
Graduate Theses and Dissertations Graduate College

2014

Impact of sampling interval on GIS data based
productivity calculations and optimal configuration
and lead time of corn stover biomass harvesting
teams
Levi Powell
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/etd

Part of the Agriculture Commons, and the Bioresource and Agricultural Engineering Commons

This Thesis is brought to you for free and open access by the Graduate College at Iowa State University Digital Repository. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Powell, Levi, "Impact of sampling interval on GIS data based productivity calculations and optimal configuration and lead time of corn
stover biomass harvesting teams" (2014). Graduate Theses and Dissertations. 13811.
http://lib.dr.iastate.edu/etd/13811

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/grad?utm_source=lib.dr.iastate.edu%2Fetd%2F13811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=lib.dr.iastate.edu%2Fetd%2F13811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1056?utm_source=lib.dr.iastate.edu%2Fetd%2F13811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd/13811?utm_source=lib.dr.iastate.edu%2Fetd%2F13811&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


 
 
 

 
 

Impact of sampling interval on GIS data based productivity calculations 
and 

optimal configuration and lead time of corn stover biomass harvesting teams 
 
 
 

by 
 
 

Levi John Powell 
 
 
 
 
 
 

A thesis submitted to the graduate faculty 
 

In partial fulfillment of the requirements for the degree of 
 

MASTER OF SCIENCE 
 
 
 

Major: Industrial and Agricultural Technology 
 

Program of Study Committee: 
Matthew Darr, Major Professor 

Brian Steward 
Thomas Brumm  

 
 

 
 

 
 
 
 

Iowa State University 
Ames, Iowa 

2014 
Copyright © Levi John Powell, 2014. All rights reserved. 



 ii  
 

 
 

TABLE OF CONTENTS 
List of Figures ................................................................................................................................... v 

List of Tables ................................................................................................................................... vi 

List of Equations ............................................................................................................................. vii 

Chapter 1: General Introduction and Review of Literature ............................................................ 1 

Introduction................................................................................................................................. 1 

Objectives .................................................................................................................................... 3 

Literature Review: Current Knowledge ....................................................................................... 4 

Knowledge Gaps .......................................................................................................................... 7 

References ................................................................................................................................... 8 

Experimental Dataset & Collection ........................................................................................... 10 

Chapter 2: Impact of Sampling Interval on GIS Data based Productivity Calculations ................ 13 

Abstract ..................................................................................................................................... 13 

Introduction............................................................................................................................... 14 

Materials ................................................................................................................................... 16 

Machine Productivity Calculations ........................................................................................ 16 

Data Analysis ............................................................................................................................. 19 

Alternative Sampling Intervals .............................................................................................. 19 

Productivity Comparisons, Ratio Basis .................................................................................. 21 

Productivity Comparisons, Time Basis ................................................................................... 24 



 iii  
 

 
 

2012 Data Analysis .................................................................................................................... 27 

Ratio Basis ............................................................................................................................. 27 

Time Basis .............................................................................................................................. 31 

Results and Conclusion.............................................................................................................. 35 

Shifting Transition Point Error ............................................................................................... 35 

Ideal Sampling Interval .......................................................................................................... 36 

References ................................................................................................................................. 37 

Chapter 3:  Optimal Configuration and Lead Time of Corn Stover Biomass Harvesting Teams ... 38 

Abstract ..................................................................................................................................... 38 

Introduction............................................................................................................................... 39 

Research Objective .................................................................................................................... 40 

2011 Configuration and Lead Time Analysis ............................................................................. 40 

Methods .................................................................................................................................... 40 

Experimental Field ................................................................................................................. 42 

Field Analysis Methods and Machine States ......................................................................... 42 

Data Analysis ............................................................................................................................. 45 

Treatment 1, Operations Together ....................................................................................... 45 

Example Case 1: Poor Organizational Logistics ..................................................................... 46 

Productivity Analysis .............................................................................................................. 48 

Treatment 2, Operations Separated ...................................................................................... 49 



 iv  
 

 
 

Case 2: Improved Organizational Logistics ............................................................................ 50 

Lead Time ............................................................................................................................... 52 

Equal Operational Capacities ................................................................................................. 53 

Lead time Determination ...................................................................................................... 53 

2012 Configuration and Lead Time Analysis ............................................................................. 56 

Methods .................................................................................................................................... 56 

Data Analysis ............................................................................................................................. 58 

Results and Conclusion.............................................................................................................. 63 

References ................................................................................................................................. 65 

Chapter 4: General Conclusions .................................................................................................... 66 

Limitations of Results ................................................................................................................ 68 

Appendix A: Percent Productivity Difference Data ...................................................................... 70 

Appendix B: Time Based Productivity Data .................................................................................. 72 

Appendix C: Shifting Transition Point Dot Plot ............................................................................. 74 

Acknowledgements ....................................................................................................................... 75 

 

 

  



 v  
 

 
 

LIST OF FIGURES 

Figure 1: 2012 Central Iowa Corn Stover Harvest .......................................................................... 6 

Figure 2: CyCAN Data logger used to record data from vehicles CAN bus ................................... 11 

Figure 3: Utilization Paradigm, Covington 2013 ........................................................................... 17 

Figure 4: Example; Down Sampled Field Data Set for Alternative Sampling Intervals ................. 21 

Figure 5: Productivity Ratio Percentage Point Difference by Sampling Interval .......................... 23 

Figure 6: Down Sampled Data Multiplied by Sampling Interval. .................................................. 25 

Figure 7: Time Based Productivity Error ....................................................................................... 26 

Figure 8: 2012 Productivity Ratio Percentage Point Difference by Sampling Interval ................. 28 

Figure 9: Equal Variance Test for Productivity Ratio .................................................................... 29 

Figure 10: 2012 Time Based Productivity Percent Error ............................................................... 32 

Figure 11: Equal Variance Test for Production Percent Error....................................................... 33 

Figure 12: Field Enter and Exit Time Query (Covington 2013) ..................................................... 43 

Figure 13: Work Flow Timeline for Field 2 .................................................................................... 47 

Figure 14: Total Unproductive Machine Time .............................................................................. 48 

Figure 15: Productivity Loss per Machine, Loss Equals Potential Gains ....................................... 50 

Figure 16: Workflow Timeline for Field 1 ..................................................................................... 51 

Figure 17: Windrower Begin and Finish times .............................................................................. 55 

Figure 18: Begin and Finish Time by Machine for All Crews ......................................................... 59 

Figure 19: Percent Productivity Loss by Machine for all Crews .................................................... 61 

Figure 20: Baler Productivity Loss by Crew ................................................................................... 62 

Figure 21: Begin and Finish Time For Balers by Crew ................................................................... 63 



 vi  
 

 
 

LIST OF TABLES 

Table 1: Percent Decrease in Data Log File Size ........................................................................... 20 

Table 2: Productivity Ratio Results for Example Field F092 ......................................................... 22 

Table 3: Tukey Method Grouping of Ratio Difference Standard Deviations ................................ 30 

Table 4: Tukey Method Grouping of Mean % Error Standard Deviation...................................... 34 

 

 

 

 

 

  



 vii  
 

 
 

LIST OF EQUATIONS 

Equation 1: Productivity Ratio Equation ....................................................................................... 18 

Equation 2: Percent Error calculation for time based productivity .............................................. 25 

Equation 3: Productivity Loss Percentage .................................................................................... 45 

 



 1  
 

 
 

CHAPTER 1: 

GENERAL INTRODUCTION AND REVIEW OF LITERATURE 

Introduction 

Over the last decade, agricultural equipment has seen an exponential increase in the 

amount of technology and electronic systems being utilized in their functionality. This increase 

has been a natural progression in the quest to make agricultural equipment safer, more 

productive, and more efficient.  

An added benefit to these new technologies is the potential to easily glean vast 

amounts of data about all the machine parameters and their utilization. This potential has gone 

seemingly untapped until recently. The onset of larger corporate farms and more industrialized 

agricultural production systems has created a need for managing large fleets of equipment. This 

need has driven the research and development of automated data logging and processing 

systems for agricultural equipment. 

As equipment fleets grow larger and agricultural operations become more 

industrialized, there has been a push towards more standardization. This standardization 

processes involves evaluating the current performance of each machine based on its 

productivity and efficiency.  Once the specific performance of each machine is determined, an 

average performance bench mark can be set for the entire fleet. This process highlights which 

machines are performing above the average, and which machines are performing below it. This 

drives further investigation as to why some machines are below the average, whether it is 
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machine problems, environmental factors or operator issues. These same questions can also be 

asked of the machines performing above the average. This performance evaluation process 

informs managers and personnel where they should focus their efforts and resources in order 

to learn from their machines that exhibit above average performance, and help to improve 

those machines with low performance. 

Newly developed data logging and processing systems enable this exact process. They 

collect and process data on machine performance and report that data back to the operator, as 

well as the manager. This allows the operators and managers to make informed, data-driven 

decisions about machine operations and logistics. These systems can be tailored to any 

agricultural operation and are the next step to increasing the productivity and efficiency of 

agricultural equipment. 

The potential of these systems has been realized by several companies in the developing 

cellulosic ethanol industry. As these companies grow their supply chains they have discovered 

the value and cost savings that a system like this can provide. Managing equipment on an 

industrial scale such as this has helped to drive further development of these systems as well as 

tailoring them to specific industries such as cellulosic ethanol. The flexibility of these data 

collection and processing systems will reshape the way large fleet management is conducted 

and maximize the productivity potential of the fleet as well as each machine within it. 
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Objectives 

Objective 1: Determine effects of GIS data sampling interval on machine productivity 

calculations.  

Currently, the CyCAN system records GIS data samples every second. The goal is to find 

out how decreasing the sampling rate will affect the machine productivity calculations. If data 

collection intervals can be increased with minimal effects to the productivity numbers, it will be 

advantageous to do so. This will involve performing the same productivity calculations on the 

same data set using alternative sampling intervals. 

Objective 2: Determine the optimal configuration and lead time for a corn stover 

biomass harvesting team. 

It was observed during the 2011 harvest that windrowers and balers would travel as 

teams from field to field. Since the baling operation is dependent on the windrowing operation, 

this created a waiting period for the balers while the windrowers were getting started. It also 

created a waiting period for the windrowers once they were finished; they would wait for the 

balers to finish before moving to the next field. The first task of this objective was to investigate 

the effect this wait time had on the productivity of both the windrowers and the balers.  The 

second task was to investigate what performance gains could be made by splitting the 

windrowers and balers into separate teams, and what the optimal lead time should be between 

the two operations. 
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Literature Review: Current Knowledge 

The Renewable Fuels Standard (RFS) was created in 2005 under the Energy Policy Act. 

This was the first renewable fuel volume mandate in the United States. The original RFS called 

for 7.5 billion gallons of renewable fuel to be blended in the U.S. fuel supply by 2012 

(Renewable Fuel Standard 2013). This was the first step in the development of the cellulosic 

ethanol industry in the United States.  In 2007 the volume mandate was revised and by 2022, 

36 billion gallons of renewable fuel is to be blended into the nation’s fuel supply (Renewable 

Fuel Standard 2013). 

As cellulosic ethanol begins production in the United States, there will be an increasing 

demand for high quality biomass feedstock. This feedstock can come from dedicated energy 

crops, as well as agricultural residues. In the Midwest states, corn stover has been targeted has 

the primary source of cellulosic biomass. Corn stover is in abundance in the Midwest and has 

no impact on the nation’s food supply. Perlack (2005) states “The single largest source of this 

current potential is corn residues or corn stover, totaling close to 75 million dry tons per year.” 

(Perlack 2005) 

Iowa is the nation’s leader in corn production, harvesting corn on 13.1 million acres in 

2013 (Crop Production 2013). This vast amount of corn production means Iowa holds a great 

potential for corn stover biomass production as well. Several companies have realized this and 

are working to tap into this potential. Poet-DSM Advanced Biofuels and DuPont Cellulosic 

Ethanol are both constructing cellulosic ethanol plants in central Iowa.  

Both of these plants will use corn stover as their biomass feedstock. Poet-DSM is scheduled to 

open their 25 million gallon per year plant in Emmetsburg, Iowa in early 2014. The Poet-DSM 
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plant will require 280,000 dry tons of corn stover annually and will be collected within a 30 mile 

radius of the plant (Biomass Resources 2014). 

The DuPont Cellulosic Ethanol Facility near Nevada Iowa is also currently under 

construction and scheduled to open in late 2014. The DuPont Facility will be a 30 million gallon 

per year plant requiring 375,000 tons of corn stover annually. This plant also has 30 mile radius 

collection area with 815,000 available corn acres. However with a sustainable harvest rate of 2 

ton/acre only 190,000 acres will be required to meet the feedstock supply demands of the 

facility (Nevada Cite CE Facility 2013). 

A third company has also realized the biomass supply potential of the Midwest, 

Abengoa Bioenergy Biomass of Kansas (ABBK) is also nearing completion of its 25 million gallon 

per year facility and is scheduled to begin production in late 2014. The Facility is located in 

Hugoton Kansas and will also use corn stover biomass as its primary feedstock. “The ABBK plant 

will utilize 350,000 tons of biomass to run this facility - approximately 15% of the available 

biomass within a 50-mile radius of the Hugoton plant.” (Project Sustainability 2011) 

The task of supplying a 25-30 million gallon per year cellulosic ethanol plant is 

challenging and multifaceted. The corn stover biomass supply for a plant of these capacities 

would require over 700,000 large square bales annually.  With an average fall harvest window 

of 30 days in central Iowa, it takes a large fleet of equipment and a huge work force to 

accomplish this. An operation of this scale presents many logistical and organizational 

challenges. Understanding the logistical challenges of harvesting and transporting corn stover 

leads to solutions to improve efficiencies and drive down the overall cost, making corn stover a 

viable biomass feedstock (Nevada Cite CE Facility 2013). 
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Figure 1: 2012 Central Iowa Corn Stover Harvest 

 

To understand the logistical challenges with harvesting corn stover, we have to examine 

the harvest equipment as a whole team, and how all the machines interact together. There are 

many ASABE standards already in place to calculate the productivities of individual machines in 

a variety of conditions (Hunt 2008). However, there is very little research that looks at how 

these productivities are affected when you place these machines in a team environment, 

specifically a biomass corn stover harvesting team.  In this team environment, the productivity 

of one machine is usually impacted by, if not dependent on, the productivity of another. 

This situation adds much more complexity when it comes to making purchasing 

decisions for equipment. Not only does the capacity and productivity of the single machine 

have to be considered, but how it interacts and affects the other machines in the team. This 

study looks at several of these machine relations and organizational issues associated with corn 

stover biomass harvesting equipment.  
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Iowa State University has been on the forefront of the rapidly expanding cellulosic 

industry and conducted research on all aspects of the supply chain including the harvest, 

storage, and transportation of corn stover biomass. Much of that work has been centered 

around collecting and analyzing GIS data from each stage of the supply chain. Work by Webster 

(2011) and Peyton (2012) showed the potential that GIS data had and the machine metrics 

information that could be gleaned from it.  

Later work by Covington (2013) and Askey (2013) established and automated the sorting 

and processing of machine data into specific machine categories. These categories break down 

machine utilization and provide data back to operators and managers about that machines 

productivity. This type of feedback allows them to make informed data driven decisions about 

machine logistics. The work in this thesis explores more in depth the organizational issues that 

contribute to poor productivity of machines and entire harvesting teams. 

Knowledge Gaps 

There were several potential areas of study derived from this literature review. The first 

was the productivity of machines working within in a team and how that varies from the ASABE 

standard productivity of machines. While this is not a new problem, the impact of it has a much 

larger effect when conducting large commercial scale biomass harvests. The second was 

exploring which factors have the largest impact on a biomass harvesting team’s productivity. 

Machine related issues specific to biomass harvesting have been explored but there is an 

organizational aspect that requires further research. Along with this is the question of “best 

practice” harvest team organization. What is the best configuration for a corn stover biomass 
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harvesting team? These three knowledge gaps are the focus of the research work presented in 

this thesis. 
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Experimental Dataset & Collection 

The challenge with a large harvesting operation is to determine the performance of the 

entire fleet of equipment, which is spread across a large geographical area. It is not feasible to 

go and observe the operation of each machine. This is where automated data logging and data 

processing systems come into play. These systems can be deployed on a piece of equipment 

and used to record data from the electronic controls on the machine. This data can then be 

analyzed and used to determine the productivity of the machine.  

The network of electronic controllers on agricultural machines offers a gold mine of data 

that can be captured and recorded for use in evaluating the machine’s performance. These 

electronic controllers communicate through a Controller Area Network or CAN bus. The CAN 

bus carries messages that control all the functions of the machine. These messages can be 

captured and recorded by the data logging system. This data, combined with the GPS position 

of the machine, provides a powerful GIS data set that can be used to understand where the 

machine was located and what operations it was performing. 

For this research, data was collected using the CyCAN system developed at Iowa State 

University. The CyCAN system is an embedded hardware system that can be deployed on any 

agricultural machine with a CAN bus. It can be configured to fit any application; for this work, it 

was setup to log data from tractors used in a commercial scale corn stover biomass harvest. 

The CyCAN system records data from the tractor’s CAN bus along with the GPS signal from the 

tractor’s receiver. Currently, it collects this data at one sample per second (Webster 2011). 
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Figure 2: CyCAN Data logger used to record data from vehicles CAN bus 

 

The CAN data and GPS coordinates are then extracted from the raw data recorded by 

the logger. This data is then separated and organized by field through a process called 

geofencing. Geofencing uses a geographical boundary for each field to determine which data 

points are from that field. Any data point with a GPS coordinate that falls inside the boundary 

for that field gets categorized under that field. This process spatially breaks up the data and 

allows for productivity analysis on a per-field basis. 

The data for this research was collected from a commercial scale biomass corn stover 

harvest in central Iowa. Data was collected for a two year period and included the fall harvest 

season of 2011 and 2012. Both harvests occurred in the same geographical area of central 

Iowa. Both harvests included tractors from the three major North American manufacturers: 

John Deere, Case IH, and AGCO. All balers were either AGCO or Krone balers, and shredding 
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equipment was from the Hiniker Company of Mankato Minnesota. This research focuses on 

crew organizational factors and their impact on machine productivity. For reasons of 

confidentiality the specific equipment manufacturers are not disclosed within the work of this 

thesis, however when applicable different manufactures are noted in generic terms.  
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CHAPTER 2: 

IMPACT OF SAMPLING INTERVAL ON GIS DATA BASED 

PRODUCTIVITY CALCULATIONS 

Abstract 

Analyzing GIS data collected from an agricultural machine is an invaluable tool in 

machine development, as well as fleet management. This data provides knowledge about 

machine performance characteristics that helps producers and managers make informed 

decisions to improve machine productivity. The frequency at which this data is collected, called 

the sampling interval, can have a significant impact on the machine productivity calculations. 

This study looks specifically at this impact and how increasing the sampling interval influences 

those productivity calculations. If the sampling interval can be increased without significantly 

changing the outcome of the productivity calculations, it would be advantageous to do so 

because it would decrease the amount of data generated and shorten data processing times. 

Currently data is collected at one hertz or once per second. Alternative sampling intervals of 2, 

5, 10, 15, 30, and 60 seconds were tested in this study.  15 seconds was found to be the longest 

interval that did not significantly impact the results of the productivity calculations. The 15 

second interval provides a 93% decrease in data which will significantly reduce data storage 

requirements and data processing time. As new telematics data collection systems enter the 

market place, reducing the amount of data means more reliable remote data transfer from 

these devices. 
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Introduction 

With the increase in technology on agricultural equipment comes the opportunity to 

collect vast amounts of data with relative ease. The machines CAN bus communication system 

provides information about the entire machine and by looking at the right combination of 

functions it is possible to determine what operations the machine is performing. When this 

data is combined with a GPS location, it creates a GIS data set loaded with information about 

the machines, location, performance, and productivity. Providing this information to producers 

and managers allows them to make informed data driven decisions that improve machine 

productivity. 

These systems also provide great data sets for researchers to glean very specific 

information about machine performance or other parameters that they may be testing. This 

sort of research based data set requires a high sampling rate in order to achieve the necessary 

resolution in the data so that accurate conclusions can be made from it. The current sampling 

interval used for this type of data collection is one hertz. 

This was originally chosen because it was easy to calculate performance metrics on a 

time basis, but was also a high enough frequency that in-depth research analysis could be 

performed. As the productivity calculations have evolved, the data set used to make them has 

decreased; there are only a few key parameters used in these calculations now, mainly engine 

speed, PTO speed and vehicle speed. Also, the focus of these data collection systems has 

shifted away from research and more towards machine monitoring. The system now directly 

calculates productivity and other specific machine factors; there is no longer a need to log 

everything on the CAN bus, only the messages containing the specific machine parameters 
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required for the productivity calculations are logged. This has greatly decreased the data log file 

size but there is still need to further decrease it.  

Recently, telematics has become the focus of large fleet management research. These systems 

allow data to be collected on a machine and then wirelessly transferred back to a central server 

location, where the data is stored, organized, and processed. This allows for real-time analysis 

of machine productivity throughout the day, but more importantly it gives managers the 

information they need to make informed data driven decisions about machine logistics.  

The large data log file sizes make it difficult to transmit over the wireless networks that 

these systems utilize. By increasing the sampling interval, it would greatly reduce the amount of 

data that is generated and therefore decrease the amount of data that needs to be transferred. 

This increases the speed and reliability of the data transfer process and decreases the risk of 

lost or corrupted data. This study focuses on increasing the sampling interval time as a solution 

to decreasing the data log file size.  

 

Research Objective 

The objective of this research is to determine the effects of GIS data sampling interval 

on machine productivity calculations. Currently the CyCAN system records GIS data samples 

every second. If data collection intervals can be increased with minimal effects to the 

productivity metrics, then it will be advantageous to do so. This will involve performing the 

same productivity calculations on the same data set using alternative sampling intervals. 
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Materials 

Machine Productivity Calculations 

  To analyze a machine’s productivity accurately, a fundamental understanding of the 

machine and its intended functionality has to first be established. From there, its functionality 

can be broken down into specific parameters to determine which ones are critical to the task 

that it is performing. For instance, for a large square baler to operate, it has to have PTO power 

input from the tractor, as well as be towed by the tractor through the field. From this, it is 

determined that in order for the baler to be operational, the tractor has to have the PTO 

engaged and be moving. These are both parameters which can be recorded off of the tractor’s 

CAN bus. Recent work by Benjamin Covington at Iowa State University has taken this one step 

further and assigned threshold values for these parameters, in order to determine which state 

of operation the machine is in (Covington 2013). 

Covington defines three machine states; Production, Idle, and Transport. These states 

were used to evaluate the productivity of the machine, which in this case was a large square 

baler that is harvesting corn stover. To determine which state the baler is in, three key machine 

parameters are used, PTO speed, engine speed, and vehicle ground speed. Based on his 

research, Covington developed thresholds for each of these parameters, and the combination 

of all of these parameters and their thresholds defines which state the machine is in. These 

thresholds and cutoff points are represented in the flow chart in Figure 3 (Covington 2013). 
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Figure 3: Utilization Paradigm, Covington 2013 
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In this flow chart, each of the three key machine parameters are described and their 

thresholds are listed. It also illustrates the decisions that are made at those threshold points to 

determine the current machine state. Data is recorded from the tractor and baler and then 

processed through this matrix. Each data point is then filtered down to the correct “bucket” or 

machine state that it belongs in. This decision matrix was developed for a data sampling rate of 

one second, which allows the data points to very easily be converted back to a time basis. By 

totaling up the data points from each “bucket”, a total number of data points for each machine 

state can be determined. Since each data point represents one second, it is easy to calculate 

the amount of time the baler spent in Active, Idle, or Transport. The productivity of the baler is 

then calculated by finding the ratio of each machine state to the total number of seconds from 

all the machine states, this is shown here in Equation 1. 

               
          

                           
     

Equation 1: Productivity Ratio Equation 

An automated data processing program was developed to rapidly quantify productivity 

for multiple machines. The program sorts the extracted CAN data from the CyCAN system into 

the appropriate “bucket” based off the threshold limits. It then sums up the buckets for each 

machine state to get the total for each state. The program then calculates the productivity for 

each machine, as well as extracts other parameters from the raw data, such as number of bales 

or number of acres. The output file can be customized depending on what the intended use is, 

but the most basic output from the program is a summary table of all the desired parameters 

and productivities sorted by machine. This can then be used to compare machines and harvest 

teams to start benchmarking the performance of each. This is a valuable tool to help increase 
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the productivity of the entire harvesting operation. (Askey 2013) 

 

Data Analysis 

The focus of this research study was to evaluate the possibility of increasing the 

sampling interval on CAN bus data collection systems in order to decrease the log file size. To 

do this, a set of alternative sampling intervals was developed and evaluated to find the longest 

possible sampling interval that does not have a significant effect on the machine productivity 

calculations. 

For this analysis only data from the large square balers was used. The automated data 

processing script was setup specifically for balers at this point, so no shredder data was used. 

Data from both the 2011 and 2012 harvest seasons was used in this analysis. For the first 

portion of this chapter, only 2011 data is discussed. The 2012 data is presented later in the 

chapter. There were 7,500 acres in the 2011 harvest; out of this data set, 16 fields were chosen 

to be used for this analysis. These 16 fields had complete data log files with no missing or 

corrupted data. The fields ranged in size from 70 to 120 acres. There were 82 fields totaling 

9,300 acres from the 2012 data set that were able to be used for this analysis; the others were 

excluded due to missing or corrupted data. 

Alternative Sampling Intervals 

The current sampling interval for the CyCAN system is set at one hertz. After evaluating 

the GIS data it was decided that alternative sampling intervals needed to be less than 30 

seconds, as this was believed to be the maximum within the acceptable range. A set of 

sampling intervals was chosen that covered the range of acceptable values, as well as outside of 
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the range, to test that the cutoff point of 30 seconds was justified. The alternative intervals 

selected for testing where as follows; 2, 5, 10, 15, 30, and 60 seconds. The potential impact on 

data log file size of these sampling intervals is shown below in Table 1. Column two is the 

percent decrease in data log file size. 

Table 1: Percent Decrease in Data Log File Size 

Sampling 
Interval 

Percent 
Decrease 

1 0% 

2 50% 

5 80% 

10 90% 

15 93% 

30 97% 

60 98% 
 

To apply these alternative sampling intervals, an additional script was written and added 

to the data processing software. The raw data log was collected with a one second sampling 

interval; it was then down-sampled based on the desired sampling interval to be tested. For 

example, if the desired sampling interval was two seconds, the script would select every other 

data point and discard the rest. Using that same raw data log, this process was repeated for all 

the alternative sampling intervals. Figure 4 illustrates the down-sampled data sets from an 

example field used in this analysis. For each alternative sampling interval, the number of data 

points is shown for that specific machine state. The smaller down-sampled files for each 

interval were then run through the same automated data processing software to calculate the 

machine productivities.  
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Figure 4: Example; Down Sampled Field Data Set for Alternative Sampling Intervals 

 

Productivity Comparisons, Ratio Basis 

To evaluate the effect that the alternative sampling intervals had on the productivity 

calculations two primary methods were used. The first was a productivity ratio comparison, 

where machine productivity was calculated for each sampling interval using Equation 1. This is 

simply a ratio of each machine state time to the total amount of time, to give a percent 

productive, idle, or transport. Since this method of analysis is based on the ratio of a machine 

state to the total number of data points, it is still able to be used the same way on the down 

sampled data sets. The percent productivity can be calculated in the same way for each 

sampling interval just as it is for the raw data set.  
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To evaluate the results of each sampling interval, the percent productivity calculated for 

each sampling interval was compared to that of the raw one second interval. The difference in 

percentage points was calculated between each sampling interval and the raw data file. This 

percentage point difference is the amount of error for that sampling interval. This is illustrated 

in Table 2 which is the results from the example field F092. The table shows that as sampling 

interval is increased, the calculated productivities start to diverge away from the actual. The 

productivity calculation for F092 had a max percentage point difference of 0.2% while the idle 

calculation had a max percentage point difference of 0.5%. Both of these larger differences 

occurred at the 60 second sampling interval.  

Table 2: Productivity Ratio Results for Example Field F092 

Sampling 
Interval Productivity Idle Transport 

Productivity 
Difference 

Idle 
Difference 

Transport 
Difference 

1 76.1% 21.6% 2.3% 0.0% 0.0% 0.0% 

2 76.2% 21.5% 2.3% 0.1% -0.1% 0.0% 

5 76.1% 21.5% 2.4% 0.0% -0.1% 0.1% 

10 76.1% 21.5% 2.4% 0.0% -0.1% 0.1% 

15 76.2% 21.6% 2.3% 0.1% 0.0% 0.0% 

30 76.2% 21.4% 2.4% 0.1% -0.2% 0.1% 

60 76.3% 21.1% 2.6% 0.2% -0.5% 0.3% 

 

Overall in this example field, the divergence was fairly small but in some field data sets 

there was a much larger impact from increasing the sampling interval. This process was 

repeated for all 16 fields in the 2011 data set and the results summarized by sampling interval. 

This is shown below in Figure 5.  
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Figure 5: Productivity Ratio Percentage Point Difference by Sampling Interval 

 

The same trend holds true here for the summarized data, as sampling interval increases 

so does the error. The means diverge slightly, but what is more interesting is the increase in 

variance. As the sampling interval increases, the variance becomes much greater in each 

machine state. Overall, this was still a fairly accurate way to calculate machine productivity, 

even at the longer sampling intervals, there was still less than 1.2 percentage point total 

variance.  

The 2011 data set only contained 16 fields so this analysis was repeated on the 2012 

data set which was much larger; these results are presented later in the chapter. 
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Productivity Comparisons, Time Basis 

The second method for evaluating the impact of the increased sampling interval was a 

time-based analysis. On the machine performance reports, it is necessary to have total amounts 

of time that the machine spent in each state of production, idle, and transport. There are also 

other performance numbers, such as bales per hour of production, or acres per hour of 

production, that require the use of a total amount of time. 

To calculate these total amounts of time the number of data points for each machine 

state is multiplied by the sampling interval with which it was collected. Figure 6, below, shows 

this graphically, for the production time of example field F092. The down-sampled data sets 

were multiplied by their respective sampling interval, shown as Production Calculated. The 

product of this operation is representative of the number of seconds that the machine spent in 

that state. This number is very similar to that of the raw data collected at one second intervals, 

but there is some error associated to this process. The amount of error varies in magnitude and 

direction, depending on the sampling interval, the field, and the machine status.  
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Figure 6: Down Sampled Data Multiplied by Sampling Interval.  

 

This error was further quantified on a percent basis; this was done by finding the 

difference between the calculated time and the actual time of the raw data and then dividing 

that difference by the actual time. This is shown in Equation 2. 

        
                                                      

             
 

Equation 2: Percent Error calculation for time based productivity 

 

The percent error was calculated for each field, machine state, and sampling interval. 

The data was categorized by sampling interval but also by machine state just as for the ratio 

based productivity analysis. Figure 7 summarizes these results and shows a very similar trend to 
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the ratio analysis: as sampling interval increases so does the variance of the error. The time- 

based percent error is much larger than that of the ratio based with some error stretching out 

beyond 5%. 
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Figure 7: Time Based Productivity Error 

 

This larger magnitude in error is due to the multiplication process in estimating the total 

amounts of time for each sampling interval. If there is a small error in the point count of each 

machine state for a given sampling interval, that error is compounded and magnified when 

multiplying by the sampling interval to get the estimated time.  
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There is much higher variation and error in the idle and transport state than there is in 

the production state. This is strictly due to the amount of data points there are in each state. 

The highest percentage of data points fall into the production state, while the lowest falls into 

transport. If it is a small field or a field with very little transport time, there will not be many 

data points in the transport state. This number becomes even lower when being down-sampled 

for each sampling interval. The smaller this data point count gets, the more likely it is for error 

to be induced when multiplying back by the sampling interval. 

2012 Data Analysis 

The data collection for the 2012 harvest was much more intense, with loggers on every 

machine in the fleet. There were 82 fields totaling 9,300 acres that were able to be used in this 

analysis, the other fields from the 2012 harvest were excluded due to lost or corrupted data.  

The larger data set of the 2012 harvest allowed for more in-depth analysis of both the 

productivity calculation methods. It also created more confidence in the outcome with a much 

larger sample size.  

Ratio Basis 

The productivity ratio analysis was conducted the same as it was for the 2011 data. The 

data log files were down-sampled using the same alternative sampling intervals of; 2, 5, 10, 15, 

30, and 60 seconds. The results were summarized in the same format and organized by 

sampling interval. 

The same trends that were observed in the 2011 data were also present in the 2012 

data. As the sampling interval increases, so does the error and variability. The magnitude, 
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however, was slightly larger than that of the 2011 data. Figure 8 below shows this graphically 

with some points stretching out beyond 0.5% difference. 
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Figure 8: 2012 Productivity Ratio Percentage Point Difference by Sampling Interval 

 

As sampling interval increases, the variance for each mean difference also increases. 

Because of this increase in variance, a statistical difference cannot be shown between the 

means for the different sampling intervals. This provides no way to distinguish which sampling 

interval had a significant impact on the productivity calculation.  

This shifted the focus to assessing the standard deviation of each sampling interval, 

rather than the means. This method looks at how accurately each sampling interval can predict 

the actual productivity, and further investigates the trend seen in the summary chart of Figure 

8. The trend visually observed in the chart shows an increase in variance as sampling interval 
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increases. A test for equal variances between each sampling interval was performed. The test 

was performed on one machine state at a time. Figure 9 shows the results from the equal 

variance test of percent productivity difference. 
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Figure 9: Equal Variance Test for Productivity Ratio 

 

There is a clear separation between the standard deviations of the 10 and 15 second 

sampling intervals. Based on these results, there is enough evidence to show a statistical 

difference between the standard deviation of the two sampling intervals. This break point falls 

right in the middle and breaks the sampling intervals into two clusters. The lower cluster, which 

goes up to the 10 second interval, has very small standard deviation, less than 0.005 percent. 



 30  
 

 
 

The upper cluster has significantly higher standard deviations than that of the lower but 

is still not greatly significant. Refer to Appendix A for boxplots of machine state productivity 

differences to visualize the standard deviations.  

Figure 9 only shows the standard deviations for the difference in percent productivity. All the 

machine state calculations need to be considered to determine which one if any of the 

sampling intervals has an effect. 

To compare only the sampling intervals, the machine states were combined. To do this, 

the mean of the standard deviation was found for each machine state at each sampling 

interval. An ANOVA was then performed on these mean values to determine the relation 

between the different sampling intervals. The ANOVA process pooled the mean standard 

deviation of each sampling interval into a category, this category contained the mean standard 

deviation of the production, idle, and transport machine states. Table 3, below, shows the 

Tukey grouping of the sampling intervals. 

Table 3: Tukey Method Grouping of Ratio Difference Standard Deviations 

Sampling 
Interval N 

Mean Std 
Deviation Grouping 

1 3 0.0000 A     

2 3 0.0011 A     

5 3 0.0025 A B   

10 3 0.0040 A B   

15 3 0.0124 A B C 

30 3 0.0177   B C 

60 3 0.0206     C 

 Means that do not share a letter are significantly different 
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For a Tukey grouping such as this, the means that do not share a letter are significantly 

different from each other. Based off of this chart and looking at the letter C, the 2, 5, 10, and 15 

second intervals are significantly different from the 30 and 60 second intervals. Results also 

indicate that the 2, 5, and 10 second intervals are statistically different from the 15, 30, and 60 

second intervals when looking at the letter A. This second division point is similar to what was 

seen in the Bonferroni chart with a distinct split between the 10 and 15 second intervals. This 

ANOVA comparison, however, contained a combination of all the machine states, whereas the 

Boneferroni only contained the productivity state. 

The objective of this research was to find the longest sampling interval that did not 

significantly impact the productivity calculations. From this study of the productivity ratio 

differences, it appears that either the 10 or the 15 second interval does not significantly affect 

the productivity calculations. In order to make a final selection, though, the time-based 

productivity calculations still have to be considered. 

Time Basis 

The time based productivity numbers are an important tool in evaluating the factors 

that play into the productivity of a machine. It is necessary to know exactly how much time a 

machine spent in production, idle, or transport rather than just a percentage ratio of the total 

time. The time-based analysis was also repeated on the 2012 data, which consisted of 82 fields.  

The data was down-sampled using the script that was added to the automated data 

processer. Each of the alternative sampling intervals was applied and the results summed for 

each machine state. The total for each machine state was then multiplied by its respective 

sampling interval, the same as for the 2011 data set. The error was then calculated by taking 
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the difference of the calculated time and the actual time and dividing that difference by the 

actual time to get a percent error. This was done for all the fields in the data set and the results 

are displayed in Figure 10.  
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Figure 10: 2012 Time Based Productivity Percent Error 

 

The interval plot shows the same trend as before in the other data sets, as sampling 

interval increases so does the variance. This data set, however, shows a more prevalent 

increase in variance after the 15 second sampling interval. The mean percent error is again not 

able to be proven to be statistically different, so an analysis of the standard deviations was 

performed. 

Upon visual observation, there appears to be an increasing trend in the variance as the 

sampling interval increases. To confirm this, an equal variance test was performed individually 
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on each machine state. The results for the productivity machine state are seen below in Figure 

11. To see the equal variance tests for idle and transport refer to Appendix B. 
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Figure 11: Equal Variance Test for Production Percent Error 

 

The equal variance test for production percent error shows the definite break between 

the 15 and 30 second intervals that was observed in Figure 10. This break point is similar to that 

seen in the productivity ratio analysis and further supports the significant difference between 

the 15 and 30 second sampling intervals. Again, this test was only for the productivity state and 

did not include the idle or transport machine states. To draw a conclusion, data from all the 
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machine states needs to be taken into account. The same process as in the ratio analysis was 

repeated for this analysis. 

The mean standard deviation was found for each sampling interval and each machine 

state. An ANOVA was then performed on these mean standard deviations to find the relation 

between the sampling intervals. The ANOVA process pooled the mean standard deviation of all 

machine states for each sampling interval, and then compared all the sampling intervals. The 

Tukey method grouping results are shown below, in Table 4. 

Table 4: Tukey Method Grouping of Mean % Error Standard Deviation 

Sampling 
Interval N Mean Grouping 

1 3 0.0000 A     

2 3 0.0091 A     

5 3 0.0224 A     

10 3 0.0354 A B   

15 3 0.0721 A B   

30 3 0.1882   B C 

60 3 0.2561     C 

 

In the Tukey grouping, the means that do share a letter are statistically different. From 

this table, looking at letters A and C, the 30 and 60 second intervals are statistically different 

from the 2, 5 ,10, and 15 second intervals. This further confirms the breakpoint that was 

observed between the 15 and 30 second intervals in the Bonfferoni chart, as well the interval 

plot. The one second and 15 second intervals are grouped together in group C, which indicates 

that they are not significantly different. 

Means that do not share a letter are significantly different 
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Results and Conclusion 

From the results of the ratio-based and time-based productivity analysis, it was 

concluded that there was an increase in variability at the 30 second sampling interval. This 

increase was found in both sets of analysis and shown in the Bonferroni interval plots. It was 

also further proven in the Tukey method grouping of the ANOVA results that there is a 

significant difference that occurs between the 15 and 30 second sampling intervals. With the 15 

second sampling interval the productivity of the machine can still be calculated accurately. This 

is true of both the productivity ratio and time based calculations. 

It is also important to note that in the Tukey chart for each analysis there was not a 

statistical difference between the 1, 2, 5, 10, and 15 second intervals. It cannot be said that the 

1 and 15 second intervals are the same, only that they are not statistically different. This 

scenario occurred in both the ratio and time-based analysis and further confirms the break 

point between the 15 and 30 second intervals.  

Shifting Transition Point Error 

The error associated with increasing the sampling interval comes from shifting transition 

points. A transition point is the point in time which the machine switches from one state to 

another. For example, when the machine is sitting in the field idling, it is in “idle”. However as 

soon as the baler is engaged and it starts to produce bales, it is in the “production” state. The 

point at which it changes from idle to production is a transition. Throughout the course of a 

day, the machine will change states multiple times and have many transition points. The exact 

number of transitions varies greatly and is dependent on a large number of factors such as, 

breakdowns, field size, weather, operator, machine type, and many more. There is no way to 



 36  
 

 
 

predict the number of transitions a machine will have in any one day due to the large variety of 

influential factors that cause a transition. 

When sampling at one hertz, it is easy to precisely tell when a machine changes state. 

But as sampling interval increases it is much harder to distinguish when exactly a transition 

occurs. This decrease in precision is what causes the error in both the ratio and time-based 

productivity calculations. The difference is that in the time-based calculations that error is being 

multiplied by a factor equal to its sampling interval. 

For instance if a machine transitions from idle to production right after a sixty second 

interval data point is collected, the machine state will not change to production until the next 

data point is collected. This means that there is 59 seconds of production time that is actually 

being recorded as idle time. This is an extreme case scenario, but this is exactly what is 

occurring at each transition point as the sampling interval is increased. Refer to Appendix C for 

a graphical representation of this. 

Ideal Sampling Interval 

Based on the results from this study, 15 seconds was shown to be the ideal sampling 

interval for collecting GIS data in a commercial scale corn stover biomass harvest. This will 

decrease the data log file sizes by 93% while having no significant impact on the machine 

productivity calculations. This significant decrease in file size will drastically decrease data 

storage space needs, as well as data processing times. As the industry demand for telematics 

systems increases, the 15 second sampling interval will be the best balance of accurate 

productivity calculations and reduced data file sizes.  This will greatly increase the reliability of 

the wireless data transfer from these units, and allow for on board data processing. Telematics 



 37  
 

 
 

is the next step in large fleet management solutions. It offers real time data acquisition and 

processing with instant access to machine productivities, which allows operators and managers 

make informed data driven decisions. 
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CHAPTER 3:  

OPTIMAL CONFIGURATION AND LEAD TIME OF CORN STOVER 

BIOMASS HARVESTING TEAMS 

Abstract 

Harvest team organization for biomass feedstock production has a major impact on the 

productivity of the team, as well as the productivity of the equipment. Organization is one of 

the biggest areas for improvement and can have an almost instant effect on productivity levels 

of windrowing and baling systems. When these operations are joined together as one unit, the 

baling productivity is limited while waiting on the windrowers. This decreases the overall 

productivity of the harvest team and adds additional cost to the biomass feedstock supply 

chain. 

In order to be effective, the two operations need to be split and the windrowers should 

maintain a lead time over the balers. This lead time needs to be long enough to cushion the 

effect of any mechanical problems and the slower transport speeds of the windrowers, but yet 

short enough that, if a rain event were to occur, the windrowers could be shut down and give 

the balers time to catch up and harvest the ground that has already been completed by the 

windrowers.  

By splitting the two operations, significant gains can be seen in productivity. In order for 

harvesting operations to run smoothly, windrowing and baling operations have to be managed 

separately, with sufficient lead time maintained between the two operations.  
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Introduction 

The task of supplying a 25-plus million gallon per year ethanol plant is challenging and 

multifaceted. A corn stover biomass supply chain, totaling 740,000 large square bales, will be 

needed each year for the plant to operate. These bales all have to be harvested within the 

average 30 day fall harvest window of central Iowa. To accomplish this, it will take a large fleet 

of equipment and an immense work force. The key to making all this function smoothly is 

careful planning and good organization.  

Organization has a major impact on the productivity of a harvest team, as well as the 

productivity of the equipment. Organization is one of the biggest areas for improvement and 

can have an almost instant effect on a harvest team’s productivity levels. This analysis looks at 

the possible gains in productivity by separating the windrowing and baling operations. This 

analysis used data from a 7,500 acre corn stover biomass harvest in central Iowa conducted in 

the fall of 2011. This analysis was one of the first to use machine parameters, such as PTO 

speed, engine speed, and vehicle ground speed, to sort GIS data into the specific categories.  

There were 6 fields with complete sets of windrower and baler data from the 2011 

harvest; these are the fields used in the 2011 analysis for the first portion of this chapter. 

Because of this small data set, it was decided to repeat this analysis on the 2012 harvest data 

set. There were 126 fields totaling 14,100 acres used in this analysis; the others were not used 

due to missing or corrupted data. The 2012 data analysis uses the same concepts from the 2011 

analysis, but uses updated processes. The results of this analysis are presented in the second 

portion of this chapter.  
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Research Objective 

The objective of this research was to determine the optimal configuration and lead time 

for a corn stover biomass harvesting team. It was observed during the 2011 harvest that 

windrowers and balers would travel as teams from field to field. This created a wait time for the 

balers at the begging of the field, as well as a wait time for the windrowers at the finish of the 

field. The first task of this objective was to investigate the effect this wait time had on the 

productivity of both the windrowers and the balers.  The second task was to investigate what 

performance gains could be made by splitting the windrowers and balers into separate teams, 

and what the optimal lead time should be between the two operations. 

 

2011 Configuration and Lead Time Analysis 

Methods 

To analyze the productivity of a harvest team or a machine, it is necessary to classify 

how its time is spent. General operational segments of machinery systems can be subdivided 

into three discrete categories: Production, Idle, and Transport. These specified productivity 

categories organize the data from each machine and make it easy to classify which data points 

fall into the production category, which is the only category in which productive work is being 

done.  

To qualify as production, a machine has to be in working mode, this means that the 

machine is in the field doing work and being productive. If the machine is idle, it is not in 

working mode, but is in the field with the engine running. Transport includes time when the 
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machine is moving through the field but not doing work, as well as time on the road. For a 

harvest team to be the most productive, they need to maximize their production time and 

minimize their idle and transport time. Transport is one area that is more or less fixed because 

machines can only travel down the road so fast. This time can be optimized, however, with 

good organization and by ensuring the operator knows where to go and the shortest distance 

to get there. Idle time is more controllable and should be minimized in order to maximize 

overall productivity. 

The factors that influence the amount of production time are primarily related to 

equipment. If larger, higher capacity equipment is used, it will increase the productivity. In 

addition, good maintenance and servicing will help keep the equipment operating at peak 

performance and maximum capacity. To make any significant improvements in this area 

requires engineering and development work to increase the size and capacity of the 

equipment. Reducing idle time can have a direct and measurable positive impact on overall 

productivity. 

Idle time is influenced by many factors and is the source of all wasted time and cost of a 

harvest team. Every machine hour that falls into the idle category is a reduction in the 

productivity, and adds excess cost to the whole harvesting system. Idle time can be influenced 

by poor quality equipment or poorly maintained equipment. Time spent on breakdowns is lost 

productive time, as well as the input cost of the operator who is just sitting. One of the biggest 

influencing factors on idle time is organization. There are two main operations within a harvest 

team, windrowing and baling. The organization and management of these two operations has a 

major impact on the overall productivity of the team. 
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Experimental Field 

Data for this study was collected from windrowers and balers in a commercial scale corn 

stover harvest in Central Iowa. Data was recorded from equipment using the CyCAN data 

logging system developed at Iowa State University. This system records desired CAN 

parameters every second and ties them to a GPS coordinate. This style of spatial data collection 

shows the researcher where the machine was, and what it was doing, according to the CAN 

parameters selected to be logged. (Webster 2011) 

Field Analysis Methods and Machine States 

AgLeader SMS Advanced software was used to analyze the GIS data from each machine 

and determine the time it first entered and last exited the field. The data was analyzed based 

on three perimeters; PTO engagement status, engine speed, and vehicle ground speed. By 

filtering a field dataset for specific combinations of these parameters, it was determined 

whether the machine was in production, Idle, or transport (Peyton 2012, Covington 2013). 

To determine how long equipment was waiting at the start and finish of each field, a 

time log was constructed. Three time categories were established; Begin, Working, and Finish. 

“Begin” runs from the time the machine first pulled into the field until the time it first entered 

the production state. “Work” runs from the time production first started in the field until the 

time it last ended. “Finish” runs from the time production last ended until the time the machine 

last exited the field. 

To find when the machine entered and exited the field, a query was done of the data 

points directly surrounding the field entrance. In the query results, the point with the lowest 

date and time is when the machine entered the field, and the point with the greatest date and 
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time is when the machine exited the field. An example of this process is shown below in Figure 

12. 

 

Figure 12: Field Enter and Exit Time Query (Covington 2013) 

 

This example of the field enter and exit time query shows how the process is performed. 

By examining the minimum and maximum points for this field, it shows that, in this case, the 

baler entered the field at 5:58 PM and exited the field at 6:48 PM the following day (Covington 

2013).  

To determine when the baler first began work and finished work, the field dataset was 

queried for all production data points. A production data point is defined as a point that has: a 

speed greater than 2 kilometers per hour, an engine speed greater than 1500 rpm, and a PTO 

speed greater than 500 rpm. These parameters are the primary indicators that the machine was 

moving and doing work. From the production query results, the point with the lowest date and 

time is when the machine began work and the point with highest date and time is when the 

machine ended work for that field.  

The visual playback function within SMS Advanced was also utilized to verify that the 

times from the queries coincide with the machine’s movements in the field. The playback 
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function allows one to double check that the machine’s movements follow a typical harvesting 

pattern, and that it was not doing anything out of the ordinary. 

This analysis was focused on looking at the idle time at the beginning and end of a field. 

Any idle time that occurred in between the first start up and the last shut down for that field 

was included as working time. The only exception to this was overnight time. If an overnight 

event occurred somewhere during the duration of harvesting the field, the time that the tractor 

was turned off overnight was subtracted from the production dataset. By doing this, it gives an 

accurate amount of time that the machine spent in the field and could have been in production. 

After this analysis, a time log for the field, including when each machine arrived, when it 

began work, when it finished work, and when it exited the field, was established. This time log 

was then converted to a decimal military time basis. By converting the times to this format, it is 

possible to graph them in a zero hour format. Every day begins at zero and the time 

accumulates up throughout the course of the harvest day. This was then used to establish a 

zero hour time log for each field. Whichever machine entered the field first started the zero 

hour for that field, and then all events were cumulative on top of that. 

If a field took more than one day to complete, the time simply kept accumulating. For 

the next day, 24 hours was added to the times and if a third day occurred, 48 hours was added 

to the times. As was stated earlier, the overnight time was accounted for and removed from 

the working calculations. 

This process was replicated on all the fields included within this dataset. Graphs were 

made to visualize the timeline for each field and make it apparent when equipment was waiting 
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at the beginning and finish of the field. To evaluate the loss in productivity due to this time 

spent waiting, a simple equation was used. The productivity loss was calculated by taking the 

sum of the begin time and the finish time, divided by the total time spent in the field. 

                      
                        

          
 

Equation 3: Productivity Loss Percentage 

 
 

Equation 3 yields a percentage of time that was spent waiting at the beginning and 

finish of the field; in other words, a percentage of time that was unproductive. This is a quick 

way to see the amount of possible improvement that could be made by understanding and 

addressing these harvest team organizational factors. 

 

Data Analysis 

Two treatment factors were developed to categorize and analyze the data set. 

Treatment 1 covers the effects of having the windrowing and baling operations together and 

the impacts it has on harvest team productivity. Treatment 2 covers the effects of separating 

the windrowing and baling operations and the potential gains in harvest team productivity. 

Treatment 1, Operations Together 

During the 2011 harvest, it was observed that the harvest teams would move as one 

unit from field to field. This created a backup at the start and finish of a field. The windrowers 

would begin while the balers waited for them to successfully windrow a portion of the field. 
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When the windrowers were finished, they would wait for the balers to finish, and all move to 

the next field together. 

This action was also seen and quantified when examining the GIS data. The baler can 

cover more acres per hour than the windrower, therefore it would wait until the windrower 

had a sufficient area of the field completed before it would start baling. Alternatively, instances 

were measured where the baler would start at the same time as the windrower, but run at a 

reduced capacity equal to that of the windrower. 

Both of these actions have a negative impact on the productivity of the baler because if 

it is waiting and with the engine running, it is burning fuel and accruing engine hours. If it is 

operating at a reduced capacity, it is not being as productive as it possibly could. Both of these 

actions result in increased production costs for the biomass feedstock supply chain. 

The GIS data also confirmed a similar story for the windrower. In some instances, the 

windrower would get far enough ahead of the baler that it would finish first, but then it would 

sit at the field edge and wait for the baler to finish so they could move as a unit to the next 

field. This organizational issue is a reduction in the productivity of the windrower because it 

could have proceeded to the next field and maintained its lead time on the baler. 

Example Case 1: Poor Organizational Logistics 

Field 2 is an example of why moving the balers and windrowers together has a negative 

influence on their productivity. In this field, the baler arrived ahead of the windrower and had 

to wait until the windrower arrived and began working. The windrower then finished before the 

baler and waited for 4 hours until the baler finished. Both machines then waited in the field for 
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an additional hour before moving to the next harvest field. Figure 13 shows this machine 

interaction graphically, and highlights the time wasted due to poor organization.  

 

Figure 13: Work Flow Timeline for Field 2 

 

There is another productivity-related issue occurring here as well; the baler has a higher 

capacity than the windrower. Since they started at the same time, they should have finished at 

almost the same time. However, the baler finishes much later, which indicates it was either 

running at a reduced capacity, stopping and waiting on the windrower, or a combination of the 

two. 
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The productivity loss in this field for the windrower was 30%, and for the baler there 

was a 14% loss. These are large numbers when you start considering all the costs associated 

with idle equipment time. These losses could have been greatly reduced or eliminated if the 

crew had been organized differently. 

Productivity Analysis 

Figure 14 shows the total unproductive time caused by waiting that each machine had in 

each field that was analyzed. These are unproductive hours that could have been spent 

windrowing or baling. Some of this time is necessary and cannot be eliminated because it is 

needed to perform regular maintenance and to transition the machinery from field mode to 

road mode. Beyond that, it is all excess time that can be eliminated with better organization. 

 
 

Figure 14: Total Unproductive Machine Time 
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In Figure 14, Field 1 and 6 can be seen to have low amounts of idle time; the idle times 

from these fields is an ideal amount of idle time for that equipment. The majority of that time 

should be spent at the beginning doing any servicing and preparing the machine for field 

operations. However, once a field is finished, the machine should transition into road mode and 

there should be minimal wait time once the field is completed. This is especially true of the 

baler because it does not require any machinery configuration changes to transition to road 

mode. The stalk chopping windrowers do require some time to transition to road mode, but 

after observing them during the 2011 harvest, this time should only be around 15 – 20 minutes. 

Four out of the six fields that were analyzed had what would be classified as excessive 

idle times. This works out to be 66% of the fields. If 66% of all the fields harvested during the 

2011 harvest season had excessive idle times such as these, there is a huge opportunity to 

increase harvest team productivity by addressing this organizational factor. 

Treatment 2, Operations Separated 

After observing the harvest teams during the 2011 harvest and data from the fields in 

this data set, it became clear that the windrowing and baling operations needed to be 

separated. They can still all be part of the same harvest team, but the two operations need to 

be managed separately. By separating the two operations, it is possible to cut out much of the 

idle time at the beginning and end of a field.  

This will have an almost instant effect on the team’s productivity. Figure 15 shows the 

plots of productivity loss for each machine, with the average listed in the middle. These 

productivity losses could also be thought of as potential productivity gains for each machine. By 

minimizing the organizational issues and staggering the windrowing and baling operations, 
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Baler A, for example, could have a 6% increase in productivity during the next harvest. More 

significantly the windrower could see a 14% increase in productivity. As was stated earlier, 

there is a small amount of unproductive idle time that is necessary to transition the equipment 

in and out of road mode, but the rest can be eliminated with better organization. 

 
 

Figure 15: Productivity Loss per Machine, Loss Equals Potential Gains 

 

Case 2: Improved Organizational Logistics 

Field 1 is a great example of how the harvesting operations should go. Figure 16 shows 

the windrower arrived early in the morning, and had some begin time in order to transition 

from road to field operational mode. It then began work and the baler arrived to the field 

almost three hours later. The baler immediately began work and worked straight through until 
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the field was complete. The windrower finished and moved to the next field while the baler was 

still working, then the baler finished and moved to the next field. 

 
 

Figure 16: Workflow Timeline for Field 1 

 

This is a good example of how the windrowing and baling operations should be 

staggered, so that the windrower has a head start on the baler. The windrower had a 9.7% 

productivity loss, which is understandable since it had setup time, while the baler did extremely 

well and only had a 1.5 % productivity loss. This staggering arrangement allows for each 

machine to run at full capacity and never have to wait on the other.  
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As Figure 16 shows, though, the baler almost caught up to the windrower by the time it 

completed the field. It’s likely that, at the next field, the baler did catch the windrower and 

either had to go back to running at a reduced capacity, or had to stop and wait. This difference 

in capacity can be solved by adding additional windrowing equipment to the harvest team in 

order to equalize the operational capacities between windrowing and baling. 

Lead Time 

If the operational capacities are equalized there is still a certain amount of lead time 

that needs to be maintained between the windrower and the baler. This lead time is critical to 

making the harvesting operation run smoothly and prevents any piece of equipment from 

having to sit idle waiting on another. The lead time acts as a cushion or operational slack 

between the windrowing and baling operations. Even if the capacities are equalized, there are 

other factors that can cause equipment to get backed up. 

Mechanical breakdowns, slower transport speeds, and longer road to field transition 

times are all factors that could impact the windrowers lead time. This is why it’s important for 

the windrower to have a large enough lead time that these factors don’t slow it down to the 

point that the baler catches up with it throughout the course of a harvest day. 

However this issue of lead time can also work the other way. If the lead time becomes 

too large, there is a risk of rain and weather events that could occur before the baler can 

harvest the material on the area the windrower has already covered. This makes the issue of 

lead time much more complicated. There is a balance between staying far enough ahead so 

that baler does not catch up, while at the same time not getting too far ahead to the point of 

risking windrows being deteriorated by weather related events. 
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Equal Operational Capacities 

Field 1 was the most ideal scenario of proper lead time and exemplary of how a field 

should be harvested. In Figure 16, the windrower had a three hour lead time on the baler. In 

this case, however, they did not have equal capacities, so the baler was caught up to the 

windrower after four hours of operation. The Windrower had a working time of 6.39 hours 

while the baler had a working time of 3.93 hours. 

    
    ⁄              

In this case, the baler had a 61.5% capacity advantage over the windrower, but there 

was only one windrower and one baler. To equalize the capacities, you would need 1.5 

windrowers per baler. An Ideal harvest team setup would be three windrowers and two balers. 

This would result in equal capacities for windrowing and baling operations. 

Lead time Determination 

As we begin to look at lead time throughout the course of the day, and not just for one 

field, things like transportation speed, setup, teardown, and mechanical problems now become 

factors to consider. The windrowers use much smaller tractors than the balers, so their road 

speed is not as fast. The windrowers also have more setup and teardown time because they 

have to reconfigure from road mode to field mode, whereas the balers can just simply pull into 

a field and start working. These factors all impact the lead time for the windrowers. 

Mechanical problems are usually seen as down time for a single machine, and a loss in 

productivity. In a commercial harvest system, however, mechanical problems cause the 

operational capacities to become unbalanced. If a windrower goes down because of mechanical 
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problems, the balers then have greater capacity than the windrowers, and will eventually catch 

up.  

Field 1 was a very ideal field, and it had a one-to-one ratio of windrowers to balers. In 

this field, the windrower was about 60% slower. To balance the capacities, it was determined 

that 3 windrowers and 2 balers would be needed for a harvest team. If one windrower were to 

break down, the operational capacities would be unbalanced and the balers would be at a 60% 

advantage again. If the balers are back to a 60% advantage over the windrower, they will catch 

up after only four hours of operation. This is where the lead time comes into play.  

If there is enough lead time or operational slack between the windrowing and baling 

operations, it would allow for time to get the windrower operational again before the balers 

catch up. At a 60% advantage, it would take the balers four hours to catch up, if they were 

running at full capacity. As a lead time, four hours seems pretty reasonable and would allow for 

most minor repairs to be made on the windrower. Four hours also equates to a little under half 

of a 10 hour working day, which is typical of fall harvest operations. 

With this data set, it is also possible to examine the Begin and Finish times of the 

windrower. Since windrowing is the first step in the system, it does not have to wait on any 

other operation in order to perform its task. Thus, examining the distribution of the Begin times 

should yield an idea of how long it takes to reconfigure the windrower from road to field mode. 

Figure 17 shows the distribution for this dataset and the average Begin time of .26 hours, or 

about 15 minutes. This average is pulled down slightly due to two fields in the data set that did 

not have any setup time because the windrower was transported in field mode. This analysis, 

combined with in field observations from the 2011 harvest, yields an average reconfiguration 
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time of 15-20 minutes. This reconfiguration time also applies to the Finish time at the end of 

the field. This means there is a total of 30 – 40 minutes per field required just for the 

windrower to reconfigure between road and field mode. This is 30 - 40 minutes of delay per 

field that the baler does not experience. Estimating that the crew will only move fields once per 

day, this is almost an additional hour that should be added to the windrowers’ lead time. 

 
 

Figure 17: Windrower Begin and Finish times 

 

There is no data in this data set from which an analysis on the difference in transport 

speeds between the windrower and the baler can be performed. All that is known is that the 
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Taking all these factors into consideration, a necessary lead time for the windrowers 

over the balers was determined. Mechanical breakdowns are the largest factor, and it was 

determined that 4 hours of lead time would provide a good operational cushion to repair most 

breakdowns. Reconfiguration and transport time also have an impact, and they were 

determined to require 1-2 hours of additional lead time. This brings the total lead time for the 

windrower to 5-6 hours. This 5-6 hour lead time is long enough to cushion the effect of any 

mechanical problems, reconfiguration, and transport time. Yet it is short enough that, if there is 

the possibility of a rain or weather event, the windrowers could be shut down in order to allow 

the balers to catch up. This duration of lead time would give the balers about half a day to catch 

up and finish the ground that was already completed by the windrowers. 

2012 Configuration and Lead Time Analysis 

The configuration and lead time analysis was repeated on the 2012 fall harvest data set. 

The purpose was to confirm the results from the 2011 analysis on a larger data set, and make 

comparisons between the two. Updated methods developed from the 2011 analysis were used 

to sort and process the new data. 

Methods 

Data for the 2012 harvest was collected using the same CyCAN system developed at 

Iowa State University. Loggers were installed on all of the equipment used in the 2012 harvest 

and monitored more frequently to ensure quality data collection. Data processing was 

accomplished using data processing software developed at Iowa State University. This 

automated processing system takes the place of the hand analysis that was previously done 
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using AgLeader’s SMS Advanced software. This greatly increased the efficiency and accuracy of 

the data processing portion of this analysis (Askey 2013). 

Data from the loggers was organized by field using the geofencing process. This process 

organizes the data points into their respective field using the GPS coordinates of the data 

points. A geographical boundary is established for each field, that boundary is then used to sort 

the data points. Any points with GPS coordinates that fall within that boundary are categorized 

in that field.  

To find the field enter and exit times the system scans the data set of each field and 

finds the data points with the minimum and maximum date and time. This works much the 

same way as doing a manual data query in SMS Advanced but takes a fraction of the time. The 

first production time and the last production time are also found in a similar manner. The 

system again scans the data set for each field and locates the data points containing the first 

and last time that the machine was in the production state within that field. The production 

state is defined as ground speed greater than 2 kilometers per hour, Engine speed greater than 

1500 rpm’s, and PTO speed greater than 500 rpm’s. 

The field enter and exit times as well as the production start and stop times were 

already built into the data processing software. To complete this analysis however additional 

information was needed. To account for the overnight time the same way it was in the original 

2011 analysis the data had to be summarized by day. For fields that took multiple days to 

complete the working time for each day had to be found. In the previous analysis this was done 

by hand in SMS Advanced, the updated processing software looks for the first and last key on 

time of each day. The key on event is the first time the machines key is powered on for the day, 
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and similarly for the key off event it is the last time the machines key was turned off for the 

day. This idea of machine “On” time was originally developed by Benjamin Covington of Iowa 

State University and implemented into the data processing software for this analysis. (Askey 

2013, Covington 2013) 

The final piece added to the processing software was to calculate the begin and finish 

times for each field. The begin time was calculated by taking the difference of the field enter 

time and the first production time. Similarly, the finish time was found by taking the difference 

of the last production time and the field exit time. With this in place all the necessary data 

could be gathered to complete the configuration and lead time analysis. 

The 2012 harvest contained similar equipment to that of the 2011 harvest except there 

were greater numbers of each machine. There were also four different crews operating the 

equipment during this harvest season. This adds another influencing factor to the analysis and 

is examined later on in this section. 

Data Analysis 

The 2012 analysis was completed using the same concepts and analyzing the same 

factors as the 2011 analysis. The biggest importance of the 2012 analysis is that it contains a 

much larger data set with which to draw conclusions from. 

The first item covered was the begin and finish time of machines. The machines are 

grouped as Baler A, Baler B, and Windrower. Baler A and Baler B are different manufactures of 

large square balers but each group contains multiple machines which were operated by 

different crews. Baler A and Baler B are the same respective manufacturers from the 2011 
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study. The windrower group contains all the windrowers from all the crews. All the windrowers 

were the same make and model but they again were operated by different crews.  

 
 

Figure 18: Begin and Finish Time by Machine for All Crews 

 

In Figure 18, the begin and finish times for the 2012 harvest are significantly lower than 

that of the 2011 harvest which shows a great improvement in the overall organization of the 

crews. The average baler begin and finish times are around 30 minutes for both brands. The 

windrowers also showed a dramatic improvement with begin and finish times also averaging 

around 30 minutes. This is very good for the windrowers as this time includes their transition 

from road to field mode.  
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The next item evaluated was the productivity loss for each machine. Recall that the 

productivity loss is the sum of the begin and finish times divided by the total time spent in the 

field, shown here by Equation 3. 

                      
                        

          
 

Equation 3: Percent Productivity Loss 

 

Again overnight time was accounted for and not included in the total time. The total 

time was found by summing the entire working time from each day work performed in that 

field. The working time is defined as the period of time between the first “key ON” and the last 

“key OFF” time for that machine on any given day. Figure 19 below shows the resulting 

productivity loss for each machine category. 
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Figure 19: Percent Productivity Loss by Machine for all Crews 

 

The productivity losses summarized above are slightly increased over that of the 2011 

study. This is not unexpected though as this analysis contains a far greater amount of fields and 

machines. These productivity losses translate into possible productivity gains if they can be 

overcome with better organization. 

The windrowers will always have some percentage of productivity loss due to their time 

required to transition from road to field mode and vice versa. So while that time is somewhat 

fixed in these calculations they are penalized for it as productivity loss. This was done because 

as the equipment evolves new systems could be engineered to decrease this transition time. As 

this happens the equipment can still be evaluated using the same process and acts as baseline 

to evaluate these design improvements as well as different manufacturers. 
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Figure 19 shows a 4.4% increase in productivity loss in baler B over baler A. This could be 

a difference in manufacture but is more likely associated with crew organization. To investigate 

this further the baler productivity loss and start times were summarized by crew. There were 4 

different crews operating in the 2012 harvest which adds an additional layer to this 

organizational analysis. 

Figure 20 below shows the productivity loss broken down by baler and by crew. Only 

two crew operated baler brand B, while all the crews operated baler brand A. By examining 

Figure 20, it can be seen that crew 2 and 3 had the lowest productivity loss for baler A. When 

looking at baler B crew 3 had the lowest productivity loss, while crew 1 had a higher 

productivity they were much more consistent in it. The fact that these productivity losses vary 

so much by crew highlights the fact that this is indeed an organizational issue.  
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Figure 20: Baler Productivity Loss by Crew 
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Digging deeper into the differences between crews the begin and finish times for each 

crew were evaluated. Figure 21 shows the breakdown of this separated by crew and by baler. 

Crew 3 had the shortest average begin time at 17 minutes, while crew 2 had the shortest 

average finish time at 16.3 minutes. 
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Figure 21: Begin and Finish Time For Balers by Crew 

 

Results and Conclusion 

There are two main operations within a harvest team, windrowing and baling. It has 

been shown that the organization and management of these operations has a major impact on 

the productivity of the harvest team, as well as the productivity of the equipment.  
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It was shown that the productivity losses vary greatly by crew, which confirms that 

these issues are related to crew organization. Crews with poor organization had longer begin 

and finish times and therefore higher productivity loss. The amount of productivity loss 

translates into possible productivity gains, which can be achieved with better organization of 

the crews.  

By separating the windrowing and baling operations and staggering them, there can be 

significant increases in the overall productivity of the harvest team. A 5-6 hour lead time should 

be maintained between the two operations. This is long enough to cushion the effect of any 

mechanical problems or transportation and transition times of the windrower, but yet short 

enough that if there is the possibility of a rain event that the windrowers could be shut down 

and give the balers time to catch up and finish the areas that have already been windrowed. 

This analysis showed the impact that harvest team organization has on productivity, and 

how much it can be improved by separating the two operations. Further analysis could be done 

on the amount of idle time that occurs during the active period which this analysis did not 

cover. There could be more potential productivity gains to be made from better understanding 

these events as well. 
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CHAPTER 4: 

GENERAL CONCLUSIONS 

As the world population and demand for energy continues to grow renewable fuels and 

biobased sources of energy will play a large role in meeting these increasing needs. In the U.S., 

the governments Renewable Fuels Standard and RFS2 have mandated the development and 

production of biobased fuels. The first and most prevalent of these was corn grain ethanol. It 

has been widely adopted with plants in operation throughout the Midwest.  

More recently the focus has turned the cellulose based feed stocks that can also be 

converted into ethanol. Here in central Iowa corn stover has been selected as the primary 

feedstock. It is readily available and very abundant in the high yielding corn fields of central 

Iowa. 

As cellulosic ethanol begins production in central Iowa and throughout the Midwest the 

supply chain to support it has grown significantly. A 25 million gallon per year plant will require 

over 740,000 large square bales per year. With short harvest windows in the fall it takes a large 

fleet of equipment and personal to accomplish a harvest of this scale. 

Mobile data logging devices have played a key role in helping companies and research 

institutes better understand the productivity and efficiencies of these corn stover harvesting 

crews. By collecting and analyzing data about machine logistics, researchers are better able to 

provide solutions to managers and producers about how to improve the organization and 

productivity of the entire harvesting team. 
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Chapter 2 “Impact of Sampling Interval on GIS Data based Productivity Analysis” looked 

at the data logging devices used to capture this data. The data is collected from the 

equipment’s vehicle CAN bus and then evaluated to determine its productivity. To evaluate the 

equipment in a corn stover harvesting operation the data is sorted and categorized based on 

three key machine parameters, engine speed, vehicle ground speed, and pto speed. Different 

combinations of these parameters determine whether the machine is in the Production, Idle, or 

Transport state. From this the machine’s productivity can be calculated. 

This chapter looked at increasing the sampling interval of the data loggers as a solution 

to decreasing the data log file sizes. Smaller file sizes are needed to decrease the risk of lost or 

corrupted data during data transfer operations. After evaluating alternative sampling intervals 

of 2, 5, 10, 15, 30, and 60 seconds it was found that 15 seconds was the optimal sampling 

interval. The 15 second interval was the longest interval that did not significantly affect the 

productivity calculations of the machines. The 15 second interval will yield a 93% decrease in 

the amount of data generated and is successful solution to decreasing the data log file size. 

Chapter 3 “Optimal Configuration and Lead Time of Corn Stover Biomass Harvesting 

Teams” looks at another aspect of increasing the productivity of corn stover biomass harvesting 

teams. This chapter was focused around the organization of harvest teams and the impact it 

has the productivity of the entire team as well as individual machines. The analysis was 

completed in 2011 and repeated in 2012 on a larger data set. 

The windrowing and baling operations of corn stover harvesting are interconnected. The 

baling operation is dependent on the windrowing and any decreases in the productivity of the 

windrowers also affect the balers. This dependency also creates other inefficiencies in the 
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harvesting operation. If the units travel between fields together the balers have to wait for the 

shredders to complete an area of the field before they can begin work. Also since they have a 

higher capacity they will eventually catch the windrowers. This time spent waiting at the 

beginning of a field is productivity loss for the 2012 harvest they had an average productivity 

loss of 16%. This can be overcome with better organization. 

It was shown that the windrowing and baling operations need to be separated and that 

the windrowers should maintain a lead time over the balers. This lead time should be 5-6 hours. 

This is a long enough time to overcome any mechanical breakdowns and the transition time of 

the shredders. It is also short enough that in the case of a potential rain event the windrowers 

can be stopped and the balers would have time complete the ground they have already 

covered. 

This lead time only works if operational capacities are equalized. The baler field capacity 

was found to be 62% greater than that of the windrower. In order to equalize these capacities 

the optimal harvest team configuration would consist of 3 windrowers and 2 balers. In this 

configuration, the capacities are nearly equalized and the 5-6 hour lead time can be 

maintained. 

Limitations of Results 

There are several limitations to the results of this study that should be taken into 

consideration. These results are only applicable in a commercial scale corn stover harvest that 

utilizes similar equipment and operational organization. If advancements in machine capacities 

are made this study will need be revisited and possibly modified. This study is also 

geographically specific. These results may shift and not hold true in other regions of the country 
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or world. This is due to differences in field sizes and other environmental factors such as terrain 

or cropping style. These items must be considered when applying these results to other 

harvesting operations. 

There are many more potentials for improving the productivity of biomass harvesting 

teams and the results of this study are another step in the right direction. Continued research 

could further increase overall productivities, driving down the cost of the feedstock supply 

chain. This makes cellulosic ethanol an economic and environmentally viable solution for our 

nation’s energy needs and helps decrease our dependence on foreign oil. 
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APPENDIX A: PERCENT PRODUCTIVITY DIFFERENCE DATA 
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One-way ANOVA: StDev versus Sampling Interval  
 
Source             DF         SS         MS     F      P 
Sampling Interval   6  0.0012931  0.0002155  6.24  0.002 
Error              14  0.0004837  0.0000345 
Total              20  0.0017768 
 
S = 0.005878   R-Sq = 72.78%   R-Sq(adj) = 61.11% 
 
 
                              Individual 95% CIs For Mean Based on 
                              Pooled StDev 
Level  N      Mean     StDev  -------+---------+---------+---------+-- 
 1     3  0.000000  0.000000  (------*------) 
 2     3  0.001078  0.000558   (------*------) 
 5     3  0.002462  0.000947    (------*-------) 
10     3  0.004048  0.001274      (------*------) 
15     3  0.012443  0.008338              (------*-------) 
30     3  0.017695  0.009011                   (-------*------) 
60     3  0.020645  0.009396                      (-------*------) 
                              -------+---------+---------+---------+-- 
                                   0.000     0.010     0.020     0.030 
 
Pooled StDev = 0.005878 
 
 
Grouping Information Using Tukey Method 
 
Sampling 
Interval  N      Mean  Grouping 
60        3  0.020645  A 
30        3  0.017695  A B 
15        3  0.012443  A B C 
10        3  0.004048    B C 
 5        3  0.002462    B C 
 2        3  0.001078      C 
 1        3  0.000000      C 
 
Means that do not share a letter are significantly different. 
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APPENDIX B: TIME BASED PRODUCTIVITY DATA 
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One-way ANOVA: Std Deviation versus Sampling Interval  
 
Source             DF       SS       MS     F      P 
Sampling Interval   6  0.17835  0.02973  9.16  0.000 
Error              14  0.04545  0.00325 
Total              20  0.22380 
 
S = 0.05698   R-Sq = 79.69%   R-Sq(adj) = 70.99% 
 
 
                            Individual 95% CIs For Mean Based on 
                            Pooled StDev 
Level  N     Mean    StDev  -------+---------+---------+---------+-- 
 1     3  0.00000  0.00000  (------*------) 
 2     3  0.00905  0.00910   (------*------) 
 5     3  0.02244  0.02552    (------*------) 
10     3  0.03535  0.03874     (-------*------) 
15     3  0.07211  0.05981         (------*------) 
30     3  0.18817  0.03478                     (------*------) 
60     3  0.25614  0.12532                            (------*------) 
                            -------+---------+---------+---------+-- 
                                 0.00      0.10      0.20      0.30 
 
Pooled StDev = 0.05698 
 
 
Grouping Information Using Tukey Method 
 
Sampling 
Interval  N     Mean  Grouping 
60        3  0.25614  A 
30        3  0.18817  A B 
15        3  0.07211    B C 
10        3  0.03535    B C 
 5        3  0.02244      C 
 2        3  0.00905      C 
 1        3  0.00000      C 
 
Means that do not share a letter are significantly different. 
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APPENDIX C: SHIFTING TRANSITION POINT DOT PLOT 
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