughout (Robert et al., 2011). This description is consistent with that of 

biological foams occurring in municipal wastewater treatment plants (Di Bella et al., 2011). 

Observation of the facilities monitored in this study indicated that the amount of foam 

accumulation and appearance varied by month. For example, surface accumulation in the 

winter months was much more condensed, i.e., more liquid with fewer gas bubbles entrained, 

than the foam accumulation observed in the late fall, which were often frothier, with larger 

bubbles. 

                                          (a)                                                            (b)                                       (c) 

Figure 1. (a) Biological foam accumulation on the surface of a deep pit storage system in Central Iowa, (b) a 

sample of foam taken from a swine finishing barn in Central Iowa, and (c) foam distribution of a sample after 

aeration. 
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Davenport et al. (2008) describe a useful means of characterizing the production of 

foam in wastewaters as a three-phase system, requiring a gas, liquid, and solid phase. In this 

system, the gas phase is a result of biogas production due to decomposition of organic 

materials, which releases methane and carbon dioxide, along with other traces gasses such as 

hydrogen sulfide, ammonia, and volatile organic compounds. Bubble entrainment and 

accumulation occurs when surface-active agents (surfactants) are present and lower the 

surface tension sufficiently (Glaser et al., 2007; Davenport et al., 2008), and solids in the 

form of hydrophobic substances stabilize the foam by preventing liquid drainage from the 

bubbles (Bindal et al., 2002; Horozov, 2008; Heard et al., 2009). The sustained presence of 

foam occurs only after all aspects of this three-phase system are present within the 

appropriate range for the production and stabilization of foam. This study uses this 

framework to conceptualize foaming of deep pit manure storages. That is, the laboratory tests 

selected and performed on manure samples were chosen to evaluate these aspects and 

identify the mechanism of foam accumulation in deep pits. 

We hypothesized that samples collected from barns with existing foam layers would 

exhibit significantly different values for key parameters such as the rate of biogas production, 

the concentration of critical substrates including short-chain fatty acids, and the solids 

distribution within the pit. In addition, we speculated that the lab-scale foaming capacity and 

stability test would successfully model the foaming activity of the deep pit manure storages 

studied, reinforcing the trends shown by the other parameters measured in this study. 

Moreover, foaming capacity may provide information on which parameters my play or role 

in foam formation when the required gas production wasn’t present within the manure during 

storage. 

 

MATERIALS AND METHODS 

Samples of swine manure were obtained from over 50 swine finishing facilities in 

Central and Southeastern Iowa. At each site, samples were taken from the same pump out 

location once a month for 13 months. Samples were extracted from multiple depths of the 

deep pit depending on the total depth of manure in the pit at the time of sampling. These 

depths were designated with letters A through D, as illustrated in Figure 1. The letter “A” 

corresponded to the foam layer itself, “B” represented the thin liquid layer at the interface of 
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the manure slurry and the surface, and “C” and “D” designated descending depths of the deep 

pit, with the “C” designation representing manure 61 cm (24 inches) below the surface and 

the “D” designation representing manure 122 cm (48 inches) below the surface. Throughout 

this paper, these various depths are referred to as “strata.” 

 

Figure 2. Schematic illustrating the sampling depth designations used during the field sampling. 

 

The total depth of manure in the pit and the height of surface accumulation were 

measured on site by measuring markings on the sampling pole. In addition, the temperature 

of the manure at each facility was measured with a digital temperature probe from a sample 

collected six inches from the bottom of the pit. The pH of the manure was measured within 

one day of collection (EPA SW-846, Method 9040C). 

 

Total Solids and Volatile Solids 

The total and volatile solids contents of manure samples were tested according to the 

Standard Methods for the Examination of Water and Wastewater 2540B and 2540E (APHA, 

2000). In brief, approximately 30 mL of well-mixed manure sample was poured into a pre-

weighed porcelain dish and mass recorded. The crucible was oven dried at 104°C for 24 h 

and weighed again for dry weight of the manure, and heated in a muffle furnace at 550
°
C for 
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12 h, weighed again for ash content. Both total solids and volatile solids were reported as a 

percentage of sample mass. 

 

Short-Chain Fatty Acid Analysis 

The concentration of short-chain fatty acids was determined using a modified 

procedure reported in Webber et al. (2010). In brief, approximately 5 g of the sample was 

added to 15 mL centrifuge vial, centrifuged at 21,000 x g for 23 min at 4°C, supernatant 

removed, and acidified to pH 2-2.5 using 100 μL of concentrated phosphoric acid. One mL 

was added to a 20 mL headspace vial salted with 0.3 g of NaCl and sealed. 

Samples were loaded into a GC-FID (flame ionization detector) system (Agilent 

7980, Agilent Technologies, Inc., Wilmington, DE), equipped with robotic autosampler 

(MPS2A, Gerstel Inc., Linthicum, MD) and HP-FFAP column (30 m × 0.25 mm × 0.25 μm; 

Agilent Technologies) using solid phase microextraction (SPME) headspace analysis. The 

samples were heated for 15 min at 70°C and extracted 5 min with SPME fiber 

(Carbowax/Divinylbenzene fiber, Supelco, Inc., Bellefonte, PA) prior to injection into the 

GC-FID system. The GC parameters were set as follows: splitless mode; inlet temperature, 

230°C; inlet pressure, 169 kPa; septum purge flow, 30 mL min
-1

; constant column flow 1 mL 

min
-1

 (helium); and detector temperature, 300°C. The GC oven temperature program was 

initial temperature, 100°C, 2 min hold; ramp of 10°C min
-1

 to the final temperature of 240°C, 

hold for 2 min. All calibration standards were based on external calibration. 

 

Long-Chain Free Fatty Acid Analysis 

Long chain free fatty acids were extracted from manure using stir bar sorptive 

extraction (SBSE) techniques. In brief, 1 g of manure sample was added to 20 mL headspace 

vial containing 10 mL of a pH 2 water:acetone solution (80:20 vv) containing a sorptive stir 

bar (Twister™ stir bar, Gerstel, Inc.). The headspace vial was placed on a heated 

(approximately 50
°
C) stir plate (Corning) set at 1 revolution s

-1
 and incubated for 2 h. 

Following incubation, SSB were removed, cleaned with HPLC grade water, and dried. 

The SSB were analyzed by thermal desorption GS-MS analysis. In brief, SSB were 

placed into GC-MS system (Agilent 6890 GC with 5975N MSD, Agilent Technologies, Inc.) 

equipped with thermal desorption unit (Model TDU, Gerstel, Inc.), robotic autosampler 



37 

 

(MPS2, Gerstel, Inc.), cooled inlet (CIS4, Gerstel, Inc.), and 30 m ZB-35 column 

(Phenomenex, Torrance, CA).  Sorptive stir bars were thermal desorbed with the following 

parameters: splitless mode; initial temperature, 200
°
C; final temperature, 350°C (hold 3 min); 

ramp, 220°C min
-1

; and heated transfer line set at 320°C. The cooled inlet used glass beads 

and was operated under solvent vent mode with a column flow of 1 mL min
-1

 and solvent 

vent set at 100 mL min
-1

 for an effective split of 100:1. The inlet was operated at 450°C in 

for 2 min for each sample. The GC oven temperature program was the following: initial 

temperature, 100°C; 0.5 min hold; ramp of 25°C min
-1

; final temperature of 360°C, hold for 

2 min. All calibration standards were based on external calibration. 

The MSD was operated with source set at 203°C and MS quads set at 150°C using 

SIM (selective ion monitoring)/Scan mode. Scan mode was set for 32-550 amu with a 

solvent delay of 2 min and the SIM mode was set with the following time windows, ions for 

select target compounds:  1) Group 1 time 2-4 min, for 60, 129. 172 (decanoic acid); 2) 

Group 2 time 4-5 min, for 60, 129. 186 (undecanoic acid); 3) Group 3 time 5-5.8 min, for 60, 

129. 200 (dodecanoic acid); 4) Group 4 time 5.8-6.3 min, for 60, 129. 214 (tridecanoic acid); 

5) Group 5 time 6.3-6.6 min, for 60, 129. 185, 228 (tetradecanoic acid); 6) Group 6 time 6.6-

7.1 min, for 60, 129. 199, 242 (pentadecanoic acid); 7) Group 7 time 7.1-7.5 min, for 60, 

129. 213, 256 (hexadecanoic acid); 8) Group 8 time 7.5-8 min, for 60, 129. 227, 270 

(heptadecanoic acid); 9) Group 9 time 8.0-8.5 min, for 60, 129. 241, 284 (octadecanoic acid); 

10) Group 10 time 8.5-8.6 min, for 60, 129. 298 (nonodecanoic acid); 11) Group 11 time 8.6-

14 min, for 60, 129. 314, 326, 340, 354, 368 (eicsanoic acid). 

 

Biochemical Methane Potential Assay 

The biochemical methane potential (BMP) defines the anaerobic biodegradability of a 

given material (Owen et al., 1979). Specifically, the BMP test gives the total volume of 

methane a substrate (in this case the manure) is able to produce. Samples with higher 

biochemical methane potential indicate a greater ability for microbes to convert the specific 

substrate into biogas. The procedure in assessing the BMP of a swine manure samples 

collected for this study was to add 20 to 25 g of a sample to a 250 mL serum bottle (Wheaton 

Science Products No.:223950), with the exact mass recorded. This mass of sample was 

selected based on an estimated 300 mL of CH4 produced per gram of volatile solids added as 
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suggested by others (Hashimoto, 1984; Burton and Turner, 2003; Vedrenne et al., 2008), who 

suggested a range from 244 to 480 mL CH4 per gram volatile solids in swine manures. Next, 

50 mL of inoculum was added from an active anaerobic digester maintained in the 

Agricultural Waste Management Laboratory (AWML) at Iowa State University. This volume 

of inoculum was added to achieve an approximate 2:1 mass ratio of volatile solids from the 

manure to inoculum, with the actual ratio varying slightly due to the volatile solids content of 

the manure samples. The solution are diluted to approximately 150 mL with a nutrient 

medium (Moody et al., 2011) and sealed with a sleeve stopper septa (Sigma-Aldrich 

Z564729). 

Once the sample was prepared, it was incubated at 35°C while being constantly 

agitated. The samples were regularly checked for biogas production by inserting the needle 

of a gas-tight syringe (Micro-Mate interchangeable hypodermic Syringe 50cc Lock Tip, 

Popper & Sons, Inc. New Hyde Park, New York) through the septa. When biogas was 

collected, it was injected into a non-dispersive infrared methane analyzer (NDIR-CH4 

Gasanalyzer University Kiel, Germany) to obtain the percent of methane present in the gas 

sample. Results were evaluated based on methane produced per gram of sample as well as 

methane production per gram of volatile solid added (Moody et al., 2011). 

 

Methane Production Rate Assay 

The goal of the methane production rate (MPR) assay is to provide a short-term 

methane production measurement with a relatively simple procedure. The test indicates the 

rate at which indigenous bacteria produce methane, which gives a measure of current 

methanogenic activity. While the methane production rate test is similar to the BMP assay, it 

is unique in a number of ways. First, the test is conducted over a much shorter incubation 

time (approximately 3 d compared to over 40 d for the BMP assay) to ensure that the sample 

does not approach substrate limiting conditions and microbial conditions are similar to those 

in the pit at the time of sampling. Also, the manure sample used for the MPR assay was not 

inoculated or diluted; rather, the ability of bacteria present within the sample to produce 

biogas and methane was evaluated. Finally, the sample was incubated at room temperature 

rather than at 35°C, and kept stationary rather than agitated. Keeping the sample stationary 
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allowed the observer to record the amount of surface accumulation, foam or otherwise, that 

developed on the sample.  

The procedure for the MPR test involved adding approximately 100 mL of well-

mixed sample to a 250 mL serum bottle similar to that used for the BMP assay. Upon the 

sealing of the sample with a sleeve stopper septa, the exact time was recorded along with the 

mass of sample added to the bottle. Next, the sample was incubated at room temperature 

(approximately 23°C). An incubation period of approximately 3 d was selected based on 

preliminary trials to achieve measureable quantities of biogas and methane. Once the 3-d 

incubation period was over, the sample was checked for biogas production with the gas-tight 

syringe and analyzed for methane content using the NDIR-CH4 Gasanalyzer. During the 

analysis of the biogas produced, the accumulation of foam or solids on the surface of the 

sample was observed and recorded.  

The rate of biogas production and the rate of methane production were calculated 

using Equations 1 and 2. 
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Temperature Correction of the MPR and Biogas Flux Estimates 

The methane production rate assay is performed at room temperature; however, a 

method to adjust the measured MPR to that expected at the in situ temperature of the manure 

pit was required. Batista et al. (2013) used the Arrhenius equation to model the impact of 

temperature on methane production rate. This equation was used to adjust the methane 

production rate values measured in the AWML at 23°C to the in situ pit temperature recorded 

during field sample collection. The temperature adjusted values were averaged across layers 

of manure collected during sampling (with the exception of the foam or crust layer) to attain 

an average MPR for each facility each month. In order to calculate the methane flux, the 

average, temperature-corrected MPR was multiplied by the recorded depth of manure for the 

pit. The flux was converted appropriately to give units of liters of methane per area per time 

in L CH4 m
-2

 d
-1

. 
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Surface Tension 

Surface tension is an important parameter, which quantifies the impact of surface 

active agents present in solution. With respect to foaming systems, solutions with sufficient 

concentrations of surface active agents effectively lower the surface tension by increasing 

surface activity, allowing foam production (Ganidi et al. 2009). However, if the surface 

tension is reduced too much, the foam bubbles will pop due to the reduced strength of the 

bubble film. The surface tension of samples was tested using the CSC Precision Ring 

Tensiometer (CSC Scientific Company, Inc., Fairfax, VA). Samples were brought to room 

temperature and agitated gently before pouring into the sample tray. Next, the duNouy ring 

was placed below the surface of the liquid. The ring was slowly pulled upward through the 

surface of the liquid until it overcame the surface tension of the sample. The force needed to 

break the liquid interface was recorded directly off the circular scale of the instrument as 

dyne cm
-1

 (equivalent to mN m
-1

), and reported in N m
-1

. 

 

Foaming Capacity and Stability Testing 

The foaming capacity and stability apparatus used in this study, as well as the 

parameters used to evaluate the foaming characteristics of swine manure, was modified from 

other researchers (Ross and Ellis, 1992; Bindal et al., 2002; Hutzler et al., 2011). In brief, air 

was passed through an in-line gas regulator (Restek Model 21666) into a 5.1-cm diameter 

clear PVC column, and the flow rate of air through the column was measured and controlled 

with a variable area flow meter (Dwyer RMA-SSV). A sample volume of approximately 300 

mL was poured into the column and the initial level was recorded. The sample was then 

aerated through a cylindrical air stone at 0.2 L min
-1

 until a steady state height of foam was 

reached or the foam layer reached the maximum height of the column (approximately 33 cm 

above the initial liquid level). The time of aeration was recorded along with the height of 

foam produced and the level of the foam-liquid interface. A foaming capacity index was 

calculated as the height of foam produced divided by the initial manure level and multiplied 

by 100 (based on our apparatus, maximum measureable foaming capacity was approximately 

250). 

The foam stability measurement occurred immediately after the foaming capacity was 

determined. Once aeration ceased, the height of foam became the initial level recorded at 
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time zero. Once this level was established, the descending height of the foam was recorded at 

expanding time intervals. Simultaneously, the ascending level of the foam-liquid interface 

was recorded at the same time intervals. The descending height of foam was normalized to 

percent of initial foam height and plotted as a function of time. A first-order exponential 

decay model fit the data well in most cases, and was used to estimate the half-life of the foam 

from the time constant as shown in Equation 3. 
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Statistical Analyses 

Statistical analysis was performed using JMP Pro 10 (JMP Pro, Version 10. SAS 

Institute Inc., Cary, NC, 1989-2012). Fixed factors were established according to data 

collected on site, including the surface condition (foaming or non-foaming) and the stratum 

the manure was collected from (A, B, C, or D). The month during which samples were 

collected was treated as a random factor. The interaction of surface condition and sampling 

strata was also considered, however interactions with the random variable month were 

pooled to error. 

 

RESULTS AND DISCUSSION 

Monthly temperature trends of manure from both foaming and non-foaming barns are 

shown in Figure 3. A statistical analysis with site as a random variable, surface as a fixed 

effect, month as a fixed effect, and the surface x month interaction as a fixed effect indicated 

that month, surface status, and the surface status x month interaction were all significant (p < 

0.01). In this case, the significant interaction indicated that pits with different surface 

conditions tended to warm and cool at different rates, most notably during the months of 

October through April. The differences during this period could have been caused by foam 

serving as an insulator, slowing heat loss from manure to exhaust air. Trabue and Kerr (2014) 

identified a similar effect in manure tanks used in feeding trials, noting that tanks with 

crusting and surface accumulation tended to be warmer than those without crust, due to the 

crust insulating the manure as colder ventilation air passed over the manure surface. 

Additionally, there was a strong seasonal pattern, with pits warmest in September (22.1 and 

22.0°C for foaming and non-foaming pits, respectively) and coolest in February (12.7 and 
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10.9°C for foaming and non-foaming pits, respectively). Temperature differences within the 

pit influence the metabolic activities of the microbial community, the gas transfer rates, and 

the settling characteristics and hydrolysis of solids (Tchobanoglous et al., 2003). Increased 

temperatures in foaming deep pits during the winter and spring months may increase the 

ability of the microbes to hydrolyze and consume substrate, which may enhance the transfer 

of biogas and hydrophobic matter to the surface of deep pits. 

 

Figure 3. Manure pit temperatures taken from the bottom of the pit for foaming and non-foaming barns by 

month. Error bars represent the standard error of the mean for the month*surface type interaction, with 

differences between surface types tested at α=0.05. 

 

An analysis of variance for pH was conducted by considering barn identification, 

barn surface status (foaming or non-foaming), month, sampling depth (stratum), and the 

interaction of surface status x stratum as fixed factors. The ANOVA indicated that there were 

significant effects associated with barn identification (p < 0.01), surface status (p < 0.01), 

month (p < 0.01) and the surface status x month interaction (p < 0.05), but no effect for 

stratum.. The results (Figure 4) indicated that the pH of foaming barns was more basic (pH = 

7.68) than for non-foaming barns (pH = 7.51). The significance of the surface status x strata 

interaction was entirely due to pH differences between strata in foaming barns, specifically 

the A strata, while no differences by strata existed for non-foaming barns. In foaming barns, 

the foam accumulation itself tended to be more basic (7.74 on average) when compared to 

manure at lower depths (7.63, 7.66, and 7.68 for layers B, C, and D respectively). This 

difference is likely a result of entrapment of ammonia in foam layer which would affect pH 
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(Snoeyink and Jenkins, 1980). No statistical differences by strata were found for non-

foaming pits. 

 

Figure 4. Manure pH by average over all month sorted by stratum and surface condition. Error bars represent 

the standard error of the mean for the surface status*stratum interaction. Letters are used to denote significant 

differences (α=0.05). 

 

Total solids and volatile solids contents were strongly correlated to each other, with a 

regression of total solids and volatile solids indicating that total solids concentration 

explained 99% of the variation in volatile solids content. Also, a relatively consistent fraction 

of solids were volatile (75.0% ± 6.8%, average ± SD). A statistical model with sample 

month, surface condition, and stratum as factors failed to detect a significant difference in 

solids content with surface condition, but did find differences with strata (p < 0.01) and 

similarly with volatile solids (p < 0.01). Figure 5 shows total solids and volatile solids 

concentrations of samples collected from all facilities over 13 months based on the depth at 

which they were sampled. The graph shows that nearly all strata were significantly different 

from each other, with increasing solids concentrations as sampling depth was increased and a 

relatively solids-rich foam layer in sites with surface accumulation. 

The average short-chain fatty acid (SCFA) concentrations for various sampling 

depths of selected samples are shown in Figure 6 for both foaming and non-foaming pits. Of 

the total SCFA concentration, acetic acid was the dominant component (52% of total on 

average). The total SCFA concentration in non-foaming barns was on average greater than 

that of foaming barns at every depth, with the average SCFA concentrations of foaming 

barns greatest at the surface layer and gradually decreasing at greater depths of the pit. The 

statistical model indicated that the impact of surface (p < 0.01) and month (p < 0.01) were 
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significant, and that strata the surface status x stratum interaction was not significant. The 

overall results show that foaming barns had significantly lower SCFA concentrations (4009 

μg g
-1

) than non-foaming barns (8301 μg g
-1

). Also, the ratio of acetic acid to propanoic acid 

was significantly (p < 0.05) higher in the foam itself than in the slurry layer of foaming and 

non-foaming barns, which agrees with a study done by Sakauchi and Hoshino (1981) where 

this same ratio was higher in rumen fluid from bloated steers than healthy steers. 

 

 

Figure 5. Total solids and volatile solids content for every sample taken over the 13-month trial period at 

various sampling depths (A=foam layer, B=surface interface, C=0-24” below surface, D=24-48” below 

surface). Differences tested at α=0.05 show differences in total solids (capital letters) and volatile solids (lower-

case letters) with respect to strata. 

 

 

Figure 6. Average total VFA concentrations of foaming and non-foaming samples by sampling depth (A=foam 

layer, B=surface interface, C=0-24” below surface, D=24-48” below surface). Letters show statistical 

differences between foaming and non-foaming samples tested at α=0.05. 
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The BMP assay provided an estimate of the potential methane production a material 

could generate under ideal digestion conditions. Previous research by Moody et al. (2011) 

suggests that swine manure slurry taken from a deep pit should have an approximate methane 

production potential of 132 mL CH4 g VS
-1

. On average this group found a methane 

production potential of 145 mL CH4 g VS
-1 

across all samples collected. A statistical analysis 

was performed to evaluate the impact of surface status, sampling month, and strata. Results 

from the analysis indicated that only surface was significant (p < 0.01). A graph comparing 

the biogas production potential foaming and non-foaming samples is shown in Figure 7. The 

significant difference in remaining biochemical methane production potential between 

foaming and non-foaming barns could indicate that foaming barns are operating as more 

effective anaerobic digesters than non-foaming barns as more of the potential for methane 

production has already been consumed. The difference in biochemical methane production 

potential between the foaming and non-foaming manures was attributed to their differences 

in VFA concentrations. 

 

Figure 7. Average biochemical methane potential of foaming and non-foaming samples. Error bars represent 

the standard error of the mean. The statistical difference shown was tested at α = 0.05. 

 

Results for the methane production rate test showed differences between barns that 

exhibited foaming characteristics during sampling and those with no foam accumulation. 

Trends for foaming and non-foaming barns by month are shown in Figure 8. The MPR of 

samples from foaming barns was significantly higher (p < 0.01) than those from non-foaming 

barns for all sampling months. The statistical analysis shows that both sampling month and 
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surface type were significant (p< 0.01), while the sampling depth was not. These results 

provide a contrast to the cumulative gas production potential of the samples described in the 

previous paragraph. Taken together, the results of the BMP and MPR tests suggest foaming 

pits are serving as more effective anaerobic digesters than non-foaming pits. This may mean 

that foaming samples have a more developed microbial community, which is able to more 

quickly convert consumable substrate into biogas. 

 

Figure 8. Average methane production rate of foaming and non-foaming samples over 13 sampling months. 

Error bars represent the standard error of the mean. The statistical differences shown were tested at α=0.05. 

 

The conversion of MPR values reported during bench top experiments to values 

adjusted for in situ temperature of deep pits made a significant impact on the monthly trends 

for the gas phase of studied systems. The average methane flux of foaming and non-foaming 

barns is shown in Figure 9. The methane flux values from each facility were derived from a 

temperature-corrected term averaged across sampled strata (as described in the methods 

section), which yielded a more intuitive line reflecting the temperature effects of the 

sampling month when compared to that in Figure 8. At the same time, the curves in Figure 9 

continue to reflect the enhanced rate at which samples from foaming barns produced 

methane. Most notably, the enhanced flux of biogas occurred in pits during the summer and 

early fall, which mirrors temperature trends shown in Figure 3. The month of August 

seemingly interrupts this trend, but the number of samples collected during this month was 

significantly reduced due to logistical reasons, which altered the typical set of deep pits that 

were sampled. 
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Figure 9. The average methane flux for foaming and non-foaming facilities over the 13-month sampling period. 

Error bars show the standard error of the mean. Letters show statistical differences between surface statuses 

within each month at α=0.05. 

 

The results of the surface tension measurements are shown in Figure 10. Statistical 

analysis showed that both surface type and strata were significant (p < 0.05 and p < 0.01, 

respectively), while the surface type x strata interaction was not. As a whole, the average 

surface tension of non-foaming samples was lower than that of foaming samples 

(0.0495±0.0006 N m
-1

 and 0.0515±0.0006 N m
-1

). In this case also, the surface tension was 

once again related to SCFA concentration, which had a significant effect (p < 0.01). When 

the SCFA concentration is included in the analysis as a covariant, no differences between the 

surface tension of manures from foaming and non-foaming barns were found, but the B strata 

still had lower surface tension than either the C or D strata. As a reference for comparative 

purposes, the surface tension of water at room temperature is approximately 0.073 N m
-1 

and 

the surface tension of human urine is 0.059 N m
-1

 (Mills et al., 1988). The surface tension of 

1%, 5%, and 10% acetic acid-water solutions at 30°C are 0.068, 0.060, and 0.055 N m
-1

 

(Lang and Dean, 1967) respectively. All measured values were significantly lower than pure 

water, with the averages within each sample depth lower for non-foaming samples than for 

foaming samples. This may suggest an optimal range of surface tension values that promote 

foaming, but the evidence is inconclusive. 
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Figure 10. The average surface tension for foaming and non-foaming samples at various sampling depths 

(A=foam layer, B=surface interface, C=0-24” below surface, D=24-48” below surface). Error bars show the 

standard error of the mean. Letters are used to denote significant differences between averages (α=0.05). 

 

For the most part, samples from foaming barns showing a significantly greater 

foaming capacity than those from non-foaming barns. Figure 11 suggests that there is a 

relative accumulation of substances that enable foam production at the surfaces of foaming 

barns when compared to non-foaming barns based on the differences due to the surface type 

x stratum interaction (p < 0.05), with samples from the interface of foaming sites showing a 

greater disparity between layers than those collected from non-foaming sites. Foam itself did 

not show an enhanced capacity to foam because of the fact that it was usually very solids-

enriched, which minimized the ability for the foam to expand in the testing apparatus. The 

average foaming indices for samples collected at the interface (B layer) of foaming and non-

foaming facilities are shown in Figure 12. Interestingly, some of the largest differences 

between foaming and non-foaming samples occur during the winter months when surface 

accumulation is lowest in the field. This may support the hypotheses that important 

surfactants and/or foam stabilizers exist in the foam itself, as these substances would have 

been more prevalent in the interface layer during time when foam is depressed. 
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Figure 11. Average foaming capacity index of foaming and non-foaming samples by sampling depth (A=foam 

layer, B=surface interface, C=0-24” below surface, D=24-48” below surface). Error bars show the standard 

error of the mean. Letters are used to denote significant differences between averages (α=0.05). 

 

 

Figure 12. Average foaming capacity index of foaming and non-foaming samples by month. Error bars show 

the standard error of the mean. Letters show statistical differences between surface statuses within each month 

test at α = 0.10. 

 

The corresponding graph representing the half-life of B-layer samples is shown in 

Figure 13. The results of this test showed a greater difference between foaming samples and 

non-foaming samples when compared to the capacity test, suggesting a greater presence of a 

foam stabilizing agent in foaming samples. One sampling month that didn’t reflect these 
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differences was March, during which samples may have been diluted by heavy rainfalls 

during sampling. 

 

Figure 13. Average foam half-life of foaming and non-foaming samples by month. Error bars show the 

standard error of the mean. Letters show statistical differences between surface statuses within each month 

tested at α=0.10. 

 

Another important note is that foam samples showed an outstandingly long half-life 

in this test (1468±18 min for foam samples compared to 105±16 min for B-layer samples 

collected from foaming barns). This disparity reinforces the idea that an important stabilizing 

agent is accumulating at the surface and in accumulation at foaming sites. One hypothesis is 

that LCFAs (long-chain fatty acids) are serving to stabilize biological foams (Jacobson et al. 

2013). Figure 14 shows the results of preliminary LCFA testing and appears to support the 

stated hypothesis. However, LCFAs actual lower surface tension (Chumpitaz et al. 1999), 

which is the opposite of our observations (Figure 10), while LCFAs are more prevalent in the 

upper strata this may reflect the hydrophobicity of the LCFAs. It should be noted that fats 

and LCFAs are expected to accumulate at the surface. However, more work into the nature of 

the surface layer is needed to better understand the nature of the foam layer. 
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Figure 14. Average long-chain fatty acid (LCFA) concentrations in samples collected from the foam and 

interface layers of foaming and non-foaming sites. Error bars show the standard error of the mean. Letters show 

statistical differences between the different sampling depths tested at α=0.05. 

 

CONCLUSIONS 

There are several key observations that can be made with this study’s data over at 13 

month sampling period. First, the testing of the gas phase of foaming systems has proven a 

significantly enhanced rate of methane production of barns with foam accumulation in 

comparison to barns with no foam or crust. At the same time, the biochemical methane 

potential assay has indicated that samples from foaming barns have less potential to generate 

additional methane than those from non-foaming barns per gram of VS. Taken together, 

these three tests indicate that the microbial consortium within samples collected from 

foaming sites enable these systems to function as more efficient digesters; that is, SCFAs in 

foaming deep pits are processed at a greater rate leading to enhanced rates of biogas 

production. The results of the BMP test confirm this assertion as more consumable substrate 

remains in samples collected from non-foaming barns, leading to greater cumulative biogas 

production in a long-term incubation. It was shown to be helpful to correct MPR data to the 

in situ pit temperature at the time of sampling to formulate an average methane flux for each 

facility per month. The resulting monthly flux curve showed an intuitive monthly trend with 

respect to microbial response to seasonal temperature changes. This curve also reinforced the 
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disparity between the biogas production of foaming and non-foaming sites, especially in the 

late summer and early fall. 

Other important physicochemical tests performed in this study show differences in 

the characteristics of foaming and non-foaming manures. The pH of samples collected from 

foaming barns was significantly higher than non-foaming samples at all depths, showing the 

most basic average pH in the foam layer itself which is likely a result of entrapment of 

ammonia. Measurements of the solids content of manure samples also revealed that the foam 

was solids enriched compared to samples in the slurry. Also, the surface tension of foaming 

manures was higher on average than non-foaming manures, with both sets of samples having 

an average surface tension significantly lower than that of water. Finally, data on foaming 

capacity and stability between foaming and non-foaming barns indicated that the surface 

layers of foaming barns showed an increased capacity to foam, suggesting a relative 

accumulation of substances important to foam formation at these sites. In addition, samples 

of the foam itself exhibited substantial stability, showing the presence of a stabilizing agent 

in the foam layer. 
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CHAPTER 4 

 

 THE IMPACT OF CARBOHYDRATE AND PROTEIN SOURCE ON SWINE 

MANURE FOAMING PROPERTIES 

 

Modified from a paper to be submitted to Transactions of the ASABE 
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Abstract. This study explored the impact of swine diet on the physicochemical properties, 

methane production potential, and foaming characteristics of swine manure. Manure 

samples were collected from controlled feeding trials with diets varying in both protein and 

carbohydrate level and source. Protein sources consisted of corn with amino acids, corn-

soybean meal with amino acids, corn-soybean meal, corn-canola meal, corn-corn gluten 

meal, and corn-poultry meal. Carbohydrate sources consisted of corn-soybean meal, barley-

soybean meal, corn-soybean meal-beet pulp, corn-soybean meal-distillers dried grains with 

solubles (DDGS), corn-soybean meal-soy hulls, and corn-soybean meal-wheat bran. Manure 

samples were tested for a number of parameters, including total and volatile solids, methane 

production rate, biochemical methane potential, surface tension, foaming capacity, and foam 

stability. Statistical analyses were performed to evaluate whether different carbohydrate 

and/or protein ingredients affected these physicochemical properties or the manure samples’ 

ability to produce methane gas. No single diet yielded manure with all of the anticipated 

qualities of foaming manure (enhanced biogas production, similar surface tension to known 

foaming manure, and substantial foaming capacity and stability). However, the carbohydrate 

diet manures from the supplemental soy hulls and DDGS diets exhibited higher methane 

production rates (0.95±0.20 and 0.96±0.20 L CH4/kg VS, respectively) and biochemical 

methane potential (322±25 and 269±22 mL CH4/g VS, respectively) when compared to other 

manure types. Also, the soy hull diet yielded manure with an average surface tension that 

was similar to foaming manure, while also showing, along with the manure from the beet 
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pulp diet, a large capacity to foam in the bench-top foaming experiments. Although the soy 

hull diet manure showed the most consistent foam-related characteristics, the methane 

production rate was comparable to manures that did not foam in commercial deep pits, and 

the foam generated in the bench-top experiments did not exhibit a significant ability to 

stabilize. 

Keywords. Anaerobic digestion, foaming, methane production, swine diet, swine manure 

 

INTRODUCTION 

The accumulation of foam on the surface of deep pit manure storages is a serious 

concern for pork producers for a number of reasons. On a practical level, foam accumulation 

can significantly reduce the amount of space available for manure storage, which may force 

farm managers to apply manure during untimely seasonal windows or seek other means of 

manure storage. Foam accumulation also impacts safety at swine facilities. Foam has the 

capacity to trap gases (i.e. methane) produced by the anaerobic decomposition of swine 

manure, and when the foam layer is broken, release of methane is rapid enough for explosive 

concentrations to occur in the barn. Numerous swine production facilities have reported flash 

fires or explosions due to the combination of foam layer breakage and an externally provided 

spark or flame (Moody et al., 2009). 

One conceptual framework that has been used to study the occurrence of biological 

foam in other industries, particularly municipal wastewater treatment, is the evaluation of 

foam as a “three-phase system.” A similar approach will be used here to better understand the 

accumulation of foam in deep pits. Davenport and Curtis (2002) described the “three-phase 

system” framework as useful means of characterizing the production of foam in municipal 

anaerobic digesters. They suggested that the initiation of foam occurs as a result of both the 

gas and liquid phases working together to capture bubbles produced within the system. In 

anaerobic systems, such as deep pit manure storage systems, the gas phase is a result of 

biogas production from microbial activity and methanogenesis. When appropriate 

concentrations of surface active agents are present in the liquid layer, it facilitates foam 

production by lowering the surface tension of the solution with respect to water (Glaser et al., 

2007; Davenport et al., 2008). Finally, hydrophobic solids are thought to stabilize the foam 
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by preventing or reducing liquid drainage from the foam and holding the bubbles in a 

stabilized structure (Bindal et al., 2002; Horozov, 2008; Heard et al., 2009). 

 As opposed to anaerobic systems in municipal settings, where the input consists of 

both primary (raw organics) and secondary settled waste (waste activated sludge), the input 

of deep pit manure storages consists entirely of animal feces and urine, wasted feed and 

water, and wash waters during times of barn cleaning. This creates a strong and well-

established link between feed composition and the physical and chemical characteristics of 

the manure (Kerr et al., 2006; Jarret et al., 2011; Trabue and Kerr, in press). For example, 

Miller and Varel (2003) found that the composition of the manure and the potential release of 

nutrients and volatile emissions into the environment from livestock operations are partially 

controlled by dietary inputs. Similarly, diet can influence manure properties that lead to 

greater methane production potential or the stabilization of foam on the surface of the 

manure. The objective of this study was to analyze manures produced in controlled diet 

studies for parameters hypothesized to play a significant role in the overall foaming 

characteristics of deep pit manures. In particular, the impact of the level and source of protein 

and carbohydrate diets on manure properties related to gas production, manure physical 

properties, and foaming potential were evaluated. 

 

MATERIALS AND METHODS 

Two studies were conducted which consisted of diets formulated to vary in dietary 

crude protein (CP) level and source (denoted as the “protein study”), and carbohydrate level 

and source (denoted as the “carbohydrate study”), with the diet formulations shown in Table 

1 and Table 2. In the protein study, the level and source of dietary CP was varied while 

holding energy, minerals, and amino acids relatively constant. Six diets were formulated. A 

typical industry diet (Diet B) was formulated utilizing corn and soybean meal with 

economically-available crystalline amino acids, while Diet A was formulated utilizing only 

corn and crystalline amino acids (subsequently lower in CP than Diet B). Diet C was 

formulated with only corn and soybean meal and no crystalline amino acids (subsequently 

higher in CP than Diet B). Diets D, E, and F utilized alternative protein sources (canola meal, 

corn gluten meal, and poultry meal, respectively) in place of soybean meal, while 

maintaining the CP at 17.6%, similar to Diet C. Because the protein sources were derived 
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from different origins, dietary fiber was allowed to vary. In the carbohydrate study, Diet A 

represented a diet which would typically be fed to finishing swine and was formulated 

similarly to Diet C in the protein study. The remaining five diets were formulated to be 

higher in dietary fiber (as measured by neutral detergent fiber, NDF), but differed amongst 

themselves relative to the source of fiber. The level of dietary CP and minerals were held 

constant in all diets. Because dietary fiber sources are lower in digestible and metabolizable 

energy for growing pigs, and because we did not elect to add supplemental lipids to equalize 

dietary energy, dietary amino acids levels were held in a constant relationship to dietary 

energy. 

 

Table 1. Composition of experimental diets, ‘Protein Source’ Experiment.
1 

Ingredient, % C/AA
2
 C-

SBM/A

A 

C-

SBM 

C-CM C-

CGM 

C-PM 

Corn 94.83 78.47 71.29 61.13 77.72 81.53 

Soybean meal - 18.31 25.90 - -  

Canola meal - - - 36.14 - - 

Corn gluten meal - - - - 18.30 - 

Poultry meal - - - - - 17.35 

Dicalcium 

phosphate 

1.22 1.09 1.03 0.77 1.19 - 

Limestone 1.28 1.14 1.07 0.95 1.28 - 

Sodium chloride 0.35 0.35 0.35 0.35 0.35 0.35 

Trace mineral & 

vitamin mix 

0.35 0.35 0.35 0.35 0.35 0.35 

L-Lysine·HCl 0.83 0.24 - 0.30 0.71 0.29 

L-Threonine 0.31 0.06 - - 0.04 0.06 

L-Tryptophan 0.08 - - - 0.07 0.03 

DL-Methionine 0.17 - - - - - 

L-Isoleucine 0.28 - - - - 0.03 

L-Valine 0.28 - - - - - 

TOTAL 100.0 100.0 100.0 100.0 100.0 100.0 

       

Calculated composition      

ME, kcal/kg 3,306 3,313 3,314 3,323 3,386 3,299 

Crude protein, %  8.7 14.8 17.6 17.6 17.6 17.6 

NDF, % 8.3 9.3 9.7 19.6 13.7 7.1 
1
All diets formulated to 0.255% standardized lysine per 1,000 kcal of metabolizable 

energy, 0.78% calcium, and 0.25% available phosphorus. 
2
C/AA, corn plus amino acids; C-SBM/AA, corn-soybean meal plus amino acids; C-

SBM, corn-soybean meal; C-CM, corn-canola meal; C-CGM, corn-corn gluten meal; C-PM, 

corn-poultry meal. 
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Table 2. Composition of experimental diets, ‘Carbohydrate Source’ Experiment.
1 

Ingredient, % C-SBM
2
 B BP DDGS SH WB 

Corn 75.17 - 54.09 61.75 62.14 57.21 

Barley, pearled - 83.27 - - - - 

Soybean meal 22.31 14.35 21.85 7.40 20.85 17.55 

Beet pulp - - 22.00 - - - 

Distillers dried grains 

with  solubles 

- - - 28.05 - - 

Soybean hulls - - - - 14.65 - 

Wheat bran - - - - - 22.91 

Dicalcium phosphate 1.06 0.79 1.07 0.24 1.06 0.69 

Limestone 0.66 0.79 0.27 1.23 0.51 0.82 

Sodium chloride 0.35 0.35 0.35 0.35 0.35 0.35 

Trace mineral/vitamin 

mix 

0.35 0.35 0.35 0.35 0.35 0.35 

L-Lysine·HCl 0.11 0.10 0.02 0.50 0.09 0.12 

L-Threonine - - - 0.09 - 0.01 

L-Tryptophan - - - 0.05 - - 

TOTAL 100.0 100.0 100.0 100.0 100.0 100.0 

       

Calculated composition       

ME, kcal/kg 3,329 2,912 3,138 3,290 3,215 3,076 

Crude protein, % 16.3 16.3 16.3 16.3 16.3 16.3 

NDF, % 9.6 17.0 17.0 17.0 17.0 17.0 
1
All diets formulated to 0.255% standardized lysine per 1,000 kcal of metabolizable 

energy, 0.78% calcium, and 0.25% available phosphorus. 
2
C-SBM, corn-soybean meal; B, pearled barley-soybean meal; BP, corn-soybean meal-

beet pulp; DDGS, corn-soybean meal-distillers dried grains with solubles; SH, corn-soybean 

meal-soybean hulls; WB, corn-soybean meal-wheat bran. 

 

Figure 1a shows the facility in which the feeding trials were conducted. The facility 

consisted of 24 metabolism crates with corresponding manure storage tanks. Ambient 

temperature in the metabolism room was maintained at approximately 21°C and lighting was 

provided continuously. Pigs were fed 1.5 kg of the designated diet twice per day and water 

was supplied ad libitum through nipple drinkers. After each feeding session, feces and urine 

were collected and deposited in the manure storage tanks. Manure tanks were designed to 

have a similar surface area as used for pigs maintained in growing-finishing barns with deep 

pit manure storage systems. At the completion of each 40 day trial, manure within the tank 

was thoroughly agitated and sub-samples were collected. Samples were subsequently stored 

at 4°C until they were analyzed. After sample collection, tanks were aerated using a bubble 

diffuser to observe if the manure would generate stable foam (Figure 1b). After the first trial, 

the tanks were emptied and cleaned, and then the dietary trial was repeated with diets 
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randomized over an additional 24 pigs, thus giving 48 experimental units for each dietary 

study. 

  

(a) (b) 

Figure 1. (a) Barn with metabolism crates and manure storage tanks where the feeding trials were conducted 

and (b) foam accumulation in the manure storage tank after aeration to induce bubbling and foaming. 

 

Total Solids and Volatile Solids 

The total solids and volatile solids contents of manure samples were tested according 

to the Standard Methods for the Examination of Water and Wastewater 2540B and 2540E 

(APHA, 2000). After thorough mixing, approximately 30 mL of each manure sample was 

poured into a pre-weighed porcelain dish. After obtaining the weight of the full crucible, the 

sample was dried in a 104°C oven for approximately 24 hours. After drying, the sample was 

weighed again. After obtaining the dried weight of the sample, the crucible with the dried 

contents was placed in a muffle furnace at 550°C for approximately 12 hours. Once cooled, 

the final weight of the ash and crucible was obtained. Both total solids and volatile solids 

were reported in percentage of total sample mass. 

 

Biochemical Methane Potential Assay 

The biochemical methane potential (BMP) defines the anaerobic biodegradability of a 

given material (Owen et al., 1979). Specifically, the BMP test gives the total volume of 

methane a given substrate (in this case the manure) is able to produce. For this study, the 

BMP allowed for comparisons of methane production potential between different diet 

formulations, shedding light on how diet composition affects the gas phase of foaming 
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systems. Samples with higher BMP indicate a greater ability for microbes to convert the 

specific substrate into biogas, which is the driving force of foaming systems. 

The procedure for assessing the BMP of swine manure samples collected for this 

study was to add 20 to 25 grams of a sample to a 250 mL serum bottle (Wheaton Science 

Products No.:223950), with the exact mass recorded. This mass of sample was selected based 

on an estimated 300 mL of CH4 produced per gram of volatile solids added, as suggested by 

others (Hashimoto, 1984; Burton and Turner, 2003; Vedreene et al., 2008), who suggested a 

range of 244 to 480 mL CH4 per g volatile solids in swine manures. Next, 50 mL of inoculum 

was added from an active anaerobic digester maintained in the Agricultural Waste 

Management Laboratory (AWML) at Iowa State University. This volume of inoculum was 

added to achieve an approximate 2:1 mass ratio of volatile solids from the manure to 

inoculum, with the actual ratio varying slightly due to the volatile solids content of the 

manure samples. Finally, the solution was diluted to approximately 150 mL with a nutrient 

medium as per Moody et al. (2011) and sealed with a sleeve stopper septa (Sigma-Aldrich 

Z564729). 

Once the sample was prepared, it was incubated at 35°C while being constantly 

agitated. The samples were regularly checked for biogas production by inserting the needle 

of a gas-tight syringe (Micro-Mate interchangeable hypodermic Syringe 50mL Lock Tip, 

Popper & Sons, Inc. New Hyde Park, New York) through the septa. When biogas was 

collected, it was injected into a non-dispersive infrared methane analyzer (NDIR-CH4 

Gasanalyzer University Kiel, Germany) to obtain the percent of methane present in the gas 

sample. Results were evaluated based on methane produced per gram of whole sample as 

well as methane production per gram of volatile solid added (Moody et al., 2011). 

 

Methane Production Rate Assay 

The goal of the methane production rate (MPR) assay was to provide a short term 

methane production measurement with a relatively simple procedure. The test indicates the 

rate at which endogenous bacteria produce methane, which gives a different perspective of 

the gas phase of foaming systems. Van Weelden et al. (2013) were able to show that manure 

from foaming deep pits showed significantly higher methane production rates than those 

from non-foaming barns (0.148±0.004 and 0.049±0.003 L CH4/L manure per day, 
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respectively), making it a valuable test to include in this study. While the methane production 

rate test is similar to the BMP assay, it is unique in a number of ways. First, the test is 

conducted over a much shorter incubation time (approximately 3 to 7 days compared to over 

40 days for the BMP assay) to ensure that the sample does not approach substrate limiting 

conditions. Also, the manure sample used for the MPR assay was not inoculated or diluted; 

rather, the ability of bacteria present within the sample to produce biogas and methane was 

evaluated. Finally, the sample was incubated at room temperature, rather than at 35°C, and 

kept stationary rather than agitated. Keeping the sample stationary allowed the observer to 

record the amount of surface accumulation, foam or otherwise, that developed on the sample. 

The procedure for the MPR test involved adding approximately 100 mL of well-

mixed sample to a 250 mL serum bottle similar to that used for the BMP assay. Upon the 

sealing of the sample with a sleeve stopper septa, the exact time was recorded along with the 

mass of sample added to the bottle. Next, the sample was incubated at room temperature 

(approximately 23°C). An incubation period of approximately seven days was selected based 

on preliminary trials to achieve measureable quantities of biogas and methane. Once the 7-

day incubation period was over, the sample was checked for biogas production with the gas-

tight syringe and analyzed for methane content using the NDIR-CH4 Gasanalyzer. During 

the analysis of the biogas produced, the accumulation of foam or solids on the surface of the 

sample was observed and recorded. Figure 2 shows a set of samples after seven days of 

incubation. 

 

Figure 2. A set of samples after seven days of incubation for the methane production rate assay. 

 

The rate of biogas production and the rate of methane production were calculated using 

Equations 1 and 2.  
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Surface Tension 

Surface tension is an important parameter which quantifies the amount of surface 

active agents present in solution. With respect to foaming systems, solutions with sufficient 

concentrations of surface active agents effectively lower the surface tension by increasing 

surface activity, allowing foam production (Ganidi et al. 2009). The surface tension of 

samples was tested using a CSC Precision Ring Tensiometer (CSC Scientific Company, Inc., 

Fairfax, VA). Samples were brought to room temperature and agitated gently before pouring 

into the sample tray. Next, the duNouy ring was placed below the surface of the liquid, and 

the ring was slowly pulled upward through the surface of the liquid until it overcame the 

surface tension of the sample. The force needed the break the liquid interface was recorded 

directly from the circular scale of the instrument as dyne/cm (equivalent to mN/m), and 

reported in N/m. 

 

Foaming Capacity and Stability Testing 

The foaming capacity and stability apparatus used in this study, as well as the 

parameters used to evaluate the foaming characteristics of swine manure, were adapted from 

a number of other studies (Ross et al., 1992; Bindal et al., 2002; Bamforth, 2004; Hutzler, 

2011). These bench-top experiments gave parameters that were closely related to the foaming 

properties of manures, serving as additional points of comparison for the correlation analysis. 

Air was passed through an in-line gas regulator (Restek Model 21666) into a 5.1-cm diameter 

clear PVC column, and the flow rate of air through the column was measured and controlled 

with a variable area flow meter (Dwyer RMA-SSV). A sample volume of approximately 300 

mL was poured into the column and the initial level was recorded. The sample was then 

aerated through a cylindrical air stone at 0.0033 L/s until a steady state height of foam was 

reached or the foam layer reached the maximum height of the column (approximately 33 cm 

above the liquid level). The time of aeration was recorded along with the height of foam 
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produced and the level of the foam-liquid interface. A foaming capacity index was calculated 

as the height of foam produced divided by the initial manure level and multiplied by 100. 

The foam stability measurement occurred immediately after the foaming capacity was 

determined. Once aeration ceased, the height of foam became the initial level recorded at 

time zero. Once this level was established, the descending height of the foam was recorded at 

expanding time intervals. Simultaneously, the ascending level of the foam-liquid interface 

was recorded at the same time intervals. The descending height of foam was normalized to 

percent of initial foam height and plotted as a function of time. A first-order exponential 

decay model fit the data well in most cases, and was used to estimate the half-life of the foam 

from the time constant as shown in Equation 3. 

                                           
 

      
      

                   
                                     [3] 

 

Statistical Analyses 

Statistical analysis was performed in JMP Pro 10 (JMP Pro, Version 10. SAS Institute 

Inc., Cary, NC, 1989-2012) using the Standard Least Squares procedure, with differences 

tested at α = 0.05. Data were analyzed as a randomized complete block design with the 

individual manure storage tank as the experimental unit. In this analysis, diet was considered 

a fixed effect with trial as a blocking variable that accounted for differences based on when 

the trial was conducted. In each experiment there were eight replicates per diet. 

 

RESULTS AND DISCUSSION 

In general, the total and volatile solids contents of the manure samples were strongly 

correlated (r = 0.991) with volatile solids content increasing by approximately 0.732 g for 

every 1.0 g increase in total solids content. Statistical analysis of the total solids 

concentrations of the protein study samples indicated that the effect of diet was highly 

significant (p < 0.0001). Results showed that protein level had a significant impact on total 

solids content, with lower protein contents leading to lower solids contents (Figure 3a). Also, 

with the exception of the corn-canola meal diet, the total solids trend reflects the fiber level 

of the various diets. Protein source also impacted total solids content, as corn with amino 

acids resulted in significantly lower solids content (α = 0.05), while corn gluten meal had 

significantly higher total solids content (α = 0.05). Diet also had a significant impact (p < 
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0.01) on volatile solids content in the manure (Figure 3a). Again, the results indicated that 

protein level impacted volatile solids content as lower protein levels in the feed led to lower 

volatile solids content, with corn-corn gluten meal again resulting in higher volatile solids 

content than the other protein sources. 

Statistical analysis of total and volatile solids concentrations in the carbohydrate diet 

also indicated that the effect of diet was highly significant (p < 0.01). Treatment effects of 

diet on both total and volatile solids are shown in Figure 3 (b). With respect to the diet types, 

the wheat bran and distillers grains diets had the highest total solids content, while the corn-

soybean meal and barley diets yielded the lowest total solids content. This appears to be 

related to the fiber content and digestibility of the carbohydrate source (NRC, 2012). In 

general, the total and volatile solids contents in the carbohydrate study were substantially 

higher than in the protein study. However, the solids concentrations measured in both trials 

were lower than those found during field sampling of deep pits, which averaged around 8.3% 

total solids and 6.4% volatile solids. 

  

(a) (b) 

Figure 3. Average total and volatile solids concentrations for different (a) protein sources (C/AA=Corn with 

Amino Acids, C-SBM/AA=Corn-Soybean Meal with Amino Acids, C-SBM=Corn-Soybean Meal, C-

CM=Corn-Canola Meal, C-CGM=Corn-Corn Gluten Meal, and C-PM=Corn-Poultry Meal) and (b) 

carbohydrate sources (C-SBM=Corn-Soybean Meal, B=Barley, BP=Beat Pulp, DDGS=Distillers Dried Grains 

with Solubles, SH=Soy Hulls, and WB=Wheat Bran). Error bars represent the standard error of the mean. 

Capital letters indicate differences (α=0.05) among total solids concentrations of the diets listed and lower case 

letters represent differences among volatile solids concentrations. 

 

The average methane production rates are shown in Figure 4 (a) and (b) for the 

protein and carbohydrate diets, respectively. On average, the samples from the protein study 

had lower methane production rates than those from the carbohydrate study, which is likely 

related to the lower solids concentration in the protein study. In the protein study, the impact 



66 

 

of diet on methane production rate was not significant. However, when methane production 

is normalized to the mass of volatile solids to account for differences in solids 

concentrations, the results were different. In this case, the impact of diet was significant (p < 

0.05) in the protein study, with the corn-soybean meal with amino acids diet having greater 

rates of methane production than the corn-soybean meal diet, the corn-corn gluten meal, or 

the corn-canola meal diet (Figure 5a). For the carbohydrate diet study, no differences were 

found for methane production rate on a per unit volume basis (p = 009) or when normalized 

per gram of volatile solids (p = 0.4057). 

In general, the values for MPR found in this study were lower than those reported by 

Van Weelden et al. (2013) for field samples from both foaming (0.148±0.004 L CH4/L 

manure per day) and non-foaming (0.049±0.003 L CH4/L manure per day) deep pits. 

However, the volatile solids content of the diet study samples was also lower than manure 

obtained in deep pits at swine production facilities. When methane production rate was 

normalized to volatile solids in the manure, the field samples had methane production rates 

of 3.12 ± 0.11 and 1.05 ± 0.078 L CH4/kg VS per day for foaming and non-foaming pits, 

respectively. In the dietary studies, methane production ranged from 0.59 ± 0.18 to 1.34 ± 

0.18 L CH4/kg VS per day, which puts the methane production rate in a similar range as  

reported for non-foaming manure pits in the field. 

  
(a) (b) 

Figure 4. Average methane production rates per volume sample for different (a) protein sources 

(C/AA=Corn with Amino Acids, C-SBM/AA=Corn-Soybean Meal with Amino Acids, C-SBM=Corn-Soybean 

Meal, C-CM=Corn-Canola Meal, C-CGM=Corn-Corn Gluten Meal, and C-PM=Corn-Poultry Meal) and (b) 

carbohydrate sources (C-SBM=Corn-Soybean Meal, B=Barley, BP=Beat Pulp, DDGS=Distillers Dried Grains 

with Solubles, SH=Soy Hulls, and WB=Wheat Bran). Error bars represent the standard error of the mean. 
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(a) (b) 

Figure 5. Average methane production rates per mass VS for different (a) protein sources (C/AA=Corn with 

Amino Acids, C-SBM/AA=Corn-Soybean Meal with Amino Acids, C-SBM=Corn-Soybean Meal, C-

CM=Corn-Canola Meal, C-CGM=Corn-Corn Gluten Meal, and C-PM=Corn-Poultry Meal) and (b) 

carbohydrate sources (C-SBM=Corn-Soybean Meal, B=Barley, BP=Beat Pulp, DDGS=Distillers Dried Grains 

with Solubles, SH=Soy Hulls, and WB=Wheat Bran). Error bars represent the standard error of the mean. In (a), 

graph bars not connected by the same letter are significantly different at α = 0.05.   

 

The results of the BMP test give a difference measure of the gas phase of anaerobic 

systems in comparison to the MPR. Average values of BMP with the standard error of the 

mean are shown in Figure 6. The protein study did not yield any significant differences. On 

average the samples had a BMP of 313 ± 22 mL CH4/g VS. The BMP results in the 

carbohydrate trial were highly significantly different (p < 0.0001). The control and corn-

soybean meal diets had the highest BMP values (395 ± 23 mL CH4/g VS), while the beet 

pulp (155 ± 23 mL CH4/g VS) and wheat bran (181 ± 31 mL CH4/g VS) diets had the lowest. 

Also, the barley, DDGS, and soy hull diets showed relatively high values for methane 

potential in comparison to the lowest values for the carbohydrate studies. In general, the 

BMP magnitudes reported in these studies were substantially higher than magnitudes 

reported for samples collected from deep pits. Van Weelden et al. (2013) reported an average 

value of 121 ± 86 mL CH4/g VS for both foaming and non-foaming samples, with foaming 

samples showing a slightly lower average value. BMP results were comparable to others who 

showed fresh swine manure range between 244-480 mL CH4 per g volatile solids (Burton 

and Turner, 2003; Møller et al., 2004; and King et al., 2011). 
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(a) (b) 

Figure 6. Average BMP per mass volatiles solids for different (a) protein diets (C/AA=Corn with Amino 

Acids, C-SBM/AA=Corn-Soybean Meal with Amino Acids, C-SBM=Corn-Soybean Meal, C-CM=Corn-Canola 

Meal, C-CGM=Corn-Corn Gluten Meal, and C-PM=Corn-Poultry Meal) and (b) carbohydrate diets (C-

SBM=Corn-Soybean Meal, B=Barley, BP=Beat Pulp, DDGS=Distillers Dried Grains with Solubles, SH=Soy 

Hulls, and WB=Wheat Bran. Error bars represent the standard error of the mean. In (b), graph bars not 

connected by the same letter are significantly different at α = 0.05. 

 

Field sampling results have indicated that increased rates of methane production are 

related to foam accumulation, so a diet that has both an increased MPR and an increased 

BMP may be indicative of a diet that has more potential to result in foaming. In this regard 

no single diet stood out; however, corn-soybean meal, distillers dried grains with solubles, 

and soy hulls tended to have high MPR combined with high BMP. 

As discussed previously, biogas production (the gas phase) serves as the driving force 

of anaerobic foaming systems. However, a chemical means to encapsulate the bubbles 

produced is necessary to create a foaming system. In this regard, surface active agents 

increase activity at the liquid surface and lower the surface tension, which allows for bubbles 

to accumulate beyond this interface (Ganidi et al. 2009). This makes surface tension an 

important parameter in characterizing foaming systems, as it provides an indication of the 

level of surface active agents present in a given sample without having to identify the 

specific surfactant. The results of the surface tension analysis for both the protein and 

carbohydrate studies are summarized in Figure 8. For comparison, the surface tension of 

water at room temperature is approximately 0.073 N/m (Mills et al., 1988), the surface 

tension of human urine is 0.059 N/m (Mills et al., 1988), and the surface tensions of 1%, 5%, 

10%, and 40% acetic acid-water solutions at 30°C are 0.068, 0.060, 0.055, and 0.041 N/m 

(Lang and Dean, 1967) respectively. Differences in surface tension were noted between diets 



69 

 

in both the protein and carbohydrate study (p = 0.032 and p = 0.001, respectively) as shown 

in Figure 8. In the protein diet study, the corn-canola meal and corn-poultry meal diets 

showed significantly (p < 0.05) lower surface tension values than the other diets. In the 

carbohydrate study all values were relatively similar, though manure from pigs fed the soy 

hull diet tended to have higher surface tension than other diets, with the wheat bran diet 

having the lowest surface tension. Field sampling results from Van Weelden et al. (2013) 

tended to indicate that manures from foaming barns had significantly (p < 0.05) higher 

surface tensions (0.0515 ± 0.0008 N/m) than manures from non-foaming barns (0.0495 ± 

0.0008 N/m). In the protein study, three diets (corn with amino acids, corn-soybean meal 

with amino acids, and corn-corn gluten meal) had surface tensions greater those of foaming 

manures, one diet (corn-soybean meal control diet) had a surface tension similar to non-

foaming manures, and two diets (corn-canola meal and corn-poultry meal) had surface 

tensions lower than the non-foaming manure. In the carbohydrate study, most diets had 

surface tensions similar to or lower than those found in non-foaming manures; however, the 

soy hull diet had a surface tension very similar to that of foaming manures. This could 

indicate that the use of soy hulls as a dietary fiber source may lead to a surface tension that is 

optimal for bubble formation. 

  

(a) (b) 

Figure 8. Average surface tension for swine feed diets of different (a) protein sources (C/AA=Corn with Amino 

Acids, C-SBM/AA=Corn-Soybean Meal with Amino Acids, C-SBM=Corn-Soybean Meal, C-CM=Corn-Canola 

Meal, C-CGM=Corn-Corn Gluten Meal, and C-PM=Corn-Poultry Meal) and (b) carbohydrates sources (C-

SBM=Corn-Soybean Meal, B=Barley, BP=Beat Pulp, DDGS=Distillers Dried Grains with Solubles, SH=Soy 

Hulls, and WB=Wheat Bran). Error bars represent the standard error of the mean. Capital letters indicate 

significant differences at α = 0.05. 
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The results of the surface tension analysis are most meaningful for this study when 

viewed next to the results of the bench-top foaming experiments, which are shown in Figures 

9 and 10 for both the protein and carbohydrate trials. There were significant differences (p = 

0.015) in foaming capacity in the protein study where the results indicate that the corn-

poultry meal diet had a significantly greater foaming capacity than the corn with amino acids, 

the corn-canola meal, or the corn-soybean meal diets, which all showed minimal capacity to 

foam. This trend, however, did not consistently match trends shown by the surface tension 

results for the protein study. Foaming capacity results from the carbohydrate study indicated 

that diet again had a significant (p = 0.03) impact on the foaming capacity of the manure. The 

beat pulp diet had the highest average foaming capacity index, which was significantly 

higher (p < 0.05) than the wheat bran and DDGS diets. In this case the beat pulp diet had a 

foaming capacity similar to those seen from forming manures analyzed by Van Weelden et 

al. (2013). Manures from the barley and soy hulls diets had foaming capacities that exceeded 

the foaming capacity of non-foaming manures. Manures from the other diets had lower 

foaming capacities than even the non-foaming manures.   

 

  
(a) (b) 

Figure 9. Average foaming capacity for different (a) protein sources (C/AA=Corn with Amino Acids, C-

SBM/AA=Corn-Soybean Meal with Amino Acids, C-SBM=Corn-Soybean Meal, C-CM=Corn-Canola Meal, C-

CGM=Corn-Corn Gluten Meal, and C-PM=Corn-Poultry Meal) and (b) carbohydrate sources (C-SBM=Corn-

Soybean Meal, B=Barley, BP=Beat Pulp, DDGS=Distillers Dried Grains with Solubles, SH=Soy Hulls, and 

WB=Wheat Bran). Error bars represent one standard error of the mean. 
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(a) (b) 

Figure 10. Average half-life of foam for different (a) protein diets (C/AA=Corn with Amino Acids, C-

SBM/AA=Corn-Soybean Meal with Amino Acids, C-SBM=Corn-Soybean Meal, C-CM=Corn-Canola Meal, C-

CGM=Corn-Corn Gluten Meal, and C-PM=Corn-Poultry Meal) and (b) carbohydrate diets(C-SBM=Corn-

Soybean Meal, B=Barley, BP=Beat Pulp, DDGS=Distillers Dried Grains with Solubles, SH=Soy Hulls, and 

WB=Wheat Bran). Error bars represent one standard error of the mean. 
 

The corresponding stability of foams is shown in Figure 10. The protein study 

showed no significant differences in foam half-life (p = 0.208), with all half-lives being very 

short, indicating that no mechanism was present to stabilize the bubbles, despite some 

capacity to foam. Similarly, samples from the carbohydrate study showed no significant 

differences in foam half-life, although some of the samples exhibited substantially longer 

foam half-lives than samples from the protein study. There was great variability among 

values, and in all cases foam stability was significantly lower than those found in foaming 

samples collected from commercial deep pits. 

 

CONCLUSIONS 

The trials conducted in this study sought to better elucidate the impact of diet 

composition on both the physical and biochemical characteristics of swine manures. The two 

studies employed various protein and carbohydrate sources in swine diets and evaluated key 

manure characteristics thought to be related to the formation of foam in deep pit storages. 

Within each study, no single diet stood out as one that exhibited enhanced methane 

production, physical characteristics similar to foaming manures, or enhanced foaming 

capacity and stability. In terms of gas production, both soy hulls and distillers dried grains 

with solubles tended to have both higher rates of methane production and an enhanced 

potential for methane production. As foaming manures tend to have higher methane 

production rates, this could indicate a greater risk of foaming when these dietary ingredients 
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are included. Similarly, soy hulls also tended to cause manure surface tension values similar 

to what was found in manure obtained from foaming pits. Finally, manures from the beat 

pulp and soy hull diets showed a relatively high foaming capacity and foam stability; 

however, in no cases did the generated foams exhibit notable stability, making the cause for 

foam stability in deep pits unclear. 
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CHAPTER 5 

 

SUMMARY AND CONCLUSIONS 

 

SUMMARY 

In this section, the results of the field study (Chapter 3) and the diet study (Chapter 4) 

are summarized in the context of the three-phase foam framework discussed in the 

introduction of this paper. This includes discussion of the general environmental trends of the 

deep pits sampled in the field (i.e. temperature and pH), the trends in solids content of 

samples and the solids distribution in deep pits, the concentration of important chemical 

constituents of the deep pits (i.e. short-chain and long-chain fatty acids), and the biogas 

production potential of different swine manures tested. In addition, discussion on the 

relationship between these isolated aspects of foaming systems will be included in order to 

formulate hypotheses on the mechanism of stable foam formation in deep pits. 

 

Environmental Conditions 

 The average temperature of the deep pits sampled in the field study followed an 

intuitive trend throughout the 13-month sampling period, which is shown in Figure 3 of 

Chapter 3. The seasonal pattern showed that pits reached the highest temperatures in the late 

summer and early fall, with temperatures as high as 22.1°C recorded in September. The 

lowest pit temperatures occurred in the winter months, with temperatures as low as 10.9°C 

measured in the month of February. The broad range of temperatures in the pit has significant 

implications for the level of microbial activity throughout the year, which was reflected in 

temporal gas production results. In addition, significant differences were detected between 

the temperature of foaming pits and non-foaming pits during the winter and spring, with 

foaming pits maintaining higher temperatures during these months. These results may 

suggest that the presence of a stable foam layer may serve as an insulator of heat during the 

colder parts of the year. A similar insulating effect was noticed when crusts formed on the 

surface of manure storage tanks during the dietary trials. These trends may have implications 

for the development of the microbial community of foaming deep pits when compared to 

non-foaming pits.  
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 Significantly different trends in pH were also identified when comparing manure 

from foaming and non-foaming barns (Figure 4 of Chapter 3). Overall, foaming barns had 

more basic manure at every sampling depth. Also, the actual foam layer showed a 

significantly higher pH (7.74 on average) than the rest of the sampling depths of foaming 

manure pits. These differences may be a result of ammonia capture in the foam layer; though, 

the overall range of average pH values measured by depth (approximately 7.51 to 7.74) did 

not vary greatly from neutral pH. 

 

Solid Phase 

 The results of the dietary studies illustrated the link between diet composition and the 

solids content of manure (Figure 3 of Chapter 4). The effect of diet was highly significant 

with respect to both total and volatile solids content of manure samples. Diets components 

such as wheat bran and DDGS yielded solids rich manure when compared to soybean meal, 

barley, and many of the protein-based diets. These trends appeared to reflect the fiber content 

and the digestibility of the various diets.  

 The distribution of solids within deep pits reflected a relatively intuitive trend. The 

highest concentration of solids on average occurred at the bottom of pits, with decreasing 

concentrations when approaching the surface. However, the foam layer itself was very solid-

enriched, with an average concentration of solids that was greater than the averages at all of 

the other depths of the pit. This trend may reflect the transport of fine, hydrophobic solids to 

the surface of foaming deep pits, which would be enhanced by the greater biogas flux 

through the volume of foaming manure pits.  

The hypothesis regarding the role of hydrophobic solids as stabilizing agents in 

foaming systems is also supported by the results of the stability measurements of the foam 

layer, shown below in Figure 1. Samples of foam did not show a high capacity to foam in 

bench-top tests when compared to manure taken from other depths (Figure 11 of Chapter 3); 

however, foam samples showed a substantially greater ability to stabilize in the foaming 

apparatus used by this group. The specific identity of the stabilizing agent of interest was 

very difficult to identify within the scope of this study. Existing theories described in Chapter 

2 involve filamentous bacteria or colloidal particles that exist in waste systems, which are 

both viable options in a deep pit environment. 
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Figure 1. Average foam half-life of foaming and non-foaming samples by sampling depth. Error bars show the 

standard error of the mean. Letters show statistical differences between surface statuses within each stratum 

tested at α=0.05. 

 

Liquid Phase 

 Both short-chain and long-chain fatty acid concentration measurements were taken 

from a number of samples from the field study. Initially, SCFAs (with acetic acid being a 

primary component) were hypothesized to accumulate in foaming barns while acting as a 

primary surfactant. The results, however, showed that SCFA concentrations were 

significantly higher in barns without any foam accumulation when compared to foaming 

barns (Figure 5 of Chapter 3). The absence of SCFAs in samples with foam accumulation 

was explained by their role as a key substrate in the methanogenesis process; that is, SCFAs 

were being more rapidly consumed by the microbial community in deep pits with foam 

accumulation. This concept gives a fuller picture of the performance of foaming deep pits as 

digesters, which will be discussed in more detail later in this chapter.  

The results of the long-chain fatty acid analysis showed that in foaming barns, LCFAs 

were suspended in the foam layer at a higher concentration than in the corresponding 

interface layer. However, the concentration of LCFAs at the surface of non-foaming barns 

was not significantly different than those in the foam layer or interface layer of foaming 

barns (Figure 14 of Chapter 3). These results suggest that LCFAs are not accumulating in 

foaming systems in terms of overall concentration, while they may be stabilizing the foam 

matrix to some extent. In this way, more investigation into the role of LCFAs as surface 

active agents and potential foam stabilizers is needed. 
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Surface tension measurements were taken as an indicator of the general presence of 

surfactants in the liquid phase of manure samples. The results showed that the average 

surface tensions of all manure samples were significantly lower than the surface tension of 

pure water. In the field study, the initial hypothesis of our group was again proven wrong as 

the surface tension measurements of non-foaming manure samples as a whole were lower 

than those of foaming manure samples (Figure 10 of Chapter 3). For both foaming and non-

foaming manures, the surface tension of the samples taken from the interface layer showed 

the lowest surface tension, which is intuitive as surfactants naturally accumulate at the 

surface of the liquid phase. These results appear to be significantly influenced by the SCFA 

concentration, which would explain the counterintuitive results and confirm the importance 

of SCFAs as local surfactants. The surface tension results may also suggest that there is an 

optimal range of values in which foaming is most likely to occur, with non-foaming barns 

showing a greater amount of surface activity which may actually prohibit the formation of 

foam. The impact of diet on the surface tension of manure was also illustrated in Figure 8 of 

Chapter 4. Various diet types yielded manures with surface tension values comparable to 

those found in field study samples, with the manure from the soy hull diet showing the 

surface tension value most similar to that of foaming manure. 

The foaming capacity and stability measurements also served as viable indicators of 

the presence of surface active agents and foam stabilizers in the manure samples, proving to 

be a consistent reflection of the differences in surface accumulation of the deep pits in the 

field. Both the foaming capacity and stability measurements of foaming barns were 

consistently higher than non-foaming barns throughout the 13-month sampling period 

(Figures 12 and 13 of Chapter 3), though greater differences were shown in the stability 

results. The analysis of foaming manures collected from various depths also indicated a 

greater accumulation of surface active agents at the surface of foaming barns when compared 

to non-foaming barns (Figure 11 or Chapter 3). The foaming capacity and stability results of 

the dietary trials were shown in Figures 9 and 10 of Chapter 4. In this case, both the capacity 

and stability of manures collected from dietary trials were lower than those of field samples. 

This difference may be explained by the less-established microbial communities within the 

manure holding tanks during the diet studies, as manure was not aged to a similar extent as 

samples collected from deep pits. In this way, the ability of substances produced as a result of 
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microbial activity, or even the ability for microbial cells themselves to act as foam stabilizers, 

was diminished. The dietary trial samples also showed significant differences in foaming 

characteristics, as manure from beat pulp and soy hull diets showed a relatively high foaming 

capacity and stability when compared to manures from other diets. These differences suggest 

that dietary components may play a significant role in the ability of manures to foam, either 

by direct dietary impact or by the components’ ability to be metabolized by the microbial 

community in the deep pit. 

  

Gas Phase 

The gas phase of the manures studied in Chapters 3 and 4 provided the clearest 

differences in the behavior of foaming pits and non-foaming pits. There were significant 

differences in the rate of methane production between manure from foaming and non-

foaming barns (Figure 8 of Chapter 3). At the same time, the biogas production potential of 

non-foaming samples was significantly higher than that of foaming samples (Figure 7 of 

Chapter 3). Along with the significant depletion of critical substrate in foaming barns (i.e. 

SCFAs such as acetic acid), we see that foaming manure systems performed as more efficient 

digesters than non-foaming systems. In addition, we found that the methane flux through the 

volume of deep pits varied greatly in accord with seasonal temperature trends, while also 

continuing to reflect the differences between foaming and non-foaming barns (Figure 9 of 

Chapter 3). These differences in gas production trends could be explained in a couple of 

ways: a more developed population of methanogens in foaming barns, significant differences 

in the substrate availability in foaming barns, or the presence of some inhibiting agent in non-

foaming deep pits (or some combination of these factors). These explanations will be 

considered further in the conclusions to follow. 

No single sample of manure from the dietary trials showed the ability to produce 

methane at a comparable rate as samples collected from the field study, while there were 

some differences based on diet type (Figure 8 of Chapter 4). These differences are likely 

explained by the levels of natural detergent fiber and the lignin contents of the diets, which 

affect the availability of consumable substrate in the manures. The effect of underdeveloped 

microbial consortia in the manure holding tanks of the dietary studies were also reflected in 
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the gas production results, especially in light of the amount of biogas production potential of 

these samples when compared to aged manure samples in deep pits (Figure 6 of Chapter 4). 

 

CONCLUSIONS 

When knowledge of the independent aspects of three-phase foaming systems is 

integrated, we are able to make educated hypotheses about the overall mechanism of foam 

formation in swine manure deep pits. As discussed in the previous section, the most notable 

characteristic of foaming deep pits is their enhanced efficiency as digesters, consuming 

substrate such as SCFAs more rapidly than non-foaming deep pits and increasing the 

presence of the gas phase throughout the volume of the system. Explanations for the 

relatively large amount of microbial activity in foaming pits may include the following: a 

more developed and active microbial community in foaming pits, a significantly greater 

amount of consumable substrate in foaming pits, or the existence of an inhibiting agent or 

environment in non-foaming barns that disrupts the methanogenesis process.  

Existing literature allows for a comparison of known values of methane emissions 

from deep pits to the methane production rates of the samples from the field study, in which 

foaming barns produced an average of 0.148 ± 0.004 L CH4 L slurry
-1

 day
-1 

and non-foaming 

barns produced 0.049 ± 0.003 m
3
 L CH4 L slurry

-1
 day

-1
 (average ± standard error of the 

mean). Husted (1994) reported a range of 0.0006 to 0.052 L CH4 L slurry
-1

 day
-1 

for stored 

swine manure slurry, with an estimated annual emission rate of 0.017 L CH4 L slurry
-1

 day
-1

.  

Martinez et al. (2003) reported a slightly higher range of 0.013 to 0.115 L CH4 L slurry
-1

  

day
-1 

for average daily methane emissions from raw pig slurries, and Loyon et al. (2007) 

reported a value of 0.075 L CH4 L slurry
-1

 day
-1 

from stored raw slurry. The methane 

production rates of non-foaming manure are similar to the values reported above, while the 

methane production rates of foaming manure exceed all of the reported values. This 

comparison suggests that the disparity in gas production rate between foaming and non-

foaming barns is not the result of inhibited methane production in non-foaming barns; rather, 

methane production in foaming barns is notably higher than typical swine manure storages.  

The presence of significantly more consumable substrate in foaming barns also does 

not seem likely in light of the evidence provided above, especially with the differences in 

both SCFA concentration and biochemical methane potential between non-foaming and 
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foaming samples in favor of the former. Also, both foaming and non-foaming samples 

collected from deep pits maintained similar solids profiles and volatile solids concentrations 

throughout the field study. While differences in diet composition were shown to affect the 

biogas production characteristics of swine manure, field observations showed a wide range of 

gas production values in barns with the same integrator and feed source. There were also 

multiple observations of both foaming and non-foaming barns occurring at the same site, 

suggesting that similar feed characteristics and management styles can produce deep pits 

with very different characteristics. Higher temperatures in foaming barns during the winter 

and spring months may increase the hydrolysis of consumable substrate, but this effect would 

only compound the gas production in foaming barns rather than cause it in non-foaming 

barns. 

For these reasons, the development of a more active microbial community seems to 

be the most plausible explanation of the enhanced methane production rate of foaming 

manure. This explanation also suggests a corresponding increase in biosurfactant levels. 

Heard et al. (2008) illustrated the positive relationship between microbial growth and 

biosurfactant production in their research of foaming systems. Di Bella et al. (2010) also 

endorsed the viability of biosurfactants as the primary surface active agents of anaerobic 

foaming systems. While it is difficult to identify the existence of biosurfactants in waste 

systems with laboratory techniques, the physical descriptions of extracellular polymeric 

substances discussed in Chapter 2 are similar to the consistency of the foam itself, suggesting 

that these biosurfactants may play an important role as surfactants and/or foam stabilizers in 

deep pit swine manure storages. 

The enhanced biogas flux of foaming deep pits also has an important impact on the 

distribution of the solid and liquid phases of these manure storages, acting as a means to 

transport hydrophobic substances to the surface. Results of the foaming capacity test 

indicated a relative accumulation of surfactants at the surface of foaming barns when 

compared to non-foaming barns. The amplified transport of hydrophobic material was also 

supported by the unique physical and chemical qualities of the foam layer. It was solids-

enriched, contained a greater concentration of long-chain fatty acids, and maintained a more 

basic pH than other depths of the pit. While the most important surface active agents and 

foam stabilizing substances were not specifically identified in these studies, we know that 
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their accumulation at the surface is compounded by increasing biogas flux through the deep 

pit. 

 

Foam Mitigation Strategies and Future Research Needs 

 Based on the knowledge gained on foaming deep pits, the most effective foam 

mitigation strategy would be to target the microbial community in deep pits, consequently 

inhibiting methanogenesis, limiting the potential of biosurfactant production, and reducing 

the transport of surfactants and/or hydrophobic solids to the surface of the manure. There are 

both direct and indirect means to reduce the production of biogas in deep pits. Direct 

approaches would target the methanogens specifically, while indirect approaches would seek 

to reduce the availability of substrate to methanogens by either controlling its input into the 

system or affecting other microbes in the system. 

 The introduction of inhibitory substances is a relatively simple, low-cost approach to 

foam mitigation in deep pits. Concerns include the long-term environmental effects of 

applying treated manure to croplands, increased ammonia or hydrogen sulfide emissions, 

added operational costs, and the possible development of microbial resistance to the 

treatment. The goal of an inhibitory strategy would be to upset the balance between acid-

forming and methane-forming microbes, causing an adverse shift in the microbial population 

or negatively affecting the growth of the microbes (Chen et al., 2008). Common inhibitors 

include ammonia, sulfate, antibiotics, light metal ions, heavy metals, and a variety of organic 

compounds including LCFAs. The addition of ammonia or sulfate into swine manure 

storages (which already contains high concentrations of both) would add to present concerns 

regarding gas emissions from swine facilities. However, future research regarding the ability 

for additional ammonia to prohibit methane production in swine manure may be valuable. 

Direct antibiotic addition to pits has also been considered for use as a pit additive in the form 

of monensin, an ionophore. As mentioned in Chapter 2, the ability for microbes to develop a 

resistance to ionophores has been documented. In this way, future research as to the long-

term effectiveness of ionophores is required before this solution is recommended. Finally, the 

acidification of pits by the addition of organic acids may be a viable option worth 

researching. 
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 The other approach to reducing methanogenic activity is indirect, with the goal of 

limiting substrate availability to the methanogens. This approach would involve the 

manipulation of swine diet, which affects the manure input into the deep pit. While 

preliminary research in this subject area was completed during the dietary trials in Chapter 4, 

continued research is necessary in order to better understand the substrate availability of 

manure yielded from different diet compositions, particularly in deep pit simulations with 

aged manure. A more novel option would be to physically capture solid manure before it fell 

into the pit, separating the solid and liquid portions of the manure and storing the solids in a 

separate location.  

 Other areas of future work that would be valuable in better understanding foaming 

swine manure and effective mitigation strategies are listed below: 

 Identification of the specific surface active agent that has the largest effect on the 

surface tension of swine manure in deep pits as well as the optimal range of surface 

tension magnitudes that enable foam formation. Of particular interest are surfactants 

produced by the microbial consortium in deep pits, termed “biosurfactants.” The 

development of a technique to identify the origin of these substances could be critical 

for understanding foam production in swine manure storages. 

 Identification of the specific foam stabilizing substance, as well as techniques for 

preventing the accumulation of that substance at the surface of deep pits. 

 Research the biological and chemical effects of annual and bi-annual pumping of 

manure pits, and the implications of pumping frequency on the physicochemical and 

biological characteristics of deep pits. 
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